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Preface

My book 3D Game Engine Design appeared in print in September 2000. It described
many of the algorithms that are used in the development of the graphics and physics
portions of game engines and shipped with a CD-ROM that contained the source
code for version 0.1 of the Wild Magic engine. Although the algorithms have not
changed over the years, the engine has evolved significantly. The original version
was written for the Microsoft Windows platform using an OpenGL-based renderer,
and not all of the book algorithms were implemented in that version. The last ver-
sion before the one shipping with this book, version 2.3, runs on Linux machines
and on Macintosh machines with OS X. A number of users have been successful in
porting the code (with relatively minor changes) to run on SGI machines with IRIX,
on HP machines with HP-UX, and on Sun machines with Solaris. On the Microsoft
Windows platform, the engine has renderers for OpenGL and Direct3D. Many more
algorithms had been implemented in version 2.3, and the engine was extended to sup-
port shader programs. As a result ofmy bookGame Physics,more physics support was
added, including particle systems, mass-spring systems, and rigid body dynamics.
Specialized applications were added to illustrate physical simulations that are based
on the equations of motion derived from Lagrangian dynamics.

Some of the systems in Wild Magic were implemented by contractors. Unfortu-
nately, I did not have any documents written up about the design and architecture
of the engine, so the contractors had to do their best to add new features into the
framework without guidance from such documents. The primary goal was to add
new features into the engine’s framework, and the contractors delivered exactly what
I had hoped for. A user’s guide and referencemanual would have been helpful to these
folks.

Users of the engine asked me frequently about the availability of a user’s guide
and referencemanual and sometimes about the design and architecture of the engine.
Embarassingly enough, I had to tell the users that no such document existed and that
I did not have the time to write one.

The pressures from users and the needs of the contractors finally increased
enough that I decided it was time to write a document describing how I had de-
signed and architected the engine. Any library that evolves so much over a few years
is a prime candidate for a rewrite—Wild Magic is no exception. Instead of writing a
book aboutWild Magic version 2, I decided that the engine rewrite should occur first
to incorporate ideas that I believed wouldmake the engine better, and to redesign and
rebuild the components that contractors had provided. This book, 3D Game Engine
Architecture, is the result of those efforts, and Wild Magic version 3 is the brand-new
and much-improved engine that the book describes. I have attempted to convey my
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xiv Preface

thoughts as much as possible on the software engineering and computer science as-
pects of the engine. The focus on mathematics is as minimal as I could make it (and
there was much rejoicing!), but there is still some mathematics—enough to motivate
why I built the interfaces for those classes that provide mathematical support for the
engine.

The engine source code, applications, and some of the tools are of my own
doing. However, the 3DS importer andMaya exporter are the contributions of Nolan
Walker, a contractor who has helped me with various engine components over the
years. His was a more formidable task than mine—figuring out how to convert the
data from modeling packages to the scene graph format of Wild Magic. This is a
nontrivial task, especially when the information on data layout for various packages
is difficult to locate. My thanks go to him for producing these tools. I wish to thank
Jeremiah Washburn, an NDL artist, who created much of the fine artwork that you
will see on the CD-ROM. You can visit his Web site, www.bloodyart.com, for other
samples of his artwork. Finally, I can retire a lot of the cheesy-looking engineer’s
artwork that I have been using inmy books. I also wish to thank Chris Moak, an artist
who constructed the castle data set that you will see in one of the sample applications.
He built the data set in 2001; I have only now gotten around to making it available.
You can visit his Web site, home.nc.rr.com/krynshaw/index.html, for other samples of
his artwork.

My long-term relationship with Morgan Kaufmann Publishers (MKP), now
spanning four books and a series editorship, has been a fruitful one. A book project
always begins with an editor prodding a potential author to write a book and then
continues with more prodding to keep the author writing. My friend and senior ed-
itor, Tim Cox, has been quite good at this! When he is busy on other projects, his
editorial assistant, Rick Camp, assumes the role and reminds me to deliver various
book-related materials. Both Tim and Rick have the uncanny ability to prod at just
the right time—when I have a dozen other items to attend to. Once the project be-
gins, my job is simple: Write the book and deliver a draft with supporting figures and
screen-captured images. Once delivered, the hard part of the process commences—
the actual book production. Fortunately, all of my books published through MKP
have had the same project manager, Elisabeth Beller. Her superb abilities to schedule
the workload and keep a team of people on track are amazing. I consider it a modern
miracle that she and her team can take my crude drafts and produce from them such
fine-quality books! My thanks go to the talented people at MKP for producing yet
again another of my works.

On a final note: In case you were wondering about why I chose the name Wild
Magic, here is a quote from the release notes that shipped with version 0.1 of the
engine:

I am not a fan of fancy names, but I guess it is about time to do some branding.
So I have given the engine a name. That name, Wild Magic, while sharing part
of the company name, is also a reference to the Thomas Covenant novels written
by Stephen R. Donaldson. In my opinion he is the best fantasy writer ever. I have
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lost count of the number of times I have read the Covenant series. My hope is that
someday he will write another trilogy in that series. Or that there will be a movie
about the current books. Or that there will be a 3D game based on the series . . . .

Ironically, the first book of a new series, The Last Chronicles of Thomas Covenant, is
scheduled to appear in print about the time this book does. If my future books are
delayed, let it be known that I was spending my hours reading, not writing! Now, Mr.
Donaldson, about that movie and 3D game . . . .



C h a p t e r 1
Introduction

My book 3D Game Engine Design (3DGED) was written to explain the high-
level details that arose in the development of the real-time 3D game engine

NetImmerse. The expression “game engine” was used because, at the time of the
development of NetImmerse, that was what such large libraries were called. 3DGED
is partly about the computer graphics issues for a real-time engine. It discusses the
graphics pipeline—taking an object, positioning and orienting it in the world, and
drawing it (if necessary). Some discussion was included of rendering effects, the topic
of interest to most budding game programmers, but the book covered in more detail
the aspects of scene graph management. This is the “front-end” data management
system that provides potentially visible data to the “back-end” rendering system. Part
of scene graph management is about abstract systems. An appendix (which should
have been a chapter) was provided on object-oriented design, including topics such as
run-time type information, sharing via reference counting, and streaming (memory,
disk, networks). Other abstract systems included spatial organization via trees, a
rendering layer to hide graphics APIs, controllers, and so on.

3DGED covered a number of topics of interest—for example, animation, level of
detail, sorting, terrain, and so on. But all these were discussed at a fairly high level, a
“design level” so to speak.

Much to the dismay of some readers, the book contained a lot of mathematics,
required to implement the concepts. Reader feedback indicated that what many folks
want are the architectural details of how you actually build a game engine, with less
focus on the mathematical algorithms. Such a need has led to this book, 3D Game
Engine Architecture (3DGEA).

3DGED included a basic scene graph management system and rendering system,
called Wild Magic. The original code ran on Windows with OpenGL, but over the
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2 Chapter 1 Introduction

years it has been ported to run on PCs with Direct3D, on PCs with Linux, on Macin-
toshes with OS X, and on Unix workstations that have OpenGL support. The engine
has evolved to include many more features, namely, high-level rendering effects and
shaders. I have received innumerable emails asking how to use the engine, how to ex-
tend the engine, and how to write tools for the engine. Naturally, to understand the
answers to these questions you must understand how the engine is architected. This
book is about the Wild Magic architecture, a case study for understanding the issues
of constructing an engine that you would see in a commercial environment.

The issues are many, each relatively easy to understand in isolation from the
others. However, putting all the pieces together is a formidable task to get right. But
what does “right” mean? An engine is a large library and is subject to the software
engineering principles that govern how such a large package evolves. Certainly you
(or your customers) will want to customize the engine to support new features.
But unfortunately, simplicity of maintenance does not come trivially. The various
abstract subsystems of the library must be architected so that they integrate easily
among themselves, and, as many customers of middleware have found out, they
must integrate easily with packages provided by others. Talk to any game company
that has had to combine a graphics engine, a physics engine, a networking engine,
and an AI engine together into a single game—you will hear the war stories about
the difficulties of making that happen. The promise of this book is not that you will
architect a system that will just simply plug into everyone else’s system, but rather that
you will learn how to minimize the pain of doing so. You need to ask a lot of questions
about your architecture and many times decide on various trade-offs. Sometimes you
will make a decision and go with it, only to find out later that you have to redesign
and rebuild. This is a natural part of the process for any large library construction,
but your goal is to anticipate where the problems will occur and design to facilitate
solving those problems without having to rewrite from scratch.

The next three sections present a couple of complete applications that compile
and run. The idea is to show you what systems come into play to get a working ap-
plication. The last section is a discussion of encapsulation of abstract systems whose
implementations depend on the platform (operating system, windowing system, ren-
derer creation, and use). More complicated applications show that you also need to
identify systems that allow you to factor code for reusability. Although some games
are written as throwaway code, from a company’s perspective it is better to write li-
braries that can be reused in other similar games. The last section also provides brief
descriptions of the remaining chapters in the book.

1.1 Drawing a Triangle

In this section I discuss the graphics equivalent of the “Hello, world” introductory
programming assignment—drawing a single triangle on the screen. The triangle ver-
tices are assigned colors, and the graphics system will interpolate these to create colors
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for pixels that are inside the triangle. When certain keys are pressed, you can rotate
the triangle about a center point and translate the center point itself. Something as
simple as drawing a triangle requires a large amount of code. The sample application
runs on a PC with Microsoft Windows, but please be aware that the quantity of code
is not a consequence of this particular platform. Similar applications may be written
for other platforms and will be as large as the current example. The source code can
be found on the CD-ROM, in the file

MagicSoftware/WildMagic3/BookFigures/DrawTriangle/DrawTriangle.cpp

I will explain it a piece at a time.
Four header files are included:

#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <cmath>

The first accesses the Win32 API for windowed applications. The second exposes
the OpenGL API, and the third exposes various utility functions that were built for
OpenGL. The fourth is used to access sine and cosine functions for constructing
rotation matrices for the triangle.

The window in which you render must be created. The width and height of the
window are specified by the first two variables in this block:

static int gs_iWidth = 640;
static int gs_iHeight = 480;
static HDC gs_hWindowDC = (HDC)0;

The last variable is a device context that is associated with the window. I have made
it global so that it may be accessed by the triangle drawing routine. It is initialized to
the null handle, but the main program will set it to the correct device context.

For perspective projection, you need to specify a view frustum. The left, right,
bottom, top, near, and far values are

static double gs_fLFrustum = -0.5500;
static double gs_fRFrustum = +0.5500;
static double gs_fBFrustum = -0.4125;
static double gs_fTFrustum = +0.4125;
static double gs_fNFrustum = +1.0;
static double gs_fFFrustum = +100.0;

You also need to specify a viewport (a rectangular portion of the screen) in which
the drawing will occur. In this application, the viewport is the entire screen:
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static int gs_iXPort = 0;
static int gs_iYPort = 0;
static int gs_iWPort = gs_iWidth;
static int gs_iHPort = gs_iHeight;

The first two values are the location of the upper-right corner of the viewport. The
last two values are the dimensions of the viewport.

The camera must be positioned somewhere in the world, and it must be assigned
a set of coordinate axes:

static double gs_adEye[3] = { 0.0, 0.0, 4.0 };
static double gs_adDir[3] = { 0.0, 0.0, -1.0 };
static double gs_adUp[3] = { 0.0, 1.0, 0.0 };
static double gs_adRight[3] = { 1.0, 0.0, 0.0 };

The camera location, sometimes called the eye point of the observer, is specified in
the first array in world coordinates. The second array is a unit-length vector that is the
direction of view. The third array is a unit-length vector that indicates which direction
is up to the observer. The fourth array is a unit-length vector that is the cross product
of the direction vector and the up vector.

The triangle vertices and associated colors are

static float gs_afVertex0[3] = { 1.0f, 0.0f, 0.0f };
static float gs_afVertex1[3] = { -1.0f, 1.0f, 0.0f };
static float gs_afVertex2[3] = { -1.0f, -1.0f, 0.0f };
static float gs_afColor0[3] = { 1.0f, 0.0f, 0.0f }; // red
static float gs_afColor1[3] = { 0.0f, 1.0f, 0.0f }; // green
static float gs_afColor2[3] = { 0.0f, 0.0f, 1.0f }; // blue

Notice that the vertices have been chosen in the plane z = 0 and that the observer is
looking at this plane from 4 units away. The triangle should be visible initially.

I will allow the triangle to be rotated about a center point (0, 0, 0). The center
point may be translated, but the rotation is always about the center point no matter
where it is located. Rather than modifying the vertex locations and risking a gradual
introduction of numerical round-off errors, I instead maintain a rotation matrix
and translation vector that are used to construct a transformation that maps the
initial vertex (model data) to their actual locations (world data). The translation and
rotation are stored as

// translation vector for triangle
static float gs_afTranslate[3] =
{

0.0f, 0.0f, 0.0f
};



1.1 Drawing a Triangle 5

// rotation matrix for triangle
static float gs_aafRotate[3][3] =
{

{1.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 1.0f}

};

The rotation matrix is initially the identity matrix. I prefer to tell OpenGL all at
once what the model-to-world transformation is. The way to do this is through a
4 × 4 homogeneous matrix:

// transformation matrix for triangle (in OpenGL format)
static float gs_afMatrix[16] =
{

1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f

};

The layout of the matrix may be inferred from the assignments in the WinProc
function. The translation is updated by incremental changes in the world coordinate
axis directions, and the rotation is updated by incremental rotations about the world
coordinate axis directions. The minimal information to allow the increments is

// for incremental translations
static float gs_fDPosition = 0.1f;

// for incremental rotations
static float gs_afAngle = 0.1f;
static float gs_fCos = cosf(gs_afAngle);
static float gs_fSin = sinf(gs_afAngle);

The camera is also allowed to move based on keystrokes. You may translate the
camera in the direction of view or rotate it about its own coordinate axes.

The entry point into a Microsoft Windows Win32 application is the function
WinMain. The first block of code in that function is

// register the window class
static char s_acWindowClass[] = "Wild Magic Application";
WNDCLASS wc;
wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;
wc.lpfnWndProc = WinProc;
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wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL,IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszClassName = s_acWindowClass;
wc.lpszMenuName = NULL;
RegisterClass(&wc);

This block of code defines a class of windows that the application can create. I only
create one window here, but more sophisticated applications may create many win-
dows (and might have more than one class of windows). Standard objects are associ-
ated with the window (icon, cursor, brush), but no menus. The first two parameters
of the style field specify that the window is to be redrawn if a move or size operation
changes the width or height. The last parameter guarantees that each window in the
class gets its own device context, which is important for windows in which OpenGL is
used for rendering. The wc.lpfnWndProc assignment tells the window class to use the
function WinProc as the event handler for the window. Messages such as keystrokes
and mouse clicks are dispatched to that function for processing (if necessary).

The client area of window dimensions is set by

// require the window to have the specified client area
RECT kRect = { 0, 0, gs_iWidth-1, gs_iHeight-1 };
AdjustWindowRect(&kRect,WS_OVERLAPPEDWINDOW,false);

The vertices of the rectangle correspond to those of the client area. However, the
window will have various “decorations” such as a title bar and borders that are a few
pixels thick, so the actual window must be larger than the client area. The function
AdjustWindowRect computes how large it must be.

The last step in the window setup is window creation:

// create the application window
static char s_acWindowTitle[] = "Draw Triangle";
int iXPos = 0, iYPos = 0;
int iWidth = kRect.right - kRect.left + 1;
int iHeight = kRect.bottom - kRect.top + 1;
HWND hWnd = CreateWindow(s_acWindowClass,s_acWindowTitle,

WS_OVERLAPPEDWINDOW,iXPos,iYPos,iWidth,iHeight,(HWND)0,
(HMENU)0,hInstance,NULL);

// create a window for rendering
gs_hWindowDC = GetDC(hWnd);



1.1 Drawing a Triangle 7

The window title is displayed in the title bar. I have requested that the upper-left
corner of the window be (0, 0) on the desktop. The width and height are for the
window plus its decorations. The call to GetDC obtains a device context associated
with the window handle.

The next few blocks of code will allocate the hardware resources needed to sup-
port drawing to the window. These are all specific to Microsoft Windows, but other
platforms have similar setups. First, you need to choose a format for the buffers to be
allocated:

// select format for drawing surface
PIXELFORMATDESCRIPTOR kPFD;
memset(&kPFD,0,sizeof(PIXELFORMATDESCRIPTOR));
kPFD.nSize = sizeof(PIXELFORMATDESCRIPTOR);
kPFD.nVersion = 1;
kPFD.dwFlags =

PFD_DRAW_TO_WINDOW |
PFD_SUPPORT_OPENGL |
PFD_GENERIC_ACCELERATED |
PFD_DOUBLEBUFFER;

kPFD.iPixelType = PFD_TYPE_RGBA;
kPFD.cColorBits = 24; // 24-bit colors for front/back buffers
kPFD.cDepthBits = 16; // 16-bit depth buffer
kPFD.cStencilBits = 8; // 8-bit stencil buffer

The request is for hardware-accelerated, double-buffered drawing using OpenGL.
The drawing was the back buffer. Once done, you have to call a function to have the
back buffer copied (or swapped) into the front buffer. The front and back buffers are
24 bits each, and the depth buffer is 16 bits. Consumer graphics cards have enough
memory so that you should be able to use 24 or 32 bits for the depth. The stencil
buffer only has 8 bits, so if you have fancy features that require more bits for the
stencil buffer, you will need to change the number (assuming the graphics drivers
you have support a greater number of bits).

The block of code

int iPixelFormat = ChoosePixelFormat(gs_hWindowDC,&kPFD);
if ( iPixelFormat == 0 )
{

ReleaseDC(hWnd,gs_hWindowDC);
return -1;

}

is a request to see if the graphics system can support the pixel format you requested.
If it cannot, the return value of ChoosePixelFormat is zero, in which case you have no
choice but to terminate the application. A commercial application would attempt less
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aggressive formats instead of aborting. Assuming the format is acceptable, the block
of code

BOOL bSuccess = SetPixelFormat(gs_hWindowDC,iPixelFormat,&kPFD);
if ( !bSuccess )
{

ReleaseDC(hWnd,gs_hWindowDC);
return -2;

}

will configure the device context as needed.
A resource context corresponding to the device context is created through

// create an OpenGL context
HGLRC hWindowRC = wglCreateContext(gs_hWindowDC);
if ( !hWindowRC )
{

ReleaseDC(hWnd,gs_hWindowDC);
return -3;

}

bSuccess = wglMakeCurrent(gs_hWindowDC,hWindowRC);
if ( !bSuccess )
{

wglDeleteContext(hWindowRC);
ReleaseDC(hWnd,gs_hWindowDC);
return -4;

}

The second block of code takes the resource context and makes it the active one for
the application. Assuming all these steps have been successful, we are finally ready to
make calls to the OpenGL graphics system.

The first OpenGL call sets the color that is used to clear the back buffer. The
default value is black, but I prefer something less bold:

// background color is gray
glClearColor(0.75f,0.75f,0.75f,1.0f);

The view frustum for the perspective projection is enabled with

// set up for perspective projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(gs_fLFrustum,gs_fRFrustum,gs_fBFrustum,gs_fTFrustum,

gs_fNFrustum,gs_fFFrustum);
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The frustum settings affect how a model is transformed to screen space. That is why
glMatrixMode and glLoadIdentity show up in the code. The glFrustum call creates that
portion of the transformation that is controlled by the perspective projection. The
viewport is the entire screen:

// set the viewport so that the entire screen is drawn to
glViewport(gs_iXPort,gs_iYPort,gs_iWPort,gs_iHPort);

We have to tell OpenGL about the camera eye point and coordinate axis direc-
tions. This happens via

double adLookAt[3] =
{

gs_adEye[0]+gs_adDir[0],
gs_adEye[1]+gs_adDir[1],
gs_adEye[2]+gs_adDir[2]

};
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(gs_adEye[0],gs_adEye[1],gs_adEye[2],adLookAt[0],adLookAt[1],

adLookAt[2],gs_adUp[0],gs_adUp[1],gs_adUp[2]);

Just as setting the frustum involved matrix manipulation, so does setting the camera
coordinate system. The gluLookAt call creates that portion of the transformation that
maps world coordinates into the coordinate system of the camera. Internally, the
gluLookAt function re-creates the view direction vector from the eye point and the
look-at point; then the view direction and up vector are used to generate the right
vector in the camera coordinate system.

At this point in the WinMain execution, we are ready to draw the triangle. Some
more Windows infrastructure code is necessary. Up till now, the window exists, but
has not been displayed on the screen. To do this, use

// display the window
ShowWindow(hWnd,SW_SHOW);
UpdateWindow(hWnd);

A Microsoft Windows program is event driven. A loop is started, called the mes-
sage pump:

// start the message pump
MSG kMsg;
while ( TRUE )
{

if ( PeekMessage(&kMsg,(HWND)0,0,0,PM_REMOVE) )
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{
if ( kMsg.message == WM_QUIT )

break;

HACCEL hAccel = (HACCEL)0;
if ( !TranslateAccelerator(hWnd,hAccel,&kMsg) )
{

TranslateMessage(&kMsg);
DispatchMessage(&kMsg);

}
}
else
{

// idle loop
DrawIt();

}
}

The function PeekMessage looks for a message generated by some event. If there is one,
a check is made to see if the application has requested termination, for example, if the
combined keystrokes ALT and F4 are pressed. The loop is exited if the message is to
quit. Otherwise, the message is dispatched so that windows created by the application
may receive the events. In the current example, the message is received by an internal
call to the WinProc function. In the event that PeekMessage determines that no message
is pending, the else clause is executed. This is what I call the idle loop; that is, any
code in this clause is executed when the application has idle time because it is not
processing messages. The idle loop is where you need to place your rendering code in
order to obtain real-time frame rates. Trying to render at a fixed rate through a system
timer is typically not sufficient because the timers tend to be of limited resolution. For
example, the WM_TIMER message is generated about 18 times per second, so you cannot
use this message to drive your application at 30 frames or 60 frames per second.

Once the message pump terminates, you should clean up by freeing resources and
deallocating memory. In the current example,

// clean up
wglDeleteContext(hWindowRC);
ReleaseDC(hWnd,gs_hWindowDC);

I did not explicitly allocate memory from the heap, so there is nothing to deallocate.
However, resources on the graphics card were committed to the application when a
resource context was created. These need to be released, which is what the wglDelete-
Context call does. The final call releases the window device context associated with the
window handle.
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Now onto what the application does during idle time and what events it chooses
to handle. The application function DrawIt uses OpenGL to draw the triangle:

static void DrawIt ()
{

// set the entire window to the background color
glClear(GL_COLOR_BUFFER_BIT);

// double-sided triangles
glDisable(GL_CULL_FACE);

// set the model-to-world transformation
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glMultMatrixf(gs_afMatrix);

// draw the triangle
glBegin(GL_POLYGON);
glColor3f(gs_afColor0[0],gs_afColor0[1],gs_afColor0[2]);
glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glColor3f(gs_afColor1[0],gs_afColor1[1],gs_afColor1[2]);
glVertex3f(gs_afVertex1[0],gs_afVertex1[1],gs_afVertex1[2]);
glColor3f(gs_afColor2[0],gs_afColor2[1],gs_afColor2[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs_afVertex2[2]);
glEnd();

// restore the previous transformation
glMatrixMode(GL_MODELVIEW);
glPopMatrix();

// copy the back buffer into the front buffer
SwapBuffers(gs_hWindowDC);

}

The call glClear takes a parameter that specifies which buffer to clear. In this case,
I have asked that the pixels in the back buffer be set to the clear color, something we
set to gray at program initialization with a call to glClearColor. The call glDisable
is made with a parameter that tells OpenGL not to cull back-facing triangles; that is,
the triangles are considered to be double sided. I wanted this behavior so that when
you rotate the triangle, it will not disappear once you have rotated it more than 90
degrees about any of the rotation axes.

The triangle vertices, which were specified in model space, need to be trans-
formed into world coordinates. The block of code that does this is
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// set the model-to-world transformation
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glMultMatrixf(gs_afMatrix);

Recall that when the camera coordinate system was specified, the matrix mode
was also GL_MODELVIEW. At that time we set the first matrix to be the identity matrix by
calling glLoadIdentity. The function glLookAt multiplies the identity by the matrix
that transforms world coordinates to camera coordinates. The product is considered
to be the top matrix on a stack of matrices. The glPushMatrix call makes a copy
of the top matrix and makes it the new top matrix. The glMultMatrixf call then
multiplies the top matrix by its argument and stores it in place. In this case the
argument is the model-to-world transformation. The resulting top matrix on the
stack represents a transformation that maps vertices in model coordinates to vertices
in camera coordinates.

The next block of code tells OpenGL about the vertex colors and locations:

// draw the triangle
glBegin(GL_POLYGON);
glColor3f(gs_afColor0[0],gs_afColor0[1],gs_afColor0[2]);
glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glColor3f(gs_afColor1[0],gs_afColor1[1],gs_afColor1[2]);
glVertex3f(gs_afVertex1[0],gs_afVertex1[1],gs_afVertex1[2]);
glColor3f(gs_afColor2[0],gs_afColor2[1],gs_afColor2[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs_afVertex2[2]);
glEnd();

The call glBegin has an input parameter that tells OpenGL we will be giving it an
ordered list of vertices and attributes, one group at a time. The vertices are assumed
to be those of a convex polygon. In the example, only vertex colors are used. Each
group consists of a color specification, via glColor3f, and a location specification, via
glVertex3f. In OpenGL, when you call glVertex3f, the vertex attributes currently set
are bound to that vertex. For example, if all the vertices are to be the color red, you
could use

glColor3f(1.0f,0.0f,0.0f);
glVertex3f(gs_afVertex0[0],gs_afVertex0[1],gs_afVertex0[2]);
glVertex3f(gs_afVertex1[0],gs_afVertex1[1],gs_afVertex1[2]);
glVertex3f(gs_afVertex2[0],gs_afVertex2[1],gs_afVertex2[2]);

The call glEnd tells OpenGL that you are done specifying the vertices. At this time
the object is drawn into the back buffer. The call to SwapBuffers causes the back buffer
to be copied into the frame buffer (or swapped in the sense that internally a pointer is
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modified to point from one buffer to the other buffer, with the current buffer pointed
to becoming the front buffer).

Because I tend to call SwapBuffers at the end of the pipeline, before doing so I
restore the state of the transformation system by

// restore the previous transformation
glMatrixMode(GL_MODELVIEW);
glPopMatrix();

Before these calls, the top of the model-view matrix stack contains the concatena-
tion of the model-to-world transformation (which we set in the DrawIt function) and
the world-to-camera transformation (which we set by the gluLookAt function). The
matrix immediately below the top matrix was the world-to-camera transformation.
The function glPopMatrix pops the top matrix off the stack, making the one below it
the new top. Thus, we have restored the world-to-camera transformation to the top
of the stack, allowing us to draw other objects by pushing and popping their model-
to-world transformations. Why go to this effort? If you were to maintain a single
matrix for the model-view system, the push operation amounts to directly modify-
ing the current matrix by multiplying by some transformation. The pop operation
must undo this by multiplying the current matrix by the inverse transformation, but a
general matrix inversion takes quite a few computational cycles. With an eye toward
real-time performance, the matrix stack is a space-time trade-off: We reduce compu-
tation time by increasing memory usage. Instead of inverting and multiplying with
a single-matrix storage, we copy and multiply (push) or copy (pop) using a stack of
matrices.

The event handler is the function WinProc, which is indirectly called through
the dispatch functions mentioned previously. A windowing system provides a large
number of messages. In the current example, the only messages that the event handler
processes are keystrokes that occur from pressing text keys (WM_CHAR); keystrokes that
occur from pressing some special keys including arrow keys, home/end keys, and page
up/page down keys (WM_KEYDOWN); and a message generated when a user closes the
window (WM_DESTROY). The WM_CHAR event handler responds to each of six pressed keys
and rotates the triangle accordingly. For example, if the r key is pressed, the triangle
is rotated about the x-axis in the world space:

for (i = 0; i < 3; i++)
{

fTmp0 =
gs_fCos*gs_aafRotate[1][i] +
gs_fSin*gs_aafRotate[2][i];

fTmp1 =
gs_fCos*gs_aafRotate[2][i] -
gs_fSin*gs_aafRotate[1][i];
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gs_aafRotate[1][i] = fTmp0;
gs_aafRotate[2][i] = fTmp1;

}

The implied update of the rotation matrix is

R′ =
⎡
⎢⎣

r ′
00 r ′

01 r ′
02

r ′
10 r ′

11 r ′
12

r ′
20 r ′

21 r ′
22

⎤
⎥⎦

=
⎡
⎣ r00 r01 r02

r10 cos θ + r20 sin θ r11 cos θ + r21 sin θ r12 cos θ + r22 sin θ

−r10 sin θ + r20 cos θ −r11 sin θ + r21 cos θ −r12 sin θ + r22 cos θ

⎤
⎦

=
⎡
⎣ 1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

⎤
⎦
⎡
⎣ r00 r01 r02

r10 r11 r12
r20 r21 r22

⎤
⎦

= QR ,

where R is the old rotation matrix, Q is the incremental rotation about the x-axis by
θ radians, and R′ is the new rotation matrix. My convention for matrices is that they
multiply vectors on the right. If V is a 3 × 1 vector, then the result of rotating it by
a matrix R is RV. It is important to understand this convention, and others, when
dealing with a graphics API. OpenGL, for example, uses the opposite convention: V
would be considered to be 1 × 3 and would be multiplied on the right by a matrix,
VM . After the new rotation matrix is computed, the 4 × 4 matrix (stored as a linear
array of 16 numbers) must be reassigned in order for the DrawIt function to correctly
set the transformation. The OpenGL convention already exposes itself here. Usually
an n × m array is stored in linear memory using row-major order—the first row of
the matrix occurs in the first n slots of memory, the second row following it, and so
on. In the source code you will notice that the first column of the new rotation R′ is
stored in the first slots in memory.

The translation updates are simple enough. For example, if the x key is pressed,
the x-component of the translation is decremented by a small amount. The trans-
formation to be fed to OpenGL is updated, and the next call to DrawIt will use that
transformation before drawing the triangle.

The WM_KEYDOWN event handler is designed to move the camera. Let the eye point be
E, the view direction be D, the up vector be U, and the right vector be R = D × U. If
the key pressed is the up arrow (code VK_UP), the camera is translated a small amount
in its direction of view. The update is

E ← E + �D.
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where � > 0 is a small scalar. The down arrow (code VK_DOWN) causes the camera to
be translated a small amount in the opposite direction of view. The update is

E ← E − �D.

The observer may look to the left by turning his head to the left. The camera must
be rotated about its own up axis by a small angle θ . The direction and right vectors
must rotate, but the up axis remains the same. The update is

D′ ← cos θR + sin θD

R′ ← − sin θR + cos θD

D ← D′

R ← R′.

The temporary vectors D′ and R′ are necessary. If you were to assign the right-
hand side of the first statement directly to D, the next statement would use the
updated D rather than the original one. The code for implementing this is

for (i = 0; i < 3; i++)
{

adTmp0[i] = gs_fCos*gs_adRight[i] + gs_fSin*gs_adDir[i];
adTmp1[i] = gs_fCos*gs_adDir[i] - gs_fSin*gs_adRight[i];

}
for (i = 0; i < 3; i++)
{

gs_adRight[i] = adTmp0[i];
gs_adDir[i] = adTmp1[i];

}

Rotation to the right about the up axis is

D′ ← cos θR − sin θD

R′ ← sin θR + cos θD

D ← D′

R ← R′.

The only difference is a change of two signs, thought of as replacing θ by −θ in the
assignment statements. Rotations about the right axis are
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D′ ← cos θD ± sin θU

U′ ← ∓ sin θD + cos θU

D ← D′

U ← U′.

Rotations about the view direction are

R′ ← cos θR ± sin θU

U′ ← ∓ sin θR + cos θU

R ← R′

U ← U′.

Each of the previously mentioned rotations is performed by pressing the correct
key. Once the camera axis directions are updated, OpenGL must be told that the
camera coordinate system has changed. This is accomplished using the same function
described previously, gluLookAt.

Let me remind you why I went to great pains to construct, and describe, an
application that (1) draws a single triangle using vertex colors, (2) allows the triangle
to move, and (3) allows the camera to move. Your first thought might have been “This
should be a straightforward application to write.” As you likely have observed, the
application is quite complicated and long. This example should already convince you
of the necessity to think of a graphics application as a collection of systems that should
not be hard-coded into a single application source file. We created a window, created
a graphics context to associate resources with the window, initialized the graphics
system for drawing, started a loop to receive and dispatch events, implemented a
drawing function that uses the current state of the graphics system, and wrote an
event handler so that we could update the state of the graphics system for triangle
motion and for camera motion.

If you have in mind creating similar applications for other platforms such as the
Macintosh or a PC running Linux, you will have to understand how the application
coding is done on those platforms. You also have to know how to create the graph-
ics context and deal with events. Moreover, if you want Direct3D instead of OpenGL
for the Microsoft Windows application, you have to replace all the OpenGL calls by
(hopefully) equivalent Direct3D calls. To support all of this in a game/graphics engine
is a monumental effort! The only way you can accomplish this is to apply the princi-
ples of software engineering and factor your engine into (1) systems that encapsulate
the platform dependencies and (2) systems that are platform independent.

Figure 1.1 shows a pair of screen shots from the sample application.
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(a) (b)

Figure 1.1 Two screen shots from the sample application for drawing a vertex-colored triangle.
(a) The triangle in its initial configuration. (b) The triangle after some rotations
about its center. (See also Color Plate 1.1.)

1.2 Drawing a Triangle Mesh

The example from the previous section on drawing a triangle can be modified to
handle a mesh of triangles. In this section I discuss the application that does this. The
mesh consists of a rectangular grid of vertices with a regular triangulation applied to
it. You may think of the resulting mesh as a height field. Rather than using vertex
colors, I apply one or two textures to the mesh. The first texture image gives the
mesh the appearance of a mountainous terrain, and the second texture image gives
the illusion that the mountain is covered with patches of fog. Figure 1.2 shows a pair
of screen shots from the sample application.

The source code is found on the CD-ROM, in the file

MagicSoftware/WildMagic3/BookFigures/DrawMesh/DrawMesh.cpp

Much of the code is duplicated from the previous example of drawing a single trian-
gle. I will explain only the differences here.

The OpenGL API that ships with Microsoft Windows is only version 1.1, but
later versions are available. In order to access features from later versions, you have
to use the OpenGL extension mechanism. A lot of open source packages exist that
handle these details for you. Wild Magic version 3 uses one called GLEW, the OpenGL
Extension Wrangler Libary [IM04]. In the sample application, I have included only
the necessary code to access what is needed to support the multitexture operations in
the application:
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(a) (b)

Figure 1.2 Two screen shots from the sample application for drawing a multitextured triangle
mesh. The mesh has been rotated the same amount in the two images. (a) The
mesh with only the mountain texture (the primary texture). (b) The mesh with the
mountain texture as the primary texture and with the fog texture as the secondary
texture. (See also Color Plate 1.2.)

// support for multitexturing
#define GL_TEXTURE0_ARB 0x84C0
#define GL_TEXTURE1_ARB 0x84C1
#define GL_COMBINE 0x8570
#define GL_COMBINE_RGB 0x8571
#define GL_COMBINE_ALPHA 0x8572
#define GL_RGB_SCALE 0x8573
#define GL_INTERPOLATE 0x8575
#define GL_CONSTANT 0x8576
#define GL_PRIMARY_COLOR 0x8577
#define GL_PREVIOUS 0x8578
#define GL_SOURCE0_RGB 0x8580
#define GL_SOURCE1_RGB 0x8581
#define GL_SOURCE2_RGB 0x8582
#define GL_SOURCE0_ALPHA 0x8588
#define GL_SOURCE1_ALPHA 0x8589
#define GL_SOURCE2_ALPHA 0x858A
#define GL_OPERAND0_RGB 0x8590
#define GL_OPERAND1_RGB 0x8591
#define GL_OPERAND2_RGB 0x8592
#define GL_OPERAND0_ALPHA 0x8598
#define GL_OPERAND1_ALPHA 0x8599
#define GL_OPERAND2_ALPHA 0x859A
typedef void (__stdcall *PFNGLCLIENTACTIVETEXTUREARBPROC)(GLenum);
PFNGLCLIENTACTIVETEXTUREARBPROC glClientActiveTextureARB = NULL;
typedef void (__stdcall *PFNGLACTIVETEXTUREARBPROC)(GLenum);
PFNGLACTIVETEXTUREARBPROC glActiveTextureARB = NULL;



1.2 Drawing a Triangle Mesh 19

The two functions I need access to are glClientActiveTextureARB and glAc-
tiveTextureARB. The types of these are specific to the operating system platform.
GLEW hides these details for you so that you have a portable mechanism for access-
ing the function pointers. In the body of WinMain, you will see

glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC)
wglGetProcAddress("glClientActiveTextureARB");

assert( glClientActiveTextureARB );

glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC)
wglGetProcAddress("glActiveTextureARB");

assert( glActiveTextureARB );

This code calls a Windows-specific function, wglGetProcAddress, to load the function
pointers from the graphics driver.

The triangle vertex positions and colors are replaced by the following:

// number of vertices and vertex array
static int gs_iVQuantity = 0;
static float* gs_afVertex = NULL;

// shared texture coordinates
static float* gs_afUV = NULL;

// primary image (RGB), width and height
static int gs_iImageW0 = 0;
static int gs_iImageH0 = 0;
static unsigned char* gs_aucImage0 = NULL;

// binding id for graphics card
static unsigned int gs_uiID0 = 0;

// secondary image (RGB), width and height
static int gs_iImageW1 = 0;
static int gs_iImageH1 = 0;
static unsigned char* gs_aucImage1 = NULL;

// binding id for graphics card
static unsigned int gs_uiID1 = 0;

// number of indices and index array (triple of int)
static int gs_iIQuantity = 0;
static int* gs_aiIndex = NULL;

// toggle secondary texture
static bool gs_bUseSecondaryTexture = false;
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The comments are self-explanatory for most of the data. The binding identifiers
are used to get a handle on texture images that are uploaded to the graphics card.
The images are transferred to the video memory on the first drawing pass, and on
subsequent drawing passes, the images are accessed directly from video memory.
The last data value in the list is a Boolean variable that lets you toggle the secondary
texture. If set to true, the primary and secondary textures are appropriately combined
onto the mesh. If set to false, only the primary texture is drawn. You may toggle this
value with the s or S keys; see the modified WinProc for the simple details.

The texture images are stored as 24-bit Windows BMP files. The loader for
these is

static bool LoadBmp24 (const char* acFilename, int& riWidth,
int& riHeight, unsigned char*& raucData)

{
HBITMAP hImage = (HBITMAP) LoadImage(NULL,acFilename,

IMAGE_BITMAP,0,0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
if ( !hImage )

return false;

DIBSECTION dibSection;
GetObject(hImage,sizeof(DIBSECTION),&dibSection);

riWidth = dibSection.dsBm.bmWidth;
riHeight = dibSection.dsBm.bmHeight;
int iQuantity =

dibSection.dsBm.bmWidth*dibSection.dsBm.bmHeight;
if ( dibSection.dsBm.bmBitsPixel != 24 )

return false;

// Windows BMP stores BGR, need to invert to RGB.
unsigned char* aucSrc =

(unsigned char*) dibSection.dsBm.bmBits;
raucData = new unsigned char[3*iQuantity];
for (int i = 0, i0 = 0, i1 = 1, i2 = 2; i < iQuantity; i++)
{

raucData[i0] = aucSrc[i2];
raucData[i1] = aucSrc[i1];
raucData[i2] = aucSrc[i0];
i0 += 3;
i1 += 3;
i2 += 3;

}
return true;

}
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The images are loaded into arrays of unsigned characters. The order of the color
channels for Windows is the reverse of what OpenGL prefers, so the loader reorders
the data.

The triangle mesh is created by the function

static void CreateModel ()
{

// generate vertices and texture coordinates
int iDim = 32;
gs_iVQuantity = iDim*iDim;
gs_afVertex = new float[3*gs_iVQuantity];
gs_afUV = new float[2*gs_iVQuantity];
float* pfVertex = gs_afVertex;
float* pfUV = gs_afUV;
for (int iY = 0, i = 0; iY < iDim; iY++)
{

float fY = iY/(float)(iDim-1);
for (int iX = 0; iX < iDim; iX++)
{

float fX = iX/(float)(iDim-1);

*pfVertex++ = 2.0f*fX-1.0f;
*pfVertex++ = 2.0f*fY-1.0f;
*pfVertex++ = 0.1f*rand()/(float)(RAND_MAX);
*pfUV++ = fX;
*pfUV++ = fY;

}
}

// generate connectivity
gs_iIQuantity = 6*(iDim-1)*(iDim-1);
gs_aiIndex = new int[gs_iIQuantity];
for (int i1 = 0, i = 0; i1 < iDim - 1; i1++)
{

for (int i0 = 0; i0 < iDim - 1; i0++)
{

int iV0 = i0 + iDim * i1;
int iV1 = iV0 + 1;
int iV2 = iV1 + iDim;
int iV3 = iV0 + iDim;
gs_aiIndex[i++] = iV0;
gs_aiIndex[i++] = iV1;
gs_aiIndex[i++] = iV2;
gs_aiIndex[i++] = iV0;
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gs_aiIndex[i++] = iV2;
gs_aiIndex[i++] = iV3;

}
}

// primary texture image
bool bLoaded = LoadBmp24("mountain.bmp",gs_iImageW0,

gs_iImageH0,gs_aucImage0);
assert( bLoaded );

// secondary texture image
bLoaded = LoadBmp24("fog.bmp",gs_iImageW1,gs_iImageH1,

gs_aucImage1);
assert( bLoaded );

}

The mesh is a 32 × 32 array of vertices uniformly spaced in the xy-plane in
the square [−1, 1]2. The z-values (the heights) are randomly generated. The texture
coordinates are uniformly spaced in the square [0, 1]. The primary and secondary
images share the same array of texture coordinates, although in general you may
specify different arrays for the different images. The triangles are formed two at a
time by connecting four vertices:

〈(x , y), (x + 1, y), (x + 1, y + 1)〉, 〈(x , y), (x + 1, y + 1), (x , y + 1)〉
The two texture images are loaded during model creation. The creation function is
called in WinMain.

The model data must be deallocated before the program terminates. The function
for destroying the mesh is

static void DestroyModel ()
{

delete[] gs_afVertex;
delete[] gs_afUV;
delete[] gs_aucImage0;
delete[] gs_aucImage1;
delete[] gs_aiIndex;

}

All the arrays allocated in CreateModel are deallocated. This function is called in
WinMain after the message pump is exited and just before the final return statement
that terminates the program.

The drawing function is still named DrawIt, but it is much more complex than the
one used for drawing a single triangle. Because the mesh is not a convex object, it is
possible that some portions of it occlude other portions depending on the orientation
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of the mesh relative to the observer. In order to guarantee correct, sorted drawing, a
depth buffer is used:

// enable depth buffer reads and writes
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_TRUE);

// set the background color, set depth buffer to infinity
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// double-sided triangles
glDisable(GL_CULL_FACE);

In addition to clearing the back buffer using the background color, we also need to
initialize the depth buffer. The glClear call handles both. Back-face culling is disabled
since the mesh does not form a closed object.

The drawing uses vertex arrays rather than the mechanism used in the single
triangle drawing that sets the attributes for a vertex at a time. The array manipulation
should lead to much better performance on current graphics hardware. The vertex
locations are set via

// enable vertex arrays
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_FLOAT,0,gs_afVertex);

The function glVertexPointer tells OpenGL that the array consists of triples (first
parameter 3) of 32-bit floating-point numbers (second parameter GL_FLOAT) that are
packed together (third parameter 0). The disabling occurs after the drawing via

// disable vertex arrays
glDisableClientState(GL_VERTEX_ARRAY);

The matrix handling is the same as in the single triangle drawing. However, vertex
arrays require you to specifically tell OpenGL to draw the mesh. The glBegin/glEnd
mechanism automatically calls the drawing routine. The function for drawing is

// draw the mesh
glDrawElements(GL_TRIANGLES,gs_iIQuantity,GL_UNSIGNED_INT,

gs_aiIndex);

The first parameter indicates that a triangle mesh is to be drawn. If the number
of triangles is T , the number of indices is 3T , the number stored by the second
parameter, gs_iIQuantity. The third parameter tells OpenGL to treat the indices
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as 4-byte unsigned integers, and the fourth parameter is the array of indices. My
index array contains signed integers, but the graphics drivers are limited in how
many triangles may be drawn at one time. The mismatch of types is not a problem.
(OpenGL does not support a third parameter that is a signed integer type.)

The most complicated part of DrawIt is the enabling of texture units. Texture unit
0 is assigned to the primary texture and is enabled by

// enable texture unit 0
glClientActiveTextureARB(GL_TEXTURE0_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2,GL_FLOAT,0,gs_afUV);
glActiveTextureARB(GL_TEXTURE0_ARB);
glEnable(GL_TEXTURE_2D);
if ( gs_uiID0 != 0 )
{

glBindTexture(GL_TEXTURE_2D,gs_uiID0);
}
else
{

glGenTextures(1,&gs_uiID0);
glBindTexture(GL_TEXTURE_2D,gs_uiID0);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB8,gs_iImageW0,gs_iImageH0,

0,GL_RGB,GL_UNSIGNED_BYTE,gs_aucImage0);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
}
glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

The first five lines activate the texture unit, pass the array of texture coordinates
to the graphics driver, and enable texturing. On the first drawing pass, the value of
gs_uiID0 is zero. That gets you into the else clause. The first three lines in that clause
ask OpenGL to upload the texture image to the graphics card and return a positive
value in gs_uiID0 as a handle you can use for drawing on subsequent passes. On other
passes, notice that only glBindTexture is called. The graphics driver looks at the input
identifier and uses the data for that texture already loaded in video memory.

The last four lines in the else clause specify some information about the texture.
The first two glTexParameteri calls specify that the texture coordinates are wrapped
to always be in the interval [0, 1]. The third glTexParameteri call tells OpenGL to
use bilinear interpolation on the image to produce a smooth visual effect when the
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mesh is close to the eye point. The last call tells OpenGL to use nearest-neighbor
interpolation on the image when the mesh is far from the eye point.

The last call is to glTexEnvi. This function tells OpenGL to replace the pixel
colors by the texture image colors for those pixels covered by the transformed and
perspectively projected mesh. In the current example, this means that the background
colors are replaced by the texture image colors.

When the secondary texture is allowed, texture unit 1 is assigned to it. The en-
abling code is

// enable texture unit 1
glClientActiveTextureARB(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2,GL_FLOAT,0,gs_afUV);
glActiveTextureARB(GL_TEXTURE1_ARB);
glEnable(GL_TEXTURE_2D);
if ( gs_uiID1 != 0 )
{

glBindTexture(GL_TEXTURE_2D,gs_uiID1);
}
else
{

glGenTextures(1,&gs_uiID1);
glBindTexture(GL_TEXTURE_2D,gs_uiID1);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB8,gs_iImageW1,gs_iImageH1,

0,GL_RGB,GL_UNSIGNED_BYTE,gs_aucImage1);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
}
static float s_afWhite[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
glTexEnvfv(GL_TEXTURE_ENV,GL_TEXTURE_ENV_COLOR,s_afWhite);
glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB,GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_ALPHA,GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE0_RGB,GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE0_ALPHA,GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_RGB,GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_ALPHA,GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE1_RGB,GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE1_ALPHA,GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_RGB,GL_SRC_COLOR);
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glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_ALPHA,GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE2_RGB,GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE2_ALPHA,GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_RGB,GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_ALPHA,GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV,GL_RGB_SCALE,1);
glTexEnvi(GL_TEXTURE_ENV,GL_ALPHA_SCALE,1);

The first part of the code through the if-then-else statement is essentially the
same as for the primary texture. To somehow blend the secondary texture with the
primary one, we certainly do not want to use the replace mode GL_REPLACE as we did
in texture unit 0. The long list of parameters here tells OpenGL exactly how to do
the blending, using the GL_COMBINE mode. The explanation for this occurs later in the
book (see Section 3.4.4).

The disabling of texture units is

if ( gs_bUseSecondaryTexture )
{

// disable texture unit 1
glActiveTextureARB(GL_TEXTURE1_ARB);
glDisable(GL_TEXTURE_2D);
glClientActiveTextureARB(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);

}

// disable texture unit 0
glActiveTextureARB(GL_TEXTURE0_ARB);
glDisable(GL_TEXTURE_2D);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);

Not much work to do here.
One last item to take care of has to do with the binding that we did to upload the

texture images to the graphics card. You need to tell the graphics driver to free up the
video memory before the application terminates. This is done in WinMain by

if ( gs_uiID0 > 0 )
glDeleteTextures((GLsizei)1,(GLuint*)&gs_uiID0);

if ( gs_uiID1 > 0 )
glDeleteTextures((GLsizei)1,(GLuint*)&gs_uiID1);

As you can see, quite a bit of programming goes into displaying something as
simple as a single mesh with multiple textures.
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1.3 Drawing a Complicated Scene

The next example is the drawing of a complicated scene. The scene is an indoor
level with 100 rooms, each intricately designed and textured. The indoor level is
managed on a server machine. The scene has 1000 characters, each an animated
biped. Each character is controlled by a player who is running his application on
a client machine. The characters can shoot at each other and can destroy various
objects in the scene. The scene is large enough that the client machines do not have
the processing power to draw all of it, so only the visible portions of the scene should
be drawn. The sample uses full collision detection and a physics system to obtain
realistic behavior of the objects in the world. Quite a few sound emitters exist in the
scene and need to be rendered with 3D sound. Finally, the client software runs on
PCs, on Linux machines, and on Macintosh machines. The next couple of pages will
describe all the work necessary to produce such a sample.

Well, maybe not. The fact is, such a scene and sample application is what many
games are about. It takes much more than just a few pages to describe how to build an
application of this magnitude. In fact, it takes more than a few books to describe how
to do this. The graphics system itself must be quite large to handle this; so must be the
physics system. Networking, 3D sound, and cross-platform capabilities are yet a few
more systems you need, each requiring a superhuman effort to build them all, but
certainly within reach of a team of people per system. The rest of the book focuses on
the management of data in a scene and the underlying graphics and physics engines
that support it.

1.4 Abstraction of Systems

The previous three sections of this chapter should convince you of one thing: Writing
a monolithic program for a sophisticated graphics application is just not the way
to architect an application. We have seen a few systems in action in the illustrative
samples:

An application layer. This is dependent on the platform and operating system and
includes window creation, graphics system initialization, and event handling. In
commercial applications, you have to deal with graphical user interfaces and their
associated controls.

Use of a graphics API. In a sense, this is also dependent on platform. On the PC
platform, you have a choice of OpenGL or Direct3D. On Linux and Unix plat-
forms, most likely you will use OpenGL. Game consoles have their own special
needs.

Data management.
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The last item is the focus of this book. My engine, Wild Magic, is a large library
that is designed to provide platform-independent data management or scene graph
management . It is designed to be efficient in order to support real-time graphics. And
it is what I call graphics API agnostic. An abstract rendering interface is used by the
scene graph management system to communicate with the rendering system. The
renderer implementation is effectively irrelevant. It makes no difference if the imple-
mentation is based on OpenGL, Direct3D, or even a software renderer (although in
the latter case you do not get the real-time performance).

Chapter 2 discusses the core systems that are used by the engine. Section 2.1
describes a low-level system that includes basic data structures, encapsulates any plat-
form dependencies, handles byte order issues (endianness), handles files, and pro-
vides convenience functions for memory management. Section 2.2 describes another
core system, a mathematics library for supporting standard mathematical functions,
vector and matrix algebra, quaternions (for rotations), and basic geometric objects.
The most important core system is described in Section 2.3—the object system that
provides object-oriented services that are essential to large library design.

The heart of the book is scene graph management. The fundamental ideas and
architecture of Wild Magic are discussed in Chapter 3. Section 3.1 describes the four
important core classes in scene graph management: Spatial, Node, Geometry, and Ren-
derer. Geometric state management, including transformations and bounding vol-
umes, is the topic of Section 3.2. All important is the mechanism for updating the
scene graph whenever some of the geometric quantities in it have changed. Section
3.3 is a description of the standard geometric primitives you find in a graphics sys-
tem, including points, polylines, and triangle meshes. The section also introduces
particles, which can be thought of as points with size; the particles are represented as
small squares that always face the observer.

Section 3.4 is a lengthy discussion about render state, the quantities that are used
to display geometric objects. The four main classes of state are global state, lights,
textures, and effects. Global state is information that is effectively independent of
specific geometric data and includes information such as depth buffer parameters,
culling status, alpha blending parameters, and material properties. Light state has to
do with the lights in the scene and how they dynamically light the geometric objects.
To make the geometric objects have a realistic appearance, texturing is essential.
(Multitexturing is also discussed.) This section also covers yet another important
update mechanism—one that is necessary whenever render state is attached to, or
detached from, a scene.

The final section of the chapter, Section 3.5, talks about the camera model for
perspective projection and the fundamentals of the rendering system. An important
aspect of scene graph management is using an abstract class for rendering in order
to hide the details that are specific to certain platforms. This layer allows you to
manipulate and display scene graphs without caring if the renderer is implemented
using OpenGL or Direct3D, or if the application is running on a PC with Windows,
a PC with Linux, or a Macintosh with OS X. This section also covers a few other
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complex topics, such as how to cache data on the graphics card and how to support
both single-pass and multipass drawing operations.

Chapter 4 takes us into advanced scene graph management. Core scene graph
management is simply about choosing good data structures and using object-
oriented principles, but the advanced topics have more of an algorithmic flavor. Many
of these algorithms are explained in detail in [Ebe00]. Section 4.1 discusses level of
detail. The simplest level of detail used is billboards, where textured rectangles are
used to represent three-dimensional objects, and the rectangles are always required
to face the observer. Particles in Wild Magic are implemented as billboards for visual
purposes. The engine also supports the notion of an object always facing the observer,
whether it is a flat rectangle or a solid three-dimensional object. Level of detail for a
solid object is usually categorized in one of three ways: discrete (change one object at
a time), continuous (change a couple of triangles at a time), and infinite (subdivision
of surfaces to an arbitrary level of tessellation).

The topic of Section 4.2 is sorting, which comes in two flavors. You can sort
objects based on geometric attributes, or you can sort them based on render state.
In both instances, the sorting is an attempt to produce a correct drawing of a scene
with minimum render state changes. Such changes can be expensive, so it is good to
avoid them if possible. The topic of binary space partitiong trees is covered, but only
for coarse-level sorting of a scene, not for partitioning of triangles for completely
correct sorted drawing. Sorting by render state is accomplished in the engine by
deferred drawing. A list of objects is accumulated during the drawing pass, but not
drawn, then sorted by selected render states. At that time the objects are sent to the
renderer. A hierarchical scene allows you the possibility of sorting the children of a
node. One of the physics applications makes use of this to display a gelatinous blob
that is semitransparent. This section also covers the topic of portals in which sorting
is used for occlusion culling rather than minimizing render state changes.

Curves and surfaces are discussed in Section 4.3. The focus is on the data structure
support in the engine so that you can easily add new types of curves or surfaces
without having to change the infrastructure of the engine. Some of you will breathe
a sigh of relief when I say that no mathematics was harmed in the making of that
section.

Section 4.4 looks at constructing terrain objects as a collection of square or rec-
tangular pages of data. The pages may be meshes built as height fields stored as rec-
tangular arrays of heights, as irregular triangulations of the plane with height data
specified at the vertices, or as meshes generated from smooth surfaces. Continuous
level of detail for height fields is one of the topics. Probably the most important sub-
section is the one on terrain pages and memory management. Regardless of the page
representation, your outdoor environment will no doubt be so large that you cannot
keep all the data in memory. This requires you to build a virtual memory manage-
ment system for terrain.

The last section of the chapter, Section 4.5, discusses how the controller system
of the engine is used to support animation of various quantities in the engine. The
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illustrative examples are keyframes to control transformations (forward kinemat-
ics in a sense), inverse kinematics to control transformations, morphing to control
vertex locations, particle systems, and skin and bones for smooth animation.

The companion to advanced scene graph management is advanced rendering, the
subject of Chapter 5. Various special effects are supported by the engine and easily
used in applications. The chapter has two halves. The first half, Section 5.1, describes
the implementation of some special effects using the fixed-function pipeline—the
standard support in graphics APIs before the introduction of programmable graphics
hardware. Section 5.2 describes obtaining special effects using shaders—user-written
code that programs the graphics hardware. I do not focus on shader writing, although
a few sample applications are provided. Instead the emphasis is on how a scene graph
management system can support shaders.

Wild Magic has some support for collision detection and physics. Chapter 6 in-
troduces some of the simpler algorithms for collision detection. Line-object inter-
section, sometimes referred to as picking, is discussed in Section 6.1. Object-object
intersection is also covered (in Section 6.2), but keep in mind that a fully featured
collision detection library with a nearly infinite supply of intersection functions for
every object you can imagine is the stuff of commercial physics engines. I promise to
touch only the surface of the topic. Likewise, Chapter 7 is a reasonable discussion of
how you can add some physics support to an engine, but fully featured physics en-
gines, especially ones of the black-box form (you specify objects, the engine handles
everything else for you), are quite difficult to build and take a lot of time. The top-
ics I briefly cover are numerical methods for solving ordinary differential equations
(Section 7.1), particle physics (Section 7.2), mass-spring systems (Section 7.3), de-
formable bodies (Section 7.4), and rigid bodies (Section 7.5). The coverage of these
topics is designed to show you how I built the sample applications in my game phys-
ics book [Ebe03a]. The emphasis in this book is on implementation, not on the
theory.

Chapter 8 is a moderate discussion of how I built an application layer for all the
samples. Once again an abstract API is used in order to hide the implementation
details on the various platforms. The layer is not a general one that supports GUI
construction on any platform. It has simple support for my 3D applications. The
chapter has a brief discussion of some graphics and physics applications that appear
on the CD-ROM. The goal is to let you know what I was thinking when I built the
applications. The application infrastructure is also used for many of my tools, which
I also discuss in this chapter.

The final material is an appendix on my coding conventions and on the class
hierarchy of Wild Magic version 3. Coding conventions always generate philosophical
debates—mine certainly have! However, I have chosen my conventions and I stick
to them (well, almost always). Consistency is an important part of a commercial
product, more than you might think.
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Core Systems

2.1 The Low-Level System

At the lowest level of any library lies a collection of routines that are used frequently
enough that their interfaces may be exposed through a single header file in order to
save the programmer time by not constantly having to #include various files repeat-
edly. In Wild Magic, this header file is Wm3System.h and exposes the interfaces for most
of the standard C/C++ libraries. The system header has the block

#include <cassert>
#include <cctype>
#include <cfloat>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>

The Standard Template Library (STL) is not exposed here. Although STL is a con-
venient implementation of a lot of commonly used items, many of the container
classes are designed to be efficient in time in the asymptotic sense. For example,
the STL set class stores the elements of the set in ascending order, which allows a
logarithmic-time binary search to determine existence of an element. The ordering
also supports logarithmic-time insertion and deletion. Unfortunately, real-time en-
gines sometimes have performance penalties because of the overhead of STL, both in
time and memory.

31
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For example, a triangle mesh class from an earlier version of the engine was
implemented to store vertex, edge, and triangle adjacency information using STL
maps. The mesh class had a nested class to represent a mesh vertex. Each vertex needs
to know which edges and triangle shared it. A partial code listing is

class VertexAttribute
{
public:

VertexAttribute ();
void* m_pvData; // user-defined per-vertex data
set<Edge> m_kESet; // adjacent edges
set<Triangle> m_kTSet; // adjacent triangles

};

The mesh class was used to build the adjacency information for a level surface
extracted from a 3D voxel image. The surface was a collection of 825 KB vertices,
2.5 MB edges, and 1.6 MB triangles. The memory used by the program that built the
adjacency information was 980 MB.

However, for a typical mesh the average number of edges sharing a vertex is six,
and the average number of triangles sharing a vertex is six. The average number of
triangles sharing an edge is two. Since the sets of adjacent objects are small, a template
class representing a “small set” is more appropriate. That class stores elements in
an unordered array and reallocates when necessary. The initial array size defaulted
to eight, and each reallocation added eight more items. The expected number of
reallocations is zero. Searching a set of up to eight items is fairly fast, so the overhead
of maintaining a sorted array was avoided. The insertion always occurs at the end
of the array. On deletion of an element, the largest-indexed element of the array is
moved to the position of the deleted element, thus maintaining a contiguous set of
elements. The nested class became

class VertexAttribute
{
public:

VertexAttribute ();
void* m_pvData;
SmallSet<Edge> m_kESet;
SmallSet<Triangle> m_kTSet;

};

For the same application the memory usage was 503 MB, nearly a 50 percent reduc-
tion from the version using the STL set. The execution time itself was faster for the
SmallSet version.
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Real-time applications are of such a nature that the designer/architect of the
system has a lot of knowledge about memory usage patterns, but a generic set of
template containers do not have the benefit of this knowledge. In this setting, there is
some justification for reinventing the wheel! Section 2.1.1 discusses the basic data
structures that replicate some of the functionality of STL, but just the minimum
necessary to support the engine.

Keep in mind that new hardware (such as game consoles) might not immediately
have libraries that support STL. Since consoles tend to have much less memory than
desktop computers, the presence of STL might actually be a curse because of the
memory overhead.

Also at the lowest level, a library that intends to be portable must encapsulate
platform-specific concepts. These concepts include, but are not limited to, reading
the system or real-time clock, file handling operations, byte order for data types
(endianness), and any basic low-level services common to most operating systems.
Encapsulation also may be used to hide optimized versions of common services, for
example, memory management. These issues are discussed in Sections 2.1.2 through
2.1.6.

2.1.1 Basic Data Structures

The basic data structures that are implemented are arrays, hash tables, hash sets, lists,
sets, and stacks—all template container classes. A simple wrapper for strings is also
implemented. All of the template classes are not intended to be derived from, so the
destructors are nonvirtual and the class data members are private. The data structures
certainly will evolve as needed when the engine is endowed with new features, and
other classes will also be added on demand.

The template classes all have comments indicating what the template parameter
class must support in its own interface. The requirements are mentioned in the
following sections.

Arrays

The array template class encapsulates dynamically resizable, contiguous storage of
objects. The template parameter class need only implement the default constructor,
the copy constructor, and the assignment operator.

The array constructor allows you to specify the initial quantity of elements in
the array (default 1) and the number of elements to grow by when the array size is
dynamically increased (default 1). The initial quantity is also the maximum quantity
allowed, but dynamic resizing can cause the two numbers to differ. It is guaranteed
that the current quantity is less than or equal to the maximum quantity.
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Member access is provided by

int GetQuantity () const;
T* GetArray ();
const T* GetArray () const;
T& operator[] (int i);
const T& operator[] (int i) const;

The members GetQuantity and GetArray perform the obvious operations. The oper-
ator[] accessor allows you to read and write elements in the array. The assert-repair
paradigm is used in these methods. Range checking is performed to make sure the
input i is valid. If it is not, in debug builds an assertion is fired. In release mode, the
input is clamped to the valid range. If the input is negative, the item at index 0 is ac-
cessed. If the input is larger than or equal to the current quantity Q, the item at index
Q − 1 is accessed.

The operator[] members never cause automatic growth if the input index is out
of range. However, the array class supports automatic growth through

void Append (const T& rtElement);
void SetElement (int i, const T& rtElement);

The Append method inserts the input element at index Q, where Q is the current
quantity. After the insertion, Q is incremented by 1. The SetElement method allows
you to insert a new element at any index larger than Q. After insertion, the current
quantity is incremented so that the array is just large enough to include the new
object. If the input index is already in the current range of valid indices, no resizing
is necessary and the current element at that index is overwritten.

Array elements can also be removed through

void Remove (int i);
void RemoveAll ();

The Remove method deletes the ith element by shifting the elements at larger indices
to fill the vacant slots. That is, the element at index i + 1 is copied to the location
i, the element at index i + 2 is copied to the location i + 1, and so forth. If Q is
the current quantity before the removal, the element at index Q − 1 is copied to
the location Q − 2. Because construction and destruction can have side effects, the
default constructor is used to generate a dummy object that is stored at location
Q − 1, even though the current quantity will be decremented so as not to include the
vacated slot. For example, if the template parameter class is a graphics engine Object
that holds onto other objects or has dynamically allocated memory, this last step
allows the object to free up its resources. The method RemoveAll sets all objects in the
valid index range to default constructed objects, and then sets the current quantity to
zero.

Dynamic growth may be explicitly controlled via
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void SetMaxQuantity (int iNewMaxQuantity, bool bCopy);
int GetMaxQuantity () const;
void SetGrowBy (int iGrowBy);
int GetGrowBy () const;

The suggestive names make it clear what the behaviors are. In the method Set-
MaxQuantity, an assert-and-repair operation checks for nonnegativity of the input.
If the input is zero, the array is deallocated and the quantity set to zero. If the in-
put quantity is equal to the current maximum quantity, nothing needs to be done
and the function just returns. If the input quantity is different than the current max-
imum quantity, the array is reallocated. In the event the array grows, the Boolean
bCopy input specifies whether or not the old array items should be copied to the new
array.

