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Preface

This manuscript began life as a set of lecture notes for a two-quarter (20 week) course on the foundations
of general relativity that I taught at the University of Chicago many years ago. I have repeated the
course quite a few times since then, both there and at the University of California, Irvine, and have over
the years steadily revised the notes and added new material. Maybe now the notes can stand on their

own.

The course was never intended to be a systematic survey of general relativity. There are many standard
topics that I do not discuss, e.g., the Schwarzschild solution and the “classic tests” of general relativity.
(And I have always recommended that students who have not already taken a more standard course in
the subject do some additional reading on their own.) My goals instead have been to (i) present the basic
logical-mathematical structure of the theory with some care, and (ii) consider additional special topics
that seem to me, at least, of particular interest. The topics have varied from year to year, and not all

have found their way into these notes. I will mention in advance three that did.

The first is “geometrized Newtonian gravitation theory”, also known as “Newton-Cartan theory”. It is
now well known that one can, after the fact, reformulate Newtonian gravitation theory so that it exhibits
many of the qualitative features that were once thought to be uniquely characteristic of general relativity.
On reformulation, Newtonian theory too provides an account of four-dimensional spacetime structure in
which (i) gravity emerges as a manifestation of spacetime curvature, and (ii) spacetime structure itself
is “dynamical” in the sense that it participates in the unfolding of physics rather than being a fixed
backdrop against which it unfolds. It has always seemed to me helpful to consider general relativity
and this geometrized reformulation of Newtonian theory side by side. For one thing, one derives a sense
of where Einstein’s equation “comes from”. When one reformulates the empty-space field equation of
Newtonian gravitation theory (i.e., Laplace’s equation V2¢ = 0, where ¢ is the gravitational potential),
one arrives at a constraint on the curvature of spacetime, namely R,, = 0. The latter is, of course,
just what we otherwise know as (the empty-space version of) Einstein’s equation. And, reciprocally,
this comparison of the two theories side by side provides a certain insight into Newtonian physics. For
example, it yields a satisfying solution (or dissolution) to an old problem about Newtonian cosmology.
Newtonian theory in a standard textbook formulation seems to provide no sensible prescription for what

the gravitational field should be like in the presence of a uniform mass-distribution filling all of space.

v
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(See section 4.4.) But the problem is really just an artifact of the formulation, and it disappears when

one passes to the geometrized version of the theory.

The basic idea of geometrized Newtonian gravitation theory is simple enough. But there are compli-
cations, and I deal with some of them in the present expanded form of the lecture notes. In particular, I
present two different versions of the theory — what I call the “Trautman version” and the “Kiinzle-Ehlers
version” — and consider their relation to one another. I also discuss in some detail the geometric signifi-
cance of various conditions on the Riemann curvature field R%,.q that enter into the formulation of these

versions.

A second special topic that I consider is the concept of “rotation”. It turns out to be a rather delicate
and interesting question, at least in some cases, just what it means to say that a body is or is not rotating
within the framework of general relativity. Moreover, the reasons for this — at least the ones I have in
mind — do not have much to do with traditional controversy over “absolute vs. relative (or Machian)”
conceptions of motion. Rather they concern particular geometric complexities that arise when one allows
for the possibility of spacetime curvature. The relevant distinction for my purposes is not that between
attributions of “relative” and “absolute” rotation, but rather that between attributions of rotation that
can and cannot be analyzed in terms of motion (in the limit) at a point. It is the latter — ones that

make essential reference to extended regions of spacetime — that can be problematic.

The problem has two parts. First, one can easily think of different criteria for when an extended body
is rotating. (I discuss two examples in section 3.2.) These criteria agree if the background spacetime
structure is sufficiently simple, e.g., if one is working in Minkowski spacetime. But they do not agree in
general. So, at the very least, attributions of rotation in general relativity can be ambiguous. A body
can be rotating in one perfectly natural sense but not rotating in another, equally natural, sense. Second,
circumstances can arise in which the different criteria — all of them — lead to determinations of rotation
and non-rotation that seem wildly counterintuitive. (See section 3.3.) The upshot of this discussion is
not that we cannot continue to talk about rotation in the context of general relativity. Not at all. Rather,
we simply have to appreciate that it is a subtle and ambiguous notion that does not, in all cases, fully

answer to our classical intuitions.

A third special topic that I consider is Godel spacetime. It is not a live candidate for describing
our universe, but it is of interest because of what it tells us about the possibilities allowed by general
relativity. It represents a possible universe with remarkable properties. For one thing, the entire material
content of the Godel universe is in a state of uniform, rigid rotation (according to any reasonable criterion
of rotation). For another, light rays and free test particles in it exhibit a kind of boomerang effect. Most
striking of all, it admits closed timelike curves that cannot be “unrolled” by passing to a covering space
(because the underlying manifold is simply connected). In section 3.1, I review these basic features of
Godel spacetime and, in an appendix to that section, discuss how one can go back and forth between an

intrinsic characterization of the Gédel metric and two different coordinate expressions for it.
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These three special topics are treated in chapters 3 and 4. Much of this material has been added over
the years. The original core of the lecture notes — the review of the basic structure of general relativity

— is to be found in chapter 2.

Chapter 1 offers a preparatory review of basic differential geometry. It has never been my practice to
work through all this material in class. I have limited myself there to “highlights” and general remarks.
But I have always distributed the notes so that students with sufficient interest can do further reading on
their own. On occasion, I have also run a separate “problem session” and used it for additional coaching
on differential geometry. (A number of problems, with solutions, are included in the present version of
the notes.) I suggest that readers make use of chapter 1 as seems best to them — as a text to be read
from the beginning, as a reference work to be consulted when particular topics arise in later chapters, as

something in between, or not at all.

I would like to use this occasion to thank a number of people who have helped me over the years to
learn and better understand general relativity. I could produce a long list, but the ones who come first,
at least, are John Earman, David Garfinkle, Robert Geroch, Clark Glymour, Howard Stein, and Robert
Wald. I am particularly grateful to Bob; and Boby for allowing this interloper from the Philosophy
Department to find a second home in the Chicago Relativity Group. Anyone familiar with their work,

both research and expository writings, will recognize their influence on this set of lecture notes.

Erik Curiel, Sam Fletcher, David Garfinkle, John Manchak, and Jim Weatherall have my thanks, as

well, for the comments and corrections they have given me on earlier drafts of the manuscript.

Matthias Kretschmann was good enough some years ago to take my handwritten notes on differential

geometry and set them in TEX. I took over after that, but I might not have started without his push.

Finally, Pen Maddy has helped me to believe that this project was worth completing. I shall always

be grateful to her for her support and encouragement.



Chapter 1

Differential Geometry

1.1 Manifolds

We assume familiarity with the basic elements of multivariable calculus and point set topology. The
following notions, in particular, should be familiar.

R™ (for n > 1) is the set of all n-tuples of real numbers = = (z!,...,2™). The Euclidean inner product

(or “dot product”) on R™ is given by x -y = zly' + ... + 2"y". It determines a norm |z| = /7.
Given a point € R™ and a real number ¢ > 0, Be(z) is the open ball in R™ centered at z with radius
€, i.e., Be(x)={y:|ly—z| <e€}. Clearly, x belongs to Bc(x) for every € > 0. A subset S of R is open
if, for all points x in S, there is an € > 0 such that B.(x) C S. This determines a topology on R™. Given
m,n >1,and amap f: O — R™ from an open set O in R™ to R™, f is smooth (or C*) if all its mixed

partial derivatives (to all orders) exist and are continuous at every point in O.

A smooth n-dimensional manifold (n > 1) can be thought of as a point set to which has been added the
“local smoothness structure” of R™. Our discussion of differential geometry begins with a more precise

characterization.!

Let M be a non-empty set. An n-charton M is a pair (U, ¢) where U is a subset of M and ¢: U — R"
is an injective (i.e., one-to-one) map from U into R™ with the property that ¢[U] is an open subset of R”™.
(Here [U] is the image set {¢(p) : p € U}.) Charts, also called “coordinate patches”, are the mechanism
with which one induces local smoothness structure on the set M. To obtain a smooth n-dimensional
manifold, we must lay down sufficiently many n-charts on M to cover the set, and require that they are,

in an appropriate sense, compatible with one another.

Let (U1, ¢1) and (Ua, p2) be n-charts on M. We say the two are compatible if either the intersection
set U = U; NUs is empty, or the following conditions hold:

'In this section and several others in chapter 1, we follow the basic lines of the presentation in Geroch [22].
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(1) ¢1[U] and @2|U] are both open subsets of R™;

(2) w10yt a[U] — R™ and @0 @7 : p1[U] — R™ are both smooth.
(Notice that the second makes sense since ¢1[U] and ¢3[U] are open subsets of R™ and we know what it
means to say that a map from an open subset of R™ to R™ is smooth. See figure 1.1.1.)

The relation of compatibility between n-charts on a given set is reflexive and symmetric. But it need
not be transitive and, hence, not an equivalence relation. For example, consider the following three

1—charts on R:

Cy = (U1, 1) with Uy =(-1,1) and ¢i(z) =2

Cy = (U, p2) with Uy = (0,1) and po(z) ==

Cs = (Us,p3) with Uz = (—=1,1) and ¢3(z) = 23.

Pairs C and C5 are compatible, and so are pairs Cy and C3. But Cy and C5 are not compatible, because

the map 1 0p3"': (—1,41) — R is not smooth (or even just differentiable) at = = 0.

Figure 1.1.1: Two n-charts (Uy, 1) and (Us, p2) on M with overlapping domains.

We now define a smooth n-dimensional manifold (or, in brief, an n-manifold) (n > 1) to be a pair
(M, C) where M is a non-empty set, and C is a set of n-charts on M satisfying the following four

conditions.

(M1) Any two n-charts in C are compatible.

(M2) The (domains of the) n-charts in C cover M, i.e., for every p € M, there is an n-chart (U, ¢) in C
such that p € U.

(M3) (Hausdorff condition) Given distinct points p; and ps in M, there exist n-charts (Uy, ;1) and
(Ua, ¢2) in C such that p; € U; for i = 1,2, and Uy NUs is empty.

(M4) C is mazimal in the sense that any n-chart on M that is compatible with every n-chart in C

belongs to C.
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(M1) and (M2) are certainly conditions one would expect. (M3) is included, following standard practice,
simply to rule out pathological examples (though one does, sometimes, encounter discussions of “non-
Hausdorff manifolds”). (M4) builds in the requirement that manifolds don’t have “extra structure” in
the form of distinguished n-charts. (For example, we can think of the point set R™ as carrying a single
(global) n-chart. In the transition from the point set R™ to the nm-manifold R™ discussed below, this

“extra structure” is washed out.)

Because of (M4), it might seem a difficult task to specify an n-dimensional manifold. (How is one to
get a grip on all the different n-charts that make up a maximal set of such?) But the following proposition
shows that the specification need not be difficult. It suffices to come up with a set of n-charts on the
underlying set satisfying (M1), (M2), (M3), and then simply throw in wholesale all other compatible

n-charts.

Proposition 1.1.1. Let M be a non-empty set, let Cy be a set of n-charts on M satisfying conditions
(M1),(M2),(M3), and let C be the set of all n-charts on M compatible with all the n-charts in Co. Then

(M, C) is an n-manifold, i.c., C satisfies all four conditions.

Proof. Since Cy satisfies (M1), Cy is a subset of C. It follows immediately that C satisfies (M2), (M3), and
(M4). Only (M1) requires some argument. Let Cy = (U1, ¢1) and Cz = (Us, ¢2) be any two n-charts
compatible with all n-charts in Cy. We show that they are compatible with one another. We may assume

that the intersection U; N Uy is non-empty, since otherwise compatibility is automatic.

First we show that o1[U;NUz] isopen. (A parallel argument establishes that ¢2[U1NUs] is open.)
Consider an arbitrary point of ¢1[U; NUs]. Tt is of the form ¢4 (p) for some point p € Uy NUs. Since Cy
satisfies (M2), there exists an n-chart C = (U, ) in Cyp whose domain contains p. So p € U NU; N Us.
Since C is compatible with both C; and C2, ¢[U NU;] and ¢[U N U] are open sets in R™, and the
maps

prop L olUNU;| = R", wpo@ s elUNU3] — R",
o't [UNTU] — R, popy': palUNTUs] — R,

are all smooth (and so continuous). Now ¢[U N U; NUs] 1is open, since it is the intersection of open
sets U NU1] and ¢[UNUz]. (Here we use the fact that ¢ is injective.) So ¢1[U NUL NUs] is
open, since it is the pre-image of ¢[U N Uy N Usz] under the continuous map ¢ o cpfl. But, clearly,
©1(p) € ;1 [UNU NU3], and ¢1[UNU; NU3] is a subset of ¢1[U1 NUsz]. So we see that our arbitrary
point ¢1(p) in ¢1[U; NUs] is contained in an open subset of 1[U; NUsz]. Thus ¢1[U; NUs] is open.

Next we show that the map (9o 301_1 :p1[Ur NU2] — R™ is smooth. (A parallel argument establishes
that ©1 0051 @a[U; NUz] — R™ is smooth.) For this it suffices to show that, given our arbitrary point
p1(p) in p1[U; NUs], the restriction of g0 <pf1 to some open subset of 1[U; NUs] containing ¢1(p)
is smooth. But this follows easily. We know that ¢1[U NU; NUs] is an open subset of ¢1[U1 N Us]
containing ¢1(p). And the restriction of 5 07! to @ [UNU; NUs] is smooth, since it can be
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realized as the composition of @ o' (restricted to o:[UNU; NUs)) with @0 @~! (restricted to
w[U NU; NUs)), and both these maps are smooth. O

Our definition of manifolds is less restrictive than some in that we do not include the following

condition.

(M5) (Countable cover condition) There is a countable subset {(U,, ¢,): n € N} of C whose domains
cover M, i.e., for all p in M, there is an n such that p € U,.

In fact, all the manifolds that one encounters in relativity theory satisfy (M5). But there is some advantage
in not taking the condition for granted from the start. It is simply not needed for our work until we
discuss derivative operators, i.e., affine connections, on manifolds in section 1.7. It turns out that (M5) is
actually a necessary and sufficient condition for there to exist a derivative operator on a manifold (given
our characterization). It is also a necessary and sufficient condition for there to ezist a (positive definite)
Riemannian metric on a manifold. (See Geroch [23]. The paper gives a nice example of a 2-manifold that

violates (M5).)

Our way of defining n-manifolds is also slightly non-standard because we jump directly from the point
set M to the manifold (M, C). In contrast, one often proceeds in two stages. One first puts a topology T
on M forming a topological space (M, 7). Then one adds the set of n-charts C to form the “manifold”
((M, 7), C). If one proceeds this way, one must require of every n-chart (U, ¢) in C that U be open, i.e.,
that U belong to 7, so that ¢: U — R™ qualifies as continuous.

Given our characterization of an n-manifold (M, C), we do not (yet) know what it means for a subset
of M to be “open”. But there is a natural way to use the n-charts in C to define a topology on M. We
say that a subset S of M is open if, for all p in S, there is an n-chart (U, ) in C such that p € U and
U C S. (This topology can also be characterized as the coarsest topology on M with respect to which,
for all n-charts (U,¢) in C, ¢ : U — R™ is continuous. See problem 1.1.3). It follows immediately that

the domain of every n-chart is open.

Problem 1.1.1. Let (M, C) be an n-manifold, let (U,¢) be an n-chart in C, let O be an open subset
of [U], and let O be its preimage o~ *[0]. (So, O CU.) Show that (O, ¢|o), the restriction of (U, p)

to O, is also an n-chart in C.

Problem 1.1.2. Let (M, C) be an n-manifold, let (U,¢) be an n-chart in C, and let O be an open set
i M such that UNO # &. Show that (U Nno, SD|UﬂO); the restriction of (U,p) to UNO, is also an
n-chart in C. (Hint: Make use of the result in problem 1.1.1. Strictly speaking, by the way, we do not
need to assume that U N O is non-empty. But that is the only case of interest.)

Problem 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets of M. (i) Show that

T is, in fact, a topology on M, i.e., it contains the empty set and the set M, and is closed under finite
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intersections and arbitrary unions. (ii) Show that T is the coarsest topology on M with respect to which

¢ : U — R™ is continuous for all n-charts (U, p) in C.

Now we consider a few examples of manifolds. Let M be R"™, the set of all ordered n-tuples of real
numbers. Let U be any subset of M that is open (in the standard topology on R"), and let ¢: U — R
be the identity map. Then (U, ) qualifies as an n-chart on M. Let Cy be the set of all n-charts on M of
this very special form. It is easy to check that Cy satisfies conditions (M1), (M2), (M3). If we take C to
be the set of all n-charts on M compatible with all n-charts in Cy, then it follows (by proposition 1.1.1)
that (M, C) is an n-manifold. We refer to it as “the manifold R™”. (Thus, one must distinguish among

the point set R™, the vector space R™, the manifold R™, and so forth.)

Next we introduce the manifold S™. The underlying set M is the set of points x = (z!,...,2"*!) €

R™*1 such that ||z|| = 1. For each i =1,...,n+ 1, we set

ur = {(@@, .., 2% . 2" e Mzt >0},

U~ = {(a',..,2% ..,a"™) e M:z' <0},

and define maps <p;r: U;r — R"™ and ¢;: U, — R" by setting

1 anrl) — (.Il, B i—1 IiJrl anrl)

o (@', ..., , v, o).

=p; (z7, ...,
(Ui+ and U, are upper and lower hemispheres with respect to the z’ coordinate axis; go?' and @, are
projections that erase the i*" coordinate of (z',...,2"").) The (n+ 1) pairs of the form (U;", ;)

3

and (U; ,p; ) are n-charts on M. The set C; of all such pairs satisfies conditions (M1) and (M2). For
all pe M and all € >0, if Bc(p) N M is a subset of U;" (respectively U, ), we now add to C; the
n-chart that results from restricting (U;", ) (respectively (U;,¢;)) to Be(p) N M. The expanded

set of n-charts Cy satisfies (M1), (M2), (M3). If, finally, we add to Cz all n-charts on M compatible with

all n-charts in Cy, we obtain the n-manifold S™.

We thus have the manifolds R™ and S™ for every n > 1. From these we can generate many more

manifolds by taking products and cutting holes.

Let My = (M1,C1) be an nj-manifold and let My = (M3,C2) be an no-manifold. The product
manifold My x Ms is an (n1 + ng)—manifold defined as follows. The underlying point set is just the
Cartesian product Mj x My, i.e., the set of all pairs (p1,p2) where p; € M; for i =1,2. Let (U, ¢1)
be an ni-chart in C; and let (Us, p2) be an na-chart in Co. We associate with them a set U and a map
@0: U — RM+72) - We take U to be the product U; x Us; and given (p1,p2) € U, we take ©((p1.p2))
to be (yl,..,y™, 2, ..., 2"2), where ©1(p1) = (v}, ...,y™), and @a(p2) = (2%, ...,2"2). So defined,
(U, ¢) qualifies as an (ng + ng)-chart on M; x Ms. The set of all (n1 + ng)-charts on M; x Ms obtained
in this manner satisfies conditions (M1), (M2), (M3). If we now throw in all n-charts on M; x M;
that are compatible with all members of this set, we obtain the manifold M; x Ms. Using this product
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construction, we generate the 2—manifold R! x S* (the “cylinder”), the 2—manifold S x S (the “torus”),

and so forth.

Next, let (M, C) be an n-manifold, and let S be a closed proper subset of M. (So M — S is a
non-empty open subset of M.) Further, let C’ be the set of all n-charts (U, ¢) in C where U C (M — S).
Then the pair (M — S,C’) is an n-manifold in its own right. (This follows as a corollary to the assertion

in problem 1.1.2.)

A large fraction of the manifolds one encounters in relativity theory can be obtained from the manifolds

R™ and S™ by taking products and excising closed sets.

We now define “smooth maps” between manifolds. We do so in two stages. First, we consider the
special case in which the second manifold (i.e., the one into which the first is mapped) is R. Then we
consider the general case. Let (M, C) be an n-manifold. We say that a map a: M — R is smooth (or
C*) if, for all n-charts (U, ) in C, aop~t:p[U] = R is smooth. (Here we use a standard technique.
To define something on an n-manifold we use the charts to pull things back to the context of R™ where
the notion already makes sense.) Next let (M’,C") be an m-manifold (with no requirement that m = n).
We say that a map v¢: M — M’ is smooth (or C*°) if, for all smooth maps o: M’ — R on the second
manifold, the composed map a o : M — R is smooth. One can check that the second definition is
compatible with the first (see problem 1.1.4), and with the standard definition of smoothness that applies
specifically to maps of the form : R” — R™.

Problem 1.1.4. Let (M, C) be an n-manifold. Show that a map a: M — R is smooth according to our
first definition (which applies only to real-valued maps on manifolds) iff it is smooth according to our

second definition (which applies to maps between arbitrary manifolds).

Let (M, C) and (M’,C’) be manifolds. The definition of smoothness just given naturally extends to
maps of the form 1 : O — M’ where O is an open subset of M (that need not be all of M). It does so
because we can always think of O as a manifold in its own right when paired with the charts it inherits
from C, i.e., the charts in C whose domains are subsets of O. On this understanding it follows, for example,
that if a map ¢: M — M’ is smooth, then its restriction to O is smooth. It also follows that given any

chart (U, ¢) in C, the maps ¢: U — R" and ¢~ ': p[U] — M are both smooth.

The point mentioned in the preceding paragraph will come up repeatedly. We shall often formulate
definitions in terms of structures defined on manifolds and then transfer them without comment to open
subsets of manifolds. It should be understood in each case that we have in mind the manifold structure

induced on those open sets.
Given manifolds (M, C) and (M’,C’), a bijection ¢ : M — M’ is said to be a diffeomorphism if
both v and ~! are smooth. Two manifolds are said to be diffeomorphic, of course, if there exists a

diffeomorphism between them, i.e., between their underlying point sets. Diffeomorphic manifolds are
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as alike as they can be with respect to their “structure”. They can differ only in the identity of their

underlying elements.
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1.2 Tangent Vectors

Let (M, C) be an n-manifold and let p be a point in M. In this section, we introduce the notion of a
“vector” (or “tangent vector” or “contravariant vector”) at p. We also show that the set of all vectors at

p naturally forms an n-dimensional vector space.

Consider first the familiar case of R™. A vector £ at a point in R™ can be characterized by its
components (£1,...,6") with respect to the n coordinate axes. This characterization is not available
for arbitrary n-manifolds where no coordinate curves are distinguished. But an alternate, equivalent

characterization does lend itself to generalization.

Let p be a point in R™. We take S(p) to be the set of all smooth maps f: O — R, where O is some
open subset (or other) of R™ that contains p. If fi: Oy — R and fo: Oy — R are both in S(p),
then we can define new maps (f1 + f2): O1 N O3 — R and (fif2): O1 N O3 — R in S(p) by setting
(fr+ f2)(@) = fila) + fa(q) and (f1f2)(q) = fi(q) f2(q) for all points ¢ in O1 N O.

Now suppose that £ is a vector at p in R™ with components (£, ...,€") and that f is in S(p). The

directional derivative of f at p in the direction £ is defined by:

€N =6 (V=3 ¢ 2-0) (121)

It follows immediately from the elementary properties of partial derivatives that, for all f1 and fs in S(p),

(DD1) &(f1+ f2) = &(f1) +E(f2)
(DD2) &(f1f2) = f1(p)E(f2) + fap) E(f1)

(DD3) If fy is constant, &(f1) =0.

Any map from S(p) to R satisfying these three conditions will be called a derivation (or directional
derivative operator) at p. Thus, every vector at p defines, via (1.2.1), a derivation at p. Indeed, we shall
see in a moment that (1.2.1) defines a bijection between vectors at p (understood as ordered n-tuples of
reals) and derivations at p. This will give us our desired alternate characterization of vectors in R™. But

first we need a lemma.

Lemma 1.2.1. Let f1: O1 — R and fa: O2 — R be elements of S(p) that agree on some open set
O C 01N 02 containing p. Then, for all derivations & at p, £(f1) = &(f2).

Proof. Let h: O — R be the constant map on O that assigns 1 to all points. Certainly h is in S(p). The
maps hf; and hfy have domain O and agree throughout O, i.e., hf1 = h fa. So &(h f1) = &(h fa).
But by (DD2) and (DD3),

§(h fr) = hp)§(f1) + frlp) E(h) = LE(f1) + f1(p) 0 = £(f1)-

Similarly, £(h fo) = &(f2). So &(f1) = &(f2), as claimed. O
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Proposition 1.2.2. Fquation (1.2.1) defines a bijection between vectors at p and derivations at p.

Proof. Suppose first that € = (£%,...,€") and n = (n!,...,n™) are vectors at p that, via (1.2.1), determine
the same derivation at p. Then &-(Vf), =n-(Vf),, forall fin S(p). Consider the special case where
f is the coordinate map z’: R® — R that assigns to a point in R its i'" coordinate. We have
- oz’ oz’ oz’

V), = o= s o5y ooy =—— =(0,...,0,1,0,...,0

( I)\p ((9:51’ "9’ 76(3”)’:0 (7 s Uy Ly Uy ey )7
where the sole 1 in the far right n-tuple is in the i*" position. So ¢ = ¢ (Va'), =n - (Va'), = n'.
But this is true for all i =1,...,n. Hence £ =1. Thus, the map from vectors at p to derivations at p

determined by (1.2.1) is injective.

Next, suppose that ¢ is a derivation at p and that the numbers ¢!, ...,£" are defined by &% = &(af).
We show that, for all f in S(p), &(f) = ifi gjz (p). That is, we show that & can be realized as
the image of (¢!, ...,€") under the map defu:;mined by (1.2.1). This will establish that the map is also
surjective.

Let f: O — R be a map in S(p). By the preceding lemma, we may assume that O is an open ball
centered at p. (If f’ is the restriction of f to an open ball centered at p, £(f) = £(f). So we lose

nothing by working with f’ rather than f.) If x is a point in O, it follows by the “fundamental theorem

of calculus” that )
d
f@) =10+ [ 5+t - p) de.
0
(We want the domain of f to be an open ball centered at p to insure that f is defined at all points on

the line segment connecting p and x.) By the “chain rule”,

%f(pﬂ(x —p) =) <§:;fi (p+t(a —p))> (z" —p").

i=1

Inserting the right side of this equation into the integrand above, we arrive at
f@)=fp)+ > gilx) (@ —p"), (1.2.2)
i=1

1
0
where, for all 4, the map g;: O — R is given by g;(z) = / / (p+t(x —p))dt. The g; belong to

oz’
0
S(p). It now follows from (DD1), (DD2) and (DD3) that

n

N = [m@ e —p) + (@ = p)0) &90)].

i=1
(Here we are construing the numbers f(p) and p!,...,p" as constant functions on O.) But (z°—p®)(p) =

pt—p' =0, and £(z' —p') = &(at) — £(p*) =€ — 0 =¢. So we have

§(f) =D ¢ 9ilw)
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0 "L, 0
But it follows from (1.2.2) that 8_]1(1?) =gi(p). So &(f) = Z{“Z 8;;

X -
i=1

(p), as claimed. O

With proposition 1.2.2 as motivation, we now give our definition of “vectors” at points of manifolds.
Given a manifold (M,C) and a point p in M, let S(p) be the set of smooth maps f: O — R where O
is some open subset (or other) of M that contains p. (Our prior remark about adding and multiplying

elements of S(p) carries over intact.) We take a vector (or tangent vector, or contravariant vector) at p

to be a map from S(p) to R that satisfies (DD1), (DD2), and (DD3).

The set of all vectors at p has a natural vector space structure (over R). If £ and 7 are vectors at p,

and k is a real number, we can define new vectors £ +7n and k& by setting

E+m(f) = &) +nlf),
EO) = k&),

for all f in S(p). The vector space M), so defined is call the tangent space to p. We shall soon show that
M, has dimension n, i.e., has the same dimension as (M,C). To do so, we give a second characterization

of vectors on manifolds that is of independent interest.

Let ~v: I — M be asmooth curve in M, i.e., a smooth map from an open interval I C R into M. (I
is of the form (a,b), (—o00,b), (a,+00), or (—oo, +00), where a and b are real numbers. We know what
it means to say that v: I — M is smooth since, as noted toward the end of section 1.1, we can think of
I as a manifold in its own right when paired with the charts it inherits from the manifold R.) Suppose
so € I and ~(so) = p. We associate with v a vector Wp at p by setting 7p(f) = %(f 07)(so) for all
f in S(p). (This definition makes sense since (f o) is a smooth map from I into R.) It is easy to check

that @, so defined, satisfies (DD1) — (DD3). For example, (DD2) holds for all f; and f5 in S since

Tis) = (507 )0 = (5 (o) (2o0)) ) oo

(f107)(s0) (d%(h 07))(80) + (f20)(s0) (%(fl 07))(80)

= £1(0) Vplfo) + () Vp(f1).

@ is called the tangent vector to v at p.

Suppose now that (U, ¢) is an n-chart in our n-manifold (M, C). Associated with (U, ¢) are coordinate
maps u': U — R fori=1,..,n defined by u’(q) = (z' 0 ¢)(q). (Thus, the number that u’ assigns
to a point ¢ in M is the one that 2% assigns to the image point ((q) in R™. Equivalently, u’(q) is the i*®
coordinate of ¢(q). So ¢(q) = (u'(q),....,u"(q)).)

Now let p be a point in U. We understand the i*" coordinate curve through ¢(p) = (u'(p), ..., u"(p))
in R™ to be the map from R to R™ given by

s (u'(p), ...’ (p),u'(p) + s,u" T (p), ... " (p)). (1.2.3)
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Figure 1.2.1: Coordinate curves on M with respect to (U, ¢).

The image of the curve is a line through ¢(p), parallel to the i coordinate axis through the origin (see

figure 1.2.1). We can pull this curve back to U via ¢! to obtain a smooth curve ~;: I — U through p:

Yi(s) = @ (' (), - ' (), u (p) + 5,0 (p), -y u (). (1.2.4)

Note that ~;(0) = p. (We can afford to be vague about the domain I of +; since we are interested only
in the tangent to the curve at p. All that matters is that 0 € I. How do we know that ~; is smooth?

L'is smooth, and so 7; is the composition of two smooth maps.) Extending our

This follows because ¢~
previous usage, we now refer to ; as the i coordinate curve through p with respect to (U, ). (Note
that coordinate curves through points in R™ are defined outright, but coordinate curves through points

in M are necessarily relativized to n-charts.) This curve has a tangent 5}1 |p at p. By the chain rule,

Tl = (o) (0) = (M) () 125)

for all f in S(p). We note for future reference, in particular, that since u/ = 27 o ¢,

Vi) = (gf) (¢(p) = dij- (1.2.6)

(Here 0;; is the Kronecker delta function that is 1 if ¢ = j, and 0 otherwise.) Sometimes the tangent

- 0] - 0
vector 7; is written as —, and V;(f) is written as —f Using this notation, and suppressing the point

out’ out’
of evaluation p, (1.2.5) and (1.2.6) come out as
of _9(fop™)
Dl py (1.2.7)
and )
ou?
o s 1.2
out 5] ( 8)

Using the tangent vectors % Ip> ®=1,...,n, we can show that M, is n-dimensional.

Proposition 1.2.3. Let (M, C) be an n-manifold, let (U, ) be an n-chart in C, let p be a point in U,
and let Y1, ...,7n be the n coordinate curves through p with respect to (U, ). Then their tangent vectors

5}1 Ip> s Ynjp @t p form a basis for M.
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Proof. First we show that the vectors are linearly independent. Let aq,...,a, be real numbers such that

> a; % ip = 0. We must show that the a; are all 0. Now for all f in S(p), we have
i=1

0= <2ai§ilp>(f) 22%%@(][)-

Consider the special case where f is the coordinate map u’/ = 270 ¢ on U. Then, by (1.2.6), % p(f) =

dij. So the equation reduces to 0 = a;. And this is true for all j=1,...,n.

Next, suppose that £ is a vector at p. We show that it can be expressed as a linear combination of the
?i |p- First we associate with £ a vector € at ¢(p). (In what follows, we shall be going back and forth
between the context of M and R™. To reduce possible confusion, we shall systematically use carets for
denoting objects associated with R™). We take é to be the vector whose action on elements f: O—R
in S(p(p)) is given by &) = §(f o). (This makes sense since foy isan element of S(p) with
domain ¢! [<p[U] QO} ) By proposition 1.2.2 (applied to é at ¢(p)), we know that there are real numbers
£, ..., €™ such that

L0
€)= ¢ 5 (v0)
i=1
for all f in S(¢(p)). Now let f:0 — R be an arbitrary element of S(p). Then foe!:p[ONU] — R
belongs to S(cp(p)). So, taking f = fo ¢~ ! in the preceding equation and using (1.2.5),

~ n . 8 o -1 n . —
(fop™)=> ¢ %(w(p)) =Y & Viplh).

i=1 i=1
But recalling how ¢ was defined, we also have: é(f oo ) =&((fop ) op) =&(f). Thus, &(f) =
Zn: & ?i‘p(f) for all f in S(p), ie., & = f: ¢ yilp' So, as claimed, £ can be expressed as a linear
i=1 i=1

1=

combination of the % Ip- O

It follows from proposition 1.2.3, of course, that every vector £ at p has a unique representation in the

form &= Y ¢ % lp- Equivalently, by (1.2.5),
i=1

§(f) = Zé Vi(f) = Zé % (v(p)) (1.2.9)

for all f in S(p). We refer to the coefficients &1, ...,£" as the components of & with respect to (U, ¢).

We know that every smooth curve through p determines a vector at p, namely its tangent vector at
that point. Using proposition 1.2.3, we can show, conversely, that every vector at p can be realized as

the tangent vector of a smooth curve through p.

Proposition 1.2.4. Given an n-manifold (M, C), a point p in M, and a vector & at p, there is a smooth

curve v through p such that ;)p =¢.
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Proof. Let (U, ) be an n-chart in C with p € U, and let u’ (i = 1,...,n) be the corresponding coordinate
maps on U. (Recall that u! = z%0 ¢.) By proposition 1.2.3, we know that there are real numbers &1 ..., &%

such that ¢ = > & i lp- Now let v: I — U be the smooth map defined by:
i=1

v(s) =" (u'(p) + &'s, . u(p) + €7s)

Note that v(0) = p. (The exact specification of the domain of v does not matter, but we may as well take
it to be the largest open interval I containing 0 such that, for all s in I, (u'(p)+ &'s, ..., u"(p) + £"s)
is in ¢[U].) For all f in S(p),

n

() = d%(f o) (0)=>" (%(s@@))) ¢

i=1

= > &) =)
i=1
(The second equality follows by the “chain rule”, and the third by equation (1.2.5).) Thus, @ =¢ O

So far, we have two equivalent characterizations of “vectors” at a point p of a manifold. We can take
them to be derivations, i.e., mappings from S(p) to R satisfying conditions (DD1) — (DD3), or take them
to be tangents at p to smooth curves passing through p. We mention, finally, a third characterization that
was the standard one before “modern” coordinate-free methods became standard in differential geometry.
It requires a bit of preparation. (This third characterization will play no role in what follows, and readers

may want to jump to the final paragraph of the section.)
Let (U1, 1) and (Us, p2) be n-charts on our background manifold (M, C) such that (U; N Us) # 0.
Let p be a point in (U; NUs). Further, for all i = 1,...,n, let 2'* : ¢1[U; NUz] — R be the map defined by

/7 i -1
r =X 0@20@1 y

where z° is the i*? coordinate map on R™. We can think of the z'* as providing a second coordinate

system on 1 [U; N Us] that is connected to the first by a smooth, invertible transformation
(zh, . ™) = (22t ™), 2 (2 2™)).

Proposition 1.2.5. Under the assumptions of the preceding paragraph, let & be a non-zero vector at
p whose components with respect to (U1, 1) and (Us,p2) are (€%, ....6") and (€'Y, ...,€'™). Then the

components obey the transformation law

) n _a/i
&= S5 (e0). (1:2.10)
=1

J
(Of course, they also obey its symmetric counterpart, with the roles of x* and & systematically inter-

changed with those of x'* and £'*.)
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Proof. Let f be any element of S(p). Then
Z&” fi(pl)(sm(p Z&” Lﬂ(wz(p))- (1.2.11)

Here we have simply expressed the action of £ on f in terms of the two sets of components (using (1.2.9)).

Hence, in particular, if f = 2/ 01 = x? 0@y 0 cpl_l 01 = % 0y, we get

Zsf o Z&’J o7 (P2(2) =€

In what follows, let C(p) be the set of charts in C whose domains contain p.

Problem 1.2.1. Let £ be a non-zero vector at p, and let (k*,...,k™) be a non-zero element of R™. Show
there exists an m-chart in C(p) with respect to which & has components (k*, ..., k™).

(Hint. Consider any n-chart (Uy, 1) in C(p), and let (€%, ...,6™) be the components of & with respect
to (U1, 1). Then there is a linear map from R™ to itself that takes (&', ...,€") to (k',....,k™). Let the

associated matriz have elements {a;;}. So, for alli=1,...,n, k= Z aij &7, Now consider a new chart
j=1
(Ua, @2) in C(p) where Uy = Uy and @2 is defined by the condition

z' oy = Zaij (27 0 1).
Show that the components of & with respect to (U, @2) are (k',...,k™).)

We have just seen that each vector £ at p (understood, say, as a derivation) determines a map from
C(p) to R™ satisfying the transformation law (1.2.10). (The map assigns to each n-chart the components
of the vector with respect to the n-chart.) It turns out, conversely, that every map from C(p) to R”
satisfying (1.2.10) determines a unique vector ¢ at p. It does so as follows. Let (U, 1) be an n-chart in

C(p). We stipulate that, for all maps f in S(p),
Zﬁj fiwl)(%(p)), (1.2.12)

where (£1,...,€") is the element of R™ associated with (U7, 7). We need only verify that this definition

is independent of our choice of n-chart.

Let (Us, o) be any other n-chart in C(p) with associated n-tuple (£¢'%,...,&™). Then, by assumption,
the latter are related to (¢!, ...,&") by (1.2.10). Now consider the map fo ;! : 1 [U; NUs] — R. It can
be realized as the composition of two maps f o 301_1 =(fo ()02—1) o(pgo cpl_l). Hence, by the chain rule,

WD) - 3 ) ) A2 ) )
k=1
fowst) 0x'"

[
NE

o (22(P) 5 (#1(p),

~
Il
—
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for all j. Hence, by (1.2.12) and (1.2.10),

n n o x/k
€ = ¢ Za 2 222) (o) 222 110

- 3 Lo | At o) - 3 e 2 )
k=1 | j=1

Thus, our definition of £ is, indeed, independent of our choice of n-chart. We could equally well have

formulated (1.2.12) using (Uz, p2) and (&', ..., &'™).

The upshot is that there is a canonical one-to-one correspondence between vectors at p and maps from

C(p) to R™ satisfying (1.2.10). This gives us our promised third (classical) characterization of the former.

There is a helpful picture that accompanies our formal account of tangent vectors and tangent spaces.
Think about the special case of a 2-manifold (M, C) that is a smooth surface in three-dimensional Eu-
clidean space. In this case, the tangent space to the manifold M, at a point p is (or can be canonically
identified with) the plane that is tangent to the surface at p. In traditional presentations of differential
geometry, vectors at points of manifolds are sometimes called “infinitesimal displacements”. The picture
suggests where this term comes from. A displacement from p on the surface M is approximated by a
tangent vector in M,,. The degree of approximation increases as the displacement on M shrinks. In the
limit of “infinitesimal displacements”, the two coincide. (Quite generally, statements about “infinitesimal

objects” can be read as statements about corresponding objects in tangent spaces.)
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1.3 Vector Fields, Integral Curves, and Flows

In what follows, let (M, C) be an n-manifold. (We shall often supress explicit reference to C.) A vector
field on M is a map & that assigns to every point p in M a vector {(p) in M,. (Sometimes we shall write
§|p for the value of the field £ at p rather than £(p).) We can picture it as field of arrows on M. Given
any smooth map f: M — R, ¢ induces a map &(f): M — R defined by &(f)(p) = §,(f). If &(f) is

smooth for all such f, we say that the vector field ¢ itself is smooth.

The proposed picture of a vector field as a field of arrows on M suggests that it should be possible
to “thread” the arrows — at least when the field is smooth — to form a network of curves covering M.

(See figure 1.3.1.) In fact, this is possible.

Figure 1.3.1: Integral curves “threading” the vectors of a smooth vector field.

Let & be a smooth vector field on M. We say that a smooth curve v:I — M is an integral curve of
Eif, forall sel, ;}7(5): 5(7(5)), i.e., if the tangent vector to v at y(s) is equal to the vector assigned
by & to that point. Intuitively, an integral curve of ¢ threads the arrows of £ and is so parametrized that
it “moves quickly” (i.e., covers a lot of M with each unit increment of the parameter s) where ¢ is large,
and “slowly” where £ is small. Let us also say that a smooth curve ~:I — M has initial value p if

0l and «(0) =p. The following is the basic existence and uniqueness theorem for integral curves.

Proposition 1.3.1. Let £ be a smooth vector field on M and let p be a point in M. Then there is
an integral curve ~y: I — M of & with initial value p that has the following mazimality property: if
v I' = M s also an integral curve of & with initial value p, then I' C I and ~'(s) = y(s) for all
sel.

It is clear that the curve whose existence is guaranteed by the proposition is unique. (For ifv': I’ — M
is another, we have I’ C I and I C I’, so I’ = I, and also 7/(s) = 7(s) for all s € I'.) It is called the
mazimal integral curve of ¢ with initial value p. It also clearly follows from the proposition that if ~ is
an integral curve of £ with initial value p, and if its domain is R, then v is maximal. (The converse is
false. Maximal integral curves need not have domain R. We shall soon have an example.) The proof of

the proposition, which we skip, makes use of the basic existence and uniqueness theorem for solutions to
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ordinary differential equations. Indeed, the proposition can be understood as nothing but a geometric

formulation of that theorem. (See, for example, Spivak [57, volume 1, chaper 5].)

Here are some examples. In the following, let ! and 22 be the standard coordinate maps on R2. (So

if p=(p',p?) € R, then z'(p) = p' and 2°(p) = p*.)

0
(1) Let £ be the “horizontal” vector field 5.1 O R2. (Given any point p and any function f in S(p),
x
of

—_— at p assigns to f the number ——
oxt P p & ! Oxl

initial value p = (p',p?) is the map ~v: R — R? with

the vector (p).) The maximal integral curve of ¢ with

v(s) = (p' + s, p*).

(The “vertical” vector field % is defined similarly.)
x

0 9]
(2) Let & be the “rotational” vector field —z°—— + z' — on R?. The maximal integral curve of &

2
ox! ox?
with initial value p = (p!,p?) is the map ~v: R — R? with

v(s) = (p' coss — p*sins, p'sins+ p*coss).
The image of v is a circle, centered at (0,0) that passes through p. (In the degenerate case where

p is (0,0), ~ is the constant curve that sits at (0,0).)

9] 0
(3) Let & be the “radial expansion” vector field xlﬁ + x2m on R2. The maximal integral curve
x x
of ¢ with initial value p = (p!,p?) is the map v: R — R? with

v(s) = (p"€*, p*e”).

If (p',p?) # (0,0), the image of ~ is a radial line starting from, but not containing, (0,0). If p is
(0,0), v is the constant curve that sits at (0,0).

Let us check one of these — say (2). The indicated curve is, in fact, an integral curve of the given

vector field since, for all s € R, and all f € S(y(s)), by the chain rule,

?’y(s) (fy = dii(foy)(s) = disf(p1 COoS § —pzsins, plsins+p2coss)
of 1 2 of 1 2
= L) (-ptsins — p?coss) + ST (1(5)) (o' coss — psins)
of of
= 520)) (=22 (1) + 57 (1)) (2" (+(9))
0 0
= (wphratan) 0
( Ox! Ox? (s
1 9 2 0 2 . .
Problem 1.3.1. Let £ be the vector field x 901 Tz om R“. Show that the mazimal integral curve
x T
of & with initial value p = (p*,p?) is the map ~v:R — R? with v(s) = (p*e®,p*e~*). (The image of v

1$2

is a (possibly degenerate) hyperbola satisfying the coordinate condition x =p'p?.)
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Next we consider reparametrizations of integral curves.

Proposition 1.3.2. Let £ be a smooth vector field on M, let ~v: I — M be an integral curve of &, and
let a:1I' — I be a diffeomorphism taking the interval I' to the interval I. Consider the reparametrized

curve v =~yoa:I' — M.
(1) If there is a number ¢ such that «(s) =s+c for all s € I', then ' is an integral curve of &.
(2) Conversely, if 7' is an integral curve of & and if £ is everywhere non-zero on y[I|, then there is a

number ¢ such that a(s) =s+c forallsel'.

Proof. Set t = a(s). For all s € I’ and all functions f € S(7/(s)), it follows by the chain rule (and the

definition of tangents to curves) that

- d d d da
Vo) = F-(fer)(s) = (fovea)(s) = (E(ﬁw))(a(s)) =)
- da
= Tren(H) Ts)
That is, for all s € I,
-, — da
V56 = Tatas) g (8): (1.3.1)
Since 7 is an integral curve of £, we also have
Vtatsy = E(v(al(s))) (1.3.2)

for all s € I'. Now 7/ is an integral curve of ¢ iff ?’7/(5) =£(v'(s)) = &(v(a(s))) forall seI'. So,
by (1.3.1) and (1.3.2), 4/ is an integral curve of £ iff

da
§(v(als) 7o () = €(v(als)) (1.3.3)
for all s € I'. This equation is the heart of the matter. If there is a ¢ such that a(s) =s+c foralls e I,
d
then d—j =1 everywhere, and so it follows immediately that (1.3.3) holds for all s € I’. This gives us

d
clause (1). Conversely, if (1.3.3) does hold for all s € I’, it must be the case that d_a = 1 everywhere.
s
(Here we use our assumption that &(v(a(s))) is non-zero for all s € I'.) So, clearly, & must be of the

form «a(s) = s+ ¢ for some number ¢. This gives us (2). O

The qualification in the the second clause of the proposition — that £ be non-zero on the image of ~y
— is necessary. (See problem 1.3.3.) The first clause of the proposition tells us that if v: I — M is an
integral curve of £, then so is the curve defined by setting +'(s) = v(s + ¢). We say that +/ is derived
from ~ by “shifting its initial value”. Several useful facts about integral curves follow from proposition
1.3.2 (together with proposition 1.3.1). We list three as problems. The first is a slightly more general

formulation of the existence and uniqueness theorem.
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Problem 1.3.2. (Generalization of proposition 1.3.1) Again, let & be a smooth vector field on M, and
let p be a point in M. But now let sy be any real number (not necessarily 0). Show that there is an
integral curve ~v: I — M of & with v(so) =p that is maximal in this sense: given any integral curve
v:I' =M of & if ¥ (so)=p, thenI' CI and ~'(s) =~(s) forall s inI'.

(Hint: Invoke proposition 1.53.1 and shift initial values.)

Problem 1.3.3. (Integral curves that go nowhere) Let & be a smooth vector field on M, and let v: T — M
be an integral curve of . Suppose that & vanishes (i.e., assigns the zero vector) at some point p € v[I].

Then the following both hold.

(1) v(s) =p for all sin I, i.e., v is a constant curve.

(2) The reparametrized curve v =~yoa: 1" — M is an integral curve of & for all diffeomorphisms
a:I' — 1.

(Hint: Think about the constant curve, with domain R, that assigns p to all s.)

Problem 1.3.4. (Integral curves cannot cross) Let v: 1 — M and ~' :I' — M be integral curves
of & that are mazimal (in the sense of problem 1.8.2) and satisfy ~v(so) =7'(sy). Then the two curves
agree up to a parameter shift: y(s) =+'(s+ (s — s0)) for all s € I.

Again, let £ be a smooth vector field on M. We say that £ is complete if, for every point p in M, the
maximal integral curve of £ with initial point p has domain R, i.e., is a curve of the form ~v: R — M.

For example, let M be the restriction of R? to the vertical strip {(p*,p?): —1 < p* <1}, let £ be the

restriction of the “horizontal” vector field % (discussed above) to M, and let p = (0,0). The maximal
integral curve of ¢ with initial value p is the map ~: (=1,1) - M with ~(s) = (s,0). So ¢ is not
complete. (Intuitively, moving along any maximal integral curve of £, in either direction, one “runs out
of space” in finite parameter time.) In contrast, the “vertical field” ) is complete on M. And 2l
itself is complete when construed as a field on (all of) R2.

Next, let M be the punctured manifold R? — {(0,0)}, and let & be the restriction of the radial
vector field (the third in our list of examples) to M. Then ¢ is complete. This follows directly from our
determination of the maximal integral curves of €. It also follows from the assertion in the next problem.
(Intuitively, the vectors of £ rapidly get small as one approaches the puncture point, and so — moving

“backward” along a maximal integral curve of £ — one cannot reach that point in finite parameter time.)

Problem 1.3.5. Let £ be a smooth vector field on M that is complete. Let p be a point in M. Show that
the restriction of € to the punctured manifold M — {p} is complete (as a field on M — {p}) iff & vanishes
at p.

The maximal integral curves of a smooth vector field suggest the flow lines of a fluid. It turns out to
be extremely useful to think of them this way. Let £ be a smooth vector field on the manifold M. We
associate with £ a set D¢ CR x M and a “flow map” I': D¢ — M as follows. We take D¢ to be the
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set of all points (s, p) with the property that if v: I — M is the maximal integral curve of £ with initial
value p, then s € I; and in this case we set I'(s,p) = v(s). (That is, if we start at p, and move s units
of parameter distance along the maximal integral curve with initial value p, we arrive at I'(s,p).) So, in
particular, (0, p) is in Dg¢ for all p in M, and T'(0,p) = p for all such. If the vector field £ is complete,
D: =R x M. But, in general, D is a proper subset of the latter. (Starting at a point p, it may not
be possible to move s units of parameter distance along the maximal integral curve with initial value p.)

We have the following basic result.

Proposition 1.3.3. Let  be a smooth vector field on M, and let T': D¢ — M  be as in the preceding
paragraph. Then D¢ is an open subset of R x M, and I' is smooth.

The proposition asserts, in effect, that solutions to ordinary differential equations depend smoothly

on initial conditions. (See Spivak [57, volume 1, chapter 5].)

Assume for the moment that our smooth vector field £ on M is complete. (So D¢ =R x M.) In this
case, given any s € R, we can define a map T's: M — M by setting T's(p) = I'(s,p). It follows from
proposition 1.3.3 that T’y is smooth. (T's can be realized as a composite map M — R x M — M with
action p — (s,p) — I'(s,p) and each of the component maps is smooth.) Furthermore, the indexed
set {Ts}ser has a natural group structure under the operation of composition (FS ol'y = I‘s+t) with
the identity map I'y playing the role of the unit element. (See the next paragraph.) It follows that Ty is
injective and that its inverse (I's)”! = I'_, is smooth. So each I'y is a diffeomorphism that maps M
onto itself. We say that {T's}ser is a one-parameter group of diffeomorphisms of M generated by &.
Note that, for all p in M, the map from R to M defined by s +— I's(p) is just the maximal integral curve
of £ with initial point p.

That T'y oIy = 'y for all s and ¢ follows as a consequence of the assertion in problem 1.3.4.
Given any point p in M, and any ¢t € R, let v: I — M be the maximal integral curve of £ with
initial value T'y(p). Then ~(s) = I';(T'y(p)) for all s. Let ~':I' — M be the maximal integral
curve of £ with initial value p. Then ~/(¢t) = T:(p) = v(0) and ~'(s+t) = Ts4+(p) for all s.  Since
~v(0) = ~/(¢), it follows from the assertion in the problem that ~(s) = /(s +1t) for all s. So we have
Lo(Te(p)) =(s) =7/'(s +t) = Doye(p) for all p, t, and s.

Now recall the three complete vector fields on R? considered above. Each defines a one-parameter

group of diffeomorphisms {I'}scr on RZ The pattern of association is as follows.

Field Associated Diffeomorphisms
i T ( 1 2) 7( Lig 2)
o S p) =@ +s,p
—I2i + xli Ls(p',p?) = (p' coss — p?sins, p'sins+ p?coss)
Ox! Ox2 R ’
0 0
R Ls(p',p?) = (p'e®, p®e)
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In the three cases, respectively, 'y is: a displacement by the amount s in the 2! direction, a (counter
clockwise) rotation through s radians with center point (0,0), and a radial expansion by the factor e®

with center point (0,0).

Let us now drop the assumption that £ is complete. Then the “flow maps” T's: M — M will not,
in general, be defined for all s. But by paying attention to domains of definition, we can still associate
with £ a set of “local flow maps”. It follows from proposition 1.3.3 that given any point p in M, there is
an open interval I C R containing 0 and an open subset U C M containing p such that I x U C De.
If we set I's(q) =T(s,q) forall (s,q) € I x U, then the following all hold.

(1) Ts: U — T'4[U] is a diffeomorphism for all s € I.
(2) (Ts0oTy)(q) =Tste(q) for all s,¢, and g such that {s,t,s+¢} C I and {q,T':(¢)} CU.
(3) For all ¢ in U, the map v: I — M defined by v(s) = I's(q) is a smooth integral curve of £ with

initial value q.

In this case we say that the collection {T's: U — T's[U]}ser is a local one-parameter group of diffeomor-

phisms generated by &.
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1.4 Tensors and Tensor Fields on Manifolds

We start with some linear algebra. We shall return to manifolds shortly.

Let V be an n-dimensional vector space. (Here and throughout these notes, “vector spaces” should be
understood to be vector spaces over R.) Linear functionals (or covariant vectors or co-vectors) over V
are linear maps from V to R. The set of all linear functionals on V' has a natural vector space structure.
Given two linear functionals o and (3, and a real number k, we take o+ 8 and k«a to be the linear

functionals defined by setting:

(a+B)(€) a(§) + 8(6),
(Fa)(§) = ka(f),

for all £ in V. The vector space V* of linear functionals on V is called the dual space of V. It is easy
to check that V* has dimension n. (If %, %, 72“ form a basis for V, then the elements &, &,...,& in V*
defined by

;i

a(§) =0
form a basis for V* called the dual basis of é, 2, ey 2)

The vector space V* has its own dual space V** consisting of linear maps from V* to R. V** is
naturally isomorphic to V' under the mapping ¢: V — V** defined by setting ¢(£)(a) = a(€) for all £

in V and all « in V*, i.e., we require that ¢(£) make the same assignment to « that « itself makes to &.

In our development of tensor algebra we shall use the “abstract index notation” introduced by Roger
Penrose. (See Penrose and Rindler [51] for a more complete and systematic treatment.) We start by
considering an infinite sequence of vector spaces V@ V° .. V@ Vb all isomorphic to our original
n-dimensional vector space V. Here a, b, ..., a1, b1, ... are elements of some (unspecified) infinite labeling
set and are called “abstract indices”. They must be distinguished from more familiar “counting indices”.
We think of isomorphisms being fixed once and for all, and regard £%,&°, ... as the respective images in
Ve Vb .. of ¢€in V. The spaces V% VP’ .. have their respective dual spaces (V)*, (V®)* ... We
designate these with lowered indices: V,,V;,... . Our fixed isomorphisms between V and V¢ V? ..
naturally extend to isomophisms between V* and V,,V,,... . Given « in V* we take its image in V
to be the unique element «, satisfying the condition «4(£%) = «(§) for all £ in V. Tt is convenient to
drop parentheses and write a4(£%) as @, &% or £%a,. Thus we have . &% = €%, = ap &0 = b ay,
and so forth. (In what follows, our notation will be uniformly commutative. In a sense, the notation
incorporates the canonical isomorphism of V' with V**. Rather than thinking of £%c«, as «@q(£%), we
can think of it as the “action of £% on «,” and understand that as the action on «, of the vector in
(V%)** canonically isomorphic to £%.)

Indices tell us where vectors and linear functionals reside. So rather than writing, for example, “for

”

all vectors £* in V... it will suffice to write “for all vectors £%...”.
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We have introduced vector spaces V® V® ...V, Vi, .... Now we jump to a larger collection of
indexed spaces V') (r,s > 1) where the indices az,...,ar,b1,...,bs are all distinct. (The order
of superscript indices here will make no difference; nor will that of subscript indices. So, for example,
Vgg = Vgg = Vgl‘f = Vgl‘}. But it will make a difference whether particular indices appear in superscript
or subscript position, e.g., V7 # Vt.) To keep the notation under control, we shall work first with a

representative special case: V‘clb.

The elements of this space are multilinear maps that assign real numbers to unordered triples of the
form {uq,vs,7°}, i.e., triples containing one element each from V,,V;, and V¢. (We shall write these
triples, indifferently, as pq 1y Y¢ O Vp g Y¢ OF YoV ftg OF VpYC g, and so forth.) By “multilinearity”

we mean that if A is in V¢, then

M(tta + Epa)s7?) = Apa7%) + kXpavp7©),
MuaWo +k71)7) = Mpa ) + kA (tta 767,
AMpa (Y +kE09)) = AMpa ) + k Mpta v 6),

for all pq, pa, Ve, 7o, 7%, 0¢ and all real numbers k. The set V% has a natural vector space structure. If A
and ) are two elements of V% and k is a real number, we can define new elements (A + \') and (k)

in V2 by setting

A+ X)) (pa p7°) Atta vo7¢) + N (pta 5 7°),
(BN (avey?) = EXMpavp©),

for all jiq,v,7¢. The vector space V2 has dimension n®. To see this, first note that any triple of vectors

{p%, 9% x.} determines an element in V2 under the rule of association

{o" " Xe}t ta Y — (0" p1a) (W 1) (X 7).

We write this element as % 9® x. or xep®9? or 9°x.¢? and so on. The order of the terms makes
no difference. Next, let é“,%“, ...,Za be a basis for V* with dual basis A, A, ..., q. (Here we have
abstract and counting indices side by side.) One can easily verify that the set of all triples of the form
é“éb(’ic, with 4,4,k ranging from 1 to n, forms a basis for V . Thus, every element of V can be
uniquely expressed in the form

n n
Y3 Hedhe

n
i=1 j=1 k=1
Sometimes it will be convenient to recast sums such as this in terms of a single summation index and
absorb coefficients, i.e., in the form

n3

E (e 1.

i=1

(Rather than three indices that range from 1 to n, we have one index that ranges from 1 to n3.)
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Generalizing now, the tensor space Vgll_'_'_f: (r,s > 1) consists of multilinear maps assigning real
numbers to unordered (r + s)-tuples, containing one element each from V,,,...,V, , V%, .. Vb Ttisa
vector space with dimension n(" %) and its elements can be realized as linear combinations of the form

()

g ual...]/aT'ybl...)\bs'
i=1

We have assumed (r, s > 1). But the definition scheme we have given makes sense, too, when r =0 and
s=1, and when r =1 and s=0. In the former case, we recover indexed dual spaces as previously
characterized. (The elements of Vj, recall, are just linear maps from V? to R). And in the latter case, we
recover our initial indexed vector spaces, at least if we allow for the identification of those spaces with
their “double duals”. We can even allow r = s =0 and construe the tensor space over V with no indices
as just R. The elements of tensor spaces are called tensors. Tensor indices in superscript (respectively

subscript) position are sometimes called “contravariant” (respectively “covariant”) indices.

We have noted that abstract indices give information about where vectors and co-vectors reside, e.g.,
1® belongs to the space V¢ and v}, belongs to V. We can extend this pattern of “residence labeling” to
elements of arbitrary tensor spaces. For example, we can attach the index configuration %* to elements
of V@ and make statements of the form “for all A2° ...”. But things are a bit delicate in the case where

the total number of indices present is greater than one.

Though the order of superscript indices and the order of subscript indices make no difference when it
comes to labeling tensor spaces, they do make a difference when it comes to labeling tensors themselves.
For example, though V., = V44, for an arbitrary element «,; of that space it need not be the case
that agup = ape. (The latter equality captures the condition, not true in general, that the tensor g is
“symmetric”.) To see why, suppose, once again, that é“,%“, ...,2“ is a basis for V* and &, &q, ..., G
is its dual basis. Let agp be the element ¢, cjyb , for some particular ¢ and j. Then, according to the
Penrose notation (as will be explained), as, is the element ap cjxa. It follows from what has been said
so far that the tensors éqdy and &y b, are simply not equal unless i = j. (Why? Assume they are
equal. Then they have the same action on all pairs u®r®. So, in particular, they have the same action
on é‘l éb. But

o by (£7€%) = b0 (67) (€)= 1

and

So 51’3’ = 1, i.e., = j)
A second point about the delicacy of the index notation should be mentioned, though it will not
concern us until we reach section 1.9 and work with tensors in the presence of a (non-degenerate) metric

gap- We will then want to follow standard practice and use the metric and its inverse ¢*® to “lower and

raise indices”. (The rest of this paragraph can be skipped. It is included only for readers who already
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know about lowering and raising indices and who may anticipate the problem mentioned here.) For

b as an abbreviation for g, ¢"’. A problem will arise, though, when we try

example, we shall write ¢,
to lower or raise an index on a tensor that has indices in both subscript and superscript position. For
example, do we write A2’ g°? as A% or as A% or as A% ? The latter three will not, in general,
be equal (for the reasons given in the preceding paragraph). To cope with the problem, when the time
comes, we shall adopt the convention that superscript indices should never be aligned with subscript
indices. Instead, each index will have its own vertical “slot”. So, for example, the elements of the space

ng will carry the index structure “bc or “Cb bca

or % (or *@, or or %), and we will not assume,
for example, that A?°_ = \%_°. (For the rest of this section — indeed until section 1.9 — we shall not

bother with index slots.)

One final preliminary remark about notation is called for. As mentioned before, we want the notation
to be uniformly commutative, at least as regards the order of tensors within an expression (in contrast
to the order of indices within a tensor). So, for example, the number A%°(u, v,7¢) that the tensor \2°
assigns to a triple g, v,7¢ will be written as A% p, 7€ or as pa v YA or as v, YA p,, and
so forth. Furthermore, if A2 is the tensor ¢?v®x., we shall write A°(uq157°) as ©* Y e o Vb 7°
or as Xe fta WP Uy ©* ¢ or as any other string with the individual vectors in some order or other. The
order does not matter because it is the indices here that determine the crucial groupings: ¢ with g,
P with vy, X, with ~©.

sy

We now have in hand the various tensor spaces V' . Within each one (just because it is a vector
space), there is an addition operation that is associative and commutative. We will be interested in three
other tensor operations: exterior multiplication, index substitution, and contraction. We will consider

them in turn.

“Exterior multiplication” (or, perhaps, “tensor multiplication”), first, is an operation of structure
ay...ar C1..-Cm ai1...arC1...Cm
Vi ) X Valdy = Vi blay .y

where the indices aq, ..., ar,b1...bs,C1, ..., Cm,d1, ...,d, are all distinct. It is defined in an obvious way.
Consider a representative special case
ng X Vfd — nglzd.

ab

The exterior product of a?® and ¢ td, Written ¢ ta or Epqgal’, is defined by setting

(a2 €14) (Na po 0% pf 1) = (a2® Ng p1 6°) (Epa pf v?)

for all ., pp, 6¢, uf, v%. As usual, generally we shall drop parentheses and write terms in any order.
So the action of a&pq on A, pp 8¢ puf v? will be expressed, indifferently, as a3 A, py ¢ &pq puf 17
or as a&rada pyp 0 pf vt or as A, pp€pa 8¢ pf @ e and so forth. It should be clear that exterior
multiplication, as defined here, is commutative, associative, and distributive over addition. Notice, also,

that our notation is consistent. Consider, for example, the expression 7%’ ¢, oy 3, 7¢. We can construe
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it as the action of 7%e®. on agfy7°, or as the action of €., on 7%F,~°, or as the action
of ¥¢p.7e” on au By, and so on. (The third reading makes sense: ¢, 7%’ is the element of V@
that arises if one multiples the element 7%&® by the number ¢ ¢..) Each of these functional operations

yields the same number, so no consistency problem arises.

The operation of “(z — y) index substitution” has the structure

T a;. Yy aj. aias.. aias...ar,
Vb1b2 Vble or VI by.. Vy by...ba

where the indices =z,y,a1,...,a,,b1,...,bs are all distinct. In defining the operation it is, again, easiest

to consider a representative special case, sa V“b — de Given a tensor a2”, it can be expressed as a
P p y 7 p

sum of the form

3

ab __ iqib i
o) = E n vl Te.
i=1

We take the result of (a — d) index substitution on a®, which we write as a4, to be the sum

(This makes sense because we already have a fixed isomorphism between V¢ and V¢ that takes each ji®
to f1%.) Of course, it must be checked that this definition is independent of the choice of expansion for

a2, That is, one must check that if

n® n® )
iqibi “a ib i
v Te = 5 € pca

i=1 1=1

then

n? n? )
idibi “dib i
pwrl T, = 0%€” pg.

=1 1=1

But this follows from the fact that %\, = 1% Ay and 5“ Ag = 5‘1 Mg for all 7 and all \,.

It can easily be checked that index substitution commutes with addition, exterior multiplication, and
other index substitutions. For example, if a? = 3%+~ then ad® = 3% 4~ If )\Cfg =a2¢&;,, then
A fo = = ad ¢, And the tensor that results from first applying (¢ — b) index substitution and then
(¢ — d) index substitution to agy is the same as that resulting from reversing the order and applying
first (¢ — d) index substitution and then (a — b) index substitution. It is written as agf. All these

facts, in a sense, are built into our notation.

Our final tensor operation, “(z,y) contraction”, has the structure

ray.. ai.
Vy by.. Vbl "

where the indices z,y,a1,...,a.,b1,...,bs are all distinct. Consider, for example, (a, ¢) contraction with

action V2 — V®  Suppose
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We take the result of applying (a, c) contraction to a2’ to be

n3
ab iaq i ib
Q, = E W Tq V
i=1

3 3 n3 ) ] ]
(This could also be expressed as Z LCT. LY or as Z peit 1, oras Y 41y, and so forth. The last
i=1 =1

of the listed possibilities is equal to the first because 11, = pl1y for all 1% and 7,. ) We write this
result as a“b (or aCb or agb, and so forth.). It is important that contracted indices on a tensor, i.e., ones
that appear in both contravariant and covariant position, play no role in determining the space in which
the tensor resides. a2® belongs to V', not some space V,?*. Indeed, there is no such space as we have set
things up.

To prove that contraction is well defined, i.e., independent of one’s choice of expansion, a simple lemma

is needed.

Lemma 1.4.1. For all v > 1, and all $* and 1710 (k=1,..,r),
. ka ka
> ey, =0 = ¢ Y, =0.

Proof. Let é“,%“ ,f“ be a basis for V* with dual basis aa,aa, .yOg. Then, for each k =1, ..., 7,
there exist numbers c; and dg; (4,7 = 1,...,n) where He E ckzﬁa and 1/) > dij &e. Assume
j=1

the left-side condition holds. Then for all [ =1,...,n

0 - ( w) bat (z ) AR
k=1 k=1 J=1

T n T

— ZZC}W dj 0051 = chl dig.

k=1 i=1 j=1 k=1

It follows that the right side condition holds, since

r % r n . n . T n n

Z&a 1/)a = Z (Z Cki §a> dej (]Jéa = Cki dkj 5ij

k=1 k=1 \i=1 j=1 k=1i=1 j=1
n T

= Cri A = 0.
i=1 k=1
T
(Each term > ¢ di; in the final sum is 0 by the calculation just given.) O

k=1
Problem 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the following fact (Herstein
[32, p. 272]) about square matrices: if M is an (r x r) matriz (r > 1) and M? is the zero matriz, then
the trace of M is 0. (Hint: Consider the r x r matriz M with entries M;; = @° 1J/)a)
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Corollary 1.4.2. For allr > 1, and all E“, AP, 1?}6 (k=1,...,r),
r k k r k k
Zﬁa%bwczo — Z(ﬁawa>,’§/b:0'
k=1 k=1

Proof. Tt follows from the left-side condition that, for all Ay, 3 3%(5°A\)t, = 0. Applying the
k=1

lemma (with &% = (42 ,)3% for all k = 1,...,7), we may infer that Z (B%4b,)4% Ap = 0. But here Ay
is arbitrary. So it must be the case that the right-side condition holds O

It follows immediately that contraction is well defined for our tensor a?® . For if

n® n®
ab __ iqibi Ca ibi
o = E Te = E 1) o
i=1 i=1

we can apply corollary 1.4.2 to the difference Z Lo, — Z 5“ x°b pc (construed as a sum over 2n3

terms). And the corollary can be recast easily for tensors Wlth other index structures.

The contraction operation commutes with addition, exterior multiplication, index substitution, and
other contractions. Note, once again, the consistency of our notation. The expression 3%-,, for example,
can be construed as the action of the functional 7, on 8%, or as the exterior product of 3¢ with ~; followed
by (a,b) contraction, or as the exterior product B with ~, followed by (a,b) contraction, and so forth.
There is no need to choose among these different readings. Similarly, af A\, ¢ can be understood as
the action of a? on \,0¢, or as the exterior product of a? with A,o? followed by (a,b) and (c,d)

contractions, or as the action of A\, on «a?¢¢, and so forth.

The operations we have introduced on tensors may seem a bit complex. But one quickly gets used
to them and applies them almost automatically where appropriate. That is one of the virtues of the
abstract index notation. One gets to manipulate tensors as easily as one manipulates components of
tensors in traditional tensor analysis. One has the best of both worlds: complete basis (or coordinate)

independence, and the computational convenience that comes with indices.

Two bits of special notation will be useful. First, we introduce the “delta tensor” dy. It is the element
of V¢ defined by setting 6% 14> =1, &% for all 5, and €b. (Clearly, 62, so defined, is a tensor since it is
linear in both indices.) Notice that the defining condition is equivalent to the requirement that J¢ £ = ¢®
for all €%, and also to the requirement that 0fmg = my for all n,. We can think of d; as an (a — b)

index substitution operator acting on contravariant indices, or as a (b — a) index substitution operator

n .
acting on covariant indices. So, for example, &; ad = ad¢. To see this, suppose that aff = Z Lol

Then
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102 n noi
Given a basis £%,£%,...,&% for V® with dual basis &g, &g, ..., &e, 08 can be expressed as 6 = > €%y,
i=1
(This follows since the left- and right-side tensors in this equation have the same action on the basis

¢b £b ¢b a_
elements &£°,¢°,...,&"%.) Tt follows that §¢ = n.

The second bit of useful notation is for “symmetrization” and “anti-symmetrization” of tensors. Con-
sider, for example, the tensor 3%°. Corresponding to it is the tensor 4°*. One can think of the latter
as arising from the former by a series of index substitutions: 3% — g — ped — gbd . g (We
have already discussed the fact that, though 3% and 3°* belong to V', in general it is not the case that

[ = gb) We take $(2?) and 1% to be the respective symmetrization and anti-symmetrization of 3%

1
6(1117) _ 5 (ﬁab + ﬁba)
1
ﬁ[ab] _ 5 (ﬁab _ ﬁba)'
Similarly, given a tensor *ygdg, we set
1
’yé)cdg) = E (’Ytlz)dg + /ngcd + ngc + ’Ytlz)gd + /ngdc + Wgcg)
1
’7[bcdg] = E (’Ytlz)dg + /ngcd + ngc - ’Ytlz)gd - /ngdc - Wgcg)'

In general, a tensor with round brackets surrounding a collection of p consecutive indices (all contravariant
1

or all covariant) is to be understood as -~ times the sum of the p! tensors obtained by taking the selected
indices in all possible permutations. (Each permutation can be achieved by multiple index substitutions.)
In the case of square brackets, the only difference is that each term in the sum receives a coefficient of
(+1) or (—1) depending on whether the indices in that term form a positive or negative permutation
of the original sequence. The operations of symmetrization and anti-symmetrization commute with
addition, exterior multiplication, and index substitution. So, for example, if B = 4% + p  then
Blab) = ~(ab) 4 j(ab) — Tf *yfdg = Aedg €8, then ”yé’cdg) = Aedg) €~ And if one applies (¢ — f) index
substitution to ”ygdq and then symmetrizes over the indices f,d, and g, the resulting tensor is the same
one obtained if one first symmetrizes over ¢, d, and g, and then applies (¢ — f) index substitution.

We say that a tensor of the form agll_'_'_'l‘:; is (totally) symmetric in indices by, ...,bs if interchanging
any two of these indices leaves the tensor intact, or, equivalently, if a(‘gi:::g;) = ap! 7. We say it is
(totally) anti-symmetric in those indices if the interchange in each case has the effect of multiplying the
tensor by (—1) or, equivalently, if a[Zi .'.'.'z()l:] =y 3" (The conditions of symmetry and anti-symmetry
in indices a1, ...,a, are defined similarly.) The following proposition will be useful in what follows.
Proposition 1.4.3. If

(1) aylyr is symmetric in indices by, ...,bs, and
(2) aylyr g &b =0 forall€ inV,

then ay! " = 0. (A parallel proposition holds if ay! ' is symmetric in indices ax, ..., ar.)
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Proof. We prove the proposition by induction on s. The case s =1 is trivial. So assume s > 1 and
assume the proposition holds for s — 1. For all vectors g and v in V, and all real numbers k, we have,
by (2): 0=ay! ) (p+ kv)Pr... (u+ kv)bs. Expanding the right side of the equation and using (1), we

arrive at

But k is arbitrary here. The only way the right-side sum can be 0 for all values of k is if each of the
terms in the sum (without the coefficient) is 0. In particular, ay' " Tl pbe-rbs = 0. Now let

/aq.. __ ai...ar b rat...ar : : :
oy b = yr e The tensor oy ™ - is completely symmetric in the indices by,...,bs—1, and

alplpr bt pbs=1 = 0 for all uin V. So, by our induction hypothesis, it must be the case that
!y v’ = 0. But v was an arbitrary vector. So aglyr =0, as claimed. O

Sometimes it will be convenient to work with this proposition in a slightly more general form. Let
3 and II be strings of indices, possibly empty, in which as,...,a,,b1,...,bs do not appear. Then we
can say that a tensor aZb b "q s (totally) symmetric in indices by, ...,bs if aE(bl b = azbl b "I
(The case of (total) anti-symmetry is handled similarly.) It follows as a corollary to the proposition that
if n-dimensional O‘Eb bTH is symmetric in indices b1, ...,bs, and if 0‘2 T §b1 (&b =0 for all &
in V, then agj!j7; = 0. (It follows because we can always contract on all the indices in ¥ and II
with arbitrary, distinct vectors and generate a tensor to which the proposition is directly applicable.) Of
course, a similar generalization of the proposition is available in the case where the “extra indices” are

in covariant position.

This completes our discussion of tensor algebra. We now return to manifolds. Suppose (M, C) is an
n-manifold and p is a point in M. Then M, is an n-dimensional vector space. We can take it to be our
fundamental space V and construct a hierarchy of tensor spaces over it. A tensor field on M is simply
an assignment of a tensor (over Mp) to each point p in M, where the tensors all have the same index
structure. So, for example, a vector field £* on M (as defined in section 1.3) qualifies as a tensor field on
M. The tensor operations (addition, exterior multiplication, index substitution, and contraction) are all

applied pointwise, and so they extend naturally to tensor fields.

We already know what it means for a scalar field or a (contravariant) vector field on M to be smooth.
We now take a covariant vector field a, on M to be smooth if (§* ) is smooth for all smooth vector fields
§* on M. Quite generally, we say that a tensor field Aj'~}'" on M is smooth if ;' 3" b g, .. Ba,
is smooth for all smooth fields &£°*,...,n% aq,, ..., Ba, on M.

This pattern of definition is extremely common. One starts with a concept (in this case smoothness)

applicable to scalar fields, then extends it to contravariant vector fields by considering their action on

scalar fields, then extends it to covariant vector fields by considering their action on contravariant fields,
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then extends it to tensor fields of arbitrary index structure by considering their action on (appropriate
combinations of) contravariant and covariant vector fields.
It follows from the definition of smoothness for tensor fields just given that the four tensor operations

take smooth tensor fields to smooth tensor fields.
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1.5 The Action of Smooth Maps on Tensor Fields

In this section, we consider when and how it is possible to use a smooth map between manifolds to

carry tensors at a point, and tensor fields, from one manifold to the other.

We start with tensors at a point. Let (M, C) and (M’, C’) be manifolds, not necessarily of the same
dimension, let : M — M’ be a smooth map of M into M’, and let p be a point in M. There is no
natural way to transfer arbitrary tensors between p and ¥ (p) — at least not without further assumptions

in place. But it is possible to associate with ¢ two restricted transfer maps.

Let us say that a tensor (at some point on some manifold) is contravariant (resp. covariant) if all of
its indices are in contravariant (resp. covariant) position. The rank of such a tensor is the number of its
indices. We allow the number to be 0, i.e., we regard scalars (real numbers) as both contravariant and

covariant tensors of rank 0.

The first of our two restricted transfer maps, the “push-forward map” ()., takes contravariant
tensors at p to contravariant tensors of the same rank at ¢(p). The second, the “pull-back map” (¢,)*,
takes covariant tensors at 1(p) to covariant tensors of the same rank at p. We define (¢,). and (¢,)* in

four stages. (For clarity, we mark objects defined on M’ with a prime.)
(Stage 0) Given any real number ¢, we set (¥p)«(c) = (¥p)*(c) = c.

(Stage 1) Given a vector £* at p, we define (). (") at ¢(p) as follows. Let o’': O" — R be an element
of S(¢(p)). Then (a’ot)): p~1[0'] — R is an element of S(p). We need to specify what assignment
(1p)«(€*) makes to o/. We set

(Wp)(e9) (@) = €2(a’ 0 0). (1.5.1)
This makes sense because (o o) is an object of the sort to which £ makes assignments.

(Stage 2) Next, consider a covariant tensor g, ,, at 1(p). We define the pull-back tensor (v,)*(my, . 5.)

1 s
at p by specifying its action on arbitrary vectors £°1, ..., €% there. We set

1 s 1 s
(@) by )) €7 € =y o (0o (€™) o (00)a(67)). (1.5.2)
Here, of course, we understand the right side because we know (from stage 1) how to push forward the
vectors ébi.
(Stage 3) Finally, consider a contravariant tensor £ =% at p with r > 2. We define the push-forward

T
!

1
tensor (1p)« (£ %) at 1p(p) by specifying its action on arbitrary vectors 7, , ..., 7, there:

(et =) iy, = €0 () (10,)) oo ()7 (02,)). (1.5.3)

This completes the definition of (¢,). and (¢p)*.

Several basic facts about them are recorded in the next proposition.
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Proposition 1.5.1. Let : M — M’ be a smooth map of the manifold M into the manifold M'. Let
p be any point in M. Then (¥p)« and (p)* have the following properties.

(1) (Yp)s and (p)* commute with addition.
For ezample, (1)« (8% + p™°) = (¥p)(€7°) + (1)« (p7°).

(2) (Up)« and (p)* commute with exterior multiplication.

For example, (1p)* (e tae) = ((Up) " (Mne)) ((¥p)* () -

(8) (Up)« and (p)* commute with index substitution.

(4) For all tensors €291 and p*~r at p, and all tensors ), . and p, 4 4 4 at ¥(p),
(Woalem o))y = W) (€527 () (), (154)
(o) tbyara)) 27 = @) (Hbyaroa, ()" 0))). (155)

Note that we cannot replace clause (4) with the simpler assertion that (1), and (¢p)* commute
with contraction. We cannot claim, for example, that (¥p)«(£%°n4) = ((p)(£%)) ((¥p)«(7a)), since the
second term on the right side is not well formed. The push-forward map (¢,). makes assignments only

to contravariant vectors at p.

Note also that it follows as a special case of clause (2) that (i)« and (¢p)* commute with scalar

multiplication. For example, (1,).(c£%) = ((1p)«(c)) ((sz)*({ab)) = c((wp)*(gab)). So, clearly, (v¥p)«

and (¢,)* are linear maps (when restricted to tensors of a fixed rank).

Proof. All four clauses in the proposition follow easily from the definitions of (¢,)* and (¢,)*. For
the fourth clause, one first considers contractions involving (contravariant or covariant) vectors, i.e.,
((p)s (€Nl or ((¥p)*(Mha,..a.)) p’s and then uses the fact that every tensor 1), , or

b1...by

p can be represented as a sum over products of such vectors. The desired conclusion then follows

from clauses (1) and (2). By way of example, let us verify one instance of the fourth clause, say:

(@) (€)= ()£ ()" 011)) )

To show that the two (right- and left-side) vectors at ¢ (p) are equal, it suffices to demonstrate that they

have the same action on any vector p. there. But this follows, since

(1) (5‘” ((%)*(n;))) fre = € ((Vp)* (1)) ((p)* (1)) = ((10p)«(£7)) i, g

Both equalities are instances of (1.5.3). The role of £+ is played by (£¢ ((1,)*(17))) in the first, and
by £€%¢ in the second. O

Now we turn our attention to fields on M and M’. At each point p in M, we have transfer maps ().
and (¢,)*. The question arises whether they can be “aggregated” to carry contravariant fields on M to

ones on M’ or, alternatively, carry covariant fields on M’ to ones on M. Here an asymmetry arises.
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Consider first a tensor field £**-% on M. For all p in M, (wp)*(ﬁal“'%(p)) is a tensor at ¥(p).
(&%~ (p) is the value of the field at p, and it is pushed forward by (vp)..) But these individual
assignments do not, in general, determine a field on M’. For one thing, if v is not injective, there will
be distinct points p and ¢ such that ¥ (p) = ¥(¢), and nothing guarantees that (). (£% % (p)) =
(wq)*(Sal'”ar(q)). Furthermore, even if 1 is injective, this prescription will not transfer a tensor to a

point p’ in M’ unless it is in the range of 1, i.e., unless p’ = ¢(p) for some p in M.

But no problems arise if we work in the other direction. Consider a field 7, , on M’. Then at every
point p, there is a well-defined pull-back tensor (i,,)* (771/;1..1;3 (z/;(p))) It just does not matter whether
¥ is injective or whether its range is all of M'. So we can aggregate the individual pull-back maps at
different points to generate a map v* that takes covariant tensor fields on M’ to ones on M of the same

rank.

In particular, ¥* takes scalar fields o’: M’ — R on M’ to scalar fields
(@) = (o 09) (1.5.6)

on M. (Think about it this way. The pull-back field *(a’) assigns to any point p in M the same
number that o/ assigns to ¥(p). (Recall the 0-th stage in the definition of (¢,)*.) So, for all p in M,
P*(e)(p) = o' (¥(p)) = (&' o ¥)(p).)

Three of the (pointwise) algebraic conditions listed in proposition 1.5.1 carry over immediately. Thus,
¥* commutes with addition, exterior multiplication, and index substitution (if these are now understood
as operations on tensor fields rather than as operations on tensors at a point). The fourth condition,
the one involving contraction, does not carry over because it makes reference to individual push-forward
maps (¥p)« (and these, we know, cannot, in general, be aggregated). In addition, ¢* satisfies a natural
smoothness condition; namely, it takes smooth fields on M’ to smooth fields on M. This is immediate for
the case of scalar fields. (If o': M’ — R is smooth, then certainly the composed map ¥*(a’) = (o’ o 1)

is smooth as well.) But a short detour will be required for the other cases.

