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Preface

This manuscript began life as a set of lecture notes for a two-quarter (20 week) course on the foundations

of general relativity that I taught at the University of Chicago many years ago. I have repeated the

course quite a few times since then, both there and at the University of California, Irvine, and have over

the years steadily revised the notes and added new material. Maybe now the notes can stand on their

own.

The course was never intended to be a systematic survey of general relativity. There are many standard

topics that I do not discuss, e.g., the Schwarzschild solution and the “classic tests” of general relativity.

(And I have always recommended that students who have not already taken a more standard course in

the subject do some additional reading on their own.) My goals instead have been to (i) present the basic

logical-mathematical structure of the theory with some care, and (ii) consider additional special topics

that seem to me, at least, of particular interest. The topics have varied from year to year, and not all

have found their way into these notes. I will mention in advance three that did.

The first is “geometrized Newtonian gravitation theory”, also known as “Newton-Cartan theory”. It is

now well known that one can, after the fact, reformulate Newtonian gravitation theory so that it exhibits

many of the qualitative features that were once thought to be uniquely characteristic of general relativity.

On reformulation, Newtonian theory too provides an account of four-dimensional spacetime structure in

which (i) gravity emerges as a manifestation of spacetime curvature, and (ii) spacetime structure itself

is “dynamical” in the sense that it participates in the unfolding of physics rather than being a fixed

backdrop against which it unfolds. It has always seemed to me helpful to consider general relativity

and this geometrized reformulation of Newtonian theory side by side. For one thing, one derives a sense

of where Einstein’s equation “comes from”. When one reformulates the empty-space field equation of

Newtonian gravitation theory (i.e., Laplace’s equation ∇2φ = 0, where φ is the gravitational potential),

one arrives at a constraint on the curvature of spacetime, namely Rab = 0. The latter is, of course,

just what we otherwise know as (the empty-space version of) Einstein’s equation. And, reciprocally,

this comparison of the two theories side by side provides a certain insight into Newtonian physics. For

example, it yields a satisfying solution (or dissolution) to an old problem about Newtonian cosmology.

Newtonian theory in a standard textbook formulation seems to provide no sensible prescription for what

the gravitational field should be like in the presence of a uniform mass-distribution filling all of space.

iv



PREFACE v

(See section 4.4.) But the problem is really just an artifact of the formulation, and it disappears when

one passes to the geometrized version of the theory.

The basic idea of geometrized Newtonian gravitation theory is simple enough. But there are compli-

cations, and I deal with some of them in the present expanded form of the lecture notes. In particular, I

present two different versions of the theory – what I call the “Trautman version” and the “Künzle-Ehlers

version” – and consider their relation to one another. I also discuss in some detail the geometric signifi-

cance of various conditions on the Riemann curvature field Rabcd that enter into the formulation of these

versions.

A second special topic that I consider is the concept of “rotation”. It turns out to be a rather delicate

and interesting question, at least in some cases, just what it means to say that a body is or is not rotating

within the framework of general relativity. Moreover, the reasons for this — at least the ones I have in

mind — do not have much to do with traditional controversy over “absolute vs. relative (or Machian)”

conceptions of motion. Rather they concern particular geometric complexities that arise when one allows

for the possibility of spacetime curvature. The relevant distinction for my purposes is not that between

attributions of “relative” and “absolute” rotation, but rather that between attributions of rotation that

can and cannot be analyzed in terms of motion (in the limit) at a point. It is the latter — ones that

make essential reference to extended regions of spacetime — that can be problematic.

The problem has two parts. First, one can easily think of different criteria for when an extended body

is rotating. (I discuss two examples in section 3.2.) These criteria agree if the background spacetime

structure is sufficiently simple, e.g., if one is working in Minkowski spacetime. But they do not agree in

general. So, at the very least, attributions of rotation in general relativity can be ambiguous. A body

can be rotating in one perfectly natural sense but not rotating in another, equally natural, sense. Second,

circumstances can arise in which the different criteria – all of them – lead to determinations of rotation

and non-rotation that seem wildly counterintuitive. (See section 3.3.) The upshot of this discussion is

not that we cannot continue to talk about rotation in the context of general relativity. Not at all. Rather,

we simply have to appreciate that it is a subtle and ambiguous notion that does not, in all cases, fully

answer to our classical intuitions.

A third special topic that I consider is Gödel spacetime. It is not a live candidate for describing

our universe, but it is of interest because of what it tells us about the possibilities allowed by general

relativity. It represents a possible universe with remarkable properties. For one thing, the entire material

content of the Gödel universe is in a state of uniform, rigid rotation (according to any reasonable criterion

of rotation). For another, light rays and free test particles in it exhibit a kind of boomerang effect. Most

striking of all, it admits closed timelike curves that cannot be “unrolled” by passing to a covering space

(because the underlying manifold is simply connected). In section 3.1, I review these basic features of

Gödel spacetime and, in an appendix to that section, discuss how one can go back and forth between an

intrinsic characterization of the Gödel metric and two different coordinate expressions for it.
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These three special topics are treated in chapters 3 and 4. Much of this material has been added over

the years. The original core of the lecture notes — the review of the basic structure of general relativity

— is to be found in chapter 2.

Chapter 1 offers a preparatory review of basic differential geometry. It has never been my practice to

work through all this material in class. I have limited myself there to “highlights” and general remarks.

But I have always distributed the notes so that students with sufficient interest can do further reading on

their own. On occasion, I have also run a separate “problem session” and used it for additional coaching

on differential geometry. (A number of problems, with solutions, are included in the present version of

the notes.) I suggest that readers make use of chapter 1 as seems best to them — as a text to be read

from the beginning, as a reference work to be consulted when particular topics arise in later chapters, as

something in between, or not at all.

I would like to use this occasion to thank a number of people who have helped me over the years to

learn and better understand general relativity. I could produce a long list, but the ones who come first,

at least, are John Earman, David Garfinkle, Robert Geroch, Clark Glymour, Howard Stein, and Robert

Wald. I am particularly grateful to Bob1 and Bob2 for allowing this interloper from the Philosophy

Department to find a second home in the Chicago Relativity Group. Anyone familiar with their work,

both research and expository writings, will recognize their influence on this set of lecture notes.

Erik Curiel, Sam Fletcher, David Garfinkle, John Manchak, and Jim Weatherall have my thanks, as

well, for the comments and corrections they have given me on earlier drafts of the manuscript.

Matthias Kretschmann was good enough some years ago to take my handwritten notes on differential

geometry and set them in TEX. I took over after that, but I might not have started without his push.

Finally, Pen Maddy has helped me to believe that this project was worth completing. I shall always

be grateful to her for her support and encouragement.



Chapter 1

Differential Geometry

1.1 Manifolds

We assume familiarity with the basic elements of multivariable calculus and point set topology. The

following notions, in particular, should be familiar.

R
n (for n ≥ 1) is the set of all n-tuples of real numbers x = (x1, ..., xn). The Euclidean inner product

(or “dot product”) on R
n is given by x · y = x1y1 + ... + xnyn. It determines a norm ‖x‖ =

√
x · x.

Given a point x ∈ R
n and a real number ǫ > 0, Bǫ(x) is the open ball in R

n centered at x with radius

ǫ, i.e., Bǫ(x) = {y : ‖y− x‖ < ǫ}. Clearly, x belongs to Bǫ(x) for every ǫ > 0. A subset S of R
n is open

if, for all points x in S, there is an ǫ > 0 such that Bǫ(x) ⊆ S. This determines a topology on R
n. Given

m,n ≥ 1, and a map f : O → R
m from an open set O in R

n to R
m, f is smooth (or C∞) if all its mixed

partial derivatives (to all orders) exist and are continuous at every point in O.

A smooth n-dimensional manifold (n ≥ 1) can be thought of as a point set to which has been added the

“local smoothness structure” of R
n. Our discussion of differential geometry begins with a more precise

characterization.1

Let M be a non-empty set. An n-chart on M is a pair (U,ϕ) where U is a subset of M and ϕ : U → R
n

is an injective (i.e., one-to-one) map from U into R
n with the property that ϕ[U ] is an open subset of R

n.

(Here ϕ[U ] is the image set {ϕ(p) : p ∈ U}.) Charts, also called “coordinate patches”, are the mechanism

with which one induces local smoothness structure on the set M . To obtain a smooth n-dimensional

manifold, we must lay down sufficiently many n-charts on M to cover the set, and require that they are,

in an appropriate sense, compatible with one another.

Let (U1, ϕ1) and (U2, ϕ2) be n-charts on M . We say the two are compatible if either the intersection

set U = U1 ∩ U2 is empty, or the following conditions hold:

1In this section and several others in chapter 1, we follow the basic lines of the presentation in Geroch [22].

1



CHAPTER 1. DIFFERENTIAL GEOMETRY 2

(1) ϕ1[U ] and ϕ2[U ] are both open subsets of R
n;

(2) ϕ1 ◦ ϕ−1
2 : ϕ2[U ] → R

n and ϕ2 ◦ ϕ−1
1 : ϕ1[U ] → R

n are both smooth.

(Notice that the second makes sense since ϕ1[U ] and ϕ2[U ] are open subsets of R
n and we know what it

means to say that a map from an open subset of R
n to R

n is smooth. See figure 1.1.1.)

The relation of compatibility between n-charts on a given set is reflexive and symmetric. But it need

not be transitive and, hence, not an equivalence relation. For example, consider the following three

1−charts on R:

C1 = (U1, ϕ1) with U1 = (−1, 1) and ϕ1(x) = x

C2 = (U2, ϕ2) with U2 = (0, 1) and ϕ2(x) = x

C3 = (U3, ϕ3) with U3 = (−1, 1) and ϕ3(x) = x3.

Pairs C1 and C2 are compatible, and so are pairs C2 and C3. But C1 and C3 are not compatible, because

the map ϕ1 ◦ ϕ−1
3 : (−1,+1) → R is not smooth (or even just differentiable) at x = 0.

ϕ1

ϕ2

R
n

M

U1

U2

ϕ1[U1]

ϕ2[U2]

Figure 1.1.1: Two n-charts (U1, ϕ1) and (U2, ϕ2) on M with overlapping domains.

We now define a smooth n-dimensional manifold (or, in brief, an n-manifold) (n ≥ 1) to be a pair

(M, C) where M is a non-empty set, and C is a set of n-charts on M satisfying the following four

conditions.

(M1) Any two n-charts in C are compatible.

(M2) The (domains of the) n-charts in C cover M , i.e., for every p ∈M , there is an n-chart (U,ϕ) in C
such that p ∈ U .

(M3) (Hausdorff condition) Given distinct points p1 and p2 in M , there exist n-charts (U1, ϕ1) and

(U2, ϕ2) in C such that pi ∈ Ui for i = 1, 2, and U1 ∩ U2 is empty.

(M4) C is maximal in the sense that any n-chart on M that is compatible with every n-chart in C
belongs to C.
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(M1) and (M2) are certainly conditions one would expect. (M3) is included, following standard practice,

simply to rule out pathological examples (though one does, sometimes, encounter discussions of “non-

Hausdorff manifolds”). (M4) builds in the requirement that manifolds don’t have “extra structure” in

the form of distinguished n-charts. (For example, we can think of the point set R
n as carrying a single

(global) n-chart. In the transition from the point set R
n to the n-manifold R

n discussed below, this

“extra structure” is washed out.)

Because of (M4), it might seem a difficult task to specify an n-dimensional manifold. (How is one to

get a grip on all the different n-charts that make up a maximal set of such?) But the following proposition

shows that the specification need not be difficult. It suffices to come up with a set of n-charts on the

underlying set satisfying (M1), (M2), (M3), and then simply throw in wholesale all other compatible

n-charts.

Proposition 1.1.1. Let M be a non-empty set, let C0 be a set of n-charts on M satisfying conditions

(M1), (M2), (M3), and let C be the set of all n-charts on M compatible with all the n-charts in C0. Then

(M, C) is an n-manifold, i.e., C satisfies all four conditions.

Proof. Since C0 satisfies (M1), C0 is a subset of C. It follows immediately that C satisfies (M2), (M3), and

(M4). Only (M1) requires some argument. Let C1 = (U1, ϕ1) and C2 = (U2, ϕ2) be any two n-charts

compatible with all n-charts in C0. We show that they are compatible with one another. We may assume

that the intersection U1 ∩ U2 is non-empty, since otherwise compatibility is automatic.

First we show that ϕ1[U1∩U2] is open. (A parallel argument establishes that ϕ2[U1∩U2] is open.)

Consider an arbitrary point of ϕ1[U1∩U2]. It is of the form ϕ1(p) for some point p ∈ U1 ∩U2. Since C0

satisfies (M2), there exists an n-chart C = (U,ϕ) in C0 whose domain contains p. So p ∈ U ∩ U1 ∩ U2.

Since C is compatible with both C1 and C2, ϕ[U ∩ U1] and ϕ[U ∩ U2] are open sets in R
n, and the

maps

ϕ1 ◦ ϕ−1 : ϕ[U ∩ U1] → R
n, ϕ2 ◦ ϕ−1 : ϕ[U ∩ U2] → R

n,

ϕ ◦ ϕ−1
1 : ϕ1[U ∩ U1] → R

n, ϕ ◦ ϕ−1
2 : ϕ2[U ∩ U2] → R

n,

are all smooth (and so continuous). Now ϕ[U ∩ U1 ∩ U2] is open, since it is the intersection of open

sets ϕ[U ∩ U1] and ϕ[U ∩ U2]. (Here we use the fact that ϕ is injective.) So ϕ1[U ∩ U1 ∩ U2] is

open, since it is the pre-image of ϕ[U ∩ U1 ∩ U2] under the continuous map ϕ ◦ ϕ−1
1 . But, clearly,

ϕ1(p) ∈ ϕ1[U ∩U1 ∩U2], and ϕ1[U ∩ U1 ∩U2] is a subset of ϕ1[U1 ∩U2]. So we see that our arbitrary

point ϕ1(p) in ϕ1[U1 ∩U2] is contained in an open subset of ϕ1[U1 ∩U2]. Thus ϕ1[U1 ∩U2] is open.

Next we show that the map ϕ2 ◦ϕ−1
1 : ϕ1[U1 ∩U2] → R

n is smooth. (A parallel argument establishes

that ϕ1 ◦ϕ−1
2 : ϕ2[U1 ∩U2] → R

n is smooth.) For this it suffices to show that, given our arbitrary point

ϕ1(p) in ϕ1[U1 ∩U2], the restriction of ϕ2 ◦ϕ−1
1 to some open subset of ϕ1[U1 ∩U2] containing ϕ1(p)

is smooth. But this follows easily. We know that ϕ1[U ∩ U1 ∩ U2] is an open subset of ϕ1[U1 ∩ U2]

containing ϕ1(p). And the restriction of ϕ2 ◦ ϕ−1
1 to ϕ1[U ∩ U1 ∩ U2] is smooth, since it can be
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realized as the composition of ϕ ◦ ϕ−1
1 (restricted to ϕ1[U ∩ U1 ∩ U2]) with ϕ2 ◦ ϕ−1 (restricted to

ϕ[U ∩ U1 ∩ U2]), and both these maps are smooth.

Our definition of manifolds is less restrictive than some in that we do not include the following

condition.

(M5) (Countable cover condition) There is a countable subset {(Un, ϕn) : n ∈ N} of C whose domains

cover M , i.e., for all p in M , there is an n such that p ∈ Un.

In fact, all the manifolds that one encounters in relativity theory satisfy (M5). But there is some advantage

in not taking the condition for granted from the start. It is simply not needed for our work until we

discuss derivative operators, i.e., affine connections, on manifolds in section 1.7. It turns out that (M5) is

actually a necessary and sufficient condition for there to exist a derivative operator on a manifold (given

our characterization). It is also a necessary and sufficient condition for there to exist a (positive definite)

Riemannian metric on a manifold. (See Geroch [23]. The paper gives a nice example of a 2-manifold that

violates (M5).)

Our way of defining n-manifolds is also slightly non-standard because we jump directly from the point

set M to the manifold (M, C). In contrast, one often proceeds in two stages. One first puts a topology T
on M forming a topological space (M, T ). Then one adds the set of n-charts C to form the “manifold”
(
(M, T ), C

)
. If one proceeds this way, one must require of every n-chart (U,ϕ) in C that U be open, i.e.,

that U belong to T , so that ϕ : U → R
n qualifies as continuous.

Given our characterization of an n-manifold (M, C), we do not (yet) know what it means for a subset

of M to be “open”. But there is a natural way to use the n-charts in C to define a topology on M . We

say that a subset S of M is open if, for all p in S, there is an n-chart (U,ϕ) in C such that p ∈ U and

U ⊆ S. (This topology can also be characterized as the coarsest topology on M with respect to which,

for all n-charts (U,ϕ) in C, ϕ : U → R
n is continuous. See problem 1.1.3). It follows immediately that

the domain of every n-chart is open.

Problem 1.1.1. Let (M, C) be an n-manifold, let (U,ϕ) be an n-chart in C, let Ô be an open subset

of ϕ[U ], and let O be its preimage ϕ−1[Ô]. (So, O ⊆ U .) Show that (O,ϕ|O), the restriction of (U,ϕ)

to O, is also an n-chart in C.

Problem 1.1.2. Let (M, C) be an n-manifold, let (U,ϕ) be an n-chart in C, and let O be an open set

in M such that U ∩O 6= ∅. Show that
(
U ∩O,ϕ|U∩O

)
, the restriction of (U,ϕ) to U ∩O, is also an

n-chart in C. (Hint: Make use of the result in problem 1.1.1. Strictly speaking, by the way, we do not

need to assume that U ∩O is non-empty. But that is the only case of interest.)

Problem 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets of M . (i) Show that

T is, in fact, a topology on M , i.e., it contains the empty set and the set M , and is closed under finite
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intersections and arbitrary unions. (ii) Show that T is the coarsest topology on M with respect to which

ϕ : U → R
n is continuous for all n-charts (U,ϕ) in C.

Now we consider a few examples of manifolds. Let M be R
n, the set of all ordered n-tuples of real

numbers. Let U be any subset of M that is open (in the standard topology on R
n), and let ϕ : U → R

n

be the identity map. Then (U,ϕ) qualifies as an n-chart on M . Let C0 be the set of all n-charts on M of

this very special form. It is easy to check that C0 satisfies conditions (M1), (M2), (M3). If we take C to

be the set of all n-charts on M compatible with all n-charts in C0, then it follows (by proposition 1.1.1)

that (M, C) is an n-manifold. We refer to it as “the manifold R
n”. (Thus, one must distinguish among

the point set R
n, the vector space R

n, the manifold R
n, and so forth.)

Next we introduce the manifold Sn. The underlying set M is the set of points x = (x1, ..., xn+1) ∈
R
n+1 such that ‖x‖ = 1. For each i = 1, ..., n+ 1, we set

U+
i = {(x1, ..., xi, ..., xn+1) ∈M : xi > 0},

U−
i = {(x1, ..., xi, ..., xn+1) ∈M : xi < 0},

and define maps ϕ+
i : U+

i → R
n and ϕ−

i : U−
i → R

n by setting

ϕ+
i (x1, ..., xn+1) = (x1, ..., xi−1, xi+1, ..., xn+1) = ϕ−

i (x1, ..., xn+1).

(
U+
i and U−

i are upper and lower hemispheres with respect to the xi coordinate axis; ϕ+
i and ϕ−

i are

projections that erase the ith coordinate of (x1, ..., xn+1).
)

The (n + 1) pairs of the form (U+
i , ϕ

+
i )

and (U−
i , ϕ

−
i ) are n-charts on M . The set C1 of all such pairs satisfies conditions (M1) and (M2). For

all p ∈ M and all ǫ > 0, if Bǫ(p) ∩M is a subset of U+
i (respectively U−

i ), we now add to C1 the

n-chart that results from restricting (U+
i , ϕ

+
i ) (respectively (U−

i , ϕ
−
i )) to Bǫ(p) ∩M . The expanded

set of n-charts C2 satisfies (M1), (M2), (M3). If, finally, we add to C2 all n-charts on M compatible with

all n-charts in C2, we obtain the n-manifold Sn.

We thus have the manifolds R
n and Sn for every n ≥ 1. From these we can generate many more

manifolds by taking products and cutting holes.

Let M1 = (M1, C1) be an n1-manifold and let M2 = (M2, C2) be an n2-manifold. The product

manifold M1 ×M2 is an (n1 + n2)−manifold defined as follows. The underlying point set is just the

Cartesian product M1 ×M2, i.e., the set of all pairs (p1, p2) where pi ∈Mi for i = 1, 2. Let (U1, ϕ1)

be an n1-chart in C1 and let (U2, ϕ2) be an n2-chart in C2. We associate with them a set U and a map

ϕ : U → R
(n1+n2). We take U to be the product U1 × U2; and given (p1, p2) ∈ U , we take ϕ

(
(p1, p2)

)

to be (y1, ..., yn1 , z1, ..., zn2), where ϕ1(p1) = (y1, ..., yn1), and ϕ2(p2) = (z1, ..., zn2). So defined,

(U,ϕ) qualifies as an (n1 + n2)-chart on M1 ×M2. The set of all (n1 + n2)-charts on M1 ×M2 obtained

in this manner satisfies conditions (M1), (M2), (M3). If we now throw in all n-charts on M1 × M2

that are compatible with all members of this set, we obtain the manifold M1 ×M2. Using this product
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construction, we generate the 2−manifold R
1×S1 (the “cylinder”), the 2−manifold S1×S1 (the “torus”),

and so forth.

Next, let (M, C) be an n-manifold, and let S be a closed proper subset of M . (So M − S is a

non-empty open subset of M .) Further, let C′ be the set of all n-charts (U,ϕ) in C where U ⊆ (M − S).

Then the pair (M −S, C′) is an n-manifold in its own right. (This follows as a corollary to the assertion

in problem 1.1.2.)

A large fraction of the manifolds one encounters in relativity theory can be obtained from the manifolds

R
n and Sn by taking products and excising closed sets.

We now define “smooth maps” between manifolds. We do so in two stages. First, we consider the

special case in which the second manifold (i.e., the one into which the first is mapped) is R. Then we

consider the general case. Let (M, C) be an n-manifold. We say that a map α : M → R is smooth (or

C∞) if, for all n-charts (U,ϕ) in C, α ◦ ϕ−1 : ϕ[U ] → R is smooth. (Here we use a standard technique.

To define something on an n-manifold we use the charts to pull things back to the context of R
n where

the notion already makes sense.) Next let (M ′, C′) be an m-manifold (with no requirement that m = n).

We say that a map ψ : M → M ′ is smooth (or C∞) if, for all smooth maps α : M ′ → R on the second

manifold, the composed map α ◦ ψ : M → R is smooth. One can check that the second definition is

compatible with the first (see problem 1.1.4), and with the standard definition of smoothness that applies

specifically to maps of the form ψ : R
n → R

m.

Problem 1.1.4. Let (M, C) be an n-manifold. Show that a map α : M → R is smooth according to our

first definition (which applies only to real-valued maps on manifolds) iff it is smooth according to our

second definition (which applies to maps between arbitrary manifolds).

Let (M, C) and (M ′, C′) be manifolds. The definition of smoothness just given naturally extends to

maps of the form ψ : O → M ′ where O is an open subset of M (that need not be all of M). It does so

because we can always think of O as a manifold in its own right when paired with the charts it inherits

from C, i.e., the charts in C whose domains are subsets of O. On this understanding it follows, for example,

that if a map ψ : M → M ′ is smooth, then its restriction to O is smooth. It also follows that given any

chart (U,ϕ) in C, the maps ϕ : U → R
n and ϕ−1 : ϕ[U ] →M are both smooth.

The point mentioned in the preceding paragraph will come up repeatedly. We shall often formulate

definitions in terms of structures defined on manifolds and then transfer them without comment to open

subsets of manifolds. It should be understood in each case that we have in mind the manifold structure

induced on those open sets.

Given manifolds (M, C) and (M ′, C′), a bijection ψ : M → M ′ is said to be a diffeomorphism if

both ψ and ψ−1 are smooth. Two manifolds are said to be diffeomorphic, of course, if there exists a

diffeomorphism between them, i.e., between their underlying point sets. Diffeomorphic manifolds are
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as alike as they can be with respect to their “structure”. They can differ only in the identity of their

underlying elements.
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1.2 Tangent Vectors

Let (M, C) be an n-manifold and let p be a point in M . In this section, we introduce the notion of a

“vector” (or “tangent vector” or “contravariant vector”) at p. We also show that the set of all vectors at

p naturally forms an n-dimensional vector space.

Consider first the familiar case of R
n. A vector ξ at a point in R

n can be characterized by its

components (ξ1, ..., ξn) with respect to the n coordinate axes. This characterization is not available

for arbitrary n-manifolds where no coordinate curves are distinguished. But an alternate, equivalent

characterization does lend itself to generalization.

Let p be a point in R
n. We take S(p) to be the set of all smooth maps f : O → R, where O is some

open subset (or other) of R
n that contains p. If f1 : O1 → R and f2 : O2 → R are both in S(p),

then we can define new maps (f1 + f2) : O1 ∩ O2 → R and (f1f2) : O1 ∩ O2 → R in S(p) by setting

(f1 + f2)(q) = f1(q) + f2(q) and (f1f2)(q) = f1(q) f2(q) for all points q in O1 ∩O2.

Now suppose that ξ is a vector at p in R
n with components (ξ1, ..., ξn) and that f is in S(p). The

directional derivative of f at p in the direction ξ is defined by:

ξ(f) = ξ · (∇f)|p =

n∑

i=1

ξi
∂f

∂xi
(p). (1.2.1)

It follows immediately from the elementary properties of partial derivatives that, for all f1 and f2 in S(p),

(DD1) ξ(f1 + f2) = ξ(f1) + ξ(f2)

(DD2) ξ(f1f2) = f1(p) ξ(f2) + f2(p) ξ(f1)

(DD3) If f1 is constant, ξ(f1) = 0.

Any map from S(p) to R satisfying these three conditions will be called a derivation (or directional

derivative operator) at p. Thus, every vector at p defines, via (1.2.1), a derivation at p. Indeed, we shall

see in a moment that (1.2.1) defines a bijection between vectors at p (understood as ordered n-tuples of

reals) and derivations at p. This will give us our desired alternate characterization of vectors in R
n. But

first we need a lemma.

Lemma 1.2.1. Let f1 : O1 → R and f2 : O2 → R be elements of S(p) that agree on some open set

O ⊆ O1 ∩O2 containing p. Then, for all derivations ξ at p, ξ(f1) = ξ(f2).

Proof. Let h : O → R be the constant map on O that assigns 1 to all points. Certainly h is in S(p). The

maps h f1 and h f2 have domain O and agree throughout O, i.e., h f1 = h f2. So ξ(h f1) = ξ(h f2).

But by (DD2) and (DD3),

ξ(h f1) = h(p) ξ(f1) + f1(p) ξ(h) = 1 ξ(f1) + f1(p) 0 = ξ(f1).

Similarly, ξ(h f2) = ξ(f2). So ξ(f1) = ξ(f2), as claimed.
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Proposition 1.2.2. Equation (1.2.1) defines a bijection between vectors at p and derivations at p.

Proof. Suppose first that ξ = (ξ1, ..., ξn) and η = (η1, ..., ηn) are vectors at p that, via (1.2.1), determine

the same derivation at p. Then ξ · (∇f)|p = η · (∇f)|p, for all f in S(p). Consider the special case where

f is the coordinate map xi : R
n → R that assigns to a point in R

n its ith coordinate. We have

(∇xi)|p =

(
∂xi

∂x1
, ...,

∂xi

∂xi
, ...,

∂xi

∂xn

)
∣∣p

= (0, ..., 0, 1, 0, ..., 0),

where the sole 1 in the far right n-tuple is in the ith position. So ξi = ξ · (∇xi)|p = η · (∇xi)|p = ηi.

But this is true for all i = 1, ..., n. Hence ξ = η. Thus, the map from vectors at p to derivations at p

determined by (1.2.1) is injective.

Next, suppose that ξ is a derivation at p and that the numbers ξ1, ..., ξn are defined by ξi = ξ(xi).

We show that, for all f in S(p), ξ(f) =

n∑

i=1

ξi
∂f

∂xi
(p). That is, we show that ξ can be realized as

the image of (ξ1, ..., ξn) under the map determined by (1.2.1). This will establish that the map is also

surjective.

Let f : O → R be a map in S(p). By the preceding lemma, we may assume that O is an open ball

centered at p. (If f ′ is the restriction of f to an open ball centered at p, ξ(f ′) = ξ(f). So we lose

nothing by working with f ′ rather than f .) If x is a point in O, it follows by the “fundamental theorem

of calculus” that

f(x) = f(p) +

∫ 1

0

d

dt
f
(
p+ t(x− p)

)
dt.

(We want the domain of f to be an open ball centered at p to insure that f is defined at all points on

the line segment connecting p and x.) By the “chain rule”,

d

dt
f
(
p+ t(x− p)

)
=

n∑

i=1

(
∂f

∂xi
(
p+ t(x− p)

))
(xi − pi).

Inserting the right side of this equation into the integrand above, we arrive at

f(x) = f(p) +

n∑

i=1

gi(x) (xi − pi), (1.2.2)

where, for all i, the map gi : O → R is given by gi(x) =

∫ 1

0

∂f

∂xi
(p+ t(x− p)) dt. The gi belong to

S(p). It now follows from (DD1), (DD2) and (DD3) that

ξ(f) =

n∑

i=1

[
gi(p) ξ(x

i − pi) +
(
(xi − pi)(p)

)
ξ(gi)

]
.

(Here we are construing the numbers f(p) and p1, ..., pn as constant functions on O.) But (xi−pi)(p) =

pi − pi = 0, and ξ(xi − pi) = ξ(xi) − ξ(pi) = ξi − 0 = ξi. So we have

ξ(f) =

n∑

i=1

ξi gi(p).
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But it follows from (1.2.2) that
∂f

∂xi
(p) = gi(p). So ξ(f) =

n∑

i=1

ξi
∂f

∂xi
(p), as claimed.

With proposition 1.2.2 as motivation, we now give our definition of “vectors” at points of manifolds.

Given a manifold (M, C) and a point p in M , let S(p) be the set of smooth maps f : O → R where O

is some open subset (or other) of M that contains p. (Our prior remark about adding and multiplying

elements of S(p) carries over intact.) We take a vector (or tangent vector, or contravariant vector) at p

to be a map from S(p) to R that satisfies (DD1), (DD2), and (DD3).

The set of all vectors at p has a natural vector space structure (over R). If ξ and η are vectors at p,

and k is a real number, we can define new vectors ξ + η and k ξ by setting

(ξ + η)(f) = ξ(f) + η(f),

(k ξ)(f) = k ξ(f),

for all f in S(p). The vector space Mp so defined is call the tangent space to p. We shall soon show that

Mp has dimension n, i.e., has the same dimension as (M, C). To do so, we give a second characterization

of vectors on manifolds that is of independent interest.

Let γ : I →M be a smooth curve in M , i.e., a smooth map from an open interval I ⊆ R into M . (I

is of the form (a, b), (−∞, b), (a,+∞), or (−∞,+∞), where a and b are real numbers. We know what

it means to say that γ : I → M is smooth since, as noted toward the end of section 1.1, we can think of

I as a manifold in its own right when paired with the charts it inherits from the manifold R.) Suppose

s0 ∈ I and γ(s0) = p. We associate with γ a vector
→
γ p at p by setting

→
γp(f) =

d

ds

(
f ◦ γ

)
(s0) for all

f in S(p). (This definition makes sense since (f ◦ γ) is a smooth map from I into R.) It is easy to check

that
→
γp, so defined, satisfies (DD1) – (DD3). For example, (DD2) holds for all f1 and f2 in S since

→
γp(f1 f2) =

(
d

ds

(
(f1 f2) ◦ γ

))
(s0) =

(
d

ds

(
(f1 ◦ γ) (f2 ◦ γ)

))
(s0)

=
(
f1 ◦ γ

)
(s0)

(
d

ds

(
f2 ◦ γ

))
(s0) +

(
f2 ◦ γ

)
(s0)

(
d

ds

(
f1 ◦ γ

))
(s0)

= f1(p)
→
γp(f2) + f2(p)

→
γp(f1).

→
γp is called the tangent vector to γ at p.

Suppose now that (U,ϕ) is an n-chart in our n-manifold (M, C). Associated with (U,ϕ) are coordinate

maps ui : U → R for i = 1, ..., n defined by ui(q) =
(
xi ◦ ϕ

)
(q).

(
Thus, the number that ui assigns

to a point q in M is the one that xi assigns to the image point ϕ(q) in R
n. Equivalently, ui(q) is the ith

coordinate of ϕ(q). So ϕ(q) =
(
u1(q), ..., un(q)

)
.
)

Now let p be a point in U . We understand the ith coordinate curve through ϕ(p) =
(
u1(p), ..., un(p)

)

in R
n to be the map from R to R

n given by

s 7→
(
u1(p), ..., ui−1(p), ui(p) + s, ui+1(p), ..., un(p)

)
. (1.2.3)
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ϕ

ϕ(p)

R
nM

U
ϕ[U ]

p
γi

γj

Figure 1.2.1: Coordinate curves on M with respect to (U,ϕ).

The image of the curve is a line through ϕ(p), parallel to the ith coordinate axis through the origin (see

figure 1.2.1). We can pull this curve back to U via ϕ−1 to obtain a smooth curve γi : I → U through p:

γi(s) = ϕ−1
(
u1(p), ..., ui−1(p), ui(p) + s, ui+1(p), ..., un(p)

)
. (1.2.4)

Note that γi(0) = p. (We can afford to be vague about the domain I of γi since we are interested only

in the tangent to the curve at p. All that matters is that 0 ∈ I. How do we know that γi is smooth?

This follows because ϕ−1 is smooth, and so γi is the composition of two smooth maps.) Extending our

previous usage, we now refer to γi as the ith coordinate curve through p with respect to (U,ϕ). (Note

that coordinate curves through points in R
n are defined outright, but coordinate curves through points

in M are necessarily relativized to n-charts.) This curve has a tangent
→
γ i |p at p. By the chain rule,

→
γ i |p(f) =

d

ds

(
f ◦ γi

)
(0) =

(
∂
(
f ◦ ϕ−1

)

∂xi

)
(
ϕ(p)

)
(1.2.5)

for all f in S(p). We note for future reference, in particular, that since uj = xj ◦ ϕ,

→
γ i |p(u

j) =

(
∂xj

∂xi

)(
ϕ(p)

)
= δij . (1.2.6)

(Here δij is the Kronecker delta function that is 1 if i = j, and 0 otherwise.) Sometimes the tangent

vector
→
γ i is written as

∂

∂ui
, and

→
γ i(f) is written as

∂f

∂ui
. Using this notation, and suppressing the point

of evaluation p, (1.2.5) and (1.2.6) come out as

∂f

∂ui
=
∂(f ◦ ϕ−1)

∂xi
(1.2.7)

and
∂uj

∂ui
= δij . (1.2.8)

Using the tangent vectors
→
γ i |p, i = 1, ..., n, we can show that Mp is n-dimensional.

Proposition 1.2.3. Let (M, C) be an n-manifold, let (U,ϕ) be an n-chart in C, let p be a point in U ,

and let γ1, ..., γn be the n coordinate curves through p with respect to (U,ϕ). Then their tangent vectors
→
γ 1 |p, ...,

→
γn |p at p form a basis for Mp.
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Proof. First we show that the vectors are linearly independent. Let a1, ..., an be real numbers such that
n∑
i=1

ai
→
γ i |p = 0. We must show that the ai are all 0. Now for all f in S(p), we have

0 =

(
n∑

i=1

ai
→
γ i |p

)
(f) =

n∑

i=1

ai
→
γ i |p (f).

Consider the special case where f is the coordinate map uj = xj ◦ ϕ on U . Then, by (1.2.6),
→
γ i |p(f) =

δij . So the equation reduces to 0 = aj . And this is true for all j = 1, ..., n.

Next, suppose that ξ is a vector at p. We show that it can be expressed as a linear combination of the
→
γ i |p. First we associate with ξ a vector ξ̂ at ϕ(p). (In what follows, we shall be going back and forth

between the context of M and R
n. To reduce possible confusion, we shall systematically use carets for

denoting objects associated with R
n). We take ξ̂ to be the vector whose action on elements f̂ : Ô → R

in S
(
ϕ(p)

)
is given by ξ̂(f̂) = ξ

(
f̂ ◦ ϕ

)
.
(
This makes sense since f̂ ◦ ϕ is an element of S(p) with

domain ϕ−1
[
ϕ[U ]∩Ô

]
.
)

By proposition 1.2.2 (applied to ξ̂ at ϕ(p)), we know that there are real numbers

ξ1, ..., ξn such that

ξ̂(f̂) =

n∑

i=1

ξi
∂f̂

∂xi
(
ϕ(p)

)

for all f̂ in S
(
ϕ(p)

)
. Now let f :O → R be an arbitrary element of S(p). Then f ◦ϕ−1 :ϕ[O ∩U ] → R

belongs to S
(
ϕ(p)

)
. So, taking f̂ = f ◦ ϕ−1 in the preceding equation and using (1.2.5),

ξ̂
(
f ◦ ϕ−1

)
=

n∑

i=1

ξi
∂
(
f ◦ ϕ−1

)

∂xi
(
ϕ(p)

)
=

n∑

i=1

ξi
→
γ i |p(f).

But recalling how ξ̂ was defined, we also have: ξ̂
(
f ◦ ϕ−1

)
= ξ

((
f ◦ ϕ−1

)
◦ ϕ
)

= ξ(f). Thus, ξ(f) =
n∑
i=1

ξi
→
γ i |p(f) for all f in S(p), i.e., ξ =

n∑
i=1

ξi
→
γ i |p. So, as claimed, ξ can be expressed as a linear

combination of the
→
γ i |p.

It follows from proposition 1.2.3, of course, that every vector ξ at p has a unique representation in the

form ξ =
n∑
i=1

ξi
→
γ i |p. Equivalently, by (1.2.5),

ξ(f) =

n∑

i=1

ξi
→
γ i |p(f) =

n∑

i=1

ξi
∂
(
f ◦ ϕ−1

)

∂xi
(
ϕ(p)

)
(1.2.9)

for all f in S(p). We refer to the coefficients ξ1, ..., ξn as the components of ξ with respect to (U,ϕ).

We know that every smooth curve through p determines a vector at p, namely its tangent vector at

that point. Using proposition 1.2.3, we can show, conversely, that every vector at p can be realized as

the tangent vector of a smooth curve through p.

Proposition 1.2.4. Given an n-manifold (M, C), a point p in M , and a vector ξ at p, there is a smooth

curve γ through p such that
→
γp = ξ.



CHAPTER 1. DIFFERENTIAL GEOMETRY 13

Proof. Let (U,ϕ) be an n-chart in C with p ∈ U , and let ui (i = 1, ..., n) be the corresponding coordinate

maps on U . (Recall that ui = xi◦ ϕ.) By proposition 1.2.3, we know that there are real numbers ξ1, ..., ξn

such that ξ =
n∑
i=1

ξi
→
γ i |p. Now let γ : I → U be the smooth map defined by:

γ(s) = ϕ−1
(
u1(p) + ξ1s, ..., un(p) + ξns

)
.

Note that γ(0) = p.
(
The exact specification of the domain of γ does not matter, but we may as well take

it to be the largest open interval I containing 0 such that, for all s in I,
(
u1(p) + ξ1s, ..., un(p) + ξns

)

is in ϕ[U ].
)

For all f in S(p),

→
γp(f) =

d

ds

(
f ◦ γ

)
(0) =

n∑

i=1

(
∂
(
f ◦ ϕ−1

)

∂xi
(
ϕ(p)

)
)
ξi

=

n∑

i=1

ξi
→
γ i |p(f) = ξ(f).

(The second equality follows by the “chain rule”, and the third by equation (1.2.5).) Thus,
→
γp = ξ.

So far, we have two equivalent characterizations of “vectors” at a point p of a manifold. We can take

them to be derivations, i.e., mappings from S(p) to R satisfying conditions (DD1) – (DD3), or take them

to be tangents at p to smooth curves passing through p. We mention, finally, a third characterization that

was the standard one before “modern” coordinate-free methods became standard in differential geometry.

It requires a bit of preparation. (This third characterization will play no role in what follows, and readers

may want to jump to the final paragraph of the section.)

Let (U1, ϕ1) and (U2, ϕ2) be n-charts on our background manifold (M, C) such that (U1 ∩ U2) 6= ∅.
Let p be a point in (U1 ∩U2). Further, for all i = 1, ..., n, let x′i : ϕ1[U1∩U2] → R be the map defined by

x′i = xi ◦ ϕ2 ◦ ϕ−1
1 ,

where xi is the ith coordinate map on R
n. We can think of the x′i as providing a second coordinate

system on ϕ1[U1 ∩ U2] that is connected to the first by a smooth, invertible transformation

(x1, ..., xn) 7→ (x′1(x1, ..., xn), ..., x′n(x1, ..., xn)).

Proposition 1.2.5. Under the assumptions of the preceding paragraph, let ξ be a non-zero vector at

p whose components with respect to (U1, ϕ1) and (U2, ϕ2) are (ξ1, ..., ξn) and (ξ′1, ..., ξ′n). Then the

components obey the transformation law

ξ′i =

n∑

j=1

ξj
∂x′i

∂xj
(ϕ1(p)). (1.2.10)

(Of course, they also obey its symmetric counterpart, with the roles of xi and ξi systematically inter-

changed with those of x′i and ξ′i.)



CHAPTER 1. DIFFERENTIAL GEOMETRY 14

Proof. Let f be any element of S(p). Then

n∑

j=1

ξj
∂
(
f ◦ ϕ−1

1

)

∂xj
(
ϕ1(p)

)
= ξ(f) =

n∑

j=1

ξ′j
∂
(
f ◦ ϕ−1

2

)

∂xj
(
ϕ2(p)

)
. (1.2.11)

Here we have simply expressed the action of ξ on f in terms of the two sets of components (using (1.2.9)).

Hence, in particular, if f = x′i ◦ ϕ1 = xi ◦ ϕ2 ◦ ϕ−1
1 ◦ ϕ1 = xi ◦ ϕ2, we get

n∑

j=1

ξj
∂x′i

∂xj
(ϕ1(p)) =

n∑

j=1

ξ′j
∂xi

∂xj
(ϕ2(p)) = ξ′i.

In what follows, let C(p) be the set of charts in C whose domains contain p.

Problem 1.2.1. Let ξ be a non-zero vector at p, and let (k1, ..., kn) be a non-zero element of R
n. Show

there exists an n-chart in C(p) with respect to which ξ has components (k1, ..., kn).

(Hint. Consider any n-chart (U1, ϕ1) in C(p), and let (ξ1, ..., ξn) be the components of ξ with respect

to (U1, ϕ1). Then there is a linear map from R
n to itself that takes (ξ1, ..., ξn) to (k1, ..., kn). Let the

associated matrix have elements {aij}. So, for all i = 1, ..., n, ki =

n∑

j=1

aij ξ
j. Now consider a new chart

(U2, ϕ2) in C(p) where U2 = U1 and ϕ2 is defined by the condition

xi ◦ ϕ2 =

n∑

j=1

aij (xj ◦ ϕ1).

Show that the components of ξ with respect to (U2, ϕ2) are (k1, ..., kn).)

We have just seen that each vector ξ at p (understood, say, as a derivation) determines a map from

C(p) to R
n satisfying the transformation law (1.2.10). (The map assigns to each n-chart the components

of the vector with respect to the n-chart.) It turns out, conversely, that every map from C(p) to R
n

satisfying (1.2.10) determines a unique vector ξ at p. It does so as follows. Let (U1, ϕ1) be an n-chart in

C(p). We stipulate that, for all maps f in S(p),

ξ(f) =

n∑

j=1

ξj
∂
(
f ◦ ϕ−1

1

)

∂xj
(
ϕ1(p)

)
, (1.2.12)

where (ξ1, ..., ξn) is the element of R
n associated with (U1, ϕ1). We need only verify that this definition

is independent of our choice of n-chart.

Let (U2, ϕ2) be any other n-chart in C(p) with associated n-tuple (ξ′1, ..., ξ′n). Then, by assumption,

the latter are related to (ξ1, ..., ξn) by (1.2.10). Now consider the map f ◦ ϕ−1
1 : ϕ1[U1 ∩U2] → R. It can

be realized as the composition of two maps f ◦ ϕ−1
1 = (f ◦ ϕ−1

2 ) ◦ (ϕ2 ◦ ϕ−1
1 ). Hence, by the chain rule,

∂
(
f ◦ ϕ−1

1

)

∂xj
(
ϕ1(p)

)
=

n∑

k=1

∂
(
f ◦ ϕ−1

2

)

∂xk
(
ϕ2(p)

) ∂
(
xk ◦ ϕ2 ◦ ϕ−1

1

)

∂xj
(
ϕ1(p)

)

=

n∑

k=1

∂
(
f ◦ ϕ−1

2

)

∂xk
(
ϕ2(p)

) ∂x′k
∂xj

(
ϕ1(p)

)
,
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for all j. Hence, by (1.2.12) and (1.2.10),

ξ(f) =

n∑

j=1

ξj

[
n∑

k=1

∂
(
f ◦ ϕ−1

2

)

∂xk
(
ϕ2(p)

) ∂x′k
∂xj

(
ϕ1(p)

)
]

=

n∑

k=1




n∑

j=1

ξj
∂x′k

∂xj
(
ϕ1(p)

)


 ∂
(
f ◦ ϕ−1

2

)

∂xk
(
ϕ2(p)

)
=

n∑

k=1

ξ′k
∂
(
f ◦ ϕ−1

2

)

∂xk
(
ϕ2(p)

)
.

Thus, our definition of ξ is, indeed, independent of our choice of n-chart. We could equally well have

formulated (1.2.12) using (U2, ϕ2) and (ξ′1, ..., ξ′n).

The upshot is that there is a canonical one-to-one correspondence between vectors at p and maps from

C(p) to R
n satisfying (1.2.10). This gives us our promised third (classical) characterization of the former.

There is a helpful picture that accompanies our formal account of tangent vectors and tangent spaces.

Think about the special case of a 2-manifold (M, C) that is a smooth surface in three-dimensional Eu-

clidean space. In this case, the tangent space to the manifold Mp at a point p is (or can be canonically

identified with) the plane that is tangent to the surface at p. In traditional presentations of differential

geometry, vectors at points of manifolds are sometimes called “infinitesimal displacements”. The picture

suggests where this term comes from. A displacement from p on the surface M is approximated by a

tangent vector in Mp. The degree of approximation increases as the displacement on M shrinks. In the

limit of “infinitesimal displacements”, the two coincide. (Quite generally, statements about “infinitesimal

objects” can be read as statements about corresponding objects in tangent spaces.)
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1.3 Vector Fields, Integral Curves, and Flows

In what follows, let (M, C) be an n-manifold. (We shall often supress explicit reference to C.) A vector

field on M is a map ξ that assigns to every point p in M a vector ξ(p) in Mp. (Sometimes we shall write

ξ|p for the value of the field ξ at p rather than ξ(p).) We can picture it as field of arrows on M . Given

any smooth map f : M → R, ξ induces a map ξ(f) : M → R defined by ξ(f)(p) = ξ|p(f). If ξ(f) is

smooth for all such f , we say that the vector field ξ itself is smooth.

The proposed picture of a vector field as a field of arrows on M suggests that it should be possible

to “thread” the arrows — at least when the field is smooth — to form a network of curves covering M .

(See figure 1.3.1.) In fact, this is possible.

M

Figure 1.3.1: Integral curves “threading” the vectors of a smooth vector field.

Let ξ be a smooth vector field on M . We say that a smooth curve γ : I →M is an integral curve of

ξ if, for all s ∈ I,
→
γ γ(s)= ξ

(
γ(s)

)
, i.e., if the tangent vector to γ at γ(s) is equal to the vector assigned

by ξ to that point. Intuitively, an integral curve of ξ threads the arrows of ξ and is so parametrized that

it “moves quickly” (i.e., covers a lot of M with each unit increment of the parameter s) where ξ is large,

and “slowly” where ξ is small. Let us also say that a smooth curve γ : I → M has initial value p if

0 ∈ I and γ(0) = p. The following is the basic existence and uniqueness theorem for integral curves.

Proposition 1.3.1. Let ξ be a smooth vector field on M and let p be a point in M . Then there is

an integral curve γ : I → M of ξ with initial value p that has the following maximality property: if

γ′ : I ′ → M is also an integral curve of ξ with initial value p, then I ′ ⊆ I and γ′(s) = γ(s) for all

s ∈ I ′.

It is clear that the curve whose existence is guaranteed by the proposition is unique. (For if γ′ : I ′ →M

is another, we have I ′ ⊆ I and I ⊆ I ′, so I ′ = I, and also γ′(s) = γ(s) for all s ∈ I ′.) It is called the

maximal integral curve of ξ with initial value p. It also clearly follows from the proposition that if γ is

an integral curve of ξ with initial value p, and if its domain is R, then γ is maximal. (The converse is

false. Maximal integral curves need not have domain R. We shall soon have an example.) The proof of

the proposition, which we skip, makes use of the basic existence and uniqueness theorem for solutions to
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ordinary differential equations. Indeed, the proposition can be understood as nothing but a geometric

formulation of that theorem. (See, for example, Spivak [57, volume 1, chaper 5].)

Here are some examples. In the following, let x1 and x2 be the standard coordinate maps on R
2. (So

if p = (p1, p2) ∈ R
2, then x1(p) = p1 and x2(p) = p2.)

(1) Let ξ be the “horizontal” vector field
∂

∂x1
on R

2.
(
Given any point p and any function f in S(p),

the vector
∂

∂x1 |p at p assigns to f the number
∂f

∂x1
(p).
)

The maximal integral curve of ξ with

initial value p = (p1, p2) is the map γ : R → R
2 with

γ(s) =
(
p1 + s, p2

)
.

(The “vertical” vector field
∂

∂x2
is defined similarly.)

(2) Let ξ be the “rotational” vector field −x2 ∂

∂x1
+ x1 ∂

∂x2
on R

2. The maximal integral curve of ξ

with initial value p = (p1, p2) is the map γ : R → R
2 with

γ(s) =
(
p1 cos s− p2 sin s, p1 sin s+ p2 cos s

)
.

The image of γ is a circle, centered at (0, 0) that passes through p. (In the degenerate case where

p is (0, 0), γ is the constant curve that sits at (0, 0).)

(3) Let ξ be the “radial expansion” vector field x1 ∂

∂x1
+ x2 ∂

∂x2
on R

2. The maximal integral curve

of ξ with initial value p = (p1, p2) is the map γ : R → R
2 with

γ(s) = (p1 es, p2 es).

If (p1, p2) 6= (0, 0), the image of γ is a radial line starting from, but not containing, (0, 0). If p is

(0, 0), γ is the constant curve that sits at (0, 0).

Let us check one of these — say (2). The indicated curve is, in fact, an integral curve of the given

vector field since, for all s ∈ R, and all f ∈ S(γ(s)), by the chain rule,

→
γ γ(s) (f) =

d

ds

(
f ◦ γ

)
(s) =

d

ds
f
(
p1 cos s− p2 sin s, p1 sin s+ p2 cos s

)

=
∂f

∂x1
(γ(s))

(
−p1 sin s− p2 cos s

)
+

∂f

∂x2
(γ(s))

(
p1 cos s− p2 sin s

)

=
∂f

∂x1
(γ(s))

(
−x2(γ(s))

)
+

∂f

∂x2
(γ(s))

(
x1(γ(s))

)

=

(
−x2 ∂

∂x1
+ x1 ∂

∂x2

)

|γ(s)

(f).

Problem 1.3.1. Let ξ be the vector field x1 ∂

∂x1
− x2 ∂

∂x2
on R

2. Show that the maximal integral curve

of ξ with initial value p = (p1, p2) is the map γ : R → R
2 with γ(s) = (p1 es, p2 e−s). (The image of γ

is a (possibly degenerate) hyperbola satisfying the coordinate condition x1x2 = p1p2.)
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Next we consider reparametrizations of integral curves.

Proposition 1.3.2. Let ξ be a smooth vector field on M , let γ : I → M be an integral curve of ξ, and

let α : I ′ → I be a diffeomorphism taking the interval I ′ to the interval I. Consider the reparametrized

curve γ′ = γ ◦ α : I ′ →M .

(1) If there is a number c such that α(s) = s+ c for all s ∈ I ′, then γ′ is an integral curve of ξ.

(2) Conversely, if γ′ is an integral curve of ξ and if ξ is everywhere non-zero on γ[I], then there is a

number c such that α(s) = s+ c for all s ∈ I ′.

Proof. Set t = α(s). For all s ∈ I ′ and all functions f ∈ S(γ′(s)), it follows by the chain rule (and the

definition of tangents to curves) that

→
γ ′
γ′(s)(f) =

d

ds

(
f ◦ γ′

)
(s) =

d

ds

(
f ◦ γ ◦ α

)
(s) =

(
d

dt

(
f ◦ γ

))(
α(s)

) dα
ds

(s)

=
→
γ γ(α(s))(f)

dα

ds
(s).

That is, for all s ∈ I ′,
→
γ ′
γ′(s) =

→
γ γ(α(s))

dα

ds
(s). (1.3.1)

Since γ is an integral curve of ξ, we also have

→
γ γ(α(s)) = ξ

(
γ(α(s))

)
(1.3.2)

for all s ∈ I ′. Now γ′ is an integral curve of ξ iff
→
γ ′
γ′(s) = ξ

(
γ′(s)

)
= ξ
(
γ(α(s))

)
for all s ∈ I ′. So,

by (1.3.1) and (1.3.2), γ′ is an integral curve of ξ iff

ξ
(
γ(α(s))

) dα
ds

(s) = ξ
(
γ(α(s))

)
(1.3.3)

for all s ∈ I ′. This equation is the heart of the matter. If there is a c such that α(s) = s+c for all s ∈ I ′,

then
dα

ds
= 1 everywhere, and so it follows immediately that (1.3.3) holds for all s ∈ I ′. This gives us

clause (1). Conversely, if (1.3.3) does hold for all s ∈ I ′, it must be the case that
dα

ds
= 1 everywhere.

(Here we use our assumption that ξ
(
γ(α(s))

)
is non-zero for all s ∈ I ′.) So, clearly, α must be of the

form α(s) = s+ c for some number c. This gives us (2).

The qualification in the the second clause of the proposition — that ξ be non-zero on the image of γ

— is necessary. (See problem 1.3.3.) The first clause of the proposition tells us that if γ : I → M is an

integral curve of ξ, then so is the curve defined by setting γ′(s) = γ(s + c). We say that γ′ is derived

from γ by “shifting its initial value”. Several useful facts about integral curves follow from proposition

1.3.2 (together with proposition 1.3.1). We list three as problems. The first is a slightly more general

formulation of the existence and uniqueness theorem.
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Problem 1.3.2. (Generalization of proposition 1.3.1) Again, let ξ be a smooth vector field on M , and

let p be a point in M . But now let s0 be any real number (not necessarily 0). Show that there is an

integral curve γ : I → M of ξ with γ(s0) = p that is maximal in this sense: given any integral curve

γ′ : I ′ →M of ξ, if γ′(s0) = p, then I ′ ⊆ I and γ′(s) = γ(s) for all s in I ′.

(Hint: Invoke proposition 1.3.1 and shift initial values.)

Problem 1.3.3. (Integral curves that go nowhere) Let ξ be a smooth vector field on M , and let γ : I →M

be an integral curve of ξ. Suppose that ξ vanishes (i.e., assigns the zero vector) at some point p ∈ γ[I].

Then the following both hold.

(1) γ(s) = p for all s in I, i.e., γ is a constant curve.

(2) The reparametrized curve γ′ = γ ◦ α : I ′ → M is an integral curve of ξ for all diffeomorphisms

α : I ′ → I.

(Hint: Think about the constant curve, with domain R, that assigns p to all s.)

Problem 1.3.4. (Integral curves cannot cross) Let γ : I → M and γ′ : I ′ → M be integral curves

of ξ that are maximal (in the sense of problem 1.3.2) and satisfy γ(s0) = γ′(s′0). Then the two curves

agree up to a parameter shift: γ(s) = γ′
(
s+ (s′0 − s0)

)
for all s ∈ I.

Again, let ξ be a smooth vector field on M . We say that ξ is complete if, for every point p in M , the

maximal integral curve of ξ with initial point p has domain R, i.e., is a curve of the form γ : R → M .

For example, let M be the restriction of R
2 to the vertical strip

{
(p1, p2) : −1 < p1 < 1

}
, let ξ be the

restriction of the “horizontal” vector field
∂

∂x1
(discussed above) to M , and let p = (0, 0). The maximal

integral curve of ξ with initial value p is the map γ : (−1, 1) → M with γ(s) = (s, 0). So ξ is not

complete. (Intuitively, moving along any maximal integral curve of ξ, in either direction, one “runs out

of space” in finite parameter time.) In contrast, the “vertical field”
∂

∂x2
is complete on M . And

∂

∂x1

itself is complete when construed as a field on (all of) R
2.

Next, let M be the punctured manifold R
2 − {(0, 0)}, and let ξ be the restriction of the radial

vector field (the third in our list of examples) to M . Then ξ is complete. This follows directly from our

determination of the maximal integral curves of ξ. It also follows from the assertion in the next problem.

(Intuitively, the vectors of ξ rapidly get small as one approaches the puncture point, and so – moving

“backward” along a maximal integral curve of ξ – one cannot reach that point in finite parameter time.)

Problem 1.3.5. Let ξ be a smooth vector field on M that is complete. Let p be a point in M . Show that

the restriction of ξ to the punctured manifold M −{p} is complete (as a field on M −{p}) iff ξ vanishes

at p.

The maximal integral curves of a smooth vector field suggest the flow lines of a fluid. It turns out to

be extremely useful to think of them this way. Let ξ be a smooth vector field on the manifold M . We

associate with ξ a set Dξ ⊆ R ×M and a “flow map” Γ : Dξ → M as follows. We take Dξ to be the
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set of all points (s, p) with the property that if γ : I →M is the maximal integral curve of ξ with initial

value p, then s ∈ I; and in this case we set Γ(s, p) = γ(s). (That is, if we start at p, and move s units

of parameter distance along the maximal integral curve with initial value p, we arrive at Γ(s, p).) So, in

particular, (0, p) is in Dξ for all p in M , and Γ(0, p) = p for all such. If the vector field ξ is complete,

Dξ = R ×M . But, in general, Dξ is a proper subset of the latter. (Starting at a point p, it may not

be possible to move s units of parameter distance along the maximal integral curve with initial value p.)

We have the following basic result.

Proposition 1.3.3. Let ξ be a smooth vector field on M , and let Γ : Dξ → M be as in the preceding

paragraph. Then Dξ is an open subset of R ×M , and Γ is smooth.

The proposition asserts, in effect, that solutions to ordinary differential equations depend smoothly

on initial conditions. (See Spivak [57, volume 1, chapter 5].)

Assume for the moment that our smooth vector field ξ on M is complete. (So Dξ = R×M .) In this

case, given any s ∈ R, we can define a map Γs : M → M by setting Γs(p) = Γ(s, p). It follows from

proposition 1.3.3 that Γs is smooth. (Γs can be realized as a composite map M → R ×M → M with

action p 7→ (s, p) 7→ Γ(s, p) and each of the component maps is smooth.) Furthermore, the indexed

set {Γs}s∈R has a natural group structure under the operation of composition
(
Γs ◦ Γt = Γs+t

)
with

the identity map Γ0 playing the role of the unit element. (See the next paragraph.) It follows that Γs is

injective and that its inverse (Γs)
−1 = Γ−s is smooth. So each Γs is a diffeomorphism that maps M

onto itself. We say that {Γs}s∈R is a one-parameter group of diffeomorphisms of M generated by ξ.

Note that, for all p in M , the map from R to M defined by s 7→ Γs(p) is just the maximal integral curve

of ξ with initial point p.

That Γs ◦ Γt = Γs+t for all s and t follows as a consequence of the assertion in problem 1.3.4.

Given any point p in M , and any t ∈ R, let γ : I → M be the maximal integral curve of ξ with

initial value Γt(p). Then γ(s) = Γs
(
Γt(p)

)
for all s. Let γ′ : I ′ → M be the maximal integral

curve of ξ with initial value p. Then γ′(t) = Γt(p) = γ(0) and γ′(s + t) = Γs+t(p) for all s. Since

γ(0) = γ′(t), it follows from the assertion in the problem that γ(s) = γ′(s + t) for all s. So we have

Γs
(
Γt(p)

)
= γ(s) = γ′(s+ t) = Γs+t(p) for all p, t, and s.

Now recall the three complete vector fields on R
2 considered above. Each defines a one-parameter

group of diffeomorphisms {Γ}s∈R on R
2. The pattern of association is as follows.

Field Associated Diffeomorphisms

∂

∂x1
Γs(p

1, p2) = (p1 + s, p2)

−x2 ∂

∂x1
+ x1 ∂

∂x2
Γs(p

1, p2) =
(
p1 cos s− p2 sin s, p1 sin s+ p2 cos s

)

x1 ∂

∂x1
+ x2 ∂

∂x2
Γs(p

1, p2) = (p1 es, p2 es)
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In the three cases, respectively, Γs is: a displacement by the amount s in the x1 direction, a (counter

clockwise) rotation through s radians with center point (0, 0), and a radial expansion by the factor es

with center point (0, 0).

Let us now drop the assumption that ξ is complete. Then the “flow maps” Γs : M → M will not,

in general, be defined for all s. But by paying attention to domains of definition, we can still associate

with ξ a set of “local flow maps”. It follows from proposition 1.3.3 that given any point p in M , there is

an open interval I ⊆ R containing 0 and an open subset U ⊆ M containing p such that I × U ⊆ Dξ.

If we set Γs(q) = Γ(s, q) for all (s, q) ∈ I × U , then the following all hold.

(1) Γs : U → Γs[U ] is a diffeomorphism for all s ∈ I.

(2) (Γs ◦ Γt)(q) = Γs+t(q) for all s, t, and q such that {s, t, s+ t} ⊆ I and {q,Γt(q)} ⊆ U .

(3) For all q in U , the map γ : I → M defined by γ(s) = Γs(q) is a smooth integral curve of ξ with

initial value q.

In this case we say that the collection {Γs : U → Γs[U ]}s∈I is a local one-parameter group of diffeomor-

phisms generated by ξ.



CHAPTER 1. DIFFERENTIAL GEOMETRY 22

1.4 Tensors and Tensor Fields on Manifolds

We start with some linear algebra. We shall return to manifolds shortly.

Let V be an n-dimensional vector space. (Here and throughout these notes, “vector spaces” should be

understood to be vector spaces over R.) Linear functionals (or covariant vectors or co-vectors) over V

are linear maps from V to R. The set of all linear functionals on V has a natural vector space structure.

Given two linear functionals α and β, and a real number k, we take α + β and k α to be the linear

functionals defined by setting:

(α+ β)(ξ) = α(ξ) + β(ξ),

(k α)(ξ) = k α(ξ),

for all ξ in V . The vector space V ∗ of linear functionals on V is called the dual space of V . It is easy

to check that V ∗ has dimension n.
(
If

1

ξ,
2

ξ, ...,
n

ξ form a basis for V , then the elements
1
α,

2
α, ...,

n
α in V ∗

defined by
i
α
(j

ξ
)

= δij

form a basis for V ∗ called the dual basis of
1

ξ,
2

ξ, ...,
n

ξ.
)

The vector space V ∗ has its own dual space V ∗∗ consisting of linear maps from V ∗ to R. V ∗∗ is

naturally isomorphic to V under the mapping ϕ : V → V ∗∗ defined by setting ϕ(ξ)(α) = α(ξ) for all ξ

in V and all α in V ∗, i.e., we require that ϕ(ξ) make the same assignment to α that α itself makes to ξ.

In our development of tensor algebra we shall use the “abstract index notation” introduced by Roger

Penrose. (See Penrose and Rindler [51] for a more complete and systematic treatment.) We start by

considering an infinite sequence of vector spaces V a, V b, ..., V a1 , V b1 , ... , all isomorphic to our original

n-dimensional vector space V . Here a, b, ..., a1, b1, ... are elements of some (unspecified) infinite labeling

set and are called “abstract indices”. They must be distinguished from more familiar “counting indices”.

We think of isomorphisms being fixed once and for all, and regard ξa, ξb, ... as the respective images in

V a, V b, ... of ξ in V . The spaces V a, V b, ... have their respective dual spaces (V a)∗, (V b)∗, ... . We

designate these with lowered indices: Va, Vb, ... . Our fixed isomorphisms between V and V a, V b, ...

naturally extend to isomophisms between V ∗ and Va, Vb, ... . Given α in V ∗ we take its image in Va

to be the unique element αa satisfying the condition αa(ξ
a) = α(ξ) for all ξ in V . It is convenient to

drop parentheses and write αa(ξ
a) as αa ξ

a or ξa αa. Thus we have αa ξ
a = ξa αa = αb ξ

b = ξb αb,

and so forth. (In what follows, our notation will be uniformly commutative. In a sense, the notation

incorporates the canonical isomorphism of V with V ∗∗. Rather than thinking of ξa αa as αa(ξ
a), we

can think of it as the “action of ξa on αa” and understand that as the action on αa of the vector in

(V a)∗∗ canonically isomorphic to ξa.)

Indices tell us where vectors and linear functionals reside. So rather than writing, for example, “for

all vectors ξa in V a...”, it will suffice to write “for all vectors ξa...”.
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We have introduced vector spaces V a, V b, ..., Va, Vb, ... . Now we jump to a larger collection of

indexed spaces V a1...ar

b1...bs
(r, s ≥ 1) where the indices a1, ..., ar, b1, ..., bs are all distinct. (The order

of superscript indices here will make no difference; nor will that of subscript indices. So, for example,

V adbc = V dabc = V adcb = V dacb . But it will make a difference whether particular indices appear in superscript

or subscript position, e.g., V ab 6= V ba.) To keep the notation under control, we shall work first with a

representative special case: V abc .

The elements of this space are multilinear maps that assign real numbers to unordered triples of the

form {µa, νb, γc}, i.e., triples containing one element each from Va, Vb, and V c. (We shall write these

triples, indifferently, as µa νb γ
c or νb µa γ

c or γc νb µa or νb γ
c µa, and so forth.) By “multilinearity”

we mean that if λ is in V abc , then

λ
(
(µa + k ρa)νb γ

c
)

= λ(µa νb γ
c) + k λ(ρa νb γ

c),

λ
(
µa(νb + k τb)γ

c
)

= λ(µa νb γ
c) + k λ(µa τb γ

c),

λ
(
µa νb(γ

c + k δc)
)

= λ(µa νb γ
c) + k λ(µa νb δ

c),

for all µa, ρa, νb, τb, γ
c, δc and all real numbers k. The set V abc has a natural vector space structure. If λ

and λ′ are two elements of V abc and k is a real number, we can define new elements (λ+ λ′) and (k λ)

in V abc by setting

(λ+ λ′)(µa νb γ
c) = λ(µa νb γ

c) + λ′(µa νb γ
c),

(k λ)(µa νb γ
c) = k λ(µa νb γ

c),

for all µa, νb, γ
c. The vector space V abc has dimension n3. To see this, first note that any triple of vectors

{ϕa, ψb, χc} determines an element in V abc under the rule of association

{ϕa, ψb, χc} : µa νb γ
c 7−→ (ϕa µa)(ψ

b νb)(χc γ
c).

We write this element as ϕa ψb χc or χc ϕ
a ψb or ψb χc ϕ

a, and so on. The order of the terms makes

no difference. Next, let
1

ξa,
2

ξa, ...,
n

ξa be a basis for V a with dual basis
1
αa,

2
αa, ...,

n
αa. (Here we have

abstract and counting indices side by side.) One can easily verify that the set of all triples of the form
i

ξa
j

ξb
k
αc, with i, j, k ranging from 1 to n, forms a basis for V abc . Thus, every element of V abc can be

uniquely expressed in the form
n∑

i=1

n∑

j=1

n∑

k=1

ijk

c
i

ξa
j

ξb
k
αc.

Sometimes it will be convenient to recast sums such as this in terms of a single summation index and

absorb coefficients, i.e., in the form
n3∑

i=1

i
µa

i
νb

i
τc.

(Rather than three indices that range from 1 to n, we have one index that ranges from 1 to n3.)
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Generalizing now, the tensor space V a1...ar

b1...bs
(r, s ≥ 1) consists of multilinear maps assigning real

numbers to unordered (r + s)-tuples, containing one element each from Va1 , ..., Var
, V b1 , ..., V bs . It is a

vector space with dimension n(r+s), and its elements can be realized as linear combinations of the form

n(r+s)∑

i=1

i
µa1 · · · i

νar
i
γb1 · · ·

i

λbs
.

We have assumed (r, s ≥ 1). But the definition scheme we have given makes sense, too, when r = 0 and

s = 1, and when r = 1 and s = 0. In the former case, we recover indexed dual spaces as previously

characterized. (The elements of Vb, recall, are just linear maps from V b to R). And in the latter case, we

recover our initial indexed vector spaces, at least if we allow for the identification of those spaces with

their “double duals”. We can even allow r = s = 0 and construe the tensor space over V with no indices

as just R. The elements of tensor spaces are called tensors. Tensor indices in superscript (respectively

subscript) position are sometimes called “contravariant” (respectively “covariant”) indices.

We have noted that abstract indices give information about where vectors and co-vectors reside, e.g.,

µa belongs to the space V a and νb belongs to Vb. We can extend this pattern of “residence labeling” to

elements of arbitrary tensor spaces. For example, we can attach the index configuration ab
c to elements

of V abc and make statements of the form “for all λabc ...”. But things are a bit delicate in the case where

the total number of indices present is greater than one.

Though the order of superscript indices and the order of subscript indices make no difference when it

comes to labeling tensor spaces, they do make a difference when it comes to labeling tensors themselves.

For example, though Vab = Vba, for an arbitrary element αab of that space it need not be the case

that αab = αba. (The latter equality captures the condition, not true in general, that the tensor αab is

“symmetric”.) To see why, suppose, once again, that
1

ξa,
2

ξa, ...,
n

ξa is a basis for V a and
1
αa,

2
αa, ...,

n
αa

is its dual basis. Let αab be the element
i
αa

j

αb , for some particular i and j. Then, according to the

Penrose notation (as will be explained), αba is the element
i
αb

j

αa. It follows from what has been said

so far that the tensors
i
αa

j

αb and
i
αb

j

αa are simply not equal unless i = j. (Why? Assume they are

equal. Then they have the same action on all pairs µa νb. So, in particular, they have the same action

on
i

ξa
j

ξb. But
i
αa

j

αb
( i

ξa
j

ξb
)

=
i
αa
( i

ξa
) j

αb
(j

ξb
)

= 1

and
i
αb

j

αa
( i

ξa
j

ξb
)

=
j

αa
( i

ξa
)

i
αb
(j

ξb
)

= (δij)
2.

So δij = 1, i.e., i = j.)

A second point about the delicacy of the index notation should be mentioned, though it will not

concern us until we reach section 1.9 and work with tensors in the presence of a (non-degenerate) metric

gab. We will then want to follow standard practice and use the metric and its inverse gab to “lower and

raise indices”. (The rest of this paragraph can be skipped. It is included only for readers who already
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know about lowering and raising indices and who may anticipate the problem mentioned here.) For

example, we shall write α b
a as an abbreviation for αan g

nb. A problem will arise, though, when we try

to lower or raise an index on a tensor that has indices in both subscript and superscript position. For

example, do we write λabc gcd as λdab or as λadb or as λabd ? The latter three will not, in general,

be equal (for the reasons given in the preceding paragraph). To cope with the problem, when the time

comes, we shall adopt the convention that superscript indices should never be aligned with subscript

indices. Instead, each index will have its own vertical “slot”. So, for example, the elements of the space

V abc will carry the index structure ab
c or a b

c or ab
c (or ba

c or b a
c or ba

c ), and we will not assume,

for example, that λabc = λa b
c . (For the rest of this section — indeed until section 1.9 — we shall not

bother with index slots.)

One final preliminary remark about notation is called for. As mentioned before, we want the notation

to be uniformly commutative, at least as regards the order of tensors within an expression (in contrast

to the order of indices within a tensor). So, for example, the number λabc (µa νb γ
c) that the tensor λabc

assigns to a triple µa νb γ
c will be written as λabc µa νb γ

c or as µa νb γ
c λabc or as νb γ

c λabc µa, and

so forth. Furthermore, if λabc is the tensor ϕa ψb χc, we shall write λabc (µa νb γ
c) as ϕa ψb χc µa νb γ

c

or as χc µa ψ
b νbϕ

a γc or as any other string with the individual vectors in some order or other. The

order does not matter because it is the indices here that determine the crucial groupings: ϕa with µa,

ψb with νb, χc with γc.

We now have in hand the various tensor spaces V a1...ar

b1...bs
. Within each one (just because it is a vector

space), there is an addition operation that is associative and commutative. We will be interested in three

other tensor operations: exterior multiplication, index substitution, and contraction. We will consider

them in turn.

“Exterior multiplication” (or, perhaps, “tensor multiplication”), first, is an operation of structure

V a1...ar

b1...bs
× V c1...cm

d1...dn
→ V a1...arc1...cm

b1...bsd1...dn
,

where the indices a1, ..., ar, b1...bs, c1, ..., cm, d1, ..., dn are all distinct. It is defined in an obvious way.

Consider a representative special case

V abc × Vfd → V abcfd.

The exterior product of αabc and ξfd, written αabc ξfd or ξfd α
ab
c , is defined by setting

(
αabc ξfd

)(
λa ρb δ

c µf νd
)

=
(
αabc λa ρb δ

c
)(
ξfd µ

fνd
)

for all λa, ρb, δ
c, µf , νd. As usual, generally we shall drop parentheses and write terms in any order.

So the action of αabc ξfd on λa ρb δ
c µf νd will be expressed, indifferently, as αabc λa ρb δ

c ξfd µ
f νd

or as αabc ξfd λa ρb δ
c µf νd or as λa ρb ξfd δ

c µf αabc νd, and so forth. It should be clear that exterior

multiplication, as defined here, is commutative, associative, and distributive over addition. Notice, also,

that our notation is consistent. Consider, for example, the expression τa εb ϕc αa βb γ
c. We can construe
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it as the action of τa εb ϕc on αa βb γ
c, or as the action of εb ϕc αa on τa βb γ

c, or as the action

of γc ϕc τ
a εb on αa βb, and so on. (The third reading makes sense: γc ϕc τ

a εb is the element of V ab

that arises if one multiples the element τa εb by the number γc ϕc.) Each of these functional operations

yields the same number, so no consistency problem arises.

The operation of “(x→ y) index substitution” has the structure

V x a1...ar

b1b2...bs
→ V y a1...ar

b1b2...bs
or V a1a2...ar

x b1...bs
→ V a1a2...ar

y b1...b2
,

where the indices x, y, a1, ..., ar, b1, ..., bs are all distinct. In defining the operation, it is, again, easiest

to consider a representative special case, say V abc → V dbc . Given a tensor αabc , it can be expressed as a

sum of the form

αabc =

n3∑

i=1

i
µa

i
νb

i
τc.

We take the result of (a → d) index substitution on αabc , which we write as αdbc , to be the sum

αdbc =

n3∑

i=1

i
µd

i
νb

i
τc.

(This makes sense because we already have a fixed isomorphism between V a and V d that takes each
i
µa

to
i
µd.) Of course, it must be checked that this definition is independent of the choice of expansion for

αabc . That is, one must check that if

n3∑

i=1

i
µa

i
νb

i
τc =

n3∑

i=1

i

δa
i
εb

i
ρc,

then
n3∑

i=1

i
µd

i
νb

i
τc =

n3∑

i=1

i

δd
i
εb

i
ρc.

But this follows from the fact that
i
µa λa =

i
µd λd and

i

δa λa =
i

δd λd for all i and all λa.

It can easily be checked that index substitution commutes with addition, exterior multiplication, and

other index substitutions. For example, if αabc = βabc +γabc , then αdbc = βdbc +γdbc . If λabcfg = αabc ξfg, then

λdbcfg = αdbc ξfg. And the tensor that results from first applying (a → b) index substitution and then

(c → d) index substitution to αacf is the same as that resulting from reversing the order and applying

first (c → d) index substitution and then (a → b) index substitution. It is written as αbdf . All these

facts, in a sense, are built into our notation.

Our final tensor operation, “(x, y) contraction”, has the structure

V xa1...ar

y b1...bs
→ V a1...ar

b1...bs
,

where the indices x, y, a1, ..., ar, b1, ..., bs are all distinct. Consider, for example, (a, c) contraction with

action V abc → V b. Suppose

αabc =

n3∑

i=1

i
µa

i
νb

i
τc.
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We take the result of applying (a, c) contraction to αabc to be

αaba =

n3∑

i=1

i
µa

i
τa

i
νb.

(
This could also be expressed as

n3∑
i=1

i
µc

i
τc

i
νb or as

n3∑
i=1

i
µc

i
νb

i
τc or as

n3∑
i=1

i
µd

i
τd

i
νb, and so forth. The last

of the listed possibilities is equal to the first because
i
µa

i
τa =

i
µd

i
τd for all

i
µa and

i
τa.
)

We write this

result as αaba (or αcbc or αdbd , and so forth.). It is important that contracted indices on a tensor, i.e., ones

that appear in both contravariant and covariant position, play no role in determining the space in which

the tensor resides. αaba belongs to V b, not some space V aba . Indeed, there is no such space as we have set

things up.

To prove that contraction is well defined, i.e., independent of one’s choice of expansion, a simple lemma

is needed.

Lemma 1.4.1. For all r ≥ 1, and all
k
ϕa and

k

ψc (k = 1, ..., r),

r∑

k=1

k
ϕa

k

ψc = 0 =⇒
r∑

k=1

k
ϕa

k

ψa = 0.

Proof. Let
1

ξa,
2

ξa, ...,
n

ξa be a basis for V a with dual basis
1
αa,

2
αa, ...,

n
αa. Then, for each k = 1, ..., r,

there exist numbers cki and dkj (i, j = 1, ..., n) where
k
ϕa =

n∑
i=1

cki
i

ξa and
k

ψc =
n∑
j=1

dkj
j

αc. Assume

the left-side condition holds. Then for all l = 1, ..., n,

0 =

(
r∑

k=1

k
ϕa

k

ψc

)
l
αa

l

ξc =

r∑

k=1

(
n∑

i=1

cki
i

ξa

)


n∑

j=1

dkj
j

αc


 l
αa

l

ξc

=

r∑

k=1

n∑

i=1

n∑

j=1

cki dkj δil δjl =

r∑

k=1

ckl dkl.

It follows that the right side condition holds, since

r∑

k=1

k
ϕa

k

ψa =

r∑

k=1

(
n∑

i=1

cki
i

ξa

)


n∑

j=1

dkj
j

αa


 =

r∑

k=1

n∑

i=1

n∑

j=1

cki dkj δij

=

n∑

i=1

r∑

k=1

cki dki = 0.

(
Each term

r∑
k=1

cki dki in the final sum is 0 by the calculation just given.
)

Problem 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the following fact (Herstein

[32, p. 272]) about square matrices: if M is an (r × r) matrix (r ≥ 1) and M2 is the zero matrix, then

the trace of M is 0. (Hint: Consider the r × r matrix M with entries Mij =
i
ϕa

j

ψa.)
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Corollary 1.4.2. For all r ≥ 1, and all
k

βa,
k
γb,

k

ψc (k = 1, ..., r),

r∑

k=1

k

βa
k
γb

k

ψc = 0 =⇒
r∑

k=1

(
k

βa
k

ψa

)
k
γb = 0.

Proof. It follows from the left-side condition that, for all λb,
r∑

k=1

k

βa
(

k
γb λb

) k

ψc = 0. Applying the

lemma
(
with

k
ϕa =

(
k
γb λb

)k

βa for all k = 1, ..., r
)
, we may infer that

r∑
k=1

(k

βa
k

ψa
)

k
γb λb = 0. But here λb

is arbitrary. So it must be the case that the right-side condition holds.

It follows immediately that contraction is well defined for our tensor αabc . For if

αabc =

n3∑

i=1

i
µa

i
νb

i
τc =

n3∑

i=1

i

δa
i
χb

i
ρc,

we can apply corollary 1.4.2 to the difference
n3∑
i=1

i
µa

i
ν b

i
τc −

n3∑
i=1

i

δa
i
χb

i
ρc (construed as a sum over 2n3

terms). And the corollary can be recast easily for tensors with other index structures.

The contraction operation commutes with addition, exterior multiplication, index substitution, and

other contractions. Note, once again, the consistency of our notation. The expression βa γa, for example,

can be construed as the action of the functional γa on βa, or as the exterior product of βa with γb followed

by (a, b) contraction, or as the exterior product βb with γa followed by (a, b) contraction, and so forth.

There is no need to choose among these different readings. Similarly, αac λa σ
c can be understood as

the action of αac on λa σ
c, or as the exterior product of αac with λb σ

d followed by (a, b) and (c, d)

contractions, or as the action of λa on αac σ
c, and so forth.

The operations we have introduced on tensors may seem a bit complex. But one quickly gets used

to them and applies them almost automatically where appropriate. That is one of the virtues of the

abstract index notation. One gets to manipulate tensors as easily as one manipulates components of

tensors in traditional tensor analysis. One has the best of both worlds: complete basis (or coordinate)

independence, and the computational convenience that comes with indices.

Two bits of special notation will be useful. First, we introduce the “delta tensor” δab . It is the element

of V ab defined by setting δab ηa ξ
b = ηa ξ

a for all ηa and ξb. (Clearly, δab , so defined, is a tensor since it is

linear in both indices.) Notice that the defining condition is equivalent to the requirement that δab ξ
b = ξa

for all ξb, and also to the requirement that δab ηa = ηb for all ηa. We can think of δab as an (a → b)

index substitution operator acting on contravariant indices, or as a (b→ a) index substitution operator

acting on covariant indices. So, for example, δab α
bc
d = αacd . To see this, suppose that αbcd =

n3∑
i=1

i
µb

i
νc

i
τd.

Then

δab α
bc
d =

n3∑

i=1

(
δab

i
µb
)

i
νc

i
τd =

n3∑

i=1

i
µa

i
νc

i
τd = αacd .
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Given a basis
1

ξa,
2

ξa, ...,
n

ξa for V a with dual basis
1
αa,

2
αa, ...,

n
αa, δ

a
b can be expressed as δab =

n∑
i=1

i

ξa
i
αb.

(This follows since the left- and right-side tensors in this equation have the same action on the basis

elements
1

ξb,
2

ξb, ...,
n

ξb.) It follows that δaa = n.

The second bit of useful notation is for “symmetrization” and “anti-symmetrization” of tensors. Con-

sider, for example, the tensor βab. Corresponding to it is the tensor βba. One can think of the latter

as arising from the former by a series of index substitutions: βab → βcb → βcd → βbd → βba. (We

have already discussed the fact that, though βab and βba belong to V ab, in general it is not the case that

βab = βba.) We take β(ab) and β[ab] to be the respective symmetrization and anti-symmetrization of βab:

β(ab) =
1

2
(βab + βba)

β[ab] =
1

2
(βab − βba).

Similarly, given a tensor γbcdg, we set

γb(cdg) =
1

6
(γbcdg + γbgcd + γbdgc + γbcgd + γbgdc + γbdcg)

γb[cdg] =
1

6
(γbcdg + γbgcd + γbdgc − γbcgd − γbgdc − γbdcg).

In general, a tensor with round brackets surrounding a collection of p consecutive indices (all contravariant

or all covariant) is to be understood as
1

p!
times the sum of the p! tensors obtained by taking the selected

indices in all possible permutations. (Each permutation can be achieved by multiple index substitutions.)

In the case of square brackets, the only difference is that each term in the sum receives a coefficient of

(+1) or (−1) depending on whether the indices in that term form a positive or negative permutation

of the original sequence. The operations of symmetrization and anti-symmetrization commute with

addition, exterior multiplication, and index substitution. So, for example, if βab = γab + ρab, then

β(ab) = γ(ab) + ρ(ab). If γbcdg = λcdg ξ
b, then γb(cdg) = λ(cdg) ξ

b. And if one applies (c → f) index

substitution to γbcdg and then symmetrizes over the indices f, d, and g, the resulting tensor is the same

one obtained if one first symmetrizes over c, d, and g, and then applies (c → f) index substitution.

We say that a tensor of the form αa1...ar

b1...bs
is (totally) symmetric in indices b1, ..., bs if interchanging

any two of these indices leaves the tensor intact, or, equivalently, if α a1...ar

(b1...bs)
= αa1...ar

b1...bs
. We say it is

(totally) anti-symmetric in those indices if the interchange in each case has the effect of multiplying the

tensor by (−1) or, equivalently, if α a1...ar

[b1...bs]
= αa1...ar

b1...bs
. (The conditions of symmetry and anti-symmetry

in indices a1, ..., ar are defined similarly.) The following proposition will be useful in what follows.

Proposition 1.4.3. If

(1) αa1...ar

b1...bs
is symmetric in indices b1, ..., bs, and

(2) αa1...ar

b1...bs
ξb1 ...ξbs = 0 for all ξ in V ,

then αa1...ar

b1...bs
= 0. (A parallel proposition holds if αa1...ar

b1...bs
is symmetric in indices a1, ..., ar.)
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Proof. We prove the proposition by induction on s. The case s = 1 is trivial. So assume s > 1 and

assume the proposition holds for s − 1. For all vectors µ and ν in V , and all real numbers k, we have,

by (2): 0 = αa1...ar

b1...bs
(µ+ k ν)b1 ... (µ+ k ν)bs . Expanding the right side of the equation and using (1), we

arrive at

0 = αa1...ar

b1...bs
µb1 ... µbs +

(
s

1

)
k αa1...ar

b1...bs
µb1 ... µbs−1νbs + ...

+

(
s

s− 1

)
ks−1 αa1...ar

b1...bs
µb1 νb2 ... νbs + ks αa1...ar

b1...bs
νb1 ... νbs .

But k is arbitrary here. The only way the right-side sum can be 0 for all values of k is if each of the

terms in the sum (without the coefficient) is 0. In particular, αa1...ar

b1...bs
µb1 ... µbs−1 νbs = 0. Now let

α′a1...ar

b1...bs−1
= αa1...ar

bs...bs
νbs . The tensor α′a1...ar

bs...bs−1
is completely symmetric in the indices b1, ..., bs−1, and

α′a1...ar

b1...bs−1
µb1 ... µbs−1 = 0 for all µ in V . So, by our induction hypothesis, it must be the case that

αa1...ar

b1...bs
νbs = 0. But ν was an arbitrary vector. So αa1...ar

b1...bs
= 0, as claimed.

Sometimes it will be convenient to work with this proposition in a slightly more general form. Let

Σ and Π be strings of indices, possibly empty, in which a1, ..., ar, b1, ..., bs do not appear. Then we

can say that a tensor α a1...ar

Σb1...bsΠ is (totally) symmetric in indices b1, ..., bs if α a1...ar

Σ(b1...bs)Π
= α a1...ar

Σb1...bsΠ.

(The case of (total) anti-symmetry is handled similarly.) It follows as a corollary to the proposition that

if n-dimensional α a1...ar

Σb1...bsΠ is symmetric in indices b1, ..., bs, and if α a1...ar

Σb1...bsΠ ξ
b1 ... ξbs = 0 for all ξ

in V , then α a1...ar

Σb1...bsΠ = 0. (It follows because we can always contract on all the indices in Σ and Π

with arbitrary, distinct vectors and generate a tensor to which the proposition is directly applicable.) Of

course, a similar generalization of the proposition is available in the case where the “extra indices” are

in covariant position.

This completes our discussion of tensor algebra. We now return to manifolds. Suppose (M, C) is an

n-manifold and p is a point in M . Then Mp is an n-dimensional vector space. We can take it to be our

fundamental space V and construct a hierarchy of tensor spaces over it. A tensor field on M is simply

an assignment of a tensor (over Mp) to each point p in M , where the tensors all have the same index

structure. So, for example, a vector field ξa on M (as defined in section 1.3) qualifies as a tensor field on

M . The tensor operations (addition, exterior multiplication, index substitution, and contraction) are all

applied pointwise, and so they extend naturally to tensor fields.

We already know what it means for a scalar field or a (contravariant) vector field on M to be smooth.

We now take a covariant vector field αa onM to be smooth if (ξa αa) is smooth for all smooth vector fields

ξa on M . Quite generally, we say that a tensor field λa1...ar

b1...bs
on M is smooth if λa1...ar

b1...bs
ξb1 ... ηbs αa1 ... βar

is smooth for all smooth fields ξb1 , ..., ηbs , αa1 , ..., βar
on M .

This pattern of definition is extremely common. One starts with a concept (in this case smoothness)

applicable to scalar fields, then extends it to contravariant vector fields by considering their action on

scalar fields, then extends it to covariant vector fields by considering their action on contravariant fields,
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then extends it to tensor fields of arbitrary index structure by considering their action on (appropriate

combinations of) contravariant and covariant vector fields.

It follows from the definition of smoothness for tensor fields just given that the four tensor operations

take smooth tensor fields to smooth tensor fields.
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1.5 The Action of Smooth Maps on Tensor Fields

In this section, we consider when and how it is possible to use a smooth map between manifolds to

carry tensors at a point, and tensor fields, from one manifold to the other.

We start with tensors at a point. Let (M, C) and (M ′, C′) be manifolds, not necessarily of the same

dimension, let ψ : M → M ′ be a smooth map of M into M ′, and let p be a point in M . There is no

natural way to transfer arbitrary tensors between p and ψ(p) — at least not without further assumptions

in place. But it is possible to associate with ψ two restricted transfer maps.

Let us say that a tensor (at some point on some manifold) is contravariant (resp. covariant) if all of

its indices are in contravariant (resp. covariant) position. The rank of such a tensor is the number of its

indices. We allow the number to be 0, i.e., we regard scalars (real numbers) as both contravariant and

covariant tensors of rank 0.

The first of our two restricted transfer maps, the “push-forward map” (ψp)∗, takes contravariant

tensors at p to contravariant tensors of the same rank at ψ(p). The second, the “pull-back map” (ψp)
∗,

takes covariant tensors at ψ(p) to covariant tensors of the same rank at p. We define (ψp)∗ and (ψp)
∗ in

four stages. (For clarity, we mark objects defined on M ′ with a prime.)

(Stage 0) Given any real number c, we set (ψp)∗(c) = (ψp)
∗(c) = c.

(Stage 1) Given a vector ξa at p, we define (ψp)∗(ξ
a) at ψ(p) as follows. Let α′ : O′ → R be an element

of S
(
ψ(p)

)
. Then (α′ ◦ ψ) : ψ−1[O′] → R is an element of S(p). We need to specify what assignment

(ψp)∗(ξ
a) makes to α′. We set (

(ψp)∗(ξ
a)
)
(α′) = ξa(α′ ◦ ψ). (1.5.1)

This makes sense because (α′ ◦ ψ) is an object of the sort to which ξa makes assignments.

(Stage 2) Next, consider a covariant tensor η′b1 ... bs
at ψ(p). We define the pull-back tensor (ψp)

∗(η′b1 ... bs
)

at p by specifying its action on arbitrary vectors
1

ξ b1 , ...,
s

ξ bs there. We set

(
(ψp)

∗(η′b1 ... bs
)
) 1

ξ b1 ...
s

ξ bs = η′b1 ... bs

(
(ψp)∗(

1

ξ b1)
)
...
(
(ψp)∗(

s

ξ bs)
)
. (1.5.2)

Here, of course, we understand the right side because we know (from stage 1) how to push forward the

vectors
i

ξ bi .

(Stage 3) Finally, consider a contravariant tensor ξa1 ... ar at p with r ≥ 2. We define the push-forward

tensor (ψp)∗(ξ
a1 ... ar) at ψ(p) by specifying its action on arbitrary vectors

1
η ′
a1

, ...,
r
η ′
ar

there:

(
(ψp)∗(ξ

a1 ... ar)
) 1
η ′
a1
...

r
η ′
ar

= ξa1 ... ar

(
(ψp)

∗(
1
η ′
a1

)
)
...
(
(ψp)

∗(
r
η ′
ar

)
)
. (1.5.3)

This completes the definition of (ψp)∗ and (ψp)
∗.

Several basic facts about them are recorded in the next proposition.
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Proposition 1.5.1. Let ψ : M → M ′ be a smooth map of the manifold M into the manifold M ′. Let

p be any point in M . Then (ψp)∗ and (ψp)
∗ have the following properties.

(1) (ψp)∗ and (ψp)
∗ commute with addition.

For example, (ψp)∗(ξ
abc + ρabc) = (ψp)∗(ξ

abc) + (ψp)∗(ρ
abc).

(2) (ψp)∗ and (ψp)
∗ commute with exterior multiplication.

For example, (ψp)
∗(η′abc µ

′
de) =

(
(ψp)

∗(η′abc)
) (

(ψp)
∗(µ′

de)
)
.

(3) (ψp)∗ and (ψp)
∗ commute with index substitution.

(4) For all tensors ξa1...arc1...cs and ρb1...br at p, and all tensors η′a1...ar
and µ′

b1...brd1...ds
at ψ(p),

(
(ψp)∗(ξ

a1...arc1...cs)
)
η′a1...ar

= (ψp)∗

(
ξa1...arc1...cs ((ψp)

∗(η′a1...ar
))
)
, (1.5.4)

(
(ψp)

∗(µ′
b1...brd1...ds

)
)
ρb1...br = (ψp)

∗
(
µ′
b1...brd1...ds

((ψp)∗(ρ
b1...br))

)
. (1.5.5)

Note that we cannot replace clause (4) with the simpler assertion that (ψp)∗ and (ψp)
∗ commute

with contraction. We cannot claim, for example, that (ψp)∗(ξ
ac ηa) =

(
(ψp)∗(ξ

ac)
) (

(ψp)∗(ηa)
)
, since the

second term on the right side is not well formed. The push-forward map (ψp)∗ makes assignments only

to contravariant vectors at p.

Note also that it follows as a special case of clause (2) that (ψp)∗ and (ψp)
∗ commute with scalar

multiplication. For example, (ψp)∗(c ξ
ab) = ((ψp)∗(c))

(
(ψp)∗(ξ

ab)
)

= c
(
(ψp)∗(ξ

ab)
)
. So, clearly, (ψp)∗

and (ψp)
∗ are linear maps (when restricted to tensors of a fixed rank).

Proof. All four clauses in the proposition follow easily from the definitions of (ψp)∗ and (ψp)
∗. For

the fourth clause, one first considers contractions involving (contravariant or covariant) vectors, i.e.,

((ψp)∗(ξ
a c1...cs)) η′a or ((ψp)

∗(η′b d1...ds
)) ρb, and then uses the fact that every tensor η′a1...ar

or

ρb1...br can be represented as a sum over products of such vectors. The desired conclusion then follows

from clauses (1) and (2). By way of example, let us verify one instance of the fourth clause, say:

(
(ψp)∗(ξ

ac)
)
η′a = (ψp)∗

(
ξac
(
(ψp)

∗(η′a)
))
.