Hash Tables

The hash table template class encapsulates a collection of key-value pairs. The objects
are stored in a fixed-size array, where each array element stores a singly linked list
of key-value pairs. The data structure for hashing is one of the simplest you will see
in a standard computer science textbook. A hash table requires a hash function that
computes an array index from a key. If two keys map to the same index, a collision is
said to have occurred. The colliding key-value pairs are stored in the linked list at the
computed array index. This process is called chaining . In the hash map template, the
hash function uses a multiplicative scheme and is an implementation of equation (4)
in [Knu73, Volume 3, Section 6.4]. Should you use a hash table in your application
code, it is your responsibility to select a table size that is sufficiently large to help
minimize the number of hash collisions.

An important issue for hash tables is the time required for insertion, deletion, and
searching. A good discussion of the asymptotic analyses for these are in [CLR90, Sec-
tion 12.2]. For a chaining with singly linked lists, the worst-case asymptotic behavior
for insertion, deletion, or searching is O(1 + α), where α is the load factor—the aver-
age number of list items in a chain, given by the ratio of the number of objects in the
table divided by the total number of table slots. As long as you have a large enough
table so that only a few collisions occur, the deletion and searching are quite fast. If
you choose the table size way too small, then the computational time may be an issue
in your applications.

The hash table class is named THashTable and involves two template parameter
classes: TKEY for the keys and TVALUE for the values. The THashMap class has a nested
class, HashItem, that represents the singly linked list node. This class stores the key,
value, and a pointer to the next node in a list. Both TKEY and TVALUE need to imple-
ment their default constructors, since creation of a HashItem object implicitly creates
a default key and a default value. They both must implement the assignment oper-
ator, since after a HashItem object is created, it is assigned a key and a value. The TKEY
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class must additionally implement the comparisons operator== and operator!= since
these are used by the insertion, deletion, and search operations to decide if two keys
are equal or different.

As mentioned earlier, the default hash function is multiplicative. However, a user
may provide an alternate hash function. Since the template classes are not intended
for derivation, the alternate hash function must be provided as a function pointer, a
public data member int (*UserHashFunction)(const TKEY&). By default, this pointer
is null. If it is set to some function, the internal hashing detects this and uses it instead
of the default hash function.

Insertion of a key-value pair into the hash table is accomplished by the member
function

bool Insert (const TKEY& rtKey, const TVALUE& rtValue);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does
not exist in the list, a new list node is added to the front of the list, and this node is as-
signed the input key and input value. The insertion function returns true to indicate
that, in fact, the key-value pair was inserted. If the key does exist in the list, the inser-
tion function returns false. Be aware that if you insert a key-value pair, later change
the value, and then attempt to insert again, the new value does not replace the old
one. If you need support for modifying the value of an existing key-value pair, use
the Find function, described later in this section.

Removal of a key-value pair from the hash table is accomplished by the member
function

bool Remove (const TKEY& rtKey);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does
not exist in the list, the removal function returns false. If the key does exist in the
list, the list node is removed from the list and deleted, and then the removal function
returns true. No access is given to the value for the key-value pair that is removed. If
you need this value, you must perform a search using the Find member function to
access it, and then call the Remove function. The member function

void RemoveAll ();

iterates through the table and deletes the linked lists.
Searching for a key-value pair is performed by calling the member function

TVALUE* Find (const TKEY& rtKey) const;

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key does
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not exist in the list, the Find function returns NULL. If the key does exist in the list, the
Find function returns a pointer to the value associated with the key. The pointer is to
the list node’s copy of the value. You may modify the value if you so choose; this does
not affect where in the table a key-value pair is hashed.

In many situations, it is desirable to iterate through the elements of a hash table
for processing. For example, the streaming system in Wild Magic makes use of this.
The member functions supporting the iteration are

TVALUE* GetFirst (TKEY* ptKey) const;
TVALUE* GetNext (TKEY* ptKey) const;

Each of these functions returns a pointer to the hash table’s copy of the key-value
pair. The functions also assign a copy of the key in the key-value pair to the input key
(provided by address). The syntax for the iteration is

THashTable<SomeKey,SomeValue> kTable = <some hash table>;

// start the iteration
SomeKey kKey;
SomeValue* pkValue = kTable.GetFirst(&kKey);
while ( pkValue )
{

// ...process kKey and pkValue here...

// continue the iteration
pkValue = kTable.GetNext(&kKey);

}

To support this mechanism, the hash table must remember where the iteration was
on the previous call to GetNext in order to fetch the next key-value pair in the current
call to GetNext. Two pieces of information are essential to remember: the current table
index and the current list node. The data members m_iIndex and m_pkItem store this
information.

The call to GetFirst loops through the table to locate the first nonempty list.
When it finds that list, m_iIndex is the table index for it, and m_pkItem is the pointer
to the first node in the list. The key and value for this list node are returned by the
GetFirst function. On the call to GetNext, the pointer m_pkItem is set to the next node
in the list, if any. In the event there is, GetNext simply returns the key and value for that
node. If there is no next node, m_iIndex is incremented and the next nonempty list is
sought. If one is found, m_pkItem is set to the first node in the list, and the iteration
continues. Once all hash table items have been visited, GetNext returns a null pointer,
indicating that the iteration has terminated.
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Hash Sets

Sets of keys are supported by the THashSet template class. The class is nearly identical
in structure to THashTable and uses the TKEY template parameter for set objects, but it
does not include the values through a TVALUE template parameter. Although removing
the TVALUE dependency in THashTable leads to a perfectly reasonable container class
for sets, I have introduced features that allow you to use hash sets in place of hash
tables. The main modification is that the TKEY class has members that are used for key
comparison and has any additional data that normally would be stored by the TVALUE
class.

To insert an element into the hash set, use member function

TKEY* Insert (const TKEY& rtKey);

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key is
found, the insertion function returns a pointer to the hash set’s version of the key. In
this sense, the insertion acts like a find operation. If the key does not exist in the list, a
new node is added to the front of the list, the input key is assigned to the node, and a
pointer to the hash set’s version of the key is returned. In most cases, the assignment
operator for TKEY performs a deep copy so that the hash set has an identical copy of
the input. In other cases, more complicated semantics may be used. The members of
TKEY that are used for key comparisons must be copied, but the other members can
be handled as needed. For example, you might have a data member that is a pointer
to an array of items. The pointer can be copied to the hash set’s version of the key, a
shallow copy.

The removal functions

bool Remove (const TKEY& rtKey);
void RemoveAll ();

behave exactly as those for hash tables.
Searching for a key is performed by calling the member function

TKEY* Get (const TKEY& rtKey) const;

The hash function is evaluated at the input key to locate the table index correspond-
ing to the key. The linked list at that location is searched for the key. If the key is
found, the insertion function returns a pointer to the hash set’s version of the key.
You may change any values associated with the key. If the key does not exist in the
list, the function returns NULL.

Iteration through the elements of the hash set is similar to that for hash tables.
The functions that support this are
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TKEY* GetFirst () const;
TKEY* GetNext () const;

The structure of the iteration is

THashSet<SomeKey> kSet = <some hash set>;

// start the iteration
SomeKey* pkKey = kSet.GetFirst();
while ( pkKey )
{

// ...process pkKey here...

// continue the iteration
pkKey = kSet.GetNext();

}

Lists

The engine has a need for lists, but typically these do not have a lot of nodes. A simply
linked list class, TList, suffices. The template parameter class need only implement
the default constructor, the copy constructor, and the assignment operator.

The TList class is not very sophisticated. It manages an item from the template
parameter class and has a pointer that links to the next list node, if it exists, or is the
null pointer if the node is at the end of the list. The member accessors are

void SetItem (const T& rtItem);
T& Item ();
const T& GetItem () const;
void SetNext (TList* pkNext);
TList*& Next ();
const TList* GetNext () const;

The first three members allow you to set or get the item managed by the node. The
last three members support construction of the list itself. The constructor

TList (const T& rtItem, TList* pkNext);

also supports list construction in the manner shown by the following example:

// create the first list node
int i0 = <some integer>;
TList<int>* pkList0 = new TList<int>(i0,NULL);
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// add a node to the front of the list
int i1 = <some integer>;
TList<int>* pkList1 = new TList<int>(i1,pkList0);

The TList class does not implement a recursive destructor that deletes the front
node of the list and then asks the rest of the list to delete itself. A recursive destructor is
problematic for very long lists because you can overflow the program stack. The user
is responsible for destroying the list. In the previous example, the list is destroyed by

while ( pkList1 )
{

TList<int>* pkFront = pkList1;
pkList1 = pkList1->Next();
delete pkFront;

}

My convention is to always dynamically allocate list nodes, but nothing stops
you from having nodes on the program stack. The user must manually manage any
dynamic allocations and deallocations. For example,

// create a circular list, no deallocation necessary
int iQuantity = <number of list items>;
TList<int> kList[iQuantity];
for (int i = 0; i < iQuantity; i++)
{

kList[i].SetItem(i);
kList[i].SetNext(&kList[(i+1) % iQuantity]);
}

// create a list, some destruction required
int i0 = <some integer>;
TList<int>* pkList0 = new TList<int>(i0,NULL);
int i1 = <some integer>;
TList<int> kList1(i1,pkList0);

// destroy the list, kList1 is on the program stack--do not deallocate
delete pkList0;

The TList class does not maintain a count of the number of nodes in the list. The
member function

int GetQuantity () const;

iterates through the list and counts the nodes, returning the quantity.
Removal of the front node of a list is simple:
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TList<int>* pkList = <some list, all dynamically allocated nodes>;
TList<int>* pkFront = pkList;
pkList = pkList->Next();
delete pkFront;

Removing any other node requires more work. This operation is usually in conjunc-
tion with a search: find a node with a specified item and remove it from the list. Two
pointers must be maintained: one pointing to the current node in the search and the
other pointing to the previous node. This is necessary so that you can tell the previous
node to relink itself to the successor of the current node.

TList<T>* pkList = pkYourList;
TList<T>* pkPrev = NULL;
for (/**/; pkList; pkPrev = pkList, pkList = pkList->Next())
{

if ( pkList->Item() == specified_item )
{

// process specified_item before deletion (if necessary)

// remove the item
if ( pkPrev )
{

// item not at front of list
pkPrev->Next() = pkList->Next();

}
else
{

// item at front of list
pkYourList = pkList->Next();

}
pkList->Next() = NULL;
delete pkList;

}
}

Insertion of a node before or after a node with a specified item has a similar
syntax.

Sets

The template class TSet is intended for sets with a small number of elements. The STL
class set has a large memory overhead for sets with a large number of elements. In
much of the engine code, the set sizes are small, so the sets may be implemented to
use less memory. Unlike the STL sets, TSet is unordered. The idea is that if the sets
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are small, a linear search is inexpensive. If you have no intent for searching a large set
and you know that the elements you will be adding are unique, then TSet is also an
ideal class. It has a member function for insertion that does not search to see if the
element is already in the set.

The template parameter class must implement the default constructor, the copy
constructor, and the assignment operator. The set storage is an array that is managed
similarly to the array in TArray. The TSet class has a default constructor, a copy
constructor, and an assigment operator. The copy constructor and assignment make
deep copies of the input set. The other constructor is

TSet (int iMaxQuantity, int iGrowBy);

and allows you to specify the initial maximum quantity of elements in the set and
an amount to grow by if an insertion requires it. A data member separate from the
maximum quantity keeps track of the actual quantity of elements.

Member access is straightforward:

int GetMaxQuantity () const;
int GetGrowBy () const;
int GetQuantity () const;
T* GetElements ();
const T* GetElements () const;
T& operator[] (int i);
const T& operator[] (int i) const;

The GetElements functions return a pointer to the array storage. You may iterate over
the elements of the set, as the following example shows:

TSet<T> kSet = <some set>;
const T* akElement = kSet.GetElements();
for (int i = 0; i < kSet.GetQuantity(); i++)
{

// ... process element akElement[i] ...
}

If you want to change any elements during the iteration, you need to use the
nonconstant GetElements. The operator[] methods allow you to access an element
as shown:

TSet<int> kSet = <some set>;
int iElement = kSet[17];
kSet[3] = -5;

An assert-and-repair paradigm is used, just like TArray does. In debug mode, an
assertion is fired if the input index to the operator is out of range. In release mode,
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the input index is clamped to the valid range of indices, 0 ≤ i ≤ Q − 1, where Q is
the current quantity of elements in the set.

Insertion of elements into the set is supported by

bool Insert (const T& rkElement);
void InsertNoCheck (const T& rkElement);

The first function iterates over the current set and tests to see if the input element is
already in the set. If it is, the insertion function returns false. If it is not, the element
is appended to the end of the array storage. A reallocation of the array is performed
first, if necessary. The second function does not check for the existence of the input
element. It simply appends the input to the end of the array, reallocating the array if
necessary. This function is useful if you know that your set will have unique elements,
thereby avoiding the cost of searching the set.

The set may be searched to see if it contains a specific element:

bool Exists (const T& rkElement);

The return value is true if and only if the input element is in the set.
Three member functions support removal of elements from a set:

bool Remove (const T& rkElement);
void Clear ();
void Clear (int iMaxQuantity, int iGrowBy);

The Remove method searches the set for the input element. If it does not exist, the
function returns false. If it does exist, the element is removed from the array by
shifting all the later elements, just as was done in the Remove method for TArray.
The last vacated slot is then assigned an element created by the default constructor
to induce side effects for cleaning up any complex objects stored by the set. The Clear
methods assign zero to the quantity, indicating the set is empty. The method with no
parameters retains the current maximum quantity and array storage. The array slots
that had actual elements are assigned elements created by the default constructor,
again to induce side effects for cleaning up complex objects. The Clear method with
parameters allows you to re-create the set with new maximum quantity and growth
parameters. The current array is deallocated, and a new one allocated.

Stacks

The class TStack represents a nonresizable stack. In all the engine code, the ability
to dynamically resize is never needed. The constructor for the class requires you to
specify the maximum number of items that can be pushed on the stack, and an
array of that size is allocated for the stack storage. The template parameter class only
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needs to implement the default constructor, the copy constructor, and the assignment
operator.

The basic stack operations are

bool IsEmpty () const;
bool IsFull () const;
void Push (const T& rkItem);
void Pop (T& rkItem);
void Clear ();
bool GetTop (T& rkItem) const;

An integer index is used to track the top of the stack. Initially the index is −1,
indicating the stack is empty. Method IsEmpty reports this condition. The stack is
considered to be full if the index is one less than the maximum quantity, a condition
reported by method IsFull. A Push operation places the input item on top of the
stack. The top index is incremented first, then the item is copied. A Pop operation
copies the item on top of the stack, returns it through the function parameter, and
then decrements the top index. The Clear method sets the top index to −1, creating
an empty stack. The method GetTop reads the top item on the stack, but does not pop
it. The return value is true as long as the stack is not empty, indicating that indeed
the top item was read.

Support is provided for iterating over the stack as if it were an array. The methods
are shown next along with a typical iteration:

int GetQuantity () const;
const T* GetData () const;

TStack<T> kStack = <some stack>;
T* akArray = kStack.GetData();
for (int i = 0; i < kStack.GetQuantity(); i++)
{

// ... process item akArray[i] ...
}

Strings

The String class is not extremely powerful as most string implementations go. It was
created for two purposes. First, the class supports streaming of character strings.
Character manipulation functions in the standard library prefer null-terminated
strings. The String class wraps such strings. Unfortunately, when reading a string
that has been written to disk, having to read a character at a time and searching for
the null terminator is inefficient, so the class also stores a string length. When a string
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is written to disk, the length is written first, followed by the string characters but not
the null terminator. To read the string from disk, the length is read first, then the
block of characters of that length is read—a much more efficient mechanism. The
member functions

int GetMemoryUsed () const;
int GetDiskUsed () const;

are used by the streaming system, as discussed in Section 2.3.5.
Second, loading of objects from disk requires the loader to know what type of

object is being loaded. Knowing this, the loader can create an object and then read
data from disk and fill in the object. The type identification is string based. The loader
reads the type string from disk and must look up the associated factory function for
that object. The type string is used as a key in a hash table; the factory function is
used as a value. Thus, the String class implements the member functions required by
the TKEY template parameter class in THashTable:

String& operator= (const String& rkString);
bool operator== (const String& rkString) const;
bool operator!= (const String& rkString) const;
operator unsigned int () const;

2.1.2 Encapsulating Platform-Specific Concepts

The encapsulation amounts to providing an abstract set of functions that correspond
to the platform services, where the specific details are hidden from the user. Each
platform must implement the functions exposed through the abstraction. We are
not using the inheritance mechanism of an object-oriented language. Inheritance
is the process of deriving a class from a base class and implementing any of the
virtual functions that are in the base class. Think of this as adding a class on top
of the abstract layer defined by the base class. Implementing an abstract layer for
specific platforms is quite the opposite. The implementation is behind the abstract
layer, and the abstract layer need not have virtual functions. The abstract interface is
common to all platforms, but the source files for a platform are compiled only on
that platform. The abstract system layer in Wild Magic is the class System, found in
the files Wm3System.(h,inl,cpp).

It is nearly impossible not to expose a small amount of platform-specific infor-
mation to the engine and applications. The system header file contains the block

#if defined(WIN32)
#include "Wm3WinSystem.h"
#elif defined(__MACOS__)
#include "Wm3MacSystem.h"
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#else
#include "Wm3LnxSystem.h"
#endif

to expose such details. On a given platform, the appropriate preprocessor symbol is
defined to give access to a platform-specific header file. Currently those include a PC
with Microsoft Windows 2000/XP (Wm3WinSystem.h), a Macintosh running Mac OS X
(Wm3MacSystem.h), and a PC with some variant of Linux (Wm3LnxSystem.h). A source
file of the same name, but with the cpp extension, is provided for each platform and
contains any implementations that are needed on the platform.

An example that shows a need to expose details is the following. Sometimes com-
pilers that are noncompliant with ANSI standards require conditional compilation
for various syntactic issues. This was particularly true for nearly all compilers regard-
ing explicit instantiation of template classes that have static data members. The static
data members must use specialized instantiation on most platforms, but some plat-
forms want the specialization to occur before the explicit class instantiation, while
others want it after. Yet other compilers have issues regarding the syntax on how
global scope template operators are instantiated. When these problems show up in
the engine source code, you will see conditional compilation involving the symbols
WIN32, __MACOS__, or other symbols that identify a certain compiler being used (for
example, CodeWarrior Metrowerks and its symbol __MWERKS__).

Another example is on a Microsoft Windows machine when you want to cre-
ate dynamic link libraries. The classes in the engine require qualification by either
__declspec(dllexport) or __declspec(dllimport). The symbol WM3_ITEM hides these
qualifiers. What the symbol expands to on each platform is governed by the symbol’s
implementation in the platform-specific header files.

2.1.3 Endianness

One major function of the encapsulation is to hide byte order, or endianness, when
reading or writing files. A PC running Microsoft Windows or Linux uses little endian
order, but a Macintosh uses big endian order—the bytes for a multibyte quantity are
stored in memory in the opposite order of those on the PC. The streaming system in
the graphics engine stores all native quantities in little endian order. To read or write
files on a Macintosh requires reversing the order of the bytes. The System functions
supporting this are

class System
{
public:

static void SwapBytes (int iSize, void* pvValue);
static void SwapBytes (int iSize, int iQuantity,

void* pvValue);
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static void EndianCopy (int iSize, const void* pvSrc,
void* pvDst);

static void EndianCopy (int iSize, int iQuantity,
const void* pvSrc, void* pvDst);

}

The first function swaps iSize bytes in the memory pointed to by pvValue. The second
function swaps iSize bytes in each of the iQuantity elements of the array pvValue.
The last two functions copy with swapping, but the swap occurs only if necessary.
The third function copies iSize bytes from the source pvSrc to the destination pvDst,
but swaps the bytes along the way. The fourth function has similar behavior applied
to an array of items.

The Wild Magic streaming system makes calls to EndianCopy. Since the graphics
engine stores all native quantities in little endian order, the Microsoft Windows plat-
form EndianCopy functions just reduce to a memcpy call. However, on the Macintosh,
the swapping is implemented during the copying phase.

2.1.4 System Time

Many applications need to keep track of time, whether for sequencing purposes or
for simulation. Although the standard programming libraries provide functions to
manage a 32-bit clock, the number of bits is not enough and the resolution too coarse
to satisfy the needs of real-time applications. Operating systems and main processors
likely have support for a 64-bit clock, but direct access to this clock cannot be done
in a platform-independent manner. The details must be encapsulated to hide the
dependencies from the application layer. The System member function to support
this is

class System
{
public:

static double GetTime ();
};

The returned double-precision number is 64 bits. Although this is a floating-point
value, if the need arises the return value can be bit manipulated as if it were a 64-bit
integer. The application must necessarily understand that the time is bit manipulated
and parse it accordingly.

As an example, on a 32-bit Microsoft Windows system, GetTime is implemented
in the file Wm3WinSystem.cpp and uses the operating system type LARGE_INTEGER that
represents a 64-bit integer. The platform-dependent functions QueryPerformanceFre-
quency and QueryPerformanceCounter are used to create a 64-bit value representing the
current time.
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2.1.5 File Handling

The streaming system for scene graph saving to disk or loading to memory requires
basic file handling. Specifically, files must be opened and closed. Data is either read,
written, or appended. Although file operations of these types are supported in C
and C++ in a platform-independent manner, it is convenient to encapsulate the
operations in the System class. The member functions are

class System
{
public:

static bool Load (const char* acFilename, char*& racBuffer,
int& riSize);

static bool Save (const char* acFilename,
const char* acBuffer, int iSize);

static bool Append (const char* acFilename, char* acBuffer,
int iSize);

};

The specified files are assumed to contain binary data. Some operating systems prefer
to distinguish text files from binary files in order to apply conversions regarding end-
of-line and end-of-file characters. The choice of dealing with only binary files is to
avoid portability problems whereby implicit conversions occur.

The Load operation determines how many bytes are in the file and returns the
amount in riSize. A character buffer racBuffer is allocated to contain that number
of bytes. The returned Boolean value is true if the load is successful, in which case
the outputs racBuffer and riSize are valid. If the returned value is false, one of the
following conditions has occurred: The file does not exist, the file cannot be opened
for reading (the file attributes might not allow this), or the number of bytes read is
different than what the operating system reported for the file. The latter condition is
not expected to occur, so a developmental assertion is triggered in the slim chance
the condition fails.

The Save operation writes the input buffer to disk. The buffer pointer acBuffer
is required to be nonnull and the iSize value is required to be positive. The func-
tion cannot determine if the buffer has the correct number of bytes; the caller has
the responsibility of ensuring it does. The returned Boolean value is true if the save
is successful. If the returned value is false, one of the following conditions has oc-
curred: The input buffer is null or the size is nonpositive, the file cannot be opened
for writing (the file might exist and be set to read-only), or the number of bytes writ-
ten is different than what was requested. The invalidity of the inputs is trapped with
a developmental assertion. The incorrect number of bytes written is not expected to
occur, so a developmental assertion is triggered in the slim chance the condition fails.
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The Append operation is identical in structure to Save, except that the file is opened
for appending. The input buffer is written at the end of an already existing file. If the
file does not exist, it is created and the buffer is written.

The main client of the System file operations is class Stream. However, the file
operations are simple to use in other situations as they arise.

2.1.6 Memory Allocation and Deallocation

This is probably not a topic you would expect to see regarding encapsulation of
platform-dependent code. Both the C and C++ languages provide basic memory
management functions. In C we have malloc and free; in C++ we have new and
delete. All of these functions are portable; however, portability is not the important
issue in this section.

Consider implementing a graphics engine on a device less powerful than a desk-
top computer. The current-day example is an embedded device that contains an ARM
processor—cell phones, handheld devices, and portable data assistants. The costs of
memory allocation and deallocation can become noticeable if the number of alloca-
tions and deallocations is large.

Two-Dimensional Arrays

The prototypical case is allocation and deallocation of a two-dimensional array. The
standard mechanism for doing this is illustrated next for a two-dimensional array of
integers. Moreover, we wish to zero the memory values.

// allocation
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int* aaiArray = new Type[iNumRows];
for (iRow = 0; iRow < iNumRows; iRow++)
{

aaiArray[iRow] = new int[iNumCols];
memset(aaiArray[iRow],0,iNumCols*sizeof(int));

}

// deallocation
for (iRow = 0; iRow < iNumRows; iRow++)
{

delete[] aaiArray[iRow];
}
delete[] aaiArray;
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The code is straightforward, but a closer look is in order. If R is the number
of rows in the array, an allocation makes R + 1 calls to new, and a deallocation
makes R + 1 calls to delete. On a device with limited computational power, the
excessive number of calls can be a performance problem because of the overhead costs
associated with a memory manager. Additionally, R calls to memset are made.

Consider now an alternative for allocation and deallocation and memory initial-
ization. The array elements are stored in a one-dimensional array in row-major order.
If the two-dimensional array A has R rows and C columns, the element A[y][x] is
stored in the one-dimensional array B as B[x+C*y]:

// allocation
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int iNumElements = iNumRows * iNumCols;
int* aaiArray = new int*[iNumRows];
aaiArray[0] = new int[iNumElements];
memset(aaiArray,0,iNumElements*sizeof(int));
for (iRow = 1; iRow < iNumRows; iRow++)
{

aaiArray[iRow] = &aaiArray[0][iNumCols*iRow];
}

// deallocation
delete[] aaiArray[0];
delete[] aaiArray;

The number of calls to new is two, to delete is two, and to memset is one, regardless
of the number of rows R. This is quite a savings in computational time because of the
low overhead costs for the memory manager. Moreover, the array is stored in a single
block of contiguous memory, so chances are that the memset will be cache friendly.

The latter method is superior to the former. To avoid replicating the allocation
and deallocation code throughout an engine and applications, these are encapsulated
in the System class as template member functions:

class System
{
public:

template <class T> static void Allocate (int iCols, int iRows,
T**& raatArray);

template <class T> static void Deallocate (T**& raatArray);
};

The allocated array is returned through a parameter in the function signature
rather than as the function return value. This is a requirement for the compiler to



2.1 The Low-Level System 51

correctly expand the template function; the type T must occur somewhere in the
function signature. The deallocation function sets the array pointer to NULL after
deletion, which helps trap bugs due to dangling pointers.

Three-Dimensional Arrays

A similar analysis applies to allocation and deallocation of a three-dimensional array,
with optional initialization. The standard mechanism is

// allocation
int iNumSlices = <number of slices>;
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int* aaaiArray = new int**[iNumSlices];
for (iSlice = 0; iSlice < iNumSlices; iSlice++)
{

aaaiArray[iSlice] = new int*[iNumRows];
for (iRow = 0; iRow < iNumRows; iRow++)
{

aaaiArray[iSlice][iRow] = new int[iNumCols];
memset(aaaiArray[iSlice][iRow],0,iNumCols*sizeof(int));

}
}

// deallocation
for (iSlice = 0; iSlice < iNumSlices; iSlice++)
{

for (iRow = 0; iRow < iNumRows; iRow++)
{

delete[] aaaiArray[iSlice][iRow];
}
delete[] aaaiArray[iSlice];

}
delete[] aaaiArray;

If S is the number of slices and R is the number of rows, then allocation requires
S(R + 1) calls to new and SR calls to memset. Deallocation requires S(R + 1) calls to
delete.

The alternative stores the three-dimensional array elements in a one-dimensional
array in lexicographical order. If the three-dimensional array A has S slices, R rows,
and C columns, and if B is the one-dimensional array, the element A[z][y][x] is
stored as B[x+C*(y+R*z)]:



52 Chapter 2 Core Systems

// allocation
int iNumSlices = <number of slices>;
int iNumRows = <number of rows>;
int iNumCols = <number of columns>;
int iNumElements = iNumSlices * iNumRows * iNumCols;
int* aaaiArray = new int**[iNumSlices];
aaaiArray[0] = new int*[iNumSlices*iNumRows];
aaaiArray[0][0] = new int[iNumElements];
memset(aaaiArray[0][0],0,iNumElements*sizeof(int));
for (iSlice = 0; iSlice < iNumSlices; iSlice++)
{

aaaiArray[iSlice] = &aaaiArray[0][iNumRows*iSlice];
for (iRow = 0; iRow < iNumRows; iRow++)
{

aaaiArray[iSlice][iRow] = &aaaiArray[0][0][
iNumCols*(iRow+iNumRows*iSlice)];

}
}

// deallocation
delete[] aaaiArray[0][0];
delete[] aaaiArray[0];
delete[] aaaiArray;

The number of calls to new is three, to delete is three, and to memset is one,
regardless of the array dimensions. Once again this is a savings in computational time
because of the low overhead costs for the memory manager, and the array is stored in
a single block of contiguous memory, a cache-friendly situation.

To avoid replicating the allocation and deallocation code throughout an engine
and applications, these are encapsulated in the System class as template member
functions:

class System
{
public:

template <class T> static void Allocate (int iCols, int iRows,
int iSlices, T***& raaatArray);

template <class T> static void Deallocate (T***& raaatArray);
};

The allocated array is returned through a parameter in the function signature
rather than as the function return value. This is a requirement for the compiler to
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correctly expand the template function; the type T must occur somewhere in the
function signature. The deallocation function sets the array pointer to NULL after
deletion, which helps trap bugs due to dangling pointers.

2.2 The Mathematics System

Any engine that deals with computer graphics and geometry must necessarily have
a subsystem for mathematics, vector algebra, and matrix algebra. At the most basic
level, C/C++ has a standard mathematics library to support common functions such
as sin, cos, sqrt, and so on. Usually graphics engines rely on the single-precision
float data type, so mathematics functions for this type suffice. However, physics
engines sometimes need double precision for accurate results. Mathematics functions
for 8-byte double are also necessary. The mathematics subsystem should provide for
both, as discussed in Section 2.2.1.

For real-time engines, there is also a need for implementations of standard math-
ematics functions other than the ones provided in the standard mathematics library
for C/C++. The alternatives are designed for fast execution at the expense of ac-
curacy. The advent of modern processors with extended instructions to speed up
common mathematics alleviates the need for some of these, such as a fast inverse
square root, but Wild Magic includes implementations anyway for platforms whose
processors do not have such power. Section 2.2.2 provides a summary of a few such
fast functions.

Sections 2.2.3, 2.2.4, and 2.2.5 are on the basic mathematics library that all game
programmers are fond of building. Classes are provided for dimensions 2, 3, and
4. Dimension 4 is mainly available to support homogeneous points, vectors, and
matrices. The geometry of vectors and matrices is not complete without a discussion
of lines and planes; see Section 2.2.6.

The last topic, Section 2.2.7, is the implementations for colors, both RGB (red-
green-blue) and RGBA (red-green-blue-alpha). The classes are simple, treat all color
channels as floating-point values between 0 and 1, and have some support for clamp-
ing and scaling (useful for software rendering).

2.2.1 Basic Mathematics Functions

Support is provided for the basic mathematics functions found in the standard
C/C++ library, both for float and double. Rather than duplicate code, templates
are used where the template parameter is the type of floating-point number. Unlike
the usual construction of templates, where the implementations are exposed to the
application, the implementations are hidden from the engine. The main library is
compiled so that the templates for float and double are explicitly instantiated. The
manner in which templates are explicitly instantiated is part of the ANSI standards
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for compilers, but unfortunately not all compilers agree on the correct syntax for the
code. Neither do they agree on how to specialize the instantiations for static template
data members nor on the syntax for global scope operator functions. More on this
issue later in the section.

The Math template class encapsulates many of the standard functions. A partial
listing of the class definition is the following:

template <class Real>
class Math
{
public:

static Real ACos (Real fValue);
static Real ASin (Real fValue);
static Real ATan (Real fValue);
static Real ATan2 (Real fY, Real fX);
static Real Ceil (Real fValue);
static Real Cos (Real fValue);
static Real Exp (Real fValue);
static Real FAbs (Real fValue);
static Real Floor (Real fValue);
static Real FMod (Real fX, Real fY);
static Real InvSqrt (Real fValue);
static Real Log (Real fValue);
static Real Pow (Real fBase, Real fExponent);
static Real Sin (Real fValue);
static Real Sqr (Real fValue);
static Real Sqrt (Real fValue);
static Real Tan (Real fValue);

};

The InvSqrt function is not standard, but normalization of a vector (division by the
length) is common enough that a wrapper is convenient. In this case the implementa-
tion is just InvSqrt(x) = 1/Sqrt(x). The Sqr function is also a convenience for Sqr(x)
= x*x.

The standard mathematics libraries tend to supply us with two forms of each
function. For example, the sine function has the prototype

double sin (double dAngle);

To use this in an environment based on float, the following is required:

float fAngle = <some angle in radians>;
float fResult = (float)sin((float)fAngle);
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To avoid the verbosity of the expression, the libraries provide alternate versions.
In the case of the sine function,

float fResult = sinf(fAngle);

Unfortunately, sometimes the alternate versions are not provided on a platform. For
example, g++ 3.x on Sun Solaris does not have the alternate versions, requiring us to
avoid using these functions. The use of encapsulation of the mathematics functions in
a template class has the added benefit of allowing us to provide, in effect, the alternate
versions. For example, the implementation of the sine function is

template <class Real>
Real Math<Real>::Sin (Real fValue)
{

return (Real)sin((double)fValue);
}

A handful of common constants are also wrapped into the template.

template <class Real>
class Math
{
public:

static const float EPSILON;
static const float MAX_REAL;
static const float PI;
static const float TWO_PI;
static const float HALF_PI;
static const float INV_PI;
static const float INV_TWO_PI;
static const float DEG_TO_RAD;
static const float RAD_TO_DEG;

};

The value EPSILON is for convenience only and is set to the smallest floating-point
value for which 1 + EPSILON == 1, either FLT_EPSILON or DBL_EPSILON. Similarly, MAX_
REAL is set to the largest floating-point number, either FLT_MAX or DBL_MAX.

Mathematical Constants

The constants involving PI are computed during program initialization. For example,
in Wm3Math.cpp,

template<> const float Math<float>::PI = (float)(4.0*atan(1.0));
template<> const double Math<double>::PI = 4.0*atan(1.0);
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The reason for doing this is to try to maintain as much precision as possible for the
numbers and to maintain consistency of the values across files. As an example of
inconsistency, I have seen code distributions with one file containing

#define PI 3.141259

and another file containing

#define PI 3.14126

Rather than trying to remain consistent manually with defined quantities throughout
the code base, a single value generated by a mathematics function call automates the
process. The warning, though, is that the calculation of Math<Real>::PI occurs before
main executes. If you have another function that executes before main does, and that
function tries to use the value Math<Real>::PI before it is initialized, the value is zero
(the case for static data in general). Be careful about accessing any quantity that is
initialized before main executes.

The constant DEG_TO_RAD is a multiplier that converts radians to degrees. The
constant RAD_TO_DEG converts from degrees to radians. Be careful in code that uses
trigonometric functions. The inputs are assumed to be in radians, not degrees!

The template wrappers also allow us to protect against some unwanted side ef-
fects. For example, the inverse cosine function acos takes a floating-point input that
should be in the interval [−1, 1]. If an input is outside the interval, the function
silently returns NaN (Not a Number). This can occur more frequently than you would
like. Numerical round-off errors can cause calculations of the input value to be just
slightly larger than 1or just slightly smaller than −1. The wrapper can clamp the input
to avoid generating a silent NaN. For example,

template <class Real>
Real Math<Real>::ACos (Real fValue)
{

if ( -(Real)1.0 < fValue )
{

if ( fValue < (Real)1.0 )
return (Real)acos((double)fValue);

else
return (Real)0.0;

}
else
{

return PI;
}

}
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The implementation clamps the input value to make sure acos is passed a value in the
interval [−1, 1].

A few convenience functions are provided by class Math:

template <class Real>
class Math
{
public:

static int Sign (int iValue);
static Real Sign (Real fValue);
static Real UnitRandom (unsigned int uiSeed = 0);
static Real SymmetricRandom (unsigned int uiSeed = 0);
static Real IntervalRandom (Real fMin, Real fMax,

unsigned int uiSeed = 0);
};

The Sign functions return +1 if the input is positive, 0 if the input is 0, or −1 if
the input is negative. The other three functions involve uniform random number
generation using srand (for seeding) and rand. UnitRandom returns a random number
in the interval [0, 1) (0 is inclusive, 1 is excluded). SymmetricRandom returns a random
number in the interval [−1, 1). IntervalRandom returns a random number in the
interval [min, max). The seeding with srand occurs only when the input seed is
positive.

2.2.2 Fast Functions

Trigonometric functions are common in graphics and physics applications. If there
is a need for speed, calls to the standard mathematics library functions can be substi-
tuted with calls to faster functions that exchange accuracy for speed:

template <class Real>
class Math
{
public:

static float FastSin0 (float fAngle);
static float FastSin1 (float fAngle);
static float FastCos0 (float fAngle);
static float FastCos1 (float fAngle);
static float FastTan0 (float fAngle);
static float FastTan1 (float fAngle);
static float FastInvSin0 (float fValue);
static float FastInvSin1 (float fValue);
static float FastInvCos0 (float fValue);
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static float FastInvCos1 (float fValue);
static float FastInvTan0 (float fValue);
static float FastInvTan1 (float fValue);
static float FastInvSqrt (float fValue);

};

The fast trigonometric and inverse trigonometric functions are all based on ap-
proximations that appear in [AS65]. The item numbers from the reference are pro-
vided for convenient lookup. The approximations are stated here without proof (as is
the case in the reference). Some of the error bounds were verified numerically, with a
slight bit more precision reported here than in the reference.

The experimental results reported herein are using float functions on a PC with
an AMD 2.0 GHz processor running a project in release mode. See the test application
TestFastMath.

Fast approximations to the sine function are implemented by Math::FastSin0
and Math::FastSin1. The function FastSin0(x) is based on the approximation 4.3.96,
which requires the input to satisfy x ∈ [0, π/2],

sin(x)

x
= 1 − 0.16605 x2 + 0.00761 x4 + ε(x). (2.1)

The error term is bounded by |ε(x)| ≤ 1.7 × 10−4. The speedup over sin is 4.0.
The function FastSin1(x) is based on the approximation 4.3.97, which requires

the input to satisfy x ∈ [0, π/2],

sin(x)

x
= 1 − 0.1666666664 x2 + 0.0083333315 x4 − 0.0001984090 x6

+ 0.0000027526 x8 − 0.0000000239 x10 + ε(x). (2.2)

The error term is bounded by |ε(x)| ≤ 1.9 × 10−8. The speedup over sin is about 2.8.
Fast approximations to the cosine function are implemented by Math::FastCos0

and Math::FastCos1. The function FastCos0(x) is based on the approximation 4.3.98,
which requires the input to satisfy x ∈ [0, π/2],

cos(x) = 1 − 0.49670 x2 + 0.03705 x4 + ε(x). (2.3)

The error term is bounded by |ε(x)| ≤ 1.2 × 10−3. The speedup over cos is about 4.5.
The function FastCos1(x) is based on the approximation 4.3.99, which requires

the input to satisfy x ∈ [0, π/2],

cos(x) = 1 − 0.4999999963 x2 + 0.0416666418 x4 − 0.0013888397 x6

+ 0.0000247609 x8 − 0.0000002605 x10 + ε(x). (2.4)

The error term is bounded by |ε(x)| ≤ 6.5 × 10−9. The speedup over cos is about 2.8.
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Fast approximations to the tangent function are implemented by Math::FastTan0
and Math::FastTan1. The function FastTan0(x) is based on the approximation 4.3.100,
which requires the input to satisfy x ∈ [0, π/4],

tan(x)

x
= 1 + 0.31755 x2 + 0.20330 x4 + ε(x). (2.5)

The error term is bounded by |ε(x)| ≤ 8.1× 10−4. The speedup over tan is about 5.7.
The function FastTan1(x) is based on the approximation 4.3.101, which requires

the input to satisfy x ∈ [0, π/2],

tan(x)

x
= 1 + 0.3333314036 x2 + 0.1333923995 x4 + 0.0533740603 x6

+ 0.0245650893 x8 + 0.0029005250 x10

+ 0.0095168091 x12 + ε(x). (2.6)

The error term is bounded by |ε(x)| ≤ 1.9 × 10−8. The speedup over tan is about 3.3.
Fast approximations to the inverse sine function are implemented by Math::

FastInvSin0 and Math::FastInvSin1. The function FastInvSin0(x) is based on the
approximation 4.4.45, which requires the input to satisfy x ∈ [0, 1],

arcsin(x) = π

2
− √

1 − x (1.5707288 − 0.2121144 x

+ 0.0742610 x2 − 0.0187293 x3) + ε(x). (2.7)

The error term is bounded by |ε(x)| ≤ 6.8 × 10−5. The speedup over asin is about
7.5.

The function FastInvSin1(x) is based on the approximation 4.4.46, which re-
quires the input to satisfy x ∈ [0, 1],

arcsin(x) = π

2
− √

1 − x (1.5707963050 − 0.2145988016 x + 0.0889789874 x2

− 0.0501743046 x3 + 0.0308918810 x4 − 0.01708812556 x5

+ 0.0066700901 x6 − 0.0012624911 x7) + ε(x). (2.8)

The error term is bounded by |ε(x)| ≤ 1.4 × 10−7. The speedup over asin is about
5.6.

Fast approximations to the inverse cosine function are implemented by Math::
FastInvCos0 and Math::FastInvCos1. The function FastInvCos0(x) uses the iden-
tity arccos(x) = π/2 − arcsin(x) and uses the approximation FastInvSin0(x) for
arcsin(x). The error term is bounded by |ε(x)| ≤ 6.8 × 10−5. The speedup over acos
is about 8.0.
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The function FastInvCos1(x) uses the identity arccos(x) = π/2 − arcsin(x) and
uses the approximation FastInvSin1(x) for arcsin(x). The error term is bounded by
|ε(x)| ≤ 1.3 × 10−7. The speedup over acos is about 5.8.

Fast approximations to the inverse tangent function are implemented by Math::
FastInvTan0 and Math::FastInvTan1. The function FastInvTan0(x) is based on the
approximation 4.4.47, which requires the input to satisfy x ∈ [−1, 1],

arctan(x) = 0.9998660 x − 0.3302995 x3 + 0.1801410 x5 − 0.0851330 x7

+ 0.0208351 x9 + ε(x). (2.9)

The error term is bounded by |ε(x)| ≤ 1.2 × 10−5. The speedup over atan is about
2.8.

The function FastInvTan1(x) is based on the approximation 4.4.49, which re-
quires the input to satisfy x ∈ [−1, 1],

arctan(x)

x
= 1 − 0.3333314528 x2 + 0.1999355085 x4 − 0.1420889944 x6

+ 0.1065626393 x8 − 0.0752896400 x10 + 0.0429096138 x12

− 0.0161657367 x14 + 0.0028662257 x16 + ε(x). (2.10)

The error term is bounded by |ε(x)| ≤ 2.3 × 10−8. The speedup over atan is about
1.8.

The function Math::FastInvSqrt implements the fast computation of an inverse
square root by formulating the calculation as a root-finding problem, and then using
one iterate (or more) of Newton’s method. Specifically, given x > 0, compute y =
1/

√
x. Rewrite this equation as

F(y) = 1

y2
− x = 0.

Given an initial guess y0, Newton’s iterates are

yn+1 = yn − F(yn)

F ′(yn)
= yn(1.5 − 0.5xy2

n
), n ≥ 0.

The technical challenge is to select a good initial guess y0, as is true for any problem
using Newton’s method.

An interesting hack for this was posted to Usenet and has an undetermined his-
tory. No explanation for the hack was provided in the post, so I tried to reverse-
engineer the code and produce the algorithm. This process is described in [Ebe02]
and applies to the float function. Another online document, [Lom03], provides
more detail about the choice of a particular magic constant, but the details are quite
mathematical. This document does provide a magic constant for the double function.
The implementations are
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float Mathf::FastInvSqrt (float fValue)
{

float fHalf = 0.5f*fValue;
int i = *(int*)&fValue;
i = 0x5f3759df - (i >> 1);
fValue = *(float*)&i;
fValue = fValue*(1.5f - fHalf*fValue*fValue);
return fValue;

}

double Mathd::FastInvSqrt (double dValue)
{

double dHalf = 0.5*dValue;
long long i = *(long long*)&dValue;
i = 0x5fe6ec85e7de30da - (i >> 1);
dValue = *(double*)&i;
dValue = dValue*(1.5 - dHalf*dValue*dValue);
return dValue;

}

The aforementioned documents describe how the magic constants in the third lines
of the functions come about. The fourth lines provide the initial guess y0. The fifth
lines are for one iteration of Newton’s method to produce y1, the value that approxi-
mates the inverse square root.

2.2.3 Vectors

The engine has classes for vectors in 2, 3, and 4 dimensions, named Vector2, Vector3,
and Vector4, respectively. Two main goals must be achieved in designing these classes.
One of these goals is clearly having support for the algebraic and geometric opera-
tions that are associated with vectors. These operations may be easily implemented
regardless of the two standard class data member layouts for vector coordinates: a
separate data member per coordinate or an array containing all coordinates. How-
ever, the data member layout itself is an important issue in light of the discussion in
Section 1.2 about how to provide the vertices and attributes to the graphics APIs, so
I will discuss this issue first.

Memory Layout

Consider the class for vectors in two dimensions. A choice must be made between
two data member layouts:
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class Vector2a
{
public:

float x, y;

operator float* () { return (float*)this; }
};

class Vector2b
{
public:

float& X() { return m_afTuple[0]; }
float& Y() { return m_afTuple[1]; }

operator float* () { return (float*)this; }

private:
float m_afTuple[2];

};

Vector2a makes its members public for convenience since there are no side effects
for reading or writing the members. Vector2b makes its members private to avoid
accidental use of out-of-range indices into the tuple array.

Both classes have an implicit conversion to a float* pointer. Such conversions are
generally dangerous, so you need to be careful in providing them. The main issue is
about the memory layout that the compiler generates for the classes. In C++, any
class that has virtual functions must have, as part of an object’s memory layout, a
pointer to a virtual function table. The table supports derivation and the possibility
that a derived class implements a virtual function from the base class. The entries
in the table are the virtual function pointers specific to the class. The table is used
at run time to determine the correct function to call when the object is accessed
polymorphically. For example,

class Base
{
public:

Base (int iFQ)
{

m_iFQ = iFQ;
m_afFArray = new float[m_iFQ];

}

virtual ~Base ()
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{
delete[] m_pfFArray;

}

virtual void SetToZero ()
{

memset(m_afFArray,0,m_iFQ*sizeof(float));
}

virtual void DoSomethingSilly () const
{

m_afFValue[0] += 1.0f;
}

protected:
int m_iFQ;
float* m_afFArray;

};

class Derived : public Base
{
public:

Derived (int iFQ, int iIQ)
:
Base(iFQ)

{
m_iIQ = iIQ;
m_piIValue = new int[m_iIQ];

}

virtual ~Derived ()
{

delete[] m_piIValue;
}

virtual void SetToZero ()
{

Base::SetToZero();
memset(m_piIArray,0,m_iIQ*sizeof(int));

}

virtual

protected:
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int m_iIQ;
int* m_piIArray;

};

The base class has a virtual function table with three entries:

Base::VFT[3] =
{

&~Base(),
&Base::SetToZero,
&Base::DoSomethingSilly

};

The table may be thought of as static class data (a single instance) and is accessible by
all Base objects.

The memory layout for a single object of the Base class is

Base::VFT*
int
int*

The derived class has a virtual function table, also with three entries:

Derived::VFT[3] =
{

&~Derived(),
&Derived::SetToZero,
&Base::DoSomethingSilly

};

The last table entry is the same as in the Base class since the Derived class does not
override with its own implementation. The memory layout for a single object of the
Derived class is

Derived::VFT*
int
float*
int
int*

The following code block creates a Derived object, but keeps hold on it by a Base
class pointer:
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Base* pkObject = new Derived(17,10);
pkObject->SetToZero(); // calls Derived::SetToZero
pkObject->DoSomethingSilly(); // calls Base::DoSomethingSilly
delete pkObject; // calls ~Derived

Even though pkObject is a pointer of type Base*, the compiler generates code to look
up in the object’s virtual function table Derived::VFT the correct SetToZero to call.
In order for this to happen, the object itself must provide a way to access the correct
table—thus the need to store a pointer to the table. On a 32-bit system, the following
numbers are reported:

int iBSize = sizeof(Base); // iBSize is 12
int iDSize = sizeof(Derived); // iDSize is 20

The Base class requires 4 bytes for m_iFQ, 4 bytes for m_afFArray, and 4 bytes for the
pointer to the virtual function table. The Derived class requires an additional 4 bytes
for m_iIQ and 4 bytes for m_aiIArray.

How does this relate back to Vector2a and Vector2b? If you chose to have virtual
functions in these classes with the intent of deriving classes from them, the memory
layout contains the virtual function table in addition to the floating-point coordi-
nates. If you had a virtual function table and you tried something like

class Vector2a
{
public:

virtual ~Vector2a (); // virtual destructor for derivation
float x, y;
operator float* () { return (float*)this; }

};

void ProcessThisVector (float* afCoordinates)
{

float fX = afCoordinates[0];
float fY = afCoordinates[1];
// do something with fX, fY, ...

};

// The memory layout of Vector2a causes this not to work correctly.
Vector2a kV = <some vector>;
ProcessThisVector(kV);

you will not get the results you want. The implicit conversion from kV to a float*
is executed, so the address of kV is what is passed as afCoordinates. The dereference
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afCoordinates[0] will actually fetch the first 4 bytes of the virtual function table (a
function pointer) and interpret it as a floating-point number. Therefore, fX effectively
stores garbage, and the value fY stores kV.x. The example might seem contrived, but
in fact when you provide an array of float to the graphics API as an attempt to
reinterpret a collection of vertices as a contiguous collection of floating-point values,
you need to worry about the memory layout and unintended consequences.

You might consider different implementations of the implicit conversion:

class Vector2a
{
public:

virtual ~Vector2a (); // virtual destructor for derivation
float x, y;
operator float* () { return &x; }

};

// The conversion bypasses the ‘this’ pointer and behaves as you
// expect (maybe).
Vector2a kV = <some vector>;
ProcessThisVector(kV);

void ProcessThisVectorArray (int iNumVertices,
float* afCoordinates)

{
for (int i = 0; i < iNumVertices; i++)
{

float fX = afCoordinates[2*i];
float fY = afCoordinates[2*i+1];
// do something with fX, fY, ...

}
};

// This assumes akArray has (x[0],y[0],x[1],y[1],...),
// which it does not.
Vector2a* akArray = <some array of vectors>;
ProcessThisVectorArray((float*)akArray);

In the array processing, because Vector2a has a virtual function (the class destructor),
an object’s memory layout has a pointer to the virtual function table followed by
two floating-point values: vft*, float, float. The dereferencing of afCoordinates in
ProcessThisVectorArray fails, just as it did in the earlier example. The design choice
that classes Vector2a and Vector2b have no virtual functions is solely intended (1) to
allow a single object to be safely typecast via an implicit conversion to a pointer to an
array of two float values and (2) to allow an array of objects to be safely typecast to
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a pointer to an array of float values whose number of entries is twice the number of
objects. Various other classes in Wild Magic also make this choice, namely, matrices,
quaternions, and colors. These all have implicit operator conversions to pointers to
float.

A long story, but it is still not complete. In the previous example for Vector2a,
where the conversion operator returned the address of member x, the comment be-
fore the call to ProcessThisVector indicates that the conversion “behaves as you ex-
pect (maybe).” In fact, this is true on a 32-bit system with a standard compiler setting
to align data on 32-bit boundaries. That is, the x and y values are each 32 bits and
contiguous in memory. However, on a 64-bit system where a compiler is configured
to align data on 64-bit boundaries, x and y will not be contiguous in memory; there
will be a 32-bit gap between the two. Once again the implicit conversion is incorrect!

Even on a 32-bit system, alignment issues should be of concern. Recall that the C
language does not guarantee how members of a struct are aligned. Similarly, C++
does not guarantee how members of a class are aligned. For example, standard
compiler settings for

class MyClass1 { public: int i; char c; float f; };

will cause the value of sizeof(MyClass1) on a 32-bit system to be 12. Even though i
and f each require 4 bytes of storage and c requires 1 byte of storage, a compiler will
store c in a 32-bit quantity for alignment. Consider now

class MyClass2 { public: int i; char c1; float f; char c2; };
class MyClass3 { public: int i; float f; char c1; char c2; };

Using standard alignment on a 32-bit system, sizeof(MyClass2) has value 16 and
sizeof(MyClass3) has value 12. If you have a lot of objects of these types, it is better
to use the layout in MyClass3 to minimize memory use.

Regarding the memory layout for vectors with float components, if you wish for
your engine to run on both 32- and 64-bit systems, and you intend to support implicit
operator conversions to pointers to float, the layout of the type Vector2a is not safe.
You must use the layout of the type Vector2b because the C and C++ languages do
guarantee that an array of a native type such as float has contiguous values. Wild
Magic 1.x used the Vector2a layout. When I changed it to the layout of Vector2b, a
few engine users complained about the verbosity of accessing members with X() and
Y(). Yes, the use of the classes is slightly more verbose, but the trade-off is that the
code now safely runs on both 32- and 64-bit systems. The older version would have
problems on a 64-bit system.

Vector Templates and Basic Operations

The vector classes are template based with type Real replaced either by float or dou-
ble. For every dimension, the classes have default constructors that initialize the data
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members to zero. The classes also have copy constructors and assignment operators.
The only other constructors are those that allow you to pass in the individual com-
ponents to initialize the vectors.

The classes all have static constant vectors, namely, the zero vector and the stan-
dard basis vectors. In Vector2, the member ZERO represents the zero vector (0, 0), the
member UNIT_X represents the basis vector (1, 0), and the member UNIT_Y represents
the basis vector (0, 1). Static data members in template classes are always problem-
atic. If the template class body is exposed to an application that uses two (or more)
execution modules, a dynamic-link library (DLL) and the executable (EXE) itself, for
example, it is possible that two copies of the static member are generated, one in each
execution module. This ambiguity can be fatal to applications. In fact, this was a clas-
sic problem with the Standard Template Library that shipped with Microsoft’s Visual
C++, version 6. The xtree template class that encapsulated red-black trees had a
static member that represented a nil node in the tree. Any application using STL and
a dynamic-link library was susceptible to crashes because the application code would
traverse an STL structure that was created in the DLL, but with comparisons made
to the nil node generated in the EXE.1 The multiple instantiation of template static
data members is not of concern if the data members are intended to be constant, as
is the zero vector and the basis vectors. The multiple instantiations all have the same
value, so which one is accessed is not of concern (unless you try comparing to the
address of the members). Even so, Wild Magic 2.x and 3.x instantiate the static, con-
stant class members in the library source files and do not expose the template body,
thereby avoiding an unintended instantiation elsewhere.

Member Access

All classes provided the facilities for implicit operator conversion, as discussed earlier,
and for member access by array brackets. For example,

template <class Real>
class Vector3
{
public:

operator const Real* () const;
operator Real* ();
Real operator[] (int i) const;
Real& operator[] (int i);

};

1. Microsoft was not to blame. The STL was a third-party package from Dinkumware that, due to legal
reasons between Dinkumware and another company, could not be updated in Microsoft-supplied service
packs until the legal issues were resolved. A fix was available at Dinkumware’s Web site. Visual C++
versions 7.x (the .NET versions) no longer have this problem.
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Vector3<float> kU = <some vector>, kV;
kV[0] = 1.0f;
kV[1] = 2.0f * kU[1] - 0.5f* kU[2];
kV[2] = kU[0];

All classes provide named member access. For example,

template <class Real>
class Vector3
{
public:

Real X () const;
Real& X ();
Real Y () const;
Real& Y ();
Real Z () const;
Real& Z ();

};

Vector3<float> kU = <some vector>, kV;
kV.X() = 1.0f;
kV.Y() = 2.0f * kU.Y() - 0.5f* kU.Z();
kV.Z() = kU.X();

Comparison Operators

The classes have comparison operators to support sorting:

template <class Real>
class Vector3
{
public:

bool operator== (const Vector3& rkV) const;
bool operator!= (const Vector3& rkV) const;
bool operator< (const Vector3& rkV) const;
bool operator<= (const Vector3& rkV) const;
bool operator> (const Vector3& rkV) const;
bool operator>= (const Vector3& rkV) const;

};

The comparison treats the member data as a contiguous array of unsigned integers
representing a nonnegative binary number. Comparisons between binary numbers
are straightforward. For example, these are useful when building hash tables of ver-
tices in order to identify vertices that are (nearly) the same.
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Algebraic Operations

All classes have implemented algebraic operations. These functions are the ones most
programmers tend to focus on since the classes are about vectors, which naturally
have an algebraic flavor. The N in the class name is either 2, 3, or 4.

template <class Real>
class VectorN
{
public:

VectorN operator+ (const VectorN& rkV) const;
VectorN operator- (const VectorN& rkV) const;
VectorN operator* (Real fScalar) const;
VectorN operator/ (Real fScalar) const;
VectorN operator- () const;
VectorN& operator+= (const VectorN& rkV);
VectorN& operator-= (const VectorN& rkV);
VectorN& operator*= (Real fScalar);
VectorN& operator/= (Real fScalar);

};

// The member function operator*(Real) supports
// ‘‘VectorN * Real’’. This function supports
// ‘‘Real * VectorN’’.
template <class Real>
VectorN<Real> operator* (Real fScalar, const VectorN<Real>& rkV);

The implementations of all the operators are straightforward.

Geometric Operations

All classes have implemented standard geometric operations that are common to all
dimensions:

template <class Real>
class VectorN
{
public:

Real Length () const;
Real SquaredLength () const;
Real Dot (const VectorN& rkV) const;
Real Normalize ();

};
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If U = (u0, . . . , uN−1) and V = (v0, . . . , vN−1) are two N-tuples, then the
length of U is

|U| =
√

u2
0 + . . . + u2

N−1,

the squared length is

|U|2 = u2
0 + . . . + u2

N−1,

and the dot product of the two vectors is

U · V = u0v0 + . . . + uN−1vN−1.

The normalized vector for V �= 0 is the unit-length vector

U = V

|V| = (v0, . . . , vN−1)√
v2

0 + . . . + v2
N−1

.

The class function Normalize returns the length of V that was computed during nor-
malization, just in case the application needs to know this information. For numerical
robustness, in the event the original vector is nearly zero, the normalized vector is set
to zero and the returned length is zero.

The remaining geometric operations are specific to the dimension of the class. In
two dimensions, we have

template <class Real>
class Vector2
{
public:

Vector2 Perp () const;
Vector2 UnitPerp () const;
Real Kross (const Vector2& rkV) const;
static void Orthonormalize (Vector2& rkU, Vector2& rkV);
static void GenerateOrthonormalBasis (Vector2& rkU,

Vector2& rkV, bool bUnitLengthV);
};

Given a vector (x , y), it is sometimes convenient to choose a vector perpendicular
to it. The simplest way to do this is to swap components and change the sign of one
of them, (x , y)⊥ = (y , −x). This is called the perp operation and is implemented in
Vector2::Perp. In a sense, this is the natural specialization of the three-dimensional
cross product to two dimensions. In three dimensions, if ııı = (1, 0, 0), jjj = (0, 1, 0),
and kkk = (0, 0, 1), then the cross product of (x0, y0, z0) and (x1, y1, z1) is written as a
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formal determinant

(x0, y0, z0) × (x1, y1, z1) = det

⎡
⎣ ııı jjj kkk

x0 y0 z0
x1 y1 z1

⎤
⎦

= ııı(y0z1 − y1z0) − jjj(x0z1 − x1z0) + kkk(x0y1 − x1y0)

= (y0z1 − y1z0, x1z0 − x0z1, x0y1 − x1y0).

The determinant is evaluated by a cofactor expansion across the first row. The cross
product is a vector perpendicular to its two input vectors. In two dimensions, we may
similarly formulate the perp vector as

(x , y)⊥ = det

[
ııı jjj

x y

]
= ııı(y) − jjj(x) = (y , −x),

where ııı = (1, 0) and jjj = (0, 1). The perp vector is perpendicular to its only in-
put vector. The function Vector2::Perp computes the perp vector. The function
Vector2::UnitPerp computes the perp vector and then normalizes it to unit length
(or zero if the original vector is zero).

A related operation is called the dot perp operation, implemented by Vector2::
DotPerp. Given two vectors (x0, y0) and (x1, y1), the dot perp is the scalar

(x0, y0) · (x1, y1)
⊥ = (x0, y0) · (y1, −x1) = x0y1 − x1y0 = det

[
x0 y0
x1 y1

]
.

The operation is analogous to the triple scalar product in three dimensions:

(x0, y0, z0) · (x1, y1, z1) × (x2, y2, z2) = det

⎡
⎣ x0 y0 z0

x1 y1 z1
x2 y2 z2

⎤
⎦

= x0(y1z2 − y2z1) − y0(x1z2 − x2z1) + z0(x1y2 − x2y1).

The operation may also be thought of in terms of 3D cross products

(x0, y0, 0) × (x1, y1, 0) = (0, 0, x0y1 − x1y0),

so the dot perp is the z-component of the cross product of the two input vectors when
considered as vectors in the z = 0 plane. The function Vector2::DotPerp computes the
dot perp operation.

Given two nonparallel vectors V0 = (x0, y0) and V1 = (x1, y1), there are times
when we want to compute two unit-length and perpendicular vectors from these,
call them U0 and U1. The process is called Gram-Schmidt orthonormalization and is



2.2 The Mathematics System 73

implemented by Vector2::Orthonormalize. The first vector is obtained from V0 by
normalization:

U0 = V0

|V0|
.

The second vector is obtained by projecting out of V1 the component in the U0
direction, then normalizing the result:

U1 = V1 − (U0 · V1)U0

|V1 − (U0 · V1)U0|
.

U0 and U1 were obtained by normalization, so they are unit length. Also,

U0 · (V1 − (U0 · V1)U0) = (U0 · V1) − (U0 · V1)(U0 · U0)

= (U0 · V1) − (U0 · V1) = 0,

so U0 and U1 are perpendicular.
Given a nonzero vector V, the function Vector2::GenerateOrthonormalBasis

computes in place a pair of unit-length and perpendicular vectors. One of these is
U0 = V/|V|; the other is U1 = U⊥

0 . If it is already known that V is unit length, the
function GenerateOrthonormalBasis has a Boolean parameter to provide that hint, in
which case the function does not have to normalize V.

In three dimensions, the extra geometric operations are

template <class Real>
class Vector3
{
public:

Vector3 Cross (const Vector3& rkV) const;
Vector3 UnitCross (const Vector3& rkV) const;
static void Orthonormalize (Vector3& rkU, Vector3& rkV,

Vector3& rkW);
static void Orthonormalize (Vector3* akV);
static void GenerateOrthonormalBasis (Vector3& rkU,

Vector3& rkV, Vector3& rkW, bool bUnitLengthW);
};

If V0 is the vector for the calling object and V1 is the input vector to the function
Vector3::Cross, then the returned vector is

V0 × V1
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The function Vector3::UnitCross computes the cross product, then normalizes
and returns it:

V0 × V1

|V0 × V1|

The function Vector3::Orthonormalize uses Gram-Schmidt orthonormalization
applied to the three input vectors and stores in place three unit-length and mutually
perpendicular vectors. If Vi, 0 ≤ i ≤ 2, are the three input vectors, and if Ui are the
output orthonormal vectors, then

U0 = V0

|V0|
.

The second vector is obtained by projecting out of V1 the component in the U0
direction and normalizing, just like we did in two dimensions:

U1 = V1 − (U0 · V1)U0

|V1 − (U0 · V1)U0|
.

The fact that we projected out U0 makes U1 and U0 perpendicular. The third vector
is obtained by projecting out of V2 the components in the U0 and U1 directions and
normalizing:

U2 = V2 − (U0 · V2)U0 − (U1 · V2)U1

|V2 − (U0 · V2)U0 − (U1 · V2)U1|
.

The resulting vector is necessarily perpendicular to U0 and U1.
Given a nonzero vector W, the function Vector3::GenerateOrthonormalBasis

computes in place a triple of unit-length and perpendicular vectors. One of these
is U0 = W/|W|. There are infinitely many pairs of orthonormal vectors perpendicu-
lar to U0. To obtain a vector U1, two components of U0 are swapped and one of those
components has its sign changed. The remaining component is set to zero. In order
to be numerically robust, the swap occurs with the component of largest absolute
magnitude.

U0 = W/Length(W);
if ( |W.x| >= |W.y| )
{

// W.x or W.z is the largest-magnitude component, swap them
U1.x = -W.z;
U1.y = 0;
U1.z = +W.x;

}
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else
{

// W.y or W.z is the larges-magnitude component, swap them
U1.x = 0;
U1.y = +W.z;
U1.z = -W.y;

}
U1 /= Length(U1);
U2 = Cross(U0,U1);

As in the two-dimensional case, if W is unit length, the function GenerateOrthonor-
malBasis has a Boolean parameter to provide that hint, in which case the function
does not have to normalize W.