Let us temporarily put aside our map ¥ between manifolds and consider a general fact about the
representation of covariant vector fields on a manifold M. Given any smooth scalar field a: M — R,
we associate with it a smooth covariant vector field d,a on M, called its “exterior derivative”. (Here
we partially anticipate our discussion of exterior derivative operators in section 1.7.) It is defined by the
requirement that, for all p in M and all vectors £% at p, £%d,a = &(a), ie., £ dya is the directional
derivative of « at p in the direction £€%. (The condition clearly defines a covariant vector, i.e., a linear
functional over M, at each point p. And the resultant field d,« is smooth since, given any smooth vector
field £* on M, &£%dg,a is a smooth scalar field on M.) The fact we need is the following.

Lemma 1.5.2. Let A\, be a smooth field on an n-dimensional manifold (M,C). Then, given any point p
in M, there exists an open set O containing p, and smooth real-valued maps ]1”, e ?,é, ,3 on O, such

1 1 n n
that A\ =fde9 +...4+ fd,9 onO.
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Proof. Let p be a point in M, let (O, ¢) be a chart in C with p € O, and let u!,...,u™ be the associated
coordinate maps on O. At every point ¢ in O, the coordinate curve tangent vectors (?Hq)a, ey (?n‘q)“
associated with u!,...,u" form a basis for (M,)®. (Recall proposition 1.2.3.) Now consider the vector
fields dqu', ..., d,u™ on O. We claim that they determine a dual basis at every g, i.e., (?“q)“(dauj) =d;j
foralli,j € {1,...,n}. Indeed, this follows immediately since (%‘q)a(dauj) zi‘q(uj) (by the definition of
d,) and %‘q(uj) = 0;; (by equation (1.2.6)). So we can express ), in the form A, = chdau1 + ...+ ffldau”

7 — 1
on O, where f= (7;)*\s. The coordinate maps u!,...,u™ are certainly smooth. And the maps f, ...,

O s

must be smooth as well since A\, and the coordinate tangent fields (5}1)“, . (;}n)“ are so.

With the lemma in hand, let us return to the original discussion. Again, let 1) be a smooth map from

the manifold M into the manifold M’. Note that given any smooth field o': M’ — R on M’, we have

P*(daa’) = da (¥ (a')). (1.5.7)

(To see this, let p be any point in M and let £* be any vector at p. Then

& (W (da)), = ((p)+(€")) (Ao )iy = ((p)(€M)) (@) = €'(a/ 0v)) =€ (dp(v* (),

The first equality is an instance of (1.5.2), with (dy’)| () playing the role of n;; the third is an instance
of (1.5.1). The second follows from the definition of the operator d,, and the fourth from that definition
together with (1.5.6). So (1.5.7) holds at all points p in M.)

It is our goal, once again, to show that, for all smooth fields 7, on M’, the pull-back field /*(n;, ;)
on M is smooth as well. Consider the case of a smooth vector field n, on M’. Suppose M’ has dimension

n. We know from the lemma that given any point p’ in M’, we can find an open set O’ containing p’ in
n .

i
which 7, admits the representation n, = Z f 'dbél (with the constituent maps all smooth). Hence, we
i=1

have
n

ot (my) = o (Z f’db9’> = > W)Y (d9') = D) do(¢7(9"))
i=1 i=1 i=1
throughout ¥~ 1[0’]. (We get the second equality from the fact that 1)* respects the tensor operations of
addition and exterior multiplication (in the sense discussed above). The third follows from (1.5.7).) But
the constituent fields in the far right sum are all smooth. (We have already seen that ¢* takes smooth
scalar fields to smooth scalar fields.) So ¥*(n;) itself is smooth on 1~ 1[O’]. But as p’ ranges over M’,

the corresponding pull-back sets ¢ ~1[0’] cover M. It follows that 1*(n;) is smooth on (all of) M.

It remains to consider the general case — smooth fields on M’ of the form #; , . But this case quickly

reduces to the preceding one. We can express any such field, at least locally, in the form

n® . .
/ . 2 : v y
nb1~~~bs = ’ubl"' Vbs7
=1
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where ;%1, ...,Vigs (i = 1,...,n%) are all smooth fields on M’. Since the individual pull-back fields

1/)*(/11 by )s e Y* (v p.) are smooth (and since ¥* commutes with addition and exterior multiplication), it
*

follows that ¢/*(n,,  , ) must be smooth on M.

In summary, we have established the following.

Proposition 1.5.3. Let ¢: M — M’ be a smooth map of the manifold M into the manifold M’'. Then
Y* is a map from smooth covariant tensor fields on M’ to smooth covariant fields on M of the same
rank that commutes with addition, exterior multiplication, and index substitution and that also satisfies

(1.5.7).

The complications and asymmetries we have encountered all have their origin in the fact that we
have only been assuming that 1 is a smooth map of M into M’. Now, finally, let us consider the case
where 1 is, in fact, a diffeomorphism of the first onto the second, i.e., there is a well-defined inverse map
™1 M’ — M that is also smooth. Then, as one would expect, there is induced a natural one-to-one
correspondence between smooth tensors fields of arbitrary index structure on the two manifolds, and
this correspondence fully respects the four tensor operations. We already know how ¢* acts on smooth
covariant tensor fields (and scalar fields) on M’. Now we can characterize its action on a smooth field
)\/;)111,.,.,.;)7: of unrestricted index structure on M’. We stipulate that, given any point p in M, and any
smooth fields 7, , ...,ﬁar,ébl, ...,Ebs on M,

O D o€ = Ot (002G )o (0-ED) e (158)

Of course, the right side makes sense only if we understand how ), acts on smooth vector fields 7, and £°
on M. But we do understand (in this new context where ¢ is a diffeomorphism). Here we can aggregate
the individual push-forward maps (¢,). to generate a map 1, that knows how to act on contravariant
vector fields — just as previously we aggregated the maps (1,)* to generate a map 9* that knows how to
act on covariant vector fields. And we can take v.(n,) to be (¢»=1)*(n,). This completes the definition
of ¥*.

Notice that this general characterization of ¢* reduces to the one given previously in the special case
where it acts on a covariant field ', .

The way to remember 1.5.8 is this. A trade-off is involved. Pulling back /\’gf'""’g from 4 (p) to p, and
having it act there on particular vectors yields the same result as pushing those vectors forward from p

to ¢(p) and having X';*}'" act on them there.

We have just seen how to extend #* so that it acts on smooth fields on M’ of unrestricted index
structure (when 1 is a diffeomorphism). Of course, we can extend 1, similarly. Indeed, we can take it
to be (p=1)*.

It is a straightforward matter to confirm that ¢* (and so ¢,.) commutes with addition, exterior

multiplication, contraction, and index substitution. By way of example, we verify that, for all smooth
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fields /¢ and &'® on M,

Ha'p ) = Pt (a'h) vr(E). (1.5.9)
Let n, be any smooth field on M. Then, invoking (1.5.8) and dropping explicit reference to points of
evaluation, we have

w*(alg) w*(ﬁlb) Na = a/g *("/J*(glb)) Vu(Ma) = O‘Ig b Vu(na) = "/J*(a/gglb) Na-

(For the second equality, we use the fact that (i, o *) = the identity map.) Since this holds for all
smooth fields 7, on M, we have (1.5.9).
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1.6 Lie Derivatives

Let (M, C) be a fixed manifold, and let £% be a smooth vector field on M. The Lie derivative operator
£Le associated with £ is a map from smooth tensor fields (on M) to smooth tensor fields (on M) of the
same index structure. Roughly speaking, £ Aj' ;" represents the “rate of change” of the field A’ 3"
relative to a standard of constancy determined by £€*. We now have the tools in place to make this precise.
(It is not important, but we write “£¢” rather than “£¢a” to avoid the impression that the operator adds
a new index. There is no chance for confusion since the object X in £x is always a contravariant vector

field and the index it carries makes no difference.)

Let Ay'"3" be asmooth field on M, and let p be a point in M. Further, let {T';: U — T';[U]}+e1 be
a local one—parameter group of diffeomorphisms generated by £* with p € U. Here I is an open interval
of R, U is an open subset of M, and the maps I';: U — T';[U] C M satisfy conditions (1) - (3) at the
close of section 1.3. We set
(g, = lim 2@ 0ge), —xe, ]

The right side limit is to be understood this way. We start with the tensor (A;!}")|r, () at T'i(p),
carry it back to p with the pull back map (I';)*, subtract (\;'"}"),, divide by ¢, and then take the limit
as t goes to 0. (That the limit exists, and that the resultant field (.;5’5 /\lel;“) on M is smooth, follows
from proposition 1.3.3.) Note that we need to carry (Ay'"}")r,(p) back to p before comparing it with
(Ap25)p because the two tensors live in different spaces. The expression [(Ap!75") T(p) ~ AZ;::;:IP] is
not well formed.

The following proposition lists several basic properties of Lie derivatives. (The proof is straightfor-

ward.)
Proposition 1.6.1. The operator £¢ has the following properties.
(1) It commutes with addition. E.g., £e(a2’ + B3°) = £e(a) + £:(B2°).

(2) It satisfies the Leibniz rule with respect to exterior multiplication.

For example, £e(al’ Bar) = a® £e Bay + Ba £e a®.
(3) It commutes with the operation of index substitution.

(4) It commutes with the operation of contraction.

Problem 1.6.1. Show that £¢6% = 0. (Hint: Recall that 6% can be thought of as an index substitution

operator, and make use of proposition 1.6.1.)
Problem 1.6.2. Let n® be a smooth, non-vanishing field on M. Show that if £e(n®n®) = 0, then
fg 7’]a =0.

Two cases are of special interest, namely Lie derivatives of scalar fields and of contravariant vector

fields. We consider them in order.



CHAPTER 1. DIFFERENTIAL GEOMETRY 39

Proposition 1.6.2. Let £* and o be smooth fields on M. Then £¢(a) = &(a), i.e., at every point in M,

Le o is just the ordinary directional derivative of a in the direction £°.

Proof. Let p be any point in M, and let {T';: U — T't[U]}+er be a local one-parameter group of diffeo-
morphisms generated by £* with p € U. Since the curve v: I — M defined by ~(t) = I';(p) is an integral

curve of £* with initial point p, we have

flp(O‘) :%p(a) = %(QOV)(O) = %[(aoFt)(p)]‘t:O.

But (T'y)*(a) = (aoTy) forallte I. (Recall equation (1.5.6).) So we also have

(£ea), = lim = [((C)" (@), ~ @] = Tim = [(@0T)(0) ~ (@0 T)p)] = - [(a0 L) ()] g

t—0
So (Lea), = ¢&p(a) at all points p in M. O
We need a lemma for the second special case (Lie derivatives of contravariant vector fields).

Lemma 1.6.3. Let £* be a smooth vector field on M, let p be a point in M and, once again, let
{T;: U — T4[U]}tier be a local one—parameter group of diffeomorphisms generated by £* with p € U.
Then, given any smooth scalar field oa: M — R, there is a one—parameter family of smooth scalar fields

{¢ttter on U such that

(1) aoTy=a+t-@: foralltinl, and
(2) o = &(a).

Proof. Consider the family of smooth scalar fields {¢t}:er on U defined by setting

ale) = [ e l@oT) @]y, do

du

for all ¢ in I and ¢ in U. We claim that it satisfies condition (1) and (2). First, for all ¢ in I,

toa) = /L)%[(aOFu)(q)Lu:m tdz

= /O% [(aoT¢a(q))] do

= (aoTy)(q) - (aoTp)(q).

But Tg(q) = ¢ for all ¢ in U. So we have condition (1). Next, differentiation with respect to ¢ yields

- Soa) + o) = 5 [0 T)(@)]

Evaluating both sides at ¢t =0 gives us:

vo(q) = % [(aoT)(q)] t=0 "
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But now, since {I;: U — T';[U]}+er is a local one—parameter group of diffeomorphisms generated by &2,

the curve ~:I — O defined by ~(t) =T:(¢) is an integral curve of £€* with initial value ¢q. Thus,

— d d
§|q(a) :qu(a) = E(a °Y)|t=0 = 7 [(a o Ft)(q)]‘t:()'
So o(q) = §q() for arbitrary ¢ in U. This is just condition (2). O

Proposition 1.6.4. Let £&% and \* be smooth vector fields on M. Then £e(A\*) = [§,A]*, where [§, \]*
is the smooth (“commutator”) vector field on M whose action on a smooth scalar field a: M — R s
given by

(€, Al(a) = E(A(@)) = A¢(a))-

(Another remark about notation. One must make some decision about how to handle abstract indices
when dealing with commutator vector fields. Depending on context, we shall write, for example, either

“[€,N]2” or “[€, \]”— but never “[£%, A*]” or “[€%, A*]*”. Nothing of importance turns on this decision.)

Proof. Let p be any point in M, and let {T';: U — T't[U]}+er be a local one-parameter group of diffeo-
morphisms generated by €% with p € U. Given a smooth scalar field «: M — R, let {pi}er be a
one-parameter family of smooth scalar fields on U satisfying conditions (1) and (2) in the lemma. For

all ¢ such that both ¢ and —t are in I, we have

[(Te)*(A)]}, (@) = A,y (o Tot) = A p, (a0 — - o).

The first equality follows directly from (1.5.1) and the fact that (T't)* = (I'_;).. The second follows
from condition (1) of the lemma (with ¢ replaced by —t). So

(@) = Jm 2 [((C)O%),, (@)~ 2)

|p t—0 t

(£eX?)

= lim
t—0

1 a a 3 a
7 e (@) = A%p(@)] = Hm A%r, ) (9-0)

= lim = [(A“() 1, () — A%(@))p] — A%p(0)

t—0

d

T o [(A*(@) o T¢) (p)] [t=0 A% (0)-

| =

Now the first term on the right side of the final line is equal to ), (A()). (The argument is the same as
used in the final stage of the proof of the lemma.) And ¢ = £(«), by condition (2) of the lemma. So

(£e A7), (@) = €7 (M) — A% (& ().

Since p and « are arbitrary, this establishes our claim. O
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Problem 1.6.3. Show that the set of smooth contravariant vector fields on M forms a “Lie algebra”
under the bracket operation (defined in the preceding proposition), i.e., show that for all smooth vector

fields &,m, A on M,

[5777] = _[77,5] and [)‘a [5) 77]] + [7% [)‘ag]] + [57 [777 )‘H =0.

Problem 1.6.4. Show that for all smooth vector fields £*,n® on M, and all smooth scalar fields o on
M

7

Laen® = a(L£en®) — (£a)€".

Problem 1.6.5. One might be tempted to take a smooth tensor field to be “constant” if its Lie derivatives
with respect to all smooth vector fields are zero. But this idea does not work. Any contravariant vector

field that was “constant” in this sense would have to vanish everywhere. Prove this.

Problem 1.6.6. Show that for all smooth vector fields £*,n®, and all smooth tensor fields a®b,
(£ £y — £ Le)oma = Lol

where 0% is the field £en®. It follows that £¢ and £, commute iff [{,n] = 0. (Hint: First prove the
assertion, in order, for scalar fields a and contravariant fields a®. It will then be clear how to continue

with covariant fields a, and arbitrary tensor fields a%b.

Although it is important to know how Lie derivatives are defined, in practice one rarely makes direct
reference to the definition. Instead, one invokes propositions 1.6.1, 1.6.2, and 1.6.4. In fact, Lie derivatives

can be fully characterized in terms of the properties listed there.

Proposition 1.6.5. Let £* be a smooth vector field on M. Let D be an operator taking smooth tensor
fields on M to smooth tensor fields on M of the same index structure that satisfies the following three
conditions.

(1) For all smooth scalar fields oo on M, D(a) = &(a).

(2) For all smooth vector fields A* on M, D(A*) = [£, A]°.

(3) D commutes with the operations of addition, index substitution, and contraction; it further satisfies

the Leibniz rule with respect to tensor multiplication.

Then D = L, i.e., D and L have the same action on all smooth tensor fields.

Proof. We are assuming outright that D and £¢ have the same action on scalar field and contravariant
vector fields. We must show that (3) induces agreement on tensor fields of all other index structures.
Consider, first, the case of a field v,. Given any smooth field A* on M, we must have D(y, \?) =
€(¥aA") = Le(7aA?) by (1). Hence, by (3),

Ya D()‘a) + ID(’Va))‘a = Ya "E&()‘a) + "65(711))‘&-
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But D(A*) = £(A*) by (2). So, for arbitrary smooth fields A* on M, (D(y4) — £¢(va))A® = 0. Thus,
D(Fya) = £E(7a>

We can now jump to the general case of a smooth tensor field /\le"n p. on M. We do so with an argument
that is much like the one just used to handle the case of covariant vector fields. Let A1, ..., pPs, Mays s Va,
be arbitrary smooth fields on M, and consider the scalar field o = Ay’ 3" A1 pP gy e v, . By (1),
D(a) = £e(a). We can expand the terms D(«) and £¢(a) using the fact that both operators, D and £,
satisfy the Leibniz rule. The result will be an equation with r+s-+1 terms on each side. The terms will
agree completely, except that where D appears on the left, £¢ will appear on the right. In 7 + s terms,

the operator (D or £¢) will act on a vector field. So all these terms will cancel since D and £ agree in

their action on contravariant and covariant vector fields. For example, the terms

Al D) ... p% pig, ... Ve, and VSO (£e )\bl) e PO gy Va,

(s

will cancel since D(A"1) = £ AP, So we may conclude that
(DR ) = Lo (A1) ] A p® piay e, =0

for all smooth fields A", ..., p*, fiq,, ..., Va, on M. Thus D and £ agree in their action on Ay O

r

Ay

We record one more fact for future reference. For any smooth field Aj! )", £e Ayl )" is supposed
to represent the “rate of change” of the field )\le......g; relative to a standard of constancy determined by
(the flow maps associated with) £*. So one would expect that £ A\j' ;" vanishes (everywhere) iff those

.an,

flow maps preserve /\le.'.'.bs . We make the claim precise in the following proposition. The only slightly

delicate matter is the need to keep track of the domains of definition of the local flow maps.

Proposition 1.6.6. Let £ and /\le.'.'.'l;l; be smooth fields on M. Then the following conditions are equiv-

alent.
(1) LeNy!y" =0 (everywhere on M ).
(2) For all local one—parameter groups of diffeomorphisms {T's: U — T'[U]}er generated by €%, and all

tel, (L) (N 50) = A )

Proof. The proof is essentially the same no matter what the index structure of the field under consid-
eration. So, for convenience, we work with a field A¢. One direction ((2) = (1)) is immediate. Let
{T+: U — M}icr be any local one—parameter group of diffeomorphisms determined by £, and let p be
any point in U. If (2) holds, then, in particular, ((I‘t)*(/\g))lp = Ay, forall t € I. Hence

. 1 * a a . 1 a a
(6A5),, = lim = [ (")), = A, | = lim <X, = 5,] = 0.

The converse requires just a bit more work. Suppose that (1) holds. Let {T';: U — M }:c; be any local
one—parameter group of diffeomorphisms determined by £¢, and let p be any point in U. Further, let n,
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and p’ and be any two vectors at p, and let f: I — R be the smooth map defined by

76 = (T 09), mer”
We show that f/(¢t) = 0 for all ¢ € I. This will suffice. For then it will follow that f is constant, i.e.,
[(Ft)*()\g)} p Na pb = [(Fo)*()\g)} il b = Ab 1 Tla p? for all t € I. Hence, since 7, and p® are arbitrary

vectors at p, it will follow that ((I'¢)*(Ay)), = A for all t € I, as needed.

Ip |p

So let ¢ be any number in I. Then we have

Py = im () O0), e — (0 08),, ']

s—0 §

Now suppose s is sufficiently small in absolute value that {s,t+s} C I and I's(p) € U. Then TI'iys(p) =
(Tt oT5)(p). (Recall condition (2) in the final paragraph of section 1.3.) Hence, for all such s, we have

(T ) 0 2 = My (Te 1)) 0,y (TG0 1)

and
((Ft-i-s)*()‘g))m Na pb = ((FS)*(Ag))|Ft(;D) ((Ft)*(na))|pt(p) ((Ft)*(pb))‘pt(p)-

So, substituting into our expression for f’(¢), we have

s—0 §

= (fg /\g)\r‘t(p) ((Ft) ( ))|I‘,(p) ((Ft> ( b))\rt( )’

flt) = [lim 1((@)*@;))‘ bw) ] D iy (T« 1, )

Since £¢ A} = 0 everywhere, we may conclude that f/(¢t) = 0. O
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1.7 Derivative Operators and Geodesics

We have already introduced one kind of derivative operator, namely £, associated with a smooth
contravariant vector field A\*. In this section, we discuss a different kind. It is, in a sense, a generalization

of the gradient operator V that one encounters in standard vector analysis on R™.

Let M be a manifold, and let V be a map that acts on pairs (c, agll_'_'_f:), where the second is a smooth
tensor field on M and the first is an abstract index distinct from aq, ..., a,, by, ..., bs, and associates with
them a smooth tensor field V.ay! ;" on M in which ¢ appears as a covariant index. (Given any one
index ¢, we understand V. to be the operator that takes the field ay! "} to the field V.aj! ;") We

say that V is a (covariant) derivative operator on M if it satisfies the following conditions.

(DO1) V commutes with addition on tensor fields.
For example, V,(af® + 82%) = V, a2 + V, B2°.

(DO2) V satisfies the Leibniz rule with respect to tensor multiplication.
For example, V, (agb §fd) = agb Vi €ra + (Vn agb)ffd.

(DO3) V commutes with index substitution.
For example, the result of applying (a — d) index substitution to a®® and applying V, is the same
as that arising from applying (a — d) substitution to V,, a?®. Furthermore, the result of applying

(n — m) index substitution to V,, a2 is the same as that arising from applying V,,, to a2®.

(DO4) V commutes with contraction.
For example, the result of applying (a,c) contraction to V, a2’ is the same as that arising from

applying Vj, to a2.
(DO5) For all smooth scalar fields o and all smooth vector fields £, "V, a = &(«).

(DOG6) For all (distinct) indices a and b, V,V, a = V,V, a.

The first four conditions should seem relatively innocuous. DOb is suggested by the situation in ordinary
vector analysis on R™. There the directional derivative of « in the direction ¢ is given by £-Va. (Recall
equation (1.2.1).) We want to interpret " V,, « as the analog of £-Va. So we set "V, a equal to
the (generalized) directional derivative £(«). DO6 is a bit more delicate. One can imagine strengthening
the condition to require that V, and V, commute on all tensor fields. This leads to the class of “flat”
derivative operators, and is far too restrictive for our purposes. One can also imagine dropping the
condition altogether. This leads to the larger class of “derivative operators with torsion”. It will be clear
later why we have included DO6. (The derivative operators determined by metrics are necessarily torsion

free.)
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Some authors refer to the associated maps V, as “derivative operators”, rather than reserving that

term for the map V itself. We shall do so as well on occasion.

Having defined derivative operators, we can now pose the question of their existence and uniqueness

on manifolds. Concerning existence, one has the following basic result (Geroch [23, appendix]).

Proposition 1.7.1. A connected manifold admits a derivative operator iff a countable subset of the

manifold’s charts suffice to cover it.

The restriction to connected manifolds here is harmless since, clearly, a manifold admits a derivative
operator iff each of its components does. Practically all the manifolds one ever deals with in differential
geometry satisfy the stated countable cover condition. Indeed, one has to work hard to find a manifold
that does not. So proposition 1.7.1 has the force of a strong existence theorem. (And, of course, it implies

that all manifolds admit derivative operators locally.)

The question of uniqueness is easier to deal with, and we give a complete answer. But first a lemma

is needed.

Lemma 1.7.2. Let V be a derivative operator on the n-dimensional manifold M, and let & be a co-vector

at the point p. Then there is a smooth scalar field o in S(p) such that & = (Vp a)p.

Proof. Here we use coordinates as in section 1.2. Suppose (U, ¢) is a chart on M with p € U, and u!, ..., u"™

— —
are the corresponding coordinate maps on U. The coordinate curve tangent vectors ¥y, ..., Vp|p form a

basis for M,. Let {b,é, 7§} be a dual basis. Then (?Z |p)]ﬁ = §;; for all ¢ and j in {1,...,n}, and there

no.
exist real numbers ¢, ..., ¢ such that & = Y. ¢f3,. Now we define a smooth scalar field a: U — R by
i=1

cu'(g). We claim & = (V).

o

setting a(q) =

=1

n o —
We must show that 7°&, = 7°(V, a)|p holds for arbitrary vectors n® at p. Let n® = Y. d (’Y“p)b be
i=1

one such. Then, by DO5, and the fact that 7, p(u?) = 6;; (recall (1.2.6)), we have
77b (Vba)‘p :’I](Oé)|p = (Zd(%,,)) ZJC’UJJ :Zdé
i=1 j j

Since we also have

we are done. O

Proposition 1.7.3. Let V and V' be derivative operators on the manifold M. Then there exists a

smooth symmetric tensor field C§, on M that satisfies the following condition for all smooth tensor
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fields ay " on M:

(Vi = )i =

ay...ar mn ay...ar n _ naz...ar ay _ S 01eQr—1n a
Xy by Cmby T T 00, 57 1 Ombs Qp, b, Crn — - Qb Con.. (1.7.1)

Conversely, given any derivative operator V on M and any smooth symmetric tensor field C7} on M, if

V' is defined by (1.7.1), then V' is also a derivative operator on M.

ay...ar

(To get a grip on (1.7.1), note that for each index in ap!y" there is a corresponding term on the right.
That term carries a + or — depending on whether the index is a subscript or superscript. In that term,

the index is contracted into CP..)

Proof. Let V and V' be derivative operators on M. Note first that given any smooth scalar field o on
M, V'ya =V,a. (This follows from the fact that given any vector £* at any point in M, £*V/, o =
§(a) =" Vo)

Next we claim that given any smooth co-vector field v, on M, if v, = 0 at a point p, then V', v, = V, v
at p. To see this, let ¢ be any smooth field on M and consider the scalar field 4, &°.  We have
0 = (Via—Va) (&) = w(Va — Va)&® + (Vi — Va) everywhere. So, in particular, we have
0=2¢b (V’a - Va)fyb at p. Since this is true for arbitrary £%, it must be the case that (V’a — Va)ﬂyb =0

as claimed.

It follows from the claim that given any smooth field o on M, the value of (V’m — Vm)ab at a point

p is determined solely by the value of « itself at p. (For suppose that &;, and &, agree at p. Then the
claim is applicable to &, — &p, and therefore (V’m — Vm)clxb = (V’m - Vm)éb at p.)
Now we define a tensor field Cj.. Given any point p and a vector &q at p, we set

C’n.

m

where o, is any smooth field on M that assumes the value &, at p. (Our preliminary work shows that
the choice of oy makes no difference.) It follows immediately that C7, satisfies C7, v, = (V’m — Vm)ab

for all smooth fields ay, and, therefore, is smooth itself.

Cp. is symmetric. To see this, consider any smooth scalar field o on M. Since V)% o = V,a, it
follows that C, V, a = (V'm — Vm)Vba =V.2wVa—-V,Vya=V,Via—-V,V,a So, by DO6, we
may conclude that C', V,,a = C}' V. But by our lemma, all covariant vectors at a point can be

realized in the form V, a for some scalar field o. So we have Cj. = C§,.

Next we show that C7. satisfies condition (1.7.1). This involves a now familiar sequential form of
argument — from scalar fields, to vector fields, to arbitrary tensor fields. We have already seen that all

derivative operators agree on scalar fields. And it follows directly from our definition of Cf!, that (1.7.1)
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holds for covariant vector fields. So let £* be an arbitrary smooth contravariant field on M. Then, given

any smooth field v, on M,

0

(Vo= V) (€ m) = & (Vi = Vo) + (Vi — V)€
= & Chra+ (Ve —Va)e
= [ecd+ (Ve - %))
Since this holds for all smooth fields ~,, it follows that (V'a — Va)Sd = —¢vCY, as required by (1.7.1).

To check (1.7.1) for tensor fields o, one expands 0 = (V/, — Vi) (ap, £°A°n4) for arbitrary fields
€%, n, and uses the known expressions for (V’m — Vm)gb, (V’m — Vm))\c, and (V’m — Vm)na. The

calculation is straightforward. Tensor fields of arbitrary index structure can be handled similarly.

The second half of the proposition is also straightforward. O

It is worth noting that condition DO6 entered the proof only in the demonstration that Cf,. must be
symmetric. If in the statement of the proposition one drops the requirement of symmetry on Cf.., then

one has the appropriate formulation for derivative operators with torsion.

In what follows, if V/ and V are derivative operators on a manifold that, together with the field Cg,,

satisfy condition (1.7.1), then we shall write V' = (V, C’l‘}c). Clearly this is equivalent to V = (V’, —C’l‘}c).

We have introduced two kinds of derivative operators. The next proposition shows how the action of

one can be expressed in terms of the other.

Proposition 1.7.4. Suppose V is a derivative operator on the manifold M, and \* is a smooth vector

field on M. Then for all smooth fields o' )" on M, we have:

ai...ar  _  \n aj...a, ai...a, n ai...a, n
Laaplpr = A'Vaap oy ag ) Ve A agl Ty Ve A (1.7.2)
X ai...Qp_1Mm §
—a?l‘l_?_'l;'sm Vi, A% — L — abllmbs VAL

(Condition (1.7.2), of course, resembles (1.7.1) above. The difference £yay! " — A"V ag!l )" is a
sum of terms, one for each indexr in O‘Zf.'.'.'l?:' The terms carry a + or — depending on whether the

associated index is a subscript or a superscript. Each term is contracted with Y, \".)

Proof. The proof is another simple sequential argument, like the one used in the preceding proof. (Note
that we shall not need to invoke the definition of Lie derivatives. It will suffice to make use of the

properties collected in propositions 1.6.1 and 1.6.4.)

First of all, trivially, if « is a smooth scalar field, then £y« = A(a) = A"V, @. Next, suppose £ is

a smooth vector field. Then for arbitrary smooth scalar fields «, we have, by proposition 1.6.4,
(L) = AME(@) —E(MN@) =A(* Vo) —E(A* Vaa)
= NV(E" Vo) V(A" V)
= N VUVaa+ (AN E)Voa— N ViVaa — (W)Y, o
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The first and third term of the last line cancel each other by DO6. So we have
(£r8)(a) = (N WE* =" A) Voo = (A V€% — &8V %) (o).
Since « is arbitrary, it follows that
£rE = NV — €0\,

as required by equation (1.7.2).
Next let o, be a smooth covariant vector field. Then for arbitrary smooth fields £¢,
£\ (€)= aaHrE"+E" Hag
= ag(AWE* — PV AY) + £ £ aq.

Here we have used both the fact that £ satisfies the Leibniz condition and our previous expression for

£x&%. But we also have
L (0 €") = N V(e &%) = A aq VB €" + A€ W, .
Therefore,
E hag =" NV ag + oy Vi AY).
Since £* is arbitrary, we have
Lrag =N Vhag +ap V, A,
as required by equation (1.7.2).

Continuing this way, we can verify (1.7.2) for tensor fields of arbitrary index structure. O

Problem 1.7.1. Show that if V is a derivative operator on a manifold, then ¥V, 6% = 0.

With the notion of a derivative operator in hand, we can now introduce the idea of “parallel transport”

of tensors along curves.

Suppose M is a manifold with derivative operator V. The directional derivative of a scalar field a at
p in the direction £%, we know, is given by £™V,, a. Generalizing now, we take the directional derivative
of a smooth field ay! ' at p in the direction {* (with respect to V) to be
& Vo ap!
Furthermore, if ~: I — M is a smooth curve with tangent field £, we say that agll......;)l,,‘m is constant
along ~y (with respect to V) if "V, aj! ;'™ = 0.
Derivative operators are sometimes called “connections” (or “affine connections”). That is because,
in a sense, they “connect” the tangent spaces of points “infinitesimally close” to one another, i.e., they

provide a standard of identity for vectors at distinct, but “infinitesimally close”, points.
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So far, our tensor fields have always been defined over an entire manifold or — this amounts to the
same thing — to open subsets of a manifold. It is useful also to consider tensor fields defined on curves.
Suppose v: I — M is a smooth curve on the manifold M. A tensor field (of a given index structure) on
~ is just a map that assigns to each s in I a tensor of that index structure at y(s). (Note that this is not
quite the same as assigning a tensor of that index structure to each point in v[I], since we are not here
excluding the possibility that the curve may cross itself, i.e., that y(s1) = v(s2) for distinct s; and ss in
I. We do not want to insist in such a case that the tensor assigned to s; is the same as the one assigned

to s2.) So, for example, the tangent field to  counts as a tensor field on ~.

It is clear what the appropriate criterion of smoothness is for tensor fields on . A scalar field on « is
just amap a: I — R. So we certainly understand what it means for it to be smooth. We take a vector
field £€* on v to be smooth if, for all smooth scalar fields o on M, {(«) is a smooth scalar field on 7.
Next, we take a co-vector field u, on v to be smooth if, for all smooth fields £* on M, £%u, is a smooth
scalar field on . One can continue in this way following the usual pattern. Note that the tangent vector

field to any smooth curve qualifies as smooth.

Now suppose that ~v: I — M is a smooth curve on the manifold M with tangent field £, agll B 2m s
a smooth field on ~, and V is a derivative operator on M. We cannot meaningfully apply V to abl b, g
But we can make sense of the directional derivative field £" 'V, O‘bl .'.'.'zl)le on . We can do so using the

following proposition.

Proposition 1.7.5. Suppose V is a derivative operator on the manifold M and ~v: 1 — M is a smooth

curve with tangent field £*. Then there is a unique operator
ap = Dlagl )

taking smooth tensor fields on v to smooth tensor fields on v of the same index structure that satisfies

the following conditions.

(1) D commutes with the operations of addition, index substitution, and contraction; it further satisfies

the Leibniz rule with respect to tensor multiplication.

d
(2) For all smooth scalar fields s+ a(s) on-~y, D(a)= d—a.
s
(3) Let s — ay' "™ (s) be a smooth tensor field on ~y. Suppose there is an open set O and a smooth
field ag} =y on O such that, for all s in some open interval I' C I, ay! "™ (s) = apl )™ 1y (s)-

Then, for all s in I', D(ag' 3 )(s) = (€"Vau @™ ) 1y(s)-

Proof. Suppose first that D satisfies the stated conditions, and suppose agll......;)l,,‘m is a smooth tensor
field on . We shall derive an explicit expression for D(a;! ;™) in terms of a local coordinate chart.
This will show that there can be, at most, one D satisfying the stated conditions. To avoid drowning in
indices, we shall work with a representative case — a smooth field af — but it will be clear how to adapt

the argument to fields with other index structures.
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Suppose our background manifold (M, C) has dimension n. Let s be any point in I, and let (U, ¢) be
an n-chart in C whose domain U contains 7(s). For all i € {1,...,n}, let 7i7a be the smooth coordinate-
curve tangent field (?Z)“ on U. We know that the fields 717“,727“, ...n% form a basis for the tangent
space at every point in U. Let ba, ;21,1, e ﬁa be corresponding smooth co-vector fields on U that form
a dual basis at every point. Now let o be a smooth field on y. We can certainly express it in terms of
these basis and co-basis fields. That is, we can find an open subinterval I’ C I containing s, and smooth

functions &: I’ — R such that, at all points s in I’,

d(s) (%a)h(s) (/ij)I'y(s)-

£
W
™
o3

Here, of course, & = of n® lia. We can construe the restrictions of 7% and Jip to ~[I'] as smooth fields on

(a restricted segment of) v. It follows, therefore, that at all points in I,

n n
2y i, J g i, J ij i, 7
> D (a 0 ub) = > [D(a) (0" 1) + & D jw) | -
ij=1 1,5 =1
Here we have just used the fact that D commutes with tensor addition and satisfies the Leibniz rule
(and suppressed explicit reference to the evaluation point s). But now it follows from conditions (2) and
j
(3), respectively, that D(&) = d—a, and D1 [ip) = £V, (1 [ip). So, we have our promised explicit
S
expression for D(af):

n
dé ij igd
Dlef) = > | (0 fiw) + & €'V (i )
=1
To show existence, finally, it suffices to check that the operator D defined by this expression (and
the counterpart expressions for fields with other index structures) satisfies all three conditions in the

proposition. O

Under the stated conditions of the proposition, we can now understand ¢"V,, agll_'_'_frm to be the
smooth field on v given by D(ab “m) Note that condition (3) in the proposition just makes precise
the requirement that £V, oy’ ™ is “what it should be” in the case where ab bm arises as the

restriction to y[I] of some smooth tensor field defined on an open set.

We have already said what it means for a tensor field defined on an open set to be “constant” along
a curve v with tangent field £*. We can now extend that notion to fields «j! ;'™ defined only on vy

itself. The defining condition, £" V,, o' ;'™ = 0 carries over intact.

The fundamental fact about constant fields on curves is the following.

Proposition 1.7.6. Given a manifold M, a derivative operator V on M, a smooth curve ~:I — M,

and a tensor ab b’" at some point y(s), there is a unique smooth tensor field ab gr’" on vy that is

constant (with respect to V) and assumes the value &Zl Boat s,
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When the conditions of the proposition are realized we say that agll_'__ p," results from parallel transport

0@1...0m

of a, ,  alongy (with respect to V).

Finally, we introduce “geodesics”. We say that a smooth curve v: I — M is a geodesic (with respect
to V) if its tangent vector field £% is constant along 7, i.e., if ¢°V,€% = 0. The basic existence and
uniqueness theorem for geodesics is the following. (In what follows, we shall drop the qualification “with

respect to V” except in contexts where doing so might lead to ambiguity.)

Proposition 1.7.7. Given a manifold M, a derivative operator V on M, a point p in M, and a vector
&% at p, there is a unique geodesic v: I — M with ~v(0) =p and & :ip that satisfies the following
mazimality condition: if v : 1' — M s also a geodesic with ~'(0) = p and §’|p =¢, then I' C 1
and ' (s) =~(s) forallsel.

To prove propositions 1.7.6 and 1.7.7, one formulates the assertions in terms of local coordinates and

then invokes the fundamental existence and uniqueness theorem for ordinary differential equations.

A derivative operator determines a class of geodesics. It turns out that a derivative operator is actually
fully characterized by its associated geodesics. This will be important later in our discussion of relativity

theory.

Proposition 1.7.8. Suppose V and V' are both derivative operators on the manifold M. Further suppose
that V and V' admit the same geodesics (i.e., for all smooth curves ~: 1 — M, = is a geodesic with

respect to V iff it is a geodesic with respect to V'). Then V' = V.

Proof. The argument provides a good example of how proposition 1.7.3 is used. Given V and V', there
must exist a smooth symmetric field Cgt, on M such that V' = (V,C{.). It will suffice to show that Cf.,

vanishes everywhere.

Given an arbitrary point p and an arbitrary vector 2 @ at p, there is a geodesic v with respect to V
that passes through p and has tangent 2 @ at p. Let £* be the tangent vector field of v. Then we have
£"V, €% = 0. By our hypothesis, v must also be a geodesic with respect to V. So £"V/,,£* =0 too.
Now, since V, = (V,,C%), we have V', A\’ =V, A\’ —C% A" for all smooth fields A\?. So, in particular,
we have

0=¢" Vi =¢"Ve—Cp ¢
—
=0
at all points on the image of 7. So C?, 2”2““ =0 atp. But %‘1 and p were arbitrary, and C?, is symmetric.

So, by proposition 1.4.3, C}. must vanish everywhere. O

The property of being a geodesic is not preserved under reparametrization of curves. The situation is

as follows.
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Proposition 1.7.9. Suppose M is a manifold with derivative operator V, and ~:I — M is a smooth
curve with tangent field £€*. Then ~ can be reparametrized so as to be a geodesic (i.e., there is a diffeo-
morphism «:I' — I of some interval I' onto I such that v = yoa« is a geodesic) iff £V, £% = f&°
for some smooth scalar field f on . Furthermore, if v is a non-trivial geodesic (i.e., a geodesic with

non-vanishing tangent field), then the reparametrized curve v =yoa is a geodesic iff « is linear.

Proof. Suppose a: I' — I is a diffeomorphism and £’ is the tangent field to v/ = yoa: I' — M.

d d
Set ¢ = a(s). By the chain rule, we have ¢’ = ¢ d—a. (This abbreviates &'|,/(s) = &y(a(s)) d—a(s) Recall
s s

d
(1.3.1) in the proof of proposition 1.3.2.) Now we can construe d_a as a smooth scalar field on v — it
s

d d
assigns to s the number d—a(s) at the point y(s) — and we can make sense of the rate of change £"V, d—a.
s s
So we have
da da da'\? da da
m ta __ [ 22 en Zoeay [ 22 n a habnd a ¢n bt
&7t _(dsg)vn(dsg) <ds> &Vt +(ds>€5 vnds'
Now d—a(s) # 0 for all s in I’, since « is a diffeomorphism. So, by the chain rule again,
s
g, da_d (da) _ o (da)T
ds dt \ ds ds? \ ds
It follows that ) )
da d“a
myy gla — (22 VA LN Eaihaly ) 1.7.
e = (1) e ve+ 5 (173

Both our claims follow from this last equation. First, 4’ is a geodesic, i.e., "V, &% =0 iff "V, £% =

Pa (da

f&* where f=-—— (d_s

-2
7 ) . Second, if v is a geodesic (i.e., if "V, &% = 0), then 4’ is also
s

d2
a geodesic iff d—(; £* = 0. On the assumption that £* is non-vanishing, the latter conditions holds iff
s

da

—— =0, i.e., « is linear. O
ds?

We know that a derivative operator is determined by its associated class of geodesics. Let us now
consider a different question. Suppose one does not know which (parametrized) curves are geodesics,
but only which ordered point sets on a manifold are the images of geodesics. To what extent does that
partial information allow one to determine the derivative operator? We answer the question in the next
proposition. Let us say that two derivative operators V and V' on a manifold are projectively equivalent
if they admit the same geodesics up to reparametrization (i.e., if any curve can be reparametrized as to

be a geodesic with respect to V iff it can be reparametrized so as to be a geodesic with respect to V').

Proposition 1.7.10. Suppose V and V' are derivative operators on a manifold M and V' = (V,Cgc).
Then ¥V and V' are projectively equivalent iff there is a smooth field . on M such that

Che = 0y e + 0 p.
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Proof. Suppose first that there does exist such a field .. Further suppose that «y is an arbitrary smooth
curve with tangent field £*. Then

Ve = (Vg = O €M) ="V & — (05 om + Op o) €M ET
§" V&' — 2€a(90m gm)

It follows by the first part of proposition 1.7.9 that v can be reparametrized so as to be a geodesic with

respect to V iff it can be reparametrized so as to be a geodesic with respect to V.

Conversely, suppose that V and V' are projectively equivalent. We show there is a smooth field . on
M such that C}, = 6§ @ + 62 wp. Let v be an arbitrary geodesic with respect to V with tangent field
&% Then £"V,£*=0 and "V, &% = f&* for some smooth field f on 7. (Here again we use the first
part of proposition 1.7.9.) It follows that

fer=¢"(We - Gp.€) = —Cp.eh ¢
Therefore, (C’gc ¢d—og {a)fb £°=0. This can be expressed as
(Che 07 = G 07)€"€°¢7 = 0.

Now let ¢ be the field (Cg 64 — C 62). Symmetrizing on the indices b, ¢, r, we have

be Vr be ¥r
Sﬁ(gcdr) e =o.
Since this equation must hold for all choices of 7, and hence all vectors ¢ (at all points), and since cp(ggr)

is symmetric in b, ¢, r, it follows from proposition 1.4.3 that go(gi) = 0. Therefore, using the fact that

Cy. is itself symmetric,

Che 0y — Che b7 + Oy 08 — Cry 6¢ + Ce. 6 — C. 0 = 0.

T

Now suppose n is the dimension of our underlying manifold. Then (r,d) contraction yields
nCf, — Cf. + C4 — C4, 62 + C& — Cdy 53 = 0.

Thus, (n+1)C¢ =62C%, +52CH,. If we set ¢, = C4,, this can be expressed as

n-+1
Che = 0p e + ¢ vp.

O

)

We close this section with a few remarks about the “exterior derivative operator” and about “coordi-

nate derivative operators” (associated with particular charts on a manifold).

An m-form (for m > 0) on a manifold M is a tensor field on M with m covariant indices that is

anti-symmetric, i.e., a tensor field of the form oy, .. .4, where oy, .. q,, = Q[q,..q,]- (Scalar fields qualify

m

as 0-forms.)
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Suppose Qu, ...a,, i a smooth m-form on M, and c is an index distinct from ay, ..., an. Then, given

any covariant derivative operator V, Vi.ag, .4, qualifies as a smooth (m + 1)-form on M. It turns out
that this field is independent of the choice of derivative operator V. (See problem 1.7.2.) In this way, we

arrive at an operator d (the exterior derivative operator) that acts on pairs (¢, ag,..q,, ) and satisfies
de Qay .0, = v[c Xay..cam) (174)

for all choices of V. So, in particular, we have d,a = V, a for all smooth scalar fields a. We have

dy g = Vjp ) = %(Vb aq — V, ap) for all smooth co-vector fields «,, and so forth.

One can certainly introduce the exterior derivative operator directly, without reference to covariant
derivative operators. Most books do so. But there is no loss in proceeding as we have since covariant
derivative operators always exist locally on manifolds, and local existence is all that is needed for our

characterization.

Officially, we are taking the exterior derivative operator d to be a map that acts on a pair of objects
— an index and a smooth m-form (for some m or other). One might also use the term to refer to the

associated map dy that assigns dx v, ...qa,, 10 Qa,...a,,. Some authors do so, and we shall too on occasion.

Problem 1.7.2. Let V and V' be derivative operators on a manifold, and let o, . 4, be a smooth n-form
on it. Show that

V[b Xay...ap] = V/[b Xay...an]-

(Hint: Make use of proposition 1.7.3.)

It is worth asking why we do not allow the exterior derivative operator to act on arbitrary smooth
covariant tensor fields. The problem is not a failure to be well defined. (Note that given any smooth

covariant field ag,. 4,,, and any two derivative operators V and V', it follows from problem 1.7.2 that
Vit Qayoan] = Vb Yar.an]] = Vi Yar.an]] = Vb Qay.an]-)

Rather, the problem is that we cannot both extend the application of the exterior derivative operator
and have it satisfy the Leibniz rule — and presumably the latter is a requirement for any derivative-like
operator. Here is the argument. Let a4 be any smooth symmetric field. Then (if we allow ourselves to
apply dn), dnaay = Vipag = 0. Now let f be any smooth scalar field. By the same argument, we

have d,,(faas) = 0. So, if the Leibniz rule obtains, we have

0= dn(faab) = f(dnaab) + (dnf) gy = (dnf) Qap-
But this is impossible since, given any point p, we always choose f and ap so that neither oy, nor (dy, f)
vanishes at p.

We have introduced three types of derivative operator on manifolds. It is helpful to contrast them with

respect to two features: the background geometric structure they presuppose (if any) and the types of
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tensor fields to which they can be applied. One finds a trade-off of sorts. The exterior derivative operator
d, presupposes no background structure (beyond basic manifold structure). But it is only applicable to
smooth m-forms (for some m or other). In contrast, the Lie derivative operator £¢ and the covariant
derivative operator V, can both be applied to arbitrary smooth tensor fields. But the first presupposes
(i.e., is defined relative to) a smooth contravariant vector field &; and the latter can itself be thought of
as a layer of geometric structure beyond pure manifold structure. (Another difference, of course, is that
£¢ leaves intact the index structure of the tensor field on which it acts, whereas d, and V, both add a as

a covariant index.)

Let us now consider “coordinate differentials”. Let (U, ) be an n-chart on the n-manifold (M,C),
and let u': U — R (i = 1,...,n) be the coordinate maps on U determined by ¢. We know that the
associated smooth coordinate-curve tangent fields ?1, ey ?n form a basis for the tangent space at every

point in U. (Recall the discussion in section 1.2.) The notation

2 9
oul )77\ Oun
is often used for these fields. And give any smooth scalar field f on U, the action of (8—1) on f is often

ou

ou’

(gﬁ - ({fw)lp () =ilf) = (f‘?(fgixfl))w) .

for all p in U. In particular, if we take f to be u/, it follows from (1.2.6) that

(gZZ) - (8aui) (W) = i) = & (1.7.6)

at all points in U. Furthermore, if V is a derivative operator on M, we have, by condition (DO5),

(aii)a (dof) = <aii>a (Vaof) = <aii> (f) = <§5> (1.7.7)

So, taking f to be u’ once again, we have

(ii)a (o) = (Zf) = 0y (1.7.8)

(dqut), ..., (dgu™)

0
written, simply, as (—f) Using this notation, we have, by (1.2.5),

This shows that the co-vectors

form a dual basis to 8— sy 8— at every point in U.
oul oun
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Many useful facts follow from the preceding lines. For example, it follows that the index substitution

field &7 can be expressed as

5y = (%)a(dbul)—k...—l— (%)a(dbu"). (1.7.9)

And it follows that, for all smooth scalar fields f on U,

dpf = zj: (%) (dpu?). (1.7.10)

(In both cases, the left- and right-side fields must be equal since they have the same action on the basis

AN o\
fields (W) . Consider (1.7.10). We know from (1.7.7) that contraction with ($> on the left side
u u

) oY 0
yields (8_{>7 and we know from (1.7.8) that contraction with (8 Z) on the right side yields (8][1)
u u v

as well.) If we were not using the abstract index notation, we would express (1.7.10) in the form
n
of i
=3 (50)
j=1
Next we consider “coordinate derivative operators”. The basic fact is this.

Proposition 1.7.11. Let M be an n-manifold, let (U, p) be an n-chart with non-empty domain on M (in
the atlas that defines the manifold), and let u': U — R (i =1,...,n) be the coordinate maps determined

b
by w. Then there is a unique derivative operator V on U such that Va< > = 0 for all i.?

oui

Proof. Uniqueness follows easily from proposition 1.7.3. Suppose V and V'’ are derivative operators on

U with V' = (V, C.). Then, for all 1,

(oY B) b_ s (0
V“(aui = Vol gu Can \ 507 ) -
B

So if V and V’ both satisfy the stated condition, it must be the case that C’Zn <8_> =0, for all 3.
u’L

This, in turn, implies that C®, = 0. (Somewhat more generally, if two derivative operators agree in their

action on a set of vector fields that span the tangent space at each point, the derivative operators must

be equal.)

We now establish existence by explicitly exhibiting a derivative operator V on U that satisfies the
stated condition. First, given any smooth scalar field f on U, we take V, f to be the field on the right
side of (1.7.10). (We have no choice here, since d, f = V, f for all derivative operators.) Next consider

any smooth tensor field on U that carries at least one abstract index. It can be expressed uniquely as

2Here, as usual, we have suppressed explicit reference to manifold atlases. We mean, of course, that (M, C) is an

n-manifold, (U, ¢) is an n-chart in C, and V is a derivative operator on the restricted manifold (U, C|¢7).
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o\ .
a sum over the basis fields (%) and (d,u’). Consider an example. The field 7%® can be expressed

uniquely in the form

=YY v(j—u)(%)bwuk)

Here we introduce a new summation variable [, take the partial derivative of the scalar field Zﬂjyk with
respect to u!, and add (d,,u') to the list of fields on the right. This prescription can be generalized. In
every case, we detegmine the action of V},, on a tensor field by first expressing the field as a sum over the
basis fields <%) and (dyu’), and then generating a new sum (with m as a new covariant index) in
three steps: we introduce a new summation variable ¢, take the partial derivative of the scalar coefficient

field with respect to u*, and then add (d,,u*) to the list of fields in the sum. One can easily check that

o\
the operator so-defined satisfies conditions DO1 through DO6. And it is clear that Va<w> = 0 for

b
all i. For when we (vacuously) represent any particular field (—Z) in the indicated way,

Outo
o b n . o b
<6u> B E “ <au> !
—_ : dix .
the coefficients & are constant (either 0 or 1), and so e 0 for all ¢ and I. (]
u

We call this derivative operator — the one identified in the proposition — the coordinate derivative

operator canonically associated with (U, ). Sometimes, when the there is no ambiguity about the n-chart

b
with which it is associated, the operator is written as 9. So 8a<%> = 0 for all 5. As we shall
u'L

see in the next section, all coordinate derivative operators are flat, i.e., their Riemann curvature fields

vanish.

Problem 1.7.3. Let V be the coordinate derivative operator canonically associated with (U, ¢) on the
n-manifold M. Let u® be the coordinate maps on U determined by the chart. Further, let V' be another
derivative operator on U. We know (from proposition 1.7.8) that there is a smooth field C¢. on U such
that V' = (V,Cg.). Show that if

ct = Y003 (2 ) (e,

n P 6 a
then a smooth vector field £* = Z ( ) on U is constant with respect to V' (i.e., V' & = 0) iff
i=1
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85 LT
w ~ 2= C

for alli and j. (The “Christoffel symbol” % is often used to designate the coefficent field C .)

Next, we make use of proposition 1.7.11 to prove a useful proposition about “position fields”.

Proposition 1.7.12. Let V be the coordinate derivative operator canonically associated with (U, ¢) on
the n-manifold M. Let u’® be the coordinate maps on U determined by the chart, and let p be a point in

U. Then there exists a unique smooth vector field x* on U such that (1) V,x* = 6° and (2) x* = 0 at p.

Proof. (Existence) Consider the field x* defined by

Xt = zn: (ui—ui(p))<aii)a- (1.7.11)

i=1

Clearly it satisfies condition (2) since (u’ —u’(p)), = (u'(p) — u’(p)) = 0. And it satisfies (1) because

lp

VX! = ; Va(ui—ui(p))<aaui>b = zn: (vaui)<aii)b = &,

=1

u
second equality follows from the fact that (all) derivative operators annihilate all constant scalar fields;

o\
(The first equality follows from the fact that the basis fields ($) are constant with respect to V; the

and the third equality follows from equation (1.7.9).)

(Uniqueness) Assume x’® satisfies conditions (1) and (2) as well, and consider the difference field
(X' — x). Tt is constant with respect to V (since V,(x’® — x?) = 6 — §° = 0), and it is the zero vector

at p. So it must be the zero vector everywhere, i.e., x’¢ = x%. O

We refer to x as the position field relative to p (associated with the coordinate derivative V).

In the last few paragraphs we have dealt with the derivative operator V canonically associated with
an arbitrary n-chart (U, ¢) on an arbitrary n-manifold M. Let us now consider the special case where
M is the manifold R™, (U, ¢) is the (global) n-chart where U = R™, and ¢: U — R" is the identity map.

(So u' = (2 0 ) = 2'.) In this case, we get

(g;i) - (aii)(f)' (1.7.12)

0
from (1.7.5). Of course, we have already encountered the fields (W) They were the first examples of
z

vector fields that we considered in section 1.3. (There we used (1.7.12) to characterize the fields.)

Many familiar textbook assertions about “differentials” fall out as consequences of the claims we have

listed. For example, the equation

df = Z} <%) da?
iz
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comes out in our notation as "
af .
dbf = E <—) db:Ej,
= oxJ
and the latter is just an instance of (1.7.10).

The coordinate derivative operator V canonically associated with the coordinates !, ... , 2" is defined
on the entire manifold R™ (because the coordinates are). So, too, the associated positions fields x®
(relative to particular points) are defined on the entire manifold. Note that we have encountered these
position fields before as well. Suppose we take p to be the origin (i.e., suppose x?(p) = 0 for all 7). Then,
recalling (1.7.11), we have

n ) a a
a 7
= Z v <6$i) '
=1
In the case n = 2, the right side field is precisely what we called the “radius expansion” field in section

1.3. We can picture it as follows. Given any point ¢ in R?, there is a natural isomorphism between the

vector space R? and the tangent space to the manifold R? at ¢ defined by

o \" o\
@) o (@) ot (@X'

If we identify these two, then we can think of x|, as just the “position vector” 0¢ that runs from the

origin o to ¢. (See figure 1.7.1.)

Figure 1.7.1: The position field x* on R? (relative to point o).
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1.8 Curvature

In this section we introduce the Riemann curvature tensor field R, ; and discuss its intuitive geometric

significance. We start with an existence claim.

Lemma 1.8.1. Suppose V is a derivative operator on the manifold M. Then there is a (unique) smooth

tensor field Ry, on M such that for all smooth fields o,
Rig € = —2VVy & . (18.1)

Proof. Uniqueness is immediate since any two fields that satisfied this condition would agree in their
action on all vectors £% at all points. For existence, we introduce a field Ry, and do so in such a way that
it is clear that it satisfies the required condition. Let p be any point in M and let 2“7 be any vector at p.
We define R}, Eb by considering any smooth field £€¥ on M that assumes the value Eb at p and setting
Ry, Eb = —2V[.Vg £*. It suffices to verify that the choice of the field &P plays no role. For this it suffices
to show that if 7)* is a smooth field on M that vanishes at p, then necessarily Vi Vi n® vanishes at p as
well. (For then we can apply this result, taking n° to be the difference between any two candidates for
&)
The usual argument works. Let A, be any smooth field on M. Then we have, by DOG,

0 = ViV (1" Xa) = (Men”) (Vay Aa) + 0" MeVig Aa + (Ve Mag) (Vi 1) + XaVie Vg 1

(Note: In the third term of the final sum the vertical lines around the index indicate that it is not to be
included in the anti-symmetrization.) Now the first and third terms in that sum cancel each other. And
the second vanishes at p. So we have 0 = A\, V.Vgn® at p. But the field A\, can be chosen so that it

assumes any particular value at p. So V.Vgn® =0 at p, as claimed. O

R§ ., is called the Riemann curvature tensor field (associated with V). It codes information about the
degree to which the operators V, and Vj fail to commute. Several basic properties of Rj.; are collected

in the next proposition.

Proposition 1.8.2. Suppose V is a derivative operator on the manifold M. Then the curvature tensor
field Rg., associated with V satisfies the following conditions:
(1) For all smooth tensor fields o' " on M,

2V Vg o)y = Y Ry g ol L R g
—ag R?J;d L A A
(2) Ry.q =0.
(3) Riyq = 0.

(4) Vim R jpjca) = 0 (Bianchi’s identity).
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Proof. Condition (1) is proved in the now familiar way using D06 and lemma 1.8.1. We proceed in
two steps. First, we show that 2V|.Vgja, = «a, Ry, for all fields a, on M. To do so, we consider

an arbitary smooth field £* on M, expand 0 = V| Vg (5“ aa), and invoke the lemma. Then we turn to

ar

the general case. We contract agll_'__bs with s smooth contravariant vector fields and r smooth covariant
vector fields, apply V.Vy, expand, and then use our previous results. (2) follows immediately from

lemma 1.8.1. For (3), notice that given any smooth scalar field & on M, we have, by (1),
Ry g Vo =2 Vie VgV

and hence, by D06,
R[gcd] Va a=2 V[CVdVb] a=0.

Since any covariant vector at any point can be realized in the form V, a (recall lemma 1.7.2), it follows

that R[‘gcd] =0 everywhere.

The argument for (4) is just a bit more complicated. Given any smooth field «p, on M, we have
2V Vg ap = Vi (Rpg aa) = (Ve Ry g) e + Ry g Vi .

But we also have, by (1),
2 V[TVC]Vd ap =Ry, . Vinay + Ry, Vaan .

If we anti-symmetrize these two equations in (r,c, d), then we have 2V}, V.V a3, on the left side of both.

So (equating their right sides),
(Vi Rjbjea)) @a + Rijea Vi @a = Rigpe) Vo 0 + Rijpe Vi i
The second term on the left here is equal to the second term on the right. So, by condition (3), we have

(v[r fb\cd])aa =0.

But a, is arbitrary, and so we have (4). O

Problem 1.8.1. Let V and V' be derivative operators on a manifold with V', = (Vi, Cg.), and let their

respective curvature fields be Ry, and R'¢.,. Show that
"bed = Ria + 2V Cyy, + 2C4,. Cip.- (1.8.2)

Problem 1.8.2. Show that the exterior derivative operator d on any manifold satisfies d*> = 0, i.e.,
dn(dm w,...b,) = O for all smooth p-forms aw, . .p,. (Hint: Make use of proposition 1.8.2. Notice also that

)\[a...[b...c],..d] = )‘[a...b...c...d] fO’f’ all tensors )\a...b...c...d')

Problem 1.8.3. Show that given any smooth field £&*, and any derivative operator V on a manifold, £

commutes with V (in its action on any tensor field) iff V,W, &™ = R ™. (Here, of course, R is
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the curvature field associated with V. If this conditions holds, we say that £* is an “affine collineation”

with respect to V. Hint: First show that if K} = R} &% — VoW, ™, then for all smooth fields O‘Zf.'.'.'l?:’

bna

aj...ar aj...ar m ai...ar, m
(Le Vi — Vi de)ag! ™ = app ™y K+ +agt T K,
maz...ar ay al...ar—-1MmM ar
=y K, — o ] Ky

Problem 1.8.4. Show that given any smooth field £* on a manifold, the operators £e and d, commute
in their action on all smooth p-forms. (Hint: Make use of the equation stated in the hint for problem

1.8.3.)

It is not our purpose to attempt to develop systematically the theory of forms on a manifold, but we
shall pause for one comment on the result stated in problem 1.8.2. Let ag,. 4, be a smooth n-form on
a manifold M with n > 1. We say that is closed if its exterior derivative vanishes. And we say that it
is ezact if there is a (n — 1)-form on M of which it is the exterior derivative. (So, for example, the form
agyp is closed if d, ap. = 0, and it is exact if there is a smooth form 8, such that a., = dg Bp.) It follows
immediately from the problem that every exact form is closed. It turns out that the converse is true as

well, at least locally, but the proof is non-trivial. We record the fact here for future reference.

Proposition 1.8.3. Let ag,..a, be a smooth closed n-form on the manifold M with n > 1. Then,

n

for all p in M, there is an open set O containing p, and an (n — 1)-form Ba,. a,_, on O such that

Qgy...ap = dal 6a2...an-

Global assertions can also be made if M satisfies suitable conditions. If M is simply connected, for
example, then all closed 1-forms are (globally) exact. And if M is contractible then, for all n > 1, all
closed n-forms are (globally) exact. (See Spivak [57, volume 1] for proofs of the two claims. Proposition

1.8.3 is a consequence of the second, since all manifolds are locally contractible.)

Suppose M is a manifold with derivative operator V and associated curvature field Rj.;. We say that
V is flat (or that M is flat relative to V) if Ry, vanishes everywhere on M. The next proposition makes

clear the intuitive geometric significance of flatness.

Proposition 1.8.4. Let V be a derivative operator on the manifold M. If parallel transport of vectors
on M relative to V is path independent, then V is flat. Conversely, if V is flat, then, at least locally
(i.e., within some open neighborhood of every point), parallel transport of vectors relative to V is path

independent. (If M is simply connected, the converse holds globally.)

Proof. First assume that parallel transport of vectors on M is path independent. Let p be any point in
0 0
M, and let £€® be any vector at p. We extend £% to a smooth vector field £* on all of M by parallel
0
transporting £ (via any curve) to other points of M. The resulting field is constant in the sense that

V. € = 0 everywhere. (This follows from the fact that all directional derivatives of ¢ at all points
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vanish.) Hence Ry, & =-2 VieVg §* = 0 at all points. In particular Ry, 2b =0 at p. Since Eb was

arbitrary, we have Rj , =0 at p.

Conversely, suppose that R}, vanishes on M. To show that parallel transport on M is, at least locally,
path independent, it will suffice to show that given any vector 2“ at point p, there is an extension of 2" to
a smooth field £€* on some open set O containing p that is constant, i.e., V, £? =0 everywhere in O. (For
then, given any point ¢ € O, and any curve v from p to ¢ whose image falls within O, parallel transport
of %a along v must yield 5“2.) To see that a vector field satisfying V, £ = 0 and 5“; = %‘l does exist
locally, one writes out these two conditions in terms of local coordinates and generates a set of partial
differential equations. These equations, it turns out, have a solution if a certain “integrability condition”
is satisfied. That condition is nothing but the equation Rf,., = 0 expressed in local coordinates. (For

further details, see, for example, Spivak [57], volume 2, chapter 4.) O

We know from proposition 1.7.11, that given any n-chart (U, ¢) (with non-empty domain) on an

0
n-manifold, there is a unique derivative operator V on U such that Va(T) =0 for all i. (Here
u’L

ul,...,u™ are the coordinate maps on U determined by (U, ¢).) We called it the “coordinate derivative

operator canonically associated with (U, ¢)”. It follows immediately, of course, that

(oY o \"
Rbcd(w) ——ZV[ch](aui) =0

o\ oY
for all 4. This, in turn, implies that Rf.;, = 0, since the fields (ﬁ) s ey (W) span the tangent
U U

space at every point. Thus we see that coordinate derivative operators canonically associated with local

charts are flat.

The geometric significance of the curvature tensor field can also be explicated in terms of “geodesic
deviation”. Suppose £% is a smooth vector field on the manifold M whose integral curves are geodesics
with respect to V. (We shall say that £ is a geodesic field with respect to V.) Further suppose that \®
is a smooth field that satisfies £¢ A = 0. Then we can think of the restriction of A* to an integral curve
~v of £% as a field that connects v to an “infinitesimally close” integral curve /. If we do, the second
derivative field €™V, (ﬁm Vin )\“) along ~ represents the “relative acceleration” of +' with respect to ~.

The following proposition shows how this field can be expressed in terms of the Riemann curvature field.

Proposition 1.8.5. Suppose £ is a geodesic field on the manifold M with respect to V. Further suppose
A? is a smooth field that satisfies Le A* =0. Then

"V (€M VinA") = Ry g &P A ¢4 (1.8.3)

Proof. We have £"V,,£* =0 (since £ is a geodesic field) and £"V, A* = A" V,,£* (since £ A\* = 0).
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The rest is just a calculation.

E"V (€M Vi AY) = "V (AN Vi €)= (€ Vi AT Vi €0 4 €7 AV, Vi, £°
= (" VA" )V &8+ N Vi Vi €8 + €A RE, L, €
= (& Vi A™) Vi E A"V (€7 V3 €)= (N Vi €)Y E9 4+ N RS €7
= R ETATET

(The third equality follows from R, " = —2V},, V,,) €%, The final one follows from the fact that in the

mmn

sum before the equality sign, the second term is 0, and the first and third terms cancel each other.) O

Proposition 1.8.6. Suppose V is a derivative operator on the manifold M. Then V is flat iff all geodesic
deviation on M (with respect to V) vanishes, i.e., given any smooth geodesic field £*, and any smooth

field \* such that £ \* =0, £V, (€™ V") = 0.

Proof. The “only if” half follows immediately from proposition 1.8.5. So suppose that all geodesic
deviation vanishes. Then, given any vectors %" and 3\“ at a point p, it must be the case that Rf,; 2“7 f\c E“d =
0. (We can always choose field £€* and A\* on an open set containing p such that £% is a geodesic field,
Le A = 0, and &% and A® assume the values 2 ¢ and j\“ at p respectively.) Equivalently, it must be
the case that Rgcdg“ b% 4 =0 for all vectors 2“ b at p. Our conclusion now follows by the symmetries of
the Riemann tensor recorded as conditions (2) and (3) in proposition 1.8.2. By (2), first, it follows that
Ry, Eb 26 =0 for all vectors Eb at p. Hence, by proposition 1.4.3,

R((gc)d = 0 (184)
at p. Next, by (2) and (3), we have (everywhere)
Rijeq + Ripe + Reay, = 0.

But (2) and (1.8.4) jointly imply

a _ pa _ pa
Rbcd - Rdbc - Rcdb

at p. So Rj.; =0 at our arbitrary point p. O

Equation (1.8.3) is called the equation of geodesic deviation. Notice that it must be the second
derivative field £"V, (gm Vin /\“) that enters the equation, and not the first derivative field &"V,, \*.

The latter is unconstrained by the curvature of the manifold. It can assume any value at a point.
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1.9 Metrics

A (semi-Riemannian) metric on a manifold M is a smooth field gq, on M that is symmetric and

invertible, i.e., there exists an (inverse) field ¢ on M such that g,; g*¢ = 5¢.

It is easy to check that the inverse field ¢*¢ of a metric g, is symmetric and unique. It is symmetric

since

mc be

9 =g"55 = " (gm 9™) = (gmn g™) g™ =60, 9" =g

Here we use the symmetry of g, for the third equality.) It is unique because if ¢’°¢ is also an inverse
( y y of g quality q g

field, then

Imc ( mb bc.

g =" = 9" (Gum 9™") = (Gmn g™ ) g™ = 55, g™ = gP =g

(Here again we use the symmetry of g, for the third equality; and we use the symmetry of g¢* for the
final equality.) Ome can also check that the inverse field g*® of a metric gqp is smooth. This follows,
essentially, because given any invertible square matrix A (over R), the components of the inverse matrix

A~! depend smoothly on the components of A.

The requirement that a metric be invertible can be given a second formulation. Indeed, given any field
gap o0 the manifold M (not necessarily symmetric and not necessarily smooth), the following conditions

are equivalent.

1) There is a tensor field ¢°¢ on M such that g, g*¢ = 6¢
g Gab g

(2) For all pin M, and all vectors £ at p, if ¢q, €* =0, then £* =0.

(When the conditions obtain, we say that g, is non-degenerate.) To see this, assume first that (1) holds.
Then given any vector £¢ at any point p, if g, & = 0, it follows that £¢ = §¢¢% = g*¢ g, €% = 0.
Conversely, suppose that (2) holds. Then at any point p, the map from (M,)* to (M), defined by
€% — g & is an injective linear map. Since (Mp)* and (M,), have the same dimension, it must be

surjective as well. So the map must have an inverse g*¢ defined by ¢%(gap£?) = £ or g% gap = 6¢.

In the presence of a metric gqp, it is customary to adopt a notation convention for “lowering and
raising indices”. Consider first the case of vectors. Given a contravariant vector £{* at some point, we
write o5 &% as &; and given a covariant vector my,, we write ¢*n, as n°. The notation is evidently
consistent in the sense that first lowering and then raising the index of a vector (or vice versa) leaves the

vector intact.

One would like to extend this notational convention to tensors with more complex index structure.
But now one confronts a problem. (It was mentioned in passing in section 1.4.) Given a tensor a2’ at a
point, for example, how should we write ¢™¢a2®? As a™®? Or as a®®? Or as a®™? In general,
these three tensors will not be equal. To get around the problem, we introduce a new convention. In
any context where we may want to lower or raise indices, we shall write indices, whether contravariant

b

or covariant, in a particular sequence. So, for example, we shall write a®®, or a%’ or «. (These
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tensors may be equal — they belong to the same vector space — but they need not be.) Clearly this
convention solves our problem. We write ¢™¢a®, as a®™; gm¢a2® as a®?; and so forth. No
ambiguity arises. (And it is still the case that if we first lower an index on a tensor and then raise it (or
vice versa), the result is to leave the tensor intact.)

b

' and o’ (at some point) need not be

We claimed in the preceding paragraph that the tensors o
equal. Here is an example. (It is just a variant of the one used in section 1.4 to show that the tensors

1 2 n
2 and a®® need not be equal.) Suppose &%, &2, ..., % is a basis for the tangent space at a point p.

o
i J,k i J ok
Further suppose a®¢ = £ €0 £¢ at the point. Then a®? = £2£¢ £ there. Hence, lowering indices, we have

a® = é“ éb EC but .t = é“ éc Eb at p. These two will not be equal unless j = k.

We have reserved special notation for two tensor fields: the index substiution field ¢; and the Riemann
curvature field RY,; (associated with some derivative operator). Our convention will be to write these as
0% and R%_,, i.e., with contravariant indices before covariant ones. As it turns out, the order does not
matter in the case of the first since §% = 6,*. (It does matter with the second.) To verify the equality, it

suffices to observe that the two fields have the same action on an arbitrary field a®:

b

5ba Olb _ (gbn gam 5nm)a = gin gan Olb = gin gna Olb _ 5ab ab.

Similarly we can verify (if we are raising and lowering indices with g,;) that 6% = ¢% and dup = gap. (We

shall take these different equalities for granted in what follows.)

Now suppose ¢qp is a metric on the n-dimensional manifold M and p is a point in M. Then there

exists an m, with 0 < m < n, and a basis %a, 2“, sy Za for the tangent space at p such that
g 7€ = +1 if 1<i<m,
gabé“éb = -1 if m<i<n,
i J
g2 = 0 if i3

Such a basis is called orthonormal. Orthonormal bases at p are not unique, but all have the same
associated number m. We call the pair (m, n—m) the signature of g, at p. (The existence of orthonormal
bases and the invariance of the associated number m are basic facts of linear algebraic life. See, for
example, Lang [36].) A simple continuity argument shows that any connected manifold must have the
same signature at each point. In what follows we shall restrict attention to connected manifolds and refer

simply to the “signature of gq;”.

A metric with signature (n,0) is said to be positive definite. With signature (0,n), it is said to be
negative definite. With any other signature it is said to be indefinite. One case will be of special interest
to us later. A Lorentzian metric is a metric with signature (1, n — 1). The mathematics of relativity
theory is, to some degree, just a chapter in the theory of four-dimensional manifolds with Lorentzian

metrics.

1 2 n
Suppose gqp has signature (m,n —m), and £, £%, ..., £* is an orthonormal basis at a point. Further,

suppose pu* and v are vectors there. If p® =37 | Zléa and v* = 1", ﬁé“, then it follows from the
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linearity of gqp that
gabual/b:bﬁ—l—...—i-uy A A — (1.9.1)

In the special case where the metric is positive definite, this comes to
a b 11 nn
Jap WV’ = pv + ... + pv. (1.9.2)

And where it is Lorentzian,

Gap 1210 = ;115 — ;215 — .= L. (1.9.3)

So far we have introduced metrics and derivative operators as independent objects. But, in a quite

natural sense, a metric determines a unique derivative operator.

Suppose gq and V are both defined on the manifold M. Further suppose ~: I — M is a smooth
curve on M with tangent field £* and A® is a smooth field on 7. Both V and g, determine a criterion of
“constancy” for A®. \® is constant with respect to V if £ V,A\* = 0. A® is constant with respect to gup
if gup A* AP is constant along v, i.e., if "V, (gab A )\b) = 0. It seems natural to consider pairs gq; and

V for which the first condition of constancy implies the second.

Let us say that V is compatible with g, if, for all v and A\* as above, A? is constant with respect to
gab Whenever it is constant with respect to V. The next lemma gives the condition a more economical

formulation.

Lemma 1.9.1. Suppose V is a derivative operator, and gqp 1S a metric, on the manifold M. Then V is

compatible with gqp iff Vi gpe = 0.

Proof. Suppose 7 is an arbitrary smooth curve with tangent field £* and A® is an arbitrary smooth field

on v satisfying £"V, A®> = 0. Then

gn Vn (gab A% Ab) = gu A% é-n Vn )\b + Jab Ab gn Vn b + A% )\b é-nvn Gab
=0 =0
= X*NE" VY, gab.

Suppose first that Vj, g.» = 0. Then it follows immediately that £™ V, (gab A4 /\b) = 0. So V is compatible
with gqp. Suppose next that V is compatible with g,;. Then for all choices of v and A* (satisfying
E"V, A% = 0), we have A \P¢"V, gop, = 0. Since the choice of A% (at any particular point) is arbitrary
and ggp is symmetric, it follows (by proposition 1.4.3) that £"V, gsp = 0. But this must be true for

arbitrary £% (at any particular point), and so we have V, gap = 0. O

Note that the condition of compatibility is also equivalent to V, g* = 0. To see this, recall (problem
1.7.1) that V, 6™, = 0. Hence,

0 = gbn Va 5cn — gbn Va (gnr grc) — gbn Gnr Va grc + gbn grc " O

_ 6br Va grc + gbn grc Va Gnr = Va gbc + gbn grc ' O
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So if V, gye = 0, it follows immediately that V, g*® = 0. Conversely, if V, g = 0, then ¢*" ¢"*V, gn, =
0. And therefore,
0= 9pb Gsc gbn grc a 9nr = 5np 57‘5 Va 9nr = va 9ps-

The basic fact about compatible derivative operators is the following.

Proposition 1.9.2. Suppose gq.p is a metric on the manifold M. Then there is a unique derivative

operator on M that is compatible with gqyp.

Proof. To prove that M admits any derivative operator at all is a bit involved, and we skip the argument.
(See Geroch [23]. It turns out that if a manifold admits a metric, then it necessarily satisfies the countable
cover condition (M5) that we considered in section 1.1. And the latter, as noted in proposition 1.7.1,
guarantees the existence of a derivative operator.) We do prove that if M admits a derivative operator

V, then it admits exactly one V’ that is compatible with gp.

Every derivative operator V' on M can be realized as V' = (V,C%.), where C%_ is a smooth,

symmetric field on M. Now
Vo gve = Va gve + Gne Copy + 961 C'oe = Va gbe + Cea + Chac-
So V' will be compatible with gup (i.e., Vi gpe = 0) iff
Va gbe = =Ceab — Chac- (1.9.4)

Thus it suffices for us to prove that there exists a unique smooth, symmetric field C%_ on M satisfying

(1.9.4). To do so, we write equation (1.9.4) twice more after permuting the indices:

vc Gab = _Cbca - Cacbu

vb Jac = —Ucpa — Cabc-
If we subtract these two from the first equation, and use the fact that Cyp. is symmetric in (b, ¢), we get

Cape = (Va Joe — Vi Yac — Ve gab)7 (195)

DN =

and, therefore,

1
Cabc = 5 gan (Vn Gve — vb 9ne — vc gnb) (196)

This establishes uniqueness. But clearly the field C%_ defined by (1.9.6) is smooth, symmetric, and

satisfies (1.9.4). So we have existence as well. O

In the case of positive definite metrics, there is another way to capture the significance of compatibility

of derivative operators with metrics. Suppose the metric g, on M is positive definite, and v: [s1, s3] — M
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is a smooth curve on M.? We associate with v a length

S2 b 1

o= [ o) as

s1
where £ is the tangent field to . This assigned length is invariant under reparametrization. For suppose
o [t1,ta] — [s1,s2] is a diffeomorphism (we shall write s = o(f)) and £'* is the tangent field of

d

v =~o0: [t1,ta] = M. Then &= §“d—j. (Recall equation (1.3.1) in the proof of proposition 1.3.2.)
We may as well require that the reparametrization preserve the orientation of the original curve, i.e.,

d
require that o(t1) = s; and o(t2) = s2. In this case, d—i > 0 everywhere. (Only small changes are

ds
needed if we allow the reparametrization to reverse the orientation of the curve. In that case, p <0
everywhere.) It follows that

to 1 to 1 d
W= [ g = [ gt G ae

t1 t1 t

/ (gap €€ ds = ).

S1

Let us say that ~: I — M is a curve from p to q if I is of the form [s1, s2], p =7(s1), and ¢q = vy(s2).

In this (positive definite) case, we take the distance from p to g to be
d(p,q) = g.lb. {|~y| : 7y is a smooth curve from p to q}.

Further, we say that a curve v: I — M is minimal if, for all s € I, there exists an ¢ > 0 such that, for
all 51,82 € I with s; < s < s, if sp—51 <e andif 7' =[5, 4, (the restriction of 7 to [s1, s2]), then
17| = d(v(s1),7(s2)). Intuitively, minimal curves are “locally shortest curves”. Certainly they need not
be “shortest curves” outright. (Consider, for example, two points on the “equator” of a two-sphere that
are not antipodal to one another. An equatorial curve running from one to the other the “long way”

qualifies as a minimal curve.)

One can characterize the unique derivative operator compatible with a positive definite metric gqp in
terms of the latter’s associated minimal curves. But in doing so one has to pay attention to parametriza-

tion.

Let us say that a smooth curve ~v: I — M with tangent field £ is parametrized by arc length if for
all €%, gap€2€P = 1. In this case, if I = [sy,ss], then

S2 1 S2
|~y|:/ (gabgagb)2 ds:/ 1ds=s3— 1.

S1 S1

30fficially (in section 1.2), we have taken a “smooth curve on M” to be a smooth map of the form v: I — M where
I is an open (possibly infinite or half infinite) interval in R. Let us now agree to extend the definition and allow for the
possibility that the interval I is not open. In this case, we take « to be smooth if there is an open interval I’ C R, with
I C I', and a smooth map 7' : I’ — M, such that v/(s) = v(s) for all s € I. And in this case, of course, we obtain the
“tangent field of 4” by restricting that of 4’ to I. Furthermore, if o: I’ — I is a bijection betweeen (not necessarily open)

intervals in R, we understand it to be a diffeomorphism if ¢ and o—! are both smooth in the sense just given.
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(Any non-trivial smooth curve can always be reparametrized by arc length.) Our characterization theorem

is the following.

Proposition 1.9.3. Suppose gqp is a positive definite metric on the manifold M and V is a derivative
operator on M. Then V is compatible with gqp iff for all smooth curves v parametrized by arc length,

is a geodesic with respect to V iff it is minimal with respect to gap-

Note that the proposition would be false if the qualification “parametrized by arc length” were dropped.
The class of minimal curves is invariant under reparametrization. The class of geodesics (determined by

a derivative operator) is not.

We skip the proof of proposition of 1.9.3, which involves ideas from the calculus of variations. And
we assert, without further discussion at this stage, that more complicated versions of the theorem are
available when the metric g, under consideration is not positive definite. (We shall later consider the

Lorentzian case.)

We have already demonstrated (proposition 1.8.2) that the Riemann tensor field associated with any
derivative operator exhibits several index symmetries. When the derivative operator is determined by a

metric, yet further symmetries are present.

Proposition 1.9.4. Suppose gqup is a metric on a manifold M, V is the derivative operator on M
compatible with gqp, and R%, ., is associated with V. Then Rapca (= gam R.q) satisfies the following

conditions.

(1) Rapea) = O.

(2) Rapea) = 0.

(8) R(apyca = O.

(4) Rabcd = Rcdab-
Proof. (1) and (2) follow directly from clauses (2) and (3) of proposition 1.8.2. And by clause (1) of that
proposition, we have, since V, gy = 0,

0=2 v[cvd] Gab = gnb Rnacd + 9an Rnbcd = Rbacd + Rabcd-

That gives us (3). So it will suffice for us to show that clauses (1) — (3) jointly imply (4). Note first that

0 = Rabcd + Radbc + Racdb

= Rabcd - Rdabc - Racbd-

(The first equality follows from (2), and the second from (1) and (3).) So anti-symmetrization over
(a,b,c) yields
0= R[abc]d - Rd[abc] - R[acb]d'
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Rbdca

Figure 1.9.1: Symmetries of the Riemann tensor field Rypcq-

The second term is 0 by clause (2) again, and Rspq = —Rjqcpja- So we have an intermediate result:
Riape)a = 0. (1.9.7)

Now consider the octahedron in figure 1.9.1. Using (1) — (3) and (1.9.7), one can easily verify that the
sum of the terms corresponding to each triangular face vanishes. For example, the shaded face determines

the sum

Rabcd + Rbdca + Radbc = _Rabdc - Rbdac - Rdabc =-3 R[abd]c =0.