To show that the two (right- and left-side) vectors at ψ(p) are equal, it suffices to demonstrate that they

have the same action on any vector µ′
c there. But this follows, since

(ψp)∗

(
ξac
(
(ψp)

∗(η′a)
))
µ′
c = ξac

(
(ψp)

∗(η′a)
) (

(ψp)
∗(µ′

c)
)

=
(
(ψp)∗(ξ

ac)
)
η′a µ

′
c.

Both equalities are instances of (1.5.3). The role of ξa1...ar is played by
(
ξac
(
(ψp)

∗(η′a)
))

in the first, and

by ξac in the second.

Now we turn our attention to fields on M and M ′. At each point p in M , we have transfer maps (ψp)∗

and (ψp)
∗. The question arises whether they can be “aggregated” to carry contravariant fields on M to

ones on M ′ or, alternatively, carry covariant fields on M ′ to ones on M . Here an asymmetry arises.
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Consider first a tensor field ξa1...ar on M . For all p in M , (ψp)∗
(
ξa1...ar(p)

)
is a tensor at ψ(p).

(ξa1...ar(p) is the value of the field at p, and it is pushed forward by (ψp)∗.) But these individual

assignments do not, in general, determine a field on M ′. For one thing, if ψ is not injective, there will

be distinct points p and q such that ψ(p) = ψ(q), and nothing guarantees that (ψp)∗
(
ξa1...ar(p)

)
=

(ψq)∗
(
ξa1...ar(q)

)
. Furthermore, even if ψ is injective, this prescription will not transfer a tensor to a

point p′ in M ′ unless it is in the range of ψ, i.e., unless p′ = ψ(p) for some p in M .

But no problems arise if we work in the other direction. Consider a field η′b1...bs
on M ′. Then at every

point p, there is a well-defined pull-back tensor (ψp)
∗
(
η′b1...bs

(
ψ(p)

))
. It just does not matter whether

ψ is injective or whether its range is all of M ′. So we can aggregate the individual pull-back maps at

different points to generate a map ψ∗ that takes covariant tensor fields on M ′ to ones on M of the same

rank.

In particular, ψ∗ takes scalar fields α′ : M ′ → R on M ′ to scalar fields

ψ∗(α′) = (α′ ◦ ψ) (1.5.6)

on M . (Think about it this way. The pull-back field ψ∗(α′) assigns to any point p in M the same

number that α′ assigns to ψ(p). (Recall the 0-th stage in the definition of (ψp)
∗.) So, for all p in M ,

ψ∗(α′)(p) = α′(ψ(p)) = (α′ ◦ ψ)(p).)

Three of the (pointwise) algebraic conditions listed in proposition 1.5.1 carry over immediately. Thus,

ψ∗ commutes with addition, exterior multiplication, and index substitution (if these are now understood

as operations on tensor fields rather than as operations on tensors at a point). The fourth condition,

the one involving contraction, does not carry over because it makes reference to individual push-forward

maps (ψp)∗ (and these, we know, cannot, in general, be aggregated). In addition, ψ∗ satisfies a natural

smoothness condition; namely, it takes smooth fields on M ′ to smooth fields on M . This is immediate for

the case of scalar fields. (If α′ : M ′ → R is smooth, then certainly the composed map ψ∗(α′) = (α′ ◦ ψ)

is smooth as well.) But a short detour will be required for the other cases.

Let us temporarily put aside our map ψ between manifolds and consider a general fact about the

representation of covariant vector fields on a manifold M . Given any smooth scalar field α : M → R,

we associate with it a smooth covariant vector field daα on M , called its “exterior derivative”. (Here

we partially anticipate our discussion of exterior derivative operators in section 1.7.) It is defined by the

requirement that, for all p in M and all vectors ξa at p, ξa daα = ξ(α), i.e., ξa daα is the directional

derivative of α at p in the direction ξa. (The condition clearly defines a covariant vector, i.e., a linear

functional over Mp, at each point p. And the resultant field daα is smooth since, given any smooth vector

field ξa on M , ξa daα is a smooth scalar field on M .) The fact we need is the following.

Lemma 1.5.2. Let λa be a smooth field on an n-dimensional manifold (M, C). Then, given any point p

in M , there exists an open set O containing p, and smooth real-valued maps
1

f, ...,
n

f,
1
g, ...,

n
g on O, such

that λa =
1

f da
1
g + ...+

n

f da
n
g on O.
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Proof. Let p be a point in M , let (O,ϕ) be a chart in C with p ∈ O, and let u1, ..., un be the associated

coordinate maps on O. At every point q in O, the coordinate curve tangent vectors (
→
γ 1|q)

a, ..., (
→
γ n|q)

a

associated with u1, ..., un form a basis for (Mq)
a. (Recall proposition 1.2.3.) Now consider the vector

fields dau
1, ..., dau

n on O. We claim that they determine a dual basis at every q, i.e., (
→
γ i|q)

a(dau
j) = δij

for all i, j ∈ {1, ..., n}. Indeed, this follows immediately since (
→
γ i|q)

a(dau
j) =

→
γ i|q(u

j) (by the definition of

da) and
→
γ i|q(u

j) = δij (by equation (1.2.6)). So we can express λa in the form λa =
1

f dau
1 + ...+

n

f dau
n

on O, where
i

f= (
→
γ i)

aλa. The coordinate maps u1, ..., un are certainly smooth. And the maps
1

f, ...,
n

f

must be smooth as well since λa and the coordinate tangent fields (
→
γ 1)

a, ..., (
→
γn)

a are so.

With the lemma in hand, let us return to the original discussion. Again, let ψ be a smooth map from

the manifold M into the manifold M ′. Note that given any smooth field α′ : M ′ → R on M ′, we have

ψ∗(daα
′) = da

(
ψ∗(α′)

)
. (1.5.7)

(To see this, let p be any point in M and let ξa be any vector at p. Then

ξb
(
ψ∗(dbα

′)
)
|p

=
(
(ψp)∗(ξ

b)
)
(dbα

′)|ψ(p) =
(
(ψp)∗(ξ

b)
)
(α′) = ξb(α′ ◦ ψ) = ξb

(
db(ψ

∗(α′))
)
|p
.

The first equality is an instance of (1.5.2), with (dbα
′)|ψ(p) playing the role of η′b; the third is an instance

of (1.5.1). The second follows from the definition of the operator da, and the fourth from that definition

together with (1.5.6). So (1.5.7) holds at all points p in M .)

It is our goal, once again, to show that, for all smooth fields η′b1...bs
onM ′, the pull-back field ψ∗(η′b1...bs

)

on M is smooth as well. Consider the case of a smooth vector field η′b on M ′. Suppose M ′ has dimension

n. We know from the lemma that given any point p′ in M ′, we can find an open set O′ containing p′ in

which η′b admits the representation η′b =
n∑

i=1

i

f ′db
i
g ′ (with the constituent maps all smooth). Hence, we

have

ψ∗(η′b) = ψ∗

(
n∑

i=1

i

f ′db
i
g ′

)
=

n∑

i=1

ψ∗(
i

f ′)ψ∗(db
i
g ′) =

n∑

i=1

ψ∗(
i

f ′) db
(
ψ∗(

i
g ′)
)

throughout ψ−1[O′]. (We get the second equality from the fact that ψ∗ respects the tensor operations of

addition and exterior multiplication (in the sense discussed above). The third follows from (1.5.7).) But

the constituent fields in the far right sum are all smooth. (We have already seen that ψ∗ takes smooth

scalar fields to smooth scalar fields.) So ψ∗(η′b) itself is smooth on ψ−1[O′]. But as p′ ranges over M ′,

the corresponding pull-back sets ψ−1[O′] cover M . It follows that ψ∗(η′b) is smooth on (all of) M .

It remains to consider the general case – smooth fields on M ′ of the form η′b1...bs
. But this case quickly

reduces to the preceding one. We can express any such field, at least locally, in the form

η′b1...bs
=

ns∑

i=1

i
µ ′
b1 ...

i
ν ′
bs
,



CHAPTER 1. DIFFERENTIAL GEOMETRY 36

where
i
µ ′
b1
, ...,

i
ν ′
bs

(i = 1, ..., ns) are all smooth fields on M ′. Since the individual pull-back fields

ψ∗(
i
µ ′
b1

), ..., ψ∗(
i
ν ′
bs

) are smooth (and since ψ∗ commutes with addition and exterior multiplication), it

follows that ψ∗(η′b1...bs
) must be smooth on M .

In summary, we have established the following.

Proposition 1.5.3. Let ψ : M → M ′ be a smooth map of the manifold M into the manifold M ′. Then

ψ∗ is a map from smooth covariant tensor fields on M ′ to smooth covariant fields on M of the same

rank that commutes with addition, exterior multiplication, and index substitution and that also satisfies

(1.5.7).

The complications and asymmetries we have encountered all have their origin in the fact that we

have only been assuming that ψ is a smooth map of M into M ′. Now, finally, let us consider the case

where ψ is, in fact, a diffeomorphism of the first onto the second, i.e., there is a well-defined inverse map

ψ−1 : M ′ → M that is also smooth. Then, as one would expect, there is induced a natural one-to-one

correspondence between smooth tensors fields of arbitrary index structure on the two manifolds, and

this correspondence fully respects the four tensor operations. We already know how ψ∗ acts on smooth

covariant tensor fields (and scalar fields) on M ′. Now we can characterize its action on a smooth field

λ′ a1...ar

b1...bs
of unrestricted index structure on M ′. We stipulate that, given any point p in M , and any

smooth fields
1
ηa1 , ...,

r
ηar

,
1

ξ b1 , ...,
s

ξ bs on M ,

ψ∗(λ′ a1...ar

b1...bs
)|p (

1
ηa1 ...

s

ξ bs)|p = (λ′ a1...ar

b1...bs
)|ψ(p)

((
(ψ)∗(

1
ηa1)

)
...
(
(ψ)∗(

s

ξ bs)
))

|ψ(p)
. (1.5.8)

Of course, the right side makes sense only if we understand how ψ∗ acts on smooth vector fields ηa and ξb

on M . But we do understand (in this new context where ψ is a diffeomorphism). Here we can aggregate

the individual push-forward maps (ψp)∗ to generate a map ψ∗ that knows how to act on contravariant

vector fields — just as previously we aggregated the maps (ψp)
∗ to generate a map ψ∗ that knows how to

act on covariant vector fields. And we can take ψ∗(ηa) to be (ψ−1)∗(ηa). This completes the definition

of ψ∗.

Notice that this general characterization of ψ∗ reduces to the one given previously in the special case

where it acts on a covariant field λ′ b1...bs
.

The way to remember 1.5.8 is this. A trade-off is involved. Pulling back λ′ a1...ar

b1...bs
from ψ(p) to p, and

having it act there on particular vectors yields the same result as pushing those vectors forward from p

to ψ(p) and having λ′ a1...ar

b1...bs
act on them there.

We have just seen how to extend ψ∗ so that it acts on smooth fields on M ′ of unrestricted index

structure (when ψ is a diffeomorphism). Of course, we can extend ψ∗ similarly. Indeed, we can take it

to be (ψ−1)∗.

It is a straightforward matter to confirm that ψ∗ (and so ψ∗) commutes with addition, exterior

multiplication, contraction, and index substitution. By way of example, we verify that, for all smooth
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fields α′a
b and ξ′b on M ′,

ψ∗(α′a
b ξ

′b) = ψ∗(α′a
b ) ψ

∗(ξ′b). (1.5.9)

Let ηa be any smooth field on M . Then, invoking (1.5.8) and dropping explicit reference to points of

evaluation, we have

ψ∗(α′a
b ) ψ

∗(ξ′b) ηa = α′a
b ψ∗

(
ψ∗(ξ′b)

)
ψ∗(ηa) = α′a

b ξ
′b ψ∗(ηa) = ψ∗(α′a

b ξ
′b) ηa.

(For the second equality, we use the fact that (ψ∗ ◦ ψ∗) = the identity map.) Since this holds for all

smooth fields ηa on M , we have (1.5.9).
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1.6 Lie Derivatives

Let (M, C) be a fixed manifold, and let ξa be a smooth vector field on M . The Lie derivative operator

£ξ associated with ξa is a map from smooth tensor fields (on M) to smooth tensor fields (on M) of the

same index structure. Roughly speaking, £ξ λ
a1...ar

b1...bs
represents the “rate of change” of the field λa1...ar

b1...bs

relative to a standard of constancy determined by ξa. We now have the tools in place to make this precise.

(It is not important, but we write “£ξ” rather than “£ξa” to avoid the impression that the operator adds

a new index. There is no chance for confusion since the object X in £X is always a contravariant vector

field and the index it carries makes no difference.)

Let λa1...ar

b1...bs
be a smooth field on M , and let p be a point in M . Further, let {Γt : U → Γt[U ]}t∈I be

a local one–parameter group of diffeomorphisms generated by ξa with p ∈ U . Here I is an open interval

of R, U is an open subset of M , and the maps Γt : U → Γt[U ] ⊆ M satisfy conditions (1) - (3) at the

close of section 1.3. We set

(
£ξ λ

a1...ar

b1...bs

)
|p

= lim
t→0

1

t

[(
(Γt)

∗(λa1...ar

b1...bs
)
)
|p
− λa1...ar

b1...bs |p

]
.

The right side limit is to be understood this way. We start with the tensor (λa1...ar

b1...bs
) |Γt(p) at Γt(p),

carry it back to p with the pull back map (Γt)
∗, subtract (λa1...ar

b1...bs
)|p, divide by t, and then take the limit

as t goes to 0. (That the limit exists, and that the resultant field
(
£ξ λ

a1...ar

b1...bs

)
on M is smooth, follows

from proposition 1.3.3.) Note that we need to carry (λa1...ar

b1...bs
) |Γt(p) back to p before comparing it with

(λa1...ar

b1...bs
)|p because the two tensors live in different spaces. The expression

[(
λa1...ar

b1...bs

)
|Γ(p)

− λa1...ar

b1...bs |p

]
is

not well formed.

The following proposition lists several basic properties of Lie derivatives. (The proof is straightfor-

ward.)

Proposition 1.6.1. The operator £ξ has the following properties.

(1) It commutes with addition. E.g., £ξ(α
ab
c + βabc ) = £ξ(α

ab
c ) + £ξ(β

ab
c ).

(2) It satisfies the Leibniz rule with respect to exterior multiplication.

For example, £ξ(α
ab
c βdf ) = αabc £ξ βdf + βdf £ξ α

ab
c .

(3) It commutes with the operation of index substitution.

(4) It commutes with the operation of contraction.

Problem 1.6.1. Show that £ξ δ
b
a = 0. (Hint: Recall that δba can be thought of as an index substitution

operator, and make use of proposition 1.6.1.)

Problem 1.6.2. Let ηa be a smooth, non-vanishing field on M . Show that if £ξ(η
a ηb) = 0, then

£ξ η
a = 0.

Two cases are of special interest, namely Lie derivatives of scalar fields and of contravariant vector

fields. We consider them in order.
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Proposition 1.6.2. Let ξa and α be smooth fields on M . Then £ξ(α) = ξ(α), i.e., at every point in M ,

£ξ α is just the ordinary directional derivative of α in the direction ξa.

Proof. Let p be any point in M , and let {Γt : U → Γt[U ]}t∈I be a local one–parameter group of diffeo-

morphisms generated by ξa with p ∈ U . Since the curve γ : I →M defined by γ(t) = Γt(p) is an integral

curve of ξa with initial point p, we have

ξ|p(α) =
→
γ |p(α) =

d

dt
(α ◦ γ)(0) =

d

dt

[(
α ◦ Γt

)
(p)
]
|t=0

.

But (Γt)
∗(α) = (α ◦ Γt) for all t ∈ I. (Recall equation (1.5.6).) So we also have

(
£ξ α

)
|p

= lim
t→0

1

t

[(
(Γt)

∗(α)
)
|p
− α|p

]
= lim

t→0

1

t

[(
α ◦ Γt

)
(p) −

(
α ◦ Γ0

)
(p)
]

=
d

dt

[(
α ◦ Γt

)
(p)
]
|t=0

.

So (£ξ α)|p = ξ|p(α) at all points p in M .

We need a lemma for the second special case (Lie derivatives of contravariant vector fields).

Lemma 1.6.3. Let ξa be a smooth vector field on M , let p be a point in M and, once again, let

{Γt : U → Γt[U ]}t∈I be a local one–parameter group of diffeomorphisms generated by ξa with p ∈ U .

Then, given any smooth scalar field α : M → R, there is a one–parameter family of smooth scalar fields

{ϕt}t∈I on U such that

(1) α ◦ Γt = α+ t · ϕt for all t in I, and

(2) ϕ0 = ξ(α).

Proof. Consider the family of smooth scalar fields {ϕt}t∈I on U defined by setting

ϕt(q) =

∫ 1

0

d

du

[(
α ◦ Γu

)
(q)
]
|u=tx

dx

for all t in I and q in U . We claim that it satisfies condition (1) and (2). First, for all t in I,

t · ϕt(q) =

∫ 1

0

d

du

[(
α ◦ Γu

)
(q)
]
|u=tx

t dx

=

∫ 1

0

d

dx

[(
α ◦ Γtx(q)

)]
dx

=
(
α ◦ Γt

)
(q) −

(
α ◦ Γ0

)
(q).

But Γ0(q) = q for all q in U . So we have condition (1). Next, differentiation with respect to t yields

t · d
dt
ϕt(q) + ϕt(q) =

d

dt

[(
α ◦ Γt

)
(q)
]
.

Evaluating both sides at t = 0 gives us:

ϕ0(q) =
d

dt

[(
α ◦ Γt

)
(q)
]
|t=0

.
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But now, since {Γt : U → Γt[U ]}t∈I is a local one–parameter group of diffeomorphisms generated by ξa,

the curve γ : I → O defined by γ(t) = Γt(q) is an integral curve of ξa with initial value q. Thus,

ξ|q(α) =
→
γ |q(α) =

d

dt
(α ◦ γ)| t=0 =

d

dt

[(
α ◦ Γt

)
(q)
]
| t=0

.

So ϕ0(q) = ξ|q(α) for arbitrary q in U . This is just condition (2).

Proposition 1.6.4. Let ξa and λa be smooth vector fields on M . Then £ξ(λ
a) = [ξ, λ]a, where [ξ, λ]a

is the smooth (“commutator”) vector field on M whose action on a smooth scalar field α : M → R is

given by

[ξ, λ](α) = ξ(λ(α)) − λ(ξ(α)).

(Another remark about notation. One must make some decision about how to handle abstract indices

when dealing with commutator vector fields. Depending on context, we shall write, for example, either

“[ξ, λ]a” or “[ξ, λ]”— but never “[ξa, λa]” or “[ξa, λa]a”. Nothing of importance turns on this decision.)

Proof. Let p be any point in M , and let {Γt : U → Γt[U ]}t∈I be a local one–parameter group of diffeo-

morphisms generated by ξa with p ∈ U . Given a smooth scalar field α : M → R, let {ϕt}t∈I be a

one–parameter family of smooth scalar fields on U satisfying conditions (1) and (2) in the lemma. For

all t such that both t and −t are in I, we have

[(Γt)
∗(λa)]|p(α) = λa|Γt(p)(α ◦ Γ−t) = λa|Γt(p)(α − t · ϕ−t).

The first equality follows directly from (1.5.1) and the fact that (Γt)
∗ = (Γ−t)∗. The second follows

from condition (1) of the lemma (with t replaced by −t). So

(
£ξ λ

a
)
|p

(α) = lim
t→0

1

t

[(
(Γt)

∗(λa)
)
|p

(α) − λa|p(α)
]

= lim
t→0

1

t

[
λa|Γt(p)(α) − λa|p(α)

]
− lim
t→0

λa|Γt(p)(ϕ−t)

= lim
t→0

1

t

[
(λa(α))|Γt(p) − (λa(α))|p

]
− λa|p(ϕ0)

=
d

dt

[(
λa(α) ◦ Γt

)
(p)
]
|t=0

− λa|p(ϕ0).

Now the first term on the right side of the final line is equal to ξ|p
(
λ(α)

)
. (The argument is the same as

used in the final stage of the proof of the lemma.) And ϕ0 = ξ(α), by condition (2) of the lemma. So

(
£ξ λ

a
)
|p

(α) = ξa|p(λ(α)) − λa|p(ξ(α)).

Since p and α are arbitrary, this establishes our claim.
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Problem 1.6.3. Show that the set of smooth contravariant vector fields on M forms a “Lie algebra”

under the bracket operation (defined in the preceding proposition), i.e., show that for all smooth vector

fields ξ, η, λ on M ,

[ξ, η] = −[η, ξ] and
[
λ, [ξ, η]

]
+
[
η, [λ, ξ]

]
+
[
ξ, [η, λ]

]
= 0.

Problem 1.6.4. Show that for all smooth vector fields ξa, ηa on M , and all smooth scalar fields α on

M ,
£(α ξ)η

a = α
(
£ξ η

a
)
−
(
£η α

)
ξa.

Problem 1.6.5. One might be tempted to take a smooth tensor field to be “constant” if its Lie derivatives

with respect to all smooth vector fields are zero. But this idea does not work. Any contravariant vector

field that was “constant” in this sense would have to vanish everywhere. Prove this.

Problem 1.6.6. Show that for all smooth vector fields ξa, ηa, and all smooth tensor fields αa...bc...d,

(
£ξ £η − £η £ξ

)
αa...bc...d = £θ α

a...b
c...d

where θa is the field £ξ η
a. It follows that £ξ and £η commute iff [ξ, η] = 0. (Hint: First prove the

assertion, in order, for scalar fields α and contravariant fields αa. It will then be clear how to continue

with covariant fields αa and arbitrary tensor fields αa...bc...d.)

Although it is important to know how Lie derivatives are defined, in practice one rarely makes direct

reference to the definition. Instead, one invokes propositions 1.6.1, 1.6.2, and 1.6.4. In fact, Lie derivatives

can be fully characterized in terms of the properties listed there.

Proposition 1.6.5. Let ξa be a smooth vector field on M . Let D be an operator taking smooth tensor

fields on M to smooth tensor fields on M of the same index structure that satisfies the following three

conditions.

(1) For all smooth scalar fields α on M , D(α) = ξ(α).

(2) For all smooth vector fields λa on M , D(λa) = [ξ, λ]a.

(3) D commutes with the operations of addition, index substitution, and contraction; it further satisfies

the Leibniz rule with respect to tensor multiplication.

Then D = £ξ, i.e., D and £ξ have the same action on all smooth tensor fields.

Proof. We are assuming outright that D and £ξ have the same action on scalar field and contravariant

vector fields. We must show that (3) induces agreement on tensor fields of all other index structures.

Consider, first, the case of a field γa. Given any smooth field λa on M , we must have D(γa λ
a) =

ξ(γa λ
a) = £ξ(γa λ

a) by (1). Hence, by (3),

γaD(λa) + D(γa)λ
a = γa£ξ(λ

a) + £ξ(γa)λ
a.
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But D(λa) = £ξ(λ
a) by (2). So, for arbitrary smooth fields λa on M ,

(
D(γa) − £ξ(γa)

)
λa = 0. Thus,

D(γa) = £ξ(γa).

We can now jump to the general case of a smooth tensor field λa1...ar

b1...bs
onM . We do so with an argument

that is much like the one just used to handle the case of covariant vector fields. Let λb1 , ..., ρbs , µa1 , ..., νar

be arbitrary smooth fields on M , and consider the scalar field α = λa1...ar

b1...bs
λb1 ... ρbs µa1 ... νar

. By (1),

D(α) = £ξ(α). We can expand the terms D(α) and £ξ(α) using the fact that both operators, D and £ξ,

satisfy the Leibniz rule. The result will be an equation with r+s+1 terms on each side. The terms will

agree completely, except that where D appears on the left, £ξ will appear on the right. In r + s terms,

the operator (D or £ξ) will act on a vector field. So all these terms will cancel since D and £ξ agree in

their action on contravariant and covariant vector fields. For example, the terms

λa1...ar

b1...bs
D(λb1) ... ρbs µa1 ... νar

and λa1...ar

b1...bs

(
£ξ λ

b1
)
... ρbs µa1 ... νar

will cancel since D(λb1 ) = £ξ λ
b1 . So we may conclude that

[
D
(
λa1...ar

b1...bs

)
− £ξ

(
λa1...ar

b1...bs

)]
λb1 ...ρbs µa1 ...νar

= 0

for all smooth fields λb1 , ..., ρbs , µa1 , ..., νar
on M . Thus D and £ξ agree in their action on λa1...ar

b1...bs
.

We record one more fact for future reference. For any smooth field λa1...ar

b1...bs
, £ξ λ

a1...ar

b1...bs
is supposed

to represent the “rate of change” of the field λa1...ar

b1...bs
relative to a standard of constancy determined by

(the flow maps associated with) ξa. So one would expect that £ξ λ
a1...ar

b1...bs
vanishes (everywhere) iff those

flow maps preserve λa1...ar

b1...bs
. We make the claim precise in the following proposition. The only slightly

delicate matter is the need to keep track of the domains of definition of the local flow maps.

Proposition 1.6.6. Let ξa and λa1...ar

b1...bs
be smooth fields on M . Then the following conditions are equiv-

alent.

(1) £ξ λ
a1...ar

b1...bs
= 0 (everywhere on M).

(2) For all local one–parameter groups of diffeomorphisms {Γt : U → Γt[U ]}t∈I generated by ξa, and all

t ∈ I, (Γt)
∗(λa1...ar

b1...bs
) = λa1...ar

b1...bs
.

Proof. The proof is essentially the same no matter what the index structure of the field under consid-

eration. So, for convenience, we work with a field λab . One direction ((2) ⇒ (1)) is immediate. Let

{Γt : U → M}t∈I be any local one–parameter group of diffeomorphisms determined by ξa, and let p be

any point in U . If (2) holds, then, in particular,
(
(Γt)

∗(λab )
)
|p

= λab |p
for all t ∈ I. Hence

(
£λ λ

a
b

)
|p

= lim
t→0

1

t

[(
(Γt)

∗(λab )
)
|p
− λab |p

]
= lim
t→0

1

t
[λab |p

− λab |p
] = 0.

The converse requires just a bit more work. Suppose that (1) holds. Let {Γt : U → M}t∈I be any local

one–parameter group of diffeomorphisms determined by ξa, and let p be any point in U . Further, let ηa
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and ρb and be any two vectors at p, and let f : I → R be the smooth map defined by

f(t) =
((

Γt)
∗(λab )

)

|p
ηa ρ

b.

We show that f ′(t) = 0 for all t ∈ I. This will suffice. For then it will follow that f is constant, i.e.,
[(

Γt)
∗(λab )

]
|p
ηa ρ

b =
[(

Γ0)
∗(λab )

]
|p
ηa ρ

b = λab |p
ηa ρ

b for all t ∈ I. Hence, since ηa and ρa are arbitrary

vectors at p, it will follow that
(
(Γt)

∗(λab )
)
|p

= λab |p
for all t ∈ I, as needed.

So let t be any number in I. Then we have

f ′(t) = lim
s→0

1

s

[(
(Γt+s)

∗(λab )
)
|p
ηa ρ

b −
(
(Γt)

∗(λab )
)
|p
ηa ρ

b
]
.

Now suppose s is sufficiently small in absolute value that {s, t+ s} ⊆ I and Γs(p) ∈ U . Then Γt+s(p) =

(Γt ◦ Γs)(p). (Recall condition (2) in the final paragraph of section 1.3.) Hence, for all such s, we have

(
(Γt)

∗(λab )
)
|p
ηa ρ

b = λab |Γt(p)

(
(Γt)∗(ηa)

)
|Γt(p)

(
(Γt)∗(ρ

b)
)
|Γt(p)

and
(
(Γt+s)

∗(λab )
)
|p
ηa ρ

b =
(
(Γs)

∗(λab )
)
|Γt(p)

(
(Γt)∗(ηa)

)
|Γt(p)

(
(Γt)∗(ρ

b)
)
|Γt(p)

.

So, substituting into our expression for f ′(t), we have

f ′(t) =

[
lim
s→0

1

s

((
(Γs)

∗(λab )
)
|Γt(p)

− λab |Γt(p)

)] (
(Γt)∗(ηa)

)
|Γt(p)

(
(Γt)∗(ρ

b)
)
|Γt(p)

=
(
£ξ λ

a
b

)
|Γt(p)

(
(Γt)∗(ηa)

)
|Γt(p)

(
(Γt)∗(ρ

b)
)
|Γt(p)

.

Since £ξ λ
a
b = 0 everywhere, we may conclude that f ′(t) = 0.
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1.7 Derivative Operators and Geodesics

We have already introduced one kind of derivative operator, namely £λ, associated with a smooth

contravariant vector field λa. In this section, we discuss a different kind. It is, in a sense, a generalization

of the gradient operator ∇ that one encounters in standard vector analysis on R
n.

Let M be a manifold, and let ∇ be a map that acts on pairs (c, αa1...ar

b1...bs
), where the second is a smooth

tensor field on M and the first is an abstract index distinct from a1, ..., ar, b1, ..., bs, and associates with

them a smooth tensor field ∇c αa1...ar

b1...bs
on M in which c appears as a covariant index. (Given any one

index c, we understand ∇c to be the operator that takes the field αa1...ar

b1...bs
to the field ∇c αa1...ar

b1...bs
.) We

say that ∇ is a (covariant) derivative operator on M if it satisfies the following conditions.

(DO1) ∇ commutes with addition on tensor fields.

For example, ∇n
(
αabc + βbac

)
= ∇n αabc + ∇n βbac .

(DO2) ∇ satisfies the Leibniz rule with respect to tensor multiplication.

For example, ∇n
(
αabc ξfd

)
= αabc ∇n ξfd +

(
∇n αabc

)
ξfd.

(DO3) ∇ commutes with index substitution.

For example, the result of applying (a → d) index substitution to αabc and applying ∇n is the same

as that arising from applying (a → d) substitution to ∇n αabc . Furthermore, the result of applying

(n→ m) index substitution to ∇n αabc is the same as that arising from applying ∇m to αabc .

(DO4) ∇ commutes with contraction.

For example, the result of applying (a, c) contraction to ∇n αabc is the same as that arising from

applying ∇n to αaba .

(DO5) For all smooth scalar fields α and all smooth vector fields ξn, ξn∇n α = ξ(α).

(DO6) For all (distinct) indices a and b, ∇a∇b α = ∇b∇a α.

The first four conditions should seem relatively innocuous. DO5 is suggested by the situation in ordinary

vector analysis on R
n. There the directional derivative of α in the direction ξ is given by ξ ·∇α. (Recall

equation (1.2.1).) We want to interpret ξn∇n α as the analog of ξ · ∇α. So we set ξn∇n α equal to

the (generalized) directional derivative ξ(α). DO6 is a bit more delicate. One can imagine strengthening

the condition to require that ∇a and ∇b commute on all tensor fields. This leads to the class of “flat”

derivative operators, and is far too restrictive for our purposes. One can also imagine dropping the

condition altogether. This leads to the larger class of “derivative operators with torsion”. It will be clear

later why we have included DO6. (The derivative operators determined by metrics are necessarily torsion

free.)
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Some authors refer to the associated maps ∇a as “derivative operators”, rather than reserving that

term for the map ∇ itself. We shall do so as well on occasion.

Having defined derivative operators, we can now pose the question of their existence and uniqueness

on manifolds. Concerning existence, one has the following basic result (Geroch [23, appendix]).

Proposition 1.7.1. A connected manifold admits a derivative operator iff a countable subset of the

manifold’s charts suffice to cover it.

The restriction to connected manifolds here is harmless since, clearly, a manifold admits a derivative

operator iff each of its components does. Practically all the manifolds one ever deals with in differential

geometry satisfy the stated countable cover condition. Indeed, one has to work hard to find a manifold

that does not. So proposition 1.7.1 has the force of a strong existence theorem. (And, of course, it implies

that all manifolds admit derivative operators locally.)

The question of uniqueness is easier to deal with, and we give a complete answer. But first a lemma

is needed.

Lemma 1.7.2. Let ∇ be a derivative operator on the n-dimensional manifold M , and let ξb be a co-vector

at the point p. Then there is a smooth scalar field α in S(p) such that ξb = (∇b α)|p.

Proof. Here we use coordinates as in section 1.2. Suppose (U,ϕ) is a chart onM with p ∈ U , and u1, ..., un

are the corresponding coordinate maps on U . The coordinate curve tangent vectors
→
γ1|p, ...,

→
γn|p form a

basis for Mp. Let {
1

β,
2

β, ...,
n

β} be a dual basis. Then (
→
γ i |p)

j

β = δij for all i and j in {1, ..., n}, and there

exist real numbers
1
c, ...,

n
c such that ξb =

n∑
i=1

i
c

i

βb. Now we define a smooth scalar field α : U → R by

setting α(q) =
n∑
i=1

i
c ui(q). We claim ξb = (∇b α)|p.

We must show that ηb ξb = ηb (∇b α)|p holds for arbitrary vectors ηb at p. Let ηb =
n∑
i=1

i

d
(→
γ i |p

)b
be

one such. Then, by DO5, and the fact that
→
γ i |p(u

j) = δij (recall (1.2.6)), we have

ηb (∇b α)|p = η(α)|p =

(
n∑

i=1

i

d (
→
γ i |p)

)


n∑

j=1

j

c uj


 =

n∑

i=1

i

d
i
c.

Since we also have

ηb ξb =

(
n∑

i=1

i

d
(→
γ i |p

)b
)


n∑

j=1

j

c
j

βb



 =

n∑

i=1

i

d
i
c,

we are done.

Proposition 1.7.3. Let ∇ and ∇′ be derivative operators on the manifold M . Then there exists a

smooth symmetric tensor field Cabc on M that satisfies the following condition for all smooth tensor
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fields αa1...ar

b1...bs
on M :

(
∇′
m −∇m

)
αa1...ar

b1...bs
=

αa1...ar

nb2...bs
Cnmb1 + ...+ αa1...ar

b1...bs−1n
Cnmbs

− αna2...ar

b1...bs
Ca1
mn − ...− α

a1...ar−1n
b1...bs

Car
mn. (1.7.1)

Conversely, given any derivative operator ∇ on M and any smooth symmetric tensor field Cmab on M , if

∇′ is defined by (1.7.1), then ∇′ is also a derivative operator on M .

(To get a grip on (1.7.1), note that for each index in αa1...ar

bs...bs
there is a corresponding term on the right.

That term carries a + or − depending on whether the index is a subscript or superscript. In that term,

the index is contracted into Cabc.)

Proof. Let ∇ and ∇′ be derivative operators on M . Note first that given any smooth scalar field α on

M , ∇′
a α = ∇a α. (This follows from the fact that given any vector ξa at any point in M , ξa∇′

a α =

ξ(α) = ξa∇a α.)

Next we claim that given any smooth co-vector field γb onM , if γb = 0 at a point p, then ∇′
a γb = ∇a γb

at p. To see this, let ξb be any smooth field on M and consider the scalar field γb ξ
b. We have

0 =
(
∇′
a − ∇a

)(
γb ξ

b
)

= γb
(
∇′
a − ∇a

)
ξb + ξb

(
∇′
a − ∇a

)
γb everywhere. So, in particular, we have

0 = ξb
(
∇′
a − ∇a

)
γb at p. Since this is true for arbitrary ξa, it must be the case that

(
∇′
a − ∇a

)
γb = 0

as claimed.

It follows from the claim that given any smooth field αb on M , the value of
(
∇′
m−∇m

)
αb at a point

p is determined solely by the value of αb itself at p.
(
For suppose that

1
αb and

2
αb agree at p. Then the

claim is applicable to
1
αb − 2

αb, and therefore
(
∇′
m −∇m

)
1
αb =

(
∇′
m −∇m

)
2
αb at p.)

Now we define a tensor field Cabc. Given any point p and a vector
0
αa at p, we set

Cnmb
0
αn =

(
∇′
m −∇m

)
αb

where αb is any smooth field on M that assumes the value
0
αb at p. (Our preliminary work shows that

the choice of αb makes no difference.) It follows immediately that Cnmb satisfies Cnmb αn =
(
∇′
m−∇m

)
αb

for all smooth fields αb and, therefore, is smooth itself.

Cabc is symmetric. To see this, consider any smooth scalar field α on M . Since ∇′
n α = ∇n α, it

follows that Cnmb∇n α =
(
∇′
m − ∇m

)
∇b α = ∇′

m∇b α −∇m∇b α = ∇′
m∇′

b α − ∇m∇b α. So, by DO6, we

may conclude that Cnmb∇n α = Cnbm∇n α. But by our lemma, all covariant vectors at a point can be

realized in the form ∇n α for some scalar field α. So we have Cabc = Cacb.

Next we show that Cabc satisfies condition (1.7.1). This involves a now familiar sequential form of

argument — from scalar fields, to vector fields, to arbitrary tensor fields. We have already seen that all

derivative operators agree on scalar fields. And it follows directly from our definition of Cabc that (1.7.1)
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holds for covariant vector fields. So let ξa be an arbitrary smooth contravariant field on M . Then, given

any smooth field γa on M ,

0 =
(
∇′
a −∇a

)(
ξb γb

)
= ξb

(
∇′
a −∇a

)
γb + γb

(
∇′
a −∇a

)
ξb

= ξbCdab γd + γb
(
∇′
a −∇a

)
ξb

=
[
ξbCdab +

(
∇′
a −∇a

)
ξd
]
γd.

Since this holds for all smooth fields γa, it follows that
(
∇′
a −∇a

)
ξd = −ξbCdab, as required by (1.7.1).

To check (1.7.1) for tensor fields αabc, one expands 0 =
(
∇′
m −∇m

)(
αabc ξ

bλc ηa
)

for arbitrary fields

ξb, λc, ηa and uses the known expressions for
(
∇′
m −∇m

)
ξb,

(
∇′
m −∇m

)
λc, and

(
∇′
m −∇m

)
ηa. The

calculation is straightforward. Tensor fields of arbitrary index structure can be handled similarly.

The second half of the proposition is also straightforward.

It is worth noting that condition DO6 entered the proof only in the demonstration that Cabc must be

symmetric. If in the statement of the proposition one drops the requirement of symmetry on Cabc, then

one has the appropriate formulation for derivative operators with torsion.

In what follows, if ∇′ and ∇ are derivative operators on a manifold that, together with the field Cabc,

satisfy condition (1.7.1), then we shall write ∇′ =
(
∇, Cabc

)
. Clearly this is equivalent to ∇ =

(
∇′,−Cabc

)
.

We have introduced two kinds of derivative operators. The next proposition shows how the action of

one can be expressed in terms of the other.

Proposition 1.7.4. Suppose ∇ is a derivative operator on the manifold M , and λa is a smooth vector

field on M . Then for all smooth fields αa1...ar

b1...bs
on M , we have:

£λ α
a1...ar

b1...bs
= λn∇n αa1...ar

b1...bs
+ αa1...ar

nb2...bs
∇b1 λn + ...+ αa1...ar

b1...bs−1n
∇bs

λn (1.7.2)

−αna2...ar

b1...bs
∇n λa1 − ...− α

a1...ar−1n
b1...bs

∇n λar .

(Condition (1.7.2), of course, resembles (1.7.1) above. The difference £λ α
a1...ar

b1...bs
− λn∇n αa1...ar

b1...bs
is a

sum of terms, one for each index in αa1...ar

b1...bs
. The terms carry a + or − depending on whether the

associated index is a subscript or a superscript. Each term is contracted with ∇a λb.)

Proof. The proof is another simple sequential argument, like the one used in the preceding proof. (Note

that we shall not need to invoke the definition of Lie derivatives. It will suffice to make use of the

properties collected in propositions 1.6.1 and 1.6.4.)

First of all, trivially, if α is a smooth scalar field, then £λα = λ(α) = λn∇n α. Next, suppose ξa is

a smooth vector field. Then for arbitrary smooth scalar fields α, we have, by proposition 1.6.4,

(
£λ ξ

)
(α) = λ

(
ξ(α)

)
− ξ
(
λ(α)

)
= λ

(
ξa∇a α

)
− ξ
(
λa∇a α

)

= λb∇b
(
ξa∇a α

)
− ξb∇b

(
λa∇a α

)

= λb ξa∇b∇a α+
(
λb∇b ξa

)
∇a α− ξb λa∇b∇a α−

(
ξb∇b λa

)
∇a α.
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The first and third term of the last line cancel each other by DO6. So we have

(
£λ ξ

)
(α) =

(
λb∇b ξa − ξb∇b λa

)
∇a α =

(
λb∇b ξa − ξb∇b λa

)
(α).

Since α is arbitrary, it follows that

£λ ξ
a = λb∇b ξa − ξb∇b λa,

as required by equation (1.7.2).

Next let αa be a smooth covariant vector field. Then for arbitrary smooth fields ξa,

£λ (αa ξ
a) = αa£λ ξ

a + ξa£λαa

= αa
(
λb∇b ξa − ξb∇b λa

)
+ ξa£λαa.

Here we have used both the fact that £λ satisfies the Leibniz condition and our previous expression for

£λ ξ
a. But we also have

£λ
(
αa ξ

a
)

= λb∇b
(
αa ξ

a
)

= λb αa∇b ξa + λb ξa∇b αa.

Therefore,

ξa£λ αa = ξa
(
λb∇b αa + αb∇a λb

)
.

Since ξa is arbitrary, we have

£λαa = λb∇b αa + αb∇a λb,

as required by equation (1.7.2).

Continuing this way, we can verify (1.7.2) for tensor fields of arbitrary index structure.

Problem 1.7.1. Show that if ∇ is a derivative operator on a manifold, then ∇n δba = 0.

With the notion of a derivative operator in hand, we can now introduce the idea of “parallel transport”

of tensors along curves.

Suppose M is a manifold with derivative operator ∇. The directional derivative of a scalar field α at

p in the direction ξa, we know, is given by ξn∇n α. Generalizing now, we take the directional derivative

of a smooth field αa1...am

b1...br
at p in the direction ξa (with respect to ∇) to be

ξn∇n αa1...am

b1...br
.

Furthermore, if γ : I → M is a smooth curve with tangent field ξa, we say that αa1...am

b1...br
is constant

along γ (with respect to ∇) if ξn∇n αa1...am

b1...br
= 0.

Derivative operators are sometimes called “connections” (or “affine connections”). That is because,

in a sense, they “connect” the tangent spaces of points “infinitesimally close” to one another, i.e., they

provide a standard of identity for vectors at distinct, but “infinitesimally close”, points.
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So far, our tensor fields have always been defined over an entire manifold or — this amounts to the

same thing — to open subsets of a manifold. It is useful also to consider tensor fields defined on curves.

Suppose γ : I →M is a smooth curve on the manifold M . A tensor field (of a given index structure) on

γ is just a map that assigns to each s in I a tensor of that index structure at γ(s). (Note that this is not

quite the same as assigning a tensor of that index structure to each point in γ[I], since we are not here

excluding the possibility that the curve may cross itself, i.e., that γ(s1) = γ(s2) for distinct s1 and s2 in

I. We do not want to insist in such a case that the tensor assigned to s1 is the same as the one assigned

to s2.) So, for example, the tangent field to γ counts as a tensor field on γ.

It is clear what the appropriate criterion of smoothness is for tensor fields on γ. A scalar field on γ is

just a map α : I → R. So we certainly understand what it means for it to be smooth. We take a vector

field ξa on γ to be smooth if, for all smooth scalar fields α on M , ξ(α) is a smooth scalar field on γ.

Next, we take a co-vector field µa on γ to be smooth if, for all smooth fields ξa on M , ξaµa is a smooth

scalar field on γ. One can continue in this way following the usual pattern. Note that the tangent vector

field to any smooth curve qualifies as smooth.

Now suppose that γ : I →M is a smooth curve on the manifold M with tangent field ξa, αa1...am

b1...br
is

a smooth field on γ, and ∇ is a derivative operator on M . We cannot meaningfully apply ∇ to αa1...am

b1...br
.

But we can make sense of the directional derivative field ξn∇n αa1...am

b1...br
on γ. We can do so using the

following proposition.

Proposition 1.7.5. Suppose ∇ is a derivative operator on the manifold M and γ : I →M is a smooth

curve with tangent field ξa. Then there is a unique operator

αa1...am

b1...br
7→ D

(
αa1...am

b1...br

)

taking smooth tensor fields on γ to smooth tensor fields on γ of the same index structure that satisfies

the following conditions.

(1) D commutes with the operations of addition, index substitution, and contraction; it further satisfies

the Leibniz rule with respect to tensor multiplication.

(2) For all smooth scalar fields s 7→ α(s) on γ, D(α) =
dα

ds
.

(3) Let s 7→ αa1...am

b1...br
(s) be a smooth tensor field on γ. Suppose there is an open set O and a smooth

field α̃a1...am

b1...br
on O such that, for all s in some open interval I ′ ⊆ I, αa1...am

b1...br
(s) = α̃a1...am

b1...br |γ(s).

Then, for all s in I ′, D
(
αa1...am

b1...br

)
(s) =

(
ξn∇n α̃

a1...am

b1...br

)
|γ(s).

Proof. Suppose first that D satisfies the stated conditions, and suppose αa1...am

b1...br
is a smooth tensor

field on γ. We shall derive an explicit expression for D(αa1...am

b1...br
) in terms of a local coordinate chart.

This will show that there can be, at most, one D satisfying the stated conditions. To avoid drowning in

indices, we shall work with a representative case – a smooth field αab – but it will be clear how to adapt

the argument to fields with other index structures.
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Suppose our background manifold (M, C) has dimension n. Let s be any point in I, and let (U,ϕ) be

an n-chart in C whose domain U contains γ(s). For all i ∈ {1, ..., n}, let
i
ηa be the smooth coordinate-

curve tangent field (
→
γ i)

a on U . We know that the fields
1
ηa,

2
ηa, ...,

n
ηa form a basis for the tangent

space at every point in U . Let
1
µa,

2
µa, ...,

n
µa be corresponding smooth co-vector fields on U that form

a dual basis at every point. Now let αab be a smooth field on γ. We can certainly express it in terms of

these basis and co-basis fields. That is, we can find an open subinterval I ′ ⊆ I containing s, and smooth

functions
ij
α : I ′ → R such that, at all points s in I ′,

αab (s) =

n∑

i,j =1

ij
α(s) (

i
ηa)|γ(s) (

j
µb)|γ(s).

Here, of course,
ij
α = αab

i
ηb

j
µa. We can construe the restrictions of

i
ηa and

j
µb to γ[I ′] as smooth fields on

(a restricted segment of) γ. It follows, therefore, that at all points in I ′,

D(αab ) =

n∑

i,j =1

D
(
ij
α

i
ηa

j
µb

)
=

n∑

i,j=1

[
D(

ij
α) (

i
ηa

j
µb) +

ij
α D(

i
ηa

j
µb)
]
.

Here we have just used the fact that D commutes with tensor addition and satisfies the Leibniz rule

(and suppressed explicit reference to the evaluation point s). But now it follows from conditions (2) and

(3), respectively, that D(
ij
α) =

d
ij
α

ds
, and D(

i
ηa

j
µb) = ξn∇n(

i
ηa

j
µb). So, we have our promised explicit

expression for D(αab ):

D(αab ) =
n∑

i,j =1


d

ij
α

ds
(
i
ηa

j
µb) +

ij
α ξn∇n(

i
ηa

j
µb)


 .

To show existence, finally, it suffices to check that the operator D defined by this expression (and

the counterpart expressions for fields with other index structures) satisfies all three conditions in the

proposition.

Under the stated conditions of the proposition, we can now understand ξn∇n α
a1...am

b1...br
to be the

smooth field on γ given by D
(
αa1...am

b1...br

)
. Note that condition (3) in the proposition just makes precise

the requirement that ξn∇n α
a1...am

b1...br
is “what it should be” in the case where αa1...am

b1...br
arises as the

restriction to γ[I] of some smooth tensor field defined on an open set.

We have already said what it means for a tensor field defined on an open set to be “constant” along

a curve γ with tangent field ξa. We can now extend that notion to fields αa1...am

b1...br
defined only on γ

itself. The defining condition, ξn∇n αa1...am

b1...br
= 0 carries over intact.

The fundamental fact about constant fields on curves is the following.

Proposition 1.7.6. Given a manifold M , a derivative operator ∇ on M , a smooth curve γ : I → M ,

and a tensor
0
αa1...am

b1...br
at some point γ(s), there is a unique smooth tensor field αa1...am

b1...br
on γ that is

constant (with respect to ∇) and assumes the value
0
αa1...am

b1...br
at s.
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When the conditions of the proposition are realized we say that αa1...am

b1...br
results from parallel transport

of
0
α
a1...am

b1...br
along γ (with respect to ∇).

Finally, we introduce “geodesics”. We say that a smooth curve γ : I → M is a geodesic (with respect

to ∇) if its tangent vector field ξa is constant along γ, i.e., if ξb∇b ξa = 0. The basic existence and

uniqueness theorem for geodesics is the following. (In what follows, we shall drop the qualification “with

respect to ∇” except in contexts where doing so might lead to ambiguity.)

Proposition 1.7.7. Given a manifold M , a derivative operator ∇ on M , a point p in M , and a vector

ξa at p, there is a unique geodesic γ : I → M with γ(0) = p and ξ =
→
γ |p that satisfies the following

maximality condition: if γ′ : I ′ → M is also a geodesic with γ′(0) = p and
→
γ ′

|p = ξ, then I ′ ⊆ I

and γ′(s) = γ(s) for all s ∈ I ′.

To prove propositions 1.7.6 and 1.7.7, one formulates the assertions in terms of local coordinates and

then invokes the fundamental existence and uniqueness theorem for ordinary differential equations.

A derivative operator determines a class of geodesics. It turns out that a derivative operator is actually

fully characterized by its associated geodesics. This will be important later in our discussion of relativity

theory.

Proposition 1.7.8. Suppose ∇ and ∇′ are both derivative operators on the manifold M . Further suppose

that ∇ and ∇′ admit the same geodesics (i.e., for all smooth curves γ : I → M , γ is a geodesic with

respect to ∇ iff it is a geodesic with respect to ∇′). Then ∇′ = ∇.

Proof. The argument provides a good example of how proposition 1.7.3 is used. Given ∇ and ∇′, there

must exist a smooth symmetric field Cabc on M such that ∇′ = (∇, Cabc). It will suffice to show that Cabc

vanishes everywhere.

Given an arbitrary point p and an arbitrary vector
0

ξa at p, there is a geodesic γ with respect to ∇
that passes through p and has tangent

0

ξa at p. Let ξa be the tangent vector field of γ. Then we have

ξn∇n ξa = 0. By our hypothesis, γ must also be a geodesic with respect to ∇′. So ξn∇′
n ξ

a = 0 too.

Now, since ∇′
a = (∇a, Cabc), we have ∇′

a λ
b = ∇a λb−Cban λn for all smooth fields λa. So, in particular,

we have

0 = ξa∇′
a ξ

b = ξa∇a ξb︸ ︷︷ ︸
=0

−Cban ξa ξn

at all points on the image of γ. So Cban
0

ξn
0

ξa = 0 at p. But
0

ξa and p were arbitrary, and Cban is symmetric.

So, by proposition 1.4.3, Cabc must vanish everywhere.

The property of being a geodesic is not preserved under reparametrization of curves. The situation is

as follows.
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Proposition 1.7.9. Suppose M is a manifold with derivative operator ∇, and γ : I → M is a smooth

curve with tangent field ξa. Then γ can be reparametrized so as to be a geodesic (i.e., there is a diffeo-

morphism α : I ′ → I of some interval I ′ onto I such that γ′ = γ ◦ α is a geodesic) iff ξn∇n ξa = f ξa

for some smooth scalar field f on γ. Furthermore, if γ is a non-trivial geodesic (i.e., a geodesic with

non-vanishing tangent field), then the reparametrized curve γ′ = γ ◦ α is a geodesic iff α is linear.

Proof. Suppose α : I ′ → I is a diffeomorphism and ξ′ is the tangent field to γ′ = γ ◦ α : I ′ → M .

Set t = α(s). By the chain rule, we have ξ′ = ξ
dα

ds
. (This abbreviates ξ′|γ′(s) = ξ|γ(α(s))

dα

ds
(s). Recall

(1.3.1) in the proof of proposition 1.3.2.) Now we can construe
dα

ds
as a smooth scalar field on γ – it

assigns to s the number
dα

ds
(s) at the point γ(s) – and we can make sense of the rate of change ξn∇n

dα

ds
.

So we have

ξ′n∇n ξ′a =

(
dα

ds
ξn
)

∇n (
dα

ds
ξa) =

(
dα

ds

)2

ξn∇n ξa +

(
dα

ds

)
ξa ξn∇n

dα

ds
.

Now
dα

ds
(s) 6= 0 for all s in I ′, since α is a diffeomorphism. So, by the chain rule again,

ξn∇n
dα

ds
=

d

dt

(
dα

ds

)
=
d2α

ds2

(
dα

ds

)−1

.

It follows that

ξ′n∇n ξ′a =

(
dα

ds

)2

ξn∇n ξa +
d2α

ds2
ξa. (1.7.3)

Both our claims follow from this last equation. First, γ′ is a geodesic, i.e., ξ′n∇n ξ′a = 0 iff ξn∇n ξa =

f ξa, where f = −d
2α

ds2

(
dα

ds

)−2

. Second, if γ is a geodesic (i.e., if ξn∇n ξa = 0), then γ′ is also

a geodesic iff
d2α

ds2
ξa = 0. On the assumption that ξa is non-vanishing, the latter conditions holds iff

d2α

ds2
= 0, i.e., α is linear.

We know that a derivative operator is determined by its associated class of geodesics. Let us now

consider a different question. Suppose one does not know which (parametrized) curves are geodesics,

but only which ordered point sets on a manifold are the images of geodesics. To what extent does that

partial information allow one to determine the derivative operator? We answer the question in the next

proposition. Let us say that two derivative operators ∇ and ∇′ on a manifold are projectively equivalent

if they admit the same geodesics up to reparametrization (i.e., if any curve can be reparametrized as to

be a geodesic with respect to ∇ iff it can be reparametrized so as to be a geodesic with respect to ∇′).

Proposition 1.7.10. Suppose ∇ and ∇′ are derivative operators on a manifold M and ∇′ =
(
∇, Cabc

)
.

Then ∇ and ∇′ are projectively equivalent iff there is a smooth field ϕc on M such that

Cabc = δab ϕc + δac ϕb.
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Proof. Suppose first that there does exist such a field ϕc. Further suppose that γ is an arbitrary smooth

curve with tangent field ξa. Then

ξn∇′
n ξ

a = ξn
(
∇n ξa − Canm ξ

m
)

= ξn∇n ξa −
(
δan ϕm + δamϕn

)
ξn ξm

= ξn∇n ξa − 2 ξa(ϕm ξ
m).

It follows by the first part of proposition 1.7.9 that γ can be reparametrized so as to be a geodesic with

respect to ∇ iff it can be reparametrized so as to be a geodesic with respect to ∇′.

Conversely, suppose that ∇ and ∇′ are projectively equivalent. We show there is a smooth field ϕc on

M such that Cabc = δab ϕc + δac ϕb. Let γ be an arbitrary geodesic with respect to ∇ with tangent field

ξa. Then ξn∇n ξa = 0 and ξn∇′
n ξ

a = f ξa for some smooth field f on γ. (Here again we use the first

part of proposition 1.7.9.) It follows that

f ξa = ξb
(
∇b ξa − Cabc ξ

c
)

= −Cabc ξb ξc.

Therefore,
(
Cabc ξ

d − Cdbc ξ
a
)
ξb ξc = 0. This can be expressed as

(
Cabc δ

d
r − Cdbc δ

a
r

)
ξb ξc ξr = 0.

Now let ϕadbcr be the field
(
Cabc δ

d
r − Cdbc δ

a
r

)
. Symmetrizing on the indices b, c, r, we have

ϕ ad
(bcr) ξ

b ξc ξr = 0.

Since this equation must hold for all choices of γ, and hence all vectors ξ (at all points), and since ϕ ad
(bcr)

is symmetric in b, c, r, it follows from proposition 1.4.3 that ϕ ad
(bcr) = 0. Therefore, using the fact that

Cabc is itself symmetric,

Cabc δ
d
r − Cdbc δ

a
r + Carb δ

d
c − Cdrb δ

a
c + Cacr δ

d
b − Cdcr δ

a
b = 0.

Now suppose n is the dimension of our underlying manifold. Then (r, d) contraction yields

nCabc − Cabc + Cacb − Cddb δ
a
c + Cacb − Cdcd δ

a
b = 0.

Thus, (n+ 1)Cabc = δab C
d
cd + δac C

d
bd. If we set ϕc =

1

n+ 1
Cdcd, this can be expressed as

Cabc = δab ϕc + δac ϕb.

We close this section with a few remarks about the “exterior derivative operator” and about “coordi-

nate derivative operators” (associated with particular charts on a manifold).

An m-form (for m ≥ 0) on a manifold M is a tensor field on M with m covariant indices that is

anti-symmetric, i.e., a tensor field of the form αa1...am
where αa1...am

= α[a1...am]. (Scalar fields qualify

as 0-forms.)
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Suppose αa1...am
is a smooth m-form on M , and c is an index distinct from a1, ..., am. Then, given

any covariant derivative operator ∇, ∇[c αa1...am] qualifies as a smooth (m+ 1)-form on M . It turns out

that this field is independent of the choice of derivative operator ∇. (See problem 1.7.2.) In this way, we

arrive at an operator d (the exterior derivative operator) that acts on pairs (c, αa1...am
) and satisfies

dc αa1...am
= ∇[c αa1...am] (1.7.4)

for all choices of ∇. So, in particular, we have da α = ∇a α for all smooth scalar fields α. We have

db αa = ∇[b αa] = 1
2 (∇b αa −∇a αb) for all smooth co-vector fields αa, and so forth.

One can certainly introduce the exterior derivative operator directly, without reference to covariant

derivative operators. Most books do so. But there is no loss in proceeding as we have since covariant

derivative operators always exist locally on manifolds, and local existence is all that is needed for our

characterization.

Officially, we are taking the exterior derivative operator d to be a map that acts on a pair of objects

— an index and a smooth m-form (for some m or other). One might also use the term to refer to the

associated map dx that assigns dx αa1...am
to αa1...am

. Some authors do so, and we shall too on occasion.

Problem 1.7.2. Let ∇ and ∇′ be derivative operators on a manifold, and let αa1...an
be a smooth n-form

on it. Show that

∇[b αa1...an] = ∇′
[b αa1...an].

(Hint: Make use of proposition 1.7.3.)

It is worth asking why we do not allow the exterior derivative operator to act on arbitrary smooth

covariant tensor fields. The problem is not a failure to be well defined. (Note that given any smooth

covariant field αa1...am
, and any two derivative operators ∇ and ∇′, it follows from problem 1.7.2 that

∇[b αa1...an] = ∇[b α[a1...an]] = ∇′
[b α[a1...an]] = ∇′

[bαa1...an].)

Rather, the problem is that we cannot both extend the application of the exterior derivative operator

and have it satisfy the Leibniz rule — and presumably the latter is a requirement for any derivative-like

operator. Here is the argument. Let αab be any smooth symmetric field. Then (if we allow ourselves to

apply dn), dnαab = ∇[n αab] = 0. Now let f be any smooth scalar field. By the same argument, we

have dn(fαab) = 0. So, if the Leibniz rule obtains, we have

0 = dn(fαab) = f(dnαab) + (dnf)αab = (dnf)αab.

But this is impossible since, given any point p, we always choose f and αab so that neither αab nor (dnf)

vanishes at p.

We have introduced three types of derivative operator on manifolds. It is helpful to contrast them with

respect to two features: the background geometric structure they presuppose (if any) and the types of
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tensor fields to which they can be applied. One finds a trade-off of sorts. The exterior derivative operator

da presupposes no background structure (beyond basic manifold structure). But it is only applicable to

smooth m-forms (for some m or other). In contrast, the Lie derivative operator £ξ and the covariant

derivative operator ∇a can both be applied to arbitrary smooth tensor fields. But the first presupposes

(i.e., is defined relative to) a smooth contravariant vector field ξ; and the latter can itself be thought of

as a layer of geometric structure beyond pure manifold structure. (Another difference, of course, is that

£ξ leaves intact the index structure of the tensor field on which it acts, whereas da and ∇a both add a as

a covariant index.)

Let us now consider “coordinate differentials”. Let (U,ϕ) be an n-chart on the n-manifold (M, C),

and let ui : U → R (i = 1, ..., n) be the coordinate maps on U determined by ϕ. We know that the

associated smooth coordinate-curve tangent fields
→
γ 1, ...,

→
γn form a basis for the tangent space at every

point in U . (Recall the discussion in section 1.2.) The notation

(
∂

∂u1

)
, ... ,

(
∂

∂un

)

is often used for these fields. And give any smooth scalar field f on U , the action of

(
∂

∂ui

)
on f is often

written, simply, as

(
∂f

∂ui

)
. Using this notation, we have, by (1.2.5),

(
∂f

∂ui

)

|p

=

(
∂

∂ui

)

|p

(f) =
→
γ i |p(f) =

(
∂
(
f ◦ ϕ−1

)

∂xi

)

∣∣ϕ(p)

(1.7.5)

for all p in U . In particular, if we take f to be uj, it follows from (1.2.6) that

(
∂uj

∂ui

)
=

(
∂

∂ui

)
(uj) =

→
γ i(u

j) = δij (1.7.6)

at all points in U . Furthermore, if ∇ is a derivative operator on M , we have, by condition (DO5),

(
∂

∂ui

)a
(daf) =

(
∂

∂ui

)a
(∇af) =

(
∂

∂ui

)
(f) =

(
∂f

∂ui

)
. (1.7.7)

So, taking f to be uj once again, we have

(
∂

∂ui

)a
(dau

j) =

(
∂uj

∂ui

)
= δij . (1.7.8)

This shows that the co-vectors

(dau
1), ..., (dau

n)

form a dual basis to

(
∂

∂u1

)a
, ... ,

(
∂

∂un

)a
at every point in U .
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Many useful facts follow from the preceding lines. For example, it follows that the index substitution

field δab can be expressed as

δab =

(
∂

∂u1

)a
(dbu

1) + ...+

(
∂

∂un

)a
(dbu

n). (1.7.9)

And it follows that, for all smooth scalar fields f on U ,

dbf =

n∑

j=1

(
∂f

∂uj

)
(dbu

j). (1.7.10)

(In both cases, the left- and right-side fields must be equal since they have the same action on the basis

fields

(
∂

∂ui

)b
. Consider (1.7.10). We know from (1.7.7) that contraction with

(
∂

∂ui

)b
on the left side

yields

(
∂f

∂ui

)
; and we know from (1.7.8) that contraction with

(
∂

∂ui

)b
on the right side yields

(
∂f

∂ui

)

as well.) If we were not using the abstract index notation, we would express (1.7.10) in the form

df =

n∑

j=1

(
∂f

∂uj

)
dui.

Next we consider “coordinate derivative operators”. The basic fact is this.

Proposition 1.7.11. Let M be an n-manifold, let (U,ϕ) be an n-chart with non-empty domain on M (in

the atlas that defines the manifold), and let ui : U → R (i = 1, ..., n) be the coordinate maps determined

by ϕ. Then there is a unique derivative operator ∇ on U such that ∇a

(
∂

∂ui

)b
= 0 for all i.2

Proof. Uniqueness follows easily from proposition 1.7.3. Suppose ∇ and ∇′ are derivative operators on

U with ∇′ = (∇, Cabc). Then, for all i,

∇′
a

(
∂

∂ui

)b
= ∇a

(
∂

∂ui

)b
− Cban

(
∂

∂ui

)n
.

So if ∇ and ∇′ both satisfy the stated condition, it must be the case that Cban

(
∂

∂ui

)n
= 0, for all i.

This, in turn, implies that Cban = 0. (Somewhat more generally, if two derivative operators agree in their

action on a set of vector fields that span the tangent space at each point, the derivative operators must

be equal.)

We now establish existence by explicitly exhibiting a derivative operator ∇ on U that satisfies the

stated condition. First, given any smooth scalar field f on U , we take ∇af to be the field on the right

side of (1.7.10). (We have no choice here, since daf = ∇af for all derivative operators.) Next consider

any smooth tensor field on U that carries at least one abstract index. It can be expressed uniquely as

2Here, as usual, we have suppressed explicit reference to manifold atlases. We mean, of course, that (M, C) is an

n-manifold, (U, ϕ) is an n-chart in C, and ∇ is a derivative operator on the restricted manifold (U, C|U ).
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a sum over the basis fields

(
∂

∂ui

)a
and (dau

j). Consider an example. The field γabc can be expressed

uniquely in the form

γabc =

n∑

i=1

n∑

j=1

n∑

k=1

ijk

γ

(
∂

∂ui

)a(
∂

∂uj

)b
(dcu

k).

We take the action of ∇m on γabc to be given by

∇m γabc =

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

(
∂

ijk

γ

∂ul

)(
∂

∂ui

)a(
∂

∂uj

)b
(dcu

k)(dmu
l).

Here we introduce a new summation variable l, take the partial derivative of the scalar field
ijk

γ with

respect to ul, and add (dmu
l) to the list of fields on the right. This prescription can be generalized. In

every case, we determine the action of ∇m on a tensor field by first expressing the field as a sum over the

basis fields

(
∂

∂ui

)a
and (dbu

j), and then generating a new sum (with m as a new covariant index) in

three steps: we introduce a new summation variable ι, take the partial derivative of the scalar coefficient

field with respect to uι, and then add (dmu
ι) to the list of fields in the sum. One can easily check that

the operator so-defined satisfies conditions DO1 through DO6. And it is clear that ∇a

(
∂

∂ui

)b
= 0 for

all i. For when we (vacuously) represent any particular field

(
∂

∂ui0

)b
in the indicated way,

(
∂

∂ui0

)b
=

n∑

i=1

i
α

(
∂

∂ui

)b
,

the coefficients
i
α are constant (either 0 or 1), and so

∂
i
α

∂ul
= 0 for all i and l.

We call this derivative operator — the one identified in the proposition — the coordinate derivative

operator canonically associated with (U, ϕ). Sometimes, when the there is no ambiguity about the n-chart

with which it is associated, the operator is written as ∂. So ∂a

(
∂

∂ui

)b
= 0 for all i. As we shall

see in the next section, all coordinate derivative operators are flat, i.e., their Riemann curvature fields

vanish.

Problem 1.7.3. Let ∇ be the coordinate derivative operator canonically associated with (U, ϕ) on the

n-manifold M . Let ui be the coordinate maps on U determined by the chart. Further, let ∇′ be another

derivative operator on U . We know (from proposition 1.7.3) that there is a smooth field Cabc on U such

that ∇′ = (∇, Cabc). Show that if

Cabc =

n∑

i=1

n∑

j=1

n∑

k=1

ijk

C

(
∂

∂ui

)a
(dbu

j) (dcu
k),

then a smooth vector field ξa =

n∑

i=1

i

ξ

(
∂

∂ui

)a
on U is constant with respect to ∇′ (i.e., ∇′

a ξ
b = 0) iff
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∂
i

ξ

∂uj
=

n∑

k=1

ijk

C
k

ξ

for all i and j. (The “Christoffel symbol” Γijk is often used to designate the coefficent field
ijk

C .)

Next, we make use of proposition 1.7.11 to prove a useful proposition about “position fields”.

Proposition 1.7.12. Let ∇ be the coordinate derivative operator canonically associated with (U, ϕ) on

the n-manifold M . Let ui be the coordinate maps on U determined by the chart, and let p be a point in

U . Then there exists a unique smooth vector field χa on U such that (1) ∇aχb = δba and (2) χa = 0 at p.

Proof. (Existence) Consider the field χa defined by

χa =
n∑

i=1

(
ui − ui(p)

)( ∂

∂ui

)a
. (1.7.11)

Clearly it satisfies condition (2) since
(
ui − ui(p)

)
|p

=
(
ui(p) − ui(p)

)
= 0. And it satisfies (1) because

∇aχb =
n∑

i=1

∇a
(
ui − ui(p)

)( ∂

∂ui

)b
=

n∑

i=1

(∇aui)
(
∂

∂ui

)b
= δba.

(The first equality follows from the fact that the basis fields

(
∂

∂ui

)b
are constant with respect to ∇; the

second equality follows from the fact that (all) derivative operators annihilate all constant scalar fields;

and the third equality follows from equation (1.7.9).)

(Uniqueness) Assume χ′a satisfies conditions (1) and (2) as well, and consider the difference field

(χ′a − χa). It is constant with respect to ∇ (since ∇a(χ′b − χb) = δba − δba = 0), and it is the zero vector

at p. So it must be the zero vector everywhere, i.e., χ′a = χa.

We refer to χa as the position field relative to p (associated with the coordinate derivative ∇).

In the last few paragraphs we have dealt with the derivative operator ∇ canonically associated with

an arbitrary n-chart (U,ϕ) on an arbitrary n-manifold M . Let us now consider the special case where

M is the manifold R
n, (U,ϕ) is the (global) n-chart where U = R

n, and ϕ : U → R
n is the identity map.

(So ui =
(
xi ◦ ϕ

)
= xi.) In this case, we get

(
∂f

∂xi

)
=

(
∂

∂xi

)
(f). (1.7.12)

from (1.7.5). Of course, we have already encountered the fields

(
∂

∂xi

)
. They were the first examples of

vector fields that we considered in section 1.3. (There we used (1.7.12) to characterize the fields.)

Many familiar textbook assertions about “differentials” fall out as consequences of the claims we have

listed. For example, the equation

df =
n∑

j=1

(
∂f

∂xj

)
dxj
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comes out in our notation as

dbf =

n∑

j=1

(
∂f

∂xj

)
dbx

j ,

and the latter is just an instance of (1.7.10).

The coordinate derivative operator ∇ canonically associated with the coordinates x1, ... , xn is defined

on the entire manifold R
n (because the coordinates are). So, too, the associated positions fields χa

(relative to particular points) are defined on the entire manifold. Note that we have encountered these

position fields before as well. Suppose we take p to be the origin (i.e., suppose xi(p) = 0 for all i). Then,

recalling (1.7.11), we have

χa =

n∑

i=1

xi
(
∂

∂xi

)a
.

In the case n = 2, the right side field is precisely what we called the “radius expansion” field in section

1.3. We can picture it as follows. Given any point q in R
2, there is a natural isomorphism between the

vector space R
2 and the tangent space to the manifold R

2 at q defined by

(x1, x2) 7→ x1

(
∂

∂x1

)a
|q + x2

(
∂

∂x2

)a

|q

.

If we identify these two, then we can think of χa|q as just the “position vector” −→oq that runs from the

origin o to q. (See figure 1.7.1.)

o

q

χa
|q

Figure 1.7.1: The position field χa on R
2 (relative to point o).



CHAPTER 1. DIFFERENTIAL GEOMETRY 60

1.8 Curvature

In this section we introduce the Riemann curvature tensor field Rabcd and discuss its intuitive geometric

significance. We start with an existence claim.

Lemma 1.8.1. Suppose ∇ is a derivative operator on the manifold M . Then there is a (unique) smooth

tensor field Rabcd on M such that for all smooth fields ξb,

Rabcd ξ
b = −2∇[c∇d] ξa . (1.8.1)

Proof. Uniqueness is immediate since any two fields that satisfied this condition would agree in their

action on all vectors ξb at all points. For existence, we introduce a field Rabcd and do so in such a way that

it is clear that it satisfies the required condition. Let p be any point in M and let
0

ξb be any vector at p.

We define Rabcd
0

ξb by considering any smooth field ξb on M that assumes the value
0

ξb at p and setting

Rabcd
0

ξb = −2∇[c∇d] ξa. It suffices to verify that the choice of the field ξb plays no role. For this it suffices

to show that if ηb is a smooth field on M that vanishes at p, then necessarily ∇[c∇d] ηb vanishes at p as

well. (For then we can apply this result, taking ηb to be the difference between any two candidates for

ξb.)

The usual argument works. Let λa be any smooth field on M . Then we have, by DO6,

0 = ∇[c∇d]
(
ηa λa

)
=
(
∇[c η

a
)(
∇d] λa

)
+ ηa∇[c∇d] λa +

(
∇[c λ|a|

)(
∇d] ηa

)
+ λa∇[c∇d] ηa .

(Note: In the third term of the final sum the vertical lines around the index indicate that it is not to be

included in the anti-symmetrization.) Now the first and third terms in that sum cancel each other. And

the second vanishes at p. So we have 0 = λa∇[c∇d] ηa at p. But the field λa can be chosen so that it

assumes any particular value at p. So ∇[c∇d] ηa = 0 at p, as claimed.

Rabcd is called the Riemann curvature tensor field (associated with ∇). It codes information about the

degree to which the operators ∇c and ∇d fail to commute. Several basic properties of Rabcd are collected

in the next proposition.

Proposition 1.8.2. Suppose ∇ is a derivative operator on the manifold M . Then the curvature tensor

field Rabcd associated with ∇ satisfies the following conditions:

(1) For all smooth tensor fields αa1...ar

b1...bs
on M ,

2∇[c∇d] αa1...ar

b1...bs
= αa1...ar

nb2...bs
Rnb1cd + ...+ αa1...ar

b1...bs−1n
Rnbscd

−αna2...ar

b1...bs
Ra1

ncd − ...− α
a1...ar−1n
b1...bs

Rar

ncd.

(2) Rab(cd) = 0.

(3) R a
[bcd] = 0.

(4) ∇[mR
a
|b|cd] = 0 (Bianchi’s identity).
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Proof. Condition (1) is proved in the now familiar way using D06 and lemma 1.8.1. We proceed in

two steps. First, we show that 2∇[c∇d] αb = αnR
n
bcd for all fields αb on M . To do so, we consider

an arbitary smooth field ξa on M , expand 0 = ∇[c∇d]
(
ξa αa

)
, and invoke the lemma. Then we turn to

the general case. We contract αa1...ar

b1...bs
with s smooth contravariant vector fields and r smooth covariant

vector fields, apply ∇[c∇d], expand, and then use our previous results. (2) follows immediately from

lemma 1.8.1. For (3), notice that given any smooth scalar field α on M , we have, by (1),

Rabcd∇a α = 2∇[c∇d]∇b α

and hence, by D06,

R a
[bcd]∇a α = 2∇[c∇d∇b] α = 0.

Since any covariant vector at any point can be realized in the form ∇a α (recall lemma 1.7.2), it follows

that R a
[bcd] = 0 everywhere.

The argument for (4) is just a bit more complicated. Given any smooth field αb on M , we have

2∇r∇[c∇d] αb = ∇r (Rabcd αa) = (∇r Rabcd)αa +Rabcd∇r αa.

But we also have, by (1),

2∇[r∇c]∇d αb = Rndrc∇n αb +Rnbrc∇d αn .

If we anti-symmetrize these two equations in (r, c, d), then we have 2∇[r∇c∇d] αb on the left side of both.

So (equating their right sides),

(
∇[rR

a
|b|cd]

)
αa +Rab[cd∇r] αa = R n

[drc]∇n αb +Rnb[rc∇d] αn.

The second term on the left here is equal to the second term on the right. So, by condition (3), we have

(
∇[rR

a
|b|cd]

)
αa = 0.

But αa is arbitrary, and so we have (4).

Problem 1.8.1. Let ∇ and ∇′ be derivative operators on a manifold with ∇′
m = (∇m, Cabc), and let their

respective curvature fields be Rabcd and R′a
bcd. Show that

R′a
bcd = Rabcd + 2∇[cC

a
d]b + 2Cnb[cC

a
d]n. (1.8.2)

Problem 1.8.2. Show that the exterior derivative operator d on any manifold satisfies d2 = 0, i.e.,

dn(dm αb1...bp
) = 0 for all smooth p-forms αb1...bp

. (Hint: Make use of proposition 1.8.2. Notice also that

λ[a...[b...c]...d] = λ[a...b...c...d] for all tensors λa...b...c...d.)

Problem 1.8.3. Show that given any smooth field ξa, and any derivative operator ∇ on a manifold, £ξ

commutes with ∇ (in its action on any tensor field) iff ∇a∇b ξm = Rmbna ξ
n. (Here, of course, Rmbna is
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the curvature field associated with ∇. If this conditions holds, we say that ξa is an “affine collineation”

with respect to ∇. Hint: First show that if Km
ab = Rmbna ξ

n −∇a∇b ξm, then for all smooth fields αa1...ar

b1...bs
,

(£ξ∇n −∇n£ξ)α
a1...ar

b1...bs
= αa1...ar

mb2...bs
Km
nb1 + ...+ αa1...ar

b1...bs−1m
Km
nbs

−αma2...ar

b1...bs
Ka1
nm − ...− α

a1...ar−1m
b1...bs

Kar
nm.)

Problem 1.8.4. Show that given any smooth field ξa on a manifold, the operators £ξ and da commute

in their action on all smooth p-forms. (Hint: Make use of the equation stated in the hint for problem

1.8.3.)

It is not our purpose to attempt to develop systematically the theory of forms on a manifold, but we

shall pause for one comment on the result stated in problem 1.8.2. Let αa1...an
be a smooth n-form on

a manifold M with n ≥ 1. We say that is closed if its exterior derivative vanishes. And we say that it

is exact if there is a (n− 1)-form on M of which it is the exterior derivative. (So, for example, the form

αab is closed if da αbc = 0, and it is exact if there is a smooth form βa such that αab = da βb.) It follows

immediately from the problem that every exact form is closed. It turns out that the converse is true as

well, at least locally, but the proof is non-trivial. We record the fact here for future reference.

Proposition 1.8.3. Let αa1...an
be a smooth closed n-form on the manifold M with n ≥ 1. Then,

for all p in M , there is an open set O containing p, and an (n − 1)-form βa1...an−1 on O such that

αa1...an
= da1 βa2...an

.

Global assertions can also be made if M satisfies suitable conditions. If M is simply connected, for

example, then all closed 1-forms are (globally) exact. And if M is contractible then, for all n ≥ 1, all

closed n-forms are (globally) exact. (See Spivak [57, volume 1] for proofs of the two claims. Proposition

1.8.3 is a consequence of the second, since all manifolds are locally contractible.)

Suppose M is a manifold with derivative operator ∇ and associated curvature field Rabcd. We say that

∇ is flat (or that M is flat relative to ∇) if Rabcd vanishes everywhere on M . The next proposition makes

clear the intuitive geometric significance of flatness.

Proposition 1.8.4. Let ∇ be a derivative operator on the manifold M . If parallel transport of vectors

on M relative to ∇ is path independent, then ∇ is flat. Conversely, if ∇ is flat, then, at least locally

(i.e., within some open neighborhood of every point), parallel transport of vectors relative to ∇ is path

independent. (If M is simply connected, the converse holds globally.)

Proof. First assume that parallel transport of vectors on M is path independent. Let p be any point in

M , and let
0

ξa be any vector at p. We extend
0

ξa to a smooth vector field ξa on all of M by parallel

transporting
0

ξa (via any curve) to other points of M . The resulting field is constant in the sense that

∇a ξb = 0 everywhere. (This follows from the fact that all directional derivatives of ξb at all points
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vanish.) Hence Rabcd ξ
b = −2∇[c∇d] ξa = 0 at all points. In particular Rabcd

0

ξb = 0 at p. Since
0

ξb was

arbitrary, we have Rabcd = 0 at p.

Conversely, suppose that Rabcd vanishes on M . To show that parallel transport on M is, at least locally,

path independent, it will suffice to show that given any vector
0

ξa at point p, there is an extension of
0

ξa to

a smooth field ξa on some open set O containing p that is constant, i.e., ∇a ξb = 0 everywhere in O. (For

then, given any point q ∈ O, and any curve γ from p to q whose image falls within O, parallel transport

of
0

ξa along γ must yield ξa|q.) To see that a vector field satisfying ∇a ξb = 0 and ξa|p =
0

ξa does exist

locally, one writes out these two conditions in terms of local coordinates and generates a set of partial

differential equations. These equations, it turns out, have a solution if a certain “integrability condition”

is satisfied. That condition is nothing but the equation Rabcd = 0 expressed in local coordinates. (For

further details, see, for example, Spivak [57], volume 2, chapter 4.)

We know from proposition 1.7.11, that given any n-chart (U, ϕ) (with non-empty domain) on an

n-manifold, there is a unique derivative operator ∇ on U such that ∇a

(
∂

∂ui

)b
= 0 for all i. (Here

u1, ..., un are the coordinate maps on U determined by (U, ϕ).) We called it the “coordinate derivative

operator canonically associated with (U, ϕ)”. It follows immediately, of course, that

Rabcd

(
∂

∂ui

)b
= −2∇[c∇d]

(
∂

∂ui

)a
= 0

for all i. This, in turn, implies that Rabcd = 0, since the fields

(
∂

∂u1

)b
, ...,

(
∂

∂un

)b
span the tangent

space at every point. Thus we see that coordinate derivative operators canonically associated with local

charts are flat.

The geometric significance of the curvature tensor field can also be explicated in terms of “geodesic

deviation”. Suppose ξa is a smooth vector field on the manifold M whose integral curves are geodesics

with respect to ∇. (We shall say that ξa is a geodesic field with respect to ∇.) Further suppose that λa

is a smooth field that satisfies £ξ λ
a = 0. Then we can think of the restriction of λa to an integral curve

γ of ξa as a field that connects γ to an “infinitesimally close” integral curve γ′. If we do, the second

derivative field ξn∇n
(
ξm∇m λa

)
along γ represents the “relative acceleration” of γ′ with respect to γ.

The following proposition shows how this field can be expressed in terms of the Riemann curvature field.

Proposition 1.8.5. Suppose ξa is a geodesic field on the manifold M with respect to ∇. Further suppose

λa is a smooth field that satisfies £ξ λ
a = 0. Then

ξn∇n
(
ξm∇mλa

)
= Rabcd ξ

b λc ξd. (1.8.3)

Proof. We have ξn∇n ξa = 0 (since ξa is a geodesic field) and ξn∇n λa = λn∇n ξa (since £ξ λ
a = 0).
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The rest is just a calculation.

ξn∇n
(
ξm∇m λa

)
= ξn∇n

(
λm∇m ξa

)
=
(
ξn∇n λm

)
∇m ξa + ξn λm∇n∇m ξa

=
(
ξn∇n λm

)
∇m ξa + ξn λm∇m∇n ξa + ξn λmRarmn ξ

r

=
(
ξn∇n λm

)
∇m ξa+λm∇m

(
ξn∇n ξa

)
−
(
λm∇m ξn

)
∇n ξa+ξn λmRarmn ξr

= Rarmn ξ
r λm ξn.

(The third equality follows from Rarmn ξ
r = −2∇[m∇n] ξ

a. The final one follows from the fact that in the

sum before the equality sign, the second term is 0, and the first and third terms cancel each other.)

Proposition 1.8.6. Suppose ∇ is a derivative operator on the manifold M . Then ∇ is flat iff all geodesic

deviation on M (with respect to ∇) vanishes, i.e., given any smooth geodesic field ξa, and any smooth

field λa such that £ξ λ
a = 0, ξn∇n

(
ξm∇mλa

)
= 0.

Proof. The “only if” half follows immediately from proposition 1.8.5. So suppose that all geodesic

deviation vanishes. Then, given any vectors
0

ξa and
0

λa at a point p, it must be the case that Rabcd
0

ξb
0

λc
0

ξd =

0. (We can always choose field ξa and λa on an open set containing p such that ξa is a geodesic field,

£ξ λ
a = 0, and ξa and λa assume the values

0

ξ a and
0

λa at p respectively.) Equivalently, it must be

the case that Rabcd
0

ξb
0

ξd = 0 for all vectors
0

ξb at p. Our conclusion now follows by the symmetries of

the Riemann tensor recorded as conditions (2) and (3) in proposition 1.8.2. By (2), first, it follows that

Rabcd
0

ξb
0

ξc = 0 for all vectors
0

ξb at p. Hence, by proposition 1.4.3,

R a
(bc)d = 0 (1.8.4)

at p. Next, by (2) and (3), we have (everywhere)

Rabcd +Radbc +Racdb = 0.

But (2) and (1.8.4) jointly imply

Rabcd = Radbc = Racdb

at p. So Rabcd = 0 at our arbitrary point p.

Equation (1.8.3) is called the equation of geodesic deviation. Notice that it must be the second

derivative field ξn∇n
(
ξm∇m λa

)
that enters the equation, and not the first derivative field ξn∇n λa.

The latter is unconstrained by the curvature of the manifold. It can assume any value at a point.
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1.9 Metrics

A (semi-Riemannian) metric on a manifold M is a smooth field gab on M that is symmetric and

invertible, i.e., there exists an (inverse) field gbc on M such that gab g
bc = δca.

It is easy to check that the inverse field gbc of a metric gab is symmetric and unique. It is symmetric

since

gcb = gnb δcn = gnb (gnm g
mc) = (gmn g

nb) gmc = δbm g
mc = gbc.

(Here we use the symmetry of gnm for the third equality.) It is unique because if g′bc is also an inverse

field, then

g′bc = g′nc δbn = g′nc (gnm g
mb) = (gmn g

′nc) gmb = δcm g
mb = gcb = gbc.

(Here again we use the symmetry of gnm for the third equality; and we use the symmetry of gcb for the

final equality.) One can also check that the inverse field gbc of a metric gab is smooth. This follows,

essentially, because given any invertible square matrix A (over R), the components of the inverse matrix

A−1 depend smoothly on the components of A.

The requirement that a metric be invertible can be given a second formulation. Indeed, given any field

gab on the manifold M (not necessarily symmetric and not necessarily smooth), the following conditions

are equivalent.

(1) There is a tensor field gbc on M such that gab g
bc = δca.

(2) For all p in M , and all vectors ξa at p, if gab ξ
a = 0, then ξa = 0.

(When the conditions obtain, we say that gab is non-degenerate.) To see this, assume first that (1) holds.

Then given any vector ξa at any point p, if gab ξ
a = 0, it follows that ξc = δca ξ

a = gbc gab ξ
a = 0.

Conversely, suppose that (2) holds. Then at any point p, the map from (Mp)
a to (Mp)b defined by

ξa 7→ gab ξ
a is an injective linear map. Since (Mp)

a and (Mp)b have the same dimension, it must be

surjective as well. So the map must have an inverse gbc defined by gbc(gab ξ
a) = ξc or gbc gab = δca.

In the presence of a metric gab, it is customary to adopt a notation convention for “lowering and

raising indices”. Consider first the case of vectors. Given a contravariant vector ξa at some point, we

write gab ξ
a as ξb; and given a covariant vector ηb, we write gbc ηb as ηc. The notation is evidently

consistent in the sense that first lowering and then raising the index of a vector (or vice versa) leaves the

vector intact.

One would like to extend this notational convention to tensors with more complex index structure.

But now one confronts a problem. (It was mentioned in passing in section 1.4.) Given a tensor αabc at a

point, for example, how should we write gmc αabc ? As αmab? Or as αamb? Or as αabm? In general,

these three tensors will not be equal. To get around the problem, we introduce a new convention. In

any context where we may want to lower or raise indices, we shall write indices, whether contravariant

or covariant, in a particular sequence. So, for example, we shall write αabc or αa bc or α ab
c . (These
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tensors may be equal — they belong to the same vector space — but they need not be.) Clearly this

convention solves our problem. We write gmcαabc as αabm; gmc αa bc as αamb; and so forth. No

ambiguity arises. (And it is still the case that if we first lower an index on a tensor and then raise it (or

vice versa), the result is to leave the tensor intact.)

We claimed in the preceding paragraph that the tensors αabc and αa bc (at some point) need not be

equal. Here is an example. (It is just a variant of the one used in section 1.4 to show that the tensors

αab and αba need not be equal.) Suppose
1

ξa,
2

ξa, ... ,
n

ξa is a basis for the tangent space at a point p.

Further suppose αabc =
i

ξa
j

ξb
k

ξc at the point. Then αacb =
i

ξa
j

ξc
k

ξb there. Hence, lowering indices, we have

αabc =
i

ξa
j

ξb
k

ξc but αa bc =
i

ξa
j

ξc
k

ξb at p. These two will not be equal unless j = k.

We have reserved special notation for two tensor fields: the index substiution field δab and the Riemann

curvature field Rabcd (associated with some derivative operator). Our convention will be to write these as

δab and Rabcd, i.e., with contravariant indices before covariant ones. As it turns out, the order does not

matter in the case of the first since δab = δ ab . (It does matter with the second.) To verify the equality, it

suffices to observe that the two fields have the same action on an arbitrary field αb:

δ ab αb = (gbn g
am δnm)αb = gbn g

an αb = gbn g
na αb = δabα

b.

Similarly we can verify (if we are raising and lowering indices with gab) that δab = gab and δab = gab. (We

shall take these different equalities for granted in what follows.)

Now suppose gab is a metric on the n-dimensional manifold M and p is a point in M . Then there

exists an m, with 0 ≤ m ≤ n, and a basis
1

ξa,
2

ξa, ... ,
n

ξa for the tangent space at p such that

gab
i

ξa
i

ξb = +1 if 1 ≤ i ≤ m,

gab
i

ξa
i

ξb = −1 if m < i ≤ n,

gab
i

ξa
j

ξb = 0 if i 6= j.

Such a basis is called orthonormal. Orthonormal bases at p are not unique, but all have the same

associated number m. We call the pair (m, n−m) the signature of gab at p. (The existence of orthonormal

bases and the invariance of the associated number m are basic facts of linear algebraic life. See, for

example, Lang [36].) A simple continuity argument shows that any connected manifold must have the

same signature at each point. In what follows we shall restrict attention to connected manifolds and refer

simply to the “signature of gab”.

A metric with signature (n, 0) is said to be positive definite. With signature (0, n), it is said to be

negative definite. With any other signature it is said to be indefinite. One case will be of special interest

to us later. A Lorentzian metric is a metric with signature (1, n − 1). The mathematics of relativity

theory is, to some degree, just a chapter in the theory of four-dimensional manifolds with Lorentzian

metrics.

Suppose gab has signature (m,n−m), and
1

ξa,
2

ξa, ... ,
n

ξa is an orthonormal basis at a point. Further,

suppose µa and νa are vectors there. If µa =
∑n

i=1

i
µ

i

ξa and νa =
∑n
i=1

i
ν

i

ξa, then it follows from the
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linearity of gab that

gab µ
a νb =

1
µ

1
ν + ... +

m
µ
m
ν − m+1

µ
m+1
ν − ... − n

µ
n
ν. (1.9.1)

In the special case where the metric is positive definite, this comes to

gab µ
a νb =

1
µ

1
ν + ... +

n
µ
n
ν. (1.9.2)

And where it is Lorentzian,

gab µ
a νb =

1
µ

1
ν − 2

µ
2
ν − ... − n

µ
n
ν. (1.9.3)

So far we have introduced metrics and derivative operators as independent objects. But, in a quite

natural sense, a metric determines a unique derivative operator.

Suppose gab and ∇ are both defined on the manifold M . Further suppose γ : I → M is a smooth

curve on M with tangent field ξa and λa is a smooth field on γ. Both ∇ and gab determine a criterion of

“constancy” for λa. λa is constant with respect to ∇ if ξn∇nλa = 0. λa is constant with respect to gab

if gab λ
a λb is constant along γ, i.e., if ξn∇n

(
gab λ

a λb
)

= 0. It seems natural to consider pairs gab and

∇ for which the first condition of constancy implies the second.

Let us say that ∇ is compatible with gab if, for all γ and λa as above, λa is constant with respect to

gab whenever it is constant with respect to ∇. The next lemma gives the condition a more economical

formulation.

Lemma 1.9.1. Suppose ∇ is a derivative operator, and gab is a metric, on the manifold M . Then ∇ is

compatible with gab iff ∇a gbc = 0.

Proof. Suppose γ is an arbitrary smooth curve with tangent field ξa and λa is an arbitrary smooth field

on γ satisfying ξn∇n λa = 0. Then

ξn∇n
(
gab λ

a λb
)

= gab λ
a ξn∇n λb︸ ︷︷ ︸

= 0

+ gab λ
b ξn∇n λa︸ ︷︷ ︸

= 0

+ λa λb ξn∇n gab

= λa λb ξn∇n gab.

Suppose first that ∇n gab = 0. Then it follows immediately that ξn∇n
(
gab λ

a λb
)

= 0. So ∇ is compatible

with gab. Suppose next that ∇ is compatible with gab. Then for all choices of γ and λa (satisfying

ξn∇n λa = 0), we have λa λb ξn∇n gab = 0. Since the choice of λa (at any particular point) is arbitrary

and gab is symmetric, it follows (by proposition 1.4.3) that ξn∇n gab = 0. But this must be true for

arbitrary ξa (at any particular point), and so we have ∇n gab = 0.

Note that the condition of compatibility is also equivalent to ∇a gbc = 0. To see this, recall (problem

1.7.1) that ∇a δmn = 0. Hence,

0 = gbn∇a δcn = gbn∇a
(
gnr g

rc
)

= gbn gnr∇a grc + gbn grc∇a gnr
= δbr∇a grc + gbn grc∇a gnr = ∇a gbc + gbn grc∇a gnr.
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So if ∇a gbc = 0, it follows immediately that ∇a gbc = 0. Conversely, if ∇a gbc = 0, then gbn grc∇a gnr =

0. And therefore,

0 = gpb gsc g
bn grc∇a gnr = δnp δ

r
s∇a gnr = ∇a gps.

The basic fact about compatible derivative operators is the following.

Proposition 1.9.2. Suppose gab is a metric on the manifold M . Then there is a unique derivative

operator on M that is compatible with gab.

Proof. To prove that M admits any derivative operator at all is a bit involved, and we skip the argument.

(See Geroch [23]. It turns out that if a manifold admits a metric, then it necessarily satisfies the countable

cover condition (M5) that we considered in section 1.1. And the latter, as noted in proposition 1.7.1,

guarantees the existence of a derivative operator.) We do prove that if M admits a derivative operator

∇, then it admits exactly one ∇′ that is compatible with gab.

Every derivative operator ∇′ on M can be realized as ∇′ = (∇, Cabc), where Cabc is a smooth,

symmetric field on M . Now

∇′
a gbc = ∇a gbc + gncC

n
ab + gbnC

n
ac = ∇a gbc + Ccab + Cbac.

So ∇′ will be compatible with gab (i.e., ∇′
a gbc = 0) iff

∇a gbc = −Ccab − Cbac. (1.9.4)

Thus it suffices for us to prove that there exists a unique smooth, symmetric field Cabc on M satisfying

(1.9.4). To do so, we write equation (1.9.4) twice more after permuting the indices:

∇c gab = −Cbca − Cacb,

∇b gac = −Ccba − Cabc.

If we subtract these two from the first equation, and use the fact that Cabc is symmetric in (b, c), we get

Cabc =
1

2

(
∇a gbc −∇b gac −∇c gab

)
, (1.9.5)

and, therefore,

Cabc =
1

2
gan

(
∇n gbc −∇b gnc −∇c gnb

)
. (1.9.6)

This establishes uniqueness. But clearly the field Cabc defined by (1.9.6) is smooth, symmetric, and

satisfies (1.9.4). So we have existence as well.