2.2.4 Matrices

The engine has classes for square matrices in 2, 3, and 4 dimensions, named Matrix2,
Matrix3, and Matrix4, respectively. The goals for memory layout are the same as for
vectors. The matrix classes have no virtual functions, and the matrix elements are
stored in a one-dimensional array of floating-point numbers; these two conditions
guarantee that you can safely (1) typecast a matrix as a pointer float* or double* and
(2) typecast an array of matrices as a pointer float* or double*. The general layout is
the following, where N is either 2, 3, or 4 and Real is float or double:

template <class Real>
class MatrixN
{
public:

operator const Real* () const;
operator Real* ();

private:
Real* m_afTuple[N*N];

};

For memory organization it might seem natural to choose Real[N][N] for the
matrix storage, but this can be a problem on a platform that chooses to store the
data in column-major rather than row-major format. To avoid potential portability
problems, the matrix is stored as Real[N*N] and organized in row-major order; that
is, the entry of the matrix in row r , with 0 ≤ r < N , and column c, with 0 ≤ c < N ,
is stored at index i = c + Nr , with 0 ≤ i < N2.

Matrix Conventions

Layout is one thing, but interpretation of matrix-matrix and matrix-vector opera-
tions is another. One of the biggest sources of pain in architecting an engine is having
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to deal with matrix conventions, say, from a graphics API, that are different than your
own. The chances are that you already had a lot of matrix and vector code in place.
Reimplementing these to conform to someone else’s conventions can be a time sink.
Whether you do or do not, it is important to understand what the conventions are
of any systems you use. And it is important to let users of your engine know what
conventions you have chosen. Here are the conventions used in Wild Magic.

Matrix operations are applied on the left. For example, given a matrix M and a
vector V, matrix times vector is MV; that is, V is treated as a column vector. Some
graphics APIs use VM , where V is treated as a row vector. In this context the matrix
M is really a transpose of the one represented in Wild Magic. Similarly, to apply
two matrix operations M0 and M1, in that order, you compute M1M0 so that the
transform of a column vector is

(M1M0)V = M1(M0V).

Some graphics APIs use M0M1, but again these matrices are the transpose of those
as represented in Wild Magic. You must therefore be careful about how you in-
terface the transformation code with graphics APIs. For example, OpenGL uses
the convention VM for matrix times a vector. In the renderer function OpenGLRen-
derer::SetWorldMatrix, the Wild Magic world matrix for the to-be-drawn object
is computed from its local components and copied into a one-dimensional array
that corresponds to the representation OpenGL uses, a transpose of the Wild Magic
matrix.

Another convention to be aware of is what rotation matrices mean. In two dimen-
sions, Wild Magic represents a rotation matrix by

R =
[

cos θ − sin θ

sin θ cos θ

]
= I + (sin θ)S + (1 − cos θ)S2, (2.11)

where I is the identity matrix and S is the skew-symmetric matrix, as shown:

I =
[

1 0
0 1

]
, S =

[
0 −1
1 0

]
.

For a positive angle θ , RV rotates the 2 × 1 vector V counterclockwise about the origin
(see Figure 2.1).

Some rotation systems might associate a positive angle with a clockwise rotation
about the origin. If you use such a system with Wild Magic, you must be careful how
you present a Wild Magic matrix to it.

In three dimensions, consider a rotation about an axis through the origin with
unit-length direction W = (w0, w1, w2) and angle θ . Wild Magic represents a rota-
tion matrix by

R = I + (sin θ)S + (1 − cos θ)S2, (2.12)
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y
RV

V
x

 > 0

Figure 2.1 A positive angle corresponds to a counterclockwise rotation.

 > 0

W

U

V0

Figure 2.2 A positive angle corresponds to a counterclockwise rotation when looking in the
negative direction, −W, of the axis of rotation. The vectors U and V are unit length,
perpendicular, and in the plane perpendicular to W.

where I is the identity matrix and S is a skew-symmetric matrix, as shown:

I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , S =

⎡
⎣ 0 −w2 w1

w2 0 −w0
−w1 w0 0

⎤
⎦ .

The rotation is in the plane perpendicular to W and containing the origin. If you are
an observer looking along the axis of rotation in the direction −W, a positive angle
θ corresponds to a counterclockwise rotation in the observed plane (see Figure 2.2).
The rotation matrix for rotation about the x-axis is

Rx(θ) =
⎡
⎣ 1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎤
⎦ . (2.13)
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The rotation matrix for rotation about the y-axis is

Ry(θ) =
⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ . (2.14)

The rotation matrix for rotation about the z-axis is

Rz(θ) =
⎡
⎣ cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦ . (2.15)

You may think of the 2D rotation as a special case where the rotation axis has
direction W = (0, 0, 1). When you look in the direction (0, 0, −1), you see the xy-
plane (z = 0), and a positive angle corresponds to a counterclockwise rotation in that
plane.

Common Operations

As was the case for the vector classes, the matrix classes have a lot of common oper-
ations, including default constructors, copy constructors, assignment, comparisons
for use in sorting, implicit conversions to pointers, member access, and matrix al-
gebra. Also included are somewhat higher-level operations. A summary of methods
that are common to all the classes is listed next, where N is either 2, 3, or 4.

template <class Real>
class MatrixN
{
public:

// construction
MatrixN ();
MatrixN (const Matrix3& rkM);
MatrixN (bool bZero);
MatrixN (const Real afEntry[N*N], bool bRowMajor);

void MakeZero ();
void MakeIdentity ();

// member access
operator const Real* () const;
operator Real* ();
const Real* operator[] (int iRow) const;
Real* operator[] (int iRow);
Real operator() (int iRow, int iCol) const;
Real& operator() (int iRow, int iCol);
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void SetRow (int iRow, const VectorN<Real>& rkV);
VectorN<Real> GetRow (int iRow) const;
void SetColumn (int iCol, const VectorN<Real>& rkV);
VectorN<Real> GetColumn (int iCol) const;
void GetColumnMajor (Real* afCMajor) const;

// assignment
MatrixN& operator= (const MatrixN& rkM);

// comparison
bool operator== (const MatrixN& rkM) const;
bool operator!= (const MatrixN& rkM) const;
bool operator< (const MatrixN& rkM) const;
bool operator<= (const MatrixN& rkM) const;
bool operator> (const MatrixN& rkM) const;
bool operator>= (const MatrixN& rkM) const;

// arithmetic operations
MatrixN operator+ (const MatrixN& rkM) const;
MatrixN operator- (const MatrixN& rkM) const;
MatrixN operator* (const MatrixN& rkM) const;
MatrixN operator* (Real fScalar) const;
MatrixN operator/ (Real fScalar) const;
MatrixN operator- () const;

// arithmetic updates
MatrixN& operator+= (const MatrixN& rkM);
MatrixN& operator-= (const MatrixN& rkM);
MatrixN& operator*= (Real fScalar);
MatrixN& operator/= (Real fScalar);

// matrix times vector
VectorN<Real> operator* (const VectorN<Real>& rkV) const;

// other operations
MatrixN Transpose () const;
MatrixN TransposeTimes (const MatrixN& rkM) const;
MatrixN TimesTranspose (const MatrixN& rkM) const;
MatrixN Inverse () const;
MatrixN Adjoint () const;
Real Determinant () const;
Real QForm (const Vector4<Real>& rkU,

const Vector4<Real>& rkV) const;
};
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// c*M where c is a scalar, M a matrix
template <class Real>
MatrixN<Real> operator* (Real fScalar, const MatrixN<Real>& rkM);

// vector times matrix, v^T * M
template <class Real>
VectorN<Real> operator* (const VectorN<Real>& rkV,

const MatrixN<Real>& rkM);

Constructors and Assignment

The classes have default constructors, copy constructors, and assignment operators.
The default constructor initializes the matrix to zero. The constructor MatrixN(bool)
creates a zero matrix if the input Boolean parameter is true; otherwise, it creates the
identity matrix. The constructor MatrixN(const Real[], bool) creates a matrix and
copies the input N × N matrix to it. If the Boolean parameter is true, the input
matrix is copied directly to the created matrix (in row-major order). If the Boolean
parameter is false, the transpose of the input matrix is copied to the created matrix.

Member Access

The members MatrixN::operator const Real* and MatrixN::operator Real* are for
implicit conversion of the matrix to a pointer to an array of floating-point numbers.
The matrix is stored in row-major order in a one-dimensional array.

The members const Real* MatrixN::operator[] and Real* MatrixN::operator[]
allow you to access the rows of a MatrixN object using the same syntax that applies to
a stack-based 2D array:

Matrix2f kM = <some matrix of float values>;
float* afRow0 = kM[0];
float* afRow1 = kM[1];
float afEntry01 = kM[0][1];

These operators provide one method for accessing matrix entries. Another mech-
anism is provided by the member Real MatrixN::operator()(int,int) const for
read-only access and by the member Real& MatrixN::operator(int,int) for read-
write access:

Matrix3f kM = <some matrix of float values>;
kM(0,1) = 1.0f;
kM(2,1) = kM(1,2);
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In some cases you might want to access an entire row or column of a ma-
trix. The members MatrixN::SetRow, MatrixN::GetRow, MatrixN::SetColumn, and
MatrixN::GetColumn are used to this end.

Finally, for transferring matrix data to systems that store matrices in column-
major order in a one-dimensional array, the member function MatrixN::
GetColumnMajor fills in a user-supplied one-dimensional array with the correct
entries.

Comparisons

The comparisons are similar to those for vectors. The member data is treated as a
contiguous array of unsigned integers representing a nonnegative binary number.
Comparisons between binary numbers are straightforward. For example, these are
useful when building hash tables of vertices in order to identify vertices that are
(nearly) the same.

Arithmetic Operations

The arithmetic operations are for matrix-matrix algebra, including addition and sub-
traction of matrices, multiplication and division of a matrix by a scalar, and matrix-
matrix products. The latter operation is always well defined since both matrices are
square and of the same size. One of the most common operations in the engine is
matrix times vector. Given a matrix M and a column vector V, the member func-
tion MatrixN::operator*(const VectorN<Real>&) computes MV. The global function
MatrixN::operator*(const VectorN<Real>&, const MatrixN<Real>&) computes VTM ,
which is considered after the fact to be a column vector (the algebraic quantity is a
row vector). This is a convenience to avoid the cost of computing the transpose of M

followed by MTV.

Other Operations

The remaining common operations are found frequently in applications.
Given a square matrix M , its transpose MT is obtained by swapping rows and col-

umns. If M = [mrc], where mrc is the entry in row r and column c, then MT = [m′
rc

],
where m′

rc
= mcr . The entry m′

rc
is in row r and column c of the transpose; it is the

entry in row c and column r of the original matrix. The function MatrixN::Transpose
computes MT and returns it.

Two convenient matrix products are MT
0 M1, computed by the member function

MatrixN::TransposeTimes, and M0M
T
1 , computed by the member function

MatrixN::TimesTranspose. Code samples are
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MatrixN kM0 = <some N-by-N matrix>;
MatrixN kM1 = <another N-by-N matrix>;
MatrixN kM0M1 = kM0 * kM1; // = kM0.operator*(kM1)
MatrixN kM0TrnM1 = kM0.TransposeTimes(kM1); // M0^T * M1
MatrixN kM0M1Trn = kM0.TimesTranspose(kM1); // M0 * M1^T

Given a square matrix M , its inverse (if it exists) is denoted M−1 and has the prop-
erties MM−1 = M−1M = I , where I is the identity. Not all matrices have inverses
(the zero matrix, for example), but in most cases matrices are used in the engine for
mapping data between coordinate systems. These matrices are invertible. The mem-
ber function MatrixN::Inverse attempts to compute the inverse matrix. If it exists,
that matrix is returned by the function. If it does not, the zero matrix is returned as a
way of communicating to the caller that the matrix is not invertible. The implemen-
tations construct the inverses by the identity

M−1 = 1

det(M)
Madj,

where det(M) is the determinant of the matrix, necessarily nonzero for the inverse
to exist, and Madj is the adjoint matrix, which is the transpose of the matrix of
cofactors of M . The construction for 4 × 4 matrices is not the standard one that
uses cofactors from 3 × 3 submatrices. In fact, it uses 2 × 2 submatrices and greatly
reduces the operation count compared to the standard method. The expansion of
this form is known as the Laplace expansion theorem; see [Pea85, Section 16.2.3]. The
adjoint matrix may be computed by itself via the member function MatrixN::Adjoint.
The determinant is computed by the member function MatrixN::Determinant. This
construction also uses the cofactor expansion.

The final common operation is a quadratic form. Given column vectors U and V
and a matrix M , the form is UTMV, a scalar.2 The member function MatrixN::QForm
computes the quadratic form.

Operations Specific to 2D

Specific operations for 2D are

template <class Real>
class Matrix2
{
public:

2. The term quadratic form is usually associated with VTMV, where the left and right vectors are the same.
My use of the term to cover the more general case UTMV might be viewed as an abuse of the mathematical
definition.
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void ToAngle (Real& rfAngle) const;
void Orthonormalize ();
void EigenDecomposition (Matrix2& rkRot,

Matrix2& rkDiag) const;
};

The method Matrix2::ToAngle requires the matrix to be a rotation and extracts
an angle of rotation. The angle is

θ = atan 2(sin θ , cos θ) = atan 2(r00, r10).

The method Matrix2::Orthonormalize requires the matrix to be a rotation and
applies Gram-Schmidt orthonormalization to its columns. The first column is nor-
malized, and the second column is adjusted by subtracting out its projection onto
the normalized first column. This operation is useful when the rotation is updated
frequently through concatenation with other matrices. Over time, the numerical
round-off errors can accumulate, and the matrix strays from having the properties
of a rotation. An adjustment such as Gram-Schmidt orthonormalization restores the
matrix to a rotation.

A matrix M is said to have an eigenvalue λ and a corresponding eigenvector V,
a nonzero vector, whenever MV = λV. If M and V have only real-valued compo-
nents and if λ is a real number, geometrically the vector V is transformed only in that
its length is scaled by λ. A symmetric, real-valued matrix M is guaranteed to have
only real-valued eigenvalues and a set of eigenvectors that are mutually perpendicu-
lar. The method Matrix2::EigenDecomposition requires the matrix to be symmetric. It
computes the eigenvalues of the matrix and stores them as the diagonal entries of a di-
agonal matrix D. It also computes corresponding eigenvectors and stores them as the
columns of a rotation matrix R. Column i of the rotation matrix is an eigenvector for
diagonal entry i of the diagonal matrix. The matrices are part of the eigendecomposi-
tion of M , a factorization M = RDRT. The methodology for an eigendecomposition
of a symmetric matrix applies in any dimension, in particular, three dimensions.

This topic is much more mathematical than what you normally encounter in
computer graphics, but it is quite useful in a number of circumstances. A real-time
rendering system relies on drawing only what is visible, or potentially visible if the
exact visibility is unknown. Looking at this a different way, if an object is known not
to be visible (i.e., not in the view frustum), then the renderer should not be asked
to draw it. A classical approach to testing for nonvisibility is to associate with the
object an enclosing bounding volume and use culling . If the bounding volume is
outside the view frustum, then the object is outside and the object is culled from
the list of objects to be rendered. The goal is to choose a class of bounding volumes
whose tests for being outside the frustum are inexpensive. The simplest bounding
volume is a sphere, but it is not always a good fit to the complex objects in the scene.
An oriented bounding box (OBB) may be used instead to obtain a better fit, but the
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C

U1 U0

Figure 2.3 A polygon enclosed by an OBB whose center C is the average of the polygon vertices
and whose axes are the eigenvectors of the covariance matrix of the polygon vertices.

trade-off is that the test for being outside the frustum is slightly more expensive than
for a sphere. For a single culling test, the sphere requires less time to process than the
OBB. However, if the sphere partially overlaps the frustum but the contained object
is outside the frustum, the renderer is told to draw the object only to find out that
none of it is visible. Given the object in the same position and orientation, if the OBB
is outside the frustum, then despite the fact that you spent more time determining
this (compared to the sphere), you have not attempted to draw the object. The total
time of culling and rendering is smaller for the box bounding volume than for the
sphere bounding volume. The important information is a comparison of the costs of
culling versus the costs of rendering a nonvisible object for the entire set of objects, not
just for a single object. An amortized analysis is called for to determine which class of
bounding volume is more suited for your applications.

So where does eigendecomposition come into play? You have to construct an OBB
that contains an object. Assuming the object is represented by a triangle mesh with a
collection of vertices Vi, 0 ≤ i < n, the problem is to compute a tight-fitting box that
contains the vertices. The minimum volume OBB is certainly an ideal candidate, but
its construction is a nontrivial process that has roots in computational geometry. A
less optimal candidate is normally used. The OBB center is chosen to be the average of
the mesh vertices. The OBB axes are selected based on the distribution of the vertices.
Specifically, the covariance matrix of the vertices is computed, and the eigenvectors
of this matrix are used as the box axes. Figure 2.3 illustrates the concept in 2D.
The mesh in this case is a polygon. An OBB enclosing the polygon is shown, with
center equal to the average of the polygon vertices and axes based on the vertex
distribution.

A similar type of construction is used to construct a bounding volume hierarchy
of OBBs to represent a triangle mesh for the purposes of collision detection. More
information on both topics is in Section 6.4.2.
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Operations Specific to 3D

Specific operations for 3D are

template <class Real>
class Matrix3
{
public:

void ToAxisAngle (Vector3<Real>& rkAxis,
Real& rfAngle) const;

void Orthonormalize ();
void EigenDecomposition (Matrix3& rkRot,

Matrix3& rkDiag) const;

void FromEulerAnglesXYZ (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesXZY (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesYXZ (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesYZX (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesZXY (Real fYAngle, Real fPAngle,
Real fRAngle);

void FromEulerAnglesZYX (Real fYAngle, Real fPAngle,
Real fRAngle);

bool ToEulerAnglesXYZ (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesXZY (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesYXZ (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesYZX (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesZXY (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

bool ToEulerAnglesZYX (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

static Matrix3 Slerp (Real fT, const Matrix3& rkR0,
const Matrix3& rkR1);

};
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The method Matrix3::ToAxisAngle requires the matrix to be a rotation and ex-
tracts an axis and angle of rotation. The axis direction is unit length. The extraction
is based on Equation (2.12). Some algebra will show that cos(θ) = (Trace(R) − 1)/2,
where Trace(R) is the trace of the matrix R, the sum of the diagonal entries of R. This
allows us to obtain the rotation angle

θ = arccos((Trace(R) − 1)/2).

Also, R − RT = 2 sin(θ)S, where S is formed from the rotation axis components
(w0, w1, w2). As long as θ is not a multiple of π , we may solve for

w0 = r21 − r12

2 sin(θ)
, w1 = r02 − r20

2 sin(θ)
, w2 = r10 − r01

2 sin(θ)
,

where R = [rij]. If θ = 0, the rotation matrix is the identity, and any choice of axis will
do. My choice is (1, 0, 0). If θ = π , R − RT = 0, which prevents us from extracting
the axis through S. Observe that R = I + 2S2, so S2 = (R − I )/2. The diagonal
entries of S2 are w2

0 − 1, w2
1 − 1, and w2

2 − 1. We can solve these for the axis direction
(w0, w1, w2). Because the angle is π , it does not matter which sign you choose on the
square roots.

The method Matrix3::Orthonormalize requires the matrix to be a rotation and
applies Gram-Schmidt orthonormalization to its columns. See the discussion earlier
regarding this operation applied to 2D rotation matrices and to vectors in 3D.

The discussion of eigendecomposition for 2 × 2 symmetric matrices also cov-
ers 3 × 3 symmetric matrices and N × N matrices in general. The function
Matrix3::EigenDecomposition does the decomposition for 3 × 3 matrices.

The next discussion is about the methods Matrix3::FromEulerAnglesUVW and
Matrix3::ToEulerAnglesUVW. A popular topic for representations of rotation matri-
ces is Euler angles. The idea is to represent a rotation matrix as a product of rotation
matrices corresponding to the coordinate axes. For example,

R = Rx(α)Ry(β)Rz(γ )

is a rotation obtained by rotating γ radians about the z-axis, then rotating β radians
about the y-axis, then rotating α radians about the x-axis. Other combinations are
possible, including using the same axis twice (R = Rx(α)Ry(β)Rx(γ )). The attrac-
tion of Euler angles is that it is easy to think about rotations a “channel at a time,”
and most modeling packages support Euler angles for this reason. The disadvantages
of Euler angles are many. Contrary to the previous statement about understanding
rotations a channel at a time, I find it not so easy to think this way. All three rota-
tions are specified relative to a fixed coordinate system (“world” coordinates). After
rotating about one coordinate axis, you have to imagine the rotated object in its new
orientation, then rotate again. And again. I find it easier to assign a coordinate sys-
tem that remains rigid relative to the object (“body” coordinates). Once a rotation is
applied to one body axis, I find it easier to think of how the next rotation occurs for
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another body axis. Better yet, I prefer thinking in the following terms. Imagine the
to-be-rotated vector as a rigid rod. One end point remains fixed to the origin. The
other end point may be positioned on a sphere whose radius is the length of the rod.
You have two degrees of freedom to position the rod (the angles from spherical coor-
dinates). Once positioned, rotate about the axis of the rod, thus consuming the third
degree of freedom. Of course, you may imagine the operations applied in the other
order—rotate about the axis of the rod first, then position the rod on the sphere.

Another disadvantage of Euler angles is that the factorization of a specified rota-
tion matrix into a product of three coordinate axis rotations (all axes specified) is not
always unique. This is related to a problem called gimbal lock. Regardless of my opin-
ion and the nonunique factorization, Matrix3 class provides the ability to compose a
rotation as a product of coordinate rotations and the ability to factor a rotation into
some product of coordinate rotations. The prototype for composition is

void FromEulerAnglesUVW (Real fYAngle, Real fPAngle,
Real fRAngle);

where UVW is either XYZ, XZY, YXZ, YZX, ZXY, or ZYX. The parameters in the function
signature have variable names including Angle. The preceding letter is Y for yaw, P for
pitch, or R for roll. The prototype for factorization is

bool ToEulerAnglesUVW (Real& rfYAngle, Real& rfPAngle,
Real& rfRAngle) const;

where UVW is chosen from one of the six possibilities mentioned earlier. The matrix
class does not have support for combinations with a repeated axis such as XYX. The re-
turn value on the factorization is true if the factorization is unique, false otherwise.
In the latter case, one of the infinitely many factorizations is returned.

A problem that arises in keyframed animation is how to interpolate two rotation
matrices for in-betweening. A common misconception is that you have to resort
to quaternions to do this. In fact, you do not need quaternions; matrix operations
will suffice. However, the computational costs for interpolating using only matrices
is much greater than that for quaternions. Class Matrix3 provides a slerp (spherical
linear interpolation) for two matrices,

static Matrix3 Slerp (Real fT, const Matrix3& rkR0,
const Matrix3& rkR1);

but the keyframe system in the engine uses a quaternion and its associated slerp
function to achieve as much speed as it can. The rotational slerp of two rotation
matrices R0 and R1 for time t ∈ [0, 1] is

R(t) = R0(R
T
0 R1)

t ,
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where we must make sense of the power operation on a matrix M . Assuming such an
operation exists and has properties you would expect, namely, M0 = I (the identity
matrix) and M1 = M , we have R(0) = R0 and R(1) = R1. Generally, it is impossible
to define Mt (0 < t < 1) for all matrices M . However, for rotation matrices R, where
the axis of rotation has unit-length direction W and angle of rotation θ , we can define
Rt to be a rotation about the same axis, but with an angle that is a fraction of the
rotation angle, tθ . A value of t = 0 means no rotation is applied. A value of t = 1
means the full rotation is applied. The method Matrix3::Slerp must compute the
product RT

0 R1, extract its axis and angle of rotation, multiply the angle by t , compute
the rotation for the same axis but new angle of rotation, and then finally multiply that
by R0, all to obtain the interpolated R(t).

Operations Specific to 4D

The Matrix4 classes are used by the engine mainly to store homogeneous matrices.
The operations specific to 4D are useful for the rendering system, and in particular
for planar projected shadows and for planar reflections.

First, let’s consider the method Matrix4::MakeObliqueProjection. The projection
plane is N · (X − P) = 0, where N is a unit-length normal vector and P is a point
on the plane. The projection is oblique to the plane, in the direction of a unit-length
vector D. Necessarily N · D �= 0 for the projection to be defined. Given a point U,
the projection onto the plane is obtained by computing the intersection of the line
U + tD with the plane. Replacing this equation into the plane equation and solving
for t yields

t = −N · (U − P)

N · D
.

The intersection point is

V = P +
(

I − DNT

N · D

)
(U − P),

where I is the 3 × 3 identity matrix. A 4 × 4 homogeneous transformation represent-
ing the projection, written in block-matrix form, is

[
V

1

]
∼
[

V′

w

]
= M

[
U

1

]
=
[

DNT − (N · D)I −(N · P)D

0T −N · D

] [
U

1

]
,

where the equivalency symbol means V = V′/w. The matrix M = [mij], 0 ≤ i ≤ 3
and 0 ≤ j ≤ 3, is chosen so that m33 > 0 whenever N · D < 0; the projection is on the
“positive side” of the plane, so to speak. The method Matrix4::MakeObliqueProjection
takes as input N, P, and D.
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Now let’s look at the method Matrix4::MakePerspectiveProjection. The projec-
tion plane is N · (X − P) = 0, where N is a unit-length normal vector and P is a point
on the plane. The eye point for the projection is E and is assumed not to be on the
plane. Given a point U, the perspective projection onto the plane is the intersection
of the ray E + t (U − E) for some t > 0. Substituting this in the plane equation and
solving for t yields

t = − N · (E − P)

N · (U − E)
.

The point of intersection is

V = E − N · (E − P)

N · (U − E)
(U − E)

= (N · (U − E))E − (N · (E − P))(U − E)

N · (U − E)

= [ENT − (N · (E − P)) I ](U − E)

N · (U − E)
.

A 4 × 4 homogeneous transformation representing the projection, written in block-
matrix form, is[

V

1

]
∼
[

V′

w

]
= M

[
U

1

]

=
[

(N · (E − P))I − ENT −[(N · (E − P))I − ENT]E

−NT N · E

] [
U

1

]
,

where the equivalency symbol means V = V′/w. The method Matrix4::
MakePerspectiveProjection takes as input N, P, and E.

Finally, let’s consider Matrix4::MakeReflection. The reflection plane is N ·
(X − P) = 0, where N is a unit-length normal vector and P is a point on the plane.
Given a point U, the reflection through the plane is obtained by removing the normal
component of U − P, which produces a vector in the plane, and then subtracting the
normal component again. That is, twice the normal component is subtracted from
the vector. The resulting point V is defined by

V − P = (U − P) − 2(N · (U − P))N

or

V = (I − 2NNT)U + 2(N · P)N.
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A 4 × 4 homogeneous transformation representing the reflection, written in block-
matrix form, is[

V

1

]
∼
[

V′

w

]
= M

[
U

1

]
=
[

I − 2NNT 2(N · P)N

0T 1

] [
U

1

]
.

where the equivalency symbol means V = V′/w. The Matrix4::MakeReflection
method takes as input N and P.

2.2.5 Quaternions

I am not going to provide in-depth mathematical derivations for quaternions and
their properties. You may find these instead in my other books [Ebe00, Ebe03a] or
in many online documents. This section contains the bare minimum background to
understand what the methods are in the template class Quaternion. The main thing to
understand is that a unit-length quaternion is used to represent a rotation. Compared
to rotation matrices, quaternions require less memory to store, are faster to multiply
for the purposes of composition of rotations, and are faster to interpolate for the
purposes of keyframed animations.

From a data structures perspective, a quaternion is a 4-tuple of numbers
(w , x , y , z). The class representation has the same philosophy as the vector and ma-
trix classes. The data is stored in an array of four elements to allow safe typecasting
to a pointer of type float* or double*. The index 0 corresponds to w, 1 corresponds
to x, 2 corresponds to y, and 3 corresponds to z. The standard constructors and
assignment are

Quaternion ();
Quaternion (Real fW, Real fX, Real fY, Real fZ);
Quaternion (const Quaternion& rkQ);
Quaternion& operator= (const Quaternion& rkQ);

The default constructor does not initialize the data members. Member access
methods follow, where Real is the template parameter class, either float or double:

operator const Real* () const;
operator Real* ();
Real operator[] (int i) const;
Real& operator[] (int i);
Real W () const;
Real& W ();
Real X () const;
Real& X ();
Real Y () const;
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Real& Y ();
Real Z () const;
Real& Z ();

The first two methods are for safe typecasting as mentioned earlier. The operator[]
methods access the components of the quaternion using the array indices. As always,
the methods use the assert-and-repair paradigm. If the input index is out of range,
an assertion is fired in debug mode, but a clamp to the valid index range occurs in
release mode. The remaining accessors allow you to read or write the quaternion
components by name.

For purposes of sorting and hashing, a full set of comparison functions is pro-
vided by the class. As with all other classes using the array storage, the comparison is
based on reinterpreting the array of floating-point numbers as an array of unsigned
integers, with the entire array thought of as a large unsigned integer.

Algebraic Properties

An algebraic system is associated with quaternions. The symbolic representation is

q = w + xi + yj + zk ,

where i, j , and k may be thought of as placekeepers for now. Two quaternions,
q0 = w0 + x0i + y0j + z0k and q1 = w1 + x1i + y1j + z1k, are added or subtracted
componentwise:

q0 + q1 = (w0 + w1) + (x0 + x1)i + (y0 + y1)j + (z0 + z1)k

q0 − q1 = (w0 − w1) + (x0 − x1)i + (y0 − y1)j + (z0 − z1)k.

The class methods supporting addition and subtraction are

Quaternion operator+ (const Quaternion& rkQ) const;
Quaternion operator- (const Quaternion& rkQ) const;
Quaternion& operator+= (const Quaternion& rkQ);
Quaternion& operator-= (const Quaternion& rkQ);

Quaternion addition is commutative and associative; that is,

q0 + q1 = q1 + q0

q0 + (q1 + q2) = (q0 + q1) + q2.

Quaternions may also be multiplied by scalars. If c is a scalar and q = w + xi +
yj + zk is a quaternion, then

cq = (cw) + (cx)i + (cy)j + (cz)k = qc.
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The class methods supporting scalar multiplication (and scalar division) are

Quaternion operator* (Real fScalar) const;
Quaternion operator/ (Real fScalar) const;
Quaternion& operator*= (Real fScalar);
Quaternion& operator/= (Real fScalar);
Quaternion operator- () const;

The last function in this list changes signs on the components of the quaternion,
which is a multiplication of the quaternion by the scalar −1. Scalar multiplication
has the following associative and distributive properties:

(c0c1)q = c0(c1q)

(c0 + c1)q = c0q + c1q

c(q0 + q1) = cq0 + cq1.

Products of quaternions are defined, but not by componentwise multiplication.
The definition is unintuitive and based on multiplicative properties assigned to the
placekeeper symbols i, j , and k: i2 = −1, j 2 = −1, k2 = −1, ij = k, ji = −k, ik =
−j , ki = j , jk = i, and kj = −i. The first three definitions give quaternions the fla-
vor of complex numbers. The other definitions imply that quaternion multiplication
is not commutative. If you reverse the order of two numbers in a product, you might
not get the same result. (In some special cases, the results can be the same.) The
product of quaternions q0 = w0 + x0i + y0j + z0k and q1 = w1 + x1i + y1j + z1k is
obtained from the products of the placekeepers by requiring the distributive and asso-
ciative laws to apply, and by using the distributive and associative laws for quaternion
addition and scalar multiplication:

q0q1 = (w0 + x0i + y0j + z0k)(w1 + x1i + y1j + z1k)

= (w0w1 − x0x1 − y0y1 − z0z1)

+ (w0x1 + w1x0 + y0z1 − z0y1)i

+ (w0y1 + w1y0 + z0x1 − x0z1)j

+ (w0z1 + w1z0 + x0y1 − y0x1)k.

(2.16)

The member function that implements quaternion multiplication is

Quaternion operator* (const Quaternion& rkQ) const;

To emphasize that quaternion multiplication is not commutative, the product in
the reversed order is
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q1q0 = (w1 + x1i + y1j + z1k)(w0 + x0i + y0j + z0k)

= (w0w1 − x0x1 − y0y1 − z0z1)

+ (w0x1 + w1x0 + y1z0 − y0z1)i

+ (w0y1 + w1y0 + z1x0 − z0x1)j

+ (w0z1 + w1z0 + x1y0 − x0y1)k.

(2.17)

The w-components of q0q1 and q1q0 are the same. On the other hand, the last two
terms of each of the i-, j -, and k-components in the second line of (2.17) are opposite
in sign to their counterparts in the second line of (2.16). Those terms should remind
you of the components of a cross product. Symbolically, Equations (2.16) and (2.17)
are different, but it is possible for some quaternions (but not all) that q0q1 = q1q0. For
this to happen we need

(x0, y0, z0) × (x1, y1, z1) = (y0z1 − y1z0, z0x1 − z1x0, x0y1 − y0x1)

= (y1z0 − y0z1, z1x0 − z0x1, x1y0 − x0y1)

= (x1, y1, z1) × (x0, y0, z0).

The only way the two cross products can be the same for a pair of vectors is if they are
parallel. In summary, q0q1 = q1q0 if and only if (x1, y1, z1) = t (x0, y0, z0) for some
real-valued scalar t .

Notice that the quaternion class does not implement operator*= with a quater-
nion input. This is to avoid confusion about which order in the product is intended—
an important point since quaternion multiplication is not commutative. For the same
reasons, the division operators operator/ and operator/= with quaternion inputs are
not implemented.

Rotations

The utility of quaternions in computer graphics is that the unit-length ones are
related to rotations. If q = w + xi + yj + zk, then q is unit length if w2 + x2 + y2 +
z2 = 1. Such a quaternion may be written as

q = cos(θ/2) + sin(θ/2)(u0i + u1j + u2k) = cos(θ/2) + sin(θ/2)û,

where u2
0 + u2

1 + u2
2 = 1. The last equality defines û, which is itself a unit-length

quaternion, but has no w-component. The quaternion corresponds to a rotation
matrix R whose axis of rotation has a unit-length direction u = (u0, u1, u2) and
whose angle of rotation is θ . The rotation matrix may be applied to a vector v =
(v0, v1, v2) to obtain the rotated vector v′:

v′ = Rv .
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In terms of quaternions, let v̂ = v0i + v1j + v2k. The rotation is computed using
quaternions by

v̂′ = qv̂q∗,

where q∗ = w − xi − yj − zk = cos(θ/2) − sin(θ/2)û is called the conjugate of q.
The result v̂′ = v′

0i + v′
1j + v′

2k has no w-component and represents the rotated
vector v′ = (v′

0, v′
1, v′

2). That said, the operation count for rotating a vector is smaller
when instead the quaternion is converted to a rotation matrix and the vector is
multiplied directly. The member function to rotate a vector is

Vector3<Real> Rotate (const Vector3<Real>& rkVector) const;

Quaternion<Real> q = <some unit-length quaternion>;
Vector3<Real> v = <some vector>;
Vector3<Real> rotated_v = q.Rotate(v);

The usage is clear. The conjugate operation is supported by

Quaternion Conjugate () const;

If you wanted to use only quaternion algebra, the rotation operation, which uses a
constructor that takes a vector and converts it to a quaternion with a w-component
that is zero, is the following:

Quaternion<Real> q = <some unit-length quaternion>;
Vector3<Real> v = <some vector>;
Vector3<Real> rotated_v = q * Quaternion(v) * q.Conjugate();

Related to the conjugate is the multiplicative inverse of a nonzero quaternion
q, namely, q−1. The inverse has the property qq−1 = q−1q = 1 = 1 + 0i + 0j + 0k.
Moreover,

q−1 = q∗

|q| ,

where |q| is the length of q when considered a 4-tuple. The member function for
inversion is

Quaternion Inverse () const;

Invariably an application requires conversion between unit-length quaternions
and rotation matrices. Constructors supporting conversion of rotations are

Quaternion (const Matrix3<Real>& rkRot);
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Quaternion (const Vector3<Real> akRotColumn[3]);
Quaternion (const Vector3<Real>& rkAxis, Real fAngle);

The first two constructors convert the rotation matrix directly. The third constructor
creates a quaternion from an axis-angle representation of the rotation. Other member
functions supporting conversion are

Quaternion& FromRotationMatrix (const Matrix3<Real>& rkRot);
void ToRotationMatrix (Matrix3<Real>& rkRot) const;
Quaternion& FromRotationMatrix (

const Vector3<Real> akRotColumn[3]);
void ToRotationMatrix (Vector3<Real> akRotColumn[3]) const;
Quaternion& FromAxisAngle (const Vector3<Real>& rkAxis,

Real fAngle);
void ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle) const;

The names make it clear how the functions are used. The From methods return a
reference to the object to allow side effects such as

Matrix3<Real> rot = <some rotation matrix>;
Quaternion<Real> p = <some quaternion>, q;
Quaternion<Real> product = p * q.FromRotationMatrix(rot);

Interpolation

One of the primary benefits of quaternions is ease of interpolation of rotation and
orientation data. Given two unit-length quaternions q0 and q1, the spherical linear
interpolation of the quaternions is the unit-length quaternion

slerp(t ; q0, q1) = sin((1 − t)θ)q0 + sin(tθ)q1

sin θ
,

where θ is the angle between q0 and q1. The value t is in the interval [0, 1]. The
formula requires that sin θ �= 0. If q0 and q1 are the same quaternion, then θ = 0. But
in this case, you may choose q(t) = q0 for all t . If q1 = −q0, then θ = π . Although
the 4-tuples are different, they represent the same rotation. Despite this, you can
choose a unit-length 4-tuple p that is perpendicular to q0 (there are infinitely many of
these), then interpolate from q0 to p for t ∈ [0, 1/2]and from p to q1 for t ∈ [1/2, 1].
Specifically,

slerp(t ; q0, q1) =
{

sin(π(1/2 − t))q0 + sin(πt)p , t ∈ [0, 1/2]
sin(π(1 − t))p + sin(π(t − 1/2))q1, t ∈ [1/2, 1].
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The angle θ may be obtained from the dot product of 4-tuples, q0 · q1 = cos(θ),
or θ = arccos(q0 · q1). The dot product is implemented by the member function

Real Dot (const Quaternion& rkQ) const;

The spherical linear interpolation has the acronym slerp. The method that imple-
ments this is

Quaternion& Slerp (Real fT, const Quaternion& rkQ0,
const Quaternion& rkQ1);

Because of the observation that q and −q represent the same rotation, it is better
to preprocess a sequence of quaternions so that consecutive pairs form acute angles.
For such a sequence, you need only trap the case when θ is (nearly) zero. The prepro-
cessing is

Quaternion<Real> q[n] = <sequence of n quaternions>;
for (int i = 0; i < n-1; i++)
{

if ( q[i].Dot(q[i+1]) < (Real)0.0 )
q[i+1] = -q[i+1];

}

The Slerp function assumes that the two input quaternions form an acute angle (their
dot product is nonnegative).

The slerp function is a parameterization of the shortest arc that connects q0 to
q1 on the four-dimensional unit hypersphere. If you extend that path to completely
cover the great circle starting at q0, passing through q1, eventually passing through q0
again, then terminating at q1, the resulting interpolations produce rotation matrices
that have interesting properties. If those rotations are applied to an object, the object
obtains extra spins. A brief discussion is in the article “Quaternion interpolation with
extra spins” in [Kir92]. The modified slerp equation is

SlerpExtraSpins(t ; q0, q1, k) = sin((1 − t)θ − kπt)q0 + sin(tθ + kπt)q1

sin θ
,

where k is the number of extra spins (or the number of times the path on the hy-
persphere returns through q0). The standard slerp equation occurs when k = 0. The
method implementing slerp with extra spins is

Quaternion& SlerpExtraSpins (Real fT, const Quaternion& rkQ0,
const Quaternion& rkQ1, int iExtraSpins);

A higher-order interpolation is provided by spherical quadrangle interpolation or,
in short, squad. Whereas slerp is a form of linear interpolation, squad is a form of
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cubic interpolation. Recall from the study of cubic polynomial curves that four pieces
of information are needed to determine the four coefficients of the curve. If P0 and P1
are the end points of the curve segment with corresponding tangent vectors T0 and
T1, a cubic polynomial curve containing the end points is

X(t) = A0 + A1t + A2t
2 + A3t

3,

where t ∈ [0, 1]. The derivative is

X′(t) = A1 + 2A2t + 3A3t
2

and represents the velocity of a particle traveling along the curve. To satisfy the
constraints we need

P0 = X(0) = A0

P1 = X(1) = A0 + A1 + A2 + A3

T0 = X′(0) = A1

T1 = X′(1) = A1 + 2A2 + 3A3.

This is a linear system of four equations in four unknown vectors. The solution is

A0 = A1

A1 = T0

A2 = 3(P1 − P0) − 2T0 − T1

A3 = −2(P1 − P0) + T0 + T1.

If you are interpolating a sequence of points {Pn}N−1
n=0 with no specified tangents,

you may estimate the tangent Pn using only this point and its immediate neighbors
Pn−1 and Pn+1. The one-sided tangent generated from the previous point is Pn −
Pn−1. The other one-sided tangent is Pn+1 − Pn. A reasonable estimate for the tangent
is the average of these:

Tn = (Pn − Pn−1) + (Pn+1 − Pn)

2
= Pn+1 − Pn−1

2
.

The tangent vector is the direction of the line segment connecting the two neighbor-
ing points.

The analogy to this construction produces squad from two unit-length quater-
nions q0 and q1, but as in the case of a cubic curve, we need two additional pieces of
information. As discussed in [Sho87], the squad of four quaternions q0, a0, b1, and
q1 is

squad(t ; q0, a0, b1, q1) = slerp(2t (1 − t); slerp(t ; q0, q1), slerp(t ; a0, b1)),
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for t ∈ [0, 1]. A natural selection for a0 and b1 is motivated by the use of tangent
vectors for cubic polynomial curves. The concept of a tangent in the quaternion realm
is quite mathematical, despite its ties to geometric ideas. As it turns out, you need
the concept of a logarithmic function and its inverse, an exponential function. The
quaternions have such functions. A unit-length quaternion cos(θ/2) + sin(θ/2)û has
the logarithm

log(cos(θ/2) + sin(θ/2)û) = (θ/2)û.

The exponential function is the inverse of this operation,

exp((θ/2)û) = cos(θ/2) + sin(θ/2)û,

where û is a unit-length quaternion whose w-component is zero.
To continue the analogy with cubic polynomial curves generated from a sequence

of positions, let {qn}N−1
n=0 be a sequence of unit-length quaternions where N ≥ 3. The

one-sided tangent at qn corresponding to qn−1 is log(q−1
n−1qn). The one-sided tangent

at qn corresponding to qn is log(q−1
n

qn+1). A reasonable tangent to select for qn is an
average of the one-sided tangents:

Tn = log(q−1
n−1qn) + log(q−1

n
qn+1)

2
.

Consider the problem of interpolating a sequence of unit-length quaternions,
where N ≥ 3. Specifically, let

Sn(t) = squad(t ; qn, an, bn+1, qn+1)

for some to-be-determined quaternions an and bn+1. To obtain continuity of the
interpolation across shared end points, we need

Sn−1(1) = qn = Sn(0).

To obtain derivative continuity, we need

S′
n−1(t) = qnTn = S′

n
(0),

where Tn is a tangent quaternion at qn. These produce two equations in the two
unknowns an and bn. An application of the rules of quaternion algebra leads to

an = bn = qn exp

(
− log(q−1

n
qn−1) + log(q−1

n
qn+1)

4

)
.

Each an and bn depends on three quaternions: qn−1, qn, and qn+1, just as the estimated
tangent for a sequence of positions depended on three consecutive positions.
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The methods in class Quaternion that support logarithms, exponentials, estima-
tion of the intermediate an, and squad are

Quaternion Log () const;
Quaternion Exp () const;

Quaternion& Intermediate (const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2);

Quaternion& Squad (Real fT, const Quaternion& rkQ0,
const Quaternion& rkA0, const Quaternion& rkA1,
const Quaternion& rkQ1);

The GetIntermediate function is used to compute the an. Observe that the esti-
mation of tangent vectors for the cubic polynomial curve requires the two immediate
neighbors of the given point. The first point P0 and PN−1 do not have two neigh-
bors, so artificial ones should be used just for the purposes of the estimation. The
same issue occurs for quaternion sequences. My choice is to use q0 itself as one of its
neighbors. The following pseudocode shows how I choose to preprocess a quaternion
sequence for the purposes of interpolation:

Quaternion<Real> q[n] = <sequence of n quaternions>;
Quaternion<Real> a[n] = <intermediate quaternions, to be computed>;

// arrange for all acute angles between consecutive quaternions
for (i = 0; i < n-1; i++)
{

if ( q[i].Dot(q[i+1]) < (Real)0.0 )
q[i+1] = -q[i+1];

}

// compute the intermediate quaternions for squad
a[0].Intermediate(q[0],q[0],q[1]);
for (i = 1; i <= n-2; i++)
{

a[i].Intermediate(q[i-1],q[i],q[i+1]);
}
a[n-1].Intermediate(q[n-2],q[n-1],q[n-1]);

// example: interpolate at t = 1/2 for all segments
Quaternion<Real> interp;
Real t = 0.5;
for (i = 0; i < n-1; i++)

interp.Squad(t,q[i],a[i],a[i+1],q[i+1]);
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Three member functions are provided to support animation of joints in char-
acters:

Quaternion& Align (const Vector3<Real>& rkV1,
const Vector3<Real>& rkV2);

void DecomposeTwistTimesSwing (const Vector3<Real>& rkV1,
Quaternion& rkTwist, Quaternion& rkSwing);

void DecomposeSwingTimesTwist (const Vector3<Real>& rkV1,
Quaternion& rkSwing, Quaternion& rkTwist);

Function Align computes a quaternion that rotates the unit-length vector V1 to a
unit-length vector V2. There are infinitely many rotations that can do this. If the two
vectors are not parallel, the axis of rotation is the unit-length vector

U = V1 × V2

|V1 × V2|
.

The angle of rotation θ is the angle between the two vectors. The quaternion for the
rotation is

q = cos(θ/2) + sin(θ/2)(u0i + u1j + u2k),

where U = (u0, u1, u2). Rather than extracting θ = arccos(V1 · V2), multiplying by
1/2, then computing sin(θ/2) and cos(θ/2), we reduce the computational costs by
computing the bisector B = (V1 + V2)/|V1 + V2|, so cos(θ/2) = V1 · B. The rotation
axis is U = (V1 × B)/|V1 × B|, but

|V1 × B| = |V1||B| sin(θ/2) = sin(θ/2),

in which case

sin(θ/2)(u0i + u1j + u2k) = (c0i + c1j + c2k),

where C = V1 × B.
If V1 and V2 are parallel, or nearly parallel as far as the floating-point cal-

culations are concerned, the calculation of B will produce the zero vector since
Vector3::Normalize checks for closeness to zero and returns the zero vector accord-
ingly. Thus, we test for parallelism by checking if cos(θ/2) is zero. The test for exactly
zero is usually not recommended for floating-point arithmetic, but the implementa-
tion of Vector3::Normalize guarantees the comparison is robust. The axis of rotation
for the parallel case can be any axis. If V2 = (a , b, c), the axis I choose is the permu-
tation (c, b, a).
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The decomposition functions are similar to the Euler angle decompositions for
matrices. Given a unit-length quaternion q and a vector V1, let V2 be the rotation
of V1 via the quaternion. We may think of q as having two rotational components.
The first component is rotation about the axis perpendicular to V1 and V2 and is
represented by the quaternion qswing. The term swing is suggestive of the motion of
V1 toward V2 about the hinge perpendicular to the plane of those vectors. The second
component is the remaining rotation needed to complete the full rotation implied
by q and is represented by the quaternion qtwist. The term twist is used because
this rotation is effectively about the axis with direction V1. Two decompositions are
possible:

q = qswing qtwist ,

which is implemented in DecomposeSwingTimesTwist, or

q = qtwist qswing ,

which is implemented in DecomposeTwistTimesSwing. The order you choose is, of
course, related to how your joint animations are implemented in the applications.

Physics

You might have asked the question: Why support addition, subtraction, and scalar
multiplication of quaternions when they are used only to represent rotations? The ro-
tational aspects require us only to work with quaternion multiplication. The answer
is that numerical methods for physical simulation require all the algebraic operations
when the simulation uses quaternions to represent rotation matrices. For example,
the equations of motion for an unconstrained rigid body of mass m with applied
force F and applied torque τ are

ẋ = p/m

q̇ = ωq/2

ṗ = F

L̇ = τ ,

where x is the location of the center of mass for the body, p is the linear momentum
(p = mv, where v is the linear velocity), q is the quaternion that represents the
orientation of the rigid body, ω is the quaternion that represents the angular velocity
(this quaternion has w-component equal to zero), and L is the angular momentum.
If you were to numerically solve this with Euler’s method, the algorithm is
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x(t + h) = x(t) + hp(t)/m

q(t + h) = q(t) + hω(t)q(t)/2

p(t + h) = p(t) + hF(t)

L(t + h) = L(t) + hτ(t),

where the right-hand side depends on current time t , the time step h > 0, and the
state of the system at time t . The left-hand side is the state of the system at time t + h.
The right-hand side of the quaternion equation requires scalar multiplication and
quaternion addition. The left-hand side is generally not unit length because of the
approximation, so a numerical solver will normalize q(t + h) to make it unit length.
Of course you will most likely use more sophisticated numerical solvers, such as the
Runge-Kutta methods. These also use quaternion addition and scalar multiplication.

2.2.6 Lines and Planes

Lines and planes are two basic geometric objects in any 3D system. Minimal support
is provided for these.

Lines

The template class Line3 represents a parametric line P + tD for t ∈ R. The point P
is on the line and is considered to be the origin for the line. The unit-length vector
D is a direction for the line. The user is responsible for ensuring that the direction is
unit length. The class interface is self-explanatory. The data members for the origin
and direction are public since reading or writing them has no side effects. The most
complicated member function is

Real DistanceTo (const Vector3<Real>& rkQ) const;

which computes the distance from the input point to the line. The distance d from
point Q to the line is given by the equation

d = |D × (Q − P)|.
This equation represents the length of Q − P with the component in the direction D
projected out.

Planes

The template class Plane3 represents a plane of the form N · X = c. The unit-length
vector N is normal to the plane, and the value c is called the plane constant. If
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P is any point on the plane, then c = N · P. An equivalent representation of the
plane is N · (X − P) = 0. The user is responsible for ensuring that the normal is
unit length. The class interface is also self-explanatory. The data members for the
normal and constant are public since reading or writing them has no side effects.
Three constructors of interest are

Plane3 (const Vector3<Real>& rkNormal, Real fConstant);
Plane3 (const Vector3<Real>& rkNormal, const Vector3<Real>& rkP);
Plane3 (const Vector3<Real>& rkP0, const Vector3<Real>& rkP1,

const Vector3<Real>& rkP2);

The first allows you to specify the normal and constant, the second allows you to
specify the normal and a point on the plane, and the third generates the normal from
three points on the plane.

Two utility functions are provided. The first is

int WhichSide (const Vector3<Real>& rkP) const;

The positive side of the plane is defined to be the half space to which the plane normal
points. The negative side is the other half space. The function returns 1 if the input
point is on the positive side of the plane, −1 if the point is on the negative side of the
plane, and 0 if the point is on the plane. The second utility function is

Real DistanceTo (const Vector3<Real>& rkQ) const;

It computes the signed distance from the point Q to the plane. This quantity is

d = N · Q − c.

The sign of d is positive if the point is on the positive side of the plane, negative if
the point is on the negative side, and zero if the point is on the plane. The value |d|
is the true distance and is the length of the projection of Q − P onto a normal line to
the plane, where P is any point on the plane.

2.2.7 Colors

The engine has two color classes, ColorRGB and ColorRGBA. Both classes are intended
to store color channels that are floating-point numbers in the interval [0, 1]. Extreme
precision for colors is not required, so only float is implemented (the classes are not
templates). Class ColorRGB stores a red-green-blue color in an array of three elements.
Class ColorRGBA stores a red-green-blue-alpha color in an array of four elements. The
classes are nearly identical in structure to Vector3 and Vector4, respectively. The array
storage is used to allow safe typecasting of an object to a float* pointer, regardless of
whether the engine is running on a 32- or 64-bit platform.
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ColorRGB

The constructors other than the default and copy constructors are

ColorRGB (float fR, float fG, float fB);
ColorRGB (float afTuple[3]);

When using an array for colors, index 0 maps to red, index 1 maps to green, and index
2 maps to blue.

Member accessors are

operator const float* () const;
operator float* ();
float operator[] (int i) const;
float& operator[] (int i);
float R () const;
float& R ();
float G () const;
float& G ();
float B () const;
float& B ();

The first two members are for safe typecasting to float* pointers. The operator[]
members use the assert-and-repair paradigm. If the index is out of range, an assertion
is fired in debug mode, but in release mode the index is clamped to the valid range.
The remaining members are for access by name: R for the red channel, G for the green
channel, and B for the blue channel.

The comparison operators are useful for sorting and hashing. Such operations
might occur when attempting to generate a small subset of colors from a given set
(color quantization).

All the arithmetic operations and updates are performed on a per-channel basis.
This is true even for the multiplication operators, whereby the colors are said to
be modulated. When performing arithmetic on colors, it is possible that the final
results have color channels outside the interval [0, 1]. Two methods are provided to
transform the channels back to the interval [0, 1]. The Clamp method sets a negative
value to zero and a value larger than one to one. The ScaleByMax method assumes that
the color channels are nonnegative. The maximum channel is found and all channels
are divided by it.

ColorRGBA

The class ColorRGBA stores its color channels in an array of four elements. The only
difference between this class and ColorRGB is the addition of a channel to store alpha
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values for color blending. The discussion of ColorRGB applies directly to ColorRGBA,
with one exception. The ScaleByMax method finds the maximum of the RGB chan-
nels and divides the RGB channels by that amount. The alpha channel is handled
differently: it is clamped to the interval [0, 1].

2.3 The Object System

A graphics engine is sufficiently large and complex that it is subject to the rules
of large library design using object-oriented programming. The engine has enough
objects to manage that it is essential to have a core set of automatic services that the
application writers can rely on. This section discusses the support in Wild Magic for
object management.

2.3.1 Run-Time Type Information

Polymorphism provides abstraction of functionality. A polymorphic function call
can be made regardless of the true type of the calling object. But there are times when
you need to know the type of the polymorphic object or to determine if the object’s
type is derived from a specified type—for example, to safely typecase a base class
pointer to a derived class pointer, a process called dynamic typecasting . Run-time type
information (RTTI) provides a way to determine this information while the program
is executing.

Single-Inheritance Class Trees

A single-inheritance object-oriented system consists of a collection of directed trees
where the tree nodes represent classes and the tree arcs represent inheritance. The
arcs are directed in the sense that if C0 is a base class and C1 is a derived class, the tree
has a directed arc from C1 to C0. The directed edges indicate an is-a relationshiop. A
root node of the tree represents the common base class of all the classes in that tree.
Although a single-inheritance system can have multiple trees, it is standard to imple-
ment a single tree. The root class provides basic services for any derived classes. Wild
Magic is architected with a single tree whose root class is Object. Figure 2.4 shows
a simple single-inheritance hierarchy. The root of the tree is Polygon. Rectangle is
a Polygon, and Square is a Rectangle. Moreover, Square is a Polygon indirectly. Tri-
angle is a Polygon, EquilateralTriangle is a Triangle, and RightTriangle is a Triangle.
However, Square is not a Triangle, and RightTriangle is not an EquilateralTriangle.

An RTTI system is an implementation of the directed trees. The basic RTTI data
type stores any class-specific information an application requires at run time. It also
stores a link to the base class (if any) to allow an application to determine if a class is
inherited from another class. The simplest representation stores no class information
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Polygon 

Rectangle Triangle

RightTriangleSquare EquilateralTriangle

Figure 2.4 Single-inheritance hierarchy.

and only the link to the base class. However, it is useful to store a string encoding the
name of the class. In particular, the string will be used in the streaming system that
is described later. The string may also be useful for debugging purposes in quickly
identifying the class type.

class Rtti
{
public:

Rtti (const String& rkName, const Rtti* pkBaseType);
~Rtti ();

const String& GetName () const;

bool IsExactly (const Rtti& rkType) const;
bool IsDerived (const Rtti& rkType) const;

private:
String m_kName;
const Rtti* m_pkBaseType;

};

In order to support the namespace of Wild Magic version 3, Wm3, and other
namespaces defined by applications using the engine (including Wml, used for Wild
Magic version 2), the string used for the class should contain the namespace as well.
In Wild Magic, a class Foo uses the name "Wm3.Foo". The member function GetName is
a simple accessor of the name.

The member function IsExactly checks to see if the caller RTTI object and the
input RTTI object are the same. The string names uniquely identify the RTTI objects
and may be compared to determine if the objects are the same. This is an expensive
test, though, and instead I take advantage of the fact that the RTTI objects persist
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throughout the application execution time. As such, the addresses of the objects are
themselves unique identifiers. The function is simply implemented as

bool Rtti::IsExactly (const Rtti& rkType) const
{

return &rkType == this;
}

The member function IsDerived checks to see if the caller RTTI object has the
same type of the input RTTI object or if a class derived from that of the caller RTTI
object has the same type of the input RTTI object. This function implements a search
of the linear list starting at the directed tree node corresponding to the class for the
caller RTTI object and terminates either when a visited tree node matches the input
RTTI object (the function returns true) or when the root node of the directed tree is
reached without a match (the function returns false).

bool Rtti::IsDerived (const Rtti& rkType) const
{

const Rtti* pkSearch = this;
while ( pkSearch )
{

if ( pkSearch == &rkType )
return true;

pkSearch = pkSearch->m_pkBaseType;
}
return false;

}

The class in a single-inheritance tree must contain basic support for the RTTI
system:

class MyClass
{
public:

static const Rtti TYPE;
virtual const Rtti& GetType () const { return TYPE; }

};

The RTTI object is static since that information is specific to the entire class. The
member is public since it needs to be used in RTTI queries. Because the name TYPE
of the static member is the same in each class, the derived class member hides the
base class member. The virtual function GetType allows you to access the correct type
when an object is available polymorphically through a base class pointer or reference.
The source file for each class must construct the static member:
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// in source file of root ‘‘class Object’’
const Rtti Object::TYPE("Wm3.Object",NULL);

// in source file of ‘‘class DerivedClass : public BaseClass’’
const Rtti DerivedClass::TYPE("Wm3.DerivedClass",&BaseClass::TYPE);

The constructor adds each new class to the single-inheritance tree of RTTI objects
and adds the tree arc from the derived class to the base class.

Because of the name hiding of TYPE, you should beware of incorrectly accessing
the type. For example,

DerivedClass* pkDerived = <some DerivedClass object>;
String kName0 = pkDerived->TYPE.GetName();

// kName0 = "Wm3.DerivedClass"
String kName1 = pkDerived->GetType().GetName();

// kName1 = "Wm3.DerivedClass"

BaseClass* pkBase = pkDerived;
String kName2 = pkBase->TYPE.GetName();

// kName2 = "Wm3.BaseClass"
String kName3 = pkBase->GetType().GetName();

// kName3 = "Wm3.DerivedClass"

Object* pkRoot = pkDerived;
String kName4 = pkRoot->TYPE.GetName();

// kName4 = "Wm3.Object"
String kName5 = pkRoot->GetType().GetName();

// kName5 = "Wm3.DerivedClass"

To be safe, you should always use the GetType member function when accessing the
RTTI name via the object itself. If you want to access the class RTTI name directly,
you can use MyClass::TYPE to access the static member of MyClass.

The root class Object has been given four helper functions to make RTTI queries
a bit simpler to use:

class Object
{
public:

bool IsExactly (const Rtti& rkType) const;
bool IsDerived (const Rtti& rkType) const;
bool IsExactlyTypeOf (const Object* pkObj) const;
bool IsDerivedTypeOf (const Object* pkObj) const;

};
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// sample usage
DerivedClass* pkDerived = <some DerivedClass object>;
bool bResult0 = pkDerived->IsExactly(DerivedClass::TYPE);

// bResult0 = true
bool bResult1 = pkDerived->IsExactly(BaseClass::TYPE);

// bResult1 = false
bool bResult2 = pkDerived->IsDerived(BaseClass::TYPE);

// bResult2 = true

BaseClass* pkBase = <some BaseClass object>;
bool bResult3 = pkDerived->IsExactlyTypeOf(pkBase);

// bResult3 = false
bool bResult4 = pkDerived->IsDerivedTypeOf(pkBase);

// bResult4 = true
bool bResult5 = pkBase->IsExactlyTypeOf(pkDerived);

// bResult5 = false
bool bResult6 = pkBase->IsDerivedTypeOf(pkDerived);

// bResult6 = false

The implementations of the helper functions are quite simple and just transfer
the calls to the RTTI objects for processing:

bool Object::IsExactly (const Rtti& rkType) const
{

return GetType().IsExactly(rkType);
}

bool Object::IsDerived (const Rtti& rkType) const
{

return GetType().IsDerived(rkType);
}

bool Object::IsExactlyTypeOf (const Object* pkObj) const
{

return pkObj && GetType().IsExactly(pkObj->GetType());
}

bool Object::IsDerivedTypeOf (const Object* pkObj) const
{

return pkObj && GetType().IsDerived(pkObj->GetType());
}
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Static and Dynamic Typecasting

If you have a base class pointer to an object, yet at compile time know that the object
is from a derived class of the base class, you can use a static typecast to manipulate
that object:

DerivedClass* pkDerived0 = <some DerivedClass object>;
pkDerived0->SomeDerivedClassFunction(); // okay

BaseClass* pkBase = pkDerived0;
pkBase->SomeDerivedClassFunction(); // will not compile

// typecast is safe since *pkBase is a DerivedClass object
DerivedClass* pkDerived1 = (DerivedClass*) pkBase;
pkDerived1->SomeDerivedClassFunction(); // okay

There are times, though, when you want to manipulate a polymorphic object only
when it is from a specific class or derived from a specific class. Such information
might not be deduced at compile time and can only be determined at run time.
The static typecast is not safe because the object may very well not be in the class
to which you cast. The answer is to use a dynamic cast . The RTTI system allows you
to determine if the object is in the specified class. If it is, you can then safely typecast.
If it is not, you ignore the object and continue.

The root class Object provides services for static and dynamic typecasting. A static
typecast can be performed in a C-style as shown earlier, but to be consistent with
coding style and to support smart pointers, discussed in Section 2.3.3, wrappers are
provided for this. The support in both cases is via templates.

template <class T> T* StaticCast (Object* pkObj)
{

return (T*)pkObj;
}

template <class T> const T* StaticCast (const Object* pkObj)
{

return (const T*)pkObj;
}

template <class T> T* DynamicCast (Object* pkObj)
{

return pkObj
&& pkObj->IsDerived(T::TYPE) ? (T*)pkObj : NULL;

}
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template <class T> const T* DynamicCast (const Object* pkObj)
{

return pkObj
&& pkObj->IsDerived(T::TYPE) ? (const T*)pkObj : NULL;

}

The static casts just wrap the C-style cast. The support for smart pointers occurs
because of an implicit conversion allowed from a smart pointer object to an Object
pointer of the object managed by the smart pointer. The dynamic cast checks to
make sure the input object can be cast to the desired derived class. If it can, the
object pointer is returned. If it cannot, a null pointer is returned. The caller of the
dynamic cast must check the returned pointer to distinguish between the two cases.
For example,

class MyClass1 : public Object {...};
class MyClass2 : public Object {...};

bool PerformClass1Action (Object* pkObj)
{

MyClass1* pkCast = DynamicCast<MyClass1>(pkObj);
if ( pkCast )
{

// perform action
return true;

}

// object not from MyClass1
return false;

}

MyClass1* pkObj1 = <some MyClass1 object>;
bool bResult1 = PerformClass1Action(pkObj1); // bResult1 = true

MyClass2* pkObj2 = <some MyClass2 object>;
bool bResult2 = PerformClass1Action(pkObj2); // bResult1 = false

The typecasting mechanisms absolutely depend on the input objects being point-
ers to objects in the Object single-inheritance tree. You must not pass pointers to
objects not in the system. The only alternative that can handle any objects is to have
compiler support where the RTTI is created and maintained implicitly, but compiler
support is typically a nonportable solution. Moreover, the compiler support must
handle multiple inheritance, so the RTTI system can be slower than one designed
specifically for single inheritance. I prefer portability and avoid multiple inheritance;
the RTTI system in Wild Magic reflects these preferences.
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2.3.2 Names and Unique Identifiers

Searching for specific objects at run time is useful. The graphics engine supports
searching based on a character string name and on a unique integer-valued identifier.

Name String

An application might require finding objects in the system during run time. To fa-
cilitate this, each object has a character string member. The string can be something
as simple as a human-readable name, but it could also contain additional informa-
tion that is useful to the application. For example, the root node of a model of a table
could be assigned the name string “Table 17” to identify that the model is in fact a
table, with the number indicating that other tables (or types of tables) exist in the
scene. It might be important for the application to know what room contains the
table. The name string can contain such information, for example, “Table 17 : Room
23”.