So if we add the sums corresponding to the four upper faces, and subtract the sums corresponding to the

four lower faces, we get (since “equatorial” terms cancel),
4 Rapeq — 4 Regay = 0.
This gives us (4). O

We say that two metrics gqp and ¢l on a manifold M are projectively equivalent if their respective
associated derivative operators are projectively equivalent, i.e., if their associated derivative operators
admit the same geodesics up to reparametrization. (Recall our discussion in section 1.7.) In contrast, we

say that they are conformally equivalent if there is a map Q: M — R such that

v = Q% Gab-
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Q is called a conformal factor. (If such a map exists, it must be smooth and non-vanishing since both
gab and ¢l are.) Notice that if gqp and ¢y, are conformally equivalent, then, given any point p, and any
vectors £% and n® at p, they agree on the ratio of their assignments to the two, i.e.,

€ gu§E

gavn®n®  Gapn®nP

(if the denominators are non-zero).

If two metrics are conformally equivalent with conformal factor €2, then the connecting tensor field

(4. that links their associated derivative operators can be expressed as a function of 2.

Proposition 1.9.5. If g., and g, = 92 gup are metrics on the manifold M, and V' = (V, C“bc), then
1

Che =~ 52 {5% Ve Q2 469 Y% Q% = goe g™ Vi QQ} : (1.9.8)

Proof. Since V' is compatible with ¢sp, it follows that
1
Gir C'ye = 5 [Vaghe = Vb glac = Vgl

(Recall (1.9.5) in the proof of proposition 1.9.2.) If we substitute Q2 g, for g/, and use the fact that

V is compatible with gqp, this gives us

1
0% g4, C"yp = 3 {gbc Vi Q% — gae Vo Q% — gap Vi Qz} .

Contracting both sides with ¢%¢ yields

1
0 % = 5 g g™ V0P = 57 G, 07— 54,92,

as claimed. O

The next proposition asserts that if metrics are both projectively and conformally equivalent, then
they can differ by at most a multiplicative constant. (The converse implication is immediate.) The result
will later (in section 2.1) be of crucial importance in our discussion of the physical signficance of the

spacetime metric.

Proposition 1.9.6. Suppose the hypotheses of proposition 1.9.5 obtain and, in addition, gqa, and gy, are

projectively equivalent. Further suppose that the dimension of M is at least 2. Then § is constant on M.

Proof. Let the dimension of M be n > 2. We know that C'%_ must satisfy equation (1.9.8). But by
proposition 1.7.10, we also have

C%e = 0% pc + 6% pp (1.9.9)

for some smooth field ¢.. The proof proceeds by playing off equations (1.9.8) and (1.9.9) against each
other. Contracting the two equations (and using the fact that 6% = n), we get

a 1 2 2 2
Cba = —ﬁ VbQ +TLVbQ —VbQ =

Ch = wp+np,=(n+1)p.

n

2
50z
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So

1 n+1
———V% = ——0. 1.9.10
202 n 7 ( )

Substituting into (1.9.8), this yields

n—+1
C% = - 8% pe + 0% b — goe 9" pr |-

Comparing this expression for C% _ with (1.9.9), we get

0% pe + 0% gy = (n+ 1)gee g*" 1
If we contract both sides with ¢*¢, we are left with
P+t =+ 1)ne".
Hence, since n > 2, ¢p*=0. So V,Q? =0, by equation (1.9.10). O

Note that in one-dimensional manifolds, all metrics are projectively equivalent. (All smooth curves are
geodesics up to reparametrization with respect to all derivative operators.) For this reason the proposition

fails if n = 1.

In the case where a derivative operator V is determined by a metric gqp, the Riemann tensor field
R, associated with the former admits an instructive decomposition. Consider first the Ricci tensor

field Ry and scalar curvature field R defined by:

Rllb = Rcabc
R = R% (=g¢" Ra).

The first is symmetric since, by (1), (3), and (4) of proposition 1.9.4,
Rap = QCd Raape = QCd Repad = Rpa.

It also follows from the symmetries listed in proposition 1.9.4 that these are, up to sign, the only fields
that can be obtained by contraction from R% ;. (Contraction on any two indices yields either the zero
field or £ R, and, therefore, contraction on all four indices (two at a time) yields either the zero field or

£R.)

Problem 1.9.1. Let V be a derivative operator on a manifold M compatible with the metric gq,. Use

the Bianchi identity (in proposition 1.8.2) to show that
V(Rab_lgabR):O
a 2 .

(This equation will figure later in our discussion of Einstein’s equation.)
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The Weyl (or conformal) tensor field Cppeq is defined by

Rga[cgd]b (1.9.11)

2 2
Cabed = Rabed — ——= [afa Re cRa] = = Ty
ped = Raea = = [9ata Bep + e Raa] = (3505

(if the dimension n of the underlying manifold is at least 3). The second and third terms on the right side
exhibit symmetries (1) — (4) from proposition 1.9.4. Therefore, Cypcq does so as well. Furthermore, as is
easily checked, C%_ . = 0. So all contractions of Cypcq vanish. Thus (1.9.11) provides a decomposition of
Rapeq in terms of Ryp, R, and that part of R,pcq whose contractions all vanish. Later we shall see that
Einstein’s equation in relativity theory correlates R,, and R with the presence of mass-energy but does
not constrain Cypeq. S0, in a sense, the Weyl field is that part of the full Riemann curvature field that is

left free by the dynamical constraints of the theory.

It turns out that the Weyl field is conformally invariant, i.e., we have the following basic result.

Proposition 1.9.7. Let gu and g, = Q2 gap, be metrics on a manifold with respective Weyl fields Cupeq
and O/abcd- Then O/abcd = Cabcd.

One can prove this with a laborious but straightforward calculation using problem 1.8.1 and proposition

1.9.5. (See Wald [60, pp. 446-47].)

We have said that a metric g4 is flat if its associated Riemann tensor field Rgp.q vanishes everywhere.
In parallel, we say that it is conformally flat if its Weyl tensor field Cgypeq vanishes everywhere. It follows
immediately from proposition 1.9.7 (and the definition of Cpypeq) that if a metric is conformally equivalent
to a flat metric, then it is conformally flat. It turns out that the converse is true as well in manifolds of

dimension at least 4. (In dimension 3, Cypcq vanishes automatically.)

Our next topic is “isometries” and “Killing vector fields”. Given two manifolds with a metric, (M, gap)
and (M’ g%p), we say that a smooth map ¢: M — M’ is an isometry if ©*(gap) = gap. (Recall our
discussion of “pull-back maps” in section 1.5.) This condition captures the requirement that ¢ preserve
inner products. To see this, consider any point p in M and any two vectors £* and p® at p. The two have
an inner product gap, £*p® at p. The push-forward map (p,). carries them to vectors ((¢p)s(£%))
and ((¢p)«(p*)) at ¢(p), whose inner product there is Gab| o0 ((2p)(€") ((¢p)«(p%)). In general, there

is no reason why these two inner products should be equal. But they will be if ©*(¢%s) = gab, for then

Gaby, €°9" = (¢ (9)) |, €0" = Gab ) (90)(6)) ((00)+(0"))-

The second equality is just an instance of the condition (equation 1.5.2) that defines ¢©*(¢/ap)-

Now suppose A? is a smooth (not necessarily complete) vector field on M. We say that A* is a Killing

field (with respect to gqp) if £) gap = 0 or, equivalently, if it satisfies “Killing’s equation”

Via Ay = 0. (1.9.12)



CHAPTER 1. DIFFERENTIAL GEOMETRY (0]

(Here V is understood to be the derivative operator on M compatible with gu;.) Equivalence here follows

from proposition 1.7.4:
-’€>\gab = \" vngab + gnbva A" 4 ganvb A" = Va )\b + vb )\a'

Note that

A% is a Killing field <= the (local) flow maps determined by A% are isometries.

This assertion is just a special case of proposition 1.6.6, and it explains the classical description of Killing

fields as “infinitesimal isometries”.

The following proposition is useful when one undertakes to find or classify Killing fields.

Proposition 1.9.8. Let gop be a metric on the manifold M with associated derivative operator V. Fur-

ther, let A\* be a Killing field on M (with respect to gap). Then

vu,vb )\c = _Rmabc )\m

Proof. Given any smooth field A* on M, we have

2 v[avb] Ae = RnZab Am,
2 v[cva] )\b - Rngca ms
2V da = RTpm.

If we subtract the third equation from the sum of the first two, and then use the fact that V. Ay = 0,

we get
2 Va Vb )‘C = ( 77clab + R"l;ca - R"zibc))‘m
= 3R"[Iabc] Am — 2R A
But R"[“Labc] = 0, and so our claim follows. O

In the following problems, assume that go; is a metric on a manifold M and V is its associated

derivative operator.

Problem 1.9.2. Let £% be a smooth vector field on M. Show that
.fggab =0 £§gab = 0.

Problem 1.9.3. Show that Killing fields on M with respect to gqp are affine collineations with respect
to V. (Recall problem 1.8.5.)

Problem 1.9.4. Show that if €% is a Killing field on M with respect to gq,, then the Lie derivative
operator £e annihilates the fields Roped, Rap, and R (determined by gap).
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Problem 1.9.5. Show that if £* and n® are Killing fields on M (with respect to gap), and k is a real
number, then (£*+n%), (k&*), and the commutator [, n]* = £en® are all Killing fields as well. (Thus,
the set of Killing fields has the structure of a Lie algebra.)

Problem 1.9.6. Let n®* be a Killing field on M with respect to gap. (i) Let v be a geodesic with tangent
field €. Show that the function E = £%n, is constant on ~y. (ii) Let T® be a smooth tensor field that is
symmetric and divergence free (i.e., V,T% = 0), and let J* be the field T n,. Show that V,J* = 0. (Both

of these assertions will be important later in connection with our discussion of conservation principles.)

Problem 1.9.7. A smooth field n® on M is said to be a “conformal Killing field” (with respect to gap) if
£, (Qanb) = 0 for some smooth scalar field 2. Show that if n® is a conformal Killing field, and M has
dimension n, then

1 C
Ma M) = - (Ven®) gab-

The set of Killing fields on a manifold with a metric has a natural vector space structure (problem
1.9.5). It turns out that if n is the dimension of the manifold and d is the dimension of this vector space,
then 0 < d < %n (n+1). We will not prove this inequality but will show that “n-dimensional Euclidean
space” does, in fact, admit %n (n+1) linearly independent Killing fields.

Let V be the flat derivative operator on the manifold R™ (with n > 1) canonically associated with
the (globally defined) projection coordinate maps b am (aRecall our discussion toward the end of
section 1.7.) We know that the basis fields % o W and co-basis fields (d,2!), ..., (d,2™) are

all constant with respect to V. We take the Fuclidean metric on R™ to be the field
gap = (dez")(dpz') + ... + (daz™)(dpz™) (1.9.13)

and take n-dimensional Fuclidean space to be the pair (R", gqp). It follows that
8_a 8_ bfi(d ) 8_a(dxi) 8_ bfzn:g..(g. =6
Jab Oz Ok - v a O b Ok - v ij Oik — Ojk
. o \" o \" . .
for all j and k. Thus the fields { — | ,...,| == | form an orthonormal basis for g,; at every point,

ozl oxn
. . 0 o \" i . .
and the signature of g is (n,0). It also follows that 921 ) =Y9anlgm) = (dgx*) for all 4. (This
x /, 't

does not hold in general. For example, as we shall see later, when we raise and lower indices with the

Minkowski metric on R™, prel —(dax") for some choices of i.) Hence
x

a

a i\ __ .an 7\ __ an a _ a ¢
(@) = ¢ (dna) = g (ax)—(a)

for all i and, therefore, the inverse metric field g® can be expressed in the form

105 R ] N
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Note also that V, gs. = 0, i.e., that V is the unique derivative operator compatible with gp.. (This follows
immediately since the scalar coefficient fields on the right side of (1.9.13) are all constant.)

Now we proceed to find all Killing fields in n-dimensional Euclidean space. Doing so is easy given the

machinery we have developed.

Proposition 1.9.9. Let £ be a Killing field in n-dimensional Euclidean space (R™, gap) (with n > 1),

let V be the flat derivative operator on R™ canonically associated with the projection coordinate maps

al, ., a™ (which is compatible with g.p), let p be any point in R™, and let x* be the position field on R™

determined relative to p and V. (Recall proposition 1.7.12.) Then the following both hold. (1) There

exist a unique constant, anti-symmetric field Fup and a unique constant field k* such that
& = X" Fab + k. (1.9.15)

(Here, of course, “constant” means constant with respect to V.) (2) The vector space of Killing fields in

(R™, gav) has dimension 3 n(n+1).

Proof. (1) (Existence) Consider the fields Fop, = V, &, and ky = & — x* Fup. Since £% is a Killing field,
Via&p) = 0. So Fyp is anti-symmetric. Clearly, the two fields satisfy equation 1.9.15. So what we need
to show is that they are both constant with respect to V. Fy is, since V, Fup = V,, V, § = —R"™ 1 &m =
0. (The second equality follows from proposition 1.9.8, and the third from the fact that V is flat.)

Furthermore, k; is constant, since
Vnkb - Vné.b - Vn(XaFab) - Fnb - Fabvnxa - Fnb - Fabaan — LI'np — Fnb =0.

(For the second equality we use the fact that V,, Fyp = 0, and for the third that V,, x* = §%,.)

(Uniqueness) Assume that the fields F',;, and k', also satisfy the stated conditions. It follows that

Fap Fopd"e = FupVa X" = Vu(X"Fp + ko) = V& = Va (X" Flup + k%)

= Flnb Vaxn = Flnbéna = F/ab

and, therefore, k, = k%.

(2) Let d be the dimension of the vector space of Killing fields in (R™, gap). It follows from part (1) that
d is of the form d = d; + d3, where d; is the dimension of the vector space of constant, anti-symmetric
fields Fyp on (R™, gap), and da is the dimension of the vector space of constant fields k* on the manifold.

o \" o\ -1
Clearly, | =— | ,..., | = | form a basis for the latter. So do = n. We claim that d; = M This
or! oxn 2

-1 1
will suffice, of course, for then d = n + n(n 5 ) = n(n 2+ ) . To verify the claim, consider the expansion

of any constant, anti-symmetric field Fp, in terms of the co-basis fields (dyz1), ..., (daz™). The coefficient

fields are all constant (since Fyy is). So they determine an n x n anti-symmetric (real) matrix. (The 750
entry is the coefficient of (d,z*)(dyx?) in the expansion.) Thus the problem reduces to that of determining

the dimension of the vector space of all n x n anti-symmetric real matrices. Since all numbers on the
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diagonal must be 0, and the ;"™ and ji*" entries must sum to 0, the number of independent entries is

-1
just the number of ordered pairs (i,j) where 1 <i < 5 < mn. And this number is certainly M So

we are done. U
- - - -—
- - > ~
T T T T T // - - T > b
—_—. > — i \

Figure 1.9.2: Killing fields in the Euclidean plane.

3 x2
Consider, for example, the case of two-dimensional Euclidean space where there should be 3 (:

)

linearly independent Killing fields. Here the space of constant vector fields k% is two-dimensional and is
o\ o\

generated by <F) and (W) . The space of constant, anti-symmetric fields Fj; is one-dimensional
x x

and is generated by
Fup = (") (d?) — (doat®) (dpe").

So the full vector space of Killing fields is generated by the three fields
b (2
Ox?
ho_ (0
ox?
o\ o\
b o apb _ (1 1 2,2
& = xX'F' = (¢ —u (@)(@) — (2%~ (@)(@) :
The expression for the third is easily derived using our expression for Fy; and (1.7.11) (in the case where
ut = at):
ga _ Xa Fan gnb

S Cat]
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The first two are the “infinitesimal generators” of horizontal and vertical translations. (See figure

1.9.2.) The third is the generator of counterclockwise rotations centered at p. If p = (0,0), the third

02 Ozt

Finally, we briefly consider “manifolds of constant curvature”, a topic that will arise when we discuss

a Y a Y
reduces to the field z! (—) — 2 (—) that we have already encountered in section 1.3.

Friedmann spacetimes in section 2.11.

We say that a manifold with metric (M, gqp) has constant curvature k at a point in M if

Rabcd =K (gad Jve — Gac gbd) (1916)

holds there. (And, of course, we say that is has constant curvature at a point if it has constant curvature
k there for some x.) Note that it is “possible” for (1.9.16) to hold only because the field gupea =

(Jad gbe — Gac gva) exhibits the same index symmetries as Rapeq (recall proposition 1.9.4):

Rap)ea =0 9(abyed = 0, (1.9.17)
Rap(cay =0 Jab(cd) = 0, (1.9.18)
Rafpea) =0 Yalbed) = 0, (1.9.19)
Rapea = Redab Jabed = Yedab- (1.9.20)

To motivate the definition, let us temporarily assume that g, is positive-definite. (That makes things

a bit easier.) Let p be a point in M and let W be a two-dimensional subspace of M,. We take the
W-sectional curvature of (M, gq.p) at p to be the number

Rapea @ ° a° 3¢

1.9.21
(gad 9be — Gac gbd) a® 6b af 6d ( )

where a® and % are any two vectors at p that span W. Note that the definition is well posed. First,
the denominator cannot be 0, for that would violate our stipulation that a® and 5 span W. (Using a
more familiar notation, the point is this: if u and v are vectors such that (u,v)? = |u||?||v||?, then u
and v must be linearly dependent.) Second, the expression is independent of the choice of a® and (5*.
For suppose that &* and 4° form a basis for W as well, with @* = fa*+gp* and B = ha® + k(.
Then, by (1.9.17) and (1.9.18),

Rabcd a“ Bb ac Bd = (fk _gh)2 Rabcd o ﬁb af ﬁd
(9ad Gve — Gac gva) &* B 34 = (fk — gh)* (gad Goc — Jac goa) @* B° 0° 57,
and the factor (fk — gh)? simply drops out.

In the special case of a smooth surface in three-dimensional Euclidean space (with the metric induced
on it), the sectional curvature at any point is just what we would otherwise call the “Gaussian curvature”

there. (See Spivak [57], volume 2, chapter 4.)

Now we show that constancy of curvature at a point can be understood to mean equality of sectional

curvatures there.
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Proposition 1.9.10. Let M be a manifold of dimension at least 2, let gq.p be a positive-definite metric

on M, and let k be a real number. Then

Rabcd =K (gad 9be — YGac gbd)

holds at a point iff all sectional curvatures there (i.e., all W-sectional curvatures for all two-dimensional

subspaces W) are equal to k.

Proof. The “only if” half of the assertion is immediate. For the converse, assume that all sectional

curvatures are equal to kK at some point p in M. Our goal is to show that the difference tensor

Dabcd - Rabcd — K (gad Jbe — Gac gbd)

vanishes at p. Note that Dgpcq inherits the symmetry conditions (1.9.17) — (1.9.20). Note, as well, that
(i) Dapea a® B°ac ¢ = 0 for all vectors a® and 3¢ at p. For if a® and 3% are linearly independent, the
claim follows from the fact that all sectional curvatures at p are equal to k. And if they are not linearly
independent, it follows from (1.9.17) (or (1.9.18)). What we show is that Dgpeq cannot satisfy (i) and

the listed symmetry conditions without vanishing.

Let u, i, ..., i be a basis for M,. We claim that (ii) Daped f1* /Jjb Le Lt = 0, for all 4, and k. This
is clear, since by (i) and (1.9.20),

0= Dabcdﬁa (/]Lb + ﬁb) /iLc (/]Ld + ﬁd) = 2Dabcdﬁa /JJIb /iLc /de'

We also claim that (iii) Dgebd = —Dadbe. For this, note that by (i) and (ii), and the symmetries (1.9.17),
(1.9.18), (1.9.20),

0 = Dapea (1" + u*)(i" + ") (i + f€)(i" + 1) = 2 Dapea (i 1 j€ o + j* i” ji° o)
2 (Dacbd + Dadbc) i /]‘Lb /kLC /lld.

Since this holds for all ji® /i fi i@ (and since %, ji%, ..., i is a basis for M,), we have (iii). Finally, it

follows from (iii) and the other symmetries of Dgpeq that
Dabcd = _Dadcb = Dadbc = _Dacbd = Dadcb +Dabdc = _Dabcd _Dabcd-

So Dabcd = 0. O

Now we drop our temporary assumption that we are dealing with a positive-definite metric and return

to the general case.

So far, we have considered only the property of having constant curvature at a point. We say that
(M, gap) has constant curvature if it has constant curvature at every point and the value of the curvature
is everywhere the same. The second clause (same value at every point) needs to be added because it does

not follow automatically — at least not if M is two-dimensional. (In that special case, the property of
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having constant curvature at every point is vacuous and there is no reason why sectional curvatures at
different points need be equal.) But, perhaps surprisingly, it does follow automatically if the dimension

of M is at least 3.

Proposition 1.9.11 (Schur’s Lemma). Let M be a manifold of dimension n > 3, and let g.p be a metric

on M (not necessarily positive-definite). Suppose there is a smooth scalar field k on M such that

Rabcd =R (gad 9be — Yac gbd)'

Then k is constant.

Proof. By Bianchi’s identity (proposition 1.8.2), V[mR“bcd] = 0. It follows that if we apply V., to
k(0% 0% — 6%.6%), and anti-symmetrize over m, ¢, d, we get 0. But (6%g6%. — §%8%,) is already
anti-symmetric in ¢, d. So

0 = Vi, (£6°46%) = 6“4 6% Vo) K.

Contracting on indices a, d and on b, ¢ yields
0= (n—-1)(n—2)Vyk.

So (given our assumption that n > 3), we may conclude that V,, k = 0, i.e., that x is constant on

M. O

As it happens, the assertion of the proposition is also true if n = 1, for in that case we have (at every
point) Raped = 0 = (gad Gbe — Gac gbd)- (Every tensor over a one-dimensional vector space vanishes if it

is anti-symmetric in two indices.) The proposition fails only if n = 2.

Let (M, gap) and (M’, ¢/;,) be two manifolds with metric. We say they are locally isometric if, for all
points p € M and p’ € M’, there exist open sets O C M and O’ C M’ containing p and p’, respectively,

such that the restricted manifolds (O, gapj0) and (O', gy o) are isometric.

Suppose (M, gqp) and (M’, ¢/,) both have constant curvature and their respective curvature values
are k and k’. Then, one can show, they are locally isometric iff (i) M and M’ have the same dimension,
(ii) gap and g., have the same signature, and (iii) k = £’. (See Wolf [64], proposition 2.4.11.) But these
conditions certainly do not guarantee that (M, gq.s) and (M’, ¢/,) are (globally) isometric. (We will have

more to say about this in section 2.11.)
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1.10 Hypersurfaces

Let (S, Cs) and (M, Cps) be manifolds of dimension k and n respectively, with 1 <k <n. A smooth

map U:S — M is said to be an imbedding if it satisfies the following three conditions.
(I1) ¥ is injective.
(I2) At all points p in S, the associated (push-forward) linear map (¥,).: S — Mgy is injective.

(I3) For all open sets Oy in S, U[0;] = ¥[S]NO; for some open set Oq in M. (Equivalently, the inverse
map U1: U[S] — S is continuous with respect to the relative topology on W[S].)

(Recall our discussion of push forward and pull-backward maps in section 1.5.)

Several comments about the definition are in order. First, given any point p in S, (I12) implies that
(V,)«[Sp] is a k-dimensional subspace of My ,). So the condition cannot be satisfied unless k < n.
Second, the three conditions are independent of one another. For example, the smooth map ¥: R — R?
defined by ¥(s) = (cos(s), sin(s)) satisfies (I2) and (I3) but is not injective. It wraps R round and round
in a circle. On the other hand, the smooth map ¥: R — R defined by ¥(s) = s* satisfies (I1) and (I3)

4 (Here Ry is the tangent space to

but is not an imbedding because (¥g). : Ry — Rg is not injective.
the manifold R at the point 0). Finally, a smooth map ¥: S — M can satisfy (I1) and (I2) but still
have an image that “bunches up on itself”. It is precisely this possibility that is ruled out by condition
(I3). Consider, for example, a map ¥:R — R? whose image consists of part of the image of the curve
y =sin(1/x) smoothly joined to the segment {(0,y) : y < 1}, as in figure 1.10.1. It satisfies conditions
(I1) and (I2) but is not an imbedding because we can find an open interval O; in R such that given any

open set O in R%2, U[0;] # O, N Y[R].

Suppose (S, Cs) and (M, Cps) are manifolds with S C M. We say that (S, Cg) is an imbedded
submanifold of (M, Cps) if the identity map id: S — M is an imbedding. If, in addition, k = n — 1
(where k and n are the dimensions of the two manifolds), we say that (S, Cs) is a hypersurface in
(M, Cpr). In what follows, we first work with arbitrary imbedded submanifolds and then restrict attention

to hypersurfaces. Where confusion does not arise, we suppress reference to charts.

Once and for all in this section, let (S, Cs) be a k-dimensional imbedded submanifold of the n-
dimensional manifold (M, Cys), and let p be a point in S. We need to distinguish two senses in which
one can speak of “tensors at p”. There are tensors over the vector space S, (call them S-tensors at p)
and ones over the vector space M, (call them M-tensors at p). So, for example, a S-vector é‘l at p

makes assignments to maps of the form f: O — R where O is a subset of S that is open in the topology

d
4 (o)« annihilates the vector . in Ro (and so has a non-trivial kernel). This is clear since, for any smooth real-valued
x

function f defined on some open subset of R containing ¥(0) = 0, we have

() () (F) = (4o (f 0 W) g = (- (@) |,y = (%) 32%) |,y = 0.
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Figure 1.10.1: The map ¥ is not an imbedding, because its image bunches up on itself.

induced by Cg, and f is smooth relative to Cs. In contrast, an M-vector &% at p makes assignments
to maps of the form f: O — R where O is a subset of M that is open in the topology induced by Cuy,
and f is smooth relative to Cag.% Our first task is to consider the relation between S-tensors at p and

M -tensors there.

Let us say that £* € (M,)® is tangent to S if &% € (id))«[(Sp)*]. (This makes sense. We know that
(idp)«[(Sp)?] is a k-dimensional subspace of (M,)*. £* either belongs to that subspace or it does not.)
Let us further say that n, in (M), is normal to S if 1, €% = 0 for all £* € (M,)® that are tangent to S.
Each of these classes of vectors has a natural vector space structure. The space of vectors {% € (M),)*

tangent to S has dimension k. The space of co-vectors n, € (M,), normal to S has dimension (n — k)

(see problem 1.10.1).

Problem 1.10.1. Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M,
and let p be a point in S.
(1) Show that the space of co-vectors ng € (My)q normal to S has dimension (n — k). (Hint: Consider
a basis for (Mp)® containing (as a subset) k vectors tangent to S. Then consider a dual basis.)
(2) Show that a vector £€* € (M,)® is tangent to S iff 1n,£* =0 for all co-vectors n, € (M,), that are

normal to S.

We note for future reference that a co-vector n, € (M,), is normal to S iff (id,)*(n,) = 0. It is worth
giving the argument in detail to help gain familiarity with our notation. (id,)*(n,) is the zero vector
in (Sp)a i ((idp)*(na)) £ = 0 for all £* € (S,)*. But (by the definition of the pull-back operation),
((idp)*(na)) £ =, ((idp)*(ga))' So (idp)*(na) = 0 iff 1q ((idp)*(ga)) =0 for all {* € (Sp)®. But
a vector £ € (M) is tangent to S precisely if it is of the form ((idy).(£%)) for some €% € (S,)%. So
(idp)*(na) =0 iff 1 &* = 0 for all vectors {* € (M,)® that are tangent to S, i.e., 1, is normal to S.

The classification we have introduced can be extended to indices on M-tensors of higher index struc-

ture. Consider, for example, the M-tensor a“bcd at p. We take it to be tangent to S in its first contravariant

5As an aid to clarity, we shall sometimes mark S-tensors with a tilde, and sometimes we shall indicate the character of

a vector £% simply by indicating, explicitly, its membership in (Sp)® or (Mp)®. (Co-vectors 7, shall be handled similarly.)
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index if n,a® ; = 0 for all n, € (M,), that are normal to S. (Note that this characterization, which
applies to all M-tensors with contravariant indices, is consistent with the one given initially for the special
case of contravariant vectors by virtue of the second assertion in problem 1.10.1.) And we take it to be

normal to S in its second covariant index if §da“bcd =0 for all ¢4 € (M,)¢ that are tangent to S.

So far, M-tensors at p can be tangent to S only in their contravariant indices and normal to .S only
in their covariant indices. But now (and henceforth in this section), let us assume that a metric gqp is
present on M. Then the classification can be extended. We can take take the tensor to be tangent to
S in a covariant index if it is so after the index is raised with g,;. And we can take it to be normal to
S in a contravariant index if it is so after the index is lowered with g,;. Now we have four subspaces to
consider side by side. In addition to the old k-dimensional space of contravariant M-vectors at p tangent
to S, we have a new (n — k)-dimensional space of contravariant M-vectors at p normal to S. And in
addition to the old (n — k)-dimensional space of covariant M-vectors at p normal to S, we have a new
k-dimensional space of covariant M-vectors at p tangent to S. As one would expect, it is possible to
introduce “projection tensors” that, when applied to (contravariant and covariant) M-vectors at p, yield

their respective components in these four subspaces. We shall do so in a moment.

Let us say that an M-tensor at p is (fully) tangent to S (or normal to S) if it is so in each of its indices.

The subspace of M-tensors a®!" b,... &b p tangent to S has dimension E(rts),

Nothing said so far rules out the possibility that there is a non-zero vector {* € (M,)® that is both
tangent to, and normal to, S. Such a vector would necessarily satisfy gap £ €% = 0. (Since £ is tangent
to S, and gap £ is normal to S, the contraction of the two must be 0.) There cannot be non-zero vectors
satisfying this condition if g, is positive definite. But the possibility does arise when, for example, the

metric is of Lorentzian signature.

We say that our imbedded submanifold S is a metric submanifold (relative to the background metric
gap on M) if, for all p in S, no non-zero vector in (M,)® is both tangent to S and normal to S. An
alternative formulation is available. The pull-back field id*(gqp) is always a smooth, symmetric field on

S. But it is non-degenerate (and so a metric) iff S is a metric submanifold (see problem 1.10.2).

Problem 1.10.2. Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M,
and let gop be a metric on M. Show that S is a metric submanifold (relative to gap) iff for all p in S, the

pull-back tensor (idy)*(gap) at p is non-degenerate, i.e., there is no non-zero vector £* € (S,)® such that

((idp)* (9ap)) €* = 0.

In what follows, we assume that S is a metric submanifold (relative to g.p). Non-metric submanifolds
do arise in relativity theory. (“Null hypersurfaces”, for example, are non-metric.) But they are not
essential for our purposes, and it will simplify our discussion to put them aside. The assumption that S
is a metric submanifold, for example, implies — and, indeed, is equivalent to the assertion that — there is

a basis for M, consisting entirely of vectors that are either tangent to, or normal to, S (but not both). It
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is convenient to be able to work with such a basis. (It is always true (in the presence of a metric) that we
can find k linearly independent vectors at p tangent to S, and (n — k) linearly independent vectors there
normal to S. But the combined set of n vectors will be linearly independent iff the subspaces spanned
by the two individual sets share no non-zero vector, i.e., there is no non-zero vector that is both tangent

to, and normal to, S.)

The vector space of S-tensors at p of a given index structure has the same dimension as the vector
space of M-tensors there that are of the same index structure and that are tangent to S. In fact, as
we now show, there is a canonically defined linear map ¢, from the first to the second that is injective

3 : s 6 C : ~Q71...0r ~a1...Qp
and so qualifies as an isomorphism.® We define this isomorphism & byob, T dp(& bl.,,bs)

--Os

Oth

in stages, considering, in order, scalars ( order tensors), contravariant vectors, covariant vectors, and

then, finally, arbitrary tensors.

For scalars «, we set ¢, (o) = a. (We do not put a tilde over the first & because there is no distinction

to be drawn here. Scalars are just scalars.) For vectors £, we set

$p(€7) = (idy)+(£7).

It follows immediately from (I2) — the second condition in the definition of an imbedding — and the
definition of tangency that ¢, determines an isomorphism between S, and the space of contravariant
M-vectors at p tangent to S. Next, we define ¢,(7),) by specifying its action on vectors {* € (Mp)* that
are either tangent to, or normal to, S. (This suffices since, as we have seen, we can always find a basis

for (Mp)* consisting entirely of such vectors.)

fla ((6p)7H(EY) if €7 is tangent to S

0 if £ is normal to S

¢;D (ﬁa) §a =

Clearly, ¢p(7,) is tangent to S. That much is guaranteed by the second clause within the definition.
Moreover, the action of ¢, on (S,), is injective. (Suppose ¢,(7,) is the zero vector in (Mp)q. Then
fla ((¢)7H(€™)) = 0, for all tangent vectors £ € (M,)*. But every vector in (S,) is of the form
(¢p)~1(£") for some tangent vector £ € (M),)®. So fj, is the zero vector in (Sp),.)

Finally, we consider the case of an S-tensor at p of higher order index structure — say a%®_. There are
no surprises. We define ¢, (@?’,), once again, by specifying its action on vectors that are all tangent to,

or normal to, S.

a, ((¢p)_1(ua)) ((¢p)_1(ub)) ((¢p)_1(§c)) if pg, vp, and £€ are tangent to S

0 if pq, vy, or £° is normal to S

d’p(dabc) Ma Vb E° =

ab

Clearly, ¢,(a%,) is tangent to S, and the argument that ¢, is injective in its action on (S,)?

is very

much the same as in the preceding case. This completes our definition.

SWe are presenting a great deal of detail here. Some readers may want to skip to proposition 1.10.1.
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We have established, so far, that for every index structure “*~%" by ..b,» there is an isomorphism between
the vector space of S-tensors a***“7, , ~at p and the vector space of M-tensors «®“", = atp
that are tangent to S. If we now “aggregate” the different isomorphisms, we arrive at a map ¢, (we
use the same notation) that commutes with all the tensor operations — addition, exterior multiplication,
index substitution, and contraction. It follows from our definition, for example, that ¢,(@%, 3%) =

Dp(a®.) ¢p(B9) and  ¢p(a®, 5°¢) = ¢, (a*,) $p(5°¢). In summary, we have established the following.

Proposition 1.10.1. Let S be a metric submanifold of the manifold M. Then the tensor algebra of

S-tensors at any point of S is isomorphic to the tensor algebra of M -tensors there that are tangent to S.

The map ¢, is closely related to (idp).. Indeed, it agrees with the latter in its action on contravariant
tensors at p. But (id,). makes assignments only to contravariants tensors there, whereas ¢, makes

*

assignments to all tensors. (Similarly, (¢,) ! agrees with (id,)* in its assignment to covariant tensors at

p that are tangent to S.)

Now we switch our attention to tensor fields on S, i.e., assignments of tensors of the same index
structure to every point of S. Of course, we have to distinguish between assignments of S-tensors and
assignments of M-tensors. But the isomorphisms we have been considering (defined at individual points
of S) induce a correspondence a7, . — $(a* ", ) between S-fields and M-fields that are

tangent to S, i.e., tangent at every point.

The correspondence respects differential structure in the following sense (in addition to algebraic
structure). Let a® %", be an M-field on S that is tangent to S. There are two senses in which it
might be said to be “smooth”. Let us say that it is M-smooth if, for every p in S, there is an open set

by..b, to a field o by..b, O0 O that is smooth relative

ar

O C M containing p and an extension of o**"
to the charts Caq. (This sense of smoothness applies to all M-fields on S, whether they are tangent to
S or not.) Let us also say that it is S-smooth if the corresponding S-field ¢~*(a® %", ) is smooth
relative to the charts Cs. One would like these two senses of smoothness to agree, and in fact they do.

By direct consideration of charts, one can establish the following. (We skip the proof.)

Proposition 1.10.2. Let S be a metric submanifold of the manifold M. Further, let o** ",
M-field on S that is tangent to S. Then a®* ", is M-smooth iff it is S-smooth.

b be an

In what follows, we shall sometimes say that an M-field on S is smooth without further qualification.
If the field is not tangent to S, this can only mean that it is M-smooth. If it is tangent to .S, the

proposition rules out any possibility of ambiguity.

Consider now the S-field hqp, = id* (gap) on S. Tt is called the induced metric or first fundamental form

on the manifold S.7 (That it is a metric follows from our assumption that S is a metric submanifold of

"Warning: the latter (perfectly standard) expression is potentially confusing because il/ab is not a “form” in the special

technical sense introduced in section 1.7, i.e., is it not anti-symmetric.
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M. Recall problem 1.10.2.) Associated with Rap is & unique compatible derivative operator DonS. (So
it satisfies D, hpe = 0.) It is our goal now to show that it is possible, in a sense, to express D in terms of
the derivative operator V on M that is compatible with g,5. The sense involved is a bit delicate because
it involves the map ¢ we have been considering that takes S-fields to M-fields on S tangent to S. The

idea, in effect, is to translate talk about the former into talk about the latter.

Corresponding to hap is a smooth, symmetric M-field hy, = gb(izab) = ¢(id*(gap)) on S that is tangent
to S. (It is tangent to S because the image of every S-field under ¢ is so. How do we know it is
smooth? Since gqp is a smooth field on the manifold M, id*(gqs) is a smooth field on the manifold S.
But id*(gap) = ¢~ (hap). So hap is S-smooth (and, hence, M-smooth as well).) We can characterize hgy,
directly, without reference to hap oOr ¢, in terms of its action (at any point of S) on M-vectors that are

tangent to, or normal to, S.

Gap A4 1P if A* and n® are both tangent to S
Rap A0 = (1.10.1)

0 if A% or n® is normal to S.

The equivalence is easy to check.?

Several properties of hgp, as well as a companion field kq, = (gap — hap) are listed in the following
proposition. Clearly, k; is also a symmetric, smooth M-field on S. (Here and in what follows, whenever

we lower and raise indices on M-tensors, it should be understood that we do so with ga.)

Proposition 1.10.3. Let S be a metric submanifold of the manifold M (with respect to the metric gap
on M ). Let hqp be the M-field on S defined by (1.10.1), and let kqp be the companion M -field (gap — hab)
on S. Then all the following hold.

(1) hgp is tangent to S and kqp is normal to S.
(2) For all M-vector fields a® on S,
(a) a® is tangent to S < h%yab =a® < k%ab=0;
(b) a® is normal to S < k%a’=a% < h%ab=0.
(3) h% h®. =he, and k%Kk°.=k% and h%K°.=0.
Proof. (1) We have already given an argument to show that hg, is tangent to S. (Once again, hqp =

@(hap), and the image of every S-field under ¢ is tangent to S.) Now let £* be any M-vector tangent
to S (at any point of S). Then kup &% = gap €% — hap £%. But gap £ = hap &, since they agree in their
action on both vectors tangent to S and normal to it. So kg, £* = 0. It follows that kg is normal to .S

in its first index. But kg is symmetric. So it is (fully) normal to S. (2) Suppose first that h% ab = a2,

8Suppose A% and n® are both tangent to S. Then, by the definitions of ¢ and the pull-back map id*,
hap A% 1 = B(id* (gap)) X* n° = id* (gap) ¢~ (A*) 67 (") = gap ids (6~ (A")) ids (6™ (")) = gap A* 0"

Alternatively, if either A% or n® is normal to S, then hgp A% n? = 0 since hgp, is tangent to S.
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Then a“ is certainly tangent to S, since h% is tangent to S in the index a. Conversely, suppose a® is
tangent to S. Then, we claim, h% o and a® have the same action on any vector 7, (at any point of S)
that is either tangent to, or normal to, S. In the first case, h%, a®ne = gayn® @’ = a®n,. In the second
case, h% a’n, = 0 = a®n,. This gives us the first equivalence in (a). The second is immediate since
k% ab = (g% — h%)ab = a® — h% a’. The equivalences in (b) are handled similarly. (3) It follows from
(2) that h% kb, and h%, have the same action on any vector £¢ (at any point of S) that is either tangent

to, or normal to, S. So h% h’. = h%. The arguments for k% k®, = k% and h% k’ = 0 are similar. O

Problem 1.10.3. Prove the following generalization of clause (2) in proposition 1.10.3. For all M -tensor
fields a % on S,

We have formulated the preceding problem in terms of contravariant M-fields on S. But, of course,
this involves no essential loss of generality. For given one, instead, of form, say, a“bcde, we can always

me nd re

pabede = qab  gmegndgre and then lower indices.

apply the stated results to

We can think of A% and k9 as projection operators. Given an M-field £¢, h% €% is its component
tangent to S, and k% £° is its component normal to S. More generally, we can use the two operators to
decompose an M-field of arbitrary index structure into a sum of component tensor fields, each of which is
either tangent to S or normal to S in each of its indices (which is not to say that each of the component
fields will be either (fully) tangent to S or (fully) normal to S). So, for example, in the case of a field a%
on S, we have the following decomposition:

a _ a n m a n m a n m a n m

(Notice that the two fields, left and right, have the same action (at any point) on any pair of vectors

na €, each of which is either tangent to S or normal to S.)

We are ready to explain the sense in which the action of D can be expressed in terms of V. We start
with a lemma.
Lemma 1.10.4. Let S be a metric submanifold of the manifold M (with respect to the metric gqp on
M ). Let hqp be the M-field on S defined by (1.10.1). Finally, let & arer by.p,  and & ar-or by, e

smooth M -fields on an open set O C M that agree on S. Then at all points of SN O,

1 2
n al...a,r _ n al...a,r
R Ve byobe = NV @ by..bs

1
: al...ar . aj...ar _ ay...Qr : . .
Proof. Consider g byob, = O b~ O b,..b.- 1t vanishes on S. Let p be a point in

SN O. We need to show that
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at p. To do so, it suffices to show that if we contract the left side with any vector £™ at p that is either
tangent to, or normal to, S, the result is 0. That is true automatically if £ is normal to S (since h",, is

tangent to S). And if €™ is tangent to S, h™, ™ = £™. So it suffices to show that
"V 5a1'“wb1...bs =0

for all £™ at p tangent to S. The proof of this assertion is similar to other “well-definedness” arguments
given before, and proceeds by considering the index structure of g% by..b.- L 1s ascalar field on
S, then &"V,, 3 is just the directional derivative £(/3). This has to be 0 because 3 is constant on S.
One next proves the statement for contravariant vector fields 5® on S using the result for scalar fields

together with the Leibniz rule, and so forth. O

Now suppose a®t4" b,..p, 15 asmooth M-field on S. We cannot expect to be able to associate with it a
field V,, %", on S. (The latter, if well defined, would encode information about how a*' %",
changes as one moves away from S in arbitrary directions.) But, by the lemma, we can introduce a field

Ay

. . 1
Ry NV @y on S. At any point of S, we simply extend o*' %7, to asmooth field a “* T,

on some open set O, and set

1
n ai...a _ n ay...a
h" Vi Tpyb, = P Vi b

Teen

This field need not be tangent to S even if o**%" by..b, 1. But we can “make it tangent” if we project all
indices onto S with the field A" . This action defines an operator D, on the set of all smooth M-tensor

fields a7, on S that are tangent to S:

Dm aa1.~ar by...bg = haltn"' haTcs hdlbl"' hdsbs hnm v” OéCl.“CT dy...ds’ (1102)

The basic result toward which we have been working is the following.

Proposition 1.10.5. For all smooth S-fields &*' %", |

¢(Dn qo--ar b1~~~bs) — Dn ¢(&a1...ar b1...bs)'

Proof. Let l:) be the operator on smooth S-fields that is defined by the condition

Dy a*ttry = ¢_1(Dn pla™ -y ))'

s

It suffices for us to show that it is a derivative operator on .S and that is compatible with hap. For then

it will follow (by proposition 1.9.2) that 5 =D.

Consider, first, the compatibility condition. Since ¢(ﬁab) = hgap, we have

Dohay = ¢ (Dnod(has)) = ¢ (Duhar) = ¢ (h7y b W™, Vo hirs)
= 6 (0B [V (W7 hs) = hs Vi 17, )
o

Yoy h™ Vo has — By B™ Vo hra) = ¢71(0) = 0.
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Note that we have used the Leibniz rule (in reverse) to arrive at the fourth equality. We are justified
in doing so because we are here working “within the shadow” of the projection operator A™,. We can
always (locally) extend the tensor fields in question, invoke the Leibniz rule for V in its standard form
(where we are working with fields defined on open sets in M rather than fields defined only on S), and
then invoke our lemma to show that it does not matter how we do the extension. Note also that the fifth

equality follows from the third clause of proposition 1.10.3, and the sixth from the symmetry of hgp.

Next we need to verify that D satisfies conditions (DO1) through (DO6). The first five are straightfor-
ward. The argument is very much the same in each case. Let us consider, for example, a representative

instance of the Leibniz rule. We have

“H(Dule(a abw( ) = o7 (W hE B BTV [6(67) 6(7)])
(R R [B(E75) W7 Vo 0(7g) + (i) ™, Vi $(7)])
) B, B 0 () + Siic) b b BV (7))
) Dy, $(ilc) + 6(7ie) Do $(67))
( n¢nc)+nc¢ Y(D, ¢(a™))

fle Dy G°°.

Da(@®i) = ¢
¢~
(b 1
¢~

(he,

(o(a
((
¢1

A few steps here deserve comment. For the fourth equality, we need the fact that h% ¢(a"®) = ¢(a**)
(and a number of similar statements involving change of index). Note that this is just an instance of the
assertion in problem 1.10.3, since ¢(a"*) is tangent to S. And the sixth equality holds because ¢ (acting
at any point in S) is a tensor algebra isomorphism that commutes with the operations of addition and

exterior multiplication.

Let us turn, finally, to (DO6). This is the only one of the conditions that requires a bit of attention.
Let « be a smooth scalar field on S. Then

oDya = ¢ (Dad(Dya)) = ¢~ (DuDyd(e)) = ¢~ (R A",V (17, Vrar)).

Here we have used the fact that ¢(a) = a. Now let p be any point on S. We can extend « to a smooth
field & on an open set O in M containing p. Moreover, we can do so in such a way that V, & s tangent
to S on SNO. (This can be verified with an argument involving charts. Intuitively we keep & constant as
we move out from S in directions normal to S). So h",V, &= Va & on SNO. Thus, V, & is a smooth
field on O that agrees with A", V,, & on SNO. Tt follows that we can understand h™ Vo (BT, V) to
be b, V., Vi, & on SN O, and therefore

DaDya=¢ (A" V, V,n & )

at p. The tensor on the right side is manifestly symmetric in @ and b (since V satisfies condition (DOG)).

Thus D, D o is symmetric in these indices at our arbitrary point p in S. O
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Up to this point we have been attentive to the distinction between S-fields and M-fields on S tangent
to S, between hap and hap, and between the operators D and D. But it is, more or less, standard practice
to be a bit casual about these distinctions or even to collapse them entirely by identifying the vector
space S, formally with the subspace of M, whose elements are tangent to S. (The work we have done to
this point — in particular, propositions 1.10.1, 1.10.2, and 1.10.5 — makes clear that there is no harm in
doing so.) In what follows, that will be our practice as well. We shall refer to hg, as the “metric induced
on S” (or the “first fundamental form on S”), refer to D as the “derivative operator induced on S”, and
so forth. We shall also drop the labels “S-field” and “M-field”, since it is only the latter with which we
shall be working.

In effect, we shall be systematically translating “S-talk” into “M-talk”. Here is one more example
of how this works. What should we mean by a “geodesic on S with respect to the induced metric (or
induced derivative operator)”? We can certainly understand it to be a map of the form y: I — S that
is smooth with respect to Cg and whose tangent field éa satisfies S"f)néa = 0. Instead, we shall drop
explicit reference to Cs and D and take it to be a map of the form ~v: I — S that is smooth with respect

to Cps and whose tangent field €% satisfies £ D,,£* = 0.

We know that
R R RPNy B = 0 (1.10.3)

on S. (This is just the assertion that D,hy. = 0, and we proved it in the course of showing that ﬁaﬁbc =0.

That was the first step in our proof of proposition 1.10.5.) Similarly one can show that
R K" kP . N i = 0 (1.10.4)
on S. However, the mixed projection field 74y, defined by
Tabe = K™y K"y kP . Vi, B (1.10.5)

need not vanish. It turns out that m,p. is of particular geometric interest. It is called the extrinsic

curvature field on S.

Problem 1.10.4. Prove (1.10.4).

The induced metric hyp and its associated derivative operator D are geometric structures “intrinsic”
to S. They are not sensitive to the way S is imbedded in M. We say that (S, hg,) has vanishing
intrinsic curvature just in case D is flat. The extrinsic curvature of S, in contrast, is determined by
the imbedding. Think of both a plane and a cylinder imbedded in ordinary three-dimensional Euclidean
space (figure 1.10.2). They both have vanishing intrinsic curvature. But only the plane has vanishing
extrinsic curvature. Notice that all geodesics of the plane are necessarily geodesics of the ambient three-
dimensional space. But the corresponding statement for the cylinder is not true. There are geodesics of

the cylinder (e.g., v in figure 1.10.2) that are not geodesics of the larger space. This is a good way to
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Figure 1.10.2: The cylinder and the plane (imbedded in three-dimensional Euclidean space)
both have vanishing intrinsic curvature. But the cylinder, in contrast to the plane, has non-
vanishing extrinsic curvature. Notice that there are curves on the cylinder, e.g., 7, that are
geodesics with respect to induced derivative operator D that are not geodesics with respect
to the background derivative operator V.

think about extrinsic curvature. Indeed, as we shall prove (proposition 1.10.7), 7ape is a measure of the

degree to which geodesics in (5, hqp) fail to be geodesics in (M, gqp). But first we need a lemma.

Lemma 1.10.6. 7. =0 .

Proof. Consider any point p in S. If £ is a vector at p tangent to S, we have &°kP, = 0 and hence
£ Map)e = 0. So it will suffice to show &£° g, = 0 for all £* at p normal to S. Since S has dimension
k and M has dimension n, we can find an open set O containing p and (n — k) smooth scalar fields
& (i=1,...,n—k) on O such that (i) V, & is normal to S on SN O, for all i, and (ii) the vectors V, &
are linearly independent on S N O. (This can be verified with an argument involving charts. Indeed,
the fields & can be local coordinates induced by a chart on M. What is required is that their associated
coordinate curves all be orthogonal to S where they intersect it.) To complete the proof, it suffices to

verify that (V¢ d&) Taple = 0 at p for all i. But this follows since we have:

(V&) Tap)e (VE&) W Wy KR N hy = BT, BTy (VP &) Vi

la la

= W W Vi (hapVP&) = by Vi, VP &

la

—h Wy Ve V& = =R bV V& = 0.

(For the fourth equality we have used the fact that since hy, V? & =0 on SNO, it must be the case
that h,™ Vi, (hnp VP2 &) =0 on SN O. This follows, once again, from lemma 1.10.4.) O

Now we can give the promised geometric interpretation of mgpc.

Proposition 1.10.7. Let S be a metric submanifold of the manifold M (with respect to the metric gap
on M). Let V be the derivative operator on M determined by gap, let hap be the induced metric on S,
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and let Tape be the extrinsic curvature field on S. Finally, let v be a geodesic in (S, hap) with tangent field
&*. Then
EMV, 66 = m,c el (1.10.6)

Proof. By hypothesis, " D, &°=0. And £"Rh",, = £", since £% is tangent to S. So

0= gn th hcmvT é-m = é-r(gcm - kcm)vT gm = é-r VT é-c - kcm §T VT gm

Therefore,
Vgt = k% = k0 V(R EP)
= kK& +EPVRT) = kK, TPV R,
= kcm(ga hra)(gb hpb)vT hmp = é-a gb hTa hpb ke VT hpm = ga gb 7T-u,bc'
Here we use the fact that £¢,, h™, =0 for the fourth equality. O

Given any point p in S, mgp. vanishes there iff gy §“§b = 0 for all vectors £€* at p that are tangent
to S. (This follows, since mgp is symmetric in its first two indices (lemma 1.10.6) and also tangent to
S in them. Recall proposition 1.4.3.) But given any vector £* at p tangent to .S, there is a geodesic in
(S, hap) that passes through p, whose tangent vector there is £%. So it follows from our proposition that
Tabe = 0 iff all geodesics in (S, hay) are geodesics in (M, gap). Moreover, the requirement that equation

(1.10.6) hold for all geodesics in (.5, hqp) uniquely determines mapc.
Next we consider the Gauss-Codazzi equations.
Proposition 1.10.8. Suppose (M, gup) and (S, hap) are as in proposition 1.10.7, and D is the derivative

operator on S determined by hqp. Further suppose R%p.q is the Riemann curvature field on M associated
Y

with V, and R, is the Riemann curvature field on S associated with D. Then

Rea = —27%" Taom + h B WP 1Ty R™ (1.10.7)

m n T 1 m n T
h [ah b] h/pck: dvm Tnpr = §h ah bh/pck dRmin' (1108)

Proof. The argument consists of a long computation. First, let A® be any smooth vector field on S

tangent to S. Then R%, , must satisfy

1
—ERabchb = DpDgX* = B Wy b Vp(h™, 1%, Vi A")

g W [(Vp A ) B, Vi AT
+ B (VR Vi AT+ R R, Y, Vi AT (1.10.9)

hp

[

Now, by (1.10.3) and (1.10.5),

WP BTy N W™ = WP Ry g N b = RE R (K 4 RV, R = (1.10.10)
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So, by lemma 1.10.6, the first term on the right side of (1.10.9) vanishes. The second and third terms
can be simplified by using (1.10.10), the symmetry of hg,, and the fact that h"gh"™, = h™;. We have

1
_§Rabcd N = W W g B (Vp h%) Vi X 4 BE R b, N Vi AT

= T R Vi An + AP Ry 1,V Vi AT

1
= T Vi A = AR B R AP,

C

Now Teqn is normal to S in its third index. So 7,*"h,, = 0 and, therefore,

T N A = TRV (B AY)
= 7 RGN by = TR RE AT Y B

_ an r__ _amn r
= 7. " Tarn N =70 Tarp A"

So we have, all together,

1 1
( - EIR’arcd - 7Ta[ . 7Td]rn + §han hpc hmd Rnrpm) A" =0.

C

Now let 1 be an arbitrary smooth field on S and take h"y n® for A". Then, since the first two terms

are tangent to .S in the index r, we have

rpm

(R%ea + 27 T gy, — W% W7y WP R™ 4 R, )n° = 0.

Since this holds for all smooth fields n° on S, the field in parentheses must vanish. This gives us (1.10.7).

The second computation is similar, and we leave it as an exercise. O

Problem 1.10.5. Derive the second Gauss-Codazzi equation (1.10.8).

The first Gauss-Codazzi equation expresses the intrinsic Riemann curvature tensor field R%,_; in terms
of the extrinsic curvature field 7,4, and the full background Riemann curvature field R% ;. We shall return

to it later when we consider the geometric significance of Einstein’s equation.

So far we have assumed only that S is a metric submanifold of M. Let us now consider the special
case where S is a metric hypersurface, i.e., has dimension £k = (n — 1). A slight simplification results.
The vector space of vectors normal to S is now one-dimensional at every point of S. So it consists of
multiples of some (normalized) vector £* where £%¢, = +1. (£*¢, cannot be 0 precisely because S is a
metric submanifold.) Whether the value of £2¢, is +1 or —1 depends on S and the signature of gup. At
least if .S is connnected, the value will be the same at every point of S, i.e., everywhere +1 or everywhere

—1.

Let us assume that S and g, are such that the value is +1 at all points of S. (The other case is
handled similarly.) So there are exactly two vectors £€* normal to S at every point satisfying £*&, = 1.
Locally, at least, we can always make a choice so as to generate a smooth field. We say that S is two

sided if it is possible to do so globally.
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Let £ be one such (local or global) smooth normal field on S satisfying £*&, = 1. Then

hab - (gab _ga gb)v (11011)
kab - ga fb- (11012)

(Note that hep and (gap — £a &) have the same action on €% and on all vectors tangent to S.) Now
consider the field 7., defined by
Tab = —Tabe gc- (11013)

When hypersurfaces are under discussion, it (rather than mqp.) is often called the extrinsic curvature field

(relative to £). Tt is also called the second fundamental form on S (relative to £*). Notice that

Tar] = 0, (1.10.14)
Tabe = —7Tab§<:7 (11015)
Tap = h™ R Vi (1.10.16)

The first assertion follows immediately from lemma 1.10.6. For the second, it suffices to observe that 7.

and —7gp & agree in their action on ¢ and on all vectors n° tangent to .S. For the third, we have

Tab = ~Tabc 50 = _h"iz hnb kpc é—c vm hnp = _h"iz nb gp Vm hnp
_hwtz hnb[vm (é.p hnp) - hnp Vm é.p] = hﬂz hpb Vm 5;0.

Equation (1.10.16) leads to an alternative interpretation of extrinsic curvature in the case of hyper-
+
surfaces. Let £ be an extension of £ to a smooth field of unit length on some open set O in M, and let
+ + + + + + +
hab be defined by hap = gap — £aEb- (SO hap is an extension of hgp and hgep € = 0.) Then we have:

+
£y hay (1.10.17)

N | =

Tab =

+
on SN O. To prove this, observe first that on SN O £, hepy is tangent to S (in both indices). This
13

Jr
follows since £; £€* =0 and, hence,
3

+, + + *, + *,
& fjghab: £Z(hab§ >_ hab-’gzg =0.

Therefore on S we have
Jr T S Jr T S Jr Jr
°€ghab = hahb-’gzhrs: hahb-’gz(grs_grgs)
T S V T S +n +'n, +'n,
= hahb"gzg?“s = hahb[g vngrs+gnsvr€ +ngS§]

+ + +
= hra h’sb (VT gs + Vs 57“) = 2hr(a hsb) Vr gs

= 277(ab) = 27Tab-
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(The final two equalities follow, respectively, from equations (1.10.16) and (1.10.14).)

1
Thus we can think of 7, (up to the factor 5) as the Lie derivative of hgp, in the direction £€* normal
to S. This interpretation will be important later in connection with our discussion of the “initial value

problem” in general relativity.

Finally let us reconsider the Gauss-Codazzi equations in the present case. Substituting —mgp&. for

Tabe in the equations of proposition 1.10.8 yields

R%yea = =279 map+ ho, Ry R R g R e, (1.10.18)
W W B Vg =~ S W€ R
The second can be expressed as
Digmy)e = —%h"fl W'y hP. " Ripnpr- (1.10.19)
Contracting on (1.10.18) yields
Rpe = =% map + 7% Tep + K Ry AP, R™ .

T —
m

Substituting (g &Em &™) for A", on the right side, we arrive at

Rbc =T Tpe — Tab 7TaC + hnb h,pc Rnp — Rmbcr fm gr, (11020)

where m = 7%. (Note that Ry £™E" is tangent to S, since (by proposition 1.9.4) contracting with £*

on b or ¢ yields 0. Hence h" h?, Ryper ™ E" = Rumper €™ E".) Contracting once more yields

R = 7T2 — Tab 7Tab + A" Rnp — Ry gmgr
= 12— 77+ R—2R,, "¢ (1.10.21)

Of course, in the special case where we are dealing with a hypersurface imbedded in a flat manifold
(R%.q = 0), e.g., in the case of a two-dimensional surface imbedded in three-dimensional Euclidean space,

our expressions for R%_;, Rpc, and R simplify still further:

Rabcd = TadTbe — Tac Tbd, (11022)
Roe = T Tpe — Tab T, (1.10.23)
R = n%—mgpn®. (1.10.24)
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1.11 Volume Elements

In what follows, let M be an n—dimensional manifold (n > 1). As we know from section 1.7, an
s-form on M (s > 1) is a covariant field o, , that is anti-symmetric (i.e., anti-symmetric in each pair

of indices). The case where s =mn is of special interest.

Let o, be an n-form on M. Further, let éb (i =1,...,n) be a basis for the tangent space at a point

in M with dual basis 7, (i = 1,...,n). Then ay, p. can be expressed there in the form

Qy, ., = k0! gy ey (1.11.1)

where
k=oay s, ébl...zb".
(To see this, observe that the two sides of (1.11.1) have the same action on any collection of n vectors
from the set {éb, ey Zb}.) It follows that if ap, ., and By, . », are any two smooth, non-vanishing n-forms
on M, then
Boy..by = [ b, .b,
for some smooth non-vanishing scalar field f.

Smooth, non-vanishing n-forms always exist locally on M. (Suppose (U, ¢) is a chart with coordinate
vector fields (71)%, ..., ()%, and suppose 7, (i = 1,...,n) are dual fields. Then 717[171 <y, qualifies as
a smooth, non-vanishing n-form on U.) But they do not necessarily exist globally. Suppose, for example,
that M is the two-dimensional Mébius strip (see figure 1.11.1), and g is any smooth two-form on M.

We see that ag,p must vanish somewhere as follows.

Let p be any point on M at which a4, # 0, and let £* be any non-zero vector at p. Consider the
number ag, E%° as p® rotates though the vectors in M,,. If p® = +££° the number is zero. If p® # +¢b
the number is non-zero. Therefore, as p® rotates between £% and —£%, it is always positive or always
negative. Thus aqp determines a “positive direction of rotation” away from £* on M,,. og, must vanish
somewhere because one cannot continuously choose positive rotation directions over the entire Mobius

strip.
M is said to be orientable if it admits a (globally defined) smooth, non-vanishing n-form.

So far we have made no mention of metric structure. Suppose now that our manifold M is endowed
with a metric gqp of signature (n™,n~). We take a volume element on M (with respect to gup) to be a

smooth n-form €, , that satisfies the normalization condition

b1---bn o (_Un’n!. (1.11.2)

Suppose €, is a volume element on M, and éb (¢ =1,...,n) is an orthonormal basis for the tangent

space at a point in M. Then at that point we have, by (1.11.1),

1 n
€by.b, = k€, &y (1.11.3)
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Q\ ¢ ovap £ pP >b 0 L < > L
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Figure 1.11.1: A 2-form g, on the Mobius strip determines a “positive direction of rotation”
at every point where it is non-zero. So there cannot be a smooth, non-vanishing 2-form on
the Mébius strip.

where k =¢, %bl ...gb". Hence, by the normalization condition (1.11.2),

(1) ! (k nl €,y ) (kmd €01 E000)

1 1 1 n n n-
= kQ(n!)Qm(gbl ). (&, E) = K2 nl (-1)" .
So k% =1 and, therefore, (1.11.3) yields
b bn
€y b, &1 & = EL (1.11.4)

Clearly, if €, , is a volume element on M, then so is —¢, , . It follows from the normalization
condition (1.11.4) that there cannot be any others. Thus, there are only two possibilities. Either (M, gap)

admits no volume elements (at all) or it admits exactly two, and these agree up to sign.

Condition (1.11.4) also suggests where the term “volume element” comes from. Given arbitrary
vectors A%, ..., 4% at a point, we can think of €byob, AP Abn as the volume of the (possibly degenerate)
parallelepiped determined by the vectors. Notice that, up to sign, €, , is characterized by three

properties.

(VE1) It is linear in each index.
(VE2) It is anti-symmetric.

(VE3) It assigns a volume V with |V| =1 to each orthonormal parallelepiped.

These are conditions we would demand of any would-be volume measure (with respect to gup). If the
length of one edge of a parallelepiped is multiplied by a factor k, then its volume should increase by
that factor. And if a parallelepiped is sliced into two parts, with the slice parallel to one face, then its
volume should be equal to the sum of the volumes of the parts. This leads to (VE1). Furthermore, if any
two edges of the parallelepiped are coalligned (i.e., if it is a degenerate parallelepiped), then its volume

should be zero. This leads to (VE2). (If for all vectors £%, €, , £ &% =0, then it must be the case
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that ¢, , is anti-symmetric in indices (b1,b2). And similarly for all other pairs of indices.) Finally,
if the edges of a parallelepiped are orthogonal, then its volume should be equal to the product of the
lengths of the edges. This leads to (VE3). The only unusual thing about ¢, , as a volume measure is
that it respects orientation. If it assigns V to the ordered sequence A%, ...,5%, then it assigns (=V) to

2a Ya

Y 7%/(17-”7%/(1, and so forth.

It will be helpful to collect here a few facts for subsequent calculations. Suppose €g,. 4, is a volume

element on M with respect to the metric gqp with signature (n*,n~). Then

ghan 6b1...bn = (_1)717”' 5[(1111"'6(17;7]71’ (1115)

gt an €a1b2...bn = (_1)717 (n_ 1)| 5[‘1{32_“5“7;}”7 (1116)

€othn €arasbs..b, (_1)7172(”_ 2)' 5[‘123_“5“7;)]7“ (1117)

e = (DT =006 (1118)

Consider, for example, the case where n = 3 and n~ = 0, i.e., where g, is positive definite. (The general

case is handled similarly.) Then (1.11.5) comes out as the assertion: e“bcemnq =66, 5t 6‘2}1. To see

that it holds, consider any anti-symmetric tensor a”"¢ at a point. Then o™"? = ke™™? for some k. So

abe mngq o abc mnq __ abe __ abe
€Y7 €png O = ke €€ =6ke" =6«

= 66, 4°, 0% amn.
Thus for all anti-symmetric a™"? at the point, we have
(€7 € g — 6012, 8%, 6% ) 0™ = 0.
In particular, given arbitrary vectors A, p", u? there,

(€% g — 6614, 8%, 5 )AI™ p 1l = 0.

But since the expression in parentheses is itself anti-symmetric in the indices (m, n, q), this condition can
be expressed as
(e®bc e sl 6, 6™ p" p? = 0.

mnq 6
Since A™, p™ and pu? are arbitrary, it follows that

6abc €

sle, 6, 6% =o0.

mng — 0
This gives us (1.11.5). Next, (1.11.6) follows from (1.11.5) since
cabe Cong = 6 sla st 5%
= 2(0%0, 59 —26t 59)
= 2(3-2)0l" ¢, =26 59 .
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Finally, (1.11.7) follows from (1.11.6) since
€M ey = 200, 69 = (8% —1)6°, = 246,

Another fact we shall need is

Vin =0 (1.11.9)

Eal,..an

(where V is the derivative operator on M determined by gqp). To see this, suppose A\* is an arbitrary

smooth field on M. Then, since A™V,, €, , is a smooth n-form on M, we have

m _
A" Vi €by..by — PEby.. by

for some scalar field . But then

P(—)" = e, =Mt AT e,

Qo S

1 1 -
= iAm Vin (€% €y 0) = 5)&“ Vi ((=1)™ n!) = 0.

So ¢ =0 and, hence, \"V,, ¢, , =0. Since \ was arbitrary, we have (1.11.9).

Finally, we show how to recover ordinary vector analysis in terms of volume elements. Suppose our
manifold M is R®, g4 is the Euclidean metric defined by equation (1.9.13), V is the derivative operator
determined by gup, and €qp. is a volume element on M. Then, given contravariant vectors & and 7 at

some point, we define their dot and cross products as follows:

6 =N ga Na>
5 xXn = Eabc gb Ne-
(We are deliberately not using indices on the left.) It follows immediately from the anti-symmetry of

€% that &€ x n = —(n x £), and that £ x i is orthogonal to both ¢ and 5. Furthermore, if we define the
angular measure £(£,7n) by setting

£-n
cos £(&,m) = —=——,
) = Tl
where [|€]| = (€-€)2, then the magnitude of £ x 7 is given by
1
lExnl = (€& neeamn €™ n")?
= (200,59, 6" &ne)

1
2

(€ &) (0 ne) — (€2 my)?]
€] Iml (1 — cos® 4(5777))% = [[€l[ [[nll sin £(&, ).

Consider an example. One learns in ordinary vector analysis that, given any three vectors «, 3, at a
point,

¥ x (axf)=aly-B)—=B(y-a).
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In our notation, this comes out as the assertion
Eabc Yo (Ecmn a™ ﬂn) = aa(ﬂyb ﬁb) - Ba (’Yb ab)v
and it follows easily from equation (1.11.6):

abc m Qn cab m n
e W eemna™ f1 = Ve ma™ B

= 260, 8% ma™ " = a’(m B°) = 5 (a’ ).
Given a smooth scalar field f and a smooth contravariant vector field £ on M, we define the following:

grad(f) = V°f
div() = V,¢&°
curl(¢) = V&,

(In the more familiar notation usually found in textbooks, these would be written as Vf, V-¢, and
V x £.) With these definitions, we can recover all the usual formulas of vector analysis. Here are two

simple examples. (Others are listed in the problems that follow.)
(1) curl(grad f) = 0.
(2) div(curl &) = 0.

The first comes out as the assertion that ¢V, V. f = 0, which is immediate since V,V, f is symmetric in
(b,c). (For this result, flatness is not required.) The second comes out as V,(e2¢ ¥}, &) = 0. This follows

from equation (1.11.9) and the fact (now using flatness) that V, W &, is symmetric in (a, b).

Problem 1.11.1. One learns in the study of ordinary vector analysis that, for all vectors &, n, 0, and X
at a point, the following identities hold.

(1) (€xm)-(0xX) = (£-0)(n-A) = (£-A)(n-0).

(2) (§x(nx0))+(0x(§xn)+ (nx(0xE)=0.

Reformulate these assertions in our notation and prove them.
Problem 1.11.2. Do the same for the following assertion:

div(§ x n) =n - curl(€¢) — £ - curl(n).
(Here & and n are understood to be smooth vector fields.)

Problem 1.11.3. We have seen (proposition 1.9.9) that every Killing field €% in n-dimensional Euclidean

space (n > 1) can be expressed uniquely in the form

& = X" Fap + ks,
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where Fup and ky are constant, Fyp is anti-symmetric, and x® is the position field relative to some point
p. Consider the special case where n = 3. Let eqpe be a volume element. Show that (in this special
case) there is a unique constant field W such that Fup = €apeWE. (If W = 0, £% is the “infinitesimal
generator” of a family of translations in the direction k®. Alternatively, if k® = 0, it generates a family

of rotations about the point p with axis W*.) (Hint: Consider W* = 1e***F,..)



Chapter 2

Classical Relativity Theory

2.1 Relativistic Spacetimes

With the basic ideas of differential geometry now at our disposal, we turn to relativity theory.

It is helpful to think of the theory as determining a class of geometric models for the spacetime
structure of our universe (and isolated subregions thereof, such as, for example, our solar system). Each
represents a possible world (or world-region) compatible with the constraints of the theory. We describe
these models in stages. First, we characterize a broad class of “relativistic spacetimes” and discuss
their interpretation. Later, we introduce further restrictions involving global spacetime structure and

Einstein’s equation.

We take a relativistic spacetime to be a pair (M, gap), where M is a smooth, connnected, four-
dimensional manifold and g, is a smooth metric on M of Lorentz signature (1,3). We interpret M
as the manifold of point “events” in the world.! The interpretation of g, is given by a network of inter-
connected physical principles. We list three in this section that are relatively simple in character because
they make reference only to point particles and light rays. (These objects alone suffice to determine the
metric, at least up to a constant.) We list a fourth in section 2.3 that concerns the behavior of (ideal)

clocks. Still other principles involving generic matter fields will come up later.

In what follows, let (M, gqs) be a fixed relativistic spacetime and let V be the unique derivative

operator on M compatible with gq,. Since gq, has signature (1, 3), at every point p in M, the tangent

1We use “event” as a neutral term here and intend no special significance. Some might prefer to speak, for example, of
“equivalence classes of coincident point events” or “point event locations”. We shall take this interpretation for granted in

what follows and shall, for example, refer to such things as “particle worldlines in a relativistic spacetime”.

103
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space M, has a basis é“, ...,2“ such that, for all ¢ and j in {1,2,3,4},

i +1 if =1
1 if i=2 34

and

11 2 2 33 4 4
1 fra = [LpL— [LfL— [L[L— L. (2.1.2)
(Recall (1.9.3).)

Given a vector % at a point in M, we say n® is

timelike if n*n, > 0,
null (or lightlike) if n®n, = 0,
causal it nne = 0,
spacelike if n%n, < 0.

In this way, gq» determines a “null-cone structure” in the tangent space at every point of M. Null vectors
form the boundary of the cone. Timelike vectors form its interior. Spacelike vectors fall outside the cone.

Causal vectors are those that are either timelike or null.

The classification extends naturally to curves. We take a smooth curve v: I — M to be timelike
(respectively null, causal, spacelike) if its tangent vector field ¥ is of this character at every point. The
property of being timelike, null, and so forth is preserved under reparametrization. So there is a clear
sense in which the classification also extends to images of smooth curves.? The property of being a
geodesic is not, in general, preserved under reparametrization. So it does not transfer to curve images.

But, of course, the related property of being a geodesic up to reparametrization does carry over.
Now we can state the first three interpretive principles. For all smooth curves ~v: I — M,

(C1) # is timelike iff v[I] could be the worldline of a point particle with positive mass;>

(C2) 7 can be reparametrized so as to be a null geodesic iff y[I] could be the trajectory of a light ray;*

2Here we are distinguishing between the map v: I — M and its image y[I]. We shall take “worldlines” to be instances
of the latter, i.e., construe them as point sets rather than parametrized point sets.

3We shall later discuss the concept of mass in relativity theory. For the moment, we take it to be just a primitive
attribute of particles.

4For certain purposes, even within classical relativity theory, it is useful to think of light as constituted by streams of
“photons” and to take the right-side condition here to be “y[I] could be the worldline of a photon”. The latter formulation
makes (C2) look more like (C1) and (P1) and draws attention to the fact that the distinction between particles with positive

mass and those with zero mass (such as photons) has direct significance in terms of relativistic spacetime structure.
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(P1) v can be reparametrized so as to be a timelike geodesic iff v[I] could be the worldline of a free®

point particle with positive mass.

In each case, a statement about geometric structure (on the left) is correlated with a statement about

the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here working within the framework
of relativity as traditionally understood and ignoring speculations about the possibility of particles that
travel faster than light. (The worldlines of these so-called “tachyons” would come out as images of
spacelike curves.) Second, we have restricted attention to smooth curves. So, depending on how one
models collisions of point particles, one might want to restrict attention here, in parallel, to particles that

do not experience collisions.

Third, the assertions require qualification because the status of “point particles” in relativity theory
is a delicate matter. At issue is whether one treats a particle’s own mass-energy as a source for the
surrounding metric field g, — in addition to other sources that may happen to be present. (Here we
anticipate our discussion of Einstein’s equation.) If one does, then the curvature associated with g, may
blow up as one approaches the particle’s worldline. And in this case one cannot represent the worldline
as the image of a curve in M, at least not without giving up the requirement that g, be a smooth field
on M. For this reason, a more careful formulation of the principles would restrict attention to “test

particles”, i.e., ones whose own mass-energy is negligible and may be ignored for the purposes at hand.

Fourth, the modal character of the assertions (i.e., the reference to possibility) is essential. It is simply
not true, to take the case of (C1), that all images of smooth, timelike curves are, in fact, the worldlines
of massive particles. The claim is that, as least so far as the laws of relativity theory are concerned, they
could be. Of course, judgments concerning what could be the case depend on what conditions are held
fixed in the background. The claim that a particular curve image could be the worldline of a massive
point particle must be understood to mean that it could so long as there are, for example, no barriers
in the way. Similarly, in (C2) there is an implicit qualification. We are considering what trajectories are
available to light rays when no intervening material media are present, i.e., when we are dealing with

light rays in vacuo.

Though these four concerns are important and raise interesting questions about the role of idealization
and modality in the formulation of physical theory, they have little to do with relativity theory as such.
Similar difficulties arise, for example, when one attempts to formulate corresponding principles within

the framework of Newtonian gravitation theory.

5“Free particles” here must be understood as ones that do not experience any forces except gravity. It is one of the
fundamental principles of relativity theory that gravity arises as a manifestation of spacetime curvature, not as an external
force that deflects particles from their natural, straight (geodesic) trajectories. We shall discuss this matter further in

section 2.5.
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It follows from the cited interpretive principles that the metric gqp is determined (up to a constant) by
the behavior of point particles and light rays.® We make this claim precise with a sequence of propositions

about conformal structure and projective structure. (Recall our discussion in section 1.9.)

Let ¢/, be a second smooth metric of Lorentz signature on M. Clearly, if g/, is conformally equivalent
to gap, i.e., if there is a smooth function 2 : M — R such that g, = Q%g,s, then the two agree in their
classification of vectors as timelike, null, and so forth. We first verify that the converse is true as well.
(Indeed, we prove something slightly stronger. To establish conformal equivalence, it suffices to require
that the two metrics agree on any one of the four categories of vectors. If they agree on one, they agree

on all.)

Proposition 2.1.1. The following conditions are equivalent.
(1) g’ and ga» agree on which vectors, at arbitrary points of M, are timelike (or agree on which are

null, or agree on which are causal, or agree on which are spacelike).
(2) g, and ga, are conformally equivalent.
Proof. The equivalence of the four versions of (1) follows from the fact that the four properties in question

(being timelike, null, causal, and spacelike) are interdefinable. So, for example, we can characterize null

vectors in terms of timelike vectors:

A vector n® at p is null iff either n® = 0 or, for all timelike vectors a® at p, and all sufficiently

small numbers k, of the two vectors n* + ka® and n* — ka®, one is timelike and one is not.
Conversely, we can characterize timelike vectors in terms of null vectors:

A vector n® at p is timelike iff for all null vectors a® # 0 at p there is a number k # 0 and a

null vector 5* # 0 at p such that n® = ka® + (°.

It follows immediately that we can also characterize causal vectors (timelike or null) and spacelike vectors
(neither timelike nor null) in terms of either timelike vectors or null vectors alone. Other cases are handled

similarly. (See problem 2.1.2.)

Now assume that the two metrics agree in their classification of vectors at all points of M. We show
that they must be conformally equivalent. Let p be any point in M, and let £€* be any vector at p that

is spacelike with respect to both metrics. Set

g8
b= d (2.1.3)

6This was first recognized by Hermann Weyl [62]. As he put it [63, p. 61],

. [i]t can be shown that the metrical structure of the world is already fully determined by its inertial and
causal structure, that therefore measurements need not depend on clocks and rigid bodies but that light signals

and mass moving under the influence of inertia alone will suffice.

For more on Weyl’s “causal-inertial” method of determining the spacetime metric, see Coleman and Korté [9, section 4.9].
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Since the numerator and denominator of the fraction are both negative, k > 0. We claim first that

g™ n” = k gann®n’ (2.1.4)

for all n® at p. If ® is null with respect to both metrics, the assertion is trivial. So there are two cases

to consider.

Case 1: n* is timelike with respect to both metrics. Consider the following quadratic equation (in the

variable x):
0 = gap (" +20)(E +21") = g €€ + 229 € " + 27 gan 00"

The discriminant
4(ga €*1°)% = 4(9ab £°€") (gab 1n")

is positive (since (gqp £2€%) < 0, and (gap n?n®) > 0). So the equation has real roots r; and ro with

a¢b
Ty T = gabiggb' (215)
gab MmN
Now the equation
0 = ghy (€ +2n") (& + 1)
must have exactly the same roots as the preceding one (since the metrics agree on null vectors). So we
also have ,
! a
Ty T = g;lbiggb. (216)
Gap M1
These two expressions for rq - r2, together with (2.1.3), yield (2.1.4).
Case 2: n® is spacelike with respect to both metrics. Let v* be any vector at p that is timelike with
respect to both. Repeating the argument used for case 1, with n® now playing the role of £, we have
g 11" _ Garn*n’ (2.1.7)
I 7" Gab P

But ¢/, ¥949° = kgap v*y°, because ¢ falls under case 1. So % must satisfy (2.1.4) in this case too.
Thus, we have established our claim. Since (g}, — k gas) is symmetric, it now follows by proposition 1.4.3

that g/, = k gas at p.

To complete the proof we define a scalar field Q : M — R by setting Q(p) = \/k(p) at each point p

(where k(p) is determined as above). Then g/, = Q2 gap, and Q is smooth since gq and ¢/, are. O

It turns out that dimension plays a role in proposition 2.1.1. Our spacetimes are four-dimensional.
Suppose we temporarily drop that restriction and, for any n > 2, consider “n-dimensional spacetimes”
(M, gap) where M has dimension n and g, has signature (1,n — 1). What happens to the proposition?
The proof we have given carries over intact for all n > 3. And even when n = 2, it carries over in part.

Three versions of condition (1) are still equivalent to each other — those involving agreement on timelike,
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causal, or spacelike vectors — and equivalent to condition (2). But in that special case, two metrics can
agree on null vectors without being conformally equivalent. (At any point p in M, a “90 degree rotation”

of M, takes null vectors to null vectors, but it takes timelike vectors to spacelike vectors.)

Problem 2.1.1. Consider our characterization of timelike vectors in terms of null vectors in the proof

of proposition 2.1.1. Why does it fail if n = 2%

Problem 2.1.2. (i) Show that it is possible to characterize timelike vectors (and so also null vectors and
spacelike vectors) in terms of causal vectors. (ii) Show that it is possible to characterize timelike vectors
(and so also null vectors and causal vectors) in terms of spacelike vectors. (Both characterizations should

work for allm > 2.)

Conformally equivalent metrics do not agree, in general, on which curves qualify as geodesics or even
just as geodesics up to reparametrization. But, it turns out, they do necessarily agree on which null
curves are geodesics up to reparametrization. Indeed, we have the following proposition. Notice that

clauses (1) and (2) correspond, respectively, to interpretive principles (C1) and (C2) above.

Proposition 2.1.2. The following conditions are equivalent.
(1) g.p, and gap agree on which smooth curves on M are timelike.
(2) g., and gap agree on which smooth curves on M can be reparameterized so as to be null geodesics.

(8) gl and gay are conformally equivalent.

Proof. The implication (1) = (3) follows immediately from the preceding proposition. So does the impli-
cation (2) = (1). (Two metrics cannot agree on which curves are null geodesics up to reparametrization
without first agreeing on which curves are null.) To complete the proof, we show that (3) implies (2).
Assume that g/, = Q2 gap. Let v be any smooth curve that is null (with respect to both gu, and ¢/,;),
and let A% be its tangent field. Further, let V/, be the unique derivative operator on M compatible with
ghp- Then, by propositions 1.7.3 and 1.9.5,

AUV AT = (VA0 = O, AT

where

1
i = =557 | 8% Vi @ 4+ 0% V0 O = Gu g™ %, 92} .

Substituting for C%,,, in the first equation, and using the fact that A* is null, we arrive at
n a n a 1 n a
ANV = A"V, A+ @(/\ Vo Q%)

It follows that \™ V] A® is everywhere proportional to A* iff A" V,, A\® is everywhere proportional to \®.
Therefore, by proposition 1.7.9, v can be reparametrized so as to be a geodesic with respect to g,y iff it

can be so reparametrized with respect to g/,. O
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Question: What would go wrong if we attempted to adapt the proof to show that conformally equiv-

alent metrics agree as to which smooth timelike curves are geodesics up to reparametrization?

We can understand the proposition to assert that the spacetime metric gqp is determined up to a
conformal factor, independently, by the set of possible worldlines of massive point particles and by the set

of possible trajectories of light rays.

Next we turn to projective structure. Recall that g/, is said to be projectively equivalent to g if, for
all smooth curves v on M, v can be reparametrized so as to be geodesic with respect to g/, iff it can be so
reparametrized with respect to g,5. We have proved (proposition 1.9.6) that if the two metrics are both
conformally and projectively equivalent, then the conformal factor connecting them is constant. Now,
with interpretive principle P1 in mind, we prove a slightly strengthened version of the proposition that
makes reference only to timelike geodesics (rather than arbitrary geodesics). To do so, we first strengthen

proposition 1.4.3.