In the case of positive definite metrics, there is another way to capture the significance of compatibility

of derivative operators with metrics. Suppose the metric gab onM is positive definite, and γ : [s1, s2] →M
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is a smooth curve on M .3 We associate with γ a length

|γ| =

∫ s2

s1

(
gab ξ

a ξb
) 1

2 ds,

where ξa is the tangent field to γ. This assigned length is invariant under reparametrization. For suppose

σ : [t1, t2] → [s1, s2] is a diffeomorphism
(
we shall write s = σ(t)

)
and ξ′a is the tangent field of

γ′ = γ ◦ σ : [t1, t2] → M . Then ξ′a = ξa
ds

dt
. (Recall equation (1.3.1) in the proof of proposition 1.3.2.)

We may as well require that the reparametrization preserve the orientation of the original curve, i.e.,

require that σ(t1) = s1 and σ(t2) = s2. In this case,
ds

dt
> 0 everywhere. (Only small changes are

needed if we allow the reparametrization to reverse the orientation of the curve. In that case,
ds

dt
< 0

everywhere.) It follows that

|γ′| =

∫ t2

t1

(
gab ξ

′a ξ′b
) 1

2 dt =

∫ t2

t1

(
gab ξ

a ξb
) 1

2
ds

dt
dt

=

∫ s2

s1

(
gab ξ

a ξb
) 1

2 ds = |γ|.

Let us say that γ : I →M is a curve from p to q if I is of the form [s1, s2], p = γ(s1), and q = γ(s2).

In this (positive definite) case, we take the distance from p to q to be

d(p, q) = g.l.b.
{
|γ| : γ is a smooth curve from p to q

}
.

Further, we say that a curve γ : I →M is minimal if, for all s ∈ I, there exists an ε > 0 such that, for

all s1, s2 ∈ I with s1 ≤ s ≤ s2, if s2−s1 < ε and if γ′ = γ|[s1,s2] (the restriction of γ to [s1, s2]), then

|γ′| = d
(
γ(s1), γ(s2)

)
. Intuitively, minimal curves are “locally shortest curves”. Certainly they need not

be “shortest curves” outright. (Consider, for example, two points on the “equator” of a two-sphere that

are not antipodal to one another. An equatorial curve running from one to the other the “long way”

qualifies as a minimal curve.)

One can characterize the unique derivative operator compatible with a positive definite metric gab in

terms of the latter’s associated minimal curves. But in doing so one has to pay attention to parametriza-

tion.

Let us say that a smooth curve γ : I → M with tangent field ξa is parametrized by arc length if for

all ξa, gab ξ
a ξb = 1. In this case, if I = [s1, s2], then

|γ| =

∫ s2

s1

(
gab ξ

a ξb
) 1

2 ds =

∫ s2

s1

1 ds = s2 − s1.

3Officially (in section 1.2), we have taken a “smooth curve on M” to be a smooth map of the form γ : I → M where

I is an open (possibly infinite or half infinite) interval in R. Let us now agree to extend the definition and allow for the

possibility that the interval I is not open. In this case, we take γ to be smooth if there is an open interval I′ ⊆ R, with

I ⊆ I′, and a smooth map γ′ : I′ → M , such that γ′(s) = γ(s) for all s ∈ I. And in this case, of course, we obtain the

“tangent field of γ” by restricting that of γ′ to I. Furthermore, if σ : I′ → I is a bijection betweeen (not necessarily open)

intervals in R, we understand it to be a diffeomorphism if σ and σ−1 are both smooth in the sense just given.



CHAPTER 1. DIFFERENTIAL GEOMETRY 70

(Any non-trivial smooth curve can always be reparametrized by arc length.) Our characterization theorem

is the following.

Proposition 1.9.3. Suppose gab is a positive definite metric on the manifold M and ∇ is a derivative

operator on M . Then ∇ is compatible with gab iff for all smooth curves γ parametrized by arc length, γ

is a geodesic with respect to ∇ iff it is minimal with respect to gab.

Note that the proposition would be false if the qualification “parametrized by arc length” were dropped.

The class of minimal curves is invariant under reparametrization. The class of geodesics (determined by

a derivative operator) is not.

We skip the proof of proposition of 1.9.3, which involves ideas from the calculus of variations. And

we assert, without further discussion at this stage, that more complicated versions of the theorem are

available when the metric gab under consideration is not positive definite. (We shall later consider the

Lorentzian case.)

We have already demonstrated (proposition 1.8.2) that the Riemann tensor field associated with any

derivative operator exhibits several index symmetries. When the derivative operator is determined by a

metric, yet further symmetries are present.

Proposition 1.9.4. Suppose gab is a metric on a manifold M , ∇ is the derivative operator on M

compatible with gab, and Rabcd is associated with ∇. Then Rabcd (= gamR
m
bcd) satisfies the following

conditions.

(1) Rab(cd) = 0.

(2) Ra[bcd] = 0.

(3) R(ab)cd = 0.

(4) Rabcd = Rcdab.

Proof. (1) and (2) follow directly from clauses (2) and (3) of proposition 1.8.2. And by clause (1) of that

proposition, we have, since ∇a gbc = 0,

0 = 2∇[c∇d] gab = gnbR
n
acd + ganR

n
bcd = Rbacd +Rabcd.

That gives us (3). So it will suffice for us to show that clauses (1) – (3) jointly imply (4). Note first that

0 = Rabcd +Radbc +Racdb

= Rabcd −Rdabc −Racbd.

(The first equality follows from (2), and the second from (1) and (3).) So anti-symmetrization over

(a, b, c) yields

0 = R[abc]d −Rd[abc] −R[acb]d.
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Rabcd

Rbdca

Radbc

Rcdab

Rcabd

Rcbda

Figure 1.9.1: Symmetries of the Riemann tensor field Rabcd.

The second term is 0 by clause (2) again, and R[abc]d = −R[acb]d. So we have an intermediate result:

R[abc]d = 0. (1.9.7)

Now consider the octahedron in figure 1.9.1. Using (1) – (3) and (1.9.7), one can easily verify that the

sum of the terms corresponding to each triangular face vanishes. For example, the shaded face determines

the sum

Rabcd +Rbdca +Radbc = −Rabdc −Rbdac −Rdabc = −3R[abd]c = 0.

So if we add the sums corresponding to the four upper faces, and subtract the sums corresponding to the

four lower faces, we get (since “equatorial” terms cancel),

4Rabcd − 4Rcdab = 0.

This gives us (4).

We say that two metrics gab and g′ab on a manifold M are projectively equivalent if their respective

associated derivative operators are projectively equivalent, i.e., if their associated derivative operators

admit the same geodesics up to reparametrization. (Recall our discussion in section 1.7.) In contrast, we

say that they are conformally equivalent if there is a map Ω: M → R such that

g′ab = Ω2 gab.
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Ω is called a conformal factor. (If such a map exists, it must be smooth and non-vanishing since both

gab and g′ab are.) Notice that if gab and g′ab are conformally equivalent, then, given any point p, and any

vectors ξa and ηa at p, they agree on the ratio of their assignments to the two, i.e.,

g′ab ξ
a ξa

g′ab ηa ηb
=
gab ξ

a ξb

gab ηa ηb

(if the denominators are non-zero).

If two metrics are conformally equivalent with conformal factor Ω, then the connecting tensor field

Cabc that links their associated derivative operators can be expressed as a function of Ω.

Proposition 1.9.5. If gab and g′ab = Ω2 gab are metrics on the manifold M , and ∇′ =
(
∇, Cabc

)
, then

Cabc = − 1

2Ω2

[
δab∇cΩ2 + δac∇bΩ2 − gbc g

ar∇r Ω2
]
. (1.9.8)

Proof. Since ∇′ is compatible with g′ab, it follows that

g′drC
r
bc =

1

2

[
∇d g′bc −∇b g′dc −∇c g′db

]
.

(Recall (1.9.5) in the proof of proposition 1.9.2.) If we substitute Ω2 gab for g′ab and use the fact that

∇ is compatible with gab, this gives us

Ω2 gdrC
r
bc =

1

2

[
gbc∇dΩ2 − gdc∇bΩ2 − gdb∇cΩ2

]
.

Contracting both sides with gad yields

Ω2Cabc =
1

2

[
gbc g

ad∇dΩ2 − δac∇bΩ2 − δab∇cΩ2
]
,

as claimed.

The next proposition asserts that if metrics are both projectively and conformally equivalent, then

they can differ by at most a multiplicative constant. (The converse implication is immediate.) The result

will later (in section 2.1) be of crucial importance in our discussion of the physical signficance of the

spacetime metric.

Proposition 1.9.6. Suppose the hypotheses of proposition 1.9.5 obtain and, in addition, gab and g′ab are

projectively equivalent. Further suppose that the dimension of M is at least 2. Then Ω is constant on M .

Proof. Let the dimension of M be n ≥ 2. We know that Cabc must satisfy equation (1.9.8). But by

proposition 1.7.10, we also have

Cabc = δabϕc + δac ϕb (1.9.9)

for some smooth field ϕc. The proof proceeds by playing off equations (1.9.8) and (1.9.9) against each

other. Contracting the two equations (and using the fact that δaa = n), we get

Caba = − 1

2Ω2

[
∇bΩ2 + n∇bΩ2 −∇bΩ2

]
= − n

2Ω2
∇bΩ2,

Caba = ϕb + nϕb = (n+ 1)ϕb.
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So

− 1

2Ω2
∇bΩ2 =

n+ 1

n
ϕb. (1.9.10)

Substituting into (1.9.8), this yields

Cabc =
n+ 1

n

[
δabϕc + δac ϕb − gbc g

ar ϕr

]
.

Comparing this expression for Cabc with (1.9.9), we get

δabϕc + δac ϕb = (n+ 1)gbc g
ar ϕr.

If we contract both sides with gbc, we are left with

ϕa + ϕa = (n+ 1)nϕa.

Hence, since n ≥ 2, ϕa = 0. So ∇bΩ2 = 0, by equation (1.9.10).

Note that in one-dimensional manifolds, all metrics are projectively equivalent. (All smooth curves are

geodesics up to reparametrization with respect to all derivative operators.) For this reason the proposition

fails if n = 1.

In the case where a derivative operator ∇ is determined by a metric gab, the Riemann tensor field

Rabcd associated with the former admits an instructive decomposition. Consider first the Ricci tensor

field Rab and scalar curvature field R defined by:

Rab = Rcabc

R = Raa (= garRra).

The first is symmetric since, by (1), (3), and (4) of proposition 1.9.4,

Rab = gcdRdabc = gcdRcbad = Rba.

It also follows from the symmetries listed in proposition 1.9.4 that these are, up to sign, the only fields

that can be obtained by contraction from Rabcd. (Contraction on any two indices yields either the zero

field or ±Rab and, therefore, contraction on all four indices (two at a time) yields either the zero field or

±R.)

Problem 1.9.1. Let ∇ be a derivative operator on a manifold M compatible with the metric gab. Use

the Bianchi identity (in proposition 1.8.2) to show that

∇a
(
Rab − 1

2
gabR

)
= 0.

(This equation will figure later in our discussion of Einstein’s equation.)
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The Weyl (or conformal) tensor field Cabcd is defined by

Cabcd = Rabcd −
2

n− 2

[
ga[dRc]b + gb[cRd]a

]
− 2

(n− 1)(n− 2)
Rga[c gd]b (1.9.11)

(if the dimension n of the underlying manifold is at least 3). The second and third terms on the right side

exhibit symmetries (1) – (4) from proposition 1.9.4. Therefore, Cabcd does so as well. Furthermore, as is

easily checked, Cabca = 0. So all contractions of Cabcd vanish. Thus (1.9.11) provides a decomposition of

Rabcd in terms of Rab, R, and that part of Rabcd whose contractions all vanish. Later we shall see that

Einstein’s equation in relativity theory correlates Rab and R with the presence of mass-energy but does

not constrain Cabcd. So, in a sense, the Weyl field is that part of the full Riemann curvature field that is

left free by the dynamical constraints of the theory.

It turns out that the Weyl field is conformally invariant, i.e., we have the following basic result.

Proposition 1.9.7. Let gab and g′ab = Ω2 gab be metrics on a manifold with respective Weyl fields Cabcd

and C′
abcd. Then C′a

bcd = Cabcd.

One can prove this with a laborious but straightforward calculation using problem 1.8.1 and proposition

1.9.5. (See Wald [60, pp. 446-47].)

We have said that a metric gab is flat if its associated Riemann tensor field Rabcd vanishes everywhere.

In parallel, we say that it is conformally flat if its Weyl tensor field Cabcd vanishes everywhere. It follows

immediately from proposition 1.9.7 (and the definition of Cabcd) that if a metric is conformally equivalent

to a flat metric, then it is conformally flat. It turns out that the converse is true as well in manifolds of

dimension at least 4. (In dimension 3, Cabcd vanishes automatically.)

Our next topic is “isometries” and “Killing vector fields”. Given two manifolds with a metric, (M, gab)

and (M ′, g′ab), we say that a smooth map ϕ : M → M ′ is an isometry if ϕ∗(g′ab) = gab. (Recall our

discussion of “pull-back maps” in section 1.5.) This condition captures the requirement that ϕ preserve

inner products. To see this, consider any point p in M and any two vectors ξa and ρa at p. The two have

an inner product gab|p ξ
aρb at p. The push-forward map (ϕp)∗ carries them to vectors

(
(ϕp)∗(ξ

a)
)

and
(
(ϕp)∗(ρ

a)
)

at ϕ(p), whose inner product there is g′ab|ϕ(p)

(
(ϕp)∗(ξ

a)
)(

(ϕp)∗(ρ
b)
)
. In general, there

is no reason why these two inner products should be equal. But they will be if ϕ∗(g′ab) = gab, for then

gab|p ξ
aρb =

(
ϕ∗(g′ab)

)
|p
ξaρb = g′ab|ϕ(p)

(
(ϕp)∗(ξ

a)
)(

(ϕp)∗(ρ
b)
)
.

The second equality is just an instance of the condition (equation 1.5.2) that defines ϕ∗(g′ab).

Now suppose λa is a smooth (not necessarily complete) vector field on M . We say that λa is a Killing

field (with respect to gab) if £λ gab = 0 or, equivalently, if it satisfies “Killing’s equation”

∇(a λb) = 0. (1.9.12)
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(Here ∇ is understood to be the derivative operator on M compatible with gab.) Equivalence here follows

from proposition 1.7.4:

£λ gab = λn∇n gab + gnb∇a λn + gan∇b λn = ∇a λb + ∇b λa.

Note that

λa is a Killing field ⇐⇒ the (local) flow maps determined by λa are isometries.

This assertion is just a special case of proposition 1.6.6, and it explains the classical description of Killing

fields as “infinitesimal isometries”.

The following proposition is useful when one undertakes to find or classify Killing fields.

Proposition 1.9.8. Let gab be a metric on the manifold M with associated derivative operator ∇. Fur-

ther, let λa be a Killing field on M (with respect to gab). Then

∇a∇b λc = −Rmabc λm.

Proof. Given any smooth field λa on M , we have

2∇[a∇b] λc = Rmcab λm,

2∇[c∇a] λb = Rmbca λm,

2∇[b∇c] λa = Rmabcλm.

If we subtract the third equation from the sum of the first two, and then use the fact that ∇(r λs) = 0,

we get

2∇a∇b λc = (Rmcab +Rmbca −Rmabc)λm

= 3Rm[abc] λm − 2Rmabc λm.

But Rm[abc] = 0, and so our claim follows.

In the following problems, assume that gab is a metric on a manifold M and ∇ is its associated

derivative operator.

Problem 1.9.2. Let ξa be a smooth vector field on M . Show that

£ξ g
ab = 0 ⇐⇒ £ξ gab = 0.

Problem 1.9.3. Show that Killing fields on M with respect to gab are affine collineations with respect

to ∇. (Recall problem 1.8.3.)

Problem 1.9.4. Show that if ξa is a Killing field on M with respect to gab, then the Lie derivative

operator £ξ annihilates the fields Rabcd, Rab, and R (determined by gab).
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Problem 1.9.5. Show that if ξa and ηa are Killing fields on M (with respect to gab), and k is a real

number, then (ξa + ηa), (kξa), and the commutator [ξ, η]a = £ξ η
a are all Killing fields as well. (Thus,

the set of Killing fields has the structure of a Lie algebra.)

Problem 1.9.6. Let ηa be a Killing field on M with respect to gab. (i) Let γ be a geodesic with tangent

field ξa. Show that the function E = ξa ηa is constant on γ. (ii) Let T ab be a smooth tensor field that is

symmetric and divergence free (i.e., ∇aT ab = 0), and let Ja be the field T abηb. Show that ∇aJa = 0. (Both

of these assertions will be important later in connection with our discussion of conservation principles.)

Problem 1.9.7. A smooth field ηa on M is said to be a “conformal Killing field” (with respect to gab) if

£η
(
Ω2gab

)
= 0 for some smooth scalar field Ω. Show that if ηa is a conformal Killing field, and M has

dimension n, then

∇(a ηb) =
1

n
(∇c ηc) gab.

The set of Killing fields on a manifold with a metric has a natural vector space structure (problem

1.9.5). It turns out that if n is the dimension of the manifold and d is the dimension of this vector space,

then 0 ≤ d ≤ 1
2 n (n+ 1). We will not prove this inequality but will show that “n-dimensional Euclidean

space” does, in fact, admit 1
2 n (n+ 1) linearly independent Killing fields.

Let ∇ be the flat derivative operator on the manifold R
n (with n ≥ 1) canonically associated with

the (globally defined) projection coordinate maps x1, ..., xn. (Recall our discussion toward the end of

section 1.7.) We know that the basis fields

(
∂

∂x1

)a
, ...,

(
∂

∂xn

)a
and co-basis fields (dax

1), ..., (dax
n) are

all constant with respect to ∇. We take the Euclidean metric on R
n to be the field

gab = (dax
1)(dbx

1) + ...+ (dax
n)(dbx

n) (1.9.13)

and take n-dimensional Euclidean space to be the pair (Rn, gab). It follows that

gab

(
∂

∂xj

)a(
∂

∂xk

)b
=

n∑

i=1

(dax
i)

(
∂

∂xj

)a
(dbx

i)

(
∂

∂xk

)b
=

n∑

i=1

δij δik = δjk

for all j and k. Thus the fields

(
∂

∂x1

)a
, ...,

(
∂

∂xn

)a
form an orthonormal basis for gab at every point,

and the signature of gab is (n, 0). It also follows that

(
∂

∂xi

)

a

= gan

(
∂

∂xi

)n
= (dax

i) for all i. (This

does not hold in general. For example, as we shall see later, when we raise and lower indices with the

Minkowski metric on R
n,

(
∂

∂xi

)

a

= −(dax
i) for some choices of i.) Hence

(daxi) = gan (dnx
i) = gan

(
∂

∂xi

)

n

=

(
∂

∂xi

)a

for all i and, therefore, the inverse metric field gab can be expressed in the form

gab =

(
∂

∂x1

)a(
∂

∂x1

)b
+ ...+

(
∂

∂xn

)a(
∂

∂xn

)b
. (1.9.14)
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Note also that ∇a gbc = 0, i.e., that ∇ is the unique derivative operator compatible with gbc. (This follows

immediately since the scalar coefficient fields on the right side of (1.9.13) are all constant.)

Now we proceed to find all Killing fields in n-dimensional Euclidean space. Doing so is easy given the

machinery we have developed.

Proposition 1.9.9. Let ξa be a Killing field in n-dimensional Euclidean space (Rn, gab) (with n ≥ 1),

let ∇ be the flat derivative operator on R
n canonically associated with the projection coordinate maps

x1, ..., xn (which is compatible with gab), let p be any point in R
n, and let χa be the position field on R

n

determined relative to p and ∇. (Recall proposition 1.7.12.) Then the following both hold. (1) There

exist a unique constant, anti-symmetric field Fab and a unique constant field ka such that

ξb = χaFab + kb. (1.9.15)

(Here, of course, “constant” means constant with respect to ∇.) (2) The vector space of Killing fields in

(Rn, gab) has dimension 1
2 n (n+ 1).

Proof. (1) (Existence) Consider the fields Fab = ∇a ξb, and kb = ξb − χaFab. Since ξa is a Killing field,

∇(a ξb) = 0. So Fab is anti-symmetric. Clearly, the two fields satisfy equation 1.9.15. So what we need

to show is that they are both constant with respect to ∇. Fab is, since ∇nFab = ∇n∇a ξb = −Rmnab ξm =

0. (The second equality follows from proposition 1.9.8, and the third from the fact that ∇ is flat.)

Furthermore, kb is constant, since

∇nkb = ∇n ξb −∇n (χaFab) = Fnb − Fab∇nχa = Fnb − Fab δ
a
n = Fnb − Fnb = 0.

(For the second equality we use the fact that ∇nFab = 0, and for the third that ∇nχa = δan.)

(Uniqueness) Assume that the fields F ′
ab and k′a also satisfy the stated conditions. It follows that

Fab = Fnb δ
n
a = Fnb∇aχn = ∇a (χnFnb + kb) = ∇a ξb = ∇a (χnF ′

nb + k′b)

= F ′
nb∇a χn = F ′

nb δ
n
a = F ′

ab

and, therefore, kb = k′b.

(2) Let d be the dimension of the vector space of Killing fields in (Rn, gab). It follows from part (1) that

d is of the form d = d1 + d2, where d1 is the dimension of the vector space of constant, anti-symmetric

fields Fab on (Rn, gab), and d2 is the dimension of the vector space of constant fields ka on the manifold.

Clearly,

(
∂

∂x1

)a
, ...,

(
∂

∂xn

)a
form a basis for the latter. So d2 = n. We claim that d1 =

n(n− 1)

2
. This

will suffice, of course, for then d = n+
n(n− 1)

2
=
n(n+ 1)

2
. To verify the claim, consider the expansion

of any constant, anti-symmetric field Fab in terms of the co-basis fields (dax
1), ..., (dax

n). The coefficient

fields are all constant (since Fab is). So they determine an n× n anti-symmetric (real) matrix. (The ijth

entry is the coefficient of (dax
i)(dbx

j) in the expansion.) Thus the problem reduces to that of determining

the dimension of the vector space of all n × n anti-symmetric real matrices. Since all numbers on the
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diagonal must be 0, and the ijth and jith entries must sum to 0, the number of independent entries is

just the number of ordered pairs (i, j) where 1 ≤ i < j ≤ n. And this number is certainly
n(n− 1)

2
. So

we are done.

p

Figure 1.9.2: Killing fields in the Euclidean plane.

Consider, for example, the case of two-dimensional Euclidean space where there should be 3
(
=

3 × 2

2

)

linearly independent Killing fields. Here the space of constant vector fields ka is two-dimensional and is

generated by

(
∂

∂x1

)a
and

(
∂

∂x2

)a
. The space of constant, anti-symmetric fields Fab is one-dimensional

and is generated by

Fab = (dax
1)(dbx

2) − (dax
2)(dbx

1).

So the full vector space of Killing fields is generated by the three fields

1

ξb =

(
∂

∂x1

)b

2

ξb =

(
∂

∂x2

)b

3

ξb = χaF b
a =

(
x1 − x1(p)

)( ∂

∂x2

)b
−
(
x2 − x2(p)

)( ∂

∂x1

)b
.

The expression for the third is easily derived using our expression for Fab and (1.7.11) (in the case where

ui = xi):

ξa = χaFan g
nb

=

[
(x1 − x1(p))

(
∂

∂x1

)a
+ (x2 − x2(p))

(
∂

∂x2

)a] [
(dax

1)(dnx
2) − (dax

2)(dnx
1)
]
gnb

=

[
(x1 − x1(p))

(
∂

∂x1

)a
+ (x2 − x2(p))

(
∂

∂x2

)a] [
(dax

1)

(
∂

∂x2

)b
− (dax

2)

(
∂

∂x1

)b]

= (x1 − x1(p))

(
∂

∂x2

)b
− (x2 − x2(p))

(
∂

∂x1

)b
.
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The first two are the “infinitesimal generators” of horizontal and vertical translations. (See figure

1.9.2.) The third is the generator of counterclockwise rotations centered at p. If p = (0, 0), the third

reduces to the field x1

(
∂

∂x2

)b
− x2

(
∂

∂x1

)b
that we have already encountered in section 1.3.

Finally, we briefly consider “manifolds of constant curvature”, a topic that will arise when we discuss

Friedmann spacetimes in section 2.11.

We say that a manifold with metric (M, gab) has constant curvature κ at a point in M if

Rabcd = κ (gad gbc − gac gbd) (1.9.16)

holds there. (And, of course, we say that is has constant curvature at a point if it has constant curvature

κ there for some κ.) Note that it is “possible” for (1.9.16) to hold only because the field gabcd =

(gad gbc − gac gbd) exhibits the same index symmetries as Rabcd (recall proposition 1.9.4):

R(ab)cd = 0 g(ab)cd = 0, (1.9.17)

Rab(cd) = 0 gab(cd) = 0, (1.9.18)

Ra[bcd] = 0 ga[bcd] = 0, (1.9.19)

Rabcd = Rcdab gabcd = gcdab. (1.9.20)

To motivate the definition, let us temporarily assume that gab is positive-definite. (That makes things

a bit easier.) Let p be a point in M and let W be a two-dimensional subspace of Mp. We take the

W-sectional curvature of (M, gab) at p to be the number

Rabcd α
a βb αc βd

(gad gbc − gac gbd)αa βb αc βd
(1.9.21)

where αa and βa are any two vectors at p that span W . Note that the definition is well posed. First,

the denominator cannot be 0, for that would violate our stipulation that αa and βa span W . (Using a

more familiar notation, the point is this: if u and v are vectors such that 〈u, v〉2 = ‖u‖2 ‖v‖2, then u

and v must be linearly dependent.) Second, the expression is independent of the choice of αa and βa.

For suppose that α̃a and β̃a form a basis for W as well, with α̃a = f αa + g βa and β̃a = hαa + k βa.

Then, by (1.9.17) and (1.9.18),

Rabcd α̃
a β̃b α̃c β̃d = (fk − gh)2Rabcd α

a βb αc βd

(gad gbc − gac gbd) α̃
a β̃b α̃c β̃d = (fk − gh)2 (gad gbc − gac gbd)α

a βb αc βd,

and the factor (fk − gh)2 simply drops out.

In the special case of a smooth surface in three-dimensional Euclidean space (with the metric induced

on it), the sectional curvature at any point is just what we would otherwise call the “Gaussian curvature”

there. (See Spivak [57], volume 2, chapter 4.)

Now we show that constancy of curvature at a point can be understood to mean equality of sectional

curvatures there.
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Proposition 1.9.10. Let M be a manifold of dimension at least 2, let gab be a positive-definite metric

on M , and let κ be a real number. Then

Rabcd = κ (gad gbc − gac gbd)

holds at a point iff all sectional curvatures there (i.e., all W-sectional curvatures for all two-dimensional

subspaces W ) are equal to κ.

Proof. The “only if” half of the assertion is immediate. For the converse, assume that all sectional

curvatures are equal to κ at some point p in M . Our goal is to show that the difference tensor

Dabcd = Rabcd − κ (gad gbc − gac gbd)

vanishes at p. Note that Dabcd inherits the symmetry conditions (1.9.17) – (1.9.20). Note, as well, that

(i) Dabcd α
a βb αc βd = 0 for all vectors αa and βa at p. For if αa and βa are linearly independent, the

claim follows from the fact that all sectional curvatures at p are equal to κ. And if they are not linearly

independent, it follows from (1.9.17) (or (1.9.18)). What we show is that Dabcd cannot satisfy (i) and

the listed symmetry conditions without vanishing.

Let
1
µa,

2
µa, ...,

n
µa be a basis for Mp. We claim that (ii) Dabcd

i
µa

j

µb
i
µc

k
µd = 0, for all i, j and k. This

is clear, since by (i) and (1.9.20),

0 = Dabcd
i
µa (

j

µb +
k
µb)

i
µc (

j

µd +
k
µd) = 2Dabcd

i
µa

j

µb
i
µc

k
µd.

We also claim that (iii) Dacbd = −Dadbc. For this, note that by (i) and (ii), and the symmetries (1.9.17),

(1.9.18), (1.9.20),

0 = Dabcd (
i
µa +

j

µa)(
k
µb +

l
µb)(

i
µc +

j

µc)(
k
µd +

l
µd) = 2Dabcd (

i
µa

k
µb

j

µc
l
µd +

i
µa

l
µb

j

µc
k
µd)

= 2 (Dacbd + Dadbc)
i
µa

j

µb
k
µc

l
µd.

Since this holds for all
i
µa

j

µb
k
µc

l
µd (and since

1
µa,

2
µa, ...,

n
µa is a basis for Mp), we have (iii). Finally, it

follows from (iii) and the other symmetries of Dabcd that

Dabcd = −Dadcb = Dadbc = −Dacbd = Dadcb +Dabdc = −Dabcd −Dabcd.

So Dabcd = 0.

Now we drop our temporary assumption that we are dealing with a positive-definite metric and return

to the general case.

So far, we have considered only the property of having constant curvature at a point. We say that

(M, gab) has constant curvature if it has constant curvature at every point and the value of the curvature

is everywhere the same. The second clause (same value at every point) needs to be added because it does

not follow automatically — at least not if M is two-dimensional. (In that special case, the property of
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having constant curvature at every point is vacuous and there is no reason why sectional curvatures at

different points need be equal.) But, perhaps surprisingly, it does follow automatically if the dimension

of M is at least 3.

Proposition 1.9.11 (Schur’s Lemma). Let M be a manifold of dimension n ≥ 3, and let gab be a metric

on M (not necessarily positive-definite). Suppose there is a smooth scalar field κ on M such that

Rabcd = κ (gad gbc − gac gbd).

Then κ is constant.

Proof. By Bianchi’s identity (proposition 1.8.2), ∇[mR
ab
cd] = 0. It follows that if we apply ∇m to

κ (δad δ
b
c − δac δ

b
d), and anti-symmetrize over m, c, d, we get 0. But (δad δ

b
c − δac δ

b
d) is already

anti-symmetric in c, d. So

0 = ∇[m (κ δad δ
b
c]) = δa[d δ

b
c∇m] κ.

Contracting on indices a, d and on b, c yields

0 = (n− 1) (n− 2)∇mκ.

So (given our assumption that n ≥ 3), we may conclude that ∇m κ = 0, i.e., that κ is constant on

M .

As it happens, the assertion of the proposition is also true if n = 1, for in that case we have (at every

point) Rabcd = 0 = (gad gbc − gac gbd). (Every tensor over a one-dimensional vector space vanishes if it

is anti-symmetric in two indices.) The proposition fails only if n = 2.

Let (M, gab) and (M ′, g′ab) be two manifolds with metric. We say they are locally isometric if, for all

points p ∈ M and p′ ∈ M ′, there exist open sets O ⊆ M and O′ ⊆ M ′ containing p and p′, respectively,

such that the restricted manifolds (O, gab|O) and (O′, g′ab|O′) are isometric.

Suppose (M, gab) and (M ′, g′ab) both have constant curvature and their respective curvature values

are κ and κ′. Then, one can show, they are locally isometric iff (i) M and M ′ have the same dimension,

(ii) gab and g′ab have the same signature, and (iii) κ = κ′. (See Wolf [64], proposition 2.4.11.) But these

conditions certainly do not guarantee that (M, gab) and (M ′, g′ab) are (globally) isometric. (We will have

more to say about this in section 2.11.)
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1.10 Hypersurfaces

Let (S, CS) and (M, CM ) be manifolds of dimension k and n respectively, with 1 ≤ k ≤ n. A smooth

map Ψ: S →M is said to be an imbedding if it satisfies the following three conditions.

(I1) Ψ is injective.

(I2) At all points p in S, the associated (push-forward) linear map (Ψp)∗ : Sp →MΨ(p) is injective.

(I3) For all open sets O1 in S, Ψ[O1] = Ψ[S]∩O2 for some open set O2 in M . (Equivalently, the inverse

map Ψ−1 : Ψ[S] → S is continuous with respect to the relative topology on Ψ[S].)

(Recall our discussion of push forward and pull-backward maps in section 1.5.)

Several comments about the definition are in order. First, given any point p in S, (I2) implies that

(Ψp)∗[Sp] is a k-dimensional subspace of MΨ(p). So the condition cannot be satisfied unless k ≤ n.

Second, the three conditions are independent of one another. For example, the smooth map Ψ: R → R
2

defined by Ψ(s) = (cos(s), sin(s)) satisfies (I2) and (I3) but is not injective. It wraps R round and round

in a circle. On the other hand, the smooth map Ψ : R → R defined by Ψ(s) = s3 satisfies (I1) and (I3)

but is not an imbedding because (Ψ0)∗ : R0 → R0 is not injective.4 (Here R0 is the tangent space to

the manifold R at the point 0). Finally, a smooth map Ψ : S → M can satisfy (I1) and (I2) but still

have an image that “bunches up on itself”. It is precisely this possibility that is ruled out by condition

(I3). Consider, for example, a map Ψ: R → R
2 whose image consists of part of the image of the curve

y = sin(1/x) smoothly joined to the segment {(0, y) : y < 1}, as in figure 1.10.1. It satisfies conditions

(I1) and (I2) but is not an imbedding because we can find an open interval O1 in R such that given any

open set O2 in R
2, Ψ[O1] 6= O2 ∩ Ψ[R].

Suppose (S, CS) and (M, CM ) are manifolds with S ⊆ M . We say that (S, CS) is an imbedded

submanifold of (M, CM ) if the identity map id : S → M is an imbedding. If, in addition, k = n − 1

(where k and n are the dimensions of the two manifolds), we say that (S, CS) is a hypersurface in

(M, CM ). In what follows, we first work with arbitrary imbedded submanifolds and then restrict attention

to hypersurfaces. Where confusion does not arise, we suppress reference to charts.

Once and for all in this section, let (S, CS) be a k-dimensional imbedded submanifold of the n-

dimensional manifold (M, CM ), and let p be a point in S. We need to distinguish two senses in which

one can speak of “tensors at p”. There are tensors over the vector space Sp (call them S-tensors at p)

and ones over the vector space Mp (call them M -tensors at p). So, for example, a S-vector ξ̃a at p

makes assignments to maps of the form f̃ : Õ → R where Õ is a subset of S that is open in the topology

4 (Ψ0)∗ annihilates the vector
d

dx
in R0 (and so has a non-trivial kernel). This is clear since, for any smooth real-valued

function f defined on some open subset of R containing Ψ(0) = 0, we have

`

(Ψ0)∗(
d

dx
)
´

(f) =
` d

dx
(f ◦ Ψ)

´

|x=0
=

` d

dx
(f(x3)

´

|x=0
=

`

f ′(x3) 3x2
´

|x=0
= 0.
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Figure 1.10.1: The map Ψ is not an imbedding, because its image bunches up on itself.

induced by CS , and f̃ is smooth relative to CS . In contrast, an M -vector ξa at p makes assignments

to maps of the form f : O → R where O is a subset of M that is open in the topology induced by CM,

and f is smooth relative to CM.5 Our first task is to consider the relation between S-tensors at p and

M -tensors there.

Let us say that ξa ∈ (Mp)
a is tangent to S if ξa ∈ (idp)∗[(Sp)

a]. (This makes sense. We know that

(idp)∗[(Sp)
a] is a k-dimensional subspace of (Mp)

a. ξa either belongs to that subspace or it does not.)

Let us further say that ηa in (Mp)a is normal to S if ηa ξ
a = 0 for all ξa ∈ (Mp)

a that are tangent to S.

Each of these classes of vectors has a natural vector space structure. The space of vectors ξa ∈ (Mp)
a

tangent to S has dimension k. The space of co-vectors ηa ∈ (Mp)a normal to S has dimension (n − k)

(see problem 1.10.1).

Problem 1.10.1. Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M ,

and let p be a point in S.

(1) Show that the space of co-vectors ηa ∈ (Mp)a normal to S has dimension (n− k). (Hint: Consider

a basis for (Mp)
a containing (as a subset) k vectors tangent to S. Then consider a dual basis.)

(2) Show that a vector ξa ∈ (Mp)
a is tangent to S iff ηa ξ

a = 0 for all co-vectors ηa ∈ (Mp)a that are

normal to S.

We note for future reference that a co-vector ηa ∈ (Mp)a is normal to S iff (idp)
∗(ηa) = 0. It is worth

giving the argument in detail to help gain familiarity with our notation. (idp)
∗(ηa) is the zero vector

in (Sp)a iff
(
(idp)

∗(ηa)
)
ξ̃a = 0 for all ξ̃a ∈ (Sp)

a. But (by the definition of the pull-back operation),
(
(idp)

∗(ηa)
)
ξ̃a = ηa

(
(idp)∗(ξ̃

a)
)
. So (idp)

∗(ηa) = 0 iff ηa
(
(idp)∗(ξ̃

a)
)

= 0 for all ξ̃a ∈ (Sp)
a. But

a vector ξa ∈ (Mp)
a is tangent to S precisely if it is of the form

(
(idp)∗(ξ̃

a)
)

for some ξ̃a ∈ (Sp)
a. So

(idp)
∗(ηa) = 0 iff ηa ξ

a = 0 for all vectors ξa ∈ (Mp)
a that are tangent to S, i.e., ηa is normal to S.

The classification we have introduced can be extended to indices on M -tensors of higher index struc-

ture. Consider, for example, theM -tensor αabcd at p. We take it to be tangent to S in its first contravariant

5As an aid to clarity, we shall sometimes mark S-tensors with a tilde, and sometimes we shall indicate the character of

a vector ξa simply by indicating, explicitly, its membership in (Sp)a or (Mp)a. (Co-vectors ηa shall be handled similarly.)
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index if ηaα
ab
cd = 0 for all ηa ∈ (Mp)a that are normal to S. (Note that this characterization, which

applies to all M -tensors with contravariant indices, is consistent with the one given initially for the special

case of contravariant vectors by virtue of the second assertion in problem 1.10.1.) And we take it to be

normal to S in its second covariant index if ξdαabcd = 0 for all ξd ∈ (Mp)
d that are tangent to S.

So far, M -tensors at p can be tangent to S only in their contravariant indices and normal to S only

in their covariant indices. But now (and henceforth in this section), let us assume that a metric gab is

present on M . Then the classification can be extended. We can take take the tensor to be tangent to

S in a covariant index if it is so after the index is raised with gab. And we can take it to be normal to

S in a contravariant index if it is so after the index is lowered with gab. Now we have four subspaces to

consider side by side. In addition to the old k-dimensional space of contravariant M -vectors at p tangent

to S, we have a new (n − k)-dimensional space of contravariant M -vectors at p normal to S. And in

addition to the old (n − k)-dimensional space of covariant M -vectors at p normal to S, we have a new

k-dimensional space of covariant M -vectors at p tangent to S. As one would expect, it is possible to

introduce “projection tensors” that, when applied to (contravariant and covariant) M -vectors at p, yield

their respective components in these four subspaces. We shall do so in a moment.

Let us say that an M -tensor at p is (fully) tangent to S (or normal to S) if it is so in each of its indices.

The subspace of M -tensors αa1...ar

b1...bs
at p tangent to S has dimension k(r+s).

Nothing said so far rules out the possibility that there is a non-zero vector ξa ∈ (Mp)
a that is both

tangent to, and normal to, S. Such a vector would necessarily satisfy gab ξ
a ξb = 0. (Since ξa is tangent

to S, and gab ξ
b is normal to S, the contraction of the two must be 0.) There cannot be non-zero vectors

satisfying this condition if gab is positive definite. But the possibility does arise when, for example, the

metric is of Lorentzian signature.

We say that our imbedded submanifold S is a metric submanifold (relative to the background metric

gab on M) if, for all p in S, no non-zero vector in (Mp)
a is both tangent to S and normal to S. An

alternative formulation is available. The pull-back field id∗(gab) is always a smooth, symmetric field on

S. But it is non-degenerate (and so a metric) iff S is a metric submanifold (see problem 1.10.2).

Problem 1.10.2. Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M ,

and let gab be a metric on M . Show that S is a metric submanifold (relative to gab) iff for all p in S, the

pull-back tensor (idp)
∗(gab) at p is non-degenerate, i.e., there is no non-zero vector ξ̃a ∈ (Sp)

a such that
(
(idp)

∗(gab)
)
ξ̃a = 0.

In what follows, we assume that S is a metric submanifold (relative to gab). Non-metric submanifolds

do arise in relativity theory. (“Null hypersurfaces”, for example, are non-metric.) But they are not

essential for our purposes, and it will simplify our discussion to put them aside. The assumption that S

is a metric submanifold, for example, implies – and, indeed, is equivalent to the assertion that – there is

a basis for Mp consisting entirely of vectors that are either tangent to, or normal to, S (but not both). It
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is convenient to be able to work with such a basis. (It is always true (in the presence of a metric) that we

can find k linearly independent vectors at p tangent to S, and (n− k) linearly independent vectors there

normal to S. But the combined set of n vectors will be linearly independent iff the subspaces spanned

by the two individual sets share no non-zero vector, i.e., there is no non-zero vector that is both tangent

to, and normal to, S.)

The vector space of S-tensors at p of a given index structure has the same dimension as the vector

space of M -tensors there that are of the same index structure and that are tangent to S. In fact, as

we now show, there is a canonically defined linear map φp from the first to the second that is injective

and so qualifies as an isomorphism.6 We define this isomorphism α̃a1...ar

b1...bs
7−→ φp(α̃

a1...ar

b1...bs
)

in stages, considering, in order, scalars (0th order tensors), contravariant vectors, covariant vectors, and

then, finally, arbitrary tensors.

For scalars α, we set φp(α) = α. (We do not put a tilde over the first α because there is no distinction

to be drawn here. Scalars are just scalars.) For vectors ξ̃a, we set

φp(ξ̃
a) = (idp)∗(ξ̃

a).

It follows immediately from (I2) — the second condition in the definition of an imbedding — and the

definition of tangency that φp determines an isomorphism between Sp and the space of contravariant

M -vectors at p tangent to S. Next, we define φp(η̃a) by specifying its action on vectors ξa ∈ (Mp)
a that

are either tangent to, or normal to, S. (This suffices since, as we have seen, we can always find a basis

for (Mp)
a consisting entirely of such vectors.)

φp(η̃a) ξ
a =





η̃a
(
(φp)

−1(ξa)
)

if ξa is tangent to S

0 if ξa is normal to S

Clearly, φp(η̃a) is tangent to S. That much is guaranteed by the second clause within the definition.

Moreover, the action of φp on (Sp)a is injective. (Suppose φp(η̃a) is the zero vector in (Mp)a. Then

η̃a
(
(φp)

−1(ξa)
)

= 0, for all tangent vectors ξa ∈ (Mp)
a. But every vector in (Sp)

a is of the form

(φp)
−1(ξa) for some tangent vector ξa ∈ (Mp)

a. So η̃a is the zero vector in (Sp)a.)

Finally, we consider the case of an S-tensor at p of higher order index structure – say α̃abc. There are

no surprises. We define φp(α̃
ab
c), once again, by specifying its action on vectors that are all tangent to,

or normal to, S.

φp(α̃
ab
c)µa νb ξ

c =






α̃abc
(
(φp)

−1(µa)
) (

(φp)
−1(νb)

) (
(φp)

−1(ξc)
)

if µa, νb, and ξc are tangent to S

0 if µa, νb, or ξc is normal to S

Clearly, φp(α̃
ab
c) is tangent to S, and the argument that φp is injective in its action on (Sp)

ab
c is very

much the same as in the preceding case. This completes our definition.

6We are presenting a great deal of detail here. Some readers may want to skip to proposition 1.10.1.
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We have established, so far, that for every index structure a1...ar

b1...bs
, there is an isomorphism between

the vector space of S-tensors α̃a1...ar

b1...bs
at p and the vector space of M -tensors αa1...ar

b1...bs
at p

that are tangent to S. If we now “aggregate” the different isomorphisms, we arrive at a map φp (we

use the same notation) that commutes with all the tensor operations – addition, exterior multiplication,

index substitution, and contraction. It follows from our definition, for example, that φp(α̃
ab
c β̃

de) =

φp(α̃
ab
c)φp(β̃

de) and φp(α̃
ab
c β̃

ce) = φp(α̃
ab
c)φp(β̃

ce). In summary, we have established the following.

Proposition 1.10.1. Let S be a metric submanifold of the manifold M . Then the tensor algebra of

S-tensors at any point of S is isomorphic to the tensor algebra of M -tensors there that are tangent to S.

The map φp is closely related to (idp)∗. Indeed, it agrees with the latter in its action on contravariant

tensors at p. But (idp)∗ makes assignments only to contravariants tensors there, whereas φp makes

assignments to all tensors. (Similarly, (φp)
−1 agrees with (idp)

∗ in its assignment to covariant tensors at

p that are tangent to S.)

Now we switch our attention to tensor fields on S, i.e., assignments of tensors of the same index

structure to every point of S. Of course, we have to distinguish between assignments of S-tensors and

assignments of M -tensors. But the isomorphisms we have been considering (defined at individual points

of S) induce a correspondence α̃a1...ar

b1...bs
7−→ φ(α̃a1...ar

b1...bs
) between S-fields and M -fields that are

tangent to S, i.e., tangent at every point.

The correspondence respects differential structure in the following sense (in addition to algebraic

structure). Let αa1...ar

b1...bs
be an M -field on S that is tangent to S. There are two senses in which it

might be said to be “smooth”. Let us say that it is M -smooth if, for every p in S, there is an open set

O ⊆M containing p and an extension of αa1...ar

b1...bs
to a field

+
αa1...ar

b1...bs
on O that is smooth relative

to the charts CM. (This sense of smoothness applies to all M -fields on S, whether they are tangent to

S or not.) Let us also say that it is S-smooth if the corresponding S-field φ−1(αa1...ar

b1...bs
) is smooth

relative to the charts CS . One would like these two senses of smoothness to agree, and in fact they do.

By direct consideration of charts, one can establish the following. (We skip the proof.)

Proposition 1.10.2. Let S be a metric submanifold of the manifold M . Further, let αa1...ar

b1...bs
be an

M -field on S that is tangent to S. Then αa1...ar

b1...bs
is M -smooth iff it is S-smooth.

In what follows, we shall sometimes say that an M -field on S is smooth without further qualification.

If the field is not tangent to S, this can only mean that it is M -smooth. If it is tangent to S, the

proposition rules out any possibility of ambiguity.

Consider now the S-field h̃ab = id∗(gab) on S. It is called the induced metric or first fundamental form

on the manifold S.7 (That it is a metric follows from our assumption that S is a metric submanifold of

7Warning: the latter (perfectly standard) expression is potentially confusing because h̃ab is not a “form” in the special

technical sense introduced in section 1.7, i.e., is it not anti-symmetric.
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M . Recall problem 1.10.2.) Associated with h̃ab is a unique compatible derivative operator D̃ on S. (So

it satisfies D̃a h̃bc = 0.) It is our goal now to show that it is possible, in a sense, to express D̃ in terms of

the derivative operator ∇ on M that is compatible with gab. The sense involved is a bit delicate because

it involves the map φ we have been considering that takes S-fields to M -fields on S tangent to S. The

idea, in effect, is to translate talk about the former into talk about the latter.

Corresponding to h̃ab is a smooth, symmetric M -field hab = φ(h̃ab) = φ(id∗(gab)) on S that is tangent

to S. (It is tangent to S because the image of every S-field under φ is so. How do we know it is

smooth? Since gab is a smooth field on the manifold M , id∗(gab) is a smooth field on the manifold S.

But id∗(gab) = φ−1(hab). So hab is S-smooth (and, hence, M -smooth as well).) We can characterize hab

directly, without reference to h̃ab or φ, in terms of its action (at any point of S) on M -vectors that are

tangent to, or normal to, S.

hab λ
a ηb =





gab λ
a ηb if λa and ηa are both tangent to S

0 if λa or ηa is normal to S.
(1.10.1)

The equivalence is easy to check.8

Several properties of hab, as well as a companion field kab = (gab − hab) are listed in the following

proposition. Clearly, kab is also a symmetric, smooth M -field on S. (Here and in what follows, whenever

we lower and raise indices on M -tensors, it should be understood that we do so with gab.)

Proposition 1.10.3. Let S be a metric submanifold of the manifold M (with respect to the metric gab

on M). Let hab be the M -field on S defined by (1.10.1), and let kab be the companion M -field (gab−hab)

on S. Then all the following hold.

(1) hab is tangent to S and kab is normal to S.

(2) For all M -vector fields αa on S,

(a) αa is tangent to S ⇐⇒ hab α
b = αa ⇐⇒ kab α

b = 0;

(b) αa is normal to S ⇐⇒ kab α
b = αa ⇐⇒ hab α

b = 0.

(3) hab h
b
c = hac and kab k

b
c = kac and hab k

b
c = 0.

Proof. (1) We have already given an argument to show that hab is tangent to S. (Once again, hab =

φ(h̃ab), and the image of every S-field under φ is tangent to S.) Now let ξa be any M -vector tangent

to S (at any point of S). Then kab ξ
a = gab ξ

a − hab ξ
a. But gab ξ

a = hab ξ
a, since they agree in their

action on both vectors tangent to S and normal to it. So kab ξ
a = 0. It follows that kab is normal to S

in its first index. But kab is symmetric. So it is (fully) normal to S. (2) Suppose first that hab α
b = αa.

8Suppose λa and ηa are both tangent to S. Then, by the definitions of φ and the pull-back map id∗,

hab λa ηb = φ(id∗(gab)) λa ηb = id∗(gab) φ−1(λa) φ−1(ηb) = gab id∗(φ−1(λa)) id∗(φ−1(ηb)) = gab λa ηb.

Alternatively, if either λa or ηa is normal to S, then hab λa ηb = 0 since hab is tangent to S.
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Then αa is certainly tangent to S, since hab is tangent to S in the index a. Conversely, suppose αa is

tangent to S. Then, we claim, hab α
b and αa have the same action on any vector ηa (at any point of S)

that is either tangent to, or normal to, S. In the first case, habα
b ηa = gab η

a αb = αa ηa. In the second

case, hab α
b ηa = 0 = αa ηa. This gives us the first equivalence in (a). The second is immediate since

kab α
b = (gab − hab)α

b = αa − hab α
b. The equivalences in (b) are handled similarly. (3) It follows from

(2) that hab h
b
c and hac have the same action on any vector ξc (at any point of S) that is either tangent

to, or normal to, S. So hab h
b
c = hac. The arguments for kab k

b
c = kac and hab k

b
c = 0 are similar.

Problem 1.10.3. Prove the following generalization of clause (2) in proposition 1.10.3. For all M -tensor

fields α ...a... on S,

(1) α ...a... is tangent to S in the index a ⇐⇒ hab α
...b... = α ...a... ⇐⇒ kab α

...b... = 0.

(2) α ...a... is normal to S in the index a ⇐⇒ kab α
...b... = α ...a... ⇐⇒ hab α

...b... = 0.

We have formulated the preceding problem in terms of contravariant M -fields on S. But, of course,

this involves no essential loss of generality. For given one, instead, of form, say, α abcde, we can always

apply the stated results to β abcde = α abmnrg
mcgndgre and then lower indices.

We can think of hab and kab as projection operators. Given an M -field ξa, hab ξ
b is its component

tangent to S, and kab ξ
b is its component normal to S. More generally, we can use the two operators to

decompose an M -field of arbitrary index structure into a sum of component tensor fields, each of which is

either tangent to S or normal to S in each of its indices (which is not to say that each of the component

fields will be either (fully) tangent to S or (fully) normal to S). So, for example, in the case of a field αab

on S, we have the following decomposition:

αab = ham h
n
b α

m
n + ham k

n
b α

m
n + kam h

n
b α

m
n + kam k

n
b α

m
n.

(Notice that the two fields, left and right, have the same action (at any point) on any pair of vectors

ηa ξ
b, each of which is either tangent to S or normal to S.)

We are ready to explain the sense in which the action of D̃ can be expressed in terms of ∇. We start

with a lemma.

Lemma 1.10.4. Let S be a metric submanifold of the manifold M (with respect to the metric gab on

M). Let hab be the M -field on S defined by (1.10.1). Finally, let
1
α a1...ar

b1...bs
and

2
α a1...ar

b1...bs
be

smooth M -fields on an open set O ⊆M that agree on S. Then at all points of S ∩O,

hnm∇n
1
α a1...ar

b1...bs
= hnm∇n

2
α a1...ar

b1...bs
.

Proof. Consider βa1...ar

b1...bs
=

1
α a1...ar

b1...bs
− 2
α a1...ar

b1...bs
. It vanishes on S. Let p be a point in

S ∩O. We need to show that

hnm∇nβa1...ar

b1...bs
= 0
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at p. To do so, it suffices to show that if we contract the left side with any vector ξm at p that is either

tangent to, or normal to, S, the result is 0. That is true automatically if ξm is normal to S (since hnm is

tangent to S). And if ξm is tangent to S, hnm ξ
m = ξn. So it suffices to show that

ξn∇n βa1...ar

b1...bs
= 0

for all ξn at p tangent to S. The proof of this assertion is similar to other “well-definedness” arguments

given before, and proceeds by considering the index structure of βa1...ar

b1...bs
. If β is a scalar field on

S, then ξn∇n β is just the directional derivative ξ(β). This has to be 0 because β is constant on S.

One next proves the statement for contravariant vector fields βa on S using the result for scalar fields

together with the Leibniz rule, and so forth.

Now suppose αa1...ar

b1...bs
is a smooth M -field on S. We cannot expect to be able to associate with it a

field ∇m αa1...ar

b1...bs
on S. (The latter, if well defined, would encode information about how αa1...ar

b1...bs

changes as one moves away from S in arbitrary directions.) But, by the lemma, we can introduce a field

hnm∇n αa1...ar

b1...bs
on S. At any point of S, we simply extend αa1...ar

b1...bs
to a smooth field

1
α a1...ar

b1...bs

on some open set O, and set

hnm∇n αa1...ar

b1...bs
= hnm∇n

1
α a1...ar

b1...bs
.

This field need not be tangent to S even if αa1...ar

b1...bs
is. But we can “make it tangent” if we project all

indices onto S with the field hnm. This action defines an operator Da on the set of all smooth M -tensor

fields αa1...ar

b1...bs
on S that are tangent to S:

Dm α
a1...ar

b1...bs
= ha1

c1 ... h
ar
cs
hd1b1 ... h

ds

bs
hnm∇n αc1...cr

d1...ds
. (1.10.2)

The basic result toward which we have been working is the following.

Proposition 1.10.5. For all smooth S-fields α̃a1...ar

b1...bs
,

φ(D̃n α̃
a1...ar

b1...bs
) = Dn φ(α̃a1...ar

b1...bs
).

Proof. Let ˜̃D be the operator on smooth S-fields that is defined by the condition

˜̃Dn α̃
a1...ar

b1...bs
= φ−1(Dn φ(α̃a1...ar

b1...bs
)).

It suffices for us to show that it is a derivative operator on S and that is compatible with h̃ab. For then

it will follow (by proposition 1.9.2) that ˜̃D = D̃.

Consider, first, the compatibility condition. Since φ(h̃ab) = hab, we have

˜̃Dn h̃ab = φ−1(Dn φ(h̃ab)) = φ−1(Dn hab) = φ−1(hra hsb hmn∇m hrs)

= φ−1(hsb hmn
[
∇m (hra hrs) − hrs∇m h

r
a

]
)

= φ−1(hsb hmn∇m has − hrb h
m
n∇m hra) = φ−1(0) = 0.
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Note that we have used the Leibniz rule (in reverse) to arrive at the fourth equality. We are justified

in doing so because we are here working “within the shadow” of the projection operator hmn. We can

always (locally) extend the tensor fields in question, invoke the Leibniz rule for ∇ in its standard form

(where we are working with fields defined on open sets in M rather than fields defined only on S), and

then invoke our lemma to show that it does not matter how we do the extension. Note also that the fifth

equality follows from the third clause of proposition 1.10.3, and the sixth from the symmetry of hab.

Next we need to verify that ˜̃D satisfies conditions (DO1) through (DO6). The first five are straightfor-

ward. The argument is very much the same in each case. Let us consider, for example, a representative

instance of the Leibniz rule. We have

˜̃Dn(α̃
ab η̃c) = φ−1(Dn[φ(α̃ab)φ(η̃c)]) = φ−1(har hbs hqc hmn∇m [φ(α̃rs)φ(η̃q)])

= φ−1(har hbs hqc[φ(α̃rs)hmn∇m φ(η̃q) + φ(η̃q)h
m
n∇m φ(α̃rs)])

= φ−1(φ(α̃ab)hqc h
m
n∇m φ(η̃q) + φ(η̃c)h

a
r h

b
s h

m
n∇m φ(α̃rs))

= φ−1(φ(α̃ab)Dn φ(η̃c) + φ(η̃c)Dn φ(α̃ab))

= α̃ab φ−1(Dn φ(η̃c)) + η̃c φ
−1(Dn φ(α̃ab))

= α̃ab ˜̃Dn η̃c + η̃c
˜̃Dn α̃

ab.

A few steps here deserve comment. For the fourth equality, we need the fact that har φ(α̃rs) = φ(α̃as)

(and a number of similar statements involving change of index). Note that this is just an instance of the

assertion in problem 1.10.3, since φ(α̃rs) is tangent to S. And the sixth equality holds because φ (acting

at any point in S) is a tensor algebra isomorphism that commutes with the operations of addition and

exterior multiplication.

Let us turn, finally, to (DO6). This is the only one of the conditions that requires a bit of attention.

Let α be a smooth scalar field on S. Then

˜̃Da
˜̃Db α = φ−1(Da φ( ˜̃Db α)) = φ−1(DaDb φ(α)) = φ−1(hmb hna∇n (hrm∇rα)).

Here we have used the fact that φ(α) = α. Now let p be any point on S. We can extend α to a smooth

field
+
α on an open set O in M containing p. Moreover, we can do so in such a way that ∇a

+
α is tangent

to S on S∩O. (This can be verified with an argument involving charts. Intuitively we keep
+
α constant as

we move out from S in directions normal to S). So hna∇n
+
α = ∇a

+
α on S ∩O. Thus, ∇a

+
α is a smooth

field on O that agrees with hna∇n
+
α on S ∩ O. It follows that we can understand hna∇n (hrm∇rα) to

be hna∇n∇m
+
α on S ∩O, and therefore

˜̃Da
˜̃Db α = φ−1(hmb hna∇n∇m

+
α )

at p. The tensor on the right side is manifestly symmetric in a and b (since ∇ satisfies condition (DO6)).

Thus ˜̃Da
˜̃Db α is symmetric in these indices at our arbitrary point p in S.
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Up to this point we have been attentive to the distinction between S-fields and M -fields on S tangent

to S, between h̃ab and hab, and between the operators D̃ and D. But it is, more or less, standard practice

to be a bit casual about these distinctions or even to collapse them entirely by identifying the vector

space Sp formally with the subspace of Mp whose elements are tangent to S. (The work we have done to

this point — in particular, propositions 1.10.1, 1.10.2, and 1.10.5 — makes clear that there is no harm in

doing so.) In what follows, that will be our practice as well. We shall refer to hab as the “metric induced

on S” (or the “first fundamental form on S”), refer to D as the “derivative operator induced on S”, and

so forth. We shall also drop the labels “S-field” and “M -field”, since it is only the latter with which we

shall be working.

In effect, we shall be systematically translating “S-talk” into “M -talk”. Here is one more example

of how this works. What should we mean by a “geodesic on S with respect to the induced metric (or

induced derivative operator)”? We can certainly understand it to be a map of the form γ : I → S that

is smooth with respect to CS and whose tangent field ξ̃a satisfies ξ̃nD̃nξ̃
a = 0. Instead, we shall drop

explicit reference to CS and D̃ and take it to be a map of the form γ : I → S that is smooth with respect

to CM and whose tangent field ξa satisfies ξnDnξ
a = 0.

We know that

hma h
n
b h

p
c∇m hnp = 0 (1.10.3)

on S. (This is just the assertion thatDahbc = 0, and we proved it in the course of showing that D̃ah̃bc = 0.

That was the first step in our proof of proposition 1.10.5.) Similarly one can show that

hma k
n
b k

p
c∇m hnp = 0 (1.10.4)

on S. However, the mixed projection field πabc defined by

πabc = hma h
n
b k

p
c∇m hnp (1.10.5)

need not vanish. It turns out that πabc is of particular geometric interest. It is called the extrinsic

curvature field on S.

Problem 1.10.4. Prove (1.10.4).

The induced metric hab and its associated derivative operator D are geometric structures “intrinsic”

to S. They are not sensitive to the way S is imbedded in M . We say that (S, hab) has vanishing

intrinsic curvature just in case D is flat. The extrinsic curvature of S, in contrast, is determined by

the imbedding. Think of both a plane and a cylinder imbedded in ordinary three-dimensional Euclidean

space (figure 1.10.2). They both have vanishing intrinsic curvature. But only the plane has vanishing

extrinsic curvature. Notice that all geodesics of the plane are necessarily geodesics of the ambient three-

dimensional space. But the corresponding statement for the cylinder is not true. There are geodesics of

the cylinder (e.g., γ in figure 1.10.2) that are not geodesics of the larger space. This is a good way to



CHAPTER 1. DIFFERENTIAL GEOMETRY 92

γ

Figure 1.10.2: The cylinder and the plane (imbedded in three-dimensional Euclidean space)
both have vanishing intrinsic curvature. But the cylinder, in contrast to the plane, has non-
vanishing extrinsic curvature. Notice that there are curves on the cylinder, e.g., γ, that are
geodesics with respect to induced derivative operator D that are not geodesics with respect
to the background derivative operator ∇.

think about extrinsic curvature. Indeed, as we shall prove (proposition 1.10.7), πabc is a measure of the

degree to which geodesics in (S, hab) fail to be geodesics in (M, gab). But first we need a lemma.

Lemma 1.10.6. π[ab]c = 0 .

Proof. Consider any point p in S. If ξa is a vector at p tangent to S, we have ξc kpc = 0 and hence

ξc π[ab]c = 0. So it will suffice to show ξc π[ab]c = 0 for all ξa at p normal to S. Since S has dimension

k and M has dimension n, we can find an open set O containing p and (n − k) smooth scalar fields
i
α (i = 1, ..., n− k) on O such that (i) ∇a i

α is normal to S on S ∩O, for all i, and (ii) the vectors ∇a i
α

are linearly independent on S ∩ O. (This can be verified with an argument involving charts. Indeed,

the fields
i
α can be local coordinates induced by a chart on M . What is required is that their associated

coordinate curves all be orthogonal to S where they intersect it.) To complete the proof, it suffices to

verify that (∇c i
α)π[ab]c = 0 at p for all i. But this follows since we have:

(∇c i
α)π[ab]c = (∇c i

α)hm[a h
n
b] k

p
c∇m hnp = hm[a h

n
b](∇p i

α)∇m hnp
= hm[a h

n
b][∇m(hnp∇p i

α) − hnp∇m∇p i
α
]

= −hm[a hpb]∇m∇p i
α = −hma hpb∇[m∇p] i

α = 0.

(For the fourth equality we have used the fact that since hnp∇p i
α = 0 on S ∩ O, it must be the case

that h m
a ∇m(hnp∇p i

α) = 0 on S ∩O. This follows, once again, from lemma 1.10.4.)

Now we can give the promised geometric interpretation of πabc.

Proposition 1.10.7. Let S be a metric submanifold of the manifold M (with respect to the metric gab

on M). Let ∇ be the derivative operator on M determined by gab, let hab be the induced metric on S,
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and let πabc be the extrinsic curvature field on S. Finally, let γ be a geodesic in (S, hab) with tangent field

ξa. Then

ξn∇n ξc = π c
ab ξ

a ξb. (1.10.6)

Proof. By hypothesis, ξnDn ξ
c = 0. And ξn hrn = ξr, since ξa is tangent to S. So

0 = ξn hrn h
c
m∇r ξm = ξr(gcm − kcm)∇r ξm = ξr∇r ξc − kcm ξ

r∇r ξm.

Therefore,

ξr∇r ξc = kcm ξ
r∇r ξm = kcm ξ

r∇r(hmp ξp)

= kcm ξ
r(hmp∇r ξp + ξp∇r hmp) = kcm ξ

r ξp∇r hmp
= kcm(ξa hra)(ξ

b hpb)∇r hmp = ξa ξb hra h
p
b k

cm∇r hpm = ξa ξb π c
ab .

Here we use the fact that kcm h
m
p = 0 for the fourth equality.

Given any point p in S, πabc vanishes there iff πabc ξ
aξb = 0 for all vectors ξa at p that are tangent

to S. (This follows, since πabc is symmetric in its first two indices (lemma 1.10.6) and also tangent to

S in them. Recall proposition 1.4.3.) But given any vector ξa at p tangent to S, there is a geodesic in

(S, hab) that passes through p, whose tangent vector there is ξa. So it follows from our proposition that

πabc = 0 iff all geodesics in (S, hab) are geodesics in (M, gab). Moreover, the requirement that equation

(1.10.6) hold for all geodesics in (S, hab) uniquely determines πabc.

Next we consider the Gauss-Codazzi equations.

Proposition 1.10.8. Suppose (M, gab) and (S, hab) are as in proposition 1.10.7, and D is the derivative

operator on S determined by hab. Further suppose Rabcd is the Riemann curvature field on M associated

with ∇, and Ra
bcd is the Riemann curvature field on S associated with D. Then

Ra
bcd = −2πa m[c πd]bm + ham h

n
b h

p
c h

r
dR

m
npr, (1.10.7)

hm[a h
n
b] h

p
c k

r
d∇m πnpr =

1

2
hma h

n
b h

p
c k

r
dRmnpr. (1.10.8)

Proof. The argument consists of a long computation. First, let λa be any smooth vector field on S

tangent to S. Then Ra
bcd must satisfy

−1

2
Ra

bcd λ
b = D[cDd] λ

a = hp[c h
r
d] h

a
s∇p(hmr hsn∇m λn)

= hp[c h
r
d] h

a
s

[
(∇p hmr)hsn∇m λn

+ hmr(∇p hsn)∇m λn + hmr h
s
n∇p∇m λn

]
. (1.10.9)

Now, by (1.10.3) and (1.10.5),

hpc h
r
d∇p hmr = hpc h

r
d g

m
q∇p hqr = hpc h

r
d(k

m
q + hmq)∇p hqr = π m

cd . (1.10.10)
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So, by lemma 1.10.6, the first term on the right side of (1.10.9) vanishes. The second and third terms

can be simplified by using (1.10.10), the symmetry of hsn, and the fact that hrd h
m
r = hmd. We have

−1

2
Ra

bcd λ
b = hp[c h

m
d] h

a
s(∇p hsn)∇m λn + hp[c h

m
d]h

a
n∇p∇m λn

= π an
[c hmd]∇m λn + hpc h

m
d h

a
n∇[p∇m] λ

n

= π an
[c hmd] ∇m λn − 1

2
hpc h

m
d h

a
nR

n
bpm λ

b.

Now πcan is normal to S in its third index. So π an
c hnb = 0 and, therefore,

π an
c hmd∇m λn = π an

c hmd∇m(hnb λ
b)

= π an
c hmd λ

b∇m hnb = π an
c hmd h

b
r λ

r∇m hnb
= π an

c πdrn λ
r = πa nc πdrnλ

r.

So we have, all together,(
− 1

2
Ra

rcd − πa n[c πd]rn +
1

2
han h

p
c h

m
dR

n
rpm

)
λr = 0.

Now let ηb be an arbitrary smooth field on S and take hrb η
b for λr . Then, since the first two terms

are tangent to S in the index r, we have

(Ra
bcd + 2πa n[c πd]bn − han h

r
b h

p
c h

m
dR

n
rpm)ηb = 0.

Since this holds for all smooth fields ηb on S, the field in parentheses must vanish. This gives us (1.10.7).

The second computation is similar, and we leave it as an exercise.

Problem 1.10.5. Derive the second Gauss-Codazzi equation (1.10.8).

The first Gauss-Codazzi equation expresses the intrinsic Riemann curvature tensor field Ra
bcd in terms

of the extrinsic curvature field πabc and the full background Riemann curvature field Rabcd. We shall return

to it later when we consider the geometric significance of Einstein’s equation.

So far we have assumed only that S is a metric submanifold of M . Let us now consider the special

case where S is a metric hypersurface, i.e., has dimension k = (n − 1). A slight simplification results.

The vector space of vectors normal to S is now one-dimensional at every point of S. So it consists of

multiples of some (normalized) vector ξa where ξaξa = ±1. (ξaξa cannot be 0 precisely because S is a

metric submanifold.) Whether the value of ξaξa is +1 or −1 depends on S and the signature of gab. At

least if S is connnected, the value will be the same at every point of S, i.e., everywhere +1 or everywhere

−1.

Let us assume that S and gab are such that the value is +1 at all points of S. (The other case is

handled similarly.) So there are exactly two vectors ξa normal to S at every point satisfying ξa ξa = 1.

Locally, at least, we can always make a choice so as to generate a smooth field. We say that S is two

sided if it is possible to do so globally.
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Let ξa be one such (local or global) smooth normal field on S satisfying ξa ξa = 1. Then

hab = (gab − ξa ξb), (1.10.11)

kab = ξa ξb. (1.10.12)

(Note that hab and (gab − ξa ξb) have the same action on ξa and on all vectors tangent to S.) Now

consider the field πab defined by

πab = −πabc ξc. (1.10.13)

When hypersurfaces are under discussion, it (rather than πabc) is often called the extrinsic curvature field

(relative to ξa). It is also called the second fundamental form on S (relative to ξa). Notice that

π[ab] = 0, (1.10.14)

πabc = −πab ξc, (1.10.15)

πab = hma h
n
b∇m ξn. (1.10.16)

The first assertion follows immediately from lemma 1.10.6. For the second, it suffices to observe that πabc

and −πab ξc agree in their action on ξc and on all vectors ηc tangent to S. For the third, we have

πab = −πabc ξc = −hma hnb kpc ξc∇m hnp = −hma hnb ξp∇m hnp
= −hma hnb[∇m(ξp hnp) − hnp∇m ξp] = hma h

p
b∇m ξp.

Equation (1.10.16) leads to an alternative interpretation of extrinsic curvature in the case of hyper-

surfaces. Let
+

ξa be an extension of ξa to a smooth field of unit length on some open set O in M , and let
+

hab be defined by
+

hab= gab−
+

ξa
+

ξb. (So
+

hab is an extension of hab and
+

hab
+

ξa = 0.) Then we have:

πab =
1

2
£+

ξ

+

hab (1.10.17)

on S ∩ O. To prove this, observe first that on S ∩ O £+

ξ

+

hab is tangent to S (in both indices). This

follows since £+

ξ

+

ξa = 0 and, hence,

+

ξa£+

ξ

+

hab = £+

ξ
(
+

hab
+

ξa)−
+

hab £+

ξ

+

ξa = 0.

Therefore on S we have

£+

ξ

+

hab = hra h
s
b£+

ξ

+

hrs = hra h
s
b£+

ξ
(grs−

+

ξ r
+

ξs)

= hra h
s
b£+

ξ
grs = hra h

s
b [

+

ξn∇n grs + gns∇r
+

ξn + grn∇s
+

ξn]

= hra h
s
b (∇r

+

ξ s +∇s
+

ξ r) = 2hr(a h
s
b) ∇r

+

ξs

= 2π(ab) = 2πab.



CHAPTER 1. DIFFERENTIAL GEOMETRY 96

(The final two equalities follow, respectively, from equations (1.10.16) and (1.10.14).)

Thus we can think of πab (up to the factor
1

2
) as the Lie derivative of hab in the direction ξa normal

to S. This interpretation will be important later in connection with our discussion of the “initial value

problem” in general relativity.

Finally let us reconsider the Gauss-Codazzi equations in the present case. Substituting −πabξc for

πabc in the equations of proposition 1.10.8 yields

Ra
bcd = −2πa[c πd]b + ham h

n
b h

p
c h

r
dR

m
npr, (1.10.18)

hm[a h
n
b] h

p
c∇m πnp = −1

2
hma h

n
b h

p
c ξ
rRmnpr.

The second can be expressed as

D[a πb]c = −1

2
hma h

n
b h

p
c ξ
rRmnpr. (1.10.19)

Contracting on (1.10.18) yields

Rbc = −πac πab + πaa πcb + hrm h
n
b h

p
cR

m
npr.

Substituting (grm − ξm ξ
r) for hrm on the right side, we arrive at

Rbc = π πbc − πab π
a
c + hnb h

p
cRnp −Rmbcr ξ

m ξr, (1.10.20)

where π = πaa. (Note that Rmbcr ξ
m ξr is tangent to S, since (by proposition 1.9.4) contracting with ξa

on b or c yields 0. Hence hnb h
p
cRmbcr ξ

m ξr = Rmbcr ξ
m ξr.) Contracting once more yields

R = π2 − πab π
ab + hnpRnp −Rmr ξ

mξr

= π2 − πab π
ab +R− 2Rnr ξ

n ξr. (1.10.21)

Of course, in the special case where we are dealing with a hypersurface imbedded in a flat manifold

(Rabcd = 0), e.g., in the case of a two-dimensional surface imbedded in three-dimensional Euclidean space,

our expressions for Ra
bcd, Rbc, and R simplify still further:

Rabcd = πad πbc − πac πbd, (1.10.22)

Rbc = π πbc − πab π
a
c, (1.10.23)

R = π2 − πab π
ab. (1.10.24)
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1.11 Volume Elements

In what follows, let M be an n−dimensional manifold (n ≥ 1). As we know from section 1.7, an

s-form on M (s ≥ 1) is a covariant field αb1...bs
that is anti-symmetric (i.e., anti-symmetric in each pair

of indices). The case where s = n is of special interest.

Let αb1...bn
be an n-form on M . Further, let

i

ξb (i = 1, ..., n) be a basis for the tangent space at a point

in M with dual basis
i
ηb (i = 1, ..., n). Then αb1...bn

can be expressed there in the form

αb1...bn
= k n!

1
η[b1 ...

n
ηbn] (1.11.1)

where

k = αb1...bn

1

ξb1 ...
n

ξbn .

(To see this, observe that the two sides of (1.11.1) have the same action on any collection of n vectors

from the set {
1

ξb, ...,
n

ξb}.) It follows that if αb1...bn
and βb1...bn

are any two smooth, non-vanishing n-forms

on M , then

βb1...bn
= f αb1...bn

for some smooth non-vanishing scalar field f .

Smooth, non-vanishing n-forms always exist locally on M . (Suppose (U,ϕ) is a chart with coordinate

vector fields (~γ1)
a, ..., (~γn)

a, and suppose
i
ηb (i = 1, ..., n) are dual fields. Then

1
η[b1 ...

n
ηbn] qualifies as

a smooth, non-vanishing n-form on U .) But they do not necessarily exist globally. Suppose, for example,

that M is the two-dimensional Möbius strip (see figure 1.11.1), and αab is any smooth two-form on M .

We see that αab must vanish somewhere as follows.

Let p be any point on M at which αab 6= 0, and let ξa be any non-zero vector at p. Consider the

number αab ξ
aρb as ρb rotates though the vectors in Mp. If ρb = ±ξb, the number is zero. If ρb 6= ±ξb,

the number is non-zero. Therefore, as ρb rotates between ξa and −ξa, it is always positive or always

negative. Thus αab determines a “positive direction of rotation” away from ξa on Mp. αab must vanish

somewhere because one cannot continuously choose positive rotation directions over the entire Möbius

strip.

M is said to be orientable if it admits a (globally defined) smooth, non-vanishing n-form.

So far we have made no mention of metric structure. Suppose now that our manifold M is endowed

with a metric gab of signature (n+, n−). We take a volume element on M (with respect to gab) to be a

smooth n-form ǫb1...bn
that satisfies the normalization condition

ǫb1...bn ǫb1...bn
= (−1)n

−

n!. (1.11.2)

Suppose ǫb1...bn
is a volume element on M , and

i

ξb (i = 1, ..., n) is an orthonormal basis for the tangent

space at a point in M . Then at that point we have, by (1.11.1),

ǫb1...bn
= k n!

1

ξ[b1 ...
n

ξbn] (1.11.3)
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ρa

•
p

ξa

Mp

αab ξ
a ρb > 0

αab ξ
a(−ρb) < 0

Figure 1.11.1: A 2-form αab on the Möbius strip determines a “positive direction of rotation”
at every point where it is non-zero. So there cannot be a smooth, non-vanishing 2-form on
the Möbius strip.

where k = ǫb1...bn

1

ξb1 ...
n

ξbn . Hence, by the normalization condition (1.11.2),

(−1)n
−

n! =
(
k n!

1

ξ[b1 ...
n

ξbn]

)(
k n!

1

ξ[b1 ...
n

ξbn]
)

= k2(n!)2
1

n!

(1

ξb1
1

ξb1
)
...
(n

ξbn

n

ξbn
)

= k2 n! (−1)n
−

.

So k2 = 1 and, therefore, (1.11.3) yields

ǫb1...bn

1

ξb1 ...
n

ξbn = ±1. (1.11.4)

Clearly, if ǫb1...bn
is a volume element on M , then so is −ǫb1...bn

. It follows from the normalization

condition (1.11.4) that there cannot be any others. Thus, there are only two possibilities. Either (M, gab)

admits no volume elements (at all) or it admits exactly two, and these agree up to sign.

Condition (1.11.4) also suggests where the term “volume element” comes from. Given arbitrary

vectors
1
γa, ...,

n
γa at a point, we can think of ǫb1...bn

1
γb1 ...

n
γbn as the volume of the (possibly degenerate)

parallelepiped determined by the vectors. Notice that, up to sign, ǫb1...bn
is characterized by three

properties.

(VE1) It is linear in each index.

(VE2) It is anti-symmetric.

(VE3) It assigns a volume V with |V | = 1 to each orthonormal parallelepiped.

These are conditions we would demand of any would-be volume measure (with respect to gab). If the

length of one edge of a parallelepiped is multiplied by a factor k, then its volume should increase by

that factor. And if a parallelepiped is sliced into two parts, with the slice parallel to one face, then its

volume should be equal to the sum of the volumes of the parts. This leads to (VE1). Furthermore, if any

two edges of the parallelepiped are coalligned (i.e., if it is a degenerate parallelepiped), then its volume

should be zero. This leads to (VE2). (If for all vectors ξa, ǫb1...bn
ξb1 ξb2 = 0, then it must be the case
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that ǫb1...bn
is anti-symmetric in indices (b1, b2). And similarly for all other pairs of indices.) Finally,

if the edges of a parallelepiped are orthogonal, then its volume should be equal to the product of the

lengths of the edges. This leads to (VE3). The only unusual thing about ǫb1...bn
as a volume measure is

that it respects orientation. If it assigns V to the ordered sequence
1
γa, ...,

n
γa, then it assigns (−V ) to

2
γa,

1
γa,

3
γa, ...,

n
γa, and so forth.

It will be helpful to collect here a few facts for subsequent calculations. Suppose ǫa1...an
is a volume

element on M with respect to the metric gab with signature (n+, n−). Then

ǫa1...an ǫb1...bn
= (−1)n

−

n! δ
[a1

b1
...δ

an]
bn
, (1.11.5)

ǫa1...an ǫa1b2...bn
= (−1)n

−

(n− 1)! δ
[a2

b2
...δ

an]
bn
, (1.11.6)

ǫa1...an ǫa1a2b3...bn
= (−1)n

−

2(n− 2)! δ
[a3

b3
...δ

an]
bn
, (1.11.7)

...

ǫa1...an ǫa1...arbr+1...bn
= (−1)n

−

r! (n− r)! δ
[ar+1

br+1
...δ

an]
bn
. (1.11.8)

Consider, for example, the case where n = 3 and n− = 0, i.e., where gab is positive definite. (The general

case is handled similarly.) Then (1.11.5) comes out as the assertion: ǫabcǫmnq = 6 δ
[a
m δbn δ

c]
q. To see

that it holds, consider any anti-symmetric tensor αmnq at a point. Then αmnq = k ǫmnq for some k. So

ǫabc ǫmnq α
mnq = k ǫabc ǫmnq ǫ

mnq = 6k ǫabc = 6αabc

= 6 δ[am δ
b
n δ

c]
q α

mnq.

Thus for all anti-symmetric αmnq at the point, we have

(
ǫabc ǫmnq − 6 δ[am δ

b
n δ

c]
q

)
αmnq = 0.

In particular, given arbitrary vectors λm, ρn, µq there,

(
ǫabc ǫmnq − 6 δ[am δ

b
n δ

c]
q

)
λ[m ρn µq] = 0.

But since the expression in parentheses is itself anti-symmetric in the indices (m,n, q), this condition can

be expressed as
(
ǫabc ǫmnq − 6 δ[am δ

b
n δ

c]
q

)
λm ρn µq = 0.

Since λm, ρn, and µq are arbitrary, it follows that

ǫabc ǫmnq − 6 δ[am δ
b
n δ

c]
q = 0.

This gives us (1.11.5). Next, (1.11.6) follows from (1.11.5) since

ǫabc ǫanq = 6 δ[aa δ
b
n δ

c]
q

= 2
(
δaa δ

[b
n δ

c]
q − 2 δ[bn δ

c]
q

)

= 2(3 − 2)δ[bn δ
c]
q = 2 δ[bn δ

c]
q.
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Finally, (1.11.7) follows from (1.11.6) since

ǫabc ǫabq = 2 δ
[b
b δ
c]
q =

(
δbb − 1

)
δcq = 2 δcq.

Another fact we shall need is

∇m ǫa1...an
= 0 (1.11.9)

(where ∇ is the derivative operator on M determined by gab). To see this, suppose λa is an arbitrary

smooth field on M . Then, since λm∇m ǫb1...bn
is a smooth n-form on M , we have

λm∇m ǫb1...bn
= ϕǫb1...bn

for some scalar field ϕ. But then

ϕ (−1)n
−

n! = ϕǫa1...an ǫa1...an
= ǫa1...an λm∇m ǫa1...an

=
1

2
λm∇m

(
ǫa1...an ǫa1...an

)
=

1

2
λm∇m((−1)n

−

n!) = 0.

So ϕ = 0 and, hence, λm∇m ǫb1...bn
= 0. Since λm was arbitrary, we have (1.11.9).

Finally, we show how to recover ordinary vector analysis in terms of volume elements. Suppose our

manifold M is R
3, gab is the Euclidean metric defined by equation (1.9.13), ∇ is the derivative operator

determined by gab, and ǫabc is a volume element on M . Then, given contravariant vectors ξ and η at

some point, we define their dot and cross products as follows:

ξ · η = ξa ηa,

ξ × η = ǫabc ξb ηc.

(We are deliberately not using indices on the left.) It follows immediately from the anti-symmetry of

ǫabc that ξ × η = −(η × ξ), and that ξ × η is orthogonal to both ξ and η. Furthermore, if we define the

angular measure ∡(ξ, η) by setting

cos ∡(ξ, η) =
ξ · η

‖ξ‖ ‖η‖ ,

where ‖ξ‖ = (ξ · ξ) 1
2 , then the magnitude of ξ × η is given by

‖ξ × η‖ =
(
ǫabc ξb ηc ǫamn ξ

m ηn
) 1

2

=
(
2 δ[bm δ

c]
n ξ

m ηn ξb ηc
) 1

2

=
[
(ξb ξb)(η

c ηc) − (ξb ηb)
2
] 1

2

= ‖ξ‖ ‖η‖
(
1 − cos2 ∡(ξ, η)

) 1
2 = ‖ξ‖ ‖η‖ sin ∡(ξ, η).

Consider an example. One learns in ordinary vector analysis that, given any three vectors α, β, γ at a

point,

γ × (α× β) = α(γ · β) − β(γ · α).
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In our notation, this comes out as the assertion

ǫabc γb
(
ǫcmnα

m βn
)

= αa(γb β
b) − βa(γb α

b),

and it follows easily from equation (1.11.6):

ǫabc γb ǫcmnα
m βn = ǫcab ǫcmn γbα

m βn

= 2 δ[am δ
b]
n γb α

m βn = αa(γb β
b) − βa(αb γb).

Given a smooth scalar field f and a smooth contravariant vector field ξ on M , we define the following:

grad(f) = ∇af

div(ξ) = ∇a ξa

curl(ξ) = ǫabc∇b ξc.

(In the more familiar notation usually found in textbooks, these would be written as ∇f , ∇ · ξ, and

∇ × ξ.) With these definitions, we can recover all the usual formulas of vector analysis. Here are two

simple examples. (Others are listed in the problems that follow.)

(1) curl(grad f) = 0.

(2) div(curl ξ) = 0.

The first comes out as the assertion that ǫabc∇b∇c f = 0, which is immediate since ∇b∇c f is symmetric in

(b, c). (For this result, flatness is not required.) The second comes out as ∇a(ǫabc∇b ξc) = 0. This follows

from equation (1.11.9) and the fact (now using flatness) that ∇a∇b ξc is symmetric in (a, b).

Problem 1.11.1. One learns in the study of ordinary vector analysis that, for all vectors ξ, η, θ, and λ

at a point, the following identities hold.

(1) (ξ × η) · (θ × λ) = (ξ · θ)(η · λ) − (ξ · λ)(η · θ).

(2) (ξ × (η × θ)) + (θ × (ξ × η)) + (η × (θ × ξ)) = 0.

Reformulate these assertions in our notation and prove them.

Problem 1.11.2. Do the same for the following assertion:

div(ξ × η) = η · curl(ξ) − ξ · curl(η).

(Here ξ and η are understood to be smooth vector fields.)

Problem 1.11.3. We have seen (proposition 1.9.9) that every Killing field ξa in n-dimensional Euclidean

space (n ≥ 1) can be expressed uniquely in the form

ξb = χaFab + kb,
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where Fab and kb are constant, Fab is anti-symmetric, and χa is the position field relative to some point

p. Consider the special case where n = 3. Let ǫabc be a volume element. Show that (in this special

case) there is a unique constant field W a such that Fab = ǫabcW
c. (If W a = 0, ξa is the “infinitesimal

generator” of a family of translations in the direction ka. Alternatively, if ka = 0, it generates a family

of rotations about the point p with axis W a.) (Hint: Consider W a = 1
2ǫ
abcFbc.)



Chapter 2

Classical Relativity Theory

2.1 Relativistic Spacetimes

With the basic ideas of differential geometry now at our disposal, we turn to relativity theory.

It is helpful to think of the theory as determining a class of geometric models for the spacetime

structure of our universe (and isolated subregions thereof, such as, for example, our solar system). Each

represents a possible world (or world-region) compatible with the constraints of the theory. We describe

these models in stages. First, we characterize a broad class of “relativistic spacetimes” and discuss

their interpretation. Later, we introduce further restrictions involving global spacetime structure and

Einstein’s equation.

We take a relativistic spacetime to be a pair (M, gab), where M is a smooth, connnected, four-

dimensional manifold and gab is a smooth metric on M of Lorentz signature (1, 3). We interpret M

as the manifold of point “events” in the world.1 The interpretation of gab is given by a network of inter-

connected physical principles. We list three in this section that are relatively simple in character because

they make reference only to point particles and light rays. (These objects alone suffice to determine the

metric, at least up to a constant.) We list a fourth in section 2.3 that concerns the behavior of (ideal)

clocks. Still other principles involving generic matter fields will come up later.

In what follows, let (M, gab) be a fixed relativistic spacetime and let ∇ be the unique derivative

operator on M compatible with gab. Since gab has signature (1, 3), at every point p in M , the tangent

1We use “event” as a neutral term here and intend no special significance. Some might prefer to speak, for example, of

“equivalence classes of coincident point events” or “point event locations”. We shall take this interpretation for granted in

what follows and shall, for example, refer to such things as “particle worldlines in a relativistic spacetime”.

103
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space Mp has a basis
1

ξa, ...,
4

ξa such that, for all i and j in {1, 2, 3, 4},

i

ξa
i

ξa =





+1 if i = 1

−1 if i = 2, 3, 4

and
i

ξa
j

ξa = 0 if i 6= j. It follows that given any vectors µa =
∑n
i=1

i
µ

i

ξa and νa =
∑n

i=1

i
ν

i

ξa at p,

µa νa =
1
µ

1
ν − 2

µ
2
ν − 3

µ
3
ν − 4

µ
4
ν (2.1.1)

and

µa µa =
1
µ

1
µ− 2

µ
2
µ− 3

µ
3
µ− 4

µ
4
µ. (2.1.2)

(Recall (1.9.3).)

Given a vector ηa at a point in M , we say ηa is

timelike if ηaηa > 0,

null (or lightlike) if ηaηa = 0,

causal if ηaηa ≥ 0,

spacelike if ηaηa < 0.

In this way, gab determines a “null-cone structure” in the tangent space at every point of M . Null vectors

form the boundary of the cone. Timelike vectors form its interior. Spacelike vectors fall outside the cone.

Causal vectors are those that are either timelike or null.

The classification extends naturally to curves. We take a smooth curve γ : I → M to be timelike

(respectively null, causal, spacelike) if its tangent vector field ~γ is of this character at every point. The

property of being timelike, null, and so forth is preserved under reparametrization. So there is a clear

sense in which the classification also extends to images of smooth curves.2 The property of being a

geodesic is not, in general, preserved under reparametrization. So it does not transfer to curve images.

But, of course, the related property of being a geodesic up to reparametrization does carry over.

Now we can state the first three interpretive principles. For all smooth curves γ : I →M ,

(C1) γ is timelike iff γ[I] could be the worldline of a point particle with positive mass;3

(C2) γ can be reparametrized so as to be a null geodesic iff γ[I] could be the trajectory of a light ray;4

2Here we are distinguishing between the map γ: I → M and its image γ[I]. We shall take “worldlines” to be instances

of the latter, i.e., construe them as point sets rather than parametrized point sets.

3We shall later discuss the concept of mass in relativity theory. For the moment, we take it to be just a primitive

attribute of particles.

4For certain purposes, even within classical relativity theory, it is useful to think of light as constituted by streams of

“photons” and to take the right-side condition here to be “γ[I] could be the worldline of a photon”. The latter formulation

makes (C2) look more like (C1) and (P1) and draws attention to the fact that the distinction between particles with positive

mass and those with zero mass (such as photons) has direct significance in terms of relativistic spacetime structure.
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(P1) γ can be reparametrized so as to be a timelike geodesic iff γ[I] could be the worldline of a free5

point particle with positive mass.

In each case, a statement about geometric structure (on the left) is correlated with a statement about

the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here working within the framework

of relativity as traditionally understood and ignoring speculations about the possibility of particles that

travel faster than light. (The worldlines of these so-called “tachyons” would come out as images of

spacelike curves.) Second, we have restricted attention to smooth curves. So, depending on how one

models collisions of point particles, one might want to restrict attention here, in parallel, to particles that

do not experience collisions.

Third, the assertions require qualification because the status of “point particles” in relativity theory

is a delicate matter. At issue is whether one treats a particle’s own mass-energy as a source for the

surrounding metric field gab — in addition to other sources that may happen to be present. (Here we

anticipate our discussion of Einstein’s equation.) If one does, then the curvature associated with gab may

blow up as one approaches the particle’s worldline. And in this case one cannot represent the worldline

as the image of a curve in M , at least not without giving up the requirement that gab be a smooth field

on M . For this reason, a more careful formulation of the principles would restrict attention to “test

particles”, i.e., ones whose own mass-energy is negligible and may be ignored for the purposes at hand.

Fourth, the modal character of the assertions (i.e., the reference to possibility) is essential. It is simply

not true, to take the case of (C1), that all images of smooth, timelike curves are, in fact, the worldlines

of massive particles. The claim is that, as least so far as the laws of relativity theory are concerned, they

could be. Of course, judgments concerning what could be the case depend on what conditions are held

fixed in the background. The claim that a particular curve image could be the worldline of a massive

point particle must be understood to mean that it could so long as there are, for example, no barriers

in the way. Similarly, in (C2) there is an implicit qualification. We are considering what trajectories are

available to light rays when no intervening material media are present, i.e., when we are dealing with

light rays in vacuo.

Though these four concerns are important and raise interesting questions about the role of idealization

and modality in the formulation of physical theory, they have little to do with relativity theory as such.

Similar difficulties arise, for example, when one attempts to formulate corresponding principles within

the framework of Newtonian gravitation theory.

5“Free particles” here must be understood as ones that do not experience any forces except gravity. It is one of the

fundamental principles of relativity theory that gravity arises as a manifestation of spacetime curvature, not as an external

force that deflects particles from their natural, straight (geodesic) trajectories. We shall discuss this matter further in

section 2.5.
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It follows from the cited interpretive principles that the metric gab is determined (up to a constant) by

the behavior of point particles and light rays.6 We make this claim precise with a sequence of propositions

about conformal structure and projective structure. (Recall our discussion in section 1.9.)

Let g′ab be a second smooth metric of Lorentz signature on M . Clearly, if g′ab is conformally equivalent

to gab, i.e., if there is a smooth function Ω : M → R such that g′ab = Ω2gab, then the two agree in their

classification of vectors as timelike, null, and so forth. We first verify that the converse is true as well.

(Indeed, we prove something slightly stronger. To establish conformal equivalence, it suffices to require

that the two metrics agree on any one of the four categories of vectors. If they agree on one, they agree

on all.)

Proposition 2.1.1. The following conditions are equivalent.

(1) g′ab and gab agree on which vectors, at arbitrary points of M , are timelike (or agree on which are

null, or agree on which are causal, or agree on which are spacelike).

(2) g′ab and gab are conformally equivalent.

Proof. The equivalence of the four versions of (1) follows from the fact that the four properties in question

(being timelike, null, causal, and spacelike) are interdefinable. So, for example, we can characterize null

vectors in terms of timelike vectors:

A vector ηa at p is null iff either ηa = 0 or, for all timelike vectors αa at p, and all sufficiently

small numbers k, of the two vectors ηa + kαa and ηa − kαa, one is timelike and one is not.

Conversely, we can characterize timelike vectors in terms of null vectors:

A vector ηa at p is timelike iff for all null vectors αa 6= 0 at p there is a number k 6= 0 and a

null vector βa 6= 0 at p such that ηa = kαa + βa.

It follows immediately that we can also characterize causal vectors (timelike or null) and spacelike vectors

(neither timelike nor null) in terms of either timelike vectors or null vectors alone. Other cases are handled

similarly. (See problem 2.1.2.)

Now assume that the two metrics agree in their classification of vectors at all points of M . We show

that they must be conformally equivalent. Let p be any point in M , and let ξa be any vector at p that

is spacelike with respect to both metrics. Set

k =
g′ab ξ

aξb

gab ξaξb
. (2.1.3)

6This was first recognized by Hermann Weyl [62]. As he put it [63, p. 61],

... [i]t can be shown that the metrical structure of the world is already fully determined by its inertial and

causal structure, that therefore measurements need not depend on clocks and rigid bodies but that light signals

and mass moving under the influence of inertia alone will suffice.

For more on Weyl’s “causal-inertial” method of determining the spacetime metric, see Coleman and Korté [9, section 4.9].
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Since the numerator and denominator of the fraction are both negative, k > 0. We claim first that

g′ab η
aηb = k gab η

aηb (2.1.4)

for all ηa at p. If ηa is null with respect to both metrics, the assertion is trivial. So there are two cases

to consider.