To support name strings, the Object class provides the following API:

public:
void SetName (const String& rkName);
const String& GetName () const;
virtual Object* GetObjectByName (const String& rkName);
virtual void GetAllObjectsByName (const String& rkName,

TArray<Object*>& rkObjects);
private:

String m_kName;

The member functions SetName and GetName are standard accessors to the name
string. The member function GetObjectByName is a search facility that returns a
pointer to an object with the specified name. If the caller object has the specified
name, the object just returns a pointer to itself. If it does not have the input name, a
search is applied to member objects. The method of search depends on the Object-
derived class itself. Class Object compares the input name to the name of the object
itself. If found, the object pointer is returned. If not, a search is made over all the
controllers attached to the object, and if found, the controller pointer is returned.
Otherwise, a null pointer is returned indicating that an object with the specified
name was not found in the current object. A derived class implementation must call
the base class function before checking its own object members.

The name string is not necessarily unique. If two objects have the same name,
GetObjectByName will find one of them and return a pointer to it. The other object is
not found. The other name string member function handles multiple occurrences of
a name string. A call to GetAllObjectsByName will search for all objects with the input
name. The method of search depends on the Object-derived class itself.
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Unique Identification

Although names are readable and of use to a human, another form of identification
may be used to track objects in the system. At first glance you might choose to use
the memory address of the object as a unique identifier since, at a single instant in
time, the address is unique. Over time, however, you can run into problems with
this scheme. If the memory address of an object is stored by the application to be
processed at a later time, it is possible that the object is deleted at some intermediate
time. At deletion time the application then has a dangling pointer since the object
no longer exists. Worse, other memory allocations can occur with the chance that
an entirely new object has the same memory address as the old one that is now
defunct. The application no longer has a dangling pointer, but that pointer does not
point to the object the application thinks it is. The likelihood of such an occurrence
is higher than you think, especially when the memory manager is asked to allocate
and deallocate a collection of homogeneous objects, all objects of constant size in
memory.

To avoid such problems, each object stores a unique identifier. Wild Magic cur-
rently uses a 32-bit unsigned integer. The Object class has a static unsigned integer
member that stores the next available identifier. Each time an object is created, the
current static member value is assigned to the nonstatic object member; the static
member is then incremented. Hopefully, 32 bits is large enough to provide unique
identifiers for all objects over the lifetime of the application. If you have an applica-
tion that requires more than 232 objects, either you can allow the wraparound that
will occur when incrementing the static member, or you can implement a “counter”
class that allows for more bits and provides the simple services of storing a static “next
available” counter and of incrementing a counter.

To support unique identifiers, the Object class provides the following API:

public:
unsigned int GetID () const;
static unsigned int GetNextID ();
virtual Object* GetObjectByID (unsigned int uiID);

private:
unsigned int m_uiID;
static unsigned int ms_uiNextID;

The static member is initialized (pre-main) to zero. Each constructor for the class has
the line of code

m_uiID = ms_uiNextID++;

This is a simple system that is not designed to reuse an old identifier when an object
is deleted. A more sophisticated system could allow reuse, but I believe the additional
run-time costs are not warranted.
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The member function GetObjectByID is similar in structure to the function Get-
ObjectByName, except that identifiers are compared rather than name strings. Since
the identifiers are unique, there is no need for a function GetAllObjectsByID. As with
the other search functions, the method of search in an Object-derived class is specific
to that class.

2.3.3 Sharing and Smart Pointers

One of the most important concepts in a large library is the ability to share objects.
Geometric models with a lot of data can have the data shared to minimize memory
use. Because texture images can take a lot of space, if two objects are to be textured
with the same image, you might as well share the texture object in order to minimize
memory use. It is unlikely that the application programmers can manually manage
shared objects without losing some (object leaking) or destroying some while others
are using them (premature destruction). An automated system can assist in the object
management. The method I use is to include a reference counter in the Object class
that counts how many objects have a pointer to the current one. Each time an object is
referenced by another, the reference count is incremented. Each time another object
decides not to reference the current one, the current’s reference count is decremented.
Once the reference counter decreases to zero, the object is no longer referenced in the
system and it is automatically deleted.

The programmer may be given the ability to increment or decrement the ref-
erence counts himself, but this once again assumes the programmer will properly
manage the objects. I prefer to hide the details of the sharing mechanism using a
smart pointer system. The Object class provides the following interface in support
of sharing:

class Object
{
public:

void IncrementReferences ();
void DecrementReferences ();
int GetReferences () const;
static THashTable<unsigned int,Object*> InUse;
static void PrintInUse (const char* acFilename,

const char* acMessage);
private:

int m_iReferences;
};

The data member m_iReferences stores the number of references to the object.
The Object constructor sets this value to zero. You may query an object to find out
how many references it has using the member function GetReferences. The function



2.3 The Object System 115

IncrementReferences does exactly what its name says: it increments the reference
counter. It is intended for use by the smart pointer system, but if programmers
have a compelling argument to call it explicitly, they may. I hope that they will also
call DecrementReferences at the appropriate time to balance out the increments and
decrements. The decrement function is

void Object::DecrementReferences ()
{

if ( --m_iReferences == 0 )
delete this;

}

The reference counter is decremented. As promised, if the counter becomes zero, the
object is deleted. I cannot stress the following point enough: The standard library
delete is called. The only time you should call this is when the object is dynamically
allocated. That means that all Objects in the system must be dynamically allocated.

The static hash table InUse and the static member function PrintInUse in the ref-
erence counting system are for debugging purposes. Each time an object is created,
the Object constructor adds to the hash table the pair consisting of the unique identi-
fier (the key) and a pointer to the object (the value). Each time an object is destroyed,
the Object destructor removes the key-value pair from the hash table. At any time
during the application run time, you can print out the list of objects that currently
exist using PrintInUse. The main reason I have these static values is to support look-
ing for object leaks. The details are provided in Section 2.3.8.

The smart pointer system is a template class that is designed to correctly manip-
ulate the reference counter in the Object class. The interface is

template <class T> class Pointer
{
public:

// construction and destruction
Pointer (T* pkObject = NULL);
Pointer (const Pointer& rkPointer);
~Pointer ();

// implicit conversions
operator T* () const;
T& operator* () const;
T* operator-> () const;

// assignment
Pointer& operator= (T* pkObject);
Pointer& operator= (const Pointer& rkReference);
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// comparisons
bool operator== (T* pkObject) const;
bool operator!= (T* pkObject) const;
bool operator== (const Pointer& rkReference) const;
bool operator!= (const Pointer& rkReference) const;

protected:
// the shared object
T* m_pkObject;

};

You will see a typedef per class of the form

typedef Pointer<MyClass> MyClassPtr;

This is a convenient alias for smart pointers. I always create the name to be the
concatenation of the class name and the suffix Ptr (for “pointer”).

The implicit conversions and comparisons in the class have trivial implemen-
tations—no need to discuss them here. The constructors and destructor are

template <class T> Pointer<T>::Pointer (T* pkObject)
{

m_pkObject = pkObject;
if ( m_pkObject )

m_pkObject->IncrementReferences();
}

template <class T> Pointer<T>::Pointer (const Pointer& rkPointer)
{

m_pkObject = rkPointer.m_pkObject;
if ( m_pkObject )

m_pkObject->IncrementReferences();
}

template <class T> Pointer<T>::~Pointer ()
{

if ( m_pkObject )
m_pkObject->DecrementReferences();

}

The constructors store the input pointer in m_pkObject and then increment that
object’s reference counter to indicate that we have just added a reference to the object.
The destructor decrements the reference counter to indicate that we have just lost a
reference to the object. If the object’s reference counter decreases to zero, the object
is automatically deleted.
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The only warning when implementing smart pointers is how to properly handle
assignments. The first assignment operator is

template <class T> Pointer<T>& Pointer<T>::operator= (T* pkObject)
{

if ( m_pkObject != pkObject )
{

if ( pkObject )
pkObject->IncrementReferences();

if ( m_pkObject )
m_pkObject->DecrementReferences();

m_pkObject = pkObject;
}
return *this;

}

The first conditional guards against an assigment of a smart pointer object to itself,
for example,

MyClass* pkMC = new MyClass; // pkMC references = 0
MyClassPtr spkMC = pkMC; // pkMC references = 1
spkMC = pkMC; // pkMC references = 1

The assignment statement effectively does nothing. I believe it is safe to skip the first
conditional, but there is no point in executing more statements than you have to.

That said, the order of incrementing and decrementing is important . In [Ebe00]
I listed the original code for smart pointers, which included the assignment with
DecrementReferences first and IncrementReferences second. This is actually an error
in logic because the decrement can have the side effect of destroying the object that is
currently being assigned! For example,

class A : public Object { ... };
typedef Pointer<A> APtr;
class B : public Object { public: APtr MemberObject; };
typedef Pointer<B> BPtr;

A* pkAObject = new A; // pkAObject references = 0
B* pkBObject = new B; // pkBObject references = 0
pkBObject.MemberObject = pkAObject; // pkAObject references = 1
ObjectPtr spkObject = pkBObject; // pkBObject references = 1
spkObject = pkAObject; // oops!
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If you were to first decrement the reference count for the right-hand side spkObject,
the object affected is pkBObject. That is, the reference count on pkBObject is decre-
mented from 1 to 0. This causes pkBObject to be deleted. In the process of destruc-
tion, the MemberObject smart pointer goes out of scope and its destructor is called. In
that destructor, the function DecrementReferences is called on the object m_pkObject
points to, which in this case is what pkAObject points to. Therefore, the reference
count on pkAObject is decremented from 1 to 0, causing the object to be automat-
ically deleted. When this happens, pkAObject is a dangling pointer. The assignment
operator now attempts to call IncrementReferences on pkAObject, which is an error.

The rest of the material in this section on smart pointers is nearly the same as
in [Ebe00], but with modifications for the notation of Wild Magic version 3. My
apologies for repeating this, but the examples are important in understanding what
you can and cannot do with smart pointers.

There might be a need to typecast a smart pointer to a pointer or smart pointer.
For example, class Node, the internal node representation for scene graphs, is derived
from Spatial, the leaf node representation for scene graphs. Polymorphism allows
the assignment

Node* pkNode = <some node in scene graph>;
Spatial* pkObject = pkNode;

Abstractly, a smart pointer of type NodePtr is derived from SpatialPtr, but the
C++ language does not support this. The use of implicit operator conversions in the
smart pointer class guarantees a side effect that makes it appear as if the derivation
really does occur. For example,

// This code is valid.
NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkObject = spkNode;

// This code is not valid when class A is not derived from class B.
APtr spkAObject = new A;
BPtr spkBObject = spkAObject;

The implicit conversions also support comparison of smart pointers to null, just
like regular pointers:

NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkChild = spkNode->GetChildAt(2);
if ( spkChild )
{

<do something with spkChild>;
}
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A simple example illustrating the use and cleanup of smart pointers is the follow-
ing. The class Node stores an array of smart pointers for its children.

NodePtr spNode = <some node in scene graph>;
Node* pkNode = new Node; // pkNode references = 0
NodePtr spkChild = new Node; // pkNode references = 1
spkNode->AttachChild(spkChild); // pkNode references = 2
spkNode->DetachChild(spkChild); // pkNode references = 1
spkChild = NULL; // pkNode references = 0,

// destroy it

This illustrates how to properly terminate use of a smart pointer. In this code the call
delete spkChild would work just fine. However, if the object that spkChild points to
has a positive reference count, explicitly calling the destructor forces the deletion, and
the other objects that were pointing to the same object now have dangling pointers.
If instead the smart pointer is assigned NULL, the reference count is decremented, and
the object pointed to is not destroyed if there are other objects referencing it. Thus,
code like the following is safe:

NodePtr spkNode = <some node in scene graph>;
Node* pkNode = new Node; // pkNode references = 0
NodePtr spkChild = new Node; // pkNode references = 1
spkNode->AttachChild(spkChild); // pkNode references = 2
spkChild = NULL; // pkNode references = 1,

// no destruction

Also note that if the assignment of NULL to the smart pointer is omitted in this code,
the destructor for the smart pointer is called, and the reference count for pkNode still
is decremented to 1.

Some other guidelines that must be adhered to when using smart pointers are the
following. Smart pointers apply only to dynamically allocated objects, not to objects
on the stack. For example,

void MyFunction ()
{

Node kNode; // kNode references = 0
NodePtr spkNode = &kNode; // kNode references = 1
spkNode = NULL; // kNode references = 0,

// kNode is deleted
}

is doomed to failure. Since kNode is on the stack, the deletion implied in the last
statement will attempt to deallocate stack memory, not heap memory.

Using smart pointers as function parameters or returning them as the result of a
function call also has its pitfalls. The following example illustrates the dangers:
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void MyFunction (NodePtr spkNode)
{

<do nothing>;
}

Node* pkNode = new Node;
MyFunction(pkNode);
// pkNode now points to invalid memory

On allocation pkNode has zero references. The call to MyFunction creates an instance of
NodePtr on the stack via the copy constructor for that class. That call increments the
reference count of pkNode to one. On return from the function, the instance of NodePtr
is destroyed, and in the process, pkNode has zero references and it too is destroyed.
However, the following code is safe:

Node* pkNode = new Node; // pkNode references = 0
NodePtr spkNode = pkNode; // pkNode references = 1;
MyFunction(spkNode); // pkNode references increase to 2,

// then decrease to 1
// pkNode references = 1 at this point

A related problem is the following:

NodePtr MyFunction ()
{

Node* pkReturnNode = new Node; // references = 0;
return pkReturnNode;

}

Node* pkNode = MyFunction();
// pkNode now points to invalid memory

A temporary instance of NodePtr is implicitly generated by the compiler for the return
value of the function. The copy constructor is called to generate that instance, so the
reference count on pkNode is one. The temporary instance is no longer needed and
is implicitly destroyed, and in the process, pkNode has zero references and it too is
destroyed. The following code is safe:

NodePtr spkNode = MyFunction();
// spkNode.m_pkObject has one reference

The temporary instance increases the reference count of pkReturnNode to one. The
copy constructor is used to create spkNode, so the reference count increases to two.
The temporary instance is destroyed, and the reference count decreases to one.
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2.3.4 Controllers

Animation in the classic sense refers to the motion of articulated characters and ob-
jects in the scene. If a character is represented hierarchically, each node might rep-
resent a joint (neck, shoulder, elbow, wrist, knee, etc.) whose local transformations
change over time. Moreover, the values of the transformations are usually controlled
by procedural means as compared to the application manually adjusting the trans-
forms. This can be accomplished by allowing each node to store controllers, with each
controller managing some quantity that changes over time. In the case of classic ani-
mation, a controller might represent the local transform as a matrix function of time.
For each specified time in the application, the local transform is computed by the
controller, and the world transform is computed using this matrix.

It is possible to allow any quantity at a node to change over time. For example,
a node might be tagged to indicate that fogging is to be used in its subtree. The
fog depth can be made to vary with time. A controller can be used to procedurally
compute the depth based on current time. In this way animation is a concept that
refers to controlling any time-varying quantity in a scene graph.

The abstract base class that supports time-varying quantities is Controller.
The class will be discussed in detail in Section 4.5, including a presentation of the
Controller-derived classes in the engine. Here I will mention only the support in the
base class Object for controllers.

class Object
{
public:

void SetController (Controller* pkController);
int GetControllerQuantity () const;
Controller* GetController (int i) const;
void RemoveController (Controller* pkController);
void RemoveAllControllers ();
bool UpdateControllers (double dAppTime);

private:
// controllers (Pointer used directly to avoid circular headers)
TList<Pointer<Controller> >* m_pkControllerList;

}

Each controller can manage a single object. To guarantee this, the controllers
can be attached or detached only through the object intended to be managed. If a
controller is attached to an object, any previous object managed by the controller is
replaced by the new object. The replacement is handled internally by the object using
the controller’s SetObject member function. Support for attach and detach is in the
Object class. However, an object can have many controllers attached to it, with each
controller modifying a portion of the object’s state over time.
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2.3.5 Streaming

Persistence of storage is a requirement for a game engine. Game content is typically
generated by a modeling tool and must be exported to a format that the game applica-
tion can import. The game application itself might have a need to save its data so that
it can be reloaded at a later time. Streaming of data refers to the process of mapping
data between two media, typically disk storage and memory. In this section, we will
discuss transfers between disk and memory, but the ideas directly apply to transfers
between memory blocks (which supports transfers across a network).

A scene graph is considered to be an abstract directed graph of objects (of base
type Object). The nodes of the graph are the objects, and the arcs of the graph are
pointers between objects. Each object has nonobject members, in particular, any
members of a native data type (integer, float, string, etc.). The abstract graph must be
saved to disk so that it can be re-created later. This means that both the graph nodes
and graph arcs must be saved in some reasonable form. Moreover, each graph node
should be saved exactly once. The process of saving a scene graph to disk is therefore
equivalent to creating a list of the unique objects in the graph, saving them to disk,
and in the process saving any connections between them. If the graph has multiple
connected components, then each component must be traversed and saved. Support
for saving multiple abstract objects is easy to implement. The class Stream provides
the ability to assemble a list of top-level objects to save. Typically these are the roots of
scene graphs, but they can be other objects whose state needs to be saved. To support
loading the file and obtaining the same list of top-level objects, an identifying piece
of information must be written to disk before each abstract graph corresponding to
a top-level object. A simple choice is to write a string to disk.

The Stream API

The class that exists to manage the streaming process is Stream. The relevant public
portion of the interface is

class Stream
{
public:

// construction and destruction
Stream ();
~Stream ();

// The objects to process, each object representing an entry
// into a connected component of the abstract graph.
bool Insert (Object* pkObject);
bool Remove (Object* pkObject);
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void RemoveAll ();
int GetObjectCount ();
Object* GetObjectAt (int i) const;
bool IsTopLevel (Object* pkObject);

// Memory loads and saves. Stream does not assume
// responsibility for the char arrays. The application must
// manage the input acBuffer for the call to Load and delete
// the output racBuffer for the call to Save.
bool Load (char* acBuffer, int iSize);
bool Save (char*& racBuffer, int& riSize);

// file loads and saves
bool Load (const char* acFilename);
bool Save (const char* acFilename);

// support for memory and disk usage
int GetMemoryUsed () const;
int GetDiskUsed () const;

};

A Stream object manages a list of top-level objects. Objects are inserted into
the list by Insert and removed from the list by Remove or RemoveAll. The function
GetObjectCount returns the number of objects in the top-level list. The function
GetObjectAt(int) returns the ith object in the list. The function IsTopLevel is mainly
used internally by Stream, but may be called by an application as a check for existence
of an object in the top-level list.

Streaming to and from disk is supported by the load/save functions that take a
filename (character string) as input. The other load/save functions are for streaming
to and from a memory block. The return value is true if and only if the function call
is successful.

The function call GetDiskUsed computes how much disk space the top-level ob-
jects will use, not counting the file header that is used in the Wild Magic scene file
format. This function is also used internally by the file Save function to allocate a
memory block of the appropriate size, stream the top-level objects to that block, and
then write the block with a single call to a low-level file writing function. The intent is
to avoid expensive disk operations that might occur if writes are made on a member-
by-member basis for each object. The function call GetMemoryUsed reports how much
memory is required to store the top-level objects. This is useful to obtain a memory
footprint of a scene graph for the purposes of designing an application to fit within a
budgeted amount of memory. Every class derived from Object must implement both
of these functions.
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The typical usage for disk streaming is shown in the next code block:

// save a list of objects
Stream kOutStream;
kOutStream.Insert(pkObject1);
:
kOutStream.Insert(pkObjectN);
kOutStream.Save("myfile.mgc");

// load a list of objects
Stream kInStream;
bool bLoaded = kInStream.Load("myfile.mgc");
if ( bLoaded )
{

for (int i = 0; i < kInStream.GetObjectCount(); i++)
{

ObjectPtr spkObject = kInStream.GetObjectAt(i);
// Use prior knowledge of the file contents and statically
// cast the objects for further use by the application,
// ...or...
// Get the run-time type information and process the
// objects accordingly.

}
}

A pseudocode example of how the memory streaming might be used in a net-
working application follows:

// Server code:
Stream kOutStream;
// ...insert objects into kOutStream...
int iSize;
char* acBuffer;
kOutStream.Save(acBuffer,iSize);
create begin_stream packet [send iSize];
send packet;
while ( not done sending bytes from acBuffer )
{

create a packet of bytes from acBuffer;
send packet;

}
create end_stream packet;
send packet;
delete[] acBuffer;
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// Client code (in idle loop):
if ( received begin_stream packet )
{

int iSize;
get iSize from packet;
char* acBuffer = new char[iSize];
while ( not end_stream packet )
{

get packet;
extract bytes into acBuffer;

}
Stream kInStream;
kInStream.Load(acBuffer,iSize);
delete[] acBuffer;
// ...get objects from kInStream and process...

}

The Object API

The class Object has the following API to support streaming:

typedef Object* (*FactoryFunction)(Stream&);

class Object
{
public:

enum { FACTORY_MAP_SIZE = 256 };
static THashTable<String,FactoryFunction>* ms_pkFactory;
static bool RegisterFactory ();
static void InitializeFactory ();
static void TerminateFactory ();
static Object* Factory (Stream& rkStream);
virtual void Load (Stream& rkStream, Stream::Link* pkLink);
virtual void Link (Stream& rkStream, Stream::Link* pkLink);
virtual bool Register (Stream& rkStream) const;
virtual void Save (Stream& rkStream) const;
virtual int GetMemoryUsed () const;
virtual int GetDiskUsed () const;

};

The factory hash table stores class-static functions that are used to load an object
from disk. The key of the hash item is the RTTI string. The value is the factory
function for the class. For example, class Object has the factory function Object*
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Factory (Stream&). The factory hash table must be created and the factory functions
must be added to it during the initialization phase of the application (see Section
2.3.8). The functions RegisterFactory and InitializeFactory are built to do this. On
termination of the application, the factory hash table must be destroyed. The function
TerminateFactory does this. The functions Register, Save, and GetDiskUsed are used
for saving objects. The functions Factory, Load, and Link are used for loading objects.
The function GetMemoryUsed is not used for streaming, but does provide a measure
of memory usage, which can differ from disk usage. Each derived class has the same
API minus the static hash table and the TerminateFactory function. The streaming
functions are described in detail here.

Saving a Scene Graph

To save a scene graph, a unique list of objects must be created first. This list is built by
a depth-first traversal of the scene. Each Object that is visited is told to register itself
if it has not already done so. The virtual function that supports this is Register. The
base class registration function is

bool Object::Register (Stream& rkStream) const
{

Object* pkThis = (Object*)this; // conceptual constness
if ( rkStream.InsertInMap(pkThis,NULL) )
{

// Used to ensure the objects are saved in the order
// corresponding to a depth-first traversal of the scene.
rkStream.InsertInOrdered(pkThis);

TList<ControllerPtr>* pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())
{

Controller* pkController = pkList->Item();
if ( pkController )

pkController->Register(rkStream);
}

return true;
}

return false;
}
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The stream maintains a hash table of registered objects. The base class Object
implements this function to ask the stream if the object has been registered. If so,
the function returns false. If not, the stream adds the object to the hash map, and
the object tells the stream to register its only Object* members, a list of Controller
objects. The function then returns true. Each derived class implements this function.
The base class function is called. If the registration is successful, this object is visited
for the first time, and it tells each Object* member to register itself. The generic
structure is

bool DerivedClass::Register (Stream& rkStream) const
{

if ( !BaseClass::Register(rkStream) )
return false;

if ( m_spkObjectMember1 )
m_spkObjectMember1->Register(rkStream);

// ... other object member registration ...

if ( m_spkObjectMemberN )
m_spkObjectMemberN->Register(rkStream);

return true;
}

After the registration phase, the stream has a list of unique Objects. An iteration
is made through the list, and each object is told to save itself. The base class virtual
function that supports this is

void Object::Save (Stream& rkStream) const
{

WM3_BEGIN_DEBUG_STREAM_SAVE;

// RTTI name for factory lookup on Load
rkStream.Write(GetType().GetName());

// address of object for unique ID on Load/Link
rkStream.Write(this);

// name of object
rkStream.Write(m_kName);
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// link data
int iQuantity = 0;
TList<ControllerPtr>* pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())

iQuantity++;

rkStream.Write(iQuantity);

pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())

rkStream.Write(pkList->Item());

WM3_END_DEBUG_STREAM_SAVE(Object);
}

The RTTI (run-time type information) name is a string specific to the class. The
string for class Object is “Wm3.Object”, but Object is an abstract base class, so you
will not see this name in a scene file. The class Spatial is also abstract and has the
name “Wm3.Spatial”, but objects of class Node can be instantiated, so you will see
“Wm3.Node” in the scene files. The RTTI name is used by the stream loader to locate
the correct factory function to create an object of that class. The address of the object
is written to disk to be used as a unique identifier when loading. That address will
not be a valid memory address when loading, so the stream loader has to resolve
these addresses with a linking phase. Each object may have a character string name.
Such strings are written to disk by saving the length of the string first followed by the
characters of the string. The null terminator is not written. The controller pointers
are also memory addresses that are written to disk for unique identification of the
objects. When the controllers themselves are written to disk, those same addresses
are the ones that occur immediately after the RTTI names are written.

Each derived class implements Save. The base class Save is called first. Non-Object
data is written to disk first, followed by any Object* addresses.

void DerivedClass::Save (Stream& rkStream) const
{

WM3_BEGIN_DEBUG_STREAM_SAVE;

BaseClass::Save(rkStream);
write non-object data; // ‘‘native’’ data
write Object* pointers; // ‘‘link’’ data

WM3_END_DEBUG_STREAM_SAVE(DerivedClass);
}
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Not all native data needs to be saved. Some data members are derivable from
other data and are reproduced once the data is fully loaded from disk. Some data
members are set by other run-time processes and need not be saved. For example,
Spatial has an Object* member, the pointer to a parent node. When the scene graph
is reconstructed during stream loading, that parent pointer is initialized when the
spatial object is attached to a parent by a call to an appropriate Node member function.
Therefore, the parent pointer is not saved to disk. Some native data may be aggregate
data in the form of a class—for example, the class Vector3. Various template functions
are provided in the streaming source files to save such classes based on memory size.
The implication is that any such class cannot have virtual functions; otherwise, the
memory size includes the size of the nonstatic class members as well as the size of the
implicit virtual function table pointer.

Although a single scene graph is typically written to disk, the stream object allows
multiple objects to be written. For example, you might save a scene graph, a set of
camera objects, and a set of light objects. The root node of the scene is what you
tell the stream object to save. This node is an example of a top-level object . Other
objects that are contained in the scene graph are automatically saved, but they are not
top-level objects. When you load a scene file that contains multiple top-level objects,
you need a way of loading the scene and recapturing these objects. Before a top-level
object is saved to disk, the string “Top Level” is written first. This allows the loader to
easily identify top-level objects.

A brief explanation is in order for the couple of code samples previously shown.
You saw the macros WM3_BEGIN_DEBUG_STREAM_SAVE and WM3_END_DEBUG_STREAM_SAVE
(classname). I introduced these to help debug the streaming code for new classes that
are added to Wild Magic. Each Object-derived class implements a function called
GetDiskUsed. The function returns the number of bytes that the object will require
for storage on disk. The Stream class saves a scene graph to a memory block first,
then writes the memory block to disk. In order to have a large enough memory
block, the Stream queries all the unique objects to be streamed by calling GetDiskUsed
per object. The sum of the numbers is exactly the number of bytes required for the
disk operation. During the streaming to the memory block, Stream maintains an
index to the location in the memory block where the next write should occur. The
“begin” macro saves the index before any writes occur, and the “end” macro saves
the index after all writes occur. The difference should be exactly the amount reported
by GetDiskUsed for that object. If the difference is in error, an assertion is fired. The
problem is either that you are incorrectly saving the object to disk or that GetDiskUsed
itself is incorrectly implemented. The firing of the assertion has been enough for me
to track down which of the two is the problem.

Loading a Scene Graph

Loading is a more complicated process than saving. Since the pointer values on
disk are invalid, each object must be created in memory first and then filled in
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with data loaded from disk. Links between objects such as parent-child relationships
must be established later. Despite the invalidity of the disk pointer values, they do
store information about the abstract graph that is being loaded. The address of each
object in memory is associated with a disk pointer value, so the same hash table
that was used for storing the unique objects for saving can be reused for tracking
the correspondence between the disk pointer values, called link IDs, and the actual
memory address of the object. Once all objects are in memory and the hash table is
complete with the correspondences, the table is iterated as if it were a list, and the link
IDs in each object are replaced by the actual memory addresses. This is exactly the
concept of resolving addresses that a linker uses when combining object files created
by a compiler.

An object is loaded as follows. The stream object knows that the first thing to
expect is either the string “Top Level” or an RTTI string. If “Top Level” is read, the
loaded object is stored in a set of top-level objects for the application to access. If an
RTTI string is read, the stream knows that it needs to create an object of that type
from the file data that follows the RTTI string. The RTTI string is used as a key in
a hash map that was created pre-main at program initialization. The value of a hash
map entry is a static class function called Factory. This function starts the loading
process by creating an object of the desired type and then filling in its member values
by reading the appropriate data from the file. The factory function for instantiable
classes is structured as

classname* classname::Factory (Stream& rkStream)
{

classname* pkObject = new classname;
Stream::Link* pkLink = new Stream::Link(pkObject);
pkObject->Load(rkStream,pkLink);
return pkObject;

}

The scene file contains a list of unique objects, each storing a link ID. This identi-
fier was the address of the object when it was saved to disk. Any Object* members in
an object are themselves old addresses, but are now link IDs that refer to objects that
are in the scene file. When loading an object, all link IDs must be stored persistently
so that they may be resolved later in a linking phase. The second line of the Factory
function creates an object to store these links. The link object itself is stored as the
value in a hash map entry whose key is the input object to the constructor. The call
to Load allows the object to read its native data and Object* links from disk. The link
object is passed down from derived classes to base classes to allow each base class to
add any links it loads.

The Load function for the base class Object does the work of telling the stream to
add the link-object pair to the stream’s hash map. After that, the object’s native data
and links are loaded. The function is
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void Object::Load (Stream& rkStream, Stream::Link* pkLink)
{

WM3_BEGIN_DEBUG_STREAM_LOAD;

// get old address of object, save it for linking phase
Object* pkLinkID;
rkStream.Read(pkLinkID);
rkStream.InsertInMap(pkLinkID,pkLink);

// name of object
rkStream.Read(m_kName);

// link data
int iQuantity;
rkStream.Read(iQuantity);
m_pkControllerList = NULL;
for (int i = 0; i < iQuantity; i++)
{

Controller* pkController;
rkStream.Read(pkController);
pkLink->Add(pkController);

// build pkController list, to be filled in by Link
TList<ControllerPtr>* pkList = new TList<ControllerPtr>;
pkList->Item() = NULL;
pkList->Next() = m_pkControllerList;
m_pkControllerList = pkList;

}

WM3_END_DEBUG_STREAM_LOAD(Object);
}

Notice how the function loads the controller pointers. At the time the object was
saved to disk, this value was the memory address for the controller. Now at load time
it can only be used as a unique identifier. That value is stored in the link object for
the linking phase that occurs after loading.

Derived classes implement the Load function by calling the base class Load first
and then reading native data followed by link data. This is done in the same order
that Save processed the data.

void DerivedClass::Load (Stream& rkStream, Stream::Link* pkLink)
{

WM3_BEGIN_DEBUG_STREAM_LOAD;
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BaseClass::Load(rkStream,pkLink);
read non-object data; // ‘‘native’’ data
read Object* pointers; // ‘‘link’’ data
add Object* pointers to pkLink; // for later linking phase

WM3_END_DEBUG_STREAM_LOAD(DerivedClass);
}

Once all objects are loaded from disk, the linking phase is initiated. An iteration
is made over the list of loaded objects, and the link function is called for each object.
The base class linking function is

void Object::Link (Stream& rkStream, Stream::Link* pkLink)
{

TList<ControllerPtr>* pkList = m_pkControllerList;
for (/**/; pkList; pkList = pkList->Next())
{

Object* pkLinkID = pkLink->GetLinkID();
pkList->Item() = (Controller*)rkStream.GetFromMap(pkLinkID);

}
}

The generic structure of the linking function is

void classname::Link (Stream& rkStream, Stream::Link* pkLink)
{

Object* pkLinkID;

// link member 1
pkLinkID = GetLinkID();
m_spkObjectMember1 =

(ObjectMember1Class*)rkStream.GetFromMap(pkLinkID);

// ... other object member linking ...

// link member N
pkLinkID = GetLinkID();
m_spkObjectMemberN =

(ObjectMemberNClass*)rkStream.GetFromMap(pkLinkID);

// post-link semantics, if any, go here...
}
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The function GetLinkID accesses a link ID and internally increments a counter so that
the next call accesses the next link ID. The objects must be linked in the order in which
they were saved to disk (which is the same order they were loaded from disk).

A brief explanation is in order for the couple of code samples previously shown.
You saw the macros WM3_BEGIN_DEBUG_STREAM_LOAD and WM3_END_DEBUG_STREAM_LOAD
(classname). These are analogous to the macros used for saving a scene. They allow
you to track down any implementation errors in streaming when adding new classes
to Wild Magic. The Stream class loads a scene graph to a memory block first and
then writes the memory block to a scene in memory. In order to have a large enough
memory block, the Stream queries all the unique objects to be streamed by calling
GetDiskUsed per object. The sum of the numbers is exactly the number of bytes
required for the disk operation. During the streaming to the memory block, Stream
maintains an index to the location in the memory block where the next read should
occur. The “begin” macro saves the index before any reads occur, and the “end” macro
saves the index after all reads occur. The difference should be exactly the amount
reported by GetDiskUsed for that object. If the difference is in error, an assertion is
fired. The problem is either that you are incorrectly loading the object from disk or
that GetDiskUsed itself is incorrectly implemented.

2.3.6 Cloning

Wild Magic version 2 did not formally have a system for copying an object. As it turns
out, a side effect of the streaming system is that you can create a copy—a deep copy
in the sense that an entire object is duplicated (no subobject is shared). The interface
for this is

class Object
{
public:

Pointer<Object> Copy () const;
static char NameAppend;

};

The idea is straightforward. The object to be copied can be streamed to a memory
block, and the memory block is immediately streamed back to a new object that
happens to be a copy of the old one. The code is

ObjectPtr Object::Copy () const
{

// save the object to a memory buffer
Stream kSaveStream;
kSaveStream.Insert((Object*)this);
char* acBuffer = NULL;
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int iBufferSize = 0;
bool bSuccessful = kSaveStream.Save(acBuffer,iBufferSize);
assert( bSuccessful );
if ( !bSuccessful )

return NULL;

// load the object from the memory buffer
Stream kLoadStream;
bSuccessful = kLoadStream.Load(acBuffer,iBufferSize);
assert( bSuccessful );
if ( !bSuccessful )

return NULL;
delete[] acBuffer;

// generate unique names
for (int i = 0; i < kLoadStream.GetOrderedQuantity(); i++)
{

Object* pkObject = kLoadStream.GetOrderedObject(i);
assert( pkObject );
const String& rkName = pkObject->GetName();
int iLength = rkName.GetLength();
if ( iLength > 0 )
{

// Object has a name, append a character to make
// it unique.
const char* acName = (const char*)rkName;
char* acNewName = new char[iLength+2];
strcpy(acNewName,acName);
acNewName[iLength] = NameAppend;
acNewName[iLength+1] = 0;
pkObject->SetName(String(acNewName));

}
}

return kLoadStream.GetObjectAt(0);
}

Keep in mind that everything is a copy. This includes any string names that have
been attached to objects. If the duplicated object is to be placed in a scene graph with
the original, you then have two identically named objects. In most cases the duplicate
object is intended to be an object that has its own name. To automatically support
this, I have an extra block of code in the Copy function. New names are generated from
the old names by appending a special character, NameAppend. The special character is a
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static class member that you may set to whatever you want. The default is the pound
character (#).

A consequence of copying is that an object that consumes a lot of memory will
be duplicated to an object that consumes just as much memory. For example, if the
original object is a texture with a very large image, the copy has its own texture with a
duplicate of the very large image. What I had hoped to include in Wild Magic version
3 is what I call a cloning system—a system that copies some of the objects, but shares
others. After much experimentation and mental debate, I decided not to include a
cloning system at this time. The problem has to do with the semantics of what to
copy and what to share. To give all users the flexibility to copy or share what they
want, the system would have to be very complex.

What I thought would work is to have each class in the Object hierarchy maintain
a static bit field and a set of enumerated values. Each enumerated value corresponds
to an Object* data member of the class and to a bit in the field. For example,

class Derived : public Object
{
public:

enum
{

COPY_OBJECT_A = 1,
COPY_OBJECT_B = 2,
COPY_OBJECT_C = 4

};
static int CloneControl;

protected:
Object* m_pkObjectA;
Object* m_pkObjectB;
Object* m_pkObjectC;
// ... other non-Object data ...

};

// decide that A and C are copied, B is shared
Derived::CloneControl =

Derived::COPY_OBJECT_A | Derived::COPY_OBJECT_C;

// clone an object through an Object::Clone() member function
DerivedPtr spkDerived = <some Derived object>;
ObjectPtr spkClone = spkDerived->Clone();

The default clone controls would be reasonably chosen, but users of the engine could
adjust as needed for their own applications.
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The problem, though, is that it is not always possible to grant the requests that
each class makes through its clone control. That makes the clone control enumera-
tions hints only, which can lead to unexpected behavior. I choose not to have unpre-
dictable side effects. To illustrate the problem, consider the graph in Figure 2.5. The
classes are

class A : public Object
{
public:

enum
{

COPY_OBJECT_B = 1,
COPY_OBJECT_C = 2

};
static int CloneControl; // = COPY_OBJECT_B

protected:
BPtr m_spkObjectB;
CPtr m_spkObjectC;

};

class B : public Object
{
public:

enum
{

COPY_OBJECT_D = 1
};
static int CloneControl; // = COPY_OBJECT_D

protected:
DPtr m_spkObjectD;

};

class C : public Object
{
public:

enum
{

COPY_OBJECT_D = 1
};
static int CloneControl; // = COPY_OBJECT_D
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Figure 2.5 A simple Object graph. (a) The nodes are labeled with their class types. The arcs are
labeled with the class’s requests for clone control. (b) The cloned object. The prime
superscripts indicate that those objects were copied.

protected:
DPtr m_spkObjectD;

};

class D : public Object
{
public:

// no object members, so no clone control
};

The initial clone controls are set up so that class A wants to copy m_spkObjectB,
but share m_spkObjectC. Class B and Class C both want to copy their m_spkObjectD
members (which point to the same object of class D). Figure 2.5(b) shows the result of
the cloning operation. The expectation was that the copied object A′ would share the
subgraph that was rooted at the class C member. The side effect is that the subgraph
at the class C member has had portions replaced by copies. Effectively, A′ does not
have the subgraph that was intended by the cloning operation. In fact, the problems
can be worse. Consider if class B wants its m_spkObjectD copied, but class C wants its
m_spkObjectD shared. To satisfy this, the topology of the original graph must change
(B has a new child D′, but C retains its child D).

For a cloning operation to produce what you expect, it appears that if an object
in the graph is required to be copied, then any predecessors in the graph must also be
copied, even if their class’s clone control specifies they should be shared.

As I mentioned, the semantics are quite complicated. My recommendation is to
make copies and then replace objects in the copy by substituting the smart pointers
from the original as needed.
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2.3.7 String Trees

The Stream class provides the ability to save scene graphs to disk, but in a binary
format. A human-readable form of the data is sometimes desirable. The StringTree
class encapsulates the process of converting raw data to strings. When applied to a
scene graph, the end result is a tree of strings that corresponds to the scene graph.
The construction is not memory efficient, since the strings corresponding to a shared
object are not shared themselves. Because I only intended the human-readable format
for debugging purposes and for exploring output from exporters and other packages
that generate Wild Magic scenes, my design choice was to keep the construction as
simple as possible. The two tools that use string trees are the ScenePrinter tool and
the SceneTree tool. The first tool prints the strings to an ASCII text file and is portable
across platforms. The second tool is specific to the Microsoft Windows platform. A
Windows tree control is built to represent a scene graph. The tool launches a simple
window with the tree control and lots of readable data. In fact, the source code
for SceneTree was constructed so that, on a Microsoft Windows platform, you can
include the tree control code and launch a window during your application run. This
provides a more readable version of a scene than do the standard watch windows in
a compiler/development environment.

The essential portion of StringTree is

class StringTree
{
public:

// construction and destruction
StringTree (int iStringQuantity, int iChildQuantity);
~StringTree ();

// strings
int GetStringQuantity () const;
void SetString (int i, char* acString);
char* GetString (int i);

// children
int GetChildQuantity () const;
void SetChild (int i, StringTree* pkChild);
StringTree* GetChild (int i);

private:
TArray<char*> m_kStrings;
TArray<StringTree*> m_kChildren;

};
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This is a simple tree structure. Each node of the tree has an array of strings and an
array of pointers to child nodes. The other member functions not listed here are for
formatting the raw data into strings and for recursively saving the tree.

Each Object-derived class is required to implement a member function

virtual StringTree* DerivedClass::SaveStrings (const char* acTitle);

The input is an optional string that is used in the StringTree tool to give a label on
array data or other conglomerate data. The class creates whatever strings it chooses
to make its native data human-readable. Any Object-based data members are asked
to create their own string trees to be attached as children to the current tree node. In
this manner the construction is recursive.

2.3.8 Initialization and Termination

A class in the object system might declare one or more static members. These mem-
bers are initialized in the source file for the class. If a static member is itself a class
object, the initialization is in the form of a constructor call. This call occurs before
the application’s main function starts (pre-main). The destructor is called after the
application’s main function terminates (post-main). The C++ compiler automati-
cally generates the code for these function calls.

Potential Problems

The pre-main and post-main mechanism has a few potential pitfalls. One problem is
that the order in which the function calls occurs is unpredictable and is dependent
on the compiler. Obtaining a specific order requires some additional coding to force
it to occur. Without the forced ordering, one pre-main initialization might try to use
a static object that has not yet been initialized. For example,

// contents of Matrix2.h
class Matrix2
{
public:

Matrix2 (float fE00, float fE01, float fE10, float fE11);
Matrix2 operator* (float fScalar);
static Matrix2 IDENTITY;

protected:
float m_aafE[2][2];

};
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// contents of Matrix2.cpp
Matrix2 Matrix2::IDENTITY(1.0f,0.0f,0.0f,1.0f);
Matrix2::Matrix2 (float fE00, float fE01, float fE10, float fE11)
{

m_aafE[0][0] = fE00; m_aafE[0][1] = fE01;
m_aafE[1][0] = fE10; m_aafE[1][1] = fE11;

}
// ... other member functions here ...

// contents of MyClass.h
class MyClass
{
public:

static Matrix2 TWICE_IDENTITY;
};

// contents of MyClass.cpp
Matrix2 Matrix2::TWICE_IDENTITY = Matrix2::IDENTITY*2.0f;

If the static matrix of MyClass is initialized first, the static matrix of Matrix2 has all
zero entries since the storage is reserved already by the compiler, but is set to zero
values as is all static data.

Problems can occur with file-static data. If a file-static pointer is required to
allocate memory, this occurs before the main application is launched. However, since
such an initialization is C-style and not part of class semantics, code is not generated
to deallocate the memory. For example,

int* g_aiData = new int[17];
int main ()
{

memset(g_aiData,0,17*sizeof(int));
return 0;

}

The global variable g_aiData is allocated pre-main, but no deallocation occurs, thus
creating a memory leak. One mechanism to handle this is the atexit function pro-
vided by C or C++ run-time libraries. The input to atexit is a function that takes
no parameters and returns void. The functions are executed before the main applica-
tion exits, but before any global static data is processed post-main. There is an order
in this scheme, which is LIFO (last in, first out). The previous block of code can be
modified to use this:

int* g_aiData = new int[17];
void DeleteData () { delete[] g_aiData; }
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int main ()
{

atexit(DeleteData);
memset(g_aiData,0,17*sizeof(int));
return 0;

}

Of course in this example the global array is allocated in the same file that has
main, so a delete statement may instead be used before the return from the function.
However, if the global array occurs in a different file, then some function in that
file has the responsibility for calling atexit with the appropriate deletion function
as input. That function will be called before main returns.

Another problem with file-static data may occur, but it depends on the compiler
you use. In order to initialize some part of the system, it might be desirable to force
a C-style function to be called pre-main. The following code in a source file has that
effect:

bool g_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// do the initialization
return true;

}

The initialization function is static because its only purpose is to force something to
happen specifically to items in that file. The fact that g_bInitialized is global requires
the compiler to make the symbol externally accessible by adding the appropriate label
to the compiled code in the object file. The compiler should then add the call of the
initialization function to its list of such functions to be called pre-main.

A drawback with this mechanism is that, in fact, the variable g_bInitialized is ex-
ternally accessible. As such, you might have name clashes with symbols in other files.
One solution is to create a name for the dummy variable that has a large probability
of not clashing with other names. Another solution is to make the dummy variable
file-static.

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// do the initialization
return true;

}

The problem, though, is that an optimizing compiler or a smart linker might
try to be too smart. Noticing that gs_bInitialized is never referenced anywhere else
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in the file, and noticing that it is in fact static, the compiler or linker might very
well discard the symbol and never add the initialization function to its list of pre-
main initializers to call. Yes, this has happened in my experience, and it is a difficult
problem to diagnose. A compiler might provide a macro that lets you prevent the
static variable from being discarded, but then again it might not. A more robust
solution to prevent the discard is

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// do the initialization
gs_bInitialized = true;
return gs_bInitialized;

}

Hopefully, the compiler or linker will not try to be really smart and simply notice that
the static variable is used somewhere in the file and not discard it. If for some strange
reason the compiler or linker does figure this one out and discards the variable, a
more sophisticated body can be used.

To handle order dependencies in the generic solution for classes, discussed in the
next subsection, it is necessary to guard against multiple initializations. The following
will do this:

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

if ( !gs_bInitialized )
{

// do the initialization
gs_bInitialized = true;

}
return gs_bInitialized;

}

The C++ language guarantees that the static data gs_bInitialized is zero (false)
before any dynamic initialization occurs (the call to SomeInitialization), so this code
will work as planned to initialize once and only once.

A Generic Solution for Classes

Here is a system that allows a form of pre-main initialization and post-main termina-
tion that takes care of order dependencies. The idea is to register a set of initialization
functions and a set of termination functions, all registered pre-main using the file-
static mechanism discussed previously. The initialization and termination functions
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themselves are called in the main application and bound a call to a function that an
application is required to implement.

The class Main provides the ability to add initialization and termination functions.
The class has a member function that executes all the initializers and a member
function that executes all the terminators. The initializers and terminators, if any, are
called only once. The class structure is

class Main
{
public:

typedef void (*Initializer)(void);
typedef TArray<Initializer> InitializerArray;
static void AddInitializer (Initializer oInitialize);
static void Initialize ();

typedef void (*Terminator)(void);
typedef TArray<Terminator> TerminatorArray;
static void AddTerminator (Terminator oTerminate);
static void Terminate ();

private:
enum { IT_MAXQUANTITY = 256, IT_GROWBY = 256 };
static InitializerArray* ms_pkInitializers;
static TerminatorArray* ms_pkTerminators;

static int ms_iStartObjects, ms_iFinalObjects;
};

The arrays of function pointers are initialized to NULL. The static data members
ms_iStartObjects and ms_iFinalObjects are used to trap object leaks in the program
execution. The function to add an initializer is

void Main::AddInitializer (Initializer oInitialize)
{

if ( !ms_pkInitializers )
{

ms_pkInitializers = new InitializerArray(IT_MAXQUANTITY,
IT_GROWBY);

}

ms_pkInitializers->Append(oInitialize);
}
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The initializer array is allocated only if there is at least one initializer. Once all ini-
tializers are added to the array, the function Initialize is called. Its implementation
is shown in the following. Notice the code blocks that are used for detecting object
leaks.

void Main::Initialize ()
{

// objects should not be created pre-initialize
ms_iStartObjects = Object::InUse.GetQuantity();
if ( ms_iStartObjects != 0 )
{

assert( ms_iStartObjects == 0 );
Object::PrintInUse("AppLog.txt",

"Objects were created before pre-main initialization");
}

if ( ms_pkInitializers )
{

for (int i = 0; i < ms_pkInitializers->GetQuantity(); i++)
(*ms_pkInitializers)[i]();

}

delete ms_pkInitializers;
ms_pkInitializers = NULL;

// number of objects created during initialization
ms_iStartObjects = Object::InUse.GetQuantity();

}

The first time the function is called, the initializers are executed. Afterwards, the
array of functions is deallocated so that no work must be done in a post-main fashion
to free up the memory used by the array. The termination system is identical in
structure:

void Main::AddTerminator (Terminator oTerminate)
{

if ( !ms_pkTerminators )
{

ms_pkTerminators = new TerminatorArray(IT_MAXQUANTITY,
IT_GROWBY);

}

ms_pkTerminators->Append(oTerminate);
}
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void Main::Terminate ()
{

// all objects created during the application should be deleted by now
ms_iFinalObjects = Object::InUse.GetQuantity();
if ( ms_iStartObjects != ms_iFinalObjects )
{

assert( ms_iStartObjects == ms_iFinalObjects );
Object::PrintInUse("AppLog.txt",

"Not all objects were deleted before"
"post-main termination");

}

if ( ms_pkTerminators )
{

for (int i = 0; i < ms_pkTerminators->GetQuantity(); i++)
(*ms_pkTerminators)[i]();

}

delete ms_pkTerminators;
ms_pkTerminators = NULL;

// objects should not be deleted post-terminate
ms_iFinalObjects = Object::InUse.GetQuantity();
if ( ms_iFinalObjects != 0 )
{

assert( ms_iFinalObjects == 0 );
Object::PrintInUse("AppLog.txt",

"Objects were deleted after post-main termination");
}

}

Once again I have added code blocks to detect object leaks. If you reach one of the
assert statements, you can ignore it and continue the program execution. This will
result in an ASCII file written to disk that contains a list of the objects that should
have been deleted, but were not. The list includes the unique identifiers stored in the
Object class and the object types. This allows you to set break points in the next run
to determine why the objects are not deleted. You will find in most cases that the
application termination function (see Chapter 8) did not set various smart pointers
to null.

For a 2D or 3D graphics application, you will use the Application interface de-
scribed in Chapter 8. The application library provides the following code block:

int main (int iQuantity, char** apcArgument)
{

Main::Initialize();
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int iExitCode = Application::Run(iQuantity,apcArgument);
Main::Terminate();
return iExitCode;

}

The details of how you hook your application into Application::Run will be discussed
in Chapter 8.

Each class requiring initialization services must contain the following in the class
definition in the header file:

class MyClass
{
public:

static bool RegisterInitialize ();
static void Initialize ();

private:
static bool ms_bInitializeRegistered;

};

The source file contains

bool MyClass::ms_bInitializeRegistered = false;
bool MyClass::RegisterInitialize ()
{

if ( !ms_bInitializeRegistered )
{

Main::AddInitializer(classname::Initialize);
ms_bInitializeRegistered = true;

}
return ms_bInitializeRegistered;

}

void MyClass::Initialize () { <initializations go here> }

The registration uses the file-static pre-main initialization scheme discussed previ-
ously. Similar constructs are used if the class requires termination services.

I have provided macros for the previously mentioned code blocks:

WM3_DECLARE_INITIALIZE
WM3_IMPLEMENT_INITIALIZE(classname)

The macros are defined in Wm3Main.mcr. They may be used if no order dependencies
exist for the initialization. If there are dependencies, here is an example of how to
handle them. Suppose that class A initializes some static data and class B needs that
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data in order to initialize its own static data. The initializer for A must be called before
the initializer for B. The registration function for B is

bool B::RegisterInitialize ()
{

if ( !ms_bInitializeRegistered )
{

A::RegisterInitialize();
Main::AddInitializer(B::Initialize);
ms_bInitializeRegistered = true;

}
return ms_bInitializeRegistered;

}

This guarantees that the initializer for A occurs in the array of functions before the
initializer for B. Since the array of functions is executed in the order stored, the correct
order of initialization is obtained.



C h a p t e r 3
Scene Graphs and Ren-
derers

At its lowest level, a graphics engine has the responsibility to draw the objects
that are visible to an observer. An engine programmer typically uses a graphics

API such as OpenGL or Direct3D to implement a renderer whose job it is to correctly
draw the objects. On some platforms if no hardware acceleration exists or a standard
API is unavailable, the programmer might even write the entire graphics system to
run on the CPU; the result is called a software renderer. Although current consumer
graphics hardware has a lot of power and obviates the need for writing software
renderers on systems with this hardware, the ability to write software renderers is still
important—for example, on embedded systems with graphics capabilities such as cell
phones and handheld devices. That said, this book does not cover the topic of writing
a fully featured software renderer. Rather, the focus is on writing a renderer using an
existing graphics API, but hidden by an abstract rendering layer to allow applications
not to worry about whether the API is standard or user-written. Wild Magic has
renderers for OpenGL, for Direct3D, and even one to illustrate how you might write
a software renderer. The examples in the book refer to the OpenGL renderer, but the
ideas apply equally as well to Direct3D.

Building a renderer to draw primitives such as points, polylines, triangle meshes,
and triangle strips using basic visual effects such as textures, materials, and lighting is
a straightforward process that is well understood. The process is sometimes referred
to as the fixed-function pipeline. The graphics API limits you to calling functions
supported only by that API. Recent generations of graphics hardware, though, now
provide the ability to program the hardware. The programs are called shaders and
come in two flavors, vertex shaders and pixel shaders. Vertex shaders allow you to
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control drawing based on vertex attributes such as positions, normals, and colors.
A simple vertex shader might draw a triangle mesh where the user supplies vertex
positions and colors. Pixel shaders allow you to control drawing through image-based
attributes. A simple pixel shader might draw a triangle mesh where the user supplies
vertex positions, texture coordinates, and a texture image to be interpolated to fill
in the final pixels that correspond to the drawn object. Writing shaders can be more
challenging than using the fixed-function pipeline.

A large portion of Usenet postings to groups related to computer graphics and
rendering are of the form “How do I do X with my graphics API?” The answers tend
to be compact and concise with supporting code samples on the order of a few lines of
API code. An abundant supply of Web sites may be found that provide tutorials and
code samples to help novice programmers with their ventures into writing renderers
for OpenGL or Direct3D. These are useful learning tools for understanding what it
takes to do low-level drawing. But in my opinion they lack insight into how you
architect a graphics system that supports complex applications such as games. In
particular:

1. How do you provide data efficiently to the renderer to support applications that
must run in real time?

2. How does an application interface with the renderer?

3. How do you make it easy for the application programmer to use the engine?

4. How can you help minimize the changes to the system when new features must
be added to support the latest creations from your artists?

Although other questions may be asked, the four mentioned are the most relevant to
a game application—my conclusion based on interacting with game companies that
used NetImmerse as their game engine.

The first question is clear. The demands for a 3D game are that it run at real-time
rates. Asking the renderer to draw every possible object in the game’s world is clearly
not going to support real time. The clipping and depth buffering mechanisms in the
graphics API will eliminate those objects that are not visible, but these mechanisms
use computation time. Moreover, they have no high-level knowledge of the game
logic or data organization. As an engine programmer, you have that knowledge and
can guide the renderer accordingly. The game’s world is referred to as the scene. The
objects in the world are part of the scene. When you toss in the interrelationships
between the objects and their various attributes, visual or physical, you have what is
called a scene graph. If you can limit the objects sent to the renderer to be only those
that are visible or potentially visible, the workload of the renderer is greatly reduced.
This type of data handling is called scene graph management . Visibility determination
is one aspect of the management, but there are others, many of which are discussed
later in the book.

Scene graph management is a higher-level system than the rendering system and
may be viewed as a front end to the renderer, one constructed to efficiently feed it. The
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design of the interface between the two systems is important to get right, especially
when the graphics engines evolve as rapidly as they do for game applications. This is
the essence of the second question asked earlier. As new requirements are introduced
during game development, the last thing you want to do is change the interface
between data management and drawing. Such changes require maintenance of both
the scene graph and rendering systems and can adversely affect a shipping schedule.
Although some change is inevitable, a carefully thought-out abstract rendering layer
will minimize the impact of those changes to other subsystems of the engine.

The third question is quite important, especially when your plan is to market
your graphics engine as a middleware tool to other companies, or even to internal
clients within your own company. A scene graph management system helps isolate
the application programmer from the low-level details of rendering. However, it
must expose the capabilities of the rendering system in a high-level and easy-to-
use manner. I believe this aspect of Wild Magic to be the one that has attracted the
majority of users. Application programmers can focus on the high-level details and
semantics of how their objects must look and interact in the application. The low-
level rendering details essentially become irrelevant at this stage!

The fourth question is, perhaps, the most important one. Anyone who has
worked on a game project knows that the requirements change frequently—
sometimes even on a daily or weekly basis. This aspect of frequent change is what
makes software engineering for a game somewhat different than that for other areas
of application. Knowing that change will occur as often as it does, you need to care-
fully architect the scene graph management system so that the impact of a change
is minimal and confined to a small portion of the engine. In my experience, the
worst type of requirement change is one of adding new visual effects or new geo-
metric object types to the system. Yet these are exactly what you expect to occur most
often during game development! Your favorite artist is hard at work creating a brand-
new feature: environment-mapped, bump-mapped, iridescent (EMBMI) clouds. The
cloud geometry is a mixture of points, polylines, and triangle meshes. The lead artist
approves the feature, and the programming staff is asked to support it as soon as
possible. After the usual fracas between the artists and programmers, with each side
complaining about how the other side does not understand its side, the game pro-
ducer intervenes and says, “Just do it.”1 Now you must create a new set of classes in the
scene graph management system to support EMBMI clouds. The rendering system
might (or might not) have to be modified to support the visual aspects of the clouds.
The streaming system for persistent storage of the game assets must be modified to
handle the new type. Finally, you must modify the exporter for the artist’s modeling

1. Okay, I made this one up, but it is illustrative of what you might encounter. About the producer’s decision:
Let’s face it. A good story, good game play, and fantastic artwork are essential. No consumer will notice
that fancy hack you made to reduce an intersection test from 7 cycles to 6 cycles. Relish the fact that your
name will be on the credits, hope that the consumer will actually read the credits, and look forward to the
next Game Developer’s Conference where your friends will congratulate you on that amazing hack!
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package to export EMBMI clouds to the engine’s file format. If any of these tasks re-
quires you to significantly rewrite the scene graph manager or the renderer, there is
a good chance that the original architectures were not designed carefully enough to
anticipate such changes.2

This chapter is about the basic ideas that Wild Magic uses for scene graph man-
agement and for abstracting the renderer layer. I explain my design choices, but keep
in mind that there may be other equally valid choices. My goal is not to compare with
as many competing ideas as possible. Rather, it is to make it clear what motivated me
to make my choices. The necessity to solve various problems that arise in data man-
agement might very well lead someone else to different choices, but the problems to
solve are certainly the same.

Section 3.1 is a discussion of the subsystems I chose for the basic services provided
by the scene graph management. These include the classes Spatial, Node, Geometry,
and Renderer, which correspond to spatial decomposition, transformation, grouping
of related data, representation of geometric data, and drawing of the data.

Sections 3.2 and 3.3 describe the geometric state and geometric types of the
Spatial and Geometry classes. Topics include transformations and coordinate systems,
bounding volumes, updating geometric state, and specialized geometric types.

Section 3.4 is about render state and effects, which is the information that controls
how objects are drawn. I discuss an important distinction between the architecture
of Wild Magic version 3 and older versions of the engine: global state and local state.
Global state affects all objects in a specified portion of the scene (depth buffering,
alpha blending, wire frame, etc.), whereas local state affects a single, specified object
in the scene (texture coordinates, vertex colors, etc.).

Section 3.5 is a discussion about camera models and the renderer architecture.
Also discussed are issues regarding caching of data on the graphics card and multipass
rendering, not from a performance perspective, but from the perspective of how a
scene graph management system can support them in a manner independent of the
underlying graphics API.

3.1 The Core Classes

The most important subsystems of scene graph management are encapsulated in the
classes Spatial, Node, Geometry, and the abstract renderer layer Renderer. The first
three are designed to support feeding data to the last in an efficient manner. Figure
3.1 is the most important figure you will see in this book. The schematic diagram
shows how the four classes are interrelated.

2. Be aware that major rewrites in the middle of a game development cycle can severely affect the value of
your stock options!
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Figure 3.1 The interrelationships among classes Spatial, Node, Geometry, and Renderer.

The discussions in this section are all about why the various boxed items in the
diagram are encapsulated as shown. The arrows in the diagram imply a loose form of
dependency: An object at the arrowhead depends in some form on the object at the
origin of the arrow.

3.1.1 Motivation for the Classes

Before you can draw objects using a renderer, you actually need objects to draw! Of
course, this is the role of artists in the game development process. Using a modeling
package, an artist will create geometric data, usually in the form of points, polylines,
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and triangle meshes, and assign various visual attributes, including textures, materi-
als, and lighting. Additional information is also created by the artists. For example,
keyframe data may be added to a biped structure for the purposes of animation of
the character. Complicated models such as a biped are typically implemented by the
modeling package using a scene graph hierarchy itself! For illustration, though, con-
sider a simple, inanimate object such as a model of a wooden table.

Geometry

The table consists of geometric information in the form of a collection of model ver-
tices. For convenience, suppose they are stored in an array V[i] for 0 ≤ i < n. Most
likely the table is modeled as a triangle mesh. The triangles are defined as triples of
vertices, ordered in a consistent manner that allows you to say which side of the tri-
angle is outward facing from a display perspective, and which side is inward facing.
A classical choice for outward-facing triangles is to use counterclockwise ordering: If
an observer is viewing the plane of the triangle and that plane has a normal vector
pointing to the side of the plane on which the observer is located, the triangle ver-
tices are seen in a counterclockwise order in that plane. The triangle information is
usually stored as a collection of triples of indices into the vertex array. Thus, a triple
(i0,i1,i2) refers to a triangle whose vertices are (V[i0],V[i1],V[i2]). If dynamic
lighting of the table is desired, an artist might additionally create vertex model nor-
mals, although in many cases it is sufficient to generate the normals procedurally.
Finally, the model units are possibly of a different size than the units used in the
game’s world, or the model is intended to be drawn in a different size than what the
modeling package does. A model scale may be applied by the artist to accommodate
these. This does allow for nonuniform scaling, where each spatial dimension may be
scaled independently of the others. The region of space that the model occupies is
represented by a model bound, typically a sphere that encloses all the vertices, but this
information can always be generated procedurally and does not require the artist’s in-
put. The model bound is useful for identifying whether or not the model is currently
visible to an observer. All the model information created by the artist, or procedu-
rally generated from what the artist produces, is encapsulated by the class Geometry,
as shown in Figure 3.1.

Spatial

Suppose that the artist was responsible for creating both a table and a room in
which the table is placed. The table and room will most likely be created in separate
modeling sessions. When working with the room model, it would be convenient to
load the already-created table model and place it in the room. The technical problem
is that the table and room were created in their own, independent coordinate systems.
To place the table, it must be translated, oriented, and possibly scaled. The resulting
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local transformation is a necessary feature of the final scene for the game. I use the
adjective local to indicate that the transformation is applied to the table relative to
the coordinate system of the room. That is, the table is located in the room, and
the relationship between the room and table may be thought of as a parent-child
relationship. You start with the room (the parent) and place the table (the child) in
the room using the coordinate system of the room. The room itself may be situated
relative to another object—for example, a house—requiring a local transformation of
the room into the coordinate system of the house. Assuming the coordinate system
of the house is used for the game’s world coordinate system, there is an implied world
transformation from each object’s model space to the world space. It is intuitive that
the model bound for an object in model space has a counterpart in world space, a
world bound, which is obtained by applying the world transformation to the model
bound. The local and world transformations and the world bound are encapsulated
by the class Spatial, as shown in Figure 3.1. The (nonuniform) model scale of the
Geometry class and the transformations of the Spatial class are surrounded by a
dotted-line box to indicate that both participate in transformations, even though the
data is contained in their respective classes.

Node

The example of a house, room, and table has another issue that is partially related to
the local and world transformations. The objects are ordered in a natural hierarchy.
To make the example more illustrative, consider a house with two rooms, with a table
and chair in one room, and a plate, fork, and knife placed on the table. The hierarchy
for the objects is shown in Figure 3.2. Each object is represented by a node in the
hierarchy.