Proposition 2.1.3. Let agll_'_'_'l‘:; be a tensor at some point in M. Suppose that
(1) aylyr is symmetric in indices by, ...,bs, and
(2) aylyr &0 €0 =0 for all timelike vectors £* at the point.

Then ay! yr=0.

Proof. Consider first the case where we are dealing with a tensor of form «s,. 5., i.e., one with no

contravariant indices. Let £ be a timelike vector at the point in question, and let n* be an arbitrary
vector there. Then there is an € > 0 such that, for all real numbers z, if || < €, (£§* + zn?) is timelike.

Now consider the polynomial function f : R — R defined by

b, (E + ) (€0 )

S
ap, b, E €0 <1> zay, oy £ e 4

f(z)

S —
+(5 - 1) T S R O AL e

By our hypothesis, f(z) = 0 for all x in the interval (—e¢, €). Hence all derivatives of f vanish in

b

the interval. So ap,. . 7% ...n% = 0. Since n® was an arbitrary vector at our point, it follows, by

proposition 1.4.3, that as, .., = 0 there. For the general case, let pq,...r,, be arbitrary vectors at the

point. Then agll_'_'_'l‘:; Lay-Va, = 0 by the argument just given. So (since pig, ...V,, are arbitrary vectors),

r

ay...ar __
ap 0 =0. O

a

Of course, a parallel proposition holds if O‘gll.'.'.'b " is symmetric in indices ag, ..., a,. Indeed, we can arrive

s

at that formulation simply by lowering the a-indices and raising the b-indices, applying the proposition

as proved, and then restoring the original index positions.

Problem 2.1.3. Does proposition 2.1.8 still hold if condition (1) is left intact but (2) is replaced by
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(2') aylyr &0 €0 =0 for all spacelike vectors £% at the point?
And what if it is replaced by
(2") aylyr &0 g =0 for all null vectors £ at the point?

Justify your answers.

The proposition we are after is the following.

Proposition 2.1.4. Assume g., = Q?gap. Further, assume g\, and gqp agree as to which smooth, timelike

curves can be reparametrized so as to be geodesics. Then ) is constant.

Proof. Assume V' = (V, C% ) where, once again, V' is the derivative operator associated with ¢/,. It
suffices for us to show that C%_ = 6% ¢, + 0% ¢ for some smooth field ¢,. For then the constancy of {2

follows exactly as in our proof of proposition 1.9.6.

To show that C'9, has this form, we need only make a slight revision in our proof of proposition
1.7.10. There we started from the assumption that V' and V agree as to which (arbitrary) smooth
curves can be reparametrized so as to be geodesics. Using that assumption, we showed that the field

e = (C%, 0% — C% %) satisfies the condition

P lpery §0E°ET =10 (2.1.8)

for all vectors £ at all points. Then we invoked proposition 1.4.3 to conclude that go“d(bw) = 0 everywhere.
Arguing in exactly the same way from our weaker assumption (that the metrics agree as to which smooth,
timelike curves can reparametrized so as to be geodesics), we can show that (2.1.8) holds for all timelike
vectors at all points. But we know (by proposition 2.1.3) that this condition also forces the conclusion

that cp“d( ) = 0 everywhere. The rest of the proof goes through exactly as in that of proposition

ber

1.7.10. Without reference to particular types of vectors, we can show that C'% _ = 0% ¢, + 0% ¢y where

1
ce,. O

Pe =

Later in this book we shall consider a few (not many) particular examples of spacetimes. But one
should be mentioned immediately, namely Minkowski spacetime. We take it to be the pair (M, gqp) where
(i) M is the manifold R, (ii) (M, gap) is flat, i.e., has vanishing Riemann curvature everywhere, and (iii)

(M, gap) is geodesically complete, i.e., all maximally extended geodesics have domain R.

Minkowski spacetime is very special because its structure as an affine manifold (M, V) is precisely the
same as that of four-dimensional Euclidean space. (Here, of course, V is understood to be the unique
derivative operator on M compatible with g.p.) In particular, given any point o in M, there is a smooth
“direction field” x® on M that vanishes at o and satisfies the condition V, x* = ,°. (Recall proposition
1.7.12.)
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2.2 Temporal Orientation and “Causal Connectibility”

The characterization we have given of relativistic spacetimes is extremely loose. Many further condi-

tions might be imposed. We consider one in this section, namely “temporal orientability”.

First we need to review certain basic facts about Lorentzian metrics. Once again, let (M, gq) be a
fixed relativistic spacetime. We start with the orthogonality relation that g, determines in the tangent

space at every point of M. (Two vectors pu® and v* at a point qualify as orthogonal, of course, if u®v, = 0.)

Proposition 2.2.1. Let u® and v® be vectors at some point p in M. Then the following both hold.

(1) If p* is timelike and v® is orthogonal to p®, then either v* = 0 or v® is spacelike.

(2) If u* and v* are both null, then they are orthogonal iff they are proportional (i.e., one is a scalar
multiple of the other).
Proof. (1) Let éa, ...,2“ be an orthonormal basis for M, with é“ éa =1, and é“ éa =—1fori=2,3,4.
Then we can express u* and v® in the form p® = Y1 | ﬁ{“ and v = Y1, 11/5“ Now assume p®
is timelike, v® is orthogonal to p®, and v* # 0. We show that v* is spacelike. It follows from our

assumptions that

W2 > (2 () + () (2:2.1)

Ly = pb+pb+av, (2.2.2)

Lo#£ 0, (2.2.3)

D)2+ @2+ (@) > o (2.2.4)

(The first two assertions follow from (2.1.2) and (2.1.1). The third follows from the first. For the final
inequality, note that if (5)2 + (3)2 + (3)2 =0, then =i == 0, and so, by (2.2.2) and (2.2.3), V=0
as well. This contradicts our assumption that v* # 0.) In turn, it now follows by the Schwarz inequality

(as applied to the vectors (ﬁ, /3L, ;4;) and (5, 1?}, é)) that

W2 W) = (Av+iv+p0)’ < [(0)°+ 02+ W02+ @2+ @) < W20)*+ @) + ()2,

Thus v* is spacelike.

(2) Assume p® and v® are both null. If they are proportional, then they are trivially orthogonal. For
if, say, p* = kv®, then u®v, = k(v*v,) = 0 (since v* is null). Assume, conversely, that the vectors are
orthogonal. Let £* be a timelike vector at p. By clause (1) — since v* is not spacelike — either v* = 0 or
&%, # 0. (Here £% is playing role of u®.) In the first case, u® and v* are trivially proportional. So we may
assume that £%v, # 0. Then there is a number k such that k (§%v,) = £%u,. Hence, (u® — kv®) &, = 0.
Now (pu* — kv®) is not spacelike. (The right side of

(1 = kv*) (e — kva) = ppa — 2k (pva) + k% (V°00)
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is 0 since, by assumption, u* and v® are null and v, = 0.) So, by clause (1) again, it must be the case

that (u® — kv*) =0, i.e., u* and v* are proportional. O

Problem 2.2.1. Let p be a point in M. Let p be a point in M. Show that there is no two-dimensional

subspace of M, all of whose elements are causal (timelike or null).

Problem 2.2.2. Let g%,y be a second metric on M (not necessarily of Lorentz signature). Show that the

following conditions are equivalent.

(1) For allp in M, gap and g'ap agree on which vectors at p are orthogonal.

(2) g'up is conformally equivalent to either gap 0T —Gab-

Next we consider the “lobes” of the null cone determined by gqs at points of M. Let us say that two

timelike vectors pu® and v* at a point are co-oriented (or have the same orientation) if u®v, > 0.

Proposition 2.2.2. For all points p in M, co-orientation is an equivalence relation on the set of timelike

vectors in M.

Proof. Reflexivity and symmetry are immediate. For transitivity, let pu®, v, w® be timelike vectors at a
point, with the pairs {u%, v*} and {v*, w®} both co-oriented. We must show that {u?®, w*} is co-oriented

as well. The argument is very much like that for the second clause of proposition 2.2.1.

Since p*v, > 0 and w®y, > 0, there is a real number & > 0 such that u%v, = k(w%v,). Hence,
(u* — kw*)y, = 0. Since v* is timelike, we know from the first clause of proposition 2.2.1 that either
— kw®) 1s the zero-vector O or 1t 1s spacelike. In the first case, = kw", and so the pair , w18
u® —kw®) is th Ooriti like. In the fi u® = kw?®, and so th ir {p® wt}i

certainly co-oriented (p%w, = k (w®w,) > 0). So we may assume that (u® — kw?) is spacelike. But then
1Ha = 2k (1%wa) + K (Wiwa) = (1* = kw®) (ke — kwe) < 0.

Since p®pe, wwq, and k are all positive, it follows that p®w, is positive as well. So, again, we are

led to the conclusion that the pair {u®, w®} is co-oriented. O

The equivalence classes determined at each point by the co-orientation relation will be called temporal
lobes. There must be at least two lobes at each point since, for any timelike vector u® there, u* and
—u® are not co-oriented. There cannot be more than two since, for all timelike u* and v* at a point,

V(l

is co-oriented either with u® or with —u®. (Remember, two timelike vectors at a point cannot be
orthogonal.) Hence there are exactly two lobes at each point. It is easy to check that each lobe is convex,
i.e., if u* and v® are co-oriented at a point, and a, b are both positive real numbers, then (a p® 4+ bv®) is

a timelike vector at the point that is co-oriented with p® and v“.

The relation of co-orientation can be extended easily to the larger set of non-zero causal (i.e., timelike
or null) vectors. Given any two such vectors u® and v® at a point, we can take them to be co-oriented

if either p*v, > 0 or v* = kpu® with £ > 0. (The second possibility must be allowed since we want a
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non-zero null vector to count as being co-oriented with itself.) Once again, co-orientation turns out to be
an equivalence relation with two equivalence classes that we call causal lobes. (Only minor changes in the
proof of proposition 2.2.2 are required to establish that the extended co-orientation relation is transitive.)

These lobes, too, are convex.

For future reference, we record two more facts about Lorentz metrics. (Let us agree to write ||u®|| for

(11 1a)2 when p® is causal, and write it for (—pu®puq)? when uo is spacelike.)
Proposition 2.2.3. Let u® and v* be causal vectors at some point p in M. Then the following both hold.

(1) (“Wrong way Schwarz inequality”) |u®ve| > ||p®|| ||[v*, with equality iff pn* and v* are propor-

tional.
(2) (“Wrong way triangle inequality”) If u® and v* are non-zero and co-oriented,
[+ v = Awl + el
with equality iff u® and v* are proportional.
Proof. (1) If both u® and v* are null, the assertion follows immediately from the second assertion in
proposition 2.2.1. So we may assume that one of the vectors, say p®, is timelike. Now we can certainly

express v® in the form v® = k pu® + 0, with k a real number and 0% a vector at p orthogonal to u®. (It

suffices to take k = (u%v,)/(u*pe) and o = (v* — k pu®).) Hence,

,uaVa = k (/La:ua)v
Vi, = k(U pa) + 0%0,.

Since o® is orthogonal to u®, it must either be spacelike or the zero vector (by proposition 2.2.1). In

either case, (0%0,) < 0. So, since (u*p,) > 0 and (v¥%v,) > 0, it follows that
(1va)? = K (upa)® = [(v"va) = (0"0a)] (1"1a) = (Vva) (1" pa) = [ [lv"]*.

Equality holds here iff (¢%c,) = 0. But (as noted already), o is either the zero vector or spacelike (in

which case (0%0,) < 0). So equality holds iff 0* = 0, i.e., v® = k pu®.

We leave the second clause as an exercise. O

Problem 2.2.3. Prove the second clause of proposition 2.2.3.

Now we switch our attention to considerations of global null cone structure. We say that (M, gap) is
temporally orientable if there exists a continuous timelike vector field 7® on M. Suppose the condition is
satisfied. Then we take two such fields 7% and 7' to be co-oriented if they are so at every point, i.e., if
77", > 0 holds at every point of M. Co-orientation, now understood as a relation on continuous timelike
vector fields, is an equivalence relation with two equivalence classes. (It inherits this property from the

original relation defined on timelike vectors at individual points.) A temporal orientation of (M, gap) is a
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choice of one of those two equivalence classes to count as the “future” one. Thus, a non-zero causal vector
&% at a point of M is said to be future-directed or past-directed with respect to the temporal orientation
T depending on whether 7%£, > 0 or 7%, < 0 at the point, where 7% is any continuous timelike vector
field in 7. (Remember, 7%, cannot be 0, since no timelike vector can be orthogonal to a non-zero causal
vector.) Derivatively, a smooth, causal curve v: I — M is said to be future directed (resp. past directed)

with respect to 7 if its tangent vector at every point is so.

Our characterization of “relativistic spacetimes” in the preceding section does not guarantee temporal
orientability. But we shall take the condition for granted in what follows. We assume that our background

spacetime (M, gqp) is temporally orientable and that a particular temporal orientation has been specified.

Also, given points p and ¢ in M, we shall write p < ¢ (resp. p < q) if there is a smooth, future-
directed, timelike (resp. causal) curve 7: [a,b] — M where vy(a) = p and v(b) = q. Note that p < p, for
all points p in all spacetimes. (This is the case because the zero vector in the tangent space at any point
qualifies as a null vector.) But it is not the case, in general, that p < p. The latter condition holds iff
there is a smoooth, closed, future-directed timelike curve that begins and ends at p. The two relations

< and < are naturally construed as relations of “causal connectibility (or accessibility)”.

Appendix: Recovering Geometric Structure from the Causal Connectibility Relation

We started with a spacetime model (M, gq5) exhibiting several levels of geometric structure, and used
the latter to define the relations < and < on M.” The question now arises whether it is possible to work
backwards, i.e., start with the pair (M, <) or (M, <), with M now construed as a bare point set, and
recover the geometric structure with which one began.® In this appendix, we briefly consider one way
to make the question precise and give the answer (without proof). For convenience, we work with the

relation <.

Let (M, gap) and (M’,g/,) be (temporally oriented) relativistic spacetimes. We say that a bijection

@: M — M’ between their underlying point sets is a <-causal isomorphism if, for all p and ¢ in M,

p<Lq = op) <9 (2.2.5)

Then we can ask: Does a <-causal isomorphism have to be a homeomorphism? A diffeomorphism? A
conformal isometry? (We know in advance that a causal isomorphism need not be a (full) isometry
because conformally equivalent metrics gqs and 92gq, on a manifold M determine the same relation <.
The best one can ask for is that it be a conformal isometry, i.e. that it be a diffeomorphism that preserves

the metric up to a conformal factor.)

"The material in this appendix will play no role in what follows.

8The question figures centrally in the “causal sets” approach to quantum gravity developed by Rafael Sorkin and co-

workers. See, e.g. Sorkin [55, 56].
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Without further restrictions on (M, g.p) and (M’, gl,), the answer is certainly “no” to all three ques-
tions. Unless the “causal structure” of a spacetime (i.e., the structure determined by <) is reasonably
well behaved, it provides no useful information at all. For example, let us say that a spacetime is causally
degenerate if p < q for all points p and ¢q. Any bijection between two causally degenerate spacetimes
qualifies, trivially, as a <-causal isomorphism. But we can certainly find causally degenerate spacetimes
whose underlying manifolds have different topologies. For example, we shall verify in section 3.1 that
Godel spacetime is causally degenerate. Its underlying manifold structure is R*. But a suitably “rolled
up” version of Minkowski spacetime is also causally degenerate, and the latter has the manifold structure

S1 x R3. (Figure 2.2.1 shows a two-dimensional version.)

)
\
\
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\
\
\ q
\/ / ! \/
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\
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\
\
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Figure 2.2.1: Two-dimensional Minkowski spacetime rolled up into a cylindrical spacetime.
It is causally degenerate: p < ¢ for all points p and q.

There is a hierarchy of “causality conditions” that is relevant here. (See, e.g., Hawking and Ellis [30,
section 6.4].) They impose, with varying degrees of stringency, the requirement that there exist no closed,

or “almost closed”, timelike curves. Here are three.

chronology: There do not exist smooth closed timelike curves. (Equivalently, for all p, it is not the case

that p < p.)

future (resp. past) distinguishablity: For all points p, and all sufficiently small open sets O containing
p, no smooth future-directed (resp. past-directed) timelike curve that starts at p, and leaves O,

ever returns to O.

strong causality: For all points p, and all sufficiently small open sets O containing p, no smooth

future-directed timelike curve that starts in O, and leaves O, ever returns to O.

It is clear that strong causality implies both future distinguishability and past distinguishability, and that
each of the distinguishability conditions (alone) implies chronology. Standard examples (see Hawking
and Ellis [30]) establish that the converse implications do not hold, and that neither distinguishability

condition implies the other.

The names “future distinguishability” and “past distinguishability” are easily explained. For any p,
let I (p) be the set {q: p < ¢} and let I~ (p) be the set {q: ¢ < p}. It turns out (see Kronheimer and
Penrose [33]) that future distinguishability is equivalent to the requirement that, for all p and g,

If(p)=1"(q) = p=4q¢
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And the counterpart requirement with I replaced by I~ is equivalent to past distinguishability.

We mention all this because it turns out that one gets a positive answer to all three questions asked

earlier if one restricts attention to spacetimes that are both future and past distinguishing.

Proposition 2.2.4. Let (M, gap) and (M’,g,) be (temporally oriented) relativistic spacetimes that are
both future and past distinguishing, and let ¢ : M — M’ be a <-causal isomorphism. Then ¢ is a

diffeomorphism and preserves gap up to a conformal factor, i.e. ©*(g'ap) is conformally equivalent to gap.

One can prove the proposition in two stages. First one shows that, under the stated assumptions, ¢ must
be a homeomorphism (see Malament [38]).° Then one invokes a result of Hawking, King, and McCarthy
[29, theorem 5] that asserts, in effect, that any continuous <-causal isomorphism must be smooth and

must preserve the metric up to a conformal factor.

excise

excise

Figure 2.2.2: An example of a spacetime that is future distinguishing but not past distin-
guishing. Let ¢ be a bijection of the spacetime onto itself that leaves the lower open half
below C fixed but reverses the position of the two upper slabs. It is a <-isomorphism, but
it is discontinuous along C'.

The following example shows that the proposition fails if the initial restriction on causal structure
is weakened to past distinguishability or to future distinguishability alone. We give the example in a
two-dimensional version to simplify matters. Start with the manifold R? together with the Lorentzian
metric
Jab = (d(at)(dpx) — (sinh2 t)(dox)(dpa),
where t, z are global projection coordinates on R?. Next form a vertical cylinder by identifying the point
with coordinates (¢, ) with the one having coordinates (¢, « + 2). Finally, excise two closed half lines —

the sets with respective coordinates {(¢,2): £ =0 and ¢t > 0} and {(¢,x): z =1 and ¢t > 0}. Figure 2.2.2

9This is a slight improvement on a well-known result. If a spacetime (M, gq3) is not just past and future distinguishing,
but strongly causal, then one can explicitly characterize its (manifold) topology in terms of the relation <. In this case, a
subset O C M is open iff, for all points p in O, there exist points ¢ and r in O such that ¢ < p < rand IT(¢)NI~(r) CO
(Hawking and Ellis [30, p. 196]). So a <-causal isomorphism between two strongly causal spacetimes must certainly be a

homeomorphism.
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shows, roughly, what the null cones look like at every point. (The future direction at each point is taken
to be the “upward one”.) The exact form of the metric is not important here. All that is important is
the indicated qualitative behavior of the null cones. Along the (punctured) circle C' where ¢ = 0, the
vector fields (9/0t)* and (0/0z)* both qualify as null. But as one moves upward or downward from
there, the cones close. There are no closed timelike (or null) curves in this spacetime. Indeed, it is future
distinguishing because of the excisions. But it fails to be past distinguishing because I~ (p) = I~ (q) for
all points p and g on C. For all points p there, I~ (p) is the entire region below C.

Now let ¢ be the bijection of the spacetime onto itself that leaves the “lower open half” fixed but
reverses the position of the two upper slabs. Though ¢ is discontinuous along C, it is a <-causal
isomorphism. This is the case because every point below C has all points in both upper slabs in its

< -future.
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2.3 Proper Time

So far we have discussed relativistic spacetime structure without reference to either “time” or “space”.

We come to them in this section and the next.

Let ~v: [s1,82] — M be a smooth, future-directed timelike curve in M with tangent field £€*. We
associate with it an elapsed proper time (relative to g.p) given by
S2 b 1
Il = [ e € d,
51

This elapsed proper time is invariant under reparametrization of « and is just what we would otherwise

describe as the length of (the image of) ~. The following is another basic principle of relativity theory.
(P2) Clocks record the passage of elapsed proper time along their worldlines.

Again, a number of qualifications and comments are called for. Our formulations of (C1), (C2), and
(P1) were rough. The present formulation is that much more so. We have taken for granted that we
know what “clocks” are. We have assumed that they have worldlines (rather than worldtubes). And we
have overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand) do not do well
at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock
against the wall.) Again, these concerns are important and raise interesting questions about the role of
idealization in the formulation of physical theory. (One might construe an “ideal clock” as a point-size
test object that perfectly records the passage of proper time along its worldline, and then take (P2) to
assert that real clocks are, under appropriate conditions and to varying degrees of accuracy, approximately
ideal.) But they do not have much to do with relativity theory as such. Similar concerns arise when one
attempts to formulate corresponding principles about clock behavior within the framework of Newtonian

theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays.
Then one can use clocks, rather than free particles, to determine the conformal factor. One has the

following simple result, which should be compared with proposition 2.1.4.19

Proposition 2.3.1. Let ¢/, be a second smooth metric on M with g, = Q2 gup. Further suppose that
the two metrics assign the same lengths to timelike curves, i.e., ||V[lg:, = [Vllg,, for all smooth, timelike

curves y: I — M. Then Q =1 everywhere. (Here ||7v||q,, is the length of v relative to gqp.)

10Here we not only determine the metric up to a constant, but determine the constant as well. The difference is that here,
in effect, we have built in a choice of units for spacetime distance. We could obtain a more exact counterpart to proposition
2.1.4 if we worked, not with intervals of elapsed proper time, but rather with ratios of such intervals. (Note, by the way,
that the condition in the second sentence of the proposition does not make sense unless the two metrics are conformally
equivalent. We cannot require that they assign the same length to all timelike curves unless they first agree on which curves

are timelike.)
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Proof. Let ga be an arbitrary timelike vector at an arbitrary point p in M. We can certainly find a smooth,
timelike curve v: [s1, s2] — M through p whose tangent at p is 2“. By our hypothesis, [[7[lg:, = [|7llga,-
So, if £* is the tangent field to 7,
s s
[ Gweertas = [ et as
S1 S1
for all s in [s1, s2]. It follows that g/, £9€° = g €9€°  at every point on the image of 4. In particular,
it follows that (gl — gab) ga Eb =0 at p. But ga was an arbitrary timelike vector at p. So, by lemma
2.1.3, ¢/, = gab at our arbitary point p. O

(P2) gives the whole story of relativistic clock behavior (modulo the concerns noted above). In
particular, it implies the path dependence of clock readings. If two clocks start at an event p and travel
along different trajectories to an event ¢, then, in general, they will record different elapsed times for
the trip. (For example, one will record an elapsed time of 3,806 seconds, the other 649 seconds.) This
is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly
line.) This is the case because, as (P2) asserts, the elapsed time recorded by each of the clocks is just the

length of the timelike curve it traverses from p to g and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to ¢. It is natural to ask if there are
any that minimize or maximize the recorded elapsed time between the events. The answer to the first

question is “no”. Indeed, one has the following proposition.

Proposition 2.3.2. Let p and q be events in M such that p < q. Then, for all € > 0, there exists a
smooth, future-directed timelike curve y from p to q with ||y|| < €. (But there is no such curve with length

0, since all timelike curves have non-zero length.)

Though some work is required to give the proposition an honest proof (see O’Neill [46, pp. 294-5]), it
should seem intuitively plausible. If there is a smooth, timelike curve connecting p and ¢, there is also

a jointed, zig-zag null curve connecting them. It has length 0. But we can approximate the jointed null

< q
<« short timelike curve
long timelike curve -

(
)

/P

Figure 2.3.1: A long timelike curve from p to ¢ and a very short one that approximates a
broken null curve.
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curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of
the length function), we should expect that, for all € > 0, there is an approximating timelike curve that

has length less than e. (See figure 2.3.1.)

The answer to the second question (“Can one mazimize recorded elapsed time between p and ¢?”) is
“yes” if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e.,
ones with signature of form (n,0), we know geodesics are “locally shortest” curves. The corresponding

result for Lorentzian metrics is that timelike geodesics are “locally longest” curves.

Proposition 2.3.3. Let v: I — M be a smooth, future-directed, timelike curve. Then ~y can be repara-
metrized so as to be a geodesic iff for all s € I, there exists an open set O containing Y(s) such that,

for all s1,80 € I with s1 < s < s9, if the image of v = 7, is contained in O, then ' (and its

[s1,52]

reparametrizations) are longer than all other timelike curves in O from vy(s1) to y(s2). (Herery,, . is

the restriction of y to the interval [s1, s2].)

The proof of the proposition is very much the same as in the positive definite case. (See Hawking and
Ellis [30, p. 105].) Thus, of all clocks passing locally from p to ¢, the one that will record the greatest
elapsed time is the one that “falls freely” from p to ¢q. To get a clock to read a smaller elapsed time than
the maximal value one will have to accelerate the clock. Now, acceleration requires fuel, and fuel is not
free. So proposition 2.3.3 has the consequence that (locally) “saving time costs money”. And proposition

2.3.2 may be taken to imply that “with enough money one can save as much time as one wants”.

N

71

N~

Figure 2.3.2: Two-dimensional Minkowski spacetime rolled-up into a cylindrical spacetime.
Three timelike curves are displayed: 1 and -3 are geodesics; v is not; 71 is longer than ~vs;
and 79 is longer than ~s.

The restriction here to local regions of spacetime is essential. The connection described between clock

behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes,
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one can find future-directed timelike geodesics connecting two events that have different lengths, and so
clocks following the curves will record different elapsed times between the events even though both are in a
state of free fall. Furthermore — this follows from the preceding claim by continuity considerations alone
— it can be the case that of two clocks passing between the events, the one that undergoes acceleration
during the trip records a greater elapsed time than the one that remains in a state of free fall. (A rolled

up version of two-dimensional Minkowski spacetime provides a simple example. See figure 2.3.2.)

The connection we have been considering between clock behavior and acceleration was once thought to
be paradoxical. Recall the so-called “clock paradox”. Suppose two clocks, A and B, pass from one event
to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall but
B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed
time for the trip than B. This was thought paradoxical because it was believed that relativity theory
denies the possibility of distinguishing “absolutely” between free fall motion and accelerated motion. (If
we are equally well entitled to think that it is clock B that is in a state of free fall and A that undergoes
acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The
resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The
situations of A and B here are not symmetric. The distinction between accelerated motion and free fall

makes every bit as much sense in relativity theory as it does in Newtonian physics.

In what follows, unless indication is given to the contrary, a “timelike curve” should be understood to
be a smooth, future-directed, timelike curve parametrized by elapsed proper time, i.e., by arc length. In
that case, the tangent field £ of the curve has unit length (£*¢, = 1). And if a particle happens to have

the image of the curve as its worldline, then, at any point, £ is called the particle’s four-velocity there.
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2.4 Space/Time Decomposition at a Point and Particle Dynam-
ics

Let ~ be a smooth, future-directed, timelike curve with unit tangent field £* in our background
spacetime (M, gq.5). We suppose that some massive point particle O has (the image of) this curve as its
worldline. Further, let p be a point on the image of v and let A* be a vector at p. Then there is a natural

decomposition of A* into components proportional to, and orthogonal to, £%:

A= (PG)E (A — (NG, (2.4.1)
proportional to &2 orthogonal to &2

These are standardly interpreted, respectively, as the “temporal” and “spatial” components of A\* relative
to €% (or relative to O). In particular, the three-dimensional vector space of vectors at p orthogonal to
€% is interpreted as the “infinitesimal” simultaneity slice of O at p.!' If we introduce the tangent and

orthogonal projection operators
kav = &a &b, (2.4.2)

hab = Gab — ga §b7 (243)
then the decomposition can be expressed in the form
A= k% N\ 4 pa AP (2.4.4)

We can think of k., and hyp, as the relative temporal and spatial metrics determined by &£*. They are

symmetric and satisfy

I
I
e

kS kP, (2.4.5)

h% hY,

Il
>
S

(2.4.6)

Many standard textbook assertions concerning the kinematics and dynamics of point particles can
be recovered using these decomposition formulas. For example, suppose that the worldline of a second
particle O’ also passes through p and that its four-velocity at p is £'®. (Since £&* and &’® are both future-
directed, they are co-oriented, i.e., £*&’, > 0.) We compute the speed of O’ as determined by O. To do
so, we take the spatial magnitude of £’ relative to O and divide by its temporal magnitude relative to

0:'2

1, €1
1k €110
(Recall that for any vector u®, ||u®| is (u®pqa)? if p® is causal, and it is (—puq)? otherwise.) From
(2.4.2), (2.4.3), (2.4.5), and (2.4.6), we have

v = speed of O' relative to O = (2.4.7)

1% €8] = (k% €7 kae €°)F = (kpe £'067) = (€0 &)

1 Here we simply take for granted the standard identification of “relative simultaneity” with orthogonality. For discussion

of how the identification is justified, see Malament [42, section 3.1] and further references cited there.

12We are, in effect, choosing units in which ¢ = 1.
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and
13 €701 = (=% € hae )2 = (~hoe €0 €)% = (€7 6)° — 1%
So b X
((€7&)*—1)2
V=" < L. 2.4.8
(£ &) (248)
Thus, as measured by O, no massive particle can ever attain the maximal speed 1. (A similar calculation
shows that, as determined by O, light always travels with speed 1.) For future reference, we note that

(2.4.8) implies that
1

(" &) = N (2.4.9)

It is a basic fact of relativistic life that there is associated with every point particle, at every event
on its worldline, a four-momentum (or energy-momentum) vector P® that is tangent to its worldline
there. The length ||P?|| of this vector is what we would otherwise call the mass (or inertial mass or rest
mass) of the particle. So, in particular, if P® is timelike, we can write it in the form P® = m £®, where

m = ||P%|| > 0 and &% is the four-velocity of the particle. No such decomposition is possible when P® is

null and m = ||P?|| = 0.

Suppose a particle O with positive mass has four-velocity £* at a point, and another particle O’ has
four-momentum P° there. The latter can either be a particle with positive mass or mass 0. We can
recover the usual expressions for the energy and three-momentum of the second particle relative to O if

we decompose P® in terms of £%. By (2.4.4) and (2.4.2), we have

P = (Pb)¢* + he, PP . (2.4.10)
N—— S~—~—
energy three—momentum

The energy relative to O is the coefficient in the first term: E = P%,. If O’ has positive mass and
P* =m¢'e, this yields, by (2.4.9),

m

Ezm(f/bfb) = ﬁ

(2.4.11)

(If we had not chosen units in which ¢ = 1, the numerator in the final expression would have been mc?

and the denominator \/1 — (v2/c2).) The three-momentum relative to O is the second term h% PP in the
decomposition of P%, i.e., the component of P* orthogonal to £*. It follows from (2.4.8) and (2.4.9) that
it has magnitude

mu

p= % me?| =m (&) — 1)} = = (2.4.12)

Interpretive principle P1 asserts that the worldlines of free particles with positive mass are the images
of timelike geodesics. It can be thought of as a relativistic version of Newton’s first law of motion. Now
we consider acceleration and a relativistic version of the second law. Once again, let v: I — M be a
smooth, future-directed, timelike curve with unit tangent field £*. Just as we understand £* to be the

four-velocity field of a massive point particle (that has the image of 7 as its worldline), so we understand
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&'V, €4 — the directional derivative of £* in the direction £* — to be its four-acceleration field (or just
acceleration field). The four-acceleration vector at any point is orthogonal to £*. (This is clear, since
£ (E"V, &) = 3"V, (€7¢,) = 1¢"V, (1) = 0.) The magnitude "V, £%|| of the four-acceleration
vector at a point is just what we would otherwise describe as the curvature of « there. It is a measure
of the rate at which v “changes direction”. (And < is a geodesic precisely if its curvature vanishes

everywhere.)

The notion of spacetime acceleration requires attention. Consider an example. Suppose you decide
to end it all and jump off the Empire State Building. What would your acceleration history be like
during your final moments? One is accustomed in such cases to think in terms of acceleration relative
to the earth. So one would say that you undergo acceleration between the time of your jump and your
calamitous arrival. But on the present account, that description has things backwards. Between jump
and arrival, you are not accelerating. You are in a state of free fall and moving (approximately) along
a spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The floor of the
observation deck, and then later the sidewalk, push you away from a geodesic path. The all-important
idea here is that we are incorporating the “gravitational field” into the geometric structure of spacetime,

and particles traverse geodesics if and only if they are acted on by no forces “except gravity”.

The acceleration of our massive point particle, i.e., its deviation from a geodesic trajectory, is deter-
mined by the forces acting on it (other than “gravity”). If it has mass m, and if the vector field F'®
on I represents the vector sum of the various (non-gravitational) forces acting on it, then the particle’s
four-acceleration £ V,, £ satisfies

F*=m&"V, % (2.4.13)
This is our version of Newton’s second law of motion.

Consider an example. (Here we anticipate our discussion in section 2.6.) Electromagnetic fields are
represented by smooth, anti-symmetric fields Fy;,. If a particle with mass m > 0, charge ¢, and four-
velocity field £? is present, the force exerted by the field on the particle at a point is given by q F', o,
If we use this expression for the left side of (2.4.13), we arrive at the Lorentz law of motion for charged

particles in the presence of an electromagnetic field:
qF% e = m bV, €. (2.4.14)

(Notice that the equation makes geometric sense. The acceleration field on the right is orthogonal to
€. But so is the force field on the left, since & (F%&b) = 2P Fyy = £ €PFap), and F(q) = 0 by the

anti-symmetry of Fyp.)
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2.5 The Energy-Momentum Field T},

In classical relativity theory, one generally takes for granted that all that there is, and all that happens,
can be described in terms of various “matter fields”, each of which is represented by one or more smooth
tensor (or spinor) fields on the spacetime manifold M.'® The latter are assumed to satisfy particular

“field equations” involving the spacetime metric gup.

For present purposes, the most important basic assumption about the matter fields is the following.

Associated with each matter field F is a symmetric smooth tensor field T,; characterized by
the property that, for all points p in M, and all future-directed, unit timelike vectors £ at p,

T bgb is the four-momentum density of F at p as determined relative to £°.

T.p is called the energy-momentum field associated with F. The four-momentum density vector 7%, £°

at a point can be further decomposed into its temporal and spatial components relative to £¢,

¢ = Tm€mg) &+ Lmh™e
N—— N——
energy density three—momentum density

just as the four-momentum P® of a particle was decomposed in (2.4.10). The coefficient of £ in the first
component, Ty, £%€°, is the energy density of F at the point as determined relative to £€*. The second

component, Thp (g% — £* ™) €0, is the three-momentum density of F there as determined relative to £°.

A number of assumptions about matter fields can be captured as constraints on the energy-momentum
tensor fields with which they are associated. Examples are the following. (Suppose Ty, is associated with
matter field F.)

Weak Energy Condition (WEC): Given any timelike vector £ at any point in M, Ty £96° > 0.

Dominant Energy Condition (DEC): Given any timelike vector £* at any point in M, Ty 262 > 0

and T €Y is timelike or null.

Strengthened Dominant Energy Condition (SDEC): Given any timelike vector £* at any point
in M, Ty, £2€° > 0 and, if Ty, # 0 there, then TS, €0 is timelike.

Conservation Condition (CC): V, T = 0 at all points in M.

The weak energy condition asserts that the energy density of F, as determined by any observer at any
point, is non-negative. The dominant energy condition adds the requirement that the four-momentum
density of F, as determined by any observer at any point, is a future-directed causal (i.e., timelike or null)

vector. We can understand this second clause to assert that the energy of F does not propagate with

13This being the case, the question arises as to how (or whether) one can adequately recover talk about “point particles”

in terms of the matter fields. We shall briefly discuss the question later in this section.
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superluminal velocity. The strengthened version of the dominant energy condition just changes “causal”
to “timelike” in the second clause. It captures something of the flavor of (C1) in section 2.1, but avoids
reference to “point particles”. Each of the listed energy conditions is strictly stronger than the ones that

precede it (see problem 2.5.1).

Problem 2.5.1. Give examples of each of the following.
(1) A smooth symmetric field Tap that does not satisfy the WEC

(2) A smooth symmetric field Top that satisfies the WEC but not the DEC
(8) A smooth symmetric field Ty that satisfies the DEC but not the SDEC

Problem 2.5.2. Show that the DEC holds iff given any two co-oriented timelike vectors £* and n* at a
point in M, Tap&® nb > 0.

The conservation condition, finally, asserts that the energy-momentum carried by F is locally con-
served. If two or more matter fields are present in the same region of spacetime, it need not be the
case that each one individually satisfies the condition. Interaction may occur. But it is a fundamental
assumption that the composite energy-momentum field formed by taking the sum of the individual ones
satisfies it. Energy-momentum can be transferred from one matter field to another, but it cannot be

created or destroyed.

The stated conditions have a number of consequences that support the interpretations just given. We

mention two. The first requires a few preliminary definitions.

A subset S of M is said to be achronal if there do not exist points p and ¢ in .S such that p < ¢. Let
v: I — M be a smooth curve. We say that a point p in M is a future-endpoint of ~y if, for all open sets
O containing p, there exists an s in I such that, for all s € I, if s > s¢, then v(s) € O, i.e., v eventually
enters and remains in O. (Past-endpoints are defined similarly.) Now let S be an achronal subset of M.
The domain of dependence D(S) of S is the set of all points p in M with this property: given any smooth
causal curve without (past- or future-) endpoint, if its image contains p, then it intersects S. (See figure

2.5.1.) So, in particular, S C D(S).

} D(S)

Figure 2.5.1: The domain of dependence D(S) of an achronal set S.
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In section 2.10, we shall make precise a sense in which “what happens on S determines what happens

throughout D(S)”. Here we consider just one aspect of that determination.

Proposition 2.5.1. Let S be an achronal subset of M. Further, let Top be a smooth, symmetric field on
M that satisfies both the dominant energy and conservation conditions. Finally, assume Top, = 0 on S.

Then Tap = 0 on all of D(S).

The intended interpretation of the proposition is clear. If energy-momentum cannot propagate (locally)
outside the null-cone, and if it is conserved, and if it vanishes on S, then it must vanish throughout D(S).
After all, how could it “get to” any point in D(S)? Note that our formulation of the proposition does
not presuppose any particular physical interpretation of the symmetric field T,,. All that is required is

that it satisfy the two stated conditions. (For a proof, see Hawking and Ellis [30, p. 94].)

Now recall (P1). It asserts that free massive point particles traverse (images of) timelike geodesics.
The next proposition (Geroch and Jang [24]) shows that it is possible, in a sense, to capture the principle
as a theorem in relativity theory. The trick is to find a way to talk about “massive point particles” in
the language of extended matter fields. In effect, we shall model them as nested sequences of small, but
extended, bodies that converge to a point. It turns out that if the energy-momentum content of each
body in the sequence satisfies appropriate conditions, then the convergence point will necessarily traverse

(the image of) a timelike geodesic.

Proposition 2.5.2. Let v: I — M be smooth curve. Suppose that given any open subset O of M
containing y[I], there exists a smooth symmetric field T,, on M such that the following conditions hold.

(1) Tap satisfies the strengthened dominant energy condition.
(2) Tup satisfies the conservation condition.

(3) Tap = 0 outside of O.

(4) Tup # 0 at some point in O.

Then v is timelike and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. Suppose that for some smooth curve ~, arbitrarily
small bodies with energy-momentum satisfying conditions (1) and (2) can contain the image of 7 in their
worldtubes. Then v must be a timelike geodesic (up to reparametrization). Bodies here are understood
to be “free” if their internal energy-momentum is conserved (by itself). If a body is acted on by a field,

it is only the composite energy-momentum of the body and field together that is conserved.

Note that our formulation of the proposition takes for granted that we can keep the background
spacetime metric gqp fixed while altering the fields T}, that live on M. This is justifiable only to the extent

that we are dealing with test bodies whose effect on the background spacetime structure is negligible.'*

M Stronger theorems have been proved (see Ehlers and Geroch [16]) where one still models a point particle as a nested
sequence of extended bodies converging to a point but does not require that the perturbative effect of each body in the

sequence disappear entirely. One requires only that, in a certain precise sense, it disappear in the limit.
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Note also that we do not have to assume at the outset that the curve v is timelike. That follows from

the other assumptions.

We have here a precise proposition in the language of matter fields that, at least to some degree,
captures (P1). Similarly, it is possible to capture (C2), concerning the behavior of light, with a proposition
about the behavior of solutions to Maxwell’s equations in a limiting regime (“the optical limit”) where
wavelengths are small. It asserts, in effect, that when one passes to this limit, packets of electromagnetic

waves are constrained to move along (images of) null geodesics. (See Wald [60, p. 71].)

It is worth noting that the Geroch-Jang result fails if condition (1) is dropped. Consider again our
nested sequence of bodies converging to a point. It turns out that the conservation condition alone imposes
no restrictions whatsoever on the wordline of the convergence point. It can be a null or spacelike curve.
It can also be a timelike curve that exhibits any desired pattern of large and/or changing acceleration.
The next proposition, based on a suggestion of Robert Geroch (in personal communication), gives a

counterexample.!®

Proposition 2.5.3. Let (M, gap) be Minkowski spacetime, and let v: I — M be any smooth timelike
curve. Then, given any open subset O of M containing y[I], there exists a smooth symmetric field Ty
on M that satisfies conditions (2), (3), and (4) in the preceding proposition. (If we want, we can also
strengthen condition (4) and require that Ta, be non-vanishing throughout some open subset O1 C O

containing y[I].)

Proof. Let O be an open subset of M containing ~[I], and let f: M — R be any smooth scalar field on
M. (Later we shall impose further restrictions on f.) Consider the fields S = f(gadgbc — grcgbd)
and T9 = V, V5% where V is the (flat) derivative operator on M compatible with g,;. We have

T = (9*'g" — g*g"") Vi Vaf = VOV f — g* (Vy V' ). (2.5.1)
So T is clearly symmetric. It is also divergence free since
VoT% = Vo VEVIf = VOV, VP f = VOV, VIf —V°V,V'f = 0.
(The second equality follows from the fact that V is flat, and so V, and V¢ commute in their action on

arbitrary tensor fields.)

To complete the proof, we now impose further restrictions on f to insure that conditions (3) and (4)
are satisfied. Let O; be any open subset of M such that v[I] C O; and cl(O1) C O. (Here cl(A) is the
closure of A.) Our strategy will be to choose a particular f on O; and a particular f on M —cl(O), and
then fill in the buffer zone O—cl(O;) any way whatsoever (so long as the resultant field is smooth). On
M—cl(O), we simply take f = 0. This choice guarantees that, no matter how we smoothly extend f to
all of M, T will vanish outside of O.

151t is formulated in terms of an initial curve that is timelike — the case of greatest interest — but that is not essential.

The example can also be adapted to show that proposition 2.5.1 fails if the energy condition there is dropped.
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For the other specification, let o be any point in M and let x* be the “position field” on M determined
relative to 0. So V,x? = 8," everywhere, and x* = 0 at 0. On Oy, we take f = —(x"x»). With that

choice, T*¢ is non-vanishing at all points in O;. Indeed, we have
vaf = _2Xnvaxn = _2Xn6an = —2Xas
and, therefore,

T — ¢ Vaf _ gac (Vb be) - _9 cha + 2gac (vb Xb)
_29¢2a ) gac5bb _ _2gac + 8gac _ 69ac

throughout O;. O

Figure 2.5.2: A non-geodesic timelike curve enclosed in a tube (as considered in proposition 2.5.3).

One point about the proof deserves comment. As restricted to O; and to M —cl(O), the field T, that
we construct does satisfy the strengthened dominant energy condition. (In the first case, Tup = 6 gap,
and in the second case, T,, = 0.) But we know — from the Geroch-Jang theorem itself — that it cannot
satisfy that condition everywhere. So it must fail to do so in the buffer zone O—cl(O;). That shows us
something. We can certainly choose f in the zone so that it smoothly joins with our choices for f on O;
and M —cl(0O). But, no matter how clever we are, we cannot do so in such a way that 7% (as expressed

in (2.5.1)) satisfies the strengthened dominant energy condition.

Now we consider two examples of matter fields — perfect fluids in this section, and electromagnetic

fields in the next.

Perfect fluids are represented by three objects: a smooth four-velocity field 1%, a smooth energy
density field p, and a smooth isotropic pressure field p (the latter two as determined by a “co-moving”
observer at rest in the fluid). In the special case where the pressure p vanishes, one speaks of a dust

eld. Particular instances of perfect fluids are characterize equations of state at specify p as
ld. Particular inst f perfect fluid h terized by ti f state” that ify
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a function of p. (Specifically excluded here are such complicating factors as anisotropic pressure, shear
stress, and viscosity.) Though p is generally assumed to be non-negative, some perfect fluids (e.g., to a
good approximation, water) can exert negative pressure. The energy-momentum tensor field associated

with a perfect fluid is

Tap = pNatb =P (gab — Nap)- (2.5.2)
So the energy-momentum density vector of the fluid at any point as determined by a co-moving observer
(i-e., as determined relative to ) is 7% n° = pn.

In the case of a perfect fluid, the weak energy condition, dominant energy condition, and conservation

condition come out as follows.16

WEC <= p>0 and p > —p
DEC <« |p|<p

(p+p)n*Van® = (g —0°n*)Vap = 0
n*Vap + (p+p)(Van®) =

CC

First we verify the equivalences for the WEC and CC. (The one for the DEC is left as an exercise.)
Then we make a few remarks about the physical interpretation of the two conditions jointly equivalent

to CC.
(WEC) Clearly, the WEC holds at a point ¢ in M iff T,; £¢® > 0 for all unit timelike vectors £ at

g. (If the inequality holds for all unit timelike vectors, it holds for all timelike vectors.) It is convenient

to work with the condition in this form.

If T,y is given by (2.5.2), and &% is a unit timelike vector at g, then T,; €€ = (p + p)(n®£.)? — p. So
the WEC holds at ¢ in M iff, for all such vectors £ at g,

(p+p)(1°6)* —p > 0. (2.5.3)

Assume first that (p+p) >0 and p > 0, and let £* be a unit timelike vector at g. Then, by the wrong-
way Schwarz inequality (proposition 2.2.3), (n%£,)* > [[n®||* €% = 1. Hence, (p + p)(n“éa)* —p >
(p+p)—p=p > 0. So we have (2.5.3). Conversely, assume (2.5.3) holds for all unit timelike vectors £* at
q. Then, in particular, it holds if £ = n®, and in this case we have 0 < (p+p)(1°n.)>—p = (p+p)—p = p.
Note next that there is no upper bound to the value of (7%€,)? as £ ranges over unit timelike vectors
at ¢q. (For example, let 0% be any unit spacelike vector at g orthogonal to n®, and let £ be of the
form £* = (coshf)n® — (sinh #) o®, where 0 is a real number. Then &% is a unit timelike vector, and
(n%€4)? = cosh?f. The latter goes to infinity as 6 does.) So (2.5.3) cannot possibly hold for all unit
timelike vectors at ¢ unless (p + p) > 0. This gives us the stated equivalence for the WEC.

16The dominant energy condition and the strengthened dominant energy condition are not equivalent in general, as we

have seen. But they are equivalent when applied, specifically, to perfect fluids. See problem 2.5.3.
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(CC) If T,p is given by (2.5.2), then a straight forward computation shows that the conservation
condition (V, 7% = 0) holds iff

p(M*Van®) 4+ pn® Van® +1°(°Va p) — (Vap) (9™ —n"n") + p(*Van®) + pn° Van® = 0. (2.5.4)
Assume that (2.5.4) does hold. Then contraction with 7, yields
1*Vap + (p+p)(Van®) = 0. (2.5.5)

(Here we use the fact that the unit timelike vector field 7’ is orthogonal to its associated acceleration
field 7%V, n® and to its associated projection field hap = (gap — 7amp).) And if we multiply (2.5.5) by n®

and then subtract the result from (2.5.4), we arrive at

(p+p)n* Van" = (g =1°n*) Vap = 0. (2.5.6)

Thus (2.5.4) holds only if (2.5.5) and (2.5.6) do. And the converse is immediate. So we have our stated

equivalence for the conservation condition.

Problem 2.5.3. (i) Prove the stated equivalence for the DEC. (ii) Prove that, as restricted to perfect
fluids, the SDEC is equivalent to the DEC.

Now consider the physical interpretation of the two equations jointly equivalent to CC. (2.5.6) is the
equation of motion for a perfect fluid. We can think of it as a relativistic version of Euler’s equation.
(2.5.5) is an equation of continuity (or conservation) in the sense familiar from classical fluid mechanics.
It is easiest to think about the special case of a dust field (p = 0). In this case, the equation of motion
reduces to the geodesic equation 7” V,n® = 0. That makes sense. In the absence of pressure, particles
in the fluid are free particles. And the conservation equation reduces to n° Vy p + p(Vyn®) = 0. The
first term gives the instantaneous rate of change of the fluid’s energy density, as determined by a co-
moving observer. The term V; 7" gives the instantaneous rate of change of its volume, per unit volume,
as determined by that observer. (We shall justify this claim in section 2.8.) In a more familiar notation,
the equation might be written d—;) + %Ccli_‘s/ =0 or, equivalently, % = 0. (Here we use s for elapsed
proper time.) It asserts that (in the absence of pressure, as determined by a co-moving observer) the

energy contained in an (infinitesimal) fluid blob remains constant, even as its volume changes.

In the general case, the situation is more complex because the pressure in the fluid contributes to its
energy (as determined relative to particular observers), and hence to what might be called its “effective
mass density”. (If you compress a fluid blob, it gets heavier.) In this case, the WEC comes out as the

requirement that (p 4+ p) > 0 in addition to p > 0. The equation of motion can be expressed as
(p+p)n° Vyn® = h™ Vs p, (2.5.7)

where h? is the projection field (g?® —n®7®). This is an instance of the “second law of motion” (2.4.13)

as applied to an (infinitesimal) blob of fluid. On the left we have “effective mass density x acceleration”.
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On the right, we have the force acting on the blob, as determined by a co-moving observer. We can think
of it as minus the gradient of the pressure (as determined by a co-moving observer). (The minus sign
comes in because of our sign conventions.) Again, this makes sense. If the pressure on the left side of the

blob is greater than that on the right, it will accelerate to the right.

And in the general case we are now considering —where the pressure p need not vanish — the term
(p Vyn®) in the conservation equation is required because the energy of the blob is not constant when its
volume changes as a result of the pressure. The equation governs the contribution made to its energy by

pressure.
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2.6 Electromagnetic Fields

In this section we briefly discuss electromagnetic fields. Though our principal interest here is in
the energy-momentum field Tp; associated with them, we mention a few fundamental ideas of classical

electromagnetic theory along the way.

Electromagnetic fields are represented by smooth, anti-symmetric fields F,; (on the background space-
time (M, gqp)). If a particle with mass m > 0, charge ¢, and four-velocity field £* is present, the force
exerted by the field on the particle at a point is given by g F4 £°. (This condition uniquely characterizes
F.p.) As noted at the end of section 2.4, if we use this expression for the force term in the relativistic

version of “Newton’s second law” (2.4.13), we arrive at the Lorentz law of motion:
qF% € = m b v, e (2.6.1)

It describes the motion of a charged particle in an electromagnetic field (at least when the contribution
of the particle’s own charge to the field is negligible and may be ignored). Note again that the equation
makes geometric sense. The acceleration vector on the right is orthogonal to £*. But so is the force vector

on the left since F,; is anti-symmetric.

The fundamental field equations of electromagnetic theory (“Maxwell’s equations”) are given by

VieFpg = 0 (2.6.2)
Vo F* = Jb (2.6.3)

Here J¢ is the charge-current density field. It is characterized by the following condition: given any
background observer at a point with four-velocity £%, J%, is the charge density there (arising from
whatever charged matter is present) as determined by that observer. For example, in the case of a
charged dust field, J* = pun®, where n® is the four-velocity of the dust, and p is its charge density as
measured by a co-moving observer. Thus, if equation (2.6.1) expresses the action of the electromagnetic
field on a charged (test) particle, equation (2.6.3) expresses the reciprocal action of charged matter on

the field. The former acts a source for the latter.

An important constraint on the charge-curent density field J¢ follows immediately from (2.6.3). Since

Fa is anti-symmetric, VoJ® = V,V,, F"* = VeV F*. But

2V, V, F" = —FmeRn . —F" R —F™ Ry + F™ Ry,
= —F™PRuyy+F"™Ry, = 0.

(The first two equalities follow, respectively, from clauses (1) and (2) of proposition 1.8.2. The third
involves nothing more than a systematic change of abstract indices. The final equality follows from the
symmetry of the Ricci tensor field.) So

V.J* = 0. (2.6.4)



CHAPTER 2. CLASSICAL RELATIVITY THEORY 134

We can understand this as an assertion of the local conservation of charge. Notice that in the case of

charged dust field with J* = un®, (2.6.4) comes out as
"’V + pu(Ven?) = 0. (2.6.5)

This has exactly the same form as (2.5.5) in the special case where p = 0, and it can be analyzed in
exactly the same manner. It asserts that, as determined by a co-moving observer, the total charge in an

(infinitesimal) blob of charged dust remains constant, even as its volume changes.

Problem 2.6.1. Show that Mazwell’s equations in the source free case (J* = 0) are conformally in-
variant, i.e., if an anti-symmetric field Fyp satisfies them with respect to a metric gqp, then it does so as
well with respect to any metric of the form g¢', = Q2 gap. (Note: Here we need the fact that the dimen-
sion n of the background spacetime is 4. Hint: The conformal invariance of the first Mazwell equation
(Via Fyoe = 0) follows immediately from problem 1.7.2 and does not depend on the value of n. To establish
that of the second (Vo F™ = 0), use proposition 1.9.5 to show that

1 —4
@(vaFab) + (n )Fab va Q,

v/a (g/am g/bn an) = NE

where g’ = Q=2 g% is the inverse of g, and V' is the derivative operator compatible with g, .)

The energy-momentum tensor field associated with Fy; is given by
1
Top = Forn F™y + 7 Jab (Brn ™). (2.6.6)
We can gain some insight by introducing a reference observer O at a point p, with four-velocity £%, and

considering the decomposition of F,; there into its “electric” and “magnetic” components.

Let hqp be the spatial projection tensor at the point determined by £* (defined by (2.4.3)). Further,

let €4pcq be a volume element on some open set containing p. Then we define

o= J%, (2.6.7)
i = heJ (2.6.8)
E* = Fo¢ (2.6.9)
B = %eabcdngcd (2.6.10)
€abc = €aben§'- (2.6.11)

E?* and B® are, respectively, the electric and magnetic field vectors at the point as determined relative
to O. (Clearly, if we had chosen the other volume element, —¢€4pcq, we would have ended up with —B%. A
choice of volume element is tantamount to a choice of “right-hand rule”.) p and j* are, respectively, the
charge density and current density vectors as determined relative to O. Note that £, B, and j* are all
orthogonal to £€%. We can think of €44 as a three-dimensional volume element defined on the orthogonal
subspace of £. (It is anti-symmetric, it is orthogonal to £ in all indices and, as one can show using

(1.11.8) and it satisfies the normalization condition €qp.€?%¢ = —31.)
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Reversing direction, we can recover Fy, and J¢ from E* B%, u, and j* as follows:

Je e + j° (2.6.12)

Fup = 2E;,&) + €apea & B (2.6.13)
The first assertion is an immediate consequence of the definitions of j* and u. To verify the second, we

substitute for B¢ on the right side. By (1.11.8), the anti-symmetry of F,;, and the definition of E?, we

have

c 1 r 1 . .
2E[a§b] + €abed (5 edra &p qu) = 2E[a gb] + 3 (3!)5 5[Pa 6qb5 (]: & Fyr
= 2EL &y +36°¢, Fog
= 2E, &) + & Foc + & Fap — & Fae) = Fap.

Let us now return to our expression (2.6.6) for the energy-momentum field Tgp. Our observer O with

four-velocity €% will attribute to the electromagnetic field a four-momentum density
1
Tabfb = FY"F_, fb + Z fa (anan)' (2.6.14)

We can express the right side in terms of the relative electric and magnetic vectors E* and B® determined

by O. (The computations are much like that used to prove (2.6.13).) We have

Fom g é—b = F"F, = (2 E[a é-m] + eampr gp Br) Eom
= —¢("E™E,, — """ E,, B, (2.6.15)
and also
F™F. = (2 Elm gn] + ¢mnpg & Bq) (2 E[m gn] + mnrs £ BY)
= 2E"E, + €mnrs€P1E, By " B?
= 2E"E, 46" 69 ¢,B, " B® = 2(E"E,, — B"B,,). (2.6.16)
Hence,
1
T4, &0 = 5 (ZE"En = B"B,)¢" — € By, By (2.6.17)

The coefficient of £* on the right side is the energy density of the field as determined by O. Using our
notation for vector norms and temporarily dropping indices (and remembering that both E* and B¢
are spacelike (or the zero vector)), we can express it as 1 (||E||? + || B||*). This will be familiar as the
standard textbook expression for the energy density of an electromagnetic field. The component of 7%, &b
orthogonal to £%, namely —e®™" E,, B;, is the three-momentum density of the electromagnetic field as
determined by O. In more familiar vector notation (recall our discussion in section 1.11) it comes out as

—(E x B). (E x B is called the “Poynting vector”.)

Note that we can also work backward and derive (2.6.6), our expression for Ty, from the assumption

that (2.6.17) holds for all observers with four-velocity £*. (Reversing the calculation, one shows that
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(2.6.14) or, equivalently, (T, — (F*™ Fyp, + 5 9%, F™" Fpn)) € = 0, holds for all unit timelike vectors
£%. (2.6.6) then follows by proposition 2.1.3.) So T, is fully determined by the requirement that it code
values for 1 (||E||? + || B||?) and —(E x B) for all observers.

Problem 2.6.2. Textbooks standardly assert that (|E||?> — ||B||?) and E - B are relativistically invariant

(i.e., have common values for all observers). To verify this, it suffices to note that (in our notation):
(-E°E, + B*B,) = —% F®F,, (2.6.18)
E°B, = %eabcd FopFeq. (2.6.19)
We have proved the first assertion (equation (2.6.16)). Prove the second.

Now we consider our two energy conditions and the conservation condition. Given any future-directed,

unit timelike vector £ at a point, with corresponding electric and magnetic field vectors E* and B¢, we

have
T ¢ = %(—E”EH—B"B,L) (2.6.20)
(Tup€®)(T*¢) = i(E"En—B"BnF + (E"B,,)? (2.6.21)
V. T = J,F (2.6.22)

The first follows immediately from (2.6.17) (and the fact that €y is orthogonal to £% in all indices). We

leave the second as an exercise. For the third, note that

1
vaTab _ va(Fam Fmb + Z gab anan)

1
= FVoF,"+ B, Vo P 4 5 Fpn VO™

1 1
_ 5 Fam (vaFmb _ vaab) + Fmb vaFam + 5 Fmavama
1
— _5 Fam(vanm + vaab + vama) + Fmb Jm — JmFmb
(We get the third equality by systematically changing indices and using the anti-symmetry of Fy;:
F,,VeFmb — F  ympeb — [ gmpab e get the fourth and fifth from Maxwell’s equations
(first V,F@™ = J™ then VI* F'™ = 0) and, again, the anti-symmetry of Fy;.)

Problem 2.6.3. Prove (2.6.21). (It follows immediately from this result that Tay, € is null iff E°E, =
B*B, and E* B, = 0. By problem 2.6.2, these conditions hold as determined relative to one unit timelike
vector €% at a point iff they hold for all such vectors there. When they do hold (at all points), we say that
Fup is a “null” field.)

Maxwell’s equations play no role in the proof of (2.6.20) and (2.6.21). So we see that for any anti-
symmetric field Fyy, the corresponding energy-momentum field Ty, = Fypm Fmb—i—% gab (Fmn F™™) satisfies

both the weak and dominant energy conditions (since E* and B® are always spacelike or equal to the
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zero vector 0). And it satisfies the strengthened dominant energy condition except in the special case

where Fy;, is a non-vanishing null electromagnetic field (in the sense of problem 2.6.3).

The situation is different with the conservation condition, for which Maxwell’s equations are essential.
Suppose that the pair (Fgp, J*) satisfies them (and, therefore, that (2.6.22) holds). There are two cases
to consider. If J% = 0, i.e., if no sources are present, then the conservation condition V,7% = 0 is
automatically satisfied. But when charged matter is present, there is the possibility of energy-momentum
being transferred from the electromagnetic field to that matter. So it should not be the energy-momentum
of the electromagnetic field alone that is conserved. Instead, it should be the total energy-momentum

present (arising from both field and charged matter) that is.

By way of example, consider the case where a charged dust field serves as a source for the electro-
magnetic field. Suppose the dust is characterized by four-velocity field 1%, mass density p, and charge
density p, the latter two as determined by a co-moving observer. Then we have J* = pun®, and the
energy-momentum field for the dust (alone) is given by pn?n®. So the total energy-momentum field in

this case is given by

1
Tab = Fam Fmb + Zgab (anan) + P Nallb- (2623)
Hence, by (2.6.22),
VT = JoF* + Va(pn™n’)
= wna F+p°Van") +pn" Van® +1"(n"Va p). (2.6.24)

This is the counterpart to (2.5.4) that we considered in our discussion of perfect fluids. Arguing much
as we did there, we can verify that in the present case we have the following equivalence. (Set the right

hand side to 0, contract with 7, and then subtract the resultant equation from the original.)

pwF?,n® = p(n*VanP)
n*Vap +p(Van®) = 0

CC —=

The second equation on the right side is just (2.5.5) in the case where p = 0. It asserts that, as determined
by a co-moving observer, the energy in an (infinitesimal) blob of dust remains constant, even as the volume
of the blob changes. (Note that it also has exactly the same form as (2.6.5), which makes a corresponding
assertion about charge conservation.) The first equation on the right side is an equation of motion for the
dust field. Tt has exactly the same form as (2.6.1). It asserts, in a sense, that individual particles in the
dust field obey the Lorentz law of motion. Thus, the energy-momentum of the electromagnetic field Fy

fails to be conserved only to the extent it exerts a force on those particles and causes them to accelerate.

As an afterthought, now, we recover the standard textbook formulation of Maxwell’s (four) equations
from our formulation. To do so, we need a bit of structure in the background. Let us temporarily assume
that (M, gap) is not just any (temporally oriented) spacetime, but one that admits a future-directed,

unit timelike vector field £€¢ that is constant (V£ = 0). Let u, 5%, E®, B%, and €. be as defined
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above. Further, let D be the derivative operator induced on hypersurfaces orthogonal to £*. (Recall our

discussion in section 1.10.) Then we have the following equivalences.

Dy, BY =0 (V-B = 0)
VieFpe =0 <= oB
o DB, = €V, B (VB = -3
Dy E° = u (V-E = p)
Vo Fv = Jb «— OF
e DyB. = &'V, B+ je. (VxB = v +3J)

(In each case, we have indicated how the right-side equation is formulated in standard (three-dimensional)
vector notation.) We prove the first equivalence and leave the second as an exercise. Note first that by

(2.6.13) and (1.11.8), we have

eabcd Foqg = Eade (2 E[c gd] + €cdrs grBS)
92 Eu,bcd E. gd _ 45[ar 6b]s grBs
2€abchC€d _ 2€aBb + 2€bBa.

Hence, since £° is constant,
el Foy = Vy(eF.y) = 2e®9¢, VB, — 26°V,B® 4+ 26V, B, (2.6.25)
And for that same reason, V,hie = Vo (gpe — E€e) = 0. So, since h®, E® = E* and h%,B® = B?,
DyB® = h™ kb V,.B" = V,(h™ R’ B") = V,,B™ = V,B° (2.6.26)
e DyE. = e h™ WV By = ey g™ Vi (WLE,) = €U VB (2.6.27)

(For the second equality in (2.6.27), note that €%*° ¢, &, = 0 and, hence, that e3¢ ¢, h™, = edabe ¢, g™, )
If we now replace V,B® and €%°°4¢,V, E, in (2.6.25) using (2.6.26) and (2.6.27), we arrive at

€U Fog = —2€%DyB%) + 2(¢"DyE, + ¢V, BY). (2.6.28)

Now Vi, Fyq =0 iff €4\, F.q = 0. (Why?) And the latter condition holds iff the sum on the right
side of (2.6.28) is 0. But that sum consists of two terms, one tangent to £ and one orthogonal to £%. So
the sum is 0 iff both terms are 0. Thus we are left with the conclusion that Vi, Fj,) =0 iff Dy B'=0
and €?°DyE,. + ¢0V,B® = 0.

Problem 2.6.4. Prove the second equivalence (for V, F% = Jb).
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2.7 Einstein’s Equation

Once again, let (M, gq.5) be our background relativistic spacetime with a specified temporal orienta-

tion.

It is one of the fundamental ideas of relativity theory that spacetime structure is not a fixed backdrop
against which the processes of physics unfold, but instead participates in that unfolding. It posits a
dynamical interaction between the spacetime metric in any region and the matter fields there. The

interaction is governed by Finstein’s field equation
1
Rab — 5 Rgab = 87TTab, (2.7.1)

or, equivalently,

1
Rab = 87T(Tab — 5 Tgab). (2.7.2)

Here Ryp (= R",;,,) is the Ricci tensor field, R (= R%,) is the Riemann scalar curvature field, and T is the
contracted field 7¢.17 We start with four remarks about (2.7.1) and then consider two reformulations

that provide a certain insight into the geometric significance of the equation.

(1) It is sometimes taken to be a version of “Mach’s principle” that “the spacetime metric is uniquely
determined by the distribution of matter”. And it is sometimes proposed that the principle can be
captured in the requirement that “if one first specifies the energy-momentum distribution T,; on the
spacetime manifold M, then there is exactly one (or at most one) Lorentzian metric g, on M that,
together with Ty, satisfies (2.7.1)”. But there is a serious problem with the proposal. In general, one
cannot specify the energy-momentum distribution in the absence of a spacetime metric. Indeed, in typical
cases the metric enters explicitly in the expression for Ty,. (Recall the expression (2.5.2) for a perfect
fluid.) Thus, in looking for solutions to (2.7.1), one must, in general, solve simultaneously for the metric

and matter field distribution.

(2) Given any smooth metric g, on M, there certainly exists a smooth symmetric field T,, on M
that, together with gqs, is a solution to (2.7.1). It suffices to define Ty by the left side of the equation.
But the field T, so introduced will not, in general, be the energy-momentum field associated with any
known matter field. And it will not, in general, satisfy the weak energy condition discussed in section
2.5. If the latter condition is imposed as a constraint on 7T,;, Einstein’s equation is an entirely non-trivial

restriction on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on three levels according to the
stringency of the constraints imposed on Ty;. At the first level, one considers only “exact solutions”, i.e.,
solutions where Ty, is, in fact, the aggregate energy-momentum field associated with one or more known
matter fields. So, for example, one might undertake to find all perfect fluid solutions exhibiting particular

symmetries. At the second level, one considers the larger class of what might be called “generic solutions”,

17"We use “geometrical units” in which the gravitational constant G as well as the speed of light ¢ are 1.
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i.e., solutions where Ty, satisfies one or more generic constraints (of which the weak and dominant energy
conditions are examples). It is at this level, for example, that the singularity theorems of Penrose and
Hawking (Hawking and Ellis [30]) are proved. Finally, at the third level, one drops all restrictions on Ty,
and Einstein’s equation plays no role. Many results about global structure are proved at this level, e.g.,

the assertion that closed timelike curves exist in any relativistic spacetime (M, g.5) where M is compact.

(3) We have presented Einstein’s equation in its original form. He famously added a “cosmological
constant” term (—Agqp) in 1917 to allow for the possibility of a static cosmological model with a perfect
fluid source with p = 0 and p > 0.1® (We shall see why the addition is necessary under those conditions

at the end of section 2.11.) But Einstein was never happy with the revised equation
1
Rab — 5 Rgab — Agab = 87TTab, (2.7.3)

or, equivalently,

1
Ry = 87 (Tab — §Tgab> — A gap, (2.7.4)

and was quick to revert to the original version after Hubble’s redshift observations gave convincing
evidence that the universe is, in fact, expanding. After that, he thought, there was no need to have a
static cosmological model. (That the theory suggested the possibility of cosmic expansion before Hubble’s
observations must count as one of its great successes.) Since then the constant has often been reintroduced
to help resolve discrepancies between theoretical prediction and observation, and then abandoned when
the (apparent) discrepancies were resolved. (See Earman [14] for a masterful review of the history.) The
story continues. Recent observations indicating an accelerating rate of cosmic expansion seem to imply

that our universe is characterized by a positive value for A or something that mimics its effect.

In what follows, we shall continue to write Einstein’s equation in the form (2.7.1) and think of the
cosmological term as absorbed into the expression for the energy-momentum field Tg;. The magnitude
and physical interpretation of this contribution to T} are topics of great importance in current physics.'?

But they will play no role in our discussion.

Problem 2.7.1. Equations (2.7.3) and (2.7.4) are equivalent only if the dimension n of the background
manifold is 4. Show that in the general case (at least if n > 3), inversion of (2.7.3) leads to

1 2
ab = Tab — T gab | — v A Gab- 2.7.
R = 87 (T~ Gy Tow) = gy s 29

(4) Tt is instructive to consider the relation of Einstein’s equation to Poisson’s equation
V2 =4mp, (2.7.6)

the field equation of Newtonian gravitation theory. Here ¢ is the Newtonian gravitational potential, and

p is the Newtonian mass density function. In the geometrized formulation of the theory that we shall

8He did so for other reasons as well (see Earman [14]), but we pass over them here.

19See Earman [14], once again, and references cited there.
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consider in chapter 4, one trades in the potential ¢ in favor of a curved derivative operator and one

recovers p from a mass-momentum field 7%, In the end, Poisson’s equation comes out as

. 1 .

Ry, = 87T(Tab ) tab T). (2.7.7)
Here R, is the Ricci tensor field associated with the new curved derivative operator, t,; is the temporal
metric, Thp = T™" tia tp, and T = T™" ¢, (See (4.2.10) and the discussion that precedes it.) The
resemblance to (2.7.2) is, of course, striking. It is particularly close in the special case where p = 0. For
in this case, 7% = 0 and (2.7.7) reduces to R, = 0. The latter is ezactly the same as Einstein’s equation

(2.7.2) in the empty space case.

The geometrized formulation of Newtonian gravitation was discovered after general relativity in the
1920s. But now, after the fact, we can put ourselves in the position of a hypothetical investigator who
is considering possible candidates for a relativistic field equation and who knows about the geometrized
formulation of Newtonian theory. What could be more natural than to adapt (2.7.7) and simply replace
tap With gqp? This seems to me one of the nicest routes to Einstein’s equation (2.7.2). Again, the route is
particularly direct in the empty space case. For then one starts with the Newtonian empty space equation

(Rap = 0) and simply leaves it intact.

Let us now put aside the question of how one might try to motivate Einstein’s equation, and consider

two reformulations.

Let €% be a unit timelike vector at a point p in M, and let S be a spacelike hypersurface containing
p that is orthogonal to £* there. (We understand a hypersurface in M to be spacelike if, at every point,
vectors tangent to the surface are spacelike. This condition guarantees that the hypersurface is metric.
(Recall our discussion in section 1.10.)) Further, let hqp and 7y be the first and second fundamental forms
on S, and let D be the derivative operator on S determined by h.. Associated with D is a Riemann
curvature field R%,.;, on S. We know (recall (1.10.21)) that the contracted scalar field R = R%, . h"

satisfies

R=n% 77 +R—2R,, "¢ (2.7.8)

at p. In the special case where S has vanishing extrinsic curvature (7, = 0) at p, this can be expressed
as

(Rab — %gabR)é““é“b = —%R. (2.7.9)

If Einstein’s equation holds, it therefore follows that

R = —16m (Top £7€°).20 (2.7.10)

20There is an issue here of sign convention that is potentially confusing. We seem to be led to the conclusion that the
Riemann scalar curvature of S is less than or equal to 0 — at least if T,; satisfies the weak energy condition. But it might
be more natural to say that it is greater than or equal to 0. We are working here with R as determined relative to the
negative definite metric hyp, and a sign flip is introduced if we work, instead, with the positive definite metric —h,p. The

switch from hgp to —hgp leaves D, R%.q, and R.q intact but reverses the sign of R = h?¢ Ry,.
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One can also work backwards. Suppose (2.7.10) holds for all unit timelike vectors at p and all orthogonal
spacelike hypersurfaces through p with vanishing extrinsic curvature there. Then, by (2.7.9), it must be
the case that

(Rap — 5 Rgas) €°€" = 87Ty €°€" (2.7.11)

for all unit timelike vectors £ at p. This, in turn, implies Einstein’s equation (by lemma 2.1.3). So we

have the following equivalence.

(%) Einstein’s equation Rgp — % Rgay = 87Ty, holds at p iff for all unit timelike vectors £
at p, and all orthogonal spacelike hypersurfaces S through p with vanishing extrinsic curvature

there, the scalar curvature of S at p is given by R = —167 (T, £%€P).

We can give the result a somewhat more concrete formulation by casting it in terms of a particular
class of spacelike hypersurfaces. Consider the set of all geodesics through p that are orthogonal to £*
there. The (images of these) curves, at least when restricted to a sufficiently small open set containing

p, sweep out a smooth spacelike hypersurface that is orthogonal to £* at p.2! (See figure 2.7.1.) We

Figure 2.7.1: A “geodesic generated hypersurface” through a point is constructed by pro-
jecting geodesics in all directions orthogonal to a given timelike vector there.

shall call it a geodesic generated hypersurface. (We cannot speak of the geodesic generated hypersurface
through p orthogonal to £* because we have left open how far the generating geodesics are extended. But

given any two, their restrictions to a suitably small open set containing p coincide.)

Geodesic generated hypersurfaces are of interest in their own right, the present context aside, because
they are natural candidates for a notion of “local simultaneity slice” (as determined relative to a timelike
vector at a point). We can think of them as instances of private space. (The contrast here is with public
space which is determined not relative to a single timelike vector or timelike curve, but relative to a
congruence of timelike curves. For more on this difference between private space and public space, see

Rindler [53, 54] and Page [49].)

Now suppose S is a geodesic generated hypersurface generated from p. We claim that it has vanishing

extrinsic curvature there. We can verify this with a simple calculation very much like that used to prove

21More precisely, let S, be the spacelike hyperplane in M, orthogonal to £%. Then for any sufficiently small open set O
in M containing p, the image of (Sp N O) under the exponential map exp : O — M is a smooth spacelike hypersurface in

M containing p that is orthogonal to €% there. (See, for example, Hawking and Ellis [30, p. 33].)
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proposition 1.10.7. Let £ be a smooth, future-directed, unit timelike field, defined on some open subset
of S containing p, that is orthogonal to S. Let hgp be the corresponding projection field on S. Further,
let 0% be the tangent field to a geodesic (relative to V) through p that is orthogonal there to £*. Then
along the image of the geodesic we have 0°V,0” = 0 and ¢%¢, = 0 (or, equivalently, h%,0® = 0%). The
latter holds because the image of the geodesic is contained in S and so is everywhere orthogonal to its

normal field. Hence, by (1.10.16), we have

Ty 0%0? = (W WV &n) 0% = 0™V &n

0"V (0"n) — & 0" Vo™ =0

along the image of the geodesic. In particular, the condition holds at p. But given any vector at p
orthogonal to £%, we can choose our initial geodesic so that it has that vector for its tangent at p. Hence,
Tap 0%0® = 0 at p for all such orthogonal vectors. Since 7, is symmetric, as well as orthogonal to the

normal field £%, it follows that m,, = 0 at p.

Consider again the equivalence (%). If we rerun the argument used before, but systematically cast it

in terms of geodesic generated hypersurfaces, we arrive at the following alternate formulation.

Proposition 2.7.1. Let Ty, be a smooth symmetric field on M, and let p be a point in M. Then
FEinstein’s equation Rgp, — %Rgab = 87Ty holds at p iff for all unit timelike vectors £* at p, and all
geodesic hypersurfaces S generated from p that are orthogonal to £*, the scalar curvature of S at p is

given by R = —167 (T, £7€Y).

Our second reformulation of Einstein’s equation is phrased in terms of geodesic deviation. Let £ be
a smooth, future-directed, unit timelike vector field whose associated integral curves are geodesics, i.e.,
a geodesic reference frame. Further, let A\* be a vector field on one of the integral curves ~ satisfying
LA =0. (So £V e = APV, &,.) Finally, assume A\® is orthogonal to % at some point on . Then
it must be orthogonal to the latter at all points on . This follows because the inner product (£*),) is

constant on ~y:
1 1
EOVH(E9N) = Mg EPVRE% + €260V, = €960 VA, = EONVE, = 3 AWy (€9¢,) = 3 AP, (1) =0.

We can think of \* as a connecting field that joins the image of v to the image of another, “infinitesimally
close”, integral curve of £€*. Then the field "V, (£ V,,, \%) represents the acceleration of the latter relative

to 7. We know from proposition 1.8.5 that it satisfies the “equation of geodesic deviation”:

"V, (EMVuAY) = R, 60\ ¢. (2.7.12)

Now we define the “average radial acceleration” of £* at a point p on . Let ,Z\“ (1 = 1,2, 3) be any three

1 2 3
connecting fields (as just described) such that, at p, the vectors £%, \*, \*, \* form an orthonormal set.
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i
For each i, the (outward-directed) radial component of the relative acceleration vector £"V,, (§™V, \%),

i.e., its component in the direction j\, has magnitude
i n m ill
- Aa 5 Vn (5 v771 A )

(We need the minus sign because A\® is spacelike.) We now take the average radial acceleration (ARA)
of £% at p to be
3
1 i i
ARA = —¢ a &'V (€"V i AY). 2.7.13
3 ; Aa €'V (€7 Vim XY (2.7.13)
Of course, we need to check that the sum on the right side is independent of our initial choice of
connecting fields. The orthonormality condition implies that at p we have g, = &€ — Z§:1 ;\a )l\c.
Hence, by (2.7.12), we also have

3 3
i i 1 i 1
D ha Bea € X = = R € €N (M) = =5 R pea €€ (68" — 0.)

=1 i=1

ARA = —

Wl =

at p. But R%_,¢°¢%4 =0, and R%_, g,° = R%,q = —R%,, = —Rbd- So we may conclude that
1
ARA = —3 Roa gbed (2.7.14)

holds at p. Thus, as claimed, average radial acceleration is well defined.

Now if Einstein’s equation holds at p, it follows that

8 1
ARA = —%(Tab — 5 Tgu)"e’ (2.7.15)

holds there as well. And conversely, if (2.7.15) holds at p for all geodesic reference frames, then it must
be the case, by (2.7.14), that Rpq %€ = 87 (T, — % T gap)€P€9 holds for all unit timelike vectors €% there.

And this, in turn, implies that Einstein’s equation holds at p. So we have the following equivalence.

Proposition 2.7.2. Let T, be a smooth symmetric field on M, and let p be a point in M. Then Finstein’s
equation Rq, — % R ga, = 87T,y holds at p iff for all geodesic reference frames £ (defined on some open
8m

set containing p), the average radial acceleration of £* at p is given by ARA = -5 (Tap — 3 T gap)E2€°.

We considered three energy conditions (weak, dominant, and strengthened dominant) in section 2.5.

Let us now consider a fourth. Let T, be the energy-momentum field associated with a matter field F.

Strong Energy Condition (SEC): Given any timelike vector £* at any point in M,

1
(Tab = 5 Tab) ¢e¢b > 0.

Equation (2.7.15) provides an interpretation. Suppose that Einstein’s equation holds. Then F satisfies
the strong energy condition iff, for all geodesic reference frames, the average (outward directed) radial
acceleration of the frame is negative or 0. This captures the claim, in a sense, that the “gravitational

field” generated by F is “attractive”.
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Problem 2.7.2. Give examples of each of the following.
(1) A smooth symmetric field Top that satisfies the SDEC (and so also the WEC and DEC) but not the
SEC

(2) A smooth symmetric field T,y that satisfies the SEC but not the WEC' (and so not the DEC or
SDEC either)

Problem 2.7.3. Consider a perfect fluid with four-velocity n®, energy density p, and pressure p. Show
that it satisfies the strong energy condition iff (p+ p) > 0 and (p + 3p) > 0.
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2.8 Fluid Flow

In this section, we consider fluid flow and develop the standard formalism for representing the rotation
and expansion of a fluid at a point. (Later, in sections 3.2 and 3.3, we shall consider several different

notions of global rotation.)

Once again, let (M, gqb) be our background relativistic spacetime. We are assuming it is temporally
orientable and endowed with a particular temporal orientation. Let £* be a smooth, future-directed unit
timelike vector field on M (or some open subset of M). We understand it to represent the four-velocity

field of a fluid. Further, let hqp, be the spatial projection field determined by £°.

The rotation and expansion fields associated with £ are defined as follows:

Wab — h[am hb]n Vm é.n (281)

They are smooth fields, orthogonal to £* in both indices, and satisfy

va gb = Wab t+ eab + ga(gmvm §b) (283)

(This follows since
Wap +0ap = ha™ hy" Vi gn = (gam - é.a §m) (gbn - gb gn) Vm 5"5

and £"V,, &, = 0.) Our first task is to give the two fields a geometric interpretation and, in so doing,

justify our terminology. We start with the rotation field wgp.

Let v be an integral curve of £%, and let p be a point on the image of v. Further, let n* be a vector
field on the image of 7 that is “carried along by the flow of £*” (i.e., £¢n® = 0) and is orthogonal to
&% at p. (It need not be orthogonal to £* elsewhere.) We think of the image of v as the worldline of a
fluid element O, and think of n® at p as a “connecting vector” that spans the distance between O and a
neighboring fluid element N that is “infinitesimally close”. The instantaneous velocity of N relative to O
at p is given by €4V, n°. But €2V, n® = n® V, £ (since £en® =0). So, by (2.8.3), and the orthogonality
of £* with n® at p, we have

E Ve = (W, +6,°) 1. (2.84)

at the point. Here we have simply decomposed the relative velocity vector into two components. The first,
(w,?n?), is orthogonal to n® since w,y is anti-symmetric. (See figure 2.8.1.) It is naturally understood as

the instantaneous rotational velocity of N with respect to O at p.

In support of this interpretation, consider the instantaneous rate of change of the squared length

(—n®m) of n® at p. It follows from (2.8.4) that

£ Va (=n"m) = =207 n". (2.8.5)
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Thus the rate of change depends solely on ,;,. Suppose 6,5, = 0. Then the instantaneous velocity of N
with respect to O at p has a vanishing radial component. If wy, # 0, N can still have non-zero velocity
there with respect to O. But it can only be a rotational velocity. The two conditions (6, = 0 and

wap # 0) jointly characterize “rigid rotation”.