Case 1: ηa is timelike with respect to both metrics. Consider the following quadratic equation (in the

variable x):

0 = gab (ξa + x ηa)(ξb + x ηb) = gab ξ
aξb + 2 x gab ξ

aηb + x2 gab η
aηb.

The discriminant

4 (gab ξ
aηb)2 − 4 (gab ξ

aξb)(gab η
aηb)

is positive (since (gab ξ
aξb) < 0, and (gab η

aηb) > 0). So the equation has real roots r1 and r2 with

r1 · r2 =
gab ξ

aξb

gab ηaηb
. (2.1.5)

Now the equation

0 = g′ab (ξa + x ηa)(ξb + x ηb)

must have exactly the same roots as the preceding one (since the metrics agree on null vectors). So we

also have

r1 · r2 =
g′ab ξ

aξb

g′ab η
aηb

. (2.1.6)

These two expressions for r1 · r2, together with (2.1.3), yield (2.1.4).

Case 2: ηa is spacelike with respect to both metrics. Let γa be any vector at p that is timelike with

respect to both. Repeating the argument used for case 1, with ηa now playing the role of ξa, we have

g′ab η
aηb

g′ab γ
aγb

=
gab η

aηb

gab γaγb
. (2.1.7)

But g′ab γ
aγb = k gab γ

aγb, because γa falls under case 1. So ηa must satisfy (2.1.4) in this case too.

Thus, we have established our claim. Since (g′ab−k gab) is symmetric, it now follows by proposition 1.4.3

that g′ab = k gab at p.

To complete the proof we define a scalar field Ω : M → R by setting Ω(p) =
√
k(p) at each point p

(where k(p) is determined as above). Then g′ab = Ω2 gab, and Ω is smooth since gab and g′ab are.

It turns out that dimension plays a role in proposition 2.1.1. Our spacetimes are four-dimensional.

Suppose we temporarily drop that restriction and, for any n ≥ 2, consider “n-dimensional spacetimes”

(M, gab) where M has dimension n and gab has signature (1, n− 1). What happens to the proposition?

The proof we have given carries over intact for all n ≥ 3. And even when n = 2, it carries over in part.

Three versions of condition (1) are still equivalent to each other — those involving agreement on timelike,
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causal, or spacelike vectors — and equivalent to condition (2). But in that special case, two metrics can

agree on null vectors without being conformally equivalent. (At any point p in M , a “90 degree rotation”

of Mp takes null vectors to null vectors, but it takes timelike vectors to spacelike vectors.)

Problem 2.1.1. Consider our characterization of timelike vectors in terms of null vectors in the proof

of proposition 2.1.1. Why does it fail if n = 2?

Problem 2.1.2. (i) Show that it is possible to characterize timelike vectors (and so also null vectors and

spacelike vectors) in terms of causal vectors. (ii) Show that it is possible to characterize timelike vectors

(and so also null vectors and causal vectors) in terms of spacelike vectors. (Both characterizations should

work for all n ≥ 2.)

Conformally equivalent metrics do not agree, in general, on which curves qualify as geodesics or even

just as geodesics up to reparametrization. But, it turns out, they do necessarily agree on which null

curves are geodesics up to reparametrization. Indeed, we have the following proposition. Notice that

clauses (1) and (2) correspond, respectively, to interpretive principles (C1) and (C2) above.

Proposition 2.1.2. The following conditions are equivalent.

(1) g′ab and gab agree on which smooth curves on M are timelike.

(2) g′ab and gab agree on which smooth curves on M can be reparameterized so as to be null geodesics.

(3) g′ab and gab are conformally equivalent.

Proof. The implication (1) ⇒ (3) follows immediately from the preceding proposition. So does the impli-

cation (2) ⇒ (1). (Two metrics cannot agree on which curves are null geodesics up to reparametrization

without first agreeing on which curves are null.) To complete the proof, we show that (3) implies (2).

Assume that g′ab = Ω2 gab. Let γ be any smooth curve that is null (with respect to both gab and g′ab),

and let λa be its tangent field. Further, let ∇′
a be the unique derivative operator on M compatible with

g′ab. Then, by propositions 1.7.3 and 1.9.5,

λn∇′
n λ

a = λn (∇n λ
a − Canmλ

m)

where

Canm = − 1

2Ω2

[
δan∇mΩ2 + δam∇n Ω2 − gnm g

ar∇r Ω2
]
.

Substituting for Canm in the first equation, and using the fact that λa is null, we arrive at

λn∇′
n λ

a = λn∇n λ
a +

1

Ω2
(λn∇n Ω2)λa.

It follows that λn∇′
n λ

a is everywhere proportional to λa iff λn∇n λ
a is everywhere proportional to λa.

Therefore, by proposition 1.7.9, γ can be reparametrized so as to be a geodesic with respect to gab iff it

can be so reparametrized with respect to g′ab.
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Question: What would go wrong if we attempted to adapt the proof to show that conformally equiv-

alent metrics agree as to which smooth timelike curves are geodesics up to reparametrization?

We can understand the proposition to assert that the spacetime metric gab is determined up to a

conformal factor, independently, by the set of possible worldlines of massive point particles and by the set

of possible trajectories of light rays.

Next we turn to projective structure. Recall that g′ab is said to be projectively equivalent to gab if, for

all smooth curves γ on M , γ can be reparametrized so as to be geodesic with respect to g′ab iff it can be so

reparametrized with respect to gab. We have proved (proposition 1.9.6) that if the two metrics are both

conformally and projectively equivalent, then the conformal factor connecting them is constant. Now,

with interpretive principle P1 in mind, we prove a slightly strengthened version of the proposition that

makes reference only to timelike geodesics (rather than arbitrary geodesics). To do so, we first strengthen

proposition 1.4.3.

Proposition 2.1.3. Let αa1...ar

b1...bs
be a tensor at some point in M . Suppose that

(1) αa1...ar

b1...bs
is symmetric in indices b1, ..., bs, and

(2) αa1...ar

b1...bs
ξb1 ... ξbs = 0 for all timelike vectors ξa at the point.

Then αa1...ar

b1...bs
= 0.

Proof. Consider first the case where we are dealing with a tensor of form αb1...bs
, i.e., one with no

contravariant indices. Let ξa be a timelike vector at the point in question, and let ηa be an arbitrary

vector there. Then there is an ǫ > 0 such that, for all real numbers x, if |x| < ǫ, (ξa + x ηa) is timelike.

Now consider the polynomial function f : R → R defined by

f(x) = αb1...bs
(ξb1 + x ηb1) ... (ξbs + x ηbs)

= αb1...bs
ξb1 ... ξbs +

(
s

1

)
xαb1...bs

ξb1 ... ξbs−1ηbs + ...

+

(
s

s− 1

)
xs−1 αb1...bs

ξb1 ηb2 ... ηbs + xs αb1...bs
ηb1 ... ηbs .

By our hypothesis, f(x) = 0 for all x in the interval (−ǫ, ǫ). Hence all derivatives of f vanish in

the interval. So αb1...bs
ηb1 ... ηbs = 0. Since ηa was an arbitrary vector at our point, it follows, by

proposition 1.4.3, that αb1...bs
= 0 there. For the general case, let µa1 ...νar

be arbitrary vectors at the

point. Then αa1...ar

b1...bs
µa1 ...νar

= 0 by the argument just given. So (since µa1 ...νar
are arbitrary vectors),

αa1...ar

b1...bs
= 0.

Of course, a parallel proposition holds if αa1...ar

b1...bs
is symmetric in indices a1, ..., ar. Indeed, we can arrive

at that formulation simply by lowering the a-indices and raising the b-indices, applying the proposition

as proved, and then restoring the original index positions.

Problem 2.1.3. Does proposition 2.1.3 still hold if condition (1) is left intact but (2) is replaced by
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(2 ′) αa1...ar

b1...bs
ξb1 ... ξbs = 0 for all spacelike vectors ξa at the point?

And what if it is replaced by

(2 ′′) αa1...ar

b1...bs
ξb1 ... ξbs = 0 for all null vectors ξa at the point?

Justify your answers.

The proposition we are after is the following.

Proposition 2.1.4. Assume g′ab = Ω2gab. Further, assume g′ab and gab agree as to which smooth, timelike

curves can be reparametrized so as to be geodesics. Then Ω is constant.

Proof. Assume ∇′ = (∇, Cabc) where, once again, ∇′ is the derivative operator associated with g′ab. It

suffices for us to show that Cabc = δab ϕc + δac ϕb for some smooth field ϕa. For then the constancy of Ω

follows exactly as in our proof of proposition 1.9.6.

To show that Cabc has this form, we need only make a slight revision in our proof of proposition

1.7.10. There we started from the assumption that ∇′ and ∇ agree as to which (arbitrary) smooth

curves can be reparametrized so as to be geodesics. Using that assumption, we showed that the field

ϕadbcr =
(
Cabc δ

d
r − Cdbc δ

a
r

)
satisfies the condition

ϕad(bcr) ξ
b ξc ξr = 0 (2.1.8)

for all vectors ξa at all points. Then we invoked proposition 1.4.3 to conclude that ϕad(bcr) = 0 everywhere.

Arguing in exactly the same way from our weaker assumption (that the metrics agree as to which smooth,

timelike curves can reparametrized so as to be geodesics), we can show that (2.1.8) holds for all timelike

vectors at all points. But we know (by proposition 2.1.3) that this condition also forces the conclusion

that ϕad(bcr) = 0 everywhere. The rest of the proof goes through exactly as in that of proposition

1.7.10. Without reference to particular types of vectors, we can show that Cabc = δab ϕc + δac ϕb where

ϕc =
1

n+ 1
Cdcd.

Later in this book we shall consider a few (not many) particular examples of spacetimes. But one

should be mentioned immediately, namely Minkowski spacetime. We take it to be the pair (M, gab) where

(i) M is the manifold R
4, (ii) (M, gab) is flat, i.e., has vanishing Riemann curvature everywhere, and (iii)

(M, gab) is geodesically complete, i.e., all maximally extended geodesics have domain R.

Minkowski spacetime is very special because its structure as an affine manifold (M,∇) is precisely the

same as that of four-dimensional Euclidean space. (Here, of course, ∇ is understood to be the unique

derivative operator on M compatible with gab.) In particular, given any point o in M , there is a smooth

“direction field” χa on M that vanishes at o and satisfies the condition ∇a χ
b = δ ba . (Recall proposition

1.7.12.)
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2.2 Temporal Orientation and “Causal Connectibility”

The characterization we have given of relativistic spacetimes is extremely loose. Many further condi-

tions might be imposed. We consider one in this section, namely “temporal orientability”.

First we need to review certain basic facts about Lorentzian metrics. Once again, let (M, gab) be a

fixed relativistic spacetime. We start with the orthogonality relation that gab determines in the tangent

space at every point ofM . (Two vectors µa and νa at a point qualify as orthogonal, of course, if µaνa = 0.)

Proposition 2.2.1. Let µa and νa be vectors at some point p in M . Then the following both hold.

(1) If µa is timelike and νa is orthogonal to µa, then either νa = 0 or νa is spacelike.

(2) If µa and νa are both null, then they are orthogonal iff they are proportional (i.e., one is a scalar

multiple of the other).

Proof. (1) Let
1

ξa, ...,
4

ξa be an orthonormal basis for Mp with
1

ξa
1

ξa = 1, and
i

ξa
i

ξa = −1 for i = 2, 3, 4.

Then we can express µa and νa in the form µa =
∑n

i=1

i
µ

i

ξ a and ν a =
∑n

i=1

i
ν

i

ξ a. Now assume µa

is timelike, νa is orthogonal to µa, and νa 6= 0. We show that νa is spacelike. It follows from our

assumptions that

(
1
µ)2 > (

2
µ)2 + (

3
µ)2 + (

4
µ)2, (2.2.1)

1
µ

1
ν =

2
µ

2
ν +

3
µ

3
ν +

4
µ

4
ν, (2.2.2)

1
µ 6= 0, (2.2.3)

(
2
ν)2 + (

3
ν)2 + (

4
ν)2 > 0. (2.2.4)

(The first two assertions follow from (2.1.2) and (2.1.1). The third follows from the first. For the final

inequality, note that if (
2
ν)2 + (

3
ν)2 + (

4
ν)2 = 0, then

2
ν =

3
ν =

4
ν = 0, and so, by (2.2.2) and (2.2.3),

1
ν = 0

as well. This contradicts our assumption that νa 6= 0.) In turn, it now follows by the Schwarz inequality

(as applied to the vectors (
2
µ,

3
µ,

4
µ) and (

2
ν,

3
ν,

4
ν)) that

(
1
µ)2 (

1
ν)2 = (

2
µ

2
ν +

3
µ

3
ν +

4
µ

4
ν)2 ≤ [(

2
µ)2 + (

3
µ)2 + (

4
µ)2] [(

2
ν)2 + (

3
ν)2 + (

4
ν)2] < (

1
µ)2 [(

2
ν)2 + (

3
ν)2 + (

4
ν)2],

and hence, by (2.2.3) again, that

(
1
ν)2 < (

2
ν)2 + (

3
ν)2 + (

4
ν)2.

Thus νa is spacelike.

(2) Assume µa and νa are both null. If they are proportional, then they are trivially orthogonal. For

if, say, µa = k νa, then µaνa = k(νaνa) = 0 (since νa is null). Assume, conversely, that the vectors are

orthogonal. Let ξa be a timelike vector at p. By clause (1) — since νa is not spacelike — either νa = 0 or

ξaνa 6= 0. (Here ξa is playing role of µa.) In the first case, µa and νa are trivially proportional. So we may

assume that ξaνa 6= 0. Then there is a number k such that k (ξaνa) = ξaµa. Hence, (µa − k νa) ξa = 0.

Now (µa − k νa) is not spacelike. (The right side of

(µa − k νa)(µa − k νa) = µaµa − 2 k (µaνa) + k2 (νaνa)
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is 0 since, by assumption, µa and νa are null and µaνa = 0.) So, by clause (1) again, it must be the case

that (µa − k νa) = 0, i.e., µa and νa are proportional.

Problem 2.2.1. Let p be a point in M . Let p be a point in M . Show that there is no two-dimensional

subspace of Mp all of whose elements are causal (timelike or null).

Problem 2.2.2. Let g′ab be a second metric on M (not necessarily of Lorentz signature). Show that the

following conditions are equivalent.

(1) For all p in M , gab and g′ab agree on which vectors at p are orthogonal.

(2) g′ab is conformally equivalent to either gab or −gab.

Next we consider the “lobes” of the null cone determined by gab at points of M . Let us say that two

timelike vectors µa and νa at a point are co-oriented (or have the same orientation) if µaνa > 0.

Proposition 2.2.2. For all points p in M , co-orientation is an equivalence relation on the set of timelike

vectors in Mp.

Proof. Reflexivity and symmetry are immediate. For transitivity, let µa, νa, ωa be timelike vectors at a

point, with the pairs {µa, νa} and {νa, ωa} both co-oriented. We must show that {µa, ωa} is co-oriented

as well. The argument is very much like that for the second clause of proposition 2.2.1.

Since µaνa > 0 and ωaνa > 0, there is a real number k > 0 such that µaνa = k (ωaνa). Hence,

(µa − k ωa)νa = 0. Since νa is timelike, we know from the first clause of proposition 2.2.1 that either

(µa − k ωa) is the zero-vector 0 or it is spacelike. In the first case, µa = k ωa, and so the pair {µa, ωa} is

certainly co-oriented (µaωa = k (ωaωa) > 0). So we may assume that (µa − k ωa) is spacelike. But then

µaµa − 2 k (µaωa) + k2 (ωaωa) = (µa − k ωa)(µa − k ωa) < 0.

Since µaµa, ωaωa, and k are all positive, it follows that µaωa is positive as well. So, again, we are

led to the conclusion that the pair {µa, ωa} is co-oriented.

The equivalence classes determined at each point by the co-orientation relation will be called temporal

lobes. There must be at least two lobes at each point since, for any timelike vector µa there, µa and

−µa are not co-oriented. There cannot be more than two since, for all timelike µa and νa at a point,

νa is co-oriented either with µa or with −µa. (Remember, two timelike vectors at a point cannot be

orthogonal.) Hence there are exactly two lobes at each point. It is easy to check that each lobe is convex,

i.e., if µa and νa are co-oriented at a point, and a, b are both positive real numbers, then (a µa + b νa) is

a timelike vector at the point that is co-oriented with µa and νa.

The relation of co-orientation can be extended easily to the larger set of non-zero causal (i.e., timelike

or null) vectors. Given any two such vectors µa and νa at a point, we can take them to be co-oriented

if either µaνa > 0 or νa = k µa with k > 0. (The second possibility must be allowed since we want a
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non-zero null vector to count as being co-oriented with itself.) Once again, co-orientation turns out to be

an equivalence relation with two equivalence classes that we call causal lobes. (Only minor changes in the

proof of proposition 2.2.2 are required to establish that the extended co-orientation relation is transitive.)

These lobes, too, are convex.

For future reference, we record two more facts about Lorentz metrics. (Let us agree to write ‖µa‖ for

(µaµa)
1
2 when µa is causal, and write it for (−µaµa) 1

2 when µa is spacelike.)

Proposition 2.2.3. Let µa and νa be causal vectors at some point p in M . Then the following both hold.

(1) (“Wrong way Schwarz inequality”) |µaνa| ≥ ‖µa‖ ‖νa‖, with equality iff µa and νa are propor-

tional.

(2) (“Wrong way triangle inequality”) If µa and νa are non-zero and co-oriented,

‖µa + νa‖ ≥ ‖µa‖ + ‖νa‖,

with equality iff µa and νa are proportional.

Proof. (1) If both µa and νa are null, the assertion follows immediately from the second assertion in

proposition 2.2.1. So we may assume that one of the vectors, say µa, is timelike. Now we can certainly

express νa in the form νa = k µa + σa, with k a real number and σa a vector at p orthogonal to µa. (It

suffices to take k = (µaνa)/(µ
aµa) and σa = (νa − k µa).) Hence,

µaνa = k (µaµa),

νaνa = k2 (µaµa) + σaσa.

Since σa is orthogonal to µa, it must either be spacelike or the zero vector (by proposition 2.2.1). In

either case, (σaσa) ≤ 0. So, since (µaµa) > 0 and (νaνa) ≥ 0, it follows that

(µaνa)
2 = k2 (µaµa)

2 = [(νaνa) − (σaσa)] (µ
aµa) ≥ (νaνa) (µaµa) = ‖µa‖2 ‖νa‖2.

Equality holds here iff (σaσa) = 0. But (as noted already), σa is either the zero vector or spacelike (in

which case (σaσa) < 0). So equality holds iff σa = 0, i.e., νa = k µa.

We leave the second clause as an exercise.

Problem 2.2.3. Prove the second clause of proposition 2.2.3.

Now we switch our attention to considerations of global null cone structure. We say that (M, gab) is

temporally orientable if there exists a continuous timelike vector field τa on M . Suppose the condition is

satisfied. Then we take two such fields τa and τ ′a to be co-oriented if they are so at every point, i.e., if

τaτ ′a > 0 holds at every point of M . Co-orientation, now understood as a relation on continuous timelike

vector fields, is an equivalence relation with two equivalence classes. (It inherits this property from the

original relation defined on timelike vectors at individual points.) A temporal orientation of (M, gab) is a
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choice of one of those two equivalence classes to count as the “future” one. Thus, a non-zero causal vector

ξa at a point of M is said to be future-directed or past-directed with respect to the temporal orientation

T depending on whether τaξa > 0 or τaξa < 0 at the point, where τa is any continuous timelike vector

field in T . (Remember, τaξa cannot be 0, since no timelike vector can be orthogonal to a non-zero causal

vector.) Derivatively, a smooth, causal curve γ: I →M is said to be future directed (resp. past directed)

with respect to T if its tangent vector at every point is so.

Our characterization of “relativistic spacetimes” in the preceding section does not guarantee temporal

orientability. But we shall take the condition for granted in what follows. We assume that our background

spacetime (M, gab) is temporally orientable and that a particular temporal orientation has been specified.

Also, given points p and q in M , we shall write p ≪ q (resp. p < q) if there is a smooth, future-

directed, timelike (resp. causal) curve γ : [a, b] → M where γ(a) = p and γ(b) = q. Note that p < p, for

all points p in all spacetimes. (This is the case because the zero vector in the tangent space at any point

qualifies as a null vector.) But it is not the case, in general, that p ≪ p. The latter condition holds iff

there is a smoooth, closed, future-directed timelike curve that begins and ends at p. The two relations

≪ and < are naturally construed as relations of “causal connectibility (or accessibility)”.

Appendix: Recovering Geometric Structure from the Causal Connectibility Relation

We started with a spacetime model (M, gab) exhibiting several levels of geometric structure, and used

the latter to define the relations ≪ and < on M .7 The question now arises whether it is possible to work

backwards, i.e., start with the pair (M, ≪) or (M, <), with M now construed as a bare point set, and

recover the geometric structure with which one began.8 In this appendix, we briefly consider one way

to make the question precise and give the answer (without proof). For convenience, we work with the

relation ≪.

Let (M, gab) and (M ′, g′ab) be (temporally oriented) relativistic spacetimes. We say that a bijection

ϕ : M → M ′ between their underlying point sets is a ≪-causal isomorphism if, for all p and q in M ,

p≪ q ⇐⇒ ϕ(p) ≪ ϕ(q). (2.2.5)

Then we can ask: Does a ≪-causal isomorphism have to be a homeomorphism? A diffeomorphism? A

conformal isometry? (We know in advance that a causal isomorphism need not be a (full) isometry

because conformally equivalent metrics gab and Ω2gab on a manifold M determine the same relation ≪.

The best one can ask for is that it be a conformal isometry, i.e. that it be a diffeomorphism that preserves

the metric up to a conformal factor.)

7The material in this appendix will play no role in what follows.

8The question figures centrally in the “causal sets” approach to quantum gravity developed by Rafael Sorkin and co-

workers. See, e.g. Sorkin [55, 56].
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Without further restrictions on (M, gab) and (M ′, g′ab), the answer is certainly “no” to all three ques-

tions. Unless the “causal structure” of a spacetime (i.e., the structure determined by ≪) is reasonably

well behaved, it provides no useful information at all. For example, let us say that a spacetime is causally

degenerate if p ≪ q for all points p and q. Any bijection between two causally degenerate spacetimes

qualifies, trivially, as a ≪-causal isomorphism. But we can certainly find causally degenerate spacetimes

whose underlying manifolds have different topologies. For example, we shall verify in section 3.1 that

Gödel spacetime is causally degenerate. Its underlying manifold structure is R
4. But a suitably “rolled

up” version of Minkowski spacetime is also causally degenerate, and the latter has the manifold structure

S1 × R
3. (Figure 2.2.1 shows a two-dimensional version.)

p

q

Figure 2.2.1: Two-dimensional Minkowski spacetime rolled up into a cylindrical spacetime.
It is causally degenerate: p≪ q for all points p and q.

There is a hierarchy of “causality conditions” that is relevant here. (See, e.g., Hawking and Ellis [30,

section 6.4].) They impose, with varying degrees of stringency, the requirement that there exist no closed,

or “almost closed”, timelike curves. Here are three.

chronology: There do not exist smooth closed timelike curves. (Equivalently, for all p, it is not the case

that p≪ p.)

future (resp. past) distinguishablity: For all points p, and all sufficiently small open sets O containing

p, no smooth future-directed (resp. past-directed) timelike curve that starts at p, and leaves O,

ever returns to O.

strong causality: For all points p, and all sufficiently small open sets O containing p, no smooth

future-directed timelike curve that starts in O, and leaves O, ever returns to O.

It is clear that strong causality implies both future distinguishability and past distinguishability, and that

each of the distinguishability conditions (alone) implies chronology. Standard examples (see Hawking

and Ellis [30]) establish that the converse implications do not hold, and that neither distinguishability

condition implies the other.

The names “future distinguishability” and “past distinguishability” are easily explained. For any p,

let I+(p) be the set {q : p ≪ q} and let I−(p) be the set {q : q ≪ p}. It turns out (see Kronheimer and

Penrose [33]) that future distinguishability is equivalent to the requirement that, for all p and q,

I+(p) = I+(q) =⇒ p = q.
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And the counterpart requirement with I+ replaced by I− is equivalent to past distinguishability.

We mention all this because it turns out that one gets a positive answer to all three questions asked

earlier if one restricts attention to spacetimes that are both future and past distinguishing.

Proposition 2.2.4. Let (M, gab) and (M ′, g′ab) be (temporally oriented) relativistic spacetimes that are

both future and past distinguishing, and let ϕ : M → M ′ be a ≪-causal isomorphism. Then ϕ is a

diffeomorphism and preserves gab up to a conformal factor, i.e. ϕ⋆(g′ab) is conformally equivalent to gab.

One can prove the proposition in two stages. First one shows that, under the stated assumptions, ϕ must

be a homeomorphism (see Malament [38]).9 Then one invokes a result of Hawking, King, and McCarthy

[29, theorem 5] that asserts, in effect, that any continuous ≪-causal isomorphism must be smooth and

must preserve the metric up to a conformal factor.

C

excise
excise

ϕ

Figure 2.2.2: An example of a spacetime that is future distinguishing but not past distin-
guishing. Let ϕ be a bijection of the spacetime onto itself that leaves the lower open half
below C fixed but reverses the position of the two upper slabs. It is a ≪-isomorphism, but
it is discontinuous along C.

The following example shows that the proposition fails if the initial restriction on causal structure

is weakened to past distinguishability or to future distinguishability alone. We give the example in a

two-dimensional version to simplify matters. Start with the manifold R
2 together with the Lorentzian

metric
gab = (d(at)(db)x) − (sinh2 t)(dax)(dbx),

where t, x are global projection coordinates on R
2. Next form a vertical cylinder by identifying the point

with coordinates (t, x) with the one having coordinates (t, x+ 2). Finally, excise two closed half lines —

the sets with respective coordinates {(t, x) : x = 0 and t ≥ 0} and {(t, x) : x = 1 and t ≥ 0}. Figure 2.2.2

9This is a slight improvement on a well-known result. If a spacetime (M, gab) is not just past and future distinguishing,

but strongly causal, then one can explicitly characterize its (manifold) topology in terms of the relation ≪. In this case, a

subset O ⊆ M is open iff, for all points p in O, there exist points q and r in O such that q ≪ p ≪ r and I+(q)∩ I−(r) ⊆ O

(Hawking and Ellis [30, p. 196]). So a ≪-causal isomorphism between two strongly causal spacetimes must certainly be a

homeomorphism.
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shows, roughly, what the null cones look like at every point. (The future direction at each point is taken

to be the “upward one”.) The exact form of the metric is not important here. All that is important is

the indicated qualitative behavior of the null cones. Along the (punctured) circle C where t = 0, the

vector fields (∂/∂t)a and (∂/∂x)a both qualify as null. But as one moves upward or downward from

there, the cones close. There are no closed timelike (or null) curves in this spacetime. Indeed, it is future

distinguishing because of the excisions. But it fails to be past distinguishing because I−(p) = I−(q) for

all points p and q on C. For all points p there, I−(p) is the entire region below C.

Now let ϕ be the bijection of the spacetime onto itself that leaves the “lower open half” fixed but

reverses the position of the two upper slabs. Though ϕ is discontinuous along C, it is a ≪-causal

isomorphism. This is the case because every point below C has all points in both upper slabs in its

≪-future.
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2.3 Proper Time

So far we have discussed relativistic spacetime structure without reference to either “time” or “space”.

We come to them in this section and the next.

Let γ : [s1, s2] → M be a smooth, future-directed timelike curve in M with tangent field ξa. We

associate with it an elapsed proper time (relative to gab) given by

‖γ‖ =

∫ s2

s1

(gab ξ
a ξb)

1
2 ds.

This elapsed proper time is invariant under reparametrization of γ and is just what we would otherwise

describe as the length of (the image of) γ. The following is another basic principle of relativity theory.

(P2) Clocks record the passage of elapsed proper time along their worldlines.

Again, a number of qualifications and comments are called for. Our formulations of (C1), (C2), and

(P1) were rough. The present formulation is that much more so. We have taken for granted that we

know what “clocks” are. We have assumed that they have worldlines (rather than worldtubes). And we

have overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand) do not do well

at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock

against the wall.) Again, these concerns are important and raise interesting questions about the role of

idealization in the formulation of physical theory. (One might construe an “ideal clock” as a point-size

test object that perfectly records the passage of proper time along its worldline, and then take (P2) to

assert that real clocks are, under appropriate conditions and to varying degrees of accuracy, approximately

ideal.) But they do not have much to do with relativity theory as such. Similar concerns arise when one

attempts to formulate corresponding principles about clock behavior within the framework of Newtonian

theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays.

Then one can use clocks, rather than free particles, to determine the conformal factor. One has the

following simple result, which should be compared with proposition 2.1.4.10

Proposition 2.3.1. Let g′ab be a second smooth metric on M with g′ab = Ω2 gab. Further suppose that

the two metrics assign the same lengths to timelike curves, i.e., ‖γ‖g′
ab

= ‖γ‖gab
for all smooth, timelike

curves γ : I →M . Then Ω = 1 everywhere. (Here ‖γ‖gab
is the length of γ relative to gab.)

10Here we not only determine the metric up to a constant, but determine the constant as well. The difference is that here,

in effect, we have built in a choice of units for spacetime distance. We could obtain a more exact counterpart to proposition

2.1.4 if we worked, not with intervals of elapsed proper time, but rather with ratios of such intervals. (Note, by the way,

that the condition in the second sentence of the proposition does not make sense unless the two metrics are conformally

equivalent. We cannot require that they assign the same length to all timelike curves unless they first agree on which curves

are timelike.)
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Proof. Let
o

ξa be an arbitrary timelike vector at an arbitrary point p inM . We can certainly find a smooth,

timelike curve γ : [s1, s2] → M through p whose tangent at p is
o

ξa. By our hypothesis, ‖γ‖g′
ab

= ‖γ‖gab
.

So, if ξa is the tangent field to γ,

∫ s

s1

(g′ab ξ
a ξb)

1
2 ds =

∫ s

s1

(gab ξ
a ξb)

1
2 ds

for all s in [s1, s2]. It follows that g′ab ξ
aξb = gab ξ

aξb at every point on the image of γ. In particular,

it follows that (g′ab − gab)
o

ξa
o

ξb = 0 at p. But
o

ξa was an arbitrary timelike vector at p. So, by lemma

2.1.3, g′ab = gab at our arbitary point p.

(P2) gives the whole story of relativistic clock behavior (modulo the concerns noted above). In

particular, it implies the path dependence of clock readings. If two clocks start at an event p and travel

along different trajectories to an event q, then, in general, they will record different elapsed times for

the trip. (For example, one will record an elapsed time of 3,806 seconds, the other 649 seconds.) This

is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly

line.) This is the case because, as (P2) asserts, the elapsed time recorded by each of the clocks is just the

length of the timelike curve it traverses from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask if there are

any that minimize or maximize the recorded elapsed time between the events. The answer to the first

question is “no”. Indeed, one has the following proposition.

Proposition 2.3.2. Let p and q be events in M such that p ≪ q. Then, for all ǫ > 0, there exists a

smooth, future-directed timelike curve γ from p to q with ‖γ‖ < ǫ. (But there is no such curve with length

0, since all timelike curves have non-zero length.)

Though some work is required to give the proposition an honest proof (see O’Neill [46, pp. 294-5]), it

should seem intuitively plausible. If there is a smooth, timelike curve connecting p and q, there is also

a jointed, zig-zag null curve connecting them. It has length 0. But we can approximate the jointed null

p

q

short timelike curve

long timelike curve

Figure 2.3.1: A long timelike curve from p to q and a very short one that approximates a
broken null curve.
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curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of

the length function), we should expect that, for all ǫ > 0, there is an approximating timelike curve that

has length less than ǫ. (See figure 2.3.1.)

The answer to the second question (“Can one maximize recorded elapsed time between p and q?”) is

“yes” if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e.,

ones with signature of form (n, 0), we know geodesics are “locally shortest” curves. The corresponding

result for Lorentzian metrics is that timelike geodesics are “locally longest” curves.

Proposition 2.3.3. Let γ : I → M be a smooth, future-directed, timelike curve. Then γ can be repara-

metrized so as to be a geodesic iff for all s ∈ I, there exists an open set O containing γ(s) such that,

for all s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image of γ′ = γ
|[s1,s2]

is contained in O, then γ′ (and its

reparametrizations) are longer than all other timelike curves in O from γ(s1) to γ(s2). (Here γ
|[s1,s2]

is

the restriction of γ to the interval [s1, s2].)

The proof of the proposition is very much the same as in the positive definite case. (See Hawking and

Ellis [30, p. 105].) Thus, of all clocks passing locally from p to q, the one that will record the greatest

elapsed time is the one that “falls freely” from p to q. To get a clock to read a smaller elapsed time than

the maximal value one will have to accelerate the clock. Now, acceleration requires fuel, and fuel is not

free. So proposition 2.3.3 has the consequence that (locally) “saving time costs money”. And proposition

2.3.2 may be taken to imply that “with enough money one can save as much time as one wants”.

γ1

γ3

γ2

Figure 2.3.2: Two-dimensional Minkowski spacetime rolled-up into a cylindrical spacetime.
Three timelike curves are displayed: γ1 and γ3 are geodesics; γ2 is not; γ1 is longer than γ2;
and γ2 is longer than γ3.

The restriction here to local regions of spacetime is essential. The connection described between clock

behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes,
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one can find future-directed timelike geodesics connecting two events that have different lengths, and so

clocks following the curves will record different elapsed times between the events even though both are in a

state of free fall. Furthermore — this follows from the preceding claim by continuity considerations alone

— it can be the case that of two clocks passing between the events, the one that undergoes acceleration

during the trip records a greater elapsed time than the one that remains in a state of free fall. (A rolled

up version of two-dimensional Minkowski spacetime provides a simple example. See figure 2.3.2.)

The connection we have been considering between clock behavior and acceleration was once thought to

be paradoxical. Recall the so-called “clock paradox”. Suppose two clocks, A and B, pass from one event

to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall but

B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed

time for the trip than B. This was thought paradoxical because it was believed that relativity theory

denies the possibility of distinguishing “absolutely” between free fall motion and accelerated motion. (If

we are equally well entitled to think that it is clock B that is in a state of free fall and A that undergoes

acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The

resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The

situations of A and B here are not symmetric. The distinction between accelerated motion and free fall

makes every bit as much sense in relativity theory as it does in Newtonian physics.

In what follows, unless indication is given to the contrary, a “timelike curve” should be understood to

be a smooth, future-directed, timelike curve parametrized by elapsed proper time, i.e., by arc length. In

that case, the tangent field ξa of the curve has unit length (ξaξa = 1). And if a particle happens to have

the image of the curve as its worldline, then, at any point, ξa is called the particle’s four-velocity there.
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2.4 Space/Time Decomposition at a Point and Particle Dynam-

ics

Let γ be a smooth, future-directed, timelike curve with unit tangent field ξa in our background

spacetime (M, gab). We suppose that some massive point particle O has (the image of) this curve as its

worldline. Further, let p be a point on the image of γ and let λa be a vector at p. Then there is a natural

decomposition of λa into components proportional to, and orthogonal to, ξa:

λa = (λbξb)ξ
a

︸ ︷︷ ︸
proportional to ξa

+ (λa − (λbξb)ξ
a)︸ ︷︷ ︸

orthogonal to ξa

. (2.4.1)

These are standardly interpreted, respectively, as the “temporal” and “spatial” components of λa relative

to ξa (or relative to O). In particular, the three-dimensional vector space of vectors at p orthogonal to

ξa is interpreted as the “infinitesimal” simultaneity slice of O at p.11 If we introduce the tangent and

orthogonal projection operators

kab = ξa ξb, (2.4.2)

hab = gab − ξa ξb, (2.4.3)

then the decomposition can be expressed in the form

λa = kab λ
b + hab λ

b. (2.4.4)

We can think of kab and hab as the relative temporal and spatial metrics determined by ξa. They are

symmetric and satisfy

kab k
b
c = kac, (2.4.5)

hab h
b
c = hac. (2.4.6)

Many standard textbook assertions concerning the kinematics and dynamics of point particles can

be recovered using these decomposition formulas. For example, suppose that the worldline of a second

particle O′ also passes through p and that its four-velocity at p is ξ′a. (Since ξa and ξ′a are both future-

directed, they are co-oriented, i.e., ξa ξ′a > 0.) We compute the speed of O′ as determined by O. To do

so, we take the spatial magnitude of ξ′a relative to O and divide by its temporal magnitude relative to

O:12

v = speed of O′ relative to O =
‖hab ξ′ b‖
‖kab ξ′b‖

. (2.4.7)

(Recall that for any vector µa, ‖µa‖ is (µaµa)
1
2 if µa is causal, and it is (−µaµa) 1

2 otherwise.) From

(2.4.2), (2.4.3), (2.4.5), and (2.4.6), we have

‖kab ξ′ b‖ = (kab ξ
′b kac ξ

′c)
1
2 = (kbc ξ

′b ξ′c)
1
2 = (ξ′ b ξb)

11Here we simply take for granted the standard identification of “relative simultaneity” with orthogonality. For discussion

of how the identification is justified, see Malament [42, section 3.1] and further references cited there.

12We are, in effect, choosing units in which c = 1.
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and

‖hab ξ′ b‖ = (−hab ξ′b hac ξ′c)
1
2 = (−hbc ξ′ b ξ′c)

1
2 = ((ξ′ b ξb)

2 − 1)
1
2 .

So

v =
((ξ′ b ξb)

2 − 1)
1
2

(ξ′ b ξb)
< 1. (2.4.8)

Thus, as measured by O, no massive particle can ever attain the maximal speed 1. (A similar calculation

shows that, as determined by O, light always travels with speed 1.) For future reference, we note that

(2.4.8) implies that

(ξ′ b ξb) =
1√

1 − v2
. (2.4.9)

It is a basic fact of relativistic life that there is associated with every point particle, at every event

on its worldline, a four-momentum (or energy-momentum) vector P a that is tangent to its worldline

there. The length ‖P a‖ of this vector is what we would otherwise call the mass (or inertial mass or rest

mass) of the particle. So, in particular, if P a is timelike, we can write it in the form P a = mξa, where

m = ‖P a‖ > 0 and ξa is the four-velocity of the particle. No such decomposition is possible when P a is

null and m = ‖P a‖ = 0.

Suppose a particle O with positive mass has four-velocity ξa at a point, and another particle O′ has

four-momentum P a there. The latter can either be a particle with positive mass or mass 0. We can

recover the usual expressions for the energy and three-momentum of the second particle relative to O if

we decompose P a in terms of ξa. By (2.4.4) and (2.4.2), we have

P a = (P bξb)︸ ︷︷ ︸
energy

ξa + habP
b

︸ ︷︷ ︸
three−momentum

. (2.4.10)

The energy relative to O is the coefficient in the first term: E = P bξb. If O′ has positive mass and

P a = mξ′a, this yields, by (2.4.9),

E = m (ξ′ b ξb) =
m√

1 − v2
. (2.4.11)

(If we had not chosen units in which c = 1, the numerator in the final expression would have been mc2

and the denominator
√

1 − (v2/c2).) The three-momentum relative to O is the second term habP
b in the

decomposition of P a, i.e., the component of P a orthogonal to ξa. It follows from (2.4.8) and (2.4.9) that

it has magnitude

p = ‖habmξ′b‖ = m ((ξ′ b ξb)
2 − 1)

1
2 =

mv√
1 − v2

. (2.4.12)

Interpretive principle P1 asserts that the worldlines of free particles with positive mass are the images

of timelike geodesics. It can be thought of as a relativistic version of Newton’s first law of motion. Now

we consider acceleration and a relativistic version of the second law. Once again, let γ : I → M be a

smooth, future-directed, timelike curve with unit tangent field ξa. Just as we understand ξa to be the

four-velocity field of a massive point particle (that has the image of γ as its worldline), so we understand
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ξn∇n ξ
a — the directional derivative of ξa in the direction ξa — to be its four-acceleration field (or just

acceleration field). The four-acceleration vector at any point is orthogonal to ξa. (This is clear, since

ξa (ξn∇n ξa) = 1
2 ξ

n∇n (ξa ξa) = 1
2 ξ

n∇n (1) = 0.) The magnitude ‖ξn∇n ξ
a‖ of the four-acceleration

vector at a point is just what we would otherwise describe as the curvature of γ there. It is a measure

of the rate at which γ “changes direction”. (And γ is a geodesic precisely if its curvature vanishes

everywhere.)

The notion of spacetime acceleration requires attention. Consider an example. Suppose you decide

to end it all and jump off the Empire State Building. What would your acceleration history be like

during your final moments? One is accustomed in such cases to think in terms of acceleration relative

to the earth. So one would say that you undergo acceleration between the time of your jump and your

calamitous arrival. But on the present account, that description has things backwards. Between jump

and arrival, you are not accelerating. You are in a state of free fall and moving (approximately) along

a spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The floor of the

observation deck, and then later the sidewalk, push you away from a geodesic path. The all-important

idea here is that we are incorporating the “gravitational field” into the geometric structure of spacetime,

and particles traverse geodesics if and only if they are acted on by no forces “except gravity”.

The acceleration of our massive point particle, i.e., its deviation from a geodesic trajectory, is deter-

mined by the forces acting on it (other than “gravity”). If it has mass m, and if the vector field F a

on I represents the vector sum of the various (non-gravitational) forces acting on it, then the particle’s

four-acceleration ξn∇n ξ
a satisfies

F a = m ξn∇n ξ
a. (2.4.13)

This is our version of Newton’s second law of motion.

Consider an example. (Here we anticipate our discussion in section 2.6.) Electromagnetic fields are

represented by smooth, anti-symmetric fields Fab. If a particle with mass m > 0, charge q, and four-

velocity field ξa is present, the force exerted by the field on the particle at a point is given by q F ab ξ
b.

If we use this expression for the left side of (2.4.13), we arrive at the Lorentz law of motion for charged

particles in the presence of an electromagnetic field:

q F ab ξ
b = m ξb∇b ξ

a. (2.4.14)

(Notice that the equation makes geometric sense. The acceleration field on the right is orthogonal to

ξa. But so is the force field on the left, since ξa(F
a
b ξ
b) = ξa ξbFab = ξa ξbF(ab), and F(ab) = 0 by the

anti-symmetry of Fab.)
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2.5 The Energy-Momentum Field Tab

In classical relativity theory, one generally takes for granted that all that there is, and all that happens,

can be described in terms of various “matter fields”, each of which is represented by one or more smooth

tensor (or spinor) fields on the spacetime manifold M .13 The latter are assumed to satisfy particular

“field equations” involving the spacetime metric gab.

For present purposes, the most important basic assumption about the matter fields is the following.

Associated with each matter field F is a symmetric smooth tensor field Tab characterized by

the property that, for all points p in M , and all future-directed, unit timelike vectors ξa at p,

T ab ξ
b is the four-momentum density of F at p as determined relative to ξa.

Tab is called the energy-momentum field associated with F . The four-momentum density vector T ab ξ
b

at a point can be further decomposed into its temporal and spatial components relative to ξa,

T ab ξ
b = (Tmb ξ

m ξb)︸ ︷︷ ︸
energy density

ξa + Tmb h
ma ξb︸ ︷︷ ︸

three−momentum density

,

just as the four-momentum P a of a particle was decomposed in (2.4.10). The coefficient of ξa in the first

component, Tab ξ
aξb, is the energy density of F at the point as determined relative to ξa. The second

component, Tnb (gan − ξa ξn) ξb, is the three-momentum density of F there as determined relative to ξa.

A number of assumptions about matter fields can be captured as constraints on the energy-momentum

tensor fields with which they are associated. Examples are the following. (Suppose Tab is associated with

matter field F .)

Weak Energy Condition (WEC): Given any timelike vector ξa at any point in M , Tab ξ
aξb ≥ 0.

Dominant Energy Condition (DEC): Given any timelike vector ξa at any point in M , Tab ξ
aξb ≥ 0

and T ab ξ
b is timelike or null.

Strengthened Dominant Energy Condition (SDEC): Given any timelike vector ξa at any point

in M , Tab ξ
aξb ≥ 0 and, if Tab 6= 0 there, then T ab ξ

b is timelike.

Conservation Condition (CC): ∇a T
ab = 0 at all points in M.

The weak energy condition asserts that the energy density of F , as determined by any observer at any

point, is non-negative. The dominant energy condition adds the requirement that the four-momentum

density of F , as determined by any observer at any point, is a future-directed causal (i.e., timelike or null)

vector. We can understand this second clause to assert that the energy of F does not propagate with

13This being the case, the question arises as to how (or whether) one can adequately recover talk about “point particles”

in terms of the matter fields. We shall briefly discuss the question later in this section.
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superluminal velocity. The strengthened version of the dominant energy condition just changes “causal”

to “timelike” in the second clause. It captures something of the flavor of (C1) in section 2.1, but avoids

reference to “point particles”. Each of the listed energy conditions is strictly stronger than the ones that

precede it (see problem 2.5.1).

Problem 2.5.1. Give examples of each of the following.

(1) A smooth symmetric field Tab that does not satisfy the WEC

(2) A smooth symmetric field Tab that satisfies the WEC but not the DEC

(3) A smooth symmetric field Tab that satisfies the DEC but not the SDEC

Problem 2.5.2. Show that the DEC holds iff given any two co-oriented timelike vectors ξa and ηa at a

point in M , Tab ξ
a ηb ≥ 0.

The conservation condition, finally, asserts that the energy-momentum carried by F is locally con-

served. If two or more matter fields are present in the same region of spacetime, it need not be the

case that each one individually satisfies the condition. Interaction may occur. But it is a fundamental

assumption that the composite energy-momentum field formed by taking the sum of the individual ones

satisfies it. Energy-momentum can be transferred from one matter field to another, but it cannot be

created or destroyed.

The stated conditions have a number of consequences that support the interpretations just given. We

mention two. The first requires a few preliminary definitions.

A subset S of M is said to be achronal if there do not exist points p and q in S such that p≪ q. Let

γ : I → M be a smooth curve. We say that a point p in M is a future-endpoint of γ if, for all open sets

O containing p, there exists an s0 in I such that, for all s ∈ I, if s ≥ s0, then γ(s) ∈ O, i.e., γ eventually

enters and remains in O. (Past-endpoints are defined similarly.) Now let S be an achronal subset of M .

The domain of dependence D(S) of S is the set of all points p in M with this property: given any smooth

causal curve without (past- or future-) endpoint, if its image contains p, then it intersects S. (See figure

2.5.1.) So, in particular, S ⊆ D(S).

} D(S)S

Figure 2.5.1: The domain of dependence D(S) of an achronal set S.
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In section 2.10, we shall make precise a sense in which “what happens on S determines what happens

throughout D(S)”. Here we consider just one aspect of that determination.

Proposition 2.5.1. Let S be an achronal subset of M . Further, let Tab be a smooth, symmetric field on

M that satisfies both the dominant energy and conservation conditions. Finally, assume Tab = 0 on S.

Then Tab = 0 on all of D(S).

The intended interpretation of the proposition is clear. If energy-momentum cannot propagate (locally)

outside the null-cone, and if it is conserved, and if it vanishes on S, then it must vanish throughout D(S).

After all, how could it “get to” any point in D(S)? Note that our formulation of the proposition does

not presuppose any particular physical interpretation of the symmetric field Tab. All that is required is

that it satisfy the two stated conditions. (For a proof, see Hawking and Ellis [30, p. 94].)

Now recall (P1). It asserts that free massive point particles traverse (images of) timelike geodesics.

The next proposition (Geroch and Jang [24]) shows that it is possible, in a sense, to capture the principle

as a theorem in relativity theory. The trick is to find a way to talk about “massive point particles” in

the language of extended matter fields. In effect, we shall model them as nested sequences of small, but

extended, bodies that converge to a point. It turns out that if the energy-momentum content of each

body in the sequence satisfies appropriate conditions, then the convergence point will necessarily traverse

(the image of) a timelike geodesic.

Proposition 2.5.2. Let γ : I → M be smooth curve. Suppose that given any open subset O of M

containing γ[I], there exists a smooth symmetric field Tab on M such that the following conditions hold.

(1) Tab satisfies the strengthened dominant energy condition.

(2) Tab satisfies the conservation condition.

(3) Tab = 0 outside of O.

(4) Tab 6= 0 at some point in O.

Then γ is timelike and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. Suppose that for some smooth curve γ, arbitrarily

small bodies with energy-momentum satisfying conditions (1) and (2) can contain the image of γ in their

worldtubes. Then γ must be a timelike geodesic (up to reparametrization). Bodies here are understood

to be “free” if their internal energy-momentum is conserved (by itself). If a body is acted on by a field,

it is only the composite energy-momentum of the body and field together that is conserved.

Note that our formulation of the proposition takes for granted that we can keep the background

spacetime metric gab fixed while altering the fields Tab that live on M . This is justifiable only to the extent

that we are dealing with test bodies whose effect on the background spacetime structure is negligible.14

14Stronger theorems have been proved (see Ehlers and Geroch [16]) where one still models a point particle as a nested

sequence of extended bodies converging to a point but does not require that the perturbative effect of each body in the

sequence disappear entirely. One requires only that, in a certain precise sense, it disappear in the limit.
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Note also that we do not have to assume at the outset that the curve γ is timelike. That follows from

the other assumptions.

We have here a precise proposition in the language of matter fields that, at least to some degree,

captures (P1). Similarly, it is possible to capture (C2), concerning the behavior of light, with a proposition

about the behavior of solutions to Maxwell’s equations in a limiting regime (“the optical limit”) where

wavelengths are small. It asserts, in effect, that when one passes to this limit, packets of electromagnetic

waves are constrained to move along (images of) null geodesics. (See Wald [60, p. 71].)

It is worth noting that the Geroch-Jang result fails if condition (1) is dropped. Consider again our

nested sequence of bodies converging to a point. It turns out that the conservation condition alone imposes

no restrictions whatsoever on the wordline of the convergence point. It can be a null or spacelike curve.

It can also be a timelike curve that exhibits any desired pattern of large and/or changing acceleration.

The next proposition, based on a suggestion of Robert Geroch (in personal communication), gives a

counterexample.15

Proposition 2.5.3. Let (M, gab) be Minkowski spacetime, and let γ : I → M be any smooth timelike

curve. Then, given any open subset O of M containing γ[I], there exists a smooth symmetric field Tab

on M that satisfies conditions (2), (3), and (4) in the preceding proposition. (If we want, we can also

strengthen condition (4) and require that Tab be non-vanishing throughout some open subset O1 ⊆ O

containing γ[I].)

Proof. Let O be an open subset of M containing γ[I], and let f : M → R be any smooth scalar field on

M . (Later we shall impose further restrictions on f .) Consider the fields Sabcd = f(gadgbc − gacgbd)

and T ac = ∇b∇d S
abcd, where ∇ is the (flat) derivative operator on M compatible with gab. We have

T ac = (gadgbc − gacgbd)∇b∇df = ∇c∇af − gac (∇b∇bf). (2.5.1)

So T ac is clearly symmetric. It is also divergence free since

∇a T
ac = ∇a∇c∇af −∇c∇b∇bf = ∇c∇a∇af −∇c∇b∇bf = 0.

(The second equality follows from the fact that ∇ is flat, and so ∇a and ∇c commute in their action on

arbitrary tensor fields.)

To complete the proof, we now impose further restrictions on f to insure that conditions (3) and (4)

are satisfied. Let O1 be any open subset of M such that γ[I] ⊆ O1 and cl(O1) ⊆ O. (Here cl(A) is the

closure of A.) Our strategy will be to choose a particular f on O1 and a particular f on M−cl(O), and

then fill in the buffer zone O−cl(O1) any way whatsoever (so long as the resultant field is smooth). On

M−cl(O), we simply take f = 0. This choice guarantees that, no matter how we smoothly extend f to

all of M , T ac will vanish outside of O.

15It is formulated in terms of an initial curve that is timelike — the case of greatest interest — but that is not essential.

The example can also be adapted to show that proposition 2.5.1 fails if the energy condition there is dropped.
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For the other specification, let o be any point in M and let χa be the “position field” on M determined

relative to o. So ∇a χ
b = δa

b everywhere, and χa = 0 at o. On O1, we take f = −(χnχn). With that

choice, T ac is non-vanishing at all points in O1. Indeed, we have

∇af = −2χn∇aχ
n = −2χn δa

n = −2χa,

and, therefore,

T ac = ∇c∇af − gac (∇b∇bf) = −2∇cχa + 2 gac (∇b χ
b)

= −2 gca + 2 gac δb
b = −2 gac + 8 gac = 6 gac

throughout O1.

Figure 2.5.2: A non-geodesic timelike curve enclosed in a tube (as considered in proposition 2.5.3).

One point about the proof deserves comment. As restricted to O1 and to M−cl(O), the field Tab that

we construct does satisfy the strengthened dominant energy condition. (In the first case, Tab = 6 gab,

and in the second case, Tab = 0.) But we know — from the Geroch-Jang theorem itself — that it cannot

satisfy that condition everywhere. So it must fail to do so in the buffer zone O−cl(O1). That shows us

something. We can certainly choose f in the zone so that it smoothly joins with our choices for f on O1

and M−cl(O). But, no matter how clever we are, we cannot do so in such a way that T ab (as expressed

in (2.5.1)) satisfies the strengthened dominant energy condition.

Now we consider two examples of matter fields – perfect fluids in this section, and electromagnetic

fields in the next.

Perfect fluids are represented by three objects: a smooth four-velocity field ηa, a smooth energy

density field ρ, and a smooth isotropic pressure field p (the latter two as determined by a “co-moving”

observer at rest in the fluid). In the special case where the pressure p vanishes, one speaks of a dust

field. Particular instances of perfect fluids are characterized by “equations of state” that specify p as
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a function of ρ. (Specifically excluded here are such complicating factors as anisotropic pressure, shear

stress, and viscosity.) Though ρ is generally assumed to be non-negative, some perfect fluids (e.g., to a

good approximation, water) can exert negative pressure. The energy-momentum tensor field associated

with a perfect fluid is

Tab = ρ ηa ηb − p (gab − ηa ηb). (2.5.2)

So the energy-momentum density vector of the fluid at any point as determined by a co-moving observer

(i.e., as determined relative to ηa) is T ab η
b = ρ ηa.

In the case of a perfect fluid, the weak energy condition, dominant energy condition, and conservation

condition come out as follows.16

WEC ⇐⇒ ρ ≥ 0 and p ≥ −ρ
DEC ⇐⇒ |p| ≤ ρ

CC ⇐⇒





(ρ+ p) ηa∇a η

b − (gab − ηb ηa)∇a p = 0

ηa∇a ρ + (ρ+ p) (∇a η
a) = 0

First we verify the equivalences for the WEC and CC. (The one for the DEC is left as an exercise.)

Then we make a few remarks about the physical interpretation of the two conditions jointly equivalent

to CC.

(WEC) Clearly, the WEC holds at a point q in M iff Tab ξ
aξb ≥ 0 for all unit timelike vectors ξa at

q. (If the inequality holds for all unit timelike vectors, it holds for all timelike vectors.) It is convenient

to work with the condition in this form.

If Tab is given by (2.5.2), and ξa is a unit timelike vector at q, then Tab ξ
aξb = (ρ+ p)(ηaξa)

2 − p. So

the WEC holds at q in M iff, for all such vectors ξa at q,

(ρ+ p)(ηaξa)
2 − p ≥ 0. (2.5.3)

Assume first that (ρ+ p) ≥ 0 and ρ ≥ 0, and let ξa be a unit timelike vector at q. Then, by the wrong-

way Schwarz inequality (proposition 2.2.3), (ηaξa)
2 ≥ ‖ηa‖2 ‖ξa‖2 = 1. Hence, (ρ + p)(ηaξa)

2 − p ≥
(ρ+p)−p = ρ ≥ 0. So we have (2.5.3). Conversely, assume (2.5.3) holds for all unit timelike vectors ξa at

q. Then, in particular, it holds if ξa = ηa, and in this case we have 0 ≤ (ρ+p)(ηaηa)
2−p = (ρ+p)−p = ρ.

Note next that there is no upper bound to the value of (ηaξa)
2 as ξa ranges over unit timelike vectors

at q. (For example, let σa be any unit spacelike vector at q orthogonal to ηa, and let ξa be of the

form ξa = (cosh θ) ηa − (sinh θ)σa, where θ is a real number. Then ξa is a unit timelike vector, and

(ηaξa)
2 = cosh2 θ. The latter goes to infinity as θ does.) So (2.5.3) cannot possibly hold for all unit

timelike vectors at q unless (ρ+ p) ≥ 0. This gives us the stated equivalence for the WEC.

16The dominant energy condition and the strengthened dominant energy condition are not equivalent in general, as we

have seen. But they are equivalent when applied, specifically, to perfect fluids. See problem 2.5.3.
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(CC) If Tab is given by (2.5.2), then a straight forward computation shows that the conservation

condition (∇a T
ab = 0) holds iff

ρ (ηa∇a η
b) + ρ ηb∇a η

a + ηb(ηa∇a ρ) − (∇a p)(g
ab − ηaηb) + p(ηa∇a η

b) + p ηb∇a η
a = 0. (2.5.4)

Assume that (2.5.4) does hold. Then contraction with ηb yields

ηa∇a ρ + (ρ+ p)(∇a η
a) = 0. (2.5.5)

(Here we use the fact that the unit timelike vector field ηb is orthogonal to its associated acceleration

field ηa∇a η
b and to its associated projection field hab = (gab − ηaηb).) And if we multiply (2.5.5) by ηb

and then subtract the result from (2.5.4), we arrive at

(ρ+ p) ηa∇a η
b − (gab − ηb ηa)∇a p = 0. (2.5.6)

Thus (2.5.4) holds only if (2.5.5) and (2.5.6) do. And the converse is immediate. So we have our stated

equivalence for the conservation condition.

Problem 2.5.3. (i) Prove the stated equivalence for the DEC. (ii) Prove that, as restricted to perfect

fluids, the SDEC is equivalent to the DEC.

Now consider the physical interpretation of the two equations jointly equivalent to CC. (2.5.6) is the

equation of motion for a perfect fluid. We can think of it as a relativistic version of Euler’s equation.

(2.5.5) is an equation of continuity (or conservation) in the sense familiar from classical fluid mechanics.

It is easiest to think about the special case of a dust field (p = 0). In this case, the equation of motion

reduces to the geodesic equation ηb∇b η
a = 0. That makes sense. In the absence of pressure, particles

in the fluid are free particles. And the conservation equation reduces to ηb∇b ρ + ρ (∇b η
b) = 0. The

first term gives the instantaneous rate of change of the fluid’s energy density, as determined by a co-

moving observer. The term ∇b η
b gives the instantaneous rate of change of its volume, per unit volume,

as determined by that observer. (We shall justify this claim in section 2.8.) In a more familiar notation,

the equation might be written
dρ

ds
+
ρ

V

dV

ds
= 0 or, equivalently,

d(ρV )

ds
= 0. (Here we use s for elapsed

proper time.) It asserts that (in the absence of pressure, as determined by a co-moving observer) the

energy contained in an (infinitesimal) fluid blob remains constant, even as its volume changes.

In the general case, the situation is more complex because the pressure in the fluid contributes to its

energy (as determined relative to particular observers), and hence to what might be called its “effective

mass density”. (If you compress a fluid blob, it gets heavier.) In this case, the WEC comes out as the

requirement that (ρ+ p) ≥ 0 in addition to ρ ≥ 0. The equation of motion can be expressed as

(ρ+ p) ηb∇b η
a = hab∇b p, (2.5.7)

where hab is the projection field (gab − ηa ηb). This is an instance of the “second law of motion” (2.4.13)

as applied to an (infinitesimal) blob of fluid. On the left we have “effective mass density × acceleration”.
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On the right, we have the force acting on the blob, as determined by a co-moving observer. We can think

of it as minus the gradient of the pressure (as determined by a co-moving observer). (The minus sign

comes in because of our sign conventions.) Again, this makes sense. If the pressure on the left side of the

blob is greater than that on the right, it will accelerate to the right.

And in the general case we are now considering —where the pressure p need not vanish — the term

(p∇b η
b) in the conservation equation is required because the energy of the blob is not constant when its

volume changes as a result of the pressure. The equation governs the contribution made to its energy by

pressure.
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2.6 Electromagnetic Fields

In this section we briefly discuss electromagnetic fields. Though our principal interest here is in

the energy-momentum field Tab associated with them, we mention a few fundamental ideas of classical

electromagnetic theory along the way.

Electromagnetic fields are represented by smooth, anti-symmetric fields Fab (on the background space-

time (M, gab)). If a particle with mass m > 0, charge q, and four-velocity field ξa is present, the force

exerted by the field on the particle at a point is given by q F ab ξ
b. (This condition uniquely characterizes

Fab.) As noted at the end of section 2.4, if we use this expression for the force term in the relativistic

version of “Newton’s second law” (2.4.13), we arrive at the Lorentz law of motion:

q F ab ξ
b = m ξb∇b ξ

a. (2.6.1)

It describes the motion of a charged particle in an electromagnetic field (at least when the contribution

of the particle’s own charge to the field is negligible and may be ignored). Note again that the equation

makes geometric sense. The acceleration vector on the right is orthogonal to ξa. But so is the force vector

on the left since Fab is anti-symmetric.

The fundamental field equations of electromagnetic theory (“Maxwell’s equations”) are given by

∇[a Fbc] = 0 (2.6.2)

∇a F
ab = Jb. (2.6.3)

Here Ja is the charge-current density field. It is characterized by the following condition: given any

background observer at a point with four-velocity ξa, Jaξa is the charge density there (arising from

whatever charged matter is present) as determined by that observer. For example, in the case of a

charged dust field, Ja = µ ηa, where ηa is the four-velocity of the dust, and µ is its charge density as

measured by a co-moving observer. Thus, if equation (2.6.1) expresses the action of the electromagnetic

field on a charged (test) particle, equation (2.6.3) expresses the reciprocal action of charged matter on

the field. The former acts a source for the latter.

An important constraint on the charge-curent density field Ja follows immediately from (2.6.3). Since

F ab is anti-symmetric, ∇aJ
a = ∇a∇n F

na = ∇[a∇n] F
na. But

2∇[a∇n] F
na = −FmaRnman − FnmRaman = −FmaRma + FnmRmn

= −FmnRmn + FmnRnm = 0.

(The first two equalities follow, respectively, from clauses (1) and (2) of proposition 1.8.2. The third

involves nothing more than a systematic change of abstract indices. The final equality follows from the

symmetry of the Ricci tensor field.) So

∇aJ
a = 0. (2.6.4)
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We can understand this as an assertion of the local conservation of charge. Notice that in the case of

charged dust field with Ja = µ ηa, (2.6.4) comes out as

ηb∇b µ + µ (∇b η
b) = 0. (2.6.5)

This has exactly the same form as (2.5.5) in the special case where p = 0, and it can be analyzed in

exactly the same manner. It asserts that, as determined by a co-moving observer, the total charge in an

(infinitesimal) blob of charged dust remains constant, even as its volume changes.

Problem 2.6.1. Show that Maxwell’s equations in the source free case (Ja = 0) are conformally in-

variant, i.e., if an anti-symmetric field Fab satisfies them with respect to a metric gab, then it does so as

well with respect to any metric of the form g′ab = Ω2 gab. (Note: Here we need the fact that the dimen-

sion n of the background spacetime is 4. Hint: The conformal invariance of the first Maxwell equation

(∇[a Fbc] = 0) follows immediately from problem 1.7.2 and does not depend on the value of n. To establish

that of the second (∇aF
ab = 0), use proposition 1.9.5 to show that

∇′
a (g′am g′bn Fmn) =

1

Ω4
(∇aF

ab) +
(n− 4)

Ω5
F ab∇a Ω,

where g′ab = Ω−2 gab is the inverse of g′ab, and ∇′ is the derivative operator compatible with g′ab.)

The energy-momentum tensor field associated with Fab is given by

Tab = Fam F
m
b +

1

4
gab (FmnF

mn). (2.6.6)

We can gain some insight by introducing a reference observer O at a point p, with four-velocity ξa, and

considering the decomposition of Fab there into its “electric” and “magnetic” components.

Let hab be the spatial projection tensor at the point determined by ξa (defined by (2.4.3)). Further,

let ǫabcd be a volume element on some open set containing p. Then we define

µ = Ja ξa (2.6.7)

ja = hab J
b (2.6.8)

Ea = F ab ξ
b (2.6.9)

Ba =
1

2
ǫabcd ξb Fcd (2.6.10)

ǫabc = ǫabcn ξ
n. (2.6.11)

Ea and Ba are, respectively, the electric and magnetic field vectors at the point as determined relative

to O. (Clearly, if we had chosen the other volume element, −ǫabcd, we would have ended up with −Ba. A

choice of volume element is tantamount to a choice of “right-hand rule”.) µ and ja are, respectively, the

charge density and current density vectors as determined relative to O. Note that Ea, Ba, and ja are all

orthogonal to ξa. We can think of ǫabc as a three-dimensional volume element defined on the orthogonal

subspace of ξa. (It is anti-symmetric, it is orthogonal to ξa in all indices and, as one can show using

(1.11.8) and it satisfies the normalization condition ǫabcǫ
abc = −3!.)
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Reversing direction, we can recover Fab and Ja from Ea, Ba, µ, and ja as follows:

Ja = µ ξa + ja (2.6.12)

Fab = 2E[a ξb] + ǫabcd ξ
cBd. (2.6.13)

The first assertion is an immediate consequence of the definitions of ja and µ. To verify the second, we

substitute for Bd on the right side. By (1.11.8), the anti-symmetry of Fab, and the definition of Ea, we

have

2E[a ξb] + ǫabcd ξ
c(

1

2
ǫdpqrξp Fqr) = 2E[a ξb] +

1

2
(3!) ξc δ[pa δ

q
b δ
r]
c ξp Fqr

= 2E[a ξb] + 3 ξc ξ[a Fbc]

= 2E[a ξb] + ξc(ξa Fbc + ξc Fab − ξb Fac) = Fab.

Let us now return to our expression (2.6.6) for the energy-momentum field Tab. Our observer O with

four-velocity ξa will attribute to the electromagnetic field a four-momentum density

T ab ξ
b = F am Fmb ξ

b +
1

4
ξa (FmnFmn). (2.6.14)

We can express the right side in terms of the relative electric and magnetic vectors Ea and Ba determined

by O. (The computations are much like that used to prove (2.6.13).) We have

F am Fmb ξ
b = F amEm = (2E[a ξm] + ǫampr ξpBr)Em

= −ξaEmEm − ǫamr EmBr (2.6.15)

and also

FmnFmn = (2E[m ξn] + ǫmnpq ξpBq) (2E[m ξn] + ǫmnrs ξ
r Bs)

= 2EnEn + ǫmnrs ǫ
mnpq ξpBq ξ

r Bs

= 2EnEn − 4 δ[pr δ
q]
s ξpBq ξ

r Bs = 2 (EnEn −BnBn). (2.6.16)

Hence,

T ab ξ
b =

1

2
(−EnEn −BnBn) ξ

a − ǫamr Em Br. (2.6.17)

The coefficient of ξa on the right side is the energy density of the field as determined by O. Using our

notation for vector norms and temporarily dropping indices (and remembering that both Ea and Ba

are spacelike (or the zero vector)), we can express it as 1
2 (‖E‖2 + ‖B‖2). This will be familiar as the

standard textbook expression for the energy density of an electromagnetic field. The component of T ab ξ
b

orthogonal to ξa, namely −ǫamr EmBr, is the three-momentum density of the electromagnetic field as

determined by O. In more familiar vector notation (recall our discussion in section 1.11) it comes out as

−(E × B). (E ×B is called the “Poynting vector”.)

Note that we can also work backward and derive (2.6.6), our expression for Tab, from the assumption

that (2.6.17) holds for all observers with four-velocity ξa. (Reversing the calculation, one shows that
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(2.6.14) or, equivalently, (T ab − (F am Fmb + 1
4 g

a
b F

mnFmn)) ξb = 0, holds for all unit timelike vectors

ξa. (2.6.6) then follows by proposition 2.1.3.) So Tab is fully determined by the requirement that it code

values for 1
2 (‖E‖2 + ‖B‖2) and −(E ×B) for all observers.

Problem 2.6.2. Textbooks standardly assert that (‖E‖2 − ‖B‖2) and E ·B are relativistically invariant

(i.e., have common values for all observers). To verify this, it suffices to note that (in our notation):

(−EaEa +BaBa) = −1

2
F abFab (2.6.18)

EaBa =
1

8
ǫabcd FabFcd. (2.6.19)

We have proved the first assertion (equation (2.6.16)). Prove the second.

Now we consider our two energy conditions and the conservation condition. Given any future-directed,

unit timelike vector ξa at a point, with corresponding electric and magnetic field vectors Ea and Ba, we

have

Tab ξ
a ξb =

1

2
(−EnEn −BnBn) (2.6.20)

(Tabξ
b)(T acξc) =

1

4
(EnEn −BnBn)

2 + (EnBn)2 (2.6.21)

∇aT
ab = JaF

ab (2.6.22)

The first follows immediately from (2.6.17) (and the fact that ǫabc is orthogonal to ξa in all indices). We

leave the second as an exercise. For the third, note that

∇aT
ab = ∇a(F

am F b
m +

1

4
gab FmnF

mn)

= F am∇aF
b

m + F b
m ∇aF

am +
1

2
Fmn∇bFmn

=
1

2
Fam(∇aFmb −∇mF ab) + F b

m ∇aF
am +

1

2
Fma∇bFma

= −1

2
Fam(∇aF bm + ∇mF ab + ∇bFma) + F b

m Jm = JmF
mb.

(We get the third equality by systematically changing indices and using the anti-symmetry of Fab:

Fam∇aFmb = Fma∇mF ab = −Fam∇mF ab. We get the fourth and fifth from Maxwell’s equations

(first ∇aF
am = Jm, then ∇[a F bm] = 0) and, again, the anti-symmetry of Fab.)

Problem 2.6.3. Prove (2.6.21). (It follows immediately from this result that Tab ξ
b is null iff EaEa =

BaBa and Ea Ba = 0. By problem 2.6.2, these conditions hold as determined relative to one unit timelike

vector ξa at a point iff they hold for all such vectors there. When they do hold (at all points), we say that

Fab is a “null” field.)

Maxwell’s equations play no role in the proof of (2.6.20) and (2.6.21). So we see that for any anti-

symmetric field Fab, the corresponding energy-momentum field Tab = Fam F
m
b+

1
4 gab (FmnF

mn) satisfies

both the weak and dominant energy conditions (since Ea and Ba are always spacelike or equal to the
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zero vector 0). And it satisfies the strengthened dominant energy condition except in the special case

where Fab is a non-vanishing null electromagnetic field (in the sense of problem 2.6.3).

The situation is different with the conservation condition, for which Maxwell’s equations are essential.

Suppose that the pair (Fab, J
a) satisfies them (and, therefore, that (2.6.22) holds). There are two cases

to consider. If Ja = 0, i.e., if no sources are present, then the conservation condition ∇aT
ab = 0 is

automatically satisfied. But when charged matter is present, there is the possibility of energy-momentum

being transferred from the electromagnetic field to that matter. So it should not be the energy-momentum

of the electromagnetic field alone that is conserved. Instead, it should be the total energy-momentum

present (arising from both field and charged matter) that is.

By way of example, consider the case where a charged dust field serves as a source for the electro-

magnetic field. Suppose the dust is characterized by four-velocity field ηa, mass density ρ, and charge

density µ, the latter two as determined by a co-moving observer. Then we have Ja = µ ηa, and the

energy-momentum field for the dust (alone) is given by ρ ηaηb. So the total energy-momentum field in

this case is given by

Tab = Fam F
m
b +

1

4
gab (FmnF

mn) + ρ ηaηb. (2.6.23)

Hence, by (2.6.22),

∇aT
ab = Ja F

ab + ∇a(ρ η
aηb)

= µ ηa F
ab + ρ (ηa∇a η

b) + ρ ηb∇a η
a + ηb(ηa∇a ρ). (2.6.24)

This is the counterpart to (2.5.4) that we considered in our discussion of perfect fluids. Arguing much

as we did there, we can verify that in the present case we have the following equivalence. (Set the right

hand side to 0, contract with ηb, and then subtract the resultant equation from the original.)

CC ⇐⇒





µF b a η
a = ρ (ηa∇aη

b)

ηa∇a ρ + ρ (∇a η
a) = 0

The second equation on the right side is just (2.5.5) in the case where p = 0. It asserts that, as determined

by a co-moving observer, the energy in an (infinitesimal) blob of dust remains constant, even as the volume

of the blob changes. (Note that it also has exactly the same form as (2.6.5), which makes a corresponding

assertion about charge conservation.) The first equation on the right side is an equation of motion for the

dust field. It has exactly the same form as (2.6.1). It asserts, in a sense, that individual particles in the

dust field obey the Lorentz law of motion. Thus, the energy-momentum of the electromagnetic field Fab

fails to be conserved only to the extent it exerts a force on those particles and causes them to accelerate.

As an afterthought, now, we recover the standard textbook formulation of Maxwell’s (four) equations

from our formulation. To do so, we need a bit of structure in the background. Let us temporarily assume

that (M, gab) is not just any (temporally oriented) spacetime, but one that admits a future-directed,

unit timelike vector field ξa that is constant (∇aξ
b = 0). Let µ, ja, Ea, Ba, and ǫabc be as defined
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above. Further, let D be the derivative operator induced on hypersurfaces orthogonal to ξa. (Recall our

discussion in section 1.10.) Then we have the following equivalences.

∇[a Fbc] = 0 ⇐⇒





DbB
b = 0 (∇ ·B = 0)

ǫabcDbEc = −ξb∇bB
a (∇× E = −∂B

∂t
)

∇a F
ab = Jb ⇐⇒





DbE

b = µ (∇ ·E = µ)

ǫabcDbBc = ξb∇bE
a + ja. (∇× B =

∂E

∂t
+ j)

(In each case, we have indicated how the right-side equation is formulated in standard (three-dimensional)

vector notation.) We prove the first equivalence and leave the second as an exercise. Note first that by

(2.6.13) and (1.11.8), we have

ǫabcd Fcd = ǫabcd (2E[c ξd] + ǫcdrs ξ
rBs)

= 2 ǫabcdEc ξd − 4 δ[ar δ
b]
s ξ

rBs

= 2 ǫabcdEc ξd − 2 ξaBb + 2 ξbBa.

Hence, since ξa is constant,

ǫabcd∇bFcd = ∇b(ǫ
abcdFcd) = 2 ǫabcdξd∇bEc − 2 ξa∇bB

b + 2 ξb∇bB
a. (2.6.25)

And for that same reason, ∇ahbc = ∇a(gbc − ξbξc) = 0. So, since habE
b = Ea and habB

b = Ba,

DbB
b = hmb h

b
n∇mB

n = ∇m(hmb h
b
nB

n) = ∇mB
m = ∇bB

b (2.6.26)

ǫabcDbEc = ǫabcd ξd h
m
b h

n
c∇mEn = ǫabcd ξd g

m
b∇m(hncEn) = ǫabcdξd∇bEc. (2.6.27)

(For the second equality in (2.6.27), note that ǫdabc ξd ξb = 0 and, hence, that ǫdabc ξd h
m
b = ǫdabc ξd g

m
b.)

If we now replace ∇bB
b and ǫabcdξd∇bEc in (2.6.25) using (2.6.26) and (2.6.27), we arrive at

ǫabcd∇bFcd = −2 ξa(DbB
b) + 2 (ǫabcDbEc + ξb∇bB

a). (2.6.28)

Now ∇[a Fbc] = 0 iff ǫabcd∇bFcd = 0. (Why?) And the latter condition holds iff the sum on the right

side of (2.6.28) is 0. But that sum consists of two terms, one tangent to ξa and one orthogonal to ξa. So

the sum is 0 iff both terms are 0. Thus we are left with the conclusion that ∇[a Fbc] = 0 iff DbB
b = 0

and ǫabcDbEc + ξb∇bB
a = 0.

Problem 2.6.4. Prove the second equivalence (for ∇a F
ab = Jb).
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2.7 Einstein’s Equation

Once again, let (M, gab) be our background relativistic spacetime with a specified temporal orienta-

tion.

It is one of the fundamental ideas of relativity theory that spacetime structure is not a fixed backdrop

against which the processes of physics unfold, but instead participates in that unfolding. It posits a

dynamical interaction between the spacetime metric in any region and the matter fields there. The

interaction is governed by Einstein’s field equation

Rab − 1

2
Rgab = 8 π Tab, (2.7.1)

or, equivalently,

Rab = 8 π (Tab −
1

2
T gab). (2.7.2)

Here Rab (= Rnabn) is the Ricci tensor field, R (= Raa) is the Riemann scalar curvature field, and T is the

contracted field T aa.
17 We start with four remarks about (2.7.1) and then consider two reformulations

that provide a certain insight into the geometric significance of the equation.

(1) It is sometimes taken to be a version of “Mach’s principle” that “the spacetime metric is uniquely

determined by the distribution of matter”. And it is sometimes proposed that the principle can be

captured in the requirement that “if one first specifies the energy-momentum distribution Tab on the

spacetime manifold M , then there is exactly one (or at most one) Lorentzian metric gab on M that,

together with Tab, satisfies (2.7.1)”. But there is a serious problem with the proposal. In general, one

cannot specify the energy-momentum distribution in the absence of a spacetime metric. Indeed, in typical

cases the metric enters explicitly in the expression for Tab. (Recall the expression (2.5.2) for a perfect

fluid.) Thus, in looking for solutions to (2.7.1), one must, in general, solve simultaneously for the metric

and matter field distribution.

(2) Given any smooth metric gab on M , there certainly exists a smooth symmetric field Tab on M

that, together with gab, is a solution to (2.7.1). It suffices to define Tab by the left side of the equation.

But the field Tab so introduced will not, in general, be the energy-momentum field associated with any

known matter field. And it will not, in general, satisfy the weak energy condition discussed in section

2.5. If the latter condition is imposed as a constraint on Tab, Einstein’s equation is an entirely non-trivial

restriction on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on three levels according to the

stringency of the constraints imposed on Tab. At the first level, one considers only “exact solutions”, i.e.,

solutions where Tab is, in fact, the aggregate energy-momentum field associated with one or more known

matter fields. So, for example, one might undertake to find all perfect fluid solutions exhibiting particular

symmetries. At the second level, one considers the larger class of what might be called “generic solutions”,

17We use “geometrical units” in which the gravitational constant G as well as the speed of light c are 1.
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i.e., solutions where Tab satisfies one or more generic constraints (of which the weak and dominant energy

conditions are examples). It is at this level, for example, that the singularity theorems of Penrose and

Hawking (Hawking and Ellis [30]) are proved. Finally, at the third level, one drops all restrictions on Tab,

and Einstein’s equation plays no role. Many results about global structure are proved at this level, e.g.,

the assertion that closed timelike curves exist in any relativistic spacetime (M, gab) where M is compact.

(3) We have presented Einstein’s equation in its original form. He famously added a “cosmological

constant” term (−Λgab) in 1917 to allow for the possibility of a static cosmological model with a perfect

fluid source with p = 0 and ρ > 0.18 (We shall see why the addition is necessary under those conditions

at the end of section 2.11.) But Einstein was never happy with the revised equation

Rab − 1

2
Rgab − Λ gab = 8 π Tab, (2.7.3)

or, equivalently,

Rab = 8 π

(
Tab −

1

2
T gab

)
− Λ gab, (2.7.4)

and was quick to revert to the original version after Hubble’s redshift observations gave convincing

evidence that the universe is, in fact, expanding. After that, he thought, there was no need to have a

static cosmological model. (That the theory suggested the possibility of cosmic expansion before Hubble’s

observations must count as one of its great successes.) Since then the constant has often been reintroduced

to help resolve discrepancies between theoretical prediction and observation, and then abandoned when

the (apparent) discrepancies were resolved. (See Earman [14] for a masterful review of the history.) The

story continues. Recent observations indicating an accelerating rate of cosmic expansion seem to imply

that our universe is characterized by a positive value for Λ or something that mimics its effect.

In what follows, we shall continue to write Einstein’s equation in the form (2.7.1) and think of the

cosmological term as absorbed into the expression for the energy-momentum field Tab. The magnitude

and physical interpretation of this contribution to Tab are topics of great importance in current physics.19

But they will play no role in our discussion.

Problem 2.7.1. Equations (2.7.3) and (2.7.4) are equivalent only if the dimension n of the background

manifold is 4. Show that in the general case (at least if n ≥ 3), inversion of (2.7.3) leads to

Rab = 8 π

(
Tab −

1

(n− 2)
T gab

)
− 2

(n− 2)
Λ gab. (2.7.5)

(4) It is instructive to consider the relation of Einstein’s equation to Poisson’s equation

∇2φ = 4 π ρ, (2.7.6)

the field equation of Newtonian gravitation theory. Here φ is the Newtonian gravitational potential, and

ρ is the Newtonian mass density function. In the geometrized formulation of the theory that we shall

18He did so for other reasons as well (see Earman [14]), but we pass over them here.

19See Earman [14], once again, and references cited there.



CHAPTER 2. CLASSICAL RELATIVITY THEORY 141

consider in chapter 4, one trades in the potential φ in favor of a curved derivative operator and one

recovers ρ from a mass-momentum field T ab. In the end, Poisson’s equation comes out as

Rab = 8 π (T̂ab − 1

2
tab T̂ ). (2.7.7)

Here Rab is the Ricci tensor field associated with the new curved derivative operator, tab is the temporal

metric, T̂ab = Tmn tma tnb, and T̂ = Tmn tmn. (See (4.2.10) and the discussion that precedes it.) The

resemblance to (2.7.2) is, of course, striking. It is particularly close in the special case where ρ = 0. For

in this case, T ab = 0 and (2.7.7) reduces to Rab = 0. The latter is exactly the same as Einstein’s equation

(2.7.2) in the empty space case.

The geometrized formulation of Newtonian gravitation was discovered after general relativity in the

1920s. But now, after the fact, we can put ourselves in the position of a hypothetical investigator who

is considering possible candidates for a relativistic field equation and who knows about the geometrized

formulation of Newtonian theory. What could be more natural than to adapt (2.7.7) and simply replace

tab with gab? This seems to me one of the nicest routes to Einstein’s equation (2.7.2). Again, the route is

particularly direct in the empty space case. For then one starts with the Newtonian empty space equation

(Rab = 0) and simply leaves it intact.

Let us now put aside the question of how one might try to motivate Einstein’s equation, and consider

two reformulations.

Let ξa be a unit timelike vector at a point p in M , and let S be a spacelike hypersurface containing

p that is orthogonal to ξa there. (We understand a hypersurface in M to be spacelike if, at every point,

vectors tangent to the surface are spacelike. This condition guarantees that the hypersurface is metric.

(Recall our discussion in section 1.10.)) Further, let hab and πab be the first and second fundamental forms

on S, and let D be the derivative operator on S determined by hab. Associated with D is a Riemann

curvature field Ra
bcd on S. We know (recall (1.10.21)) that the contracted scalar field R = Ra

bcah
bc

satisfies

R = π2 − πab π
ab +R − 2Rnr ξ

n ξr (2.7.8)

at p. In the special case where S has vanishing extrinsic curvature (πab = 0) at p, this can be expressed

as

(Rab − 1

2
gabR) ξaξb = −1

2
R. (2.7.9)

If Einstein’s equation holds, it therefore follows that

R = −16π (Tab ξ
aξb).20 (2.7.10)

20There is an issue here of sign convention that is potentially confusing. We seem to be led to the conclusion that the

Riemann scalar curvature of S is less than or equal to 0 — at least if Tab satisfies the weak energy condition. But it might

be more natural to say that it is greater than or equal to 0. We are working here with R as determined relative to the

negative definite metric hab, and a sign flip is introduced if we work, instead, with the positive definite metric −hab. The

switch from hab to −hab leaves D, Ra
bcd, and Rcd intact but reverses the sign of R = hbc Rbc.
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One can also work backwards. Suppose (2.7.10) holds for all unit timelike vectors at p and all orthogonal

spacelike hypersurfaces through p with vanishing extrinsic curvature there. Then, by (2.7.9), it must be

the case that

(Rab − 1

2
Rgab) ξ

aξb = 8 π Tab ξ
aξb (2.7.11)

for all unit timelike vectors ξa at p. This, in turn, implies Einstein’s equation (by lemma 2.1.3). So we

have the following equivalence.

(⋆) Einstein’s equation Rab − 1
2 Rgab = 8 π Tab holds at p iff for all unit timelike vectors ξa

at p, and all orthogonal spacelike hypersurfaces S through p with vanishing extrinsic curvature

there, the scalar curvature of S at p is given by R = −16π (Tab ξ
aξb).

We can give the result a somewhat more concrete formulation by casting it in terms of a particular

class of spacelike hypersurfaces. Consider the set of all geodesics through p that are orthogonal to ξa

there. The (images of these) curves, at least when restricted to a sufficiently small open set containing

p, sweep out a smooth spacelike hypersurface that is orthogonal to ξa at p.21 (See figure 2.7.1.) We

Figure 2.7.1: A “geodesic generated hypersurface” through a point is constructed by pro-
jecting geodesics in all directions orthogonal to a given timelike vector there.

shall call it a geodesic generated hypersurface. (We cannot speak of the geodesic generated hypersurface

through p orthogonal to ξa because we have left open how far the generating geodesics are extended. But

given any two, their restrictions to a suitably small open set containing p coincide.)

Geodesic generated hypersurfaces are of interest in their own right, the present context aside, because

they are natural candidates for a notion of “local simultaneity slice” (as determined relative to a timelike

vector at a point). We can think of them as instances of private space. (The contrast here is with public

space which is determined not relative to a single timelike vector or timelike curve, but relative to a

congruence of timelike curves. For more on this difference between private space and public space, see

Rindler [53, 54] and Page [49].)

Now suppose S is a geodesic generated hypersurface generated from p. We claim that it has vanishing

extrinsic curvature there. We can verify this with a simple calculation very much like that used to prove

21More precisely, let Sp be the spacelike hyperplane in Mp orthogonal to ξa. Then for any sufficiently small open set O

in Mp containing p, the image of (Sp ∩ O) under the exponential map exp : O → M is a smooth spacelike hypersurface in

M containing p that is orthogonal to ξa there. (See, for example, Hawking and Ellis [30, p. 33].)
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proposition 1.10.7. Let ξa be a smooth, future-directed, unit timelike field, defined on some open subset

of S containing p, that is orthogonal to S. Let hab be the corresponding projection field on S. Further,

let σa be the tangent field to a geodesic (relative to ∇) through p that is orthogonal there to ξa. Then

along the image of the geodesic we have σa∇aσ
b = 0 and σaξa = 0 (or, equivalently, habσ

b = σa). The

latter holds because the image of the geodesic is contained in S and so is everywhere orthogonal to its

normal field. Hence, by (1.10.16), we have

πab σ
aσb = (hma h

n
b∇m ξn)σ

aσb = σmσn∇m ξn

= σm∇m(σnξn) − ξn σ
m∇mσ

n = 0

along the image of the geodesic. In particular, the condition holds at p. But given any vector at p

orthogonal to ξa, we can choose our initial geodesic so that it has that vector for its tangent at p. Hence,

πab σ
aσb = 0 at p for all such orthogonal vectors. Since πab is symmetric, as well as orthogonal to the

normal field ξa, it follows that πab = 0 at p.

Consider again the equivalence (⋆). If we rerun the argument used before, but systematically cast it

in terms of geodesic generated hypersurfaces, we arrive at the following alternate formulation.

Proposition 2.7.1. Let Tab be a smooth symmetric field on M , and let p be a point in M . Then

Einstein’s equation Rab − 1
2 Rgab = 8 π Tab holds at p iff for all unit timelike vectors ξa at p, and all

geodesic hypersurfaces S generated from p that are orthogonal to ξa, the scalar curvature of S at p is

given by R = −16π (Tab ξ
aξb).

Our second reformulation of Einstein’s equation is phrased in terms of geodesic deviation. Let ξa be

a smooth, future-directed, unit timelike vector field whose associated integral curves are geodesics, i.e.,

a geodesic reference frame. Further, let λa be a vector field on one of the integral curves γ satisfying

£ξλ
a = 0. (So ξb∇b λa = λb∇b ξa.) Finally, assume λa is orthogonal to ξa at some point on γ. Then

it must be orthogonal to the latter at all points on γ. This follows because the inner product (ξaλa) is

constant on γ:

ξb∇b(ξ
aλa) = λa ξ

b∇bξ
a + ξaξb∇bλa = ξaξb∇bλa = ξaλb∇bξa =

1

2
λb∇b(ξ

aξa) =
1

2
λb∇b(1) = 0.

We can think of λa as a connecting field that joins the image of γ to the image of another, “infinitesimally

close”, integral curve of ξa. Then the field ξn∇n(ξm∇mλ
a) represents the acceleration of the latter relative

to γ. We know from proposition 1.8.5 that it satisfies the “equation of geodesic deviation”:

ξn∇n (ξm∇mλ
a) = Ra bcd ξ

b λc ξd. (2.7.12)

Now we define the “average radial acceleration” of ξa at a point p on γ. Let
i

λa (i = 1, 2, 3) be any three

connecting fields (as just described) such that, at p, the vectors ξa,
1

λa,
2

λa,
3

λa form an orthonormal set.
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For each i, the (outward-directed) radial component of the relative acceleration vector ξn∇n (ξm∇m

i

λa),

i.e., its component in the direction
i

λ, has magnitude

−
i

λa ξ
n∇n (ξm∇m

i

λ
a).

(We need the minus sign because λa is spacelike.) We now take the average radial acceleration (ARA)

of ξa at p to be

ARA = −1

3

3∑

i=1

i

λa ξ
n∇n (ξm∇m

i

λ
a). (2.7.13)

Of course, we need to check that the sum on the right side is independent of our initial choice of

connecting fields. The orthonormality condition implies that at p we have gac = ξaξc −
∑3

i=1

i

λa
i

λc.

Hence, by (2.7.12), we also have

ARA = −1

3

3∑

i=1

i

λa R
a
bcd ξ

b
i

λ
c ξd = −1

3
Ra bcd ξ

b ξd (

3∑

i=1

i

λa
i

λ
c) = −1

3
Ra bcd ξ

b ξd (ξaξ
c − g c

a )

at p. But Rabcd ξ
cξd = 0, and Rabcd g

c
a = Rabad = −Rabda = −Rbd. So we may conclude that

ARA = −1

3
Rbd ξ

bξd (2.7.14)

holds at p. Thus, as claimed, average radial acceleration is well defined.

Now if Einstein’s equation holds at p, it follows that

ARA = −8 π

3
(Tab −

1

2
T gab)ξ

aξb (2.7.15)

holds there as well. And conversely, if (2.7.15) holds at p for all geodesic reference frames, then it must

be the case, by (2.7.14), that Rbd ξ
bξd = 8 π (Tab− 1

2 T gab)ξ
bξd holds for all unit timelike vectors ξa there.

And this, in turn, implies that Einstein’s equation holds at p. So we have the following equivalence.

Proposition 2.7.2. Let Tab be a smooth symmetric field on M , and let p be a point in M . Then Einstein’s

equation Rab − 1
2 Rgab = 8 π Tab holds at p iff for all geodesic reference frames ξa (defined on some open

set containing p), the average radial acceleration of ξa at p is given by ARA = −8 π

3
(Tab −

1

2
T gab)ξ

aξb.

We considered three energy conditions (weak, dominant, and strengthened dominant) in section 2.5.

Let us now consider a fourth. Let Tab be the energy-momentum field associated with a matter field F .

Strong Energy Condition (SEC): Given any timelike vector ξa at any point in M ,

(Tab −
1

2
Tgab) ξ

aξb ≥ 0.

Equation (2.7.15) provides an interpretation. Suppose that Einstein’s equation holds. Then F satisfies

the strong energy condition iff, for all geodesic reference frames, the average (outward directed) radial

acceleration of the frame is negative or 0. This captures the claim, in a sense, that the “gravitational

field” generated by F is “attractive”.
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Problem 2.7.2. Give examples of each of the following.

(1) A smooth symmetric field Tab that satisfies the SDEC (and so also the WEC and DEC) but not the

SEC

(2) A smooth symmetric field Tab that satisfies the SEC but not the WEC (and so not the DEC or

SDEC either)

Problem 2.7.3. Consider a perfect fluid with four-velocity ηa, energy density ρ, and pressure p. Show

that it satisfies the strong energy condition iff (ρ+ p) ≥ 0 and (ρ+ 3p) ≥ 0.
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2.8 Fluid Flow

In this section, we consider fluid flow and develop the standard formalism for representing the rotation

and expansion of a fluid at a point. (Later, in sections 3.2 and 3.3, we shall consider several different

notions of global rotation.)

Once again, let (M, gab) be our background relativistic spacetime. We are assuming it is temporally

orientable and endowed with a particular temporal orientation. Let ξa be a smooth, future-directed unit

timelike vector field on M (or some open subset of M). We understand it to represent the four-velocity

field of a fluid. Further, let hab be the spatial projection field determined by ξa.

The rotation and expansion fields associated with ξa are defined as follows:

ωab = h m
[a h n

b] ∇m ξn (2.8.1)

θab = h m
(a h n

b) ∇m ξn. (2.8.2)

They are smooth fields, orthogonal to ξa in both indices, and satisfy

∇a ξb = ωab + θab + ξa(ξ
m∇m ξb). (2.8.3)

(This follows since

ωab + θab = ha
m hb

n∇m ξn = (ga
m − ξa ξ

m) (gb
n − ξb ξ

n)∇m ξn,

and ξn∇m ξn = 0.) Our first task is to give the two fields a geometric interpretation and, in so doing,

justify our terminology. We start with the rotation field ωab.

Let γ be an integral curve of ξa, and let p be a point on the image of γ. Further, let ηa be a vector

field on the image of γ that is “carried along by the flow of ξa” (i.e., £ξ η
a = 0) and is orthogonal to

ξa at p. (It need not be orthogonal to ξa elsewhere.) We think of the image of γ as the worldline of a

fluid element O, and think of ηa at p as a “connecting vector” that spans the distance between O and a

neighboring fluid element N that is “infinitesimally close”. The instantaneous velocity of N relative to O

at p is given by ξa∇a η
b. But ξa∇a η

b = ηa∇a ξ
b (since £ξ η

a = 0). So, by (2.8.3), and the orthogonality

of ξa with ηa at p, we have

ξa∇a η
b = (ω b

a + θ b
a ) ηa. (2.8.4)

at the point. Here we have simply decomposed the relative velocity vector into two components. The first,

(ω b
a ηa), is orthogonal to ηa since ωab is anti-symmetric. (See figure 2.8.1.) It is naturally understood as

the instantaneous rotational velocity of N with respect to O at p.