The objects are all created separately. The hierarchy represents parent-child rela-
tionships regarding how a child object is placed relative to its parent object. The Plate,

House

Room 1

Table

Plate Knife Fork

Chair

Room 2

Figure 3.2 A hierarchy to represent a collection of related objects.
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Knife, and Fork are assigned local transformations relative to the Table. The Table and
Chair are assigned local transformations relative to Room 1. Room 1 and Room 2 are
assigned local transformations relative to the House. Each object has world transfor-
mations to place it directly in the world. If Lobject is the local transformation that
places the object in the coordinate system of its parent and Wobject is the world trans-
formation of the object, the hierarchy implies the following matrix compositions.
The order of application to vectors (the vertices) is from right to left according to the
conventions used in Wild Magic

WHouse = LHouse

WRoom1 = WHouse LRoom1 = LHouse LRoom1

WRoom2 = WHouse LRoom2 = LHouse LRoom2

WTable = WRoom1 LTable = LHouse LRoom1 LTable

WChair = WRoom1 LChair = LHouse LRoom1 LChair

WPlate = WTable LPlate = LHouse LRoom1 LTable LPlate

WKnife = WTable LKnife = LHouse LRoom1 LTable LKnife

WFork = WTable LFork = LHouse LRoom1 LTable LFork.

The first equation says that the house is placed in the world directly. The local
and world transformations are the same. The second equation says that Room 1 is
transformed first into the coordinate system of the House, then is transformed to the
world by the House’s world transformation. The other equations have similar inter-
pretations. The last one says that the Fork is transformed into the coordinate system
of the Table, then transformed to the coordinate system of Room 1, then transformed
to the coordinate system of the House, then transformed to the world coordinates.
A path through the tree of parent-child relationships has a corresponding sequence
of local transformations that are composited. Although each local transformation
may be applied one at a time, it is more efficient to use the world transformation
of the parent (already calculated by the parent) and the local transformation of the
child to perform a single matrix product that is the world transformation of the
child.

The grouping together of objects in a hierarchy is the role of the Node class. The
compositing of transformations is accomplished through a depth-first traversal of
the parent-child tree. Each parent node provides its world transformation to its child
nodes in order for the children to compute their world transformations, naturally a
recursive process. The transformations are propagated down the hierarchy (from root
node to leaf nodes).

Each geometry object has a model bound associated with it. A node does not
have a model bound per se, given that it only groups together objects, but it can be
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assigned a world bound. The world bound indicates that portion of space containing
the collection of objects represented by the node. Keep in mind that the bound is
a coarse measurement of occupation, and that not all of the space contained in the
bound is occupied by the object. A natural choice for the world bound of a node is
any bound that contains the world bounds of its children. However, it is not necessary
that the world bound contain the child bounds. All that matters is that the objects
represented by the child nodes are contained in the world bound. Once a world
bound is assigned to a node, it is possible to define a model bound—the one obtained
by applying the inverse world transformation to the world bound. A model bound
for a node is rarely used, so the Node class does not have a data member to store this
information. If needed, it can be computed on the fly from other data.

Each time local transformations are modified at a node in the scene, the world
transformations must be recalculated by a traversal of the subtree rooted at that node.
But a change in world transformations also implies a change in the world bounds.
After the transformations are propagated down the hierarchy, new world bounds
must be recomputed at the child nodes and propagated up the hierarchy (from leaf
nodes to root node) to parent nodes so that they may also recompute their world
bounds.

Figure 3.1 shows the relationship between transformations and bounds. A con-
nection is shown between the world transformation (in Spatial) and the link between
the model bound (in Geometry) and the world bound (in Spatial). Together these
indicate that the model bound is transformed to the world bound by the world trans-
formation. The world transformation at a child node depends on its parent’s world
transformation. The relationship is shown in the figure by an arrow. The composi-
tion of the transformations occurs during the downward pass through the hierarchy.
The parent’s world bound depends on the child’s world bound. The relationship is
also shown in the figure by an arrow. The recalculation of the world bounds occurs
during the upward passes through the hierarchy. The downward and upward passes
together are referred to as a geometric update, whose implementation details will be
discussed later.

Renderer

Figure 3.1 has a block representing the rendering layer in the engine. Naturally, the
renderer needs to be fed the geometric data such as vertices and normals, and this
data must be in its final position and orientation in the world. The renderer needs to
know how the vertices are related to each other, say, as a triangle mesh, so the indices
must also be provided. Notice that some connections are shown between the world
transformations (in Spatial) and the links between the model vertices and normals
and the world vertices and normals. These indicate that someone must be responsible
for applying the transformations to the model data before the renderer draws them.
Although the Spatial class can be given the responsibility, most likely performing the
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calculations on the central processing unit (CPU), the Renderer class instead takes on
the responsibility. A software renderer most likely implements the transformations
to be performed on the CPU, but renderers using current graphics hardware will
allow the graphics processing unit (GPU) to do the calculations. Because the target
processor is not always the CPU, it is natural to hide the transformation of model
data inside the renderer layer.

The renderer must also be provided with any vertex attributes, texture maps,
shader programs, and anything else needed to properly draw an object. On the ren-
derer side, all this information is shown in the box in that portion of Figure 3.1
corresponding to the Renderer class. The provider of the information is class Spa-
tial. Why Spatial and not Geometry? The choice is not immediately obvious. For
simple objects consisting of triangle meshes and basic attributes such as vertex colors,
materials, or textures, placing the data in Geometry makes sense. However, more com-
plicated special effects (1) may be applied to the entire collection of geometric objects
(at the leaf nodes) contained in a subtree of the hierarchy or (2) may require multiple
drawing passes in a subtree. An example of (1) is projected textures, where a texture
is projected from a postulated light source onto the surfaces of objects visible to the
light. It is natural that a node store such a “global effect” rather than share the effect
multiple times at all the geometric objects in the subtree. Shader programs are also
stored by the Spatial class for the same reason. A shader can affect multiple objects,
all in the same subtree of the hierarchy. An example of (2) is planar, projected shad-
ows, where an object casts shadows onto multiple planes. Each casting of a shadow
onto the plane requires its own drawing pass. The hierarchy support in Wild Magic
is designed to handle both (1) and (2).

Controllers and Modifiers

The word animation tends to be used in the context of motion of characters or
objects. I use the word in a more general sense to refer to any time-varying quantity in
the scene. The engine has support for animation through controllers; the abstract base
class is Controller. Figure 3.1 illustrates some standard quantities that are controlled.

The most common are transform controllers—for example, keyframe controllers
or inverse kinematic controllers. For keyframe controllers, an artist provides a set of
positions and orientations for objects (i.e., for the nodes in the hierarchy that repre-
sent the objects). A keyframe controller interpolates the keyframes to provide smooth
motion over time. For inverse kinematic controllers, the positions and orientations
for objects are determined by constraints that require the object to be in certain con-
figurations. For example, a hand on a character must be translated and rotated to pick
up a glass. The controller selects the translations and rotations for the hand according
to where the glass is.

Vertex and normal controllers are used for morphing and mesh deformation.
Render state controllers are used for animating just about any effect you like. For
example, a controller could be used to vary the color of a light source. A texture may
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be animated by varying the texture coordinates associated with the texture and the
object to which the texture applies. This type of effect is useful for giving the effect
that a water surface is in motion.

Index controllers are less common, but are used to dynamically change the topol-
ogy of a triangle mesh or strip. For example, continuous level of detail algorithms
may be implemented using controllers.

Controllers are not limited to those shown in Figure 3.1. Use your creativity to
implement as complex an animated effect as you can dream up.

I use the term modifier to indicate additional semantics applied to a collection of
vertices, normals, and indices. The Geometry class is a container for these items, but
is itself an abstract class. The main modifier is class TriMesh, which is derived from
Geometry, and this class is used to provide indices to the base class. A similar example
is class TriStrip, where the indices are implicitly created by the class and provided
to the Geometry base class. In both cases, the derived classes may be viewed as index
modifiers of the geometry base class.

Other geometric-based classes may also be viewed as modifiers of Geometry, in-
cluding points (class Polypoint) and polylines (class Polyline). Both classes may be
viewed as vertex modifiers. Particle systems (base class Particles) are derived from
class TriMesh. The particles are drawn as rectangular billboards (the triangle mesh
stores the rectangles as pairs of triangles), and so may be thought of as index modi-
fiers. However, the physical aspects of particles are tied into only the point locations.
In this sense, particle systems are vertex modifiers of the Geometry class.

How one adds the concept of modifiers to an engine is up for debate. The con-
troller system allows you to attach a list of controllers to an object. Each controller
manages the animation of some member (or members) of the object. As you add
new Controller-derived classes, the basic controller system need not change. This
is a good thing since you may extend the behavior of the engine without having to
rearchitect the core. Preserving old behavior when adding new features is related to
the object-oriented principle called the open-closed principle. After building a system
that, over time, is demonstrated to function as designed and is robust, you want it
to be closed to further changes in order to protect its integrity. Yet you also want the
system to be open to extension with new features. Having a core system such as the
controllers that allows you to create new features and support them in the (closed)
core is one way in which you can have both open and closed.

The classical manner in which you obtain the open-closed principle, though, is
through class derivation. The base class represents the closed portion of the system,
whereas a derived class represents the open portion. Regarding modifiers, I decided
to use class derivation to define the semantics. Such semantics can be arbitrarily
complex—something not easily fitted by a system that allows a list of modifiers to
be attached to an object. A derived class allows you to implement whatever interface
is necessary to support the modifications. Controllers, on the other hand, have simple
semantics. Each represents management of the animation of one or more object
members, and each implements an update function that is called by the core system.
The controller list-based system is natural for such simple objects.
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3.1.2 Spatial Hierarchy Design

The main design goal for class Spatial is to represent a coordinate system in space.
Naturally, the class members should include the local and world transformations and
the world bounding volume, as discussed previously. The Geometry and Node classes
themselves involve transformations and bounding volumes, so it is natural to derive
these from Spatial. What is not immediately clear is the choice for having both classes
Spatial and Node. In Figure 3.2, the objects Table, Plate, Knife, Fork, and Chair are
Geometry objects. They all are built from model data, they all occupy a portion of
space, and they are all transformable. The objects House, Room 1, and Room 2 are
grouping nodes. We could easily make all these Spatial objects, but not Geometry
objects. In this scenario, the Spatial class must contain information to represent the
hierarchy of objects. Specifically, each object must have a link to its parent object (if
any) and links to its child objects. The links shown in Figure 3.2 represent both the
parent and child links.

The concepts of grouping and of representing geometric data are effectively dis-
joint. If Spatial objects were allowed child objects, then by derivation so would Ge-
ometry objects. Thus, Geometry objects would have double duty, as representations of
geometric data and as nodes for grouping related objects. The interface for a Geometry
class that supports grouping as well as geometric queries will be quite complicated,
making it difficult to understand all the behavior that objects from the class can ex-
hibit. I prefer instead a separation of concerns regarding these matters. The interfaces
associated with Geometry and its derived classes should address only the semantics
related to geometric objects, their visual appearances, and physical properties. The
grouping responsibilities are delegated instead to a separate class, in this case the
class Node. The interfaces associated with Node and its derived classes address only the
semantics related to the subtrees associated with the nodes. By separating the respon-
sibilities, it is easier for the engine designer and architect to maintain and extend the
separate types of objects (geometry types or node types).

My choice for separation of concerns leads to class Spatial storing the parent link
in the hierarchy and to class Node storing the child links in the hierarchy. Class Node
derives from Spatial, so in fact the Node objects have both parent and child links.
Class Geometry also derives from Spatial, but geometry objects can only occur as leaf
nodes in the hierarchy. This is the main consequence of the separation of concerns.
The price one pays for having the separation and a clean division of responsibilities is
that the hierarchy as shown in Figure 3.2 is not realizable in this scheme. Instead the
hierarchy may be structured as shown in Figure 3.3.

Two grouping nodes were added. The Table Group node was added because
the Table is a geometric object and cannot be an interior node of the tree. The
utensils (Plate, Knife, Fork) were children of the Table. To preserve this structure,
the Utensil Group node was added to group the utensils together. To maintain the
transformation structure of the original hierarchy, the Table Group is assigned the
transformations the Table had, the Table is assigned the identity transformation, and
the Utensil Group is assigned the identity transformation. This guarantees that the
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Room 1

Table

Plate Knife Fork

Chair

Room 2

Table Group

Utensil Group

Figure 3.3 The new hierarchy corresponding to the one in Figure 3.2 when geometric objects
can be only leaf nodes. Ellipses are used to denote geometric objects. Rectangles are
used to denote grouping nodes.

Utensil Group is in the same coordinate system that the Table is in. Consequently, the
utensils may be positioned and oriented using the same transformations that were
used in the hierarchy of Figure 3.2.

Alternatively, you can avoid the Utensil Group node and just make the utensils
siblings of the Table. If you do this, the coordinate system of the utensils is now that of
the Table Group. The transformations of the utensils must be changed to ones relative
to the coordinate system of the Table Group.

The portion of the interface for class Spatial relevant to the scene hierarchy
connections is

class Spatial : public Object
{
public:

virtual ~Spatial ();
Spatial* GetParent ();

protected:
Spatial ();
Spatial* m_pkParent;

// internal use
public:

void SetParent (Spatial* pkParent);
};
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The default constructor is protected, making the class an abstract base class. The
default constructor is implemented to support the streaming system. The class is
derived from the root class Object, as are nearly all the classes in the engine. All of the
root services are therefore available to Spatial, including run-time type information,
sharing, streaming, and so on.

The parent pointer is protected, but read access is provided by the public interface
function GetParent. Write access of the parent pointer is provided by the public
interface function SetParent. That block of code is listed at the end of the class. My
intention on the organization is that the public interface intended for the application
writers is listed first in the class declaration. The public interface at the end of the class
is tagged with the comment “internal use.” The issue is that SetParent is called by the
Node class when a Spatial object is attached as the child of a node. No other class (or
application) should call SetParent. If the method were put in the protected section
to prevent unintended use, then Node cannot call the function. To circumvent this
problem, Node can be made a friend of Spatial, thus allowing it access to SetParent,
but disallowing anyone else to access it. In some circumstances, a Node-derived class
might also need access to a protected member of Spatial. In the C++ language,
friendship is not inherited, so making Node a friend of Spatial will not make the
Node-derived class a friend of Spatial. To avoid the somewhat frequent addition
of friend declarations to classes to allow restricted access to protected members, I
decided to use the system of placing the restricted access members in public scope,
but tagging that block with the “internal use” comment to let programmers know
that they should not use those functions.

The portion of the interface for class Node relevant to the scene hierarchy connec-
tions is

class Node : public Spatial
{
public:

Node (int iQuantity = 1, int iGrowBy = 1);
virtual ~Node ();

int GetQuantity () const;
int GetUsed () const;
int AttachChild (Spatial* pkChild);
int DetachChild (Spatial* pkChild);
SpatialPtr DetachChildAt (int i);
SpatialPtr SetChild (int i, Spatial* pkChild);
SpatialPtr GetChild (int i);

protected:
TArray<SpatialPtr> m_kChild;
int m_iUsed;

};
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The links to the child nodes are stored as an array of Spatial smart pointers. Clearly,
the pointers cannot be Node pointers because the leaf nodes of the hierarchy are
Spatial-derived objects (such as Geometry), but not Node-derived objects. The non-
null child pointers do not have to be contiguous in the array, so where the children
are placed is up to the programmer. The data member m_iUsed indicates how many
of the array slots are occupied by nonnull pointers.

The constructor allows you to specify the initial quantity of children the node
will have. The array is dynamic; that is, even if you specify the node to have a certain
number of children initially, you may attach more children than that number. The
second parameter of the constructor indicates how much storage increase occurs
when the array is full and an attempt to attach another child occurs.

The AttachChild function searches the pointer array for the first available empty
slot and stores the child pointer in it. If no such slot exists, the child pointer is
stored at the end of the array, dynamically resizing the array if necessary. This is an
important feature to remember. For whatever reason, if you detach a child from a
slot internal to the array and you do not want the next child to be stored in that slot,
you must use the SetChild function because it lets you specify the exact location for
the new child. The return value of AttachChild is the index into the array where the
attached child is stored. The return value of SetChild is the child that was in the ith
slot of the array before the new child was stored there. If you choose not to hang
onto the return value, it is a smart pointer, in which case the reference count on the
object is decremented. If the reference count goes to zero, the child is automatically
destroyed.

Function DetachChild lets you specify the child, by pointer, to be detached. The
return value is the index of the slot that stored the child. The vacated slot has its
pointer set to NULL. Function DetachChildAt lets you specify the child, by index, to
be detached. The return value is that child. As with SetChild, if you choose not to
hang onto the return value, the reference count on the object is decremented and, if
zero, the object is destroyed.

Function GetChild simply returns a smart pointer to the current child in the speci-
fied slot. This function is what you use when you iterate over an array of children and
process them in some manner—typically something that occurs during a recursive
traversal of a scene graph.

3.1.3 Instancing

The spatial hierarchy system is a tree structure; that is, each tree node has a single
parent, except for a root node that has no parent. You may think of the spatial
hierarchy as the skeleton for the scene graph. A scene graph really is an abstract graph
because the object system supports sharing. If an object is shared by two other objects,
effectively there are two instances of the first object. The act of sharing the objects is
called instancing . I do not allow instancing of nodes in a spatial hierarchy, and this
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House

Room 1

Room Contents

Room 2

Figure 3.4 A scene graph corresponding to a house and two rooms. The rooms share the same
geometric model data, called Room Contents.

is enforced by allowing a Spatial object to have only a single parent link. Multiple
parents are not possible.3 One of the questions I am occasionally asked is why I made
this choice.

For the sake of argument, suppose that a hierarchy node is allowed to have mul-
tiple parents. A simple example is shown in Figure 3.4. The scene graph represents
a house with two rooms. The rooms share the same geometric model data. The two
rooms may be thought of as instances of the same model data. The implied structure
is a directed acyclic graph (DAG). The house node has two directed arcs to the room
nodes. Each room node has a directed arc to the room contents leaf node. The room
contents are therefore shared. Reasons to share include reducing memory usage for
the game application and reducing your artist’s workload in having to create distinct
models for everything you can imagine in the world. The hope is that the user is not
terribly distracted by the repetition of like objects as he navigates through the game
world.

What are some of the implications of Figure 3.4? The motivation for a spatial hier-
archy was to allow for positioning and orienting of objects via local transformations.
The locality is important so that generation of content can be done independently of
the final coordinate system of the world (the coordinate system of the root node of
the scene). A path through the hierarchy from root to leaf has a corresponding se-
quence of local transformations whose product is the world transformation for the
leaf node. The problem in Figure 3.4 is that the leaf node may be reached via two paths
through the hierarchy. Each path corresponds to an instance of the leaf object. Realize
that the two rooms are placed in different parts of the house. The world transforma-
tions applied to the room contents are necessarily different. If you have any plans to
make the world transformations persistent, they must be stored somewhere. In the
tree-based hierarchy, the world transformations are stored directly at the node. To

3. Predecessors might be a better term to use here, but I will use the term parents and note that the links are
directed from parent to child.
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store the world transformations for the DAG of Figure 3.4, you can store them ei-
ther at each node or in a separate location that the node has pointers to. In either
case, a dynamic system is required since the number of parents can be any number
and change at any time. World bounding volumes must also be maintained, one per
instance.

Another implication is that if you want to change the data directly at the shared
node, the room contents in our example, it is necessary for you to be able to specify
which instance is to be affected. This alone creates a complex situation for an applica-
tion programmer to manage. You may assign a set of names to the shared object, one
name per path to the object. The path names can be arbitrarily long, making the use
of them a bit overwhelming for the application programmer. Alternatively, you can
require that a shared object not be directly accessible. The instances must be managed
only through the parent nodes. In our example, to place Room 1 in the house, you set
its local transformations accordingly. Room 2 is placed in the world with a different
set of local transformations. The Room Contents always have the identity transfor-
mation, never to be changed. This decision has the consequence that if you only have
a single instance (most likely the common case in a scene), a parent node should be
used to indirectly access that instance. If you are not consistent in the manner of ac-
cessing the object, your engine logic must distinguish between a single instance of
an object and multiple instances of an object, then handle the situations differently.
Thus, every geometric object must be manipulated as a node-geometry pair. Worse is
that if you plan on instancing a subgraph of nodes, that subgraph must have parent
nodes through which you access the instances. Clearly this leads to “node bloat” (for
lack of a better term), and the performance of updating such a system is not optimal
for real-time needs.

Is this speculation or experience? The latter, for sure. One of the first tasks I
was assigned when working on NetImmerse in its infancy was to support instanc-
ing in the manner described here. Each node stored a dynamic array of parent
links and a dynamic array of child links. A corresponding dynamic array of geo-
metric data was also maintained that stored transformations, bounding volumes,
and other relevant information. Instances were manipulated through parent nodes,
with some access allowed to the instances themselves. On a downward traversal
of the scene by a recursive function, the parent pointer was passed to that func-
tion and used as a lookup in the child’s parent array to determine which instance
the function was to affect. This mechanism addresses the issue discussed earlier,
unique names for the paths to the instance. Unfortunately, the system was com-
plicated to build and complicated to maintain (adding new recursive functions for
scene traversal was tedious), and the parent pointer lookup was a noticeable time
sink, as shown by profiling any applications built on top of the engine. To elimi-
nate the cost of parent pointer lookups, the node class was modified to include an
array of instance pointers, one per child of the node. Those pointers were passed
through recursive calls, thus avoiding the lookups, and used directly. Of course,
this increased the per-node memory requirements and increased the complexity
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Figure 3.5 The scene graph of Figure 3.4, but with instancing at a low level (geometric data)
rather than at a node level.

of the system. In the end we decided that supporting instancing by DAGs was not
acceptable.

That said, instancing still needs to be supported in an engine. I mentioned this
earlier and mention it again: What is important regarding instancing is that (1)
you reduce memory usage and (2) you reduce the artist’s workload. The majority
of memory consumption has to do with models with large amounts of data. For
example, a model with 10,000 vertices, multiple 32-bit texture images, each 512 ×
512, and corresponding texture coordinates consumes a lot of memory. Instancing
such a model will avoid duplication of the large data. The amount of memory that a
node or geometry object requires to support core scene graph systems is quite small
relative to the actual model data. If a subgraph of nodes is to be instanced, duplication
of the nodes requires only a small amount of additional memory. The model data is
shared, of course. Wild Magic 3 chooses to share in the manner described here. The
sharing is low level; that is, instancing of models involves geometric data. If you want
to instance an object of a Geometry-derived class, you create two unique Geometry-
derived objects, but ask them to share their vertices, texture coordinates, texture
images, and so on. The DAG of Figure 3.4 abstractly becomes the graph shown in
Figure 3.5.

The work for creating an instance is more than what a DAG-style system re-
quires, but the run-time performance is much improved and the system complexity
is minimal.

3.2 Geometric State

Two basic objects involving geometric state are transformations and bounding vol-
umes.
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3.2.1 Transformations

Wild Magic version 2 supported transformations involving translations T, rotations
R, and uniform scaling σ > 0. A vector X is transformed to a vector Y by

Y = R(σX) + T. (3.1)

The order of application is scale first, rotation second, and translation third. However,
the order of uniform scaling and rotation is irrelevant. The inverse transformation is

X = 1

σ
RT(Y − T). (3.2)

Generally, a graphics API allows for any affine transformation, in particular,
nonuniform scaling. The natural extension of Equation (3.1) to allow nonuniform
scale S = Diag(σ0, σ1, σ2), σi > 0, for all i, is

Y = RSX + T. (3.3)

The order of application is scale first, rotation second, and translation third. In this
case the order of nonuniform scaling and rotation is relevant. Switching the order
produces different results since, in most cases, RS �= SR. The inverse transforma-
tion is

X = S−1RT(Y − T), (3.4)

where S−1 = Diag(1/σ0, 1/σ1, 1/σ2). The memory requirements to support nonuni-
form scaling are modest—only two additional floating-point numbers to store.

Wild Magic version 2 disallowed nonuniform scaling because of some undesir-
able consequences. First, a goal was to minimize the time spent on matrix and vector
arithmetic. This was particularly important when an application has a physical sim-
ulation that makes heavy use of the transformation system. Using operation counts
as a measure of execution time,4 let μ represent the number of cycles for a multi-
plication, let α represent the number of cycles for an addition/subtraction, and let δ

represent the number of cycles for a division. On an Intel Pentium class processor, μ
and α are equal, both 3 cycles. The value δ is 39 cycles. Both Equations (3.1) and (3.3)
use 12μ + 9α cycles to transform a single vector. Equation (3.2) uses 12μ + 9α + δ

cycles. The only difference between the inverse transform and the forward transform
is the division required to compute the reciprocal of scale. The reciprocal is computed
first and then multiplies the three components of the vector. Equation (3.4) uses
9μ + 9α + 3δ cycles. Compared to the uniform scale inversion, the reciprocals are

4. A warning about operation counting: Current-day processors have other issues now that can make oper-
ation counting not an accurate measure of performance. You need to pay attention to memory fetches,
cache misses, branch penalties, and other architectural aspects.
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not computed first. The three vector components are divided directly by the nonuni-
form scales, leading to three less multiplications, but two more divisions. This is still a
significant increase in cost because of the occurrence of the additional divisions. The
divisions may be avoided by instead computing p = σ0σ1σ2, r = 1/p, and observing
that S−1 = r Diag(σ1σ2, σ0σ2, σ0σ1). Equation (3.3) then uses 19μ + 9α + δ cycles,
replacing two divisions by 10 multiplications. If the CPU supports a faster but lower-
precision division, the increase is not as much of a factor, but you pay in terms of
accuracy of the final result. With the advent of specialized hardware such as extended
instructions for CPUs, game console hardware, and vector units generally, the per-
formance for nonuniform scaling is not really a concern.

Second, an issue that is mathematical and that hardware cannot eliminate is the
requirement to factor transformations to maintain the ability to store at each node
the scales, the rotation matrix, and the translation vector. To be precise, if you have
a path of nodes in a hierarchy and corresponding local transformations, the world
transformation is a composition of the local ones. Let the local transformations be
represented as homogeneous matrices in block-matrix form. The transformation
Y = RSX + T is represented by

[
Y

1

] [
RS T

0T 1

] [
X

1

]
.

The composition of two local transformations Y = R1S1X + T1 and Z = R2S2Y +
T2 is represented by a homogeneous block matrix that is a product of the two homo-
geneous block matrices representing the individual transformations:

[
R2S2 T2

0T 1

] [
R1S1 T1

0T 1

]
=
[

R2S2R1S1 R2S2T1 + T2

0T 1

]
=
[

M T

0T 1

]
,

where M = R2S2R1S1 and T = R2S2T1 + T2. A standard question that is asked some-
what regularly in the Usenet computer graphics newsgroups is how to factor

M = RS ,

where R is a rotation and S is a diagonal nonuniform scaling matrix. The idea is to
have a transformation class that always stores R, S, and T as individual components,
thus allowing direct evaluation of Equations (3.3) and (3.4). Much to the posters’
dismay, the unwanted answer is, You cannot always factor M in this way. In fact, it is
not always possible to factor D1R1 into R2D2, where D1 and D2 are diagonal matrices
and R1 and R2 are rotation matrices.

The best you can do is factor M using polar decomposition or singular value
decomposition ([Hec94, Section III.4]). The polar decomposition is

M = UA,
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where U is an orthogonal matrix and A is a symmetric matrix, but not necessarily
diagonal. The singular value decomposition is closely related:

M = V DWT,

where V and W are orthogonal matrices and D is a diagonal matrix. The two fac-
torizations are related by appealing to the eigendecomposition of a symmetric ma-
trix, A = WDWT, where W is orthogonal and D is diagonal. The columns of W

are linearly independent eigenvectors of A, and the diagonal elements of D are the
eigenvalues (ordered to correspond to the columns of W ). It follows that V = UW .
Implementing either factorization is challenging because the required mathematical
machinery is more than what you might expect.

Had I chosen to support nonuniform scaling in Wild Magic and wanted a con-
sistent representation of local and world transformations, the factorization issue pre-
vents me from storing a transformation as a triple (R , S , T), where R is a rotation, S
is a diagonal matrix of scales, and T is a translation. One way out of the dilemma is
to use a triple for local transformations, but a pair (M , T) for world transformations.
The 3 × 3 matrix M is the composition of rotations and nonuniform scales through
a path in the hierarchy. The memory usage for a world transformation is smaller than
for a local one, but only one floating-point number less. The cost for a forward trans-
formation Y = MX + T is 9μ + 9α, cheaper than for a local transformation. Less
memory usage, faster transformation, but the cost is that you have no scaling or rota-
tional information for the world transformation unless you factor into polar form or
use the singular value decomposition. Both factorizations are very expensive to com-
pute. The inverse tranformation X = M−1(Y − T) operation count is slightly more
complicated to determine. Using a cofactor expansion to compute the inverse matrix,

M−1 = 1

det(M)
Madj,

where det(M) is the determinant of M and Madj is the adjoint matrix—the transpose
of the matrix of cofactors of M . The adjoint has nine entries, each requiring 2μ + α

cycles to compute. The determinant is computed from a row of cofactors, using three
more multiplications and two more additions, for a total of 3μ + 2α cycles. The
reciprocal of the determinant uses δ cycles. Computing the inverse transformation as

X = 1

det(M)

(
Madj(Y − T)

)

requires 33μ + 20α + δ cycles. This is a very significant increase in cost compared to
the 19μ + 9α + δ cycles used for computing X = S−1RT(Y − T).

To avoid the increase in cost for matrix inversion, you could alternatively choose
a consistent representation where the transformations are stored as 4-tuples of the
form (L, S , R , T), where L and R are rotation matrices, S is a diagonal matrix
of scales, and T is a translation. Once a world transformation is computed as a
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composition of local transformations to obtain M and T, you have to factor M =
LDR using the singular value decomposition—yet another expensive proposition.

Given the discussion of nonuniform scaling and the performance issues arising
from factorization and/or maintaining a consistent representation for transforma-
tions, in Wild Magic version 2 I decided to constrain the transformations to use only
uniform scaling. I have relaxed the constraint slightly in Wild Magic version 3. The
Spatial class stores three scale factors, but only the Geometry class may set these to be
nonuniform. But doesn’t this introduce all the problems that I just mentioned? Along
a path of n nodes, the last node being a geometry leaf node, the world transformation
is a composition of n − 1 local transformations that have only uniform scale σi, i ≥ 2,
and a final local transformation that has nonuniform scales S1:

[
Rnσn Tn

0T 1

]
. . .

[
R2σ2 T2

0T 1

] [
R1S1 T1

0T 1

]

=
[

R′σ ′ T′

0T 1

] [
R1S1 T1

0T 1

]

=
[

(R′R1)(σ
′S1) R′σ ′T1 + T′

0T 1

]

=
[

R′′S′′ T′′

0T 1

]
.

Because of the commutativity of uniform scale and rotation, the product of the first
n − 1 matrices leads to another matrix of the same form, as shown. The product
with the last matrix groups together the rotations and groups together the scales.
The final form of the composition is one that does not require a general matrix
inverse calculation. I consider the decision to support nonuniform scales only in
the Geometry class an acceptable compromise between having only uniform scales or
having nonuniform scales available at all nodes.

The class that encapsulates the transformations containing translations, rota-
tions, and nonuniform scales is Transformation. The default constructor, destructor,
and data members are shown next in a partial listing of the class:

class Transformation
{
public:

Transformation ();
~Transformation ();

static const Transformation IDENTITY;
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private:
Matrix3f m_kRotate;
Vector3f m_kTranslate;
Vector3f m_kScale;
bool m_bIsIdentity, m_bIsUniformScale;

};

In a moment I will discuss the public interface to the data members. The rotation
matrix is stored as a 3 × 3 matrix. The user is responsible for ensuring that the matrix
really is a rotation. The three scale factors are stored as a 3-tuple, but they could just
as easily have been stored as three separate floating-point numbers. The class has two
additional data members, both Boolean variables. These are considered hints to allow
for more efficient composition of transformations. The default constructor creates
the identity transformation, where the rotation is the 3 × 3 identity matrix, the
translation is the 3 × 1 zero vector, and the three scales are all one. The m_bIsIdentity
and m_bIsUniformScale hints are both set to true. For an application’s convenience,
the static class member IDENTITY stores the identity transformation.

Part of the public interface to access the members is

class Transformation
{
public:

void SetRotate (const Matrix3f& rkRotate);
const Matrix3f& GetRotate () const;
void SetTranslate (const Vector3f& rkTranslate);
const Vector3f& GetTranslate () const;
void SetScale (const Vector3f& rkScale);
const Vector3f& GetScale () const;
void SetUniformScale (float fScale);
float GetUniformScale () const;

};

The Set functions have side effects in that each function sets the m_bIsIdentity hint
to false. The hint is set, even if the final transformation is the identity. For example,
calling SetTranslate with the zero vector as input will set the hint to false. I made
this choice to avoid having to check if the transformation is really the identity after
each component is set. The expected case is that the use of Set functions is to make
the transformation something other than the identity. Even if we were to test for
the identity transformation, the test is problematic when floating-point arithmetic
is used. An exact comparison of floating-point values is not robust when some of the
values were computed in expressions, the end results of which were produced after a
small amount of floating-point round-off error. The SetScale function also has the
side effect of setting the m_bIsUniformScale hint to false. As before, the hint is set
even if the input scale vector corresponds to uniform scaling. The Get functions have
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no side effects and return the requested components. These functions are const, so
the components are read-only.

Three other public member access functions are provided:

class Transformation
{
public:

Matrix3f& Rotate ();
Vector3f& Translate ();
Vector3f& Scale ();

};

My convention is to omit the Set or Get prefixes on member accessors when I in-
tend the accessor to provide read-write access. The displayed member functions are
read-write, but also have the side effects of setting the m_bIsIdentity and/or the
m_bIsUniformScale hints. Because the accessor cannot determine if it was called for
read versus write, the hints are always set. You should avoid this style of accessor if
your intent is only to read the member value, in which case you should use the Get
version. A typical situation to use the read-write accessor is for updates that require
both, for example,

Transformation kXFrm = <some transformation>;
kXFrm.Translate() += Vector3f(1.0f,2.0f,3.0f);

or for in-place calculations, for example,

Transformation kXFrm = <some transformation>;
kXFrm.Rotate().FromAxisAngle(Vector3f::UNIT_Z,Mathf::HALF_PI);

In both cases, the members are written, so setting the hints is an appropriate action
to take.

Two remaining public accessors are for convenience:

class Transformation
{
public:

float GetMinimumScale () const;
float GetMaximumScale () const;

};

The names are clear. The first returns the smallest scale from the three scaling factors,
and the second returns the largest. An example of where I use the maximum scale
is in computing a world bounding sphere from a model bounding sphere and a
transformation with nonuniform scaling. The exact transformation of the model
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bounding sphere is an ellipsoid, but since I really wanted a bounding sphere, I use the
maximum scale as a uniform scale factor and apply a uniform scale transformation
to the model bounding sphere.

Other convenience functions include the ability to tell a transformation to make
itself the identity transformation or to make its scales all one:

class Transformation
{
public:

void MakeIdentity ();
void MakeUnitScale ();
bool IsIdentity () const;
bool IsUniformScale () const;

};

The last two functions just return the current values of the hints.
The basic algebraic operations for transformations include application of a trans-

formation to points, application of an inverse transformation to points, and compo-
sition of two transformations. The member functions are

class Transformation
{
public:

Vector3f ApplyForward (const Vector3f& rkInput) const;
void ApplyForward (int iQuantity, const Vector3f* akInput,

Vector3f* akOutput) const;

Vector3f ApplyInverse (const Vector3f& rkInput) const;
void ApplyInverse (int iQuantity, const Vector3f* akInput,

Vector3f* akOutput) const;

void Product (const Transformation& rkA,
const Transformation& rkB,);

void Inverse (Transformation& rkInverse);
};

The first ApplyForward and ApplyInverse functions apply to single vectors. The sec-
ond pair of these functions apply to arrays of vectors. If the transformation is
Y = RSX + T, where R is a rotation matrix, S is a diagonal scale matrix, and T is a
translation, function ApplyForward computes Y from the input vector(s) X. Function
ApplyInverse computes X = S−1RT(Y − T) from the input vector(s) Y.
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The composition of two transformations is performed by the member function
Product. The name refers to a product of matrices when the transformations are
viewed as 4 × 4 homogeneous matrices. For example,

Transformation kA = <some transformation>;
Transformation kB = <some transformation>;
Transformation kC;

// compute C = A*B
kC.Product(kA,kB);

// compute C = B*A, generally not the same as A*B
kC.Product(kB,kA);

We will also need to apply inverse transformations to vectors. Notice that I earlier
used both the term points and the term vectors. The two are abstractly different, as
discussed in the study of affine algebra. A point P is transformed as

P′ = RSP + T,

whereas a vector V is transformed as

V′ = RSV.

You can think of the latter equation as the difference of the equations for two trans-
formed points P and Q:

V = P − Q

P′ = RSP + T

Q′ = RSQ + T

V′ = P′ − Q′ = (RSP + T) − (RSQ + T) = RS(P − Q) = RSV.

In terms of homogeneous vectors, the point P and vector V are represented by

[
P

1

]
and

[
V

0

]
.

The corresponding homogeneous transformations are
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[
RS T

0T 1

] [
P

1

]
=
[

RSP + T

1

]
=
[

P′

1

]

and

[
RS T

0T 1

] [
V

0

]
=
[

RSV

0

]
=
[

V′

0

]
.

The inverse transformation of a vector V′ is

V = S−1RTV′.

The member function that supports this operation is

class Transformation
{
public:

Vector3f InvertVector (const Vector3f& rkInput) const;
};

Finally, the inverse of the transformation is computed by

void Inverse (Transformation& rkInverse);

The translation, rotation, and scale components are computed. If Y = RSX + T, the
inverse is X = S−1RT(Y − T). The inverse transformation has scale S−1, rotation
RT, and translation −S−1RTT. A warning is in order, though. The components are
stored in the class data members, but the transformation you provide to the function
should not be used as a regular Transformation. If you were to use it as such, it would
represent

RTS−1X − S−1RTT.

Only call this function, access the individual components, and then discard the ob-
ject.

The transformation of a plane from model space to world space is also sometimes
necessary. Let the model space plane be

N0 · X = c0,

where N0 is a unit-length normal vector, c0 is a constant, and X is any point on
the plane and is specified in model space coordinates. The inverse transformation
of the point is X = S−1RT(Y − T), where Y is the point in world space coordinates.
Substituting this in the plane equation leads to

N1 · Y = c1, N1 = RS−1N0

|RS−1N0|
, c1 = c0

|RS−1N0|
+ N1 · T.
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The member function that supports this operation is

class Transformation
{
public:

Plane3f ApplyForward (const Plane3f& rkInput) const;
};

The input plane has normal N0 and constant c0. The output plane has normal N1 and
constant c1.

In all the transformation code, I take advantage of the m_bIsIdentity and
m_bIsUniformScale hints. Two prototypical cases are the implementation of Apply-
Forward that maps Y = RSX + T and the implementation of ApplyInverse that maps
X = S−1RT(Y − T). The forward transformation implementation is

Vector3f Transformation::ApplyForward (
const Vector3f& rkInput) const

{
if ( m_bIsIdentity )

return rkInput;

Vector3f kOutput = rkInput;
kOutput.X() *= m_kScale.X();
kOutput.Y() *= m_kScale.Y();
kOutput.Z() *= m_kScale.Z();
kOutput = m_kRotate*kOutput;
kOutput += m_kTranslate;
return kOutput;

}

If the transformation is the identity, then Y = X and the output vector is simply the
input vector. A generic implementation might do all the matrix and vector operations
anyway, not noticing that the transformation is the identity. The hint flag helps avoid
those unnecessary calculations. If the transformation is not the identity, it does not
matter whether the scale is uniform or nonuniform since three multiplications by a
scale parameter occur in either case.

The inverse transformation implementation is

Vector3f Transformation::ApplyInverse (
const Vector3f& rkInput) const

{
if ( m_bIsIdentity )

return rkInput;
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if ( m_bIsUniformScale )
{

return ((rkInput - m_kTranslate)*m_kRotate) /
GetUniformScale();

}

Vector3f kOutput = ((rkInput - m_kTranslate)*m_kRotate);
float fSXY = m_kScale.X()*m_kScale.Y();
float fSXZ = m_kScale.X()*m_kScale.Z();
float fSYZ = m_kScale.Y()*m_kScale.Z();
float fInvDet = 1.0f/(fSXY*m_kScale.Z());
kOutput.X() *= fInvDet*fSYZ;
kOutput.Y() *= fInvDet*fSXZ;
kOutput.Z() *= fInvDet*fSXY;
return kOutput;

}

If the transformation is the identity, then X = Y and there is no reason to waste cycles
by applying the transformation components. Unlike ApplyForward, if the transforma-
tion is not the identity, then there is a difference in performance between uniform
and nonuniform scaling.

For uniform scale, RT(Y − T) has all three components divided by scale. The Ma-
trix3 class has an operator function such that a product of a vector (the left operand
V) and a matrix (the right operand M) corresponds to MTV. The previous displayed
code block uses this function. The Vector3 class supports division of a vector by a
scalar. Internally, the reciprocal of the divisor is computed and multiplies the three
vector components. This avoids the division occurring three times, replacing the op-
eration instead with a single division and three multiplications.

For nonuniform scale, I use the trick described earlier for avoiding three divi-
sions. The displayed code replaces the three divisions by 10 multiplications and one
division. For an Intel Pentium that uses 3 cycles per multiplication and 39 cycles per
division, the three divisions would cost 78 cycles, but the 10 multiplications and one
division costs 69 cycles.

3.2.2 Bounding Volumes

The term bounding volume is quite generic and refers to any object that contains
some other object. The simplest bounding volumes that game programmers use
tend to be spheres or axis-aligned bounding boxes. Slightly more complicated is an
oriented bounding box. Yet more complicated is the convex hull of the contained
object, a convex polyhedron. In all cases, the bounding volumes are convex. To be yet
more complicated, a bounding volume might be constructed as a union of (convex)
bounding volumes.
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Culling

One major use for bounding volumes in an engine is for the purposes of culling
objects. If an object is completely outside the view frustum, there is no reason to
tell the renderer to try and draw it because if the renderer made the attempt, it
would find that all triangles in the meshes that represent the object are outside the
view frustum. Such a determination does take some time—better to avoid wasting
cycles on this, if possible. The scene graph management system could itself determine
if the mesh triangles are outside the view frustum, testing them one at a time for
intersection with, or containment by, the view frustum, but this gains us nothing. In
fact, this is potentially slower when the renderer has a specialized GPU to make the
determination, but the scene graph system must rely on a general CPU.

A less aggressive approach is to use a convex bounding volume as an approxima-
tion to the region of space that the object occupies. If the bounding volume is outside
the view frustum, then so is the object and we need not ask the renderer to draw
it. The intersection/containment test between bounding volume and view frustum
is hopefully a lot less expensive to compute than the intersection/containment tests
for all the triangles of the object. If the bounding volume is a sphere, the test for the
sphere being outside the view frustum is equivalent to computing the distance from
the sphere center to the view frustum and showing that it is larger than the radius of
the sphere.

Computing the distance from a point to a view frustum is more complicated than
most game programmers care to deal with—hence the replacement of that test with
an inexact query that is simpler to implement. Specifically, the sphere is tested against
each of the six frustum planes. The frustum plane normals are designed to point into
the view frustum; that is, the frustum is on the “positive side” of all the planes. If
the sphere is outside any of these planes, say, on the “negative side” of a plane, then
the sphere is outside the entire frustum and the object is not visible and therefore
not sent to the renderer for drawing (it is culled). I call this plane-at-a-time culling .
The geometry query I refer to as the which-side-of-plane query. There are situations
when the sphere is not outside one of the planes, but is outside the view frustum;
that is why I used earlier the adjective “inexact.” Figure 3.6 shows the situation in two
dimensions.

The sphere in the upper right of the image is not outside any of the frustum
planes, but is outside the view frustum. The plane-at-a-time culling system deter-
mines that the sphere is not outside any plane, and the object associated with the
bounding volume is sent to the renderer for drawing. The same idea works for convex
bounding volumes other than spheres. Pseudocode for the general inexact culling is

bool IsCulled (ViewFrustum frustum, BoundingVolume bound)
{

for each plane of frustum do
{

if bound is on the negative side of plane then
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Not culledNot culled

CulledView

frustum

Figure 3.6 A two-dimensional view of various configurations between a bounding sphere and a
view frustum.

return true;
}
return false;

}

Hopefully the occurrence of false positives (bound outside frustum, but not outside
all frustum planes) is infrequent.

Even though plane-at-a-time culling is inexact, it may be used to improve effi-
ciency in visibility determination in a scene graph. Consider the scene graph of Figure
3.3, where each node in the tree has a bounding volume associated with it. Suppose
that, when testing the bounding volume of the Table Group against the view frustum,
you find that the bounding volume is on the positive side of one of the view frustum
planes. The collective object represented by Table Group is necessarily on the positive
side of that plane. Moreover, the objects represented by the children of Table Group
must also be on the positive side of the plane. We may take advantage of this knowl-
edge and pass enough information to the children (during a traversal of the tree for
drawing purposes) to let the culling system know not to test the child bounding vol-
umes against that same plane. In our example, the Table and Utensil Group nodes
do not have to compare their bounding volumes to that plane of the frustum. The
information to be stored is as simple as a bit array, each bit corresponding to a plane.
In my implementation, discussed in more detail later in this chapter, the bits are set
to 1 if the plane should be compared with the bounding volumes, and 0 otherwise.

An argument I read about somewhat regularly in some Usenet newsgroups is
that complicated bounding volumes should be avoided because the which-side-of-
plane query for the bounding volume is expensive. The recommendation is to use
something as simple as a sphere because the query is very inexpensive to compute
compared to, say, an oriented bounding box. Yes, a true statement, but it is taken out
of the context of the bigger picture. There is a balance between the complexity of the
bounding volume type and the cost of the which-side-of-plane query. As a rule of
thumb, the more complex the bounding volume of the object, the better fitting it is
to the object, but the query is more expensive to compute. Also as a rule of thumb,
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(a) (b)

Figure 3.7 A situation where a better-fitting bounding volume leads to culling, but a worse-
fitting one does not. (a) The bounding sphere is not tight enough to induce culling.
(b) The bounding box is tight enough to induce culling.

the better fitting the bounding volume, the more likely it is to be culled compared to
a worse-fitting bounding volume. Figure 3.7 shows a typical scenario.

Even though the cost for the which-side-of-plane query is more expensive for the
box than for the sphere, the combined cost of the query for the sphere and the attempt
to draw the object, only to find out it is not visible, is larger than the cost of the query
for the box. The latter object has no rendering cost because it was culled.

On the other hand, if most of the objects are typically inside the frustum, in
which case you get the combined cost of the query and drawing, the sphere bounding
volumes look more attractive. Whether or not the better-fitting and more expensive
bounding volumes are beneficial depends on your specific 3D environment. To be
completely certain of which way to go, allow for different bounding volume types
and profile your applications for each type to see if there is any savings in time for
the better-fitting volumes. The default bounding volume type in Wild Magic is a
bounding sphere; however, the system is designed to allow you to easily swap in
another type without having to change the engine or the application code. This is
accomplished by providing an abstract interface (base class) for bounding volumes. I
discuss this a bit later in the section.

Collision Determination

Another major use for bounding volumes is 3D picking . A picking ray in world
coordinates is selected by some mechanism. A list of objects that are intersected by the
ray can be assembled. As a coarse-level test, if the ray does not intersect the bounding
volume of an object, then it does not intersect the object.

The bounding volumes also support collision determination. More precisely, they
may be used to determine if two objects are not intersecting , much in the same way
they are used to determine if an object is not visible. Collision detection for two
arbitrary triangle meshes is an expensive endeavor. We use a bounding volume as
an approximation to the region of space that the object occupies. If the bounding
volumes of two objects do not intersect, then the objects do not intersect. The hope is
that the test for intersection of two bounding volumes is much less expensive than the
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test for intersection of two triangle meshes. Well, it is, unless the objects themselves
are single triangles!

The discussion of how to proceed with picking after you find out that the ray
intersects a bounding volume or how you proceed with collision detection after you
find out that the bounding volumes intersect is deferred to Section 6.3.3.

The Abstract Bounding Volume Interface

My main goal in having an abstract interface was not to force the engine users to use
my default, bounding spheres. I also wanted to make sure that it was very easy to
make the change, one that did not require changes to the core engine components
or the applications themselves. The abstraction forces one to think about the various
geometric queries in object-independent ways. Although abstract interfaces tend not
to have data associated with them, experience led me to conclude that a minimal
amount of information is needed. At the lowest level, you need to know where a
bounding volume is located and what its size is. The two data members that represent
these are a center point and a radius. These values already define a sphere, so you
may think of the base class as a representation of a bounding sphere for the bounding
volume. The values for an oriented bounding box are naturally the box center and the
maximum distance from the center to a vertex. The values for a convex polyhedron
may be selected as the average of the vertices and the maximum distance from that
average to any vertex. Other types of bounding volumes can define center and radius
similarly.

The abstract class is BoundingVolume and has the following initial skeleton:

class BoundingVolume : public Object
public:
{

virtual ~BoundingVolume ();

Vector3f Center;
float Radius;

static BoundingVolume* Create ();

protected:
BoundingVolume ();
BoundingVolume (const Vector3f& rkCenter, float fRadius);

};

The constructors are protected, making the class abstract. However, most other mem-
ber functions in the interface are pure virtual, so the class would have to be abstract
anyway, despite the access level for the constructors. The center point and radius are
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in public scope since setting or getting them has no side effects. The static member
function Create is used as a factory to produce objects without having to know what
specific type (or types) exist in the engine. A derived class has the responsibility for
implementing this function, and only one derived class may do so. In the engine,
the Create call occurs during construction of a Spatial object (the world bounding
volume) and a Geometry object (the model bounding volume). A couple of addi-
tional calls occur in Geometry-derived classes, but only because the construction of
the model bounding volume is deferred until the actual model data is known by those
classes.

Even though only a single derived class implements Create, you may have multi-
ple BoundingVolume-derived classes in the engine. The ones not implementing Create
must be constructed explicitly. Only the core engine components for geometric up-
dates must be ignorant of the type of bounding volume.

Switching to a new BoundingVolume type for the core engine is quite easy. All you
need to do is comment out the implementation of BoundingVolume::Create in the
default bounding volume class, SphereBV, and implement it in your own derived class.
The SphereBV class is

BoundingVolume* BoundingVolume::Create ()
{

return new SphereBV;
}

If you were to switch to BoxBV, the oriented bound box volumes, then in Wm3BoxBV.cpp
you would place

BoundingVolume* BoundingVolume::Create ()
{

return new BoxBV;
}

The remaining interface for BoundingVolume is shown next. All member functions are
pure virtual, so the derived classes must implement these.

class BoundingVolume : public Object
public:
{

virtual void ComputeFromData (
const Vector3fArray* pkVertices) = 0;

virtual void TransformBy (const Transformation& rkTransform,
BoundingVolume* pkResult) = 0;

virtual int WhichSide (const Plane3f& rkPlane) const = 0;
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virtual bool TestIntersection (const Vector3f& rkOrigin,
const Vector3f& rkDirection) const = 0;

virtual bool TestIntersection (
const BoundingVolume* pkInput) const = 0;

virtual void CopyFrom (const BoundingVolume* pkInput) = 0;

virtual void GrowToContain (const BoundingVolume* pkInput) = 0;
};

The bounding volume depends, of course, on the vertex data that defines the object.
The ComputeFromData method provides the construction of the bounding volume
from the vertices.

The transformation of a model space bounding volume to one in world space is
supported by the method TransformBy. The first input is the model-to-world trans-
formation, and the second input is the world space bounding volume. That volume
is computed by the method and is valid on return from the function. The Geometry
class makes use of this function.

The method WhichSide supports the which-side-of-plane query that was dis-
cussed for culling of nonvisible objects. The Plane3 class stores unit-length normal
vectors, so the BoundingVolume-derived classes may take advantage of that fact to im-
plement the query. If the bounding volume is fully on the positive side of the plane
(the side to which the normal points), the function returns +1. If it is fully on the
negative side, the function returns −1. If it straddles the plane, the function returns 0.

The first TestIntersection method supports 3D picking. The input is the origin
and direction vector for a ray that is in the same coordinate system as the bounding
volume. The direction vector must be unit length. The return value is true if and
only if the ray intersects the bounding volume. The second TestIntersection method
supports collision determination. The input bounding volume must be the same type
as the calling object, but the engine does not check this constraint, so you must. The
bounding volumes are assumed to be stationary. The return value of the function is
true if and only if the two bounding volumes are intersecting.

The last two member functions, CopyFrom and GrowToContain, support the upward
pass through the scene graph that computes the bounding volume of a parent node
from the bounding volumes of the child nodes. In Wild Magic, the parent bounding
volume is constructed to contain all the child bounding volumes. The default bound-
ing volume is a sphere, so the parent bounding volume is a sphere that contains all
the spheres of the children. The function CopyFrom makes the calling object a copy
of the input bounding volume. The function GrowToContain constructs the bounding
volume of the calling bounding volume and the input bounding volume. For a node
with multiple children, CopyFrom makes a copy of the first child, and GrowToContain
creates a bounding volume that contains that copy and the bounding volume of the
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second child. The resulting bounding volume is grown further to contain each of the
remaining children.

A brief warning about having a bounding volume stored in Spatial through an
abstract base class (smart) pointer: Nothing prevents you from setting the bounding
volume of one object to be a sphere and another to be a box. However, the Bound-
ingVolume member functions that take a BoundingVolume object as input are designed
to manipulate the input as if it is the same type as the calling object. Mixing bound-
ing volume types is therefore an error, and the engine has no prevention mechanism
for this. You, the programmer, must enforce the constraint. That said, it is possible
to extend the bounding volume system to handle mixed types. The amount of code
for n object types can be inordinate. For intersection queries between two bounding
volumes, you need a function for each pair of types, a total of n(n − 1)/2 functions.
The semantics of the CopyFrom function must change. How do you copy a bound-
ing sphere to an oriented bounding box? The semantics of GrowToContain must also
change. What is the type of bounding volume to be used for a collection of mixed
bounding volume types? If you have a sphere and a box, should the containing vol-
ume be a sphere or a box? Such a system can be built (NetImmerse had one), but
I chose to limit the complexity of Wild Magic by disallowing mixing of bounding
volume types.

3.2.3 The Core Classes and Geometric Updates

Recall that the scene graph management core classes are Spatial, Geometry, and
Node. The Spatial class encapsulates the local and world transformations, the world
bounding volume, and the parent pointer in support of the scene hierarchy. The Ge-
ometry class encapsulates the model data and the model bounding sphere and may
exist only as leaf nodes in the scene hierarchy. The Node class encapsulates grouping
and has a list of child pointers. All three classes participate in the geometric update
of a scene hierarchy—the process of propagating transformations from parents to
children (the downward pass) and then merging bounding volumes from children to
parents (the upward pass).

The data members of the Spatial interface relevant to geometric updates are
shown in the following partial interface listing:

class Spatial : public Object
{
public:

Transformation Local;
Transformation World;
bool WorldIsCurrent;

BoundingVolumePtr WorldBound;
bool WorldBoundIsCurrent;

};



3.2 Geometric State 185

The data members are in public scope. This is a deviation from my choices for
Wild Magic version 2, where the data members were protected or private and ex-
posed only through public accessor functions, most of them implemented as inline
functions. My choice for version 3 is to reduce the verbosity, so to speak, of the class
interface. In earlier versions, you would have a protected or private data member, one
or more accessors, and inline implementations of those accessors. For example,

// in OldSpatial.h
class OldSpatial : public Object
{
public:

Transformation& Local (); // read-write access
const Transformation& GetLocal () const; // read-only access
void SetLocal (const Transform& rkLocal); // write-only access

protected:
Transformation m_kLocal;

};

// in OldSpatial.inl
Transformation& OldSpatial::Local ()

{ return m_kLocal; }
const Transformation& OldSpatial::GetLocal () const

{ return m_kLocal; }
void OldSpatial::SetLocal (const Transformation& rkLocal)

{ m_kLocal = rkLocal; }

The object-oriented premise of such an interface is to allow the underlying imple-
mentation of the class to change without forcing clients of the class to have to change
their code. This is an example of modular continuity; see [Mey88, Section 2.1.4],
specifically the following paragraph:

A design method satisfies Modular Continuity if a small change in a problem
specification results in a change of just one module, or few modules, in the system
obtained from the specification through the method. Such changes should not
affect the architecture of the system, that is to say the relations between modules.

The interface for OldSpatial is a conservative way to achieve modular continuity. The
experiences of two versions of Wild Magic have led me to conclude that exposing
some data members in the public interface is acceptable as long as the subsystem
involving those data members is stable; that is, the subsystem will not change as the
engine evolves. This is a less conservative way to achieve modular continuity because
it relies on you not to change the subsystem.

By exposing data members in the public interface, you have another issue of
concern. The function interfaces to data members, as shown in OldSpatial, can hide
side effects. For example, the function SetLocal has the responsibility of setting the
m_kLocal data member of the class. But it could also perform operations on other data
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members or call other member functions, thus causing changes to state elsewhere in
the system. If set/get function calls require side effects, it is not recommended that
you expose the data member in the public interface. For if you were to do so, the
engine user would have the responsibility for doing whatever is necessary to make
those side effects occur.

In the case of the Spatial class in version 3 of the engine, the Local data member
is in public scope. Setting or getting the value has no side effects. The new interface is

// in Spatial.h
class Spatial : public Object
{
public:

Transformation Local; // read-write access
};

and is clearly much reduced from that of OldSpatial. Observe that the prefix conven-
tion for variables is now used only for protected or private members. The convention
for public data members is not to use prefixes and to capitalize the first letter of the
name, just like function names are handled.

In class Spatial the world transformation is also in public scope. Recalling the
previous discussion about transformations, the world transformations are composi-
tions of local transformations. In this sense, a world transformation is computed as a
(deferred) side effect of setting local transformations. I just mentioned that exposing
data members in the public interface is not a good idea when side effects must occur,
so why already violate that design goal? The problem has to do with the complexity
of the controller system. Some controllers might naturally be constructed to directly
set the world transformations. Indeed, the engine has a skin-and-bones controller that
computes the world transformation for a triangle mesh. In a sense, the controller
bypasses the standard mechanism that computes world transformations from local
ones. The data members World and WorldIsCurrent are intended for read access by
application writers, but may be used for write access by controllers. If a controller
sets the World member directly, it should also set the WorldIsCurrent flag to let the
geometric update system know that the world transformation for this node should
not be computed as a composition of its parent’s world transformation and its local
transformation.

Similar arguments apply to the data members WorldBound and WorldBoundIsCur-
rent. In some situations you have a node (and subtree) whose behavior is known to
you (by design), and whose world bounding volume may be assigned directly. For
example, the node might be a room in a building that never moves. The child nodes
correspond to objects in the room; those objects can move within the room, so their
world bounding volumes change. However, the room’s world bounding volume need
not change. You may set the room’s world bounding volume, but the geometric up-
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date system should be told not to recalculate that bounding volume from the child
bounding volumes. The flag WorldBoundIsCurrent should be set to true in this case.

The member functions of Spatial relevant to geometric updates are shown in the
following partial interface listing:

class Spatial : public Object
{
public:

void UpdateGS (double dAppTime = -Mathd::MAX_REAL,
bool bInitiator = true);

void UpdateBS ();

protected:
virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound () = 0;
void PropagateBoundToRoot ();

};

The public functions UpdateGS (“update geometric state”) and UpdateBS (“update
bound state”) are the entry points to the geometric update system. The function
UpdateGS is for both propagation of transformations from parents to children and
propagation of world bounding volumes from children to parents. The dAppTime
(“application time”) is passed so that any animated quantities needing the current
time to update their state have access to it. The Boolean parameter will be explained
later. The function UpdateBS is for propagation only of world bounding volumes. The
protected function UpdateWorldData supports the propagation of transformations in
the downward pass. It is virtual to allow derived classes to update any additional
world data that is affected by the change in world transformations. The protected
functions UpdateWorldBound and PropagateToRoot support the calculation of world
bounding volumes in the upward pass. The UpdateWorldBound function is pure virtual
to require Geometry and Node to implement it as needed.

The portion of the Geometry interface relevant to geometric updates is

class Geometry : public Spatial
{
public:

Vector3fArrayPtr Vertices;
Vector3fArrayPtr Normals;
BoundingVolumePtr ModelBound;
IntArrayPtr Indices;

void UpdateMS ();
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protected:
virtual void UpdateModelBound ();
virtual void UpdateModelNormals ();
virtual void UpdateWorldBound ();

};

As with the Spatial class, the data members are in public scope because there are no
immediate side effects from reading or writing them. But there are side effects that
the programmer must ensure, namely, the geometric update itself.

The function UpdateMS (“ update model state”) is the entry point into the update
of the model bound and model normals. The function should be called whenever
you change the model vertices. All that UpdateMS does is call the protected functions
UpdateModelBound and UpdateModelNormals. The function UpdateModelBound computes
a model bounding volume from the collection of vertices. This is accomplished by a
call to the BoundingVolume function ComputeFromData. I made the model bound update
a virtual function just in case a derived class needs to compute the bound differently.
For example, a derived class might have prior knowledge about the model bound and
not even have to process the vertices.

The function UpdateModelNormals has an empty body in Geometry since the ge-
ometry class is just a container for vertices and normals. Derived classes need to
implement UpdateModelNormals for their specific data representations. Not all derived
classes have normals (for example, Polypoint and Polyline), so I decided to let them
use the empty base class function rather than making the base function pure virtual
and then requiring derived classes to implement it with empty functions.

The function UpdateWorldBound is an implementation of the pure virtual function
in Spatial. All that it does is compute the world bounding volume from the model
bounding volume by applying the current world transformation.

The member functions of Node relevant to geometric updates are shown in the
following partial interface listing:

class Node : public Spatial
{
protected:

virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound ();

};

The function UpdateWorldData is an implementation of the virtual function in the
Spatial base class. It has the responsibility to propagate the geometric update to its
children. The function UpdateWorldBound is an implementation of the pure virtual
function in the Spatial base class. Whereas the Geometry class implements this to
calculate a single world bounding volume for its data, the Node class implements this
to compute a world bounding volume that contains the world bounding volume of
all its children.
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N0 S0

N1 S1 N2 S2N1 S1

G3 S3 N4 S4

G5 S5 G6

BoundsTransforms

S6

Figure 3.8 A geometric update of a simple scene graph. The light gray shaded node, N1, is the
one at which the UpdateGS call initiates.

Figure 3.8 illustrates the behavior of the update. The symbols are N for Node, S for
Spatial, and G for Geometry. The rectangular boxes represent the nodes in the scene
hierarchy. The occurrence of both an N and an S at a node stresses the fact the Node
is derived from Spatial, so both classes’ public and protected interfaces are available
to Node. A similar statement is made for Geometry and Spatial.

If the model bounding volumes or the model normals for a Geometry object are
not current, that object must call Geometry::UpdateMS() to make them current. In
most cases, the model data is current—for example, in rigid triangle meshes; you will
not call UpdateMS often for such objects. The other extreme is something like a morph
controller that changes the vertex data frequently, and the UpdateMS call occurs after
each change.

Assuming the model data is current at all leaf nodes, the shaded gray box in the
figure indicates that node N1 is the one initiating a geometric update because its local
transformation was changed (translation, rotation, and/or uniform scale). Its world
transformation must be recomputed from its parent’s (N0) world transformation and
its newly changed local transformation. The new world transformation is passed to
its two children, G3 and N4, so that they also may recompute their world transfor-
mations. The world bounding volume for G3 must be recomputed from its model
bounding volume. The process is repeated at node N4. Its world transformation is
recomputed from the world transformation of N1 and its local transformation. The
new world transformation is passed to its two children, G5 and G6, so that they may
recompute their world transformations. Those leaf nodes also recompute their world
bounding volumes from their current model bounding volumes and their new world
transformations. On return to the parent N4, that node must recompute its world
bounding volume to contain the new world bounding volumes of its children. On
return to the node N1, that node must recompute its world bounding volume to con-
tain the new world bounding volumes for G3 and N4. You might think the geometric
update terminates at this time, but not yet. The change in world bounding volume at
N1 can cause the world bounding volume of its parent, N0, to be out of date. N0 must
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be told to update itself. Generally, the change in world bounding volume at the initia-
tor of the update must propagate all the way to the root of the scene hierarchy. Now
the geometric update is complete. The sequence of operations is listed as pseudocode
in the following. The indentation denotes the level of the recursive call of UpdateGS.

double dAppTime = <current application time>;
N1.UpdateGS(appTime,true);

N1.World = compose(N0.World,N1.Local);
G3.UpdateGS(appTime,false);

G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);

N4.UpdateGS(appTime,false);
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS(appTime,false);

G5.World = Compose(N4.World,G5.Local);
G5.WorldBound = Transform(G5.World,G5.ModelBound);

G6.UpdateGS(appTime,false);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);

N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

The Boolean parameter bInitiator in the function UpdateGS is quite important.
In the example, the UpdateGS call initiated at N1. A depth-first traversal of the subtree
rooted at N4 is performed, and the transformations are propagated downward. Once
you reach a leaf node, the new world bounding volume is propagated upward. When
the last child of N1 has been visited, we found we needed to propagate its world
bounding volume to its predecessors all the way to the root of the scene, in the
example to N0. The propagation of a world bounding volume from G5 to N4 is
slightly different than the propagation of a world bounding volume from N1 to
N0. The depth-first traversal at N1 guarantees that the world bounding volumes
are processed on the upward return. You certainly would not want each node to
propagate its world bounding volume all the way to the root whenever that node is
visited in the traversal because only the initiator has that responsibility. If you were to
have missed that subtlety and not had a Boolean parameter, the previous pseudocode
would become

double dAppTime = <current application time>;
N1.UpdateGS(appTime);

N1.World = compose(N0.World,N1.Local);
G3.UpdateGS(appTime);

G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);
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N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N4.UpdateGS(appTime);
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS(appTime);

G5.World = Compose(N4.World,G5.Local);
G5.WorldBound = Transform(G5.World,G5.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

G6.UpdateGS(appTime);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

Clearly, this is an inefficient chunk of code. The Boolean parameter is used to prevent
subtree nodes from propagating the world bounding volumes to the root.