The rotation tensor wgp at a point p determines both an (instantaneous) axis of rotation there, and an
(instantaneous) speed of rotation. As we shall see, both pieces of information are built into the angular

velocity (or twist) vector

1
W= el € weq (2.8.6)
at p. (Here €**? is a volume element defined on some open set containing p. Clearly, if we switched from

the volume element €,pcq to its negation, the result would be to replace w® with —w®.)

w,n® (rotational velocity vector)

n® (connecting vector)

Figure 2.8.1: The angular velocity (or twist) vector w®. It points in the direction of the
instantaneous axis of rotation of the fluid. Its magnitude ||w®|| is the instantaneous angular
speed of the fluid about that axis. Here n® connects the fluid element O to the “infinitesimally
close” fluid element N. The rotational velocity of N relative to O is given by w,n®. The
latter is orthogonal to n®.

If follows from (2.8.6) (and the anti-symmetry of €4peq) that w® is orthogonal to £%. It further follows
that

1
Wt = 5 ebed ¢,V €4, (2.8.7)
Wab = €abed §de- (288)

Hence, wqp = 0 iff w* = 0. Both (2.8.7) and (2.8.8) are verified with simple calculations. We do the first

and leave the second as an exercse. For the first, we have

20wt = 6abcd fb Wed = 6abcd fb h[cr hd]s vr gs _ 6abcd fb hcr hds vr 55

= el g g Vb = e V. &
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(The second equality follows from the anti-symmetry of €2°°?, and the third from the fact that ¢*°?¢; is
orthogonal to £% in all indices.) Notice that (2.8.6) has exactly the same form as our definition (2.6.10)
of the magnetic field vector B® determined relative to a Maxwell field F,; and four-velocity vector £*
(B* = % gabed &b Frq). It is for this reason that the magnetic field is sometimes described as the “rotational

component of the electromagnetic field”.
Problem 2.8.1. Prove (2.8.8)

Problem 2.8.2. We have seen that the conditions (i) wap = 0 and (it) w* = 0 are equivalent at any

point. Show that they are also equivalent (at any point) with (iii) £,V &g = 0.

We claim now that w® points in the direction of the instantaneous axis of rotation (of the fluid flow
associated with £*). (See figure 2.8.1 again.) More precisely, with the connecting field n* as above, we
show that, at p,

w,n’ =0 = n® is proportional to w?. (2.8.9)

(Or, in the language of “infinitesimally close” fluid elements, the rotational velocity of N with respect
to O vanishes iff the connecting vector from O to N is aligned with w®.) The implication from right to
left follows immediately from (2.8.8) (and the anti-symmetry of €4pcq). Conversely, suppose w, ®n® = 0.
Then, by (2.8.8),

0 = (gn Wp Eamnp) Wha 77b = gn Wp ermnp €bacd é-c wd 77b

3!5[77; 5"C5p]d77b Cwltw, = 3ipimenwrle, Wp

= (NMwPw, —wmnPwy).

(For the final equality, here we use the fact that £ is orthogonal to n® at p, and orthogonal to w®
everywhere.) Now if wPw, = 0, then w® = 0. (The twist vector w® is orthogonal to £&* and, by proposition
2.2.1, the only null vector orthogonal to a timelike vector is the zero vector.) And in this case, n® is
trivially aligned with w®. So we may assume that wPw, # 0. It then follows that 7* = kw®, where
k= (wPnp)/(W"wn).

Next, we claim that the magnitude of w® is the instantaneous angular speed (of the fluid flow associated
with £*). The angular speed for the connecting vector n® is given by the ratio of the linear speed of rotation

b
T e, (See figure

(i.e., the magnitude of wb“nb) to the magnitude of the radius vector p* = n* — —
W™ wy,
2.8.1 again.) (If w™ w, = 0, then wy, = 0, and the speed of angular rotation is 0.) It follows with a bit

of calculation much like that done previously in this section that

L, ab c
(angular speed)? = w = ... = (—w'wy), (2.8.10)
—P" Pn
i.e., the angular speed is ||w?||, as claimed.
Problem 2.8.3. Complete the calculation in (2.8.10). (Hint: Do not forget that we are doing the

calculation at the initial point p where the connecting vector n® is orthogonal to £%.)
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The two italicized conditions concerning, respectively, the orientation and magnitude of w®, determine
it up to sign.

With the preceding remarks as motivation, we now say that our future-directed, unit timelike vector
field £* is irrotational or twist-free at a point if we, = 0 there (or, equivalently, if w* = 0 or if
§aVo &g = 0 there). It will be instructive to consider a condition that captures the requirement that
&% is twist-free everywhere. Let us say that a timelike vector field £ (not necessarily of unit length)
is hypersurface orthogonal if there exist smooth, real valued maps f and g (with the same domains of
definition as £%) such that, at all points, £, = fV,g. Note that if the condition is satisfied, then the
hypersurfaces of constant g value are everywhere orthogonal to £*. (For if ¢ is a vector tangent to
one of these hypersurfaces, 60"V, g = 0. So ¢"¢, = ¢"(fV,g) = 0.) Let us further say that £* is
locally hypersurface orthogonal if the restriction of £ to every sufficiently small open set is hypersurface

orthogonal.

Proposition 2.8.1. Let &% be a smooth, future-directed unit timelike vector field defined on M (or some

open subset of M ). Then the following conditions are equivalent.
(1) wap = 0 everywhere.

(2) & is locally hypersurface orthogonal.

Proof. The implication from (2) to (1) is immediate. For if £, = f V, g, then

Wab = h[am I’Lb]n Vm fn = h[am hb]n vm (f vn g)
= fh" )"V Vg + " by (Vi ) (Vi g)
Fha ™y " Vi Viapg + by ™ by ™ (Vi f) (Vi) 9).-

But V|, V,,;g = 0, since V is torsion-free; and the second term in the final line vanishes as well since
hy "V g=f"1hy "¢, = 0. Sowe, = 0. But the converse is non-trivial. It is a special case of Frobenius’

theorem (Wald [60, p. 436]). O

There is a nice picture that goes with the proposition. Think about an ordinary rope. In its natural
twisted state, the rope cannot be sliced in such a way that the slice is orthogonal to all individual fibers.
But if the rope is first untwisted, then such a slicing is possible. Thus orthogonal sliceability is equivalent to
fiber-untwistedness. The proposition extends this intuitive equivalence to the four-dimensional “spacetime
ropes” (i.e., congruences of worldlines) encountered in relativity theory. It asserts that a congruence is

twist-free iff it is, at least locally, hypersurface orthogonal.

Let us now switch our attention to the expansion tensor 6,, associated with £®. First, we decompose

it into two pieces. We set

S
I

0, = Vo & (2.8.11)

1
Oay = Oap — ghaw, (2.8.12)
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so that (2.8.3) can be expressed in the expanded form
1
Va é.b = Wgb + Oab + g Rap 0 + ga (§"Vn gb) (2813)
Notice that the two expressions for 6 in (2.8.11) are equal since {" V,,, £, = 0 and, therefore

9 a gab eab — gab h(am hb)n vm gn _ hmn vm gn _ (gmn _ é-m gn) Vm gn — vn gn

a =

Notice too that
o =0, (2.8.14)

since o,* = 6, — % (9." —&.€")0 =0 — 0 = 0. We call 0 the scalar expansion field associated with £*
and call o, the shear tensor field associated with it. We can motivate this terminology much as we did
that for we,. We claim first that 6 is a measure of the rate at which the volume of an (infinitesimal)
blob of fluid increases under the flow associated with £%. (It is the counterpart to the “divergence” of a
vector field in ordinary three-dimensional Euclidean vector analysis.) To justify this interpretation, we

do a simple calculation.

Let v be an integral curve of £, and let p be any point on its image. Further, let 7%, 7%, /)% be three
vector fields on the image of v that (i) are carried along by the flow associated with £¢ (i.e., £¢ 7% = 0, for
i=1,2,3), and (ii) together with £, form an orthonormal basis at p. Then hey = —(Nafls + Nails + Nailp)
at p. We consider the rate of change of the volume function V = eqpeq £0° ¢ 9 in the direction £%. It
turns out that, at p,

&V,V o= 0V (2.8.15)
It is in this sense that 8 gives the instantaneous rate of volume increase, per unit volume, under the flow
associated with £*. (This is the claim we made at the end of section 2.5.)

To verify (2.8.15), we compute £"V,, V. Since £¢ 7% = 0, we have £"V,, 1% = 71"V, £€* and, hence,

'V, V= "V, (€abea 40P HEHD)
= Caved |(€"Vn E)VR IR + L+ (VR DR n] : (2.8.16)

b

Now the vector eqpeqn’7¢7® is orthogonal to 7°, /¢, and 7#%. So, at p, it must be co-aligned with

€q. Indeed, we have €qpeg 1P 1°N% = (€npea E"NP NN €4 = V& there. So, €aped(E"V, E) NP 7Nt =
£a (E"V,, £Y)V = 0 at p. Similarly, for example, we have

cabed (" Vi €) €0 = — iy (1" Vi €V
at p. So, after handling all terms on the right side of (2.8.16) this way, we are left, at p, with

gnvnv = -V 7177“ (hnvn gr) + 727T (%nvn fT) + %r (%nvn gr)
= _V(hr;?n +727r 727n +7§IT %n)(vngr) = Vhrn anr
Vig" = &EM) VL, = VV,Et = V.
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This gives us (2.8.15).

Now consider o4p. It is symmetric (and orthogonal to £*). So we can choose our three vector fields
N, 7%, N so that, in addition to being carried along by the flow of ¢€%, and (with £?) forming an or-
thonormal basis at p, they satisfy o, = —(ll<:717a717b + 124727(1727;) + 12737@73717) at p. (It is a basic fact of linear
algebra that we can find an orthonormal basis at p that diagonalizes the symmetric 4 x 4 matrix of
oab-components.) Then o% nt = /i€7i7a, for each 4, i.e., n® is an eigenvector of 0% with eigenvalue k And

the coefficients & sum to 0, since 0 = 0,* = —(11€ Nan® + 12<:727a727“ + li:%a%“) = (Ilc k4 l?:)

Suppose for the moment that we, = 0 and § = 0 at p. Then, by (2.8.4) and (2.8.13), £"V, 1® =
0,0 = liffj“, for all i, at p. So, if we think of 7* as a “connecting vector” pointing from an observer
O to an (infinitesimally) close neighbor N, then the instaneous velocity of N relative to O is directed
radially away from O at p and has magnitude k there. Thus, each of the vectors $?, %, H® is an axis
of instantaneous expansion (or contraction) with associated magnitude k. Since the magnitudes sum to
0, expansion along one axis can occur only if there is contraction along another. Individual expansions
and contractions so compensate each other that there is no net increase in volume. (Again, we are now

considering the case where 6 is 0.)

In general, the expansion factors llc are all different. But, for purposes of illustration, suppose that the
factors on two axes are equal — say llf = I2€ Further imagine that our infinitesimal blob has the shape of
a sphere at p. Then there are two possibilities. If the common factor is positive, then the action of the
flow flattens it into a pancake with axis % (“pancake shear”). If it is negative, then it is elongated into a
hot dog with axis % (“hot dog shear”). The second possibility is illustrated in figure 2.8.2, where three

possible actions are illustrated.

0
0
0

wab # 0 Wap =0 wab = 0
0—0 J 6>0 l =0 J
Oap =0 Oap = 0 Uab?éo
rigid rotation -
uniform spherical
expansion volume-preserving

shear

Figure 2.8.2: Rotation, Expansion, Shear
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The full expansion tensor field ,, can be given another interesting geometric interpretation in the
case where it is associated with a unit timelike flow £ that is everywhere twist-free. In this case, by
proposition 2.8.1, £% is, at least locally, hypersurface orthogonal. Let S be a spacelike hypersurface to
which &% is orthogonal. The extrinsic curvature of S is given by m., = h," b, Vi, &, (Recall (1.10.16).)
But h,"hy" Vi €n = wap + e, by (2.8.1) and (2.8.2). So in the present case (wqy = 0), we have
Tab = Bap. Thus, the expansion tensor field associated with a twist-free unit timelike field €% is just the

extrinsic curvature of the spacelike hypersurfaces to which €* is orthogonal.

This gives us another way to think about the extrinsic curvature of spacelike hypersurfaces. When
map = 0, normal vectors to the surface do not recede from one another. “Connecting vectors” between
“infinitesimally” close surface normals do not expand. (See figure 2.8.3.) But when 74, # 0, connecting

vectors do expand.

eab#o

|
i

Figure 2.8.3: Expansion and Extrinsic Curvature

Finally, we derive an expression for the rate of change of the scalar expansion function 6 (“Raychaud-

huri’s equation”):
1
£9Va0 = —Rap 9" + wapw™ — g92 — a0 + Vo (€'Y, £%). (2.8.17)

We shall need it later in section 2.11. (Here % is still a smooth future-directed unit timelike vector field
on our background spacetime (M, gqp).) The derivation proceeds in two steps. First, it follows from

(1.8.1) that

gava 9 _ gavavb gb _ _é-aRbcab gc + favbva é-b
—Req £€° + Vy(7Va €") = (V5£7)(Va ).

Next, we evaluate the term (V; £%)(V, %) using the expansion in (2.8.13): V, & = wap + Tap + % hap 0 +
&a (E"V,, &), A straightforward computation establishes that

1
(VoEa)(V*€") = ~warw™ + 507 + 0ur 0.

(All terms involving &, or &, are 0 because hqp, Wab, Tab, and "V, &, are all orthogonal to £* in all indices.
The terms involving wqy together with either A% or ¢?® are 0 because the former is anti-symmetric whereas

the latter are symmetric. The terms involving h®® and o, are 0 because ,% = 0.) This gives us (2.8.17).
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2.9 Killing Fields and Conserved Quantities

In relativity theory, there is a natural association between Killing fields and conserved quantities. We

consider it briefly in this section.

Let x* be a smooth field on our background spacetime (M, gqp). Recall (section 1.9) that * is said
to be a Killing field if its associated local flow maps I'y are all isometries or, equivalently, if £, g, = O.
The latter condition can also be expressed as V(, ky) = 0.

Any number of standard symmetry conditions — local versions of them, at least??> — can be cast as

claims about the existence of Killing fields. Here are a few examples.

(M, gap) is stationary if it has a Killing field that is everywhere timelike.

(M, gap) is static if it has a Killing field that is everywhere timelike and locally hypersurface or-
thogonal.

(M, gap) is homogeneous if its Killing fields, at every point of M, span the tangent space.

(We shall have another example in section 3.2, where we consider “stationary, axi-symmetric spacetimes”.)
The distinction between stationary and static spacetimes should be clear from our discussion in the
preceding section. (Recall proposition 2.8.1.) Roughly speaking, in a stationary spacetime there is, at
least locally, a “timelike flow” that preserves all spacetime distances. But the flow can exhibit rotation.
Think of a whirlpool. It is the latter possibility that is ruled out when one passes to a static spacetime.

For example, Godel spacetime, as we shall see, is stationary but not static.
Problem 2.9.1. Let k% be a timelike Killing field that is locally hypersurface orthogonal (ko Vy kg = 0).

Further, let k be the length of k*. (So k? = k"k,.) Show that

K2Vaky = — Kla V] k2.

By way of example, let us find all Killing fields on Minkowski spacetime. This will be easy, as much

of the work has already been prepared in sections 1.9 and 2.6.

Let k* be a Killing field on Minkowski spacetime (M, gqp). Arguing ezactly as in proposition 1.9.9, we
can show that, given any point p in M, there is a unique constant, anti-symmetric field F,, on M and a

unique constant field k* on M such that
Ky = X" Fup + kp, (2.9.1)

where x® is the position field relative to p. (Recall that F,, = V, ks, and kp = kp — X® Fap.) Thus there

is a one-to-one correspondence between Killing fields on Minkowski spacetime and pairs (Fgp, kp) at any

22They are “local” because Killing fields need not be complete, and their associated local flow maps need not be defined

globally. (Recall our discussion at the end of section 1.3.)
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one point, where F,; is an anti-symmetric tensor there and k® is a vector there. It follows that the vector

space of Killing fields on Minkowski spacetime has 6 + 4 = 10 dimensions.

We can further analyze F,; as in section 2.6. Let €454 be a volume element on M; let £* be a constant,

future-directed, unit timelike field on M; and let E* and B® be defined as in (2.6.9) and (2.6.10):

E* = Fab gb,
1
B — 5 6abcd gb ch'

Then E® and B® are constant fields everywhere orthogonal to £%. And it follows from (2.6.13) that we
can express k% in the form

ko = X" (2B, &) + €avea £ BY) + k. (2.9.2)

This gives us a classification of all Killing fields (relative to an arbitrary choice of “origin” p and constant,
unit timelike field £2). Killing fields of the form xk* = & generate (timelike, spacelike, or null) transla-
tions. Those of the form k, = X® €apea £° B generate spatial rotations, based at p, with rotational axis
B?. Those of the form r, = 2x* E|, &) generate boosts, based at p, in the plane determined by £* and
E°.

Problem 2.9.2. Consider a non-trivial boost Killing field ky, = 2x*E}, &) on Minkowski spacetime (as
determined relative to some point p and some constant unit timelike field £€%). “Non-trivial” here means
that E* # 0. Let n® be a constant field on Minkowski spacetime. Show that £, n* = 0 iff n® is orthogonal
to both to £* and E®. (It follows that the boost isometries generated by k® leave intact all two-dimensional
submanifolds orthogonal to £* and E®, but “rotate” all two-dimensional submanifolds to which £* and

E*® are tangent.)

Problem 2.9.3. This time, consider a non-trivial rotational Killing field k, = X® €abea &° B on
Minkowski spacetime (with B* # 0). Again, let n® be a constant field on Minkowski spacetime. Show that
£.n% =0 iff n® is a linear combination of £&* and B*. (It follows that the isometries generated by K®
“rotate” all two-dimensional submanifolds orthogonal to £* and B®, but leave intact all two-dimensional

submanifolds to which £€* and B* are tangent.)

Now we briefly consider two types of conserved quantity. One is an attribute of point particles with
positive mass, the other of extended bodies. Let x* be a Killing field in an arbitrary spacetime (M, gap)
(not necessarily Minkowski spacetime), and let v : I — M be a smooth, future-directed, timelike curve,
with unit tangent field £€*. We take its image to represent the worldline of a point particle with mass
m > 0. Consider the quantity J = (P%k,), where P* = m£® is the four-momentum of the particle. It
certainly need not be constant on y[I]. But it will be if v is a geodesic. For in that case, "V, % =0

and hence, by (1.9.12),

§"Vnd =m (kg §"Vp £ + " Vi ka) = mEEV(, kgy = 0. (2.9.3)
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Thus, J is constant along the worldlines of free particles of positive mass.

We refer to J as the conserved quantity associated with k®. If k* is timelike, we call J the energy of the
particle (associated with x).2% If it is spacelike, and if its associated flow maps resemble translations,*
we call J the linear momentum of the particle (associated with k). Finally, if k® is spacelike, and if its
associated flow maps resemble rotations, then we call J the angular momentum of the particle (associated
with k%).

It is useful to keep in mind a certain picture that helps one “see” why the angular momentum of free
particles (to take that example) is conserved. It involves an analogue of angular momentum in Euclidean
plane geometry. Figure 2.9.1 shows a rotational Killing field x® in the Euclidean plane, the image of a
geodesic (i.e., a line) L, and the tangent field £* to the geodesic. Consider the quantity J = %, i.e.,
the inner product of £* with k%, along L. Exactly the same proof as before (of equation (2.9.3)) shows

that .J is constant along L.?° But here we can better visualize the assertion.

Let us temporarily drop indices and write x - £ as one would in ordinary Euclidean vector calculus
(rather than £%k,). Let p be the point on L that is closest to the center point where k vanishes. At
that point,  is parallel to £. As one moves away from p along L, in either direction, the length ||x| of
K grows, but the angle Z(k, &) between the vectors increases as well. It should seem at least plausible
from the picture that the length of the projection of x onto the line is constant and, hence, that the inner

product k- & = cos(£(k,§)) k] [|€]| is constant.

That is how to think about the conservation of angular momentum for free particles in relativity theory.
It does not matter that in the latter context we are dealing with a Lorentzian metric and allowing for
curvature. The claim is still that a certain inner product of vector fields remains constant along a geodesic,

and we can still think of that constancy as arising from a compensatory balance of two factors.

Let us now turn to the second type of conserved quantity, the one that is an attribute of extended

bodies. Let k® be an arbitrary Killing field, and let T,, be the energy-momentum field associated

230f course, one needs to ask what this notion of energy has to do with the one considered in section 2.4. There,
ascriptions of energy to point particles were made relative to individual unit timelike vectors, and the value of the energy
at any point was taken to be the inner product of that vector with the particle’s four-momentum vector. We take the
present notion of energy to be primary and the earlier one as derived. At least in the context of Minkowski spacetime, one
can always extend a unit timelike vector at a point to a constant unit timelike field (which is, of course, a Killing field)
and then understand relativization to the vector as relativization to the associated constant field. And perhaps the earlier
usage is properly motivated only in spacetimes where individual unit timelike vectors are extendible to constant fields or, at
least, to naturally distinguished Killing fields. (Similar remarks apply to components of “linear momentum” in particular

directions.)

24When one is dealing with Minkowski spacetime, one can assert without ambiguity that a Killing field generates a
“translation”, or a “spatial rotation”, or a “boost”. Things are not always so simple. Still, sometimes a Killing field in a
curved spacetime resembles a Killing field on Minkowski spacetime in certain respects, and then the terminology may carry
over naturally. For example, in the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic

behavior.

25The mass m played no special role.
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Figure 2.9.1: k% is a rotational Killing field. (It is everywhere orthogonal to a circle radius,
and is proportional to it in length.) £ is a tangent vector field of constant length on the line
L. The inner product between them is constant. (Equivalently, the length of the projection
of kK onto the line is constant.)

with some matter field. Assume it satisfies the conservation condition (V, T = 0). Then (79 ky) is

divergence free:
Va(Tabe) = Kp VaTab + Tabvalib = TabV(aIib) = 0. (2.9.4)

(The second equality follows from the conservation condition and the symmetry of 79; the third follows
from the fact that k¢ is a Killing field.) It is natural, then, to apply Stokes’ theorem to the vector field
(Tky). Consider a bounded system with aggregate energy-momentum field T, in an otherwise empty
universe. Then there exists a (possibly huge) timelike world tube such that T,; vanishes outside the tube

(and vanishes on its boundary).

Figure 2.9.2: The integrated energy (relative to a background timelike Killing field) over the
intersection of the world tube with a spacelike hypersurface is independent of the choice of
hypersurface.

Let S; and S5 be (non-intersecting) spacelike hypersurfaces that cut the tube as in figure 2.9.2; and let
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N be the segment of the tube falling between them (with boundaries included). By Stokes’ theorem?®,

/ (T"ky) dS, — / (T"ky) dS,
Sa

S1

= / (T%ky) dS, — / (T%ky) dS,
SaNON S1NON

= / (T"ky) dS, = / Va(T%kp)dV = 0.
ON N

Thus, the integral | S(T“bﬁb) dS, is independent of the choice of spacelike hypersurface S intersecting the
world tube, and is, in this sense, a conserved quantity (construed as an attribute of the system confined
to the tube). An “early” intersection yields the same value as a “late” one. Again, the character of the
background Killing field x* determines our description of the conserved quantity in question. If k% is
timelike, we take fS(T“bnb) dS, to be the aggregate energy of the system (associated with k%). And so
forth.

Let us now continue the discussion that led to (2.9.3) and derive an inequality governing “total
integrated acceleration”. Once again, let k* be a Killing field on an arbitrary spacetime (M, gap), and let
~v: I — M be a smooth, future-directed, timelike curve, with unit tangent field £*. We take its image to
represent the worldline of a point particle with mass m > 0. Again, we consider the quantity J = (P%k,),
where P® = m£® is the four-momentum of the particle. Even without assuming that ~ is a geodesic, we
have

E'"Vnd = m (ko "V &8+ "€ Vi ka) = MK "V, €5 (2.9.5)

Now let a be the scalar magnitude of the acceleration field, i.e., a® = —(£"V,, £4)(£™V,, &,). Then we

have (see problem 2.9.4)
€V J| < ar/J? — m2 (K"Ky). (2.9.6)

(Of course, if v is a geodesic, i.e., if @« = 0 everywhere, then |£"V,,J| must vanish everywhere as well. So
we recover our earlier result that J is constant in the case of geodesic motion.) If kK is causal (timelike

or null) and future-directed everywhere, then J = P%k, > 0, and it follows that
€'V, J| < aJ. (2.9.7)

So, in this case, the total integrated acceleration of v — the integral of o with respect to elapsed time —

TA(y) = /Vads > Aw ds > L{"Vn(an)ds

Thus, if v passes through points p; and ps, the total integrated acceleration between those points is, at
least, [(In.J),, — (InJ)p, |. (For applications of (2.9.8), see Chakrabarti, Geroch, and Liang [7].)

satisfies
. (2.9.8)

Problem 2.9.4. Derive the inequality (2.9.6).

26See Wald (60, Appendix B.2] for a discussion of integration on manifolds and Stokes’ theorem. We did not take the time
to develop these topics in our review of differential geometry because we have so little need of them. This is the only place

in this book where reference is made to integration on manifolds (except for the simple case of integration over curves).
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2.10 The Initial Value Formulation

In this very brief section, we say a few words about the “initial value formulation” of general relativity
and make precise the sense in which it is a deterministic theory. (See Hawking and Ellis [30] and Wald

[60] for a proper treatment of the subject.)

Let S be a smooth, achronal, spacelike hypersurface in our background spacetime (M, g.p). Recall
(section 2.5) that D(S), the domain of dependence of S, is the set of all points p in M with this property:
given any smooth causal curve without endpoint, if its image passes through p, then it intersects S. Our
goal is to explain the sense in which (at least in the empty space case) “what happens on S uniquely

determines what happens on D(S)”.

Of special interest is the case where S is a Cauchy surface in (M, gap), i.e., a smooth achronal spacelike

hypersurface such that D(S) = M.

The first thing we must do is specify what is to count as “initial data” for the metric g, on S. Let £¢
be the (unique) smooth, future-directed, unit timelike field that is everywhere orthogonal to S. (We will
refer to it, simply, as the normal field to S.) Our first piece of initial data on S is the induced (negative
definite) spatial metric hap = gab — £a&p- Our second piece is the extrinsic curvature field 7q, on S. We
can think of the latter as the time derivative of hyp in the direction &%, at least up to the factor 2 since

27y = Lehgy. (Recall (1.10.17).)

Thus our metric initial data on S consists of the pair (hqp, map), the first and second fundamental
forms on S. They correspond, respectively, to position and momentum in the initial value formulation
of Newtonian particle mechanics. We know from our discussion in section 1.10 that these fields satisfy a

number of constraint equations, including

1
R — (Traa)z + Tap T = -2 (Rab - §Rgab) ga €b7
DcTrac - Da 7ch - hma h/npgrRmin;
where D is the derivative operator induced on S, R%,, is its associated Riemann curvature field, and R
is the contracted scalar curvature field. (The first equation is just (1.10.21) and we get the second from

(1.10.19) by contraction.) Using the symmetries of Ry,npr, Wwe can re-express the right side of the second

equation:
hma hP grRmin — hma (gnp _ gn é-p) gr anrp — hma gr Rmr
1
- hma§T (Rmr - §Rgmr)
And therefore, using Einstein’s equation, we can express our two constraint equations as

R — (14%)? + Ty = —167 Ty €7, (2.10.1)
D.m,¢ — Dy, = 87Ty h™m €. (2.10.2)
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For simplicity, we shall restrict attention to the empty space case — where T,; vanishes and it is only
the evolution of the metric field g, itself that we need to consider. In this special case, of course, the

constraint equations assume the form

R — (ma%)? + wp7®® = 0, (2.10.3)
D.7,¢ — Dym.° = 0. (2.10.4)

We started with a spacetime (M, gqp) and moved to an induced initial data set (hgp, Tp) on a smooth,
achronal, spacelike hypersurface S in M satisfying particular constraint equations. Now we reverse

direction.

We need a few definitions. Let us say officially that an (empty space) initial data set is a triple
(%, ﬁab, Tap) Where ¥ is a smooth, connected, three-dimensional manifold, Bab is a smooth negative-
definite metric on X, 7, is a smooth symmetric field on X, and the latter two satisfy the constraint

equations (2.10.3) and (2.10.4).

A Cauchy development of such an initial data set (X, hap, Tap) is a triple (M, gas), S, ) where (i)
(M, gap) is a spacetime that satisfies the field equation Ry, = 0, (ii) S is a Cauchy surface in M, (iii) ¢
is a diffeomorphism of ¥ onto S, and (iv) hap = @*(hap) and Tap = ¢*(map), where hgp and g, are the

first and second fundamental forms induced on S.

A Cauchy development ((M, gap), S, ¢) of (3, hab, Tab) 18 maximal if, in addition, given any other
Cauchy development ((M’,g%,), S, ') of (%, Rab, Tap), there is an isometry ¢ of M’ into M that respects
3 in the sense that 9 o ¢’ = .

Our basic result (due to Choquet-Bruhat and Geroch [8]) is the following.

Proposition 2.10.1. Fvery empty space initial data set has a maximal Cauchy development. It is unique
in the following sense. If (M, gas), S, ) and (M’,g.,), S', ¢’) are both mazimal Cauchy developments
of (2, hav, Tap), there is a diffeomorphism : M’ — M such that 1 o ¢’ = ¢ and Ghy = V" (Gab)-

Proposition 2.10.1 makes precise the sense in which general relativity is a deterministic theory. But
that sense is local in character because it need not be the case in an arbitrary spacetime (M, gqp) that
there is any one achronal spacelike hypersurface S such that D(S) = M, i.e., it need not be case that
there is a Cauchy surface. (For example, the spacetime that arises by taking the universal covering space

of anti-deSitter spacetime admits no Cauchy surface. See Hawking and Ellis [30], section 5.2.)
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2.11 Friedmann Spacetimes

In this section, we briefly consider the class of Friedmann (or Friedmann-Lemaitre-Robertson-Walker)
spacetimes. These are the “standard models” of relativistic cosmology. (For a more complete discussion,
see Wald [60] or almost any text in general relativity.) We include this section, even though we are
not otherwise undertaking to survey known exact solutions to Einstein’s equation, because we have
a particular interest in comparing relativistic cosmology with Newtonian cosmology. We consider the

latter in section 4.4.

We take a Friedmann spacetime to be one that satisfies a particular symmetry condition — “spatial
homogeneity and isotropy” — together with supplemental constraints in the form of energy conditions

and/or equations of state. We start with the symmetry condition.

Roughly speaking, a spacetime is spatially homogeneous and isotropic if there is a congruence of
timelike curves filling the spacetime such that “space”, as determined relative to the congruence, “is the
same in all directions”. Here is one way to make the condition precise. (We opt for a local version of the
condition. And to avoid certain distracting complications, we cast the definition directly in terms of the
existence of isometries, rather than in terms of Killing fields as we did with several symmetry conditions

at the beginning of section 2.9.)

Let (M, gap) be a spacetime, and let £* be a smooth, future-directed, unit timelike field on M that is
twist-free, i.e., {[,Vp & = 0. (So, at least locally, it is possible to foliate M with a one-parameter family
of spacelike hypersurfaces that are orthogonal to £*. Recall our discussion in section 2.8. We can think of
each of these hypersurfaces as constituting “space” at a given time relative to £*.) We say that (M, gas)
is spatially homogeneous and isotropic relative to £ if, for all points p in M, and all unit spacelike vectors
5% and 5% at p that are orthogonal to £%, there is an open set O containing p and an isometry ¢: O — O
that keeps p fixed, preserves the field £, and maps 5 to 5 (i.e., such that ¢(p) = p, v« (£*) = £*, and
P (c17“) = g“).” We further say that (M, gq.p) is spatially homogeneous and isotropic if it is so relative to

some choice of £*. The strength of the condition will become clear as we proceed.

We assume in what follows that £% is as in the preceding paragraph and (M, g,p) is spatially homoge-

neous and isotropic relative to £*. We first abstract a few general principles.

2"Note, we require here that ¢ map the field £* onto itself everywhere, not just at p. If we required only that it keep

fixed the vector £%|,, the condition would not be strong enough for our purposes. For example, Minkowski spacetime would

lp
then qualify as spatially homogeneous and isotropic relative to any smooth, future-directed, unit timelike vector field £*
that is twist-free. It would not have to be the case, as we want it to be, that hypersurfaces orthogonal to £* are manifolds
of constant curvature.

For the corresponding global version of the condition, we would require at the outset that £€% be (globally) hypersurface
orthogonal and require that, for all p, clra7 and <27a as specified, there is a (global) isometry ¢: M — M that keeps p fixed,
preserves the field £, and maps <17a to ga. We shall later consider what turns on the difference between these two (local

vs. global) versions of the spatial homogeneity and isotropy condition.
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(1) Given any field \* on M, if it is definable in terms of, or otherwise determined by, g, and £%, then
it must be proportional to £€%. (So A* = A&% where A = \,£". And if A\* is also orthogonal to £%,
then A* =0.)

This follows, for if at some point p, A had a non-zero component orthogonal to £%, it would determine
a “preferred” orthogonal direction there and violate the isotropy condition. (Here is the argument in
more detail. Since that component is determined by g,, and £, it must be invariant under all maps that
preserve gqp and £* and that leave p fixed. But, by our assumption of spatial homogeneity and isotropy,
the only vector at p, orthogonal to £, that is invariant under all such maps is the zero vector.) It follows

from (1), for example, that the acceleration field £"V,, £* must vanish, i.e., £ must be a geodesic field.

(2) Given any scalar field A on M, if it is definable in terms of, or otherwise determined by, g, and &2,

then it must be constant on all spacelike hypersurfaces orthogonal to . (So Vo A = (§"V, A) &)

This is an immediate consequence of (1) as applied to h® Vj A, where hy; is the spatial projection field

(gab — €a &b)- So, for example, we have
Vol = (€'Y, 0) ¢, (2.11.1)

where 6 = V,,, £™. (Recall section 2.8.)

(3) Given any symmetric field A, on M, if it is definable in terms of, or otherwise determined by, gas
and £%; then it must be of the form Ay = @ &,& + B hap for some scalar fields « and 3. (And if
Aab 18 also orthogonal to £%, then it must be of the form Ayp = 8 hap.)

To see this, consider any point p. By (1) as applied to A%, £, there is a number a such that A%, & =
a&® at p. Now consider the tensor (A% — a ¢?¢%) at p. It is symmetric and orthogonal to £% in both

indices. So we can express it in the form
11,1 2 2,2 3 3,3
AP —qered = (o0 0%a" + 5 6%6° + 5 0%, (2.11.2)

where the vectors 6%, ..., 5%, together with £%, form an orthonormal (eigen)basis for g, at p. But now,
by the isotropy condition, the coefficients é, g, & must be equal. (For all ¢ and j, there is an isometry
that leaves p and (A% — a €% €%) fixed but takes & to ®.) If their common value is 3, then the right

side tensor in 2.11.2 can be expressed as 3 he?.

It follows from (3) that the shear tensor field o, associated with £* must be of the form 0., = 5 has.
But o4 is “trace-free”, so 0 = 0,% = 3. Thus, £* has vanishing shear in addition to being geodesic.
And we assumed at the outset that it is twist-free. So, by (2.8.13),

1
Vs = 3 ha0. (2.11.3)
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It also follows from (3) that we can construe (M, g.p) as an exact solution to Einstein’s equation for a

perfect fluid source with four velocity £®. For if Ry = a&,&p + 3 hap, then

1
Rab - iRgab = 87T(p§a§b - phab)7 (2114)
-3
where p = (amiwﬁ) and p = (o {gﬂﬁ) . (This perfect fluid need not satisfy any of the standard energy

conditions. We shall soon add one of those conditions as a supplemental constraint, but will work
without it for now.) In what follows, we take Ty, to be the indicated energy-momentum field, i.e., we

take Tup = p&ulp — P hap- So (after inversion of (2.11.4)),

1
Ry = 87(Tup — iTgab) =dw(p + 3p)&alp — 47(p — D)hab. (2.11.5)

Next we consider the geometry of spacelike hypersurfaces orthogonal to £¢. Let S be one such hyper-
surface, and let hqp, and 74 be the first and second fundamental forms induced on S. (Recall section 1.10.)
Note that, by (1.10.16) and (2.11.3), the latter assumes a simple form: m,, = hy™ h" Vi &, = % hap 6.
Now let R%.q be the curvature field associated with the induced derivative operator D. Our goal is to
derive an expression for R%.q in terms of 6, p, and p. We do so by first deriving one for Ry, and then
invoking a general fact about the relation between the two fields that holds in the special case of three

dimensional manifolds. It follows from (1.10.20), our expression above for 7., and from (2.11.5) that

7?fbc = 7Tnn Toe — Tab 7Tac + hnb h;Dc Rnp - Rmbcr fm §T

1 1
592 hbc - 592 hbc - 47T(P - p)hbc - Rmbchm gr'

So we need only derive an expression for the fourth term on the right side. (Here and in what follows we

shall use the abbreviation § = £"V,, 0.) Note that by (2.11.3) and (2.11.1),

1 1 .
vc vrgb = gvc (th 9) = g [hrbgce + evc(grb _gr fb)]
1 .
= g [hrbgce - egrvcgb - egbvcgr]
_ ! i _Llge _ Ly
- 3[hrb§ce 39 grhcb 39 gbhcr]-
Hence
2 . 1
Roper é-m = 2v[cvr] & = g g[c hr]b (9 + 592)

and, therefore,

1 . 1
Ryper €M & = -3 hie (6 + 592)-

Substituting this into our expression for Ry, yields

Rie = K hpe, (2.11.6)
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where K = (6% + 0) — 47 (p — p). Now we invoke our general fact. In the special case of a three-

dimensional manifold with metric, we (always) have?®

1
Rabcd - (hbc 7?fad + had Rbc - hac Rbd - hbd 7?fac) + 5 (hac hbd - had hbc) R. (2117)
So it follows from (2.11.6) (and its contracted form R = 3K) that
R K
Rabcd = (5 - 2IC) (hac hbd - had hbc) = 5 (had hbc - hac hbd)' (2118)

Thus, recalling our discussion at the end of section 1.9, we see that (S, hqp) has constant curvature /2.

(We shall soon have a more instructive expression for .)

Now we turn to considerations of dynamics. We claim that

0 = —4n(p+3p) — %92, (2.11.9)
—(p+p)0. (2.11.10)

p
(We shall continue to use the dot notation. Here p = £"V,, p.) We get the first from Raychaudhuri’s
equation (2.8.17), using (2.11.5) and the fact that £* is geodesic, irrotational, and shear-free. The second is
the continuity condition (2.5.5). Recall that the latter follows from the conservation condition V, 7% = 0

as applied to our energy-momentum field 7% = p&,& — phap. (And the conservation condition itself is

a consequence of Einstein’s equation.)

It is convenient and customary to introduce a new field a that we can think of as a “scaling factor”.
We want it to be constant on spacelike hypersurfaces orthogonal to £%, i.e., A"V, a = 0. So we need
only specify its growth along any one integral curve of £*. We define it, up to a multiplicative constant,
by the condition

a
0= —. 2.11.11
) (211.11)

Wl =

(Certainly this equation has solutions. Indeed, if the curve is parametrized by a time function ¢ where
t

o = Vat, then all functions of the form a(t) = /@, with f(t) = / gdt, qualify.) The condition
inherits a natural interpretation from the one we have given for 6. It coné%rns the rate of volume increase
for a fluid with four-velocity £€*. We saw in section 2.8 that if an (“infinitesimal”) blob of the fluid has
volume V, then V' = V#. (Recall (2.8.15).) If we think of the blob as a cube whose edges have length
a, then V = @ and we are led immediately to (2.11.11). It is in this sense that a is a scaling factor. If

we now express our equations for 6 and p above in terms of a, we have

3% = —dn(p+3p), (2.11.12)
p o= —3g(p+p) (2.11.13)

28We shall later prove a close analogue of this result (proposition 4.1.4) in connection with our discussion of classical
spacetimes. It should be clear how to adapt the proof to the present context. (We present the argument there rather than

here because of added complications that arise when one is dealing with classical spacetimes.)
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where, of course, & = "V ,,(§™V,, a). These two jointly imply (by integration) that there is a number k

such that
Q.9 8w k
(a) 3 P T T

(This is “Friedmann’s equation”.) Since a was only determined initially up to a multiplicative constant,

(2.11.14)

we can now normalize it so that k = —1or k=0 or k = 1.

We can use the listed equations to express several fields of interest directly in terms of the scaling

factor a and k:

8rp = 3(%)2 +3a—k2, (2.11.15)

87p = 9l (9)2 - 32 (2.11.16)
a a a

Roped = —%(hadhbc—hachbd). (2.11.17)

Here (2.11.15) is just a reformulation of (2.11.14). (2.11.16) follows from (2.11.12) and (2.11.15). For
1 )
(2.11.17), recall that, by (2.11.8), Rabea = 7 (had hbe = hac hia), where K = g(92 +0) —4n(p — p).
But
1 : a a
—(0* 4+ 0) = = +2(=)2
S0+ =2 oY)
by (2.11.9), (2.11.11), and (2.11.12). And it follows from (2.11.15) and (2.11.16) that

a a k
4W(P—p)za+2(a)2+2;

So K = —2%,
a

as claimed.

(2.11.17) tells us that (S, hap) has constant curvature —k/a?. Remember, though, that hyp, is negative
definite, and curvature is usually reported in terms of the positive definite metric —hgp. This introduces
a sign change. (The switch from hgp to —hgp leaves D, R%eq, and (hgghpe — hached) intact, but reverses

the sign of Raped = han R™bed-) So we shall record our conclusion this way:

(S, —hap) is a manifold of constant curvature, and the magnitude of its curvature is (—1/a?),

0, or (1/a?) depending on whether k is —1, 0, or 1.

We have reached this point assuming only a local version of the spatial isotropy condition. But now
suppose for a moment that the global version holds as well, and let S be any maximally extended spacelike
hypersurface that is everywhere orthogonal to £%. Then we can say more about the global structure of
(S, —hap). In this case, it follows from the way the global condition is formulated that (S, —hap) is, itself,
a homogeneous, isotropic three-manifold in this sense: for all points p in S, and all unit vectors 5% and 5%
in the tangent space to S at p, there is an isometry 1: S — S that keeps p fixed and that maps 59 to 5.
This is a very strong constraint and rules out all but a small number of possibilties (Wolf [64]). If k = 0,

(S, —hqap) cannot be just any flat three-manifold. It must be isometric to three-dimensional Euclidean
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space, i.e., it must also be diffeomorphic to R? and geodesically complete.?? If k = —1, (S, —hgp) must
be isometric to three-dimensional hyperbolic space H3. (We shall return to consider one realization
of three-dimensional hyperbolic space at the end of the section.) Finally, if &k = 1, (S, —hap) must be
isometric either to three-dimensional spherical space S3 or to three-dimensional elliptic three-space P3.

The latter arises if one identifies “antipodal points” in the former.

Let us now revert to the local version of the spatial homogeneity and isotropy condition — leaving
open the global structure of maximally extended spacelike hypersurface orthogonal to £* — and continue
with our consideration of dynamics. The difference in strength between the two versions of the condition

plays no role here.

So far, assuming only the spatial homogeneity and isotropy condition, we have established that the
scaling function a must satisfy (2.11.15) and (2.11.16). Now for the first time, just so as to have one
example, we assume that our perfect fluid satisfies a particular equation of state, namely p = 0, and
consider how the latter constrains the growth of the scaling function. (We are certainly not claiming that

this assumption is realistic, i.e., holds (approximately) in our universe.)

If we insert this value for p in (2.11.16) and multiply by a? a, we arrive at 2daa + a® + ka = 0. It
follows that there is a number C' such that a¢’a + ka = % pa® = C. (The first equality follows from

(2.11.15).) So our task is now reduced to solving the differential equation
C
@ - = +k=0. (2.11.18)
a

The solutions are the following. (It is convenient to express two of them in parametric form.)

alx) = %(coshx -1

E = -1 o z € (0, 00)
t(x) = 3 (sinhz — x)

k= 0 a(t) = (%)t t € (0, o0)
alx) = %(1 — cosx)

E = +1 o x € (0, 27)
t(x) = ) (x — sinx)

These are maximally extended solutions for the case where € is positive at at least one point. We get

additional (time-reversed) solutions if we assume that 6 is negative at at least one point.

29This should seem, at least, intuitively plausible. Consider a lower dimensional case. The Euclidean plane is not the
only two-dimensional Riemannian manifold of constant 0 curvature. The cylinder and the torus also qualify. But neither
of them is isotropic in the relevant sense. For given a point in either, the only global isometry of the manifold that keeps

the point fixed is the identity map.
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Rough (qualitative) graphs of these solutions are given in figure 2.11.1. If k = —1 or k = 0, expansion
starts at the big bang and continues forever. In both cases, the rate of expansion % decreases monoton-
ically. But there is this difference: the rate of expansion shrinks to 0 asymptotically when k¥ = 0, but has
a limit value that is strictly positive when k = —1. (One curve is asymptotically flat; the other is not.)
In contrast, if & = 1, expansion continues until a maximum value is reached for a (at time ¢t = %) and

then a period of accelerating contraction begins that leads to a big crunch.

Figure 2.11.1: Rough graphs of the scaling factor a in the three cases.

Problem 2.11.1. Confirm that the three stated solutions do, in fact, satisfy (2.11.18).

Problem 2.11.2. Consider a second equation of state, namely that in which p = 3p. (For Ty, =
P& & — phap, this is equivalent to T = 0.) Show that in this case there is a number C' such that

8
a’a® + ka® = ?Wpa4 = (.

(So in this case, the equation to solve is not (2.11.18), but rather

/

i C
a2—§+k:0)

It will be instructive to consider an ultra-simple, degenerate Friedmann spacetime and see how some
of our claims turn out in this special case. Let (M, gq;) be Minkowski spacetime. Let o be any point in
M, and let O be the (open) set of all points p in M such that o < p, i.e., such that there is a smooth
future-directed timelike curve that runs from o to p. (See figure 2.11.2.) Further, let x* be the position

field based at o — so x® vanishes at 0 and V,x* = 0 — and let £ be the field

1

& = (ux") 2 x

a

as restricted to O. The latter is, clearly, a smooth, future-directed, unit timelike field on O. Moreover,

it is (globally) hypersurface orthgonal, i.e., there exist smooth scalar fields f and g on O such that
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(o = [Vag. Indeed, if x = (Xax“)%, then x® = x &%, and

1 1

Vax = 5 (X2 Va (0x) = (ax) 2 0" = X7 = b (2.11.19)

We claim that the restricted spacetime (O, gapj0) is spatially homogeneous and isotropic with respect
to &% and so qualifies as a Friedmann spacetime (with p = p = 0). Indeed, this reduces to a standard
claim about the symmetries of Minkowski spacetime. Given any point p in O, and any two (distinct)
unit spacelike vectors 5% and 5 at p that are orthogonal to £%, there is a spatial rotation that keeps p

fixed, preserves the field £%, and takes 59 to 50,30

Figure 2.11.2: Minkowski spacetime (in profile) as restricted to the set of all points to
the timelike future of a point o. It qualifies as a (degenerate) Friedmann spacetime with
p=p=0. A x = constant hyperboloid is indicated. It (together with the metric induced
on it) is a realization of three-dimensional hyperbolic space.

We know from our earlier discussion that (2.11.3) must hold. In this special case, it is easy to check

the result with a direct computation. By (2.11.19), we have
0=Vl =Va(x "X = X (Vax?) =X 2X*Vax =4x" —x"=3x""  (211.20)
and, hence,

Vol = ValxX7'xe) = X (Vaxs) = X *x6 Vax = X " gab — X > x0a
. _ B 1
= X gab = X 6 ba = X hap = 5 0ha,

as expected. Notice also, that if we take a = x, then a = £*V,x = 1 by (2.11.19) and

o=
a

Wl

o
30Let £% be a constant unit timelike field on O that agrees with £% at p, and let 6® be a constant unit spacelike field
. 1 2 L L s
that is orthogonal to all three vectors £¢, 0%, and % at p. Then the rotation in question is generated by the Killing field

o
Ky = €apeq X*EC @ (for either choice of volume element €qp.q). Recall (2.9.2).
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This choice of a satisfies Friedmann’s equation (2.11.14) with p =0 and k = —1.

Now consider the hyperboloids in O defined by the condition x = constant. (See figure 2.11.2 again.)
Each is a spacelike hypersurface that is everywhere orthogonal to £*. (For if 0% is a vector at a point of
one such hypersurface S that is tangent to S, then ¢"V,, x = 0 and, therefore, by (2.11.19), 0™ &, =
0"V, x = 0.)

Let S be one such hyperboloid. Let D be the induced derivative operator on S, and let Rgpeq be its
associated curvature field. We know from (2.11.17) that

1
)

Rabcd - (had hbc - hac hbd)7

since here ¢ = y and k = —1. Again, we can check this directly. To do so, we first compute the second

fundamental form 7, on S. (Recall (1.10.16).) Since hp™xn = he™(x &n) = 0, we have
Tab = ham hbn vm gn = ham hbn vm (X_1Xn) = X_l ham hbn vm Xn = X_l ham hbn Imn = X_l hab'

It follows, by (1.10.22), that
1

X2 (had hbc - hac hbd)7

7?fabcd = Tad Tbc — Tac Tbd =

as expected.

Thus, if S is characterized by the value x, then (S, —hgp) is a three-dimensional manifold with constant
curvature —1/x2. Moreover, as we know from our discussion above, it cannot be just any such manifold,
but must be, in fact, isometric to three-dimensional hyperbolic space H3. If we had started with a three-
dimensional version of Minkowski spacetime, our hyperboloid (with induced metric) would be isometric
to two-dimensional hyperbolic space, otherwise known as the Lobatchevskian plane. (For more about

this “hyperboloid model” for Lobatchevskian plane geometry see, e.g., Reynolds [52].)

Finally, recall the remarks we made in section 2.7 about the cosmological constant A. If we include
the constant in Einstein’s equation, i.e., if we take the latter to be (2.7.4), then Raychaudhuri’s equation
(2.8.17) yields

1
0 = —47(p+3p) — 592 + A (2.11.21)

rather than (2.11.9). This, in turn, leads to Friedmann’s equation in the form
1o
-)° - = — — 2.11.22
(R (211.22)

rather than (2.11.14).

Equation (2.11.21) serves to explain Einstein’s introduction of the cosmological constant. He thought
he needed to find a non-expanding model (6 = 0) to represent the universe properly. And, in our terms,
he was considering only Friedmann spacetimes and only perfect fluid sources that are pressureless (p = 0)

and non-trivial (p > 0). It is an immediate consequence of (2.11.21) that these conditions can be satisfied
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if, but only if, A = 47p > 0. And in this case, it follows from (2.11.22) and (2.11.11) that k/a® = 4mp.

So (since k is normalized to be 1, 0, or —1), we see that the stated conditions can be satisfied iff

A = 4dmp >0
1

ol dmp
k= 1

(These conditions characterize Finstein static spacetime.)

It is also an immediate consequence of (2.11.21) — at least if our universe can be represented as a
Friedmann spacetime — that evidence for an accelerating rate of cosmic expansion (9 > 0) counts as
evidence either for a positive value for A or for a violation of the strong energy condition. (Recall from

problem 2.7.3 that a perfect fluid satisfies the strong energy condition iff p+p > 0 and p+3p > 0.)



Chapter 3
Special Topics

3.1 Godel Spacetime

Kurt Goédel is, of course, best known for his work in mathematical logic and the foundations of
mathematics. But in the late 1940s he made an important contribution to relativity theory by finding
a new solution to Einstein’s equation (Godel [25]). It represents a possible universe with remarkable
properties. For one thing, the entire material content of the Godel universe (on a cosmological scale) is
in a state of uniform, rigid rotation. For another, light rays and free test particles in it exhibit a kind of
boomerang effect. Most striking of all, the Gddel universe allows for the possibility of “time travel” in a

certain interesting sense.!

Though not a live candidate for describing our universe (the real one), Godel’s solution is of interest
because of what it tells us about the possibilities allowed by relativity theory. In this section, we present
the solution and establish several of its basic properties in a running list. We shall later use it as an

example when we consider orbital rotation in section 3.2.

It will be helpful to keep in mind two different coordinate expressions for the Gédel metric and also a
coordinate-free characterization. We start with the former. Let us officially take Godel spacetime to be

the pair (M, gqp), where M is the manifold R* and where

2z

gor = 2 | (dat)(dt) — (da)(dy2) + S (dat) (doy) — (da2)(d2) + 2" (At diyp)| . (L)

'In addition to finding this one new exact solution to Einstein’s equation, Godel [26] also established the existence of
solutions representing universes that are rotating and expanding, though he did not exhibit any of the latter explicitly. For
a review of Godel’s contributions to relativity theory and cosmology (and subsequent work on rotating solutions), see Ellis

[18].

170
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Here y is an arbitrary positive number (a scale factor), and ¢, z,y, z are global coordinates on M.?

In what follows, we use the abbreviations

@ @ e

To confirm that g, is a metric of signature (1, 3), it suffices to check that the fields

~—

Z(l
—, —, t* — e Ty, — 3.1.3
. . . ( ) . (3.1.3)

%
a@
S

form an orthonormal basis (of the appropriate type) at each point. The first, in particular, is a smooth,
unit timelike vector field on M. That there exists such a field shows us that Godel spacetime is temporally
orientable. It is also orientable since the anti-symmetrized product of the four fields in (3.1.3) qualifies

as a volume element.
(1) Gédel spacetime is temporally orientable and orientable.

We shall work with the temporal orientation determined by ¢* in what follows.

We note for future reference that the inverse field of g, is
1
g’ = 2 —tPte — aba® — 2e7 2 byt — 2020 4 dem Tty | (3.1.4)

and that lowering indices in (3.1.2) with gq yields:

ta = p(Vat+e"Vay), (3.1.5)
o = —p?V,m, (3.1.6)
Yo = (?Vaw e"Va t) , (3.1.7)
Za = —p2Vaz (3.1.8)

(Here V is the derivative operator on M compatible with g, and we have switched from writing, for

example., “d,t” to “V,t”.)

We claim, first, that the four fields

t*, ¢ =(2* —yy"), y° z® (3.1.9)

2More precisely, t,x,y, z are real-valued functions on M, and the composite map ®: p — (t(p), z(p),y(p), z(p)) is a
bijection between M and R* that belongs to the collection C of 4-charts that defines the manifold R4. The coordinates
t,z,y, z correspond to u',u?, u? u* in the notation of section 1.2. So, for example, we understand the vector (a)a at any

point p to be the tangent there to the curve r+— ®~1(t(p) +r, z(p), y(p), 2(p)).
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are all Killing fields. They are, in fact, the generators, respectively, of one-parameter (global) isometry

t ¢ Yy z
groups {FT}TGR7 {FT}TGRa {Fr}rGRa {FT}TGR on M defined by:

Io(p) = 7 () +r o), y(p). 2(p),
Fep) = O'(tm), o) +7, e "y(p), 2(0)),
Fe(p) = ®7(t). 2(). y(p)+ 7. 2(p)).
L) = ®7'tm), 2(p), y(@), 2(p) +7),

where @ : M — R* is the chart defined by ®(p) = (¢(p), =(p), y(p), z(p)). Here, of course, the group
operation is composition.? An equivalent formulation may be more transparent. For example, we can

¢
understand T to be defined by the requirement that, for all numbers tg, zq, yo, 20,
q _ _
((I)O I‘TO(I) 1) (t07 Zo, Yo, ZO) = (t07 Zo +T, € Tyf)u ZO)-

The field 2 is not a Killing field, but it is the generator of the one-parameter group of diffeomorphisms

{fT}TGR on M given by
Ir(p) = ®7'(tp), z(p) + 1, y(p), 2(p))-
The five fields under consideration satisfy the following Lie bracket relations:
%, ¢ = [t*, 9" = [t% 2% = [¢% 2] = % 2] = 0, (3.1.10)

[z%, t*] = [z% ¢ = [z y*] = [z 2% = O, (3.1.11)

3There are a few things that have to be checked. First, each of these maps (for any choice of ) is, in fact, an isometry.
e
This follows from basic facts we have recorded in section 1.5. Consider I'y, for example. By (1.5.6) and (1.5.7), we have

< < <
() (€2*) = 2@ and (1) (day) = da((P1)* () = da(e™"y) = 7" (day). Hence,
< * (2% < * (2% < * < * 2z
()" (e (day)(dpy)) = ()" (e7)) (Tr)"(day)) (Ir)*(dby)) = €™ (day)(dpy)-
Arguing in this way, we can show that all the terms in g,; are preserved by (f‘r)* and, so, (f‘r)*(gab) = Gab-

Second, each of the groups does, in fact, have the indicated vector field as its generator. This follows from our discussion
e
in sections 1.2 and 1.3. Consider {I'y },¢r, for example. Let p be a point with coordinates ®(p) = (to, zo, Yo, 20), and let
v: R — M be the curve through p defined by

< _ _
() =T (p) = @ (to, 2o +7, € "yo, 20)-

We need to show that ?‘1 = (% at all points on the image of 4. Let f be any smooth field on some open set containing p.
Then, by the chain rule, at all points ~(r),

d(fod™t) (fo@™")

v = e = J(foqu)(to, o+ e Yo, 20) = — o1+ — = (—e "wo)
- a_i'l + a—z'(‘e”%) = a—i - ya—z = ((WG - y(a—y)“) (f) = ¢

So we are done. Here x!, 22, 23, 2% are the coordinate projection functions on R* that we considered in section 1.2. So, for

@71
example, (x3 o ®)(p) = y(p). And the equality g—j; = % is an instance of (1.2.7). (As mentioned in the preceding

note, the coordinates ¢, x,y, z correspond to u',u?, 43, u? in the notation of section 1.2.)
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[¢* vl =y (3.1.12)
There are various ways to see why these hold. For those in the first two rows, it is easiest to invoke a

basic result (that we did not formulate in chapter 1).

Proposition 3.1.1. Let a® and B* be smooth fields on a manifold that generate one-parameter groups of
8 8
diffeomorphisms {%T}TE]R and {Ty }rer on that manifold. Then [a®, 3°] = 0 ff f‘T and Ty commute

for all r and r'.

(See, for example, Spivak [57, volume 1, p. 217].) It is clear in each case that the relevant commutation

t
relations obtain, e.g., I, and T'sy commute for all r and s.* For (3.1.12), note that
(€% yt] = =[y*, (] = —£ya@® — yy?) = [2% y*] + (Lyep) ¥ + yly",y"] = v,

since £y = y"Vyy = 1, and [z, y°] = [y*,y*] = 0.

t ¢ Yy z
By composing the isometries Ty, Ty, T, T'» (with appropriate choices for r in each case), we can go

from any one point in M to any other. Moreover, each of the individual isometries, and so any composition
of them, preserves the fields t* and z*. (This follows from propositions 1.6.6 and 1.6.4, and the fact that
each of the generators t%, (%, y*, 2% has a vanishing Lie bracket with ¢* and z%.) So we have the following

homogeneity claim.

(2) Godel spacetime is (globally) homogeneous in this strong sense: given any two points p and q in M,

there is an isometry ¥: M — M such that ¥(p) = q, V. (t*) = t%, and P.(2%) = 2*.

(The maps referred to here preserve temporal orientation automatically because they preserve t¢, and
we are using that field to define temporal orientation.) We shall repeatedly invoke this strong form of
homogeneity in what follows. For example, we shall prove an assertion about a particular integral curve
of t* (that makes reference only to gas, 1%, and z,), and then claim that it necessarily holds for all integral

curves of that field.
The four Killing fields t*, (%, y®, z* are clearly independent of each other. In fact, one can find a fifth

that is independent of these four, e.g.,

1
Ka _ —2671ta 4 yxa 4 <62m _ §y2) ya

1
= 27T 4 y<a+ (e—Zm 4 5y2> ya'

4For all p, r, and s, we have
By = oo (b)) +r o o), u(he o), = 0)

= 7' (tp) +r, z(p) + s, e *ylp), 2(p))-

And a similar computation shows that
¢t :
Is(Tr(p) = @' (tp) +7, x(p) +5, e °y(p), 2(p))-

So Iy (Fs (1) = L' (B (0)-
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(To confirm that it is a Killing field, it suffices to expand V, x; and use our expressions above for t,, 4,

and 1, to show that its symmetric part vanishes.?)

Now we do a bit of calculation and derive an expression for the Ricci tensor field R,,. Note first that

Vaty = pe® (V) (Viy), (3.1.13)
621

Ver, = p° - (Vay)(Voy) + " (V) (Viy1) | (3.1.14)

Vo = 1 [ (Via2)(Viyy) + € (Viuz) (Viyt)] (3.1.15)

V.z, = O. (3.1.16)

These can be checked easily by using (3.1.5) — (3.1.8) and the fact that t*, %, y*, 2% are Killing fields.

Since t* is a Killing field, for example, we have V, t;,) = 0 and, therefore,
Vaty = Vigty) = 1 (ViaVigt + €* ViuVyy + € (Viaz)(Vyy)) = 1 e (Viaz)(Viy).

This gives us (3.1.13). The other cases are handled similarly.% It follows immediately that ¢*, % and z°

are all geodesic fields:

t'Vatt =0  2°V,2b =0  29V,z" = 0. (3.1.17)

We shall be particularly interested in the (maximally extended) integral curves of t*. Their images are
sets of the form {®L(¢, z0,v0, 20): t € R}, for particular choices of xg, 5o, z0. We shall call these curves

(or their images) t-lines.

Now we turn to R.,. We claim, first, that symmetry considerations alone establish that it must have
the form

Ry = « l?al?b =+ ﬂ (gab — l?al?b — é’aéb) (3118)

where a and 3 are particular numbers (to be determined), and % and 2% are normalized versions of ¢
and 2% (So t* = pt® and 2* = p2%.) The argument we use to establish this is much like that used in
section 2.11 when we considered the Ricci tensor field in Friedmann spacetimes. In both cases, it turns
on an isotropy condition. Shortly, when we switch to an alternate coordinate representation of the Godel

metric, it will be clear that given any t-line (through any point), there is a global isometry (a rotation)

5We have
1
Vary = =2 "Vaty+2e " (Vaz)ty +yValo+ (Vay) G+ (67> + 3 ¥ )Vays —2e 2 (Vaa)yp +y (Vay) b
1
= —2e"Valy +yVaG + (672 + 5 YI)Vays + (Vaz)(2e ™t =272 ) + (Va )G + yus)-
But (2 %t, —2e"2%y,) = u?>Vyy and (& + yyp) = —p? Vyz. And the first three terms have vanishing symmetric
part since ¢%, (%, and y* are Killing fields. So V(4 kp) = 0.
6For (3.1.14), note that since ViaZy = —pu? V0aVy® = 0, and since (z* — yy?) and y* are Killing fields,
2
e

xr
Vazy, = Viazy = V) + (V) vp) = (Vay) vy = 1° T(Vay)(vby)+ex(v(ay)(vb)t) .
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that leaves fixed every point on the line and also preserves the field z®. In effect, we now make use of
that rotational symmetry, but cast the argument in terms of Killing fields rather than of the rotations

themselves.

Since we can find an isometry that maps any one point in M to any other and preserves both t* and
2%, it will suffice to show that (3.1.18) holds at one point, say p = ®71(0,0,0,0). To do so, it will suffice
to show, in turn, that the two sides of (3.1.18) yield the same result when contracted with each of the
vectors t*, %, (t* — y®),2%. (It is convenient to work with this basis because the vectors are mutually
orthogonal at p. It does not matter that they are not normalized.) So our task reduces to showing that

the following all hold at p (for some values of o and ).
() Rapt® = aty  (13) Rapx® = Bap  (418) Rap (1° — y*) = B(ts —wp)  (iv) Rep2* =0
Given any Killing field A* in any spacetime, we have
Ry A* = R"qpn A = =R Ag = V,, Vp A™. (3.1.19)

(The second equality follows from the symmetries of the Riemann curvature tensor field, and the third
follows from proposition 1.9.8.) So, in particular, applying this result to the Killing field 2% in Gdodel

spacetime, and recalling (3.1.16), we have Rgp, 2* = V,, Vi, 2™ = 0. This gives us (iv).

Next, consider the field
1
K = =2(e™™ — 1)t* + ya + (eh — §y2 - 1) y°. (3.1.20)

It is a linear combination of Killing fields (k'® = k* 4+ 2t* — y®) and so is, itself, a Killing field. What

is important about it is that it vanishes at p.” Notice that we have

[t* &' = [2% K] = 0, (3.1.21)
[, K9] = 2 %t* —2e 2y, (3.1.22)
[y, ' = % — yy* (3.1.23)
everywhere®, and so
Lozt = [ 2% = =2(t* —y?), (3.1.24)
Loy® = [y = —a° (3.1.25)

at p. Since k’® vanishes at p, we have £ f = k'*Vof = 0 at p for all smooth scalar fields f. So, in

particular, since ' Lie derives Ry (as all Killing fields do) and Lie derives t* (by (3.1.21)), we have
0 = £o(Rapty®) = Rapt® (£xy®) = —Rapt®a?, (3.1.26)
0 = £Lo(Rapt®2®) = Rapt® (Lwab) = =2 Ry t*(t° — b) (3.1.27)

Tt is, in fact, up to a constant, just the rotational Killing field (8/9¢)® that we shall consider below. The latter, as we

shall see, generates a one-parameter group of rotations that keep fixed all points on the ¢-line through p (and preserve z%).

8These all follow easily from the Lie bracket relations that we have already established.
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at p. These two, together with (iv), show that Rt must be proportional to ¢, at p, which is what we
need for (i). Similarly, we have
0= Lo(Rapy"y") = Rap £ (y° ") = 2Rapy* (£y") = —2 Rapy" 2
at p. This, together with (3.1.26) and (iv), shows that (ii) must hold for some 3. Finally, (iii) follows
from (ii). For if R, z* = [ ay, then
—2Rap (t* —y*) = Rup £wa® = £o(Rap ) = £o(Bay) = BLway = =20ty — ).
(For the final equality, we use the fact that £, gop = 0 and, so, £ xp = £x/(gap %) = gap £rx® =
=290 (1" —y*) = =2(tv — w)-)
Now it only remains to compute o and 3 in (3.1.18). It follows from (3.1.17) and from (3.1.19) — as
applied to the Killing fields t* and x® — that
a = Raptt® = p 2 Rypt™® = p 24"V, Vyt" = u 2V, (t°Vyt") — (V. t')(Vpt")]
= —u 2 (Vat") (V")
and (by the same argument)
B = —p? (Vna")(Va").
Now, raising indices in (3.1.13) and (3.1.14), using (3.1.4), yields

x

Vath = Sal(Vay) + (-7 + (o),
Vazb = %tb(vn Y) + (—e "yt + 0)(Vot)
It follows that
(Vo t))(Vpt") = =1 (V2" (Vy2™) =0 (3.1.28)

and, therefore, « = p~2 and 3 = 0. Thus we have
Rap = 2ty tp. (3.1.29)

So R = p~2 and
—2 2

1 L —2 o
Rab - §Rgab = K 2tatb - uTgab = NT (tatb - (gab - tatb)) .

Therefore,

(3) Gadel spacetime is a solution to Finstein’s equation (without cosmological constant)
1 A P
Rab - §Rgab =87 (p taty — p (gab — tq tb))

for a perfect fluid with four-velocity t, mass-density p = 1/(16 w u?), and pressure p = 1/(16 7 p?).

(Equivalently, it is a solution to Einstein’s equation with cosmological constant X = —1/(2 u?)
1 FR
Rab - §Rgab - )\gab - 87Tp/ta tb

for a dust field with mass-density p' = 1/(8 7 u?).)
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Recall that a perfect fluid satisfies the dominant energy condition iff [p| < p. So if we construe Godel
spacetime as a perfect fluid solution to Einstein’s equation without cosmological constant, the perfect

fluid in question is only “borderline” for satisfying the condition.

Let us further consider the normalized field * = ¢© /i, which we now understand to represent the
four-velocity of the background source fluid. We know that its associated expansion field ,;, vanishes
(because it is a Killing field), as does its acceleration (by (3.1.17)). Let us now compute its associated

rotation field w?.

Let €?¢? be a volume element on M. (We know that volume elements exist since, for example,
tle 2%y 24 is an anti-symmetric field on M that is everywhere non-vanishing. We need only normalize
it to obtain a volume element.) The field V, ¢, is anti-symmetric and it is orthogonal to both ¢* and 2%

(by (3.1.13)). So we can express it in the form

Vaty = f €abed t¢ Zd
for some field f. To determine f, we need only contract each side with itself and make use of (3.1.28):

1 = (Vatp) (V® tb) = f2 Cabea 1€ 20 o = —4 f2 st o™ ¢ 2%, 2

= 22t — " ) b 2 = 2t 2

Taking f to be positive — we can always switch from the volume element €,pcq t0 —€4peq if necessary —
we have

Va tb = \/_2—‘u2€abcd tc Zd.

Hence, using this volume element to compute the rotation vector field,

[y

a o 1 abed § T 1 abed o abed m .n
w = 56 tbvctd = 2—/1,26 thCtd = 2\/§'u46 tbecdmnt z
—4 1
= 6[am 6b]n tp " = (tbtb) 2% = 2%, (3130)

2\/5#4 \/§N4

Let us record this result too.

V2 p?

(4) The four-velocity t* in Gédel spacetime is expansion free (6 = 0), shear free (dq, = 0), and geodesic
(#"V .t = 0), but its rotation field w® is non-vanishing and constant (Vqw® = 0). Indeed, w® is

just (1/v/2 ) 2%, The Gédel universe is thus in a state of uniform, rigid rotation.

It turns out that there are only two homogeneous perfect fluid solutions in which (i) the mass density
is non-zero, (ii) the fluid four-velocity is expansion free, shear free, and geodesic, and (iii) the underlying
manifold is simply connnected?, namely the Einstein static universe (Hawking and Ellis [30]) and Godel

spacetime. (Godel asserted this result, without proof, in [25]. Proofs can be found in Ozsvath [48] and

9The third condition is needed to rule out further examples that can be generated by identifying points.
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Farnsworth and Kerr [19].) So Godel spacetime itself is picked out if one adds the requirement that (iv)

the rotation field of the fluid is non-vanishing.

We next want to establish the existence of closed timelike curves in Godel spacetime and characterize
its timelike and null geodesics. To do so, it will be convenient to switch to a different coordinate represen-
tation of the metric. This one, cast in terms of a cylindrical coordinate system ¢, 7, ¢, Z, makes manifest

the rotational symmetry of Godel spacetime about a particular axis, but hides its homogeneity:

Gap = 4 [(daf)(dbf) — (dar)(dyr) = (da2)(dpZ) + (sh* r — sh1?)(de®)(dp®) + 2 V2 shr (d(af)(d) M :
(3.1.31)

(Here we write “ch” and “sh” for “cosh” and “sinh” respectively.)

We have to be a bit careful here as to what we mean by a “coordinate system”. We are not quite
talking about a 4-chart in the sense of section 1.1. Here is a more precise formulation. Let A be the “axis
set” consisting of all points in M of the form ®~1(¢,0,0, z), and let M~ be the excised set M — A. We

claim that there exist smooth maps
t:M —R re M~ — RV ¢: M~ — St Z:M —R (3.1.32)

such that the composite map

A: M~ —-RxRt xS xR (3.1.33)

determined by the rule ¢ — (£(q),7(q), ¢(q), Z(q)) is a diffeomorphism and (3.1.31) holds on M ~. (Here
R* is the set of reals that are strictly positive, and S* is identified, in the usual way, with R mod 27.)
Under these conditions, we can define coordinate vector fields (9/0%)%, (9/9r)%, (0/0¢)*, (0/0Z)* much

as we did in section 1.1.1° We shall use the following abbreviations for them:

fa B 2 a o g a d)a B 3 a o 2 a
-\t ~\or ~ \ 0o “\oz)
The radial coordinate r can be extended to a map 7: M — R U {0} that is, at least, continuous on the

axis A.

The relation between the new conditions and the old is given by the following conditions:

e’ = ch2r + (cos¢)(sh2r), (3.1.34
yet = V2(sing¢)(sh2r), (3.1.35
2 = 23 (3.1.36

)
)
)
¢ t—2t 72 b t—2t¢ T

t — = "tan = h —. 1.
an<2+ e e an 3 where Wo <3 (3.1.37)

1080, for example, let ¢ be any point in M~. Then s+— A~Y(#(q),r(q), #(q) +s,2(¢q)) is a smooth curve through q. We
understand (0/90¢)® at ¢ to be the tangent vector to the curve there.
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With some work, one can show directly that these conditions do, in fact, properly define smooth maps
over the domains indicated in (3.1.32)!! and use them to derive the expression for g, given in (3.1.31).
(The details are worked out with great care in Stein [58].) We skip this work and make just two remarks
about the conditions. Later, in an appendix, following Godel [25], we shall establish the equivalence
of the two coordinate representations a somewhat different way. It will involve a direct appeal to a

coordinate-free description of the metric.

First, it is clear from the first two conditions in the list why we need to restrict attention to M. If
x =y = 0, they will be satisfied iff r = 0. But if » = 0, those conditions impose no constraints on ¢ (and
neither do the other conditions). So ¢ is not well defined on M — M~. (On the other hand, if either
x #0ory#0, then (3.1.34) and (3.1.35) determine unique values for both ¢ and r.)

Second, though the exact relation between ¢ and t is complex, their associated coordinate fields * and
% are proportional to each other, i.e, we have {* = at* for some «. This follows from the first three
conditions. For when r, ¢, Z are fixed, x, v, z are fixed as well. So every #-line (characterized by constant
values of 7, ¢, Z) is also a t-line (characterized by constant values for z,y, z). And it follows from (3.1.37)

that the proportionality factor must be 2.'2 So we have

t = 2t (3.1.38)
We also have

Z0 =22 (3.1.39)
from (3.1.36).

Let us now accept as given the second coordinate representation of the Goédel metric (in terms of
cylindrical coordinates). We shall work with it much as we did the first representation. Note that the

inverse of the metric now comes out (in M ™) as

1 (shr — sh?r) 5 - b~ 1 2v/2 .
be __ b je b,.c b zc b ic (b 1c)
= |- e - S S— S e S— .
g 4 2 (sh*r 4+ sh?r) nr S (sh*r + sh?r) o0 + (sh*r 4+ sh?r) ¢
(3.1.40)
Consider ¢*. Since
ba ¢ = 4pu? (sh*r — sh?r), (3.1.41)

it qualifies as spacelike, null, or timelike at a point ¢ in M~ depending on whether r(g) is less than,
equal to, or greater than the critical value r. = In(1 + \/5) where sh assumes the value 1. The angular
coordinate ¢ is defined only on M ~, but we can smoothly extend ¢® itself to all of M by taking it to

be the zero vector on M — M~ i.e., on the axis A. We shall understand it that way in what follows.

HStrictly speaking, the conditions define £ only on the restricted domain M ~. But it can be smoothly extended to all of
M.

121t follows from (3.1.37), specifically, that the difference (t — 2) is constant on every Z-line, i.e., once r and ¢ are fixed,

(t —21%) is fixed as well. So t"V,,(t — 2%) = 0. It follows that & = at?Vpt = "Vt = "V, (2%) = 2.
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Where ¢® is timelike (and where it is null but non-zero) it qualifies as future-directed, because temporal
orientation is determined by t* (or, equivalently, £%), and ¢, = 42 pu?sh?r. (So t%¢, > 0, unless
r=0.)
t* and 2 are, of course, Killing fields. We know that from before. So is ¢®. It is the generator of a
%
one-parameter family of (global) isometries {T"s},cs1 defined by
¢ AT (E(p), (p). ¢(p) +5, 2(p)) ifpe M,

I's (p) =
®) P ifpe A

The three Killing fields under consideration have vanishing Lie brackets with one another:
[, 9" = [i* 2] = [¢°, 2] = 0. (3.1.42)

(Once again, these relations follow most easily from proposition 3.1.1.) Now let p be any point on the
axis A. The maps i’b‘s all leave p fixed, and leave £ and 2° fixed as well (by proposition 1.6.6). So if
U is the two-dimensional subspace of M, that is orthogonal to both t* and 2%, the maps T's induce a
one-parameter family of rotations of U. And what is true here of p is true quite generally, because of

homogeneity as formulated in (2). So we have the following isotropy claim.

(5) Godel spacetime is (globally) isotropic in the following sense: given any point p, and any two
unit spacelike vectors oo and go at p that are orthogonal to both t* and 2, there is an isometry
b M — M such that ¥(p) = p, e (i) = 19, . (39) = 3%, and ¥, (0%) = &°.

And now it is also clear, as announced, that Godel spacetime admits closed timelike (and closed null)
curves. Indeed, consider the set of (maximally extended) integral curves of ¢*. They are closed curves,
characterized by constant values for £, and 2. We shall call them (or their images) Gédel circles. As we
have just seen, they qualify as timelike if > r. and null if » = r.. These particular curves are centered
on the axis A. But by homogeneity, it follows that given any point in Godel spacetime, there are closed
timelike and closed null curves passing through the point. Indeed, we can make a much stronger assertion.

The “causal structure” of Godel spacetime is completely degenerate in the following sense.

(6) Given any two points p and q in Gddel spacetime, there is a smooth, future-directed timelike curve
that runs from p and q. (Hence, since we can always combine timelike curves that run in the two

directions and smooth out the joints, there is a smooth closed timelike curve that contains p and q.)

Thus a time traveler in Gédel spacetime can start at any point p, return to that point, and stop off at
any other desired point ¢ along the way. To see why (6) holds, consider figure 3.1.1. It gives, at least, a
rough, qualitative picture of Gddel spacetime with one dimension suppressed. We may as well take the
central line to be the axis A and take p to be a point on A. (By homogeneity once again, there is no loss

in generality in doing so.) Notice first that given any other point p’ on A, no matter how “far down”,
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matter
worldline | |

Lo ; closed timelike
l ,r ot line
p

Figure 3.1.1: Godel spacetime with one dimension (the Z dimension) suppressed.

there is a smooth, future-directed timelike curve that runs from p to p’. We can think of it as arising in
three stages. (i) By moving “radially outward and upward” from p (i.e., along a future-directed timelike
curve whose tangent vector field is of the form #* + ar?, with a positive!?), we can reach a point p; with
coordinate value r > r.. At that radius, we know, ¢® is timelike and future-directed. So we can find an
€ > 0 such that (—e® 4 ¢%) is also timelike and future-directed there. (ii) Now consider the maximally
extended, future-directed timelike curve v through p; whose tangent is everywhere equal to (—et® + ¢%)
(for that value of €). It is a spiral-shaped curve of fixed radius, with “downward pitch”. By following
v far enough, we can teach a point py that is well “below” p’. (We can overshoot as much as we might
want.) Now, finally, (ili) we can reach p’ by working our way upward and inward from py via a curve
whose tangent vector is the form % + a7%, but now with a negative. It remains only to smooth out the
“joints” at intermediate points p; and ps to arrive at a smooth timelike curve that, as required, runs

from p to p'.

Now consider any point g. It might not be possible to reach ¢ from p in the same simple way we
went from p to pi, i.e., along a future-directed timelike curve that moves radially outward and upward.
p might be too “high” for that. But we can get around this problem by first moving to an intermediate
point p’ on A sufficiently “far down” — we have established that that is possible — and then going from

there to ¢. (This completes the argument for (6).)

Other interesting features of Godel spacetime are closely related to the existence of closed timelike
curves. So, for example, a slice (in any relativistic spacetime) is a spacelike hypersurface that, as a subset
of the background manifold, is closed. We can think of it as a candidate for a “global simultaneity slice”.
It turns out that there are no slices in Godel spacetime. More generally, given any relativistic spacetime,
if it is temporally orientable and simply connected, and has smooth closed timelike curves through every

point, then it does not admit any slices (Hawking and Ellis [30, p. 170]).

13Note that t* + ar® is timelike so long as a? < 1.
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Next we have the following basic fact.
(7) There are no closed timelike or null geodesics in Gddel spacetime.

We can easily confirm this, even before we characterize the class of timelike and null geodesics. It suffices
(by homogeneity) to show that there are no closed timelike or closed null geodesics that pass through
some particular point p on the axis A. Consider the set C' = {q: r(q) < r.}. We shall call it the critical
cylinder surrounding A. We can establish our claim by showing two things: (i) all timelike geodesics that
pass through p are fully contained within C, and all null geodesics that pass through p are fully contained

within the closure of C; and (ii) there are no (non-trivial) closed causal curves within the closure of C.

For (i), let v be any timelike or null geodesic that passes through p, and let A* be its tangent field. We
may as well assume that 7 is future-directed (since otherwise we can run the argument on a new curve
that results from reversing the orientation of ). Since ¢ is a Killing field, the quantity A%¢, is constant
on 7. (Recall problem 1.9.6.) It is equal to 0 at p, since ¢* is the zero vector there. So it must be 0
everywhere. Now on the boundary of C' (where r = r..), ¢* is a non-zero, future-directed null vector. So
its inner product there with any future-directed timelike vector is strictly positive. It follows that if ~y
is timelike, it can never reach the boundary of C. (If it did, we would have A*@, > 0 there.) It must
stay within the (open) set C. Similarly, at all points outside the closure of C, ¢* is a future-directed
timelike vector. So its inner product with all future-directed causal vectors (even null ones) is strictly
positive. And therefore, if «y is null, it must remain within the closure C. (As we shall see in a moment,

null geodesics through p do periodically intersect the boundary of C.)
For (ii), note that, by (3.1.40),

1 (sh*r — sh?r)

@ (7, t t) = ——5 L.
97 (Vat) (Vo) 42 (shir + sh?r)

So V,t is timelike within C' and null (and non-zero) on the boundary of the set. It is future-directed
both in C and on its boundary (since 1V, ¢ = 1). Now let v be any non-trivial future-directed causal
curve that passes through p, and let A% be its tangent field. Then (since A* and V,, t are co-oriented), we
have A"V, ¢ > 0 at all points in C and A"V,, £ > 0 at all points on the boundary of the set. So v cannot
possibly stay within the closure of C' and still close back on itself.

Now, finally, let us characterize the set of all timelike and null geodesics in Godel spacetime. The
Z® direction is not very interesting here, and we may as well restrict attention to curves that fall within

a Z% = constant submanifold, i.e., curves whose tangent fields are orthogonal to Z* (or equivalently to

Za).14

M Given any smooth curve s — ®71(t(s), z(s),y(s), 2(s)) in Godel spacetime, it qualifies as a geodesic iff (i) z(s) is of
the form z(s) = 2o + k s, for some numbers 2o and k, and (ii) the projected curve s — ®~1(t(s), z(s), y(s), z0) qualifies as

a geodesic. This follows because Vg 2b=o0.
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We shall first consider certain examples that admit a particularly simple description. Then we shall
argue that they are, up to isometry (and reparametrization), the only ones. A small bit of computation
is involved. For that we need the following simple results that are the counterparts to ones presented

earlier for the first set of coordinates. At points in M ~, where r > 0, we have

¢y = 4Ap?[(sh*r — sh®>1)\Vu ¢ + V2sh>r Vi), ( )

Voo = 4p*[(Ash®r — 2shr)(chr)(Viar)(Vi @) + 2V2(shr)(chr) (Vo r)(Vy )], (3.1.44)

'Vady = —4p*(2sh>r — shr)(chr)Vyr, ( )

¢'Valy = 1°Vagp = —4V2u% (shr)(chr)Vyr. ( )

(For the second equation, we use the fact that ¢ is a Killing field and, so, V(4 ¢ = 0. For the fourth,
we use (3.1.42).)