In support of this interpretation, consider the instantaneous rate of change of the squared length

(−ηb ηb) of ηa at p. It follows from (2.8.4) that

ξa∇a (−ηb ηb) = − 2 θab η
a ηb. (2.8.5)
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Thus the rate of change depends solely on θab. Suppose θab = 0. Then the instantaneous velocity of N

with respect to O at p has a vanishing radial component. If ωab 6= 0, N can still have non-zero velocity

there with respect to O. But it can only be a rotational velocity. The two conditions (θab = 0 and

ωab 6= 0) jointly characterize “rigid rotation”.

The rotation tensor ωab at a point p determines both an (instantaneous) axis of rotation there, and an

(instantaneous) speed of rotation. As we shall see, both pieces of information are built into the angular

velocity (or twist) vector

ωa =
1

2
ǫabcd ξb ωcd (2.8.6)

at p. (Here ǫabcd is a volume element defined on some open set containing p. Clearly, if we switched from

the volume element ǫabcd to its negation, the result would be to replace ωa with −ωa.)

 

ωa

ρa

ηa (connecting vector)

ω a
b η

b (rotational velocity vector)

Figure 2.8.1: The angular velocity (or twist) vector ωa. It points in the direction of the
instantaneous axis of rotation of the fluid. Its magnitude ‖ωa‖ is the instantaneous angular
speed of the fluid about that axis. Here ηa connects the fluid elementO to the “infinitesimally
close” fluid element N . The rotational velocity of N relative to O is given by ω a

b η
b. The

latter is orthogonal to ηa.

If follows from (2.8.6) (and the anti-symmetry of ǫabcd) that ωa is orthogonal to ξa. It further follows

that

ωa =
1

2
ǫabcd ξb∇c ξd, (2.8.7)

ωab = ǫabcd ξ
cωd. (2.8.8)

Hence, ωab = 0 iff ωa = 0. Both (2.8.7) and (2.8.8) are verified with simple calculations. We do the first

and leave the second as an exercse. For the first, we have

2ωa = ǫabcd ξb ωcd = ǫabcd ξb h
r

[c h s
d] ∇r ξs = ǫabcd ξb h

r
c h

s
d ∇r ξs

= ǫabcd ξb g
r
c g s

d ∇r ξs = ǫabcd ξb∇c ξd.
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(The second equality follows from the anti-symmetry of ǫabcd, and the third from the fact that ǫabcdξb is

orthogonal to ξa in all indices.) Notice that (2.8.6) has exactly the same form as our definition (2.6.10)

of the magnetic field vector Ba determined relative to a Maxwell field Fab and four-velocity vector ξa

(Ba = 1
2 ǫ

abcd ξb Fcd). It is for this reason that the magnetic field is sometimes described as the “rotational

component of the electromagnetic field”.

Problem 2.8.1. Prove (2.8.8)

Problem 2.8.2. We have seen that the conditions (i) ωab = 0 and (ii) ωa = 0 are equivalent at any

point. Show that they are also equivalent (at any point) with (iii) ξ[a∇b ξc] = 0.

We claim now that ωa points in the direction of the instantaneous axis of rotation (of the fluid flow

associated with ξa). (See figure 2.8.1 again.) More precisely, with the connecting field ηa as above, we

show that, at p,

ω a
b η

b = 0 ⇐⇒ ηa is proportional to ωa. (2.8.9)

(Or, in the language of “infinitesimally close” fluid elements, the rotational velocity of N with respect

to O vanishes iff the connecting vector from O to N is aligned with ωa.) The implication from right to

left follows immediately from (2.8.8) (and the anti-symmetry of ǫabcd). Conversely, suppose ω a
b η

b = 0.

Then, by (2.8.8),

0 = (ξn ωp ǫ
amnp)ωba η

b = ξn ωp ǫ
amnp ǫbacd ξ

c ωd ηb

= 3! δ
[m
b δ
n
c δ
p]
d η

b ξc ωd ξn ωp = 3! η[m ξn ωp] ξn ωp

= (ηm ωp ωp − ωm ηp ωp).

(For the final equality, here we use the fact that ξa is orthogonal to ηa at p, and orthogonal to ωa

everywhere.) Now if ωpωp = 0, then ωa = 0. (The twist vector ωa is orthogonal to ξa and, by proposition

2.2.1, the only null vector orthogonal to a timelike vector is the zero vector.) And in this case, ηa is

trivially aligned with ωa. So we may assume that ωpωp 6= 0. It then follows that ηa = k ωa, where

k = (ωpηp)/(ω
nωn).

Next, we claim that the magnitude of ωa is the instantaneous angular speed (of the fluid flow associated

with ξa). The angular speed for the connecting vector ηa is given by the ratio of the linear speed of rotation

(i.e., the magnitude of ω a
b η

b) to the magnitude of the radius vector ρa = ηa − ηb ωb
ωn ωn

ωa. (See figure

2.8.1 again.) (If ωn ωn = 0, then ωab = 0, and the speed of angular rotation is 0.) It follows with a bit

of calculation much like that done previously in this section that

(angular speed)2 =
−ω a

b ηb ωca η
c

−ρn ρn
= ... = (−ωnωn), (2.8.10)

i.e., the angular speed is ‖ωa‖, as claimed.

Problem 2.8.3. Complete the calculation in (2.8.10). (Hint: Do not forget that we are doing the

calculation at the initial point p where the connecting vector ηa is orthogonal to ξa.)
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The two italicized conditions concerning, respectively, the orientation and magnitude of ωa, determine

it up to sign.

With the preceding remarks as motivation, we now say that our future-directed, unit timelike vector

field ξa is irrotational or twist-free at a point if ωab = 0 there (or, equivalently, if ωa = 0 or if

ξ[a∇b ξc] = 0 there). It will be instructive to consider a condition that captures the requirement that

ξa is twist-free everywhere. Let us say that a timelike vector field ξa (not necessarily of unit length)

is hypersurface orthogonal if there exist smooth, real valued maps f and g (with the same domains of

definition as ξa) such that, at all points, ξa = f ∇a g. Note that if the condition is satisfied, then the

hypersurfaces of constant g value are everywhere orthogonal to ξa. (For if σa is a vector tangent to

one of these hypersurfaces, σn∇n g = 0. So σnξn = σn(f ∇n g) = 0.) Let us further say that ξa is

locally hypersurface orthogonal if the restriction of ξa to every sufficiently small open set is hypersurface

orthogonal.

Proposition 2.8.1. Let ξa be a smooth, future-directed unit timelike vector field defined on M (or some

open subset of M). Then the following conditions are equivalent.

(1) ωab = 0 everywhere.

(2) ξa is locally hypersurface orthogonal.

Proof. The implication from (2) to (1) is immediate. For if ξa = f ∇a g, then

ωab = h m
[a h n

b] ∇m ξn = h m
[a h n

b] ∇m (f ∇n g)

= f h m
[a h n

b] ∇m ∇n g + h m
[a h n

b] (∇m f) (∇n g)

= f h m
a h n

b ∇[m ∇n] g + h m
a h n

b (∇[m f) (∇n] g).

But ∇[m ∇n] g = 0, since ∇ is torsion-free; and the second term in the final line vanishes as well since

h n
b ∇n g = f−1 h n

b ξn = 0. So ωab = 0. But the converse is non-trivial. It is a special case of Frobenius’

theorem (Wald [60, p. 436]).

There is a nice picture that goes with the proposition. Think about an ordinary rope. In its natural

twisted state, the rope cannot be sliced in such a way that the slice is orthogonal to all individual fibers.

But if the rope is first untwisted, then such a slicing is possible. Thus orthogonal sliceability is equivalent to

fiber-untwistedness. The proposition extends this intuitive equivalence to the four-dimensional “spacetime

ropes” (i.e., congruences of worldlines) encountered in relativity theory. It asserts that a congruence is

twist-free iff it is, at least locally, hypersurface orthogonal.

Let us now switch our attention to the expansion tensor θab associated with ξa. First, we decompose

it into two pieces. We set

θ = θ aa = ∇a ξ
a (2.8.11)

σab = θab − 1

3
hab θ, (2.8.12)
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so that (2.8.3) can be expressed in the expanded form

∇a ξb = ωab + σab +
1

3
hab θ + ξa (ξn∇n ξb). (2.8.13)

Notice that the two expressions for θ in (2.8.11) are equal since ξn∇m ξn = 0 and, therefore

θ a
a = gab θab = gab h m

(a h n
b) ∇m ξn = hmn∇m ξn = (gmn − ξm ξn)∇m ξn = ∇n ξ

n.

Notice too that

σ a
a = 0, (2.8.14)

since σ a
a = θ a

a − 1
3 (g a

a − ξa ξ
a) θ = θ − θ = 0. We call θ the scalar expansion field associated with ξa

and call σab the shear tensor field associated with it. We can motivate this terminology much as we did

that for ωab. We claim first that θ is a measure of the rate at which the volume of an (infinitesimal)

blob of fluid increases under the flow associated with ξa. (It is the counterpart to the “divergence” of a

vector field in ordinary three-dimensional Euclidean vector analysis.) To justify this interpretation, we

do a simple calculation.

Let γ be an integral curve of ξa, and let p be any point on its image. Further, let
1
ηa,

2
ηa,

3
ηa be three

vector fields on the image of γ that (i) are carried along by the flow associated with ξa (i.e., £ξ
i
ηa = 0, for

i = 1, 2, 3), and (ii) together with ξa, form an orthonormal basis at p. Then hab = −(
1
ηa

1
ηb +

2
ηa

2
ηb +

3
ηa

3
ηb)

at p. We consider the rate of change of the volume function V = ǫabcd ξ
a 1
ηb

2
ηc

3
ηd in the direction ξa. It

turns out that, at p,

ξn∇nV = θ V. (2.8.15)

It is in this sense that θ gives the instantaneous rate of volume increase, per unit volume, under the flow

associated with ξa. (This is the claim we made at the end of section 2.5.)

To verify (2.8.15), we compute ξn∇nV . Since £ξ
i
ηa = 0, we have ξn∇n

i
ηa =

i
ηn∇n ξ

a and, hence,

ξn∇nV = ξn∇n (ǫabcd ξ
a 1
ηb

2
ηc

3
ηd)

= ǫabcd

[
(ξn∇n ξ

a)
1
ηb

2
ηc

3
ηd + ... + (

3
ηn∇n ξ

d) ξa
1
ηb

2
ηc
]
. (2.8.16)

Now the vector ǫabcd
1
ηb

2
ηc

3
ηd is orthogonal to

1
ηb,

2
ηc, and

3
ηd. So, at p, it must be co-aligned with

ξa. Indeed, we have ǫabcd
1
ηb

2
ηc

3
ηd = (ǫnbcd ξ

n 1
ηb

2
ηc

3
ηd) ξa = V ξa there. So, ǫabcd(ξ

n∇n ξ
a)

1
ηb

2
ηc

3
ηd =

ξa (ξn∇n ξ
a)V = 0 at p. Similarly, for example, we have

ǫabcd(
1
ηn∇n ξ

b) ξa
2
ηc

3
ηd = −1

ηb (
1
ηn∇n ξ

b)V

at p. So, after handling all terms on the right side of (2.8.16) this way, we are left, at p, with

ξn∇nV = −V
[

1
ηr (

1
ηn∇n ξ

r) +
2
ηr (

2
ηn∇n ξ

r) +
3
ηr (

3
ηn∇n ξ

r)
]

= −V (
1
ηr

1
ηn +

2
ηr

2
ηn +

3
ηr

3
ηn)(∇n ξ

r) = V h n
r ∇n ξ

r

= V (g n
r − ξrξ

n)∇n ξ
r = V ∇n ξ

n = V θ.
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This gives us (2.8.15).

Now consider σab. It is symmetric (and orthogonal to ξa). So we can choose our three vector fields
1
ηa,

2
ηa,

3
ηa so that, in addition to being carried along by the flow of ξa, and (with ξa) forming an or-

thonormal basis at p, they satisfy σab = −(
1

k
1
ηa

1
ηb +

2

k
2
ηa

2
ηb +

3

k
3
ηa

3
ηb) at p. (It is a basic fact of linear

algebra that we can find an orthonormal basis at p that diagonalizes the symmetric 4 × 4 matrix of

σab-components.) Then σab
i
ηb =

i

k
i
ηa, for each i, i.e.,

i
ηa is an eigenvector of σab with eigenvalue

i

k. And

the coefficients
i

k sum to 0, since 0 = σ a
a = −(

1

k
1
ηa

1
ηa +

2

k
2
ηa

2
ηa +

3

k
3
ηa

3
ηa) = (

1

k +
2

k +
3

k).

Suppose for the moment that ωab = 0 and θ = 0 at p. Then, by (2.8.4) and (2.8.13), ξn∇n
i
ηa =

σ a
n

i
ηn =

i

k
i
ηa, for all i, at p. So, if we think of

i
ηa as a “connecting vector” pointing from an observer

O to an (infinitesimally) close neighbor N , then the instaneous velocity of N relative to O is directed

radially away from O at p and has magnitude
i

k there. Thus, each of the vectors
1
ηa,

2
ηa,

3
ηa is an axis

of instantaneous expansion (or contraction) with associated magnitude
i

k. Since the magnitudes sum to

0, expansion along one axis can occur only if there is contraction along another. Individual expansions

and contractions so compensate each other that there is no net increase in volume. (Again, we are now

considering the case where θ is 0.)

In general, the expansion factors
i

k are all different. But, for purposes of illustration, suppose that the

factors on two axes are equal — say
1

k =
2

k. Further imagine that our infinitesimal blob has the shape of

a sphere at p. Then there are two possibilities. If the common factor is positive, then the action of the

flow flattens it into a pancake with axis
3
ηa (“pancake shear”). If it is negative, then it is elongated into a

hot dog with axis
3
ηa (“hot dog shear”). The second possibility is illustrated in figure 2.8.2, where three

possible actions are illustrated.

uniform spherical
expansion volume-preserving

shear

 rigid rotation

ωa

ωab 6= 0

θ = 0

σab = 0

ωab = 0

θ > 0

σab = 0

ωab = 0

θ = 0

σab 6= 0

Figure 2.8.2: Rotation, Expansion, Shear
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The full expansion tensor field θab can be given another interesting geometric interpretation in the

case where it is associated with a unit timelike flow ξa that is everywhere twist-free. In this case, by

proposition 2.8.1, ξa is, at least locally, hypersurface orthogonal. Let S be a spacelike hypersurface to

which ξa is orthogonal. The extrinsic curvature of S is given by πab = h m
a h n

b ∇m ξn. (Recall (1.10.16).)

But h m
a h n

b ∇m ξn = ωab + θab, by (2.8.1) and (2.8.2). So in the present case (ωab = 0), we have

πab = θab. Thus, the expansion tensor field associated with a twist-free unit timelike field ξa is just the

extrinsic curvature of the spacelike hypersurfaces to which ξa is orthogonal.

This gives us another way to think about the extrinsic curvature of spacelike hypersurfaces. When

πab = 0, normal vectors to the surface do not recede from one another. “Connecting vectors” between

“infinitesimally” close surface normals do not expand. (See figure 2.8.3.) But when πab 6= 0, connecting

vectors do expand.

θab = 0

θab 6= 0

Figure 2.8.3: Expansion and Extrinsic Curvature

Finally, we derive an expression for the rate of change of the scalar expansion function θ (“Raychaud-

huri’s equation”):

ξa∇a θ = −Rab ξaξb + ωab ω
ab − 1

3
θ2 − σab σ

ab + ∇a(ξ
n∇n ξ

a). (2.8.17)

We shall need it later in section 2.11. (Here ξa is still a smooth future-directed unit timelike vector field

on our background spacetime (M, gab).) The derivation proceeds in two steps. First, it follows from

(1.8.1) that

ξa∇a θ = ξa∇a∇b ξ
b = −ξaRbcab ξc + ξa∇b∇a ξ

b

= −Rca ξcξa + ∇b(ξ
a∇a ξ

b) − (∇b ξ
a)(∇a ξ

b).

Next, we evaluate the term (∇b ξ
a)(∇a ξ

b) using the expansion in (2.8.13): ∇a ξb = ωab + σab + 1
3 hab θ +

ξa (ξn∇n ξb). A straightforward computation establishes that

(∇b ξa)(∇a ξb) = −ωab ωab +
1

3
θ2 + σab σ

ab.

(All terms involving ξa or ξb are 0 because hab, ωab, σab, and ξn∇n ξa are all orthogonal to ξa in all indices.

The terms involving ωab together with either hab or σab are 0 because the former is anti-symmetric whereas

the latter are symmetric. The terms involving hab and σab are 0 because σa
a = 0.) This gives us (2.8.17).
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2.9 Killing Fields and Conserved Quantities

In relativity theory, there is a natural association between Killing fields and conserved quantities. We

consider it briefly in this section.

Let κa be a smooth field on our background spacetime (M, gab). Recall (section 1.9) that κa is said

to be a Killing field if its associated local flow maps Γs are all isometries or, equivalently, if £κ gab = 0.

The latter condition can also be expressed as ∇(a κb) = 0.

Any number of standard symmetry conditions — local versions of them, at least22 — can be cast as

claims about the existence of Killing fields. Here are a few examples.

(M, gab) is stationary if it has a Killing field that is everywhere timelike.

(M, gab) is static if it has a Killing field that is everywhere timelike and locally hypersurface or-

thogonal.

(M, gab) is homogeneous if its Killing fields, at every point of M , span the tangent space.

(We shall have another example in section 3.2, where we consider “stationary, axi-symmetric spacetimes”.)

The distinction between stationary and static spacetimes should be clear from our discussion in the

preceding section. (Recall proposition 2.8.1.) Roughly speaking, in a stationary spacetime there is, at

least locally, a “timelike flow” that preserves all spacetime distances. But the flow can exhibit rotation.

Think of a whirlpool. It is the latter possibility that is ruled out when one passes to a static spacetime.

For example, Gödel spacetime, as we shall see, is stationary but not static.

Problem 2.9.1. Let κa be a timelike Killing field that is locally hypersurface orthogonal (κ[a∇b κc] = 0).

Further, let κ be the length of κa. (So κ2 = κnκn.) Show that

κ2 ∇a κb = − κ[a∇b] κ
2.

By way of example, let us find all Killing fields on Minkowski spacetime. This will be easy, as much

of the work has already been prepared in sections 1.9 and 2.6.

Let κa be a Killing field on Minkowski spacetime (M, gab). Arguing exactly as in proposition 1.9.9, we

can show that, given any point p in M , there is a unique constant, anti-symmetric field Fab on M and a

unique constant field ka on M such that

κb = χaFab + kb, (2.9.1)

where χa is the position field relative to p. (Recall that Fab = ∇a κb, and kb = κb − χaFab.) Thus there

is a one-to-one correspondence between Killing fields on Minkowski spacetime and pairs (Fab, kb) at any

22They are “local” because Killing fields need not be complete, and their associated local flow maps need not be defined

globally. (Recall our discussion at the end of section 1.3.)
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one point, where Fab is an anti-symmetric tensor there and ka is a vector there. It follows that the vector

space of Killing fields on Minkowski spacetime has 6 + 4 = 10 dimensions.

We can further analyze Fab as in section 2.6. Let ǫabcd be a volume element on M ; let ξa be a constant,

future-directed, unit timelike field on M ; and let Ea and Ba be defined as in (2.6.9) and (2.6.10):

Ea = F ab ξ
b,

Ba =
1

2
ǫabcd ξb Fcd.

Then Ea and Ba are constant fields everywhere orthogonal to ξa. And it follows from (2.6.13) that we

can express κa in the form

κb = χa (2E[a ξb] + ǫabcd ξ
cBd) + kb. (2.9.2)

This gives us a classification of all Killing fields (relative to an arbitrary choice of “origin” p and constant,

unit timelike field ξa). Killing fields of the form κb = kb generate (timelike, spacelike, or null) transla-

tions. Those of the form κb = χa ǫabcd ξ
cBd generate spatial rotations, based at p, with rotational axis

Ba. Those of the form κb = 2χaE[a ξb] generate boosts, based at p, in the plane determined by ξa and

Ea.

Problem 2.9.2. Consider a non-trivial boost Killing field κb = 2χaE[a ξb] on Minkowski spacetime (as

determined relative to some point p and some constant unit timelike field ξa). “Non-trivial” here means

that Ea 6= 0. Let ηa be a constant field on Minkowski spacetime. Show that £κ η
a = 0 iff ηa is orthogonal

to both to ξa and Ea. (It follows that the boost isometries generated by κa leave intact all two-dimensional

submanifolds orthogonal to ξa and Ea, but “rotate” all two-dimensional submanifolds to which ξa and

Ea are tangent.)

Problem 2.9.3. This time, consider a non-trivial rotational Killing field κb = χa ǫabcd ξ
cBd on

Minkowski spacetime (with Ba 6= 0). Again, let ηa be a constant field on Minkowski spacetime. Show that

£κ η
a = 0 iff ηa is a linear combination of ξa and Ba. (It follows that the isometries generated by κa

“rotate” all two-dimensional submanifolds orthogonal to ξa and Ba, but leave intact all two-dimensional

submanifolds to which ξa and Ba are tangent.)

Now we briefly consider two types of conserved quantity. One is an attribute of point particles with

positive mass, the other of extended bodies. Let κa be a Killing field in an arbitrary spacetime (M, gab)

(not necessarily Minkowski spacetime), and let γ : I → M be a smooth, future-directed, timelike curve,

with unit tangent field ξa. We take its image to represent the worldline of a point particle with mass

m > 0. Consider the quantity J = (P aκa), where P a = mξa is the four-momentum of the particle. It

certainly need not be constant on γ[I]. But it will be if γ is a geodesic. For in that case, ξn∇n ξ
a = 0

and hence, by (1.9.12),

ξn∇nJ = m (κa ξ
n∇n ξ

a + ξnξa∇n κa) = mξnξa∇(n κa) = 0. (2.9.3)
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Thus, J is constant along the worldlines of free particles of positive mass.

We refer to J as the conserved quantity associated with κa. If κa is timelike, we call J the energy of the

particle (associated with κa).23 If it is spacelike, and if its associated flow maps resemble translations,24

we call J the linear momentum of the particle (associated with κa). Finally, if κa is spacelike, and if its

associated flow maps resemble rotations, then we call J the angular momentum of the particle (associated

with κa).

It is useful to keep in mind a certain picture that helps one “see” why the angular momentum of free

particles (to take that example) is conserved. It involves an analogue of angular momentum in Euclidean

plane geometry. Figure 2.9.1 shows a rotational Killing field κa in the Euclidean plane, the image of a

geodesic (i.e., a line) L, and the tangent field ξa to the geodesic. Consider the quantity J = ξaκa, i.e.,

the inner product of ξa with κa, along L. Exactly the same proof as before (of equation (2.9.3)) shows

that J is constant along L.25 But here we can better visualize the assertion.

Let us temporarily drop indices and write κ · ξ as one would in ordinary Euclidean vector calculus

(rather than ξaκa). Let p be the point on L that is closest to the center point where κ vanishes. At

that point, κ is parallel to ξ. As one moves away from p along L, in either direction, the length ‖κ‖ of

κ grows, but the angle ∠(κ, ξ) between the vectors increases as well. It should seem at least plausible

from the picture that the length of the projection of κ onto the line is constant and, hence, that the inner

product κ · ξ = cos(∠(κ, ξ)) ‖κ‖ ‖ξ‖ is constant.

That is how to think about the conservation of angular momentum for free particles in relativity theory.

It does not matter that in the latter context we are dealing with a Lorentzian metric and allowing for

curvature. The claim is still that a certain inner product of vector fields remains constant along a geodesic,

and we can still think of that constancy as arising from a compensatory balance of two factors.

Let us now turn to the second type of conserved quantity, the one that is an attribute of extended

bodies. Let κa be an arbitrary Killing field, and let Tab be the energy-momentum field associated

23Of course, one needs to ask what this notion of energy has to do with the one considered in section 2.4. There,

ascriptions of energy to point particles were made relative to individual unit timelike vectors, and the value of the energy

at any point was taken to be the inner product of that vector with the particle’s four-momentum vector. We take the

present notion of energy to be primary and the earlier one as derived. At least in the context of Minkowski spacetime, one

can always extend a unit timelike vector at a point to a constant unit timelike field (which is, of course, a Killing field)

and then understand relativization to the vector as relativization to the associated constant field. And perhaps the earlier

usage is properly motivated only in spacetimes where individual unit timelike vectors are extendible to constant fields or, at

least, to naturally distinguished Killing fields. (Similar remarks apply to components of “linear momentum” in particular

directions.)

24When one is dealing with Minkowski spacetime, one can assert without ambiguity that a Killing field generates a

“translation”, or a “spatial rotation”, or a “boost”. Things are not always so simple. Still, sometimes a Killing field in a

curved spacetime resembles a Killing field on Minkowski spacetime in certain respects, and then the terminology may carry

over naturally. For example, in the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic

behavior.

25The mass m played no special role.



CHAPTER 2. CLASSICAL RELATIVITY THEORY 156

p

κa

κa

κa

κa

ξa

ξa

L

Figure 2.9.1: κa is a rotational Killing field. (It is everywhere orthogonal to a circle radius,
and is proportional to it in length.) ξa is a tangent vector field of constant length on the line
L. The inner product between them is constant. (Equivalently, the length of the projection
of κa onto the line is constant.)

with some matter field. Assume it satisfies the conservation condition (∇a T
ab = 0). Then (T ab κb) is

divergence free:

∇a(T
abκb) = κb∇aT

ab + T ab∇aκb = T ab∇(aκb) = 0. (2.9.4)

(The second equality follows from the conservation condition and the symmetry of T ab; the third follows

from the fact that κa is a Killing field.) It is natural, then, to apply Stokes’ theorem to the vector field

(T abκb). Consider a bounded system with aggregate energy-momentum field Tab in an otherwise empty

universe. Then there exists a (possibly huge) timelike world tube such that Tab vanishes outside the tube

(and vanishes on its boundary).

S1

S2

Tab = 0

Tab 6= 0

Figure 2.9.2: The integrated energy (relative to a background timelike Killing field) over the
intersection of the world tube with a spacelike hypersurface is independent of the choice of
hypersurface.

Let S1 and S2 be (non-intersecting) spacelike hypersurfaces that cut the tube as in figure 2.9.2, and let
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N be the segment of the tube falling between them (with boundaries included). By Stokes’ theorem26,
∫

S2

(T abκb) dSa −
∫

S1

(T abκb) dSa

=

∫

S2∩ ∂N

(T abκb) dSa −
∫

S1∩ ∂N

(T abκb) dSa

=

∫

∂N

(T abκb) dSa =

∫

N

∇a(T
abκb) dV = 0.

Thus, the integral
∫
S
(T abκb) dSa is independent of the choice of spacelike hypersurface S intersecting the

world tube, and is, in this sense, a conserved quantity (construed as an attribute of the system confined

to the tube). An “early” intersection yields the same value as a “late” one. Again, the character of the

background Killing field κa determines our description of the conserved quantity in question. If κa is

timelike, we take
∫
S
(T abκb) dSa to be the aggregate energy of the system (associated with κa). And so

forth.

Let us now continue the discussion that led to (2.9.3) and derive an inequality governing “total

integrated acceleration”. Once again, let κa be a Killing field on an arbitrary spacetime (M, gab), and let

γ : I →M be a smooth, future-directed, timelike curve, with unit tangent field ξa. We take its image to

represent the worldline of a point particle with mass m > 0. Again, we consider the quantity J = (P aκa),

where P a = mξa is the four-momentum of the particle. Even without assuming that γ is a geodesic, we

have

ξn∇nJ = m (κa ξ
n∇n ξ

a + ξnξa∇n κa) = mκa ξ
n∇n ξ

a. (2.9.5)

Now let α be the scalar magnitude of the acceleration field, i.e., α2 = −(ξn∇n ξ
a)(ξm∇m ξa). Then we

have (see problem 2.9.4)

|ξn∇nJ | ≤ α
√
J2 − m2 (κnκn). (2.9.6)

(Of course, if γ is a geodesic, i.e., if α = 0 everywhere, then |ξn∇nJ | must vanish everywhere as well. So

we recover our earlier result that J is constant in the case of geodesic motion.) If κa is causal (timelike

or null) and future-directed everywhere, then J = P aκa > 0, and it follows that

|ξn∇nJ | ≤ α J. (2.9.7)

So, in this case, the total integrated acceleration of γ — the integral of α with respect to elapsed time —

satisfies

TA(γ) =

∫

γ

α ds ≥
∫

γ

|ξn∇n J)|
J

ds ≥
∣∣∣∣
∫

γ

ξn∇n (lnJ) ds

∣∣∣∣ . (2.9.8)

Thus, if γ passes through points p1 and p2, the total integrated acceleration between those points is, at

least, |(lnJ)|p2 − (lnJ)|p1 |. (For applications of (2.9.8), see Chakrabarti, Geroch, and Liang [7].)

Problem 2.9.4. Derive the inequality (2.9.6).

26See Wald [60, Appendix B.2] for a discussion of integration on manifolds and Stokes’ theorem. We did not take the time

to develop these topics in our review of differential geometry because we have so little need of them. This is the only place

in this book where reference is made to integration on manifolds (except for the simple case of integration over curves).
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2.10 The Initial Value Formulation

In this very brief section, we say a few words about the “initial value formulation” of general relativity

and make precise the sense in which it is a deterministic theory. (See Hawking and Ellis [30] and Wald

[60] for a proper treatment of the subject.)

Let S be a smooth, achronal, spacelike hypersurface in our background spacetime (M, gab). Recall

(section 2.5) that D(S), the domain of dependence of S, is the set of all points p in M with this property:

given any smooth causal curve without endpoint, if its image passes through p, then it intersects S. Our

goal is to explain the sense in which (at least in the empty space case) “what happens on S uniquely

determines what happens on D(S)”.

Of special interest is the case where S is a Cauchy surface in (M, gab), i.e., a smooth achronal spacelike

hypersurface such that D(S) = M .

The first thing we must do is specify what is to count as “initial data” for the metric gab on S. Let ξa

be the (unique) smooth, future-directed, unit timelike field that is everywhere orthogonal to S. (We will

refer to it, simply, as the normal field to S.) Our first piece of initial data on S is the induced (negative

definite) spatial metric hab = gab − ξaξb. Our second piece is the extrinsic curvature field πab on S. We

can think of the latter as the time derivative of hab in the direction ξa, at least up to the factor
1

2
, since

2 πab = £ξhab. (Recall (1.10.17).)

Thus our metric initial data on S consists of the pair (hab, πab), the first and second fundamental

forms on S. They correspond, respectively, to position and momentum in the initial value formulation

of Newtonian particle mechanics. We know from our discussion in section 1.10 that these fields satisfy a

number of constraint equations, including

R − (πa
a)2 + πab π

ab = −2 (Rab − 1

2
Rgab) ξ

a ξb,

Dc πa
c − Da πc

c = hma h
np ξrRmnpr,

where D is the derivative operator induced on S, Ra
bcd is its associated Riemann curvature field, and R

is the contracted scalar curvature field. (The first equation is just (1.10.21) and we get the second from

(1.10.19) by contraction.) Using the symmetries of Rmnpr, we can re-express the right side of the second

equation:

hma h
np ξrRmnpr = hma (gnp − ξn ξp) ξr Rnmrp = hma ξ

r Rmr

= hma ξ
r (Rmr − 1

2
Rgmr).

And therefore, using Einstein’s equation, we can express our two constraint equations as

R − (πa
a)2 + πab π

ab = −16 π Tab ξ
a ξb, (2.10.1)

Dc πa
c − Da πc

c = 8 π Tmr h
m
a ξ

r. (2.10.2)
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For simplicity, we shall restrict attention to the empty space case — where Tab vanishes and it is only

the evolution of the metric field gab itself that we need to consider. In this special case, of course, the

constraint equations assume the form

R − (πa
a)2 + πab π

ab = 0, (2.10.3)

Dc πa
c − Da πc

c = 0. (2.10.4)

We started with a spacetime (M, gab) and moved to an induced initial data set (hab, πab) on a smooth,

achronal, spacelike hypersurface S in M satisfying particular constraint equations. Now we reverse

direction.

We need a few definitions. Let us say officially that an (empty space) initial data set is a triple

(Σ, h̃ab, π̃ab) where Σ is a smooth, connected, three-dimensional manifold, h̃ab is a smooth negative-

definite metric on Σ, π̃ab is a smooth symmetric field on Σ, and the latter two satisfy the constraint

equations (2.10.3) and (2.10.4).

A Cauchy development of such an initial data set (Σ, h̃ab, π̃ab) is a triple ((M, gab), S, ϕ) where (i)

(M, gab) is a spacetime that satisfies the field equation Rab = 0, (ii) S is a Cauchy surface in M , (iii) ϕ

is a diffeomorphism of Σ onto S, and (iv) h̃ab = φ∗(hab) and π̃ab = φ∗(πab), where hab and πab are the

first and second fundamental forms induced on S.

A Cauchy development ((M, gab), S, ϕ) of (Σ, h̃ab, π̃ab) is maximal if, in addition, given any other

Cauchy development ((M ′, g′ab), S
′, ϕ′) of (Σ, h̃ab, π̃ab), there is an isometry ψ ofM ′ into M that respects

Σ in the sense that ψ ◦ ϕ′ = ϕ.

Our basic result (due to Choquet-Bruhat and Geroch [8]) is the following.

Proposition 2.10.1. Every empty space initial data set has a maximal Cauchy development. It is unique

in the following sense. If ((M, gab), S, ϕ) and ((M ′, g′ab), S
′, ϕ′) are both maximal Cauchy developments

of (Σ, h̃ab, π̃ab), there is a diffeomorphism ψ : M ′ →M such that ψ ◦ ϕ′ = ϕ and g′ab = ψ∗(gab).

Proposition 2.10.1 makes precise the sense in which general relativity is a deterministic theory. But

that sense is local in character because it need not be the case in an arbitrary spacetime (M, gab) that

there is any one achronal spacelike hypersurface S such that D(S) = M , i.e., it need not be case that

there is a Cauchy surface. (For example, the spacetime that arises by taking the universal covering space

of anti-deSitter spacetime admits no Cauchy surface. See Hawking and Ellis [30], section 5.2.)
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2.11 Friedmann Spacetimes

In this section, we briefly consider the class of Friedmann (or Friedmann-Lemâıtre-Robertson-Walker)

spacetimes. These are the “standard models” of relativistic cosmology. (For a more complete discussion,

see Wald [60] or almost any text in general relativity.) We include this section, even though we are

not otherwise undertaking to survey known exact solutions to Einstein’s equation, because we have

a particular interest in comparing relativistic cosmology with Newtonian cosmology. We consider the

latter in section 4.4.

We take a Friedmann spacetime to be one that satisfies a particular symmetry condition — “spatial

homogeneity and isotropy” — together with supplemental constraints in the form of energy conditions

and/or equations of state. We start with the symmetry condition.

Roughly speaking, a spacetime is spatially homogeneous and isotropic if there is a congruence of

timelike curves filling the spacetime such that “space”, as determined relative to the congruence, “is the

same in all directions”. Here is one way to make the condition precise. (We opt for a local version of the

condition. And to avoid certain distracting complications, we cast the definition directly in terms of the

existence of isometries, rather than in terms of Killing fields as we did with several symmetry conditions

at the beginning of section 2.9.)

Let (M, gab) be a spacetime, and let ξa be a smooth, future-directed, unit timelike field on M that is

twist-free, i.e., ξ[a∇b ξc] = 0. (So, at least locally, it is possible to foliate M with a one-parameter family

of spacelike hypersurfaces that are orthogonal to ξa. Recall our discussion in section 2.8. We can think of

each of these hypersurfaces as constituting “space” at a given time relative to ξa.) We say that (M, gab)

is spatially homogeneous and isotropic relative to ξa if, for all points p in M , and all unit spacelike vectors
1
σa and

2
σa at p that are orthogonal to ξa, there is an open set O containing p and an isometry ϕ : O → O

that keeps p fixed, preserves the field ξa, and maps
1
σa to

2
σa (i.e., such that ϕ(p) = p, ϕ∗(ξ

a) = ξa, and

ϕ∗(
1
σa) =

2
σa).27 We further say that (M, gab) is spatially homogeneous and isotropic if it is so relative to

some choice of ξa. The strength of the condition will become clear as we proceed.

We assume in what follows that ξa is as in the preceding paragraph and (M, gab) is spatially homoge-

neous and isotropic relative to ξa. We first abstract a few general principles.

27Note, we require here that ϕ map the field ξa onto itself everywhere, not just at p. If we required only that it keep

fixed the vector ξa
|p, the condition would not be strong enough for our purposes. For example, Minkowski spacetime would

then qualify as spatially homogeneous and isotropic relative to any smooth, future-directed, unit timelike vector field ξa

that is twist-free. It would not have to be the case, as we want it to be, that hypersurfaces orthogonal to ξa are manifolds

of constant curvature.

For the corresponding global version of the condition, we would require at the outset that ξa be (globally) hypersurface

orthogonal and require that, for all p,
1
σa, and

2
σa as specified, there is a (global) isometry ϕ : M → M that keeps p fixed,

preserves the field ξa, and maps
1
σa to

2
σa. We shall later consider what turns on the difference between these two (local

vs. global) versions of the spatial homogeneity and isotropy condition.
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(1) Given any field λa on M , if it is definable in terms of, or otherwise determined by, gab and ξa, then

it must be proportional to ξa. (So λa = λ ξa where λ = λnξ
n. And if λa is also orthogonal to ξa,

then λa = 0.)

This follows, for if at some point p, λa had a non-zero component orthogonal to ξa, it would determine

a “preferred” orthogonal direction there and violate the isotropy condition. (Here is the argument in

more detail. Since that component is determined by gab and ξa, it must be invariant under all maps that

preserve gab and ξa and that leave p fixed. But, by our assumption of spatial homogeneity and isotropy,

the only vector at p, orthogonal to ξa, that is invariant under all such maps is the zero vector.) It follows

from (1), for example, that the acceleration field ξn∇n ξ
a must vanish, i.e., ξa must be a geodesic field.

(2) Given any scalar field λ on M , if it is definable in terms of, or otherwise determined by, gab and ξa,

then it must be constant on all spacelike hypersurfaces orthogonal to ξa. (So ∇a λ = (ξn∇n λ) ξa.)

This is an immediate consequence of (1) as applied to hab∇b λ, where hab is the spatial projection field

(gab − ξa ξb). So, for example, we have

∇a θ = (ξn∇n θ) ξa, (2.11.1)

where θ = ∇m ξ
m. (Recall section 2.8.)

(3) Given any symmetric field λab on M , if it is definable in terms of, or otherwise determined by, gab

and ξa, then it must be of the form λab = α ξaξb + β hab for some scalar fields α and β. (And if

λab is also orthogonal to ξa, then it must be of the form λab = β hab.)

To see this, consider any point p. By (1) as applied to λab ξ
b, there is a number α such that λab ξ

b =

α ξa at p. Now consider the tensor (λab − α ξa ξb) at p. It is symmetric and orthogonal to ξa in both

indices. So we can express it in the form

λab − α ξa ξb = −(
1
σ

1
σa

1
σb +

2
σ

2
σa

2
σb +

3
σ

3
σa

3
σb), (2.11.2)

where the vectors
1
σa, ...,

3
σa, together with ξa, form an orthonormal (eigen)basis for gab at p. But now,

by the isotropy condition, the coefficients
1
σ,

2
σ,

3
σ must be equal. (For all i and j, there is an isometry

that leaves p and (λab − α ξa ξb) fixed but takes
i
σa to

j

σa.) If their common value is β, then the right

side tensor in 2.11.2 can be expressed as β hab.

It follows from (3) that the shear tensor field σab associated with ξa must be of the form σab = β hab.

But σab is “trace-free”, so 0 = σa
a = 3 β. Thus, ξa has vanishing shear in addition to being geodesic.

And we assumed at the outset that it is twist-free. So, by (2.8.13),

∇a ξb =
1

3
hab θ. (2.11.3)
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It also follows from (3) that we can construe (M, gab) as an exact solution to Einstein’s equation for a

perfect fluid source with four velocity ξa. For if Rab = α ξaξb + β hab, then

Rab − 1

2
Rgab = 8 π(ρ ξaξb − p hab), (2.11.4)

where ρ =
(α− 3 β)

16π
and p =

(α+ β)

16π
. (This perfect fluid need not satisfy any of the standard energy

conditions. We shall soon add one of those conditions as a supplemental constraint, but will work

without it for now.) In what follows, we take Tab to be the indicated energy-momentum field, i.e., we

take Tab = ρ ξaξb − p hab. So (after inversion of (2.11.4)),

Rab = 8 π(Tab − 1

2
T gab) = 4 π(ρ + 3p) ξa ξb − 4 π(ρ − p)hab. (2.11.5)

Next we consider the geometry of spacelike hypersurfaces orthogonal to ξa. Let S be one such hyper-

surface, and let hab and πab be the first and second fundamental forms induced on S. (Recall section 1.10.)

Note that, by (1.10.16) and (2.11.3), the latter assumes a simple form: πab = ha
m hb

n∇m ξn =
1

3
hab θ.

Now let Ra
bcd be the curvature field associated with the induced derivative operator D. Our goal is to

derive an expression for Ra
bcd in terms of θ, ρ, and p. We do so by first deriving one for Rbc and then

invoking a general fact about the relation between the two fields that holds in the special case of three

dimensional manifolds. It follows from (1.10.20), our expression above for πab, and from (2.11.5) that

Rbc = πn
n πbc − πab π

a
c + hnb h

p
cRnp − Rmbcr ξ

m ξr

=
1

3
θ2 hbc − 1

9
θ2 hbc − 4 π(ρ − p)hbc − Rmbcr ξ

m ξr.

So we need only derive an expression for the fourth term on the right side. (Here and in what follows we

shall use the abbreviation θ̇ = ξn∇n θ.) Note that by (2.11.3) and (2.11.1),

∇c∇r ξb =
1

3
∇c (hrb θ) =

1

3
[hrb ξc θ̇ + θ∇c(grb − ξr ξb) ]

=
1

3
[hrb ξc θ̇ − θ ξr∇c ξb − θ ξb∇c ξr ]

=
1

3
[hrb ξc θ̇ − 1

3
θ2 ξr hcb − 1

3
θ2 ξb hcr ].

Hence

Rmbcr ξ
m = 2∇[c∇r] ξb =

2

3
ξ[c hr]b ( θ̇ +

1

3
θ2 )

and, therefore,

Rmbcr ξ
m ξr = −1

3
hbc ( θ̇ +

1

3
θ2 ).

Substituting this into our expression for Rbc yields

Rbc = K hbc, (2.11.6)
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where K = 1
3 (θ2 + θ̇) − 4 π (ρ − p). Now we invoke our general fact. In the special case of a three-

dimensional manifold with metric, we (always) have28

Rabcd = (hbcRad + hadRbc − hacRbd − hbdRac) +
1

2
(hac hbd − had hbc)R. (2.11.7)

So it follows from (2.11.6) (and its contracted form R = 3K) that

Rabcd = (
R
2

− 2K) (hac hbd − had hbc) =
K
2

(had hbc − hac hbd). (2.11.8)

Thus, recalling our discussion at the end of section 1.9, we see that (S, hab) has constant curvature K/2.

(We shall soon have a more instructive expression for K.)

Now we turn to considerations of dynamics. We claim that

θ̇ = −4 π(ρ+ 3 p) − 1

3
θ2, (2.11.9)

ρ̇ = −(ρ+ p) θ. (2.11.10)

(We shall continue to use the dot notation. Here ρ̇ = ξn∇n ρ.) We get the first from Raychaudhuri’s

equation (2.8.17), using (2.11.5) and the fact that ξa is geodesic, irrotational, and shear-free. The second is

the continuity condition (2.5.5). Recall that the latter follows from the conservation condition ∇a T
ab = 0

as applied to our energy-momentum field T ab = ρ ξaξb − p hab. (And the conservation condition itself is

a consequence of Einstein’s equation.)

It is convenient and customary to introduce a new field a that we can think of as a “scaling factor”.

We want it to be constant on spacelike hypersurfaces orthogonal to ξa, i.e., hmn∇m a = 0. So we need

only specify its growth along any one integral curve of ξa. We define it, up to a multiplicative constant,

by the condition
1

3
θ =

ȧ

a
. (2.11.11)

(Certainly this equation has solutions. Indeed, if the curve is parametrized by a time function t where

ξa = ∇a t, then all functions of the form a(t) = ef(t), with f(t) =

∫ t

t0

θ

3
dt, qualify.) The condition

inherits a natural interpretation from the one we have given for θ. It concerns the rate of volume increase

for a fluid with four-velocity ξa. We saw in section 2.8 that if an (“infinitesimal”) blob of the fluid has

volume V , then V̇ = V θ. (Recall (2.8.15).) If we think of the blob as a cube whose edges have length

a, then V = a3 and we are led immediately to (2.11.11). It is in this sense that a is a scaling factor. If

we now express our equations for θ̇ and ρ̇ above in terms of a, we have

3
ä

a
= −4 π(ρ+ 3 p), (2.11.12)

ρ̇ = −3
ȧ

a
(ρ+ p) (2.11.13)

28We shall later prove a close analogue of this result (proposition 4.1.4) in connection with our discussion of classical

spacetimes. It should be clear how to adapt the proof to the present context. (We present the argument there rather than

here because of added complications that arise when one is dealing with classical spacetimes.)
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where, of course, ä = ξn∇n(ξ
m∇m a). These two jointly imply (by integration) that there is a number k

such that

(
ȧ

a
)2 − 8 π

3
ρ = − k

a2
. (2.11.14)

(This is “Friedmann’s equation”.) Since a was only determined initially up to a multiplicative constant,

we can now normalize it so that k = −1 or k = 0 or k = 1.

We can use the listed equations to express several fields of interest directly in terms of the scaling

factor a and k:

8 π ρ = 3 (
ȧ

a
)2 + 3

k

a2
, (2.11.15)

8 π p = −2
ä

a
− (

ȧ

a
)2 − k

a2
, (2.11.16)

Rabcd = − k

a2
(had hbc − hac hbd). (2.11.17)

Here (2.11.15) is just a reformulation of (2.11.14). (2.11.16) follows from (2.11.12) and (2.11.15). For

(2.11.17), recall that, by (2.11.8), Rabcd =
K
2

(had hbc − hac hbd), where K =
1

3
(θ2 + θ̇) − 4 π (ρ − p).

But
1

3
(θ2 + θ̇) =

ä

a
+ 2 (

ȧ

a
)2

by (2.11.9), (2.11.11), and (2.11.12). And it follows from (2.11.15) and (2.11.16) that

4 π (ρ − p) =
ä

a
+ 2 (

ȧ

a
)2 + 2

k

a2

So K = −2
k

a2
, as claimed.

(2.11.17) tells us that (S, hab) has constant curvature −k/a2. Remember, though, that hab is negative

definite, and curvature is usually reported in terms of the positive definite metric −hab. This introduces

a sign change. (The switch from hab to −hab leaves D, Ra
bcd, and (hadhbc − hachbd) intact, but reverses

the sign of Rabcd = hanRn
bcd.) So we shall record our conclusion this way:

(S,−hab) is a manifold of constant curvature, and the magnitude of its curvature is (−1/a2),

0, or (1/a2) depending on whether k is −1, 0, or 1.

We have reached this point assuming only a local version of the spatial isotropy condition. But now

suppose for a moment that the global version holds as well, and let S be any maximally extended spacelike

hypersurface that is everywhere orthogonal to ξa. Then we can say more about the global structure of

(S,−hab). In this case, it follows from the way the global condition is formulated that (S,−hab) is, itself,

a homogeneous, isotropic three-manifold in this sense: for all points p in S, and all unit vectors
1
σa and

2
σa

in the tangent space to S at p, there is an isometry ψ : S → S that keeps p fixed and that maps
1
σa to

2
σa.

This is a very strong constraint and rules out all but a small number of possibilties (Wolf [64]). If k = 0,

(S,−hab) cannot be just any flat three-manifold. It must be isometric to three-dimensional Euclidean
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space, i.e., it must also be diffeomorphic to R
3 and geodesically complete.29 If k = −1, (S,−hab) must

be isometric to three-dimensional hyperbolic space H3. (We shall return to consider one realization

of three-dimensional hyperbolic space at the end of the section.) Finally, if k = 1, (S,−hab) must be

isometric either to three-dimensional spherical space S3 or to three-dimensional elliptic three-space P 3.

The latter arises if one identifies “antipodal points” in the former.

Let us now revert to the local version of the spatial homogeneity and isotropy condition — leaving

open the global structure of maximally extended spacelike hypersurface orthogonal to ξa — and continue

with our consideration of dynamics. The difference in strength between the two versions of the condition

plays no role here.

So far, assuming only the spatial homogeneity and isotropy condition, we have established that the

scaling function a must satisfy (2.11.15) and (2.11.16). Now for the first time, just so as to have one

example, we assume that our perfect fluid satisfies a particular equation of state, namely p = 0, and

consider how the latter constrains the growth of the scaling function. (We are certainly not claiming that

this assumption is realistic, i.e., holds (approximately) in our universe.)

If we insert this value for p in (2.11.16) and multiply by a2 ȧ, we arrive at 2 ä ȧ a + ȧ3 + k ȧ = 0. It

follows that there is a number C such that ȧ2 a + k a =
8π

3
ρ a3 = C. (The first equality follows from

(2.11.15).) So our task is now reduced to solving the differential equation

ȧ2 − C

a
+ k = 0. (2.11.18)

The solutions are the following. (It is convenient to express two of them in parametric form.)

k = −1





a(x) =
C

2
(coshx − 1)

t(x) =
C

2
(sinhx − x)

x ∈ (0, ∞)

k = 0 a(t) =

(
9C

4

) 1
3

t
2
3 t ∈ (0, ∞)

k = +1






a(x) =
C

2
(1 − cosx)

t(x) =
C

2
(x − sinx)

x ∈ (0, 2 π)

These are maximally extended solutions for the case where θ is positive at at least one point. We get

additional (time-reversed) solutions if we assume that θ is negative at at least one point.

29This should seem, at least, intuitively plausible. Consider a lower dimensional case. The Euclidean plane is not the

only two-dimensional Riemannian manifold of constant 0 curvature. The cylinder and the torus also qualify. But neither

of them is isotropic in the relevant sense. For given a point in either, the only global isometry of the manifold that keeps

the point fixed is the identity map.
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Rough (qualitative) graphs of these solutions are given in figure 2.11.1. If k = −1 or k = 0, expansion

starts at the big bang and continues forever. In both cases, the rate of expansion
da

dt
decreases monoton-

ically. But there is this difference: the rate of expansion shrinks to 0 asymptotically when k = 0, but has

a limit value that is strictly positive when k = −1. (One curve is asymptotically flat; the other is not.)

In contrast, if k = 1, expansion continues until a maximum value is reached for a (at time t =
C π

2
) and

then a period of accelerating contraction begins that leads to a big crunch.

k = 1

k = 0

k = -1

t

a

Figure 2.11.1: Rough graphs of the scaling factor a in the three cases.

Problem 2.11.1. Confirm that the three stated solutions do, in fact, satisfy (2.11.18).

Problem 2.11.2. Consider a second equation of state, namely that in which ρ = 3 p. (For Tab =

ρ ξa ξb − p hab, this is equivalent to T = 0.) Show that in this case there is a number C′ such that

ȧ2 a2 + k a2 =
8π

3
ρ a4 = C′.

(So in this case, the equation to solve is not (2.11.18), but rather

ȧ2 − C′

a2
+ k = 0.)

It will be instructive to consider an ultra-simple, degenerate Friedmann spacetime and see how some

of our claims turn out in this special case. Let (M, gab) be Minkowski spacetime. Let o be any point in

M , and let O be the (open) set of all points p in M such that o ≪ p, i.e., such that there is a smooth

future-directed timelike curve that runs from o to p. (See figure 2.11.2.) Further, let χa be the position

field based at o — so χa vanishes at o and ∇aχ
b = 0 — and let ξa be the field

ξa = (χbχ
b)−

1
2 χa

as restricted to O. The latter is, clearly, a smooth, future-directed, unit timelike field on O. Moreover,

it is (globally) hypersurface orthgonal, i.e., there exist smooth scalar fields f and g on O such that
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ξa = f ∇a g. Indeed, if χ = (χaχ
a)

1
2 , then χa = χ ξa, and

∇nχ =
1

2
(χaχ

a)−
1
2 ∇n (χbχ

b) = (χaχ
a)−

1
2 χb δn

b = χ−1 χn = ξn. (2.11.19)

We claim that the restricted spacetime (O, gab|O) is spatially homogeneous and isotropic with respect

to ξa and so qualifies as a Friedmann spacetime (with ρ = p = 0). Indeed, this reduces to a standard

claim about the symmetries of Minkowski spacetime. Given any point p in O, and any two (distinct)

unit spacelike vectors
1
σa and

2
σa at p that are orthogonal to ξa, there is a spatial rotation that keeps p

fixed, preserves the field ξa, and takes
1
σa to

2
σa.30

o

Figure 2.11.2: Minkowski spacetime (in profile) as restricted to the set of all points to
the timelike future of a point o. It qualifies as a (degenerate) Friedmann spacetime with
ρ = p = 0. A χ = constant hyperboloid is indicated. It (together with the metric induced
on it) is a realization of three-dimensional hyperbolic space.

We know from our earlier discussion that (2.11.3) must hold. In this special case, it is easy to check

the result with a direct computation. By (2.11.19), we have

θ = ∇a ξ
a = ∇a (χ−1 χa) = χ−1 (∇a χ

a) − χ−2 χa∇a χ = 4χ−1 − χ−1 = 3 χ−1, (2.11.20)

and, hence,

∇a ξb = ∇a (χ−1 χb) = χ−1 (∇a χb) − χ−2 χb∇a χ = χ−1 gab − χ−2 χb ξa

= χ−1 gab − χ−1 ξb ξa = χ−1 hab =
1

3
θ hab,

as expected. Notice also, that if we take a = χ, then ȧ = ξa∇aχ = 1 by (2.11.19) and

1

3
θ =

ȧ

a
.

30Let
o

ξa be a constant unit timelike field on O that agrees with ξa at p, and let σa be a constant unit spacelike field

that is orthogonal to all three vectors ξa,
1
σa, and

2
σa at p. Then the rotation in question is generated by the Killing field

κb = ǫabcd χa
o

ξc σd (for either choice of volume element ǫabcd). Recall (2.9.2).
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This choice of a satisfies Friedmann’s equation (2.11.14) with ρ = 0 and k = −1.

Now consider the hyperboloids in O defined by the condition χ = constant. (See figure 2.11.2 again.)

Each is a spacelike hypersurface that is everywhere orthogonal to ξa. (For if σa is a vector at a point of

one such hypersurface S that is tangent to S, then σn∇n χ = 0 and, therefore, by (2.11.19), σn ξn =

σn∇n χ = 0.)

Let S be one such hyperboloid. Let D be the induced derivative operator on S, and let Rabcd be its

associated curvature field. We know from (2.11.17) that

Rabcd =
1

χ2
(had hbc − hac hbd),

since here a = χ and k = −1. Again, we can check this directly. To do so, we first compute the second

fundamental form πab on S. (Recall (1.10.16).) Since hb
nχn = hb

n(χ ξn) = 0, we have

πab = ha
m hb

n∇m ξn = ha
m hb

n∇m (χ−1χn) = χ−1 ha
m hb

n∇m χn = χ−1 ha
m hb

n gmn = χ−1 hab.

It follows, by (1.10.22), that

Rabcd = πad πbc − πac πbd =
1

χ2
(had hbc − hac hbd),

as expected.

Thus, if S is characterized by the value χ, then (S,−hab) is a three-dimensional manifold with constant

curvature −1/χ2. Moreover, as we know from our discussion above, it cannot be just any such manifold,

but must be, in fact, isometric to three-dimensional hyperbolic space H3. If we had started with a three-

dimensional version of Minkowski spacetime, our hyperboloid (with induced metric) would be isometric

to two-dimensional hyperbolic space, otherwise known as the Lobatchevskian plane. (For more about

this “hyperboloid model” for Lobatchevskian plane geometry see, e.g., Reynolds [52].)

Finally, recall the remarks we made in section 2.7 about the cosmological constant Λ. If we include

the constant in Einstein’s equation, i.e., if we take the latter to be (2.7.4), then Raychaudhuri’s equation

(2.8.17) yields

θ̇ = −4 π(ρ+ 3 p) − 1

3
θ2 + Λ (2.11.21)

rather than (2.11.9). This, in turn, leads to Friedmann’s equation in the form

(
ȧ

a
)2 − 8 π

3
ρ = − k

a2
+

Λ

3
(2.11.22)

rather than (2.11.14).

Equation (2.11.21) serves to explain Einstein’s introduction of the cosmological constant. He thought

he needed to find a non-expanding model (θ = 0) to represent the universe properly. And, in our terms,

he was considering only Friedmann spacetimes and only perfect fluid sources that are pressureless (p = 0)

and non-trivial (ρ > 0). It is an immediate consequence of (2.11.21) that these conditions can be satisfied
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if, but only if, Λ = 4πρ > 0. And in this case, it follows from (2.11.22) and (2.11.11) that k/a2 = 4πρ.

So (since k is normalized to be 1, 0, or −1), we see that the stated conditions can be satisfied iff

Λ = 4πρ > 0

1

a2
= 4πρ

k = 1.

(These conditions characterize Einstein static spacetime.)

It is also an immediate consequence of (2.11.21) — at least if our universe can be represented as a

Friedmann spacetime — that evidence for an accelerating rate of cosmic expansion (θ̇ > 0) counts as

evidence either for a positive value for Λ or for a violation of the strong energy condition. (Recall from

problem 2.7.3 that a perfect fluid satisfies the strong energy condition iff ρ+ p ≥ 0 and ρ+ 3 p ≥ 0.)



Chapter 3

Special Topics

3.1 Gödel Spacetime

Kurt Gödel is, of course, best known for his work in mathematical logic and the foundations of

mathematics. But in the late 1940s he made an important contribution to relativity theory by finding

a new solution to Einstein’s equation (Gödel [25]). It represents a possible universe with remarkable

properties. For one thing, the entire material content of the Gödel universe (on a cosmological scale) is

in a state of uniform, rigid rotation. For another, light rays and free test particles in it exhibit a kind of

boomerang effect. Most striking of all, the Gödel universe allows for the possibility of “time travel” in a

certain interesting sense.1

Though not a live candidate for describing our universe (the real one), Gödel’s solution is of interest

because of what it tells us about the possibilities allowed by relativity theory. In this section, we present

the solution and establish several of its basic properties in a running list. We shall later use it as an

example when we consider orbital rotation in section 3.2.

It will be helpful to keep in mind two different coordinate expressions for the Gödel metric and also a

coordinate-free characterization. We start with the former. Let us officially take Gödel spacetime to be

the pair (M, gab), where M is the manifold R
4 and where

gab = µ2

[
(dat)(dbt) − (dax)(dbx) +

e2x

2
(day)(dby) − (daz)(dbz) + 2 ex(d(at)(db)y)

]
. (3.1.1)

1In addition to finding this one new exact solution to Einstein’s equation, Gödel [26] also established the existence of

solutions representing universes that are rotating and expanding, though he did not exhibit any of the latter explicitly. For

a review of Gödel’s contributions to relativity theory and cosmology (and subsequent work on rotating solutions), see Ellis

[18].

170



CHAPTER 3. SPECIAL TOPICS 171

Here µ is an arbitrary positive number (a scale factor), and t, x, y, z are global coordinates on M .2

In what follows, we use the abbreviations

ta =

(
∂

∂t

)a
xa =

(
∂

∂x

)a
ya =

(
∂

∂y

)a
za =

(
∂

∂z

)a
. (3.1.2)

To confirm that gab is a metric of signature (1, 3), it suffices to check that the fields

ta

µ
,

xa

µ
,

√
2

µ
(ta − e−xya),

za

µ
(3.1.3)

form an orthonormal basis (of the appropriate type) at each point. The first, in particular, is a smooth,

unit timelike vector field on M . That there exists such a field shows us that Gödel spacetime is temporally

orientable. It is also orientable since the anti-symmetrized product of the four fields in (3.1.3) qualifies

as a volume element.

(1) Gödel spacetime is temporally orientable and orientable.

We shall work with the temporal orientation determined by ta in what follows.

We note for future reference that the inverse field of gab is

gbc =
1

µ2

[
−tbtc − xbxc − 2 e−2x ybyc − zbzc + 4 e−x t(byc)

]
, (3.1.4)

and that lowering indices in (3.1.2) with gab yields:

ta = µ2(∇a t+ ex∇a y), (3.1.5)

xa = −µ2 ∇a x, (3.1.6)

ya = µ2

(
e2x

2
∇a y + ex∇a t

)
, (3.1.7)

za = −µ2 ∇a z. (3.1.8)

(Here ∇ is the derivative operator on M compatible with gab, and we have switched from writing, for

example., “dat” to “∇at”.)

We claim, first, that the four fields

ta, ζa = (xa − y ya), ya, za (3.1.9)

2More precisely, t, x, y, z are real-valued functions on M , and the composite map Φ : p 7→ (t(p), x(p), y(p), z(p)) is a

bijection between M and R
4 that belongs to the collection C of 4-charts that defines the manifold R

4. The coordinates

t, x, y, z correspond to u1, u2, u3, u4 in the notation of section 1.2. So, for example, we understand the vector (
∂

∂t
)a at any

point p to be the tangent there to the curve r 7→ Φ−1(t(p) + r, x(p), y(p), z(p)).
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are all Killing fields. They are, in fact, the generators, respectively, of one-parameter (global) isometry

groups {
t

Γr}r∈R, {
ζ

Γr}r∈R, {
y

Γr}r∈R, {
z

Γr}r∈R on M defined by:

t

Γr (p) = Φ−1 (t(p) + r, x(p), y(p), z(p)) ,
ζ

Γr (p) = Φ−1(t(p), x(p) + r, e−ry(p), z(p)),
y

Γr (p) = Φ−1(t(p), x(p), y(p) + r, z(p)),
z

Γr (p) = Φ−1(t(p), x(p), y(p), z(p) + r),

where Φ : M → R
4 is the chart defined by Φ(p) = (t(p), x(p), y(p), z(p)). Here, of course, the group

operation is composition.3 An equivalent formulation may be more transparent. For example, we can

understand
ζ

Γr to be defined by the requirement that, for all numbers t0, x0, y0, z0,

(Φ ◦
ζ

Γr ◦Φ−1) (t0, x0, y0, z0) = (t0, x0 + r, e−ry0, z0).

The field xa is not a Killing field, but it is the generator of the one-parameter group of diffeomorphisms

{
x

Γr}r∈R on M given by

x

Γr (p) = Φ−1(t(p), x(p) + r, y(p), z(p)).

The five fields under consideration satisfy the following Lie bracket relations:

[ta, ζa] = [ta, ya] = [ta, za] = [ζa, za] = [ya, za] = 0, (3.1.10)

[xa, ta] = [xa, ζa] = [xa, ya] = [xa, za] = 0, (3.1.11)

3There are a few things that have to be checked. First, each of these maps (for any choice of r) is, in fact, an isometry.

This follows from basic facts we have recorded in section 1.5. Consider
ζ

Γr , for example. By (1.5.6) and (1.5.7), we have

(
ζ

Γr)∗(e2x) = e2(x+r) and (
ζ

Γr)∗(day) = da((
ζ

Γr)∗(y)) = da(e−ry) = e−r(day). Hence,

(
ζ

Γr)∗(e2x(day)(dby)) = ((
ζ

Γr)∗(e2x)) ((
ζ

Γr)∗(day)) ((
ζ

Γr)∗(dby)) = e2x(day)(dby).

Arguing in this way, we can show that all the terms in gab are preserved by (
ζ

Γr)∗ and, so, (
ζ

Γr)∗(gab) = gab.

Second, each of the groups does, in fact, have the indicated vector field as its generator. This follows from our discussion

in sections 1.2 and 1.3. Consider {
ζ

Γr}r∈R, for example. Let p be a point with coordinates Φ(p) = (t0, x0, y0, z0), and let

γ : R → M be the curve through p defined by

γ(r) =
ζ

Γr (p) = Φ−1(t0, x0 + r, e−ry0, z0).

We need to show that
→
γ a = ζa at all points on the image of γ. Let f be any smooth field on some open set containing p.

Then, by the chain rule, at all points γ(r),

→
γ a(f) =

d

dr
(f ◦ γ) =

d

dr
(f ◦ Φ−1)(t0, x0 + r, e−ry0, z0) =

∂ (f ◦ Φ−1)

∂ x2
· 1 +

∂ (f ◦ Φ−1)

∂ x3
· (−e−ry0)

=
∂ f

∂ x
· 1 +

∂ f

∂ y
· (−e−ry0) =

∂ f

∂ x
− y

∂ f

∂ y
=

„

(
∂

∂ x
)a − y (

∂

∂ y
)a

«

(f) = ζa(f).

So we are done. Here x1, x2, x3, x4 are the coordinate projection functions on R
4 that we considered in section 1.2. So, for

example, (x3 ◦Φ)(p) = y(p). And the equality
∂ f

∂ y
=

∂ (f ◦ Φ−1)

∂ x3
is an instance of (1.2.7). (As mentioned in the preceding

note, the coordinates t, x, y, z correspond to u1, u2, u3, u4 in the notation of section 1.2.)
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[ζa, ya] = ya. (3.1.12)

There are various ways to see why these hold. For those in the first two rows, it is easiest to invoke a

basic result (that we did not formulate in chapter 1).

Proposition 3.1.1. Let αa and βa be smooth fields on a manifold that generate one-parameter groups of

diffeomorphisms {
α

Γr}r∈R and {
β

Γr}r∈R on that manifold. Then [αa, βa] = 0 iff
α

Γr and
β

Γr′ commute

for all r and r′.

(See, for example, Spivak [57, volume 1, p. 217].) It is clear in each case that the relevant commutation

relations obtain, e.g.,
t

Γr and
ζ

Γs commute for all r and s.4 For (3.1.12), note that

[ζa, ya] = −[ya, ζa] = −£ya(xa − y ya) = [xa, ya] + (£yay) ya + y [ya, ya] = ya,

since £yay = yn∇ny = 1, and [xa, ya] = [ya, ya] = 0.

By composing the isometries
t

Γr,
ζ

Γr,
y

Γr,
z

Γr (with appropriate choices for r in each case), we can go

from any one point inM to any other. Moreover, each of the individual isometries, and so any composition

of them, preserves the fields ta and za. (This follows from propositions 1.6.6 and 1.6.4, and the fact that

each of the generators ta, ζa, ya, za has a vanishing Lie bracket with ta and za.) So we have the following

homogeneity claim.

(2) Gödel spacetime is (globally) homogeneous in this strong sense: given any two points p and q in M ,

there is an isometry ψ : M →M such that ψ(p) = q, ψ∗(t
a) = ta, and ψ∗(z

a) = za.

(The maps referred to here preserve temporal orientation automatically because they preserve ta, and

we are using that field to define temporal orientation.) We shall repeatedly invoke this strong form of

homogeneity in what follows. For example, we shall prove an assertion about a particular integral curve

of ta (that makes reference only to gab, t
a, and za), and then claim that it necessarily holds for all integral

curves of that field.

The four Killing fields ta, ζa, ya, za are clearly independent of each other. In fact, one can find a fifth

that is independent of these four, e.g.,

κa = −2 e−x ta + y xa +

(
e−2x − 1

2
y2

)
ya

= −2 e−x ta + y ζa +

(
e−2x +

1

2
y2

)
ya.

4For all p, r, and s, we have

t

Γr (
ζ

Γs (p)) = Φ−1

„

t(
ζ

Γs (p)) + r, x(
ζ

Γs (p)), y(
ζ

Γs (p)), z(
ζ

Γs (p))

«

= Φ−1
`

t(p) + r, x(p) + s, e−sy(p), z(p)
´

.

And a similar computation shows that

ζ

Γs (
t

Γr (p)) = Φ−1
`

t(p) + r, x(p) + s, e−sy(p), z(p)
´

.

So
t

Γr (
ζ

Γs (p)) =
ζ

Γs (
t

Γr (p)).
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(To confirm that it is a Killing field, it suffices to expand ∇a κb and use our expressions above for ta, xa,

and yb to show that its symmetric part vanishes.5)

Now we do a bit of calculation and derive an expression for the Ricci tensor field Rab. Note first that

∇a tb = µ2 ex (∇[ax)(∇b]y), (3.1.13)

∇a xb = µ2

[
e2x

2
(∇ay)(∇by) + ex(∇(ay)(∇b)t)

]
, (3.1.14)

∇a yb = µ2
[
e2x(∇[ax)(∇b]y) + ex(∇[ax)(∇b]t)

]
, (3.1.15)

∇a zb = 0. (3.1.16)

These can be checked easily by using (3.1.5) – (3.1.8) and the fact that ta, ζa, ya, za are Killing fields.

Since ta is a Killing field, for example, we have ∇(a tb) = 0 and, therefore,

∇a tb = ∇[a tb] = µ2
(
∇[a∇b]t + ex∇[a∇b]y + ex (∇[ax)(∇b]y)

)
= µ2 ex (∇[ax)(∇b]y).

This gives us (3.1.13). The other cases are handled similarly.6 It follows immediately that ta, xa and za

are all geodesic fields:

ta∇a t
b = 0 xa∇a x

b = 0 za∇a z
b = 0. (3.1.17)

We shall be particularly interested in the (maximally extended) integral curves of ta. Their images are

sets of the form {Φ−1(t, x0, y0, z0) : t ∈ R}, for particular choices of x0, y0, z0. We shall call these curves

(or their images) t-lines.

Now we turn to Rab. We claim, first, that symmetry considerations alone establish that it must have

the form

Rab = α t̂at̂b + β (gab − t̂at̂b − ẑaẑb) (3.1.18)

where α and β are particular numbers (to be determined), and t̂a and ẑa are normalized versions of ta

and za. (So ta = µ t̂a and za = µ ẑa.) The argument we use to establish this is much like that used in

section 2.11 when we considered the Ricci tensor field in Friedmann spacetimes. In both cases, it turns

on an isotropy condition. Shortly, when we switch to an alternate coordinate representation of the Gödel

metric, it will be clear that given any t-line (through any point), there is a global isometry (a rotation)

5We have

∇a κb = −2 e−x ∇a tb + 2 e−x (∇a x) tb + y ∇a ζb + (∇a y) ζb + (e−2x +
1

2
y2)∇a yb − 2 e−2x (∇a x) yb + y (∇a y) yb

= −2 e−x ∇a tb + y ∇a ζb + (e−2x +
1

2
y2)∇a yb + (∇a x)(2 e−x tb − 2 e−2x yb) + (∇a y)(ζb + y yb).

But (2 e−x tb − 2 e−2x yb) = µ2 ∇b y and (ζb + y yb) = −µ2 ∇b x. And the first three terms have vanishing symmetric

part since ta, ζa, and ya are Killing fields. So ∇(a κb) = 0.

6For (3.1.14), note that since ∇[a xb] = −µ2 ∇[a∇b]x = 0, and since (xa − y ya) and ya are Killing fields,

∇a xb = ∇(a xb) = y ∇(ayb) + (∇(ay) yb) = (∇(ay) yb) = µ2

»

e2x

2
(∇ay)(∇by) + ex(∇(ay)(∇b)t)

–

.
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that leaves fixed every point on the line and also preserves the field za. In effect, we now make use of

that rotational symmetry, but cast the argument in terms of Killing fields rather than of the rotations

themselves.

Since we can find an isometry that maps any one point in M to any other and preserves both ta and

za, it will suffice to show that (3.1.18) holds at one point, say p = Φ−1(0, 0, 0, 0). To do so, it will suffice

to show, in turn, that the two sides of (3.1.18) yield the same result when contracted with each of the

vectors ta, xa, (ta − ya), za. (It is convenient to work with this basis because the vectors are mutually

orthogonal at p. It does not matter that they are not normalized.) So our task reduces to showing that

the following all hold at p (for some values of α and β).

(i)Rab t
a = α tb (ii)Rab x

a = β xb (iii)Rab (ta − ya) = β (tb − yb) (iv)Rab z
a = 0

Given any Killing field λa in any spacetime, we have

Rab λ
a = Rnabn λ

a = −Ranbn λa = ∇n∇b λ
n. (3.1.19)

(The second equality follows from the symmetries of the Riemann curvature tensor field, and the third

follows from proposition 1.9.8.) So, in particular, applying this result to the Killing field za in Gödel

spacetime, and recalling (3.1.16), we have Rab z
a = ∇n∇b z

n = 0. This gives us (iv).

Next, consider the field

κ′a = −2 (e−x − 1) ta + y xa +

(
e−2x − 1

2
y2 − 1

)
ya. (3.1.20)

It is a linear combination of Killing fields (κ′a = κa + 2 ta − ya) and so is, itself, a Killing field. What

is important about it is that it vanishes at p.7 Notice that we have

[ta, κ′a] = [za, κ′a] = 0, (3.1.21)

[xa, κ′a] = 2 e−x ta − 2 e−2x ya, (3.1.22)

[ya, κ′a] = xa − y ya (3.1.23)

everywhere8, and so

£κ′ xa = [κ′a, xa] = −2(ta − ya), (3.1.24)

£κ′ ya = [κ′a, ya] = −xa (3.1.25)

at p. Since κ′a vanishes at p, we have £κ′f = κ′a∇af = 0 at p for all smooth scalar fields f . So, in

particular, since κ′ Lie derives Rab (as all Killing fields do) and Lie derives ta (by (3.1.21)), we have

0 = £κ′(Rab t
ayb) = Rab t

a (£κ′yb) = −Rab taxb, (3.1.26)

0 = £κ′(Rab t
axb) = Rab t

a (£κ′xb) = −2Rab t
a(tb − yb) (3.1.27)

7It is, in fact, up to a constant, just the rotational Killing field (∂/∂φ)a that we shall consider below. The latter, as we

shall see, generates a one-parameter group of rotations that keep fixed all points on the t-line through p (and preserve za).

8These all follow easily from the Lie bracket relations that we have already established.



CHAPTER 3. SPECIAL TOPICS 176

at p. These two, together with (iv), show that Rab t
a must be proportional to tb at p, which is what we

need for (i). Similarly, we have

0 = £κ′(Rab y
a yb) = Rab£κ′(ya yb) = 2Rab y

a (£κ′yb) = −2Rab y
a xb

at p. This, together with (3.1.26) and (iv), shows that (ii) must hold for some β. Finally, (iii) follows

from (ii). For if Rab x
a = β xb, then

−2Rab (ta − ya) = Rab£κ′xa = £κ′(Rab x
a) = £κ′(β xb) = β£κ′xb = −2 β (tb − yb).

(For the final equality, we use the fact that £κ′ gab = 0 and, so, £κ′ xb = £κ′(gab x
a) = gab£κ′xa =

−2 gab (ta − ya) = −2 (tb − yb).)

Now it only remains to compute α and β in (3.1.18). It follows from (3.1.17) and from (3.1.19) — as

applied to the Killing fields ta and xa — that

α = Rab t̂
at̂b = µ−2Rab t

atb = µ−2 tb∇n∇b t
n = µ−2[∇n (tb∇b t

n) − (∇n t
b)(∇b t

n)]

= −µ−2 (∇n t
b)(∇b t

n)

and (by the same argument)

β = −µ−2 (∇n x
b)(∇b x

n).

Now, raising indices in (3.1.13) and (3.1.14), using (3.1.4), yields

∇n t
b =

ex

2
xb(∇n y) + (−e−x yb + tb)(∇n x),

∇n x
b =

ex

2
tb(∇n y) + (−e−x yb + tb)(∇n t)

It follows that

(∇n t
b)(∇b t

n) = −1 (∇n x
b)(∇b x

n) = 0 (3.1.28)

and, therefore, α = µ−2 and β = 0. Thus we have

Rab = µ−2 t̂a t̂b. (3.1.29)

So R = µ−2 and

Rab − 1

2
Rgab = µ−2 t̂a t̂b − µ−2

2
gab =

µ−2

2

(
t̂a t̂b − (gab − t̂a t̂b)

)
.

Therefore,

(3) Gödel spacetime is a solution to Einstein’s equation (without cosmological constant)

Rab − 1

2
Rgab = 8 π

(
ρ t̂a t̂b − p (gab − t̂a t̂b)

)

for a perfect fluid with four-velocity t̂a, mass-density ρ = 1/(16 π µ2), and pressure p = 1/(16 π µ2).

(Equivalently, it is a solution to Einstein’s equation with cosmological constant λ = −1/(2µ2)

Rab − 1

2
Rgab − λ gab = 8 πρ′ t̂a t̂b

for a dust field with mass-density ρ′ = 1/(8 π µ2).)
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Recall that a perfect fluid satisfies the dominant energy condition iff |p| ≤ ρ. So if we construe Gödel

spacetime as a perfect fluid solution to Einstein’s equation without cosmological constant, the perfect

fluid in question is only “borderline” for satisfying the condition.

Let us further consider the normalized field t̂a = ta/µ, which we now understand to represent the

four-velocity of the background source fluid. We know that its associated expansion field θab vanishes

(because it is a Killing field), as does its acceleration (by (3.1.17)). Let us now compute its associated

rotation field ωa.

Let ǫabcd be a volume element on M . (We know that volume elements exist since, for example,

t[a xb yc zd] is an anti-symmetric field on M that is everywhere non-vanishing. We need only normalize

it to obtain a volume element.) The field ∇a tb is anti-symmetric and it is orthogonal to both ta and za

(by (3.1.13)). So we can express it in the form

∇a tb = f ǫabcd t
c zd

for some field f . To determine f , we need only contract each side with itself and make use of (3.1.28):

1 = (∇a tb) (∇a tb) = f2 ǫabcd t
c zd ǫabmn tm zn = −4 f2 δ[mc δ

n]
d t
c zd tm zn

= −2 f2 (tm zn − tn zm) tm zn = 2µ4 f2.

Taking f to be positive — we can always switch from the volume element ǫabcd to −ǫabcd if necessary —

we have

∇a tb =
1√
2µ2

ǫabcd t
c zd.

Hence, using this volume element to compute the rotation vector field,

ωa =
1

2
ǫabcd t̂b∇c t̂d =

1

2µ2
ǫabcd tb∇c td =

1

2
√

2µ4
ǫabcd tb ǫcdmn t

m zn

=
−4

2
√

2µ4
δ[am δ

b]
n tb t

m zn =
1√
2µ4

(tbtb) z
a =

1√
2µ2

za. (3.1.30)

Let us record this result too.

(4) The four-velocity t̂a in Gödel spacetime is expansion free (θ = 0), shear free (σab = 0), and geodesic

(t̂n∇nt̂
a = 0), but its rotation field ωa is non-vanishing and constant (∇a ω

b = 0). Indeed, ωa is

just (1/
√

2µ2) za. The Gödel universe is thus in a state of uniform, rigid rotation.

It turns out that there are only two homogeneous perfect fluid solutions in which (i) the mass density

is non-zero, (ii) the fluid four-velocity is expansion free, shear free, and geodesic, and (iii) the underlying

manifold is simply connnected9, namely the Einstein static universe (Hawking and Ellis [30]) and Gödel

spacetime. (Gödel asserted this result, without proof, in [25]. Proofs can be found in Ozsváth [48] and

9The third condition is needed to rule out further examples that can be generated by identifying points.
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Farnsworth and Kerr [19].) So Gödel spacetime itself is picked out if one adds the requirement that (iv)

the rotation field of the fluid is non-vanishing.

We next want to establish the existence of closed timelike curves in Gödel spacetime and characterize

its timelike and null geodesics. To do so, it will be convenient to switch to a different coordinate represen-

tation of the metric. This one, cast in terms of a cylindrical coordinate system t̃, r, φ, z̃, makes manifest

the rotational symmetry of Gödel spacetime about a particular axis, but hides its homogeneity:

gab = 4µ2
[
(da t̃)(db t̃) − (dar)(dbr) − (daz̃)(dbz̃) + (sh4 r − sh r2)(daφ)(dbφ) + 2

√
2 sh2r (d(a t̃)(db)φ)

]
.

(3.1.31)

(Here we write “ch” and “sh” for “cosh” and “sinh” respectively.)

We have to be a bit careful here as to what we mean by a “coordinate system”. We are not quite

talking about a 4-chart in the sense of section 1.1. Here is a more precise formulation. Let A be the “axis

set” consisting of all points in M of the form Φ−1(t, 0, 0, z), and let M− be the excised set M − A. We

claim that there exist smooth maps

t̃ : M → R r : M− → R
+ φ : M− → S1 z̃ : M → R (3.1.32)

such that the composite map

∆: M− → R × R
+ × S1 × R (3.1.33)

determined by the rule q 7→ (t̃(q), r(q), φ(q), z̃(q)) is a diffeomorphism and (3.1.31) holds on M−. (Here

R
+ is the set of reals that are strictly positive, and S1 is identified, in the usual way, with R mod 2π.)

Under these conditions, we can define coordinate vector fields (∂/∂t̃)a, (∂/∂r)a, (∂/∂φ)a, (∂/∂z̃)a much

as we did in section 1.1.10 We shall use the following abbreviations for them:

t̃a =

(
∂

∂t̃

)a
ra =

(
∂

∂r

)a
φa =

(
∂

∂φ

)a
z̃a =

(
∂

∂z̃

)a
.

The radial coordinate r can be extended to a map r : M → R
+ ∪ {0} that is, at least, continuous on the

axis A.

The relation between the new conditions and the old is given by the following conditions:

ex = ch 2r + (cos φ)(sh 2r), (3.1.34)

y ex =
√

2 (sin φ)(sh 2r), (3.1.35)

z = 2 z̃, (3.1.36)

tan

(
φ

2
+
t− 2 t̃

2
√

2

)
= e−2r tan

φ

2
where

∣∣∣∣
t− 2 t̃

2
√

2

∣∣∣∣ <
π

2
. (3.1.37)

10So, for example, let q be any point in M−. Then s 7→ ∆−1(t̃(q), r(q), φ(q) + s, z̃(q)) is a smooth curve through q. We

understand (∂/∂φ)a at q to be the tangent vector to the curve there.
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With some work, one can show directly that these conditions do, in fact, properly define smooth maps

over the domains indicated in (3.1.32)11 and use them to derive the expression for gab given in (3.1.31).

(The details are worked out with great care in Stein [58].) We skip this work and make just two remarks

about the conditions. Later, in an appendix, following Gödel [25], we shall establish the equivalence

of the two coordinate representations a somewhat different way. It will involve a direct appeal to a

coordinate-free description of the metric.

First, it is clear from the first two conditions in the list why we need to restrict attention to M−. If

x = y = 0, they will be satisfied iff r = 0. But if r = 0, those conditions impose no constraints on φ (and

neither do the other conditions). So φ is not well defined on M −M−. (On the other hand, if either

x 6= 0 or y 6= 0, then (3.1.34) and (3.1.35) determine unique values for both φ and r.)

Second, though the exact relation between t and t̃ is complex, their associated coordinate fields t̃a and

ta are proportional to each other, i.e, we have t̃a = α ta for some α. This follows from the first three

conditions. For when r, φ, z̃ are fixed, x, y, z are fixed as well. So every t̃-line (characterized by constant

values of r, φ, z̃) is also a t-line (characterized by constant values for x, y, z). And it follows from (3.1.37)

that the proportionality factor must be 2.12 So we have

t̃a = 2 ta. (3.1.38)

We also have

z̃a = 2 za (3.1.39)

from (3.1.36).

Let us now accept as given the second coordinate representation of the Gödel metric (in terms of

cylindrical coordinates). We shall work with it much as we did the first representation. Note that the

inverse of the metric now comes out (in M−) as

gbc =
1

4µ2

[
− (sh4r − sh2r)

(sh4r + sh2r)
t̃b t̃c − rb rc − z̃b z̃c − 1

(sh4r + sh2r)
φb φc +

2
√

2

(sh4r + sh2r)
t̃(b φc)

]
.

(3.1.40)

Consider φa. Since

φa φ
a = 4µ2 (sh4r − sh2r), (3.1.41)

it qualifies as spacelike, null, or timelike at a point q in M− depending on whether r(q) is less than,

equal to, or greater than the critical value rc = ln(1 +
√

2) where sh assumes the value 1. The angular

coordinate φ is defined only on M−, but we can smoothly extend φa itself to all of M by taking it to

be the zero vector on M −M−, i.e., on the axis A. We shall understand it that way in what follows.

11Strictly speaking, the conditions define t̃ only on the restricted domain M−. But it can be smoothly extended to all of

M .

12It follows from (3.1.37), specifically, that the difference (t − 2 t̃) is constant on every t̃-line, i.e., once r and φ are fixed,

(t − 2 t̃) is fixed as well. So t̃n∇n(t − 2 t̃) = 0. It follows that α = α tn∇nt = t̃n∇nt = t̃n∇n(2 t̃) = 2.
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Where φa is timelike (and where it is null but non-zero) it qualifies as future-directed, because temporal

orientation is determined by ta (or, equivalently, t̃a), and t̃aφa = 4
√

2µ2 sh2r. (So t̃aφa > 0, unless

r = 0.)

t̃a and z̃a are, of course, Killing fields. We know that from before. So is φa. It is the generator of a

one-parameter family of (global) isometries {
φ

Γs}s∈S1 defined by

φ

Γs (p) =





∆−1(t̃(p), r(p), φ(p) + s, z̃(p)) if p ∈M−,

p if p ∈ A.

The three Killing fields under consideration have vanishing Lie brackets with one another:

[t̃a, φa] = [t̃a, z̃a] = [φa, z̃a] = 0. (3.1.42)

(Once again, these relations follow most easily from proposition 3.1.1.) Now let p be any point on the

axis A. The maps
φ

Γs all leave p fixed, and leave t̃a and z̃a fixed as well (by proposition 1.6.6). So if

U is the two-dimensional subspace of Mp that is orthogonal to both t̃a and z̃a, the maps
φ

Γs induce a

one-parameter family of rotations of U . And what is true here of p is true quite generally, because of

homogeneity as formulated in (2). So we have the following isotropy claim.

(5) Gödel spacetime is (globally) isotropic in the following sense: given any point p, and any two

unit spacelike vectors
1
σa and

2
σa at p that are orthogonal to both t̃a and za, there is an isometry

ψ : M →M such that ψ(p) = p, ψ∗(t̃
a) = t̃a, ψ∗(z̃

a) = z̃a, and ψ∗(
1
σ a) =

2
σ a.

And now it is also clear, as announced, that Gödel spacetime admits closed timelike (and closed null)

curves. Indeed, consider the set of (maximally extended) integral curves of φa. They are closed curves,

characterized by constant values for t̃, r and z̃. We shall call them (or their images) Gödel circles. As we

have just seen, they qualify as timelike if r > rc and null if r = rc. These particular curves are centered

on the axis A. But by homogeneity, it follows that given any point in Gödel spacetime, there are closed

timelike and closed null curves passing through the point. Indeed, we can make a much stronger assertion.

The “causal structure” of Gödel spacetime is completely degenerate in the following sense.

(6) Given any two points p and q in Gödel spacetime, there is a smooth, future-directed timelike curve

that runs from p and q. (Hence, since we can always combine timelike curves that run in the two

directions and smooth out the joints, there is a smooth closed timelike curve that contains p and q.)

Thus a time traveler in Gödel spacetime can start at any point p, return to that point, and stop off at

any other desired point q along the way. To see why (6) holds, consider figure 3.1.1. It gives, at least, a

rough, qualitative picture of Gödel spacetime with one dimension suppressed. We may as well take the

central line to be the axis A and take p to be a point on A. (By homogeneity once again, there is no loss

in generality in doing so.) Notice first that given any other point p′ on A, no matter how “far down”,
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p
  matter
worldline

 closed timelike
          line

p’

Figure 3.1.1: Gödel spacetime with one dimension (the z̃ dimension) suppressed.

there is a smooth, future-directed timelike curve that runs from p to p′. We can think of it as arising in

three stages. (i) By moving “radially outward and upward” from p (i.e., along a future-directed timelike

curve whose tangent vector field is of the form t̃a +α ra, with α positive13), we can reach a point p1 with

coordinate value r > rc. At that radius, we know, φa is timelike and future-directed. So we can find an

ǫ > 0 such that (−ǫ t̃a + φa) is also timelike and future-directed there. (ii) Now consider the maximally

extended, future-directed timelike curve γ through p1 whose tangent is everywhere equal to (−ǫ t̃a + φa)

(for that value of ǫ). It is a spiral-shaped curve of fixed radius, with “downward pitch”. By following

γ far enough, we can teach a point p2 that is well “below” p′. (We can overshoot as much as we might

want.) Now, finally, (iii) we can reach p′ by working our way upward and inward from p2 via a curve

whose tangent vector is the form t̃a + α ra, but now with α negative. It remains only to smooth out the

“joints” at intermediate points p1 and p2 to arrive at a smooth timelike curve that, as required, runs

from p to p′.

Now consider any point q. It might not be possible to reach q from p in the same simple way we

went from p to p1, i.e., along a future-directed timelike curve that moves radially outward and upward.

p might be too “high” for that. But we can get around this problem by first moving to an intermediate

point p′ on A sufficiently “far down” — we have established that that is possible — and then going from

there to q. (This completes the argument for (6).)

Other interesting features of Gödel spacetime are closely related to the existence of closed timelike

curves. So, for example, a slice (in any relativistic spacetime) is a spacelike hypersurface that, as a subset

of the background manifold, is closed. We can think of it as a candidate for a “global simultaneity slice”.

It turns out that there are no slices in Gödel spacetime. More generally, given any relativistic spacetime,

if it is temporally orientable and simply connected, and has smooth closed timelike curves through every

point, then it does not admit any slices (Hawking and Ellis [30, p. 170]).

13Note that t̃a + α ra is timelike so long as α2 < 1.
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Next we have the following basic fact.

(7) There are no closed timelike or null geodesics in Gödel spacetime.

We can easily confirm this, even before we characterize the class of timelike and null geodesics. It suffices

(by homogeneity) to show that there are no closed timelike or closed null geodesics that pass through

some particular point p on the axis A. Consider the set C = {q : r(q) < rc}. We shall call it the critical

cylinder surrounding A. We can establish our claim by showing two things: (i) all timelike geodesics that

pass through p are fully contained within C, and all null geodesics that pass through p are fully contained

within the closure of C; and (ii) there are no (non-trivial) closed causal curves within the closure of C.

For (i), let γ be any timelike or null geodesic that passes through p, and let λa be its tangent field. We

may as well assume that γ is future-directed (since otherwise we can run the argument on a new curve

that results from reversing the orientation of γ). Since φa is a Killing field, the quantity λaφa is constant

on γ. (Recall problem 1.9.6.) It is equal to 0 at p, since φa is the zero vector there. So it must be 0

everywhere. Now on the boundary of C (where r = rc), φ
a is a non-zero, future-directed null vector. So

its inner product there with any future-directed timelike vector is strictly positive. It follows that if γ

is timelike, it can never reach the boundary of C. (If it did, we would have λaφa > 0 there.) It must

stay within the (open) set C. Similarly, at all points outside the closure of C, φa is a future-directed

timelike vector. So its inner product with all future-directed causal vectors (even null ones) is strictly

positive. And therefore, if γ is null, it must remain within the closure C. (As we shall see in a moment,

null geodesics through p do periodically intersect the boundary of C.)

For (ii), note that, by (3.1.40),

gab (∇a t̃) (∇b t̃) = − 1

4µ2

(sh4r − sh2r)

(sh4r + sh2r)
.

So ∇at̃ is timelike within C and null (and non-zero) on the boundary of the set. It is future-directed

both in C and on its boundary (since t̃a∇a t̃ = 1). Now let γ be any non-trivial future-directed causal

curve that passes through p, and let λa be its tangent field. Then (since λa and ∇a t̃ are co-oriented), we

have λn∇n t̃ > 0 at all points in C and λn∇n t̃ ≥ 0 at all points on the boundary of the set. So γ cannot

possibly stay within the closure of C and still close back on itself.

Now, finally, let us characterize the set of all timelike and null geodesics in Gödel spacetime. The

z̃a direction is not very interesting here, and we may as well restrict attention to curves that fall within

a z̃a = constant submanifold, i.e., curves whose tangent fields are orthogonal to z̃a (or equivalently to

za).14

14Given any smooth curve s 7→ Φ−1(t(s), x(s), y(s), z(s)) in Gödel spacetime, it qualifies as a geodesic iff (i) z(s) is of

the form z(s) = z0 + k s, for some numbers z0 and k, and (ii) the projected curve s 7→ Φ−1(t(s), x(s), y(s), z0) qualifies as

a geodesic. This follows because ∇a zb = 0.
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We shall first consider certain examples that admit a particularly simple description. Then we shall

argue that they are, up to isometry (and reparametrization), the only ones. A small bit of computation

is involved. For that we need the following simple results that are the counterparts to ones presented

earlier for the first set of coordinates. At points in M−, where r > 0, we have

φb = 4µ2 [(sh4 r − sh2 r)∇b φ +
√

2 sh2 r∇b t̃], (3.1.43)

∇a φb = 4µ2 [ (4 sh3 r − 2 sh r)(ch r)(∇[a r)(∇b] φ) + 2
√

2 (sh r)(ch r) (∇[a r)(∇b] t̃) ], (3.1.44)

φa∇a φb = −4µ2 (2 sh3 r − sh r)(ch r)∇b r, (3.1.45)

φa∇a t̃b = t̃a∇a φb = −4
√

2µ2 (sh r)(ch r)∇b r. (3.1.46)

(For the second equation, we use the fact that φa is a Killing field and, so, ∇(a φb) = 0. For the fourth,

we use (3.1.42).)

Consider fields of the form t̃a + k φa, where k is some real number. Their integral curves are “helices”

on which r and z̃ are constant (since t̃a∇a r = t̃a∇a z̃ = 0, and similarly for φa). Our goal is to show

that some of these helices — characterized by particular choices for k and r — are causal geodesics. Let

k and r be fixed, and let γ be an integral curve of t̃a + k φa associated with these values. Then, we have

(t̃a + k φa)(t̃a + k φa) = 4µ2 [ k2 (sh4 r − sh2 r) + 2
√

2 (sh2 r) k + 1 ] (3.1.47)

and (by (3.1.45), (3.1.46), and the fact that t̃a is a geodesic field),

(t̃a + k φa)∇a (t̃b + k φb) = 2 k [−4
√

2µ2 (sh r)(ch r)∇b r ]

+ k2 [−4µ2 (2 sh3 r − sh r)(ch r)∇b r ]

= −4µ2 k (sh r)(ch r) [2
√

2 + k (2 sh2 r − 1)]∇b r. (3.1.48)

Thus γ is a geodesic iff k = 0 (in which case it is just an integral curve of t̃a), or r = 0 (in which case,

again, it is an integral curve of t̃a, now on the axis), or

k (2 sh2 r − 1) + 2
√

2 = 0. (3.1.49)

It is a null geodesic iff this condition holds and the right side of (3.1.47) is 0. That leaves us with two

equations in two unknowns. They yield

γ is a null geodesic ⇐⇒ sh2 r =
(
√

2 − 1)

2
and k = 2(1 +

√
2)

or, equivalently (since sh 2r = 2 (sh r)(ch r)),

γ is a null geodesic ⇐⇒ r =
rc
2

and k = 2(1 +
√

2).