The actual update code is shown next because I want to make a few comments
about it. The entry point for the geometric update is

void Spatial::UpdateGS (double dAppTime, bool bInitiator)
{

UpdateWorldData(dAppTime);
UpdateWorldBound();
if ( bInitiator )

PropagateBoundToRoot();
}

If the object is a Node object, the function UpdateWorldData propagates the transfor-
mations in the downward pass. If the object is a Geometry object, the function is not
implemented in that class, and the Spatial version is used. The two different func-
tions are

void Node::UpdateWorldData (double dAppTime)
{

Spatial::UpdateWorldData(dAppTime);
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for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->UpdateGS(dAppTime,false);
}

}

void Spatial::UpdateWorldData (double dAppTime)
{

UpdateControllers(dAppTime);

// NOTE: Updates on controllers for global state and lights
// go here. To be discussed later.

if ( !WorldIsCurrent )
{

if ( m_pkParent )
World.Product(m_pkParent->World,Local);

else
World = Local;

}
}

The Spatial version of the function has the responsibility for computing the com-
position of the parent’s world transformation and the object’s local transformation,
producing the object’s world transformation. At the root of the scene (m_pkParent is
NULL), the local and world transformations are the same. If a controller is used to com-
pute the world transformation, then the Boolean flag WorldIsCurrent is true and the
composition block is skipped. The Node version of the function allows the base class
to compute the world transformation, and then it propagates the call (recursively)
to its children. Observe that the bInitiator flag is set to false for the child calls to
prevent them from propagating the world bounding volumes to the root node.

The controller updates might or might not affect the transformation system. For
example, the point, particles, and morph controllers all modify the model space ver-
tices (and possibly the model space normals). Each of these calls UpdateMS to guar-
antee the model bounding volume is current. Fortunately this step occurs before our
UpdateGS gets to the stage of updating world bounding volumes. Keyframe and in-
verse kinematics controllers modify local transformations, but they do not set the
WorldIsCurrent flag to true because the world transformations must still be updated.
The skin controllers modify the world transformations directly and do set the World-
IsCurrent flag to true.

In UpdateGS, on return from UpdateWorldData the world bounding volume is up-
dated by UpdateWorldBound. If the object is a Node object, a bound of bounds is com-
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puted. If the object is a Geometry object, the newly computed world transformation is
used to transform the model bounding volume to the world bounding volume.

void Node::UpdateWorldBound ()
{

if ( !WorldBoundIsCurrent )
{

bool bFoundFirstBound = false;
for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )
{

if ( bFoundFirstBound )
{

// Merge current world bound with child
// world bound.
WorldBound->GrowToContain(pkChild->WorldBound);

}
else
{

// Set world bound to first nonnull child
// world bound.
bFoundFirstBound = true;
WorldBound->CopyFrom(pkChild->WorldBound);

}
}

}
}

}

void Geometry::UpdateWorldBound ()
{

ModelBound->TransformBy(World,WorldBound);
}

If the application has explicitly set the world bounding volume for the node, it should
have also set WorldBoundIsCurrent to false, in which case Node::UpdateWorldBound has
no work to do. However, if the node must update its world bounding volume, it does
so by processing its child bounding volumes one at a time. The bounding volume
of the first (nonnull) child is copied. If a second (nonnull) child exists, the current
world bounding volume is modified to contain itself and the bound of the child. The
growing algorithm continues until all children have been visited.
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For bounding spheres, the iterative growing algorithm amounts to computing the
smallest volume of two spheres, the current one and that of the next child. This is
a greedy algorithm and does not generally produce the smallest volume bounding
sphere that contains all the child bounding spheres. The algorithm to compute the
smallest volume sphere containing a set of spheres is a very complicated beast [FG03].
The computation time is not amenable to real-time graphics, so instead we use a less
exact bound, but one that can be computed quickly.

The last stage of UpdateGS is to propagate the world bounding volume from the
initiator to the root. The function that does this is PropagateBoundToRoot. This, too,
is a recursive function, just through a linear list of nodes:

void Spatial::PropagateBoundToRoot ()
{

if ( m_pkParent )
{

m_pkParent->UpdateWorldBound();
m_pkParent->PropagateBoundToRoot();

}
}

As mentioned previously, if a local transformation has not changed at a node,
but some geometric operations cause the world bounding volume to change, there is
no reason to waste time propagating transformations in a downward traversal of the
tree. Instead just call UpdateBS to propagate the world bounding volume to the root:

void Spatial::UpdateBS ()
{

UpdateWorldBound();
PropagateBoundToRoot();

}

Table 3.1 is a summary of the updates that must occur when various geometric
quantities change in the system. All of the updates may be viewed as side effects to
changes in the geometric state of the system. None of the side effects occur automati-
cally because I want application writers to use as much of their knowledge as possible
about their environment and not force an inefficient update mechanism to occur be-
hind the scenes.

For example, Figure 3.9 shows a scene hierarchy that needs updating. The light
gray shaded nodes in the scene have had their local transformations changed. You
could blindly call

a.UpdateGS(appTime,true);
b.UpdateGS(appTime,true);
c.UpdateGS(appTime,true);
d.UpdateGS(appTime,true);



3.2 Geometric State 195

Table 3.1 Updates that must occur when geometric quantities change.

Changing quantity Required updates Top-level function to call

Model data Model bound, model normals (if any) Geometry::UpdateMS

Model bound World bound Spatial::UpdateGS or
Spatial::UpdateBS

World bound Parent world bound (if any) Spatial::UpdateGS or
Spatial::UpdateBS

Local transformation World transformation, child
transformations

Spatial::UpdateGS

World transformation World bound Spatial::UpdateGS

a

b

c d

Figure 3.9 A scene hierarchy that needs updating. The light gray shaded nodes have had their
local transformations changed.

to perform the updates, but this is not efficient. All that is needed is

a.UpdateGS(appTime,true);
b.UpdateGS(appTime,true);

Nodes c and d are updated as a side effect of the update at node a. In general, the min-
imum number of UpdateGS calls needed is the number of nodes requiring an update
that have no predecessors who also require an update. Node a requires an update, but
has no out-of-date predecessors. Node c requires an update, but it has a predecessor,
node a, that does. Although it is possible to construct an automated system to de-
termine the minimum number of UpdateGS calls, that system will consume too many
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cycles. I believe it is better to let the application writers take advantage of knowledge
they have about what is out of date and specifically call UpdateGS themselves.

3.3 Geometric Types

The basic geometric types supported in the engine are collections of points, col-
lections of line segments, triangle meshes, and particles. Various classes in the core
engine implement these types. During the drawing pass through the scene graph, the
renderer is provided with such objects and must draw them as their types dictate.
Most graphics APIs require the type of object to be specified, usually via a set of enu-
merated values. To facilitate this, the Geometry class has enumerations for the basic
types, as shown in the following code snippet:

class Geometry : public Spatial
{

// internal use
public:

enum // GeometryType
{

GT_POLYPOINT,
GT_POLYLINE_SEGMENTS,
GT_POLYLINE_OPEN,
GT_POLYLINE_CLOSED,
GT_TRIMESH,
GT_MAX_QUANTITY

};

int GeometryType;
};

The type itself is stored in the data member GeometryType. It is in public scope because
there are no side effects in reading or writing it. However, the block is marked for
internal use by the engine. There is no need for an application writer to manipulate
the type.

The value GT_POLYPOINT indicates the object is a collection of points. The value
GT_TRIMESH indicates the object is a triangle mesh. The three values with POLYLINE as
part of their names are used for collections of line segments. GT_POLYLINE_SEGMENTS is
for a set of line segments with no connections between them. GT_POLYLINE_OPEN is for
a polyline, a set of line segments where each segment end point is shared by at most
two lines. The initial and final segments each have an end point that is not shared
by any other line segment; thus the polyline is said to be open. Another term for an
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open polyline is a line strip. If the two end points are actually the same point, then the
polyline forms a loop and is said to be closed. Another term for a closed polyline is a
line loop.

If you were to modify the engine to support other types that are native to the
graphics APIs, you can add enumerated types to the list. You should add these after
GT_TRIMESH, but before GT_MAX_QUANTITY, in order to preserve the numeric values of
the current types.

3.3.1 Points

A collection of points is represented by the class Polypoint, which is derived from
Geometry. The interface is very simple:

class Polypoint : public Geometry
{
public:

Polypoint (Vector3fArrayPtr spkVertices);
virtual ~Polypoint ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

protected:
Polypoint ();

int m_iActiveQuantity;
};

The points are provided to the constructor. From the application’s perspective,
the set of points is unordered. However, for the graphics APIs that use vertex arrays,
I have chosen to assign indices to the points. The vertices and indices are both used
for drawing. The public constructor is

Polypoint::Polypoint (Vector3fArrayPtr spkVertices)
:
Geometry(spkVertices)

{
GeometryType = GT_POLYPOINT;

int iVQuantity = Vertices->GetQuantity();
m_iActiveQuantity = iVQuantity;

int* aiIndex = new int[iVQuantity];
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for (int i = 0; i < iVQuantity; i++)
aiIndex[i] = i;

Indices = new IntArray(iVQuantity,aiIndex);
}

The assigned indices are the natural ones.
The use of an index array has a pleasant consequence. Normally, all of the points

would be drawn by the renderer. In some applications you might want to have storage
for a large collection of points, but only have a subset active at one time. The class has
a data member, m_iActiveQuantity, that indicates how many are active. The active
quantity may be zero, but cannot be larger than the total quantity of points. The active
set is contiguous in the array, starting at index zero, but if need be, an application can
move the points from one vertex array location to another.

The active quantity data member is not in the public interface. The function
SetActiveQuantity has the side effect of validating the requested quantity. If the input
quantity is invalid, the active quantity is set to the total quantity of points.

The index array Indices is a data member in the base class Geometry. Its type is
TSharedArray<int>. This array is used by the renderer for drawing purposes. Part of
that process involves querying the array for the number of elements. The shared array
class has a member function, GetQuantity, that returns the total number of elements
in the array. However, we want it to report the active quantity when the object to
be drawn is of type Polypoint. To support this, the shared array class has a member
function SetActiveQuantity that changes the internally stored total quantity to the
requested quantity. The requested quantity must be no larger than the original total
quantity. If it is not, no reallocation occurs in the shared array, and any attempt to
write elements outside the original array is an access violation.

Rather than adding a new data member to TSharedArray to store an active quan-
tity, allowing the total quantity to be stored at the same time, I made the decision that
the caller of SetActiveQuantity must remember the original total quantity, in case the
original value must be restored through another call to SetActiveQuantity. My deci-
sion is based on the observation that calls to SetActiveQuantity will be infrequent, so
I wanted to minimize the memory usage for the data members of TSharedArray.

As in all Object-derived classes, a default constructor is provided for the purposes
of streaming. The constructor is protected to prevent the application from creating
default objects whose data members have not been initialized with real data.

3.3.2 Line Segments

A collection of line segments is represented by the class Polyline, which is derived
from Geometry. The interface is
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class Polyline : public Geometry
{
public:

Polyline (Vector3fArrayPtr spkVertices, bool bClosed,
bool bContiguous);

virtual ~Polyline ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;
void SetClosed (bool bClosed);
bool GetClosed () const;
void SetContiguous (bool bContiguous);
bool GetContiguous () const;

protected:
Polyline ();
void SetGeometryType ();

int m_iActiveQuantity;
bool m_bClosed, m_bContiguous;

};

The end points of the line segments are provided to the constructor. The three
possible interpretations for the vertices are disjoint segments, open polyline, or closed
polyline. The input parameters bClosed and bContiguous determine which interpre-
tation is used. The inputs are stored as class members m_bClosed and m_bContiguous.
The actual interpretation is implemented in SetGeometryType:

void Polyline::SetGeometryType ()
{

if ( m_bContiguous )
{

if ( m_bClosed )
GeometryType = GT_POLYLINE_CLOSED;

else
GeometryType = GT_POLYLINE_OPEN;

}
else
{

GeometryType = GT_POLYLINE_SEGMENTS;
}

}
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To be a polyline where end points are shared, the contiguous flag must be set to true.
The closed flag has the obvious interpretation.

Let the points be Pi for 0 ≤ i < n. If the contiguous flag is false, the object is
a collection of disjoint segments. For a properly formed collection, the quantity of
vertices n should be even. The n/2 segments are

〈P0, P1〉, 〈P2, P3〉, . . . , 〈Pn−2, Pn−1〉.

If the contiguous flag is true and the closed flag is false, the points represent an open
polyline with n − 1 segments:

〈P0, P1〉, 〈P1, P2〉, . . . , 〈Pn−2, Pn−1〉.

The end point P0 of the initial segment and the end point Pn−1 of the final segment
are not shared by any other segments. If instead the closed flag is true, the points
represent a closed polyline with n segments:

〈P0, P1〉, 〈P1, P2〉, . . . , 〈Pn−2, Pn−1〉, 〈Pn−1, P0〉.

Each point is shared by exactly two segments. Although you might imagine that a
closed polyline in the plane is a single loop that is topologically equivalent to a circle,
you can obtain more complicated topologies by duplicating points. For example, you
can generate a bow tie (two closed loops) in the z = 0 plane with P0 = (0, 0, 0),
P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 0), P4 = (0, −1, 0), and P5 = (−1, 0, 0). The
contiguous and closed flags are both set to true.

The class has the ability to select an active quantity of end points that is smaller or
equal to the total number, and the mechanism is exactly the one used in Polypoint.
If your Polyline object represents a collection of disjoint segments, you should also
make sure the active quantity is an even number.

3.3.3 Triangle Meshes

The simplest representation for a collection of triangles is as a list of m triples of 3m
vertices:

〈V0, V1, V2〉, 〈V3, V4, V5〉, . . . , 〈V3m−3, V3m−2, V3m−1〉.

The vertices of each triangle are listed in counterclockwise order; that is, the triangle
is in a plane with a specified normal vector. An observer on the side of the plane to
which the normal is directed sees the vertices of the triangle in a counterclockwise
order on that plane. A collection like this is sometimes called a triangle soup (more
generally, a polygon soup). Graphics APIs do support rendering where the triangles
are provided this way, but most geometric models built from triangles are not built
as a triangle soup. Vertices in the model tend to be part of more than one triangle.
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Moreover, if the triangle soup is sent to the renderer, each vertex must be transformed
from model space to world space, including running them through the clipping and
lighting portions of the system. If a point occurs multiple times in the list of vertices,
each one processed by the renderer, we are wasting a lot of cycles.

A more efficient representation for a collection of triangles is to have an array of
unique vertices and represent the triangles as a collection of triples of indices into the
vertex array. This is called a triangle mesh. If Vi for 0 ≤ i < n is the array of vertices,
an index array Ij for 0 ≤ j < 3m represents the triangles

〈VI0
, VI1

, VI2
〉, 〈VI3

, VI4
, VI5

〉, . . . , 〈VI3m−3
, VI3m−2

, VI3m−1
〉.

The goal, of course, is that n is a lot smaller than 3m because of the avoidance
of duplicate vertices in the vertex array. Fewer vertices must be processed by the
renderer, leading to faster drawing.

The class that represents triangle meshes is TriMesh. A portion of the interface is

class TriMesh : public Geometry
{
public:

TriMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,
bool bGenerateNormals);

virtual ~TriMesh ();

int GetTriangleQuantity () const;
void GenerateNormals ();

protected:
TriMesh ();
virtual void UpdateModelNormals ();

};

I have omitted the interface that supports the picking system and will discuss that in
Section 6.3.3.

The constructor requires you to provide the vertex and index arrays for the trian-
gle mesh. The quantity of elements in the index array should be a multiple of three.
The member function GetTriangleQuantity returns the quantity of indices divided by
three. For the purposes of lighting, the renderer will need to use vertex normals. The
third parameter of the constructor determines whether or not the normals should be
generated.

The actual construction of the vertex normals is done in the method UpdateModel-
Normals. The method is protected, so you cannot call it directly. It is called indirectly
through the public update function Geometry::UpdateMS. Multiple algorithms exist
for the construction of vertex normals. The one I implemented is as follows. Let T1
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through Tm be those triangles that share vertex V. Let N1 through Nm be normal
vectors to the triangles, but not necessarily unit-length ones. For a triangle T with
vertices V0, V1, and V2, the normal I use is N = (V1 − V0) × (V2 − V0). The vertex
normal is a unit-length vector,

N =
∑m

i=1 Ni∣∣∑m
i=1 Ni

∣∣ .
The length |Ni| is twice the area of the triangle to which it is normal. Therefore, large
triangles will have a greater effect on the vertex normal than small triangles. I consider
this a more reasonable algorithm than one that computes the vertex normal as an
average of unit-length normals for the sharing triangles, where all triangles have the
same influence on the outcome regardless of their areas.

Should you decide to create a triangle mesh without normals, you can always
force the generation by calling the method GenerateNormals. This function allocates
the normals if they do not already exist and then calls UpdateModelNormals.

3.3.4 Particles

A particle is considered to be a geometric primitive with a location in space and a
size. The size attribute distinguishes particles from points. A collection of particles is
referred to as a particle system. Particle systems are quite useful, for interesting visual
displays as well as for physical simulations. Both aspects are discussed later, the visual
ones in Section 4.1.2 and the physical ones in Section 7.2. In this section I will discuss
the geometric aspects and the class Particles that represents them.

The portion of the class interface for Particles that is relevant to data manage-
ment is

class Particles : public TriMesh
{
public:

Particles (Vector3fArrayPtr spkLocations,
FloatArrayPtr spkSizes, bool bWantNormals);

virtual ~Particles ();

Vector3fArrayPtr Locations;
FloatArrayPtr Sizes;
float SizeAdjust;

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;
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protected:
Particles ();
void GenerateParticles (const Camera* pkCamera);

int m_iActiveQuantity;
};

The first observation is that the class is derived from TriMesh. The particles are drawn
as billboard squares (see Section 4.1.2) that always face the observer. Each square is
built of two triangles, and all the triangles are stored in the base class as a triangle
mesh. The triangle mesh has four times the number of vertices as it does particle
locations, which is why the locations are stored as a separate array.

The constructor accepts inputs for the particle locations and sizes. The third
parameter determines whether or not normal vectors are allocated. If they are, the
normal vectors are in the opposite direction of view—they are directed toward the
observer. Even though the particles are drawn as billboards, they may still be affected
by lights in the scene, so the normal vectors are relevant.

The data members Locations, Sizes, and SizeAdjust are in public scope because
no side effects must occur when they are read or written. The locations and sizes are
as described previously. The data member SizeAdjust is used to uniformly scale the
particle sizes, if so desired. The adjustment is a multiplier of the sizes stored in the
member array Sizes, not a replacement for those values. The initial value for the size
adjustment is one.

The class has the ability to select an active quantity of end points that is smaller
or equal to the total number. The mechanism is exactly the one used in Polypoint.

3.4 Render State

I use the term render state to refer to all the information that is associated with the
geometric data for the purposes of drawing the objects. Three main categories of
render state are global state, lights, and effects.

3.4.1 Global State

Global state refers to information that is essentially independent of any information
the objects might provide. The states I have included in the engine are alpha blending,
triangle culling, dithering, fog, material, shading, wireframe, and depth buffering.
For example, depth buffering does not care how many vertices or triangles an object
has. A material has attributes that are applied to the vertices of an object, regardless
of how many vertices it has. Alpha blending relies on the texture images of the
Geometry object having an alpha channel, but it does not care about what the texture
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coordinates are for that object. A global state, when attached to an interior node in a
scene hierarchy, affects all leaf nodes in the subtree rooted at the node. This property
is why I used the adjective global.

The base class is GlobalState and has the following interface:

class GlobalState : public Object
{
public:

virtual ~GlobalState ();

enum // Type
{

ALPHA,
CULL,
DITHER,
FOG,
MATERIAL,
SHADE,
WIREFRAME,
ZBUFFER,
MAX_STATE

};

virtual int GetGlobalStateType () const = 0;

static Pointer<GlobalState> Default[MAX_STATE];

protected:
GlobalState ();

};

The base class is abstract since the constructor is protected (or since there is a pure
virtual function declared). To support fast access of global states in arrays of smart
pointers GlobalStatePtr, I chose to avoid using the Object run-time type information
system. The enumerated type of GlobalState provides an alternate RTTI system. Each
derived class returns its enumerated value through an implementation of GetGlobal-
StateType. Each derived class is also responsible for creating a default state, stored in
the static array GlobalState::Default[]. Currently, the enumerated values are a list
of all the global states I support. If you were to add another one, you would derive a
class MyNewGlobalState from GlobalState. But you also have to add another enumer-
ated value MYNEWGLOBALSTATE to the base class. This violates the open-closed principle
of object-oriented programming, but the changes to GlobalState are so simple and
so infrequent that I felt justified in the violation. None of the classes in Wild Magic
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version 3 ever write an array of global state pointers to disk, so adding a new state
does not invalidate all of the scenes you had streamed before the change.

The global states are stored in class Spatial. A portion of the interface relative to
global state storing and member accessing is

class Spatial : public Object
{
public:

void SetGlobalState (GlobalState* pkState);
GlobalState* GetGlobalState (int eType) const;
void RemoveGlobalState (int eType);
void RemoveAllGlobalStates ();

protected:
TList<GlobalStatePtr>* m_pkGlobalList;

};

The states are stored in a singly linked list of smart pointers. The choice was made
to use a list rather than an array, whose indices are the GlobalState enumerated
values, to reduce memory usage. A typical scene will have only a small number of
nodes with global states attached, so the array representation would generate a lot
of wasted memory for all the other nodes. The names of the member functions
make it clear how to use the functions. The eType input is intended to be one of the
GlobalState enumerated values. For example, the code

MaterialState* pkMS = <some material state>;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState(pkMS);
pkSpatial->RemoveGlobalState(GlobalState::MATERIAL);

attaches a material state to an object, then removes it from the object.
The class Geometry also has storage for global states, but the storage is for all global

states encountered along the path in the scene hierarchy from the root node to the
geometry leaf node. The storage is assembled during a render state update, a topic
discussed later in this section. The portion of the interface of Geometry relevant to
storage is

class Geometry : public Spatial
{
// internal use
public:

GlobalStatePtr States[GlobalState::MAX_STATE];
};
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The array of states is in public scope, but is tagged for internal use only. An applica-
tion should not manipulate the array or its members.

I will now discuss each of the derived global state classes. These classes have a
couple of things in common. First, they must all implement the virtual function
GetGlobalStateType. Second, they must all create default objects, something that is
done at program initialization. At program termination, the classes should all destroy
their default objects. The initialization-termination system discussed in Section 2.3.8
is used to perform these actions. You will see that each derived class uses the macros
defined in Wm3Main.mcr and implements void Initialize() and void Terminate(). All
the derived classes have a default constructor that is used to create the default objects.

Depth Buffering

In a correctly rendered scene, the pixels drawn in the frame buffer correspond to
those visible points closest to the observer. But many points in the (3D) world can
be projected to the same pixel on the (2D) screen. The graphics system needs to keep
track of the actual depths in the world to determine which of those points is the visible
one. This is accomplished through depth buffering . A frame buffer stores the pixel
colors, and a depth buffer stores the corresponding depth in the world. The depth
buffer is sometimes called a z-buffer, but in a perspective camera model, the depth
is not measured along a direction perpendicular to the screen. It is depth along rays
emanating from the camera location (the eye point) into the world.

The standard drawing pass for a system using a depth buffer is

FrameBuffer fbuffer = <current RGB values on the screen>;
DepthBuffer zbuffer = <current depth values for fbuffer pixels>;
ColorRGB sourceColor = <color of pixel to be drawn>;
float sourceDepth = <depth of the point in the world>;
int x, y = <location of projected point in the buffers>;

if ( sourceDepth <= zbuffer(x,y) )
{

fbuffer(x,y) = sourceColor;
zbuffer(x,y) = sourceDepth;

}

Three aspects of a depth buffer are apparent in the code. You need the ability
to read from the depth buffer, compare a value against the read value, and write to
the depth buffer. The comparison function in the pseudocode is “less than or equal
to.” You could use “less than” if so desired, but allowing equality provides the ability
to draw on top of something already visible when the new object is coincident with
the already visible object (think “decal”). For generality, the comparison could be
written as
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if ( ComparesFavorably(sourceDepth,zbuffer(x,y)) )
{

fbuffer(x,y) = sourceColor;
zbuffer(x,y) = sourceDepth;

}

The function ComparesFavorably(a,b) can be any of the usual ones: a < b, a ≤ b,
a > b, a ≥ b, a = b, or a �= b. Two additional functions are allowed: always or never.
In the former, the frame and depth buffers are always updated. In the latter, the frame
and depth buffers are never updated.

The class that encapsulates the depth buffering is ZBufferState. Its interface is

class ZBufferState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return ZBUFFER; }

ZBufferState ();
virtual ~ZBufferState ();

enum // Compare values
{

CF_NEVER,
CF_LESS,
CF_EQUAL,
CF_LEQUAL,
CF_GREATER,
CF_NOTEQUAL,
CF_GEQUAL,
CF_ALWAYS,
CF_QUANTITY

};

bool Enabled; // default: true
bool Writable; // default: true
int Compare; // default: CF_LEQUAL

};

The data members are in public scope because no side effects must occur when they
are read or written. The member Enabled is set to true if you want depth buffering to
be enabled. In this case, the buffer is automatically readable. To make the depth buffer
writable, set the member Writable to true. The comparison function is controlled by
the member Compare. The defaults are the standard ones used when depth buffering is
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desired (readable, writable, less than or equal to for the comparison). A simple code
block for using standard depth buffering in an entire scene is

NodePtr m_spkScene = <the scene graph>;
m_spkScene->SetGlobalState(new ZBufferState);

There are situations where you want the depth buffer to be readable, but not
writable. One of these occurs in conjunction with alpha blending and semitranspar-
ent objects, the topic of the next few paragraphs.

Alpha Blending

Given two RGBA colors, one called the source color and one called the destination
color, the term alpha blending refers to the general process of combining the source
and destination into yet another RGBA color. The source color is (rs , gs , bs , as),
and the destination color is (rd , gd , bd , ad). The blended result is the final color
(rf , gf , bf , af ). All color channel values in this discussion are assumed to be in the
interval [0, 1].

The classical method for blending is to use the alpha channel as an opacity factor.
If the alpha value is 1, the color is completely opaque. If the alpha value is 0, the color
is completely transparent. If the alpha value is strictly between 0 and 1, the colors are
semitransparent. The formula for the blend of only the RGB channels is

(rf , gf , bf ) = (1 − as)(rs , gs , bs) + as(rd , gd , bd)

= ((1 − as)rs + asrd , (1 − as)gs + asgd , (1 − as)bs + asbd).

The algebraic operations are performed component by component. The assumption
is that you have already drawn the destination color into the frame buffer; that is,
the frame buffer becomes the destination. The next color you draw is the source. The
alpha value of the source color is used to blend the source color with the current
contents of the frame buffer.

It is also possible to draw the destination color into an offscreen buffer, blend the
source color with it, and then use the offscreen buffer for blending with the current
contents of the frame buffer. In this sense we also want to keep track of the alpha value
in the offscreen buffer. We need a blending equation for the alpha values themselves.
Using the same operations as for the RGB channels, your choice will be

af = (1 − as)as + asad .

Combining the four channels into a single equation, the classic alpha blending
equation is



3.4 Render State 209

(rf , gf , bf , af ) = ((1 − as)rs + asrd , (1 − as)gs

+ asgd , (1 − as)bs + asbd , (1 − as)as + asad). (3.5)

If the final colors become the destination for another blending operation, then

(rd , gd , bd , ad) = (rf , gf , bf , af )

sets the destination to the previous blending results.
Graphics APIs support more general combinations of colors, whether the colors

come from vertex attributes or texture images. The general equation is

(rf , gf , bf , af ) = (σrrs + δrrd , σggs + δggd , σbbs + δbbd , σaas + δaad). (3.6)

The blending coefficients are σi and δi, where the subscripts denote the color chan-
nels they affect. The coefficients are assumed to be in the interval [0, 1]. Wild Magic
provides the ability for you to select the blending coefficients from a finite set of possi-
bilities. The class that encapsulates this is AlphaState. Since the AlphaState class exists
in the scene graph management system, it must provide a graphics-API-independent
mechanism for selecting the coefficients. The names I use for the various possibilities
are reminiscient of those OpenGL uses, but also map to what Direct3D supports.

The portion of the class interface for AlphaState relevant to the blending equation
(3.6) is

class AlphaState : public GlobalState
{
public:

enum // SrcBlend values
{

SBF_ZERO,
SBF_ONE,
SBF_DST_COLOR,
SBF_ONE_MINUS_DST_COLOR,
SBF_SRC_ALPHA,
SBF_ONE_MINUS_SRC_ALPHA,
SBF_DST_ALPHA,
SBF_ONE_MINUS_DST_ALPHA,
SBF_SRC_ALPHA_SATURATE,
SBF_CONSTANT_COLOR,
SBF_ONE_MINUS_CONSTANT_COLOR,
SBF_CONSTANT_ALPHA,
SBF_ONE_MINUS_CONSTANT_ALPHA,
SBF_QUANTITY

};
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enum // DstBlend values
{

DBF_ZERO,
DBF_ONE,
DBF_SRC_COLOR,
DBF_ONE_MINUS_SRC_COLOR,
DBF_SRC_ALPHA,
DBF_ONE_MINUS_SRC_ALPHA,
DBF_DST_ALPHA,
DBF_ONE_MINUS_DST_ALPHA,
DBF_CONSTANT_COLOR,
DBF_ONE_MINUS_CONSTANT_COLOR,
DBF_CONSTANT_ALPHA,
DBF_ONE_MINUS_CONSTANT_ALPHA,
DBF_QUANTITY

};

bool BlendEnabled; // default: false
int SrcBlend; // default: SBF_SRC_ALPHA
int DstBlend; // default: DBF_ONE_MINUS_SRC_ALPHA

};

The data members are all public since no side effects must occur when reading or
writing them. The data member BlendEnabled is set to false initially, indicating that
the default alpha blending state is “no blending.” This member should be set to true
when you do want blending to occur.

The data member SrcBlend controls what the source blending coefficients
(σr , σg , σb , σa) are. Similarly, the data member DstBlend controls what the desti-
nation blending coefficients (δr , δg , δb , δa) are. Table 3.2 lists the possibilities for the
source blending coefficients. The constant color, (rc , gc , bc , ac), is stored in the Tex-
ture class (member BlendColor), as is an RGBA image that is to be blended with a
destination buffer.

Table 3.3 lists the possibilities for the destination blending coefficients. Table 3.2
has DST_COLOR, ONE_MINUS_DST_COLOR, and SRC_ALPHA_SATURATE, but Table 3.3 does not.
Table 3.3 has SRC_COLOR and ONE_MINUS_SRC_COLOR, but Table 3.2 does not.

The classic alpha blending equation (3.5) is reproduced by the following code:

AlphaState* pkAS = new AlphaState;
pkAS->BlendEnabled = true;
pkAS->SrcBlend = AlphaState::SBF_SRC_ALPHA;
pkAS->DstBlend = AlphaState::DBF_ONE_MINUS_SRC_ALPHA;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState(pkAS);
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Table 3.2 The possible source blending coefficients.

Enumerated value (σr , σg , σb , σa)

SBF_ZERO (0, 0, 0, 0)

SBF_ONE (1, 1, 1, 1)

SBF_DST_COLOR (rd , gd , bd , ad)

SBF_ONE_MINUS_DST_COLOR (1 − rd , 1 − gd , 1 − bd , 1 − ad)

SBF_SRC_ALPHA (as , as , as , as)

SBF_ONE_MINUS_SRC_ALPHA (1 − as , 1 − as , 1 − as , 1 − as)

SBF_DST_ALPHA (ad , ad , ad , ad)

SBF_ONE_MINUS_DST_ALPHA (1 − ad , 1 − ad , 1 − ad , 1 − ad)

SBF_SRC_ALPHA_SATURATE (σ , σ , σ , 1), σ = min{as , 1 − ad}
SBF_CONSTANT_COLOR (rc , gc , bc , ac)

SBF_ONE_MINUS_CONSTANT_COLOR (1 − rc , 1 − gc , 1 − bc , 1 − ac)

SBF_CONSTANT_ALPHA (ac , ac , ac , ac)

SBF_ONE_MINUS_CONSTANT_ALPHA (1 − ac , 1 − ac , 1 − ac , 1 − ac)

The default constructor for AlphaState sets SrcBlend and DstBlend, so only setting
the BlendEnabled to true is necessary in an actual program. If the alpha state object
is attached to a node in a subtree, it will affect the drawing of all the leaf node
objects.

A more interesting example is one that does a soft addition of two textures. Hard
addition refers to adding the two colors together and then clamping the result to
[0, 1]. This may result in saturation of colors, causing the resulting image to look
washed out. The soft addition combines the two colors to avoid the saturation, yet
still look like an addition of colors. The formula is

(rf , gf , bf , af ) = ((1 − rd)rs , (1 − gd)gs , (1 − bd)bs , (1 − ad)as)

+ (rd , gd , bd , ad). (3.7)

The idea is that you start with the destination color and add a fraction of the
source color to it. If the destination color is bright (values near 1), then the source
blend coefficients are small, so the source color will not cause the result to wash out.
Similarly, if the destination color is dark (values near 0), the destination color has
little contribution to the result, and the source blend coefficients are large, so the
source color dominates and the final result is a brightening of dark regions. The code
block to obtain the blend is
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Table 3.3 The possible destination blending coefficients.

Enumerated value (δr , δg , δb , δa)

DBF_ZERO (0, 0, 0, 0)

DBF_ONE (1, 1, 1, 1)

DBF_SRC_COLOR (rs , gs , bs , as)

DBF_ONE_MINUS_SRC_COLOR (1 − rs , 1 − gs , 1 − bs , 1 − as)

DBF_SRC_ALPHA (as , as , as , as)

DBF_ONE_MINUS_SRC_ALPHA (1 − as , 1 − as , 1 − as , 1 − as)

DBF_DST_ALPHA (ad , ad , ad , ad)

DBF_ONE_MINUS_DST_ALPHA (1 − ad , 1 − ad , 1 − ad , 1 − ad)

DBF_CONSTANT_COLOR (rc , gc , bc , ac)

DBF_ONE_MINUS_CONSTANT_COLOR (1 − rc , 1 − gc , 1 − bc , 1 − ac)

DBF_CONSTANT_ALPHA (ac , ac , ac , ac)

DBF_ONE_MINUS_CONSTANT_ALPHA (1 − ac , 1 − ac , 1 − ac , 1 − ac)

AlphaState* pkAS = new AlphaState;
pkAS->BlendEnabled = true;
pkAS->SrcBlend = AlphaState::SBF_ONE_MINUS_DST_COLOR;
pkAS->DstBlend = AlphaState::DBF_ONE;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->SetGlobalState(pkAS);

The AlphaState class also encapsulates what is referred to as alpha testing . The
idea is that an RGBA source color will only be combined with the RGBA destination
color as long as the source alpha value compares favorably with a specified reference
value. Pseudocode for alpha testing is

source = (Rs,Gs,Bs,As);
destination = (Rd,Gd,Bd,Ad);
reference = Aref;
if ( ComparesFavorably(As,Aref) )

result = BlendTogether(source,destination);

The ComparesFavorably(x,y) function is a standard comparison between two num-
bers: x < y, x ≤ y, x > y, x ≥ y, x = y, or x �= y. Two additional functions are
allowed: always or never. In the former, the blending always occurs. This is the default
behavior of an alpha blending system. In the latter, blending never occurs.
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The portion of the interface of AlphaState relevant to alpha testing is

class AlphaState : public GlobalState
{
public:

enum // Test values
{

TF_NEVER,
TF_LESS,
TF_EQUAL,
TF_LEQUAL,
TF_GREATER,
TF_NOTEQUAL,
TF_GEQUAL,
TF_ALWAYS,
TF_QUANTITY

};

bool TestEnabled; // default: false;
int Test; // default: TF_ALWAYS
float Reference; // default: 0, always in [0,1]

};

By default, alpha testing is turned off. To turn it on, set TestEnabled to true. The
Reference value is a floating-point number in the interval [0, 1]. The Test function
may be set to any of the first eight enumerated values prefixed with TF_. The value
TF_QUANTITY is just a marker that stores the current number of enumerated values
and is used by the renderers to declare arrays of that size.

In order to correctly draw a scene that has some semitransparent objects (alpha
values smaller than 1), the rule is to draw your opaque objects first, then draw your
semitransparent objects sorted from back to front in the view direction. The leaf
nodes in a scene hierarchy can be organized so that those corresponding to opaque
objects occur before those corresponding to semitransparent objects when doing a
depth-first traversal of the tree. However, the leaf nodes for the semitransparent ob-
jects occur in a specific order that is not related to the view direction of the camera. A
rendering system needs to have the capability for accumulating a list of semitranspar-
ent objects and then sorting the list based on the current view direction. The sorted
list is then drawn an object at a time. Given an automated system for sorting, there
is no need to worry about where the semitransparent objects occur in the scene.
The scene organization can be based on geometric information, the main premise
for using a scene hierarchy in the first place. I will discuss the sorting issue in Sec-
tion 4.2.4.

Game programmers are always willing to take a shortcut to obtain a faster sys-
tem, or to avoid having to implement some complicated system, and hope that the
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consequences are not visually distracting. In the context of correct sorting for scenes
with semitransparency, the shortcut is to skip the sorting step. After all, what are the
chances that someone will notice artifacts due to blending objects that are not sorted
back to front? Alpha testing can help you with this shortcut. The scene is rendered
twice, and on both passes, depth buffering is enabled in order to correctly sort the
objects (on a per-pixel basis in screen space). Also on both passes, alpha testing is en-
abled. On the first pass, the test function is set to allow the blending for any colors
with an alpha value equal to 1; that is, the opaque objects are drawn, but the semi-
transparent objects are not. On the second pass, the test function is set to allow the
blending for any colors with an alpha value not equal to 1. This time the semitrans-
parent objects are drawn, but the opaque objects are not.

As stated, this system is not quite right (ignoring the back-to-front sorting issue).
Depth buffering is enabled, but recall that you have the capability to control whether
reading or writing occurs. For the first pass through the scene, opaque objects are
drawn. The depth buffering uses both reading and writing to guarantee that the final
result is rendered correctly. Before drawing a pixel in the frame buffer, the depth
buffer is read at the corresponding location. If the incoming depth passes the depth
test, then the pixel is drawn in the frame buffer. Consequently, the depth buffer must
be written to update the new depth for this pixel. If the incoming depth does not
pass the test, the pixel is not drawn, and the depth buffer is not updated. For the
second pass through the scene, semitransparent objects are drawn. These objects
were not sorted from back to front. It is possible that two semitransparent objects
are drawn front to back; that is, the first drawn object is closer to the observer than
the second drawn object. You can see through the first drawn object because it is
semitransparent, so you expect to see the second drawn object immediately behind
it. To guarantee this happens, you have to disable depth buffer writes on the second
pass. Consider if you did not do this. The first object is drawn, and the depth buffer
is written with the depths corresponding to that object. When you try to draw the
second object, its depths are larger than those of the first object, so the depth test fails
and the second object is not drawn, even though it should be visible through the first.
Disabling the depth buffer writing will prevent this error. Sample code to implement
the process is

// in the application initialization phase
NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;
AlphaState* pkAS = new AlphaState;
ZBufferState* pkZS = new ZBufferState;
m_spkScene->SetGlobalState(pkAS);
m_spkScene->SetGlobalState(pkZS);

pkAS->BlendEnabled = true;
pkAS->SrcBlend = AlphaState::SBF_SRC_ALPHA;
pkAS->DstBlend = AlphaState::DBF_ONE_MINUS_SRC_ALPHA;
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pkAS->TestEnabled = true;
pkAS->Reference = 1.0f;

pkZS->Enabled = true; // always readable
pkZS->Compare = ZBufferState::CF_LEQUAL;

// in the drawing phase (idle loop)
AlphaState* pkAS =

m_spkScene->GetGlobalState(GlobalState::ALPHA);
ZBufferState* pkZS =

m_spkScene->GetGlobalState(GlobalState::ZBUFFER);

// first pass
pkAS->Test = AlphaState::TF_EQUAL;
pkZS->Writable = true;
m_pkRenderer->DrawScene(m_spkScene);

// second pass
pkAS->Test = AlphaState::TF_NOTEQUAL;
pkZS->Writable = false;
m_pkRenderer->DrawScene(m_spkScene);

The alpha state and z-buffer state members that do not change in the drawing
phase are all initialized once by the application. You could also store these states
as members of the application object and avoid the GetGlobalState calls, but the
lookups are not an expensive operation.

Another example of alpha testing is for drawing objects that have textures whose
alpha values are either 0 or 1. The idea is that the texture in some sense defines what
the object is. A classic example is for applying a decal to an object. The decal geometry
is a rectangle that has a texture associated with it. The texture image has an artistically
drawn object that does not cover all the image pixels. The pixels not covered are “see
through”; that is, if the decal is drawn on top of another object, you see what the
artist has drawn in the image, but you see the other object elsewhere. To accomplish
this, the alpha values of the image are set to 1 wherever the artist has drawn, but
to 0 everywhere else. Attach an AlphaState object to the decal geometry object (the
rectangle). Set the reference value to be 0.5 (it just needs to be different from 0 and 1),
and set the test function to be “greater than.” When the decal texture is drawn on the
object, only the portion is drawn with alpha values equal to 1 (greater than 0.5). The
portion with alpha values equal to 0 (not greater than 0.5) is not drawn. Because they
are not drawn, the depth buffer is not affected, so you do not have to use the two-pass
technique discussed in the previous example.
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Material

One of the simplest ways to color a geometric object is to provide it with a material.
The material has various colors that affect how all the vertices of the object are
colored. The class MaterialState represents the material and has the interface

class MaterialState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return MATERIAL; }

MaterialState ();
virtual ~MaterialState ();

ColorRGBA Emissive; // default: ColorRGBA(0,0,0,1)
ColorRGBA Ambient; // default: ColorRGBA(0.2,0.2,0.2,1)
ColorRGBA Diffuse; // default: ColorRGBA(0.8,0.8,0.8,1)
ColorRGBA Specular; // default: ColorRGBA(0,0,0,1)
float Shininess; // default: 1

};

The data members are all public since no side effects are required when reading
or writing them. If you want the geometric object to have the appearance that it is
emitting light, you set the Emissive data member to the desired color. The member
Ambient represents a portion of the object’s color that is due to any ambient light in
the scene. Other lights can shine on the object. How the object is lit depends on its
material properties and on the normal vectors to the object’s surface. For a matte
appearance, set the Diffuse data member. Specular highlights are controlled by the
Specular and Shininess parameters. Although all colors have an alpha channel, the
only relevant one in the graphics API is the alpha channel in the diffuse color. Objects
cannot really “emit” an alpha value. An alpha value for ambient lighting also does not
make physical sense, and specular lighting says more about reflecting light relative
to an observer. The diffuse color is more about the object itself, including having a
material that is semitransparent.

In the standard graphics APIs, it is not enough to assign a material to an object.
The material properties take effect only when lights are present. Moreover, diffuse and
specular lighting require the object to have vertex normals. If you choose to attach a
MaterialState to an object, you will need at least one light in the scene. Specifically,
the light must occur on the path from the root node to the node containing the
material. If the material is to show off its diffuse and specular lighting, any leaf node
geometry objects in the subtree rooted at the node containing the material must have
vertex normals. Later in this section I will discuss lights, and at that time I will present
the formal equations for how lights, materials, and normal vectors interact.
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Fog

The portions of a rendered scene at locations far from the observer can look a lot
sharper than what your vision expects. To remedy this, you can add fog to the sys-
tem, with the amount proportional to the distance an object is from the observer.
The density of the fog (the amount of increase in fog per unit distance in the view
frustum) can be controlled. The fog can be calculated on a per-vertex basis for the
purposes of speed, but you may request that the fog be calculated on a per-pixel ba-
sis. The final color is a blended combination of a fog color and the vertex/pixel color.
Fog is applied after transformations, lighting, and texturing are performed, so such
objects are affected by the inclusion of fog.

The class that encapsulates fog is FogState. The interface is

class FogState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return FOG; }

FogState ();
virtual ~FogState ();

enum // DensityFunction
{

DF_LINEAR,
DF_EXP,
DF_EXPSQR,
DF_QUANTITY

};

enum // ApplyFunction
{

AF_PER_VERTEX,
AF_PER_PIXEL,
AF_QUANTITY

};

bool Enabled; // default: false
float Start; // default: 0
float End; // default: 1
float Density; // default: 1
ColorRGBA Color; // default: ColorRGB(0,0,0)
int DensityFunction; // default: DF_LINEAR
int ApplyFunction; // default: AF_PER_VERTEX

};
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The data members are all in public scope since no side effects must occur when
reading or writing them. The default values are listed as comments after each mem-
ber. The Color member is the fog color that is used to blend with the vertex/pixel
colors. A fog factor f ∈ [0, 1] is used to blend the fog color and vertex/pixel color. If
(r0, g0, b0, a0) is the fog color and (r1, g1, b1, a1) is the vertex/pixel color, then the
blended color is

(r2, g2, b2, a2) = f (r0, g0, b0, a0) + (1 − f )(r1, g1, b1, a1),

where the operations on the right-hand side are performed componentwise. If the fog
factor is 1, the vertex/pixel color is unaffected by the fog. If the fog factor is 0, only the
fog color appears. The ApplyFunction member selects whether you want per-vertex
fog calculations (faster) or per-pixel fog calculations (slower).

The DensityFunction controls how the fog is calculated. If the data member is set
to DF_LINEAR, then the Start and End data members must be set and indicate the range
of depths to which the fog is applied. The fog factor is

f = End − z

End - Start
,

where z is the depth measured from the camera position to the vertex or pixel loca-
tion. In practice, you may choose the start and end values to be linear combinations
of the near and far plane values. Linear fog does not use the Density data member, so
its value is irrelevant.

If the DensityFunction value is set to DF_EXP, then the fog factor has exponential
decay. The amount of decay is controlled by the nonnegative Density member func-
tion. The fog itself appears accumulated at locations far from the camera position.
The fog factor is

f = exp(−Density ∗ z),

where z is once again measured from the camera position to the vertex or pixel
location. You may also obtain a tighter accumulation of fog at large distances by using
DF_EXPSQR. The fog factor is

f = exp(−(Density ∗ z)2).

The exponential and squared exponential fog equations do not use the Start and
End data members, so their values are irrelevant. The terrain sample application uses
squared exponential fog as an attempt to hide the entry of new terrain pages through
the far plane of the view frustum.
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Culling

Consider a triangle mesh that is a convex polyhedron. Some of the triangles are visible
to the observer. These are referred to as front-facing triangles. The triangles not visible
to the observer are referred to as back-facing triangles. The two subsets are dependent,
of course, on the observer’s location. If the mesh is closed, the triangles can still be
partitioned into two subsets, one for the front-facing triangles and one for the back-
facing triangles. The back-facing triangles are not visible to the observer, so there is no
reason why they should be drawn. The rendering system should eliminate these—a
process called triangle culling .

In Section 3.3.3, I mentioned that the triangles in a mesh have their vertices or-
dered in a counterclockwise manner when viewed by the observer. This means that
the vertices of a front-facing triangle are seen as counterclockwise ordered. The ver-
tices of a back-facing triangle are clockwise ordered from the observer’s perspective.
The rendering system may use these facts to classify the two types of triangles. Let the
observer’s eye point be E and let the observed triangle have counterclockwise-ordered
vertices V0, V1, and V2. The vector N = (V1 − V0) × (V2 − V0) is perpendicular to
the plane of the triangle. The triangle is front facing if

N · (E − V0) > 0,

and it is back facing if

N · (E − V0) ≤ 0.

If the dot product is zero, the triangle is seen edge on and is considered not to be
visible.

A rendering system will select a convention for the vertex ordering for front-
facing triangles. This is necessary so that the dot product tests can be coded accord-
ingly. A modeling package also selects a convention for the vertex ordering, but the
problem is that the conventions might not be consistent. If not, you can always ex-
port the models to a format your engine supports, then reorder the triangle vertices to
meet the requirements of your rendering system. The burden of enforcing the order-
ing constraint is yours. Alternatively, the rendering system can allow you to specify
the convention, making the system more flexible. The renderer will use the correct
equations for the dot product tests to identify the back-facing triangles. In fact, the
standard graphics APIs allow for this. I have encapsulated this in class CullState.

The interface for CullState is

class CullState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return CULL; }
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CullState ();
virtual ~CullState ();

enum // FrontType
{

FT_CCW, // front faces are counterclockwise ordered
FT_CW, // front faces are clockwise ordered
FT_QUANTITY

};

enum // CullType
{

CT_FRONT, // cull front-facing triangles
CT_BACK, // cull back-facing triangles
CT_QUANTITY

};

bool Enabled; // default: true
int FrontFace; // default: FT_CCW
int CullFace; // default: CT_BACK

};

The data members are in public scope because no side effects must occur when
reading or writing them. The default value for Enabled is true, indicating that triangle
culling is enabled. The FrontFace member lets you specify the vertex ordering for the
triangles that you wish to use. The default value is counterclockwise. The CullFace
member lets you tell the renderer to cull front-facing or back-facing triangles. The
default is to cull back-facing triangles.

When triangle culling is enabled, the triangles are said to be single sided. If an
observer can see one side of the triangle, and if you were to place the observer on
the other side of the plane of the triangle, the observer would not see the triangle
from that location. If you are inside a model of a room, the triangles that form the
walls, floor, and ceiling may as well be single sided since the intent is to only see them
when you are inside the room. But if a wall separates the room from the outside
environment and you want the observer to see the wall from the outside (maybe it
is a stone wall in a castle), then the triangle culling system gets in your way when it is
enabled. In this scenario you want the triangles to be double sided—both sides visible
to an observer. This is accomplished by simply disabling triangle culling; set Enabled
to false.

Disabling triangle culling is also useful when a triangle mesh is not closed. For
example, you might have a model of a flag that flaps in the wind. The flag mesh is
initially a triangle mesh in a plane. During program execution, the triangle vertices
are dynamically modified to obtain the flapping. Because you want both sides of the
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flag to be visible, you would attach a CullState object to the mesh and set Enabled to
false.

Wireframe

A wireframe is a rendering of a triangle mesh where only the edges of the triangles
are drawn. Although such an effect might be interesting in a game, wireframes are
typically used for debugging purposes. For example, in wireframe mode you might
be able to spot problems with a geometric model that was not properly constructed.
I used wireframe mode when implementing and testing the portal system. Portions
of a scene are culled by the portal system, but you do not see the culling occur when
in regular drawing mode. However, in wireframe you can see the objects appear or
disappear, giving you an idea whether or not the culling is taking place as planned.

The class to support wireframe mode is WireframeState. The interface is

class WireframeState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return WIREFRAME; }

WireframeState ();
virtual ~WireframeState ();

bool Enabled; // default: false
};

Very simple, as you can see. You either enable or disable the mode. In practice, I tend
to attach a WireframeState object to the root of my scene graph. I make the wireframe
object an application member and then allow toggling of the Enabled member:

// initialization code
NodePtr m_spkScene = <the scene graph>;
WireframePtr m_spkWireframe = new WireframeState;
m_spkScene->SetGlobalState(m_spkWireframe);

// key press handler
if ( ucKey == ’w’ )

m_spkWireframe->Enabled = !m_spkWireframe->Enabled;

Dithering

On a graphics system with a limited number of colors, say, one supporting only a 256-
color palette, a method for increasing the apparent number of colors is dithering .
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As an example, suppose your system supports only two colors, black and white. If
you were to draw an image with a checkerboard pattern—alternate drawing pixels in
black and white—your eye will perceive the image as gray, even though your graphics
system cannot draw a gray pixel. Consider that a black-ink printer is such a graphics
system. Color printers may also use dithering to increase the apparent number of
colors. How to do this effectively is the topic of color science. The dithering pattern
can be much more complicated than a checkerboard. Suffice it to say that a graphics
API might support dithering.

For the 32-bit color support that current graphics hardware has, dithering is
probably not useful, but I have support for it anyway. The class is DitherState and
the interface is

class DitherState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return DITHER; }

DitherState ();
virtual ~DitherState ();

bool Enabled; // default: false
};

The dithering is either enabled or disabled.

Shading

Some graphics APIs provide the ability to select a shading model. Flat shading refers to
drawing a primitive such as a line segment or a triangle with a single color. Gouraud
shading refers to drawing the primitive by interpolating the colors at the vertices of
the primitive to fill in those pixels corresponding to the interior of the primitive. In
theory, Gouraud shading is more expensive to compute because of the interpolation.
However, with current graphics hardware, the performance is not an issue, so you
tend not to use flat shading. I have provided support anyway, via class ShadeState. Its
interface is

class ShadeState : public GlobalState
{
public:

virtual int GetGlobalStateType () const { return SHADE; }

ShadeState ();
virtual ~ShadeState ();
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enum // ShadeMode
{

SM_FLAT,
SM_SMOOTH,
SM_QUANTITY

};

int Shade; // default: SM_SMOOTH
};

The shading mode is either flat or smooth; the latter refers to Gouraud shading (the
default).

3.4.2 Lights

Drawing objects using only textures results in renderings that lack the realism we
are used to in the real world. Much of the richness our own visual systems provide
is due to lighting . A graphics system must support the concept of lights, and of
materials that the lights affect. The lighting models supported by standard graphics
APIs are a simple approximation to true lighting, but are designed so that the lighting
calculations can be performed quickly. More realistic lighting is found in systems that
are almost never real time.

Materials were discussed earlier in this section. A material consists of various col-
ors. The emissive color represents light that the material itself generates, which is
usually none. Ambient light comes from light that has been scattered by the envi-
ronment. A material reflects some of this light. The ambient color of the material
indicates how much ambient light is reflected. Although referred to as a color, you
may think of the ambient component as telling you the fraction of ambient light that
is reflected. Diffuse light is light that strikes a surface. At each point on the surface
the light arrives in some direction, but is then scattered equally in all directions at
that point. A material also reflects some of this light. The diffuse color of the material
indicates how much diffuse light is reflected. Specular light is also light that strikes a
surface, but the reflected light has a preferred direction. The resulting appearance on
the surface is referred to as specular highlights. A material reflects some of this light.
The fractional amount is specified by the material’s specular color.

The lights have physical attributes themselves, namely, colors (ambient, diffuse,
specular), intensity, and attenuation (decrease in energy as the light travels over
some distance). Lights also come in various types. I already mentioned ambient
light due to scattering. The light has no single source and no specific direction. A
source that provides light rays that are, for all practical purposes, parallel is referred
to as a directional light . The motivation for this is sunlight. The Sun is far enough
away from the Earth that the Sun’s location is irrelevant. The sunlight is effectively
unidirectional. A source that has a location, but emanates light in all directions is
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called a point light . The motivation is an incandescent light bulb. The filament acts
as the light source, and the bulb emits light in all directions. A light that has a source
location but emits lights in a restricted set of directions (typically a cone of directions)
is called a spot light . The motivation is a flashlight or airport beacon that has a
lightbulb as the source and a reflector surface that concentrates the light to emanate
in a fixed set of directions.

The types of lights and their attributes are sufficiently numerous that many en-
gines provide multiple classes. Usually an engine will provide an abstract base class
for lights and then derived classes such as an ambient light class, a directional light
class, a point light class, and a spot light class. I did so in Wild Magic version 2, but de-
cided that the way the renderer accessed a derived-class light’s information was more
complicated than it needed to be. Also in Wild Magic version 2, the Light class was
derived from Object. A number of users were critical of this choice and insisted that
Light be derived from Spatial. By doing so, a light automatically has a location (the
local translation) and an orientation (the local rotation). One of the orientation vec-
tors can assume the role of the direction for a directional light. I chose not to derive
Light from Spatial because ambient lights have no location or direction and direc-
tional lights have no location. In this sense they are not very spatial! The consequence,
though, was that I had to add a class, LightNode, that was derived from Node and that
had a Light data member. This allows point and spot lights to change location and
directional lights to change orientation and then have the geometric update system
automatically process them. Even these classes presented some problems to users.
One problem had to do with importing LightWave objects into the engine because
LightWave uses left-handed coordinates for everything. The design of LightNode (and
CameraNode) prevented a correct import of lights (and cameras) when they were to be
attached as nodes in a scene.

In the end, I decided to satisfy the users. In Wild Magic version 3, I changed
my design and created a single class called Light that is derived from Spatial. Not
all data members make sense for each light type, but so be it. When you manipu-
late a directional light, realize that setting the location has no effect. Also be aware
that by deriving from Spatial, some subsystems are available to Light that are ir-
relevant. For example, attaching to a light a global state such as a depth buffer has
no meaning, but the engine semantics allow the attachment. In fact, you can even
attach lights to lights. You can attach a light as a leaf node in the scene hierar-
chy. For example, you might have a representation of a headlight in an automo-
bile. A node is built with two children: One child is the Geometry object that rep-
resents the headlight’s model data, and the other child is a Light to represent the
light source for the headlight. The geometric data is intended to be drawn to vi-
sualize the headlight, but the light object itself is not renderable. The virtual func-
tions for global state updates and for drawing are stubbed out in the Light class,
so incorrect use of the lights should not be a problem. So be warned that you can
manipulate a Light as a Spatial object in ways that the engine was not designed to
handle.
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The Light Class

The Light class has a quite complicated interface. I will look at portions of it at a time.
The class supports the standard light types: ambient, directional, point, and spot.

class Light : public Spatial
{
public:

enum // Type
{

LT_AMBIENT,
LT_DIRECTIONAL,
LT_POINT,
LT_SPOT,
LT_QUANTITY

};

Light (int iType = LT_AMBIENT);
virtual ~Light ();

int Type; // default: LT_AMBIENT
ColorRGBA Ambient; // default: ColorRGBA(0,0,0,1)
ColorRGBA Diffuse; // default: ColorRGBA(0,0,0,1)
ColorRGBA Specular; // default: ColorRGBA(0,0,0,1)
float Intensity; // default: 1
float Constant; // default: 1
float Linear; // default: 0
float Quadratic; // default: 0
bool Attenuate; // default: false
bool On; // default: true

// spot light parameters (valid only when Type = LT_SPOT)
float Exponent;
float Angle;

};

When you create a light, you specify the type you want. Each light has ambient,
diffuse, and specular colors and an intensity factor that multiplies the colors. The
member On is used to quickly turn a light on or off. This is preferred over attaching
and detaching a light in the scene.

The data members Constant, Linear, Quadratic, and Attenuate are used for at-
tenuation of point and spot lights over some distance. To allow attenuation, you set
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Attenuate to true. The attenuation factor multiplies the light colors, just as the inten-
sity factor does. The attenuation factor is

α = 1

C + Ld + Qd2
, (3.8)

where C is the Constant value, L is the Linear value, and Q is the Quadratic value.
The variable d is the distance from the light’s position to a vertex on the geometric
object to be lit.

The actual lighting model is somewhat complicated, but here is a summary of
it. The assumption is that the object to be lit has a material with various colors. I
will write these as vector-valued quantities (RGBA) for simplicity of the notation.
Additions and multiplications are performed componentwise. The material emissive
color is Mems, the ambient color is Mamb, the diffuse color is Mdif , and the specular
color is Mspc. The shininess is Ms, a nonnegative scalar quantity. A global ambient

light is assumed (perhaps representing the Sun). This light is referred to by L(0) and
has subscripts for the colors just like the material colors use. In the engine, this light
automatically exists, so you need not create one and attach it to the scene. The object
to be lit may also be affected by n lights, indexed by L(i) for 1 ≤ i ≤ n. Once again
these lights have subscripts for the colors. The ith light has a contribution to the
rendering of

αiσi

(
A(i) + D(i) + S(i)

)
.

The term αi is the attenuation. It is calculated for point and spot lights using
Equation (3.8). It is 1 for ambient and directional lights—neither of these is attenu-
ated. The term σi is also an attenuator that is 1 for ambient, diffuse, and point lights,
but potentially less than 1 for spot lights. The light has an ambient contribution,

A(i) = MambL(i)

amb,

a diffuse contribution,

D(i) = μ
(i)
D Mdif L(i)

dif ,

and a specular contribution,

S(i) = μ
(i)
S MspcL(i)

spc.

The color assigned to a vertex on the object to be lit is

Mems + L(0)
ambMamb +

n∑
i=1

αiσi

(
A(i) + D(i) + S(i)

)
. (3.9)
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The modulators μ
(i)
D , μ

(i)
S , and σi depend on the light type and geometry of the

object. For an ambient light, the diffuse modulator is 1. For a directional light with
unit-length world direction vector U and at a vertex with outer-pointing unit-length
normal N,

μ
(i)
D = max{−U · N, 0}.

The diffuse modulator is 1 when the light shines directly downward on the vertex. It
is 0 when the light direction is tangent to the surface. For a point or spot light with
position P and a vertex with position V, define the unit-length vector

U = V − P

|V − P| . (3.10)

This does assume the light is not located at the vertex itself. The diffuse modulator
equation for a directional light also applies here, but with the vector U as defined.

The specular modulator is 1 for an ambient light. For the other light types, the
specular modulator is computed based on the following quantities. Let V be the
vertex location and N be a unit-length vertex normal. If the light is directional, let U
be the unit-length direction. If the light is a point light or spot light, let U be the vector
defined by Equation (3.10). The specular modulator is 0 if −U · N ≤ 0. Otherwise,
define the unit-length vector5

H = U + (0, 0, −1)

|U + (0, 0, −1)| ,

and the specular modulator is

μ
(i)
S = (max{−H · N, 0})Ms .

The spot light modulator σi is 1 for a light that is not a spot light. When the light
is a spot light, the modulator is 0 if the vertex is not contained in the cone of the
light. Otherwise, define U by Equation (3.10), where P is the spot light position. The
modulator is

σi = (max{U · D, 0})ei ,

where D is the spot light direction vector (unit length) and ei is the exponent asso-
ciated with the spot light. The spot light angle θi ∈ [0, π) determines the cone of the
light. The Light data members that correspond to these parameters are Exponent and
Angle.

5. In OpenGL terminology, I do not use a local viewer for the light model. If you were to use a local viewer,
then (0, 0, −1) in the equation for H is replaced by (P − E)/|P − E|, where P is the light position and E is
the eye point (camera position).
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The remaining portion of the Light interface is related to the class being derived
from Spatial:

class Light : public Spatial
{
public:

// light frame (local coordinates)
// default location E = (0,0,0)
// default direction D = (0,0,-1)
// default up U = (0,1,0)
// default right R = (1,0,0)
void SetFrame (const Vector3f& rkLocation,

const Vector3f& rkDVector, const Vector3f& rkUVector,
const Vector3f& rkRVector);

void SetFrame (const Vector3f& rkLocation,
const Matrix3f& rkAxes);

void SetLocation (const Vector3f& rkLocation);
void SetAxes (const Vector3f& rkDVector,

const Vector3f& rkUVector, const Vector3f& rkRVector);
void SetAxes (const Matrix3f& rkAxes);
Vector3f GetLocation () const; // Local.Translate
Vector3f GetDVector () const; // Local.Rotate column 0
Vector3f GetUVector () const; // Local.Rotate column 1
Vector3f GetRVector () const; // Local.Rotate column 2

// For directional lights. The direction vector must be
// unit length. The up vector and left vector are generated
// automatically.
void SetDirection (const Vector3f& rkDirection);

// light frame (world coordinates)
Vector3f GetWorldLocation () const; // World.Translate
Vector3f GetWorldDVector () const; // World.Rotate column 0
Vector3f GetWorldUVector () const; // World.Rotate column 1
Vector3f GetWorldRVector () const; // World.Rotate column 2

private:
// updates
virtual void UpdateWorldBound ();
void OnFrameChange ();

// base class functions not supported
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virtual void UpdateState (TStack<GlobalState*>*,
TStack<Light*>*) { /**/ }

virtual void Draw (Renderer&, bool) { /**/ }

};

Normally, the local transformation variables (translation, rotation, scale) are for
exactly that—transformation. In the Light class, the local translation is interpreted
as the origin for a coordinate system of the light. The columns of the local rotation
matrix are interpreted as the coordinate axis directions for the light’s coordinate
system. The choice for the default coordinate system is akin to the standard camera
coordinate system relative to the screen: The center of the screen is the origin. The up
vector is toward the top of the screen (the direction of the positive y-axis), the right
vector is toward the right of the screen (the direction of the positive x-axis), and the
z-axis points out of the screen. The light is positioned at the origin, has direction into
the screen (the direction of the negative z-axis), has up vector to the top of the screen,
and has right vector to the right of the screen. Because the light’s coordinate system
is stored in the local translation vector and local rotation matrix, you should use the
interface provided and avoid setting the data member Local explicitly to something
that is not consistent with the interpretation as a coordinate system.