Consider fields of the form t* + k ¢®, where k is some real number. Their integral curves are “helices”
on which 7 and Z are constant (since 1V, 7 = t*V, % = 0, and similarly for ¢%). Our goal is to show
that some of these helices — characterized by particular choices for k and r — are causal geodesics. Let

k and r be fixed, and let v be an integral curve of * + k ¢ associated with these values. Then, we have
(1 + k¢ (o + ko) = Ap2 [k (sh*r — sh®r) + 2V2(sh®> 1)k +1] (3.1.47)
and (by (3.1.45), (3.1.46), and the fact that % is a geodesic field),

A+ ko )Va (o +kop) = 2k[—4V2u® (shr)(chr)Vyr]
+k2[—4u2 (25h3r — shr)(chr)Vyr]

—4 42k (shr)(chr)[2V2 4+ k (2sh?r — 1)] V. (3.1.48)

Thus « is a geodesic iff k = 0 (in which case it is just an integral curve of £%), or 7 = 0 (in which case,

again, it is an integral curve of %, now on the axis), or
k(2sh®r — 1) + 2vV2 = 0. (3.1.49)

It is a null geodesic iff this condition holds and the right side of (3.1.47) is 0. That leaves us with two

equations in two unknowns. They yield

V3 1)

7 is a null geodesic <= sh®r = ( ) and  k=2(1 + v?2)
or, equivalently (since sh2r = 2 (shr)(chr)),

vis anull geodesic <= r= = and k=2(1 + V2).
Similarly, after excluding the trivial cases where k = 0 or » = 0, , we have

Te 22

v is a timelike geodesic <= r < ) and k= 7(1 o)
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Thus, given any point ¢ with r coordinate satisfying 0 < r < r./2, there is exactly one value of k for

which the helix through ¢ with tangent field £ + k ¢ is a timelike geodesic.

The number k here has a natural physical interpretation in terms of relative speed. Think of the
tangent vector £* + k ¢® as a (non-normalized, possibly null) velocity vector. We can extract a “speed
relative to t%” if we first decompose it into components tangent to, and orthogonal to, t%, and then divide
the norm of the second by the norm of the first. With just a bit of calculation, we get
k(shr)(chr)

v = speed relative to t¢ = .
P 1+ k+\2sh2r

It follows that & = 2v/2/(1 —2sh?r) holds iff v = /2(sh2r)/(ch2r). So we can reformulate our

equivalence this way:

h?2
v is a timelike geodesic <+ r < Te and v = > T.
2 ch2r

(Notice that v/2 (sh2r)/(ch2r) goes to 1 as r approaches r./2.)

Here is our characterization claim.

(8) The special geodesics we have just considered — the ones that are (maximally extended) integral
curves of t*+k¢* for some k — are, up to isometry and reparametrization, the only mazimally
extended, future-directed, null and timelike geodesics in Gddel spacetime (confined to a Z = constant

submanifold).

Let us verify it, first, for null geodesics. Let 71 be any maximally extended, future-directed, null
geodesic confined to a submanifold N whose points all have some particular Z value. Let ¢ be any point
in N whose r coordinate satisfies sh? r = (v/2—1)/2. Pick any point on ;. By virtue of the homogeneity
of Godel spacetime — as recorded in (2) — we can find a (temporal orientation preserving) global isometry
that maps that point to ¢ and maps N to itself. Let 72 be the image of v, under that isometry. We know
that at q the vector (£% 4 k ¢?) is null if £ = 2(1 + v/2). So, by virtue of the isotropy of Gédel spacetime
(in the sense of (5)), we can find a global isometry that keeps ¢ fixed, maps N to itself, and rotates o
onto a new null geodesic 73 whose tangent vector at q is, at least, proportional to (£¢ +2(1 + \/5) o),
with positive proportionality factor. If, finally, we reparametrize 3 so that its tangent vector at ¢ is
equal to (£% +2(1 4+ v/2) ¢?), then the resultant curve must be a special null geodesic helix through ¢
since (up to a uniform parameter shift) there can be only one (maximally extended) geodesic through ¢

that has that tangent vector there.

The corresponding argument for timelike geodesics is almost the same. Let +; this time be any
maximally extended, future-directed, timelike geodesic confined to a submanifold N whose points all
have some particular Z value. Let v be the speed of that curve relative to . (The value as determined at
any point must be constant along the curve since it is a geodesic.). Further, let ¢ be any point in N whose

r coordinate satisfies v/2 (sh 2r)/(ch 2r) = v. (We can certainly find such a point since v/2 (sh 2r)/(ch 2r)
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runs through all values between 0 and 1 as r ranges between 0 and r./2.) Now we can proceed in three
stages, as before. We map 71 to a curve that runs through ¢q. Then we rotate that curve so that its tangent
vector (at ¢) is aligned with (% + k ¢®) for the appropriate value of k, namely k = 2+/2/(1 — 2sh?7).
Finally, we reparametrize the rotated curve so that it has that vector itself as its tangent vector at q.
That final curve must be one of our special helical geodesics by the uniqueness theorem for geodesics.

(This completes the argument for (8).)

The special timelike and null geodesics we started with — the special helices centered on the axis A
— exhibit various features. Some are exhibited by all timelike and null geodesics (confined to a Z =
constant submanifold); some are not. It is important to keep track of the difference. What is at issue
is whether the features can or cannot be captured in terms of g, t%, and ¢ (or whether they make
essential reference to the coordinates t,r, ¢ themselves). So, for example, if a curve is parametrized by
s, one might take its vertical “pitch” (relative to ) at any point to be given by the value of df/ds there.
Understood this way, the vertical pitch of the special helices centered on A is constant, but that of other
timelike and null geodesics is not. For this reason, it is not correct to think of the latter, simply, as
“translated” versions of the former. On the other hand, the following is true of all timelike and null
geodesics (confined to a Z = constant submanifold). If we project them (via £*) onto a two-dimensional

submanifold characterized by constant values for ¢ as well as Z, the result is a circle.®

Here is another way to make the point. Consider any timelike or null geodesic v (confined to a 2
= constant submanifold). It certainly need not be centered on the axis A and need not have constant
vertical pitch relative to . But we can always find a (new) axis A’ and a new set of cylindrical coordinates
t’ 1", ¢ adapted to A’ such that v qualifies as a special helical geodesic relative to those coordinates. In

particular, it will have constant vertical pitch relative to .

Let us now consider all the timelike and null geodesics that pass through some point p (and are confined
to a Z = constant submanifold). It may as well be on the original axis A. We can better visualize the
possibilities if we direct our attention to the circles that arise after projection (via t*). Figure 3.1.2
shows a two-dimensional submanifold through p on which ¢ and Z are both constant. The dotted circle
has radius r.. Once again, that is the “critical radius” at which the rotational Killing field ¢* is null.
Call this dotted circle the “critical circle”. The circles that pass through p and have radius r = r./2
are projections of null geodesics.!® Each shares exactly one point with the critical circle. In contrast,
the circles of smaller radius that pass through p are the projections of timelike geodesics. The diagram
captures one of the claims we made in the course of arguing for claim (7) — namely, that no timelike or

null geodesic that passes through a point can “escape” to a radial distance from it greater than r..

15Notice that we can capture this projection condition in terms of gup, t%, and 2%. It holds of a given curve ~ iff there is
an integral curve of ® such that all points on v are the same “distance” from it, where distance is measured along geodesic
segments that are orthogonal to both % and 2¢.

16The assertion that a certain timelike or null geodesic has a certain “radius” can be expressed without reference to the

value of a radial coordinate based on some axis. See the preceding note.
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null geodesic

(projected) timelike geodesic

(projected)

Figure 3.1.2: Projections of timelike and null geodesics in Godel spacetime. r. is the “critical
radius” at which the rotational Killing field ¢* centered at p is null.

We said at the beginning of this section that Gédel spacetime exhibits a “boomerang effect”. It should
now be clear what was intended. Suppose an individual is at rest with respect to the cosmic source fluid
in Godel spacetime (and so his worldline coincides with some #-line). If that individual shoots a gun at
some point, in any direction orthogonal to Z%, then, no matter what the muzzle speed of the gun, the
bullet will eventually come back and hit him (unless it hits something else first or disintegrates). Here is

a purely geometric formulation.

(9) (Boomerang Effect) Let L be any t-line in Gédel spacetime, and let v be any maximally evtended
timelike or null (but non-degenerate) geodesic on which the value of 2% is constant. Then if ~
intersects L once, it does so infinitely many times; and the temporal interval between intersection

points (as measured along L) is constant.

Appendix: A Coordinate Free Characterization of Godel Spacetime

Here, following Godel [25] and [27], we characterize the geometric structure of Godel spacetime in
coordinate-free terms, and use this characterization to establish the equivalence of our two coordinate

representations of the metric.!”

First, Godel spacetime (M, gqs) can be decomposed as a metric product. One component is the
manifold R together with the (negative-definite) metric —u? dz,dzp,. The other component is the manifold

R3 together with a certain metric hyp of signature (1,2). The latter can be expressed as

hab = hab + Ta To,

where

(1) hap is a geodesically complete metric on R?® of signature (1,2) and constant positive-curvature

1/(4p?);

17The material in this appendix is taken, with only minor changes in notation, from Malament [39].
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(2) ™ = hat 7, is a unit timelike Killing field with respect to Pap-

(In (2), ha is the inverse of hgp, i.e., we are not using some other metric to raise indices.)

We can recover this characterization by starting with either of our two coordinate representations of
the Godel metric. Counsider the first, (3.1.1). Here the coordinates t,x,y, z range over all of R. We
arrive at the structure (R?, hqp) by dropping the dz, dz; term and restricting the reduced metric to any

submanifold of constant z value. The reduced metric assumes the form hg, + 7,7  if we set

hay = 2 %(vat)(vbt)+ew(v(at)(vb)y)—(vax)(va) , (3.1.50)

(Vat + €*Vay). (3.1.51)

Ta =

Sl

2
So, to justify the proposed characterization, it will suffice to confirm that these two fields satisfy (1) and
(2).

The inverse of hgp is

- 1
fbe _ » L@ tlbye) _ g ge _ 9o b } , (3.1.52)

and so 7 comes out to be (v/2/p) t*. (We are continuing to use the abbreviations in (3.1.2).) The latter
is a unit timelike field with respect to ﬁab, as required. It is also a Killing field with respect to that
metric. (The argument is almost exactly the same as the one used above to establish that ¢* is a Killing
field with respect to the original metric gqp.) So we have (2). For (1), note first that hgp, has signature
(1,2), since the vectors (v/2/u)t®, (V2/p) (t* —e~%y%), (1/u)z® form an orthonormal triple (of the

appropriate type) at every point. Next, consider the map
v (t7 Z, y) — (Ul, Uz, U3, ’U,4)

from R? into R* where

w o= 24 :005 <2L\/§> ch (g) - 2%/5 y e/? sin <$)] , (3.1.53)

us = 24 sm (2%/9 ch (%) + 2—\1/5 y €°/2 cos (%)] , (3.1.54)

us = 24 :—sin (%) sh (g) + 2%/5 y €%/ cos (2—t2) ] : (3.1.55)
|

[ t x 1 t
= 2 — | sh(= —— y ™% sin [ —= 3.1.56
Uy 1 _005 <2\/§> s (2) + e y e’ sin (2 2> ( )

A straightforward computation establishes that

(u1)? + (u2)® — (us)® — (ug)® = 4° (3.1.57)
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and, using (1.5.7), that

ot ((va W) (V) + (Vo uz) (Vi tiz) — (Vo uz) (Vi ) — (Vi ua)(Vy u4))

1

= u? <§(Va (Ve t) + e (Vat)(Viyy) = (Vaz)(Ve w)) . (3.1.58)

The map V¥, as it stands, is not injective. It makes the same assignment to (¢, x,y) and (¢ + 4v2 7, z, ).
But it is injective if we restrict ¢ to the interval [0,4v/2 7). Indeed, if ~ is the equivalence relation on R?

defined by
(t,z,y) ~ (t,2',y) iff 2'=x and 3 =y and t =t (mod 4v2 ),

then ¥ determines a diffeomorphism between the quotient manifold R3/~ and the manifold
H = {(u1,u2,us,us) € R*: (u1)® + (u2)® — (uz)® — (ug)® = 4p*} .18

By (3.1.58), it qualifies as an isometry with respect to the metric induced on the latter by the background
flat metric on R* of signature (2,2). But it is a standard result that H together with this induced metric
is a complete manifold of constant curvature 1/(4 u?). (See, for example, O'Neill [46, p. 113].) So —
since (R3, ﬁab) is an isometric covering manifold of the latter — (IR3, izab) is, itself, a complete manifold

of constant curvature 1/(4 p?). This gives us (1).

We can proceed in much the same way starting with (3.1.31), the second coordinate representation

of the Godel metric. This time we drop the dz, dZ, term and arrive at the desired decomposition of the

reduced metric (hqp = hap + 7o 1) if we set

hay = 4p? %(Vaf)(vbf)—(Var)(vbr)—sh2r(Va¢)(Vb¢)+\/§sh2T(V(af)(Vb)¢) , (3.1.59)

V2 1 (Vat + V2sh?rV, ). (3.1.60)

Ta

Here 7% = h®7, comes out as (1/v/2 1) 1% So we see, once again, by (3.1.38), that 7 = (v/2/u) t*. And
this time we can show that (R, he) is an isometric covering manifold of H (with respect to the induced

metric on H) by considering the map!?

\IJ/: (taTa ¢) — (Ul,UQ,Ug,U4)

where

18Note that we can invert the restricted map and explicitly solve for ¢, z,y in terms of w1, u2, u3, us. For example,
ul + uq
V(w1 +ua)? + (uz —u3)?

t = 22 arc cos

19 As characterized here, the map is defined only where 7 # 0. But it can be smoothly extended to points at which = = 0.
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U1

U2

us

Ug

One can check that (3.1.57) holds, once again, as does the counterpart to (3.1.58):

o' ((va W) (V) + (Vo uz)(Vy i) — (Vo uz) (Vi ) — (Vo ua)(Vy u4))

189

(3.1.61)

(3.1.62)

(3.1.63)

(3.1.64)

= 44 (390 DT4D) ~ (Var)(Vir) — 1 7 (T, 0)(T1) + VEshr (VD(Viyo) ). (3165

Here ¥’ is not injective, but it is so if we restrict  to the interval [0, 2v/2 7).

It should be clear now that our two coordinate expressions for the Godel metric are fully equivalent.

They are but alternate expressions for a metric on R* that we have been able to characterize in a

coordinate independent way.

We can gain further insight into the two maps ¥ and U’ if we recast them. Consider the (associative,

distributive) algebra of “hyperbolic quaternions”. We can construe them as elements of the form

@ = wi +wei+ wsj+ wik

where w1, ..., w4 are real numbers. Addition is defined by the rule

(w1 + wol + wsj + wak) + (w] + whi+ whj + wik)

((wl +w)) + (w2 + wh)i+ (ws + wh)j + (wsg + wﬁl)k).

Multiplication is defined by the requirement that (the real number) 1 serve as an identity element and

by the relations

i-i
AN
ij
j-k
k-i

-1,
k-k = 1,
—j-i = k
“k-j = i,
ik = j.

If we define the conjugate and norm of ¢ by setting

E:

norm(p) =

wy — wol — w3j — wyk,

p-p

(w1)? + (w2)? — (w3)? — (w4)?,
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then it follows that -9 = E - E and, hence,
norm(y - 1) = norm(p) norm(z)) (3.1.66)

for all ¢ and . To simplify notation, we shall identify the hyperbolic quaternion w; + wai + wsj + wak
with the corresponding element (wy, wa, w3, wy) of R*. Then H is identified with the set of hyperbolic
quaternions of norm 4 2, and it acquires a natural (Lie) group structure: given any two elements u and
v’ in H, we take their product to be (1/4u?)wu - u’. The norm product condition (3.1.66) guarantees

that the product is well defined. The element u has u for an inverse.

Notice now that for all real number ¢, x,y, the quadruples
(cost, sint, 0, 0) (chz, 0,0, shx) (1,9, y,0)

all have norm 1. So their product has norm 1. Straightforward computation confirms that the associated
map

(t, z,y) — 2p(cost, sint,0,0) - (chxz, 0,0, shzx) - (1, y, y, 0)

is essentially just the first of the two maps from (R3,hap) onto H displayed in (3.1.53) — (3.1.56). This
is where it “comes from”. Strictly speaking, to match the coefficients in that map, we need to make a

small change and take the product to be

t ) t T T Y Y
2 cos (—=), sin(—=), 0,0 -(ch—,0,0,sh—)-(1,—,—,0).
a ( (2\/5) (2\/5) > (2) (2) 227 24/2
Similarly, we can recover the second of the maps from (R3,h,;) onto H, the one displayed in (3.1.61) —

(3.1.64), in the form

(t,r, ) — 2p (cos( ), sin(—=), 0, O) - (chr, 0, shr sing, shr cos ).

2

S
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3.2 Two Criteria of Orbital (Non-)Rotation

In general relativity, there is a natural and unambiguous notion of rotation at a point as it applies,
for example, to a fluid. This is the notion we considered in section 2.8. If the four-velocity field of the
fluid is £%, then we say that the fluid is non-rotating at a given point if its associated rotation field wqp

vanishes there or, equivalently, if £,V &, =0 there. (Recall problem 2.8.1.)

But when we consider notions of rotation that make essential reference to what happens over extended
regions of spacetime, the situation changes immediately. So, for example, consider a (one-dimensional)
ring centered about an axis of rotational-symmetry (figure 3.2.1). Just what does it mean to say that the
ring is “not rotating” around the axis? (It will be convenient to stick with the negative formulation.) This
turns out to be a subtle and interesting question in relativity theory. Various criteria for non-rotation
readily come to mind. In garden-variety circumstances, they are equivalent. But the theory allows for
conditions under which they come apart. It can happen that the ring is non-rotating in one perfectly

natural sense but is rotating in another.

Figure 3.2.1: What does it mean to say that a ring is “not rotating” around a central axis
of rotational symmetry?

In this section we consider two?’ such natural criteria for ring non-rotation: (i) the zero angular
momentum (ZAM) criterion, and (ii) the compass of inertia on the ring (CIR) criterion. In each case,
we give both a direct, geometric formulation and also a somewhat more intuitive, quasi-operational
formulation. We verify that the (ZAM) and (CIR) criteria agree if a certain simplifying condition obtains,

and we show that they do not agree in Godel spacetime.

In the next section, we step back from these two particular criteria and formulate a no-go result?' that
applies to a large class of “generalized criteria” of ring non-rotation. We abstract three conditions that

one might want a criterion of ring non-rotation to satisfy, and show that, at least in the case of some

20Tt would be easy to assemble a longer list of criteria. For example, we could consider non-rotation as determined at
“spatial infinity” (at least for the case of asymptotically flat spacetimes), non-rotation as determined relative to the compass
of inertia on the axis (CIA) criterion (Malament [41]), and yet other criteria (see Page [50]). We are not attempting here a
systematic account of orbital rotation in relativity theory. Our goal is to give an indication of the subject’s interest and to

prepare the way for a particular no-go theorem.

21The result presented here is a variant of the one in Malament [41].
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relativistic spacetime models, no generalized criterion of ring non-rotation satisfies all three. The upshot

is that no notion of orbital non-rotation in relativity theory fully answers to our classical intuitions.

We need a certain amount of background structure to set things up. In what follows, let (M, gas)
be a spacetime with two complete Killing fields, £* and ¢®, satisfying the following conditions: (i) #* is
timelike; (ii) the orbits of ¢® are closed; (iii) ¢® is spacelike except at “axis points” (if there are any)
where ¢ = 0; (iv) not all points are axis points, i.e., ¢* does not vanish everwhere; (v) [t%, $?] = 0; (vi)
ta 9Veltq = 0 and t, ¢,V dg = 0.

Godel spacetime meets this description, at least if we restrict attention to the open set where r < r..?2

Another example is Minkowski spacetime. Yet a third — at least if we restrict attention, once again, to

a certain open set — is Kerr spacetime, which we shall consider very briefly in the next section.

The stated conditions are, more or less, the usual ones defining a “stationary, axi-symmetric spacetime”
(Wald [60]). For convenience, we have strengthened things a bit (compared to some formulations) by
requiring that * and ¢® be complete. The added strength is harmless. The point here is that even with
this much structure in place, the two criteria of ring non-rotation need not agree. In what follows, when
we refer to a stationary, axi-symmetric spacetime with Killing fields t* and ¢®, it should be understood

that the stated conditions obtain.

The conditions themselves should be clear except, possibly, (vi). It asserts that, at least locally, there
exist two-dimensional submanifolds that are orthogonal to both #* and ¢®. (This is a consequence of
Frobenius’ theorem. See the first part of the proof of theorem 7.1.1 in Wald [60, p. 163].) In Godel
spacetime, for example, these are submanifolds characterized by fixed values for £ and ¢, and free values

for r and Z.

With this structure in place, we can represent our ring as an imbedded two-dimensional submanifold
R that is invariant under the isometries generated by t* and ¢® (and on which ¢® # 0). We call the
latter an orbit cylinder. To represent the rotational state of the ring, we need to keep track of the motion
of individual points on it. Each such point has a worldline that can be represented as a timelike curve
on R. So we are led to consider not just R, but R together with a congruence of smooth timelike curves

on R (figure 3.2.2).

We want to think of the ring as being in a state of rigid rotation, i.e., rotation with the distance
between points on the ring remaining constant. So we are further led to restrict attention to just those
congruences of timelike curves on R that are invariant under all isometries generated by t%. Equivalently
(moving from the curves themselves to their tangent fields), we are led to consider future-directed timelike

vector fields on R of the form (£* + k ¢%), where k is a number. We shall call the pair (R, k) a striated

22That condition (vi) holds in Gédel spacetime follows from (3.2.11) and (3.2.12) below. (We are deliberately using the
same notation that we used in the preceding section for Godel spacetime so that we can easily go back and forth between

claims about the general case and claims about that one example.)
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Figure 3.2.2: A “striated orbit cylinder” that represents a particular rotational (or non-
rotational) state of the ring.

orbit cylinder. And, quite generally, we can take a “criterion of ring non-rotation” to be, simply, a

specification, for every striated cylinder (R, k), whether it is to count as “non-rotating”.

Officially, now, our two criteria can be formulated as follows. Let (R, k) be a striated cylinder. (Recall
that we say a timelike vector field 1, normalized or not, is non-rotating at a point if n7,Vyn, = 0

there.)

(1) (R, k) is non-rotating according to the zero angular momentum (ZAM) criterion if (t* + k ¢¢) is
orthogonal to ¢* on R, i.e., (f‘l +k¢)pa = 0.

(2) (R, k) is non-rotating according to the compass of inertia on the ring (CIR) criterion if (£% + k ¢%)

is non-rotating on R, i.e., the following condition holds on R:

E[avbfc] + ki[avb (bc] + k¢[avbfc] + k2 ¢[avb (bc] = 0. (3.2.1)

The orthogonality condition in (1) just captures the requirement that every point on the ring have zero
angular momentum with respect the rotational Killing field ¢*. (Recall our discussion in section 2.9.) So

the terminology makes sense.

Let us now recast the two criteria in quasi-operational terms. Let us start with the second. Here is
one way to set up an experimental test. Suppose we mount a gyroscope at some fixed point on the ring in
such a way that it can rotate freely. And suppose that at some initial moment the axis of the gyroscope
is oriented so as to be tangent to the ring (figure 3.2.3). Then we can consider whether it remains tangent
over time. It turns out that it will do so (i.e., remain tangent to the ring) iff the ring is non-rotating

according to the CIR criterion.

We shall verify this equivalence in a moment. But first, notice that the stated experimental test does
seem to provide a natural criterion of non-rotation. Think about it. If the ring were rotating — here

we are simply appealing to ordinary intuitions — we would expect that the angle between the gyroscope
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axis and (an oriented) tangent line would shift from 0° to 90° to 180° to 270° and back to 0° as the ring
passed through one complete rotation. The intuition here is that the tangent line changes direction as

the ring rotates, but the axis of the gyroscope does not.

Figure 3.2.3: An experimental test to determine whether the ring is non-rotating according
to the CIR (compass of inertia on the ring) criterion.

Now consider how we can capture, most directly, the stated “gyroscope remains tangent” condition.
Let v be a future-directed timelike curve that represents the worldline of the point on the ring where the
gyroscope is mounted. The gyroscope there does not “change (spatial) direction as determined relative
to 7”. That is what makes it a gyroscope. So the “gyroscope remains tangent” condition will be satisfied
iff the tangent field ¢* itself (now conceived as a field on ) does not “change (spatial) direction relative

to v”. We need only spell out the latter condition.

Let n* = (£ + k¢%), let n = (™n,)"/?, and let /* be the normalized field defined by n* = 57
Finally, let hyp be the spatial projection field (gap — 7jq 7o) determined relative to 7%, Then the spatial
direction of ¢ as determined relative to v is h’,¢™. And ¢® is “not changing (spatial) direction relative
to " iff

Wy )" Vo (h*n¢") = 0. (3.2.2)
This condition asserts that the spatial component of 7™V, (h®,¢") as determined relative to ~ vanishes.

When it holds we say that h®,¢" is Fermi transported along ~.

We can simplify the condition slightly if we cast it in terms of n® = (* + k¢®) rather than the
normalized field 7®. Here and in what follows we make repeated use of the fact that n® is a Killing field

and that n® Lie derives ¢ and #* (since the Lie bracket of ¢® and £® vanishes), i.e., we have
Ly = £, =0 and  £,gw = 0. (3.2.3)
Expanding hqp, we see that (3.2.2) holds iff
(9% — %) 1" Vi [¢° — (¢"10) ) = 0.

But 7™V,n = 0 and 7™V, (¢",) = 0 by (3.2.3), and 7"V, ¢ = 0 since ¢* is a Killing
field. Furthermore, 7, 7™V, 7" = 0, since A° is of unit length. So (3.2.2) holds iff

20" Vo % = (6" 1) N Vi . (3.2.4)
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With all this as motivation, we have the following definition.

(2) (R, k) is non-rotating according to the gyroscope remains tangent (GRT) criterion if n® = (t*+k ¢%)
satisfies (3.2.4) on R (with n = (n"n,)"/?).

Our earlier claim of equivalence now comes out as the following proposition.

Proposition 3.2.1. A striated orbit cylinder (R,k) qualifies as non-rotating according to the compass
of inertia on the ring (CIR) criterion iff it qualifies as non-rotating according to the gyroscope remains

tangent (GRT) criterion.

Proof. One direction is easy. Assume that 7, V., 7, = 0 on R. Then contraction with n™¢" yields

(¢>"77n) NV e + Man" 0" Vi im + (77m77m) @"Vaon, =0

on R. But the Lie bracket of ¢* with n® vanishes. And ¢® and n* are both Killing fields. So the second
term in the sum vanishes (n™ ¢"V,, 5 = ™ 0"V, ¢, = 0), and the third term is equal to

(77m77m) "V = _772 P"Vipne = —772 NV, ¢q.

So (3.2.4) holds on R.

Conversely, assume that (3.2.4) holds on R. Then (once again using the fact that n™V,, ¢, =
@V Na), we have
% ¢™ — (") ™| Vin e = O

on R. Now consider the field v™ = [n? ¢™ — (¢"n,) n™]. We have (i) ¥™n,, = 0; (ii) ™ # 0; and (iii)
™ Ve = 0 on R. (Condition (ii) holds because n? ¢™ is spacelike and (¢™n,)n™ is timelike or equal
to 0.) It follows that ¥)™n, Vi 1q = 0 on R. Now assume that 7, V., 7, # 0 at some point p on R.
Let €4pcq be a volume element defined on some open set containing p. The space of anti-symmetric tensors
Qnma at p that are orthogonal to )™ is one-dimensional. So at p, €ymad P =k N Vm Ma) for some kq.

dnma

Or, equivalently, ¥? = ko€ 1nVin Na at p for some ky. It follows (after expanding 7 = % +k ¢®) that

U)d(bd - k2 Ednma¢d 77an Na = k2 ednma(bd Envm t~a + k2 k Ednma¢d Envm ¢a

at p. It now follows, by condition (vi) in our characterization of stationary axi-symmetric spacetimes,
that ¥9¢g = 0 at p. So % (¢™dm) — (¢"n,)? = 0. But this is impossible, since ¢ is spacelike and i > 0.
So we may conclude that 7,V 7, = 0 at all points on R. o

Now we turn to the ZAM criterion of ring non-rotation. Various experimental tests are possible. One
involves the Sagnac effect. Imagine that we mount a light source at some point Q on the ring and arrange
for its light pulses to travel around the ring in opposite (clockwise and counterclockwise) directions. This

can be done, for example, using concave mirrors attached to the ring. Imagine further that we keep
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track of whether the pulses arrive back at @ simultaneously (using, for example, an interferometer).
It turns out that this will be the case — they will arrive back simultaneously — iff the ring has zero
angular momentum (with the respect to the background rotational symmetry). We shall soon verify this

equivalence.

Figure 3.2.4: An experimental test to determine whether the ring is non-rotating according
to the ZAM (zero angular momentum) criterion.

But notice, once again, that the stated experimental test does seem to provide a natural criterion
of non-rotation. Suppose the ring is rotating in, say, a counterclockwise direction. (Here, again, we
are simply appealing to ordinary intuitions about rotation.) Then the “C pulse”, the one that moves
in a clockwise direction, should get back to @ before completing a full circuit of the ring, because it is
moving toward an approaching target. In contrast, the “CC pulse”, the one moving in a counterclockwise
direction, is chasing a receding target. To get back to ) it will have to traverse the entire length of the
ring, and then it will have to cover the distance that () has moved in the interim time. So one should
expect, in this case, that the C pulse will arrive back at @ before the CC pulse. (Here we presume that
light travels at the same speed in all directions.) Similarly, if the ring is rotating in a clockwise direction,
one would expect that the CC pulse would arrive back at @ before the C pulse. Only if the ring is not
rotating should they arrive simultaneously. Thus, our experimental test for whether the ring has zero

angular momentum provides what would seem to be a natural criterion of non-rotation.

Let us now make precise our claim of equivalence. Let (R, k) be a striated orbit cylinder, let v be
any (maximally extended) integral curve of (£* 4+ k$?) on R, and let py be an arbitrary point on the
image of 7. Further, let A; and Ay be two future-directed (maximally extended) null curves on R that
start at po (figure 3.2.5). The latter represent light pulses that are emitted at py and traverse the ring in
opposite directions. Call them “pulse 17 and “pulse 2”. Both A; and A must intersect v a second time
(indeed infinitely many times), i.e., the pulses must eventually return to their point of emission on the
ring. (We shall soon verify this.) Let p; be the next intersection point of v with A1, and let py be the
next intersection point of v with A2. In general, there is no reason why p; and ps should coincide. We

are interested in the case where they do. So we are led to consider the following criterion of non-rotation.

(1) (R, k) is non-rotating according to the Sagnac effect (SE) criterion if, in the case just described,

the first re-intersection points p; and py coincide.



CHAPTER 3. SPECIAL TOPICS 197

P1

Figure 3.2.5: Sagnac effect.

Note that the stated condition — agreement of first re-intersection points — will hold for one choice of
initial integral curve + and initial point pg iff it holds for any other. The symmetries of (R, k) guarantee

as much. So there is no ambiguity in our formulation. Now we can verify our claim of equivalence.?

Proposition 3.2.2. A striated orbit cylinder (R, k) qualifies as non-rotating according to the zero angular

momentum (ZAM) criterion iff it qualifies as non-rotating according to the Sagnac effect (SE) criterion.

Proof. We have to verify that, in the case described,
p1=p = ({*+k¢")p, =0. (3.2.5)

The tangent field to v is (£ 4+ k ¢®). The tangent fields to A1, and Ay can be rescaled so that they have
the form (£ + I; ¢%) and (#* + Iz ¢%). Since the first is timelike, and the second two are null, we have
l; # k and

(t* + 1 6")(ta +1i¢a) = 0
for i = 1,2. This equation has roots

_(gad)a) + \/B

S P A 520
_ _(£a¢a)_\/ﬁ
b= ey (3.2.7)

where D = [({%q)? — (t%%4)(¢°¢p)]. (Clearly there is no loss in generality in choosing to label them
this way.) Note that D > ({%,)? > 0, since % is timelike and ¢® is spacelike on R. So I; > 0 and

230ur proof proceeds by way of a low-brow calculation. For a more insightful argument, see Ashtekar and Magnon [3].
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la < 0. Moreover, ly < k < l;. (Consider the quadratic function f(x) = (£* + 2 ¢%)(ts + 2 ¢a). It is
concave downward because (¢, ¢*) is negative. So, since f(k) > 0 and f(l;) = f(l2) = 0, it must be the
case that k falls between I; and l5.) So

(i—k) >0 and  (b—Fk) < 0.

It follows from our initial assumptions about the background spacetime (M, gqp) that there there
exist smooth coordinate maps #: R — R and ¢: R — R (mod 27) on the orbit cylinder R such that
t9V,t = ¢°Vad = 1 and 1°V, ¢ = ¢*V,1 = 0.2* Now consider the hybrid field ¢': R — R (mod 27)
defined by

¢ = (¢ — kt) (mod 27).

It is adapted to (R, k) in the sense that it is constant on all integral curves of (£* + k ¢%):
"+ k¢")V, (¢ — kt) = "V, (=kt) + (k¢™)V, ¢ = 0.

In particular, ¢’ is constant on . In contrast, ¢’ increases (resp. decreases) uniformly with respect to
elapsed parameter distance along A\; (resp. \2) since (" +1; ¢")V,, ¢/ = (I; — k). (It follows, as claimed

above, that A1 and Ay must reintersect ~.)

Let the points pg, p1, and ps have respective £, ¢ coordinates (o, ¢'), (t1,¢'), and (2, ¢’). They share
a common ¢’ coordinate since ¢ is constant on . But ¢’ increases along A; in the stretch between pg
and p; — it goes from 0 to 27. Similarly, ¢’ decreases along A2 in the stretch between py and py — it

goes from 0 to —27.

The coordinate ¢ increases along all three curves, v, A1, and Ay. (Indeed, we have (" + k ¢™)V, T =
(t" +1;¢™)V,, t = 1.) So we can think of the curves as parametrized by # and consider the rate of change

of ¢/ with respect to # on them. This rate of change on J; is (by the chain rule)

Ao (" 416"V (6 — kD)

_ = - = = (l; — k).
dt "+ 1, ")Vt ( )
So, considering the total change of ¢’ along A\; and A2, we have
- dy S
2r = (t1—to) =7 lon e = (t1 —to) (L — k),
- dd .
—2m = (ta —to) 7 londe = (ta —to) (I2 — k).

24We can introduce the coordinates as follows. Pick any initial point on R and take its coordinates to be £ = 0, ¢ = 0.
Given any other point on R, we can “get to it” from the initial point by moving a certain (signed) parameter distance along
an integral curve of {* and moving a certain (signed) parameter distance along an integral curve of ¢®. Tt does not matter
in what order we perform the operations because the fields ¢ and ¢® have a vanishing Lie bracket. We take the respective

parameter distances to be the £ and ¢ coordinates of the new point.
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It follows that
~ ~ 727‘(([14—12—2]@

b=t = (i—k) (o —k)

Hence, by (3.2.6) and (3.2.7),
— I _F _ _ (Ea(ba)
pr=p2 <= ti=ty <= (1+0—-2k)=0 <= k——(¢n¢)

This gives us (3.2.5). O

Now we consider the two criteria in the special case of Godel spacetime. We start with a calculation.

Proposition 3.2.3. Let €*°? be a volume element on Gddel spacetime and let n® be the field t* + k ¢©

for some choice of k. Then
€l Vong = %2 [k2\/§sh4r +k(2sh?r—1) + V2| 3¢ (3.2.8)
where, as in the previous section, 2% = (0 /0 2)®.

Note that in the special case where k = 0, this yields
el Vety = £2V2 2

If we re-express this in terms of % = t*/u = %/(2u) and 2® = 2%/2, and choose a volume element so
that the right side sign is +1, we recover (3.1.30), i.e.,

1 - - 1
geadetb VC td = —— 2%

V2 pi?

Proof. As before, let A be the set of axis points in Gddel spacetime where » = 0, and let M~ be the
complement set M — A. The vector fields

fa = (9/0D)° 1% = (3)ar)° ¢ = (8/0)* 3 = (§/93)

abed

are linearly independent on M ~. So we can express € in the form

6abcd _ f{[a Tb ¢c 211]
on M~. We can determine f, up to sign, as follows. We certainly have
—(4') = Eade €abed = f2 {[a ’I”b ¢C Ed] l?[a Ty ¢C gd] = f2 tN[a ’I”b ¢C Ed] l?a Ty gf)c Ed.

And by (3.1.31),

te = 4u2[\/§sh2rva¢+vaﬂ,

ry = 4,u2 Vyr,

b = Ap?[(sh*r — sh®>r)\V.d + V2sh?r V.1,

g = 4p*Vg3.
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So
—4) = frierb ez (4t [(sh*r — sh?r) — 2shhr] (Val) (Vo) (Ve d) (Va 2)
1
= —f24pd* (sh*r+sh?r) - 2 (4u»* (sh?r) (ch®r) L
Thus, on M ~, we have
4! -
abed __ la ,.b 1c zd]
=+ t . 3.2.9
‘ 16 p (shr)(chr) rgtz ( )
Next, we derive an expression for
MVenag = 1uVolg + ktaVedg + kduVely + k> 0 Vo oy (3.2.10)

on M ~. Note first that

Voge = 4p*[(4sh®r — 2shr)(chr)(Vpr)(Vy ¢) + 22 (shr)(chr) (Vi) (Vo )],
Vote = 4p?[2V2(shr)(chr)(Vip)(Ve 9)],

both hold on M~. (The first is (3.1.44). The second is derived similarly, using the fact that V, fc) =0.)

These expressions, together with the preceding ones for ¢, and ¢, yield

1aVolg = 16u*2V2(shr)(chr) (Vi 8)(Ver)(Ve 6), (3.2.11)
1aVedqg = 16u"[(dsh®r —2shr)(chr) — 4(sh®r)(chr)] (Vi D)(Ver)(Ve o), (3.2.12)
PaVlqg = 16p"4(sh>r)(chr) (Vi 1)(Vy7)(Ve 9), (3.2.13)
GVodg = 16p*[V2(sh®r)(chr)(4sh®r —2shr)

—2V2(shr)(chr)(4sh®r — 2shr)] (Ve D)(Ver) (Ve 0). (3.2.14)
If we insert these expressions in (3.2.10), we arrive at:
MVeny = 321" (shr)(chr) [K2V2sh'r + k2sh?r = 1) + V2| (Vi B(Vyr)(Ve o). (32.15)

Finally, combining this result with (3.2.9) yields

41 ,
abed la ,.b 1c zd]
. + i .
€N Ve na 16 48 (shr)(ch ) 7 @ 2% Ve ng
= +2(k*V2sh*r+k(2sh®r —1) +V2) 2° (3.2.16)

on M~. Since both n* and the final vector field in (3.2.16) are smooth (everywhere), the equation must
hold on A as well. O

Our desired characterization result for Gédel spacetime follows as a corollary. (For clause (2), recall

that sh?r. = 1.)

Proposition 3.2.4. Let R be a striated orbit cylinder in Gédel spacetime generated by t* and ¢®. It is
characterized by particular values for v (where 0 < r < r.) and 2. Let k be such that n® = t* + k ¢ is
timelike on R. Then the following both hold.
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V2

(1) (R,k) is non-rotating according to the ZAM criterion <= k = A=)
— sh2r

(2) (R,k) is non-rotating according to the CIR criterion <=

Te 22
r < = and k = .
2 (1—-2sh?r) + /1 — sh?(2r)

Proof. Note that our assumption that t* + k ¢ is timelike on R comes out as the assumption that the
relation

E2(sh*r — sh?r) + k2vV2sh?r + 1 > 0 (3.2.17)
holds there. (We are making use of (3.1.31) here and shall do so repeatedly in what follows.)

(R, k) qualifies as non-rotating according to the ZAM criterion iff (* 4+ k¢*)¢, = 0 on R. The
latter condition comes out as

V2 sh®r + k(sh*r —sh?r) = 0.

Moreover, as is easy to check, if k = v/2/(1 — sh?r), then (3.2.17) is automatically satisfied, i.e., (3.2.17)
imposes no further constraint on k in this case. So we have clause (1).

Next, (R, k) is non-rotating according to the CIR criterion iff 7, V.74 = 0 on R or, equivalently, if

abed) - We know from the preceding proposition that

gabed npVena vanishes there (for either choice of e
this is the case iff

E2V2shir + k(2sh®r—1) + V2 =0 (3.2.18)
on R. This equation has two roots:

(1—2sh%r) — /1 —sh2(2r) (1—2sh%r) + /1 —sh?(2r)
ki = and ko =
2v/2 shir 2v/2 shir
So it is a necessary condition for (R, k) to be non-rotating according to the CIR criterion (for any choice

of k) that sh?2r < 1 or, equivalently, that » < r./2. So assume this condition holds. We claim that the

root k2 can be ruled out because it leads to a violation of (3.2.17). We also claim that ki is compatible
with that inequality if we further restrict » so that sh?2r < 1. To see this, note that in the presence of
(3.2.18), (3.2.17) holds iff

E2V2sh?r — k(2sh®r + 1) < 0

and this holds, in turn, iff

2sh2r + 1
0 <k <2 rt1 (3.2.19)

V2sh2r

With a bit of straightforward algebra, one can easily check that ko violates this inequality but that k;
satisfies it if sh?2r < 1. Finally, note that X = [(1 — 2sh?r) ++/1 — sh22r] # 0. So we have

ko= b = 22
' ' X (1—2sh2r) + /1 — sh2(2r)

This gives us (2). O
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There are two regimes to consider here. If 0 < r < (r./2), there is one rotational state of the ring (i.e.,
one choice of k) that counts as non-rotating according to the (ZAM) criterion, and one that counts as non-
rotating according to the (CIR) criterion, but the two are different. In contrast, if (r./2) < r < r, then
there is still one rotational state of the ring that counts as non-rotating according to the (ZAM) criterion,

but now there is no state whatsoever that counts as non-rotating according to the (CIR) criterion.

Notice that though the two criteria do not agree for any choice of r, there is a sense in which they

agree “in the limit” as » — 0. They have a common limiting value for k:

2 22
r—0 (1—sh?r) r—=0 (1—2sh2r) + /1 — sh?(2r)

That this is so should not be surprising. We began this section by asserting that there is a robust,
unambiguous notion of non-rotation at a point in relativity theory. Here, in a sense, we recover that
notion as we pass to the limit of “infinitesimally small rings”. Notice that v/2 is the unique value of k for
which 7% = #% + k ¢¢ is non-rotating (i.e., satisfies Na V4] = 0) at points on the axis where r = 0. (This
follows immediately from proposition 3.2.3.) It is that value of k that we recover in the limit as » — 0.

This will be important in what follows.

Let us now leave Godel spacetime behind and return to the general case with which we started (where
we are dealing with an arbitrary stationary, axi-symmetric spacetime). We claimed earlier in the section
that the two criteria of ring non-rotation do agree if a certain simplifying condition obtains. The condition
we had in mind is the orthogonality of £* and ¢®. But, strictly speaking, that is not sufficient to guarantee
agreement. We must, in addition, rule out one rather special, singular possibility. We characterize it in

the next proposition. (We shall comment on the listed conditions after presenting a proof.)

Proposition 3.2.5. Suppose that (in addition to satisfying conditions (i) to (vi)), 1 and ¢* are orthog-

onal, i.e., %, = 0. Then, for all orbit cylinders R, the following conditions are equivalent.

b
(1) V, (q;c? ) =0 onTR.
- —t
(2) t*+ ¢c¢b ¢ s a null, geodesic field on R.

(3) (R, k) is non-rotating on the (CIR) criterion for all k (such that t* + k ¢® is timelike on R).

Proof. 1t follows from our orthogonality assumption that the following conditions all hold on R:

t"WVady, = 0, (3.2.20)
¢"Valy = 0, (3.2.21)
taVoty = 0, (3.2.22)
PaVoog = 0. (3.2.23)
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The first follows since we have
t'Vady = —t'Vida = =Vi(al®) + ¢"Vita = —¢"Valy = —1"Va ¢p.

(Here we use the fact that £* and ¢ are Killing fields for the first and third equalities, as well as the fact
that they have a vanishing Lie bracket for the final equality.) That gives us (3.2.21) as well. For (3.2.22),

we use condition (vi) in our original list. We have ¢y, Ve fd] = 0 or, equivalently,
GatpVely — datiaVty + ¢ctaVaty — dptcVaty = 0.

Since contracting ¢ on any index in f[aVb fc] yields 0, it follow that (¢%¢,) f[bVC fd} = 0. Since ¢* is
spacelike on R, it follows that (3.2.22) holds on R as well. The argument for (3.2.23) is very much the
same. For that one we start with f[a Ve pg = 0.

Let us first check that conditions (1) and (2) are equivalent. Consider the field

- —tb,
,',Ill — tll _"_ ¢a'
P°Pc
It is a null field by our orthogonality assumption. It follows from (3.2.20) and (3.2.21) that
()
N*Vemp = t*Vty — OV o Op.
(¢°¢c)

- b1, b1,
(We know that t*V, (ﬁ) = ¢?V, (ﬁ) = 0, even without the orthogonality assumption, just
because ¢® and % are commuting Killing fields.) So (2) holds iff

(¢°¢e) I"Valy — (%) ¢*Vagy = 0. (3.2.24)

But 29V, t, = —V; (t%,) and 2¢°V, ¢y = —V3 (¢%¢s), since ¢* and t¢ are Killing fields. So this

condition is equivalent to (1).

Now consider condition (3). (R, k) is non-rotating according to the CIR criterion iff
taVoty + kouVoly + ktoVedg + k> ¢ Ve dg =0

on R. This reduces to
k (¢[avb Ec] + f[avb (bc]) =0 (3225)

in the case at hand by virtue of (3.2.22) and (3.2.23). So (3) holds iff
(b[avb l?c] + tN[avb (bc] =0 (3226)
on R. Now suppose (3.2.26) holds at a point. Then, contraction with ¢®#° yields

(¢“¢a) 'V te + (1) $*Ve g = 0,
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which is equivalent to (3.2.24). So we have the implication (3) = (2). For the converse, suppose that
(3.2.24) holds at a point. Contracting (3.2.22) and (3.2.23) with #* and ¢® respectively yields

(0 Voie = Bi°Vais — LIV iy, (3.2.27)
(") Vode = ¢ 0"Vade — ¢cd"Va b (3.2.28)
If we substitute for ¢*V, ¢. in the second of these equations using (3.2.24), it comes out as
(") Vode = ¢pi°Vale — ¢c1"Valy (3.2.29)
It now follows from (3.2.27) and (3.2.29) that
(T"En) 1o Vot = —("tn) ta Vi ¢4,
which gives us (3.2.26). So we have the implication (2) = (3). O

We mention in passing that the conditions listed in the proposition can arise, for example, in Schwarz-

schild spacetime (Wald [60]). There we have (transferring our notation)

2M
1-2=
r

)

(tt.)

((bb ¢b) _Tza

where 7 is a radial coordinate. A simple calculation shows that

Va(¢b¢b>=0 = d(—i+2M>:O — r=3M.

tct, dr r2 r3

So the conditions arise only for one special radius.

Notice that condition (1) cannot hold on all rings in an axi-symmetric spacetime if, for example, there
are axis points in that spacetime. For if it did hold on all rings, then the function (¢ ¢3)/(°%.) would
be constant on the background manifold M. And since ¢* = 0 at axis points, that constant value would

have to be 0. But that is impossible, since ¢® is spacelike on non-axis points.

Consider the third condition in the list. It captures the claim that all (rigid motion) states of the
ring qualify as non-rotating on the (CIR) criterion. This possibility may seem even more counterintuitive
than the one we encountered in the case of Gédel spacetime — with (r./2) < r < r. — where no (rigid
motion) states of the ring qualified as non-rotating on that criterion. Abramowicz and co-authors [1, 2]

have suggested a way of thinking about this situation that may be helpful.

Let us forget about our ring for a moment, and consider what would happen if we carried a gyroscope
in a straight line at a certain speed (possibly 0). Suppose that at some initial moment the axis of the
gyroscope is co-aligned with the direction of motion (figure 3.2.6). Then we would expect it to remain
co-aligned, no matter what the speed of transport. The speed seems irrelevant because the trajectory

of the gyroscope involves no change in direction. But in the special case where condition (2) in the
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-
-
-

Figure 3.2.6: A gyroscope moving in a “straight line” will not change direction relative to
that line.

proposition obtains — we are now switching back to the case of the ring — there is a sense in which a
gyroscope mounted on the ring is moving in a “straight line”, no matter what the rotational state of the
ring — at least if we use light rays as our standard for what constitutes motion in a straight line. For
condition (2) asserts that light rays, by themselves, without the intervention of mirrors or lenses or other

devices, will follow the ring.
With all this as preparation, we can formulate our proposition about the conditions under which the

two criteria for ring non-rotation agree.

Proposition 3.2.6. Suppose that (in addition to satisfying conditions (i) to (vi)), t* and ¢* are orthog-

onal. Let R be an orbit cylinder on which

o Py
va(#ﬂ)¢o. (3.2.30)

Finally, let k be a number for which t* + k¢® is timelike on R. Then the following conditions are

equivalent.

(1) (R, k) is non-rotating according to the (ZAM) criterion.
(2) (R,k) is non-rotating according to the (CIR) criterion.
(3) k= 0.
Proof. (R, k) is non-rotating according to the ZAM criterion iff 0 = (1% +k ¢,) ¢* = k (¢q ¢*). And ¢ is

spacelike on R. So the equivalence of (1) and (3) is immediate. (The added assumption about R is not

needed for this equivalence.)

As we saw in the proof of the preceding proposition, (R, k) is non-rotating according to the (CIR)
criterion iff

k (¢aVote + taVe o) =0 (3.2.31)

on R. (Recall (3.2.25).) But we also saw in that proof that (3.2.30) is equivalent to

DVt + Ve by #0.

So (R, k) qualifies as non-rotating on the (CIR) criterion iff £ = 0. O
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3.3 A No-Go Theorem about Orbital (Non-)Rotation

We have considered two particular criteria for non-rotation of the ring. Now we switch our attention
to a large class of “generalized criteria” of non-rotation. We take any one such criterion (as applied in any
one stationary axi-stationary spacetime) to be, simply, a specification, for every striated orbit cylinder
(R, k) in that spacetime, whether it is to count as “non-rotating” or not. We do not insist in advance
that the criterion have a natural geometric or quasi-operational formulation. Our plan is to consider

three conditions that one might want such a criterion to satisfy

(1) relative rotation condition

(2) limit condition

(3) non-vacuity condition
and then show that, at least in some stationary axi-stationary spacetimes, no generalized criterion of
ring non-rotation satisfies all three. The proof of this no-go theorem is entirely elementary when all the
definitions are in place. But it may be of some interest to put them in place and formulate a result of

this type. The idea is to step back from the details of particular proposed criteria of non-rotation and

direct attention instead to the conditions they do and do not satisfy.

R

Ry

Figure 3.3.1: Two rings centered about the same axis of rotational symmetry.

Let us start with the relative rotation condition. Suppose we have two rings, Ry and R, centered
about the same axis of rotational symmetry. (Intuitively, we imagine that the planes of the rings are
parallel but not necessarily coincident. See figure 3.3.1.) Suppose further that Rs is not rotating relative
to R;. Then, one might think, either both rings should qualify as “non-rotating” or neither should. This
is the requirement captured in the “relative rotation condition”. What it means to say that Ro is not
rotating relative to R is not entirely unambiguous. But all we need here is a sufficient condition for
relative non-rotation of the rings. And it seems, at least, a plausible sufficient condition for this that,

over time, there is no change in the distance between any point on one ring and any point on the other,
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i.e., the two rings together form a rigid (ganged) system. So we are led to the following first formulation

of the condition.

Relative Rotation Condition (intuitive formulation): Given two rings Ry and R, if (i) Ry is
non-rotating, and if (ii) Re is non-rotating relative to Ry (in the sense that, given any point
on Ry and any point on R;, the distance between them is constant over time), then Ry is

non-rotating.

Now let us formulate a more precise version. Let (M, g.p) be a stationary, axi-symmetric spacetime
with Killing fields £ and ¢, and let (Ry, k1) and (Ra, k2) be two striated orbit cylinders (as determined
relative to £ and ¢%). (So, in particular, given how we have defined striated orbit cylinders, (£* + k; ¢%)
is timelike on R; for i = 1,2.) Let ~; be a striation curve, i.e., an integral curve of (% + k; $%), in
R;, for i = 1,2. There are various ways we might try to determine the “distance between ~; and ~s.
For example, we might bounce a light signal back and forth between them and keep track of how much
time is needed for the round trip, as measured by a clock following one of the striation curves. But,
presumably, no matter what procedure we use, the measured distance will be constant over time if v,
and 7o are integral curves of a common Killing field. (For, presumably, any reasonable measurement
procedure can be characterized in terms of some set of relations and functions that are definable in terms
Jab, and all such relations and functions will be preserved under the isometries generated by the common
Killing field.) So we seem to have a plausible sufficient condition for the relative non-rotation of (Ra, k2)
with respect to (Rq, k1) — namely, that there exists a (single) Killing field x* whose restriction to R4 is
proportional to (£* + k; $%) and whose restriction to Ry is proportional to (£ + ko ¢%). But the latter

condition holds immediately, of course, if k1 = ks.

The upshot of this long-winded discussion is the proposal that it is plausible to regard (Ra, k2) as
non-rotating relative to (R, k1) if k1 = k2. (Again, all we need here is a sufficient condition for relative

non-rotation.) So we take the relative rotation condition to be the following.

Relative Rotation Condition (precise formulation): For all k, and all striated orbit cylinders

(R1,k) and (Rq, k) sharing that k, if (Rq1, k) qualifies as non-rotating, so does (Raq, k).

It follows immediately from proposition 3.2.6 that both the (ZAM) and (CIR) criteria satisfy the
relative rotation condition in any stationary, axi-symmetric spacetime in which the Killing fields * and
¢® are orthogonal — at least if one restricts attention to rings on which (3.2.30) holds. (For in that case,
on either criterion, if (R1, k) is non-rotating, it follows that k¥ = 0; and if £ = 0, it follows that (Rq, k)
is non-rotating as well.) It also follows immediately from proposition 3.2.4 that neither criterion satisfies
the relative rotation condition in Godel spacetime. (For if, say, 0 < 11 < ro < (r./2), then it is not the
case that v2/(1 — sh®r1) = V2/(1 — sh*ry); and it is not the case that the corresponding expressions
that arise with the (CIR) criterion are equal.)
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It is natural to ask whether there is any generalized criterion of rotation that satisfies the relative
rotation condition in Godel spacetime. The answer is, trivially, “yes”. Indeed, given any stationary,
axi-symmetric spacetime, there is a generalized criterion of rotation that satisfies the relative rotation
condition in that spacetime. Intuitively, all one has to do is pick one ring in one rotational state arbitrarily,
and then take other rings to be non-rotating iff they are non-rotating relative to that one. (Or, in the
formal language, one need only pick one striated orbit cylinder (R, k) arbitrarily, and then take a striated
orbit cylinder (R', k') to be non-rotating iff &' = k.)

The point of the no-go theorem that follows is to show that, though there do exist generalized criteria
of non-rotation that satisfy the relative rotation condition in any particular stationary, axi-symmetric

spacetime, none are fully satisfactory because (at least in some cases) they violate other conditions that

we would want to see satisfied.

Consider, next, the limit condition. Recall our remarks about the asymptotic agreement of the (ZAM)
and (CIR) criteria for “infinitesimally small” rings in Godel spacetime. We suggested that this agreement
should not be surprising because in relativity theory there is an unambiguous notion of non-rotation for
a timelike vector field at a point, and we should ezpect any reasonable notion of orbital non-rotation for
rings to deliver that notion in the limit. The limit condition simply makes that expectation precise. It
asserts that if we have a sequence of orbit cylinders Ry, Ro, R3, ... that converges to a point on the axis
of rotational symmetry, and if we have a sequence of numbers ki, k2, k3, ... such that (R;, k;) qualifies
as non-rotating for every ¢, then the latter sequence has a well-defined limit at p, and that limit is the
correct one. What does “correct” mean here? Just as in the Godel case, the limit value should be that

(unique) k for which the field (£* 4 k ¢®) is non-rotating at p.

That there is a unique k at each axis point satisfying the stated condition (in all stationary, axi-
symmetric spacetimes) is confirmed in the following proposition. To avoid interruption, we hold its proof

for an appendix.

Proposition 3.3.1. Let (M, gus) be a stationary, axi-symmetric spacetime with Killing fields t and ¢°.
Let p be a point at which ¢* = 0. Then there is a unique number k such that n® = t*+k ¢ is non-rotating
(MaVone = 0) at p. Its value is given by

_ (Wt)(V' )

There is one point concerning our formulation of the limit condition that requires comment. We need
to make clear what it means to say that “a sequence of orbit cylinders R, Ra, R3, ... converges to a point
on the axis of rotational symmetry”. Indeed, that provisional language is somewhat misleading. It must
be remembered that the axis set where ¢* = 0 forms a two-dimensional submanifold of our background
stationary, axi-symmetric spacetime. (This fact is not brought out by the figures displayed to this point
because they suppress one dimension.) So, for example, in Godel spacetime, the axis set consists of all

points with r coordinate 0 but with arbitrary ¢ and Z coordinates. What the sequence R, Rz, Rs, ...
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can converge to, strictly speaking, is not a point p in the axis set but rather an integral curve v of the
Killing field #* that is, itself, fully contained within the two-dimensional axis set. (In the case of Gddel
spacetime, these are curves characterized by r value 0, and some fixed value for z, but arbitrary values
for .) And we can understand convergence here to mean, simply, that given any point p on v and any

open set O containing p, there is an N such that R; intersects O for all i > N.

Finally, note that because these limit curves are integral curves of * on which ¢* = 0 — and so
are mapped onto themselves by all isometries generated by t* and ¢® — the number k..;;(p) in our

proposition must be the same for all points p on them.

With all this by way of preparation, we now formulate the limit condition officially as follows2.

Limit Condition: Let v be an integral curve of t* on which ¢* = 0. Let R, R, R3, ... be a

sequence of orbit cylinders that converges to 7. And let k1, ko, ks, ... be a sequence of numbers

such that (R;, k;) qualifies as non-rotating for every ¢. Then lim k; = ket (p), where p is any
1— 00

point on .

Though it will play no role in what follows, we claim (without proof) that the (ZAM) and (CIR)
criteria of non-rotation satisfy this limit condition in all stationary, axi-symmetric spacetimes, not just

Godel spacetime.

The first questions to ask is whether there is any generalized criterion of non-rotation for the ring that
satisfies both the relative rotation condition and the limit condition in Godel spacetime. The answer is
certainly “yes” again. In that spacetime, keqit(p) = /2 for all points p in the axis set. So it suffices
to take the following as our criterion: given any striated orbit cylinder (R, k), it counts as non-rotating

precisely if k = /2. It trivially satisfies both the relative rotation and limit conditions.

Moreover, there is a cheap sense in which one can always find a generalized criterion of non-rotation
that satisfies the two conditions, i.e., in any stationary, axi-symmetric spacetime. It is the degenerate
criterion according to which no striated orbit cylinder whatsoever counts as non-rotating. As a matter of
simple logic, it vacuously satisfies both conditions. The non-vacuity condition rules out this uninteresting

possibility.

Non-Vacuity Condition: There is at least one striated orbit cylinder (R, k) that qualifies as

non-rotating.

We have just seen that there is a criterion of non-rotation that satisfies all three conditions in Godel
spacetime. But Godel spacetime is rather special within the class of stationary, axi-symmetric spacetimes

because it has the Killing field 2¢ in addition to t* and ¢®. As a result, given any two axis points in

250ur formulation here is slightly different from that in Malament [41] in that we avoid reference to the “center point of
the ring”. That notion played a role in [41] in the characterization of the compass of inertia on the axis (CIA) criterion of

ring non-rotation, but has not been used here.
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Godel spacetime, there is an isometry that takes the first to the second. So it must be the case that the
function k..;+ has the same value at all axis points. But there are stationary, axi-symmetric spacetimes
in which it does not have the same value at all axis points — we shall give an example in a moment —

and in those there is no generalized criterion of non-rotation that satisfies all three conditions.

R; R;

Figure 3.3.2: Two sequences of rings {R;} and {R’;} converging to points p and p’, respec-
tively, on the axis of rotational symmetry.

Proposition 3.3.2. Let (M, ga) be a stationary, axi-symmetric spacetime. It admits a generalized
criterion of ring mon-rotation that satisfies the relative rotation, limit, and non-vacuity conditions iff

kerit(p) = kerit (D) for all azis points p and p'.

Proof. (If) Suppose there is a number k..;+ such that keri(p) = kerie for all axis points p. Then, trivially,
there is a criterion of ring non-rotation that satisfies the three conditions, namely the one according to

which a striated orbit cylinder (R, k) counts as non-rotating iff k& = kqps.

(Only if) Suppose there exist axis points p and p’ such that kepit(p) # kerit(p'). Let v and 4’ be the
(maximally extended) integral curves of £* that contain p and p’, respectively. Further, let R, Ra, R3, ...
and R'1, R'2, R's, ... be sequences of orbit cylinders that converge to v and «/, respectively (figure 3.3.2).
(Existence is guaranteed. Let p1,p2,ps,... be any sequence of points converging to p and, for all 7, let
R; be the (unique) orbit cylinder the contains p;. (R; is the set of all points of the form v (p), where
1 is an isometry generated by ¢* and ¢®.) Then Ra, Rs3, ... converges to 7. And R'y, R'2, R's,... can
be generated in the same way.) Now assume there is a generalized criterion of ring non-rotation C that
satisfies all three conditions. By the non-vacuity condition, there is a striated orbit cylinder (R, k) that
is non-rotating according to C. For all sufficiently large 7, (R;, k) and (R';, k) are striated orbit cylinders,
ie., 1% + k¢? is timelike on R; and R’;. So (because we can always dispose of particular finite initial
segments), we may as well assume that (R;, k) and (R’;, k) are striated orbit cylinders for all . By the
relative rotation condition, then, (R;, k) and (R';, k) are non-rotating according to C for all . Therefore,
by the limit condition applied to (R1, k), (R, k), (R3, k), ... and (R'1,k), (R'2,k), (R'3, k), ..., it must be
the case that ke.it(p) = k = kerit(p'), contradicting our initial assumption. So we may conclude that

there is no generalized criterion of ring non-rotation C that satisfies all three conditions. O
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For the no-go theorem, we need now only exhibit a stationary, axi-symmetric spacetime in which it is
not the case that kerit(p) = kerit(p') for all axis points p and p’. One example is Kerr spacetime (Wald
[60] and O’Neill [47]). We shall say only enough about it to establish this one fact. In Boyer-Lindquist

(spherical) coordinates £, 7, ¢, 6, the metric is

2Mr - - 2
Jap = (1 - )(dat)(dbt) — % (dor)(dpr) — p? (dab)(dpb)
2Mra?sin?0 . AMrasin?6 -
- [ 0t T | (5107 6) (dad) ([d0) + 5 (D) (dy9),
where
p? = 1?4+ a%cos®h,
A = 12 —2Mr +d?

and M and a are positive constants (O’Neill [47]). The axis set A here consists of all points at which
sin@ = 0, for it is at those points at which the rotational Killing field ¢* = (9/0 ¢)® vanishes. (So every
point in A is uniquely characterized by its # and r coordinates.) It is not the case that t* = (9/9)* is
timelike and ¢® is spacelike at all points in M~ = (M — A). But those conditions do obtain in restricted
regions of interest, e.g., in the open set where r > 2 M. If we think of Kerr spacetime as representing
the spacetime structure surrounding a rotating black hole, our interest will be in small rings that are
positioned close to the axis of rotational symmetry (where sin®6 is small) and far away from the center
(where r is large). There we can sidestep all complexities having to do with horizons and singularities.

The proposition we need is the following.

Proposition 3.3.3. Let p be an axis point in Kerr spacetime with coordinates t and r > 2M. Then

2Mra

Kerit(p) = e (3.3.2)

(So kerit does not assume the same value at all axis points.)

Proof. We can certainly verify (3.3.2) directly by computing

(Vi te) (VP ¢°)
(Vi ¢n) (VT ¢7)

at p and then invoking (3.3.1). But we can save ourselves a bit of work with an alternate approach that

focuses attention on the smooth function f: M~ — R defined by

(f“(b,l) B 2Mra

f=- (0" ¢dn) (12 + a?)p? + 2Mra2sin26’

Consider the field n® = t* + f ¢ on M ~. We claim that it can be expressed in the form

o vet
"= M (3.3.3)
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To see this, let D = (£%1,)(¢% ¢pa) — (t" ¢,)?. Clearly, D < 0 on M~ (since ¢¢ is spacelike there). We

have
- 1 - .
Vit = 5 [(¢n (bn) tg — (tn an) ¢a] .
(This follows since both sides yield the same result when contracted with %, ¢¢,r%, and #.) Hence

(VaB(V" D) = & (6"60)

and, therefore,

A Al e G L
(Vo D) (V) (6" ¢n) '

as claimed. The right side of (3.3.3) has the form g V*¢. It follows that 7, V; 7, = 0 everywhere on M.

Now f and n® can be smoothly extended to A. At p, the extended function assumes the value

2Mra

f(P)Zm

(since, once again, axis points here are ones where sinf = 0). So, at p, the extended vector field satisfies

0 = 1uVeng = tuVolg + fP) (Ve dg + f(0) 0Vt + F()? GaVe by

But we know from proposition 3.3.1 that the final expression on the right can be 0 only if f(p) = kerit(p).

So we are done. O

Our main result now follows as an immediate corollary.

Proposition 3.3.4. (No-Go Theorem) There is no criterion of ring non-rotation on Kerr spacetime that

satisfies the relative rotation, limit, and non vacuity conditions.

It is intended to bear this interpretation: given any (non-vacuous) generalized criterion of ring non-
rotation in Kerr spacetime, to the extent that it gives “correct” attributions of non-rotation in the limit for
“infinitesimally small” rings — the domain where one does have an unambiguous notion of non-rotation

— 4t must violate the relative rotation condition.

Appendix: The Proof of Proposition 3.3.1.
Here we prove proposition 3.3.1. It will be convenient to collect a few facts first that will be used in
the proof.

Proposition 3.3.5. Let (M, ga) be a stationary, avi-symmetric spacetime with Killing fields t* and ¢°.
Let p be an azis point. (So ¢* = 0 at p.) Let €upca be a volume element defined on some open set O

containing p, and let c® be the smooth field on O defined by 0@ = €,V . ¢4. Then at p,

(1) 0@ # 0
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€abea tc0?.

1
2 Va = — ==
(2) Vade = 3 (i)
Furthermore, given any smooth field * (defined on some open set containing p), if £41* = 0 at p, then
it must be of the form y® = ki t% + ko 0% at p.

Proof. Note that ¢ is orthogonal to t* and ¢ throughout O. (The first claim follows just because
€abed 18 anti-symmetric, and the second by clause (vi) in our characterization of stationary, axi-symmetric

spacetimes.) Note, as well, that

- 1
t[avb ¢c] = 6 €abed Ud (334)

throughout O. (We get this by contracting both sides of 0¢ = €™"P ¢, V,, ¢p With €4pcq.) Now we argue
for (1). Suppose that ¢ = 0 at p. Then, by (3.3.4),

0= i‘a f[avb (bc] = [(fafa)vb d)c + t~c Eava d)b - Eb Eava d)c}

w|

at p. Now 19V, ¢y = ¢V, 1 everywhere on O (since the fields £ and ¢® have a vanishing Lie bracket),
and ¢® = 0 at p. So the second and third terms on the right vanish there. Thus V, ¢, = 0 at p. But this
is impossible. For given any Killing field x* on the (connected) manifold M, if k* and V, kp, both vanish
at any one point, then they must vanish everywhere. (See Wald [60, p. 443].) And that is not possible
in the present case because ¢® is spacelike at all non-axis points (and there exist some non axis points).
So we have (1). And for (2) we need only contract both sides of (3.3.4) with £°, expand the left side, and

use much the same argument we have just used to show that two terms in the expansion vanish.

Finally, let ¢* be a smooth field (defined on some open set containing p) such that £41* = 0 at p.
Then 12V, ¢y = ¢*V, 1, = 0 at p (since, once again, ¢ = 0 at p). Hence, by (2), €apeqd ¥ t°0? = 0. So
the three vectors 1%,1%, and o are linearly dependent at p. Since t* and ¢® are non-zero at p, ) can

be expressed as a linear combination of them at p. O
Now for the proof of proposition 3.3.1. The formulation, once again, is as follows.

Let (M, gay) be a stationary, axi-symmetric spacetime with Killing fields #* and ¢®. Further,
let p be a point at which ¢ = 0. Then there is a unique number k such that n® = t* + k ¢®
is non-rotating (1, Vy7¢ = 0) at p, and that number is

(V1) (V" ¢%)
(Vi ¢n) (V™ 67

Proof. For the first claim, what we need to show is that there a unique k£ such that

f[avb l?c] + k f[avb (250] =0 (3.3.5)

at p. (This is equivalent to 7, V7, = 0 at p since ¢* = 0 there.) We know from clause (1) of the

preceding proposition and (3.3.4) that E[avb ¢ # 0 at p. So uniqueness is immediate. For existence,
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let €4pcq be a volume element defined on some open set containing p, let ¢® = erbed 1,7, ¢4 (as in the
preceding proposition), and let w® = €4,V t;. The new field w® is orthogonal to t*. And it is Lie
derived by ¢%, i.e., £5w?® = 0 (since ¢* is a Killing field that commutes with ). So, by the preceding

proposition, there is a number ks such that €l [N By = w® = ko 4V, ¢q or, equivalently,
Ha Vit = ko 1o Vi b
at p. Thus (3.3.5) holds at p iff k = —ks.
Now we compute k. Contracting the preceding line with £ V®¢¢, and then dividing by (£%4,), yields
(Vote)(VP¢°) = k2 (Vo 6e) (V'0°)

at p. So, to complete the proof, we need only verify that (V, ¢.)(V?¢¢) # 0 at p. But this follows from

the preceding proposition. By clause (2) we have

- 1
€bemn tmon(vb¢c) = ———(op0")

(Vo 90)(V6) = ST

2 (")

at p. And o is spacelike at p, since it is orthogonal to * and (by clause (1)) non-zero there. O



Chapter 4

Newtonian Gravitation Theory

The “geometrized” formulation of Newtonian gravitation theory — also known as “Newton-Cartan
theory” — was first introduced by Cartan [5, 6] and Friedrichs [21] and later developed by Dautcourt
[10], Dixon [11], Dombrowski and Horneffer [13], Ehlers [15], Havas [28], Kiinzle [34, 35], Lottermoser

[37], Trautman [59], and others. It is significant for several reasons.

First, it shows that several features of relativity theory once thought to be uniquely characteristic
of it do not distinguish it from (a suitably reformulated version of) Newtonian gravitation theory. The
latter too can be cast as a “generally covariant” theory in which (i) gravity emerges as a manifestation
of spacetime curvature, and (ii) spacetime structure is “dynamical” in the sensed that it participates in

the unfolding of physics rather than being a fixed backdrop against which it unfolds.

Second, it clarifies the gauge status of the Newtonian gravitational potential. In the geometrized
formulation of Newtonian theory, one works with a single curved derivative operator % It can be de-
composed (in a sense) into two pieces — a flat derivative operator V and a gravitational potential ¢ —
to recover the standard formulation of the theory. But in the absence of special boundary conditions, the
decomposition will not be unique. Physically, there is no unique way to divide into “inertial” and “grav-
itational” components the forces experienced by particles. Neither has any direct physical significance.
Only their “sum” does. It is an attractive feature of the geometrized formulation that it trades in two

gauge quantities for this sum. (See the discussion at the end of section 4.2.)

Third, the clarification just described also leads to a solution, or dissolution, of an old problem about
Newtonian gravitation theory, namely the apparent breakdown of the theory when applied (in cosmology)

to a hypothetically infinite, homogeneous mass distribution. (See section 4.4.)

Fourth, it allows one to make precise in coordinate-free, geometric language the standard claim that
Newtonian gravitation theory (or, at least, a certain generalized version of it) is the “classical limit” of

general relativity. (See Kiinzle [35], Ehlers [15], and Lottermoser [37].)

215
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4.1 Classical Spacetimes

We begin our discussion by characterizing a new class of geometric models for the spacetime structure
of our universe (or subregions thereof) that is broad enough to include the models considered in both the

standard and geometrized versions of Newtonian gravitation theory.

We take a classical spacetime to be a structure (M, tqp, hev, V) where (i) M is a smooth, connected,
four-dimensional manifold, (ii) 45 is a smooth, symmetric field on M of signature (1, 0, 0, 0), (iii) h%®
is a smooth, symmetric field on M of signature (0,1,1,1), (iv) V is a derivative operator on M, and (v)

the following two conditions hold:

. = 0 (4.1.1)
Vate =0 and  V,h" =0. (4.1.2)

We refer to them, respectively, as the “orthogonality” and “compatibility” conditions.

M is interpreted as the manifold of point events (as before). Collectively, the objects t,5, h%°, and V
on M represent the spacetime structure presupposed by classical Galilean relativistic dynamics. It will

soon emerge how they do so.

We need to explain what we mean by the “signatures” of t,, and h®, since we are using the term
here in a new, somewhat extended sense. The signature condition for ¢, is the requirement that, at
every point in M, the tangent space there have a basis %a, ceey 2" such that, for all ¢ and j in {1,2, 3,4},
fp €960 = 0if i # §, and
1 if i=1
0 if i=2,3,4.

(We shall call this an “orthonormal basis” for t,;, though this does involve a slight extension of ordinary

usage.) Hence, given any vectors u® = 2?21 ,&5“ and 1% = Z?:l ﬁf“ at the point,

tap pov’ = /115 (4.1.3)

and

1
tap popb = (n)* > 0. (4.1.4)

Notice that ¢4, is not a metric as defined in section 1.9, since it does not satisfy the required non-
1 4 2
degeneracy condition. (For example, if the vectors £%,...,£% are as above at some point, then t,;, % =

2
there, even though £ # 0.)
The signature condition for A%, similarly, is the requirement that, at every point, the cotangent space
there have a basis &, ..., 04 such that, for all i and j in {1,2,3,4}, h® Gabp = 0if i # 7, and
0 if i=1
1 if i=2,3,4.

h &by =



CHAPTER 4. NEWTONIAN GRAVITATION THEORY 217

(We shall extend ordinary usage once again and call this an “orthonormal basis” for h?".) Hence, given

any vectors a, = 2?21 & Gq and B, = Z?:l 86, at the point,
2 3 4
hta, By = &B + af + af (4.1.5)

and 5 .
o, = (@)% + (@) + (@)? > 0. (4.1.6)
Notice, too, that h®® is not the inverse of a metric (in the sense of section 1.9), i.e., there is no field hqp
such that hgp hP = 6<,. (Why? If Oq,...,04 are as above at some point, then h &, = 0. Hence, if there
were a tensor hqp at the point such that hg, R = §,, it would follow that 0 = hep P 6, = 6% 0¢ = 04,

contradicting the assumption that &, ..., 5, form a basis of the cotangent space there.)
In what follows, let (M, tq, h%, V) be a fixed classical spacetime.

Consider, first, t,;. We can think of it as a “temporal metric”, even though it is not a metric in the
sense of section 1.9. Given any vector £* at a point, we take its “temporal length” to be (. &® §b)%.
(We know from (4.1.4) that (t. £ £€°) must be non-negative.) We further classify £ as either timelike or
spacelike depending on whether its temporal length is positive or zero. It follows from the signature of 4
that the subspace of spacelike vectors at any point is three-dimensional. (For if é“, e %a is an orthonormal
basis for ¢4 there, é“ is timelike, and the remaining three are spacelike.) Notice too that at any point we
can find a co-vector t,, unique up to sign, such that t,, = t.tp. (Again, let é“, e 2“ be an orthonormal
basis for ., at the point. Then t, = +t,, é” satisfies the stated condition. Conversely, if ¢, = t4tp, then
contraction with é“éb yields 1 = (taé“)2. So tq é“ = =1 and, hence, t4, éb =t (tp éb) =+t,.)

So far we have considered only the decomposition t,;, = t4tp at individual points of M. We say that
(M, tap, h®, V) is temporally orientable if there exists a continuous (globally defined) vector field t, that
satisfies the decomposition condition at every point. (Our assumptions to this point do not guarantee
existence.) Any such field ¢, (which must, in fact, be smooth since t,; is) will be called a temporal
orientation. A timelike vector &% qualifies as future-directed relative to t, if t, €% > 0; otherwise it is
past-directed. If a classical spacetime admits one temporal orientation ¢,, then it admits two altogether,

namely t, and —t,.

In what follows, we shall restrict attention to classical spacetimes that are temporally orientable and
in which a temporal orientation has been selected. (We shall say, for example, “consider the classical
spacetime (M, t,, h®, V) ...”.) The orthogonality condition and the first compatibility condition can then

be formulated directly in terms of ¢,:

ht, = 0, (4.1.7)
Vaty, = O. (4.1.8)

(These follow easily from the original formulations.)
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Clearly, we understand a smooth curve to be timelike (respectively spacelike) if its tangent vectors are
of this character at every point. And a timelike curve is understood to be future-directed (respectively

past-directed) if its tangent vectors are so at every point.

From the compatibility condition, it follows that t, is closed, i.e. V.t = 0. So (by proposition
1.8.3), at least locally, it must be exact, i.e., of the form ¢, = V, ¢ for some smooth function ¢. We call
any such function a time function. Any two time functions ¢ and ¢’ defined on a (common) open set can
differ only by a constant, i.e., there must be a number k such that ¢ (p) = t(p) + k for all p in the set.
Given any time function ¢, and any smooth, future-directed timelike curve « : [s1, s3] — M with tangent

field £ (whose image falls within the domain of t), the temporal length of v is given by

[Ctagras = [Cevanas = [TH2 a5 < ia(s0) - t060)

S1 S1
i.e., it depends only on the endpoints of the curve. This shows that, at least locally, we have a well-defined,

path-independent notion of “temporal distance” between points.

Let us say that a hypersurface S in M is spacelike if, at all points of .S, all vectors tangent to S are
spacelike. Notice that the defining condition is equivalent to the requirement that all time functions be
constant on S. (A time function ¢ is constant on S iff, given any vector £* tangent to S at some point of
S, £2V,t = 0. But t,£% = £*V,t. So the latter condition holds iff all vectors tangent to S are spacelike.)

We can think of spacelike hypersurfaces as (at least local) “simultaneity slices”.

If M is simply connected, then there must exist a globally defined time function ¢: M — R. In this
case, spacetime can be decomposed into a one-parameter family of global (¢ = constant) simultaneity
slices. One can speak of “space” at a given “time”. A different choice of (globally defined) time function
would result in a different zero-point for the time scale, but would induce the same simultaneity slices

and the same temporal distances between points on them.

We are now in a position to formulate interpretive principles corresponding to (C1), (P1), and (P2).

(Recall our discussion in sections 2.1 and 2.3.) For all smooth curves v: I — M,
(C1’) ~ is timelike iff its image ~[I] could be the worldline of a point particle.

(P1") « can be reparametrized so as to be a timelike geodesic (with respect to V) iff 4[I] could be the

worldline of a free point particle.!

(P2') Clocks record the t4-length of their worldlines.

Two points should be noted. First, in (C1’) and (P1’), we make reference to “point particles” without

qualification, whereas previously we needed to restrict attention to particles with mass m > 0. Here there

I'We have seen (proposition 2.5.2) that it is possible, in a sense, to recover principle (P1) as a theorem in general relativity.
Similarly, one can recover (P1’) as a theorem in geometrized Newtonian gravitation theory. Indeed, one can prove a result

that is a close counterpart to proposition 2.5.2 (Weatherall [61]).
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are no zero mass particles to consider, and no null curves whose images might serve as their worldlines.
Second, there is an ambiguity as to what we mean by a “free” particle in (P1"). In the standard formulation
of Newtonian gravitation theory, particles subject to a (non-vanishing) gravitational force do not count

as free. But on the geometrized formulation, as in relativity theory, they do.

In what follows, unless indication is given to the contrary, we shall understand a “timelike curve” to be
smooth, future-directed, and parametrized by its ¢4p—length. In this case, its tangent field £ satisfies the
normalization condition t,£* = 1. And in this case, if a particle happens to have the image of the curve as
its worldline, then we call £ the four-velocity field of the particle, and call £"V,, £% its four-acceleration

field. If the particle has mass m, then its four-acceleration field satisfies the equation of motion
F*=m "V, £, (4.1.9)

where F'® is a spacelike vector field (on the image of its worldline) that represents the net force acting
on the particle. This is our version of Newton’s second law of motion. (Recall (2.4.13).) Note that
the equation makes geometric sense because the four-acceleration field is spacelike. (For, by the first
compatibility condition, ¢, £"V,, €% = "V, (t, £*) = £"V,, (1) =0.)

Now consider h®®. It serves as a spatial metric, but just how it does so is a bit tricky. In Galilean
relativistic mechanics, we have no notion of spatial length for timelike vectors, e.g., four-velocity vectors,
since having one is tantamount to a notion of absolute rest. (We can take a particle to be “at rest” if
its four-velocity field has spatial length 0 everywhere.) But we do have a notion of spatial length for
spacelike vectors, e.g., four-acceleration vectors. (We can, for example, use measuring rods to determine

distances between simultaneous events.) The field h®® gives us one without the other.

We cannot take the spatial length of a vector u* to be (habu“ub)% because the latter is not well defined.
(As we have seen, there does not exist a field hgp, satisfying h%hy. = §%..) But if u® is spacelike, we can

use h? to assign a spatial length to it indirectly. Here we need a small result about spacelike vectors.

Proposition 4.1.1. Let (M, tq, h®, V) be a classical spacetime. Then the following conditions hold at
all points in M.
(1) For all oy, h*®oy, = 0 iff o is a multiple of ty.

a

(2) For all u®, p® is spacelike iff there is a oy, such that h® oy, = p®.

(3) For all oy and oy, if h®%ay, = he®a’y, then h*®a,0, = h*o’ych,.