Similarly, after excluding the trivial cases where k = 0 or r = 0, , we have

γ is a timelike geodesic ⇐⇒ r <
rc
2

and k =
2
√

2

(1 − 2 sh2 r)
.
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Thus, given any point q with r coordinate satisfying 0 < r < rc/2, there is exactly one value of k for

which the helix through q with tangent field t̃a + k φa is a timelike geodesic.

The number k here has a natural physical interpretation in terms of relative speed. Think of the

tangent vector t̃a + k φa as a (non-normalized, possibly null) velocity vector. We can extract a “speed

relative to t̃a” if we first decompose it into components tangent to, and orthogonal to, t̃a, and then divide

the norm of the second by the norm of the first. With just a bit of calculation, we get

v = speed relative to t̃a =
k (sh r)(ch r)

1 + k
√

2 sh2 r
.

It follows that k = 2
√

2/(1 − 2 sh2 r) holds iff v =
√

2 (sh 2r)/(ch 2r). So we can reformulate our

equivalence this way:

γ is a timelike geodesic ⇐⇒ r <
rc
2

and v =
√

2
sh 2r

ch 2r
.

(Notice that
√

2 (sh 2r)/(ch 2r) goes to 1 as r approaches rc/2.)

Here is our characterization claim.

(8) The special geodesics we have just considered — the ones that are (maximally extended) integral

curves of t̃a + k φa for some k — are, up to isometry and reparametrization, the only maximally

extended, future-directed, null and timelike geodesics in Gödel spacetime (confined to a z̃ = constant

submanifold).

Let us verify it, first, for null geodesics. Let γ1 be any maximally extended, future-directed, null

geodesic confined to a submanifold N whose points all have some particular z̃ value. Let q be any point

in N whose r coordinate satisfies sh2 r = (
√

2−1)/2. Pick any point on γ1. By virtue of the homogeneity

of Gödel spacetime — as recorded in (2) — we can find a (temporal orientation preserving) global isometry

that maps that point to q and maps N to itself. Let γ2 be the image of γ1 under that isometry. We know

that at q the vector (t̃a + k φa) is null if k = 2(1 +
√

2). So, by virtue of the isotropy of Gödel spacetime

(in the sense of (5)), we can find a global isometry that keeps q fixed, maps N to itself, and rotates γ2

onto a new null geodesic γ3 whose tangent vector at q is, at least, proportional to (t̃a + 2(1 +
√

2)φa),

with positive proportionality factor. If, finally, we reparametrize γ3 so that its tangent vector at q is

equal to (t̃a + 2(1 +
√

2)φa), then the resultant curve must be a special null geodesic helix through q

since (up to a uniform parameter shift) there can be only one (maximally extended) geodesic through q

that has that tangent vector there.

The corresponding argument for timelike geodesics is almost the same. Let γ1 this time be any

maximally extended, future-directed, timelike geodesic confined to a submanifold N whose points all

have some particular z̃ value. Let v be the speed of that curve relative to t̃a. (The value as determined at

any point must be constant along the curve since it is a geodesic.). Further, let q be any point in N whose

r coordinate satisfies
√

2 (sh 2r)/(ch 2r) = v. (We can certainly find such a point since
√

2 (sh 2r)/(ch 2r)
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runs through all values between 0 and 1 as r ranges between 0 and rc/2.) Now we can proceed in three

stages, as before. We map γ1 to a curve that runs through q. Then we rotate that curve so that its tangent

vector (at q) is aligned with (t̃a + k φa) for the appropriate value of k, namely k = 2
√

2/(1 − 2 sh2 r).

Finally, we reparametrize the rotated curve so that it has that vector itself as its tangent vector at q.

That final curve must be one of our special helical geodesics by the uniqueness theorem for geodesics.

(This completes the argument for (8).)

The special timelike and null geodesics we started with — the special helices centered on the axis A

— exhibit various features. Some are exhibited by all timelike and null geodesics (confined to a z̃ =

constant submanifold); some are not. It is important to keep track of the difference. What is at issue

is whether the features can or cannot be captured in terms of gab, t̃
a, and z̃a (or whether they make

essential reference to the coordinates t̃, r, φ themselves). So, for example, if a curve is parametrized by

s, one might take its vertical “pitch” (relative to t̃) at any point to be given by the value of dt̃/ds there.

Understood this way, the vertical pitch of the special helices centered on A is constant, but that of other

timelike and null geodesics is not. For this reason, it is not correct to think of the latter, simply, as

“translated” versions of the former. On the other hand, the following is true of all timelike and null

geodesics (confined to a z̃ = constant submanifold). If we project them (via t̃a) onto a two-dimensional

submanifold characterized by constant values for t̃ as well as z̃, the result is a circle.15

Here is another way to make the point. Consider any timelike or null geodesic γ (confined to a z̃

= constant submanifold). It certainly need not be centered on the axis A and need not have constant

vertical pitch relative to t̃. But we can always find a (new) axis A′ and a new set of cylindrical coordinates

t̃ ′, r′, φ′ adapted to A′ such that γ qualifies as a special helical geodesic relative to those coordinates. In

particular, it will have constant vertical pitch relative to t̃ ′.

Let us now consider all the timelike and null geodesics that pass through some point p (and are confined

to a z̃ = constant submanifold). It may as well be on the original axis A. We can better visualize the

possibilities if we direct our attention to the circles that arise after projection (via t̃a). Figure 3.1.2

shows a two-dimensional submanifold through p on which t̃ and z̃ are both constant. The dotted circle

has radius rc. Once again, that is the “critical radius” at which the rotational Killing field φa is null.

Call this dotted circle the “critical circle”. The circles that pass through p and have radius r = rc/2

are projections of null geodesics.16 Each shares exactly one point with the critical circle. In contrast,

the circles of smaller radius that pass through p are the projections of timelike geodesics. The diagram

captures one of the claims we made in the course of arguing for claim (7) — namely, that no timelike or

null geodesic that passes through a point can “escape” to a radial distance from it greater than rc.

15Notice that we can capture this projection condition in terms of gab, t̃a, and z̃a. It holds of a given curve γ iff there is

an integral curve of t̃a such that all points on γ are the same “distance” from it, where distance is measured along geodesic

segments that are orthogonal to both t̃a and z̃a.

16The assertion that a certain timelike or null geodesic has a certain “radius” can be expressed without reference to the

value of a radial coordinate based on some axis. See the preceding note.
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rc

timelike geodesic

(projected)

null geodesic

(projected)

p

Figure 3.1.2: Projections of timelike and null geodesics in Gödel spacetime. rc is the “critical
radius” at which the rotational Killing field φa centered at p is null.

We said at the beginning of this section that Gödel spacetime exhibits a “boomerang effect”. It should

now be clear what was intended. Suppose an individual is at rest with respect to the cosmic source fluid

in Gödel spacetime (and so his worldline coincides with some t̃-line). If that individual shoots a gun at

some point, in any direction orthogonal to z̃a, then, no matter what the muzzle speed of the gun, the

bullet will eventually come back and hit him (unless it hits something else first or disintegrates). Here is

a purely geometric formulation.

(9) (Boomerang Effect) Let L be any t̃-line in Gödel spacetime, and let γ be any maximally extended

timelike or null (but non-degenerate) geodesic on which the value of z̃a is constant. Then if γ

intersects L once, it does so infinitely many times; and the temporal interval between intersection

points (as measured along L) is constant.

Appendix: A Coordinate Free Characterization of Gödel Spacetime

Here, following Gödel [25] and [27], we characterize the geometric structure of Gödel spacetime in

coordinate-free terms, and use this characterization to establish the equivalence of our two coordinate

representations of the metric.17

First, Gödel spacetime (M, gab) can be decomposed as a metric product. One component is the

manifold R together with the (negative-definite) metric −µ2 dzadzb. The other component is the manifold

R
3 together with a certain metric hab of signature (1, 2). The latter can be expressed as

hab = h̃ab + τa τb,

where

(1) h̃ab is a geodesically complete metric on R
3 of signature (1, 2) and constant positive-curvature

1/(4µ2);

17The material in this appendix is taken, with only minor changes in notation, from Malament [39].
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(2) τa = h̃ab τb is a unit timelike Killing field with respect to h̃ab.

(In (2), h̃ab is the inverse of h̃ab, i.e., we are not using some other metric to raise indices.)

We can recover this characterization by starting with either of our two coordinate representations of

the Gödel metric. Consider the first, (3.1.1). Here the coordinates t, x, y, z range over all of R. We

arrive at the structure (R3, hab) by dropping the dza dzb term and restricting the reduced metric to any

submanifold of constant z value. The reduced metric assumes the form h̃ab + τa τb if we set

h̃ab = µ2

[
1

2
(∇a t)(∇b t) + ex(∇(at)(∇b)y) − (∇a x)(∇b x)

]
, (3.1.50)

τa =
µ√
2

(∇a t + ex∇a y). (3.1.51)

So, to justify the proposed characterization, it will suffice to confirm that these two fields satisfy (1) and

(2).

The inverse of h̃ab is

h̃bc =
1

µ2

[
4 e−x t(byc) − xb xc − 2 e−2x yb yc

]
, (3.1.52)

and so τa comes out to be (
√

2/µ) ta. (We are continuing to use the abbreviations in (3.1.2).) The latter

is a unit timelike field with respect to h̃ab, as required. It is also a Killing field with respect to that

metric. (The argument is almost exactly the same as the one used above to establish that ta is a Killing

field with respect to the original metric gab.) So we have (2). For (1), note first that h̃ab has signature

(1, 2), since the vectors (
√

2/µ) ta, (
√

2/µ) (ta − e−x ya), (1/µ)xa form an orthonormal triple (of the

appropriate type) at every point. Next, consider the map

Ψ: (t, x, y) 7→ (u1, u2, u3, u4)

from R
3 into R

4 where

u1 = 2µ

[
cos

(
t

2
√

2

)
ch
(x

2

)
− 1

2
√

2
y ex/2 sin

(
t

2
√

2

)]
, (3.1.53)

u2 = 2µ

[
sin

(
t

2
√

2

)
ch
(x

2

)
+

1

2
√

2
y ex/2 cos

(
t

2
√

2

)]
, (3.1.54)

u3 = 2µ

[
−sin

(
t

2
√

2

)
sh
(x

2

)
+

1

2
√

2
y ex/2 cos

(
t

2
√

2

)]
, (3.1.55)

u4 = 2µ

[
cos

(
t

2
√

2

)
sh
(x

2

)
+

1

2
√

2
y ex/2 sin

(
t

2
√

2

)]
. (3.1.56)

A straightforward computation establishes that

(u1)
2 + (u2)

2 − (u3)
2 − (u4)

2 = 4µ2 (3.1.57)
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and, using (1.5.7), that

Ψ∗
(
(∇a u1)(∇b u1) + (∇a u2)(∇b u2) − (∇a u3)(∇b u3) − (∇a u4)(∇b u4)

)

= µ2

(
1

2
(∇a t)(∇b t) + ex(∇(at)(∇b)y) − (∇a x)(∇b x)

)
. (3.1.58)

The map Ψ, as it stands, is not injective. It makes the same assignment to (t, x, y) and (t+ 4
√

2π, x, y).

But it is injective if we restrict t to the interval [0, 4
√

2π). Indeed, if ∼ is the equivalence relation on R
3

defined by

(t, x, y) ∼ (t′, x′, y′) iff x′ = x and y′ = y and t′ = t (mod 4
√

2 π),

then Ψ determines a diffeomorphism between the quotient manifold R
3/∼ and the manifold

H =
{
(u1, u2, u3, u4) ∈ R

4 : (u1)
2 + (u2)

2 − (u3)
2 − (u4)

2 = 4µ2
}
.18

By (3.1.58), it qualifies as an isometry with respect to the metric induced on the latter by the background

flat metric on R
4 of signature (2, 2). But it is a standard result that H together with this induced metric

is a complete manifold of constant curvature 1/(4µ2). (See, for example, O’Neill [46, p. 113].) So —

since (R3, h̃ab) is an isometric covering manifold of the latter — (R3, h̃ab) is, itself, a complete manifold

of constant curvature 1/(4µ2). This gives us (1).

We can proceed in much the same way starting with (3.1.31), the second coordinate representation

of the Gödel metric. This time we drop the dz̃a dz̃b term and arrive at the desired decomposition of the

reduced metric (hab = h̃ab + τa τb) if we set

h̃ab = 4µ2

[
1

2
(∇a t̃)(∇b t̃) − (∇a r)(∇b r) − sh2 r (∇a φ)(∇b φ) +

√
2 sh2r (∇(at̃)(∇b)φ)

]
, (3.1.59)

τa =
√

2 µ (∇a t̃ +
√

2 sh2 r∇a φ). (3.1.60)

Here τa = h̃abτb comes out as (1/
√

2µ) t̃a. So we see, once again, by (3.1.38), that τa = (
√

2/µ) ta. And

this time we can show that (R3, h̃ab) is an isometric covering manifold of H (with respect to the induced

metric on H) by considering the map19

Ψ′ : (t̃, r, φ) 7→ (u1, u2, u3, u4)

where

18Note that we can invert the restricted map and explicitly solve for t, x, y in terms of u1, u2, u3, u4. For example,

t = 2
√

2 arc cos
u1 + u4

p

(u1 + u4)2 + (u2 − u3)2
.

19As characterized here, the map is defined only where r 6= 0. But it can be smoothly extended to points at which r = 0.
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u1 = 2µ cos

(
t̃√
2

)
ch r, (3.1.61)

u2 = 2µ sin

(
t̃√
2

)
ch r, (3.1.62)

u3 = 2µ sin

(
φ− t̃√

2

)
sh r, (3.1.63)

u4 = 2µ cos

(
φ− t̃√

2

)
sh r. (3.1.64)

One can check that (3.1.57) holds, once again, as does the counterpart to (3.1.58):

Ψ′∗
(
(∇a u1)(∇b u1) + (∇a u2)(∇b u2) − (∇a u3)(∇b u3) − (∇a u4)(∇b u4)

)

= 4µ2

(
1

2
(∇a t̃)(∇b t̃) − (∇a r)(∇b r) − sh2 r (∇a φ)(∇b φ) +

√
2 sh2r (∇(a t̃)(∇b)φ)

)
. (3.1.65)

Here Ψ′ is not injective, but it is so if we restrict t̃ to the interval [0, 2
√

2π).

It should be clear now that our two coordinate expressions for the Gödel metric are fully equivalent.

They are but alternate expressions for a metric on R
4 that we have been able to characterize in a

coordinate independent way.

We can gain further insight into the two maps Ψ and Ψ′ if we recast them. Consider the (associative,

distributive) algebra of “hyperbolic quaternions”. We can construe them as elements of the form

ϕ = w1 + w2i + w3j + w4k

where w1, ..., w4 are real numbers. Addition is defined by the rule

(w1 + w2i + w3j + w4k) + (w′
1 + w′

2i + w′
3j + w′

4k)

=
(
(w1 + w′

1) + (w2 + w′
2)i + (w3 + w′

3)j + (w4 + w′
4)k
)
.

Multiplication is defined by the requirement that (the real number) 1 serve as an identity element and

by the relations

i · i = −1,

j · j = k · k = 1,

i · j = −j · i = k,

j · k = −k · j = −i,

k · i = −i · k = j.

If we define the conjugate and norm of ϕ by setting

ϕ = w1 − w2i − w3j− w4k,

norm(ϕ) = ϕ · ϕ = (w1)
2 + (w2)

2 − (w3)
2 − (w4)

2,
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then it follows that ϕ · ψ = ψ · ϕ and, hence,

norm(ϕ · ψ) = norm(ϕ) norm(ψ) (3.1.66)

for all ϕ and ψ. To simplify notation, we shall identify the hyperbolic quaternion w1 +w2i +w3j +w4k

with the corresponding element (w1, w2, w3, w4) of R
4. Then H is identified with the set of hyperbolic

quaternions of norm 4µ2, and it acquires a natural (Lie) group structure: given any two elements u and

u′ in H , we take their product to be (1/4µ2)u · u′. The norm product condition (3.1.66) guarantees

that the product is well defined. The element u has u for an inverse.

Notice now that for all real number t, x, y, the quadruples

(cos t, sin t, 0, 0) (ch x, 0, 0, sh x) (1, y, y, 0)

all have norm 1. So their product has norm 1. Straightforward computation confirms that the associated

map

(t, x, y) 7→ 2µ (cos t, sin t, 0, 0) · (ch x, 0, 0, sh x) · (1, y, y, 0)

is essentially just the first of the two maps from (R3, h̃ab) onto H displayed in (3.1.53) – (3.1.56). This

is where it “comes from”. Strictly speaking, to match the coefficients in that map, we need to make a

small change and take the product to be

2µ

(
cos (

t

2
√

2
), sin (

t

2
√

2
), 0, 0

)
·
(
ch (

x

2
), 0, 0, sh (

x

2
)
)

·
(

1,
y

2
√

2
,

y

2
√

2
, 0

)
.

Similarly, we can recover the second of the maps from (R3, h̃ab) onto H , the one displayed in (3.1.61) –

(3.1.64), in the form

(t̃, r, φ) 7→ 2µ

(
cos (

t̃√
2
), sin (

t̃√
2
), 0, 0

)
· (ch r, 0, sh r sin φ, sh r cos φ).
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3.2 Two Criteria of Orbital (Non-)Rotation

In general relativity, there is a natural and unambiguous notion of rotation at a point as it applies,

for example, to a fluid. This is the notion we considered in section 2.8. If the four-velocity field of the

fluid is ξa, then we say that the fluid is non-rotating at a given point if its associated rotation field ωab

vanishes there or, equivalently, if ξ[a∇b ξc] = 0 there. (Recall problem 2.8.1.)

But when we consider notions of rotation that make essential reference to what happens over extended

regions of spacetime, the situation changes immediately. So, for example, consider a (one-dimensional)

ring centered about an axis of rotational-symmetry (figure 3.2.1). Just what does it mean to say that the

ring is “not rotating” around the axis? (It will be convenient to stick with the negative formulation.) This

turns out to be a subtle and interesting question in relativity theory. Various criteria for non-rotation

readily come to mind. In garden-variety circumstances, they are equivalent. But the theory allows for

conditions under which they come apart. It can happen that the ring is non-rotating in one perfectly

natural sense but is rotating in another.

Figure 3.2.1: What does it mean to say that a ring is “not rotating” around a central axis
of rotational symmetry?

In this section we consider two20 such natural criteria for ring non-rotation: (i) the zero angular

momentum (ZAM) criterion, and (ii) the compass of inertia on the ring (CIR) criterion. In each case,

we give both a direct, geometric formulation and also a somewhat more intuitive, quasi-operational

formulation. We verify that the (ZAM) and (CIR) criteria agree if a certain simplifying condition obtains,

and we show that they do not agree in Gödel spacetime.

In the next section, we step back from these two particular criteria and formulate a no-go result21 that

applies to a large class of “generalized criteria” of ring non-rotation. We abstract three conditions that

one might want a criterion of ring non-rotation to satisfy, and show that, at least in the case of some

20It would be easy to assemble a longer list of criteria. For example, we could consider non-rotation as determined at

“spatial infinity” (at least for the case of asymptotically flat spacetimes), non-rotation as determined relative to the compass

of inertia on the axis (CIA) criterion (Malament [41]), and yet other criteria (see Page [50]). We are not attempting here a

systematic account of orbital rotation in relativity theory. Our goal is to give an indication of the subject’s interest and to

prepare the way for a particular no-go theorem.

21The result presented here is a variant of the one in Malament [41].
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relativistic spacetime models, no generalized criterion of ring non-rotation satisfies all three. The upshot

is that no notion of orbital non-rotation in relativity theory fully answers to our classical intuitions.

We need a certain amount of background structure to set things up. In what follows, let (M, gab)

be a spacetime with two complete Killing fields, t̃a and φa, satisfying the following conditions: (i) t̃a is

timelike; (ii) the orbits of φa are closed; (iii) φa is spacelike except at “axis points” (if there are any)

where φa = 0; (iv) not all points are axis points, i.e., φa does not vanish everwhere; (v) [t̃a, φa] = 0; (vi)

t̃[a φb∇c t̃d] = 0 and t̃[a φb∇c φd] = 0.

Gödel spacetime meets this description, at least if we restrict attention to the open set where r < rc.
22

Another example is Minkowski spacetime. Yet a third — at least if we restrict attention, once again, to

a certain open set — is Kerr spacetime, which we shall consider very briefly in the next section.

The stated conditions are, more or less, the usual ones defining a “stationary, axi-symmetric spacetime”

(Wald [60]). For convenience, we have strengthened things a bit (compared to some formulations) by

requiring that t̃a and φa be complete. The added strength is harmless. The point here is that even with

this much structure in place, the two criteria of ring non-rotation need not agree. In what follows, when

we refer to a stationary, axi-symmetric spacetime with Killing fields t̃a and φa, it should be understood

that the stated conditions obtain.

The conditions themselves should be clear except, possibly, (vi). It asserts that, at least locally, there

exist two-dimensional submanifolds that are orthogonal to both t̃a and φa. (This is a consequence of

Frobenius’ theorem. See the first part of the proof of theorem 7.1.1 in Wald [60, p. 163].) In Gödel

spacetime, for example, these are submanifolds characterized by fixed values for t̃ and φ, and free values

for r and z̃.

With this structure in place, we can represent our ring as an imbedded two-dimensional submanifold

R that is invariant under the isometries generated by t̃a and φa (and on which φa 6= 0). We call the

latter an orbit cylinder. To represent the rotational state of the ring, we need to keep track of the motion

of individual points on it. Each such point has a worldline that can be represented as a timelike curve

on R. So we are led to consider not just R, but R together with a congruence of smooth timelike curves

on R (figure 3.2.2).

We want to think of the ring as being in a state of rigid rotation, i.e., rotation with the distance

between points on the ring remaining constant. So we are further led to restrict attention to just those

congruences of timelike curves on R that are invariant under all isometries generated by t̃a. Equivalently

(moving from the curves themselves to their tangent fields), we are led to consider future-directed timelike

vector fields on R of the form (t̃a + k φa), where k is a number. We shall call the pair (R, k) a striated

22That condition (vi) holds in Gödel spacetime follows from (3.2.11) and (3.2.12) below. (We are deliberately using the

same notation that we used in the preceding section for Gödel spacetime so that we can easily go back and forth between

claims about the general case and claims about that one example.)
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Figure 3.2.2: A “striated orbit cylinder” that represents a particular rotational (or non-
rotational) state of the ring.

orbit cylinder. And, quite generally, we can take a “criterion of ring non-rotation” to be, simply, a

specification, for every striated cylinder (R, k), whether it is to count as “non-rotating”.

Officially, now, our two criteria can be formulated as follows. Let (R, k) be a striated cylinder. (Recall

that we say a timelike vector field ηa, normalized or not, is non-rotating at a point if η[a∇b ηc] = 0

there.)

(1) (R, k) is non-rotating according to the zero angular momentum (ZAM) criterion if (t̃a + k φa) is

orthogonal to φa on R, i.e., (t̃a + k φa)φa = 0.

(2) (R, k) is non-rotating according to the compass of inertia on the ring (CIR) criterion if (t̃a + k φa)

is non-rotating on R, i.e., the following condition holds on R:

t̃[a∇b t̃c] + k t̃[a∇b φc] + k φ[a∇b t̃c] + k2 φ[a∇b φc] = 0. (3.2.1)

The orthogonality condition in (1) just captures the requirement that every point on the ring have zero

angular momentum with respect the rotational Killing field φa. (Recall our discussion in section 2.9.) So

the terminology makes sense.

Let us now recast the two criteria in quasi-operational terms. Let us start with the second. Here is

one way to set up an experimental test. Suppose we mount a gyroscope at some fixed point on the ring in

such a way that it can rotate freely. And suppose that at some initial moment the axis of the gyroscope

is oriented so as to be tangent to the ring (figure 3.2.3). Then we can consider whether it remains tangent

over time. It turns out that it will do so (i.e., remain tangent to the ring) iff the ring is non-rotating

according to the CIR criterion.

We shall verify this equivalence in a moment. But first, notice that the stated experimental test does

seem to provide a natural criterion of non-rotation. Think about it. If the ring were rotating — here

we are simply appealing to ordinary intuitions — we would expect that the angle between the gyroscope
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axis and (an oriented) tangent line would shift from 0o to 90o to 180o to 270o and back to 0o as the ring

passed through one complete rotation. The intuition here is that the tangent line changes direction as

the ring rotates, but the axis of the gyroscope does not.

Figure 3.2.3: An experimental test to determine whether the ring is non-rotating according
to the CIR (compass of inertia on the ring) criterion.

Now consider how we can capture, most directly, the stated “gyroscope remains tangent” condition.

Let γ be a future-directed timelike curve that represents the worldline of the point on the ring where the

gyroscope is mounted. The gyroscope there does not “change (spatial) direction as determined relative

to γ”. That is what makes it a gyroscope. So the “gyroscope remains tangent” condition will be satisfied

iff the tangent field φa itself (now conceived as a field on γ) does not “change (spatial) direction relative

to γ”. We need only spell out the latter condition.

Let ηa = (t̃a + k φa), let η = (ηnηn)1/2, and let η̂a be the normalized field defined by ηa = η η̂a.

Finally, let hab be the spatial projection field (gab − η̂a η̂a) determined relative to η̂a. Then the spatial

direction of φa as determined relative to γ is hbnφ
n. And φa is “not changing (spatial) direction relative

to γ” iff

hab η̂
m∇m (hbnφ

n) = 0. (3.2.2)

This condition asserts that the spatial component of η̂m∇m (hbnφ
n) as determined relative to γ vanishes.

When it holds we say that hbnφ
n is Fermi transported along γ.

We can simplify the condition slightly if we cast it in terms of ηa = (t̃a + k φa) rather than the

normalized field η̂a. Here and in what follows we make repeated use of the fact that ηa is a Killing field

and that ηa Lie derives φa and t̃a (since the Lie bracket of φa and t̃a vanishes), i.e., we have

£η φ
a = £η t̃

a = 0 and £η gab = 0. (3.2.3)

Expanding hab, we see that (3.2.2) holds iff

(gab − η̂aη̂b) η̂
m∇m [φb − (φnη̂n) η̂

b] = 0.

But η̂m∇m η = 0 and η̂m∇m(φnη̂n) = 0 by (3.2.3), and η̂b η̂
m∇m φ

b = 0 since φa is a Killing

field. Furthermore, η̂b η̂
m∇m η̂

b = 0, since η̂b is of unit length. So (3.2.2) holds iff

η2 ηm∇m φ
a = (φnηn) ηm∇m η

a. (3.2.4)
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With all this as motivation, we have the following definition.

(2′) (R, k) is non-rotating according to the gyroscope remains tangent (GRT) criterion if ηa = (t̃a+k φa)

satisfies (3.2.4) on R (with η = (ηnηn)
1/2).

Our earlier claim of equivalence now comes out as the following proposition.

Proposition 3.2.1. A striated orbit cylinder (R, k) qualifies as non-rotating according to the compass

of inertia on the ring (CIR) criterion iff it qualifies as non-rotating according to the gyroscope remains

tangent (GRT) criterion.

Proof. One direction is easy. Assume that η[n∇m ηa] = 0 on R. Then contraction with ηmφn yields

(φnηn) ηm∇m ηa + ηa η
mφn∇n ηm + (ηmηm)φn∇a ηn = 0

on R. But the Lie bracket of φa with ηa vanishes. And φa and ηa are both Killing fields. So the second

term in the sum vanishes (ηm φn∇n ηm = ηm ηn∇n φm = 0), and the third term is equal to

(ηmηm)φn∇a ηn = −η2 φn∇n ηa = −η2 ηn∇n φa.

So (3.2.4) holds on R.

Conversely, assume that (3.2.4) holds on R. Then (once again using the fact that ηm∇m φa =

φm∇m ηa), we have

[η2 φm − (φnηn) η
m]∇m ηa = 0

on R. Now consider the field ψm = [η2 φm − (φnηn) η
m]. We have (i) ψmηm = 0; (ii) ψm 6= 0; and (iii)

ψm∇m ηa = 0 on R. (Condition (ii) holds because η2 φm is spacelike and (φnηn) η
m is timelike or equal

to 0.) It follows that ψmη[n∇m ηa] = 0 on R. Now assume that η[n∇m ηa] 6= 0 at some point p on R.

Let ǫabcd be a volume element defined on some open set containing p. The space of anti-symmetric tensors

αnma at p that are orthogonal to ψm is one-dimensional. So at p, ǫnmad ψ
d = k1 η[n∇m ηa] for some k1.

Or, equivalently, ψd = k2 ǫ
dnmaηn∇m ηa at p for some k2. It follows (after expanding ηa = t̃a+k φa) that

ψdφd = k2 ǫ
dnmaφd ηn∇m ηa = k2 ǫ

dnmaφd t̃n∇m t̃a + k2 k ǫ
dnmaφd t̃n∇m φa

at p. It now follows, by condition (vi) in our characterization of stationary axi-symmetric spacetimes,

that ψdφd = 0 at p. So η2 (φmφm) − (φnηn)
2 = 0. But this is impossible, since φa is spacelike and η > 0.

So we may conclude that η[n∇m ηa] = 0 at all points on R.

Now we turn to the ZAM criterion of ring non-rotation. Various experimental tests are possible. One

involves the Sagnac effect. Imagine that we mount a light source at some point Q on the ring and arrange

for its light pulses to travel around the ring in opposite (clockwise and counterclockwise) directions. This

can be done, for example, using concave mirrors attached to the ring. Imagine further that we keep
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track of whether the pulses arrive back at Q simultaneously (using, for example, an interferometer).

It turns out that this will be the case — they will arrive back simultaneously — iff the ring has zero

angular momentum (with the respect to the background rotational symmetry). We shall soon verify this

equivalence.

Figure 3.2.4: An experimental test to determine whether the ring is non-rotating according
to the ZAM (zero angular momentum) criterion.

But notice, once again, that the stated experimental test does seem to provide a natural criterion

of non-rotation. Suppose the ring is rotating in, say, a counterclockwise direction. (Here, again, we

are simply appealing to ordinary intuitions about rotation.) Then the “C pulse”, the one that moves

in a clockwise direction, should get back to Q before completing a full circuit of the ring, because it is

moving toward an approaching target. In contrast, the “CC pulse”, the one moving in a counterclockwise

direction, is chasing a receding target. To get back to Q it will have to traverse the entire length of the

ring, and then it will have to cover the distance that Q has moved in the interim time. So one should

expect, in this case, that the C pulse will arrive back at Q before the CC pulse. (Here we presume that

light travels at the same speed in all directions.) Similarly, if the ring is rotating in a clockwise direction,

one would expect that the CC pulse would arrive back at Q before the C pulse. Only if the ring is not

rotating should they arrive simultaneously. Thus, our experimental test for whether the ring has zero

angular momentum provides what would seem to be a natural criterion of non-rotation.

Let us now make precise our claim of equivalence. Let (R, k) be a striated orbit cylinder, let γ be

any (maximally extended) integral curve of (t̃a + k φa) on R, and let p0 be an arbitrary point on the

image of γ. Further, let λ1 and λ2 be two future-directed (maximally extended) null curves on R that

start at p0 (figure 3.2.5). The latter represent light pulses that are emitted at p0 and traverse the ring in

opposite directions. Call them “pulse 1” and “pulse 2”. Both λ1 and λ2 must intersect γ a second time

(indeed infinitely many times), i.e., the pulses must eventually return to their point of emission on the

ring. (We shall soon verify this.) Let p1 be the next intersection point of γ with λ1, and let p2 be the

next intersection point of γ with λ2. In general, there is no reason why p1 and p2 should coincide. We

are interested in the case where they do. So we are led to consider the following criterion of non-rotation.

(1′) (R, k) is non-rotating according to the Sagnac effect (SE) criterion if, in the case just described,

the first re-intersection points p1 and p2 coincide.
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γ

λ2

λ1

p1

p0

p2

Figure 3.2.5: Sagnac effect.

Note that the stated condition — agreement of first re-intersection points — will hold for one choice of

initial integral curve γ and initial point p0 iff it holds for any other. The symmetries of (R, k) guarantee

as much. So there is no ambiguity in our formulation. Now we can verify our claim of equivalence.23

Proposition 3.2.2. A striated orbit cylinder (R, k) qualifies as non-rotating according to the zero angular

momentum (ZAM) criterion iff it qualifies as non-rotating according to the Sagnac effect (SE) criterion.

Proof. We have to verify that, in the case described,

p1 = p2 ⇐⇒ (t̃a + k φa)φa = 0. (3.2.5)

The tangent field to γ is (t̃a + k φa). The tangent fields to λ1, and λ2 can be rescaled so that they have

the form (t̃a + l1 φ
a) and (t̃a + l2 φ

a). Since the first is timelike, and the second two are null, we have

li 6= k and

(t̃a + li φ
a)(t̃a + li φa) = 0

for i = 1, 2. This equation has roots

l1 =
−(t̃aφa) +

√
D

(φnφn)
, (3.2.6)

l2 =
−(t̃aφa) −

√
D

(φnφn)
, (3.2.7)

where D =
[
(t̃aφa)

2 − (t̃at̃a)(φ
bφb)

]
. (Clearly there is no loss in generality in choosing to label them

this way.) Note that D > (t̃aφa)
2 ≥ 0, since t̃a is timelike and φa is spacelike on R. So l1 > 0 and

23Our proof proceeds by way of a low-brow calculation. For a more insightful argument, see Ashtekar and Magnon [3].
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l2 < 0. Moreover, l2 < k < l1. (Consider the quadratic function f(x) = (t̃a + xφa)(t̃a + xφa). It is

concave downward because (φa φ
a) is negative. So, since f(k) > 0 and f(l1) = f(l2) = 0, it must be the

case that k falls between l1 and l2.) So

(l1 − k) > 0 and (l2 − k) < 0.

It follows from our initial assumptions about the background spacetime (M, gab) that there there

exist smooth coordinate maps t̃ : R → R and φ : R → R (mod 2π) on the orbit cylinder R such that

t̃a∇a t̃ = φa∇a φ = 1 and t̃a∇a φ = φa∇a t̃ = 0.24 Now consider the hybrid field φ′ : R → R (mod 2π)

defined by

φ′ = (φ− k t̃) (mod 2π).

It is adapted to (R, k) in the sense that it is constant on all integral curves of (t̃a + k φa):

(t̃n + k φn)∇n (φ− k t̃) = t̃n∇n (−k t̃) + (k φn)∇n φ = 0.

In particular, φ′ is constant on γ. In contrast, φ′ increases (resp. decreases) uniformly with respect to

elapsed parameter distance along λ1 (resp. λ2) since (t̃n + li φ
n)∇n φ

′ = (li − k). (It follows, as claimed

above, that λ1 and λ2 must reintersect γ.)

Let the points p0, p1, and p2 have respective t̃, φ′ coordinates (t̃0, φ
′), (t̃1, φ

′), and (t̃2, φ
′). They share

a common φ′ coordinate since φ′ is constant on γ. But φ′ increases along λ1 in the stretch between p0

and p1 — it goes from 0 to 2π. Similarly, φ′ decreases along λ2 in the stretch between p0 and p2 — it

goes from 0 to −2π.

The coordinate t̃ increases along all three curves, γ, λ1, and λ2. (Indeed, we have (t̃n + k φn)∇n t̃ =

(t̃n+ li φ
n)∇n t̃ = 1.) So we can think of the curves as parametrized by t̃ and consider the rate of change

of φ′ with respect to t̃ on them. This rate of change on λi is (by the chain rule)

dφ′

dt̃
=

(t̃n + li φ
n)∇n (φ− k t̃)

(t̃n + li φn)∇n t̃
= (li − k).

So, considering the total change of φ′ along λ1 and λ2, we have

2π = (t̃1 − t̃0)
dφ′

dt̃
|onλ1

= (t̃1 − t̃0) (l1 − k),

−2π = (t̃2 − t̃0)
dφ′

dt̃
|onλ2

= (t̃2 − t̃0) (l2 − k).

24We can introduce the coordinates as follows. Pick any initial point on R and take its coordinates to be t̃ = 0, φ = 0.

Given any other point on R, we can “get to it” from the initial point by moving a certain (signed) parameter distance along

an integral curve of t̃a and moving a certain (signed) parameter distance along an integral curve of φa. It does not matter

in what order we perform the operations because the fields t̃a and φa have a vanishing Lie bracket. We take the respective

parameter distances to be the t̃ and φ coordinates of the new point.
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It follows that

t̃1 − t̃2 =
2 π (l1 + l2 − 2k)

(l1 − k) (l2 − k)
.

Hence, by (3.2.6) and (3.2.7),

p1 = p2 ⇐⇒ t̃1 = t̃2 ⇐⇒ (l1 + l2 − 2k) = 0 ⇐⇒ k = − (t̃aφa)

(φnφn)
.

This gives us (3.2.5).

Now we consider the two criteria in the special case of Gödel spacetime. We start with a calculation.

Proposition 3.2.3. Let ǫabcd be a volume element on Gödel spacetime and let ηa be the field t̃a + k φc

for some choice of k. Then

ǫabcd η[b∇c ηd] = ± 2
[
k2

√
2 sh4 r + k (2 sh2 r − 1) +

√
2
]
z̃a (3.2.8)

where, as in the previous section, z̃a = (∂ /∂ z̃)a.

Note that in the special case where k = 0, this yields

ǫabcd t̃[b∇c t̃d] = ± 2
√

2 z̃a.

If we re-express this in terms of t̂a = ta/µ = t̃a/(2µ) and za = z̃a/2, and choose a volume element so

that the right side sign is +1, we recover (3.1.30), i.e.,

1

2
ǫabcd t̂b∇c t̂d =

1√
2µ2

za.

Proof. As before, let A be the set of axis points in Gödel spacetime where r = 0, and let M− be the

complement set M −A. The vector fields

t̃a = (∂ /∂ t̃)a ra = (∂ /∂ r)a φa = (∂ /∂ φ)a z̃a = (∂ /∂ z̃)a

are linearly independent on M−. So we can express ǫabcd in the form

ǫabcd = f t̃[a rb φc z̃d]

on M−. We can determine f , up to sign, as follows. We certainly have

−(4!) = ǫabcd ǫabcd = f2 t̃[a rb φc z̃d] t̃[a rb φc z̃d] = f2 t̃[a rb φc z̃d] t̃a rb φc z̃d.

And by (3.1.31),

t̃a = 4µ2 [
√

2 sh2 r∇a φ + ∇a t̃],

rb = 4µ2 ∇b r,

φc = 4µ2 [(sh4 r − sh2 r)∇c φ +
√

2 sh2 r∇c t̃],

z̃d = 4µ2 ∇d z̃.
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So

−(4!) = f2 t̃[a rb φc z̃d] (4µ2)4
[
(sh4 r − sh2 r) − 2 sh4 r

]
(∇a t̃) (∇b r) (∇c φ) (∇d z̃)

= − f2 (4µ2)4 (sh4 r + sh2 r)
1

4 !
= − f2 (4µ2)4 (sh2 r) (ch2 r)

1

4 !
.

Thus, on M−, we have

ǫabcd = ± 4!

16µ4 (sh r)(ch r)
t̃[a rb φc z̃d]. (3.2.9)

Next, we derive an expression for

η[b∇c ηd] = t̃[a∇b t̃c] + k t̃[a∇b φc] + k φ[a∇b t̃c] + k2 φ[a∇b φc] (3.2.10)

on M−. Note first that

∇b φc = 4µ2 [ (4 sh3 r − 2 sh r)(ch r)(∇[b r)(∇c] φ) + 2
√

2 (sh r)(ch r) (∇[b r)(∇c] t̃) ],

∇b t̃c = 4µ2 [ 2
√

2 (sh r)(ch r)(∇[b r)(∇c] φ) ],

both hold on M−. (The first is (3.1.44). The second is derived similarly, using the fact that ∇(b t̃c) = 0.)

These expressions, together with the preceding ones for t̃a and φa, yield

t̃[a∇b t̃c] = 16µ4 2
√

2 (sh r)(ch r) (∇[a t̃)(∇b r)(∇c] φ), (3.2.11)

t̃[a∇b φc] = 16µ4 [ (4 sh3 r − 2 sh r)(ch r) − 4 (sh3 r)(ch r)] (∇[a t̃)(∇b r)(∇c] φ), (3.2.12)

φ[a∇b t̃c] = 16µ4 4 (sh3 r)(ch r) (∇[a t̃)(∇b r)(∇c] φ), (3.2.13)

φ[a∇b φc] = 16µ4 [
√

2 (sh2 r)(ch r)(4 sh3 r − 2 sh r)

− 2
√

2 (sh r)(ch r)(4 sh3 r − 2 sh r) ] (∇[a t̃)(∇b r)(∇c] φ). (3.2.14)

If we insert these expressions in (3.2.10), we arrive at:

η[b∇c ηd] = 32µ4 (sh r)(ch r)
[
k2

√
2 sh4 r + k (2 sh2 r − 1) +

√
2
]

(∇[a t̃)(∇b r)(∇c] φ). (3.2.15)

Finally, combining this result with (3.2.9) yields

ǫabcd η[b∇c ηd] = ± 4!

16µ4 (sh r)(ch r)
t̃[a rb φc z̃d] η[b∇c ηd]

= ± 2 (k2
√

2 sh4 r + k (2 sh2 r − 1) +
√

2 ) z̃a (3.2.16)

on M−. Since both ηa and the final vector field in (3.2.16) are smooth (everywhere), the equation must

hold on A as well.

Our desired characterization result for Gödel spacetime follows as a corollary. (For clause (2), recall

that sh2 rc = 1.)

Proposition 3.2.4. Let R be a striated orbit cylinder in Gödel spacetime generated by t̃a and φa. It is

characterized by particular values for r (where 0 < r < rc) and z̃. Let k be such that ηa = t̃a + k φa is

timelike on R. Then the following both hold.
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(1) (R, k) is non-rotating according to the ZAM criterion ⇐⇒ k =

√
2

(1 − sh2 r)
.

(2) (R, k) is non-rotating according to the CIR criterion ⇐⇒

r <
rc
2

and k =
2
√

2

(1 − 2 sh2 r) +
√

1 − sh2 (2r)
.

Proof. Note that our assumption that t̃a + k φa is timelike on R comes out as the assumption that the

relation

k2(sh4 r − sh2 r) + k 2
√

2 sh2 r + 1 > 0 (3.2.17)

holds there. (We are making use of (3.1.31) here and shall do so repeatedly in what follows.)

(R, k) qualifies as non-rotating according to the ZAM criterion iff (t̃a + k φa)φa = 0 on R. The

latter condition comes out as
√

2 sh2 r + k (sh4 r − sh2 r) = 0.

Moreover, as is easy to check, if k =
√

2/(1− sh2 r), then (3.2.17) is automatically satisfied, i.e., (3.2.17)

imposes no further constraint on k in this case. So we have clause (1).

Next, (R, k) is non-rotating according to the CIR criterion iff η[b∇c ηd] = 0 on R or, equivalently, if

ǫabcd η[b∇c ηd] vanishes there (for either choice of ǫabcd). We know from the preceding proposition that

this is the case iff

k2
√

2 sh4 r + k (2 sh2 r − 1) +
√

2 = 0 (3.2.18)

on R. This equation has two roots:

k1 =
(1 − 2 sh2 r) −

√
1 − sh2 (2r)

2
√

2 sh4 r
and k2 =

(1 − 2 sh2 r) +
√

1 − sh2 (2r)

2
√

2 sh4 r
.

So it is a necessary condition for (R, k) to be non-rotating according to the CIR criterion (for any choice

of k) that sh2 2r ≤ 1 or, equivalently, that r ≤ rc/2. So assume this condition holds. We claim that the

root k2 can be ruled out because it leads to a violation of (3.2.17). We also claim that k1 is compatible

with that inequality if we further restrict r so that sh2 2r < 1. To see this, note that in the presence of

(3.2.18), (3.2.17) holds iff

k2
√

2 sh2 r − k (2 sh2 r + 1) < 0

and this holds, in turn, iff

0 < k <
2 sh2 r + 1√

2 sh2 r
. (3.2.19)

With a bit of straightforward algebra, one can easily check that k2 violates this inequality but that k1

satisfies it if sh2 2r < 1. Finally, note that X = [(1 − 2 sh2 r) +
√

1 − sh2 2r ] 6= 0. So we have

k1 = k1
X

X
=

2
√

2

(1 − 2 sh2 r) +
√

1 − sh2 (2r)
.

This gives us (2).
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There are two regimes to consider here. If 0 < r < (rc/2), there is one rotational state of the ring (i.e.,

one choice of k) that counts as non-rotating according to the (ZAM) criterion, and one that counts as non-

rotating according to the (CIR) criterion, but the two are different. In contrast, if (rc/2) ≤ r < rc, then

there is still one rotational state of the ring that counts as non-rotating according to the (ZAM) criterion,

but now there is no state whatsoever that counts as non-rotating according to the (CIR) criterion.

Notice that though the two criteria do not agree for any choice of r, there is a sense in which they

agree “in the limit” as r → 0. They have a common limiting value for k:

lim
r→ 0

√
2

(1 − sh2 r)
= lim

r→ 0

2
√

2

(1 − 2 sh2 r) +
√

1 − sh2 (2r)
=

√
2.

That this is so should not be surprising. We began this section by asserting that there is a robust,

unambiguous notion of non-rotation at a point in relativity theory. Here, in a sense, we recover that

notion as we pass to the limit of “infinitesimally small rings”. Notice that
√

2 is the unique value of k for

which ηa = t̃a+k φc is non-rotating (i.e., satisfies η[a∇b ηd] = 0) at points on the axis where r = 0. (This

follows immediately from proposition 3.2.3.) It is that value of k that we recover in the limit as r → 0.

This will be important in what follows.

Let us now leave Gödel spacetime behind and return to the general case with which we started (where

we are dealing with an arbitrary stationary, axi-symmetric spacetime). We claimed earlier in the section

that the two criteria of ring non-rotation do agree if a certain simplifying condition obtains. The condition

we had in mind is the orthogonality of t̃a and φa. But, strictly speaking, that is not sufficient to guarantee

agreement. We must, in addition, rule out one rather special, singular possibility. We characterize it in

the next proposition. (We shall comment on the listed conditions after presenting a proof.)

Proposition 3.2.5. Suppose that (in addition to satisfying conditions (i) to (vi)), t̃a and φa are orthog-

onal, i.e., t̃aφa = 0. Then, for all orbit cylinders R, the following conditions are equivalent.

(1) ∇a

(
φb φb

t̃c t̃c

)
= 0 on R.

(2) t̃a +

√
−t̃bt̃b
φcφc

φa is a null, geodesic field on R.

(3) (R, k) is non-rotating on the (CIR) criterion for all k (such that t̃a + k φa is timelike on R).

Proof. It follows from our orthogonality assumption that the following conditions all hold on R:

t̃a∇a φb = 0, (3.2.20)

φa∇a t̃b = 0, (3.2.21)

t̃[a∇b t̃c] = 0, (3.2.22)

φ[a∇b φc] = 0. (3.2.23)
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The first follows since we have

t̃a∇a φb = −t̃a∇b φa = −∇b(φa t̃
a) + φa∇b t̃a = −φa∇a t̃b = −t̃a∇a φb.

(Here we use the fact that t̃a and φa are Killing fields for the first and third equalities, as well as the fact

that they have a vanishing Lie bracket for the final equality.) That gives us (3.2.21) as well. For (3.2.22),

we use condition (vi) in our original list. We have φ[a t̃b∇c t̃d] = 0 or, equivalently,

φa t̃[b∇c t̃d] − φd t̃[a∇b t̃c] + φc t̃[d∇a t̃b] − φb t̃[c∇d t̃a] = 0.

Since contracting φa on any index in t̃[a∇b t̃c] yields 0, it follow that (φaφa) t̃[b∇c t̃d] = 0. Since φa is

spacelike on R, it follows that (3.2.22) holds on R as well. The argument for (3.2.23) is very much the

same. For that one we start with t̃[a φb∇c φd] = 0.

Let us first check that conditions (1) and (2) are equivalent. Consider the field

ηa = t̃a +

√
−t̃bt̃b
φcφc

φa.

It is a null field by our orthogonality assumption. It follows from (3.2.20) and (3.2.21) that

ηa∇aηb = t̃a∇a t̃b − (t̃b t̃b)

(φcφc)
φa∇aφb.

(We know that t̃a∇a

(
t̃b t̃b
φcφc

)
= φa∇a

(
t̃b t̃b
φcφc

)
= 0, even without the orthogonality assumption, just

because φa and t̃a are commuting Killing fields.) So (2) holds iff

(φcφc) t̃
a∇at̃b − (t̃b t̃b)φ

a∇aφb = 0. (3.2.24)

But 2 t̃a∇a t̃b = −∇b (t̃at̃a) and 2φa∇a φb = −∇b (φaφa), since φa and t̃a are Killing fields. So this

condition is equivalent to (1).

Now consider condition (3). (R, k) is non-rotating according to the CIR criterion iff

t̃[a∇b t̃c] + k φ[a∇b t̃c] + k t̃[a∇b φc] + k2 φ[a∇b φc] = 0

on R. This reduces to

k
(
φ[a∇b t̃c] + t̃[a∇b φc]

)
= 0 (3.2.25)

in the case at hand by virtue of (3.2.22) and (3.2.23). So (3) holds iff

φ[a∇b t̃c] + t̃[a∇b φc] = 0 (3.2.26)

on R. Now suppose (3.2.26) holds at a point. Then, contraction with φa t̃b yields

(φaφa) t̃
b∇b t̃c + (t̃bt̃b)φ

a∇c φa = 0,
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which is equivalent to (3.2.24). So we have the implication (3) =⇒ (2). For the converse, suppose that

(3.2.24) holds at a point. Contracting (3.2.22) and (3.2.23) with t̃a and φa respectively yields

(t̃n t̃n)∇b t̃c = t̃b t̃
a∇a t̃c − t̃c t̃

a∇a t̃b, (3.2.27)

(φnφn)∇b φc = φb φ
a∇a φc − φc φ

a∇a φb. (3.2.28)

If we substitute for φa∇a φc in the second of these equations using (3.2.24), it comes out as

(t̃nt̃n)∇b φc = φb t̃
a∇a t̃c − φc t̃

a∇a t̃b (3.2.29)

It now follows from (3.2.27) and (3.2.29) that

(t̃nt̃n)φ[a∇b t̃c] = −(t̃nt̃n) t̃[a∇b φc],

which gives us (3.2.26). So we have the implication (2) =⇒ (3).

We mention in passing that the conditions listed in the proposition can arise, for example, in Schwarz-

schild spacetime (Wald [60]). There we have (transferring our notation)

(t̃c t̃c) = 1 − 2M

r
,

(φb φb) = −r2,

where r is a radial coordinate. A simple calculation shows that

∇a

(
φb φb

t̃c t̃c

)
= 0 ⇐⇒ d

dr

(
− 1

r2
+

2M

r3

)
= 0 ⇐⇒ r = 3M.

So the conditions arise only for one special radius.

Notice that condition (1) cannot hold on all rings in an axi-symmetric spacetime if, for example, there

are axis points in that spacetime. For if it did hold on all rings, then the function (φb φb)/(t̃
c t̃c) would

be constant on the background manifold M . And since φa = 0 at axis points, that constant value would

have to be 0. But that is impossible, since φa is spacelike on non-axis points.

Consider the third condition in the list. It captures the claim that all (rigid motion) states of the

ring qualify as non-rotating on the (CIR) criterion. This possibility may seem even more counterintuitive

than the one we encountered in the case of Gödel spacetime — with (rc/2) ≤ r < rc — where no (rigid

motion) states of the ring qualified as non-rotating on that criterion. Abramowicz and co-authors [1, 2]

have suggested a way of thinking about this situation that may be helpful.

Let us forget about our ring for a moment, and consider what would happen if we carried a gyroscope

in a straight line at a certain speed (possibly 0). Suppose that at some initial moment the axis of the

gyroscope is co-aligned with the direction of motion (figure 3.2.6). Then we would expect it to remain

co-aligned, no matter what the speed of transport. The speed seems irrelevant because the trajectory

of the gyroscope involves no change in direction. But in the special case where condition (2) in the
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Figure 3.2.6: A gyroscope moving in a “straight line” will not change direction relative to
that line.

proposition obtains — we are now switching back to the case of the ring — there is a sense in which a

gyroscope mounted on the ring is moving in a “straight line”, no matter what the rotational state of the

ring — at least if we use light rays as our standard for what constitutes motion in a straight line. For

condition (2) asserts that light rays, by themselves, without the intervention of mirrors or lenses or other

devices, will follow the ring.

With all this as preparation, we can formulate our proposition about the conditions under which the

two criteria for ring non-rotation agree.

Proposition 3.2.6. Suppose that (in addition to satisfying conditions (i) to (vi)), t̃a and φa are orthog-

onal. Let R be an orbit cylinder on which

∇a

(
φb φb

t̃c t̃c

)
6= 0. (3.2.30)

Finally, let k be a number for which t̃a + k φa is timelike on R. Then the following conditions are

equivalent.

(1) (R, k) is non-rotating according to the (ZAM) criterion.

(2) (R, k) is non-rotating according to the (CIR) criterion.

(3) k = 0.

Proof. (R, k) is non-rotating according to the ZAM criterion iff 0 = (t̃a + k φa)φ
a = k (φa φ

a). And φa is

spacelike on R. So the equivalence of (1) and (3) is immediate. (The added assumption about R is not

needed for this equivalence.)

As we saw in the proof of the preceding proposition, (R, k) is non-rotating according to the (CIR)

criterion iff

k
(
φ[a∇b t̃c] + t̃[a∇b φc]

)
= 0 (3.2.31)

on R. (Recall (3.2.25).) But we also saw in that proof that (3.2.30) is equivalent to

φ[a∇b t̃c] + t̃[a∇b φc] 6= 0.

So (R, k) qualifies as non-rotating on the (CIR) criterion iff k = 0.
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3.3 A No-Go Theorem about Orbital (Non-)Rotation

We have considered two particular criteria for non-rotation of the ring. Now we switch our attention

to a large class of “generalized criteria” of non-rotation. We take any one such criterion (as applied in any

one stationary axi-stationary spacetime) to be, simply, a specification, for every striated orbit cylinder

(R, k) in that spacetime, whether it is to count as “non-rotating” or not. We do not insist in advance

that the criterion have a natural geometric or quasi-operational formulation. Our plan is to consider

three conditions that one might want such a criterion to satisfy

(1) relative rotation condition

(2) limit condition

(3) non-vacuity condition

and then show that, at least in some stationary axi-stationary spacetimes, no generalized criterion of

ring non-rotation satisfies all three. The proof of this no-go theorem is entirely elementary when all the

definitions are in place. But it may be of some interest to put them in place and formulate a result of

this type. The idea is to step back from the details of particular proposed criteria of non-rotation and

direct attention instead to the conditions they do and do not satisfy.

R1

R2

Figure 3.3.1: Two rings centered about the same axis of rotational symmetry.

Let us start with the relative rotation condition. Suppose we have two rings, R1 and R2, centered

about the same axis of rotational symmetry. (Intuitively, we imagine that the planes of the rings are

parallel but not necessarily coincident. See figure 3.3.1.) Suppose further that R2 is not rotating relative

to R1. Then, one might think, either both rings should qualify as “non-rotating” or neither should. This

is the requirement captured in the “relative rotation condition”. What it means to say that R2 is not

rotating relative to R1 is not entirely unambiguous. But all we need here is a sufficient condition for

relative non-rotation of the rings. And it seems, at least, a plausible sufficient condition for this that,

over time, there is no change in the distance between any point on one ring and any point on the other,
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i.e., the two rings together form a rigid (ganged) system. So we are led to the following first formulation

of the condition.

Relative Rotation Condition (intuitive formulation): Given two rings R1 and R2, if (i) R1 is

non-rotating, and if (ii) R2 is non-rotating relative to R1 (in the sense that, given any point

on R2 and any point on R1, the distance between them is constant over time), then R2 is

non-rotating.

Now let us formulate a more precise version. Let (M, gab) be a stationary, axi-symmetric spacetime

with Killing fields t̃a and φa, and let (R1, k1) and (R2, k2) be two striated orbit cylinders (as determined

relative to t̃a and φa). (So, in particular, given how we have defined striated orbit cylinders, (t̃a + ki φ
a)

is timelike on Ri for i = 1, 2.) Let γi be a striation curve, i.e., an integral curve of (t̃a + ki φ
a), in

Ri, for i = 1, 2. There are various ways we might try to determine the “distance between γ1 and γ2.

For example, we might bounce a light signal back and forth between them and keep track of how much

time is needed for the round trip, as measured by a clock following one of the striation curves. But,

presumably, no matter what procedure we use, the measured distance will be constant over time if γ1

and γ2 are integral curves of a common Killing field. (For, presumably, any reasonable measurement

procedure can be characterized in terms of some set of relations and functions that are definable in terms

gab, and all such relations and functions will be preserved under the isometries generated by the common

Killing field.) So we seem to have a plausible sufficient condition for the relative non-rotation of (R2, k2)

with respect to (R1, k1) — namely, that there exists a (single) Killing field κa whose restriction to R1 is

proportional to (t̃a + k1 φ
a) and whose restriction to R2 is proportional to (t̃a + k2 φ

a). But the latter

condition holds immediately, of course, if k1 = k2.

The upshot of this long-winded discussion is the proposal that it is plausible to regard (R2, k2) as

non-rotating relative to (R1, k1) if k1 = k2. (Again, all we need here is a sufficient condition for relative

non-rotation.) So we take the relative rotation condition to be the following.

Relative Rotation Condition (precise formulation): For all k, and all striated orbit cylinders

(R1, k) and (R2, k) sharing that k, if (R1, k) qualifies as non-rotating, so does (R2, k).

It follows immediately from proposition 3.2.6 that both the (ZAM) and (CIR) criteria satisfy the

relative rotation condition in any stationary, axi-symmetric spacetime in which the Killing fields t̃a and

φa are orthogonal — at least if one restricts attention to rings on which (3.2.30) holds. (For in that case,

on either criterion, if (R1, k) is non-rotating, it follows that k = 0; and if k = 0, it follows that (R2, k)

is non-rotating as well.) It also follows immediately from proposition 3.2.4 that neither criterion satisfies

the relative rotation condition in Gödel spacetime. (For if, say, 0 < r1 < r2 < (rc/2), then it is not the

case that
√

2/(1 − sh2r1) =
√

2/(1 − sh2r2); and it is not the case that the corresponding expressions

that arise with the (CIR) criterion are equal.)



CHAPTER 3. SPECIAL TOPICS 208

It is natural to ask whether there is any generalized criterion of rotation that satisfies the relative

rotation condition in Gödel spacetime. The answer is, trivially, “yes”. Indeed, given any stationary,

axi-symmetric spacetime, there is a generalized criterion of rotation that satisfies the relative rotation

condition in that spacetime. Intuitively, all one has to do is pick one ring in one rotational state arbitrarily,

and then take other rings to be non-rotating iff they are non-rotating relative to that one. (Or, in the

formal language, one need only pick one striated orbit cylinder (R, k) arbitrarily, and then take a striated

orbit cylinder (R′, k′) to be non-rotating iff k′ = k.)

The point of the no-go theorem that follows is to show that, though there do exist generalized criteria

of non-rotation that satisfy the relative rotation condition in any particular stationary, axi-symmetric

spacetime, none are fully satisfactory because (at least in some cases) they violate other conditions that

we would want to see satisfied.

Consider, next, the limit condition. Recall our remarks about the asymptotic agreement of the (ZAM)

and (CIR) criteria for “infinitesimally small” rings in Gödel spacetime. We suggested that this agreement

should not be surprising because in relativity theory there is an unambiguous notion of non-rotation for

a timelike vector field at a point, and we should expect any reasonable notion of orbital non-rotation for

rings to deliver that notion in the limit. The limit condition simply makes that expectation precise. It

asserts that if we have a sequence of orbit cylinders R1, R2, R3, ... that converges to a point on the axis

of rotational symmetry, and if we have a sequence of numbers k1, k2, k3, ... such that (Ri, ki) qualifies

as non-rotating for every i, then the latter sequence has a well-defined limit at p, and that limit is the

correct one. What does “correct” mean here? Just as in the Gödel case, the limit value should be that

(unique) k for which the field (t̃a + k φa) is non-rotating at p.

That there is a unique k at each axis point satisfying the stated condition (in all stationary, axi-

symmetric spacetimes) is confirmed in the following proposition. To avoid interruption, we hold its proof

for an appendix.

Proposition 3.3.1. Let (M, gab) be a stationary, axi-symmetric spacetime with Killing fields t̃a and φa.

Let p be a point at which φa = 0. Then there is a unique number k such that ηa = t̃a+k φa is non-rotating

(η[a∇b ηc] = 0) at p. Its value is given by

kcrit(p) = − (∇b t̃c)(∇b φc)

(∇m φn)(∇m φn)
. (3.3.1)

There is one point concerning our formulation of the limit condition that requires comment. We need

to make clear what it means to say that “a sequence of orbit cylinders R1, R2, R3, ... converges to a point

on the axis of rotational symmetry”. Indeed, that provisional language is somewhat misleading. It must

be remembered that the axis set where φa = 0 forms a two-dimensional submanifold of our background

stationary, axi-symmetric spacetime. (This fact is not brought out by the figures displayed to this point

because they suppress one dimension.) So, for example, in Gödel spacetime, the axis set consists of all

points with r coordinate 0 but with arbitrary t̃ and z̃ coordinates. What the sequence R1, R2, R3, ...
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can converge to, strictly speaking, is not a point p in the axis set but rather an integral curve γ of the

Killing field t̃a that is, itself, fully contained within the two-dimensional axis set. (In the case of Gödel

spacetime, these are curves characterized by r value 0, and some fixed value for z̃, but arbitrary values

for t̃.) And we can understand convergence here to mean, simply, that given any point p on γ and any

open set O containing p, there is an N such that Ri intersects O for all i ≥ N .

Finally, note that because these limit curves are integral curves of t̃a on which φa = 0 — and so

are mapped onto themselves by all isometries generated by t̃a and φa — the number kcrit(p) in our

proposition must be the same for all points p on them.

With all this by way of preparation, we now formulate the limit condition officially as follows25.

Limit Condition: Let γ be an integral curve of t̃a on which φa = 0. Let R1, R2, R3, ... be a

sequence of orbit cylinders that converges to γ. And let k1, k2, k3, ... be a sequence of numbers

such that (Ri, ki) qualifies as non-rotating for every i. Then lim
i→∞

ki = kcrit(p), where p is any

point on γ.

Though it will play no role in what follows, we claim (without proof) that the (ZAM) and (CIR)

criteria of non-rotation satisfy this limit condition in all stationary, axi-symmetric spacetimes, not just

Gödel spacetime.

The first questions to ask is whether there is any generalized criterion of non-rotation for the ring that

satisfies both the relative rotation condition and the limit condition in Gödel spacetime. The answer is

certainly “yes” again. In that spacetime, kcrit(p) =
√

2 for all points p in the axis set. So it suffices

to take the following as our criterion: given any striated orbit cylinder (R, k), it counts as non-rotating

precisely if k =
√

2. It trivially satisfies both the relative rotation and limit conditions.

Moreover, there is a cheap sense in which one can always find a generalized criterion of non-rotation

that satisfies the two conditions, i.e., in any stationary, axi-symmetric spacetime. It is the degenerate

criterion according to which no striated orbit cylinder whatsoever counts as non-rotating. As a matter of

simple logic, it vacuously satisfies both conditions. The non-vacuity condition rules out this uninteresting

possibility.

Non-Vacuity Condition: There is at least one striated orbit cylinder (R, k) that qualifies as

non-rotating.

We have just seen that there is a criterion of non-rotation that satisfies all three conditions in Gödel

spacetime. But Gödel spacetime is rather special within the class of stationary, axi-symmetric spacetimes

because it has the Killing field z̃a in addition to t̃a and φa. As a result, given any two axis points in

25Our formulation here is slightly different from that in Malament [41] in that we avoid reference to the “center point of

the ring”. That notion played a role in [41] in the characterization of the compass of inertia on the axis (CIA) criterion of

ring non-rotation, but has not been used here.
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Gödel spacetime, there is an isometry that takes the first to the second. So it must be the case that the

function kcrit has the same value at all axis points. But there are stationary, axi-symmetric spacetimes

in which it does not have the same value at all axis points — we shall give an example in a moment —

and in those there is no generalized criterion of non-rotation that satisfies all three conditions.

Ri R′
i

p p′

Figure 3.3.2: Two sequences of rings {Ri} and {R′
i} converging to points p and p′, respec-

tively, on the axis of rotational symmetry.

Proposition 3.3.2. Let (M, gab) be a stationary, axi-symmetric spacetime. It admits a generalized

criterion of ring non-rotation that satisfies the relative rotation, limit, and non-vacuity conditions iff

kcrit(p) = kcrit(p
′) for all axis points p and p′.

Proof. (If) Suppose there is a number kcrit such that kcrit(p) = kcrit for all axis points p. Then, trivially,

there is a criterion of ring non-rotation that satisfies the three conditions, namely the one according to

which a striated orbit cylinder (R, k) counts as non-rotating iff k = kcrit.

(Only if) Suppose there exist axis points p and p′ such that kcrit(p) 6= kcrit(p
′). Let γ and γ′ be the

(maximally extended) integral curves of t̃a that contain p and p′, respectively. Further, let R1, R2, R3, ...

and R′
1, R′

2, R′
3, ... be sequences of orbit cylinders that converge to γ and γ′, respectively (figure 3.3.2).

(Existence is guaranteed. Let p1, p2, p3, ... be any sequence of points converging to p and, for all i, let

Ri be the (unique) orbit cylinder the contains pi. (Ri is the set of all points of the form ψ(p), where

ψ is an isometry generated by t̃a and φa.) Then R2, R3, ... converges to γ. And R′
1, R′

2, R′
3, ... can

be generated in the same way.) Now assume there is a generalized criterion of ring non-rotation C that

satisfies all three conditions. By the non-vacuity condition, there is a striated orbit cylinder (R, k) that

is non-rotating according to C. For all sufficiently large i, (Ri, k) and (R′
i, k) are striated orbit cylinders,

i.e., t̃a + k φa is timelike on Ri and R′
i. So (because we can always dispose of particular finite initial

segments), we may as well assume that (Ri, k) and (R′
i, k) are striated orbit cylinders for all i. By the

relative rotation condition, then, (Ri, k) and (R′
i, k) are non-rotating according to C for all i. Therefore,

by the limit condition applied to (R1, k), (R2, k), (R3, k), ... and (R′
1, k), (R′

2, k), (R′
3, k), ..., it must be

the case that kcrit(p) = k = kcrit(p
′), contradicting our initial assumption. So we may conclude that

there is no generalized criterion of ring non-rotation C that satisfies all three conditions.
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For the no-go theorem, we need now only exhibit a stationary, axi-symmetric spacetime in which it is

not the case that kcrit(p) = kcrit(p
′) for all axis points p and p′. One example is Kerr spacetime (Wald

[60] and O’Neill [47]). We shall say only enough about it to establish this one fact. In Boyer-Lindquist

(spherical) coordinates t̃, r, φ, θ, the metric is

gab =

(
1 − 2M r

ρ2

)
(da t̃)(db t̃) − ρ2

∆
(dar)(dbr) − ρ2 (daθ)(dbθ)

−
[
r2 + a2 +

2M r a2 sin2 θ

ρ2

]
(sin2 θ) (daφ)(dbφ) +

4M r a sin2 θ

ρ2
(d(a t̃)(db)φ),

where

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2M r + a2,

and M and a are positive constants (O’Neill [47]). The axis set A here consists of all points at which

sin θ = 0, for it is at those points at which the rotational Killing field φa = (∂/∂ φ)a vanishes. (So every

point in A is uniquely characterized by its t̃ and r coordinates.) It is not the case that t̃a = (∂/∂ t̃)a is

timelike and φa is spacelike at all points in M− = (M −A). But those conditions do obtain in restricted

regions of interest, e.g., in the open set where r > 2M . If we think of Kerr spacetime as representing

the spacetime structure surrounding a rotating black hole, our interest will be in small rings that are

positioned close to the axis of rotational symmetry (where sin2θ is small) and far away from the center

(where r is large). There we can sidestep all complexities having to do with horizons and singularities.

The proposition we need is the following.

Proposition 3.3.3. Let p be an axis point in Kerr spacetime with coordinates t̃ and r > 2M . Then

kcrit(p) =
2M r a

(r2 + a2)2
. (3.3.2)

(So kcrit does not assume the same value at all axis points.)

Proof. We can certainly verify (3.3.2) directly by computing

(∇b t̃c)(∇b φc)

(∇m φn)(∇m φn)

at p and then invoking (3.3.1). But we can save ourselves a bit of work with an alternate approach that

focuses attention on the smooth function f : M− → R defined by

f = − (t̃a φa)

(φn φn)
=

2M r a

(r2 + a2)ρ2 + 2M r a2 sin2 θ
.

Consider the field ηa = t̃a + f φa on M−. We claim that it can be expressed in the form

ηa =
∇a t̃

(∇n t̃)(∇n t̃)
. (3.3.3)
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To see this, let D = (t̃a t̃a)(φ
a φa) − (t̃n φn)2. Clearly, D < 0 on M− (since φa is spacelike there). We

have

∇a t̃ =
1

D

[
(φn φn) t̃a − (t̃n φn)φa

]
.

(This follows since both sides yield the same result when contracted with t̃a, φa, ra, and θa.) Hence

(∇n t̃)(∇n t̃) =
1

D
(φnφn)

and, therefore,
∇a t̃

(∇n t̃)(∇n t̃)
=

(φn φn) t̃a − (t̃n φn)φa

(φnφn)
= ηa.

as claimed. The right side of (3.3.3) has the form g∇at̃. It follows that η[a∇b ηc] = 0 everywhere on M−.

Now f and ηa can be smoothly extended to A. At p, the extended function assumes the value

f(p) =
2M r a

(r2 + a2)2

(since, once again, axis points here are ones where sin θ = 0). So, at p, the extended vector field satisfies

0 = η[a∇b ηc] = t̃[a∇b t̃c] + f(p) t̃[a∇b φc] + f(p)φ[a∇b t̃c] + f(p)2 φ[a∇b φc].

But we know from proposition 3.3.1 that the final expression on the right can be 0 only if f(p) = kcrit(p).

So we are done.

Our main result now follows as an immediate corollary.

Proposition 3.3.4. (No-Go Theorem) There is no criterion of ring non-rotation on Kerr spacetime that

satisfies the relative rotation, limit, and non vacuity conditions.

It is intended to bear this interpretation: given any (non-vacuous) generalized criterion of ring non-

rotation in Kerr spacetime, to the extent that it gives “correct” attributions of non-rotation in the limit for

“infinitesimally small” rings — the domain where one does have an unambiguous notion of non-rotation

— it must violate the relative rotation condition.

Appendix: The Proof of Proposition 3.3.1.

Here we prove proposition 3.3.1. It will be convenient to collect a few facts first that will be used in

the proof.

Proposition 3.3.5. Let (M, gab) be a stationary, axi-symmetric spacetime with Killing fields t̃a and φa.

Let p be an axis point. (So φa = 0 at p.) Let ǫabcd be a volume element defined on some open set O

containing p, and let σa be the smooth field on O defined by σa = ǫabcd t̃b∇c φd. Then at p,

(1) σa 6= 0
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(2) ∇a φb =
1

2 (t̃nt̃n)
ǫabcd t̃

cσd.

Furthermore, given any smooth field ψa (defined on some open set containing p), if £φ ψ
a = 0 at p, then

it must be of the form ψa = k1 t̃
a + k2 σ

a at p.

Proof. Note that σa is orthogonal to t̃a and φa throughout O. (The first claim follows just because

ǫabcd is anti-symmetric, and the second by clause (vi) in our characterization of stationary, axi-symmetric

spacetimes.) Note, as well, that

t̃[a∇b φc] =
1

6
ǫabcd σ

d (3.3.4)

throughout O. (We get this by contracting both sides of σd = ǫdmnp t̃m∇n φp with ǫabcd.) Now we argue

for (1). Suppose that σa = 0 at p. Then, by (3.3.4),

0 = t̃a t̃[a∇b φc] =
1

3

[
(t̃a t̃a)∇b φc + t̃c t̃

a∇a φb − t̃b t̃
a∇a φc

]

at p. Now t̃a∇a φb = φa∇a t̃b everywhere on O (since the fields t̃a and φa have a vanishing Lie bracket),

and φa = 0 at p. So the second and third terms on the right vanish there. Thus ∇a φb = 0 at p. But this

is impossible. For given any Killing field κa on the (connected) manifold M , if κa and ∇a κb both vanish

at any one point, then they must vanish everywhere. (See Wald [60, p. 443].) And that is not possible

in the present case because φa is spacelike at all non-axis points (and there exist some non axis points).

So we have (1). And for (2) we need only contract both sides of (3.3.4) with t̃c, expand the left side, and

use much the same argument we have just used to show that two terms in the expansion vanish.

Finally, let ψa be a smooth field (defined on some open set containing p) such that £φ ψ
a = 0 at p.

Then ψa∇a φb = φa∇a ψb = 0 at p (since, once again, φa = 0 at p). Hence, by (2), ǫabcd ψ
a t̃cσd = 0. So

the three vectors ψa, t̃a, and σa are linearly dependent at p. Since t̃a and σa are non-zero at p, ψa can

be expressed as a linear combination of them at p.

Now for the proof of proposition 3.3.1. The formulation, once again, is as follows.

Let (M, gab) be a stationary, axi-symmetric spacetime with Killing fields t̃a and φa. Further,

let p be a point at which φa = 0. Then there is a unique number k such that ηa = t̃a + k φa

is non-rotating (η[a∇b ηc] = 0) at p, and that number is

− (∇b t̃c)(∇b φc)

(∇m φn)(∇m φn)
.

Proof. For the first claim, what we need to show is that there a unique k such that

t̃[a∇b t̃c] + k t̃[a∇b φc] = 0 (3.3.5)

at p. (This is equivalent to η[a∇b ηc] = 0 at p since φa = 0 there.) We know from clause (1) of the

preceding proposition and (3.3.4) that t̃[a∇b φc] 6= 0 at p. So uniqueness is immediate. For existence,
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let ǫabcd be a volume element defined on some open set containing p, let σa = ǫabcd t̃b∇c φd (as in the

preceding proposition), and let ωa = ǫabcd t̃b∇c t̃d. The new field ωa is orthogonal to t̃a. And it is Lie

derived by φa, i.e., £φ ω
a = 0 (since φa is a Killing field that commutes with t̃a). So, by the preceding

proposition, there is a number k2 such that ǫabcd t̃b∇c t̃d = ωa = k2 ǫ
abcd t̃b∇c φd or, equivalently,

t̃[a∇b t̃c] = k2 t̃[a∇b φc]

at p. Thus (3.3.5) holds at p iff k = −k2.

Now we compute k2. Contracting the preceding line with t̃a∇bφc, and then dividing by (t̃at̃a), yields

(∇b t̃c)(∇bφc) = k2 (∇b φc)(∇bφc)

at p. So, to complete the proof, we need only verify that (∇b φc)(∇bφc) 6= 0 at p. But this follows from

the preceding proposition. By clause (2) we have

(∇b φc)(∇bφc) =
1

2 (t̃nt̃n)
ǫbcmn t̃

mσn(∇bφc) = − 1

2 (t̃nt̃n)
(σnσ

n)

at p. And σa is spacelike at p, since it is orthogonal to t̃a and (by clause (1)) non-zero there.



Chapter 4

Newtonian Gravitation Theory

The “geometrized” formulation of Newtonian gravitation theory — also known as “Newton-Cartan

theory” — was first introduced by Cartan [5, 6] and Friedrichs [21] and later developed by Dautcourt

[10], Dixon [11], Dombrowski and Horneffer [13], Ehlers [15], Havas [28], Künzle [34, 35], Lottermoser

[37], Trautman [59], and others. It is significant for several reasons.

First, it shows that several features of relativity theory once thought to be uniquely characteristic

of it do not distinguish it from (a suitably reformulated version of) Newtonian gravitation theory. The

latter too can be cast as a “generally covariant” theory in which (i) gravity emerges as a manifestation

of spacetime curvature, and (ii) spacetime structure is “dynamical” in the sensed that it participates in

the unfolding of physics rather than being a fixed backdrop against which it unfolds.

Second, it clarifies the gauge status of the Newtonian gravitational potential. In the geometrized

formulation of Newtonian theory, one works with a single curved derivative operator
g

∇. It can be de-

composed (in a sense) into two pieces — a flat derivative operator ∇ and a gravitational potential φ —

to recover the standard formulation of the theory. But in the absence of special boundary conditions, the

decomposition will not be unique. Physically, there is no unique way to divide into “inertial” and “grav-

itational” components the forces experienced by particles. Neither has any direct physical significance.

Only their “sum” does. It is an attractive feature of the geometrized formulation that it trades in two

gauge quantities for this sum. (See the discussion at the end of section 4.2.)

Third, the clarification just described also leads to a solution, or dissolution, of an old problem about

Newtonian gravitation theory, namely the apparent breakdown of the theory when applied (in cosmology)

to a hypothetically infinite, homogeneous mass distribution. (See section 4.4.)

Fourth, it allows one to make precise in coordinate-free, geometric language the standard claim that

Newtonian gravitation theory (or, at least, a certain generalized version of it) is the “classical limit” of

general relativity. (See Künzle [35], Ehlers [15], and Lottermoser [37].)

215
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4.1 Classical Spacetimes

We begin our discussion by characterizing a new class of geometric models for the spacetime structure

of our universe (or subregions thereof) that is broad enough to include the models considered in both the

standard and geometrized versions of Newtonian gravitation theory.

We take a classical spacetime to be a structure (M, tab, h
ab,∇) where (i) M is a smooth, connected,

four-dimensional manifold, (ii) tab is a smooth, symmetric field on M of signature (1, 0, 0, 0), (iii) hab

is a smooth, symmetric field on M of signature (0, 1, 1, 1), (iv) ∇ is a derivative operator on M , and (v)

the following two conditions hold:

hab tbc = 0 (4.1.1)

∇a tbc = 0 and ∇a h
bc = 0. (4.1.2)

We refer to them, respectively, as the “orthogonality” and “compatibility” conditions.

M is interpreted as the manifold of point events (as before). Collectively, the objects tab, h
ab, and ∇

on M represent the spacetime structure presupposed by classical Galilean relativistic dynamics. It will

soon emerge how they do so.

We need to explain what we mean by the “signatures” of tab and hab, since we are using the term

here in a new, somewhat extended sense. The signature condition for tab is the requirement that, at

every point in M , the tangent space there have a basis
1

ξa, ...,
4

ξa such that, for all i and j in {1, 2, 3, 4},
tab

i

ξa
j

ξb = 0 if i 6= j, and

tab
i

ξa
i

ξb =





1 if i = 1

0 if i = 2, 3, 4.

(We shall call this an “orthonormal basis” for tab, though this does involve a slight extension of ordinary

usage.) Hence, given any vectors µa =
∑4

i=1

i
µ

i

ξa and νa =
∑4

i=1

i
ν

i

ξa at the point,

tab µ
aνb =

1
µ

1
ν (4.1.3)

and

tab µ
aµb = (

1
µ)2 ≥ 0. (4.1.4)

Notice that tab is not a metric as defined in section 1.9, since it does not satisfy the required non-

degeneracy condition. (For example, if the vectors
1

ξa, ...,
4

ξa are as above at some point, then tab
2

ξa = 0

there, even though
2

ξa 6= 0.)

The signature condition for hab, similarly, is the requirement that, at every point, the cotangent space

there have a basis
1
σa, ...,

4
σa such that, for all i and j in {1, 2, 3, 4}, hab i

σa
j

σb = 0 if i 6= j, and

hab
i
σa

i
σb =





0 if i = 1

1 if i = 2, 3, 4.
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(We shall extend ordinary usage once again and call this an “orthonormal basis” for hab.) Hence, given

any vectors αa =
∑4

i=1

i
α

i
σa and βa =

∑4
i=1

i

β
i
σa at the point,

hab αa βb =
2
α

2

β +
3
α

3

β +
4
α

4

β (4.1.5)

and
hab αa αb = (

2
α)2 + (

3
α)2 + (

4
α)2 ≥ 0. (4.1.6)

Notice, too, that hab is not the inverse of a metric (in the sense of section 1.9), i.e., there is no field hab

such that hab h
bc = δca. (Why? If

1
σa, ...,

4
σa are as above at some point, then hab

1
σa = 0. Hence, if there

were a tensor hab at the point such that hab h
bc = δca, it would follow that 0 = hab h

bc 1
σc = δca

1
σc =

1
σa,

contradicting the assumption that
1
σa, ...,

4
σa form a basis of the cotangent space there.)

In what follows, let (M, tab, h
ab,∇) be a fixed classical spacetime.

Consider, first, tab. We can think of it as a “temporal metric”, even though it is not a metric in the

sense of section 1.9. Given any vector ξa at a point, we take its “temporal length” to be (tab ξ
a ξb)

1
2 .

(We know from (4.1.4) that (tab ξ
a ξb) must be non-negative.) We further classify ξa as either timelike or

spacelike depending on whether its temporal length is positive or zero. It follows from the signature of tab

that the subspace of spacelike vectors at any point is three-dimensional. (For if
1

ξa, ...,
4

ξa is an orthonormal

basis for tab there,
1

ξa is timelike, and the remaining three are spacelike.) Notice too that at any point we

can find a co-vector ta, unique up to sign, such that tab = tatb. (Again, let
1

ξa, ...,
4

ξa be an orthonormal

basis for tab at the point. Then ta = ± tan
1

ξn satisfies the stated condition. Conversely, if tab = tatb, then

contraction with
1

ξa
1

ξb yields 1 = (ta
1

ξa)2. So ta
1

ξa = ±1 and, hence, tab
1

ξb = ta (tb
1

ξb) = ± ta.)

So far we have considered only the decomposition tab = tatb at individual points of M . We say that

(M, tab, h
ab,∇) is temporally orientable if there exists a continuous (globally defined) vector field ta that

satisfies the decomposition condition at every point. (Our assumptions to this point do not guarantee

existence.) Any such field ta (which must, in fact, be smooth since tab is) will be called a temporal

orientation. A timelike vector ξa qualifies as future-directed relative to ta if ta ξ
a > 0; otherwise it is

past-directed. If a classical spacetime admits one temporal orientation ta, then it admits two altogether,

namely ta and −ta.

In what follows, we shall restrict attention to classical spacetimes that are temporally orientable and

in which a temporal orientation has been selected. (We shall say, for example, “consider the classical

spacetime (M, ta, h
ab,∇) ...”.) The orthogonality condition and the first compatibility condition can then

be formulated directly in terms of ta:

hab tb = 0, (4.1.7)

∇a tb = 0. (4.1.8)

(These follow easily from the original formulations.)
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Clearly, we understand a smooth curve to be timelike (respectively spacelike) if its tangent vectors are

of this character at every point. And a timelike curve is understood to be future-directed (respectively

past-directed) if its tangent vectors are so at every point.

From the compatibility condition, it follows that ta is closed, i.e. ∇[a tb] = 0. So (by proposition

1.8.3), at least locally, it must be exact, i.e., of the form ta = ∇a t for some smooth function t. We call

any such function a time function. Any two time functions t and t′ defined on a (common) open set can

differ only by a constant, i.e., there must be a number k such that t′(p) = t(p) + k for all p in the set.

Given any time function t, and any smooth, future-directed timelike curve γ : [s1, s2] →M with tangent

field ξa (whose image falls within the domain of t), the temporal length of γ is given by

∫ s2

s1

(ta ξ
a) ds =

∫ s2

s1

(ξa∇at) ds =

∫ s2

s1

d(t ◦ γ)
ds

ds = t(γ(s2)) − t(γ(s1)),

i.e., it depends only on the endpoints of the curve. This shows that, at least locally, we have a well-defined,

path-independent notion of “temporal distance” between points.

Let us say that a hypersurface S in M is spacelike if, at all points of S, all vectors tangent to S are

spacelike. Notice that the defining condition is equivalent to the requirement that all time functions be

constant on S. (A time function t is constant on S iff, given any vector ξa tangent to S at some point of

S, ξa∇at = 0. But taξ
a = ξa∇at. So the latter condition holds iff all vectors tangent to S are spacelike.)

We can think of spacelike hypersurfaces as (at least local) “simultaneity slices”.

If M is simply connected, then there must exist a globally defined time function t : M → R. In this

case, spacetime can be decomposed into a one-parameter family of global (t = constant) simultaneity

slices. One can speak of “space” at a given “time”. A different choice of (globally defined) time function

would result in a different zero-point for the time scale, but would induce the same simultaneity slices

and the same temporal distances between points on them.

We are now in a position to formulate interpretive principles corresponding to (C1), (P1), and (P2).

(Recall our discussion in sections 2.1 and 2.3.) For all smooth curves γ : I →M ,

(C1′) γ is timelike iff its image γ[I] could be the worldline of a point particle.

(P1′) γ can be reparametrized so as to be a timelike geodesic (with respect to ∇) iff γ[I] could be the

worldline of a free point particle.1

(P2′) Clocks record the tab-length of their worldlines.

Two points should be noted. First, in (C1′) and (P1′), we make reference to “point particles” without

qualification, whereas previously we needed to restrict attention to particles with mass m > 0. Here there

1We have seen (proposition 2.5.2) that it is possible, in a sense, to recover principle (P1) as a theorem in general relativity.

Similarly, one can recover (P1′) as a theorem in geometrized Newtonian gravitation theory. Indeed, one can prove a result

that is a close counterpart to proposition 2.5.2 (Weatherall [61]).
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are no zero mass particles to consider, and no null curves whose images might serve as their worldlines.

Second, there is an ambiguity as to what we mean by a “free” particle in (P1′). In the standard formulation

of Newtonian gravitation theory, particles subject to a (non-vanishing) gravitational force do not count

as free. But on the geometrized formulation, as in relativity theory, they do.

In what follows, unless indication is given to the contrary, we shall understand a “timelike curve” to be

smooth, future-directed, and parametrized by its tab–length. In this case, its tangent field ξa satisfies the

normalization condition taξ
a = 1. And in this case, if a particle happens to have the image of the curve as

its worldline, then we call ξa the four-velocity field of the particle, and call ξn∇n ξ
a its four-acceleration

field. If the particle has mass m, then its four-acceleration field satisfies the equation of motion

F a = m ξn∇n ξ
a, (4.1.9)

where F a is a spacelike vector field (on the image of its worldline) that represents the net force acting

on the particle. This is our version of Newton’s second law of motion. (Recall (2.4.13).) Note that

the equation makes geometric sense because the four-acceleration field is spacelike. (For, by the first

compatibility condition, ta ξ
n∇n ξ

a = ξn∇n (ta ξ
a) = ξn∇n (1) = 0.)

Now consider hab. It serves as a spatial metric, but just how it does so is a bit tricky. In Galilean

relativistic mechanics, we have no notion of spatial length for timelike vectors, e.g., four-velocity vectors,

since having one is tantamount to a notion of absolute rest. (We can take a particle to be “at rest” if

its four-velocity field has spatial length 0 everywhere.) But we do have a notion of spatial length for

spacelike vectors, e.g., four-acceleration vectors. (We can, for example, use measuring rods to determine

distances between simultaneous events.) The field hab gives us one without the other.

We cannot take the spatial length of a vector µa to be (habµ
aµb)

1
2 because the latter is not well defined.

(As we have seen, there does not exist a field hab satisfying habhbc = δac.) But if µa is spacelike, we can

use hab to assign a spatial length to it indirectly. Here we need a small result about spacelike vectors.

Proposition 4.1.1. Let (M, ta, h
ab,∇) be a classical spacetime. Then the following conditions hold at

all points in M .

(1) For all σb, habσb = 0 iff σb is a multiple of tb.

(2) For all µa, µa is spacelike iff there is a σb such that habσb = µa.

(3) For all σb and σ′
b, if habσb = habσ′

b, then habσaσb = habσ′
aσ

′
b.

Proof. The “if” halves of (1) and (2) follow immediately from the orthogonality condition (4.1.7). For

the “only if” half of (1), let
1
σa, ...,

4
σa be an orthonormal basis for hab in the sense discussed above. (So

hab
i
σa

j

σb = 0 if i 6= j, hab
1
σa

1
σb = 0, and hab

i
σa

i
σb = 1 for i = 2, 3, 4.) We can take

1
σa to be ta, since the

latter satisfies the required conditions. Now consider any vector σb =
1

k
1

tb+
2

k
2
σb+

3

k
3
σb+

4

k
4
σb, and assume

habσb = 0. Then, by the orthogonality condition,
2

k (hab
2
σb) +

3

k (hab
3
σb) +

4

k (hab
4
σb) = 0. Contraction

with
i
σb yields

i

k = 0 for i = 2, 3, 4. So σb =
1

k
1

tb.
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The “only if” half of (2) follows by dimensionality considerations. At any point in M , we can construe

hab as a linear map from the cotangent space Vb there to the tangent space V a. Every vector in the image

space hab[Vb] is spacelike (by the “if” half of (2)). Moreover, hab[Vb] is three-dimensional. (If
2
σb,

3
σb,

4
σb

are as above, then the vectors hab
2
σb, h

ab 3
σb, h

ab 4
σb are linearly independent. For, as we have just seen,

if a linear combination
2

k (hab
2
σb) +

3

k (hab
3
σb) +

4

k (hab
4
σb) of the three is 0, the three coefficients must all

be 0.) So, at every point, hab[Vb] is a three-dimensional subspace of the vector space of spacelike vectors.

But the latter is itself three-dimensional. So every spacelike vector must be in hab[Vb].

For (3), suppose habσb = habσ′
b. Then, by (1), (σ′

b − σb) = k tb for some k. So habσ′
a σ

′
b =

hab(σa + k ta)(σb + k tb) = habσa σb.

So here is the indirect procedure. If µa is spacelike, we take its spatial length to be (habσaσb)
1
2 , where

σb is a vector such that habσb = µa. Clause (2) guarantees existence, and clause (3) guarantees that the

choice of σb makes no difference.

Proposition 4.1.1 has a number of simple consequences that will be used again and again in what

follows. Here is one. Suppose we have a tensor γ...a... at a point such that (i) γ...a...h
ab = 0 and (ii)

γ...a...ξ
a = 0 for some timelike vector ξa there. Then γ...a... = 0. (To see this, it suffices to consider any

three linearly independent spacelike vectors
2
µa,

3
µa,

4
µa at the point. (Existence is guaranteed by the

signature of tab.) They, together with ξa, form a basis for the tangent space there. Since we are given

that γ...a...ξ
a = 0, it suffices to show that γ...a...

i
µa = 0 for i = 2, 3, 4. But we know from the proposition

that, for each i = 2, 3, 4, there is a co-vector
i
σb such that

i
µa = hab

i
σb. So our claim follows from (i).)

This first consequence of Proposition 4.1.1 can be generalized. Suppose we have a tensor γ...ab... at

a point such that, for some timelike vector ξa there, (i) γ...ab...h
amhbn = 0, and (ii) γ...ab...ξ

ahbn = 0 =

γ...ab...h
anξb, and (iii) γ...ab...ξ

aξb = 0. Then γ...ab... = 0. Other tensors γ...a1 a2 ... an... can be handled

similarly.

Proposition 4.1.2. Let (M, ta, h
ab,∇) be a classical spacetime, and let ξa be a smooth, future-directed,

unit timelike vector field on M . (So taξ
a = 1.) Then there is a (unique) smooth, symmetric field ĥab on

M satisfying the conditions

ĥab ξ
b = 0, (4.1.10)

ĥab h
bc = δca − ta ξ

c. (4.1.11)

Proof. If follows by the remark in the preceding paragraph that there can be at most one field ĥab

satisfying the stated conditions. (Given any two candidates, we need only substract one from the other

and apply the remark to the resulting difference field.) We can define a symmetric field ĥab by its

specifying its action, at any point, on the unit timelike vector ξa and on an arbitrary spacelike vector µa.

So consider the field ĥab that annihilates the former and makes the assignment

ĥab µ
b = σa − ta(ξ

cσc)
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to the latter — where σa is any vector such that µa = habσb. It is easy to check that the choice of σa

plays no role here. (For suppose that hab
1
σb = hab

2
σb. Then

1
σa − ta(ξ

c 1
σc) =

2
σa − ta(ξ

c 2
σc). The latter

follows since we get the same result on both sides if we contract with either ξa or hab.) It now follows, as

well, that condition (4.1.11) holds. For by the very way we have defined ĥab, both sides of (4.1.11) yield

the same result when contracted with any vector σc.

We call ĥab the spatial metric (or spatial projection field) relative to ξa. Our notation is imperfect here

because we make no explicit reference to ξa. But it will be clear from the context which unit timelike

field is intended.

Because hab is not invertible, we cannot raise and lower indices with it. But we can, at least, raise

indices, and it is sometimes convenient to do so. So, for example, if Rabcd is the Riemann curvature tensor

field associated with ∇, we can understand Rabcd to be the field hbnRancd. Note that

ĥab = δab − tb ξ
a. (4.1.12)

(This is simply equation (4.1.11), since ĥab = ĥmb h
ma.) It follows immediately from (4.1.12) that, given

any vector µa at a point, we can express it in the form

µa = ĥab µ
b + (tb µ

b) ξa.

Here the first term on the right side is spacelike, and the second is proportional to ξa. We call ĥab µ
b the

spatial projection (or spatial component) of µa relative to ξa.

We also call (ĥab µ
a µb)

1
2 the spatial length of µa relative to ξa. It is easy to check that this magnitude is

just what we would otherwise describe as the spatial length of the spatial component ĥab µ
b. (According

to our prescription, the spatial length of ĥab µ
b is given by (hmn σm σn)

1
2 , where σm is any vector

satisfying ĥab µ
b = ham σm. But ĥab µ

b = ham ĥmr µ
r. So the spatial length of ĥab µ

b is given by

(
hmn (ĥmr µ

r) (ĥns µ
s)
) 1

2

.

But hmn ĥmr ĥns = ĥrs. So the spatial length of ĥab µ
b comes out as (ĥrs µ

r µs)
1
2 , as claimed.)

It is important that the compatibility conditions ∇a h
bc = 0 and ∇a tb = 0 (or, equivalently, ∇a tbc =

0) do not determine a unique derivative operator. (There is no contradiction here with proposition 1.9.2

since neither tab nor hab is an (invertible) metric.) In fact, we have the following characterization result.