The first block of code in the interface is for set/get of the coordinate system
parameters. The SetDirection function is offset by itself just to draw attention to the
fact that you are required to pass in a unit-length vector. As the comment indicates,
the up and left vectors are automatically generated. Their values are irrelevant since
the direction vector only pertains to a directional light, and the up and left vectors
have no influence on the lighting model. The last block of code in the public interface
allows you to retrieve the world coordinates for the light’s (local) coordinate system.

The Light class has no model bound; however, the light’s position acts as the cen-
ter of a model bound of radius zero. The virtual function UpdateWorldBound computes
the center of a world bound of radius zero. The function OnFrameChange is a simple
wrapper around a call to UpdateGS and is executed whenever you set the coordinate
system components. Therefore, you do not need to explicitly call UpdateGS whenever
the coordinate system components are modified.

The two virtual functions in the private section are stubs to implement pure vir-
tual functions in Spatial (as required by C++). None of these make sense for lights
anyway, as I stated earlier, but they exist just so that Light inherits other properties of
Spatial that are useful.

Support for Lights in Spatial and Geometry

The Spatial class stores a list of lights. If a light is added to this list, and the object
really is of type Node, then my design choice is that the light illuminates all leaf
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geometry in the subtree rooted at the node. The portion of the interface for Spatial
relevant to adding and removing lights from the list is

class Spatial : public Object
{
public:

void SetLight (Light* pkLight);
int GetLightQuantity () const;
Light* GetLight (int i) const;
void RemoveLight (Light* pkLight);
void RemoveAllLights ();

protected:
TList<Pointer<Light> >* m_pkLightList;

};

The list is considered to be unordered since Equation (3.9) does not require the
lights to be ordered. Notice that the list contains smart pointers to lights. I use typedef
to create aliases for the smart pointers. For Light it is LightPtr. The TList declaration
cannot use LightPtr. The typedef for LightPtr is contained in Wm3Light.h. Class Light
is derived from Spatial, so Wm3Light.h includes Wm3Spatial.h. If we were to include
Wm3Light.h in Wm3Spatial.h to access the definition of LightPtr, we would create a
circular header dependency, in which case the compiler has a complaint. To avoid
this, the class Light is forward-declared and the typedef is not used.

Function SetLight checks to see if the input light is already in the list. If so, no
action is taken. If not, the light is added to the front of the list. The function Get-
LightQuantity just iterates over the list, counts how many items it has, and returns
that number. The function GetLight returns the ith light in the list. Together, Get-
LightQuantity and GetLight allow you to access the list as if it were an array. This is
convenient, especially in the renderer code. The function RemoveLight searches the list
for the input light. If it exists, it is removed. The list is singly linked, so the search uses
two pointers, one in front of the other, in order to facilitate the removal. The function
RemoveAllLights destroys the list by removing the front item repeatedly until the list
is empty.

The Geometry class stores an array of lights, which is separate from the list. It
stores smart pointers to all the lights encountered in a traversal from the root node to
the geometry leaf node. These lights are used by the renderer to light the geometric
object. The render state update, discussed later in this section, shows how the lights
are propagated to the leaf nodes.

3.4.3 Textures

The Texture class is designed to encapsulate most of the information needed to set up
a texture unit on a graphics card. Minimally, the class should store the texture image.
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The texture coordinates assigned to vertices of geometry objects are not stored in
Texture, which allows sharing of Texture objects across multiple geometry objects.

In Wild Magic version 2, the texture coordinates were stored in the Geometry ob-
ject itself. Having support for multitexturing meant that Geometry needed to store
as many texture coordinate arrays as there are textures attached to the object, which
caused the interface to Geometry to become unruly. On the release of each new gener-
ation of graphics cards that supported more texture units than the previous genera-
tion, I had to modify Geometry to include more array pointers for the texture coordi-
nates. Naturally, the streaming code for Geometry had to be modified to store the new
data and to load old files knowing that they were saved using a smaller number of tex-
ture units. Most Geometry objects used only one or two arrays of texture coordinates,
but the class had to be prepared for the worst case that all arrays were used. The class
even had a separate array to handle textures associated with bump maps. The bulki-
ness of Geometry regarding texture coordinates and the fact that its code evolved on a
somewhat regular basis made me realize I needed a different design.

Wild Magic version 3 introduces a new class, Effect. The class, discussed in
detail later in this section, now encapsulates the textures and corresponding texture
coordinates that are to be attached to a Geometry object. An increase in the number
of texture units for the next-generation hardware requires no changes to either the
Geometry class or the Effect class. The Geometry class is responsible now only for
vertex positions and normals and the indices that pertain to connectivity of the
vertices. During the development of advanced features for Wild Magic version 3, the
redesign of Spatial, Geometry, TriMesh, and the introduction of Effect has paid off.
The core classes are generic enough and isolated sufficiently well that changes to other
parts of the engine have not forced rewrites of those classes. This is an important
aspect of any large library design—make certain the core components are robust and
modular, protecting them from the evolution of the rest of the library that is built on
top of them.

Now back to the Texture class. The texture image is certainly at the heart of the
class. The relevant interface items for images are

class Texture : public Object
{
public:

Texture (Image* pkImage = NULL);
virtual ~Texture ();

void SetImage (ImagePtr spkImage);
ImagePtr GetImage () const;

protected:
ImagePtr m_spkImage;

};
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The only constructor acts as the default constructor, but also allows you to specify
the texture image immediately. The data member m_spkImage is a smart pointer to
the texture image. You may set/get the image via the accessors SetImage and GetImage.

A graphics system provides a lot of control over how the image is drawn on an
object. I will discuss a portion of the interface at a time.

Projection Type

The first control is over the type of projection used for drawing the image:

class Texture : public Object
{
public:

enum // CorrectionMode
{

CM_AFFINE,
CM_PERSPECTIVE,
CM_QUANTITY

};

int Correction; // default: CM_PERSPECTIVE
};

The two possibilities are affine or perspective. The standard is to use perspective-
correct drawing. Affine drawing was a popular choice for software rendering because
it is a lot faster than using perspective-correct drawing. However, affine drawing looks
awful! I tried to generate some images to show the difference using the Wild Magic
OpenGL renderer, but apparently the current-generation hardware and OpenGL
drivers ignore the hint to use affine texturing, so I could only obtain perspective-
correct drawing. The option should remain, though, because on less powerful plat-
forms, affine texturing is quite possibly necessary for speed—especially if you plan
on implementing a software renderer using the Wild Magic API.

Filtering within a Single Image

A texture image is mapped onto a triangle by assigning texture coordinates to the
vertices of the triangle. Once the triangle is mapped to screen space, the pixels inside
the triangle must be assigned colors. This is done by linearly interpolating the texture
coordinates at the vertices to generate texture coordinates at the pixels. It is possible
(and highly likely) that the interpolated texture coordinates do not correspond ex-
actly to an image pixel. For example, suppose you have a 4 × 4 texture image and
a triangle with texture coordinates (0, 0), (1, 0), and (0, 1) at its vertices. The pixel
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(i , j) in the image, where 0 ≤ i < 4 and 0 ≤ j < 4, has the associated texture coor-
dinates (u, v) = (i/3, j/3). If a pixel’s interpolated texture coordinates are (0.2, 0.8),
the real-valued image indices are i′ = 3(0.2) = 0.6 and j ′ = 3(0.8) = 2.4. I used prime
symbols to remind you that these are not integers. You have to decide how to create a
color from this pair of numbers and the image. The portion of the Texture interface
related to the creation is

class Texture : public Object
{
public:

enum // FilterMode
{

FM_NEAREST,
FM_LINEAR,
FM_QUANTITY

};

int Filter; // default: FM_LINEAR
};

Two choices are available. By setting Filter to FM_NEAREST, the texturing system
rounds the real-valued indices to the nearest integers. In this case, i = 1 since i′ = 0.6
is closer to 1 than it is to 0, and j = 2 since j ′ = 2.4 is closer to 2 than it is to 3. The
image value at location (i , j) = (1, 2) is chosen as the color for the pixel.

The second choice for Filter is FM_LINEAR. The color for the pixel is computed
using bilinear interpolation. The real-valued indices (i′, j ′) fall inside a square whose
four corners are integer-valued indices. Let �v� denote the floor of v, the largest
integer smaller than or equal to v. Define i0 = �i′� and j0 = �j ′�. The four corners
of the square are (i0, j0), (i0 + 1, j0), (i0, j0 + 1), and (i0 + 1, j0 + 1). The bilinear
interpolation formula generates a color C′ from the image colors Ci , j at the four
corners:

C′ = (1 − �i)(1 − �j)Ci0, j0
+ (1 − �i)�jCi0, j0+1 + �i(1 − �j)Ci0+1, j0

+ �i�jCi0+1, j0+1,

where �i = i′ − i0 and �j = j ′ − j0. Some attention must be given when i0 = n − 1
when the image has n columns. In this case, i0 + 1 is outside the image domain.
Special handling must also occur when the image has m rows and j0 = m − 1.

Figure 3.10 shows a rectangle with a checkerboard texture. The object is drawn
using nearest-neighbor interpolation. Notice the jagged edges separating gray and
black squares.

Figure 3.11 shows the same rectangle and checkerboard texture. The edges are
smoothed using bilinear interpolation. For reference later, notice that the edges near
the top of the image still have a small amount of jaggedness.
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Figure 3.10 Illustration of nearest-neighbor interpolation using Texture::FM_NEAREST.

Mipmapping: Filtering within Multiple Images

Bilinear filtering produces better-quality texturing than choosing the nearest neigh-
bor, but it comes at greater expense in computational time. Fortunately with graphics
hardware support, this is not an issue. Even with bilinear filtering, texturing can still
have some artifacts. When a textured object with bilinear interpolation is close to the
eye point, most of the pixels obtain their colors from the interpolation. That is, the
texture coordinates of the pixels are strictly inside the square formed by four texture
image samples, so the pixel colors are always influenced by four samples. The texture
image samples are referred to as texels.6 For the close-up object, the texels are in a
sense a lot larger than the pixels. This effect is sometimes referred to as magnification.
The texture image is magnified to fill in the pixels.

When that same object is far from the eye point, aliasing artifacts show up. Two
adjacent pixels in the close-up object tend to be in the same four-texel square. In the

6. The word pixel is an abbreviation of the words “picture element.” Similarly, the word texel represents the
words “texture element.” The names people choose are always interesting! It certainly is easier to say pixel
and texel than the original phrases.
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Figure 3.11 Illustration of bilinear interpolation using Texture::FM_LINEAR.

faraway object, two adjacent pixels tend to be in different four-texel squares. In this
situation, the texels are in a sense a lot smaller than the pixels.

To eliminate the aliasing artifacts, an alternative is needed that is the reverse
of magnification, minification. The idea is to generate a set of texture images from
the original. A pixel in the new image is an average of a 2 × 2 block of pixels in
the old image. Thus, each new image is half the size per dimension of the previous
image. A full pyramid of images starts with the original, a 2n × 2m image. The next
image has dimensions 2n−1 × 2m−1. The averaging process is repeated until one of the
dimensions is 1. For a square image n = m = 1, the final image is 1× 1 (a single texel).
Pixels corresponding to a portion of the object close to the eye point are selected
from the original image. For pixels corresponding to a portion of the object further
away from the eye point, a selection must be made about which of the pyramid
images to use. The alternatives are even more varied because you can choose to use
nearest-neighbor interpolation or bilinear interpolation within a single image and
you can choose to use the nearest image slice or linearly interpolate between slices.
The process of texturing with a pyramid of images is called mipmapping [Wil83]. The
prefix mip is an acronym for the Latin multum in parvo, which means “many things
in a small place.” The pyramid itself is referred to as the mipmap.

As mentioned, there are a few choices for how mipmapping is applied. The inter-
face of Texture supporting these is
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class Texture : public Object
{
public:

enum // MipmapMode
{

MM_NEAREST,
MM_LINEAR,
MM_NEAREST_NEAREST,
MM_NEAREST_LINEAR,
MM_LINEAR_NEAREST,
MM_LINEAR_LINEAR,
MM_QUANTITY

};

int Mipmap; // default: MM_LINEAR_LINEAR
};

The enumerated values that are assigned to the data member Mipmap refer to the
following algorithms:

MM_NEAREST: Only the original texture image is used, so the pyramid of images is
not constructed. Nearest-neighbor interpolation is used to select the texel that is
nearest to the target pixel.

MM_LINEAR: Only the original texture image is used, so the pyramid of images is
not constructed. Bilinear interpolation is used to generate the color for the target
pixel.

The next four options do require building the mipmap. The graphics drivers provide
some mechanism for selecting which image in the mipmap to use. That mechanism
can vary with graphics API and/or manufacturer’s graphics cards, so I do not discuss
it here, but see [Ebe00] for details.

MM_NEAREST_NEAREST: The mipmap image nearest to the pixel is selected. In that
image, the texel nearest to the pixel is selected and assigned to the pixel.

MM_NEAREST_LINEAR: The two mipmap images that bound the pixel are selected. In
each image, the texel nearest to the pixel is selected. The two texels are linearly
interpolated and assigned to the pixel.

MM_LINEAR_NEAREST: The mipmap image nearest to the pixel is selected. In that
image, bilinear interpolation of the texels is used to produce the pixel value.

MM_LINEAR_LINEAR: The two mipmap images that bound the pixel are selected. In
each image, bilinear interpolation of the texels is used to generate two colors.
Those colors are linearly interpolated to produce the pixel value. This is some-
times call trilinear interpolation.
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Figure 3.12 Illustration of trilinear interpolation using Texture::MM_LINEAR_LINEAR.

Note that for each enumerated value, the first name refers to the interpolation type
within an image. The second name refers to the interpolation type across two images.

In theory, MM_NEAREST and MM_LINEAR use only the original texture image, so
mipmaps need not (and should not) be built. In fact, the choices are equivalent to
using single-image filtering along. The OpenGL renderer indeed does not generate
the mipmaps; the result is that standard filtering is used (as specified by the Filter
data member).7

Figure 3.12 shows the rectangle and checkerboard texture using trilinear interpo-
lation for mipmapping. The slightly jagged edges that appear in the top half of Figure
3.11 do not appear in the top half of Figure 3.12.

7. That said, if you have had much experience with graphics drivers for different brands of graphics cards,
you will find that the drivers do not always adhere to the theory. In a test program for MM_LINEAR, one of my
graphics cards rendered an image that should have been identical to Figure 3.11, but instead rendered an
image that showed a small, triangular shaped, bilinearly interpolated region near the bottom of the image.
The remainder of the image showed that nearest- neighbor interpolation was used. A graphics card from
a different manufacturer correctly rendered the image entirely using bilinear interpolation.



238 Chapter 3 Scene Graphs and Renderers

Out-of-Range Texture Coordinates

In the discussion of bilinear interpolation for texture image filtering, I mentioned
that special attention must be paid to interpolation at texels that are on the boundary
of the image. The natural inclination is to clamp values outside the domain of the
image indices. If a texture coordinate is (0.7, 1.1), the clamped value is (0.7, 1.0). The
texture coordinate (−0.4, 0.2) is clamped to (0.0, 0.2). Other choices are possible.
The coordinates may be repeated by using modular arithmetic. Any value larger than
1 has its integer part removed, and any value smaller than 0 has an integer added to
it until the result is 0 or larger. For example, (0.7, 1.1) is wrapped to (0.7, 0.1), and
(−0.4, 0.2) is wrapped to (0.6, 0.2). In the latter example, we only needed to add 1 to
−0.4 to obtain a number in the interval [0, 1]. The texture coordinate (−7.3, 0.2) is
wrapped to (0.7, 0.2). In this example, we had to add 8 to −7.3 to obtain a number
in the interval [0, 1].

The handling of texture coordinates at the image boundaries is supported by the
interface

class Texture : public Object
{
public:

enum // CoordinateMode
{

WM_CLAMP,
WM_REPEAT,
WM_CLAMP_BORDER,
WM_CLAMP_EDGE,
WM_QUANTITY

};

ColorRGBA BorderColor; // default: ColorRGBA(0,0,0,0)

int CoordU; // default: WM_CLAMP_EDGE
int CoordV; // default: WM_CLAMP_EDGE

};

Given a texture coordinate (u, v), each component can be clamped or repeated.
Figure 3.13 illustrates the four possibilities.

Unfortunately, the WM_CLAMP mode has issues when the filter mode is not FM_
NEAREST and/or the mipmap mode is not MM_NEAREST. When bilinear interpolation
is used and the texture coordinates are on the image boundary, the interpolation
uses the border color, which is stored in the data member Texture::BorderColor. The
OpenGL renderer is set up to tell the graphics API about the border color only if
that color is valid. When it is invalid, a black border color is used by default. Figure
3.14 shows the effect when two textures on two objects have a common boundary. In
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(a) (b)

(c) (d)

Figure 3.13 A square with vertices (−1, −1), (1, −1), (1, 1), and (−1, 1) is drawn with a texture
image. The texture coordinates at the square’s corners are (0, 0), (2, 0), (2, 2), and
(0, 2). (a) Clamp u and clamp v. (b) Clamp u and repeat v. (c) Repeat u and clamp
v. (d) Repeat u and repeat v. (See also Color Plate 3.13.)

either case, if you have a tiled environment such as terrain, the clamping to the border
color is not the effect you want.

Instead, use clamping to the edge of the texture. Figure 3.15 illustrates with the
same squares and texture coordinates as in Figure 3.14. In Figure 3.15(a), notice that
the dark line that appeared with border clamping no longer occurs. However, you will
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(a) (b)

Figure 3.14 Two squares, one with vertices (−1, −1), (0, −1), (0, 1), and (−1, 1), and one with
vertices (0, −1), (1, −1), (1, 1), and (0, 1), are drawn with texture images. The images
were obtained by taking a 128 × 128 bitmap and splitting it into 64 × 128 images.
The texture coordinates at the squares’ corners are (0, 0), (1, 0), (1, 1), and (0, 1).
(a) Clamp u and v to border, no border color assigned. (b) Clamp u and v to border,
red border color assigned. (See also Color Plate 3.14).

notice in the middle of the image about one-third of the distance from the bottom
a discontinuity in the image intensities. The bilinear interpolation and handling of
texture coordinates is causing this. Figure 3.15(b) shows how to get around this
problem. The discontinuity is much less noticeable. The left edge of the texture on
the left duplicates the right edge of the texture on the right. When tiling terrain, you
want to generate your textures to have color duplication on shared boundaries.

Automatic Generation of Texture Coordinates

Some rendering effects require the texture coordinates to change dynamically. Two
of these are environment mapping, where an object is made to appear as if it is
reflecting the environment around it, and projected textures, where an object has a
texture applied to it as if the texture were projected from a light source. A graphics API
can provide the services for updating the texture coordinates instead of requiring the
application to explicitly do this. When creating textures of these types, you may use
the following interface for Texture:
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(a) (b)

Figure 3.15 (a) Clamp u and v to edge, border color is always ignored. (b) Clamp u and v to edge,
but textures were created differently. (See also Color Plate 3.15.)

class Texture : public Object
{
public:

enum // TexGenMode
{

TG_NONE,
TG_ENVIRONMENT_MAP,
TG_PROJECTED_TEXTURE,
TG_QUANTITY

};

int Texgen; // default: TG_NONE
};

I only support the two aforementioned effects, but if you add new ones, you will
need to add more enumerated values to the class. You should add these after the
TG_PROJECTED_TEXTURE item, but before the TG_QUANTITY item, to guarantee that the
streaming system loads already saved files correctly. In other words, if you insert a
new enumerated value elsewhere, you will cause a change in the implicit numbering
of the values, thereby invalidating the numbers that were saved in previous streaming
operations to disk.
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The Effect system that I describe later already has derived classes to support en-
vironment mapping and projected textures, so there is no need for you to explicitly
manipulate the Texgen data member. You can just provide the texture image to Envi-
ronmentMapEffect and ProjectedTextureEffect and attach the effect to a node.

Application Mode

The Texture class has enumerated values that specify how a texture is to be applied to
an object. This is called the apply mode:

class Texture : public Object
{
public:

enum // ApplyMode
{

AM_REPLACE,
AM_DECAL,
AM_MODULATE,
AM_BLEND,
AM_ADD,
AM_COMBINE,
AM_QUANTITY

};

int Apply; // default: AM_REPLACE
};

For a single texture, the mode you want is AM_REPLACE. This tells the graphics
system to just draw the texture image on the object. Any colors that were drawn to
the object pixels previously are replaced by those from the texture image.

The other enumerated values have to do with the blending of multiple textures
onto an object, the topic of the next subsection.

3.4.4 Multitexturing

The term multitexturing refers to drawing an object with two or more texture images.
A classic application is light maps. A primary texture is drawn on the object, and
a secondary texture representing variations in light intensity is then applied to the
object. The colors from the primary and secondary texture images must be combined
somehow, much like the blending that occurs with AlphaBlending.

The Texture class has a variable for storing an apply mode. The relevant inter-
face is
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Table 3.4 Blending equations for the apply mode values. The alpha channel is handled
separately from the red, green, and blue channels.

Apply mode/
image type RGB RGBA

AM_REPLACE Ct Af Ct At

AM_DECAL Ct Af (1 − At)Cf + AtCt Af

AM_MODULATE CtCf Af CtCf AtAf

AM_BLEND (1 − Ct )Cf + CtCc Af (1 − Ct )Cf + CtCc AtAf

AM_ADD Ct + Cf Af Ct + Cf AtAf

class Texture : public Object
{
public:

enum // ApplyMode
{

AM_REPLACE,
AM_DECAL,
AM_MODULATE,
AM_BLEND,
AM_ADD,
AM_COMBINE,
AM_QUANTITY

};

ColorRGBA BlendColor; // default: ColorRGBA(0,0,0,1)

int Apply; // default: AM_REPLACE
};

I already discussed that objects to be drawn with a single texture, and no vertex
colors or material colors, should use AM_REPLACE. The remaining enumerated values
have to do with blending the texture image colors with other quantities. Wild Magic
supports 24-bit RGB and 32-bit RGBA images. The apply modes perform blending
according to Table 3.4.

The vector arguments are RGB colors, Cs = (rs , gs , bs) for source index s ∈
{t , c, f }. The arguments As are alpha values. The texture color (Ct , At) comes from
the RGBA image associated with the texture unit. The color itself may be filtered
based on the mode assigned to the data member Texture::Filter. The primary color
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(Cf , Af ) comes from vertex colors or material colors (interpolated across the trian-
gles, of course). The primary colors are computed before any texturing is applied.
The constant color (Cc , Ac) is the color assigned to Texture::BlendColor.

The mode that gives you full control over the blending is AM_COMBINE. When the
renderer encounters a texture object, it passes its information along to the graphics
API. If the combine mode is in effect, the graphics API must be told what the blending
equation should be. The equations are not in themselves complicated, but the colors
to be blended can come from a variety of sources. The Texture class has additional
information that you must set in order to control the blending equation, the sources,
and the operations among the sources. The relevant portion of the interface when
Apply is set to Texture::AM_COMBINE is

class Texture : public Object
{
public:

enum // ApplyCombineFunction
{

ACF_REPLACE,
ACF_MODULATE,
ACF_ADD,
ACF_ADD_SIGNED,
ACF_SUBTRACT,
ACF_INTERPOLATE,
ACF_DOT3_RGB,
ACF_DOT3_RGBA,
ACF_QUANTITY

};

enum // ApplyCombineSrc
{

ACS_TEXTURE,
ACS_PRIMARY_COLOR,
ACS_CONSTANT,
ACS_PREVIOUS,
ACS_QUANTITY

};

enum // ApplyCombineOperand
{

ACO_SRC_COLOR,
ACO_ONE_MINUS_SRC_COLOR,
ACO_SRC_ALPHA,
ACO_ONE_MINUS_SRC_ALPHA,
ACO_QUANTITY

};
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enum // ApplyCombineScale
{

ACSC_ONE,
ACSC_TWO,
ACSC_FOUR,
ACSC_QUANTITY

};

int CombineFuncRGB; // default: ACF_REPLACE
int CombineFuncAlpha; // default: ACF_REPLACE
int CombineSrc0RGB; // default: ACS_TEXTURE
int CombineSrc1RGB; // default: ACS_TEXTURE
int CombineSrc2RGB; // default: ACS_TEXTURE
int CombineSrc0Alpha; // default: ACS_TEXTURE
int CombineSrc1Alpha; // default: ACS_TEXTURE
int CombineSrc2Alpha; // default: ACS_TEXTURE
int CombineOp0RGB; // default: ACO_SRC_COLOR
int CombineOp1RGB; // default: ACO_SRC_COLOR
int CombineOp2RGB; // default: ACO_SRC_COLOR
int CombineOp0Alpha; // default: ACO_SRC_COLOR
int CombineOp1Alpha; // default: ACO_SRC_COLOR
int CombineOp2Alpha; // default: ACO_SRC_COLOR
int CombineScaleRGB; // default: ACSC_ONE
int CombineScaleAlpha; // default: ACSC_ONE

};

The parameters and names are quite daunting, but once you understand how
these are used to generate a blending equation, you should find these useful for
advanced multitexturing effects.

The parameter CombineFuncRGB lets you specify the blending of the red, green, and
blue colors. The alpha channel is handled by a separate function specified by Com-
bineFuncAlpha. Table 3.5 lists the possible blending equations based on the selection
of CombineFuncRGB and CombineFuncAlpha. The table omits the entries ACF_DOT3_RGB
and ACF_DOT3_RGBA; these are used for bump mapping, the topic of Section 5.1.6. The
arguments can be scalars (alpha values) or 3-tuples (RGB values). Any operations
between two 3-tuples are performed componentwise.

The CombineSrc[i] and CombineOp[i] parameters determine what the Vi values
are for i ∈ {0, 1, 2}. Table 3.6 lists the possible Vi values. The vector arguments are
RGB colors, Cs = (rs , gs , bs) for source index s ∈ {t , c, f , p}. The arguments As are
alpha values. The texture color (Ct , At) comes from the RGBA image associated with
the texture unit. The color itself may be filtered based on the mode assigned to the
data member Texture::Filter. The primary color (Cf , Af ) comes from vertex colors
or material colors (interpolated across the triangles, of course). The primary colors
are computed before any texturing is applied. The constant color (Cc , Ac) is the color
assigned to Texture::BlendColor. The previous color (Cp , Ap) is the output from the
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Table 3.5 Combine functions and their corresponding blending equations.

Combine function Blending equation

ACF_REPLACE V0

ACF_MODULATE V0 ∗ V1

ACF_ADD V0 + V1

ACF_ADD_SIGNED V0 + V1 − 1
2

ACF_SUBTRACT V0 − V1

ACF_INTERPOLATE V0 ∗ V2 + V1 ∗ (1 − V2)

Table 3.6 The pair CombineSrc[i] and CombineOp[i] determine the argument Vi.

Src/op ACO_SRC_COLOR ACO_ONE_MINUS_ ACO_SRC_ALPHA ACO_ONE_MINUS_

SRC_COLOR SRC_ALPHA

ACS_TEXTURE Ct 1 − Ct At 1 − At

ACS_PRIMARY_COLOR Cf 1 − Cf Af 1 − Af

ACS_CONSTANT Cc 1 − Cc Ac 1 − Ac

ACS_PREVIOUS Cp 1 − Cp Ap 1 − Ap

texture unit previous to the current one. If the current texture unit is unit 0, then the
previous color is the same as the primary color; that is, the inputs to texture unit 0
are the vertex colors or material colors.

After the blending equation is computed, it is possible to magnify the resulting
color by a scaling factor of 1 (keep the resulting color), 2, or 4. If any color channel
of the scaled color is greater than 1, it is clamped to 1. You may select the scaling
parameter by setting CombineScaleRGB and CombineScaleAlpha. The valid parameters
to assign are ACSC_ONE, ACSC_TWO, or ACSC_FOUR.

As an example, consider Equation (3.7), which blends a light map with a base
texture, but avoids the oversaturation that a simple addition tends to produce. That
equation is rewritten as

V0 ∗ V2 + V1 ∗ (1 − V2) = 1 ∗ Cd + Cs ∗ (1 − Cd),

where Cd is a base texture color and Cs is a light map color. The vector 1 represents the
color white. The Texture::ACF_INTERPOLATE function is the one to use. The following
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code block sets up the combine function, sources, and operands to obtain the desired
effect:

Texture* pkBase = <goes in texture unit 0>;
Texture* pkLightMap = <goes in texture unit 1>;

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM_REPLACE;

// use the interpolate combine function
pkLightMap->Apply = Texture::AM_COMBINE;
pkLightMap->CombineFuncRGB = Texture::ACF_INTERPOLATE;

// V0 = (1,1,1)
pkLightMap->BlendColor = ColorRGBA::WHITE;
pkLightMap->CombineSrc0RGB = Texture::ACS_CONSTANT;
pkLightMap->CombineOp0RGB = Texture::ACO_SRC_COLOR;

// V1 = base texture (previous texture unit values)
pkLightMap->CombineSrc1RGB = Texture::ACS_PREVIOUS;
pkLightMap->CombineOp1RGB = Texture::ACO_SRC_COLOR;

// V2 = light map (current texture unit values)
pkLightMap->CombineSrc2RGB = Texture::ACS_TEXTURE;
pkLightMap->CombineOp2RGB = Texture::ACO_SRC_COLOR;

The simple addition V0 + V1 can be controlled by a combine function:

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM_REPLACE;

// use the add function
pkLightMap->Apply = Texture::AM_COMBINE;
pkLightMap->CombineFuncRGB = Texture::ACF_ADD;

// V0 = base texture
pkLightMap->CombineSrc0RGB = Texture::ACS_PREVIOUS;
pkLightMap->CombineOp0RGB = Texture::ACO_SRC_COLOR;

// V1 = light map
pkLightMap->CombineSrc1RGB = Texture::ACS_TEXTURE;
pkLightMap->CombineOp1RGB = Texture::ACO_SRC_COLOR;
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However, the apply mode AM_ADD works as well:

// draw the base texture onto the triangle first
pkBase->Apply = Texture::AM_REPLACE;

// add the light map to the base texture
pkLightMap->Apply = Texture::AM_ADD;

As you can see, there are many ways you can obtain the same effect.

3.4.5 Effects

The effects system in Wild Magic version 3 is a new invention to the engine. Wild
Magic version 2 had a base class RenderState that encapsulated what I now call global
states, lights, and texture information. In both versions of the engine, the Texture
class stores information to configure the texture units on the graphics hardware and
also stores a smart pointer to the texture image. In Wild Magic version 2, I had a class
TextureState that stored an array of Texture objects, supporting multitexturing in
a sense. A TextureState could be attached to a Node. All geometry leaf objects in the
subtree rooted at the node used the Texture objects of the TextureState. On the other
hand, the Geometry objects stored their own texture coordinates. To configure the
texture units, the renderer needed to obtain the texture image and setup information
from the TextureState object and texture coordinates from the Geometry object.

In a multitexturing situation, a further complication was that one TextureState
could store the base texture in slot 0 of the array and be attached to one node in
the scene hierarchy. Another TextureState could store the secondary texture and be
attached to another node. The idea is that the accumulation of the texture states along
a path from the root node to a leaf would lead to an array of Texture objects to be used
in the multitexturing. The accumulation maintained an array whose slot 0 stored the
Texture from slot 0 of any TextureState encountered along the path. In the current
example, that means the TextureState storing the secondary texture cannot store it
in slot 0; otherwise one of the texture objects hides the other. That means storing the
secondary texture in, say, slot 1. The consequence of this design is that the application
writer has to be very careful (and has the responsibility) about how to fill the slots
in the TextureState. As some contractors added special effects to Wild Magic, the
problems with my design became apparent.

In particular, projected textures were a problem. A projected texture is intended
to be the last texture applied to a geometric object. Wild Magic version 2 has a
ProjectedTexture class that is derived from Node. The class has a TextureState data
member to store the Texture object corresponding to the projected texture. The intent
was to create a specialized node to be an interior node of the scene hierarchy, and
to have its texture be the projected texture for all geometry objects at the leafs of the
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subtree of the node. The dilemma was which slot in the array of TextureState to place
the projected texture. Not knowing the slots used for the textures for the geometry
leaf nodes, the only reasonable slot was the last one so as not to hide the textures
used by the geometry leaf nodes. But this choice led to yet another problem. If there
were four slots, the projected texture was placed in slot 3 (zero-based indexing). Now
if a geometry object has only a single texture, placed in slot 0, then the renderer is
given an object to draw using two textures. The renderer implementation was set up
in a very general manner to iterate through the final array of textures and configure
each texture unit accordingly. The texture unit 0 (for the base texture in slot 0) is set
up, but texture units 1 and 2 are not used. Texture unit 1 had to be told to pass the
output from texture unit 0 without changing it. Similarly, texture unit 2 had to pass
the output from texture unit 1 without changing it. Texture unit 3 used the output
from texture unit 2 and blended it with the projected texture that was assigned to
texture unit 3. Clearly, this is an inefficiency that resulted from a substandard design
in the scene graph management front end.

To remedy this for Wild Magic version 3, I scrapped the idea of having lights
managed by a LightState object and textures managed by a TextureState object.
Regarding textured objects, the renderer should be provided with the geometric in-
formation (vertices, normals, indices, transformations), texture information (texture
images and texture coordinates), color information (vertex colors), lighting informa-
tion (lights and material), and any semantics on how to combine these. The scene
graph management system has to decide how to package these quantities to send
them to the renderer. The packaging should require as little work as possible from
the application writer, yet allow the renderer to efficiently gather the information and
configure the texture units. The semantics for the configuration should not be ex-
posed to the application writer, as was the projected texture example in Wild Magic
version 2 (i.e., having to decide in which array slots to place the texture objects).

The effort to achieve these goals led to a redesign of the core classes Spatial,
Geometry, and Node, and to the creation of a base class Effect. Information such
as texture objects (images and configuration information), texture coordinates, and
vertex colors are stored in Effect. The initial design change was to allow global states
to be applied at interior nodes of a scene hierarchy, but allow only “local effects” to be
applied at the leaf nodes. The Effect should encapsulate all the relevant information
and semantics for producing a desired visual result. Many of the special effects that
were added to Wild Magic version 2 as Node-derived classes were replaced by Effect
objects that apply only to the geometry objects to which they are attached. However,
projected textures were still problematic with regard to the new system. The projected
textures usually are applied to a collection of geometric objects in the scene, not just
to one. Having a projected texture affect an entire subtree of a scene is still desirable. A
small redesign midstream led to allowing “global effects” (such as projected textures,
projected shadows, and planar reflections) to occur at interior nodes, yet still based
on the premise of Effect encapsulating the drawing attributes, and still leading to a
general but efficient renderer implementation.
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The discussion of global effects is postponed until Section 3.5.6, at which time
I will discuss multipass operations. Such operations involve traversing through por-
tions of the scene multiple times. Be aware that multitexturing refers to the use of
multiple textures on an object. Many of the rendering effects can use single-pass mul-
titexturing. Multipass can involve a single texture, or it can involve multiple textures.
In the remainder of this section, the mechanism for local effects is described.

The interface for class Effect is

class Effect : public Object
{
public:

Effect ();
virtual ~Effect ();

// Create a clone of the effect. Colors and textures are
// shared. Each derived class can override this behavior and
// decide what is copied and what is shared.
virtual Effect* Clone ();

// data common to many effects
ColorRGBArrayPtr ColorRGBs;
ColorRGBAArrayPtr ColorRGBAs;
TArray<TexturePtr> Textures;
TArray<Vector2fArrayPtr> UVs;

// internal use
public:

// function required to draw the effect
Renderer::DrawFunction Draw;

};

The class has storage for vertex colors, either RGB or RGBA, but not both. If you
happen to set both, the RGBA colors will be used. Storage for an array of Texture
objects is provided. Storage for an array of corresponding texture coordinates is also
provided. Usually the arrays should have the same quantity of elements, but that is
not necessary if the graphics system is asked to automatically generate the texture
coordinates that are associated with a texture object.

The class has a function pointer data member—a pointer to some drawing func-
tion in the class Renderer interface. Many of the standard drawing operations are han-
dled by Renderer::DrawPrimitive, but others require special handling. For example,
environment mapping is implemented in the Renderer function DrawEnvironmentMap.
A derived class will implement its constructors to assign the correct function pointer.
The application writer should not manipulate this member.
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The base class is not abstract. This allows you to create an Effect object and set the
colors and textures as desired. In particular, if you have a special effect that involves a
fancy combination of textures, you can do this without having to derive a class from
Effect to manage the new feature. However, if the desired effect requires specialized
handling by the renderer via a new drawing function in the Renderer interface, then
you will need to derive a class from Effect and implement the drawing function in
the derived renderer classes.

The Spatial class provides the storage for the effect, including the ability to set/get
one:

class Spatial : public Object
{
public:

virtual void SetEffect (Effect* pkEffect);
Effect* GetEffect () const;

protected:
EffectPtr m_spkEffect;

};

Use of the set/get functions is clear. If you set an effect and the object already had one
attached, the old one is removed in the sense that its reference count is decremented.
If the count becomes zero, the object is automatically destroyed.

3.4.6 The Core Classes and Render State Updates

The core classes Spatial, Geometry, and Node all have some form of support for storing
render state and making sure that the renderer has the complete state for each object
it draws. The class Geometry has the storage capabilities for the render state that affects
it. My decision to do this in Wild Magic version 3 was to provide a single object
type (Geometry) to the renderer. Wild Magic version 2 had an abstract rendering that
required the object to be passed as the specific types they were, but the interface was
cumbersome. The redesign for version 3 has made the rendering interface much more
streamlined. The process of assembling the rendering information in the Geometry
object is referred to as updating the render state.

The portions of the interfaces for classes Spatial, Node, and Geometry that are
relevant to updating the render state are

class Spatial : public Object
{
public:

virtual void UpdateRS (TStack<GlobalState*>* akGStack = NULL,
TStack<Light*>* pkLStack = NULL);
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protected:
void PropagateStateFromRoot (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack);
void PushState (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack);
void PopState (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack);
virtual void UpdateState (TStack<GlobalState*>* akGStack,

TStack<Light*>* pkLStack) = 0;
};

class Node : public Object
{
protected:

virtual void UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);

};

class Geometry : public Object
{
protected:

virtual void UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack);

};

The entry point into the system is method UpdateRS (“update render state”).
The input parameters are containers to assemble the global state and lights during
a depth-first traversal of the scene hierarchy. The parameters have default values.
The caller of UpdateRS should not set these and make a call: object.UpdateRS(). The
containers are allocated and managed internally by the update system.

The protected member functions are helper functions for the depth-first traversal.
The function PushState pushes any global state and lights that the Spatial object
has attached to it onto stacks. The function PopState pops those stacks. The intent
is that the stacks are used by all the nodes in the scene hierarhcy as they are visited.
Function Node::UpdateState has the responsibility for propagating the update in a
recursive traversal of the scene hierarchy. Function Geometry::UpdateState is called
at leaf nodes of the hierarchy. It has the reponsibility for copying the contents of
the stacks into its appropriate data members. The stacks store smart pointers to
global states and lights, so the copy is really a smart pointer copy and the objects
are shared.

The render state at a leaf node represents all the global states and lights that occur
on the path from the root node to the leaf node. However, the UpdateRS call need only
be called at a node whose subtree needs a render state update. Figure 3.16 illustrates
a common situation.



3.4 Render State 253

N0zbuffer

material

light

S0

N2 S2N1 S1

G3 S3 N4 S4

G5 S5 G6 S6

Figure 3.16 A common situation for updating render state.

The z-buffer state is already attached to node N0, and the light is already attached
to node N4. A material state is attached to node N1. The render state update is initi-
ated at N1. The result of the depth-first traversal of the subtree at N1 is the following:
G3 has links to the z-buffer and material states; G5 has links to the z-buffer state,
the material state, and the light; and G6 has links to the z-buffer state, the material
state, and the light. The z-buffer state is, however, not in the subtree of N1, so we in
fact have to start collecting the states from the root node and along paths that lead to
the leaf nodes that are in the subtree of N1. The function PropagateStateFromRoot has
the responsibility of starting the render state update at N1 by first traversing to the
root N0, collecting the render state of the path from N0 to N1, and then passing this
state to the leaf nodes of the subtree at N1 together with any additional render state
that is in that subtree. Pseudocode for the sequence of operations is listed next. The
indentation denotes the level of the calling stack.

N1.UpdateRS();
N1: create global state stack GS; // GS = {}
N1: create light stack LS; // LS = {}
N1.PropagateStateFromRoot(GS,LS);

N0.PropagateStateFromRoot(GS,LS);
N0.PushState(GS,LS); // GS = {zbuffer}, LS = {}

N1.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}

N1.UpdateState(GS,LS);
G3.UpdateRS(GS,LS);

G3.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}

G3.UpdateState(GS,LS); // share: zbuffer,material
G3.PopState(GS,LS);

N4.UpdateRS(GS,LS);
N4.PushState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
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N4.UpdateState(GS,LS);
G5.UpdateRS(GS,LS);

G5.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {light}

G5.UpdateStore(GS,LS); // share: zbuffer,material,
// light

G5.PopState(GS,LS); // GS = {zbuffer,material},
// LS = {light}

G6.UpdateRS(GS,LS);
G6.PushState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
G6.UpdateStore(GS,LS); // share: zbuffer,material,

// light
G6.PopState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
N4.PopState(GS,LS); // GS = {zbuffer,material},

// LS = {}
N1: destroy global state stack GS; // GS = {}
N1: destroy light stack LS; // LS = {}

The pseudocode is slightly deceptive in that it indicates the global state stack is
initially empty, but in fact it is not. After the stack is allocated, smart pointers to the
default global state objects are pushed onto it. The copy of smart pointers from the
global state stack to the local storage of Geometry results in a full set of global states to
be used when drawing the geometry object, and the global states are the ones that are
at the top of the stack. Nothing prevents you from having multiple states of the same
type in a single path from root node to leaf node. For example, the root node can
have a z-buffer state that enables depth buffering, but a subtree of objects at node N

that can be correctly drawn without depth buffering enabled can also have a z-buffer
state that disables depth buffering.

At first glance you might be tempted not to have PropagateStateFromRoot in the
update system. Consider the current example. Before the material state was attached
to node N1, and assuming the scene hierarchy was current regarding render state, G3
should have in its local storage the z-buffer. G5 and G6 should each have local stor-
age containing the z-buffer and light. When you attach the material to node N1 and
call UpdateRS whose implementation does only the depth-first traversal, it appears
the correct states will occur at the geometry leaf nodes. In my implementation this
is not the case. The global state stack is initialized to contain all the default global
states, including the default z-buffer state. The copy of smart pointers in the Geom-
etry::UpdateState will overwrite the z-buffer state pointer of N0 with the default
z-buffer state pointer, thus changing the behavior at the leaf nodes.

Now you might consider changing the render state update semantics so that the
global state stack is initially empty, accumulate only the render states visited in the
depth-first traversal, and then have Geometry::UpdateState copy only those pointers
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into its local storage. To throw a wrench into the works, suppose that the subtree at
N4 is detached from the scene and a new subtree added as the second child of N1.
The leaf nodes of the new subtree are unaware of the render state that N1 and its
predecessors have. A call to the depth-first-only UpdateRS at N1 will propagate the
render states from N1 downward, but now the z-buffer state of N0 is missing from
the leaf nodes. To remedy this problem, you should have called UpdateRS at the root
node N0. The leaf nodes will get all the render state they deserve, but unfortunately
other subtrees of the scene hierarchy are updated even though they have current
render state information. My decision to include PropagateStateFromRoot is based on
having as efficient a render state update as possible. In a situation such as the current
example, the application writer does not have to call UpdateRS at N0 when all that
has changed is a subtree modification at N4. In my update system, after the subtree is
replaced by a new one, you only need to call UpdateRS at N4.

The previous discussion does point out that there are various circumstances when
you have to call UpdateRS. Clearly, if you attach a new global state or light to a node,
you should call UpdateRS to propagate that information to the leaf nodes. Similarly, if
you detach a global state or light from a node, the leaf nodes still have smart pointers
to those. You must call UpdateRS to eliminate those smart pointers, replacing the
global state pointers with ones to the default global states. The light pointers are just
removed from the storage. A change in the topology of the scene, such as attaching
new children or replacing children at a node N , also requires you to call UpdateRS.
This is the only way to inform the leaf nodes of the new subtree about their render
state.

If you change the data members in a global state object or in a light object, you do
not have to call UpdateRS. The local storage of smart pointers in Geometry to the global
states and lights guarantees that you are sharing those objects. The changes to the data
members are immediately known to the Geometry object, so when the renderer goes
to draw the object, it has access to the new values of the data members.

To finish up, here is a brief discussion of the implementations of the render state
update functions. The entry point is

void Spatial::UpdateRS (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

{
bool bInitiator = (akGStack == NULL);

if ( bInitiator )
{

// stack initialized to contain the default global states
akGStack = new TStack<GlobalState*>[GlobalState::MAX_STATE];
for (int i = 0; i < GlobalState::MAX_STATE; i++)

akGStack[i].Push(GlobalState::Default[i]);
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// stack has no lights initially
pkLStack = new TStack<Light*>;

// traverse to root and push states from root to this node
PropagateStateFromRoot(akGStack,pkLStack);

}
else
{

// push states at this node
PushState(akGStack,pkLStack);

}

// propagate the new state to the subtree rooted here
UpdateState(akGStack,pkLStack);

if ( bInitiator )
{

delete[] akGStack;
delete pkLStack;

}
else
{

// pop states at this node
PopState(akGStack,pkLStack);

}
}

The initiator of the update calls UpdateRS() with no parameters. The default
parameters are null pointers. This lets the function determine that the initiator is
the one who is responsible for allocating and deallocating the stacks. Notice that the
global state “stack” is really an array of stacks, one stack per global state type. The
initiator is also responsible for calling PropagateStateFromRoot. The UpdateState call
propagates the update to child nodes for a Node object, but copies the smart pointers
in the stacks to local storage for a Geometry object. For the noninitiators, the sequence
of calls is effectively

PushState(akGStack,pkLStack);
UpdateState(akGStack,pkLStack);
PopState(akGStack,pkLStack);

In words: push my state onto the stacks, propagate it to my children, and then pop
my state from the stacks.
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The propagation of state from the root is

void Spatial::PropagateStateFromRoot (
TStack<GlobalState*>* akGStack, TStack<Light*>* pkLStack)

{
// traverse to root to allow downward state propagation
if ( m_pkParent )

m_pkParent->PropagateStateFromRoot(akGStack,pkLStack);

// push states onto current render state stack
PushState(akGStack,pkLStack);

}

This is a recursive call that traverses a linear list of nodes. The traversal takes you up
the tree to the root, and then you push the states of the nodes as you return to the
initiator.

The pushing and popping of state is straightforward:

void Spatial::PushState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

{
TList<GlobalStatePtr>* pkGList = m_pkGlobalList;
for (/**/; pkGList; pkGList = pkGList->Next())
{

int eType = pkGList->Item()->GetGlobalStateType();
akGStack[eType].Push(pkGList->Item());

}

TList<LightPtr>* pkLList = m_pkLightList;
for (/**/; pkLList; pkLList = pkLList->Next())

pkLStack->Push(pkLList->Item());
}

void Spatial::PopState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

{
TList<GlobalStatePtr>* pkGList = m_pkGlobalList;
for (/**/; pkGList; pkGList = pkGList->Next())
{

int eType = pkGList->Item()->GetGlobalStateType();
GlobalState* pkDummy;
akGStack[eType].Pop(pkDummy);

}
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TList<LightPtr>* pkLList = m_pkLightList;
for (/**/; pkLList; pkLList = pkLList->Next())
{

Light* pkDummy;
pkLStack->Pop(pkDummy);

}
}

The code iterates over a list of global states attached to the object and pushes them on
the stack (pops them from the stack) corresponding to the type of the state. The code
also iterates over a list of lights attached to the object and pushes them on the stack
(pops them from the stack).

The propagation of the update down the tree is

void Node::UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

{
for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->UpdateRS(akGStack,pkLStack);
}

}

This, too, is a straightforward operation. Just as with the geometric update functions
UpdateGS and UpdateWorldData, the pair UpdateRS and UpdateState form a recursive
chain (A calls B, B calls A, etc.).

Finally, the copy of smart pointers from the stacks to local storage is

void Geometry::UpdateState (TStack<GlobalState*>* akGStack,
TStack<Light*>* pkLStack)

{
// update global state
int i;
for (i = 0; i < GlobalState::MAX_STATE; i++)
{

GlobalState* pkGState = NULL;
akGStack[i].GetTop(pkGState);
assert( pkGState );
States[i] = pkGState;

}
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// update lights
Light* const* akLight = pkLStack->GetData();
int iQuantity = pkLStack->GetQuantity();
for (i = 0; i < iQuantity; i++)

Lights.Append(akLight[i]);
}

No surprises here, either. The Geometry class has an array of smart pointers to Glob-
alState for global state storage, and it maintains a list of lights. Although the light
list may be arbitrarily long, in practice the graphics APIs limit you to a fixed number,
typically eight. The rendering system is designed to process only those lights up to the
predetermined maximum.

3.5 Renderers and Cameras

This section describes the two basic objects that are necessary to draw a scene—
renderers and cameras. A camera model is simpler to describe than a renderer, so
I will discuss cameras first.

3.5.1 Camera Models

Only a portion of the world is displayed at any one time; this region is called the view
volume. Objects outside the view volume are not visible and therefore not drawn.
The process of determining which objects are not visible is called culling . Objects
that intersect the boundaries of the view volume are only partially visible. The visible
portion of an object is determined by intersecting it with the view volume, a process
called clipping .

The display of visible data is accomplished by projecting it onto a view plane.
Wild Magic uses perspective projection. Our assumption is that the view volume is a
bounded region in space, so the projected data lies in a bounded region in the view
plane. A rectangular region in the view plane that contains the projected data is called
a viewport . The viewport is what is drawn on the rectangular computer screen. The
standard view volume used is called the view frustum. It is constructed by selecting an
eye point and forming an infinite pyramid with four planar sides. Each plane contains
the eye point and an edge of the viewport. The infinite pyramid is truncated by two
additional planes called the near plane and the far plane. Figure 3.17 shows a view
frustum. The perspective projection is computed by intersecting a ray with the view
plane. The ray has origin E, the eye point, and passes through the world point X. The
intersection point is Xp.

The combination of an eye point, a view plane, a viewport, and a view frus-
tum is called a camera model. The model has a coordinate system associated with
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Figure 3.17 An eye point E and a view frustum. The point X in the view frustum is projected to
the point Xp in the viewport.

it. The camera origin is the eye point E. The camera direction vector (the view vec-
tor) is the unit-length vector D that is perpendicular to the view plane. The eye
point is considered to be on the negative side of the plane. The camera up vector is
the unit-length U vector chosen to be parallel to two opposing edges of the view-
port. The camera right vector8 is the unit-length vector R chosen to be perpendicular
to the camera direction and camera up vector with R = D × U. The set of vectors
{D, U, R} is a right-handed system and may be stored as columns of a rotation
matrix R = [D U R]. The right vector is parallel to two opposing edges of the view-
port.

Figure 3.18 shows the camera model, including the camera coordinate system and
the view frustum. The six frustum planes are labeled with their names: near, far, left,
right, bottom, top. The camera location E and the camera axis directions D, U, and R
are shown. The view frustum has eight vertices. The near plane vertices are Vt�, Vb�,
Vtr , and Vbr . Each subscript consists of two letters, the first letters of the frustum
planes that share that vertex. The far plane vertices have the name W and use the
same subscript convention. The equations for the vertices are

8. And there was much rejoicing! Wild Magic version 2 had a left vector L = U × D. My choice was based on
storing the camera axis vectors in the local rotation matrices as R = [L U D]; that is, the axis vectors are the
columns of the matrix. The default values were chosen so that R = I , the identity matrix. This had been
a source of so much confusion that I changed my default camera model to resemble the OpenGL default
camera model.
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Figure 3.18 A camera model and view frustum.

Vb� = E + dminD + uminU + rminR

Vt� = E + dminD + umaxU + rminR

Vbr = E + dminD + uminU + rmaxR

Vtr = E + dminD + umaxU + rmaxR

Wb� = E + dmax

dmin

(
dminD + uminU + rminR

)

Wt� = E + dmax

dmin

(
dminD + umaxU + rminR

)

Wbr = E + dmax

dmin

(
dminD + uminU + rmaxR

)

Wtr = E + dmax

dmin

(
dminD + umaxU + rmaxR

)
. (3.11)

The near plane is at a distance dmin from the camera location and the far plane is at a
distance dmax. These distances are the extreme values in the D direction. The extreme
values in the U direction are umin and umax. The extreme values in the R direction are
rmin and rmax.

Object culling is implemented to use plane-at-a-time culling. The frustum planes
are assigned unit-length normals that point inside the frustum. A bounding volume
is tested against each frustum plane. If the bounding volume is fully outside one of
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the planes, the object is not visible and is culled from the display system. To support
culling we need to know the equations of the six frustum planes.

The near plane has inner-pointing, unit-length normal D. A point on the plane is
E + dminD. An equation of the near plane is

D · X = D · (E + dminD) = D · E + dmin. (3.12)

The far plane has inner-pointing, unit-length normal −D. A point on the plane
is E + dmaxD. An equation of the far plane is

−D · X = −D · (E + dmaxD) = −(D · E + dmax). (3.13)

The left plane contains the three points E, Vt�, and Vb�. A normal vector that
points inside the frustum is

(Vb� − E) × (Vt� − E) = (dminD + uminU + rminR) × (dminD + umaxU + rminR)

= (dminD + rminR) × (umaxU) + (uminU) × (dminD + rminR)

= (dminD + rminR) × ((umax − umin)U)

= (umax − umin)(dminD × U + rminR × U)

= (umax − umin)(dminR − rminD).

An inner-pointing, unit-length normal and the left plane are

N� = dminR − rminD√
d2

min + r2
min

, N� · (X − E) = 0. (3.14)

An inner-pointing normal to the right plane is (Vtr − E) × (Vbr − E). A similar
set of calculations as before will lead to an inner-pointing, unit-length normal and
the right plane:

Nr = −dminR + rmaxD√
d2

min + r2
max

, Nr · (X − E) = 0. (3.15)

Similarly, an inner-pointing, unit-length normal and the bottom plane are

Nb = dminU − uminD√
d2

min + u2
min

, Nb · (X − E) = 0. (3.16)

An inner-pointing, unit-length normal and the top plane are

Nt = −dminU + umaxD√
d2

min + u2
max

, Nt · (X − E) = 0. (3.17)
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The Camera Class

Time for a few comments about the Camera class, similar to those for the Light class.
In Wild Magic version 2, the Camera class was derived from Object. I considered a
Camera a special type of object that had some spatial information, but also a lot of
other information that did not warrant it being derived from Spatial. A number of
users were critical of this choice and insisted that Camera be derived from Spatial. For
example, if you were to build a model of a room with a security camera mounted in
a corner, the camera orientation could be modified using a controller (rotate camera
back and forth for coverage of the area of the room). The camera itself can be used
for rendering what it sees and then displaying that rendering on a television monitor
that is also part of the room model. To support this, I added a class CameraNode that is
derived from Node and that had a Camera data member. I had a similar class to encap-
sulate lights, namely, LightNode. But these classes presented some problems to users;
one problem had to do with importing LightWave objects into the engine. Because
LightWave uses left-handed coordinates for everything, the design of CameraNode and
LightNode prevented a correct import of lights (and cameras) when they were to be
attached as nodes in a scene.

In Wild Magic version 3, I changed my design and derived Camera from Spatial,
thus eliminating the need for CameraNode. The warnings I issued about deriving Light
from Spatial apply here as well. Some subsystems of Spatial are available to Camera
that are irrelevant. For example, attaching to a camera a global state such as a depth
buffer has no meaning, but the engine semantics allow the attachment. You can attach
lights to cameras, but this makes no sense. The camera object itself is not renderable.
The virtual functions for global state updates and for drawing are stubbed out in the
Camera class, so incorrect use of the cameras should not be a problem. So be warned
that you can manipulate a Camera as a Spatial object in ways that the engine was not
designed to handle.

The portion of the interface for Camera that relates to the camera coordinate
system is

class Camera : public Spatial
{
public:

Camera ();

// Camera frame (local coordinates)
// default location E = (0,0,0)
// default direction D = (0,0,-1)
// default up U = (0,1,0)
// default right R = (1,0,0)
// If a rotation matrix is used for the axis directions, the
// columns of the matrix are [D U R]. That is, the view
// direction is in column 0, the up direction is in column 1,
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// and the right direction is in column 2.
void SetFrame (const Vector3f& rkLocation,

const Vector3f& rkDVector, const Vector3f& rkUVector,
const Vector3f& rkRVector);

void SetFrame (const Vector3f& rkLocation,
const Matrix3f& rkAxes);

void SetLocation (const Vector3f& rkLocation);
void SetAxes (const Vector3f& rkDVector,

const Vector3f& rkUVector, const Vector3f& rkRVector);
void SetAxes (const Matrix3f& rkAxes);
Vector3f GetLocation () const; // Local.Translate
Vector3f GetDVector () const; // Local.Rotate column 0
Vector3f GetUVector () const; // Local.Rotate column 1
Vector3f GetRVector () const; // Local.Rotate column 2

// camera frame (world coordinates)
Vector3f GetWorldLocation () const; // World.Translate
Vector3f GetWorldDVector () const; // World.Rotate column 0
Vector3f GetWorldUVector () const; // World.Rotate column 1
Vector3f GetWorldRVector () const; // World.Rotate column 2

protected:
virtual void UpdateWorldBound ();
void OnFrameChange ();

};

Normally, the local transformation variables (translation, rotation, scale) are for
exactly that—transformation. In the Camera class, the local translation is interpreted
as the origin for a coordinate system of the camera; that is, the local translation is the
eye point. The columns of the local rotation matrix are interpreted as the coordinate
axis directions for the camera’s coordinate system. Think of the camera’s right and up
vectors as the positive x- and positive y-axes for the display screen. The view direction
is into the screen, the negative z-axis. The eye point is not the center of the screen, but
is positioned in front of the screen. Because the camera’s coordinate system is stored
in the local translation vector and local rotation matrix, you should use the interface
provided and avoid setting the data member Local explicitly to something that is not
consistent with the interpretation as a coordinate system.

The first block of code in the interface is for set/get of the coordinate system
parameters. The second block of code in the public interface allows you to retrieve
the world coordinates for the camera’s (local) coordinate system.

The Camera class has no model bound. However, the camera’s position acts as the
center of a model bound of radius zero. The virtual function UpdateWorldBound com-
putes the center of a world bound of radius zero. The function OnFrameChange is a
wrapper around a call to UpdateGS and is executed whenever you set the coordinate
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system components. Therefore, you do not need to explicitly call UpdateGS whenever
the coordinate system components are modified. Unlike the Light class, the Camera
version of OnFrameChange has the job of computing the world coordinate representa-
tions for the frustum planes to be used for culling. It also has the job of informing the
renderer associated with it that the camera coordinate system has changed. The ren-
derer takes the appropriate action to update any of its state, such as making specific
camera-related calls to the graphics API that it encapsulates.

The two virtual functions in the private section are stubs to implement pure
virtual functions in Spatial (as required by C++). None of these make sense for
cameras anyway. They exist just so that Camera inherits other properties of Spatial
that are useful.

View Frustum Parameters

The view frustum parameters rmin (left), rmax (right), umin (bottom), umax (top), dmin
(near), and dmax (far) are set/get by the following interface:

class Camera : public Spatial
{
public:

void SetFrustum (float fRMin, float fRMax, float fUMin,
float fUMax, float fDMin, float fDMax);

void SetFrustum (float fUpFovDegrees, float fAspectRatio,
float fDMin, float fDMax);

void GetFrustum (float& rfRMin, float& rfRMax, float& rfUMin,
float& rfUMax, float& rfDMin, float& rfDMax) const;

float GetDMin () const;
float GetDMax () const;
float GetUMin () const;
float GetUMax () const;
float GetRMin () const;
float GetRMax () const;

protected:
void OnFrustumChange ();

float m_fDMin, m_fDMax, m_fUMin, m_fUMax, m_fRMin, m_fRMax;

// Values computed in OnFrustumChange that are needed in
// OnFrameChange.
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float m_afCoeffL[2], m_afCoeffR[2];
float m_afCoeffB[2], m_afCoeffT[2];

};

For those of you familiar with Wild Magic version 2, notice that the order of
the parameters to the first SetFrustum method has changed. The new ordering is
the same used by OpenGL’s glFrustum function. The second SetFrustum method is
equivalent to OpenGL’s gluPerspective function. This method creates a symmetric
view frustum (umin = −umax and rmin = −rmax) using a field of view specified in the
up direction and an aspect ratio corresponding to width divided by height. The field
of view is an angle specified in degrees and must be in the interval (0, 180). The angle
is that between the top and bottom view frustum planes. The typical aspect ratio is
4/3, but for wide-screen displays is 16/9.

The function OnFrustumChange is a callback that is executed whenever SetFrus-
tum is called. The callback informs the renderer to which the camera is attached that
the frustum has changed. The renderer makes the appropriate changes to its state
(informing the graphics API of the new frustum parameters). The callback also com-
putes some quantities related to culling—specifically, the coefficients of the coordi-
nate axis vectors in Equations (3.14) through (3.17). The coefficients from Equation
(3.14) are stored in m_afCoeffL. The coefficients from Equation (3.15) are stored in
m_afCoeffR. The coefficients from Equation (3.16) are stored in m_afCoeffB. The co-
efficients from Equation (3.17) are stored in m_afCoeffT. The function OnFrameChange
is called very frequently and uses these coefficients for computing the world repre-
sentations of the frustum planes.

You will see in most of the applications that I set the frustum to a symmetric one
with the first SetFrustum method. The typical call is

// order: left, right, bottom, top, near, far
m_spkCamera->SetFrustum(-0.55f,0.55f,-0.4125f,0.4125f,1.0f,100.0f);

The ratio of right divided by top is 4/3. The near plane distance from the eye point
is 1, and the far plane distance is 100. If you decide to modify the near plane dis-
tance in an application using this call to SetFrustum, you must modify the left, right,
bottom, and top values accordingly. Specifically,

float fNear = <some positive value>;
float fFar = <whatever>;
float fLeft = -0.55f*fNear;
float fRight = 0.55f*fNear;
float fBottom = -0.4125f*fNear;
float fTop = 0.4125f*fNear;
m_spkCamera->SetFrustum(fLeft,fRight,fBottom,fTop,fNear,fFar);



3.5 Renderers and Cameras 267

The second SetFrustum method is probably more intuitive for the user.
A question that arises periodically on the Usenet computer graphics newsgroups

is how to do tiled rendering . The idea is that you want to have a high-resolution
drawing of an object, but the width and/or height of the final result is larger than your
computer monitor can display. You can accomplish this by selecting various view
frustum parameters and rendering the object as many times as it takes to generate
the final image. For example, suppose your computer monitor can display at 1600 ×
1200; that is, the monitor has 1200 scan lines, and each scan line has 1600 columns.
To generate an image that is 3200 × 2400, you can render the scene four times, each
rendering to a window that is 1600 × 1200. I have not yet described the renderer
interface, but the use of it is clear in this example. The view frustum is symmetric
in this example.

// initialization code
NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;
CameraPtr m_spkCamera = <the camera assigned to the renderer>;
float m_fDMin = <near plane distance>;
float m_fDMax = <far plane distance>;
float m_fRMax = <some value>;
float m_fUMax = <some value>;
m_spkCamera->SetFrustum(-m_fRMax,m_fRMax,-m_fUMax,m_fUMax,

m_fDMin,m_fDMax);

// keyboard handler code (ucKey is the input keystroke)
switch (ucKey)
{
case 0: // draw all four quadrants

m_spkCamera->SetFrustum(-m_fRMax,m_fRMax,-m_fUMax,m_fUMax,
m_fDMin,m_fDMax);

break;
case 1: // upper-right quadrant

m_spkCamera->SetFrustum(0.0f,m_fRMax,0.0f,m_fUMax,
m_fDMin,m_fDMax);

break;
case 2: // upper-left quadrant

m_spkCamera->SetFrustum(-m_fRMax,0.0f,0.0f,m_fUMax,
m_fDMin,m_fDMax);

break;
case 3: // lower-left quadrant

m_spkCamera->SetFrustum(-m_fRMax,0.0f,-m_fUMax,0.0f,
m_fDMin,m_fDMax);

break;
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case 4: // lower-right quadrant
m_spkCamera->SetFrustum(0.0f,m_fRMax,-m_fUMax,0.0f,

m_fDMin,m_fDMax);
break;

}

// idle-loop callback or on-display callback
m_pkRenderer->DrawScene(m_spkScene);

I use the keyboard handler approach on a Microsoft Windows machine so that I
can use ALT+PRINTSCREEN to capture the window contents, edit it in Windows Paint to
keep only the contents of the client window, and then copy that into the appropriate
quadrant in a bitmap file of size 3200 × 2400. You can certainly automate this task
by rendering each tile one at a time, and then reading the frame buffer contents after
each rendering and copying it to the appropriate location in a memory block that will
eventually be saved as a bitmap file.