Proof. The “if” halves of (1) and (2) follow immediately from the orthogonality condition (4.1.7). For
the “only if” half of (1), let 04, ..., 5, be an orthonormal basis for 2% in the sense discussed above. (So
hab 5a:jjb =0if i #£j, hat g6 = 0, and h® Ga0p =1 for i = 2,3,4.) We can take 04 to be t,, since the
latter satisfies the required conditions. Now consider any vector o, = llcib + /2€ Gu+ /3€ &b +14€ 31,, and assume
h®%g, = 0. Then, by the orthogonality condition, lz(h“b &y) + 7;(11“17 op) + li(h“b op) = 0. Contraction
with &y yields k = 0 for i = 2,3,4. So op = k .
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The “only if” half of (2) follows by dimensionality considerations. At any point in M, we can construe
ha as a linear map from the cotangent space Vj, there to the tangent space V. Every vector in the image
space h®[V3] is spacelike (by the “if” half of (2)). Moreover, h®[V;] is three-dimensional. (If Gy, 54,05
are as above, then the vectors h®G;,, h*®G,, hGy are linearly independent. For, as we have just seen,
if a linear combination k (R 54) + k (R &) + k (h® &3) of the three is 0, the three coefficients must all
be 0.) So, at every point, h?[V}] is a three-dimensional subspace of the vector space of spacelike vectors.

But the latter is itself three-dimensional. So every spacelike vector must be in h®[V}).

For (3), suppose h®o, = h%g’%. Then, by (1), (¢, — 0p) = ktp for some k. So h*c’, o) =

ht (o, + kty)(op + kty) = h®o, op. O

So here is the indirect procedure. If u® is spacelike, we take its spatial length to be (h“boaab)%, where
op is a vector such that h*®c;, = p. Clause (2) guarantees existence, and clause (3) guarantees that the

choice of o3, makes no difference.

Proposition 4.1.1 has a number of simple consequences that will be used again and again in what

follows. Here is one. Suppose we have a tensor 7. ,... at a point such that (i) 7,,,a,,,h“b = 0 and (ii)

v..a..£* = 0 for some timelike vector £* there. Then . ,

= 0. (To see this, it suffices to consider any
three linearly independent spacelike vectors /1%, 1%, 4® at the point. (Existence is guaranteed by the
signature of t,5.) They, together with £, form a basis for the tangent space there. Since we are given

that, for each i = 2,3, 4, there is a co-vector &3 such that i = h®dy. So our claim follows from (i).)

This first consequence of Proposition 4.1.1 can be generalized. Suppose we have a tensor . 4. at
a point such that, for some timelike vector £% there, (i) ¥, 45, h*"h?™ = 0, and (ii) 7. 4. E*AP" = 0 =
Y. .ab. €Y and (iil) 7. ap. £%€® = 0. Then 7. 4. = 0. Other tensors 7. 4, ay...a,.. can be handled

n

similarly.

Proposition 4.1.2. Let (M,t,,h?*, V) be a classical spacetime, and let £€* be a smooth, future-directed,
unit timelike vector field on M. (So t,£* = 1.) Then there is a (unique) smooth, symmetric field hqp on
M satisfying the conditions
hap €8 = 0, (4.1.10)
hap ¢ = 6%, — tq &°. (4.1.11)

Proof. If follows by the remark in the preceding paragraph that there can be at most one field hab
satisfying the stated conditions. (Given any two candidates, we need only substract one from the other
and apply the remark to the resulting difference field.) We can define a symmetric field hab by its
specifying its action, at any point, on the unit timelike vector £€* and on an arbitrary spacelike vector p®.

So consider the field iLab that annihilates the former and makes the assignment

hab ,Ub =0q — ta(é.co'c)
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to the latter — where o, is any vector such that u® = h®a,. It is easy to check that the choice of o,
plays no role here. (For suppose that h®&, = h®&y,. Then 0, — t4(£°0.) = &4 — to(£°5.). The latter
follows since we get the same result on both sides if we contract with either £€* or h%®.) Tt now follows, as
well, that condition (4.1.11) holds. For by the very way we have defined hqp, both sides of (4.1.11) yield

the same result when contracted with any vector o. O

We call Ay the spatial metric (or spatial projection field) relative to £*. Our notation is imperfect here
because we make no explicit reference to £€*. But it will be clear from the context which unit timelike

field is intended.

Because A% is not invertible, we cannot raise and lower indices with it. But we can, at least, raise
indices, and it is sometimes convenient to do so. So, for example, if R% ., is the Riemann curvature tensor

field associated with V, we can understand R“bcd to be the field hb"R“md. Note that
h, = 6% — t, €°. (4.1.12)

(This is simply equation (4.1.11), since h% = hy, h.) Tt follows immediately from (4.1.12) that, given

any vector u® at a point, we can express it in the form
pt = ho b + (t ) €.
Here the first term on the right side is spacelike, and the second is proportional to £*. We call h*, u? the

spatial projection (or spatial component) of p® relative to £°.

We also call (ﬁab ne ub)% the spatial length of u* relative to £*. It is easy to check that this magnitude is
just what we would otherwise describe as the spatial length of the spatial component he,, uP. (According
to our prescription, the spatial length of h%, u? is given by (h™ oy, an)% , where o, is any vector

satisfying h, ul = h*" g,,. But h, ul = hom By u". So the spatial length of h, u? is given by
- - 3
(A" oy 17) (s 1)) ™
But A™" hypy hns = hrs. So the spatial length of hay, uP comes out as (;LTS u" us)%, as claimed.)

It is important that the compatibility conditions V, hb¢ =0and Vot =0 (or, equivalently, V, tpe =
0) do not determine a unique derivative operator. (There is no contradiction here with proposition 1.9.2

since neither t,, nor h%® is an (invertible) metric.) In fact, we have the following characterization result.

Proposition 4.1.3. Let (M, t,,h®, V) be a classical spacetime. Let V' = (V, C% ) be a second derivative
operator on M (i.e., the action of V' relative to that of V is given by C%_). Then V' is compatible with
to and h® iff C%_ is of the form

C% = 2Rt Koy (4.1.13)

where Kqp S a smooth anti-symmetric field on M.
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Proof. Since (M, ta,h“b,V) is a classical spacetime, V is compatible with both t, and h%. Hence, by
(1.7.1), we have

V; tb Va tb + Crab t’r‘ = CTab t’l‘7 (4114)
VIR = Y,k —-C he—Cc, Wt = —Cb h¢—C°, h'. (4.1.15)

Assume, first, that C'%_ has the indicated form. Then t,C%, =0 and C9, hed = Bty Ky hEY by the
orthogonality condition. It follows immediately that V' is compatible with ¢,. It also follows that

v; hbc =—t, (hbn Kyn hTC 4+ pCn Kyn hbr) = —t, (ch + Kbc)'

But kg is anti-symmetric. So V’ is compatible with h%® as well.

Conversely, assume V' is compatible with ¢, and 2?°. Then, by (4.1.14) and (4.1.15),
Crute = 0, (4.1.16)

ct he4Cc, Wt = 0. (4.1.17)

Now consider the raised index tensor field C%%¢ = C® —h™b h¢. Tt is spacelike, i.e., contraction on any

index with ¢, yields 0. Moreover, it satisfies the two conditions

cebe = o, (4.1.18)
cabe = _ceba, (4.1.19)

(This first follows from the symmetry of C%_ itself, and the second from (4.1.17).) By repeated use of

these two, we have
Cabc — _cha — _Ccab — Cbac _ Obca — _Oacb _ _Oabc

So the field vanishes everywhere:

cobe = 0. (4.1.20)

Now let £* be a smooth, future-directed, unit timelike field (so t,£* = 1), and let hap be the corresponding

spatial projection field. Then we have

0 = Chyphpe = CU W™ B hynp hne
= Cars (6Tb — b é-r)((ssc — tc 65)

Hence,
Che =t O & + 1, C% &7 =ty t. O € €7 (4.1.21)

Now consider
Ken = —hephng CPIE™ + oy, O, €7 €5 (4.1.22)
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It is anti-symmetric by (4.1.17) and, we claim, it satisfies (4.1.13). To verify this, we compute the right
side of (4.1.13 ). We have

2h ™ ty hen = —2 (R Bing) by By CPIE™ + tyto (RO hpg) C €7 €5

Now, by (4.1.16) and (4.1.17), (A% hyg) CP.0 = —(8% — t,£%) C9P = —C%P, and (h*" hng) C%,, = C%.,.
So

2h T by Kooy = 2ty hep COPET + byt OO €7 €5,

Furthermore, he, C%P = he, C% WP = (6%, — . £%)C% . So

2 han tb Ren == 2 tb CaTc gr - tb tc Ca’rs §T 55'
Hence, by (4.1.21),
2 b t(b Keyn = 2 t(b ac)r "= tyle Oars é.r gs = Cabc' 0

Now let R%,_; be the curvature tensor associated with V. Of course, it satisfies the algebraic conditions

listed in proposition 1.8.2:

Rab(cd) - O, (4123)
Ra[bcd] = O (4124)

The compatibility conditions (V,t, = 0 and V,h*¢ = 0) further imply that

taRabcd = 0, (4125)
0.

R(ab)

> (4.1.26)

(We have 0 = QV[CVd] ty =t R%cq and 0 = QV[CVd] hab = —-R% . hmb — Rb
It follows immediately from the conditions listed so far that if we raise all three indices with h%®, the

resulting field R4 satisfies

hom — _Rabcd _ Rbacd')

med

Rabed)  — o, (4.1.27)

Ralbed)  — g, (4.1.28)

Rlabed  — (4.1.29)
These, in turn, jointly imply

Rabed — Redab, (4.1.30)

(The argument is the same as in the case where V is determined by a (non-degenerate) metric. Recall

our proof of the fourth clause of proposition 1.9.4.)

Now consider the Ricci tensor field R, = R, and the (spatial) scalar curvature field R = hR.p.

C

We claim that the former is symmetric. To verify this, we consider an arbitrary smooth, future-directed,
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timelike field £* and use the corresponding projection field hap to lower indices. First, it follows easily

from (4.1.11), (4.1.25), and (4.1.26) that

Ry = haR"4 =0, (4.1.31)
RY = haq R, (4.1.32)
R = hg R (4.1.33)

(For example, we have g R%, ; = hap h?" R, = (6", — to €") R ., = R®, . This, with (4.1.26), gives
(4.1.31).) Hence, by (4.1.23) and (4.1.24),

Rap — Roa = Rcabc - R¢ = Rcabc + Rcbca = _Rccab' (4134)

bac

So, by (4.1.31), we have
Rap = Rba; (4135)

as claimed.
Less straightforward is the following proposition.

Proposition 4.1.4. Let (M,t,,h% V,) be a classical spacetime. Then the curvature field R% ., associ-
ated with V satisfies

Rabcd _ (hbc Rad + had Rbc _ pac Rbd _ hbd Rac) + (hac hbd _ had hbc) R. (4136)

1
2
Proof. The relation is familiar from the case where we are dealing with a derivative operator determined
by an (invertible) metric and the background manifold has dimension 3. It follows from the symmetries

(4.1.27) — (4.1.30) and (4.1.35), as well as the crucial fact that all the indices in R**? are spacelike, i.e.,

contraction on any of these indices with ¢, yields 0.

We prove (4.1.36) at an arbitrary point p of M by introducing an appropriate basis there and consid-

ering the resulting component relations.

Let t,, éa, 3,1, &, be an orthonormal basis for he? at p in the sense discussed above. (So hab &aéb =0
if i # j, and h*® 5,0, = 1 for i = 1,2,3.) Then h® = 5%¢°% + 5%6° + 55, Further, let £* be
a future-directed unit timelike vector at p with corresponding projection tensor hap. Now consider the

CO-Vectors &g, g, (g at p defined by
ba = hap h* e = 60— ta(6c£°).
It is easy to check that:
(1) &gé@=0fori=1,2,3.
(2) K6, = B &, for i =1,2,3.

(3) ta, ta, Gia, (g form a co-basis at p.
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(4-) hap = aa 5éb + &a gyb + E’Va ab'

Since all indices in R*°¢ and R are spacelike, both tensors are determined by their action on the basis

1 2 3 .
vectors g, O, . Consider the components

ij i g
R = R®a, o,
ikl P
7 k1
R = RY™q,ap 0004

where 4, j, k,1 € {1,2,3}. Because of the symmetries of Rbcd and R% . each has only six independent

(non-zero) components, namely

and
1212 1313 2323 1213 1223 1323
R R R R R R .
. 3 P ik 3 ijki
Now, by (4.1.32), R = R™*h,, = > R™* &, a,. Hence, for all j,k € {1,2,3}, R = > R . This
i=1 i=1
gives us 11 1212 1313 12 1323
22 1212 2323 13 1223
33 1313 2323 23 1213
R=-R-R R =-R

Also, by (4.1.33),

3
R=R%hy =3 RPbby = R+ R+ .
i=1
Using these relations, we can check that the two sides of (4.1.36) agree in their action on any quadruple
éya gyb 50 olcd. As an example, consider éya éb éyc éd. We have h“béva olzb = h“bgva éb = 1and h“bolca c2yb = 0.
So it suffices to confirm that 15%2 = (- 12€2 - }%1) + %R. But this follows from the entries in our table. O

Next we consider the notion of “spatial flatness”. Of course, we say that our background classical
spacetime is flat at a point if R%_; = O there. In parallel, we say that it is spatially flat there if
R%cd — 0. To motivate this definition, we need to say something about “induced derivative operators”
on spacelike hypersurfaces. (Recall that a hypersurface is spacelike — in a classical spacetime as well as

in a relativistic spacetime — if all smooth curves with images in the hypersurface are spacelike.)

Let S be a spacelike hypersurface, and let £ be an arbitrary smooth, unit, future-directed timelike
vector field on S. Let hqp be the associated projection field on S. Given any tensor field on S, we say
that it is spacelike relative to £ if contraction on any of its indices with ¢, or £* yields 0. We can think of
fields spacelike relative to €% as living on the manifold S. (Recall the discussion in section 1.10.) Clearly,
he® and hgp both qualify as spacelike relative to £*. So does fzba =0, — t, & Notice that fzba preserves
all vectors that are spacelike relative to &4, i.e., ﬁba pu® = pb and ﬁba op = 0g, for all 4 and o, spacelike

relative to £*. We can thus think of fzba as a “delta (or index substitution) field” for fields on S that are
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spacelike relative to £*. And we shall, on occasion, write Sba rather than ﬁba — just as in the case of a

(non-degenerate) metric g, we often write §°, rather than g°,.

What is most important here is that we can think of hep as a (non-degenerate) metric that lives on
S. It is non-degenerate in the relevant sense because it does not annihilate any non-zero vectors that
are spacelike relative to £% or, equivalently, because it has an “inverse” h? i.e., Ry hO¢ = Sca. (This is
just 4.1.11.) So there is a unique derivative operator D on S that is compatible with fzab, i.e., such that
Daﬁbc = 0. We can express the action of D in terms of V (as explained in section 1.10). Given any
field spacelike relative to &%, the action of D on it is given by first applying V and then projecting all

covariant indices with ﬁba. So, for example,
Dy a%, = h™ h'yh*, Vo, ... (4.1.37)

The projection insures that the resultant field is spacelike relative to £*. There is no need to project
the contravariant indices. Since V,t, = 0, they remain spacelike even after V is applied. (One can
check directly that D satisfies all the defining conditions of a derivative operator on S, and furthermore

Daﬁbc =0 and D hb° = .) We refer to D as the derivative operator induced on S relative to £%.

The following proposition serves to motivate our definition of spatial flatness.

Proposition 4.1.5 (Spatial Flatness Proposition). Let (M, tq, h®,V) be a classical spacetime. The
following conditions are equivalent at every point in M.

(1) Space is flat, i.e., R = 0.

(2) R* = 0.

(3) Rap = t(q pp) for some @,.
Furthermore, given any spacelike hypersurface S in M, these conditions hold throughout S iff parallel

transport of spacelike vectors within S is, at least locally, path independent.

Proof. Let p be a point in M, and let £€* be an arbitrary, future-directed, unit timelike vector at p with
corresponding spatial projection tensor hqp. The equivalence of (1) and (2) follows from (4.1.32), (4.1.33),

and (4.1.36). The implication (3) = (2) is immediate. For the converse, consider the vector
Yo = 2 Rabgb - ta(Rmn gmgn)

We have ©,&% = Rap £2€° and @ h?" = 2Rqp h"€P. Therefore, at any point where R = 0, it must be
the case that R, = t(4 ¢p), since both sides agree in their action on £2¢b hareb and herhbs. (Recall our

remarks following proposition 4.1.1.)

Now let S be a spacelike hypersurface, and let £* be a smooth, unit, future-directed timelike vector
field on S. Further, let /g be the associated projection field on S, and let D be the derivative operator
induced on S relative to £* (as explained in the preceding paragraphs). Finally, suppose that p* and v

are spacelike fields on S. Then they automatically qualify as spacelike relative to £%, and by (4.1.37) we
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have p" D, v® = pu" fLTn V,v® = pu" Vv It follows that D and V induce the same conditions for parallel
transport of spacelike vectors on S. We know that parallel transport of such vectors on S is, at least
locally, path independent iff the Riemann curvature tensor field R, ;, on S associated with D vanishes.

So, for the second half of the proposition, it suffices for us to show that, at all points on S,
Red =0 «— R ,=0. (4.1.38)

This just involves a bit of computation. The right-side condition here is equivalent to the requirement

that, for all spacelike fields pu® on S,
0 = R’ = =2D Dy p® = =207 h*y Vi, Vg u® = b7 7y R, 1.
Hence, it is equivalent to the condition
0 = hr Bt R W = 7 R

Contracting this equation with h¢™ h9" yields R®™" = 0. Conversely, contracting R*™" = 0 with

hem hap yields h” h*y R = 0. o

The interest of proposition 4.1.5 will become apparent in the next section when we consider the
geometrized formulation of Newtonian gravitation theory. In that formulation, Poisson’s equation assumes
the form Ry, = 4 pt,ty (Where p is the mass density function). We see from the proposition that Poisson’s
equation (in its geometrized formulation) implies the flatness of space! This is striking. It is absolutely
fundamental to the idea of geometrized Newtonian theory that spacetime is curved (and gravitation is
just a manifestation of that curvature). Yet the basic field equation of the theory itself rules out the

possibility that space is curved.

Intermediate between the curvature conditions R%.q = 0 and R®°? = 0 is the condition R*.4 = 0.
We shall show later (proposition 4.3.1) that it holds throughout M iff parallel transport of spacelike
vectors along arbitrary curves is, at least locally, path independent. (Here we still restrict attention to
spacelike vectors (rather than arbitrary vectors), but consider their transport along arbitrary curves in

M (not just curves confined to a particular spacelike hypersurface).)

Before continuing with the main line of presentation in this section, we stop briefly to record a fact
that will be needed in later sections. We place it here because it concerns the induced derivative operator

D that was considered in the preceding proof.

Proposition 4.1.6. Let (M, t,,h®,V) be a classical spacetime, and let ¢* be smooth spacelike field on
M such that V1 ¢¥! = 0. Then, at least locally, there exists a smooth field ¢ such that ¢* = V.

Proof. This is not quite an instance of proposition 1.8.3, but it is close. Let p be any point in M, and let
O be any open set containing p that is sufficiently small and well behaved that it has this property: O can

be covered by a family F of spacelike hypersurfaces, each of which is connected and simply connected.
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Let «v: I — M be any timelike curve whose image contains p and intersects every one of the hypersurfaces
in F. Finally, let £ be a smooth, future-directed, unit timelike field on O, and let hap be the associated

spatial projection field.

Now consider any hypersurface S in F, and the projected field gf)a = hap #® on S. If D is the induced
derivative operator on S defined by (4.1.37), then on S we have Dy, ¢?b] = ham hon V™ ¢"1 = 0. So, by
proposition 1.8.3, there is a smooth field ¢g on .S such that ¢?a = D, ¢s. It is determined only up to a
constant, but we can pin it down uniquely by requiring, in addition, that it have value 0 at the point

where S intersects y[I].

Now let ¢ be the “aggregated” scalar field on O that agrees with ¢g on each S in F. We claim
without further argument that it is smooth. It satisfies the required condition since, given any spacelike

hypersurface S in F, we have ¢% = ha"gzgn = h* D, ¢s = h*" h" WV, o=V onS. o

Now we briefly consider the representation of fluid flow. Our formalism here is closely related to
that developed in section 2.8. Let £% be a smooth, unit, future-directed timelike vector field on our
background classical spacetime. We think of £* as the four-velocity of a fluid. Let hab be the projection

field associated with £*. The rotation field wqp and expansion field 0, associated with £ are defined by

Wab = W™ by Vi €7, (4.1.39)
O = D™ (q gy Vin €7 (4.1.40)

(We can motivate the terminology here much as we did in section 2.8.) It follows that

BnVa € = wap + Oap + ta hon €™V £ (4.1.41)
and, hence, that
Vol =wb+00+t,6mv,, ¢ (4.1.42)
and
veeh = w4 geb, (4.1.43)

As in the relativistic case, we can decompose the expansion field to arrive at the scalar expansion field 6

and the shear field ogp:

0 = 6, = Vy,&%, (4.1.44)

Oap = Oap— %eﬁab. (4.1.45)

(That 6,* = V, & follows from (4.1.42) and the anti-symmetry of wgp.) Clearly, o4 is “trace-free” since

ol =0,"—10 ho=6— 20(6," —t,€") =6 — £6(4 — 1) = 0. We note for future reference the following
equivalences:

wap =0 <« Vlegl = o, (4.1.46)

Oy =0 <« V0 =o. (4.1.47)
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(In each case, we get the implication from left to right by raising indices with A™", and the one from
right to left by lowering indices with fzmn) The conditions in the first line capture the claim that £* is

non-rotating (or twist-free).

Finally, we say just a bit about the four-momentum of point particles and the four-momentum density
of matter fields. It is instructive to consider the situations in Newtonian and relativistic mechanics side
by side. (For a more complete and thorough comparison, see Dixon [12].) Suppose, first, that we have a
point particle with mass m and four-velocity field £€*. Then, just as in relativity theory, we associate with
it a four-momentum field P* = m&® along its worldline. (In the present context we have only particles

with positive mass (m > 0) to consider.)

Suppose particle O has four-velocity £* at a point, and another particle O’ has four-momentum

P* = m¢&'® there. Just as in the relativistic case, we can decompose P® relative to £°.

Newtonian Mechanics Relativistic Mechanics
pe = (tbe) §a 4 hab Pb pPe = (§be) ga 4 hab Pb
N—— N—— ——" N——
mass relative 3—momentum relative energy relative 3—momentum

But the decomposition works somewhat differently in the two cases. In Newtonian mechanics, we have a

component proportional to £€* with magnitude t, P® = t, (m ¢’) = m, and a spacelike component
hey PP = (6% — 1,,6%) (m &) = m (¢ — €%,

which gives the three-momentum of the particle relative to £€%. (The vector (&'° — £9) by itself gives
the relative velocity of O’ with respect to O.) Thus, in Newtonian mechanics, the four-momentum P®
of a point particle codes its mass and its three-momentum, as determined relative to other background
observers. So it is appropriately called the “mass-momentum vector”. In relativistic mechanics, in
contrast, as we have seen, the component of P® proportional to % has magnitude (& PP), which gives

the energy of the particle as determined relative to £*. And we call P* the “energy-momentum vector”.

In relativistic mechanics, the mass of the particle is given by the length of its four-momentum
(gabP"Pb)%. The corresponding statement in Newtonian mechanics is that the mass of the particle

is given by the temporal length of its four-momentum (¢4, P P?)z.

Now we switch from point particles to continuous matter fields. Just as in relativity theory, we
associate with each matter field F a smooth, symmetric field 7%°. But the interpretation of 7% is
different in Newtonian mechanics (parallel to the way that the interpretation of P* is different), and here
we call it the mass-momentum field associated with F. In both cases, T codes the four-momentum
density of F as determined, at any point, relative to future-directed, unit timelike vectors £* there. But
in the Newtonian case, the four-momentum density is the same for all £%. Tt is given by T%¢,. (In the

relativistic case, it is not invariant and is given, instead, by T%°¢&,. Recall section 2.5.)
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Newtonian Mechanics Relativistic Mechanics

T, is the four-momentum density of F T¢, is the four-momentum density of F

as determined relative to £*

The conservation equation carries over intact from relativistic mechanics:
VaT™ = 0. (4.1.48)

We can decompose the Newtonian four-momentum density T%t; just as we decomposed P? to de-
termine an invariant mass-density and a relative three-momentum density. The former is given by
p = T%t,t,. We can take it to be a (Newtonian) “mass condition” that T%t,t, > 0 whenever T # 0.
When the condition is satisfied, we can further define the fields

1
7,]a - Tabtb,
p
pab _ Tab _ pnanb
and arrive at a canonical representation of 79

7% = pnnb + p. (4.1.49)

Here 1® is a smooth, future-directed, unit timelike field, and p®® is a smooth, symmetric field that is
spacelike in both indices (t,p®® = 0). In the case of a fluid, for example, we can interpret 7 as the

four-velocity of the fluid. In terms of this representation, the conservations equation comes out as
0 =V,T% = pn*Von® + B [*Vap +pVan?] + Vap®. (4.1.50)
Contracting with t; yields the following equivalence:

p0*Van® + Vap™ = 0
n*Vap + p(Van®) =

V,T® =0 «—

The second equation on the right expresses the conservation of mass. (The analysis we gave in the
context of relativity theory carries over intact.) The first is an equation of motion. In the case of a
perfect fluid, for example, p®® = p h?®, where p is the (isotropic) pressure of the fluid. In this case, the

first equation comes out as Fuler’s equation:
P Van® = =VPp. (4.1.51)

For more on the development of Newtonian mechanics within our geometric framework, see, for ex-

ample, Ellis [17] and Kiinzle [35].
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4.2 Geometrized Newtonian Theory — First Version

Now we turn to Newtonian gravitation theory proper. In the standard (non-geometrized) version,
one assumes that the background derivative operator V is flat and posits a gravitational potential ¢.
The gravitational force on a point particle with mass m is given by —m h® V; ¢. (Notice that this is a
spacelike vector by the orthogonality condition.) Using our convention for raising indices, we can also
express the vector as —m V®¢. It follows that if the particle is subject to no forces except gravity, and

if it has four-velocity £¢, it satisfies the equation of motion
—V*¢ = "V, & (4.2.1)

(Here we have just used —m V* ¢ for the left side of (4.1.9).) It is also assumed that ¢ satisfies Poisson’s
equation

VoV = 4d7p, (4.2.2)
where p is the Newtonian mass-density function. (The expression on the left side is an abbreviation for
h Vo Vi ¢.)

In the geometrized formulation of the theory, gravitation is no longer conceived of as a fundamental
“force” in the world but rather as a manifestation of spacetime curvature, just as in relativity theory.
Rather than thinking of point particles as being deflected from their natural straight trajectories in
flat spacetime, one thinks of them as traversing geodesics in curved spacetime. So we have a geometry
problem. Starting with a classical spacetime (M, t,,h%, V), with V flat and with field ¢ on M, can
we find a new derivative operator % on M, also compatible with t, and h%’, such that a timelike curve
satisfies the equation of motion (4.2.1) with respect to the original derivative operator V iff it is a geodesic
with respect to %? The following proposition (essentially due to Trautman [59]) asserts that there is
exactly one such %. It also records several conditions satisfied by the Riemann curvature tensor field

g g
R%cq associated with V. We shall consider the geometric significance of these conditions in section 4.3.

Proposition 4.2.1 (Geometrization Lemma). Let (M,t,,h% V) be a classical spacetime with V flat
(R%cqa = 0). Further, let ¢ and p be smooth real valued functions on M satisfying Poisson’s equation
Vo V¢ =4mp. Finally, let %: (V, C%.), with C% . = —tpt. V. Then all the following hold.

(G1) (M, t,, h, %) is a classical spacetime.
(G2) % is the unique derivative operator on M such that, for all timelike curves on M
with four-velocity field €%,
g
"V, §' =0 = "V, " = =V (4.2.3)
(G3) The curvature field f{“bcd associated with % satisfies
g
Roe = 47mptyt,, (4.2.4)
g a ¢ g Cc a
R d R"d"y, (4.2.5)

R ., = 0. (4.2.6)
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Proof. For (G1), we need to show that % is compatible with ¢, and h%. But this follows from proposition

4.1.3, for we can express C'%_ in the form C%, = 2h" {4 k), if we take ke = —1 V) ¢
For (G2), let %: (V,C%,) where (temporarily) C%_ is an arbitrary smooth symmetric field on M. Let
p be an arbitrary point in M, and let £* be the four-velocity field of an arbitrary timelike curve through
p. Then, by (1.7.1),
g
"V & ="V 8" =09, 7"
It follows that % will satisfy (G2) iff C* £7¢" = —V*¢ or, equivalently,

[Cn + (V@) t,,]E7€" = 0 (4.2.7)

for all future-directed unit timelike vectors £* at all points p. But the space of future-directed unit
timelike vectors at any p spans the tangent space M, there. (Why? Let é e, ,2 ¢ be an orthonormal
basis for t,, = t,tp in the sense already discussed here. (So t, é“ =1, and t, é“ =0 for i = 2,3,4.) Then
é“, (é“ + 2‘1), (é“ —i—z‘l), and (é“ + 2‘1) are all future-directed unit timelike vectors, and the set is linearly
independent.) And the field in brackets in (4.2.7) is symmetric in its covariant indices. So, % will satisfy
(G2) iff C*,, = —(V9®) t,t, everywhere.

Finally, for (G3) we use (1.8.2). We have

g
R%ca = R%py + 2V Oad]b + 2Cmb[coad]"

= R%uq — 204tV Vo = — 21414V V. (4.2.8)

(Here C™ b[CC“ dn = 0 by the orthogonality condition, and V[, C* ap = —tptgV V@@ by the compatibility
condition. For the final equality, we use our assumption that R%_;, = 0.) (4.2.6) now follows from the
orthogonality condition. (4.2.5) follows from that and the fact that VI°V¥¢ = 0 for any smooth function

¢. Finally, contraction on a and d yields

g

Rve = tbtc(VaV“qb). (429)
So (4.2.4) follows from our assumption that V, V* ¢ = 47 p. O

(4.2.4) is the geometrized version of Poisson’s equation. In the special case where p = 0 everywhere,
of course, it reduces to ]g{bcz 0, which we recognize as Einstein’s equation in the corresponding special
case in which Tp. = 0. Even in the general case, (4.2.4) can be reformulated so as to have almost exactly
the same structure as Einstein’s equation. Recall our discussion of the mass-momentum field 7% toward

the end of section 4.1. We saw there that it encodes p via
p=T""tmn.

(We shall temporarily revert to writing t,, rather than ¢,¢, to emphasize the field’s relation to a two

index Lorentzian metric g5, but nothing turns on our doing so.) So we can certainly formulate Poisson’s
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equation directly in terms of T%. Now consider the fields

Tbc = 7m tmb tne = P toe,

T = T"¢,, = p-
(Caution is required here. It must be remembered that we cannot recover 7% from The by “raising
indices” with h?, since Trn R0 he = 0.) Using these fields, we can express Poisson’s equation in the

form

{ . 1
fqibc: 87T(Tbc - 5 Lhe T); (4210)
which is very close indeed to Einstein’s equation (2.7.2).

Moreover, if we start with a version of Poisson’s equation that incorporates a “cosmological constant”
VoVe + A = 4mp, (4.2.11)
then substitution for V,V®¢ in (4.2.9) yields
Roe= 47 ptyte — Atyle (4.2.12)
(but everything else in the proof remains the same). And this equation, in turn, can be expressed as
g ~ 1 A
Rpe= 87 (Tbc 3 the T) — Atpe, (4.2.13)

which matches (2.7.4).

So far, we have seen how to pass from a standard to a geometrized formulation of Newtonian theory.
It is also possible to work in the opposite direction. In Trautman’s [59] version of geometrized Newtonian
gravitation theory — one of two we shall consider? — one starts with a curved derivative operator V
satisfying (4.2.4), (4.2.5), (4.2.6), and with the principle that point particles subject to no forces (except
“gravity”) traverse geodesics with respect to V. (4.2.5) and (4.2.6) function as integrability conditions
that ensure the possibility of working backwards to recover the standard formulation in terms of a grav-
itational potential ¢ and flat derivative operator % We shall prove this recovery, or de-geometrization,
theorem in this section (proposition 4.2.5), and we shall see that, in the absence of special boundary

f
conditions, the pair (V, ¢) that one recovers is not unique.

Later, in section 4.5, we shall consider a second, more general version of geometrized Newtonian
gravitation theory, developed by Kiinzle [34, 35] and Ehlers [15], in which one of the two supplemental

curvature conditions is dropped.

Rbc = 47 P tbtc . .
) Kiinzle-Ehlers Version
Trautman Version R%¢y = R% %
Rabcd - 0

2See Bain [4] for a systematic discussion of these and yet other versions.
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At issue here is whether “Newtonian gravitation theory” is to qualify as a limiting version of relativity
theory. The geometrized version of Poisson’s equation does, in a natural sense, qualify as a limiting form of
Einstein’s equation. And the first of Trautman’s two supplemental curvature conditions (R*,¢; = R%;%)
holds automatically in relativistic spacetimes. (Recall the fourth clause of proposition 1.9.4.) So it
naturally carries over to any limiting version of relativity theory. But the second supplemental curvature
condition does not hold in relativistic spacetimes (unless they happen to be flat), and it is therefore not
an automatic candidate for inclusion in a limiting version of relativity theory. It is crucially important
that the conditions R*.; = 0 and R%..q = 0 are not equivalent for classical spacetime structures, though

they are for relativistic ones.

Starting only from the weaker assumptions of Kiinzle and Ehlers, one can still prove a recovery theorem
of sorts. But the (de-geometrized) gravitation theory one recovers is not Newtonian theory proper, but
rather a generalized version of it. In this version, the gravitational force acting on a particle of unit mass is
given by a vector field, but it need not be of the form V®¢. Moreover, the de-geometrized field equations
to which one is led involve a “rotation field” wg,. We shall eventually prove this recovery theorem for the
Kiinzle-Ehlers version of Newtonian theory (proposition 4.5.2), and also consider special circumstances
under which the difference between the two versions of geometrized Newtonian theory collapses. It turns
out that the second curvature condition (R*.; = 0) is satisfied automatically, for example, in classical
spacetimes that are, in a certain weak sense, asymptotically flat (see section 4.5), and also in Newtonian

cosmological models that satisfy a natural homogeneity and isotropy condition (see section 4.4).

Before turning to the Trautman Recovery Theorem, we isolate a few needed facts. Let £* be a
smooth, future-directed, unit timelike field in a classical spacetime (M, t,, heb, V). We say that it is rigid
(or non-expanding) if £¢ h® = 0 or, equivalently, V(@¢b) = 0. (These conditions obtain, we know, iff
the expansion field 0, associated with £* vanishes. Recall (4.1.47).) Certain things we have established
about Killing fields (which we have defined only in connection with non-degenerate metrics) carry over

to rigid fields in classical spacetimes. So, for example, we have the following.

Proposition 4.2.2. Let (M,t,,h%, V) be a classical spacetime, and let £€* be a smooth, future-directed,
unit timelike field that is rigid. Then

V"Vl = Rbe,mer, (4.2.14)

Proof. The proof is a just a variant of that used for proposition 1.9.8. Cycling indices, we have

vnvaé-b _ vavné-b _ _‘Ranaé-r7
vbvné-a _ vnvbga _ _‘Rarl)ngr7
Vavbé-n _ vbvaé-n _ _Rnrabé-r.

Subtracting the third line from the sum of the first two (and using the fact that V(£ = 0) yields

2 vnvagb _ (_Rana _ Rarbn + Rnrab)é-r-
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Finally, we reformulate the expression in parentheses on the right side using the symmetries R?[.q) = 0,

R%® (.4 =0, and R 4 = 0:
_Rb.e _ Rabn y Rroab _  (Rban i pbna )y _ g bn i pn ab
—  RY," 4 (R0 4 R",) — R,
_ Rban _ gnab _ pa bn
— RYe,™ _ (R} 4 Re,DM
_ Rbe . pebn  _ g pba
So we have (4.2.14). O

Our proof of the Trautman Recovery Theorem turns on the availability of a unit timelike field n® that
is rigid and twist-free (V*7® = 0). The latter provides a backbone, of sorts, for our construction. The
following proposition shows that the condition R’.; = 0 insures the existence of such fields (at least

locally).

Proposition 4.2.3. Let (M,t,,h*® V) be a classical spacetime that is spatially flat (R4 = 0). Let
~v:I — M be a smooth, future-directed timelike curve with unit tangent field %, and let p be any point
in y[I]. Then there is an open set O containing p, a smooth spacelike field x* on O, and a smooth,

future-directed, unit timelike field n® on O such that x* = 0 on y[I], n®* = 7 on y[I], and
Vax? = 6.° — tan®. (4.2.15)

Furthermore, (i) if R%.q = 0, then Vo1’ = 0; and (ii) if R%cq = 0 and if 7y is a geodesic, then V,n® = 0.

Proof. First, we claim there exists a smooth spacelike field x* on some open set O containing p such that
Vit = het (4.2.16)

and x® = 0 on y[I]. Indeed, as restricted to any one spacelike hypersurface S, x® is just the familiar
“position vector field” (relative to the point where v[I] intersects S). (Recall proposition 1.7.12. All
we need here is that the (three-dimensional, invertible) metric gq, induced on S by h? is flat and so,
at least locally, the pair (5, gqp) is isometric to three-dimensional Euclidean space.) Now let £* be any
smooth, future-directed, unit timelike field on O. Consider the field n° = (—£2V,x? + £°). We claim
that it satisfies all the required conditions. First, it satisfies (4.2.15). This follows since the two fields
(=Vax? +3,°) and t,n° yield the same result when contracted with either h"® or £%. Next, it is clearly
a future-directed, unit timelike field, i.e., tyn® = t,(—£*Vox? + £°) = 1. Third, it agrees with 7 on [I].
For since x® vanishes on v[I], it is certainly constant along the curve, i.e., 7%V,x? = 0. So, by (4.2.15),
we have 0 = 79V, x" = 7%(8a — tan?) = 77* — 7P on 4[1].

Now we turn to the curvature conditions. By (4.2.15) again,

navnvaxb _ navn(5ab _tanb) _ —VnT]b.
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Hence,
vnnb _ _na(vavnxb _Rbmnaxm) _ naRbmnaXm7
since, by (4.2.16), V,V"x? = V,h"® = 0. Since x® is spacelike, we can express it in the form x® = hty,,.

Thus we have
V”nb = Rb™m, Kmn®. (4.2.17)

So, if R*™,,, = 0, it clearly follows that V"n® = 0. This gives us (i).

Now assume that v is a geodesic and R%.q = 0. Then V7 = 0 on y[I]. (Why? 1%V,n’ = 0 on v[I]
since 7 is a geodesic, and h"*V,n® = 0 everywhere by (i).) We may assume (by moving to a smaller open
set O containing p if necessary) that every maximally extended spacelike hypersurface in O intersects
y[I]. So it will suffice for (ii) to show that V,n® is constant on spacelike hypersurfaces, i.e., V¢V,n® = 0.
But this follows immediately from R%.q = 0 and Vn® = 0, since V°Vn’ = V,Vn® — Rt con™. O

Proposition 4.2.3 yields a useful characterization of the relative strength of two curvature conditions.
(Here and throughout it should be understood that when we formulate a curvature equation without
qualification, as on the left sides of (1) and (2) that follow in proposition 4.2.4, we have in mind the

condition that the equation hold at all points.)

Proposition 4.2.4. Let (M,t,,h? V) be a classical spacetime that is spatially flat (R = 0). Then
the following both hold.
(1) R .4 = 0 iff there exists, at least locally, a smooth unit timelike field n® that is rigid and twist-free
(Vent =0).
(2) R%pca = 0 iff there exists, at least locally, a smooth unit timelike field n® that is rigid, twist-free,

and acceleration-free (V,n® = 0).

Proof. The “only if” clauses follow from the preceding proposition. The other drections are easy. (1)
Assume that for any point p in M, there exists a smooth unit timelike field n® defined on an open set
containing p such that V®n® = 0. We show that R%,; vanishes at p. We have R 4n°n? = 0 at
p since R4 is anti-symmetric in the indices ¢ and d. We also have R .4 h"h® = 0 at p (by our
assumption of spatial flatness). So to prove that R%.; vanishes at p, it suffices to show that contraction
there with 7¢ h% (or A" n?) yields 0. But this follows since V®7® = 0 and hence, by proposition 4.2.2,
Ry n° b = V5V e = 0.

(2) Next, assume that for any point p in M, there exists a smooth unit timelike field 7* defined on
an open set containing p such that V, nb = 0. We show that R%,.q vanishes at p. We know from part
(1) of the proposition (and the fact that V, n® = 0 implies V?7® = 0) that R%.; = 0 at p. The latter
condition implies that R%peq = tpR%,can™. (Contracting both sides with either h" or nb yields the same

result.) But since V, n? = 0, we also have R%,.qn" = —2 VieVagn® =0 at p. So we are done. O
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Now we turn to our first recovery theorem. Our formulation is purely local in character since we have
opted not to impose special global topological constraints on the underlying manifold M. Our proof is a

bit different from that in Trautman [59].

Proposition 4.2.5. (Trautman Recovery Theorem) Let (M, t,, h? V) be a classical spacetime that sat-

isfies
R, = dmptyte, (4.2.18)
R*%fa = R%%, (4.2.19)
R® , =0 (4.2.20)

for some smooth scalar field p on M. Then given any point p in M, there is an open set O containing p,
f
a smooth scalar field ¢ on O, and a derivative operator NV on O such that all the following hold on O.
f
(R1) V is compatible with t, and h.
f
(R2) V is flat.
(R3) For all timelike curves with four-velocity field £%,
f f
"'Vp " =0 = "V, " = -V (4.2.21)
f I f
(R4) V satisfies Poisson’s equation Vo, V¢ = 47 p.
f f
The pair (V, @) is not unique. A second pair (V',¢') (defined on the same open set O) will satisfy the
stated conditions iff
(U1) VeV (¢' — ¢) =0, and
f f
(U2) V' = (V,C"%.), where C'%pe = tp t.V*(¢' — @).

Proof. Let p be a point in M. As we have just seen, it follows from R .q = 0 that we can find an open
set O containing p as well as a smooth, future-directed, unit timelike vector field n* on O that is rigid

and twist-free (Vn° = 0). Let ¢® be the acceleration field of %, i.e., ¢* = n"V,, n*. Then we have
Von? =tq ¢ (4.2.22)

(This follows since contraction of the two sides with both n® and h*" yields the same result.) Further, let
f f
V be the derivative operator on O defined by V = (V, C%,.), where C%. = t; t. ¢*. Clearly, t, C%. =0,
C%. h?™ = 0, and C%, h¢" = 0. It follows that

f
Vaty = va ty + tn Cnab = va Ly,
¥
Va hbc — va hbc — pne Cbna _ hbn Ocna _ Va hbc'

f
So, since V is compatible with ¢, and h%¢, ¥ is compatible with them as well. So we have (R1). Notice
next that C,, n" = t, #* and so, by (4.2.22),

f
Va 77b =V, 77b - Cban 77n = tq ¢b —tq ¢b = 0. (4223)
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f
Thus, n* is constant with respect to the new derivative operator V.

f
Now we consider the curvature field associated with Y. We have C™y. C%4, = 0 since ¢™ t,, = 0. So,

by (1.8.2),
;
R%cd = R%ca + 2V .C% + 2C" ). C% gy,
= R%ca +2tyt;g Ve o (4.2.24)

It follows immediately that ]jé“de = Rabed — (since R, = 0). So % is spatially flat. But now recall
the second clause of proposition 4.2.4. We have just verified that there is smooth unit timelike field n®
on O that is constant with respect to é So (since é is spatially flat), the proposition tells us that 6
must be flat outright, i.e., j{z‘lbcd = 0. So we have (R2). And (4.2.24) reduces to

R%ca = —2tptaVyo* (4.2.25)

Now we extract further information from (4.2.25). Raising and contracting indices yields

Ry = —tptqg V", (4.2.26)
Rye = tpte Vg oo (4.2.27)
Since we are assuming R%,°; = Rq%, it follows from the first of these assertions that V¢ = 0.

This implies that (after possibly further restricting O to some smaller open set containing p) there is
a smooth scalar field ¢ on O such that ¢* = V%¢p. (Here we invoke proposition 4.1.6.) And since we
are assuming Rp. = 47w ptyt,, it follows from the second assertion that V,Ve¢ = V,¢% = 47p. But
C%un = totn, @* = 0 and, therefore,

foS f !
VaV%%=VeV9—C%, V"¢ =V,V. (4.2.28)

o f
So V4 V% = 47mp. That is, we have (R4).

For (R3), note that for all timelike curves in O with four-velocity field £¢,
f
§"Vn &t = fn(vnfa —C%m gm) = "Vpg® - (tn tm Va¢) e = §MV,E - V9.

S
So £"V,&4 =0 iff €"v, £ =—-V%.
f f
Finally, we consider the non-uniqueness of the pair (V,¢). Let (V’,¢') be a second pair on O.
f f

Consider fields C'*p. and ¥ on O defined by V' = (V,C"%,.) and ¢ = ¢’ — ¢. We first show that if the
new pair satisfies the stated conditions of the proposition, then it must be the case that V¢V?y) = 0 and
Clabc =ty tcvaw'

f f f
Assume (V', ¢') satisfies (R1) - (R4). Then — since (V, ¢) and (V', ¢’) both satisfy (R3) — we have

nf a fa n a nfl a fla,l
'Vt V9% =0 = 'V, =0 = "V, '+ V9 =0
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for all timelike curves with four-velocity field £*. But é"‘d)’ = éaqﬁ’ = éaqﬁ—l— éaw. And &" é’n S
5"(671 & — C"%m&™). So it must be the case that, for all future-directed, unit timelike vectors £* at all
points in O,
O ™€ =V,
And from this it follows that C'%,,, = t, tn % p = tm t, Ve, as required. (Recall the argument for a
corresponding assertion in our proof of the Geometrization Lemma.) Now the curvature fields of (é, o)
and (%’, @') are related by ' '
l{%/abcd = Ij%abcd + 2tptyg %c] %GUJ-

(The argument here is exactly the same as given above for (4.2.24).) Since % and é’ are both flat, it
follows that ta %C]% %) = 0 or, equivalently, % ¢ % %) = 0. But V°V% :é ¢ % @p.  (Indeed, % ¢
and V¢ agree in their action on all vector fields A, since % AT = VA — C%,\" and C?¢, = 0.) So
VeV = 0, and we are done with the first direction.

Conversely, assume that C'%,. = t, .V and V*V%) = 0. The first assumption alone implies that
f
V' is compatible with ¢, and h®. And by reversing the steps in the preceding paragraphs, we can show
f
that (V',¢’) satisfies (R2) and (R3). That leaves only (R4). For this, note first that since C'%,,, = 0,

f, f fof f fof
V’a V/a¢/ — Va v/a¢/ _ Claan v/nd)/ — Va vad)/

- Y. %% + ¥, éaw

= 4mp+ %a éaw =d7np+ V., V.
(The penultimate equality holds because (%, ¢) satisfies (R3); and the argument for the final equality
is exactly the same as the one given for (4.2.28).) But V2V%) = 0 and, so, V,V*) = t,¢"V, Vb,
where £ is any smooth, future-directed timelike field on O. It follows that V,V%) = 0 and, therefore,
%’a %’agb’ = 4 p, as required for (R4). O

Just as with the Geometrization Lemma, only a small change is necessary here if we want to work
with a cosmological constant. If we replace (4.2.18) with Ry, = 47 ptpte — Atpte, then substitution for
Ry in (4.2.27) yields V, ¢* + A = 47 p. The further argument that ¢ is of the form V¢ is unaffected.
So we are led to (4.2.11).

f
The Trautman Recovery Theorem tells us that if V arises as the geometrization of the pair (V, ¢),
f
then, for any field v such that V@V = 0, it also arises as the geometrization of (V’, ¢') where ¢' = ¢ +
f f
and V' = (V, tp t. V).
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We certainly have sufficient freedom here to insure that %’ is, in fact, distinct from % We can think of
VP4 as the “spatial gradient” of 1. The stated condition on v, namely V*V®) = 0, is just the requirement
that this spatial gradient be constant on spacelike hypersurfaces. The condition can certainly be satisfied
without that gradient vanishing at all points. (Its value can change from one spacehke hypersurface to
another.) And if V*¢ # 0 at some point p, then V cannot be the same operator as V Indeed, let £ be
the four-velocity field of a timelike curve passing through p. Then at p,

£ VL = € (V0 & — (ata VW) = € Vo € — VP £ €27, &

We can use the current discussion to capture in precise language the standard claim that gravitational
force in (standard) Newtonian theory is a gauge quantity. Consider a point particle with mass m and
four-velocity £ that is not acceleratlng with respect to V. According to the de-geometrization (V o),
the particle has acceleration £™ Vn &% and is subject to gravitational force —m é‘% = —mV%. (We get
this from (R3).) Rather than being subject to no forces at all — the account given by the geometrized
formulation of the theory — it is here taken to be subject to two “forces” (mertlal and gravitational)
that cancel each other. Alternatively, according to the de-geometrization (V ¢'), it has acceleration
& 6;5“ =" én &% — V® and is subject to gravitational force —m é'“ ¢ = —mVei% — mV™). So
the gravitational force on the particle is determined only up to a factor mV*y, where V® is constant

on any one spacelike hypersurface but can change over time.

Of course, if boundary conditions are brought into consideration, we regain the possibility of unique
de-geometrization. In particular, if we are dealing with a bounded mass distribution, i.e., if p has compact
support on every spacelike hypersurface, then it seems appropriate to require that the gravitational field
die off as one approaches spatial infinity. But if V%1 is constant on spacelike hypersurfaces and if it goes

to 0 at spatial infinity, then it must vanish everywhere.
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4.3 Interpreting the Curvature Conditions

In this section, we consider the geometric significance of three curvature conditions that appear in

Trautman’s formulation of geometrized Newtonian gravitation theory:

Rab = 47Tp tatb, (431)
R%“a = R%%, (4.3.2)
R®, = o0 (4.3.3)

We start with the third. We know already (proposition 4.2.4) that it holds in a classical spacetime iff
the latter is spatially flat (R*°¢ = 0) and, at least locally, admits a unit timelike vector field £ that is

rigid and twist-free (V2¢? = 0). We also have the following more direct interpretation.

Proposition 4.3.1. Let (M,t,, h®,V) be a classical spacetime. Then R™.; = O throughout M iff

parallel transport of spacelike vectors within M is, at least locally, path independent.

Proof. (If) This direction is immediate. Let p be any point in M, and let O be an open set containing
p within which parallel transport of spacelike vectors is path independent. We can certainly find three
smooth, linearly independent, spacelike fields 6%, 5%, 5% on O that are constant (Va e 0). (Start with
three linearly independent, spacelike vectors at p and parallel transport them, along any curve, to other

points in O.) For each one, we have
R%cq0" = =2V Vg o =0

at p. Since 6%, 5%, &% span the space of spacelike vectors at p, it follows that R%,.q 0" = 0 for all spacelike

vectors o there. So R%..q h"® oy = 0 for all co-vectors oy at p, i.e., R®.qg = R%cah™ = 0 at p.

(Only if) There are various ways to see this. But it is, perhaps, easiest to make use of what we have
established and reduce this to a claim about a (different) flat derivative operator. If R%.; = 0, then,
by proposition 4.2.4, given any point p in M, there is an open set O containing p and a future-directed
unit timelike vector field 7% on O such that V9n® = 0. Now recall our proof of the Trautman Recovery
Theorem (proposition 4.2.5). Let ¢* be the acceleration field of n*, and let % be the derivative operator
on O defined by %: (V,C%), where C%. = tpt.p*. We established in our proof of the Recovery
Theorem that 6 is flat. (And for this part of the proof, we did not need the additional assumptions
that appear in our formulation of the theorem, namely R%,°q = R4% and Ry, = 47 ptpt.. We needed
only R?.; = 0.) So parallel transport of all vectors Within'O relative to % is, at least locally, path
independent. To complete the proof, it suffices to note that % and V agree in their action on spacelike
vector fields (and so agree in their determinations of parallel transport for such fields on arbitrary curves).

This is clear. For let 0 be a smooth spacelike vector field (defined on some open subset of O). Then
f
Va ol = Va ol — Cbanan = V. ob,

as required, since C?,,,0™ = (tot, #*) 0" = 0. O
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The proposition also provides a physical interpretation of the third curvature condition (4.3.3) in terms
of the precession, or non-precession, of gyroscopes. Suppose we hold two spinning gyroscopes at a point,
side by side, with their axes co-aligned. And suppose we then transport them (without constraint) to
another point along different routes. We cannot expect a priori that, on arrival, their axes will still be
co-aligned. There is no reason why “gyroscope propagation” must be path independent. Indeed, we see

from the proposition that it will be path independent (at least locally) iff (4.3.3) holds.

Now we consider the geometrized version of Poission’s equation Ry, = 47 pt, tp. The interpretation
we offered for Einstein’s equation in terms of geodesic deviation has a close counterpart here. Almost
everything carries over intact from section 2.7. Let £* be a “geodesic reference frame” defined on some
open set in M, i.e., a smooth, future-directed, unit timelike vector field whose associated integral curves
are geodesics. Further, let A\* be a smooth, spacelike vector field along (the image of) one of the integral
curves v satisfying £¢A* = 0. (Once again, we can think of A* as a connecting field that joins the image
of v to the image of an “infinitesimally close” neighboring integral curve.) The equation of geodesic
deviation

"V, (EMV i AY) = R 80N ¢d (4.3.4)

carries over without alteration, as does the expression we derived for the “average radial acceleration” of
é-a
1
ARA = —gRbd gbed, (4.3.5)

The latter, in turn, leads to the following proposition (which is proved in almost exactly the same way

as proposition 2.7.2).

Proposition 4.3.2. Let (M, t,, h®, V) be a classical spacetime, let p be a smooth scalar field on M, and
let p be a point in M. Then Poisson’s equation Rgap, = 47 ptaty holds at p iff for all geodesic reference
frames £* (defined on some open set containing p), the average radial acceleration of £* at p is given by
ARA = —g Tp.

We can make the result look even more like proposition 2.7.2 if we use our alternate formulation of
Poisson’s equation. In that case, the conclusion is this: Poisson’s equation Ry, = 87 (Tab — %tab T)

holds at p iff for all geodesic reference frames £ (defined on some open set containing p), the average

81 . 1 .
radial acceleration of £* at p is given by ARA = -3 (Tar — 3 tapy 1) EE°.
Finally, we turn to the geometric interpretation of the second condition in our list, R%,“y = R%%.

This will require a good deal more work than the others. We show that it holds in a classical spacetime
iff the latter admits, at least locally, a smooth, unit timelike field £* that is geodesic (£"V,£* = 0) and
twist-free (V1%€Y = 0). This equivalence is proved in Dombrowski and Horneffer [13] and Kiinzle [34].
Our argument, at least for the “only if” half (proposition 4.3.7), is a bit different from theirs. We begin
with the “if” half of the assertion, which is straightforward.
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Proposition 4.3.3. Let (M,t,,h®, V) be a classical spacetime, and let p be any point in M. Assume
there is a smooth, future-directed, unit timelike field €%, defined on some open set containing p, that is

geodesic and twist-free. Then R* ¢, = R°*, at p.

Proof. Tt suffices for us to show that, at p, contracting (R% ¢, — R¢;%,) with (i) £°¢%, (ii) h*"h?, and (iii)
€°hds (or hP7¢4) yields 0. The claim in case (i) comes free, without any assumptions about £, since

Ro"es = R®" holds in any classical spacetime. (Recall (4.1.30).)

For case (iii), we need only the fact that £ is twist-free. We must show that R%,¢¢? = R, ¢b. To do
so, we recast the right side using symmetries of the curvature field, namely Ra[bc q = 0, Rab(c Q) = 0, and
R(ab)C 4 = 0. (The first two hold for any derivative operator. The third follows from the compatibilty of V
with h9®. Recall (4.1.26). We use the symmetries with some indices in raised position. So, for example,

since R%_, + R%;, + R%,, = 0, it follows that R% @ + R% ¢ 4+ Rocd, = 0.)
Rcsab é—b _ _Rscab é—b _ Rsbca é—b + Rsabc é—b _ Rsbca é—b _ Rasbc é—b

_ Rsbca é—b + (Racsb + Rab cs) é—b _ Rsbca é—b + Rab cs é—b _ Rcasb é—b

_ Rsbca é—b + Rab cs é—b + (Rcbas + Rcsba) é—b'
Hence,

1
Rcsab é-b — 5(Rsbca é-b + Rab cs é-b + Rcbas) gb
= —(Vlevaes 4 vievslge 4 vlevelee),

If we now expand the right side and use the fact (for the first time) that V&P = V€%, we arrive at

Rcsabgb _ —(VC vsga B VA cha) _ Rabcsgb.

Finally, we consider case (i). Here we need both the fact that £ is twist-free and that it is geodesic.

We must show that R%, ¢, £%¢4 = R, €b¢4, ie., that R, ¢, €8¢? is symmetric in @ and c. But
RS E€T = —€1(VVaE" = VaVoE") = —Ve(§1Vag?) + (V7€) (Va€") + € VaVeer,

The first term on the far right vanishes since £% is geodesic. The third is symmetric in ¢ and ¢ since

€% is twist-free. The second is symmetric in a and ¢ for the same reason, since (V¢¢9)(Vy4£%) =

(VN (Va®) = h™ (Vi §°)(Va&?) = (Vo £) (V" €%) = (Vo £)(VEN). O

Next we consider a particular class of derivative operators that satisfy the curvature condition (4.3.2)

(in addition to being compatible with the background metrics ¢, and ha?).

Proposition 4.3.4. Let (M, t,, hat. V) be a classical spacetime, and let £* be any smooth, unit, future-
directed timelike vector field on M. Then there exists a unique derivative operator V on M such that (i)

Vs compatible with t, and h®® and (ii) £* is geodesic and twist-free with respect to V.
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When conditions (i) and (ii) obtain, we call V the spectal derivative operator determined by £*. It
follows immediately from the preceding proposition that all special derivative operators (determined by
some field) satisfy (4.3.2). We shall soon verify (in proposition 4.3.7) that they are the only derivative

operators that do so.

Proof. Let hap be the projection field associated with £%, let Kkqp = ﬁn[b V€™, let C%e = 2t k) and,
finally, let V= (V,C%c). Then, by proposition 4.1.3 , V is compatible with ¢, and h%. Moreover, we
claim, £* is geodesic and twist-free with respect to V. To see this, note first that since hap RP = 6,°—t, &0,

we have

e = Wy = 5 W Vo €~ bV €)= L(Va € — o V'€
and, therefore,
pab 1 (Ve g — ybeay = yla g,
kaber =

Now _
Vol =V —C, 6" = Vo &8 — (ta ki’ 4+t ka)E.

Hence, since kqp is anti-symmetric, we have

%[a gb] _ v[a é—b] _ Iiab =0,
ga%a gb _ gava gb -9 Habé-a — 07

as claimed. So we have established existence.

For uniqueness, suppose % = (%, CN’abc) is a second derivative operator on M that satisfies conditions
(i) and (ii). We know from proposition 4.1.3 (since both V and % are compatible with ¢, and he?)
that there is a smooth, anti-symmetric field k4 such that éabc = 2h"" @y Keyn- We show that ke, = 0.
Now Kk, £°€™ = 0, since k., is anti-symmetric. So it will suffice for us to show that k., £°h™° = 0 and

Ken BR™ = 0. Since €% is geodesic with respect to both V and 6, we have, first,
0= V& = £Vl = 098 = —C.6°€° = —2hen E°R™".
Next,
67" é’S — hT‘C 66 55 — h”’C (66 55 _ NSbc §b) — 67"55 _ K:TS.
So, since vir ecl=0= vir I3 (and since k., is anti-symmetric), we also have h"¢ h*" k., = 0. O

Now we extend proposition 4.1.3 and consider the most general form for a connecting field C_ that

links two derivative operators on M that are compatible with t, and h® and also satisfy (4.3.2).
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Proposition 4.3.5. Let (M, ta,h“b,V) be a classical spacetime such that R%¢q = R%;%,. Let V' =
(V, C%,) be a second derivative operator on M where C%_ = 2h" ty k), and kqp is a smooth, anti-
symmetric field on M. (We know this is the general form for a derivative operator on M that is compatible
with t, and h®.) Then R'*,¢q = R'°q% iff kap is closed, i.e., Vinkap) = 0. (Here, of course, R ®ycq is

the Riemann curvature field associated with V'.)

Proof. We know (from problem 1.8.1) that
R%q = Rea +2 V(e Clypp + 207, Oy
In the present case, where C' = 2t Koy, we have C" . C%, = tqty k. kn® + tate Ky kn® and, hence
20" O = 2t g k)" n .
Similarly, V. C?%, = tq V. kp® +t, Ve kq® and, hence,
2V C’ad]b = 2tq Vg rp® + 2t Ve kg *.
If we now raise the index ¢ in all these terms, we arrive at
R = R%q + (taVekp® + ty Vokg® — ty Var) + tytqg 6" kp®
and, therefore, also

R'¢;% = R%Y% + (ty VO ka® + taV* ke — ta Vi %) + taty K" kS,

C an

We are assuming that R%,¢y = R¢;%,. And, by the anti-symmetry of rkqp, £ K% = K" K,°. So we see

that R'%,¢q = R/°4%, iff the respective middle terms (in parentheses) in the two lines are equal, i.e., iff
ty (—Vka® + VRe® — Var®) = ta (=Vrp* + V k¢ — Vp k). (4.3.6)
In turn, this equation holds iff
—V%kg¢ + VErg® — Vgr® = 0. (4.3.7)

(Why? If (4.3.7) holds, then both sides of (4.3.6) vanish. Conversely, assume (4.3.6) holds, let ¢¥*¢; =
(=V% kg + Veke® — Vik), and let €% be any unit timelike vector field. Contracting both sides of
(4.3.6) with A7 yields himy¢; = 0. Contracting both sides with £°¢? yields £94)%¢; = 0. So it must
be the case that ¢4 = 0.) We can express (4.3.7) in the form

ho" he® V[T Iisd] = 0. (4.3.8)

But this condition is equivalent to

V[T Iisd] = 0. (4.3.9)

For if (4.3.8) holds, then, by the anti-symmetry of V|, kg, contraction with £7£°¢?, ¢7¢5hin, ¢ hsehdn,

and h"*h*°h" all yield 0. Thus, as claimed, R'*,¢q = R'®;% iff kqp is closed. O
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Now we make precise a sense in which condition R% ¢; = R, rules out the possibility of “spontaneous

rotation”.

Proposition 4.3.6. Let (M,t,,h®, V) be a classical spacetime such that R4, = R¢2,. Let £ be a
smooth, future-directed, unit timelike field on M that is geodesic (with respect to V). Then its associated
rotation and expansion fields satisfy

€'V, w?® =209, (4.3.10)
Hence, given any integral curve v: I — M of €%, if €% is twist-free (W™ = 0) at one point on [I], it
is twist-free at all points on it. (Or, more colloquially, if it is twist-free at one time, it is twist-free at all

times.)

Proof. We know that V¢ &% = w?. (This follows immediately from (4.1.43).) Hence,

2§nvn wab _ é-nhamvnvm gb _ gnhbm vnvm é-a
= gnham (vmvn gb - Rbsnmgs) - gnhbm (vmvn ga - Rasnmgs)
Since £% is geodesic,
fnhamvmvn gb = h*™ [Vm(fnvnfb) - (men)(vnfb)] = _(vafn)(vnfb)
and, similarly, —£"h*™V,,V,, £ = (VP¢")(V,,£%). Furthermore, since Rbs(nm) =0,
_é-nhamRbsnmé-s + gnhmeasnmé-s _ (Rbsan _ Rasbn) é-ngs _ (Rbsan _ Ranbs) §n§S —0.
So,

2§nvn wab _ _(vagn)(vngb) + (vbgn)(vnga)
= —2Vier 1 vre(V,E) + 2V + vre(V,gY)
= -2 (V[agn])(vngb) +2 (V[bgn])(vnga) = _2wan(9nb + Wnb) + 2wlm(9na +wn®)

= —2099,% + 2,0, = 40",

Now let v: I — M be an integral curve of £%, and suppose wg, = 0 at some point y(sg). It follows
from the basic uniqueness theorem for systems of first-order ordinary differential equations that (4.3.10)
will be satisfied at all points on v[I] iff wa, = O vanishes everywhere on that set. (To see this in detail,
let &q,...,04 be a basis for the co-tangent space at some point on ~[I] that is orthonormal with respect
to h? (in our extended sense of “orthonormal”). We can extend the vectors (by parallel transport) to
fields &, on y[I] — we use the same notation — that satisfy £"V,,0, = 0. Since V is compatible with
h the generated fields will be orthonormal everywhere. Now consider the scalar (coefficient) fields

& =wed 74 03. Equation (4.3.10) can then be expressed as a system of first-order differential equations

ij
dw 11 12 44
o = (W, W, ., w)

to which the uniqueness theorem is applicable.) O
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We have claimed that condition (4.3.2) holds iff, at least locally (in a neighborhood of every point),
there exists a unit timelike vector field that is geodesic and twist-free. We have proved the “if” half of

the claim (in proposition 4.3.3). Now, finally, we turn to the converse.

Proposition 4.3.7. Let (M,t,, h®, V) be a classical spacetime such that R ¢, = R°,. Then, given
any point p in M, there is a smooth, future-directed, unit timelike vector field, defined on some open set

containing p, that is geodesic and twist-free (with respect to V).

Proof. Let p be given. Our proof will proceed in two steps and make reference to three smooth, future-
directed, unit timelike fields: &%, &', and £”®. (They will be defined on open sets O, O’, and O”,
respectively, where p € O” C O’ C O.) &% will be an arbitrary field. £’® will be twist-free. £”% will be

geodesic and twist-free. (It is the existence of the third that we need to establish.)

(Step 1) Let £€* be a smooth, future-directed, unit timelike field defined on some open set O containing
p. By proposition 4.3.4, there is a derivative operator V on O such that V is compatible with t, and
hat, and such that &2 is geodesic and twist-free with respect to V. Let C%. be the connecting field (on
O) such that V = (%, C%.). Now, by proposition 4.3.3, }N%abcd = }N%Cdab. So, since since both V and V
satisfy (4.3.2), it follows by proposition 4.3.5 that there is a smooth, closed, anti-symmetric field x4 on
O such that C%, = 2h* t(, kc)p. Since kg is closed, we know by proposition 1.8.3 that it is, at least
locally, exact. So there is an open subset O’ of O containing p, and a smooth field xk, on O’ such that
Kab = 6[(1 k). Now consider the field £’ = £* 4 k% on O'. It is a smooth, future-directed, unit timelike
field. (It is of unit timelike length since t,x® = t,h%’ky, = 0.) We claim that it is twist-free with respect
to V. We have

Vn€'® =V (€% +£%) = Vi (6% + &%) — C% (€™ + K™).
But,
Ch L+ KE™) = (tm kn® F tn k™) (™ + K™) = kn® + tn kn“ (€7 + &™)
Hence,
VrEe = VY 4 VK — KM

and, therefore (since £% is twist-free with respect to 6, and Kqp = ﬁ[a Kp))s

V[n gla] — 6[77, ga] + 6[",{‘1] — g = 0.

(Step 2) So far, we established the existence of a field ¢’%, defined on some open set O’ containing p,
that is twist-free with respect to V. Now let S be a spacelike hypersurface within O’ that contains p.
Then we can find a smooth, future-directed, unit timelike vector field £”%, defined on some open subset
O"” of O’ containing p, that is geodesic with respect to V and agrees with £'® on S. (We first restrict
§'* to S, and then use each vector in this restricted field {'%|g to generate a geodesic. This gives us a
congruence of curves. We take £’® to be its tangent field.) Now, since &'® is twist-free on S, so is £"%.

(The difference field (£”’* — £’*) vanishes on S. So, at any point of S, its directional derivative in any
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spacelike direction vanishes as well, i.e., h%" V,, (£ —¢'®) = 0. Hence, on S, V¢ ¢l = vle ¢’t] = 0.) But
now, since the geodesic field £”¢ is twist-free on S, it follows from proposition 4.3.6 that is it everywhere

twist-free. So we are done. O
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4.4 A Solution to an Old Problem about Newtonian Cosmology

The geometrized formulation of Newtonian theory provides a satisfying solution to an old problem

about Newtonian cosmology. We present it in this section.?

At issue is whether Newtonian gravitation theory provides a sensible prescription for what the gravi-
tational field should be like in a hypothetically infinite, homogeneous universe. Let us first think about
this in terms of a traditional, non-geometrized, three-dimensional formulation of the theory. Let (R?, g,5)
be three-dimensional Euclidean space. We take it to represent physical space at a given time. Further,
let p and ¢ be two smooth functions on R? that, respectively, give the mass density and the gravitational
potential at different points of space.* We assume that they satisfy Poisson’s equation V,V%p = 47 p.

(Here V is the derivative operator on R? compatible with ggy.)

Suppose that we are dealing with a homogeneous distribution of matter, i.e., suppose that p is constant.
Then, presumably, the gravitational field associated with this matter distribution should be homogeneous
as well. (Why should it be different here from the way it is there?) The gravitational force felt by a
particle of unit mass at any point is given by —V®¢. So, it would seem, the natural way to capture the
homogeneity condition on the gravitational field is to require that the field V®¢ be constant, i.e., require
that V;V®p = 0. But now we have a problem. If V;V®¢ = 0, and if Poisson’s equation is satisfied, then
47 p=V,V? = 0. So we cannot satisfy the homogeneity condition except in the degenerate case where

the mass density p is everywhere 0.

Here is another version of the problem. It directs attention to a particular class of solutions to Poisson’s
equation V,V%p = 47 p that do exist in the case where p is constant (V, p = 0). Let o be any point in
R3, and let x* be the position field determined relative to 0. So V,x? = §,°, and x® = 0 at o. Let us

say that a smooth field ¢ on R? is a canonical solution centered at o if

4
Ve = gwpxa, (4.4.1)

i.e., if V%¢ is a spherically symmetric, outward-directed, radial vector field, centered at o, whose assign-

ment to any point p has length %w pr, where r is the Euclidean distance between o and p.

Note that if this condition holds, then (since V, p = 0),
a 4 a
V.Ve = gwp(vax ) = 4mp.
So canonical solutions centered at o (if they exist) are solutions. And they certainly do exist, e.g.,

2 n
¢ = gwp(xnx )-

3For further discussion of the problem and its history, see Norton [43, 44, 45] and Malament [40].
4Caution: we have previously understood p and ¢ to be objects defined on a four-dimensional spacetime manifold, and
shall soon do so again. But now, temporarily, we take them to be defined on a three-dimensional manifold (representing

space a given time) instead.
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Not all solutions to Poisson’s equation (in the present case where p is constant) are canonical solutions
centered at some point or other. (If ¢ is a solution, then so is (¢ + @), where ¢ is any smooth field
that satisfies V,V* = 0.) But canonical solutions are the only solutions that satisfy a certain natural
constraint, and for this reason they are the only ones that are usually considered in discussions of New-
tonian cosmology. The constraint arises if we consider not just the distribution of cosmic matter at a
given time, but also its motion under the influence of that potential. It turns out that if we require that
the motion be isotropic in a certain natural sense, then all solutions are ruled out ezcept those that are
canonical for some center point o. (We shall, in effect, prove this. See proposition 4.4.3.) In any case, our
problem re-emerges when we direct our attention to the class of canonical solutions. The gravitational
field associated with any one of them is a radial field that vanishes at a unique center point. Why, one
wants to ask, should there be any such distinguished point in a homogeneous universe? And why should
it be one point rather than another, i.e., why should any one canonical solution be a better choice for the

gravitational field in a homogeneous universe than another?

That is the problem. A solution, or dissolution, can be found in the recognition that the gravitational
field (in standard formulations of Newtonian theory) is a kind of “gauge field”, i.e., a field that is, in
general, systematically underdetermined by all experimental evidence. Despite appearances, canonical
solutions centered at different points really are empirically equivalent. No experimental test could ever
distinguish one from another (or distinguish the center point of any one of them). Canonical solutions
centered at different points should be viewed as but alternative mathematical representations of the same

underlying state of gravitational affairs — a state that is perfectly homogenous in the appropriate sense.

One can certainly argue for these claims directly, without reference to geometrized formulations of
Newtonian theory.5 (See, for example, Heckmann and Schiicking [31] and Norton [44].) But some insight
is achieved if we do think about this old problem in Newtonian cosmology using the ideas developed
in section 4.2. We can develop an account of Friedmann-like cosmological models within geometrized
Newtonian gravitation theory, and then recover the class of canonical solutions (centered at different
points) as but alternative “de-geometrizations” of the initial curved derivative operator — exactly as
described at the end of that section. The choice between different canonical solutions emerges as a
choice between different ways to decompose into “gravitational” and “inertial” components the net force

experienced by a point particle. Nothing more.

Before proceeding, we give an alternative characterization of the class of canonical solutions — at least

in the case of interest where p > 0 — that will be convenient later.

5The important point is that if ¢ and ¢’ are canonical solutions, based at o and o/, respectively, the difference field
(Ve¢p — V2¢') is constant, and constant gravitational fields are undetectable. Only field differences can be detected. The
difference field is constant since

4 4 4
Va(VPh - Vb)) = Va(yrpxb - 3T X" = gﬂﬂ(&zb—&zb) = 0.
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Proposition 4.4.1. Let (R, gu) be three-dimensional Euclidean space, and let p be a constant field on

R3 with p > 0. Then for all smooth fields ¢ on R3, the following conditions are equivalent.

(1) ¢ is a canonical solution (to Poisson’s equation V*V, ¢ = 4mp) centered at some point in R3.
4
(2) ViV ¢ = 2mpg™.
Proof. One direction is immediate. If ¢ is a canonical solution centered at point o (and if x® is the
position field relative to o),

4 4 4
VIV = Vo (gmpx') = 3mp (VXY = gmpg”

Conversely, suppose ¢ satisfies condition (2). Let ¢’ be a canonical solution centered at some point o,

let x'* be the position field relative to o/, and let x* be the difference field
b b b .7 b 4 /b
H:V(b—ng:ng—gﬂ'px.

Then ” is constant (V* k* = 0) and

4 3
Vi — = 2 b)
¢ =zmp <x + (47”))%
Now let o be the (unique) point where the vector field on the right side vanishes. (We can think of o as
the point one gets if one displaces o’ by the vector —(3/4 7 p) x°. This makes sense since we can identify
vectors at different points in three-dimensional Euclidean space.) Then (x'® + (3/47 p) x°) is just what

we would otherwise describe as the position field x° relative to o. (Note that when we apply V, to the

field we get 9,°.) So ¢ qualifies as a canonical solution centered at o. o

Note that the proposition fails if p = 0. In that case, the implication (1) = (2) still holds, but not the
converse. For then all canonical solutions have vanishing gradient (V%9 = (4/3)mpx®* = 0), whereas

condition (2) requires only that V%@ be constant.

Condition (2) in the proposition naturally lifts to the context of classical spacetimes where it becomes
a 7b 4 ab
V*V ¢ = gwph . (4.4.2)

(That is why it will be convenient later.) The latter holds iff the restriction of ¢ to any spacelike
hypersurface S (together with the restrictions of V and h® to S) satisfies (2).

Let us now shift back to the framework of geometrized Newtonian gravitation theory. Our first task is
to introduce a class of cosmological models that correspond to the Friedmann spacetimes we considered
in section 2.11. We could proceed just as we did there, i.e., start with a condition of spatial homogeneity
and isotropy (relative to some smooth, future-directed, unit timelike field £*) and derive the consequences
of that assumption. We could show again that £ is necessarily geodesic, twist-free, and shear-free; that
any vector field definable in terms of the basic elements of structure t,,h®,V, and £% is necessarily

proportional to £%; and so forth. Instead, we proceed directly to an explicit characterization.
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Let us first take a (classical) cosmological model to be a a structure of the form (M, ¢,, het v, &9, 0),
where (M, t,, h®, V) is a classical spacetime, £% is a smooth, future-directed unit timelike field on M,
and p is a smooth field on M. We take £ be the four-velocity of a cosmic fluid that fills all of spacetime,
and take p to be the mass-density of the fluid. Next, let us say that (M, t,, het Vv, e, p) is Friedmann-like

if the following conditions are satisfied.

(1) &% is geodesic, twist-free, and shear-free, i.e.,
1
V. = §(5ab — 1, &%) 0. (4.4.3)

(Here 0 = V,£* is the scalar expansion field associated with £*. Note that (4.4.3) follows from
(4.1.42), (4.1.45), and (4.1.12). In more detail, since 0, = 0y = 0 and "V, £* = 0, we have

1

(2) V2p =0, ie., pis constant on all spacelike hypersurfaces.

(3) Poisson’s equation R, = 47 ptap holds.

Note that we have not included Trautman’s two supplemental integrability conditions (R% °; = R°;",
and R4 = 0) in the list. We have not done so because, as we now show, they follow from the other
assumptions. So in this special case — the case of Friedmann-like cosmological models — the difference
between our two formulations of geometrized Newtonian theory collapses. (We shall consider another case

where it collapses in section 4.5.)

Proposition 4.4.2. Let (M, t,, h®,V,£%, p) be a Friedmann-like cosmological model. Then the following
conditions hold.

(1) R%¢, = R°/, and R"., = 0.

(2) &'V, 0 = —4mp — %6‘2.

Proof. (1) The first condition R*,q = R%;%, follows immediately from proposition 4.3.3. (We need only
that £ be geodesic and twist-free for this much.) For the second condition, R* .4 = 0, it will suffice to
establish the existence, at least locally, of a smooth, future-directed, unit timelike field n* on M that is

rigid and twist-free (V2,? = 0). For then we can invoke proposition 4.2.4.

Let p be any point in M. All Friedmann-like cosmological models are spatially flat (by proposition
4.1.5). So there must be an open set O containing p and a smooth spacelike field x* on O such that
Vex? = h. (Recall the very beginning of our proof of proposition 4.2.3.) Now consider the field

a a 10.
nt =& — -

0
3 X

on O. It is certainly a smooth, future-directed, unit timelike field. We claim that it is rigid and twist-free,
as required. To see this, note first that, by (4.4.3),

1

1 1 1
vanb _ vaé-b _ gevaxb _ g(vae) Xb _ (gehab _ 3

1
O het) — 5 (V70) xb.
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Furthermore, V6 = 0. This follows, since by (4.4.3) and Poisson’s equation,

Ve = Hpo anm é-m — _pan Ranm gr + han van é-m

—h" R & + Vo (V™) = —h* (dmptyn) & + Vm(% hm ) = %V“ﬁ.
So V' = 0, as claimed.
(2) Here we start as we did in our derivation of Raychaudhuri’s equation (2.8.17):
€'Val = VaVy & = "R €+ VVa g
= “Rea&€" + Vi(§°Va€") = (V") (Va€").

1
But now, by (4.4.3), €'V, =0 and (V&) (VaE) = 3 0. And by Poisson’s equation (the third
condition in our characterization of Friedmann-like cosmological models), R.q, £°€* = 4mp. So we are

done. O

Note that condition (2) in the proposition — the equation that governs the rate of change of 6 in
Friedmann-like cosmological models — agrees with (2.11.9) in the case where p = 0. This makes sense.
Though in general relativity the “gravitational field” generated by a blob of perfect fluid depends on its
internal pressure as well as on its mass density, only the latter plays a role in Newtonian gravitation

theory.

Now we make precise our claim about the recovery of canonical solutions. Condition (4.4.4) in the
following proposition is the condition we motivated using proposition 4.4.1. At least if p # 0, we can
understand it to capture the claim that the restriction of ¢ to any spacelike hypersurface is a canonical
solution to Poisson’s equation. (If p = 0, it asserts instead that V%¢ is constant on spacelike hypersur-

faces.)

Proposition 4.4.3. Let (M,t,, h®,V,£% p) be a Friedmann-like cosmological model, and let ¢ be a
|

smooth field on some open set in M. If ¢ arises as part of a de-geometrization (V, ¢) of V (on that open

set), then
a b 4 ab

AVARVARGIES gﬂ'ph . (4.4.4)

f

Conversely, if ¢ satisfies (4.4.4), then, at least locally, there is a derivative operator NV on M such that
f f

(V, &) is a de-geometrization of V. (Once again, to say that (V, @) is a de-geometrization of V is to say

that it satisfies conditions (R1) - (R4) in the Trautman Recovery Theorem.)

Proof. We begin the proof of showing that, given any point p in M, there is an open set O containing p
f
and some de-geometrization (V*, ¢*) of V on O such that

VeVl gt = %th“b. (4.4.5)

This will require a bit of work. But once we have established this much, our principal claims will follow

easily.
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We begin just as we did in our proof of the Trautman Recovery Theorem. (Note that all the assump-
tions needed for the theorem hold. In particular, the supplemental integrability conditions R%*,¢q = R%%
and R%.; = 0 hold. We know this from proposition 4.4.2.) Let p be any point in M. Then we can
find an open set O containing p, and a smooth, future-directed, unit timelike field n* on O that is
rigid and twist-free. Now consider the derivative operator é* on O defined by 6* = (V,C%.), where
C%%e = taty ¢® and ¢® = "V, €% As we know from our proof of the Trautman Recovery Theorem, we
can (after possibly restricting O to some smaller open set containing p) find a smooth scalar field ¢* on
O such that ¢ = V®¢* and such that (% *,¢*) qualifies as a de-geometrization of V on O. We claim
that ¢* satisfies (4.4.5).

To see this, consider the field £*. (It gives the four-velocity of matter in our Friedmann-like cosmological

model.) Tt is a geodesic field with respect to V. So, by condition (R3) in the Trautman Recovery Theorem,
f* a f*a *
Hence,
f*a f* * f*a n f* f*a n f* n f*a f*
VEVTYT = = V(EVRE) = (VI (VRE) - VT Ve
f*a n f* n f* f*a
= (V' E)(VRE) - v v (4.4.6)

s f
(We use the fact that V* is flat for the final equality.) Next, we derive an expression for V*, €. We have,
by (4.4.3),

f
V*n é-b — V'n, é-b _ Obnm é-m _ vn gb _ (tn tm (bb)gm — vn gb _ tn ¢b
1
= g(anb — t, "0 — t, 0"
It follows that ; )
*a ¢b ab
= =-h"0.
LAY 3
o . £ b S a b .
Substituting these expression for V*, £’ and V** £° in (4.4.6) yields
foo L 1 1 f
v*a v*b ¢* _ _§ hab 92 _ § hab é-n V*n ) (447)
Now by the second clause of proposition 4.4.2,

f 1
§"V0 ="V, 0 = —§92 —4d7p.

f
So, after substituting this expression for £" V*, 6 in (4.4.7), we have

f f 4
V*a V*b (b* _ gﬂ'phab-

But
f f
*a V*b ¢* _ V*a Vb ¢* — pam (Vm Vb ¢* _ Obmn AVAL ¢*)
= pom [Vm Vb(b* _ (tm tn be) Vn ¢*] _ va vbd)*

4=
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So
a b ix* 4 ab
VeV’ ¢ :gwph ,

as claimed. This completes the first part of the proof.