Proposition 4.1.3. Let (M, ta, h
ab,∇) be a classical spacetime. Let ∇′ = (∇, Cabc) be a second derivative

operator on M (i.e., the action of ∇′ relative to that of ∇ is given by Cabc). Then ∇′ is compatible with

ta and hab iff Cabc is of the form

Cabc = 2 han t(b κc)n (4.1.13)

where κab is a smooth anti-symmetric field on M .
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Proof. Since (M, ta, h
ab,∇) is a classical spacetime, ∇ is compatible with both ta and hab. Hence, by

(1.7.1), we have

∇′
a tb = ∇a tb + Crab tr = Crab tr, (4.1.14)

∇′
a h

bc = ∇a h
bc − Cbar h

rc − Ccar h
br = −Cbar hrc − Ccar h

br. (4.1.15)

Assume, first, that Cabc has the indicated form. Then ta C
a
bc = 0 and Cabc h

cd = han tb κcn h
cd by the

orthogonality condition. It follows immediately that ∇′ is compatible with ta. It also follows that

∇′
a h

bc = −ta (hbn κrn h
rc + hcn κrn h

br) = −ta (κcb + κbc).

But κab is anti-symmetric. So ∇′ is compatible with hab as well.

Conversely, assume ∇′ is compatible with ta and hab. Then, by (4.1.14) and (4.1.15),

Crab tr = 0, (4.1.16)

Cbar h
rc + Ccar h

br = 0. (4.1.17)

Now consider the raised index tensor field Cabc = Camn h
mb hnc. It is spacelike, i.e., contraction on any

index with ta yields 0. Moreover, it satisfies the two conditions

Cabc = Cacb, (4.1.18)

Cabc = −Ccba. (4.1.19)

(This first follows from the symmetry of Cabc itself, and the second from (4.1.17).) By repeated use of

these two, we have

Cabc = −Ccba = −Ccab = Cbac = Cbca = −Cacb = −Cabc.

So the field vanishes everywhere:

Cabc = 0. (4.1.20)

Now let ξa be a smooth, future-directed, unit timelike field (so taξ
a = 1), and let ĥab be the corresponding

spatial projection field. Then we have

0 = Camn ĥmb ĥnc = Cars h
rm hsn ĥmb ĥnc

= Cars(δ
r
b − tb ξ

r)(δsc − tc ξ
s).

Hence,

Cabc = tc C
a
bs ξ

s + tb C
a
rc ξ

r − tb tc C
a
rs ξ

r ξs. (4.1.21)

Now consider

κcn = −ĥcp ĥnq Cprq ξr + t[c ĥn]q C
q
rs ξ

r ξs. (4.1.22)
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It is anti-symmetric by (4.1.17) and, we claim, it satisfies (4.1.13). To verify this, we compute the right

side of (4.1.13 ). We have

2 han tb κcn = −2 (han ĥnq) tb ĥcpC
p
r
q ξr + tb tc (han ĥnq)C

q
rs ξ

r ξs.

Now, by (4.1.16) and (4.1.17), (han ĥnq)C
p
r
q = −(δaq − tq ξ

a)Cqr
p = −Carp, and (han ĥnq)C

q
rs = Cars.

So

2 han tb κcn = 2 tb ĥcpC
a
r
p ξr + tb tc C

a
rs ξ

r ξs.

Furthermore, ĥcpC
a
r
p = ĥcpC

a
rs h

sp = (δsc − tc ξ
s)Cars. So

2 han tb κcn = 2 tbC
a
rc ξ

r − tb tcC
a
rs ξ

r ξs.

Hence, by (4.1.21),

2 han t(b κc)n = 2 t(b C
a
c)r ξ

r − tb tc C
a
rs ξ

r ξs = Cabc.

Now let Rabcd be the curvature tensor associated with ∇. Of course, it satisfies the algebraic conditions

listed in proposition 1.8.2:

Rab(cd) = 0, (4.1.23)

Ra[bcd] = 0. (4.1.24)

The compatibility conditions (∇atb = 0 and ∇ah
bc = 0) further imply that

taR
a
bcd = 0, (4.1.25)

R
(ab)

cd = 0. (4.1.26)

(We have 0 = 2∇[c∇d] tb = taR
a
bcd and 0 = 2∇[c∇d] h

ab = −Ramcd hmb−Rbmcd h
am = −Rabcd −Rbacd.)

It follows immediately from the conditions listed so far that if we raise all three indices with hab, the

resulting field Rabcd satisfies

Rab(cd) = 0, (4.1.27)

Ra[bcd] = 0, (4.1.28)

R(ab)cd = 0. (4.1.29)

These, in turn, jointly imply

Rabcd = Rcdab. (4.1.30)

(The argument is the same as in the case where ∇ is determined by a (non-degenerate) metric. Recall

our proof of the fourth clause of proposition 1.9.4.)

Now consider the Ricci tensor field Rab = Rcabc and the (spatial) scalar curvature field R = habRab.

We claim that the former is symmetric. To verify this, we consider an arbitrary smooth, future-directed,
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timelike field ξa and use the corresponding projection field ĥab to lower indices. First, it follows easily

from (4.1.11), (4.1.25), and (4.1.26) that

Raacd = ĥabR
ab
cd = 0, (4.1.31)

Rbc = ĥadR
abcd, (4.1.32)

R = ĥabR
ab. (4.1.33)

(For example, we have ĥabR
ab
cd = ĥab h

br Rarcd = (δra − ta ξ
r)Rarcd = Raacd. This, with (4.1.26), gives

(4.1.31).) Hence, by (4.1.23) and (4.1.24),

Rab −Rba = Rcabc −Rcbac = Rcabc +Rcbca = −Rccab. (4.1.34)

So, by (4.1.31), we have

Rab = Rba, (4.1.35)

as claimed.

Less straightforward is the following proposition.

Proposition 4.1.4. Let (M, ta, h
ab,∇a) be a classical spacetime. Then the curvature field Rabcd associ-

ated with ∇ satisfies

Rabcd = (hbcRad + hadRbc − hacRbd − hbdRac) +
1

2
(hac hbd − had hbc)R. (4.1.36)

Proof. The relation is familiar from the case where we are dealing with a derivative operator determined

by an (invertible) metric and the background manifold has dimension 3. It follows from the symmetries

(4.1.27) – (4.1.30) and (4.1.35), as well as the crucial fact that all the indices in Rabcd are spacelike, i.e.,

contraction on any of these indices with ta yields 0.

We prove (4.1.36) at an arbitrary point p of M by introducing an appropriate basis there and consid-

ering the resulting component relations.

Let ta,
1
σa,

2
σa,

3
σa be an orthonormal basis for hab at p in the sense discussed above. (So hab

i
σa

j

σb = 0

if i 6= j, and hab
i
σa

i
σb = 1 for i = 1, 2, 3.) Then hab =

1
σa

1
σ b +

2
σ a

2
σ b +

3
σa

3
σ b. Further, let ξa be

a future-directed unit timelike vector at p with corresponding projection tensor ĥab. Now consider the

co-vectors
1
αa,

2
αa,

3
αa at p defined by

i
αa = ĥab h

bc i
σc =

i
σa − ta(

i
σc ξ

c).

It is easy to check that:

(1)
i
αa ξ

a = 0 for i = 1, 2, 3.

(2) hab
i
σa = hab

i
αa for i = 1, 2, 3.

(3) ta,
1
αa,

2
αa,

3
αa form a co-basis at p.
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(4) ĥab =
1
αa

1
αb +

2
αa

2
αb +

3
αa

3
αb.

Since all indices in Rabcd and Rab are spacelike, both tensors are determined by their action on the basis

vectors
1
αa,

2
αa,

3
αa. Consider the components

ij

R = Rab
i
αa

j
αb,

ijkl

R = Rabcd
i
αa

j
αb

k
αc

l
αd

where i, j, k, l ∈ {1, 2, 3}. Because of the symmetries of Rabcd and Rab, each has only six independent

(non-zero) components, namely
11

R
12

R
13

R
22

R
23

R
33

R

and
1212

R
1313

R
2323

R
1213

R
1223

R
1323

R .

Now, by (4.1.32), Rab = Rrabs ĥrs =

3∑

i=1

Rrabs
i
αr

i
αs. Hence, for all j, k ∈ {1, 2, 3},

jk

R =

3∑

i=1

ijki

R . This

gives us 11

R = −
1212

R −
1313

R
12

R = −
1323

R

22

R = −
1212

R −
2323

R
13

R =
1223

R

33

R = −
1313

R −
2323

R
23

R = −
1213

R .

Also, by (4.1.33),

R = Rab ĥab =

3∑

i=1

Rab
i
αa

i
αb =

11

R +
22

R +
33

R .

Using these relations, we can check that the two sides of (4.1.36) agree in their action on any quadruple
i
αa

j
αb

k
αc

l
αd. As an example, consider

1
αa

2
αb

1
αc

2
αd. We have hab

1
αa

1
αb = hab

2
αa

2
αb = 1 and hab

1
αa

2
αb = 0.

So it suffices to confirm that
1212

R = (−
22

R −
11

R ) +
1

2
R. But this follows from the entries in our table.

Next we consider the notion of “spatial flatness”. Of course, we say that our background classical

spacetime is flat at a point if Rabcd = 0 there. In parallel, we say that it is spatially flat there if

Rabcd = 0. To motivate this definition, we need to say something about “induced derivative operators”

on spacelike hypersurfaces. (Recall that a hypersurface is spacelike — in a classical spacetime as well as

in a relativistic spacetime — if all smooth curves with images in the hypersurface are spacelike.)

Let S be a spacelike hypersurface, and let ξa be an arbitrary smooth, unit, future-directed timelike

vector field on S. Let ĥab be the associated projection field on S. Given any tensor field on S, we say

that it is spacelike relative to ξa if contraction on any of its indices with ta or ξa yields 0. We can think of

fields spacelike relative to ξa as living on the manifold S. (Recall the discussion in section 1.10.) Clearly,

hab and ĥab both qualify as spacelike relative to ξa. So does ĥba = δba − ta ξ
b. Notice that ĥba preserves

all vectors that are spacelike relative to ξa, i.e., ĥba µ
a = µb and ĥba σb = σa, for all µa and σa spacelike

relative to ξa. We can thus think of ĥba as a “delta (or index substitution) field” for fields on S that are
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spacelike relative to ξa. And we shall, on occasion, write δ̂ba rather than ĥba – just as in the case of a

(non-degenerate) metric gab we often write δba rather than gba.

What is most important here is that we can think of ĥab as a (non-degenerate) metric that lives on

S. It is non-degenerate in the relevant sense because it does not annihilate any non-zero vectors that

are spacelike relative to ξa or, equivalently, because it has an “inverse” hab, i.e., ĥab h
bc = δ̂ca. (This is

just 4.1.11.) So there is a unique derivative operator D on S that is compatible with ĥab, i.e., such that

Daĥbc = 0. We can express the action of D in terms of ∇ (as explained in section 1.10). Given any

field spacelike relative to ξa, the action of D on it is given by first applying ∇ and then projecting all

covariant indices with ĥba. So, for example,

Dn α
a
bc = ĥmn ĥ

r
b ĥ

s
c∇m α

a
rs. (4.1.37)

The projection insures that the resultant field is spacelike relative to ξa. There is no need to project

the contravariant indices. Since ∇atb = 0, they remain spacelike even after ∇ is applied. (One can

check directly that D satisfies all the defining conditions of a derivative operator on S, and furthermore

Daĥbc = 0 and Dah
bc = 0.) We refer to D as the derivative operator induced on S relative to ξa.

The following proposition serves to motivate our definition of spatial flatness.

Proposition 4.1.5 (Spatial Flatness Proposition). Let (M, ta, h
ab,∇) be a classical spacetime. The

following conditions are equivalent at every point in M .

(1) Space is flat, i.e., Rabcd = 0.

(2) Rab = 0.

(3) Rab = t(a ϕb) for some ϕa.

Furthermore, given any spacelike hypersurface S in M , these conditions hold throughout S iff parallel

transport of spacelike vectors within S is, at least locally, path independent.

Proof. Let p be a point in M , and let ξa be an arbitrary, future-directed, unit timelike vector at p with

corresponding spatial projection tensor ĥab. The equivalence of (1) and (2) follows from (4.1.32), (4.1.33),

and (4.1.36). The implication (3) ⇒ (2) is immediate. For the converse, consider the vector

ϕa = 2Rabξ
b − ta(Rmn ξ

mξn).

We have ϕaξ
a = Rab ξ

aξb and ϕah
ar = 2Rab h

arξb. Therefore, at any point where Rab = 0, it must be

the case that Rab = t(a ϕb), since both sides agree in their action on ξaξb, harξb, and harhbs. (Recall our

remarks following proposition 4.1.1.)

Now let S be a spacelike hypersurface, and let ξa be a smooth, unit, future-directed timelike vector

field on S. Further, let ĥab be the associated projection field on S, and let D be the derivative operator

induced on S relative to ξa (as explained in the preceding paragraphs). Finally, suppose that µa and νa

are spacelike fields on S. Then they automatically qualify as spacelike relative to ξa, and by (4.1.37) we
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have µnDn ν
a = µn ĥrn∇r ν

a = µr∇r ν
a. It follows that D and ∇ induce the same conditions for parallel

transport of spacelike vectors on S. We know that parallel transport of such vectors on S is, at least

locally, path independent iff the Riemann curvature tensor field Ra
bcd on S associated with D vanishes.

So, for the second half of the proposition, it suffices for us to show that, at all points on S,

Rabcd = 0 ⇐⇒ Ra
bcd = 0. (4.1.38)

This just involves a bit of computation. The right-side condition here is equivalent to the requirement

that, for all spacelike fields µa on S,

0 = Ra
bcd µ

b = −2D[cDd] µ
a = −2 ĥrc ĥ

s
d∇[r∇s] µ

a = ĥrc ĥ
s
dR

a
brs µ

b.

Hence, it is equivalent to the condition

0 = ĥrc ĥ
s
dR

a
prs h

pb = ĥrc ĥ
s
dR

ab
rs.

Contracting this equation with hcm hdn yields Rabmn = 0. Conversely, contracting Rabmn = 0 with

ĥcm ĥdn yields ĥrc ĥ
s
dR

ab
rs = 0.

The interest of proposition 4.1.5 will become apparent in the next section when we consider the

geometrized formulation of Newtonian gravitation theory. In that formulation, Poisson’s equation assumes

the formRab = 4 πρ tatb (where ρ is the mass density function). We see from the proposition that Poisson’s

equation (in its geometrized formulation) implies the flatness of space! This is striking. It is absolutely

fundamental to the idea of geometrized Newtonian theory that spacetime is curved (and gravitation is

just a manifestation of that curvature). Yet the basic field equation of the theory itself rules out the

possibility that space is curved.

Intermediate between the curvature conditions Rabcd = 0 and Rabcd = 0 is the condition Rabcd = 0.

We shall show later (proposition 4.3.1) that it holds throughout M iff parallel transport of spacelike

vectors along arbitrary curves is, at least locally, path independent. (Here we still restrict attention to

spacelike vectors (rather than arbitrary vectors), but consider their transport along arbitrary curves in

M (not just curves confined to a particular spacelike hypersurface).)

Before continuing with the main line of presentation in this section, we stop briefly to record a fact

that will be needed in later sections. We place it here because it concerns the induced derivative operator

D that was considered in the preceding proof.

Proposition 4.1.6. Let (M, ta, h
ab,∇) be a classical spacetime, and let φa be smooth spacelike field on

M such that ∇[a φb] = 0. Then, at least locally, there exists a smooth field φ such that φa = ∇aφ.

Proof. This is not quite an instance of proposition 1.8.3, but it is close. Let p be any point in M , and let

O be any open set containing p that is sufficiently small and well behaved that it has this property: O can

be covered by a family F of spacelike hypersurfaces, each of which is connected and simply connected.
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Let γ : I →M be any timelike curve whose image contains p and intersects every one of the hypersurfaces

in F . Finally, let ξa be a smooth, future-directed, unit timelike field on O, and let ĥab be the associated

spatial projection field.

Now consider any hypersurface S in F , and the projected field φ̂a = ĥab φ
b on S. If D is the induced

derivative operator on S defined by (4.1.37), then on S we have D[a φ̂b] = ĥam ĥbn∇[m φn] = 0. So, by

proposition 1.8.3, there is a smooth field φS on S such that φ̂a = Da φS . It is determined only up to a

constant, but we can pin it down uniquely by requiring, in addition, that it have value 0 at the point

where S intersects γ[I].

Now let φ be the “aggregated” scalar field on O that agrees with φS on each S in F . We claim

without further argument that it is smooth. It satisfies the required condition since, given any spacelike

hypersurface S in F , we have φa = hanφ̂n = hanDn φS = han ĥrn∇r φ = ∇aφ on S.

Now we briefly consider the representation of fluid flow. Our formalism here is closely related to

that developed in section 2.8. Let ξa be a smooth, unit, future-directed timelike vector field on our

background classical spacetime. We think of ξa as the four-velocity of a fluid. Let ĥab be the projection

field associated with ξa. The rotation field ωab and expansion field θab associated with ξa are defined by

ωab = ĥm[a ĥb]n∇m ξ
n, (4.1.39)

θab = ĥm(a ĥb)n∇m ξ
n. (4.1.40)

(We can motivate the terminology here much as we did in section 2.8.) It follows that

ĥbn∇a ξ
n = ωab + θab + ta ĥbn ξ

m∇m ξ
n (4.1.41)

and, hence, that

∇a ξ
b = ω b

a + θ b
a + ta ξ

m∇m ξ
b (4.1.42)

and

∇aξb = ωab + θab. (4.1.43)

As in the relativistic case, we can decompose the expansion field to arrive at the scalar expansion field θ

and the shear field σab:

θ = θa
a = ∇a ξ

a, (4.1.44)

σab = θab −
1

3
θ ĥab. (4.1.45)

(That θa
a = ∇a ξ

a follows from (4.1.42) and the anti-symmetry of ωab.) Clearly, σab is “trace-free” since

σ a
a = θ a

a − 1
3 θ ĥ

a
a = θ − 1

3θ(δ
a
a − taξ

a) = θ − 1
3θ(4 − 1) = 0. We note for future reference the following

equivalences:

ωab = 0 ⇐⇒ ∇[a ξb] = 0, (4.1.46)

θab = 0 ⇐⇒ ∇(a ξb) = 0. (4.1.47)



CHAPTER 4. NEWTONIAN GRAVITATION THEORY 229

(In each case, we get the implication from left to right by raising indices with hmn, and the one from

right to left by lowering indices with ĥmn.) The conditions in the first line capture the claim that ξa is

non-rotating (or twist-free).

Finally, we say just a bit about the four-momentum of point particles and the four-momentum density

of matter fields. It is instructive to consider the situations in Newtonian and relativistic mechanics side

by side. (For a more complete and thorough comparison, see Dixon [12].) Suppose, first, that we have a

point particle with mass m and four-velocity field ξa. Then, just as in relativity theory, we associate with

it a four-momentum field P a = mξa along its worldline. (In the present context we have only particles

with positive mass (m > 0) to consider.)

Suppose particle O has four-velocity ξa at a point, and another particle O′ has four-momentum

P a = mξ′a there. Just as in the relativistic case, we can decompose P a relative to ξa.

Newtonian Mechanics Relativistic Mechanics

P a = (tbP
b)︸ ︷︷ ︸

mass

ξa + ĥab P
b

︸ ︷︷ ︸
relative 3−momentum

P a = (ξbP
b)︸ ︷︷ ︸

relative energy

ξa + hab P
b

︸ ︷︷ ︸
relative 3−momentum

But the decomposition works somewhat differently in the two cases. In Newtonian mechanics, we have a

component proportional to ξa with magnitude tbP
b = tb (mξ′b) = m, and a spacelike component

ĥab P
b = (δab − tb ξ

a) (mξ′b) = m (ξ′b − ξa),

which gives the three-momentum of the particle relative to ξa. (The vector (ξ′b − ξa) by itself gives

the relative velocity of O′ with respect to O.) Thus, in Newtonian mechanics, the four-momentum P a

of a point particle codes its mass and its three-momentum, as determined relative to other background

observers. So it is appropriately called the “mass-momentum vector”. In relativistic mechanics, in

contrast, as we have seen, the component of P a proportional to ξa has magnitude (ξbP
b), which gives

the energy of the particle as determined relative to ξa. And we call P a the “energy-momentum vector”.

In relativistic mechanics, the mass of the particle is given by the length of its four-momentum

(gabP
aP b)

1
2 . The corresponding statement in Newtonian mechanics is that the mass of the particle

is given by the temporal length of its four-momentum (tabP
aP b)

1
2 .

Now we switch from point particles to continuous matter fields. Just as in relativity theory, we

associate with each matter field F a smooth, symmetric field T ab. But the interpretation of T ab is

different in Newtonian mechanics (parallel to the way that the interpretation of P a is different), and here

we call it the mass-momentum field associated with F . In both cases, T ab codes the four-momentum

density of F as determined, at any point, relative to future-directed, unit timelike vectors ξa there. But

in the Newtonian case, the four-momentum density is the same for all ξa. It is given by T abtb. (In the

relativistic case, it is not invariant and is given, instead, by T abξb. Recall section 2.5.)
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Newtonian Mechanics Relativistic Mechanics

T abtb is the four-momentum density of F T abξb is the four-momentum density of F
as determined relative to ξa

The conservation equation carries over intact from relativistic mechanics:

∇a T
ab = 0. (4.1.48)

We can decompose the Newtonian four-momentum density T abtb just as we decomposed P a to de-

termine an invariant mass-density and a relative three-momentum density. The former is given by

ρ = T abtatb. We can take it to be a (Newtonian) “mass condition” that T abtatb > 0 whenever T ab 6= 0.

When the condition is satisfied, we can further define the fields

ηa =
1

ρ
T abtb,

pab = T ab − ρ ηaηb,

and arrive at a canonical representation of T ab:

T ab = ρ ηaηb + pab. (4.1.49)

Here ηa is a smooth, future-directed, unit timelike field, and pab is a smooth, symmetric field that is

spacelike in both indices (tap
ab = 0). In the case of a fluid, for example, we can interpret ηa as the

four-velocity of the fluid. In terms of this representation, the conservations equation comes out as

0 = ∇a T
ab = ρ ηa∇aη

b + ηb [ηa∇a ρ + ρ∇a η
a] + ∇a p

ab. (4.1.50)

Contracting with tb yields the following equivalence:

∇a T
ab = 0 ⇐⇒





ρ ηa∇a η

b + ∇a p
ab = 0

ηa∇a ρ + ρ (∇a η
a) = 0.

The second equation on the right expresses the conservation of mass. (The analysis we gave in the

context of relativity theory carries over intact.) The first is an equation of motion. In the case of a

perfect fluid, for example, pab = p hab, where p is the (isotropic) pressure of the fluid. In this case, the

first equation comes out as Euler’s equation:

ρ ηa∇a η
b = −∇b p. (4.1.51)

For more on the development of Newtonian mechanics within our geometric framework, see, for ex-

ample, Ellis [17] and Künzle [35].
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4.2 Geometrized Newtonian Theory — First Version

Now we turn to Newtonian gravitation theory proper. In the standard (non-geometrized) version,

one assumes that the background derivative operator ∇ is flat and posits a gravitational potential φ.

The gravitational force on a point particle with mass m is given by −mhab∇b φ. (Notice that this is a

spacelike vector by the orthogonality condition.) Using our convention for raising indices, we can also

express the vector as −m∇a φ. It follows that if the particle is subject to no forces except gravity, and

if it has four-velocity ξa, it satisfies the equation of motion

−∇a φ = ξn∇n ξ
a. (4.2.1)

(Here we have just used −m∇a φ for the left side of (4.1.9).) It is also assumed that φ satisfies Poisson’s

equation

∇a∇a φ = 4 π ρ, (4.2.2)

where ρ is the Newtonian mass-density function. (The expression on the left side is an abbreviation for

hab∇a∇b φ.)

In the geometrized formulation of the theory, gravitation is no longer conceived of as a fundamental

“force” in the world but rather as a manifestation of spacetime curvature, just as in relativity theory.

Rather than thinking of point particles as being deflected from their natural straight trajectories in

flat spacetime, one thinks of them as traversing geodesics in curved spacetime. So we have a geometry

problem. Starting with a classical spacetime (M, ta, h
ab,∇), with ∇ flat and with field φ on M , can

we find a new derivative operator
g

∇ on M , also compatible with ta and hab, such that a timelike curve

satisfies the equation of motion (4.2.1) with respect to the original derivative operator ∇ iff it is a geodesic

with respect to
g

∇? The following proposition (essentially due to Trautman [59]) asserts that there is

exactly one such
g

∇. It also records several conditions satisfied by the Riemann curvature tensor field
g

Ra
bcd associated with

g

∇. We shall consider the geometric significance of these conditions in section 4.3.

Proposition 4.2.1 (Geometrization Lemma). Let (M, ta, h
ab,∇) be a classical spacetime with ∇ flat

(Rabcd = 0). Further, let φ and ρ be smooth real valued functions on M satisfying Poisson’s equation

∇a∇a φ = 4 π ρ. Finally, let
g

∇= (∇, Cabc), with Cabc = −tbtc∇aφ. Then all the following hold.

(G1) (M, ta, h
ab,

g

∇) is a classical spacetime.

(G2)
g

∇ is the unique derivative operator on M such that, for all timelike curves on M

with four-velocity field ξa,

ξn
g

∇n ξ
a = 0 ⇐⇒ ξn∇n ξ

a = −∇aφ. (4.2.3)

(G3) The curvature field
g

Ra
bcd associated with

g

∇ satisfies

g

Rbc = 4 π ρ tb tc, (4.2.4)

g

R
a
b
c
d =

g

R
c
d
a
b, (4.2.5)

g

R
ab

cd = 0. (4.2.6)



CHAPTER 4. NEWTONIAN GRAVITATION THEORY 232

Proof. For (G1), we need to show that
g

∇ is compatible with tb and hab. But this follows from proposition

4.1.3, for we can express Cabc in the form Cabc = 2 han t(b κc)n if we take κcn = −t[c∇n] φ.

For (G2), let
g

∇= (∇, Cabc) where (temporarily) Cabc is an arbitrary smooth symmetric field on M . Let

p be an arbitrary point in M , and let ξa be the four-velocity field of an arbitrary timelike curve through

p. Then, by (1.7.1),

ξn
g

∇n ξ
a = ξn∇n ξ

a − Carn ξ
rξn.

It follows that
g

∇ will satisfy (G2) iff Carnξ
rξn = −∇aφ or, equivalently,

[Carn + (∇aφ) trtn] ξ
rξn = 0 (4.2.7)

for all future-directed unit timelike vectors ξa at all points p. But the space of future-directed unit

timelike vectors at any p spans the tangent space Mp there. (Why? Let
1

ξa, ...,
4

ξa be an orthonormal

basis for tab = tatb in the sense already discussed here. (So ta
1

ξa = 1, and ta
i

ξa = 0 for i = 2, 3, 4.) Then
1

ξa, (
1

ξa+
2

ξa), (
1

ξa+
3

ξa), and (
1

ξa+
4

ξa) are all future-directed unit timelike vectors, and the set is linearly

independent.) And the field in brackets in (4.2.7) is symmetric in its covariant indices. So,
g

∇ will satisfy

(G2) iff Carn = −(∇aφ) trtn everywhere.

Finally, for (G3) we use (1.8.2). We have

g

R
a
bcd = Ra bcd + 2∇[cC

a
d]b + 2Cnb[cC

a
d]n

= Ra bcd − 2 tbt[d∇c] ∇aφ = − 2 tbt[d∇c]∇aφ. (4.2.8)

(Here Cnb[cC
a
d]n = 0 by the orthogonality condition, and ∇[cC

a
d]b = −tbt[d∇c]∇aφ by the compatibility

condition. For the final equality, we use our assumption that Rabcd = 0.) (4.2.6) now follows from the

orthogonality condition. (4.2.5) follows from that and the fact that ∇[c∇a]φ = 0 for any smooth function

φ. Finally, contraction on a and d yields

g

Rbc = tbtc(∇a∇aφ). (4.2.9)

So (4.2.4) follows from our assumption that ∇a∇a φ = 4 π ρ.

(4.2.4) is the geometrized version of Poisson’s equation. In the special case where ρ = 0 everywhere,

of course, it reduces to
g

Rbc= 0, which we recognize as Einstein’s equation in the corresponding special

case in which Tbc = 0. Even in the general case, (4.2.4) can be reformulated so as to have almost exactly

the same structure as Einstein’s equation. Recall our discussion of the mass-momentum field T ab toward

the end of section 4.1. We saw there that it encodes ρ via

ρ = Tmn tmn.

(We shall temporarily revert to writing tab, rather than tatb, to emphasize the field’s relation to a two

index Lorentzian metric gab, but nothing turns on our doing so.) So we can certainly formulate Poisson’s
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equation directly in terms of T ab. Now consider the fields

T̂bc = Tmn tmb tnc = ρ tbc,

T̂ = Tmn tmn = ρ.

(Caution is required here. It must be remembered that we cannot recover T bc from T̂bc by “raising

indices” with hab, since T̂mn h
mb hnc = 0.) Using these fields, we can express Poisson’s equation in the

form
g

Rbc = 8 π (T̂bc − 1

2
tbc T̂ ), (4.2.10)

which is very close indeed to Einstein’s equation (2.7.2).

Moreover, if we start with a version of Poisson’s equation that incorporates a “cosmological constant”

∇a∇aφ + Λ = 4 π ρ, (4.2.11)

then substitution for ∇a∇aφ in (4.2.9) yields

g

Rbc = 4 π ρ tbtc − Λ tbtc (4.2.12)

(but everything else in the proof remains the same). And this equation, in turn, can be expressed as

g

Rbc = 8 π (T̂bc − 1

2
tbc T̂ ) − Λ tbc, (4.2.13)

which matches (2.7.4).

So far, we have seen how to pass from a standard to a geometrized formulation of Newtonian theory.

It is also possible to work in the opposite direction. In Trautman’s [59] version of geometrized Newtonian

gravitation theory — one of two we shall consider2 — one starts with a curved derivative operator ∇
satisfying (4.2.4), (4.2.5), (4.2.6), and with the principle that point particles subject to no forces (except

“gravity”) traverse geodesics with respect to ∇. (4.2.5) and (4.2.6) function as integrability conditions

that ensure the possibility of working backwards to recover the standard formulation in terms of a grav-

itational potential φ and flat derivative operator
f

∇. We shall prove this recovery, or de-geometrization,

theorem in this section (proposition 4.2.5), and we shall see that, in the absence of special boundary

conditions, the pair (
f

∇, φ) that one recovers is not unique.

Later, in section 4.5, we shall consider a second, more general version of geometrized Newtonian

gravitation theory, developed by Künzle [34, 35] and Ehlers [15], in which one of the two supplemental

curvature conditions is dropped.

Trautman Version





Rbc = 4 π ρ tbtc

Rab
c
d = Rcd

a
b



 Künzle-Ehlers Version

Rabcd = 0

2See Bain [4] for a systematic discussion of these and yet other versions.
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At issue here is whether “Newtonian gravitation theory” is to qualify as a limiting version of relativity

theory. The geometrized version of Poisson’s equation does, in a natural sense, qualify as a limiting form of

Einstein’s equation. And the first of Trautman’s two supplemental curvature conditions (Rab
c
d = Rcd

a
b)

holds automatically in relativistic spacetimes. (Recall the fourth clause of proposition 1.9.4.) So it

naturally carries over to any limiting version of relativity theory. But the second supplemental curvature

condition does not hold in relativistic spacetimes (unless they happen to be flat), and it is therefore not

an automatic candidate for inclusion in a limiting version of relativity theory. It is crucially important

that the conditions Rabcd = 0 and Rabcd = 0 are not equivalent for classical spacetime structures, though

they are for relativistic ones.

Starting only from the weaker assumptions of Künzle and Ehlers, one can still prove a recovery theorem

of sorts. But the (de-geometrized) gravitation theory one recovers is not Newtonian theory proper, but

rather a generalized version of it. In this version, the gravitational force acting on a particle of unit mass is

given by a vector field, but it need not be of the form ∇aφ. Moreover, the de-geometrized field equations

to which one is led involve a “rotation field” ωab. We shall eventually prove this recovery theorem for the

Künzle-Ehlers version of Newtonian theory (proposition 4.5.2), and also consider special circumstances

under which the difference between the two versions of geometrized Newtonian theory collapses. It turns

out that the second curvature condition (Rabcd = 0) is satisfied automatically, for example, in classical

spacetimes that are, in a certain weak sense, asymptotically flat (see section 4.5), and also in Newtonian

cosmological models that satisfy a natural homogeneity and isotropy condition (see section 4.4).

Before turning to the Trautman Recovery Theorem, we isolate a few needed facts. Let ξa be a

smooth, future-directed, unit timelike field in a classical spacetime (M, ta, h
ab,∇). We say that it is rigid

(or non-expanding) if £ξ h
ab = 0 or, equivalently, ∇(aξb) = 0. (These conditions obtain, we know, iff

the expansion field θab associated with ξa vanishes. Recall (4.1.47).) Certain things we have established

about Killing fields (which we have defined only in connection with non-degenerate metrics) carry over

to rigid fields in classical spacetimes. So, for example, we have the following.

Proposition 4.2.2. Let (M, ta, h
ab,∇) be a classical spacetime, and let ξa be a smooth, future-directed,

unit timelike field that is rigid. Then

∇n∇a ξb = Rbar
n ξr. (4.2.14)

Proof. The proof is a just a variant of that used for proposition 1.9.8. Cycling indices, we have

∇n∇aξb −∇a∇nξb = −Rbrnaξr,

∇b∇nξa −∇n∇bξa = −Rarbnξr,

∇a∇bξn −∇b∇aξn = −Rnrabξr.

Subtracting the third line from the sum of the first two (and using the fact that ∇(aξb) = 0) yields

2∇n∇aξb = (−Rbrna −Rar
bn +Rnr

ab) ξr.
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Finally, we reformulate the expression in parentheses on the right side using the symmetries Ra[bcd] = 0,

Rab(cd) = 0, and R(ab)
cd = 0:

−Rbrna −Rar
bn +Rnr

ab = (Rbar
n +Rbnar) −Rar

bn +Rnr
ab

= Rbar
n + (Rnbr

a +Rnr
ab) −Rar

bn

= Rbar
n −Rnabr −Rar

bn

= Rbar
n − (Ranr

b +Rar
bn)

= Rbar
n +Rabnr = 2Rbar

n.

So we have (4.2.14).

Our proof of the Trautman Recovery Theorem turns on the availability of a unit timelike field ηa that

is rigid and twist-free (∇a ηb = 0). The latter provides a backbone, of sorts, for our construction. The

following proposition shows that the condition Rabcd = 0 insures the existence of such fields (at least

locally).

Proposition 4.2.3. Let (M, ta, h
ab,∇) be a classical spacetime that is spatially flat (Rabcd = 0). Let

γ : I → M be a smooth, future-directed timelike curve with unit tangent field η̂ a, and let p be any point

in γ[I]. Then there is an open set O containing p, a smooth spacelike field χa on O, and a smooth,

future-directed, unit timelike field ηa on O such that χa = 0 on γ[I], ηa = η̂ a on γ[I], and

∇aχ
b = δa

b − taη
b. (4.2.15)

Furthermore, (i) if Rabcd = 0, then ∇aηb = 0; and (ii) if Rabcd = 0 and if γ is a geodesic, then ∇a η
b = 0.

Proof. First, we claim there exists a smooth spacelike field χa on some open set O containing p such that

∇aχb = hab (4.2.16)

and χa = 0 on γ[I]. Indeed, as restricted to any one spacelike hypersurface S, χa is just the familiar

“position vector field” (relative to the point where γ[I] intersects S). (Recall proposition 1.7.12. All

we need here is that the (three-dimensional, invertible) metric gab induced on S by hab is flat and so,

at least locally, the pair (S, gab) is isometric to three-dimensional Euclidean space.) Now let ξa be any

smooth, future-directed, unit timelike field on O. Consider the field ηb = (−ξa∇aχ
b + ξb). We claim

that it satisfies all the required conditions. First, it satisfies (4.2.15). This follows since the two fields

(−∇aχ
b + δa

b) and taη
b yield the same result when contracted with either hna or ξa. Next, it is clearly

a future-directed, unit timelike field, i.e., tbη
b = tb(−ξa∇aχ

b + ξb) = 1. Third, it agrees with η̂ a on γ[I].

For since χa vanishes on γ[I], it is certainly constant along the curve, i.e., η̂ a∇aχ
b = 0. So, by (4.2.15),

we have 0 = η̂ a∇aχ
b = η̂ a(δa

b − taη
b) = η̂ b − ηb on γ[I].

Now we turn to the curvature conditions. By (4.2.15) again,

ηa∇n∇aχ
b = ηa∇n(δa

b − taη
b) = −∇nηb.
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Hence,

∇nηb = −ηa(∇a∇nχb −Rbm
n
aχ

m) = ηaRbm
n
aχ

m,

since, by (4.2.16), ∇a∇nχb = ∇ah
nb = 0. Since χa is spacelike, we can express it in the form χa = habχ̂b.

Thus we have

∇nηb = Rbmna χ̂mη
a. (4.2.17)

So, if Rbmna = 0, it clearly follows that ∇nηb = 0. This gives us (i).

Now assume that γ is a geodesic and Rabcd = 0. Then ∇aη
b = 0 on γ[I]. (Why? ηa∇aη

b = 0 on γ[I]

since γ is a geodesic, and hna∇aη
b = 0 everywhere by (i).) We may assume (by moving to a smaller open

set O containing p if necessary) that every maximally extended spacelike hypersurface in O intersects

γ[I]. So it will suffice for (ii) to show that ∇aη
b is constant on spacelike hypersurfaces, i.e., ∇c∇aη

b = 0.

But this follows immediately from Rabcd = 0 and ∇aηb = 0, since ∇c∇aη
b = ∇a∇cηb −Rbm

c
aη
m.

Proposition 4.2.3 yields a useful characterization of the relative strength of two curvature conditions.

(Here and throughout it should be understood that when we formulate a curvature equation without

qualification, as on the left sides of (1) and (2) that follow in proposition 4.2.4, we have in mind the

condition that the equation hold at all points.)

Proposition 4.2.4. Let (M, ta, h
ab,∇) be a classical spacetime that is spatially flat (Rabcd = 0). Then

the following both hold.

(1) Rabcd = 0 iff there exists, at least locally, a smooth unit timelike field ηa that is rigid and twist-free

(∇a ηb = 0).

(2) Rabcd = 0 iff there exists, at least locally, a smooth unit timelike field ηa that is rigid, twist-free,

and acceleration-free (∇a η
b = 0).

Proof. The “only if” clauses follow from the preceding proposition. The other drections are easy. (1)

Assume that for any point p in M , there exists a smooth unit timelike field ηa defined on an open set

containing p such that ∇aηb = 0. We show that Rabcd vanishes at p. We have Rabcd η
cηd = 0 at

p since Rabcd is anti-symmetric in the indices c and d. We also have Rabcd h
crhds = 0 at p (by our

assumption of spatial flatness). So to prove that Rabcd vanishes at p, it suffices to show that contraction

there with ηc hds (or hcr ηd) yields 0. But this follows since ∇b ηa = 0 and hence, by proposition 4.2.2,

Rabcd η
c hds = ∇s∇b ηa = 0.

(2) Next, assume that for any point p in M , there exists a smooth unit timelike field ηa defined on

an open set containing p such that ∇a η
b = 0. We show that Rabcd vanishes at p. We know from part

(1) of the proposition (and the fact that ∇a η
b = 0 implies ∇a ηb = 0) that Rabcd = 0 at p. The latter

condition implies that Rabcd = tbR
a
ncd η

n. (Contracting both sides with either hbr or ηb yields the same

result.) But since ∇a η
d = 0, we also have Rancd η

n = −2∇[c∇d] η
a = 0 at p. So we are done.
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Now we turn to our first recovery theorem. Our formulation is purely local in character since we have

opted not to impose special global topological constraints on the underlying manifold M . Our proof is a

bit different from that in Trautman [59].

Proposition 4.2.5. (Trautman Recovery Theorem) Let (M, ta, h
ab,∇) be a classical spacetime that sat-

isfies

Rbc = 4 π ρ tbtc, (4.2.18)

Rab
c
d = Rcd

a
b, (4.2.19)

Rab cd = 0 (4.2.20)

for some smooth scalar field ρ on M . Then given any point p in M , there is an open set O containing p,

a smooth scalar field φ on O, and a derivative operator
f

∇ on O such that all the following hold on O.

(R1)
f

∇ is compatible with ta and hab.

(R2)
f

∇ is flat.

(R3) For all timelike curves with four-velocity field ξa,

ξn∇n ξ
a = 0 ⇐⇒ ξn

f

∇n ξ
a = −

f

∇aφ. (4.2.21)

(R4)
f

∇ satisfies Poisson’s equation
f

∇a

f

∇aφ = 4 π ρ.

The pair (
f

∇, φ) is not unique. A second pair (
f

∇′, φ′) (defined on the same open set O) will satisfy the

stated conditions iff

(U1) ∇a∇b(φ′ − φ) = 0, and

(U2)
f

∇′ = (
f

∇, C′a
bc), where C′a

bc = tb tc∇a(φ′ − φ).

Proof. Let p be a point in M . As we have just seen, it follows from Rab cd = 0 that we can find an open

set O containing p as well as a smooth, future-directed, unit timelike vector field ηa on O that is rigid

and twist-free (∇aηb = 0). Let φa be the acceleration field of ηa, i.e., φa = ηn∇n η
a. Then we have

∇a η
b = ta φ

b. (4.2.22)

(This follows since contraction of the two sides with both ηa and han yields the same result.) Further, let
f

∇ be the derivative operator on O defined by
f

∇= (∇, Cabc), where Cabc = tb tc φ
a. Clearly, ta C

a
bc = 0,

Cabc h
bn = 0, and Cabc h

cn = 0. It follows that

f

∇a tb = ∇a tb + tn C
n
ab = ∇a tb,

f

∇a h
bc = ∇a h

bc − hncCbna − hbn Ccna = ∇a h
bc.

So, since ∇ is compatible with ta and hbc,
f

∇ is compatible with them as well. So we have (R1). Notice

next that Cban η
n = ta φ

b and so, by (4.2.22),

f

∇a η
b = ∇a η

b − Cban η
n = ta φ

b − ta φ
b = 0. (4.2.23)
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Thus, ηa is constant with respect to the new derivative operator
f

∇.

Now we consider the curvature field associated with
f

∇. We have Cnbc C
a
dn = 0 since φn tn = 0. So,

by (1.8.2),

f

R
a
bcd = Rabcd + 2∇[cC

a
d]b + 2Cnb[c C

a
d]n

= Rabcd + 2 tb t[d∇c] φ
a. (4.2.24)

It follows immediately that
f

Rabcd = Rabcd = 0 (since Rabcd = 0). So
f

∇ is spatially flat. But now recall

the second clause of proposition 4.2.4. We have just verified that there is smooth unit timelike field ηa

on O that is constant with respect to
f

∇. So (since
f

∇ is spatially flat), the proposition tells us that
f

∇
must be flat outright, i.e.,

f

Rabcd = 0. So we have (R2). And (4.2.24) reduces to

Rabcd = −2 tb t[d∇c] φ
a. (4.2.25)

Now we extract further information from (4.2.25). Raising and contracting indices yields

Rab
c
d = −tb td∇c φa, (4.2.26)

Rbc = tb tc∇a φ
a. (4.2.27)

Since we are assuming Rab
c
d = Rcd

a
b, it follows from the first of these assertions that ∇[c φa] = 0.

This implies that (after possibly further restricting O to some smaller open set containing p) there is

a smooth scalar field φ on O such that φa = ∇aφ. (Here we invoke proposition 4.1.6.) And since we

are assuming Rbc = 4 π ρ tb tc, it follows from the second assertion that ∇a∇aφ = ∇a φ
a = 4 πρ. But

Caan = ta tn φ
a = 0 and, therefore,

f

∇a

f

∇aφ = ∇a

f

∇aφ− Caan
f

∇nφ = ∇a∇aφ. (4.2.28)

So
f

∇a

f

∇aφ = 4 πρ. That is, we have (R4).

For (R3), note that for all timelike curves in O with four-velocity field ξa,

ξn
f

∇n ξ
a = ξn(∇nξ

a − Canm ξ
m) = ξn∇nξ

a − (tn tm∇aφ) ξn ξm = ξn∇nξ
a −∇aφ.

So ξn∇nξ
a = 0 iff ξn

f

∇n ξ
a = −∇aφ.

Finally, we consider the non-uniqueness of the pair (
f

∇, φ). Let (
f

∇ ′, φ′) be a second pair on O.

Consider fields C′a
bc and ψ on O defined by

f

∇′ = (
f

∇, C′a
bc) and ψ = φ′ − φ. We first show that if the

new pair satisfies the stated conditions of the proposition, then it must be the case that ∇a∇bψ = 0 and

C′a
bc = tb tc∇aψ.

Assume (
f

∇′, φ′) satisfies (R1) - (R4). Then — since (
f

∇, φ) and (
f

∇′, φ′) both satisfy (R3) — we have

ξn
f

∇n ξ
a+

f

∇aφ = 0 ⇐⇒ ξn∇n ξ
a = 0 ⇐⇒ ξn

f

∇′
n ξ

a+
f

∇′aφ′ = 0
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for all timelike curves with four-velocity field ξa. But
f

∇′aφ′ =
f

∇aφ′ =
f

∇aφ+
f

∇aψ. And ξn
f

∇′
n ξ

a =

ξn(
f

∇n ξ
a −C′a

nmξ
m). So it must be the case that, for all future-directed, unit timelike vectors ξa at all

points in O,

C′a
nmξ

mξn =
f

∇aψ.

And from this it follows that C′a
mn = tm tn

f

∇ aψ = tm tn∇aψ, as required. (Recall the argument for a

corresponding assertion in our proof of the Geometrization Lemma.) Now the curvature fields of (
f

∇, φ)

and (
f

∇′, φ′) are related by
f

R
′a
bcd =

f

R
a
bcd + 2 tbt[d

f

∇c]

f

∇aψ.

(The argument here is exactly the same as given above for (4.2.24).) Since
f

∇ and
f

∇′ are both flat, it

follows that t[d
f

∇c]

f

∇ aψ = 0 or, equivalently,
f

∇ c
f

∇ aψ = 0. But ∇c∇aψ =
f

∇ c
f

∇ aψ. (Indeed,
f

∇ c

and ∇c agree in their action on all vector fields λa, since
f

∇ cλa = ∇cλa − Cacnλ
n and Cacn = 0.) So

∇c∇aψ = 0, and we are done with the first direction.

Conversely, assume that C′a
bc = tb tc∇aψ and ∇a∇bψ = 0. The first assumption alone implies that

f

∇′ is compatible with ta and hab. And by reversing the steps in the preceding paragraphs, we can show

that (
f

∇′, φ′) satisfies (R2) and (R3). That leaves only (R4). For this, note first that since C′a
an = 0,

f

∇′
a

f

∇′aφ′ =
f

∇a

f

∇′aφ′ − C′a
an

f

∇′nφ′ =
f

∇a

f

∇aφ′

=
f

∇a

f

∇aφ +
f

∇a

f

∇aψ

= 4 π ρ +
f

∇a

f

∇aψ = 4 π ρ + ∇a∇aψ.

(The penultimate equality holds because (
f

∇, φ) satisfies (R3); and the argument for the final equality

is exactly the same as the one given for (4.2.28).) But ∇a∇bψ = 0 and, so, ∇a∇bψ = ta ξ
n∇n∇bψ,

where ξn is any smooth, future-directed timelike field on O. It follows that ∇a∇aψ = 0 and, therefore,
f

∇′
a

f

∇′aφ′ = 4 π ρ, as required for (R4).

Just as with the Geometrization Lemma, only a small change is necessary here if we want to work

with a cosmological constant. If we replace (4.2.18) with Rbc = 4 π ρ tbtc − Λ tbtc, then substitution for

Rbc in (4.2.27) yields ∇a φ
a + Λ = 4 π ρ. The further argument that φa is of the form ∇aφ is unaffected.

So we are led to (4.2.11).

The Trautman Recovery Theorem tells us that if ∇ arises as the geometrization of the pair (
f

∇, φ),

then, for any field ψ such that ∇a∇bψ = 0, it also arises as the geometrization of (
f

∇′, φ′) where φ′ = φ+ ψ

and
f

∇′ = (
f

∇, tb tc∇aψ).

(
f

∇, φ)

ց
∇

ր
(
f

∇′, φ′)
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We certainly have sufficient freedom here to insure that
f

∇′ is, in fact, distinct from
f

∇. We can think of

∇bψ as the “spatial gradient” of ψ. The stated condition on ψ, namely ∇a∇bψ = 0, is just the requirement

that this spatial gradient be constant on spacelike hypersurfaces. The condition can certainly be satisfied

without that gradient vanishing at all points. (Its value can change from one spacelike hypersurface to

another.) And if ∇aψ 6= 0 at some point p, then
f

∇′ cannot be the same operator as
f

∇. Indeed, let ξa be

the four-velocity field of a timelike curve passing through p. Then at p,

ξa
f

∇′
aξ
b = ξa(

f

∇a ξ
b − (tatn∇bψ)ξn) = ξa

f

∇a ξ
b − ∇bψ 6= ξa

f

∇a ξ
b.

We can use the current discussion to capture in precise language the standard claim that gravitational

force in (standard) Newtonian theory is a gauge quantity. Consider a point particle with mass m and

four-velocity ξa that is not accelerating with respect to ∇. According to the de-geometrization (
f

∇, φ),

the particle has acceleration ξn
f

∇n ξ
a and is subject to gravitational force −m

f

∇aφ = −m∇aφ. (We get

this from (R3).) Rather than being subject to no forces at all — the account given by the geometrized

formulation of the theory — it is here taken to be subject to two “forces” (inertial and gravitational)

that cancel each other. Alternatively, according to the de-geometrization (
f

∇ ′, φ′), it has acceleration

ξn
f

∇′
nξ
a = ξn

f

∇n ξ
a − ∇a ψ and is subject to gravitational force −m

f

∇′a φ′ = −m∇aφ −m∇aψ. So

the gravitational force on the particle is determined only up to a factor m∇aψ, where ∇aψ is constant

on any one spacelike hypersurface but can change over time.

Of course, if boundary conditions are brought into consideration, we regain the possibility of unique

de-geometrization. In particular, if we are dealing with a bounded mass distribution, i.e., if ρ has compact

support on every spacelike hypersurface, then it seems appropriate to require that the gravitational field

die off as one approaches spatial infinity. But if ∇aψ is constant on spacelike hypersurfaces and if it goes

to 0 at spatial infinity, then it must vanish everywhere.
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4.3 Interpreting the Curvature Conditions

In this section, we consider the geometric significance of three curvature conditions that appear in

Trautman’s formulation of geometrized Newtonian gravitation theory:

Rab = 4πρ tatb, (4.3.1)

Rab
c
d = Rcd

a
b, (4.3.2)

Rabcd = 0. (4.3.3)

We start with the third. We know already (proposition 4.2.4) that it holds in a classical spacetime iff

the latter is spatially flat (Rabcd = 0) and, at least locally, admits a unit timelike vector field ξa that is

rigid and twist-free (∇aξb = 0). We also have the following more direct interpretation.

Proposition 4.3.1. Let (M, ta, h
ab,∇) be a classical spacetime. Then Rabcd = 0 throughout M iff

parallel transport of spacelike vectors within M is, at least locally, path independent.

Proof. (If) This direction is immediate. Let p be any point in M , and let O be an open set containing

p within which parallel transport of spacelike vectors is path independent. We can certainly find three

smooth, linearly independent, spacelike fields
1
σa,

2
σa,

3
σa on O that are constant (∇n

i
σa = 0). (Start with

three linearly independent, spacelike vectors at p and parallel transport them, along any curve, to other

points in O.) For each one, we have

Rarcd
i
σr = −2∇[c∇d]

i
σa = 0

at p. Since
1
σa,

2
σa,

3
σa span the space of spacelike vectors at p, it follows that Rarcd σ

r = 0 for all spacelike

vectors σa there. So Rarcd h
rb αb = 0 for all co-vectors αb at p, i.e., Rabcd = Rarcd h

rb = 0 at p.

(Only if) There are various ways to see this. But it is, perhaps, easiest to make use of what we have

established and reduce this to a claim about a (different) flat derivative operator. If Rabcd = 0, then,

by proposition 4.2.4, given any point p in M , there is an open set O containing p and a future-directed

unit timelike vector field ηa on O such that ∇aηb = 0. Now recall our proof of the Trautman Recovery

Theorem (proposition 4.2.5). Let φa be the acceleration field of ηa, and let
f

∇ be the derivative operator

on O defined by
f

∇= (∇, Cabc), where Cabc = tb tc φ
a. We established in our proof of the Recovery

Theorem that
f

∇ is flat. (And for this part of the proof, we did not need the additional assumptions

that appear in our formulation of the theorem, namely Rab
c
d = Rcd

a
b and Rbc = 4 π ρ tbtc. We needed

only Rabcd = 0.) So parallel transport of all vectors within O relative to
f

∇ is, at least locally, path

independent. To complete the proof, it suffices to note that
f

∇ and ∇ agree in their action on spacelike

vector fields (and so agree in their determinations of parallel transport for such fields on arbitrary curves).

This is clear. For let σa be a smooth spacelike vector field (defined on some open subset of O). Then

f

∇a σ
b = ∇a σ

b − Cbanσ
n = ∇a σ

b,

as required, since Cbanσ
n = (ta tn φ

b)σn = 0.
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The proposition also provides a physical interpretation of the third curvature condition (4.3.3) in terms

of the precession, or non-precession, of gyroscopes. Suppose we hold two spinning gyroscopes at a point,

side by side, with their axes co-aligned. And suppose we then transport them (without constraint) to

another point along different routes. We cannot expect a priori that, on arrival, their axes will still be

co-aligned. There is no reason why “gyroscope propagation” must be path independent. Indeed, we see

from the proposition that it will be path independent (at least locally) iff (4.3.3) holds.

Now we consider the geometrized version of Poission’s equation Rab = 4 π ρ ta tb. The interpretation

we offered for Einstein’s equation in terms of geodesic deviation has a close counterpart here. Almost

everything carries over intact from section 2.7. Let ξa be a “geodesic reference frame” defined on some

open set in M , i.e., a smooth, future-directed, unit timelike vector field whose associated integral curves

are geodesics. Further, let λa be a smooth, spacelike vector field along (the image of) one of the integral

curves γ satisfying £ξλ
a = 0. (Once again, we can think of λa as a connecting field that joins the image

of γ to the image of an “infinitesimally close” neighboring integral curve.) The equation of geodesic

deviation

ξn∇n (ξm∇mλ
a) = Ra bcd ξ

b λc ξd (4.3.4)

carries over without alteration, as does the expression we derived for the “average radial acceleration” of

ξa,

ARA = −1

3
Rbd ξ

bξd. (4.3.5)

The latter, in turn, leads to the following proposition (which is proved in almost exactly the same way

as proposition 2.7.2).

Proposition 4.3.2. Let (M, ta, h
ab,∇) be a classical spacetime, let ρ be a smooth scalar field on M , and

let p be a point in M . Then Poisson’s equation Rab = 4 π ρ tatb holds at p iff for all geodesic reference

frames ξa (defined on some open set containing p), the average radial acceleration of ξa at p is given by

ARA = −4

3
π ρ.

We can make the result look even more like proposition 2.7.2 if we use our alternate formulation of

Poisson’s equation. In that case, the conclusion is this: Poisson’s equation Rab = 8 π (T̂ab − 1
2 tab T̂ )

holds at p iff for all geodesic reference frames ξa (defined on some open set containing p), the average

radial acceleration of ξa at p is given by ARA = −8 π

3
π (T̂ab − 1

2
tab T̂ ) ξaξb.

Finally, we turn to the geometric interpretation of the second condition in our list, Rab
c
d = Rcd

a
b.

This will require a good deal more work than the others. We show that it holds in a classical spacetime

iff the latter admits, at least locally, a smooth, unit timelike field ξa that is geodesic (ξn∇nξ
a = 0) and

twist-free (∇[aξb] = 0). This equivalence is proved in Dombrowski and Horneffer [13] and Künzle [34].

Our argument, at least for the “only if” half (proposition 4.3.7), is a bit different from theirs. We begin

with the “if” half of the assertion, which is straightforward.



CHAPTER 4. NEWTONIAN GRAVITATION THEORY 243

Proposition 4.3.3. Let (M, ta, h
ab,∇) be a classical spacetime, and let p be any point in M . Assume

there is a smooth, future-directed, unit timelike field ξa, defined on some open set containing p, that is

geodesic and twist-free. Then Ra c
b d = Rc ad b at p.

Proof. It suffices for us to show that, at p, contracting (Ra c
b d−Rc ad b) with (i) ξbξd, (ii) hbrhds, and (iii)

ξbhds (or hbrξd) yields 0. The claim in case (ii) comes free, without any assumptions about ξa, since

Rarcs = Rcsar holds in any classical spacetime. (Recall (4.1.30).)

For case (iii), we need only the fact that ξa is twist-free. We must show that Ra cs
b ξb = Rcsabξ

b. To do

so, we recast the right side using symmetries of the curvature field, namely Ra[bcd] = 0, Rab(cd) = 0, and

R
(ab)

cd = 0. (The first two hold for any derivative operator. The third follows from the compatibilty of ∇
with hab. Recall (4.1.26). We use the symmetries with some indices in raised position. So, for example,

since Rabcd +Radbc +Racdb = 0, it follows that Ra cd
b +Rad c

b +Racdb = 0.)

Rcsab ξ
b = −Rscab ξb = Rs cab ξb + Rsa c

b ξb = Rs cab ξb − Ras cb ξb

= Rs cab ξb + (Racsb + Ra cs
b ) ξb = Rs cab ξb + Ra cs

b ξb − Rcasb ξ
b

= Rs cab ξb + Ra cs
b ξb + (Rc asb + Rcs ab ) ξb.

Hence,

Rcsab ξ
b =

1

2
(Rs cab ξb + Ra cs

b ξb + Rc asb ) ξb

= −(∇[c∇a]ξs + ∇[c∇s]ξa + ∇[a∇s]ξc).

If we now expand the right side and use the fact (for the first time) that ∇aξb = ∇bξa, we arrive at

Rcsab ξ
b = −(∇c∇sξa − ∇s∇cξa) = Ra cs

b ξb.

Finally, we consider case (i). Here we need both the fact that ξa is twist-free and that it is geodesic.

We must show that Ra c
b d ξ

bξd = Rc ad b ξ
bξd, i.e., that Ra c

b d ξ
bξd is symmetric in a and c. But

Ra c
b d ξ

bξd = −ξd (∇c∇d ξ
a − ∇d∇c ξa) = −∇c (ξd∇d ξ

a) + (∇c ξd)(∇d ξ
a) + ξd∇d∇c ξa.

The first term on the far right vanishes since ξa is geodesic. The third is symmetric in a and c since

ξa is twist-free. The second is symmetric in a and c for the same reason, since (∇c ξd)(∇d ξ
a) =

(∇d ξc)(∇d ξ
a) = hdn(∇n ξ

c)(∇d ξ
a) = (∇n ξ

c)(∇n ξa) = (∇n ξ
c)(∇a ξn).

Next we consider a particular class of derivative operators that satisfy the curvature condition (4.3.2)

(in addition to being compatible with the background metrics ta and hab).

Proposition 4.3.4. Let (M, ta, h
ab,∇) be a classical spacetime, and let ξa be any smooth, unit, future-

directed timelike vector field on M . Then there exists a unique derivative operator ∇̃ on M such that (i)

∇̃ is compatible with ta and hab and (ii) ξa is geodesic and twist-free with respect to ∇̃.
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When conditions (i) and (ii) obtain, we call ∇̃ the special derivative operator determined by ξa. It

follows immediately from the preceding proposition that all special derivative operators (determined by

some field) satisfy (4.3.2). We shall soon verify (in proposition 4.3.7) that they are the only derivative

operators that do so.

Proof. Let ĥab be the projection field associated with ξa, let κab = ĥn[b∇a]ξ
n, let Cabc = 2 t(b κc)

a and,

finally, let ∇̃ = (∇, Cabc). Then, by proposition 4.1.3 , ∇̃ is compatible with ta and hab. Moreover, we

claim, ξa is geodesic and twist-free with respect to ∇̃. To see this, note first that since ĥab h
bc = δa

b−ta ξb,
we have

κa
b = hbrκar =

1

2
hbr(ĥnr∇a ξ

n − ĥna∇r ξ
n) =

1

2
(∇a ξ

b − ĥna∇b ξn)

and, therefore,

κab =
1

2
(∇a ξb −∇b ξa) = ∇[a ξb],

κa
b ξa =

1

2
ξa∇a ξ

b.

Now
∇̃a ξ

b = ∇a ξ
b − Cbar ξ

r = ∇a ξ
b − (ta κr

b + tr κa
b)ξr.

Hence, since κab is anti-symmetric, we have

∇̃[a ξb] = ∇[a ξb] − κab = 0,

ξa∇̃a ξ
b = ξa∇a ξ

b − 2 κa
bξa = 0,

as claimed. So we have established existence.

For uniqueness, suppose
˜̃∇ = (∇̃, C̃abc) is a second derivative operator on M that satisfies conditions

(i) and (ii). We know from proposition 4.1.3 (since both ∇̃ and
˜̃∇ are compatible with ta and hab)

that there is a smooth, anti-symmetric field κab such that C̃abc = 2 han t(b κc)n. We show that κcn = 0.

Now κcnξ
cξn = 0, since κcn is anti-symmetric. So it will suffice for us to show that κcn ξ

chns = 0 and

κcn h
crhns = 0. Since ξa is geodesic with respect to both ∇̃ and

˜̃∇, we have, first,

0 = ξc
˜̃∇c ξ

a = ξc(∇̃c ξ
a − C̃abc ξ

b) = −C̃abc ξb ξc = −2 κcn ξ
c han.

Next,
˜̃∇r ξs = hrc

˜̃∇c ξ
s = hrc (∇̃c ξ

s − C̃sbc ξ
b) = ∇̃rξs − κrs.

So, since
˜̃∇[r ξs] = 0 = ∇̃[r ξs] (and since κcn is anti-symmetric), we also have hrc hsnκcn = 0.

Now we extend proposition 4.1.3 and consider the most general form for a connecting field Cabc that

links two derivative operators on M that are compatible with ta and hab and also satisfy (4.3.2).
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Proposition 4.3.5. Let (M, ta, h
ab,∇) be a classical spacetime such that Rab

c
d = Rcd

a
b. Let ∇′ =

(∇, Cabc) be a second derivative operator on M where Cabc = 2 han t(b κc)n and κab is a smooth, anti-

symmetric field on M . (We know this is the general form for a derivative operator on M that is compatible

with ta and hab.) Then R′a
b
c
d = R′c

d
a
b iff κab is closed, i.e., ∇[n κab] = 0. (Here, of course, R′a

bcd is

the Riemann curvature field associated with ∇′.)

Proof. We know (from problem 1.8.1) that

R′a
bcd = Rabcd + 2∇[cC

a
d]b + 2Cnb[c C

a
d]n.

In the present case, where Cabc = 2t(b κc)
a, we have Cnbc C

a
dn = td tb κc

nκn
a + td tc κb

nκn
a and, hence

2Cnb[c C
a
d]n = 2 tb t[d κc]

nκn
a.

Similarly, ∇c C
a
db = td∇c κb

a + tb∇c κd
a and, hence,

2∇[cC
a
d]b = 2 t[d∇c] κb

a + 2 tb∇[c κd]
a.

If we now raise the index c in all these terms, we arrive at

R′a
b
c
d = Rab

c
d + (td∇c κb

a + tb∇c κd
a − tb∇d κ

ca) + tb td κ
cn κn

a

and, therefore, also

R′c
d
a
b = Rcd

a
b + (tb∇a κd

c + td∇a κb
c − td∇b κ

ac) + td tb κ
an κn

c.

We are assuming that Rab
c
d = Rcd

a
b. And, by the anti-symmetry of κab, κ

cn κn
a = κan κn

c. So we see

that R′a
b
c
d = R′c

d
a
b iff the respective middle terms (in parentheses) in the two lines are equal, i.e., iff

tb (−∇a κd
c + ∇c κd

a − ∇d κ
ca) = td (−∇c κb

a + ∇a κb
c − ∇b κ

ac). (4.3.6)

In turn, this equation holds iff

−∇a κd
c + ∇c κd

a − ∇d κ
ca = 0. (4.3.7)

(Why? If (4.3.7) holds, then both sides of (4.3.6) vanish. Conversely, assume (4.3.6) holds, let ψacd =

(−∇a κd
c + ∇c κd

a − ∇d κ
ca), and let ξa be any unit timelike vector field. Contracting both sides of

(4.3.6) with ξbhdr yields hdrψacd = 0. Contracting both sides with ξbξd yields ξdψacd = 0. So it must

be the case that ψacd = 0.) We can express (4.3.7) in the form

har hcs∇[r κsd] = 0. (4.3.8)

But this condition is equivalent to

∇[r κsd] = 0. (4.3.9)

For if (4.3.8) holds, then, by the anti-symmetry of ∇[r κsd], contraction with ξrξsξd, ξrξshdn, ξrhschdn,

and hrahschdn all yield 0. Thus, as claimed, R′a
b
c
d = R′c

d
a
b iff κab is closed.
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Now we make precise a sense in which condition Ra c
b d = Rc ad b rules out the possibility of “spontaneous

rotation”.

Proposition 4.3.6. Let (M, ta, h
ab,∇) be a classical spacetime such that Ra c

b d = Rc ad b. Let ξa be a

smooth, future-directed, unit timelike field on M that is geodesic (with respect to ∇). Then its associated

rotation and expansion fields satisfy

ξn∇n ω
ab = 2ωn[a θn

b]. (4.3.10)

Hence, given any integral curve γ : I → M of ξa, if ξa is twist-free (ωab = 0) at one point on γ[I], it

is twist-free at all points on it. (Or, more colloquially, if it is twist-free at one time, it is twist-free at all

times.)

Proof. We know that ∇[a ξb] = ωab. (This follows immediately from (4.1.43).) Hence,

2 ξn∇n ω
ab = ξnham∇n∇m ξ

b − ξnhbm∇n∇m ξ
a

= ξnham
(
∇m∇n ξ

b −Rbsnmξ
s
)
− ξnhbm (∇m∇n ξ

a −Rasnmξ
s)

Since ξa is geodesic,

ξnham∇m∇n ξ
b = ham

[
∇m(ξn∇nξ

b) − (∇mξ
n)(∇nξ

b)
]

= −(∇aξn)(∇nξ
b)

and, similarly, −ξnhbm∇m∇n ξ
a = (∇bξn)(∇nξ

a). Furthermore, since Rbs(nm) = 0,

−ξnhamRbsnmξs + ξnhbmRasnmξ
s =

(
Rbs

a
n −Ras

b
n

)
ξnξs =

(
Rbs

a
n −Ran

b
s

)
ξnξs = 0.

So,

2 ξn∇n ω
ab = −(∇aξn)(∇nξ

b) + (∇bξn)(∇nξ
a)

= −[2∇[aξn] + ∇nξa](∇nξ
b) + [2∇[bξn] + ∇nξb](∇nξ

a)

= −2 (∇[aξn])(∇nξ
b) + 2 (∇[bξn])(∇nξ

a) = −2ωan(θn
b + ωn

b) + 2ωbn(θn
a + ωn

a)

= −2ωanθn
b + 2ωbnθn

a = 4ωn[a θn
b].

Now let γ : I → M be an integral curve of ξa, and suppose ωab = 0 at some point γ(s0). It follows

from the basic uniqueness theorem for systems of first-order ordinary differential equations that (4.3.10)

will be satisfied at all points on γ[I] iff ωab = 0 vanishes everywhere on that set. (To see this in detail,

let
1
σa, ...,

4
σa be a basis for the co-tangent space at some point on γ[I] that is orthonormal with respect

to hab (in our extended sense of “orthonormal”). We can extend the vectors (by parallel transport) to

fields
i
σa on γ[I] — we use the same notation — that satisfy ξn∇n

i
σa = 0. Since ∇ is compatible with

hab, the generated fields will be orthonormal everywhere. Now consider the scalar (coefficient) fields
ij
ω = ωab

i
σa

i
σb. Equation (4.3.10) can then be expressed as a system of first-order differential equations

d
ij
ω

dt
= fij(

11
ω,

12
ω, ...,

44
ω)

to which the uniqueness theorem is applicable.)
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We have claimed that condition (4.3.2) holds iff, at least locally (in a neighborhood of every point),

there exists a unit timelike vector field that is geodesic and twist-free. We have proved the “if” half of

the claim (in proposition 4.3.3). Now, finally, we turn to the converse.

Proposition 4.3.7. Let (M, ta, h
ab,∇) be a classical spacetime such that Ra c

b d = Rc ad b. Then, given

any point p in M , there is a smooth, future-directed, unit timelike vector field, defined on some open set

containing p, that is geodesic and twist-free (with respect to ∇).

Proof. Let p be given. Our proof will proceed in two steps and make reference to three smooth, future-

directed, unit timelike fields: ξa, ξ′a, and ξ′′a. (They will be defined on open sets O, O′, and O′′,

respectively, where p ∈ O′′ ⊆ O′ ⊆ O.) ξa will be an arbitrary field. ξ′a will be twist-free. ξ′′a will be

geodesic and twist-free. (It is the existence of the third that we need to establish.)

(Step 1) Let ξa be a smooth, future-directed, unit timelike field defined on some open set O containing

p. By proposition 4.3.4, there is a derivative operator ∇̃ on O such that ∇̃ is compatible with ta and

hab, and such that ξa is geodesic and twist-free with respect to ∇̃. Let Cabc be the connecting field (on

O) such that ∇ = (∇̃, Cabc). Now, by proposition 4.3.3, R̃a c
b d = R̃c ad b. So, since since both ∇ and ∇̃

satisfy (4.3.2), it follows by proposition 4.3.5 that there is a smooth, closed, anti-symmetric field κab on

O such that Cabc = 2 han t(b κc)n. Since κab is closed, we know by proposition 1.8.3 that it is, at least

locally, exact. So there is an open subset O′ of O containing p, and a smooth field κa on O′ such that

κab = ∇̃[a κb]. Now consider the field ξ′a = ξa + κa on O′. It is a smooth, future-directed, unit timelike

field. (It is of unit timelike length since taκ
a = tah

abκb = 0.) We claim that it is twist-free with respect

to ∇. We have

∇n ξ
′a = ∇n (ξa + κa) = ∇̃n (ξa + κa) − Camn(ξ

m + κm).

But,

Camn(ξ
m + κm) = (tm κn

a + tn κm
a)(ξm + κm) = κn

a + tn κm
a(ξm + κm).

Hence,

∇n ξ′a = ∇̃nξa + ∇̃nκa − κna

and, therefore (since ξa is twist-free with respect to ∇̃, and κab = ∇̃[a κb]),

∇[n ξ′a] = ∇̃[n ξa] + ∇̃[nκa] − κna = 0.

(Step 2) So far, we established the existence of a field ξ′a, defined on some open set O′ containing p,

that is twist-free with respect to ∇. Now let S be a spacelike hypersurface within O′ that contains p.

Then we can find a smooth, future-directed, unit timelike vector field ξ′′a, defined on some open subset

O′′ of O′ containing p, that is geodesic with respect to ∇ and agrees with ξ′a on S. (We first restrict

ξ′a to S, and then use each vector in this restricted field ξ′a|S to generate a geodesic. This gives us a

congruence of curves. We take ξ′′a to be its tangent field.) Now, since ξ′a is twist-free on S, so is ξ′′a.

(The difference field (ξ′′a − ξ′a) vanishes on S. So, at any point of S, its directional derivative in any
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spacelike direction vanishes as well, i.e., han∇n(ξ′′b−ξ′b) = 0. Hence, on S, ∇[a ξ′′b] = ∇[a ξ′b] = 0.) But

now, since the geodesic field ξ′′a is twist-free on S, it follows from proposition 4.3.6 that is it everywhere

twist-free. So we are done.
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4.4 A Solution to an Old Problem about Newtonian Cosmology

The geometrized formulation of Newtonian theory provides a satisfying solution to an old problem

about Newtonian cosmology. We present it in this section.3

At issue is whether Newtonian gravitation theory provides a sensible prescription for what the gravi-

tational field should be like in a hypothetically infinite, homogeneous universe. Let us first think about

this in terms of a traditional, non-geometrized, three-dimensional formulation of the theory. Let (R3, gab)

be three-dimensional Euclidean space. We take it to represent physical space at a given time. Further,

let ρ and φ be two smooth functions on R
3 that, respectively, give the mass density and the gravitational

potential at different points of space.4 We assume that they satisfy Poisson’s equation ∇a∇aφ = 4 π ρ.

(Here ∇ is the derivative operator on R
3 compatible with gab.)

Suppose that we are dealing with a homogeneous distribution of matter, i.e., suppose that ρ is constant.

Then, presumably, the gravitational field associated with this matter distribution should be homogeneous

as well. (Why should it be different here from the way it is there?) The gravitational force felt by a

particle of unit mass at any point is given by −∇aφ. So, it would seem, the natural way to capture the

homogeneity condition on the gravitational field is to require that the field ∇aφ be constant, i.e., require

that ∇b∇aφ = 0. But now we have a problem. If ∇b∇aφ = 0, and if Poisson’s equation is satisfied, then

4 π ρ = ∇a∇aφ = 0. So we cannot satisfy the homogeneity condition except in the degenerate case where

the mass density ρ is everywhere 0.

Here is another version of the problem. It directs attention to a particular class of solutions to Poisson’s

equation ∇a∇aφ = 4 π ρ that do exist in the case where ρ is constant (∇a ρ = 0). Let o be any point in

R
3, and let χa be the position field determined relative to o. So ∇aχ

b = δa
b, and χa = 0 at o. Let us

say that a smooth field φ on R
3 is a canonical solution centered at o if

∇aφ =
4

3
π ρχa, (4.4.1)

i.e., if ∇aφ is a spherically symmetric, outward-directed, radial vector field, centered at o, whose assign-

ment to any point p has length 4
3π ρ r, where r is the Euclidean distance between o and p.

Note that if this condition holds, then (since ∇a ρ = 0),

∇a∇aφ =
4

3
π ρ (∇aχ

a) = 4 π ρ.

So canonical solutions centered at o (if they exist) are solutions. And they certainly do exist, e.g.,

φ =
2

3
π ρ (χnχ

n).

3For further discussion of the problem and its history, see Norton [43, 44, 45] and Malament [40].

4Caution: we have previously understood ρ and φ to be objects defined on a four-dimensional spacetime manifold, and

shall soon do so again. But now, temporarily, we take them to be defined on a three-dimensional manifold (representing

space a given time) instead.
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Not all solutions to Poisson’s equation (in the present case where ρ is constant) are canonical solutions

centered at some point or other. (If φ is a solution, then so is (φ + ψ), where ψ is any smooth field

that satisfies ∇a∇aψ = 0.) But canonical solutions are the only solutions that satisfy a certain natural

constraint, and for this reason they are the only ones that are usually considered in discussions of New-

tonian cosmology. The constraint arises if we consider not just the distribution of cosmic matter at a

given time, but also its motion under the influence of that potential. It turns out that if we require that

the motion be isotropic in a certain natural sense, then all solutions are ruled out except those that are

canonical for some center point o. (We shall, in effect, prove this. See proposition 4.4.3.) In any case, our

problem re-emerges when we direct our attention to the class of canonical solutions. The gravitational

field associated with any one of them is a radial field that vanishes at a unique center point. Why, one

wants to ask, should there be any such distinguished point in a homogeneous universe? And why should

it be one point rather than another, i.e., why should any one canonical solution be a better choice for the

gravitational field in a homogeneous universe than another?

That is the problem. A solution, or dissolution, can be found in the recognition that the gravitational

field (in standard formulations of Newtonian theory) is a kind of “gauge field”, i.e., a field that is, in

general, systematically underdetermined by all experimental evidence. Despite appearances, canonical

solutions centered at different points really are empirically equivalent. No experimental test could ever

distinguish one from another (or distinguish the center point of any one of them). Canonical solutions

centered at different points should be viewed as but alternative mathematical representations of the same

underlying state of gravitational affairs — a state that is perfectly homogenous in the appropriate sense.

One can certainly argue for these claims directly, without reference to geometrized formulations of

Newtonian theory.5 (See, for example, Heckmann and Schücking [31] and Norton [44].) But some insight

is achieved if we do think about this old problem in Newtonian cosmology using the ideas developed

in section 4.2. We can develop an account of Friedmann-like cosmological models within geometrized

Newtonian gravitation theory, and then recover the class of canonical solutions (centered at different

points) as but alternative “de-geometrizations” of the initial curved derivative operator — exactly as

described at the end of that section. The choice between different canonical solutions emerges as a

choice between different ways to decompose into “gravitational” and “inertial” components the net force

experienced by a point particle. Nothing more.

Before proceeding, we give an alternative characterization of the class of canonical solutions — at least

in the case of interest where ρ > 0 — that will be convenient later.

5The important point is that if φ and φ′ are canonical solutions, based at o and o′, respectively, the difference field

(∇aφ − ∇aφ′) is constant, and constant gravitational fields are undetectable. Only field differences can be detected. The

difference field is constant since

∇a(∇bφ −∇bφ′) = ∇a(
4

3
π ρ χb − 4

3
π ρ χ′b) =

4

3
π ρ (δa

b − δa
b) = 0.
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Proposition 4.4.1. Let (R3, gab) be three-dimensional Euclidean space, and let ρ be a constant field on

R
3 with ρ > 0. Then for all smooth fields φ on R

3, the following conditions are equivalent.

(1) φ is a canonical solution (to Poisson’s equation ∇a∇a φ = 4 π ρ) centered at some point in R
3.

(2) ∇a∇b φ =
4

3
π ρ gab.

Proof. One direction is immediate. If φ is a canonical solution centered at point o (and if χa is the

position field relative to o),

∇a∇bφ = ∇a (
4

3
π ρχb) =

4

3
π ρ (∇a χb) =

4

3
π ρ gab.

Conversely, suppose φ satisfies condition (2). Let φ′ be a canonical solution centered at some point o′,

let χ′a be the position field relative to o′, and let κb be the difference field

κb = ∇bφ − ∇bφ′ = ∇bφ − 4

3
π ρχ′b.

Then κb is constant (∇a κb = 0) and

∇bφ =
4

3
π ρ

(
χ′b + (

3

4 π ρ
)κb
)
.

Now let o be the (unique) point where the vector field on the right side vanishes. (We can think of o as

the point one gets if one displaces o′ by the vector −(3/4 π ρ)κb. This makes sense since we can identify

vectors at different points in three-dimensional Euclidean space.) Then (χ′b + (3/4 π ρ)κb) is just what

we would otherwise describe as the position field χb relative to o. (Note that when we apply ∇a to the

field we get δa
b.) So φ qualifies as a canonical solution centered at o.

Note that the proposition fails if ρ = 0. In that case, the implication (1) ⇒ (2) still holds, but not the

converse. For then all canonical solutions have vanishing gradient (∇aφ = (4/3)π ρχa = 0), whereas

condition (2) requires only that ∇aφ be constant.

Condition (2) in the proposition naturally lifts to the context of classical spacetimes where it becomes

∇a∇b φ =
4

3
π ρ hab. (4.4.2)

(That is why it will be convenient later.) The latter holds iff the restriction of φ to any spacelike

hypersurface S (together with the restrictions of ∇ and hab to S) satisfies (2).

Let us now shift back to the framework of geometrized Newtonian gravitation theory. Our first task is

to introduce a class of cosmological models that correspond to the Friedmann spacetimes we considered

in section 2.11. We could proceed just as we did there, i.e., start with a condition of spatial homogeneity

and isotropy (relative to some smooth, future-directed, unit timelike field ξa) and derive the consequences

of that assumption. We could show again that ξa is necessarily geodesic, twist-free, and shear-free; that

any vector field definable in terms of the basic elements of structure ta, h
ab,∇, and ξa is necessarily

proportional to ξa; and so forth. Instead, we proceed directly to an explicit characterization.
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Let us first take a (classical) cosmological model to be a a structure of the form (M, ta, h
ab,∇, ξa, ρ),

where (M, ta, h
ab,∇) is a classical spacetime, ξa is a smooth, future-directed unit timelike field on M ,

and ρ is a smooth field on M . We take ξa be the four-velocity of a cosmic fluid that fills all of spacetime,

and take ρ to be the mass-density of the fluid. Next, let us say that (M, ta, h
ab,∇, ξa, ρ) is Friedmann-like

if the following conditions are satisfied.

(1) ξa is geodesic, twist-free, and shear-free, i.e.,

∇a ξ
b =

1

3
(δa

b − ta ξ
b) θ. (4.4.3)

(Here θ = ∇a ξ
a is the scalar expansion field associated with ξa. Note that (4.4.3) follows from

(4.1.42), (4.1.45), and (4.1.12). In more detail, since θab = σab = 0 and ξn∇n ξ
a = 0, we have

∇a ξ
b = θa

b = θan h
nb =

(
1

3
θ ĥan

)
hnb =

1

3
(δa

b − ta ξ
b) θ.)

(2) ∇a ρ = 0, i.e., ρ is constant on all spacelike hypersurfaces.

(3) Poisson’s equation Rab = 4 π ρ tab holds.

Note that we have not included Trautman’s two supplemental integrability conditions (Ra c
b d = Rc ad b

and Rabcd = 0) in the list. We have not done so because, as we now show, they follow from the other

assumptions. So in this special case — the case of Friedmann-like cosmological models — the difference

between our two formulations of geometrized Newtonian theory collapses. (We shall consider another case

where it collapses in section 4.5.)

Proposition 4.4.2. Let (M, ta, h
ab,∇, ξa, ρ) be a Friedmann-like cosmological model. Then the following

conditions hold.

(1) Ra c
b d = Rc ad b and Rabcd = 0.

(2) ξn∇n θ = −4 π ρ − 1
3 θ

2.

Proof. (1) The first condition Rab
c
d = Rcd

a
b follows immediately from proposition 4.3.3. (We need only

that ξa be geodesic and twist-free for this much.) For the second condition, Rabcd = 0, it will suffice to

establish the existence, at least locally, of a smooth, future-directed, unit timelike field ηa on M that is

rigid and twist-free (∇aηb = 0). For then we can invoke proposition 4.2.4.

Let p be any point in M . All Friedmann-like cosmological models are spatially flat (by proposition

4.1.5). So there must be an open set O containing p and a smooth spacelike field χa on O such that

∇aχb = hab. (Recall the very beginning of our proof of proposition 4.2.3.) Now consider the field

ηa = ξa − 1

3
θ χa

on O. It is certainly a smooth, future-directed, unit timelike field. We claim that it is rigid and twist-free,

as required. To see this, note first that, by (4.4.3),

∇aηb = ∇aξb − 1

3
θ∇aχb − 1

3
(∇aθ)χb = (

1

3
θ hab − 1

3
θ hab) − 1

3
(∇aθ)χb.
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Furthermore, ∇aθ = 0. This follows, since by (4.4.3) and Poisson’s equation,

∇aθ = han∇n∇m ξ
m = −hanRmrnm ξr + han∇m∇n ξ

m

= −hanRrn ξr + ∇m(∇a ξm) = −han (4 π ρ trn) ξ
r + ∇m(

1

3
ham θ) =

1

3
∇aθ.

So ∇aηb = 0, as claimed.

(2) Here we start as we did in our derivation of Raychaudhuri’s equation (2.8.17):

ξa∇a θ = ξa∇a∇b ξ
b = −ξaRbcab ξc + ξa∇b∇a ξ

b

= −Rca ξcξa + ∇b(ξ
a∇a ξ

b) − (∇b ξ
a)(∇a ξ

b).

But now, by (4.4.3), ξa∇a ξ
b = 0 and (∇b ξ

a)(∇a ξ
b) =

1

3
θ2. And by Poisson’s equation (the third

condition in our characterization of Friedmann-like cosmological models), Rca ξ
cξa = 4 π ρ. So we are

done.

Note that condition (2) in the proposition — the equation that governs the rate of change of θ in

Friedmann-like cosmological models — agrees with (2.11.9) in the case where p = 0. This makes sense.

Though in general relativity the “gravitational field” generated by a blob of perfect fluid depends on its

internal pressure as well as on its mass density, only the latter plays a role in Newtonian gravitation

theory.

Now we make precise our claim about the recovery of canonical solutions. Condition (4.4.4) in the

following proposition is the condition we motivated using proposition 4.4.1. At least if ρ 6= 0, we can

understand it to capture the claim that the restriction of φ to any spacelike hypersurface is a canonical

solution to Poisson’s equation. (If ρ = 0, it asserts instead that ∇aφ is constant on spacelike hypersur-

faces.)

Proposition 4.4.3. Let (M, ta, h
ab,∇, ξa, ρ) be a Friedmann-like cosmological model, and let φ be a

smooth field on some open set in M . If φ arises as part of a de-geometrization (
f

∇, φ) of ∇ (on that open

set), then
∇a∇b φ =

4

3
π ρ hab. (4.4.4)

Conversely, if φ satisfies (4.4.4), then, at least locally, there is a derivative operator
f

∇ on M such that

(
f

∇, φ) is a de-geometrization of ∇. (Once again, to say that (
f

∇, φ) is a de-geometrization of ∇ is to say

that it satisfies conditions (R1) - (R4) in the Trautman Recovery Theorem.)

Proof. We begin the proof of showing that, given any point p in M , there is an open set O containing p

and some de-geometrization (
f

∇∗, φ∗) of ∇ on O such that

∇a∇b φ∗ =
4

3
π ρ hab. (4.4.5)

This will require a bit of work. But once we have established this much, our principal claims will follow

easily.
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We begin just as we did in our proof of the Trautman Recovery Theorem. (Note that all the assump-

tions needed for the theorem hold. In particular, the supplemental integrability conditions Rab
c
d = Rcd

a
b

and Rabcd = 0 hold. We know this from proposition 4.4.2.) Let p be any point in M . Then we can

find an open set O containing p, and a smooth, future-directed, unit timelike field ηa on O that is

rigid and twist-free. Now consider the derivative operator
f

∇∗ on O defined by
f

∇∗ = (∇, Cabc), where

Cabc = ta tb φ
a and φa = ξn∇n ξ

a. As we know from our proof of the Trautman Recovery Theorem, we

can (after possibly restricting O to some smaller open set containing p) find a smooth scalar field φ∗ on

O such that φa = ∇a φ∗ and such that (
f

∇ ∗, φ∗) qualifies as a de-geometrization of ∇ on O. We claim

that φ∗ satisfies (4.4.5).

To see this, consider the field ξa. (It gives the four-velocity of matter in our Friedmann-like cosmological

model.) It is a geodesic field with respect to ∇. So, by condition (R3) in the Trautman Recovery Theorem,

ξn
f

∇∗
n ξ

a = −
f

∇∗aφ∗.

Hence,
f

∇∗a
f

∇∗b φ∗ = −
f

∇∗a (ξn
f

∇∗
n ξ

b) = −(
f

∇∗a ξn)(
f

∇∗
n ξ

b) − ξn
f

∇∗a
f

∇∗
n ξ

b

= −(
f

∇∗a ξn)(
f

∇∗
n ξ

b) − ξn
f

∇∗
n

f

∇∗a ξb. (4.4.6)

(We use the fact that
f

∇∗ is flat for the final equality.) Next, we derive an expression for
f

∇∗
n ξ

b. We have,

by (4.4.3),

f

∇∗
n ξ

b = ∇n ξ
b − Cbnm ξ

m = ∇n ξ
b − (tn tm φ

b)ξm = ∇n ξ
b − tn φ

b

=
1

3
(δn

b − tn ξ
b) θ − tn φ

b.

It follows that
f

∇∗a ξb =
1

3
hab θ.

Substituting these expression for
f

∇∗
n ξ

b and
f

∇∗a ξb in (4.4.6) yields

f

∇∗a
f

∇∗b φ∗ = −1

9
hab θ2 − 1

3
hab ξn

f

∇∗
n θ. (4.4.7)

Now by the second clause of proposition 4.4.2,

ξn
f

∇∗
n θ = ξn∇n θ = −1

3
θ2 − 4 π ρ.

So, after substituting this expression for ξn
f

∇∗
n θ in (4.4.7), we have

f

∇∗a
f

∇∗b φ∗ =
4

3
π ρ hab.

But
f

∇∗a
f

∇∗b φ∗ =
f

∇∗a∇b φ∗ = ham (∇m∇b φ∗ − Cbmn∇n φ∗)

= ham [∇m∇bφ∗ − (tm tn φ
b)∇n φ∗] = ∇a∇bφ∗.
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So

∇a∇b φ∗ =
4

3
π ρ hab,

as claimed. This completes the first part of the proof.

Now let φ be a smooth field on some open subset U of M . Let p be any point in U . We know from

what we have just proved that we can find an open subset O of U containing p and a de-geometrization

(
f

∇∗, φ∗) of ∇ on O such that φ∗ satisfies (4.4.5). Suppose first that φ arises as part of a de-geometrization

(
f

∇, φ) of ∇ on U . Then we have two de-geometrizations of ∇ on O, namely (
f

∇∗, φ∗) and (
f

∇, φ). By

the final part of the Trautman Recovery Theorem governing the non-uniqueness of de-geometrizations,

it follows that

0 = ∇a∇b (φ − φ∗) = ∇a∇b φ − 4

3
π ρ hab.

(Here the roles of (
f

∇′, φ′) and (
f

∇, φ) in that theorem are played, respectively, by (
f

∇, φ) and (
f

∇ ∗, φ∗).)

So φ satisfies (4.4.4) throughout the open set O containing p. But p was chosen arbitrarily. So φ satisfies

(4.4.4) everywhere in U .

Conversely, suppose φ satisfies (4.4.4). Then, by (4.4.5) again, we have

∇a∇b (φ − φ∗) =
4

3
π ρ hab − 4

3
π ρ hab = 0

on O. Hence, by the final part of the Trautman theorem again, if we set
f

∇ = (
f

∇∗, tb tc∇a(φ − φ∗)),

then (
f

∇, φ) qualifies as a de-geometrization of ∇ on O.

Let us think about what we would experience if we resided in a Friedmann-like Newtonian universe

of the sort we have been considering. Suppose we were at rest in the cosmic fluid, i.e., moving along

an integral curve of the background four-velocity field ξa. Then we would experience no net force and

would observe all other mass points in the fluid moving uniformly away from, or toward, us. If we were

inclined to describe the situation in terms of traditional, non-geometrized Newtonian theory, we would

say (adopting, implicitly, a particular de-geometrization) that the the gravitational field is centered where

we are and vanishes there. (That is why we experience no net force.) But we would offer a different

account for why our colleagues co-moving with other cosmic mass points experience no net force. From

our point of view (i.e., according to our de-geometrization), they do experience a non-zero gravitational

force. But it is perfectly balanced by a corresponding “inertial” force. And it is for this reason that they

experience no net force. (Of course, those colleagues have their own story to tell with the roles reversed.

They take themselves to be the ones residing where the gravitational field vanishes.)
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4.5 Geometrized Newtonian Theory — Second Version

In this section, we prove a recovery or de-geometrization theorem for the Künzle-Ehlers version of

geometrized Newtonian gravitation theory. It is the counterpart to the recovery theorem we proved for

the Trautman version (proposition 4.2.5) and actually subsumes that earlier result as a special case.

We also consider a second set of special circumstances in which the difference between our two versions

of the theory collapses. We saw in section 4.4 that Trautman’s second integrability condition Rabcd = 0

holds automatically in Friedmann-like cosmological models. Here we show that it holds automatically if

we restrict attention to classical spacetimes that are, in a certain weak sense, asymptotically flat.

We start with a lemma. Our proof of the Trautman Recovery Theorem turned on the availability of

a rigid, twist-free field ηa. Existence was guaranteed by the second integrability condition (proposition

4.2.4). Now we have to work with less. We cannot count on the existence of rigid, twist-free fields.

But, as we now show, we can still count on the existence of fields that are, at least, rigid. And this

will suffice. To prove the new recovery theorem, we need only rerun the argument for the old one using

a field ηa that is merely rigid. The computations are a bit more complicated, but no new ideas are

involved. (We could have proved this version of the theorem first and then recovered the Trautman

version simply by considering what happens when ηa is also twist-free. But there is some advantage to

taking on complications one at a time.)

Proposition 4.5.1. Let (M, ta, h
ab,∇) be a classical spacetime that is spatially flat (Rabcd = 0). Then,

given any point p in M , there exist an open set O containing p and a smooth, future-directed, unit timelike

field ηa on O that is rigid (∇(aηb) = 0).

Proof. Let p be any point in M , and let γ : I → M be a smooth, future-directed, timelike curve, with

four-velocity field η̂a, that passes through p. We claim first that we can find three smooth, linearly

independent, spacelike fields
1
σa,

2
σa,

3
σa on some open set O containing p with these properties (for all i):

(i) hab =
1
σa

1
σb +

2
σa

2
σb +

3
σa

3
σb.

(ii) ∇a i
σb = 0.

(iii) η̂n∇n
i
σa = 0 on γ[I].

We can generate the fields as follows. First we find three linearly independent, spacelike vectors at p that

satisfy condition (i) — just as we did in the proof of proposition 4.1.4. Then we extend the vectors to an

open set containing p in two stages. First, we extend them by parallel transport along γ. (So condition

(iii) is satisfied.) Then we extend them “outward” from γ[I] by parallel transport along spacelike curves.

The latter operation works this way. Let S be a spacelike hypersurface that intersects the image of γ

at the point q. Then, because of spatial flatness, parallel transport of spacelike vectors within S is, at

least locally, path independent. (Recall proposition 4.1.5.) So we can unambiguously extend the triple
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1
σa,

2
σa,

3
σa at q by parallel transport to points on S sufficiently close to q. The fields generated by this

construction are “constant in spacelike directions”, i.e., λn∇n
i
σa = 0 for all spacelike vectors λa. The

latter condition is equivalent to (ii). Finally, we claim, condition (i) holds everywhere. Consider the

difference field (hab − (
1
σa

1
σb +

2
σa

2
σb +

3
σa

3
σb)). It vanishes at p. Hence, by (iii), it vanishes along

γ[I]. And therefore, by (ii), it vanishes on spacelike hypersurfaces that intersect γ[I]. So it vanishes

everywhere. Thus, as claimed, we can find three smooth, spacelike fields
1
σa,

2
σa,

3
σa on some open set O

containing p that satisfy the three listed conditions. And the fields must certainly be linearly independent

throughout O — because we started with three linearly independent vectors at p, and linear independence

is preserved under parallel transport.

It follows from (ii), of course, that ∇[a i
σ b] = 0 for all i. So, restricting O to a smaller open set

containing p if necessary, we can find smooth scalar fields
i
x on O such that

i
σa = ∇a i

x = hab∇b
i
x. (Here

we invoke proposition 4.1.6.) We can pin them down uniquely by requiring that they assume the value 0

at points on γ[I]. This guarantees that

η̂n∇n
i
x = 0 (4.5.1)

on γ[I] ∩O for all i. And, by condition (i),

hab (∇a
i
x) (∇b

j
x) = δij (4.5.2)

holds everywhere for all i and j. (Why? Contracting (i) with (∇b
j
x) yields

j

σa = hab (∇b
j
x) =

3∑

i=1

i
σa (

i
σb∇b

j
x).