Now let ¢ be a smooth field on some open subset U of M. Let p be any point in U. We know from
what we have just proved that we can find an open subset O of U containing p and a de-geometrization
(é *,0*) of V on O such that ¢* satisfies (4.4.5). Suppose first that ¢ arises as part of a de-geometrization
(6,@ of V. on U. Then we have two de-geometrizations of V on O, namely (%*,W) and (é,@. By
the final part of the Trautman Recovery Theorem governing the non-uniqueness of de-geometrizations,
it follows that

0=VeVl(p — ¢*) = VIVl o — %ﬂ'phab.

f f f f
(Here the roles of (V/,¢') and (V, ¢) in that theorem are played, respectively, by (V,¢) and (V*, ¢*).)
So ¢ satisfies (4.4.4) throughout the open set O containing p. But p was chosen arbitrarily. So ¢ satisfies
(4.4.4) everywhere in U.

Conversely, suppose ¢ satisfies (4.4.4). Then, by (4.4.5) again, we have

4 4
V"Vb(qﬁ _ ¢>~<) _ gﬂ,phab _ gﬂ,phab =0
o f f
on O. Hence, by the final part of the Trautman theorem again, if we set V = (V*, tpt.V*(¢ — ¢*)),

f
then (V, ¢) qualifies as a de-geometrization of V on O. O

Let us think about what we would experience if we resided in a Friedmann-like Newtonian universe
of the sort we have been considering. Suppose we were at rest in the cosmic fluid, i.e., moving along
an integral curve of the background four-velocity field £*. Then we would experience no net force and
would observe all other mass points in the fluid moving uniformly away from, or toward, us. If we were
inclined to describe the situation in terms of traditional, non-geometrized Newtonian theory, we would
say (adopting, implicitly, a particular de-geometrization) that the the gravitational field is centered where
we are and vanishes there. (That is why we experience no net force.) But we would offer a different
account for why our colleagues co-moving with other cosmic mass points experience no net force. From
our point of view (i.e., according to our de-geometrization), they do experience a non-zero gravitational
force. But it is perfectly balanced by a corresponding “inertial” force. And it is for this reason that they
experience no net force. (Of course, those colleagues have their own story to tell with the roles reversed.

They take themselves to be the ones residing where the gravitational field vanishes.)
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4.5 Geometrized Newtonian Theory — Second Version

In this section, we prove a recovery or de-geometrization theorem for the Kiinzle-Ehlers version of
geometrized Newtonian gravitation theory. It is the counterpart to the recovery theorem we proved for

the Trautman version (proposition 4.2.5) and actually subsumes that earlier result as a special case.

We also consider a second set of special circumstances in which the difference between our two versions
of the theory collapses. We saw in section 4.4 that Trautman’s second integrability condition R*.; = 0
holds automatically in Friedmann-like cosmological models. Here we show that it holds automatically if

we restrict attention to classical spacetimes that are, in a certain weak sense, asymptotically flat.

We start with a lemma. Our proof of the Trautman Recovery Theorem turned on the availability of
a rigid, twist-free field n*. Existence was guaranteed by the second integrability condition (proposition
4.2.4). Now we have to work with less. We cannot count on the existence of rigid, twist-free fields.
But, as we now show, we can still count on the existence of fields that are, at least, rigid. And this
will suffice. To prove the new recovery theorem, we need only rerun the argument for the old one using
a field n* that is merely rigid. The computations are a bit more complicated, but no new ideas are
involved. (We could have proved this version of the theorem first and then recovered the Trautman
version simply by considering what happens when 7n* is also twist-free. But there is some advantage to

taking on complications one at a time.)

Proposition 4.5.1. Let (M,t,, h®, V) be a classical spacetime that is spatially flat (R*°? = 0). Then,
given any point p in M, there exist an open set O containing p and a smooth, future-directed, unit timelike

field n® on O that is rigid (V@n?) = 0).

Proof. Let p be any point in M, and let v: I — M be a smooth, future-directed, timelike curve, with
four-velocity field 7%, that passes through p. We claim first that we can find three smooth, linearly

independent, spacelike fields 6%, 5%, & on some open set O containing p with these properties (for all 4):

(i) h® =525° + 5960 + 550

We can generate the fields as follows. First we find three linearly independent, spacelike vectors at p that
satisfy condition (i) — just as we did in the proof of proposition 4.1.4. Then we extend the vectors to an
open set containing p in two stages. First, we extend them by parallel transport along 7. (So condition
(iii) is satisfied.) Then we extend them “outward” from v[I] by parallel transport along spacelike curves.
The latter operation works this way. Let S be a spacelike hypersurface that intersects the image of v
at the point g. Then, because of spatial flatness, parallel transport of spacelike vectors within S is, at

least locally, path independent. (Recall proposition 4.1.5.) So we can unambiguously extend the triple
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a 2a

,6% 6% at ¢ by parallel transport to points on S sufficiently close to g. The fields generated by this

Q-

construction are “constant in spacelike directions”, i.e., A"V, 6% = 0 for all spacelike vectors A*. The
latter condition is equivalent to (ii). Finally, we claim, condition (i) holds everywhere. Consider the
difference field (h% — (66 + 596° + 5%5Y)). Tt vanishes at p. Hence, by (iii), it vanishes along
~[I]. And therefore, by (ii), it vanishes on spacelike hypersurfaces that intersect y[I]. So it vanishes
everywhere. Thus, as claimed, we can find three smooth, spacelike fields 5%, 5%, 5 on some open set O
containing p that satisfy the three listed conditions. And the fields must certainly be linearly independent
throughout O — because we started with three linearly independent vectors at p, and linear independence

is preserved under parallel transport.

It follows from (ii), of course, that VI®&? = 0 for all 1. So, restricting O to a smaller open set
containing p if necessary, we can find smooth scalar fields z on O such that &% = Ve z = ho V, 2. (Here
we invoke proposition 4.1.6.) We can pin them down uniquely by requiring that they assume the value 0

at points on y[I]. This guarantees that
MVt =0 (4.5.1)

on y[I] N O for all <. And, by condition (i),

) = dij (4.5.2)

],

het (V, 2) (Vs

holds everywhere for all ¢ and j. (Why? Contracting (i) with (V, gc) yields

3
hab Z &a Vb CC
i=1
@ &% are linearly independent at every point. So &'bvb% = 0;; and, therefore,

ho¥(Vo 2)(Vy &) = 6° Vo & = 6,5.)

But the vectors 6%, &

Now we extend the tangent field 7* to a smooth field n* on O by requiring that t,n* = 1 and
n"Vngic = 0 hold everywhere for all i. (The fields ¢4, (V4 :}c), (Vq :%), (Va :%) form a co-basis at every point,
and so a vector field is uniquely determined by its contractions with them.) We claim that the resultant
field n? is rigid, i.e., £, h% = 0. We have £, ¢ = 7"V, 2 = 0 for all i. And £,(V, ¢) = Va(£ye) for all
smooth scalar fields ¢. (This is easily checked using proposition 1.7.4.) So £,(V, :Zc) =V.(£, :Zc) = 0 for
all . Hence, by (4.5.2),

%

0= £, (h® (Vo) (Vo 2)) = (Vo 2) (Vo 2) £, h

for all 7 and j. But we also have £,,t, = 0"V, ta+t, Vo n™ = 0 and, therefore, ¢, £nh"b = £,(ta h) = 0.
Thus, contracting £,h% with any of the basis elements 4, (V, :110), (Va 926), (Va 9?2) yields 0. So £,h® =

as claimed. O

Now we turn to the recovery theorem.
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Proposition 4.5.2. (Kiinzle-Ehlers Recovery Theorem) Let (M, t,, h®, V) be a classical spacetime that

satisfies
Rye = 4mptye, (4.5.3)
R%%q = R%%, (4.5.4)
for some smooth scalar field p on M. Let n® be a smooth, future-directed, unit timelike vector field on
some open subset O of M that is rigid. (Existence of such fields, at least locally, is guaranteed by the

preceding proposition and proposition 4.1.5.) Let hap be the projection field associated with n®, and let ¢*

and wqp be the associated acceleration and rotation fields:

d)a = 77” Vi 77a7

Wap = }Alm la }Alb]n Vi 77"

f
Then there exists a unique derivative operator \V on O such that all the following hold on O.
f
(RR1) \ is compatible with t, and h.
‘ I
(RR2) n® constant with respect to V (i.e., Vo n° =0).
f
(RR3) V is flat.
(RR4) For all timelike curves with four-velocity field €%,
f
'V, =0 <= "V, 8 = —¢% — 2w,

(RR5) ¢ and wayp satisfy the “field equations”:

6 [awbc] = 0,

(4.5.5)
%aw“b = 0, (4.5.6)
! !

v = gt v, w, (4.5.7)
!

Vad® = 47p— wapw®. (4.5.8)

Note that, as promised, the Trautman Recovery Theorem emerges as a corollary. If we add the
supplemental condition (R*.; = 0), then, by proposition 4.2.4 again, we can find timelike fields locally
that are rigid and twist-free. But if wq, = 0, it follows from (4.5.7) (and proposition 4.1.6) that ¢* must,
at least locally, be of the form ¢® = V%¢ for some smooth scalar field ¢. And in this case (wq, = 0 and

¢* = V%), we fully recover the conclusions of the Trautman theorem.

The de-geometrization presented here is relativized to a rigid unit timelike vector field n*. Given that
field, there is a unique derivative operator satisfying the listed conditions (relative to it). But it will
be clear from the proof that, in general, different choices for n* lead to different derivative operators,
i.e., lead to different de-geometrizations. Indeed, one has, here, much the same non-uniqueness that we

encountered in the Trautman Recovery Theorem.
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Proof. The argument here is similar in structure to the one we gave for the Trautman Recovery Theorem,
and many individual steps carry over intact or with only minimal change. We just have to remember

that whereas previously we had the condition V%% = 0 to work with, we now have only V(p®) = 0.

Consider the fields

Rab hn[b Va]nn, (4.5.9)
C%,. = 2t(b Iic)a (4.5.10)

on O. It is easy to check that they satisfy the following conditions.

26a" = Van’ — hna V0™, (4.5.11)

K = Vot = W (4.5.12)
2kan® = 1Wan" = ¢°, (4.5.13)
26" = 2Van® — ta (4.5.14)
C%. = 0. (4.5.15)

We get the second from the fact that 7% is rigid, and so Vo,* = Vlenl = 9. The fourth follows from
the second and third. (Note that contracting both sides with either h*" or 7 yields the same result.)
The fifth follows from the anti-symmetry of Kgp.

f
Next consider the derivative operator V= (V,C%,) on O. We claim that it satisfies all the listed
conditions. (RR1) follows immediately from proposition 4.1.3. For (RR2), note that, by (4.5.13) and
(4.5.14),

f
Va nb = V. nb - Oban 77" =V, 77b - (ta Hnb + ty ’{ab) nn

1 1
= Vaﬁb - gta(bb - (Vaﬁb - gta(bb) = 0.

f
Thus, as required for (RR2), n is constant with respect to the new derivative operator V.

f
Now we turn to the Riemann curvature field associated with V. We have, by (1.8.2),

f
Rabcd = Rabcd + 2v[c Cad]b + 2Cnb[c Cad]n
= R%.q + Zt[d Vc] Kp® + 2th[c Iid]a + 21 t[d Hc]nlina. (4516)

It follows immediately that ;{“bc"l = R%cd  But R = 0. (By proposition 4.1.5, this is a consequence
of the geometrized version of Poisson’s equation (4.5.3).) So 6 is spatially flat. Now recall the second
clause of proposition 4.2.4. We have just verified that there is a smooth, unit timelike field n* on O that
is constant with respect to % So (since 6 is spatially flat), the proposition tells us that 6 must be flat
outright, i.e., ;{abcd = 0. So we have (RR3). And (4.5.16) reduces to

R%eq = —2t[d VC] Kp® — 2th[c Iid]a — 21 g Iic]nlﬁna. (4.5.17)
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For (RR4), note first that for all timelike curves on O with four-velocity field £%,

T € = E(VaE — Ol €)= EMVLE (b i b i ©)ETET

gnvnga -2 Knagn'

But, by (4.5.14), (4.1.42), and the fact that 7 is rigid (6,* = 0),

26, = 2Vpn® — t, 0"
= 2(wp"+tn 9%) — th@® = 2w," + t, % (4.5.18)

f
So "V, =0 iff &" VvV, % = —¢% — 2w,* €. Thus we have (RR4).

f
Notice also that there can be at most one derivative operator ¥ on O satisfying condition (RR4), so

f f
we get our uniqueness claim. For suppose that V' = (V, C’%,.) satisfies it as well. Then, for all timelike

geodesics on O (with respect to V) with four-velocity field £€%, we have
n f a a ae¢n n f !/ a n f a la m

So, C"%,m €™ E™ = 0 holds at every point. But every future-directed unit timelike vector £% at a point
in O is the tangent vector of some geodesic (with respect to V) through the point, and the collection
of future-directed unit timelike vectors at a point spans the tangent space there. So it follows that

C'%,.m = 0 at every point in O.

Now, finally, we turn to (RR5). The four conditions we must verify all follow from (4.5.17). Contracting
a with d yields
drptpte = Rpe = teVakp® + €ty Vo ke + tote k" Kkn®. (4.5.19)

And raising ‘¢’ yields
R = —tgVkp® — tuVkq® + t,Va Y — tptg kK. (4.5.20)

Let us now contract (4.5.19) with n* h°". This, together with (4.5.12), gives us 0= V, k™ =V, w". Tt
follows that

f

Vo w® =V, w0 — w0, —w™C?,, = 0. (4.5.21)

(Here C%,,, = 0 by (4.5.15), and w®*C®,,, = 0 because of the respective anti-symmetry and symmetry of
w and C®,,,.) So we have the second in our list of four (RR5) conditions. Next, let us contract (4.5.19)

with 7°n¢. Then, using (4.5.13), (4.5.14), and (4.5.18), we get

drp = 277b Vakp® + ko kn® = 2[Va(kp® nb) — (Va4 nb)liba] + Ko kR®

1
Vad* —2 (Iiab + §ta ¢b),‘$ba + Ka"kn® = Vao® — ko’ kp® = Vg o — we’ wp?.
So, by (4.5.15) again,

f
Va ¢* = V¢ — C%%n ¢" = Vo o® = dmp — wapw®. (4.5.22)
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Thus we have the fourth condition in the (RR5) list. That leaves the first and the third.

Now, for the first time, we use the fact that V satisfies the first supplemental curvature condition
(4.5.4). Since 6 satisfies it as well ——asit clearly does since j{{abcd = 0 — we know from proposition
4.3.5 that ke, must be closed, i.e, %[a kpe] = 0. So, by (4.5.12), %[“wbc] 26[“1470] = 0. That is the first
condition in the list. Finally, contracting (4.5.20) with n°n? and using (4.5.13), (4.5.12), and (4.5.18)
yields

Rabcd nbnd - _9 nb \v& Iiba + nd AV KCO Kcnﬁna

-9 (vc(ﬁba nb) _ (vc nb)"‘ﬂba) + 77d Va K — K,

v d)a + Tld vd KCa + Hd)ﬂba = _Vy¢ d)a + Tld deca + wcbwba.

So, since R*,°q = R%%, (and since w is anti-symmetric), vie (bc] — nd Vqw® = 0. But, as one
f
can easily check (with a computation much like ones we have seen before), V¢ = V*¢¢ and

f
n? ¥ qw = nV4w. This gives us the third condition in the (RR5) list, and we are done. O

We have claimed that the difference between the two versions of geometrized Newtonian gravitation
theory collapses if one restricts attention to classical spacetimes that are, in a certain weak sense, “asymp-
totically flat”. (In that case, the second supplemental curvature condition, R*’.q = 0, follows from the
other assumptions.) Now we make the claim precise. Toward that goal, we first prove a result of Ehlers’
[15].

Proposition 4.5.3. Let (M, t,,h®,V) be a classical spacetime that is spatially flat (R = 0). Then
there is a smooth scalar field ¥ on M such that

Rabcd Rbace = Vv tqte. (4523)

Moreover,
R%y=0 «— ¥ =0. (4.5.24)

Proof. Let p be any point in M, let n® be a smooth, future-directed, rigid, unit timelike field defined on
some open set containing p — existence is guaranteed, once again, by proposition 4.5.1 — and let wq; be
the rotation field determined by n®. Further, let k., and 6 be defined (relative to 7%) as in the preceding
proof. Then, by (4.5.17), (4.5.20), and (4.5.18),

RY%a R = (=2tqVam" — 26Vekg® — 2tta kg™ £n®)
(—te Ve ket — taVe ke 4 taVe kY — tgte Iicnﬁnb)
= (—td Ve Iiba)(—te Ve Iiab) = tgte (Vcwb“)(vcwab).
So we need only take ¥ = —(V.wqp)(Vew®) at p. Now, by (4.5.17) again, we also have R%®. =

=214V Kb = -2 ta Ve w’®. Hence (since contracting R .4 with either n°n? or he"h9* yields 0),

R%.,;=0 < VW =0. (4.5.25)
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So the assertion that remains for us to prove, namely (4.5.24), is equivalent to
Vet =0 <= (Vewa)(Vw™) = 0. (4.5.26)

One direction is trivial, of course. And the other (right to left) follows just from the fact that the indices
in V°w"® are spacelike (and the metric induced by h® on the space of spacelike vectors at any point is

a 3a

positive definite). For future reference, we give the argument in detail. Let &% 5%, 6% be three linearly

independent, smooth spacelike fields on some open set containing p such that
(i) ht =300, 66"
(ii) Vet =0.

(Existence is guaranteed by our assumption of spatial flatness. Recall the proof of proposition 4.5.1.) Let
1 2 3 j

Aas Aas Ag be three smooth fields such that &% = h“b/i\b (or, equivalently, &“j\a = 0;;) for all ¢ and j. Now,
for all 7, j, and k, let lguk be the scalar field defined by

U = 596985 (Vewas) = he Aa Ao (VW)
Then .
vcwab — Z l(-zjk kc ia Jb,
i,j,k=1
and, hence,
8. 8.
(Vewan)(VEw™) = > W (6°6"6"Vewa) = > (W)™ (4.5.27)
i,5,k=1 i,j,k=1

So, clearly, (V.wa)(VEw?) can vanish only if ic{}k =0 for all 4, j, k, i.e., only if Vw® = 0. O

Now we can formulate our notion of asymptotic flatness. It is intended to capture the intuitive claim
that “R .4 goes to 0 at spatial infinity”. (We could certainly impose a restriction on the limiting behavior
of R%.q but, in fact, it suffices for our purposes to work with a weaker condition that is formulated in
terms of R%.;.) With equivalence (4.5.24) in mind, we shall use the condition ¥ — 0 as a surrogate for

the condition R* .4 — 0.

We first have to insure that there is an asymptotic regime in which spacetime curvature can go (or fail
to go) to zero. We do so by restricting attention to classical spacetimes that can be foliated by a family of
spacelike hypersurfaces that are simply connected and geodesically complete. Each of these hypersurfaces
(together with the metric induced on it by h®?) is then, in effect, a copy of ordinary three-dimensional
Euclidean space. Given a classical spacetime (M, t,, h®, V) satisfying this condition, we say officially

that R4 goes to O at spatial infinity if, for all spacelike geodesics v: R — M, ¥(y(s)) — 0 as s — oo.

Now we can formulate the collapse result (due to Kiinzle [35] and Ehlers [15]).

Proposition 4.5.4. Let (M, t,,h®®, V) be a classical spacetime that is spatially flat. Suppose the following

conditions hold.
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(1) For all p in M, there is a spacelike hypersurface containing p that is simply connected and geodesi-

cally complete.

(2) R .q goes to O at spatial infinity (in the sense discussed above).

Then R®.q = 0 (everywhere).

Proof. Arguing as in the proof of proposition 4.5.1, but now using assumption (1), we can show that

there exist three smooth, linearly independent, globally defined spacelike fields 6%, &%, 5% satisfying
(i) ho* =626 + 6960 + 667
(ii) V*&b =0,
and there exists a smooth globally defined future-directed, unit timelike field £* that is rigid (V(“ €0 = 0).

f
Let wgp be the rotation field associated with the latter, and let V be its associated flat derivative operator
.
(as constructed in the proof of proposition 4.5.2). Finally, let the scalar component fields %W be defined
by

ijk kcigd
W =06°6""V,wap)

as in the preceding proof. We are assuming that ¥ = (V.wa)(V¢w?) goes to 0 as one approaches
ijk
spatial infinity. But, by (4.5.27), (Vewap)(VEw™®) = Z?ﬁjyk:l(g} )2. Hence, for all i, j, and k,
ijk
(a) @ — 0 at spatial infinity.
ijk
We claim now that the fields & are all harmonic, i.e.,
f f ik
(b) V,, V"% = 0.
(We could equally well take the claim to be V,, V" ig)k = 0, but it is more convenient to work with the flat
p
derivative operator V.) Once we show this, we will be done. Because it will then follow by the “minimum
principle” that the fields 7 all vanish.® T hat, in turn, will imply that ¥ = Ef’ j kzl(lguk)2 = 0 and, hence,
by (4.5.24), that R .4 = 0.
: ) i f
As in the preceding proof, let 5\,1, ia, ;\a be three smooth fields such that ¢ = k% )\,. Now V¢ and V¢

agree in their action on contravariant fields that are spacelike in all indices. In particular, for all 7,
%a&b _ Vaé_b

6awbc _ vawbc'

6See, e.g., Flanders [20], p. 85. The principle asserts that a harmonic function defined on a compact set in three-
dimensional Euclidean space assumes its minimum value on its boundary. It follows — consider a nested sequence of closed
balls with radii going to infinity — that if a harmonic function defined on all of three-dimensional Euclidean space goes to
0 asymptotically along any (or even just one) geodesic, then it must be 0 everywhere.

‘We here apply the principle to the fields %k or, rather, the restrictions of those fields to individual spacelike hypersurfaces

that are simply connected and geodesically complete. Note that condition (b) can be construed as a constraint on the

f
restricted fields. If D is the (three-dimensional) derivative operator induced on a spaceike hypersurface by V — which is

ok
the same as the one induced by V — then it follows from (b) that D, D™ W=o.
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fo. ) )
(Here C%. has the form C%. = 2ty k). So C%, = t.k" and, hence, V% = Vo5t — O, o™ =

_ . _ fo y
Vst — t,k%6™ = VP The other case is handled similarly.) It follows that V?¢® = 0, and 2=

for all 7, j, and k. So, to complete the proof, it suffices for us to show
forf
(c) V,V"Vew® = 0.
f f
And this condition follows easily from the fact that V[%w?l = 0 and V, w® = 0. (Recall (4.5.5) and

f
(4.5.6) in the formulation of proposition 4.5.2.) Since V is flat, we can switch derivative operator position

and, therefore,

Sl Leow LoL L y Lo S L L f.o L8
Va VoW = VOV, VW = VT, (VP — Voiuht) = Ve VP (7, w") - VeV (7, ™) = 0.

So we are done. O



Solutions to Problems

Problem 1.1.1 Let (M,C) be an n—manifold, let (U,p) be an n—chart in C, let O be an open subset
of p[U], and let O be its preimage <p71[6]. Show that (O, ¢lo) is also an n—chart in C.

Let ¢’ be the restricted map p|o. (We write it this way just to simplify our notation.) Clearly, ¢’'[O]
is open, since ¢'[0] = ¢[0] = O. And ¢’ is one-to-one (since it is a restriction of ¢). So (0, ¢') qualifies
as an n-chart on M. To show that it belongs to C, we must verify that it is compatible with every n-chart
in C.

Let (V1) be one such. We may assume that U NV is non-empty, since otherwise the charts are
automatically compatible. Since ¢’ is a restriction of ¢, and O is a subset of U (and ¢ is one-to-one), we
have

IONV]=l0ONV]=¢[0NUNV)] =0 NelUNV].

But ¢[0] is open (since it is equal to O), and @[U N V] is open (since the charts (U, ) and (V,1)) are
compatible). So ¢'[O N V] is open. Furthermore, ¥)[O N V] is open since it is the preimage of the open

set ©[O N V] under the smooth (hence continuous) map
poy L plUNV] —pUNV].

(That the map is smooth follows, again, by the compatibility of the charts (U, ¢) and (V,1).) Finally,

the maps

oy loNV] = L ONV],
Yol lONV] —ylONV]

are smooth since they are the restrictions to open sets, respectively, of the smooth maps

poy L pUNV] — plUNV],
Yo liplUNV] = 4[UNV].

Problem 1.1.2 Let (M,C) be an n—manifold, let (U,y) be an n—chart in C, and let O be an open set
in M such that UNO # 0. Show that (UNO,¢luno) is also an n—chart in C.

265
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We claim, first, that ¢[U N O] is open. To see this, let ¢(p) be any point in [U NO]. Since O is open,
there exists an n-chart (V,4) in C where p € V' C O. Since (V,4) and (U, ) are compatible, o[U N V]
qualifies as an open subset of ¢[U N O] containing ¢(p). So ¢[U N O] is open, as claimed. It now follows
by the result of problem 1.1.1 (taking 0= ©[U N O]) that the pair (U N O, ¢|uno) is an n-chart in C.

Problem 1.1.3 Let (M,C) be an n—manifold and let T be the set of open subsets of M. (i) Show that T
is a topology on M, i.e., it contains the empty set and the set M, and is closed under finite intersections
and arbitrary unions. (i) Show that T is the coarsest topology on M with respect to which ¢ : U — R"

is continuous for all n—charts (U, p) in C.

(i) The empty set qualifies, vacuously, as open, and M qualifies as open since (M, C) satisfies condition
(M2). So we need only show that 7 is closed under finite intersections and arbitrary unions. For the first
claim, it suffices to show that if O; and O3 are both open, then their intersection O1 NOs is as well. (The
claim will then follow by induction.) So assume that O; and Oy are open, and let p be a point in O1 N Os.
(If the intersection is empty, it is automatically open.) Since Os is open, there is an n-chart (U, ) in C
such that p € U C Os. Then, by the result in problem 1.1.2, the pair (U N 017<P|Umol) is an n-chart
in C. Thus, given an arbitrary point p in Oy N Oy, there is an n-chart in C (namely, (U N Oy, pjuno,))
whose domain contains p and is a subset of O; N Os. It follows that O; N O; is open, as claimed. Finally,
let S be a set of open sets, and let p be a point in its union US. (Again, if the union is empty, it is
automatically open.) Let O be a set in S such that p € O. Since O is open, there is an n-chart (U, ¢)
in C such that p € U C O C (US). So, given our arbitrary point in US, there is an n-chart in C (namely
(U, ¢)) whose domain contains p and is a subset of US. It follows that US' is open.

(ii) First, we claim that given any n-chart (U,¢) in C, ¢: U — R™ is continuous with respect to 7.
Let (U, ) be one such. We need to show that, given any open subset O of o[U], its preimage ¢~ * [5] is
open. But by the result in problem 1.1.1, we know that there is an n-chart in C whose domain is ¢! [(3]
And the domain of an n-chart in C is certainly open. So our claim follows easily. Next, assume that 7"’
is a topology on M with respect to which ¢ : U — R" is continuous for all n—charts (U, ¢) in C. We
show that 7 C 7'. Let O be a set in 7, and let p be a point in O. (If O is empty, then it certainly
belongs to 7" since the latter is a topology on M.) Since O is open, there is an n-chart (U, ¢) in C such
that p € U C O. By assumption, ¢ is continuous with respect to 7’. And ¢[U] is an open set in R™ (by
the defintion of an n-chart). So its preimage U must belong to 7’. Thus given any point p in O, there
is a 7’-open set (namely, U) that contains p and is a subset of O. It follows that O itself is open with
respect to 7’. Thus, as claimed, every set O that belongs to 7 belongs to 7’ as well.

Problem 1.1.4 Let (M,C) be an n—manifold. Show that a map o: M — R is smooth according to
our first definition of “smoothness” (which applies only to real-valued maps on manifolds) iff it is smooth

according to our second definition (which applies to maps between arbitrary manifolds).

« is smooth in the first sense iff for all n-charts (U, ¢) in C, the map ao ¢~ t: p[U] — R is smooth. It
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is smooth in the second sense iff for all smooth maps §: R — R, the composed map [oa: M — R is
smooth in the first sense (i.e., (Boa)op™1: p[U] — R is smooth for all n-charts (U, ) in C). To see that
the second sense implies the first, we need only consider the special case where /3 is the identity map on R.
For the converse, suppose that « is smooth in the first sense, let 5: R — R be any smooth map on R, and
let (U, ¢) be any n-chart in C. Then (Boa)op™': ¢[U] — R is smooth since (3oa)op™t = Bo(aop™!),

i.e., it is composition of smooth maps «ao¢™1: o[U] — R and 3: R — R.

In what follows, let (M,C) be an n—manifold, let p be a point in M, and let C(p) be the set of charts

in C whose domains contain p.

Problem 1.2.1 Let ¢ be a non-zero vector at p, and let (k',...,k™) be a non-zero element of R™. Show

there exists an n-chart in C(p) with respect to which & has components (k*, ..., k™).

Let (U, ¢1) be an n-chart in C(p), and let (&1, ...,£™) be the components of ¢ with respect to (Uy, ¢1).
These components cannot all be 0, since £ is not the zero vector. So there is an isomorphism L of (the

vector space) R™ onto itself that takes (£, ...,€") to (k', ..., k™). Let its associated matrix have elements
n

{a;;}. Then, for all i = 1,....n, k= Zaij &,
j=1

Now consider a new n-chart (Us, p2) in C(p) where Uy = Uy and @3 = Lopy: Uz — R™. (That it is an
n-chart and does belong to C must be checked. But these claims follow easily from the fact that L, now
construed as a map from the manifold R™ to itself, is a diffeomorphism.) We claim that the components
of ¢ with respect to (Usa, p2) are (k',...,k™). To see this, we invoke proposition 1.2.5. For all i = 1,...,n,
let '% : p1[U1 NUz] — R be the coordinate map defined by 2'* = 2% 0 ¢y 0 gofl. Since w2 = L o 1, we
have N

ztopy = Zaij (27 0 ¢1)
and, therefore, = .
z' :xiogpg ogpfl e Zaijxj.
j=1

It now follows by proposition 1.2.5 that the components of £ with respect to (Us, ¢2) are

=3¢ 8?:1 () =Y & ay = K,
=1 =1

Jj=

for all 7.

Problem 1.3.1 Let & be the vector field xl% — 172% on R2. Show that the mazximal integral curve
x x

of € with initial value p = (p*,p?) is the map v: R — R? with vy(s) = (p'e*, p*e™*).

~ has initial value (p!,p?). It is an integral curve of the given vector field since, for all s € R, and all
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f € 8(v(s)), by the chain rule,

'?’Y(s)(f) = %(f Ofy)(s) = %(f(pl es,pz 675))
- %W@) (0" e?) + %Ms)) (—p2e?)
of of

= S 7005) 2 (1)) = 55 (1)) #*(v(s)

0 0
- o] W
[ oxl Ox? ()

Finally, it is maximal because its domain is R.

Problem 1.3.2 Let £ be a smooth vector field on M, let p be a point in M, and let sg be any real number
(not necessarily 0). Show that there is an integral curve ~: 1 — M of & with ~(so) = p that is
mazximal in the sense that given any integral curve ' :I' — M of &, if 7' (so) =p, then I' C I and
v (s) =~(s) forallsinI'.

Given an interval J, let us understand J+a to be the translation of J by the number a. Let o: J — M
be the maximal integral curve of £ with initial value p. (Existence is guaranteed by proposition 1.3.1.)
Let I be the shifted interval J + so, and let v: I — M be the curve defined by v(s) = o(s — sp). Then
~ is an integral curve of £ by the first clause of proposition 1.3.2, and ~(sg) = o(0) = p. We claim that

v satisfies the stated maximality condition.

To see this, suppose ' : I’ — M is an integral curve of £, and 7/(sg) = p. Let J = I’ — sg and
let ¢’: J' — M be defined by o'(s) = 7'(s + sp). Then ¢’ is an integral curve of £ (by the first clause
of proposition 1.3.2 again) with initial value 0 (since o’(0) = 7'(so) = p). So, by the maximality of o,
J' C J and o'(s) = o(s) for all s in J'. It follows immediately that I’ = J +s9 C J + s9 = I and
v (s) = 0'(s — s0) = a(s — s9) = y(s) for all sin I'.

Problem 1.3.3 (Integral curves that go nowhere) Let & be a smooth vector field on M, and let v: T — M
be an integral curve of . Suppose that & vanishes (i.e., assigns the zero vector) at some point p € v[I].

Then the following both hold.

(1) v(s) =p for all sin I (i.e., v is a constant curve).

(2) The reparametrized curve v =~yoa: 1" — M is an integral curve of & for all diffeomorphisms

a: ' — 1.

(1) Suppose sg € I and y(sg) = p. It follows from problem 1.3.2 that there is a unique maximal
integral curve of £ whose value at sy is p. The only possibility is the constant curve 4: R — M that

assigns p to all s. (¥ is an integral curve of £ since, for all f € S(p), f o4 is constant and, so,

Fags) (f) = d%(f 0oy)(s) = 0= &5 (f)
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for all s. Tt is maximal since its domain is R.) Hence, by maximality, v(s) = 4(s) = p for all s in I.

(2) Let a: I' — T be a diffeomorphism and let 4" be the composed map v = yoa: I' — M. We know
from (1.3.3) that ' is an integral curve of ¢ iff

do
£0(0() D) = €(r(ats))
for all s in I’. But y(a(s)) = p for all s in I’ (by the first part of the problem) and, therefore, £(y(a(s))) =
&(p) =0 for all sin I'. So the required equation holds for all s in I’. (Both sides are 0.)

Problem 1.3.4 (Integral curves cannot cross) Let v: I — M and ~': I' — M be integral curves of &
that are mazimal (in the sense of problem 1.3.2) and satisfy ~(so) =7'(sy). Then the two curves agree

up to a parameter shift: (s) =~'(s+ (s — so)) for all s inI.

Let I =I' — (sf — o), and let 4"': I — M be the curve defined by

7(s) =7/ (s+ (56 — s0)).

It is an integral curve of ¢ by proposition 1.3.2, and 7"/ (so) = 7'(s(,) = 7¥(s0). So by the maximality of
v, I" C I and v"'(s) = ~(s) for all s in I”, i.e., y(s) = 7'(s + (s — so)) for all s in I”. It remains to
verify only that I = I. Since I"” C I, it follows that I’ C I + (s, — s¢). If we rerun the argument with
the roles of I, v, and sg interchanged with those of I’, 4/, and s{,, we arrive at the symmetric conclusion
that I C I’ + (sop — s;). Putting the two set inclusions together, we arrive at I C I’ + (sop — () C
I+ (s —s0)+ (so—sp)=1I. SolI"=1I+ (so—sp) =1, as claimed.

Problem 1.3.5 Let & be a smooth vector field on M that is complete. Let p be a point in M. Show that
the restriction of & to the punctured set M — {p} is complete (as a field on M — {p}) iff & vanishes at p.

Let &' be the restriction of £ to M — {p}. Suppose first that £ vanishes at p. Then, as we know from
problem 1.3.3, every integral curve of £ that passes through p is necessarily a degenerate constant curve
that sits at p. It follows, we claim, that £’ is complete. For let ¢ be any point in M distinct from p. Since
¢ is complete (as a field on M), there is an integral curve v: R — M of £ with initial value q. The image
of 7 is fully contained in M — {p} (since otherwise v would be an integral curve of £ passing through p
that does not sit at p). So v qualifies as an integral curve of £’. Since the domain of v is R (and since ¢

was chosen arbitrarily), we see that & is complete, as claimed.

Conversely, suppose £ does not vanish at p. Since £ is complete (as a field on M), there is an integral
curve v: R — M of £ with initial value p. -y cannot be a constant curve that sits at p. (Otherwise, we
would have 4, = 0 and, hence, {(p) = 0.) So the set D = {s € R : y(s) # p} is non-empty. It is a disjoint
union of open intervals. (If 0 is the only number s in R such that v(s) = p, then D will be the union of
(—00,0) and (0,00). Other possibilities arise because v may pass through p more than once.) Let I’ be
any one of these intervals, let 7/ : I’ — M be the restriction of v to I’, and let ¢ be any point in /[I’].
Then +' qualifies as a maximal integral curve of £’ in M — {p} that passes through ¢ . By shifting initial
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values, we can generate a maximal integral curve v/ of ¢’ in M — {p} that has initial value ¢. But the
domain of 7" is not R (since the pre-shifted domain I’ of 4’ is not R). So we may conclude that £ is not

complete.

Problem 1.4.1 Show that lemma 1.4.1 can also be derived as a corollary to the following fact about
square matrices: if M is an (r x r) matriz (r > 1) and M x M is the zero matriz, then the trace of M
is 0.

T
Assume the left-side condition Y gkpa&)c = 0 holds, and let M be the r x r matrix with entries
k=1

o
M;; = ¢*1,. Then M x M is the zero matrix since

(M x M)ig = 37 MMy = 2 (@) ) = (6 ) D (5 ) = 0.
k=1 k=1 k=1
k=1 k=1
Problem 1.6.1 Show that for all smooth vector fields £ on M, £ &% = 0.
For all smooth vector fields A* on M, we have
AL 00 = £e (00N — 0L £ X" = £ N — £ AP = 0.

(The first equality follows from the Leibniz rule, and the second from the fact that 6% functions as an
index substitution operator.) Since this holds for all smooth fields A* (at all points in M), we may

conclude that £ 6% = 0.

Here is a second argument. By the Leibniz rule, and the fact that 42 functions as an index substitution

operator, we have
£ 60 = L (8205) = 60 £ 06 + 0C £ 08 = £ 68 + £ 6°.

It follows immediately that £ % = 0.
Problem 1.6.2 Let £* and n® be smooth vector fields on M, and let the latter be non-vanishing. Show
that if £e(nn®) = 0, then £en* = 0.

Assume that £5(77“17b) = 0, and let p be any point in M. Since n® is non-vanishing, there exists a
smooth field A\, on M such that the scalar field %)\, is non-zero at p. At all points we have

0 = Xado e (n°n°) = AaXo(n* £en” + 10 £en®) = 2(Aa ™) Ap Le 1",
Hence, Ay £¢ n® = 0 at p. But we also have
0 = o e (") = N (n® £en® + 0 £en®) = n* Mo Len® + (Ao n®) £e n*

at all points. So (A\yn°)£en® = 0 at p and, therefore, £en® = 0 at p. Since p is an arbitrary point in M,

we are done.
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Problem 1.6.3 Show that the set of smooth contravariant vector fields on M forms a Lie algebra under

the bracket operation, i.e., show that for all smooth vector fields & ,n,A on M,
&0l =~ and [A\[&n]] + [0, [\ €] + [§ [0, Al] = 0.

The anti-symmetry of the bracket operation is immediate. We can establish the second condition with
a straightforward computation. Let &, n, A be smooth contravariant vector fields on M, and let o be a

smooth scalar field on M. Then

(A nll(@) = A& nl(@) — [0\ (a)
= M) = An(E(@))] — [E(nA(@))) = n(€(A(@)))] -

Similarly,

[0 A€l (@) = n(A(E(a))) = n(EM@)] = [MEMm(@)) = EAn(a)))]
(&N (@) = [€m(A(@) = EAm@))] = [(AE(@))) — An(&(a)))] -

When we add the three lines, we get 0 on the right side because each term has a mate with the opposite

sign. Since this holds for all smooth scalar fields @ on M, we have our second claim.

Problem 1.6.4 Show that for all smooth vector fields £%,m® on M, and all smooth scalar fields o on
M

7

Lagyn® = a(Len) — (£ )&

Given any smooth scalar field § on M, we have

(feyn)(B) = (@&MPB)) —n((@&)(B))
= a(&mB))) - [anE®) - <>s<ﬁ>}
= alémB)) —nE®)] - B)
= a(£n")(B) - (£ )5()
= Ja(Ln®) — (L)) (s

Since this is true for all smooth scalar fields 3, it follows that £, ¢)n®* = a(;{’g 77“) — (.;5}7 a){a.

Problem 1.6.5 One might be tempted to take a smooth tensor field to be “constant” if its Lie derivatives
with respect to all smooth vector fields are zero. But this idea does mnot work. Any contravariant vector

field constant in this sense would have to vanish everywhere. Prove this.

Let n® be a smooth vector field on M. Assume that £gn® = 0 for all smooth vector fields £* on M.

Then, given any smooth scalar field o« on M, it follows from the preceding problem that

0= L nt = oz(.;fg 77“) - (£77 oz){a = —(fn oz){a.
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Since this is true for all smooth vector fields £* on M, £, a = 0. Equivalently, n(a) = 0. But this is true
for alll smooth scalar fields o on M. So n* = 0.

Problem 1.6.6 Show that for all smooth vector fields £%,m® on M, and all smooth tensor fields a4

C...
on M,
(L £y — £y £e) oyl 30 = Lo ap) "

where 0% is the field £en®.
Consider first the case of a smooth scalar field o on M. The assertion follows since

(e £ — £y £e) (@) = E(n(a)) —n(&(a)) = (Len)(a) = Lya.

Next consider the case of a smooth vector field a® on M. Given any smooth scalar field 8 on M, we have

[(£e £y = £ £6)a"](B) = (L £,0%)(B) = (£ Lea”)(B)
= (& In, odl(B) = In, €, ])(B)
=l [ 0]](8)

= [I& 7], 2](B) = (£ )(B).

(Note that the third and fourth equalities follow from the assertions in problem 1.6.3.) Since this is
true for all smooth scalar fields 3, (£e £, — £, £¢) a® = £y a®. The other cases now follow in standard
computational sequence. To compute (£e £, — £, £¢) ap, we consider an arbitrary smooth field b and
make use of our previous derived expressions for (£ £, — £, £¢) (p A®) and (£e £, — £, £e) A\°. And so
forth.

Problem 1.7.1 Let V be a derivative operator on a manifold. Show that V,, 5% = 0.

We can use much the same argument here as used for Problem 1.6.1. By the Leibniz rule, and the

fact that 67 functions as an index substitution operator,
V08 =V, (6265) = 6V, 6¢ + 66 V,, 68 = 2V, 0.

So V,, 8% = 0.

Problem 1.7.2 Let V and V' be derivative operators on a manifold, and let v, . .4, be a smooth n—form

on it. Show that
v[b Qay...am] = v/[b Xay...am]-

There is a smooth, symmetric field Cf, on the manifold such that V' = (V, C{.). For any smooth

n—form o, . 4, on M, we have

A T r
Vb Qqgy...ap = Vb Agq...ap + Aras...ap Cba1 + ...+ aal.,.an,lrcban-
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So, anti-symmetrizing,
vI[b Qay...a,] = v[b Qay...an] + a, laz...an Cl:al] + .+ Xlay...an_1 |7 C;an]-

Since C[%c] = 0, all terms involving Cy. in the sum on the right-hand side are 0. (Notice, for example,

that (450, Cp o1 = Qrjas...an C[Tbal]] = 0.) It follows that

al]

V[b Qgq...a,] = V/[b Xay...an]-

nl

Problem 1.7.3 Let V be the coordinate derivative operator canonically associated with (U, @) on the
n-manifold M. Let u® be the coordinate maps on U determined by the chart. Further, let V' be another
derivative operator on U. We know (from proposition 1.7.8) that there is a smooth field C{, on U such
that V' = (V,Cp.). Show that if

i = 333 E (L Y

n o 9 a
then a smooth vector field &% = Z ( ) on U is constant with respect to V' (i.e., V! € = 0) iff
i=1

for alli and j.

‘We have
Vit = W& — Cp&°

i=1 j=1

But (dw’ﬂ(%) = dj;. So, continuing,

Vher = Zj:zn: %(aii)a(dbuj)—iii g(%)a(dbuj)

for all i and j in {1,...,n}.
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Problem 1.8.1 Let V and V' be deriwative operators on a manifold with V', = (Vin, Cf.), and let their

respective curvature fields be Ry, and R'{.,. Show that
/;)lcd = Rgcd + 2V[C C:il]b + 20&0 C:il]n
Given any smooth field oy,

VieVaay = Ve(Viap+a,C3)

Ve (Vi ap + aq Cfy) + (Vo + i Cpy )CE + (Va oy + i Cf))CL

Expanding the first term, anti-symmetrizing on the indices ¢ and d, and using the fact that C’fc q = 0, we

arrive at
1 a
R' bed Vo = R%eq o + (Veaya) Cpp + @a Ve Capp + (M da‘p‘)C’ + aaC Cip-

The second and fourth terms on the right hand side differ only in their respective indices of contraction

and the order in which the indices ¢ and d occur. So their sum is 0. Hence,
a 1 a a a
5 R Geq 0 = 3 R%eq o + 0a Vi dp T Qa Cf[c Cd]p'

But this holds for all smooth fields a. So our conclusion follows.

Problem 1.8.2 Show that the exterior derivative operator d on any manifold satisfies d> = 0, i.e

*)

dy(dm ap,..b,) = 0 for all smooth p-forms o, ..y,

this that

dn(dm abl...bp) = v[n v[771 Qpy..by)] = v[n Vin Qpy..by] = v[[n v771] Qpy...bp)
1 r r
= 3 [ar[bQ...bp Ry )+ T 0y | Rbpnm]}

1 T s
-2 [O"“[bz’---bp Ripy ) + o F Qoo R[bpnmn}

Since becd] = 0, each of the terms in the final sum is 0. So we are done.

Problem 1.8.3 Show that given any smooth field £€%, and any derivative operator V on a manifold, £
commutes with ¥V (in its action on any tensor field) iff Vo,V ™ = R €™

Let K7} = Ry &" — V, W ™. We claim that for all smooth fields al’fj.’.’.’& ",
(£eVn = Vn L)y p7 = g™y Kby, o+ ag 7

Consider first the case of a scalar field a. By proposition 1.6.4 (and the fact that Vj,, V,,ja = 0),

(£eV — Vo Le)a = (E™VVaa + (Vin @) Ve ™) — Vi (€™ Vi)
= "V Via+ (Vi a) (V&™) — (V&™) Vma — "V, Vina =0



SOLUTIONS TO PROBLEMS 275

Similarly, in the case of a smooth vector field a®, we have

(LeVi = Vi Le)a® = [§"Vi Vo + (Vi o) (Ve €7) = (Ve a™) (Vi €))]
=V (€"Vma® —a™ Vi, £7)
= [€"VinVaa® + (Vna®)(Va €7) = (V™) (Vi )]
—[€™ V) Vi &% 4 (Ve £™) (Vi ) — ™V, Vi €% — (Vo &™) (Vi €)]
= 28"V, Vi + o™V, Vi, &

= —E"RY,.aP + APV, V£t = —aP KQ .

The other cases now follow with a standard march through the indices. To compute (£:V,, — V, £¢) a,
for example, we consider an arbitrary smooth field A’ and make use of our derived expressions for

(£e Yy — Vi £6) (ap A?) and (£e ¥, — Vi, £6) A°. And so forth.

Now if K]} = 0, it follows immediately from our equation that £ commutes with V in its action on
any smooth tensor field. Conversely, if the commutation condition holds, then a,, K]} = 0 for all smooth

fields ap. So K% = 0.

Problem 1.8.4 Show that given any smooth field £&* on a manifold, the operators £Le and d,, commute

in their action on all smooth p-forms.

Given any smooth p-form ay, . s,, we have, by the preceding problem,

("Eﬁ dp —dy "€f)ab1~-~bp = "65 v[nabl.,.bp] - V[n £g by ...by)
= Qmlbs...b, K:lnbl] + . +a[b1~~~bpf1‘m|K:7fnbp]
= Qmfbgby Ky + e+ oy fml Ky,

Each of the terms in the final sum is 0, since K [’fs] = 0. (This follows, since by the symmetries of the

Riemann tensor field,

2Ky = 2R{nn€" — VeV &) = RE,, € — R+ RELED

So (Ledp — dn £e) o, . b, = 0.

Problem 1.9.1 Let 'V be a derivative operator on a manifold that is compatible with the metric gqp. Use
the Bianchi identity to show that
1
Va (R — 5 g"’R) = 0.

By the Bianchi identity, and various symmetries of the Riemann tensor field, we have

0= v7nj:iu,bcd + vd‘Rabvnc + chabdm = vaabcd - vd*RbanLc - chabmd-
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If we raise indices a and b, and then perform (a,d) and (b, ¢) contraction, we arrive at
0=V,R-V,R*, —W%R",.
Contracting with ¢™¢ (and changing indices of contraction) yields
0= Vu(¢g™R) — 2V,R* = V,(¢"“R — 2R").

So, V, (R“C — %g“cR) =0.

Problem 1.9.2 Let £&* be a smooth vector field on M. Show that
£eg™ =0 <= Legw =0.
We know that £¢0% = 0 (Problem 1.6.1). Hence
0 = £:6% = £c (9" gbe) = 9" £ Goc + goe £e 9
Assume that £ gqp = 0. Then gy £¢ g® = 0 and, therefore,
0 = g% goe £ g% = 8,1 £ g = £ g2

This gives us the implication from left to right The converse is handled similarly.

Problem 1.9.3 Show that Killing fields on M with respect to gqp are affine collineations with respect to
V.

Let £% be a Killing field. By proposition 1.9.8 (and various symmetries of the Riemann curvature
tensor),

Va vb gm = _Rnabm gn = _Rnabm é-n = _Rbmna é-n = Rmbna é—n

So Vo &M = R™, . &". It now follows immediately from problem 1.8.3 that £ is an affine collineation

with respect to V.

Problem 1.9.4 Show that if £* is a Killing field on M with respect to gq.p, then the Lie derivative
operator Le annihilates the fields Roped, Rap, and R determined by gap.

Given any smooth vector field n*, we have
L (R%cata) = £e (2Vie Vg m) = 2Ve Vi) (£emy) = R%eq £e M-

(The second equality follows from the preceding problem. Since &% is a Killing field, it is an affine

collineation with respect to V, i.e., £z commutes with V.) But by the Leibniz rule, we also have

Le (R%cqna) = R%eq £eNa + Na £e Ry
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Comparing these two expressions, we see that n, £ R%,.; = 0. But this is true for all smooth fields 7.
So £¢ R% ., = 0. Hence, since £:6"%, =0,
"65 Rab = "65 (5nm g ) = 5nm "Eﬁ Rn;,bn =0.

abn

Since €% is a Killing field, £; ¢g™™ = 0. (See problem 1.9.2.) So it follows that

ng = fg (gab Rab) = gab fg Rab =0.

Problem 1.9.5 Show that if £ and n® are Killing fields on M with respect to gap, and k is a real
number, then (£* +n%), (k&%), and the commutator [§, n]* = £en® are all Killing fields with respect to

Gap aSs well.
A? = (£* +n) is a Killing field since V(g Ay = Vo &) + Via ) = 0.
Similarly, x* = (k£?) is a Killing field since V(4 xp) = k V(o &) = 0.

Finally, 0% = £¢n® is a Killing field since, by problem 1.6.6, £5ga = £¢ £y gab — £y £e gap = 0.

Problem 1.9.6 Let n* be a Killing field on M with respect to gap. (i) Let v be a geodesic with tangent
field €. Show that the function E = £%n, is constant on ~y. (ii) Let T® be a smooth tensor field that is
symmetric and divergence free (i.e., V, T = 0), and let J* be the field T*°ny,. Show that ¥, J* = 0.

Let n%, v, €%, and F be as stated. Then we have
gnvnE = gnvn (ga 7711) = §n§avn77a + 77a§"vn§a-

Since &% is a Killing field, V,, 7, is anti-symmetric. So £" &%V, 1, = 0. And since £ is the tangent field of
a geodesic, £"V,£* = 0. So, "V, E = 0. This gives us (1). The computation for (2) is much the same:

Vo J* = Vo (T%np) = T Ny + 15 Va T

The second term on the right side vanishes since V,7% = 0. The first vanishes since 7% is symmetric

(and hence TV, 1, = T Viamy) = 0). So V, J* is 0.
Problem 1.9.7 Show that if n® is a conformal Killing field on M, and M has dimension n, then
1 C
v(a Moy = E (Vcﬁ )gab-
Assume £,(92%gq,) = 0. Then, by proposition 1.7.4 (and the fact that V,, gay = 0),

0 = @ £779ab + Gab °€nQ2 =Q? [ﬁm m Jab + Va T + Vbna] + Gab "67792
— QQ [Vanb + Vbna] + Gab "67792'
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If we raise the index ‘b’ and then contract, we obtain
0 =20%(V,n") +n£,0°%
. .. . 1
Our two equations jointly yield Viqmy) = — gan (Ven).
n

Problem 1.10.1 Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M, and
let p be a point in S.

(1) Show that the space of co-vectors n, € (M), normal to S has dimension (n — k).
(2) Show that a vector £* € (M,)® is tangent to S iff 1n,£* =0 for all co-vectors n, € (My), that are

normal to S.

(1) The subspace of vectors in (Mp)* tangent to S has dimension k. Let {%“,2“, ...,]g“} be any set
of k linearly independent vectors from that subspace. We can extend it to a basis for (M,)* by adding
(n — k) more (appropriately chosen) vectors kgl“, ...,ga. Now let {év s O o} be the dual basis. So
gva éa = §;5. We claim that the subspace of co-vectors at p normal to S is spanned by {kai, - gva}. To
see this, consider any co-vector a, zolcéva + ..t gvgca at p. It is normal to S iff éy: aaé“ = 0 for
all i = 1,...,k (since every vector at p tangent to S is a linear combination of %“, 2“, e g“) Thus « is

k+1
normal iff it is in the linear span of { Ea, e 3(1}- So the latter is a basis for the subspace of co-vectors

at p normal to S — and therefore that subspace has dimension (n — k).

(2) The argument is much the same. We continue to work with the basis and dual basis described in
(1).. Consider any vector £* zél“él““ + ..+ gg“ at p. It is killed by every covariant vector at p normal
to S iff it is killed by all the vectors kala, vy y. And the latter condition holds iff é: &a &% =0 for all
1= 2k: +1, i n. So £% is killed by every covariant vector at p normal to .S iff it is a linear combination of

1
E4 €Y L €Y e, iff it is tangent to S.

Problem 1.10.2 Let S be a k-dimensional imbedded submanifold of the n-dimensional manifold M,
and let gqp be a metric on M. Show that S is a metric submanifold (relative to gap) iff, for all p in S,
the pull-back tensor (idy)* (gap) is non-degenerate, i.e., there is no non-zero vector £ € (S,)® such that
((idp)* (9ap)) € = 0.

Let p be any point in S. The pull-back tensor (id,)*(gas) is degenerate there iff there is a £ € (S,)®
such that, for all 7* € (Sp)*, ((idp)*(gas)) Y = gap ((idp)*(g“)) ((idp)«(71")) = 0. Since a vector in
(M,)® is tangent to S precisely if it is of the form (id,).(n®) for some 7* € (S,)?, we see that (idy,)*(gap)
is degenerate at p iff there is a €% € (S,,)® such that g ((idp)*(gb)) is normal to .S, i.e., there is a vector

in (M,)® tangent to S that is also normal to S.

Problem 1.10.3 Prove the following generalization of clause (2) in proposition 1.10.8. For all M -tensor
fields a % on S, the following conditions both hold.
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(1) % is tangent to S in the index ‘a’ < h% o=t =a+% &= kYot =0.

(2) o is normal to S in the inder ‘a’ < k%ot =a% = hYa-b=0.

We work with a representative case. (The proof is exactly the same no matter how many indices
are involved.) Consider the M-field a®™™ on S. Suppose first that h% abmn = ¥ Then a®™" is
certainly tangent to S in a since h?% is. Conversely, suppose a*™" is tangent to S in a. Then, we claim,
h%, a’™ and a®™" have the same action on any co-vector 7, (at any point of S) that is either tangent
to, or normal to, S. In the first case, h% ab™m . = a® p,, since h% 1. = mp, In the second case,
h% @’ n, = 0 = %™ 1, because both sides are tangent to S in ‘a’. This gives us the first equivalence
in (1). The second is immediate since k% a®™" = (g% — h%) Q™™ = @™ — h% o™, The equivalences

in (2) are handled similarly.

Problem 1.10.4 Prove that h", k™ kP, Vi, hyyp = 0.

We have
R K™ kP N By = BT k™ [V (B kP 2) — P Vi kP ).

But hpp kP, = 0 = k™ hyp (by the third clause of proposition 1.10.3). So both terms on the right are 0.

Problem 1.10.5 Derive the second Gauss-Codazzi equation:

R Wy WP KN T = % ™y B RP k" Rynpr-
We have
(1) ™, A" hP, Ny, hyp = 0.
(2) h™, k" kP, Ny by = 0.
(3) Mave = Wy W7y RPN gy = W7 1% (97 = D7) N B = W7 7%y Vi P
(The first is (1.10.3); the second was proved in the preceding problem; and the third follows from the
first.) Hence

hm[a h/nb] h/pc k’rdvm Tnpr = h/m[a h/nb] hpc k’rdvm (h/qn h;sp Vq h;sr,«) =A + B + C

where

A = pm
= h’m[a hnb] hpc krdh’qn (Vm h’sp) (Vq h’ST)a

nb] hpc krd(vm hqn) hsp (V‘I h’ST)’

la

¢ = hn" nb] hpc krdhqn hsp (Vm Vq hsr)'

la
By (3) and lemma 1.10.6, h™, A" (Vin hY,) = ﬂ—[ab]q = 0. So A = 0. Furthermore, since h", h9, = h?,, we
have, by (3),

B = hm[a hqb] hpc de (Vm hsp) (Vq hST) = hq[b hma] hpc (vm hsp) de (Vq hsr)

= hq[b Wa]cs krd (VQ hS’I‘)'



SOLUTIONS TO PROBLEMS 280

Now 7g4es is tangent to S in the index o and normal to it in s. So 7,.* = h*%, k®, m,." and therefore,

continuing the computation,

B = hq[b 7Ta]cs de (vq hST) = hq[b hua] ksv de (Vq hST)ﬂ-ucU =0.
(The final equality follows from (2).) Finally, since h" h, = h?,,

C = W™ Ay R K g1 (Vin Vg hsr) = B B RE KT BE ) (Vi V) Bisyr)

]
1 m T S U U
= B h ahthpck ah p(hwR smq T heu R qu).
Now k" hyr = 0 (by proposition 1.10.3) and /%, hsy = hpy. So, continuing,
m n T 1 m ' U 1 m r u
h [a ' b] Rk qNm Tnpr = C = gh ahthpck dhpu R rmq = §h ahthpc]€ a (Gpu — kpu) R rmg
1
= SRR WK Ry

(The final equality follows from the fact that, once again, h?, kp, = 0.) But Rprmg = Rmgpr. S0 we are

done.

Problem 1.11.1 One learns in the study of ordinary vector analysis that, for all vectors £, n, 6, X at a
point, the following identities hold.

(1) (€ xm)-(6xX) = (§-0)(n-X) = (& Nn-0)
(2) (€ x (% 0))+ (8 x (€ x m) + (1 x (6 x €)) = 0.

Reformulate these assertions in our notation and prove them.

The two come out as follows.

(1) (€®€one)(eamn®™A™) = (€°06)(n°Ae) — (E"X0) (11°00).
(') G (comnt™0") + €y (conn™ ") + € (ccnn87E") = 0.
They follow easily from (1.11.6) — in the case where n = 3 and n~ = 0. First, we have
(€°ne) (camn™N") = (€™€amn) &8N = 260, 6%, & 0™ A"
= 26002 = (€0,)(1°A) — (€M) (1°0c).
And for the second, we have
€ (ecnnt™0")  + €Oy (ecmn€™ ") + €”m(ecmnd™E")
= (€“ecmn)&on™ 0" + (€ Pecmn) O™ 0" + (€“ecmn) M 0" E"
= 2612 6% g ymen 42600 58 0, ¢y 42612 6% 0™ €
= 260" + 20,0 + 27,01 "

= [(&0")n" — (&n")0°] + [(Oen") € — (B €") 0] + [(m ") 0% — (my6°) €]
= 0.
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Problem 1.11.2 Do the same for the following assertion:
div(§ x n) =n - curl(§) — & - curl(n).

We have
Va (Eabc §b 77(:) = §b Eabc Ve Ne + Ne Eabc Ve §b
= 7 6cu,b Va gb _ §b 6bu,c Va Ne-

Problem 1.11.3 We have seen that every Killing field £€* in n-dimensional Fuclidean space (n > 1) can
be expressed uniquely in the form

& = X" Fap + Ky,

where Fyp, and ky are constant, Fgp is anti-symmetric, and x® is the position field relative to some point
p. Consider the special case where n = 3. Let €qc be a volume element. Show that (in this special case)

there is a unique constant field W* such that Fup = €qpcW°.
Let We = %eachbc. Then

1 n
= (ecmnecab)an = 5[77}15 ]men = F[ab] = Fab-

1
€abe wWe = €abe (5 ecmnan) - 2

(The final equality follows from the fact that Fy; is anti-symmetric.) W is constant, since

1
Vb Wa — 5 Vb (eamnan)7

and both €*™” and F,,, are constant. Finally, W% is the unique field satisfying the given constraint, for

if we also have Il = eabcwc, then eabc(Wc —W¢) =0, and so

0 = e™eqpe (W — W) = 267 (W — W) = 2(W" — W™).

Problem 2.1.1 Consider our characterization of timelike vectors in terms of null vectors in the proof of

proposition 2.1.1. Why does it fail if n =27

If n = 2, the stated condition holds for spacelike as well as timelike vectors. Indeed, in that dimension,
given any two non-zero null vectors a® and y* that are not proportional to one another, every spacelike
(as well as every timelike) vector 7% can be expressed in the form n® = ka® +1v®, where k # 0 and [ # 0.

So, of course, if we take G to be the null vector [v®, then we have n® = ka® + §*.

Problem 2.1.2 (i) Show that it is possible to characterize timelike vectors in terms of causal vectors.

(i) Show that it is possible to characterize timelike vectors in terms of spacelike vectors.

The following equivalences hold for all n > 2.

A vector n* at p is timelike iff for all causal vectors a® at p, there is an € > 0 such that, for

all k, if |k| < ¢, then n* + ka® is causal.
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A vector n® at p is timelike iff for all spacelike vectors a® at p, there is an € > 0 such that,

for all k, if |k| < ¢, then n* + ka® is not spacelike.

Problem 2.1.3 Does proposition 2.1.3 still hold if condition (1) is left intact but (2) is replaced by
(27) oyl yr €01, &% =0 for all spacelike vectors £ at the point?
And what if it is replaced by

(27) aylyr & €% =0 for all null vectors €% at the point?

Condition (2") is certainly not sufficient. For example, if g4 is a spacetime metric and p is a point in
the underlying manifold, then gq, £7¢° = 0 for all null vectors £% at p, but g, # 0. On the other hand,
condition (2') is sufficient, and the proof is almost the same as for the original version of proposition

2.1.3. Only one change is needed. Before we used the fact that

if €% is a timelike vector at some point, and n* is an arbitrary vector there, then there is an

€ > 0 such that, for all z, if |z| < ¢, then (§* + zn®) is timelike.

Now we use the corresponding assertion with both occurences of “timelike” changed to “spacelike”.

Problem 2.2.1 Let p be a point in M. Show that there is no two-dimensional subspace of M) all of

whose elements are causal (timelike or null).

Assume there are non-zero, linearly independent vectors a® and 3% at p such that, for all k£ and [, the

vector (ka® +13%) is causal. We derive a contradiction.

There are two cases to consider. Either (i) one of the two is timelike, or (ii) both are null. Assume
first that one of the two, say a®, is timelike. If we set

(mB™)

(anan)

k=— 1=1,

then o™ (kay +106,) =0, ie., (ka®+15%) is orthogonal to the timelike vector a®. Since (ka® +15%)
is causal, it follows from the first clause of proposition 2.2.1 that (k a® +13%) = 0. This contradicts our
assumption that a® and 8¢ are linearly independent. Assume next that a®* and §¢ are both null. Then,
for all £ and I,

0 < (ka"+10")(kan, +16,) = 2kl(a" ),

since (ka® 4 13%) is causal. But this can hold for all k and [ only if (a"3,) = 0. Hence, by the second
clause of proposition 2.2.1, a* and 8 must be proportional to one another. Once again, this contradicts

our assumption that they are linearly independent.

Problem 2.2.2 Let gip be a second metric on M (not necessarily of Lorentz signature). Show that the

following conditions are equivalent.

(1) For allp in M, gap and gy agree on which vectors at p are orthogonal.
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(2) glub is conformally equivalent to either gqp or —gap.

The implication (2) = (1) is immediate. For the other direction, assume (1) holds. It follows from (1)
that g and ¢l agree as to which vectors are null, i.e., orthogonal to themselves. So it will suffice to
show that g/ has signature (1,3) or (3,1). For then we can invoke proposition 2.1.1 and conclude that

g'ap is conformally equivalent to gqp (in the first case) or to —gqp (in the second case).

1 4
Let p be any point in M, and let &2, ..., £% be an orthonormal basis at p with respect to g,,. Consider
1 2
the vector (£% + £%). It is null with respect to gup. So it must be null with respect to g/ap. Furthermore,

1 2
since €% and £* are orthogonal with respect to gup, they must be orthogonal with respect to g% So we

have
1 2 1 2 1 1 2 2
0 = g +ENE+8") = gl + g€ &
Similarly, we have
! ba kb 1 2adp
0 = gab§§ +gab€§
1 1 4 4
0 = gué® & + gué e

Now let X; = g’abéaéb, for i = 1,...,4. The X; are non-zero — since the vectors éa are non-null with
respect to gqp. So there are only two possibilities. Either X; > 0 and X5, X3, X4 < 0, or X; < 0 and
X2, X3,X4 > 0. In the first case, g has signature (1,3); in the second, it has signature (3,1). (In
either case, we need only normalize the vectors é e, ,2 % to arrive at an orthonormal basis at p of the

appropriate type for ¢’p.)

Problem 2.2.3 Prove the second clause of proposition 2.2.35.

Let u® and v* be co-oriented, non-zero causal vectors at a point p. Then either (u"v,) > 0, or both
vectors are null and p® = kv® for some k > 0. In the latter case, |p® 4+ v*|| = ||u®|| = ||v*|| = 0, and the
assertion follows trivially. So we may assume (u"v,) > 0. Hence, by the first clause of proposition 2.2.3,

(u™vn) > ||| [l#®||. Therefore,

2
U {F =+ 11 el + 2l L+ 1 < (" pn) + 2(6"vn) + (0"vn)

= (" + V") (n + ) = e+ 0%

(For the final equality we need the fact u* and v* are co-oriented. Otherwise, (u* + v®) need not be
causal.) Equality holds here iff (u"vy,) = ||p®|| ||#*]|. But by the first half of the proposition, again, this

is the case iff u® and v® are proportional.

Problem 2.5.1 Give examples for each of the following possibilities.
(1) A smooth symmetric field Ty that does not satisfy the WEC.
(2) A smooth symmetric field Ty that satisfies the WEC but not the DEC.
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(3) A smooth symmetric field Ty that satisfies the DEC but not the SDEC.

(1) Tup = —gap- (2) Tup = 04 0p, where o® is a smooth spacelike field. (3) T,y = Mg Ay, where A\ is a

smooth, non-zero null field.

Problem 2.5.2 Show that the DEC holds iff given any two co-oriented timelike vectors £ and n® at a
point, Tap &® nb > 0.

Suppose first that the DEC holds, and let £ be a timelike vector at some point. Then T, £% €2 > 0
and T &% is a causal vector. We claim that T, £%n° > 0 for all timelike 7* at the point that are co-
oriented with £*. We may assume that Ty, £® # 0, since otherwise the claim is trivial. And in this case
it follows that T,; €% &P > 0 (since otherwise T, £® is a non-zero causal vector that is orthogonal to the
timelike vector £°, which is impossible by proposition 2.2.1). So T'% £ is a non-zero causal vector that is
co-oriented with £%. Now let n® be any timelike vector at the point that is co-oriented with £%. It must

be co-oriented with 7%, £° as well (since co-orientation is an equivalence relation). So T,p £%n° > 0.

For the converse, suppose that given any two co-oriented timelike vectors £* and n* at a point,
Tap €%n° > 0. Let €% be a timelike vector at some point. It follows immediately (taking n® = £%) that
Tap €4 € > 0. So what we have to show is that 7%, €% is a causal vector. Suppose to the contrary that it
is spacelike. Then we can find a timelike vector 7%" at the point, co-oriented with £%, that is orthogonal to
T%, £°. But since 7%“ is timelike, (1%“ + kT ¢€P) is also timelike and co-oriented with 2 for all sufficiently
small k£ > 0. Hence, by our initial assumption,

0 < Tw fa(%b‘Fkan gn) = k(Tabga) (Tbn §n)

for all sufficiently small k > 0. But this is impossible since (T, £%)(T%, £") < 0. So, as claimed, 7%, £

is causal.

Problem 2.5.3 Consider a perfect fluid with four-velocity n®, energy density p, and pressure p.
(i) Show that it satisfies the DEC iff |p| < p. (i) Show that it satisfies the SDEC iff it satisfies the
DEC.

(i) Suppose Tap = pNa M — P (gab — Nap)- Then T, satisfies the DEC condition at a point iff for all

unit timelike vectors £€% at that point, T, £ €Y > 0 and T%, £ is causal. Now for all such vectors
T € = (p+p)(n")* —p,
(T% §b)(Tac ) = (92 - p2)(77a§a)2 + p2-

So the DEC holds iff both right-side expressions are non-negative for all choices of £¢.

Assume first that |p| < p, and let £€* be a unit timelike vector at the point in question. Then, by the
wrong-way Schwarz inequality (proposition 2.2.3), (n%£,)? > ||n]]? ||€%]|> = 1. Hence,
(p+p)—p =p 20,

(p* =p*)+p* = p* 2 0.

(p+p)(n*)* —p

>
(0* —p*)(n"&a)* + 1 >
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So the DEC holds at the point. Conversely, suppose that T, £*¢2 > 0 and T%, £ is causal for all unit
timelike vectors £% at the point. Then, in particular, T, n% n® > 0 and, therefore, 0 < (p+p)(nna)? —p =
(p+p)—p = p there. Next we use the fact that there is no upper bound to the value of (n%£,)? as €% ranges
over unit timelike vectors at the point. It cannot possibly be the case that (p? — p?)(n%&.)% +p*> > 0
for all such vectors unless (p> — p?) > 0. So we have p > 0 and (p? — p?) > 0. These two together are

jointly equivalent to |p| < p, as required.

(ii) The SDEC implies the DEC (always, not just for perfect fluids). Suppose that at some point
Tab = pNa — P (gap — Ma ) satisfies the DEC but not the SDEC. Then there is a timelike vector &°
at the point such that 7%, &% is null even though T,;, # 0 there. We claim this is impossible. If 7%, &b
is null, then, (p? — p?)(n?€,)% + p? = 0. But |p| < p, since we are assuming that the DEC holds, and
n*¢, # 0 (since no two timelike vectors are orthogonal). So this equation can hold only if p = p = 0, and

this contradicts our assumption that T, # 0 at the point in question.

Problem 2.6.1 Show that Mazwell’s equations in the source free case (J* = 0) are conformally invariant.

Let ¢/, = Q2 gap be a second metric on the underlying manifold M, whose dimension n we leave open.

Let its associated derivative operator be V'. It will suffice for us to show that

1 —4
v/a (g/am g/bn an) _ m (vaFab) + (nQ5 ) Fab v, Q.

We know from proposition 1.9.5 that V' = (V, C%.), where

C% = —ﬁ 6% V. Q2 + 0% W Q% — gy g™V, Q2.
We have
Vg g Fon) = ¢ g Ve P = Q74" ¢"" V' Fruyy
= Qg g" [V Fon + C"am Frn + C"an Fins] .
Now
Q7 G G C am P = =55 9" 9" 070 Vin 0 4 6, Va 0% = a7 Ve 0| o

= —2—51)6 [F9, 02 + PV, Q2 = n PV, 02
_ (”Q—5 2) pab v, 0

and (since Fy; is anti-symmetric and, therefore, g™ F,,,. = 0),

1
Qf4gamgbn Cran Fmr = _296 gamgbn |:6Tavn Q2+6Tn Va Q2 _gangrs vs Q2:| Fmr
1
— _296 [grm - gbn Vn Q2 + Fabva Q2 _ FbSVS QZ:|
2
= - F*V,Q.

Q5
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So, as needed, we have

am n 1 a
V' (g/ glb an) = o (VaF b) +

(n—4)
(9K

F®v,Q.

Problem 2.6.2 Prove (2.6.19).
We have
eabcd FoFea = eabcd [2 E[a gb] + €abrs gTBS} [2 E[c gd] + €cdmn gmBn] .

When we expand the right side, we get four terms. Two of them vanish because of the anti-symmetry of

6abcd.

B, & Bl by = € E, & B8 = 0,
6al)Cdeabrsé.TBs ecdmn€7an = _450[7‘5ds] grBS ecdmngmBn = _4€ch€cdmn€mBn = 0.

One of the other terms yields
2 eabcd E[a gb] €cdmn §mBn = 2 GCdab €cdmn Eq §b §mBn = -8 5a[m 5bn] E, §b §mBn =4 EaBav

since £* E, = £* B, = 0. The other yields 4 E*B,, as well. (The computation is almost exactly the same.)

So we have
el F.. = 8E°B,.

Problem 2.6.3 Prove (2.6.21).
By (2.6.17), we have

(Tab gb)(Tac gc) = %(_EnEn - Ban) ga — €ars ETBS:| [%(_EWEW - BmBm) ga — €™ EPBQ .

The two “cross-terms” on the right vanish since £,eP? = £,e*P9" £, = 0. So

(E"E,, + B"B,)* + €4rs E"B* ¢’ E,B,.

(T €)(T*6) = 1

But
€ars E'B* ¢ E,B, = €4psn " €PM ¢, E'BYE,B, = —6EP B1¢™ E, B, ¢,

= —[(B"E,)(B'B,) — (E"B,)?].
So we may conclude, as required, that
b ac 1 n n 2 n 2
(Tup 7)(T*E) = Z(E E,—B"B,)* + (E"B,)".
Problem 2.6.4 Prove the following equivalence.

DbEb = W

Vo Feb = Jb
€ Dy B, = €'V, B+ je.
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Clearly, (V, F® — J) vanishes iff its projections tangent to, and orthogonal to, £ both vanish, i.e.,

gb (Va Fab _ Jb) —

va Fab — Jb
hcb (va Fab _ Jb) —

We shall work on the right-side equations separately. Since £* (and, therefore, hqp) are constant, and

since E* is orthogonal to £¢,
& (Vo F® = J%) = Vi(F®)—(J') = VaE*—p = Vo (B b E™) —
= h%h’, Ve E™ —pu = DyE* —pu.

This gives us the first equivalence. The second is handled similarly using (2.6.12) and (2.6.13). We have

hcb (Va Fab _ Jb) _ va (Fabhcb) _ (thcb) _ va (Fabhcb) _ jc

and
v, (Fabhcb) = Vv, (2 Ele é-b] + cabrs & Bs) hcb:| = — ¢V, E° + cabrs & h%, V, B
— _é-ava EC + 6Cas va Bs — _é-ava EC + (ecmn ham hlsn) va Bs
— €V, E° 4 ™ D, By
So

Wy (VaF® = J%) = 0 <= ™D, B, = 'V, E° + j.

Problem 2.7.1 Show that in the general case (n > 3), inversion of (2.7.3) leads to

1 2
Rupy = 8 Tab— =T Gab | — ——= AGab-
b W( b 2 Qb) n—2) Jab

Contraction of

1
Rab - §Rgab_Agab = 87TTab

yields
1
R — §Rn—An = 8« T,

or, equivalently,

R = 87T + nA.

(2—n)
2
So, substitution for R in the first equation yields

1
Ry = 8unT, + §Rgab+Agab = 8Ty + 87T 4+ nA)gap+ Agas

_1

(2—n)
1 2

= 87 (Tab_ngab) - m)\gaba

as required.

Problem 2.7.2 Give examples of the following.
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(1) A smooth symmetric field Topy that satisfies the SDEC (and so also the WEC and DEC) but not the

strong enerqy condition

(2) A smooth symmetric field Tyy that satisfies the strong energy condition but not the WEC' (and so
not the DEC or SDEC either)

For (1), take Top = gap. It satisfies the SDEC. But in this case, Ty — %gabT = —gap, and so it does
not satisfy the SEC.

For (2), take Top = —gap. It does not satisfy the WEC. But in this case, Top — %gabT = Qab, SO it does
satisfy the SEC.

Problem 2.7.3 Consider a perfect fluid with four-velocity n®, energy density p, and pressure p. Show
that it satisfies the strong energy condition iff (p+ p) > 0 and (p + 3p) > 0.
It
Tab = pnano — P (gab — Na M),

then T'= (p — 3p), and

1 _
Tab_§gabT = (p+p)nam + (pr) Gab-

It follows that Ty, satisfies the SEC iff, given any unit timelike vector £* at any point,

(p+p)(Ma€")? + (p;f) > 0.

Now (7,£%)? > 1 by the Schwarz inequality. So if (p + p) > 0 and (p + 3p) > 0, then

4o + 220 5 (a4 @2 _ v

and the inequality is satisfied. Conversely, suppose it is satisfied for all unit timelike vectors £% at some
point. Then, in particular, it is satisfied for £ = 1%, which yields (p + 3p) > 0. And since (7,£%)? can
assume arbitrarily large values as £* ranges over all unit timelike vectors at a point, it must be the case

that (p +p) > 0.

Problem 2.8.1 Prove (2.8.8).

It follows from the definition (2.8.6) of the twist vector that

1
€abed gcwd = 5 €abed gcedmnr gm Wnr = 3 5m[a 5nb 5Tc] é-c gm Wnr = 3 gc g[a Wphe] = Wab-

For the final equality, we use the fact that £* is orthogonal to w,p, in both indices (and wgp is anti-

symmetric).
Problem 2.8.2 Show that, at any point, w* =0 ff V&g = 0.
We know from (2.8.7) and the anti-symmetry of €2*°? that

1 1
wh = S e Vet = S e g Veka,
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So the “if” half of the equivalence follows immediately. For the other direction, assume that w® = 0 holds

at some point. Then at that point we have

1
0 = camnr wht = - €amnr Eade g[b Ve gd] = -3 5b[m 5611 6dr] g[b V. gd] = -3 g[m Vi gr] .

2
Problem 2.8.3 Complete the calculation in (2.8.10).

We have to compute
wba 77b Wea 770
P on

We work separately with the numerator and denominator. It follows, first, from (2.8.8) that

abmn cer s
Ul gm Wn €acrs 7] 5 w

wba 77b Wea UC = (ebamn é-m wn) 77b (Ecars é-r ws) 776 = €
= -6 6b[c 0" 6ns] M Em Wn nc é-r w' = —6 Me &r Ws] 770 §T w®

= = [(en)wsw®) — (nsw*)?].

(For the final equality, we use the fact that we are doing the computation at the “initial point” where n®

is orthogonal to £%.) And, since

nws g
pr=n"— ;
WM W,
we have
b c c 2 c 2
n MW, n° we n (M we)”  (n°we)
= — — — -2
P Pn |:77 o w :| |:77n o W wn:| ("™ nn) W' w, + W' w,
1
= (wrw ) [(nnnn)(ws wS) - (ncwC)Q}
T
So,
wba nbwca 770 r
P o

as required.

Problem 2.9.1 Let k* be a timelike Killing field that is locally hypersurface orthogonal (k;Vy ke = 0).
Further, let k be the length of k*. (So k? = K"k,.) Show that

K2Vaky = — Kla V] k2.

This follows with a simple direct computation:
0 = 3k°KaVykg = KakVyke + (K Ke) Vaky + kp KV kg
= kakVpke + (k°Ke) Vaky — kp 6V ke

1 1
= Enavbﬁ + K2V, Ky — §nbva;¥ = A2Vanb+n[avb]n2.
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Problem 2.9.2 Consider a non-trivial boost Killing field ry = 2x*Ej, &) on Minkowksi spacetime (as
determined relative to some point p and some constant unit timelike field £€*). “Non-trivial” here means
that E* # 0. Let n® be a constant field on Minkowski spacetime. Show that £, n* = 0 iff n® is orthogonal
to both to £* and E*.

Since n® is constant
£en® = K'Van® = "Vak® = —0"Vak® = —20"V, (xmEM )
= —2EMed "V, xm = —2EM g = (€M nn)EY — (E™n,,)E%

Since £* and E“ are linearly independent, we see that £, n* =0 iff (€™ n,,) = 0 = (E™ 0.

Problem 2.9.3 This time, consider a mon-trivial rotational Killing field ky = X* €abea &° B? on
Minkowski spacetime (with B® # 0). Again, let n® be a constant field on Minkowski spacetime. Show
that £.n% =0 iff n® is a linear combination of £* and B®.

The argument is very much the same as with the preceding problem. If n® is constant,
-’6;'1 na - _ nnvn K4 = — nnvn (Xm 67nacd é-c Bd)
= - 6"mcd gc Bd nnvn Xm = — emacd gc Bd 77” Inm = 6a7ncd 77m gc Bd'

Thus £, n* = 0 iff n® has no component orthogonal to both £* and B®.

Problem 2.9.4 Let k® be a Killing field; let v : I — M be a smooth, future-directed, timelike curve,
with unit tangent field £*; and let J = (P%k,), where P* = m&®*. Finally, let o* = £"V,£* and
o= (—a" ). Show that

€V J| < ar/J? — m2 (K"kp).

‘We have seen that
E"Vnd = MK E"V R €Y = mEKg Q.

Now consider the projected spatial metric hqap = gap — aép. It is negative definite. So by the Schwarz
inequality (as applied to —hgp) and the fact that {%a, = 0,
1€V, J| = |mkea?] = |mhaga® k] < (—hga® oeb)% (—=m? hap K /@b)%

= afJ? —m? (Iinlin)]%.

Problem 2.11.1 Confirm that the three stated solutions do, in fact, satisfy (2.11.18).

We consider just the k = —1 case. The others are handled similarly. We have to show that the solution

(in parametric form),

(coshz — 1)

(sinhz — x)

QW[ Q



SOLUTIONS TO PROBLEMS 291

does, in fact, satisfy (2.11.18) for all z € (0, co). Note that (dt/dx) is strictly positive in this interval.
So by the inverse function theorem, (dx/dt) is everywhere well defined and equal to (dt/dz)~!. Thus, we

have .
. @ B @ ﬁ ~_ sinhz
T dt dr \dx " coshz —1°
Therefore
C sinh z 2 2
-2
— 21 = (/=) - —= 1 =0
N a (cosh:z: - 1) (coshz —1)

Problem 2.11.2 Consider a second equation of state, namely that in which p = 3p. Show that in this

case there is a number C' such that
8
aa? + ka’? = ?paﬁ = (.

If we multiply the right side of (2.11.16) by 3, and equate it with the right side of (2.11.15), we arrive

at

or, equivalently,

da+ a2+ k = 0.

It follows (by integration) that a2a? + ka? = (', for some number C’. It then further follows from

(2.11.15) that C" = (87/3) pat.
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