But the vectors
1
σa,

2
σa,

3
σa are linearly independent at every point. So

i
σ b∇b

j
x = δij and, therefore,

hab(∇a
i
x)(∇b

j
x) =

i
σb∇b

j
x = δij .)

Now we extend the tangent field η̂a to a smooth field ηa on O by requiring that taη
a = 1 and

ηn∇n
i
x = 0 hold everywhere for all i. (The fields ta, (∇a

1
x), (∇a

2
x), (∇a

3
x) form a co-basis at every point,

and so a vector field is uniquely determined by its contractions with them.) We claim that the resultant

field ηa is rigid, i.e., £η h
ab = 0. We have £η

i
x = ηn∇n

i
x = 0 for all i. And £η(∇a ϕ) = ∇a(£ηϕ) for all

smooth scalar fields ϕ. (This is easily checked using proposition 1.7.4.) So £η(∇a
i
x) = ∇a(£η

i
x) = 0 for

all i. Hence, by (4.5.2),

0 = £η(h
ab (∇a

i
x) (∇b

j
x)) = (∇a

i
x) (∇b

j
x)£η h

ab

for all i and j. But we also have £η ta = ηn∇n ta+tn∇a η
n = 0 and, therefore, ta£ηh

ab = £η(ta h
ab) = 0.

Thus, contracting £ηh
ab with any of the basis elements ta, (∇a

1
x), (∇a

2
x), (∇a

3
x) yields 0. So £ηh

ab = 0,

as claimed.

Now we turn to the recovery theorem.
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Proposition 4.5.2. (Künzle-Ehlers Recovery Theorem) Let (M, ta, h
ab,∇) be a classical spacetime that

satisfies

Rbc = 4 π ρ tbc, (4.5.3)

Rab
c
d = Rcd

a
b, (4.5.4)

for some smooth scalar field ρ on M . Let ηa be a smooth, future-directed, unit timelike vector field on

some open subset O of M that is rigid. (Existence of such fields, at least locally, is guaranteed by the

preceding proposition and proposition 4.1.5.) Let ĥab be the projection field associated with ηa, and let φa

and ωab be the associated acceleration and rotation fields:

φa = ηn∇n η
a,

ωab = ĥm[a ĥb]n∇m η
n.

Then there exists a unique derivative operator
f

∇ on O such that all the following hold on O.

(RR1)
f

∇ is compatible with ta and hab.

(RR2) ηa constant with respect to
f

∇ (i.e.,
f

∇a η
b = 0).

(RR3)
f

∇ is flat.

(RR4) For all timelike curves with four-velocity field ξa,

ξn∇nξ
a = 0 ⇐⇒ ξn

f

∇n ξ
a = −φa − 2ωn

aξn.

(RR5) φa and ωab satisfy the “field equations”:

f

∇ [aωbc] = 0, (4.5.5)
f

∇aω
ab = 0, (4.5.6)

f

∇ [aφb] = ηn
f

∇n ω
ab, (4.5.7)

f

∇aφ
a = 4πρ− ωab ω

ab. (4.5.8)

Note that, as promised, the Trautman Recovery Theorem emerges as a corollary. If we add the

supplemental condition (Rabcd = 0), then, by proposition 4.2.4 again, we can find timelike fields locally

that are rigid and twist-free. But if ωab = 0, it follows from (4.5.7) (and proposition 4.1.6) that φa must,

at least locally, be of the form φa = ∇aφ for some smooth scalar field φ. And in this case (ωab = 0 and

φa = ∇aφ), we fully recover the conclusions of the Trautman theorem.

The de-geometrization presented here is relativized to a rigid unit timelike vector field ηa. Given that

field, there is a unique derivative operator satisfying the listed conditions (relative to it). But it will

be clear from the proof that, in general, different choices for ηa lead to different derivative operators,

i.e., lead to different de-geometrizations. Indeed, one has, here, much the same non-uniqueness that we

encountered in the Trautman Recovery Theorem.
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Proof. The argument here is similar in structure to the one we gave for the Trautman Recovery Theorem,

and many individual steps carry over intact or with only minimal change. We just have to remember

that whereas previously we had the condition ∇aηb = 0 to work with, we now have only ∇(aηb) = 0.

Consider the fields

κab = ĥn[b∇a]η
n, (4.5.9)

Cabc = 2 t(b κc)
a (4.5.10)

on O. It is easy to check that they satisfy the following conditions.

2 κa
b = ∇aη

b − ĥna∇bηn, (4.5.11)

κab = ∇aηb = ωab, (4.5.12)

2 κa
bηa = ηa∇a η

b = φb, (4.5.13)

2 κa
b = 2∇a η

b − ta φ
b, (4.5.14)

Caac = 0. (4.5.15)

We get the second from the fact that ηa is rigid, and so ∇aηb = ∇[aηb] = ωab. The fourth follows from

the second and third. (Note that contracting both sides with either har or ηa yields the same result.)

The fifth follows from the anti-symmetry of κab.

Next consider the derivative operator
f

∇= (∇, Cabc) on O. We claim that it satisfies all the listed

conditions. (RR1) follows immediately from proposition 4.1.3. For (RR2), note that, by (4.5.13) and

(4.5.14),

f

∇a η
b = ∇a η

b − Cban η
n = ∇a η

b − (ta κn
b + tn κa

b) ηn

= ∇a η
b − 1

2
ta φ

b −
(
∇a η

b − 1

2
ta φ

b

)
= 0.

Thus, as required for (RR2), ηa is constant with respect to the new derivative operator
f

∇.

Now we turn to the Riemann curvature field associated with
f

∇. We have, by (1.8.2),

f

R
a
bcd = Rabcd + 2∇[cC

a
d]b + 2Cnb[c C

a
d]n

= Rabcd + 2 t[d∇c] κb
a + 2 tb∇[c κd]

a + 2 tb t[d κc]
n κn

a. (4.5.16)

It follows immediately that
f

Rabcd = Rabcd. But Rabcd = 0. (By proposition 4.1.5, this is a consequence

of the geometrized version of Poisson’s equation (4.5.3).) So
f

∇ is spatially flat. Now recall the second

clause of proposition 4.2.4. We have just verified that there is a smooth, unit timelike field ηa on O that

is constant with respect to
f

∇. So (since
f

∇ is spatially flat), the proposition tells us that
f

∇ must be flat

outright, i.e.,
f

Rabcd = 0. So we have (RR3). And (4.5.16) reduces to

Rabcd = −2 t[d∇c] κb
a − 2 tb∇[c κd]

a − 2 tb t[d κc]
n κn

a. (4.5.17)
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For (RR4), note first that for all timelike curves on O with four-velocity field ξa,

ξn
f

∇n ξ
a = ξn(∇nξ

a − Canm ξ
m) = ξn∇nξ

a − (tm κn
a + tn κm

a)ξmξn

= ξn∇nξ
a − 2 κn

aξn.

But, by (4.5.14), (4.1.42), and the fact that ηa is rigid (θn
a = 0),

2 κn
a = 2∇n η

a − tn φ
a

= 2 (ωn
a + tn φ

a) − tn φ
a = 2ωn

a + tn φ
a. (4.5.18)

So ξn∇nξ
a = 0 iff ξn

f

∇n ξ
a = −φa − 2ωn

a ξn. Thus we have (RR4).

Notice also that there can be at most one derivative operator
f

∇ on O satisfying condition (RR4), so

we get our uniqueness claim. For suppose that
f

∇′ = (
f

∇, C′a
bc) satisfies it as well. Then, for all timelike

geodesics on O (with respect to ∇) with four-velocity field ξa, we have

ξn
f

∇n ξ
a = −φa − 2ωn

aξn = ξn
f

∇ ′
nξ
a = ξn(

f

∇n ξ
a − C′a

nmξ
m).

So, C′a
nm ξ

m ξn = 0 holds at every point. But every future-directed unit timelike vector ξa at a point

in O is the tangent vector of some geodesic (with respect to ∇) through the point, and the collection

of future-directed unit timelike vectors at a point spans the tangent space there. So it follows that

C′a
nm = 0 at every point in O.

Now, finally, we turn to (RR5). The four conditions we must verify all follow from (4.5.17). Contracting

a with d yields

4 π ρ tb tc = Rbc = tc∇a κb
a + tb∇a κc

a + tb tc κa
nκn

a. (4.5.19)

And raising ‘c’ yields

Rab
c
d = −td∇c κb

a − tb∇c κd
a + tb∇d κ

ca − tb td κ
cnκn

a. (4.5.20)

Let us now contract (4.5.19) with ηb hcr. This, together with (4.5.12), gives us 0 = ∇a κ
ra = ∇a ω

ra. It

follows that
f

∇a ω
ab = ∇a ω

ab − ωnbCaan − ωanCban = 0. (4.5.21)

(Here Caan = 0 by (4.5.15), and ωanCban = 0 because of the respective anti-symmetry and symmetry of

ωan and Cban.) So we have the second in our list of four (RR5) conditions. Next, let us contract (4.5.19)

with ηbηc. Then, using (4.5.13), (4.5.14), and (4.5.18), we get

4 π ρ = 2 ηb∇a κb
a + κa

nκn
a = 2 [∇a(κb

a ηb) − (∇a η
b)κb

a] + κa
nκn

a

= ∇a φ
a − 2 (κa

b +
1

2
ta φ

b)κb
a + κa

nκn
a = ∇a φ

a − κa
b κb

a = ∇a φ
a − ωa

b ωb
a.

So, by (4.5.15) again,

f

∇a φ
a = ∇a φ

a − Caan φ
n = ∇a φ

a = 4 π ρ − ωab ω
ab. (4.5.22)
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Thus we have the fourth condition in the (RR5) list. That leaves the first and the third.

Now, for the first time, we use the fact that ∇ satisfies the first supplemental curvature condition

(4.5.4). Since
f

∇ satisfies it as well — as it clearly does since
f

R a
bcd = 0 — we know from proposition

4.3.5 that κab must be closed, i.e,
f

∇ [a κbc] = 0. So, by (4.5.12),
f

∇ [aωbc] =
f

∇ [aκbc] = 0. That is the first

condition in the list. Finally, contracting (4.5.20) with ηbηd and using (4.5.13), (4.5.12), and (4.5.18)

yields

Rab
c
d η

bηd = −2 ηb∇c κb
a + ηd∇d κ

ca − κcnκn
a

= −2
(
∇c(κb

a ηb) − (∇c ηb)κb
a
)

+ ηd∇d κ
ca − κcnκn

a

= −∇c φa + ηd∇d κ
ca + κcbκb

a = −∇c φa + ηd∇d ω
ca + ωcbωb

a.

So, since Rab
c
d = Rcd

a
b (and since ωcn is anti-symmetric), ∇[a φc] − ηd∇d ω

ac = 0. But, as one

can easily check (with a computation much like ones we have seen before),
f

∇a φc = ∇a φc and

ηd
f

∇d ω
ac = ηd∇d ω

ac. This gives us the third condition in the (RR5) list, and we are done.

We have claimed that the difference between the two versions of geometrized Newtonian gravitation

theory collapses if one restricts attention to classical spacetimes that are, in a certain weak sense, “asymp-

totically flat”. (In that case, the second supplemental curvature condition, Rabcd = 0, follows from the

other assumptions.) Now we make the claim precise. Toward that goal, we first prove a result of Ehlers’

[15].

Proposition 4.5.3. Let (M, ta, h
ab,∇) be a classical spacetime that is spatially flat (Rabcd = 0). Then

there is a smooth scalar field Ψ on M such that

RabcdR
b
a
c
e = Ψ td te. (4.5.23)

Moreover,
Rabcd = 0 ⇐⇒ Ψ = 0. (4.5.24)

Proof. Let p be any point in M , let ηa be a smooth, future-directed, rigid, unit timelike field defined on

some open set containing p — existence is guaranteed, once again, by proposition 4.5.1 — and let ωab be

the rotation field determined by ηa. Further, let κab and
f

∇ be defined (relative to ηa) as in the preceding

proof. Then, by (4.5.17), (4.5.20), and (4.5.18),

RabcdR
b
a
c
e =

(
−2 t[d∇c] κb

a − 2 tb∇[c κd]
a − 2 tb t[d κc]

n κn
a
)

(
−te∇c κa

b − ta∇c κe
b + ta∇e κ

cb − ta te κ
cnκn

b
)

= (−td∇c κb
a)(−te∇c κa

b) = td te (∇c ωb
a)(∇c ωa

b).

So we need only take Ψ = −(∇c ωab)(∇c ωab) at p. Now, by (4.5.17) again, we also have Rabcd =

−2 t[d∇c] κ
ba = −2 t[d∇c] ω

ba. Hence (since contracting Rabcd with either ηcηd or hcrhds yields 0),

Rabcd = 0 ⇐⇒ ∇cωba = 0. (4.5.25)
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So the assertion that remains for us to prove, namely (4.5.24), is equivalent to

∇cωba = 0 ⇐⇒ (∇c ωab)(∇cωab) = 0. (4.5.26)

One direction is trivial, of course. And the other (right to left) follows just from the fact that the indices

in ∇cωba are spacelike (and the metric induced by hab on the space of spacelike vectors at any point is

positive definite). For future reference, we give the argument in detail. Let
1
σa,

2
σa,

3
σa be three linearly

independent, smooth spacelike fields on some open set containing p such that

(i) hab =
∑3
i=1

i
σa

i
σb

(ii) ∇a i
σb = 0.

(Existence is guaranteed by our assumption of spatial flatness. Recall the proof of proposition 4.5.1.) Let
1

λa,
2

λa,
3

λa be three smooth fields such that
i
σa = hab

i

λb (or, equivalently,
i
σa

j

λa = δij) for all i and j. Now,

for all i, j, and k, let
ijk
ω be the scalar field defined by

ijk
ω =

k
σc

i
σa

j

σb (∇c ωab) =
k

λc
i

λa
j

λb (∇cωab).

Then

∇c ωab =
3∑

i,j,k=1

ijk
ω

k
σc

i
σa

j

σb,

and, hence,

(∇c ωab)(∇c ωab) =
3∑

i,j,k=1

ijk
ω (

k
σc

i
σa

j

σb∇c ωab) =
3∑

i,j,k=1

(
ijk
ω )2. (4.5.27)

So, clearly, (∇c ωab)(∇c ωab) can vanish only if
ijk
ω = 0 for all i, j, k, i.e., only if ∇cωab = 0.

Now we can formulate our notion of asymptotic flatness. It is intended to capture the intuitive claim

that “Rabcd goes to 0 at spatial infinity”. (We could certainly impose a restriction on the limiting behavior

of Rabcd but, in fact, it suffices for our purposes to work with a weaker condition that is formulated in

terms of Rabcd.) With equivalence (4.5.24) in mind, we shall use the condition Ψ → 0 as a surrogate for

the condition Rabcd → 0.

We first have to insure that there is an asymptotic regime in which spacetime curvature can go (or fail

to go) to zero. We do so by restricting attention to classical spacetimes that can be foliated by a family of

spacelike hypersurfaces that are simply connected and geodesically complete. Each of these hypersurfaces

(together with the metric induced on it by hab) is then, in effect, a copy of ordinary three-dimensional

Euclidean space. Given a classical spacetime (M, ta, h
ab,∇) satisfying this condition, we say officially

that Rabcd goes to 0 at spatial infinity if, for all spacelike geodesics γ : R →M , Ψ(γ(s)) → 0 as s→ ∞.

Now we can formulate the collapse result (due to Künzle [35] and Ehlers [15]).

Proposition 4.5.4. Let (M, ta, h
ab,∇) be a classical spacetime that is spatially flat. Suppose the following

conditions hold.
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(1) For all p in M , there is a spacelike hypersurface containing p that is simply connected and geodesi-

cally complete.

(2) Rabcd goes to 0 at spatial infinity (in the sense discussed above).

Then Rabcd = 0 (everywhere).

Proof. Arguing as in the proof of proposition 4.5.1, but now using assumption (1), we can show that

there exist three smooth, linearly independent, globally defined spacelike fields
1
σa,

2
σa,

3
σa satisfying

(i) hab =
1
σa

1
σb +

2
σa

2
σb +

3
σa

3
σb

(ii) ∇a i
σb = 0,

and there exists a smooth globally defined future-directed, unit timelike field ξa that is rigid (∇(a ξb) = 0).

Let ωab be the rotation field associated with the latter, and let
f

∇ be its associated flat derivative operator

(as constructed in the proof of proposition 4.5.2). Finally, let the scalar component fields
ijk
ω be defined

by
ijk
ω =

k
σc

i
σa

j

σb(∇c ωab)

as in the preceding proof. We are assuming that Ψ = (∇c ωab)(∇c ωab) goes to 0 as one approaches

spatial infinity. But, by (4.5.27), (∇c ωab)(∇c ωab) =
∑3
i,j,k=1(

ijk
ω )2. Hence, for all i, j, and k,

(a)
ijk
ω → 0 at spatial infinity.

We claim now that the fields
ijk
ω are all harmonic, i.e.,

(b)
f

∇n

f

∇n ijkω = 0.

(We could equally well take the claim to be ∇n∇n ijkω = 0, but it is more convenient to work with the flat

derivative operator
f

∇.) Once we show this, we will be done. Because it will then follow by the “minimum

principle” that the fields
ijk
ω all vanish.6 That, in turn, will imply that Ψ =

∑3
i,j,k=1(

ijk
ω )2 = 0 and, hence,

by (4.5.24), that Rabcd = 0.

As in the preceding proof, let
1

λa,
2

λa,
3

λa be three smooth fields such that
i
σa = hab

i

λb. Now
f

∇a and ∇a

agree in their action on contravariant fields that are spacelike in all indices. In particular, for all i,

f

∇a i
σb = ∇a i

σb,
f

∇aωbc = ∇aωbc.

6See, e.g., Flanders [20], p. 85. The principle asserts that a harmonic function defined on a compact set in three-

dimensional Euclidean space assumes its minimum value on its boundary. It follows — consider a nested sequence of closed

balls with radii going to infinity — that if a harmonic function defined on all of three-dimensional Euclidean space goes to

0 asymptotically along any (or even just one) geodesic, then it must be 0 everywhere.

We here apply the principle to the fields
ijk
ω or, rather, the restrictions of those fields to individual spacelike hypersurfaces

that are simply connected and geodesically complete. Note that condition (b) can be construed as a constraint on the

restricted fields. If D is the (three-dimensional) derivative operator induced on a spaceike hypersurface by
f

∇ — which is

the same as the one induced by ∇ — then it follows from (b) that Dn Dn ijk
ω = 0.
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(Here Cabc has the form Cabc = 2 t(b κc)
a. So Cabc = tcκ

ba and, hence,
f

∇a i
σb = ∇a i

σb − Cbam
i
σm =

∇a i
σb − tmκ

ab i
σm = ∇a i

σb. The other case is handled similarly.) It follows that
f

∇a i
σb = 0, and

ijk
ω =

k

λc
i

λa
j

λb(
f

∇cωab) =
k
σc

i
σa

j

σb(
f

∇c ωab). Hence,

f

∇n

f

∇n ijkω =
f

∇n

f

∇n (
k
σc

i
σa

j

σb
f

∇c ωab) =
f

∇n (
k
σc

i
σa

j

σb
f

∇n
f

∇c ωab) =
f

∇n (
k
σc

i
σa

j

σb
f

∇n

f

∇c ωab)

=
k
σc

i
σa

j

σb(
f

∇n
f

∇n

f

∇c ωab) =
k

λc
i

λa
j

λb(
f

∇n

f

∇n
f

∇c ωab)

for all i, j, and k. So, to complete the proof, it suffices for us to show

(c)
f

∇n

f

∇n
f

∇c ωab = 0.

And this condition follows easily from the fact that
f

∇[aωbc] = 0 and
f

∇a ω
ab = 0. (Recall (4.5.5) and

(4.5.6) in the formulation of proposition 4.5.2.) Since
f

∇ is flat, we can switch derivative operator position

and, therefore,

f

∇n

f

∇n
f

∇cωab =
f

∇c
f

∇n

f

∇nωab =
f

∇c
f

∇n(−
f

∇bωna −
f

∇aωbn) = −
f

∇c
f

∇b (
f

∇n ω
na) −

f

∇c
f

∇a (
f

∇n ω
bn) = 0.

So we are done.



Solutions to Problems

Problem 1.1.1 Let (M, C) be an n−manifold, let (U,ϕ) be an n−chart in C, let Ô be an open subset

of ϕ[U ], and let O be its preimage ϕ−1[Ô]. Show that (O,ϕ|O) is also an n−chart in C.

Let ϕ′ be the restricted map ϕ|O. (We write it this way just to simplify our notation.) Clearly, ϕ′[O]

is open, since ϕ′[O] = ϕ[O] = Ô. And ϕ′ is one-to-one (since it is a restriction of ϕ). So (O,ϕ′) qualifies

as an n-chart on M . To show that it belongs to C, we must verify that it is compatible with every n-chart

in C.

Let (V, ψ) be one such. We may assume that U ∩ V is non-empty, since otherwise the charts are

automatically compatible. Since ϕ′ is a restriction of ϕ, and O is a subset of U (and ϕ is one-to-one), we

have

ϕ′[O ∩ V ] = ϕ[O ∩ V ] = ϕ[O ∩ (U ∩ V )] = ϕ[O] ∩ ϕ[U ∩ V ].

But ϕ[O] is open (since it is equal to Ô), and ϕ[U ∩ V ] is open (since the charts (U,ϕ) and (V, ψ) are

compatible). So ϕ′[O ∩ V ] is open. Furthermore, ψ[O ∩ V ] is open since it is the preimage of the open

set ϕ[O ∩ V ] under the smooth (hence continuous) map

ϕ ◦ ψ−1 : ψ[U ∩ V ] → ϕ[U ∩ V ].

(That the map is smooth follows, again, by the compatibility of the charts (U,ϕ) and (V, ψ).) Finally,

the maps

ϕ′ ◦ ψ−1 : ψ[O ∩ V ] → ϕ′[O ∩ V ],

ψ ◦ ϕ′−1 : ϕ′[O ∩ V ] → ψ[O ∩ V ]

are smooth since they are the restrictions to open sets, respectively, of the smooth maps

ϕ ◦ ψ−1 : ψ[U ∩ V ] → ϕ[U ∩ V ],

ψ ◦ ϕ−1 : ϕ[U ∩ V ] → ψ[U ∩ V ].

Problem 1.1.2 Let (M, C) be an n−manifold, let (U,ϕ) be an n−chart in C, and let O be an open set

in M such that U ∩O 6= ∅. Show that
(
U ∩O,ϕ|U∩O

)
is also an n−chart in C.

265
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We claim, first, that ϕ[U ∩O] is open. To see this, let ϕ(p) be any point in ϕ[U ∩O]. Since O is open,

there exists an n-chart (V, ψ) in C where p ∈ V ⊆ O. Since (V, ψ) and (U,ϕ) are compatible, ϕ[U ∩ V ]

qualifies as an open subset of ϕ[U ∩O] containing ϕ(p). So ϕ[U ∩O] is open, as claimed. It now follows

by the result of problem 1.1.1 (taking Ô = ϕ[U ∩O]) that the pair
(
U ∩O,ϕ|U∩O

)
is an n-chart in C.

Problem 1.1.3 Let (M, C) be an n−manifold and let T be the set of open subsets of M . (i) Show that T
is a topology on M , i.e., it contains the empty set and the set M , and is closed under finite intersections

and arbitrary unions. (ii) Show that T is the coarsest topology on M with respect to which ϕ : U → R
n

is continuous for all n−charts (U,ϕ) in C.

(i) The empty set qualifies, vacuously, as open, and M qualifies as open since (M, C) satisfies condition

(M2). So we need only show that T is closed under finite intersections and arbitrary unions. For the first

claim, it suffices to show that if O1 and O2 are both open, then their intersection O1∩O2 is as well. (The

claim will then follow by induction.) So assume that O1 and O2 are open, and let p be a point in O1∩O2.

(If the intersection is empty, it is automatically open.) Since O2 is open, there is an n-chart (U,ϕ) in C
such that p ∈ U ⊆ O2. Then, by the result in problem 1.1.2, the pair

(
U ∩ O1, ϕ|U∩O1

)
is an n-chart

in C. Thus, given an arbitrary point p in O1 ∩ O2, there is an n-chart in C (namely, (U ∩ O1, ϕ|U∩O1
))

whose domain contains p and is a subset of O1 ∩O2. It follows that O1 ∩O2 is open, as claimed. Finally,

let S be a set of open sets, and let p be a point in its union ∪S. (Again, if the union is empty, it is

automatically open.) Let O be a set in S such that p ∈ O. Since O is open, there is an n-chart (U, φ)

in C such that p ∈ U ⊆ O ⊆ (∪S). So, given our arbitrary point in ∪S, there is an n-chart in C (namely

(U,ϕ)) whose domain contains p and is a subset of ∪S. It follows that ∪S is open.

(ii) First, we claim that given any n-chart (U,ϕ) in C, ϕ : U → R
n is continuous with respect to T .

Let (U,ϕ) be one such. We need to show that, given any open subset Ô of ϕ[U ], its preimage ϕ−1[Ô] is

open. But by the result in problem 1.1.1, we know that there is an n-chart in C whose domain is ϕ−1[Ô].

And the domain of an n-chart in C is certainly open. So our claim follows easily. Next, assume that T ′

is a topology on M with respect to which ϕ : U → R
n is continuous for all n−charts (U,ϕ) in C. We

show that T ⊆ T ′. Let O be a set in T , and let p be a point in O. (If O is empty, then it certainly

belongs to T ′ since the latter is a topology on M .) Since O is open, there is an n-chart (U,ϕ) in C such

that p ∈ U ⊆ O. By assumption, ϕ is continuous with respect to T ′. And ϕ[U ] is an open set in R
n (by

the defintion of an n-chart). So its preimage U must belong to T ′. Thus given any point p in O, there

is a T ′-open set (namely, U) that contains p and is a subset of O. It follows that O itself is open with

respect to T ′. Thus, as claimed, every set O that belongs to T belongs to T ′ as well.

Problem 1.1.4 Let (M, C) be an n−manifold. Show that a map α : M → R is smooth according to

our first definition of “smoothness” (which applies only to real-valued maps on manifolds) iff it is smooth

according to our second definition (which applies to maps between arbitrary manifolds).

α is smooth in the first sense iff for all n-charts (U,ϕ) in C, the map α ◦ ϕ−1 : ϕ[U ] → R is smooth. It
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is smooth in the second sense iff for all smooth maps β : R → R, the composed map β ◦ α : M → R is

smooth in the first sense (i.e., (β ◦α) ◦ϕ−1 : ϕ[U ] → R is smooth for all n-charts (U,ϕ) in C). To see that

the second sense implies the first, we need only consider the special case where β is the identity map on R.

For the converse, suppose that α is smooth in the first sense, let β : R → R be any smooth map on R, and

let (U,ϕ) be any n-chart in C. Then (β ◦α)◦ϕ−1 : ϕ[U ] → R is smooth since (β ◦α)◦ϕ−1 = β ◦ (α◦ϕ−1),

i.e., it is composition of smooth maps α ◦ ϕ−1 : ϕ[U ] → R and β : R → R.

In what follows, let (M, C) be an n−manifold, let p be a point in M , and let C(p) be the set of charts

in C whose domains contain p.

Problem 1.2.1 Let ξ be a non-zero vector at p, and let (k1, ..., kn) be a non-zero element of R
n. Show

there exists an n-chart in C(p) with respect to which ξ has components (k1, ..., kn).

Let (U1, ϕ1) be an n-chart in C(p), and let (ξ1, ..., ξn) be the components of ξ with respect to (U1, ϕ1).

These components cannot all be 0, since ξ is not the zero vector. So there is an isomorphism L of (the

vector space) R
n onto itself that takes (ξ1, ..., ξn) to (k1, ..., kn). Let its associated matrix have elements

{aij}. Then, for all i = 1, ..., n, ki =

n∑

j=1

aij ξ
j .

Now consider a new n-chart (U2, ϕ2) in C(p) where U2 = U1 and ϕ2 = L ◦ϕ1: U2 → R
n. (That it is an

n-chart and does belong to C must be checked. But these claims follow easily from the fact that L, now

construed as a map from the manifold R
n to itself, is a diffeomorphism.) We claim that the components

of ξ with respect to (U2, ϕ2) are (k1, ..., kn). To see this, we invoke proposition 1.2.5. For all i = 1, ..., n,

let x′i : ϕ1[U1 ∩ U2] → R be the coordinate map defined by x′i = xi ◦ ϕ2 ◦ ϕ−1
1 . Since ϕ2 = L ◦ ϕ1, we

have

xi ◦ ϕ2 =

n∑

j=1

aij (xj ◦ ϕ1)

and, therefore,

x′i = xi ◦ ϕ2 ◦ ϕ−1
1 =

n∑

j=1

aij x
j .

It now follows by proposition 1.2.5 that the components of ξ with respect to (U2, ϕ2) are

ξ′i =

n∑

j=1

ξj
∂x′i

∂xj
(ϕ1(p)) =

n∑

j=1

ξj aij = ki,

for all i.

Problem 1.3.1 Let ξ be the vector field x1 ∂

∂x1
− x2 ∂

∂x2
on R

2. Show that the maximal integral curve

of ξ with initial value p = (p1, p2) is the map γ : R → R
2 with γ(s) = (p1 es, p2 e−s).

γ has initial value (p1, p2). It is an integral curve of the given vector field since, for all s ∈ R, and all
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f ∈ S(γ(s)), by the chain rule,

~γγ(s)(f) =
d

ds

(
f ◦ γ

)
(s) =

d

ds

(
f
(
p1 es, p2 e−s)

)

=
∂f

∂x1
(γ(s)) (p1 es) +

∂f

∂x2
(γ(s)) (−p2 e−s)

=
∂f

∂x1
(γ(s)) x1(γ(s)) − ∂f

∂x2
(γ(s)) x2(γ(s))

=

[
x1 ∂

∂x1
− x2 ∂

∂x2

]

|γ(s)

(f).

Finally, it is maximal because its domain is R.

Problem 1.3.2 Let ξ be a smooth vector field on M , let p be a point in M , and let s0 be any real number

(not necessarily 0). Show that there is an integral curve γ : I → M of ξ with γ(s0) = p that is

maximal in the sense that given any integral curve γ′ : I ′ → M of ξ, if γ′(s0) = p, then I ′ ⊆ I and

γ′(s) = γ(s) for all s in I ′.

Given an interval J , let us understand J+a to be the translation of J by the number a. Let σ : J →M

be the maximal integral curve of ξ with initial value p. (Existence is guaranteed by proposition 1.3.1.)

Let I be the shifted interval J + s0, and let γ : I → M be the curve defined by γ(s) = σ(s − s0). Then

γ is an integral curve of ξ by the first clause of proposition 1.3.2, and γ(s0) = σ(0) = p. We claim that

γ satisfies the stated maximality condition.

To see this, suppose γ′ : I ′ → M is an integral curve of ξ, and γ′(s0) = p. Let J ′ = I ′ − s0 and

let σ′ : J ′ → M be defined by σ′(s) = γ′(s + s0). Then σ′ is an integral curve of ξ (by the first clause

of proposition 1.3.2 again) with initial value 0 (since σ′(0) = γ′(s0) = p). So, by the maximality of σ,

J ′ ⊆ J and σ′(s) = σ(s) for all s in J ′. It follows immediately that I ′ = J ′ + s0 ⊆ J + s0 = I and

γ′(s) = σ′(s− s0) = σ(s− s0) = γ(s) for all s in I ′.

Problem 1.3.3 (Integral curves that go nowhere) Let ξ be a smooth vector field on M , and let γ : I →M

be an integral curve of ξ. Suppose that ξ vanishes (i.e., assigns the zero vector) at some point p ∈ γ[I].

Then the following both hold.

(1) γ(s) = p for all s in I (i.e., γ is a constant curve).

(2) The reparametrized curve γ′ = γ ◦ α : I ′ → M is an integral curve of ξ for all diffeomorphisms

α : I ′ → I.

(1) Suppose s0 ∈ I and γ(s0) = p. It follows from problem 1.3.2 that there is a unique maximal

integral curve of ξ whose value at s0 is p. The only possibility is the constant curve γ̂ : R → M that

assigns p to all s. (γ̂ is an integral curve of ξ since, for all f ∈ S(p), f ◦ γ̂ is constant and, so,

~̂γ|γ̂(s)(f) =
d

ds
(f ◦ γ̂)(s) = 0 = ξ|γ̂(s)(f)
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for all s. It is maximal since its domain is R.) Hence, by maximality, γ(s) = γ̂(s) = p for all s in I.

(2) Let α : I ′ → I be a diffeomorphism and let γ′ be the composed map γ′ = γ ◦α : I ′ →M . We know

from (1.3.3) that γ′ is an integral curve of ξ iff

ξ
(
γ(α(s))

) dα
ds

(s) = ξ
(
γ(α(s))

)

for all s in I ′. But γ(α(s)) = p for all s in I ′ (by the first part of the problem) and, therefore, ξ
(
γ(α(s))

)
=

ξ(p) = 0 for all s in I ′. So the required equation holds for all s in I ′. (Both sides are 0.)

Problem 1.3.4 (Integral curves cannot cross) Let γ : I → M and γ′ : I ′ →M be integral curves of ξ

that are maximal (in the sense of problem 1.3.2) and satisfy γ(s0) = γ′(s′0). Then the two curves agree

up to a parameter shift: γ(s) = γ′
(
s+ (s′0 − s0)

)
for all s in I.

Let I ′′ = I ′ − (s′0 − s0), and let γ′′ : I ′′ →M be the curve defined by

γ′′(s) = γ′
(
s+ (s′0 − s0)

)
.

It is an integral curve of ξ by proposition 1.3.2, and γ′′(s0) = γ′(s′0) = γ(s0). So by the maximality of

γ, I ′′ ⊆ I and γ′′(s) = γ(s) for all s in I ′′, i.e., γ(s) = γ′(s + (s′0 − s0)) for all s in I ′′. It remains to

verify only that I ′′ = I. Since I ′′ ⊆ I, it follows that I ′ ⊆ I + (s′0 − s0). If we rerun the argument with

the roles of I, γ, and s0 interchanged with those of I ′, γ′, and s′0, we arrive at the symmetric conclusion

that I ⊆ I ′ + (s0 − s′0). Putting the two set inclusions together, we arrive at I ⊆ I ′ + (s0 − s′0) ⊆
I + (s′0 − s0) + (s0 − s′0) = I. So I ′′ = I ′ + (s0 − s′0) = I, as claimed.

Problem 1.3.5 Let ξ be a smooth vector field on M that is complete. Let p be a point in M . Show that

the restriction of ξ to the punctured set M −{p} is complete (as a field on M −{p}) iff ξ vanishes at p.

Let ξ′ be the restriction of ξ to M − {p}. Suppose first that ξ vanishes at p. Then, as we know from

problem 1.3.3, every integral curve of ξ that passes through p is necessarily a degenerate constant curve

that sits at p. It follows, we claim, that ξ′ is complete. For let q be any point in M distinct from p. Since

ξ is complete (as a field on M), there is an integral curve γ : R →M of ξ with initial value q. The image

of γ is fully contained in M − {p} (since otherwise γ would be an integral curve of ξ passing through p

that does not sit at p). So γ qualifies as an integral curve of ξ′. Since the domain of γ is R (and since q

was chosen arbitrarily), we see that ξ′ is complete, as claimed.

Conversely, suppose ξ does not vanish at p. Since ξ is complete (as a field on M), there is an integral

curve γ : R → M of ξ with initial value p. γ cannot be a constant curve that sits at p. (Otherwise, we

would have ~γp = 0 and, hence, ξ(p) = 0.) So the set D = {s ∈ R : γ(s) 6= p} is non-empty. It is a disjoint

union of open intervals. (If 0 is the only number s in R such that γ(s) = p, then D will be the union of

(−∞, 0) and (0,∞). Other possibilities arise because γ may pass through p more than once.) Let I ′ be

any one of these intervals, let γ′ : I ′ → M be the restriction of γ to I ′, and let q be any point in γ′[I ′].

Then γ′ qualifies as a maximal integral curve of ξ′ in M −{p} that passes through q . By shifting initial
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values, we can generate a maximal integral curve γ′′ of ξ′ in M − {p} that has initial value q. But the

domain of γ′′ is not R (since the pre-shifted domain I ′ of γ′ is not R). So we may conclude that ξ′ is not

complete.

Problem 1.4.1 Show that lemma 1.4.1 can also be derived as a corollary to the following fact about

square matrices: if M is an (r × r) matrix (r ≥ 1) and M ×M is the zero matrix, then the trace of M

is 0.

Assume the left-side condition
r∑

k=1

k
ϕa

k

ψc = 0 holds, and let M be the r × r matrix with entries

Mij =
i
ϕa

j

ψa. Then M ×M is the zero matrix since

(M ×M)ij =

r∑

k=1

MikMkj =

r∑

k=1

(
i
ϕa

k

ψa)(
k
ϕb

j

ψb) = (
i
ϕa

j

ψb)

r∑

k=1

(
k
ϕb

k

ψa) = 0.

So, by the stated fact, 0 = tr(M) =
r∑

k=1

Mkk =
r∑

k=1

k
ϕa

k

ψa.

Problem 1.6.1 Show that for all smooth vector fields ξa on M , £ξ δ
b
a = 0.

For all smooth vector fields λa on M , we have

λa£ξ δ
b
a = £ξ (δba λ

a) − δba£ξ λ
a = £ξ λ

b − £ξ λ
b = 0.

(The first equality follows from the Leibniz rule, and the second from the fact that δba functions as an

index substitution operator.) Since this holds for all smooth fields λa (at all points in M), we may

conclude that £ξ δ
b
a = 0.

Here is a second argument. By the Leibniz rule, and the fact that δba functions as an index substitution

operator, we have

£ξ δ
b
a = £ξ (δbc δ

c
a) = δbc £ξ δ

c
a + δca£ξ δ

b
c = £ξ δ

b
a + £ξ δ

b
a.

It follows immediately that £ξ δ
b
a = 0.

Problem 1.6.2 Let ξa and ηa be smooth vector fields on M , and let the latter be non-vanishing. Show

that if £ξ(η
aηb) = 0, then £ξ η

a = 0.

Assume that £ξ(η
aηb) = 0, and let p be any point in M . Since ηa is non-vanishing, there exists a

smooth field λa on M such that the scalar field ηaλa is non-zero at p. At all points we have

0 = λaλb£ξ (ηaηb) = λaλb(η
a£ξ η

b + ηb£ξ η
a) = 2(λa η

a)λb£ξ η
b.

Hence, λb£ξ η
b = 0 at p. But we also have

0 = λb£ξ (ηaηb) = λb(η
a£ξ η

b + ηb£ξ η
a) = ηaλb£ξ η

b + (λb η
b)£ξ η

a

at all points. So (λb η
b)£ξ η

a = 0 at p and, therefore, £ξ η
a = 0 at p. Since p is an arbitrary point in M ,

we are done.
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Problem 1.6.3 Show that the set of smooth contravariant vector fields on M forms a Lie algebra under

the bracket operation, i.e., show that for all smooth vector fields ξ, η, λ on M ,

[ξ, η] = −[η, ξ] and
[
λ, [ξ, η]

]
+
[
η, [λ, ξ]

]
+
[
ξ, [η, λ]

]
= 0.

The anti-symmetry of the bracket operation is immediate. We can establish the second condition with

a straightforward computation. Let ξ, η, λ be smooth contravariant vector fields on M , and let α be a

smooth scalar field on M . Then

[
λ, [ξ, η]

]
(α) = λ ([ξ, η](α)) − [ξ, η](λ(α))

= [λ(ξ(η(α))) − λ(η(ξ(α)))] − [ξ(η(λ(α))) − η(ξ(λ(α)))] .

Similarly,

[
η, [λ, ξ]

]
(α) = [η(λ(ξ(α))) − η(ξ(λ(α)))] − [λ(ξ(η(α))) − ξ(λ(η(α)))]

[
ξ, [η, λ]

]
(α) = [ξ(η(λ(α))) − ξ(λ(η(α)))] − [η(λ(ξ(α))) − λ(η(ξ(α)))] .

When we add the three lines, we get 0 on the right side because each term has a mate with the opposite

sign. Since this holds for all smooth scalar fields α on M , we have our second claim.

Problem 1.6.4 Show that for all smooth vector fields ξa, ηa on M , and all smooth scalar fields α on

M ,
£(α ξ) η

a = α
(
£ξ η

a
)
−
(
£η α

)
ξa.

Given any smooth scalar field β on M , we have

(
£(α ξ) η

a
)
(β) = (αξ)(η(β)) − η ((αξ)(β))

= α
(
ξ(η(β))

)
−
[
αη(ξ(β)) − η(α) ξ(β)

]

= α
[
ξ(η(β)) − η(ξ(β))

]
− η(α) ξ(β)

= α
(
£ξ η

a
)
(β) − (£η α) ξ(β)

=
[
α
(
£ξ η

a
)
− (£η α) ξa

]
(β).

Since this is true for all smooth scalar fields β, it follows that £(α ξ) η
a = α

(
£ξ η

a
)
−
(
£η α

)
ξa.

Problem 1.6.5 One might be tempted to take a smooth tensor field to be “constant” if its Lie derivatives

with respect to all smooth vector fields are zero. But this idea does not work. Any contravariant vector

field constant in this sense would have to vanish everywhere. Prove this.

Let ηa be a smooth vector field on M . Assume that £ξ η
a = 0 for all smooth vector fields ξa on M .

Then, given any smooth scalar field α on M , it follows from the preceding problem that

0 = £(α ξ) η
a = α

(
£ξ η

a
)
−
(
£η α

)
ξa = −

(
£η α

)
ξa.
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Since this is true for all smooth vector fields ξa on M , £η α = 0. Equivalently, η(α) = 0. But this is true

for alll smooth scalar fields α on M . So ηa = 0.

Problem 1.6.6 Show that for all smooth vector fields ξa, ηa on M , and all smooth tensor fields αa...bc...d

on M , (
£ξ £η − £η £ξ

)
αa1...ar

b1...bs
= £θ α

a1...ar

b1...bs

where θa is the field £ξ η
a.

Consider first the case of a smooth scalar field α on M . The assertion follows since

(
£ξ£η − £η£ξ

)
(α) = ξ(η(α)) − η(ξ(α)) = (£ξ η)(α) = £θ α.

Next consider the case of a smooth vector field αa on M . Given any smooth scalar field β on M , we have

[(
£ξ£η − £η£ξ

)
αa
]
(β) =

(
£ξ£η α

a
)
(β) −

(
£η£ξ α

a
)
(β)

= [ξ, [η, α]](β) − [η, [ξ, α]](β)

= −[α, [ξ, η]](β)

= [[ξ, η], α](β) = (£θ α
a)(β).

(Note that the third and fourth equalities follow from the assertions in problem 1.6.3.) Since this is

true for all smooth scalar fields β, (£ξ£η − £η£ξ)α
a = £θ α

a. The other cases now follow in standard

computational sequence. To compute (£ξ £η − £η £ξ)αb, we consider an arbitrary smooth field λb and

make use of our previous derived expressions for (£ξ £η − £η£ξ) (αb λ
b) and (£ξ£η − £η£ξ)λ

b. And so

forth.

Problem 1.7.1 Let ∇ be a derivative operator on a manifold. Show that ∇n δba = 0.

We can use much the same argument here as used for Problem 1.6.1. By the Leibniz rule, and the

fact that δba functions as an index substitution operator,

∇n δba = ∇n (δbc δ
c
a) = δbc∇n δca + δca∇n δbc = 2∇n δba.

So ∇n δba = 0.

Problem 1.7.2 Let ∇ and ∇′ be derivative operators on a manifold, and let αa1...an
be a smooth n−form

on it. Show that ∇[b αa1...am] = ∇′
[b αa1...am].

There is a smooth, symmetric field Cabc on the manifold such that ∇′ = (∇, Cabc). For any smooth

n−form αa1...an
on M , we have

∇′
b αa1...an

= ∇b αa1...an
+ αr a2...an

Crb a1
+ ...+ αa1...an−1 r C

r
b an

.
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So, anti-symmetrizing,

∇′
[b αa1...an] = ∇[bαa1...an] + αr [a2...an

Crb a1]
+ ...+ α[a1...an−1 |r|C

r
b an].

Since Ca[bc] = 0, all terms involving Cabc in the sum on the right-hand side are 0. (Notice, for example,

that αr [a2...an
Crb a1] = αr [a2...an

Cr[b a1]] = 0.) It follows that

∇[b αa1...an] = ∇′
[b αa1...an].

Problem 1.7.3 Let ∇ be the coordinate derivative operator canonically associated with (U, ϕ) on the

n-manifold M . Let ui be the coordinate maps on U determined by the chart. Further, let ∇′ be another

derivative operator on U . We know (from proposition 1.7.3) that there is a smooth field Cabc on U such

that ∇′ = (∇, Cabc). Show that if

Cabc =

n∑

i=1

n∑

j=1

n∑

k=1

ijk

C

(
∂

∂ui

)a
(dbu

j) (dcu
k),

then a smooth vector field ξa =

n∑

i=1

i

ξ

(
∂

∂ui

)a
on U is constant with respect to ∇′ (i.e., ∇′

a ξ
b = 0) iff

∂
i

ξ

∂uj
=

n∑

k=1

ijk

C
k

ξ

for all i and j.

We have

∇′
b ξ
a = ∇b ξa − Cabc ξ

c

=

n∑

i=1

n∑

j=1

∂
i

ξ

∂uj

(
∂

∂ui

)a
(dbu

j) −
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

ijk

C
l

ξ

(
∂

∂ui

)a
(dbu

j)(dcu
k)

(
∂

∂ul

)c
.

But (dcu
k)

(
∂

∂ul

)c
= δk l. So, continuing,

∇′
b ξ

a =

n∑

i=1

n∑

j=1

∂
i

ξ

∂uj

(
∂

∂ui

)a
(dbu

j) −
n∑

i=1

n∑

j=1

n∑

k=1

ijk

C
k

ξ

(
∂

∂ui

)a
(dbu

j)

=

n∑

i=1

n∑

j=1

[
∂

i

ξ

∂uj
−

n∑

k=1

ijk

C
k

ξ

](
∂

∂ui

)a
(dbu

j).

Thus ∇′
b ξ

a = 0 iff every coefficient (in brackets) in the sum on the right side is 0, i.e., iff

∂
i

ξ

∂uj
−

n∑

k=1

ijk

C
k

ξ = 0

for all i and j in {1, ..., n}.
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Problem 1.8.1 Let ∇ and ∇′ be derivative operators on a manifold with ∇′
m = (∇m, Cabc), and let their

respective curvature fields be Rabcd and R′a
bcd. Show that

R′a
bcd = Rabcd + 2∇[cC

a
d]b + 2Cnb[cC

a
d]n.

Given any smooth field αb,

∇′
c∇′

d αb = ∇′
c (∇d αb + αa C

a
db)

= ∇c (∇d αb + αa C
a
db) + (∇p αb + αa C

a
pb)C

p
cd + (∇d αp + αa C

a
dp)C

p
cb.

Expanding the first term, anti-symmetrizing on the indices c and d, and using the fact that Cp[cd] = 0, we

arrive at

1

2
R′ a

bcd αa =
1

2
Rabcd αa + (∇[cα|a|)C

a
d]b + αa∇[cC

a
d]b + (∇[dα|p|)C

p
c]b + αaC

p
b[cC

a
d]p.

The second and fourth terms on the right hand side differ only in their respective indices of contraction

and the order in which the indices c and d occur. So their sum is 0. Hence,

1

2
R′ a

bcd αa =
1

2
Rabcd αa + αa∇[cC

a
d]b + αaC

p
b[cC

a
d]p.

But this holds for all smooth fields αa. So our conclusion follows.

Problem 1.8.2 Show that the exterior derivative operator d on any manifold satisfies d2 = 0, i.e.,

dn(dm αb1...bp
) = 0 for all smooth p-forms αb1...bp

.

Here we use the fact that λ[a...[b...c]...d] = λ[a...b...c...d] for all tensor fields λa...b...c...d. It follows from

this that

dn(dmαb1...bp
) = ∇[n ∇[m αb1...bp]] = ∇[n ∇m αb1...bp] = ∇[[n ∇m] αb1...bp]

=
1

2

[
αr [b2...bp

Rrb1 nm] + ...+ α[b1...bp−1|r| R
r
bpnm]

]

=
1

2

[
αr [b2...bp

Rr[b1 nm]] + ...+ α[b1...bp−1|r| R
r
[bpnm]]

]
.

Since Ra[bcd] = 0, each of the terms in the final sum is 0. So we are done.

Problem 1.8.3 Show that given any smooth field ξa, and any derivative operator ∇ on a manifold, £ξ

commutes with ∇ (in its action on any tensor field) iff ∇a∇b ξm = Rmbna ξ
n.

Let Km
ab = Rmbna ξ

n −∇a∇b ξm. We claim that for all smooth fields αa1...ar

b1...bs
,

(£ξ∇n −∇n£ξ)α
a1...ar

b1...bs
= αa1...ar

mb2...bs
Km
nb1 + ...+ αa1...ar

b1...bs−1m
Km
nbs

−αma2...ar

b1...bs
Ka1
nm − ...− α

a1...ar−1m
b1...bs

Kar
nm.

Consider first the case of a scalar field α. By proposition 1.6.4 (and the fact that ∇[m∇n]α = 0),

(£ξ∇n −∇n£ξ)α = (ξm∇m∇nα+ (∇mα)∇n ξm) −∇n (ξm∇mα)

= ξm∇m∇nα+ (∇mα)(∇n ξm) − (∇n ξm)∇mα− ξm∇n∇mα = 0.
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Similarly, in the case of a smooth vector field αa, we have

(£ξ∇n −∇n£ξ)α
a = [ξm∇m∇nαa + (∇mαa)(∇n ξm) − (∇nαm)(∇m ξa)]

−∇n (ξm∇mαa − αm∇m ξa)

= [ξm∇m∇nαa + (∇mαa)(∇n ξm) − (∇nαm)(∇m ξa)]

−[ξm∇n∇mαa + (∇n ξm)(∇mαa) − αm∇n∇m ξa − (∇nαm)(∇m ξa)]

= 2ξm∇[m∇n]α
a + αm∇n∇m ξa

= −ξmRapmnα
p + αp∇n∇p ξa = −αpKa

np.

The other cases now follow with a standard march through the indices. To compute (£ξ∇n −∇n£ξ)αb,

for example, we consider an arbitrary smooth field λb and make use of our derived expressions for

(£ξ∇n −∇n£ξ)(αbλ
b) and (£ξ∇n −∇n£ξ)λ

b. And so forth.

Now if Km
ab = 0, it follows immediately from our equation that £ξ commutes with ∇ in its action on

any smooth tensor field. Conversely, if the commutation condition holds, then αmK
m
nb = 0 for all smooth

fields αb. So Km
nb = 0.

Problem 1.8.4 Show that given any smooth field ξa on a manifold, the operators £ξ and dn commute

in their action on all smooth p-forms.

Given any smooth p-form αb1...bp
, we have, by the preceding problem,

(£ξ dn − dn£ξ)αb1...bp
= £ξ∇[nαb1...bp] −∇[n£ξαb1...bp]

= αm [b2...bp
Km
nb1]

+ ...+ α[b1...bp−1 |m|K
m
nbp]

= αm [b2...bp
Km

[nb1]]
+ ...+ α[b1...bp−1 |m|K

m
[nbp]].

Each of the terms in the final sum is 0, since Km
[rs] = 0. (This follows, since by the symmetries of the

Riemann tensor field,

2Km
[rs] = 2(Rm[s|n|r] ξ

n −∇[r∇s] ξm) = Rmsnr ξ
n −Rmrns ξ

n + Rmnrs ξ
n

= Rmsnr ξ
n +Rmrsn ξ

n +Rmnrs ξ
n = 3Rm[snr] ξ

n = 0.)

So (£ξ dn − dn£ξ)αb1...bp
= 0.

Problem 1.9.1 Let ∇ be a derivative operator on a manifold that is compatible with the metric gab. Use

the Bianchi identity to show that

∇a
(
Rab − 1

2
gabR

)
= 0.

By the Bianchi identity, and various symmetries of the Riemann tensor field, we have

0 = ∇mRabcd + ∇dRabmc + ∇cRabdm = ∇mRabcd −∇dRbamc −∇cRabmd.



SOLUTIONS TO PROBLEMS 276

If we raise indices a and b, and then perform (a, d) and (b, c) contraction, we arrive at

0 = ∇mR−∇a Ram −∇bRbm.

Contracting with gmc (and changing indices of contraction) yields

0 = ∇m(gmcR) − 2∇aRac = ∇a(gacR− 2Rac).

So, ∇a
(
Rac − 1

2 g
acR

)
= 0.

Problem 1.9.2 Let ξa be a smooth vector field on M . Show that

£ξ g
ab = 0 ⇐⇒ £ξ gab = 0.

We know that £ξ δ
a
c = 0 (Problem 1.6.1). Hence

0 = £ξ δ
a
c = £ξ (g

ab gbc) = gab£ξ gbc + gbc£ξ g
ab.

Assume that £ξ gab = 0. Then gbc£ξ g
ab = 0 and, therefore,

0 = gcd gbc£ξ g
ab = δb

d£ξ g
ab = £ξ g

ad.

This gives us the implication from left to right The converse is handled similarly.

Problem 1.9.3 Show that Killing fields on M with respect to gab are affine collineations with respect to

∇.

Let ξa be a Killing field. By proposition 1.9.8 (and various symmetries of the Riemann curvature

tensor),

∇a∇b ξm = −Rnabm ξn = −Rnabm ξn = −Rbmna ξn = Rmbna ξ
n.

So ∇a∇b ξm = Rmbna ξ
n. It now follows immediately from problem 1.8.3 that ξa is an affine collineation

with respect to ∇.

Problem 1.9.4 Show that if ξa is a Killing field on M with respect to gab, then the Lie derivative

operator £ξ annihilates the fields Rabcd, Rab, and R determined by gab.

Given any smooth vector field ηa, we have

£ξ (R
a
bcd ηa) = £ξ (2∇[c∇d]ηb) = 2∇[c∇d] (£ξ ηb) = Rabcd£ξ ηa.

(The second equality follows from the preceding problem. Since ξa is a Killing field, it is an affine

collineation with respect to ∇, i.e., £ξ commutes with ∇.) But by the Leibniz rule, we also have

£ξ (R
a
bcd ηa) = Rabcd£ξ ηa + ηa£ξR

a
bcd.
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Comparing these two expressions, we see that ηa£ξR
a
bcd = 0. But this is true for all smooth fields ηa.

So £ξR
a
bcd = 0. Hence, since £ξ δ

n
m = 0,

£ξRab = £ξ (δ
n
mR

m
abn) = δnm£ξR

m
abn = 0.

Since ξa is a Killing field, £ξ g
mn = 0. (See problem 1.9.2.) So it follows that

£ξR = £ξ (g
abRab) = gab£ξRab = 0.

Problem 1.9.5 Show that if ξa and ηa are Killing fields on M with respect to gab, and k is a real

number, then (ξa + ηa), (kξa), and the commutator [ξ, η]a = £ξ η
a are all Killing fields with respect to

gab as well.

λa = (ξa + ηa) is a Killing field since ∇(aλb) = ∇(a ξb) + ∇(a ηb) = 0.

Similarly, χa = (kξa) is a Killing field since ∇(aχb) = k∇(a ξb) = 0.

Finally, θa = £ξ η
a is a Killing field since, by problem 1.6.6, £θ gab = £ξ£η gab − £η£ξ gab = 0.

Problem 1.9.6 Let ηa be a Killing field on M with respect to gab. (i) Let γ be a geodesic with tangent

field ξa. Show that the function E = ξa ηa is constant on γ. (ii) Let T ab be a smooth tensor field that is

symmetric and divergence free (i.e., ∇a T ab = 0), and let Ja be the field T abηb. Show that ∇a Ja = 0.

Let ηa, γ, ξa, and E be as stated. Then we have

ξn∇nE = ξn∇n (ξa ηa) = ξn ξa∇n ηa + ηa ξ
n∇n ξa.

Since ξa is a Killing field, ∇n ηa is anti-symmetric. So ξn ξa∇n ηa = 0. And since ξa is the tangent field of

a geodesic, ξn∇n ξa = 0. So, ξn∇nE = 0. This gives us (1). The computation for (2) is much the same:

∇aJa = ∇a (T abηb) = T ab∇a ηb + ηb∇aT ab.

The second term on the right side vanishes since ∇aT ab = 0. The first vanishes since T ab is symmetric

(and hence T ab∇a ηb = T ab∇(a ηb) = 0). So ∇aJa is 0.

Problem 1.9.7 Show that if ηa is a conformal Killing field on M , and M has dimension n, then

∇(a ηb) =
1

n
(∇c ηc)gab.

Assume £η
(
Ω2gab

)
= 0. Then, by proposition 1.7.4 (and the fact that ∇m gab = 0),

0 = Ω2£η gab + gab£ηΩ2 = Ω2 [ηm∇m gab + ∇a ηb + ∇b ηa] + gab£ηΩ2

= Ω2 [∇a ηb + ∇b ηa] + gab£ηΩ2.
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If we raise the index ‘b’ and then contract, we obtain

0 = 2Ω2 (∇a ηa) + n£ηΩ2.

Our two equations jointly yield ∇(a ηb) =
1

n
gab (∇c ηc).

Problem 1.10.1 Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M , and

let p be a point in S.

(1) Show that the space of co-vectors ηa ∈ (Mp)a normal to S has dimension (n− k).

(2) Show that a vector ξa ∈ (Mp)
a is tangent to S iff ηa ξ

a = 0 for all co-vectors ηa ∈ (Mp)a that are

normal to S.

(1) The subspace of vectors in (Mp)
a tangent to S has dimension k. Let {

1

ξ a,
2

ξ a, ...,
k

ξ a} be any set

of k linearly independent vectors from that subspace. We can extend it to a basis for (Mp)
a by adding

(n − k) more (appropriately chosen) vectors
k+1

ξ a, ...,
n

ξ a. Now let { 1
α a, ...,

n
α a} be the dual basis. So

i
αa

j

ξa = δij . We claim that the subspace of co-vectors at p normal to S is spanned by {k+1
αa, ...,

n
αa}. To

see this, consider any co-vector αa =
1
α

1
α a + ...+

n
α
n
α a at p. It is normal to S iff

i
α= αa

i

ξ a = 0 for

all i = 1, ..., k (since every vector at p tangent to S is a linear combination of
1

ξ a,
2

ξ a, ...,
k

ξ a). Thus α is

normal iff it is in the linear span of {k+1
αa, ...,

n
αa}. So the latter is a basis for the subspace of co-vectors

at p normal to S — and therefore that subspace has dimension (n− k).

(2) The argument is much the same. We continue to work with the basis and dual basis described in

(1).. Consider any vector ξa =
1

ξ
1

ξ a + ...+
n

ξ
n

ξ a at p. It is killed by every covariant vector at p normal

to S iff it is killed by all the vectors
k+1
α a, ...,

n
α a. And the latter condition holds iff

i

ξ=
i
αa ξ

a = 0 for all

i = k + 1, ..., n. So ξa is killed by every covariant vector at p normal to S iff it is a linear combination of
1

ξa,
2

ξa, ...,
k

ξa, i.e., iff it is tangent to S.

Problem 1.10.2 Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M ,

and let gab be a metric on M . Show that S is a metric submanifold (relative to gab) iff, for all p in S,

the pull-back tensor (idp)
∗(gab) is non-degenerate, i.e., there is no non-zero vector ξ̃a ∈ (Sp)

a such that
(
(idp)

∗(gab)
)
ξ̃a = 0.

Let p be any point in S. The pull-back tensor (idp)
∗(gab) is degenerate there iff there is a ξ̃a ∈ (Sp)

a

such that, for all η̃a ∈ (Sp)
a,

(
(idp)

∗(gab)
)
ξ̃a η̃b = gab

(
(idp)∗(ξ̃

a)
) (

(idp)∗(η̃
b)
)

= 0. Since a vector in

(Mp)
a is tangent to S precisely if it is of the form (idp)∗(η̃a) for some η̃a ∈ (Sp)

a, we see that (idp)
∗(gab)

is degenerate at p iff there is a ξ̃a ∈ (Sp)
a such that gab

(
(idp)∗(ξ̃

b)
)

is normal to S, i.e., there is a vector

in (Mp)
a tangent to S that is also normal to S.

Problem 1.10.3 Prove the following generalization of clause (2) in proposition 1.10.3. For all M -tensor

fields α ...a... on S, the following conditions both hold.
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(1) α ...a... is tangent to S in the index ‘a’ ⇐⇒ hab α
...b... = α ...a... ⇐⇒ kab α

...b... = 0.

(2) α ...a... is normal to S in the index ‘a’ ⇐⇒ kab α
...b... = α ...a... ⇐⇒ hab α

...b... = 0.

We work with a representative case. (The proof is exactly the same no matter how many indices

are involved.) Consider the M -field αamn on S. Suppose first that habα
bmn = αamn. Then αamn is

certainly tangent to S in a since hab is. Conversely, suppose αamn is tangent to S in a. Then, we claim,

habα
bmn and αamn have the same action on any co-vector ηa (at any point of S) that is either tangent

to, or normal to, S. In the first case, hab α
bmn ηa = αamn ηa, since hab ηa = ηb, In the second case,

habα
bmn ηa = 0 = αamn ηa, because both sides are tangent to S in ‘a’. This gives us the first equivalence

in (1). The second is immediate since kab α
bmn = (gab − hab)α

bmn = αamn − habα
bmn. The equivalences

in (2) are handled similarly.

Problem 1.10.4 Prove that hma k
n
b k

p
c∇m hnp = 0.

We have

hma k
n
b k

p
c∇m hnp = hma k

n
b [∇m(hnp k

p
c) − hnp∇mkpc].

But hnp k
p
c = 0 = knbhnp (by the third clause of proposition 1.10.3). So both terms on the right are 0.

Problem 1.10.5 Derive the second Gauss-Codazzi equation:

hm[a h
n
b] h

p
c k

r
d∇m πnpr =

1

2
hma h

n
b h

p
c k

r
dRmnpr.

We have

(1) hma h
n
b h

p
c∇m hnp = 0.

(2) hma k
n
b k

p
c∇m hnp = 0.

(3) πabc = hma h
n
b k

p
c∇m hnp = hma h

n
b (gpc − hpc)∇m hnp = hma h

n
b∇m hnc.

(The first is (1.10.3); the second was proved in the preceding problem; and the third follows from the

first.) Hence

hm[a h
n
b] h

p
c k

r
d∇m πnpr = hm[a h

n
b] h

p
c k

r
d∇m (hqn h

s
p∇q hsr) = A+B + C

where

A = hm[a h
n
b] h

p
c k

r
d(∇m hqn)hsp (∇q hsr),

B = hm[a h
n
b] h

p
c k

r
dh
q
n (∇m hsp) (∇q hsr),

C = hm[a h
n
b] h

p
c k

r
dh
q
n h

s
p (∇m∇q hsr).

By (3) and lemma 1.10.6, hm[a h
n
b] (∇m hqn) = π q

[ab] = 0. So A = 0. Furthermore, since hnb h
q
n = hqb, we

have, by (3),

B = hm[a h
q
b] h

p
c k

r
d (∇m hsp) (∇q hsr) = hq[b h

m
a] h

p
c (∇m hsp)krd (∇q hsr)

= hq[b π
s

a]c krd (∇q hsr).
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Now πacs is tangent to S in the index a and normal to it in s. So π s
ac = hua k

s
v π

v
uc and therefore,

continuing the computation,

B = hq[b π
s

a]c krd (∇q hsr) = hq[b h
u
a] k

s
v k

r
d (∇q hsr)π v

uc = 0.

(The final equality follows from (2).) Finally, since hnb h
q
n = hqb,

C = hm[a h
q
b] h

p
c k

r
d h

s
p (∇m∇q hsr) = hma h

q
b h

p
c k

r
d h

s
p (∇[m∇q] hsr)

=
1

2
hma h

q
b h

p
c k

r
d h

s
p (hur R

u
smq + hsuR

u
rmq).

Now krd hur = 0 (by proposition 1.10.3) and hsp hsu = hpu. So, continuing,

hm[a h
n
b] h

p
c k

r
d∇m πnpr = C =

1

2
hma h

q
b h

p
c k

r
d hpuR

u
rmq =

1

2
hma h

q
b h

p
c k

r
d (gpu − kpu)R

u
rmq

=
1

2
hma h

q
b h

p
c k

r
dRprmq.

(The final equality follows from the fact that, once again, hpc kpu = 0.) But Rprmq = Rmqpr . So we are

done.

Problem 1.11.1 One learns in the study of ordinary vector analysis that, for all vectors ξ, η, θ, λ at a

point, the following identities hold.

(1) (ξ × η) · (θ × λ) = (ξ · θ)(η · λ) − (ξ · λ)(η · θ)

(2) (ξ × (η × θ)) + (θ × (ξ × η)) + (η × (θ × ξ)) = 0.

Reformulate these assertions in our notation and prove them.

The two come out as follows.

(1′) (ǫabcξbηc)(ǫamnθ
mλn) = (ξbθb)(η

cλc) − (ξbλb)(η
cθc).

(2′) ǫabcξb(ǫcmnη
mθn) + ǫabcθb(ǫcmnξ

mηn) + ǫabcηb(ǫcmnθ
mξn) = 0.

They follow easily from (1.11.6) — in the case where n = 3 and n− = 0. First, we have

(ǫabcξbηc)(ǫamnθ
mλn) = (ǫabcǫamn)ξb ηc θ

mλn = 2 δ[bm δ
c]
n ξb ηc θ

mλn

= 2ξb ηc θ
[bλc] = (ξbθb)(η

cλc) − (ξbλb)(η
cθc).

And for the second, we have

ǫabcξb(ǫcmnη
mθn) + ǫabcθb(ǫcmnξ

mηn) + ǫabcηb(ǫcmnθ
mξn)

= (ǫcabǫcmn)ξb η
m θn + (ǫcabǫcmn)θb ξ

mηn + (ǫcabǫcmn)ηb θ
m ξn

= 2δ[am δ
b]
n ξb η

m θn + 2δ[am δ
b]
n θb ξ

m ηn + 2δ[am δ
b]
nηb θ

m ξn

= 2 ξb η
[a θb] + 2 θb ξ

[aηb] + 2 ηb θ
[a ξb]

= [(ξb θ
b)ηa − (ξb η

b)θa] + [(θb η
b)ξa − (θb ξ

b)ηa] + [(ηb ξ
b)θa − (ηb θ

b)ξa]

= 0.
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Problem 1.11.2 Do the same for the following assertion:

div(ξ × η) = η · curl(ξ) − ξ · curl(η).

We have

∇a (ǫabc ξb ηc) = ξb ǫ
abc∇a ηc + ηc ǫ

abc∇a ξb
= ηc ǫ

cab∇a ξb − ξb ǫ
bac∇a ηc.

Problem 1.11.3 We have seen that every Killing field ξa in n-dimensional Euclidean space (n ≥ 1) can

be expressed uniquely in the form

ξb = χaFab + kb,

where Fab and kb are constant, Fab is anti-symmetric, and χa is the position field relative to some point

p. Consider the special case where n = 3. Let ǫabc be a volume element. Show that (in this special case)

there is a unique constant field W a such that Fab = ǫabcW
c.

Let W a = 1
2ǫ
abcFbc. Then

ǫabcW
c = ǫabc (

1

2
ǫcmnFmn) =

1

2
(ǫcmn ǫcab)Fmn = δ[ma δ

n]
bFmn = F[ab] = Fab.

(The final equality follows from the fact that Fab is anti-symmetric.) W a is constant, since

∇bW a =
1

2
∇b (ǫamnFmn),

and both ǫamn and Fmn are constant. Finally, W a is the unique field satisfying the given constraint, for

if we also have Fab = ǫabcŴ
c, then ǫabc(Ŵ

c −W c) = 0, and so

0 = ǫabnǫabc(Ŵ
c −W c) = 2 δnc(Ŵ

c −W c) = 2 (Ŵn −Wn).

Problem 2.1.1 Consider our characterization of timelike vectors in terms of null vectors in the proof of

proposition 2.1.1. Why does it fail if n = 2?

If n = 2, the stated condition holds for spacelike as well as timelike vectors. Indeed, in that dimension,

given any two non-zero null vectors αa and γa that are not proportional to one another, every spacelike

(as well as every timelike) vector ηa can be expressed in the form ηa = kαa+ lγa, where k 6= 0 and l 6= 0.

So, of course, if we take βa to be the null vector lγa, then we have ηa = kαa + βa.

Problem 2.1.2 (i) Show that it is possible to characterize timelike vectors in terms of causal vectors.

(ii) Show that it is possible to characterize timelike vectors in terms of spacelike vectors.

The following equivalences hold for all n ≥ 2.

A vector ηa at p is timelike iff for all causal vectors αa at p, there is an ǫ > 0 such that, for

all k, if |k| < ǫ, then ηa + kαa is causal.
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A vector ηa at p is timelike iff for all spacelike vectors αa at p, there is an ǫ > 0 such that,

for all k, if |k| < ǫ, then ηa + kαa is not spacelike.

Problem 2.1.3 Does proposition 2.1.3 still hold if condition (1) is left intact but (2) is replaced by

(2 ′) αa1...ar

b1...bs
ξb1 ... ξbs = 0 for all spacelike vectors ξa at the point?

And what if it is replaced by

(2 ′′) αa1...ar

b1...bs
ξb1 ... ξbs = 0 for all null vectors ξa at the point?

Condition (2 ′′) is certainly not sufficient. For example, if gab is a spacetime metric and p is a point in

the underlying manifold, then gab ξ
aξb = 0 for all null vectors ξa at p, but gab 6= 0. On the other hand,

condition (2 ′) is sufficient, and the proof is almost the same as for the original version of proposition

2.1.3. Only one change is needed. Before we used the fact that

if ξa is a timelike vector at some point, and ηa is an arbitrary vector there, then there is an

ǫ > 0 such that, for all x, if |x| < ǫ, then (ξa + xηa) is timelike.

Now we use the corresponding assertion with both occurences of “timelike” changed to “spacelike”.

Problem 2.2.1 Let p be a point in M . Show that there is no two-dimensional subspace of Mp all of

whose elements are causal (timelike or null).

Assume there are non-zero, linearly independent vectors αa and βa at p such that, for all k and l, the

vector (k αa + l βa) is causal. We derive a contradiction.

There are two cases to consider. Either (i) one of the two is timelike, or (ii) both are null. Assume

first that one of the two, say αa, is timelike. If we set

k = − (αmβ
m)

(αnαn)
l = 1,

then αn(k αn + l βn) = 0, i.e., (k αa + l βa) is orthogonal to the timelike vector αa. Since (k αa + l βa)

is causal, it follows from the first clause of proposition 2.2.1 that (k αa + l βa) = 0. This contradicts our

assumption that αa and βa are linearly independent. Assume next that αa and βa are both null. Then,

for all k and l,

0 ≤ (k αn + l βn)(k αn + l βn) = 2 k l (αnβn),

since (k αa + l βa) is causal. But this can hold for all k and l only if (αnβn) = 0. Hence, by the second

clause of proposition 2.2.1, αa and βa must be proportional to one another. Once again, this contradicts

our assumption that they are linearly independent.

Problem 2.2.2 Let g′ab be a second metric on M (not necessarily of Lorentz signature). Show that the

following conditions are equivalent.

(1) For all p in M , gab and g′ab agree on which vectors at p are orthogonal.
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(2) g′ab is conformally equivalent to either gab or −gab.

The implication (2) ⇒ (1) is immediate. For the other direction, assume (1) holds. It follows from (1)

that gab and g′ab agree as to which vectors are null, i.e., orthogonal to themselves. So it will suffice to

show that g′ab has signature (1, 3) or (3, 1). For then we can invoke proposition 2.1.1 and conclude that

g′ab is conformally equivalent to gab (in the first case) or to −gab (in the second case).

Let p be any point in M , and let
1

ξa, ...,
4

ξa be an orthonormal basis at p with respect to gab. Consider

the vector (
1

ξa +
2

ξa). It is null with respect to gab. So it must be null with respect to g′ab. Furthermore,

since
1

ξa and
2

ξa are orthogonal with respect to gab, they must be orthogonal with respect to g′ab. So we

have

0 = g′ab (
1

ξa +
2

ξa)(
1

ξb +
2

ξb) = g′ab
1

ξa
1

ξb + g′ab
2

ξa
2

ξb.

Similarly, we have

0 = g′ab
1

ξa
1

ξb + g′ab
3

ξa
3

ξb

0 = g′ab
1

ξa
1

ξb + g′ab
4

ξa
4

ξb.

Now let Xi = g′ab
i

ξa
i

ξb, for i = 1, ..., 4. The Xi are non-zero — since the vectors
i

ξa are non-null with

respect to gab. So there are only two possibilities. Either X1 > 0 and X2, X3, X4 < 0, or X1 < 0 and

X2, X3, X4 > 0. In the first case, g′ab has signature (1, 3); in the second, it has signature (3, 1). (In

either case, we need only normalize the vectors
1

ξa, ...,
4

ξa to arrive at an orthonormal basis at p of the

appropriate type for g′ab.)

Problem 2.2.3 Prove the second clause of proposition 2.2.3.

Let µa and νa be co-oriented, non-zero causal vectors at a point p. Then either (µnνn) > 0, or both

vectors are null and µa = k νa for some k > 0. In the latter case, ‖µa + νa‖ = ‖µa‖ = ‖νa‖ = 0, and the

assertion follows trivially. So we may assume (µnνn) > 0. Hence, by the first clause of proposition 2.2.3,

(µnνn) ≥ ‖µa‖ ‖νa‖. Therefore,

(‖µa‖ + ‖νa‖)2 = ‖µa‖2 + 2 ‖µa‖ ‖νa‖ + ‖νa‖2 ≤ (µnµn) + 2 (µnνn) + (νnνn)

= (µn + νn) (µn + νn) = ‖µa + νa‖2.

(For the final equality we need the fact µa and νa are co-oriented. Otherwise, (µa + νa) need not be

causal.) Equality holds here iff (µnνn) = ‖µa‖ ‖νa‖. But by the first half of the proposition, again, this

is the case iff µa and νa are proportional.

Problem 2.5.1 Give examples for each of the following possibilities.

(1) A smooth symmetric field Tab that does not satisfy the WEC.

(2) A smooth symmetric field Tab that satisfies the WEC but not the DEC.
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(3) A smooth symmetric field Tab that satisfies the DEC but not the SDEC.

(1) Tab = −gab. (2) Tab = σa σb, where σa is a smooth spacelike field. (3) Tab = λa λb, where λa is a

smooth, non-zero null field.

Problem 2.5.2 Show that the DEC holds iff given any two co-oriented timelike vectors ξa and ηa at a

point, Tab ξ
a ηb ≥ 0.

Suppose first that the DEC holds, and let ξa be a timelike vector at some point. Then Tab ξ
a ξb ≥ 0

and T ab ξ
b is a causal vector. We claim that Tab ξ

a ηb ≥ 0 for all timelike ηa at the point that are co-

oriented with ξa. We may assume that Tab ξ
a 6= 0, since otherwise the claim is trivial. And in this case

it follows that Tab ξ
a ξb > 0 (since otherwise Tab ξ

a is a non-zero causal vector that is orthogonal to the

timelike vector ξb, which is impossible by proposition 2.2.1). So T ab ξ
b is a non-zero causal vector that is

co-oriented with ξa. Now let ηa be any timelike vector at the point that is co-oriented with ξa. It must

be co-oriented with T ab ξ
b as well (since co-orientation is an equivalence relation). So Tab ξ

a ηb > 0.

For the converse, suppose that given any two co-oriented timelike vectors ξa and ηa at a point,

Tab ξ
a ηb ≥ 0. Let ξa be a timelike vector at some point. It follows immediately (taking ηa = ξa) that

Tab ξ
a ξb ≥ 0. So what we have to show is that T ab ξ

b is a causal vector. Suppose to the contrary that it

is spacelike. Then we can find a timelike vector
o
ηa at the point, co-oriented with ξa, that is orthogonal to

T ab ξ
b. But since

o
ηa is timelike, (

o
ηa + k T ab ξ

b) is also timelike and co-oriented with ξa for all sufficiently

small k > 0. Hence, by our initial assumption,

0 ≤ Tab ξ
a(
o
ηb + k T bn ξ

n) = k (Tab ξ
a) (T bn ξ

n)

for all sufficiently small k > 0. But this is impossible since (Tab ξ
a)(T bn ξ

n) < 0. So, as claimed, T ab ξ
b

is causal.

Problem 2.5.3 Consider a perfect fluid with four-velocity ηa, energy density ρ, and pressure p.

(i) Show that it satisfies the DEC iff |p| ≤ ρ. (ii) Show that it satisfies the SDEC iff it satisfies the

DEC.

(i) Suppose Tab = ρ ηa ηb − p (gab − ηa ηb). Then Tab satisfies the DEC condition at a point iff for all

unit timelike vectors ξa at that point, Tab ξ
a ξb ≥ 0 and T ab ξ

b is causal. Now for all such vectors

Tab ξ
a ξb = (ρ+ p)(ηaξa)

2 − p,

(T ab ξ
b)(Tac ξ

c) = (ρ2 − p2)(ηaξa)
2 + p2.

So the DEC holds iff both right-side expressions are non-negative for all choices of ξa.

Assume first that |p| ≤ ρ, and let ξa be a unit timelike vector at the point in question. Then, by the

wrong-way Schwarz inequality (proposition 2.2.3), (ηaξa)
2 ≥ ‖ηa‖2 ‖ξa‖2 = 1. Hence,

(ρ+ p)(ηaξa)
2 − p ≥ (ρ+ p) − p = ρ ≥ 0,

(ρ2 − p2)(ηaξa)
2 + p2 ≥ (ρ2 − p2) + p2 = ρ2 ≥ 0.
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So the DEC holds at the point. Conversely, suppose that Tab ξ
a ξb ≥ 0 and T ab ξ

b is causal for all unit

timelike vectors ξa at the point. Then, in particular, Tab η
a ηb ≥ 0 and, therefore, 0 ≤ (ρ+p)(ηaηa)

2−p =

(ρ+p)−p = ρ there. Next we use the fact that there is no upper bound to the value of (ηaξa)
2 as ξa ranges

over unit timelike vectors at the point. It cannot possibly be the case that (ρ2 − p2)(ηaξa)
2 + p2 ≥ 0

for all such vectors unless (ρ2 − p2) ≥ 0. So we have ρ ≥ 0 and (ρ2 − p2) ≥ 0. These two together are

jointly equivalent to |p| ≤ ρ, as required.

(ii) The SDEC implies the DEC (always, not just for perfect fluids). Suppose that at some point

Tab = ρ ηa ηb − p (gab − ηa ηb) satisfies the DEC but not the SDEC. Then there is a timelike vector ξa

at the point such that T ab ξ
b is null even though Tab 6= 0 there. We claim this is impossible. If T ab ξ

b

is null, then, (ρ2 − p2)(ηaξa)
2 + p2 = 0. But |p| ≤ ρ, since we are assuming that the DEC holds, and

ηaξa 6= 0 (since no two timelike vectors are orthogonal). So this equation can hold only if ρ = p = 0, and

this contradicts our assumption that Tab 6= 0 at the point in question.

Problem 2.6.1 Show that Maxwell’s equations in the source free case (Ja = 0) are conformally invariant.

Let g′ab = Ω2 gab be a second metric on the underlying manifold M , whose dimension n we leave open.

Let its associated derivative operator be ∇′. It will suffice for us to show that

∇′
a (g′am g′bn Fmn) =

1

Ω4
(∇aF

ab) +
(n− 4)

Ω5
F ab∇a Ω.

We know from proposition 1.9.5 that ∇′ = (∇, Cabc), where

Cabc = − 1

2 Ω2

[
δab∇cΩ2 + δac∇bΩ2 − gbc g

ar∇r Ω2
]
.

We have

∇′
a (g′am g′bn Fmn) = g′am g′bn∇′

a Fmn = Ω−4 gam gbn∇′
a Fmn

= Ω−4 gam gbn [∇a Fmn + Cram Frn + Cran Fmr] .

Now

Ω−4 gam gbn Cram Frn = − 1

2 Ω6
gam gbn

[
δra∇mΩ2 + δrm∇aΩ2 − gam g

rs∇sΩ2
]
Frn

= − 1

2 Ω6

[
Fmb∇m Ω2 + F ab∇a Ω2 − nF sb∇s Ω2

]

=
(n− 2)

Ω5
F ab∇a Ω

and (since Fab is anti-symmetric and, therefore, grm Fmr = 0),

Ω−4 gam gbn Cran Fmr = − 1

2 Ω6
gam gbn

[
δra∇nΩ2 + δrn∇aΩ2 − gan g

rs∇sΩ2
]
Fmr

= − 1

2 Ω6

[
grm Fmr g

bn∇n Ω2 + F ab∇a Ω2 − F bs∇s Ω2
]

= − 2

Ω5
F ab∇a Ω.
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So, as needed, we have

∇′
a (g′am g′bn Fmn) =

1

Ω4
(∇aF

ab) +
(n− 4)

Ω5
F ab∇a Ω.

Problem 2.6.2 Prove (2.6.19).

We have

ǫabcd FabFcd = ǫabcd
[
2E[a ξb] + ǫabrs ξ

rBs
] [

2E[c ξd] + ǫcdmn ξ
mBn

]
.

When we expand the right side, we get four terms. Two of them vanish because of the anti-symmetry of

ǫabcd:

ǫabcdE[a ξb]E[c ξd] = ǫabcdEa ξbEc ξd = 0,

ǫabcd ǫabrs ξ
rBs ǫcdmn ξ

mBn = − 4 δc[r δ
d
s] ξ

rBs ǫcdmn ξ
mBn = − 4 ξcBd ǫcdmn ξ

mBn = 0.

One of the other terms yields

2 ǫabcdE[a ξb] ǫcdmn ξ
mBn = 2 ǫcdab ǫcdmnEa ξb ξ

mBn = − 8 δa[m δ
b
n]Ea ξb ξ

mBn = 4EaBa,

since ξaEa = ξaBa = 0. The other yields 4EaBa as well. (The computation is almost exactly the same.)

So we have

ǫabcd FabFcd = 8EaBa.

Problem 2.6.3 Prove (2.6.21).

By (2.6.17), we have

(Tab ξ
b)(T ac ξc) =

[
1

2
(−EnEn −BnBn) ξa − ǫarsE

rBs
][

1

2
(−EmEm −BmBm) ξa − ǫapq EpBq

]
.

The two “cross-terms” on the right vanish since ξaǫ
apq = ξaǫ

apqn ξn = 0. So

(Tab ξ
b)(T ac ξc) =

1

4
(EnEn +BnBn)2 + ǫarsE

rBs ǫapq EpBq.

But

ǫarsE
rBs ǫapq EpBq = ǫarsn ξ

n ǫapqm ξmE
rBsEpBq = −6E[pBq ξm]EpBq ξm

= −
[
(EpEp)(B

qBq) − (EpBp)
2
]
.

So we may conclude, as required, that

(Tab ξ
b)(T ac ξc) =

1

4
(EnEn −BnBn)

2 + (EnBn)2.

Problem 2.6.4 Prove the following equivalence.

∇a F
ab = Jb ⇐⇒





DbE
b = µ

ǫabcDbBc = ξb∇bE
a + ja.
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Clearly, (∇a F
ab − Jb) vanishes iff its projections tangent to, and orthogonal to, ξb both vanish, i.e.,

∇a F
ab = Jb ⇐⇒





ξb (∇a F

ab − Jb) = 0

hcb (∇a F
ab − Jb) = 0.

We shall work on the right-side equations separately. Since ξa (and, therefore, hab) are constant, and

since Ea is orthogonal to ξa,

ξb (∇a F
ab − Jb) = ∇a (F abξb) − (Jbξb) = ∇a E

a − µ = ∇a (han h
n
mE

m) − µ

= hab h
b
m∇a E

m − µ = DbE
b − µ.

This gives us the first equivalence. The second is handled similarly using (2.6.12) and (2.6.13). We have

hcb (∇a F
ab − Jb) = ∇a (F abhcb) − (Jbhcb) = ∇a (F abhcb) − jc

and

∇a (F abhcb) = ∇a

[
(2E[a ξb] + ǫabrs ξr Bs)h

c
b

]
= − ξa∇a E

c + ǫabrs ξr h
c
b∇aBs

= − ξa∇aE
c + ǫcas∇aBs = − ξa∇aE

c + (ǫcmn ham h
s
n)∇aBs

= − ξa∇aE
c + ǫcmnDmBn.

So

hcb (∇a F
ab − Jb) = 0 ⇐⇒ ǫcmnDmBn = ξa∇aE

c + jc.

Problem 2.7.1 Show that in the general case (n ≥ 3), inversion of (2.7.3) leads to

Rab = 8 π

(
Tab −

1

(n− 2)
T gab

)
− 2

(n− 2)
λ gab.

Contraction of

Rab − 1

2
Rgab − Λ gab = 8 π Tab

yields

R − 1

2
Rn − Λn = 8 π T,

or, equivalently,
(2 − n)

2
R = 8 π T + nΛ.

So, substitution for R in the first equation yields

Rab = 8 π Tab +
1

2
Rgab + Λ gab = 8 π Tab +

1

(2 − n)
(8 π T + nΛ) gab + Λ gab

= 8 π

(
Tab −

1

(n− 2)
T gab

)
− 2

(n− 2)
λ gab,

as required.

Problem 2.7.2 Give examples of the following.
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(1) A smooth symmetric field Tab that satisfies the SDEC (and so also the WEC and DEC) but not the

strong energy condition

(2) A smooth symmetric field Tab that satisfies the strong energy condition but not the WEC (and so

not the DEC or SDEC either)

For (1), take Tab = gab. It satisfies the SDEC. But in this case, Tab − 1
2gabT = −gab, and so it does

not satisfy the SEC.

For (2), take Tab = −gab. It does not satisfy the WEC. But in this case, Tab − 1
2gabT = gab, so it does

satisfy the SEC.

Problem 2.7.3 Consider a perfect fluid with four-velocity ηa, energy density ρ, and pressure p. Show

that it satisfies the strong energy condition iff (ρ+ p) ≥ 0 and (ρ+ 3p) ≥ 0.

If
Tab = ρ ηa ηb − p (gab − ηa ηb),

then T = (ρ− 3 p), and
Tab −

1

2
gab T = (ρ+ p) ηa ηb +

(p− ρ)

2
gab.

It follows that Tab satisfies the SEC iff, given any unit timelike vector ξa at any point,

(ρ+ p)(ηaξ
a)2 +

(p− ρ)

2
≥ 0.

Now (ηaξ
a)2 ≥ 1 by the Schwarz inequality. So if (ρ+ p) ≥ 0 and (ρ+ 3p) ≥ 0, then

(ρ+ p)(ηaξ
a)2 +

(p− ρ)

2
≥ (ρ+ p) +

(p− ρ)

2
=

(ρ+ 3p)

2
≥ 0,

and the inequality is satisfied. Conversely, suppose it is satisfied for all unit timelike vectors ξa at some

point. Then, in particular, it is satisfied for ξa = ηa, which yields (ρ + 3p) ≥ 0. And since (ηaξ
a)2 can

assume arbitrarily large values as ξa ranges over all unit timelike vectors at a point, it must be the case

that (ρ+ p) ≥ 0.

Problem 2.8.1 Prove (2.8.8).

It follows from the definition (2.8.6) of the twist vector that

ǫabcd ξ
cωd =

1

2
ǫabcd ξ

cǫdmnr ξm ωnr = 3 δm[a δ
n
b δ
r
c] ξ

c ξm ωnr = 3 ξc ξ[a ωbc] = ωab.

For the final equality, we use the fact that ξa is orthogonal to ωab in both indices (and ωab is anti-

symmetric).

Problem 2.8.2 Show that, at any point, ωa = 0 iff ξ[a∇b ξc] = 0.

We know from (2.8.7) and the anti-symmetry of ǫabcd that

ωa =
1

2
ǫabcd ξb∇c ξd =

1

2
ǫabcd ξ[b∇c ξd].
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So the “if” half of the equivalence follows immediately. For the other direction, assume that ωa = 0 holds

at some point. Then at that point we have

0 = ǫamnr ω
a =

1

2
ǫamnr ǫ

abcd ξ[b∇c ξd] = − 3 δb[m δ
c
n δ

d
r] ξ[b∇c ξd] = − 3 ξ[m∇n ξr].

Problem 2.8.3 Complete the calculation in (2.8.10).

We have to compute
ω a
b ηb ωca η

c

ρn ρn
.

We work separately with the numerator and denominator. It follows, first, from (2.8.8) that

ω a
b ηb ωca η

c = (ǫb
a
mn ξ

m ωn) ηb (ǫcars ξ
r ωs) ηc = ǫabmn ηb ξm ωn ǫacrs η

c ξr ωs

= − 6 δb[c δ
m
r δ

n
s] ηb ξm ωn η

c ξr ωs = − 6 η[c ξr ωs] η
c ξr ωs

= −
[
(ηcη

c)(ωsω
s) − (ηs ω

s)2
]
.

(For the final equality, we use the fact that we are doing the computation at the “initial point” where ηa

is orthogonal to ξa.) And, since

ρn = ηn − ηb ωb
ωm ωm

ωn,

we have

ρnρn =

[
ηn − ηb ωb

ωm ωm
ωn
][
ηn − ηc ωc

ωr ωr
ωn

]
= (ηn ηn) − 2

(ηc ωc)
2

ωr ωr
+

(ηc ωc)
2

ωr ωr

=
1

(ωr ωr)

[
(ηnηn)(ωs ωs) − (ηc ωc)

2
]
.

So,

ω a
b ηb ωca η

c

ρn ρn
= −ωrωr,

as required.

Problem 2.9.1 Let κa be a timelike Killing field that is locally hypersurface orthogonal (κ[a∇b κc] = 0).

Further, let κ be the length of κa. (So κ2 = κnκn.) Show that

κ2 ∇a κb = − κ[a∇b] κ
2.

This follows with a simple direct computation:

0 = 3 κc κ[a∇b κc] = κa κ
c∇b κc + (κc κc)∇a κb + κb κ

c∇c κa

= κa κ
c∇b κc + (κc κc)∇a κb − κb κ

c∇a κc

=
1

2
κa∇b κ

2 + κ2 ∇a κb − 1

2
κb∇a κ

2 = κ2 ∇a κb + κ[a∇b] κ
2.
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Problem 2.9.2 Consider a non-trivial boost Killing field κb = 2χaE[a ξb] on Minkowksi spacetime (as

determined relative to some point p and some constant unit timelike field ξa). “Non-trivial” here means

that Ea 6= 0. Let ηa be a constant field on Minkowski spacetime. Show that £κ η
a = 0 iff ηa is orthogonal

to both to ξa and Ea.

Since ηa is constant

£κ η
a = κn∇n η

a − ηn∇n κ
a = − ηn∇n κ

a = − 2 ηn∇n (χmE
[m ξa])

= − 2E[m ξa] ηn∇n χm = − 2E[m ξa] ηn gnm = (ξm ηm)Ea − (Em ηm)ξa.

Since ξa and Ea are linearly independent, we see that £κ η
a = 0 iff (ξm ηm) = 0 = (Em ηm).

Problem 2.9.3 This time, consider a non-trivial rotational Killing field κb = χa ǫabcd ξ
cBd on

Minkowski spacetime (with Ba 6= 0). Again, let ηa be a constant field on Minkowski spacetime. Show

that £κ η
a = 0 iff ηa is a linear combination of ξa and Ba.

The argument is very much the same as with the preceding problem. If ηa is constant,

£κ η
a = − ηn∇n κ

a = − ηn∇n (χm ǫmacd ξ
cBd)

= − ǫmacd ξ
cBd ηn∇n χm = − ǫmacd ξ

cBd ηn gnm = ǫamcd η
m ξcBd.

Thus £κ η
a = 0 iff ηa has no component orthogonal to both ξa and Ba.

Problem 2.9.4 Let κa be a Killing field; let γ : I → M be a smooth, future-directed, timelike curve,

with unit tangent field ξa; and let J = (P aκa), where P a = mξa. Finally, let αa = ξn∇nξ
a and

α = (−αn αn)
1
2 . Show that

|ξn∇nJ | ≤ α
√
J2 − m2 (κnκn).

We have seen that

ξn∇nJ = mκa ξ
n∇n ξ

a = mκa α
a.

Now consider the projected spatial metric hab = gab − ξaξb. It is negative definite. So by the Schwarz

inequality (as applied to −hab) and the fact that ξaαa = 0,

|ξn∇nJ | = |mκa α
a| = |mhab α

a κb| ≤ (−hab αa αb)
1
2 (−m2 hab κ

a κb)
1
2

= α [J2 − m2 (κnκn)]
1
2 .

Problem 2.11.1 Confirm that the three stated solutions do, in fact, satisfy (2.11.18).

We consider just the k = −1 case. The others are handled similarly. We have to show that the solution

(in parametric form),

a(x) =
C

2
(coshx − 1)

t(x) =
C

2
(sinhx − x)
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does, in fact, satisfy (2.11.18) for all x ∈ (0, ∞). Note that (dt/dx) is strictly positive in this interval.

So by the inverse function theorem, (dx/dt) is everywhere well defined and equal to (dt/dx)−1. Thus, we

have

ȧ =
da

dt
=

da

dx

(
dt

dx

)−1

=
sinhx

coshx− 1
.

Therefore

ȧ2 − C

a
− 1 =

(
sinhx

coshx− 1

)2

− 2

(coshx− 1)
− 1 = 0.

Problem 2.11.2 Consider a second equation of state, namely that in which ρ = 3 p. Show that in this

case there is a number C′ such that

ȧ2 a2 + k a2 =
8π

3
ρ a4 = C′.

If we multiply the right side of (2.11.16) by 3, and equate it with the right side of (2.11.15), we arrive

at

(
ȧ

a
)2 +

k

a2
= −2

ä

a
− (

ȧ

a
)2 − k

a2

or, equivalently,

ä a + ȧ2 + k = 0.

It follows (by integration) that ȧ2 a2 + k a2 = C′, for some number C′. It then further follows from

(2.11.15) that C′ = (8 π/3) ρ a4.
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(Springer Lecture Notes in Logic 6). Springer Verlag, 1996.

[19] D. Farnsworth and R. Kerr. Homogeneous dust-filled cosmological solutions. Journal of Mathematical

Physics, 7:1625–1632, 1966.

[20] H. Flanders. Differential Forms. Academic Press, 1963.

[21] K. Friedrichs. Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und der
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[26] K. Gödel. Rotating universes in general relativity theory. In Proceedings of the International Congress

of Mathematicians; Cambridge, Massachusetts, U.S.A. August 30-September 6, 1950, volume I.

American Mathematical Society, 1952.



BIBLIOGRAPHY 294
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