Viewport Parameters

The viewport parameters are used to represent the computer screen in normalized
display coordinates (x̄ , ȳ) ∈ [0, 1]2. The left edge of the screen is x̄ = 0, and the
right edge is x̄ = 1. The bottom edge is ȳ = 0, and the top edge is ȳ = 1. The Camera
interface is

class Camera : public Spatial
{
public:

void SetViewPort (float fLeft, float fRight, float fTop,
float fBottom);

void GetViewPort (float& rfLeft, float& rfRight, float& rfTop,
float& rfBottom);

protected:
void OnViewPortChange ();

float m_fPortL, m_fPortR, m_fPortT, m_fPortB;
};

The function OnViewPortChange is a callback that is executed whenever SetViewPort
is called. The callback informs the renderer to which the camera is attached that
the viewport has changed. The renderer makes the appropriate changes to its state
(informing the graphics API of the new viewport parameters).
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In most cases the viewport is chosen to be the entire screen. However, some
applications might want to display an offset window with a rendering that is separate
from what occurs in the main window. For example, you might have an application
that draws a scene based on a camera at an arbitrary location and with an arbitrary
orientation. A front view, top view, and side view might also be desired using fixed
cameras. The four desired renderings may be placed in four quadrants of the screen.
The sample code shows how to do this. Once again, I have not discussed the renderer
interface, but the use of it is clear.

// initialization (all camera frames assumed to be set properly)
NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;
CameraPtr m_spkACamera = <the camera for arbitrary drawing>;
CameraPtr m_spkFCamera = <the camera for front view>;
CameraPtr m_spkTCamera = <the camera for top view>;
CameraPtr m_spkSCamera = <the camera for side view>;
m_spkACamera->SetViewport(0.0f,0.5f,1.0f,0.5f); // upper left
m_spkFCamera->SetViewport(0.5f,1.0f,1.0f,0.5f); // upper right
m_spkTCamera->SetViewport(0.0f,0.5f,0.5f,0.0f); // lower left
m_spkSCamera->SetViewport(0.5f,1.0f,0.5f,0.0f); // lower right

// on-idle callback
m_pkRenderer->SetCamera(m_spkACamera);
m_pkRenderer->DrawScene(m_spkScene);
m_pkRenderer->SetCamera(m_spkFCamera);
m_pkRenderer->DrawScene(m_spkScene);
m_pkRenderer->SetCamera(m_spkTCamera);
m_pkRenderer->DrawScene(m_spkScene);
m_pkRenderer->SetCamera(m_spkSCamera);
m_pkRenderer->DrawScene(m_spkScene);

I used four separate cameras in this example. It is also possible to use a single
camera, but change its position, orientation, and viewport before each rendering:

// initialization code
NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;
CameraPtr m_spkCamera = <the camera assigned to the renderer>;
Vector3f kACLoc = <camera location for arbitrary view>;
Matrix3f kACAxes = <camera orientation for arbitrary view>;
Vector3f kFCLoc = <camera location for front view>;
Matrix3f kFCAxes = <camera orientation for front view>;
Vector3f kTCLoc = <camera location for top view>;
Matrix3f kTCAxes = <camera orientation for top view>;
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Vector3f kSCLoc = <camera location for side view>;
Matrix3f kSCAxes = <camera orientation for side view>;

// on-idle callback
m_spkCamera->SetFrame(kACLoc,kACAxes);
m_spkCamera->SetViewport(0.0f,0.5f,1.0f,0.5f);
m_pkRenderer->DrawScene(m_spkScene);
m_spkCamera->SetFrame(kFCLoc,kFCAxes);
m_spkCamera->SetViewport(0.5f,1.0f,1.0f,0.5f);
m_pkRenderer->DrawScene(m_spkScene);
m_spkCamera->SetFrame(kTCLoc,kTCAxes);
m_spkCamera->SetViewport(0.0f,0.5f,0.5f,0.0f);
m_pkRenderer->DrawScene(m_spkScene);
m_spkCamera->SetFrame(kSCLoc,kSCAxes);
m_spkCamera->SetViewport(0.5f,1.0f,0.5f,0.0f);
m_pkRenderer->DrawScene(m_spkScene);

Object Culling

The object culling support in the Camera class is the most sophisticated subsystem for
the camera. This system interacts with the Spatial class during the drawing pass of
the scene graph. I will talk about the drawing pass later, but for now it suffices to say
that the Spatial class has the following interface for drawing:

class Spatial : public Object
{
public:

BoundingVolumePtr WorldBound;
bool ForceCull;

// internal use
public:

void OnDraw (Renderer& rkRenderer, bool bNoCull = false);
virtual void Draw (Renderer& rkRenderer,

bool bNoCull = false) = 0;
};

We have already seen the WorldBound data member. It is used for culling purposes.
The Boolean flag ForceCull allows a user to force the object not to be drawn, which is
especially convenient for a complicated system that partitions the world into cells.
Each cell maintains two lists: One list is for the visible objects; the other for the
invisible objects, whenever the camera is in the cell. At the moment the camera enters
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the cell, the list of visible objects is traversed. Each object has its ForceCull flag set to
false. The other list is traversed, and each object has its ForceCull flag set to true.

Notice that the second public block is flagged for internal use. An application
should never call these functions. A call to the function OnDraw is a request that the
object draw itself. The drawing itself is performed by Draw. If the input parameter
bNoCull is set to true, if the object is not force-culled, then the culling tests that
compare the world bound to the view frustum planes are skipped.

Before drawing itself, the object must check to see if it is potentially visible. If not,
it culls itself; that is, it does not call the Draw function. The code for OnDraw is

void Spatial::OnDraw (Renderer& rkRenderer, bool bNoCull)
{

if ( ForceCull )
return;

CameraPtr spkCamera = rkRenderer.GetCamera();
unsigned int uiState = spkCamera->GetPlaneState();

if ( bNoCull || !spkCamera->Culled(WorldBound) )
Draw(rkRenderer,bNoCull);

spkCamera->SetPlaneState(uiState);
}

If ForceCull is set to true, the request to be drawn is denied. Otherwise, the object
gets access to the camera attached to the renderer. Before attempting the culling,
some camera state information is saved (on the calling stack) in the local variable
uiState. Before exiting OnDraw, that state is restored. More about this in a moment.
Assuming the object allows the culling tests (bNoCull set to false), a call is made to
Camera::Culled. This function compares the world bound to the view frustum planes
(in world coordinates). If the world bound is outside any of the planes, the function
returns true, indicating that the object is culled. If the object is not culled, finally
the drawing occurs via the function Draw. As we will see, Node::Draw propagates the
drawing request to its children, so OnDraw and Draw form a recursive chain.

Now about the camera state that is saved and restored. I mentioned earlier that
in a scene hierarchy, if a bounding volume of a node is inside a view frustum plane,
the object contained by the bounding volume is also inside the plane. The objects
represented by child nodes must necessarily be inside the plane, so there is no reason
to compare a child’s bounding volume to this same frustum plane. The Camera class
maintains a bit flag (as an unsigned int) where each bit corresponds to a frustum
plane. A bit value of 1 says that the bounding volume should be compared to the
plane corresponding to that bit, and a bit value of 0 says to skip the comparison. The
bits in the flag are all initialized to 1 in the Camera constructor. A drawing pass will
set and restore these bits, so at the end of a drawing pass, the bits are all 1 again. The
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determination that a bounding volume is inside a frustum plane is made during the
Camera::Culled call. If the bounding volume is inside, the corresponding bit is set to
0. On a recursive call to Draw, the Camera::Culled function will be called for the child
nodes. When a zero bit is encountered, the camera knows not to compare the child’s
bounding volume to the corresponding frustum plane because the parent’s bounding
volume is already inside that plane. The goal of maintaining the bit flags is to reduce
the computational time spent in comparing bounding volumes to frustum planes—
particularly important when the comparison is an expensive calculation (convex hull
versus plane, for example).

The portion of the Camera interface relevant to the culling discussion to this point
is

class Camera : public Spatial
{
protected:

unsigned int m_uiPlaneState;

// world planes:
// left = 0, right = 1, bottom = 2,
// top = 3, near = 4, far = 5,
// extra culling planes >= 6
enum
{

CAM_FRUSTUM_PLANES = 6,
CAM_MAX_WORLD_PLANES = 32

};
int m_iPlaneQuantity;
Plane3f m_akWPlane[CAM_MAX_WORLD_PLANES];

// internal use
public:

// culling support in Spatial::OnDraw
void SetPlaneState (unsigned int uiPlaneState);
unsigned int GetPlaneState () const;
bool Culled (const BoundingVolume* pkWBound);

};

The data member m_uiPlaneState is the set of bits corresponding to the frustum
planes. Bit 0 is for the left plane, bit 1 is for the right plane, bit 2 is for the bottom
plane, bit 3 is for the top plane, bit 4 is for the near plane, and bit 5 is for the far plane.
The data member m_iPlaneQuantity specifies how many planes are in the system. This
number is at least six, but can be larger! The world representations for the planes are
stored in m_akWPlane. We already saw in Spatial::OnDraw the use of SetPlaneState and
GetPlaneState for the bit flag management.
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The final function to consider is Culled:

bool Camera::Culled (const BoundingVolume* pkWBound)
{

// Start with last pushed plane (potentially the most
// restrictive plane).
int iP = m_iPlaneQuantity - 1;
unsigned int uiMask = 1 << iP;

for (int i = 0; i < m_iPlaneQuantity; i++, iP-, uiMask >>= 1)
{

if ( m_uiPlaneState & uiMask )
{

int iSide = pkWBound->WhichSide(m_akWPlane[iP]);

if ( iSide < 0 )
{

// Object is on negative side. Cull it.
return true;

}

if ( iSide > 0 )
{

// Object is on positive side of plane. There is
// no need to compare subobjects against this
// plane, so mark it as inactive.
m_uiPlaneState &= ~uiMask;

}
}

}

return false;
}

The function iterates over the array of world planes. If a plane is active (its bit is 1),
the world bounding volume of the object is compared to the plane. If the bounding
volume is on the positive side, then the bit for the plane is set to 0 so that the bounding
volumes of descendants are never compared to that plane. If the bounding volume is
on the negative side, it is outside the plane and is culled. If the bounding volume
straddles the plane (part of it inside, part of it outside), then the object is not culled
and you cannot disable the plane from comparisons with descendants.

I had mentioned that the number of planes can be larger than six. The public
interface for Camera also contains the following functions:
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class Camera : public Spatial
{
public:

int GetPlaneQuantity () const;
const Plane3f* GetPlanes () const;
void PushPlane (const Plane3f& rkPlane);
void PopPlane ();

};

An application writer may tell the camera to use additional culling planes by
calling PushPlane for each such plane. The manual addition is useful in environments
where you have knowledge of the placement of objects and you can safely say that
objects behind a particular plane are not visible. For example, an application that has
a fixed camera position and orientation could have a building in view of the observer.
Objects behind the building are not visible. The plane of the back side of the building
can be added to the camera system for culling purposes. But you need to be careful
in using this support. In the current example, if a character is behind the building,
the culling works fine. But if the character moves to the side of the building and is
visible to the observer, but is still behind the plane of the back side of the building,
you would cull the character when in fact he is visible.

The ability to push and pop planes is also useful in an automatic portaling sys-
tem. Indeed, Wild Magic has support for portals for indoor occlusion culling. That
system, described later, pushes and pops planes as necessary depending on the cam-
era location and nearby portals. The Camera class has a public function flagged for
internal use:

bool Culled (int iVertexQuantity, const Vector3f* akVertex,
bool bIgnoreNearPlane);

This function is designed specifically for the portal system and will be described
later.

Whether planes are pushed manually or automatically, the data member m_
uiPlaneState has 6 bits reserved for the frustum planes. The remaining bits are used
for the additional culling planes. On a 32-bit system, this means you can push up to
26 additional culling planes. I suspect that 26 is more than enough for practical ap-
plications. You should also be aware the planes are only used for object culling. The
objects are not clipped against any of these planes. On current graphics hardware,
selecting additional clipping planes can have some interesting and surprising side ef-
fects. For example, if you select an additional clipping plane, you might lose the use
of one of your texture units. My recommendation is not to worry about the clipping,
only the culling.
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Figure 3.19 A pixel (x , y) selected in a viewport that is not the entire screen.

Picking

The engine supports picking operations. Generally these determine whether or not a
linear component (line, ray, segment) intersects an object. The classical application
is to select an object that is displayed on the screen. The user clicks on a screen pixel
that is part of the object. A ray is generated in world coordinates: The origin of the ray
is the camera location in world coordinates, and the direction of the ray is the vector
from the camera location to the world point that corresponds to the screen pixel that
was selected.

The construction of the world point is slightly complicated by having an active
viewport that is not the full window. Figure 3.19 shows a window with a viewport
and a selected pixel (x , y).

The current viewport settings are PL (left), PR (right), PB (bottom), and PT

(top). Although these are placed at tick marks on the axes, all the numbers are
normalized (in [0, 1]). The screen coordinates satisfy the conditions 0 ≤ x < W and
0 ≤ y < H , where W is the width of the screen and H is the height of the screen. The
screen coordinates must be converted to normalized coordinates:

x ′ = x

W − 1
, y′ = H − 1 − y

H − 1
.

The screen coordinates are left-handed: y = 0 is the top row, y = H − 1 is the bottom
row, x = 0 is the left column, and x = W − 1 is the right column. The normalized
coordinates (x ′, y′) are right-handed due to the inversion of the y value. The relative
distances within the viewport are

�x = x′ − PL

PR − PL

, �y = y′ − PB

PT − PB

.
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The picking ray is E + tU, where E is the eye point in world coordinates and U is
a unit-length direction vector in world coordinates:

U = dminD + ((1 − �x)rmin + �xrmax)R + ((1 − �y)umin + �yumax)U,

where D, R, and U are the axis directions for the camera coordinate system in world
coordinates. The equation is derived from the fact that the viewport contains the full
extent of the rendering to the frustum rectangle [rmin, rmax]× [umin, umax].

The portion of the Camera interface to support construction of the pick ray is

class Camera : public Spatial
{
public:

bool GetPickRay (int iX, int iY, int iWidth, int iHeight,
Vector3f& rkOrigin, Vector3f& rkDirection) const;

};

The (x , y) input point is in left-handed screen coordinates. The function returns
true if and only if the input point is located in the current viewport. When true,
the origin and direction values are valid and are in world coordinates. The direction
vector is unit length. If the returned function value is false, the origin and direction
are invalid.

Some graphics APIs support picking in an alternate manner. In addition to the
frame buffer and depth buffer values at a pixel (x , y) on the screen, the renderer
maintains a buffer of names. The visible object that led to the frame buffer value
at pixel (x , y) has its name stored in the name buffer. When the user clicks on the
screen pixel (x , y), the graphics API returns the name of the corresponding object.
The depth buffer value at the pixel may be used to gauge how far away the object
is (at least how far away the world point is that generated the pixel). My concept of
picking is more general. For example, if a character has a laser gun and shoots at
another character, you have to determine if the target was hit. The laser beam itself
is a ray whose origin is the gun and whose direction is determined by the gun barrel.
A picking operation is initiated to determine if that ray intersects the target. In this
case, the camera is not the originator of the picking ray.

3.5.2 Basic Architecture for Rendering

The class Renderer is an abstract class that defines an API that the scene graph man-
agement system uses for drawing. The intent is to provide a portable layer that hides
platform-dependent constructs such as operating system calls, windowing systems,
and graphics APIs. Derived classes that do handle the platform-dependent issues are
built on top of Renderer. Wild Magic version 2 had a few derived classes. The class
OpenGLRenderer encapsulated the OpenGL API. This class is itself portable to those
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platforms that support OpenGL. However, window creation and memory allocation
on the graphics card are dependent on the platform. I had constructed three classes
derived from OpenGLRenderer. The class GlutRenderer encapsulates GLUT, which is it-
self intended to be a portable wrapper around OpenGL. The GlutRenderer runs on
Microsoft Windows, on Macintosh OS X, and on PCs with Linux. Unfortunately,
GLUT does not expose much in the way of creating subwindows, menus, and other
controls. The class WglRenderer is derived from OpenGLRenderer, but makes no at-
tempt to hide the fact that it runs on Microsoft Windows. A programmer may create
a Windows-specific application with all the desired bells and whistles and then add
to the application a WglRenderer. On the Macintosh, the class AglRenderer is derived
from OpenGLRenderer and does not attempt to hide the fact that it runs using Apple’s
OpenGL.

For folks who prefer working only on Microsoft Windows using Direct3D, Wild
Magic version 2 also had a class DxRenderer derived from Renderer. Naturally, appli-
cations using this are not portable to other platforms.

Wild Magic version 3 has the same philosophy about a portable rendering layer.
As of the time of writing, I only have support for OpenGL. Hopefully by the time the
book is in print, a Direct3D renderer will be posted at my Web site.

Regarding construction, destruction, and information relevant to the window in
which the renderer will draw, the interface for Renderer is

class Renderer
{
public:

// abstract base class
virtual ~Renderer ();

// window parameters
int GetWidth () const;
int GetHeight () const;

// background color access
virtual void SetBackgroundColor (const ColorRGB& rkColor);
const ColorRGB& GetBackgroundColor () const;

// text drawing
virtual int LoadFont (const char* acFace, int iSize,

bool bBold, bool bItalic) = 0;
virtual void UnloadFont (int iFontID) = 0;
virtual bool SelectFont (int iFontID) = 0;
virtual void Draw (int iX, int iY, const ColorRGBA& rkColor,

const char* acText) = 0;
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protected:
// abstract base class
Renderer (int iWidth, int iHeight);

// window parameters
int m_iWidth, m_iHeight;
ColorRGB m_kBackgroundColor;

// current font for text drawing
int m_iFontID;

};

First, notice that Renderer is not derived from Object. You only need one renderer
in an application, so the sharing subsystem of Object is not necessary. Searching for
a renderer by name or ID is also not necessary since there is only one. Derived-class
renderers are dependent on platform, so you do not want to stream them. Renderers
have nothing animated, and making copies is not an issue. Consequently, there is no
reason to derive the class from Object.

A derived class must construct the base class through the protected constructor.
The width and height of the window’s client region to which the renderer must draw
are provided to the base class. Notice that the window location is not given to the
renderer. The application has the responsibility for window positioning and resizing,
but the renderer only needs to know the dimensions of the drawing region. The
background color for the window is stored in the renderer so that it can clear (if
necessary) the window to that color before drawing.

The renderer API has pure virtual functions for drawing text on the screen and
for font selection. The text drawing and font selection are usually done in a platform-
specific manner, so implementations for the API must occur in the derived classes.
The data member m_iFontID acts as a handle for the derived-class renderer. Multiple
fonts can be loaded and managed by the application. The LoadFont member lets
you create a font. The return value is a font ID that the application should store.
The ID is passed to SelectFont to let the renderer know that text should be drawn
using the corresponding font. The ID is also passed to UnloadFont when the font is
to be destroyed. The actual text drawing occurs via the member function Draw. You
specify where the text should occur on the screen and what its color should be. The
color has an alpha channel, so the text may be drawn with some transparency. The
environment mapping sample application illustrates font selection:

// select a font for text drawing
int iFontID = m_pkRenderer->LoadFont("Verdana",24,false,false);
m_pkRenderer->SelectFont(iFontID);

As you can see, it is simple enough to load a font and tell the renderer to use it.
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A renderer must have a camera assigned to it in order to define the region of space
that is rendered. The relevant interface is

class Renderer
{
public:

void SetCamera (Camera* pkCamera);
Camera* GetCamera () const;

protected:
Camera* m_pkCamera;

};

The use of the interface is quite clear. To establish a two-way communication between
the camera and the renderer, the Camera class has a data member m_pkRenderer that is
set by Renderer during a call to SetCamera. The two-way communication is necessary:
The renderer queries the camera for relevant information such as the view frustum
parameters and coordinate frame, and, if the camera parameters are modified at run
time, the camera must notify the renderer about the changes so that the renderer
updates the graphics system (via graphics API calls).

Various resources are associated with a renderer, including a frame buffer (the
front buffer) that stores the pixel colors, a back buffer for double-buffered drawing,
a depth buffer for storing depths corresponding to the pixels, and a stencil buffer for
advancing effects. The back buffer, depth buffer, and stencil buffer may need to be
cleared before drawing a scene. The interface supporting these buffers is

class Renderer
{
public:

// full window buffer operations
virtual void ClearBackBuffer () = 0;
virtual void ClearZBuffer () = 0;
virtual void ClearStencilBuffer () = 0;
virtual void ClearBuffers () = 0;
virtual void DisplayBackBuffer () = 0;

// clear the buffer in the specified subwindow
virtual void ClearBackBuffer (int iXPos, int iYPos,

int iWidth, int iHeight) = 0;
virtual void ClearZBuffer (int iXPos, int iYPos,

int iWidth, int iHeight) = 0;
virtual void ClearStencilBuffer (int iXPos, int iYPos,

int iWidth, int iHeight) = 0;
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virtual void ClearBuffers (int iXPos, int iYPos,
int iWidth, int iHeight) = 0;

};

All the clearing functions are pure virtual, but the derived-class implementations
are simple wrappers around standard graphics API calls. The function DisplayBack-
Buffer is the request to the graphics system to copy the back buffer into the front
buffer.

The graphics hardware also has a fixed number of texture units, and the graphics
system supports at most a certain number of lights. You may query the renderer for
these via

class Renderer
{
public:

int GetMaxLights () const;
int GetMaxTextures () const;

protected:
int m_iMaxLights;
int m_iMaxTextures;

};

The data members are initialized to zero in the Renderer constructor. The derived
classes are required to set these to whatever limits exist for the user’s environment.
Wild Magic version 2 had a hard-coded number of texture units (4) and lights (8);
both numbers were class-static data members. The number of texture units was cho-
sen at a time when consumer graphics cards had just evolved to contain 4 texture
units. Some engine users decided that it was safe to change that number. Unfortu-
nately, the streaming system had a problem with this. If a scene graph was saved to
disk when the texture units number was 4, all TextureState objects streamed exactly
4 TexturePtr smart pointers. When the texture units number is then changed to 6
or 8 and the disk copy of the scene is loaded, the loader attempts to read more than
4 TexturePtr links, leading to a serious error. The file pointer is out of synchroniza-
tion with the file contents. Wild Magic version 3 fixes that because there is no more
TextureState class. Generally, any resource limits are not saved during streaming. A
scene graph may contain a Geometry object that has more textures attached to it than
a graphics card can support. The rendering system makes sure that the additional
textures just are not processed. But that does mean you must think about the tar-
get platform for your applications. If you use 8 texture units for a single object, you
should put on the software packaging that the minimum requirement is a graphics
card that has 8 texture units!
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3.5.3 Single-Pass Drawing

In a sense, this system is the culmination of all the work you have done regarding
scene management. At some point, you have set up your scene graph, and you want
to draw the objects in it. The geometry leaf nodes of the scene have been properly
updated, Spatial::UpdateGS for the geometric information and Spatial::UpdateRS
for the render state. The leaf nodes contain everything needed to correctly draw the
object. The interface support for the entry point into the drawing system is

class Renderer
{
public:

// pre- and postdraw semantics
virtual bool BeginScene ();
virtual void EndScene ();

// object drawing
void DrawScene (Node* pkScene);

protected:
Geometry* m_pkGeometry;
Effect* m_pkLocalEffect;

// internal use
public:

void Draw (Geometry* pkGeometry);

typedef void (Renderer::*DrawFunction)();
void DrawPrimitive ();

};

The pair of functions BeginScene and EndScene give the graphics system a chance
to perform any operations before and after drawing. The Renderer class stubs these
to do nothing. The OpenGL renderer has no need for pre- and postdraw semantics,
but the Direct3D renderer does. The function DrawScene is the top-level entry point
into the drawing system. Wild Magic version 2 users take note: The top-level call was
named Draw, but I changed this to make it clear that it is the entry point and used
the name Draw internally for multipass drawing. If you forget to change the top-level
calls in your version 2 applications, I have a comment waiting for you in one of the
Renderer functions!

The typical block of rendering code in the idle-loop callback is

NodePtr m_spkScene = <the scene graph>;
Renderer* m_pkRenderer = <the renderer>;



282 Chapter 3 Scene Graphs and Renderers

// in the on-idle callback
m_pkRenderer->ClearBuffers();
if ( m_pkRenderer->BeginScene() )
{

m_pkRenderer->DrawScene(m_spkScene);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

The ClearBuffers call clears the frame buffer, the depth buffer, and the stencil buffer.
Predraw semantics are performed by the call to BeginScene(). If they were successful,
BeginScene returns true and the drawing commences with DrawScene. The drawing is
to the back buffer. On completion of drawing, postdraw semantics are performed by
the call to EndScene. Finally, the call to DisplayBackBuffer requests a copy of the back
buffer to the front buffer.

The DrawScene starts a depth-first traversal of the scene hierarchy. Subtrees are
culled, if possible. When the traversal reaches a Geometry object that is not culled,
the object tells the renderer to draw it using Renderer::Draw(Geometry*). The core
classes Spatial, Geometry, and Node all have support for the drawing pass. The relevant
interfaces are

class Spatial : public Object
{
// internal use
public:

void OnDraw (Renderer& rkRenderer, bool bNoCull = false);
virtual void Draw (Renderer& rkRenderer,

bool bNoCull = false) = 0;
};

class Node : public Spatial
{
// internal use
public:

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);
};

class Geometry : public Spatial
{
protected:

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);
};
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The OnDraw and Draw functions form a recursive chain. The Draw function is pure
virtual in Spatial, requiring derived classes to implement it. Node::Draw propagates
the call through the scene, calling Spatial::OnDraw for each of its children. When a
Geometry leaf node is encountered, Geometry::Draw is called; it is a simple wrapper for
a call to Renderer::Draw(Geometry*).

The traversal for drawing is listed next. The function Renderer::DrawScene has
some code for deferred drawing for the purposes of sorting, but I defer talking about
this until Section 4.2.4.

void Renderer::DrawScene (Node* pkScene)
{

if ( pkScene )
{

pkScene->OnDraw(*this);

if ( DrawDeferred )
{

(this->*DrawDeferred)();
m_iDeferredQuantity = 0;

}
}

}

void Node::Draw (Renderer& rkRenderer, bool bNoCull)
{

if ( m_spkEffect == NULL )
{

for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->OnDraw(rkRenderer,bNoCull);
}

}
else
{

// A "global" effect might require multipass rendering, so
// the Node must be passed to the renderer for special
// handling.
rkRenderer.Draw(this);

}
}
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void Geometry::Draw (Renderer& rkRenderer, bool)
{

rkRenderer.Draw(this);
}

We have already seen earlier that Spatial::OnDraw attempts to cull the object
using its world bounding volume and the camera frustum. If the object is not culled,
the Draw is called. In the Node::Draw function, the call is propagated to its children
in the “then” clause. This is the typical behavior for single-pass drawing. Multipass
drawing occurs when the node has a global effect attached to it. I discuss this later in
Section 3.5.6.

This brings us to the question at hand: What does Renderer::Draw do with the
Geometry object? The function is listed below. The code related to deferred drawing is
discussed in Section 4.2.4.

void Renderer::Draw (Geometry* pkGeometry)
{

if ( !DrawDeferred )
{

m_pkGeometry = pkGeometry;
m_pkLocalEffect = pkGeometry->GetEffect();

if ( m_pkLocalEffect )
(this->*m_pkLocalEffect->Draw)();

else
DrawPrimitive();

m_pkLocalEffect = NULL;
m_pkGeometry = NULL;

}
else
{

m_kDeferredObject.SetElement(m_iDeferredQuantity,pkGeometry);
m_kDeferredIsGeometry.SetElement(m_iDeferredQuantity,true);
m_iDeferredQuantity++;

}
}

The data members m_pkGeometry and m_pkLocalEffect are used to hang onto the
geometric object and its effect object (if any) for use by the renderer when it does
the actual drawing. Standard rendering effects use a Renderer function called Draw-
Primitive. Some advanced effects require a specialized drawing function, a pointer
to which the Effect object provides. I will discuss the advanced effects in Chapter 5.
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3.5.4 The DrawPrimitive Function

Single-pass rendering of objects is performed by Renderer::DrawPrimitive. This func-
tion is in the base class, so it necessarily hides any dependencies of the back-end
graphics API by requiring a Renderer-derived class to implement a collection of pure
virtual functions. At a high level, the order of operations is

set global state

enable lighting

enable vertices

enable vertex normals

enable vertex colors

enable texture units

set the transformation matrix

draw the object

restore the transformation matrix

disable texture units

disable vertex colors

disable vertex normals

disable vertices

disable lighting

Notice the symmetry. Each “enable” step has a corresponding “disable” step. The
transformation is set and then restored. The only item without a counterpart is the
setting of global state. Since each object sets all global state, there is no need to restore
the previous global state as the last step. It is possible to create a pipeline in which the
objects do not bother disabling features once the objects are drawn. The problem
appears, however, if one object uses two texture units, but the next object uses only
one texture unit. The first object enabled the second texture unit, so someone needs
to disable that unit for the second object. Either the first object disables the unit (as
shown previously) after it is drawn, or the second object disables the unit before it is
drawn. In either case, the texture unit is disabled before the second object is drawn. I
believe my proposed pipeline is the cleanest solution—let each object clean up after
itself.

Wild Magic version 2 did not use this philosophy. A reported bug showed that
vertex or material colors from one triangle mesh were causing a sibling triangle mesh
to be tinted with those colors. To this day I still do not know where the problem
is. Wild Magic version 3 appears not to have this bug. If a bug were to show up, I
guarantee the current pipeline is easier to debug.
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Portions of the actual DrawPrimitive code are shown next. The block for setting
the global state is

if ( m_bAllowGlobalState )
SetGlobalState(m_pkGeometry->States);

The default value for the Boolean data member m_bAllowGlobalState is true. It exists
just to give advanced rendering features the ability not to set global state if they do
not want it set. The SetGlobalState function is

void Renderer::SetGlobalState (
GlobalStatePtr aspkState[GlobalState::MAX_STATE])

{
GlobalState* pkState;

if ( m_bAllowAlphaState )
{

pkState = aspkState[GlobalState::ALPHA];
SetAlphaState((AlphaState*)pkState);

}

//... similar blocks for the other global states go here ...
}

Each global state has an associated Boolean data member that allows you to pre-
vent that state from being set. This is useful in advanced rendering features that re-
quire multiple passes through a subtree of a scene hierarchy, because each pass tends
to have different requirements about the global state. For example, the projected, pla-
nar shadow sample application needs control over the individual global states. The
function SetAlphaState is pure virtual in Renderer, so the derived renderer classes
need to implement it. Similar “set” functions exist for the other global state classes.
The implementations of the “set” functions involve direct manipulation of the graph-
ics API calls.

The blocks for enabling and disabling lighting are

if ( m_bAllowLighting )
EnableLighting();

// ... other pipeline operations go here ...

if ( m_bAllowLighting )
DisableLighting();

A Boolean data member also allows you to control whether or not lighting is
enabled independent of whether there are lights in the scene that illuminate the



3.5 Renderers and Cameras 287

object. The default value for the data member is true. The base class implements
EnableLighting and DisableLighting:

void Renderer::EnableLighting (int eEnable)
{

int iQuantity = m_pkGeometry->Lights.GetQuantity();
if ( iQuantity >= m_iMaxLights )

iQuantity = m_iMaxLights;

for (int i = 0; i < iQuantity; i++)
{

const Light* pkLight = m_pkGeometry->Lights[i];
if ( pkLight->On )

EnableLight(eEnable,i,pkLight);
}

}

void Renderer::DisableLighting ()
{

int iQuantity = m_pkGeometry->Lights.GetQuantity();
if ( iQuantity >= m_iMaxLights )

iQuantity = m_iMaxLights;

for (int i = 0; i < iQuantity; i++)
{

const Light* pkLight = m_pkGeometry->Lights[i];
if ( pkLight->On )

DisableLight(i,pkLight);
}

}

The first block of code in each function makes sure that the quantity of lights that
illuminate the geometry object does not exceed the total quantity supported by the
graphics API. The data member m_iMaxLights must be set during the construction
of a derived-class renderer. In OpenGL, this number is eight. The second block of
code iterates over the lights. If a light is on, it is enabled/disabled. The functions
EnableLight and DisableLight are pure virtual in Renderer, so the derived renderer
classes need to implement them. The implementations involve direct manipulation
of the graphics API calls.

The blocks of code for handling the vertex positions for the geometry object are

EnableVertices();

// ... other pipeline operations go here ...

DisableVertices();
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I assume that any geometry object has vertices. Otherwise, what would you draw?
No Boolean member is provided to prevent the enabling of vertices. The functions
EnableVertices and DisableVertices are pure virtual in Renderer, so the derived ren-
derer classes need to implement them. The implementations involve direct manipula-
tion of the graphics API calls. The OpenGL versions tell the graphics driver the vertex
array to use. The engine supports caching of vertex data on the graphics card itself to
avoid constantly sending vertices over an AGP bus. The enable/disable functions do
all the graphics-API-specific work to make this happen.

The blocks of code for handling the vertex normals for the geometry object are

if ( m_bAllowNormals && m_pkGeometry->Normals )
EnableNormals();

// ... other pipeline operations go here ...

if ( m_bAllowNormals && m_pkGeometry->Normals )
DisableNormals();

The vertex normals are passed through the graphics API calls only if the geometry
object has normals and the application has not prevented the enabling by setting
m_bAllowNormals to false. The default value for the data member is true. The func-
tions EnableNormals and DisableNormals are pure virtual in Renderer, so the derived
renderer classes need to implement them. The implementations involve direct ma-
nipulation of the graphics API calls. The OpenGL versions tell the graphics driver the
vertex normal array to use. The engine supports caching of vertex data on the graph-
ics card itself to avoid constantly sending vertices over an AGP bus. The enable/disable
functions do all the graphics-API-specific work to make this happen.

The blocks of code for handling the vertex colors for the geometry object are

if ( m_bAllowColors && m_pkLocalEffect )
{

if ( m_pkLocalEffect->ColorRGBAs )
EnableColorRGBAs();

else if ( m_pkLocalEffect->ColorRGBs )
EnableColorRGBs();

}

// ... other pipeline operations go here ...

if ( m_bAllowColors && m_pkLocalEffect )
{

if ( m_pkLocalEffect->ColorRGBAs )
DisableColorRGBAs();

else if ( m_pkLocalEffect->ColorRGBs )
DisableColorRGBs();

}
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Once again, a Boolean data member controls whether or not the vertex color han-
dling is allowed. The default value for m_bAllowColors is true. Vertex colors are not
stored in the geometry object, but are considered to be one of the local effects that you
can attach to an object. As such, the vertex colors are stored in the m_pkLocalEffect
object that belongs to the m_pkGeometry object. Since Effect objects allow you to store
RGB or RGBA colors, the renderer must decide which one to use. Only one set of col-
ors is used, so setting both in the Effect object will lead to use of only the RGBA
colors. The functions EnableColorRGBAs, EnableColorRGBs, DisableColorRGBAs, and
DisableColorRGBs are pure virtual in Renderer, so the derived renderer classes need
to implement them. The implementations involve direct manipulation of the graph-
ics API calls. The OpenGL versions tell the graphics driver the vertex color array to
use. The engine supports caching of vertex data on the graphics card itself to avoid
constantly sending vertices over an AGP bus. The enable/disable functions do all the
graphics-API-specific work to make this happen.

The texture units are enabled and disabled by the following code blocks:

if ( m_bAllowTextures )
EnableTextures();

// ... other pipeline operations go here ...

if ( m_bAllowTextures )
DisableTextures();

Again we have a Boolean data member, m_bAllowTextures, that gives advanced ren-
dering features the chance to control whether or not the texture units are enabled. The
default value is true. The base class implements EnableTextures and DisableTextures:

void Renderer::EnableTextures ()
{

int iTMax, i;
int iUnit = 0;

// set the local-effect texture units
if ( m_pkLocalEffect )
{

iTMax = m_pkLocalEffect->Textures.GetQuantity();
if ( iTMax > m_iMaxTextures )

iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
EnableTexture(iUnit++,i,m_pkLocalEffect);

}
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// set the global-effect texture units
if ( m_pkGlobalEffect )
{

iTMax = m_pkGlobalEffect->Textures.GetQuantity();
if ( iTMax > m_iMaxTextures )

iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
EnableTexture(iUnit++,i,m_pkGlobalEffect);

}
}

void Renderer::DisableTextures ()
{

int iTMax, i;
int iUnit = 0;

// disable the local-effect texture units
if ( m_pkLocalEffect )
{

iTMax = m_pkLocalEffect->Textures.GetQuantity();
if ( iTMax > m_iMaxTextures )

iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
DisableTexture(iUnit++,i,m_pkLocalEffect);

}

// disable the global-effect texture units
if ( m_pkGlobalEffect )
{

iTMax = m_pkGlobalEffect->Textures.GetQuantity();
if ( iTMax > m_iMaxTextures )

iTMax = m_iMaxTextures;

for (i = 0; i < iTMax; i++)
DisableTexture(iUnit++,i,m_pkGlobalEffect);

}
}

The first block of code in each function makes sure that the quantity of texture
units that the geometry object requires does not exceed the total quantity supported
by the graphics API and, in fact, by the graphics card. As you are aware, the more
texture units the graphics card has, the more expensive it is. Since your clients will
have cards with different numbers of texture units, you have to make sure you only
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try to use what is there. The data member m_iMaxTextures must be set during the
construction of a derived-class renderer. In OpenGL, the graphics card driver is
queried for this information. The functions EnableTexture and DisableTexture are
pure virtual in Renderer, so the derived renderer classes need to implement them.
The implementations involve direct manipulation of the graphics API calls. The data
member m_pkPostEffect is part of the multipass rendering system that is described
later in this section.

As I noted earlier, Wild Magic version 2 had a design flaw regarding multitextur-
ing. The flaw surfaced when trying to add a Node-derived class for projected texture.
The assignment of textures to texture units was the programmer’s responsibility, un-
intentionally so. To make sure the projected texture appears as the last texture and
not have any texture units just pass the previous unit’s data through it, the program-
mer needed to know for each geometry object in the subtree how many textures it
used and what units they were assigned to, which is needlessly burdensome. In Wild
Magic version 3, a projected texture shows up as a “post-effect.” As you can see in the
EnableTextures, the texture units are enabled as needed and in order.

The transformation handling is

if ( m_bAllowWorldTransform )
SetWorldTransformation();

else
SetScreenTransformation();

// ... the drawing call goes here ...

if ( m_bAllowWorldTransform )
RestoreWorldTransformation();

else
RestoreScreenTransformation();

The graphics system needs to know the model-to-world transformation for the ge-
ometry object. The transformation is set by the function SetWorldTransformation.
The world translation, world rotation, and world scales are combined into a single
homogeneous matrix and passed to the graphics API. The world transformation is
restored by the function RestoreWorldTransformation.

The engine supports screen space polygons. The polygons are intended to be drawn
either as part of the background of the window or as an overlay on top of all the other
rendered data. As such, the vertices are two-dimensional and are already in screen
space coordinates. The perspective viewing model does not apply. Instead we need an
orthonormal projection. The function SetScreenTransformation must handle both
the selection of projection type and setting of the transformation. The function Re-
storeScreenTransformation restores the projection type and transformation. All the
transformation handlers are pure virtual in the base class. This allows hiding the ma-
trix representation that each graphics API chooses.
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The z-values (depth values) need to be provided for the polygon vertices. The z-
values may depend on the graphics API, so the ScreenPolygon class requires you only
to specify whether it is a foreground or a background polygon. ScreenPolygon derives
from TriMesh, which allows you to attach render state and effects just like any other
geometry object. A classical use for screen space polygons is to overlay the rendered
scene with a fancy border, perhaps with simulated controls such as menu selection,
buttons, sliders, and so on. An overlay can have an RGBA texture assigned to it. By
setting selected image pixels to have an alpha of zero, you can make the overlay as
fancy as you like, with curved components, for example.

The final piece of DrawPrimitive is the drawing call itself:

DrawElements();

This function tells the graphics system what type of geometric object is to be drawn
(points, polyline, triangle mesh, etc.). In the case of an object that has an array of
indices into the vertex array, the indices are passed to the graphics system.

3.5.5 Cached Textures and Vertex Attributes

Consumer graphics hardware has become very powerful and allows a lot of compu-
tations to be off-loaded from the CPU to the GPU. For practical applications, the
amount of data the GPU has to process will not cause the computational aspects to
be the bottleneck in the graphics system. What has become the bottleneck now is the
transfer of the data from the host machine to the graphics hardware. On a PC, this is
the process of sending the vertex data and texture images across the AGP bus to the
graphics card.

In Wild Magic version 2, vertex data is transferred to the graphics card each time
a scene is rendered. However, the graphics APIs support caching on the graphics
card for textures and their corresponding images, thus avoiding the transfer. When
a texture is bound to the graphics card (i.e., cached on the card) the first time it
is handed to the graphics API, you are given an identifier so that the next time
the texture needs to be used in a drawing operation the graphics API knows it is
already in VRAM and can access it directly. Support for this mechanism requires
some communication between the Renderer and Texture classes.

I still use this mechanism in Wild Magic version 3. The relevant interface for the
Texture class is

class Texture : public Object
{
protected:

class BindInfo
{
public:
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BindInfo ();
Renderer* User;
char ID[8];

};

TArray<BindInfo> m_kBind;

// internal use
public:

void Bind (Renderer* pkUser, int iSize, const void* pvID);
void Unbind (Renderer* pkUser);
void GetID (Renderer* pkUser, int iSize, void* pvID);

};

The nested class BindInfo is used by the graphics system to store the identifier to a
texture. A pointer to the renderer to which the texture is bound is part of the binding
information. The renderer is responsible for storing a unique identifier in the ID field
of BindInfo. The array has 8 bytes to allow storage of the identifier on a 64-bit graphics
system. Of course, if a graphics system requires more than 8 bytes for the identifier,
this number must change. The number of bytes used is known only to the derived-
class renderer and is irrelevant to the scene graph system. The size information is not
saved in the BindInfo class for this reason. The ID array elements are all initialized to
zero; a value of zero indicates the texture is not bound to any renderer. Public access
to the binding system is labeled for internal use, so an application should not directly
manipulate the functions.

When the renderer is told to use a texture, it calls GetID and checks the identifier.
If it is zero, this is the first time the renderer has seen the texture. It then calls Bind
and passes a pointer to itself, the size of the identifier in bytes, and a pointer to the
identifier. Notice that a texture may be bound to multiple renderers; the class stores an
array of BindInfo objects, one per renderer. The derived-class renderer does whatever
is necessary to cache the data on the graphics card. The second time the renderer is
told to use the texture, it calls the GetID function and discovers that the identifier
is not zero. The derived-class renderer simply tells the graphics API that the texture
is already in VRAM and should use it directly. All of the logic for this occurs through
the function Renderer::EnableTexture. Recall that this is a pure virtual function that
a derived class must implement.

At some point your application might no longer need a texture and deletes it
from the scene. If that texture was bound to a renderer, you need to tell the renderer
to unbind it in order to free up VRAM for other data. The smart pointer system
makes the notification somewhat challenging. It is possible that the texture object
was deleted automatically because its reference count went to zero. For example, this
happens if a scene graph is deleted by assigning NULL to its smart pointer:
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NodePtr m_spkScene = <a scene graph>;
// ... do some application stuff ...
m_spkScene = NULL;
// scene is deleted, including any Texture objects

If I had required you to search the scene graph for any Texture objects and
somehow unbind them manually, that would have been a large burden to place on
your shoulders. Instead, the destructor of the Texture class notifies the renderer that
the texture is being deleted. To notify the renderer, you need to have access to it.
Conveniently, the BindInfo nested class has a member User that is a pointer to the
renderer to which the texture is bound. No coincidence. The destructor is

Texture::~Texture ()
{

// Inform all renderers using this texture that it is being
// destroyed. This allows the renderer to free up any
// associated resources.
for (int i = 0; i < m_kBind.GetQuantity(); i++)

m_kBind[i].User->ReleaseTexture(this);
}

The Texture object iterates over all its binding information and informs each renderer
that it is being deleted. This gives the renderers a chance to unbind the texture,
whereby it frees up the VRAM that the texture occupied. Once freed, the renderer
in turn notifies the texture object that it is no longer bound to the renderer. The
notification is via the member function Texture::Unbind.

Clearly, the Renderer class must have a function that the destructor calls to unbind
the texture. This function is named ReleaseTexture and is a pure virtual function, so
the derived class must implement it. The base class also has a function ReleaseTex-
tures. This one is implemented to perform a depth-first traversal of a scene. Each
time a Texture object is discovered, the renderer is told to release it. The texture ob-
jects are not deleted. If you were to redraw the scene, all the texture objects would be
rebound to the renderer. Does this make the function useless? Not really. If you had
a few scenes loaded into system memory, and you switch between them based on the
current state of the game without deleting any of them, you certainly want to release
the textures for one scene to make room for the next scene.

The graphics hardware does allow for you to cache vertex data on the card, as
well as texture data. For meshes with a large number of vertices, this will also lead to
a speedup in the frame rate because you do not spend all your time transferring data
across a memory bus. Wild Magic version 2 did not support caching vertex data, but
Wild Magic version 3 does. The vertex arrays (positions, normals, colors, indices,
texture coordinates) are normally stored as shared arrays using the template class
TSharedArray. The sharing is for the benefit of the scene graph management system.
Each time a geometry object is to be drawn, its vertex arrays are given to the graphics
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API for the purposes of drawing. The arrays are transferred across the memory bus
on each drawing call.

To support caching, the graphics APIs need to provide a mechanism that is sim-
ilar to what is used for textures, and they do. I chose to use vertex buffer objects
for the caching. Just as the class Texture has the BindInfo nested class for storing
binding information, the scene graph system needs to provide some place to store
binding information for vertex data. I have done this by deriving a template class
TCachedArray from TSharedArray. This class provides a system that is identical to the
one in Texture. The texture binding occurs through the derived-class implementa-
tion of Renderer::EnableTexture. The vertex data caching occurs similarly through
the derived-class implementations of EnableVertices, EnableNormals, EnableColor-
RGBAs, EnableColorRGBs, and EnableUVs. The derived-class implementations need only
check the RTTI for the vertex arrays. If they are of type TCachedArray, the renderer
binds the arrays and stores the identifiers in the BindInfo structures. If they are not
of type TCachedArray, the renderer treats them normally and transfers the data across
the memory bus on each draw operation.

The same issue arises as for textures. If the vertex data is to be deleted, and that
data was bound to a renderer, the renderer needs to be notified that it should free
up the VRAM used by that data. The texture objects notify the renderer through
Renderer::ReleaseTexture. The vertex data objects notify the renderer through Ren-
derer::ReleaseArray (there are five such functions—for positions, normals, color
RGBs, color RGBAs, and texture coordinates). The notification occurs in the
TCachedArray destructor. Finally, you may release all cached data by calling the func-
tion Renderer::ReleaseArrays. A depth-first traversal of the scene graph is made.
Each cached vertex array is told to notify the renderer to free the corresponding re-
sources and unbind the array.

3.5.6 Global Effects and Multipass Support

The single-pass rendering of a scene graph was discussed in Section 3.5.3. This system
essentially draws a Geometry object at the leaf node of a scene hierarchy using all the
global state, lights, and effects that are stored by the object. Some effects, though, may
be desired for all the geometry leaf nodes in a subtree. For example, a projected tex-
ture can apply to multiple triangle meshes, as can an environment map. A projected
planar shadow may be rendered for an object made up of many triangle meshes.
Planar reflections also apply to objects that have multiple components. It would be
convenient to allow an Effect object to influence an entire subtree. Wild Magic ver-
sion 2 supported this by creating Node-derived classes to represent the effects, but that
design was clunky and complicated when it came to handling reentrancy. An effect
such as a planar projected shadow requires multiple passes to be made over a subtree
of the scene. Each pass has different requirements regarding render state. If the draw-
ing is initiated on a first pass through the subtree, and the renderer must use a second
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pass to complete the drawing, you have to be certain not to end up in an infinite
recursion of the drawing function; that is, the drawing system must be reentrant.

The Effect class introduced in Wild Magic version 3 was initially designed to
represent a local effect; that is, the Effect object stores the vertex colors, textures, and
texture coordinates and implements any semantics necessary to correctly render the
geometry object to which the effect is attached. A natural class to store the effect is the
Geometry class. I still wanted to support global effects such as projected textures and
projected planar shadows, but with a system that was better designed than the one
requiring you to derive a class from Node and have it encapsulate the relevant render
state. My choice was to store the Effect object in the Spatial class. In this way, a Node
has an Effect object that can represent a global effect. A pleasant consequence is that
a multipass drawing operation is cleanly implemented without much fuss in the scene
graph management system.

A recapitulation of my previous discussion: The top-level call to drawing a scene is

void Renderer::DrawScene (Node* pkScene)
{

if ( pkScene )
{

pkScene->OnDraw(*this);

if ( DrawDeferred )
{

(this->*DrawDeferred)();
m_iDeferredQuantity = 0;

}
}

}

The OnDraw function is implemented in Spatial and handles any culling of objects.
If a Node object is not culled, the function Draw is called on all the children in order to
propagate the drawing down the hierarchy. The Node class’s version of Draw is

void Node::Draw (Renderer& rkRenderer, bool bNoCull)
{

if ( m_spkEffect == NULL )
{

for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->OnDraw(rkRenderer,bNoCull);
}

}
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else
{

// A "global" effect might require multipass rendering,
// so the Node must be passed to the renderer for special
// handling.
rkRenderer.Draw(this);

}
}

In the typical case, the node does not have an effect attached to it, in which case
m_spkEffect is NULL, and the drawing operation is propagated to the node’s children.
If the node has an effect attached to it, then the renderer is immediately told to draw
the subtree rooted at the node. From the scene graph management perspective, all
you care about is that the renderer does the right thing and correctly draws the sub-
tree. From the renderer’s perspective, if multiple drawing passes must be made over
the subtree, the Node::Draw function must be reentrant. The only natural solution is
to require the renderer to keep a temporary handle to m_spkEffect, set m_spkEffect
to NULL, draw the subtree with multiple passes (if necessary), and then restore
m_spkEffect to its original value.

The function referenced by rkRenderer.Draw(this) in the previous displayed code
block is listed next. The code for deferred drawing is discussed in Section 4.2.4.

void Renderer::Draw (Node* pkNode)
{

if ( !DrawDeferred )
{

m_pkNode = pkNode;
m_pkGlobalEffect = pkNode->GetEffect();

assert( m_pkGlobalEffect );
(this->*m_pkGlobalEffect->Draw)();

m_pkNode = NULL;
m_pkGlobalEffect = NULL;

}
else
{

m_kDeferredObject.SetElement(m_iDeferredQuantity,pkNode);
m_kDeferredIsGeometry.SetElement(m_iDeferredQuantity,false);
m_iDeferredQuantity++;

}
}
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The global effect has a Renderer function assigned to its Draw data member. The
function encapsulates the semantics necessary to correctly draw the object. Pseu-
docode for the drawing function is

void DerivedRenderer::DrawGlobalFeature ()
{

// Hang onto the effect with a smart pointer (prevent
// destruction).
EffectPtr spkSaveEffect = m_pkGlobalEffect;

// Allow reentrancy to drawing at the node m_pkNode. By
// having a NULL effect, the node will just propagate the
// drawing call to its children.
m_pkNode->SetEffect(NULL);

// do whatever, including calls to m_pkNode->Draw(*this,...)

// Restore the effect.
m_pkNode->SetEffect(spkSaveEffect);

}

Should you add a function such as the above to support a new effect, you must
add a pure virtual function to the base class, Renderer::DrawGlobalFeature. Currently,
the base class has

virtual void DrawBumpMap () = 0;
virtual void DrawEnvironmentMap () = 0;
virtual void DrawGlossMap () = 0;
virtual void DrawPlanarReflection () = 0;
virtual void DrawPlanarShadow () = 0;
virtual void DrawProjectedTexture () = 0;

Corresponding Effect-derived classes are in the scene graph management system.
Each one sets its Draw data member to one of these function pointers.



C h a p t e r 4
Advanced Scene
Graph Topics

4.1 Level of Detail

Level of detail (LOD) was a topic made popular when CPUs and GPUs were not so
powerful. The idea is to use a coarser-level geometric representation of an object that
has a similar appearance to the high-level representation, but requires less data to be
processed by the CPU and GPU. The evolution of GPUs to handle large quantities of
data has made level of detail less important in some situations. However, the concept
will always be important when objects are in the distance. A character made up of
10,000 triangles looks really good when close to the observer. No doubt you will
appreciate all the subtleties that the artist put into the texturing and lighting of the
character. The attractiveness of the character is emphasized by the fact that a large
number of pixels are colored due to the triangles in the object. When the character is
in the distance, though, you will fail to recognize most details. Those 10,000 triangles
are now covering only a small number of pixels, perhaps on the order of 10 to 100,
and those pixels suffer a lot of overdraw. Even if the character was rendered to 100
pixels, that means each pixel on average is drawn to by 100 triangles. You must agree
that this is a large waste of computational resources. Level of detail is designed to
provide a large number of triangles for an object when close to the observer, but fewer
triangles as the object moves away from the observer. The variation is an attempt to
keep the number of triangles affecting a pixel as small as possible.

A few categories of level of detail have been used in graphics. Sprites or billboards
are 2D representations of 3D objects that are used to reduce the complexity of the
object. For example, trees typically are drawn as a pair of rectangles with alpha-
blended textures, the pair intersecting in an X configuration. Another example is

299
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a grandstand in an automobile race. The audience is typically drawn as rows of
rectangular billboards that try to face the camera, but are constrained to rotate about
the vertical axis. Wild Magic supports billboards of this type, but also allows for solid
objects to be oriented to try to face an observer with a constraint to rotate about a
vertical axis.

Discrete LOD is the notion of creating multiple representations of the same object.
Each successive representation has less detail than the previous one, but the number
of representations is a small number. A switch node is used to select which represen-
tation is drawn. Selection can be based on the distance of a LOD center from the eye
point. The difference in the triangle counts between consecutive models is typically
large. Artists have to manually generate each model—a process that takes time.

Continuous LOD is an attempt to automate the generation of different-resolution
representations of an object. For triangle meshes, the generation amounts to remov-
ing a few triangles at a time while trying to preserve the shape of the object. The
process is also known as triangle mesh decimation. In this context, continuous level of
detail is really a discrete level of detail, but the difference in triangle count between
models is small. The representations are usually generated procedurally offline. Gen-
erating a good set of texture coordinates and normals can be difficult.

Infinite LOD refers to the ability to generate an arbitrary number of triangles
in a mesh that represents a smooth object. Given a surface representation of the
object, a subdivision method is applied to tessellate the surface at run time, and as
finely as you have the CPU time. Powerful processors on game consoles make surface
representation a good choice, but creating surface models still appears to be in the
realm of CAD/CAM and not game development.

I discuss each of these topics in this section.

4.1.1 Billboards

The class that supports billboards is BillboardNode. The interface is

class BillboardNode : public Node
{
public:

// The model space of the billboard has an up vector of
// (0,1,0) that is chosen to be the billboard’s axis of
// rotation.

// construction
BillboardNode (Camera* pkCamera = NULL, int iQuantity = 1,

int iGrowBy = 1);

// the camera to which the billboard is aligned
void AlignTo (Camera* pkCamera);
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protected:
// geometric updates
virtual void UpdateWorldData (double dAppTime);

Pointer<Camera> m_spkCamera;
};

The billboard is constrained so that it can only rotate about its up vector in
model space. The orientation is relative to a camera, so you either provide the camera
to the constructor or defer the attachment until later through a call to AlignTo.
The billboard alignment occurs during the UpdateGS pass. The BillboardNode class
overrides the virtual function UpdateWorldData that is called in the Spatial version of
UpdateGS. The implementation is

void BillboardNode::UpdateWorldData (double dAppTime)
{

Spatial::UpdateWorldData(dAppTime);

if ( m_spkCamera )
{

Vector3f kCLoc = World.ApplyInverse(
m_spkCamera->GetWorldLocation());

float fAngle = Mathf::ATan2(kCLoc.X(),kCLoc.Z());
Matrix3f kOrient(Vector3f::UNIT_Y,fAngle);
World.SetRotate(World.GetRotate()*kOrient);

}

for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->UpdateGS(dAppTime,false);
}

}

The call to Spatial::UpdateWorldData computes the billboard’s world transforms
based on its parent’s world transform and its local transforms. Notice that you should
not call the function Node::UpdateWorldData since that function updates its children.
The children of a BillboardNode cannot be updated until the billboard is aligned with
the camera.

The eye point is inverse transformed to the model space of the billboard. The
idea is to determine what local rotation must be applied to the billboard to orient
it correctly in world space. To align the billboard, the projection of the camera to
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the xz-plane of the billboard’s model space determines the angle of rotation about
the billboard’s model y-axis. If the projected camera is on the model axis (x = 0
and z = 0), the ATan2 returns zero (rather than NaN), so there is no need to trap this
degenerate case and handle it separately. The orientation matrix must be applied first
to the billboard before applying the world rotation matrix. This is true simply because
local transformations at a node are always applied before world transformations.

After the orientation about the y-axis, the geometric update can be propagated
to the children of the billboard node.

Nothing in the algorithm requires the billboard to be a flat rectangle. The sample
application in the folder

MagicSoftware/WildMagic3/Test/TestBillboardNode

illustrates how to use BillboardNode. Two objects are displayed, one a flat rectangle
and one a three-dimensional torus. As you move the camera through space using the
arrow keys, notice that both objects always rotate about their up axes to attempt to
face the camera.

4.1.2 Display of Particles

The Particles class was introduced in Section 3.3.4. Recall that a particle is a geo-
metric primitive with a location in space and a size. The Particles class encapsulates
a set of particles, called a particle system. The class interface for Particles is

class Particles : public TriMesh
{
public:

// construction and destruction
Particles (Vector3fArrayPtr spkLocations, FloatArrayPtr spkSizes,

bool bWantNormals);
virtual ~Particles ();

// data members
Vector3fArrayPtr Locations;
FloatArrayPtr Sizes;
float SizeAdjust;

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

virtual void SetEffect (Effect* pkEffect);

// If the Particles effect attributes are modified, the TriMesh
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// effect attributes need to be updated.
void RefreshEffect ();

protected:
Particles ();

// Generate attributes for the triangle mesh from the
// Particle effect.
void GenerateColorRGBs ();
void GenerateColorRGBAs ();
void GenerateUVs ();

// Drawing. The particles are billboards that always face the
// camera.
void GenerateParticles (const Camera* pkCamera);
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// Allow application to specify fewer than the maximum number
// of vertices to draw.
int m_iActiveQuantity;

// Store the effect that applies to the particle data. The data
// member Geometry::m_spkEffect will store the derived effect that
// applies to the triangle mesh that represents the particles.
EffectPtr m_spkParticleEffect;

};

The method GenerateParticles implements the construction of the billboard
squares as pairs of triangles. The renderer’s camera is an input because the squares
must always face the camera in the world. The natural inclination is to forward-
transform all the particle locations into the world coordinate system and build the
squares in world space. However, that is inefficient in time, especially when the
number of particles is large. Instead I inverse-transform the camera into the model
space of the particles, compute the squares’ vertices, and store them in the model
space vertex array of the TriMesh base class. Figure 4.1 shows how the triangles are
generated for a single particle.

The camera right, up, and view world direction vectors are R, U, and D, respec-
tively. The particles have world rotation matrix R. The scales and translations are not
used when transforming the camera to the model space of the particles. The cam-
era vectors in the particles’ model space are R′ = RTR, U′ = RTU, and D′ = RTD.
The point C is the particle location, which is the center of the square. The size of the
particle is σ , and the size adjustment is α. The vertices shown in the figure are
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Figure 4.1 The billboard square for a single particle.

V0 = C − ασ(U′ − R′)

V1 = C + ασ(U′ + R′)

V2 = C + ασ(U′ − R′)

V3 = C − ασ(U′ + R′).

If normal vectors are required, the four vertices are assigned the same quantity,

N0 = N1 = N2 = N3 = −D′.

The two triangle index triples are

T0 = 〈0, 1, 2〉, T1〈0, 2, 3〉.

The indices are initialized once, in the constructor of Particles, since they do not
change as the particles move about. The GenerateParticles call is made inside the
Draw function.

When an Effect object is attached to a Particles object, some complications
must be dealt with regarding rendering. Two inputs to the Particles constructor
are the particle locations and sizes. For display purposes, the particles are rendered
as billboards that have four times the number of vertices as particles. The rendering
system expects vertex attributes to occur for all vertices, so the Particles class must
create vertex attributes to correspond to the particle attributes. This is accomplished
by the functions GenerateColorRGBs, GenerateColorRGBAs, and GenerateUVs, which are
called by the SetEffect member function:
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void Particles::SetEffect (Effect* pkEffect)
{

m_spkParticleEffect = pkEffect;

// Clone an effect for the triangle mesh representing the
// particles.
m_spkEffect = pkEffect->Clone();

// quadruple the RGB colors
if ( pkEffect->ColorRGBs )

GenerateColorRGBs();

// quadruple the RGBA colors
if ( pkEffect->ColorRGBAs )

GenerateColorRGBAs();

// Generate textures and UVs for all active textures of
// m_spkEffect.
if ( pkEffect->Textures.GetQuantity() > 0 )

GenerateUVs();
}

The effect that a user sets is intended to apply to the particles themselves. That
effect is stored in the data member m_spkParticleEffect. The member m_spkEffect
is what is passed to the renderer, so it must have attributes that correspond to all the
vertices that are the corners of the billboards—four times the number of particles. A
clone is made of the effect through an abstract cloning system; you have no idea what
type the effect is, but Clone will give you the right thing. The color arrays and the
texture coordinate arrays must be replaced with ones that correspond to the billboard
corners. These arrays are created by the generate calls.

The implementation of the function GenerateColorRGBs is representative of the
other functions, so I only show one here:

void Particles::GenerateColorRGBs ()
{

int iLQuantity = Locations->GetQuantity();
int iVQuantity = 4*iLQuantity;
ColorRGB* akPColor = m_spkParticleEffect->ColorRGBs->GetData();
ColorRGB* akMColor = new ColorRGB[iVQuantity];
for (int i = 0, j = 0; i < iLQuantity; i++)
{

// get the particle color
ColorRGB& rkColor = akPColor[i];
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// assign it as the quad color, applied to all four vertices
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;
akMColor[j++] = rkColor;

}

m_spkEffect->ColorRGBs = new ColorRGBArray(iVQuantity,akMColor);
}

The number of allocated colors is iVQuantity, which is four times the number of
particles iLQuantity. The particle colors are stored in akPColor. The mesh colors
akMColor store four times the number of colors. Each particle color is copied into four
mesh color slots, which correspond to the vertices used as the corners of the billboard
that represents the particle. The last statement attaches the color array to the effect.

In the event that you change the particle attributes, only the member
m_spkParticleEffect is changed. You have to force the regeneration of attributes for
the mesh of billboard vertices. Do this by a call to RefreshEffect.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestParticles

illustrates how to use Particles. The particles look like fuzzy red spheres of various
sizes that move randomly about the screen. I have used a texture with an alpha
channel so that you cannot tell the billboards are rectangles. Try rotating the scene,
either with the virtual track ball or with the F1 through F6 function keys. Even though
the particles are displayed as billboards, the rotation seems to show that the particles
really are spherical.

4.1.3 Discrete Level of Detail

Discrete level of detail refers to constructing a small set of models: a high-resolution
one and many similar copies with decreasing numbers of triangles. According to
some logic at display time, one of the models in the set is selected for drawing. A
standard mechanism for selection is to use the distance between a LOD center, a point
associated with the model, and the eye point. The smaller the distance, the higher
the resolution model is selected. Conversely, the larger the distance, the lower the
resolution model is selected.

Since we would like all the models to hang around waiting to be selected, it is
convenient to have a node whose children are the models. But we do not want all
the children to be processed during recursive traversals of the scene graph. A node
that allows only one child at a time to be active is called a switch node. The class that
implements this is SwitchNode and has the interface
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class SwitchNode : public Node
{
public:

SwitchNode (int iQuantity = 1, int iGrowBy = 1);

enum { SN_INVALID_CHILD = -1 };

void SetActiveChild (int iActiveChild);
int GetActiveChild () const;
void DisableAllChildren ();

virtual void DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults);

protected:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

int m_iActiveChild;
};

The only data member is the index of the active child. If the active child index is set
to SN_INVALID_CHILD, no children of the switch node are picked or drawn. Otherwise,
only the active child is picked or drawn. Notice that I have not provided an override
for geometric state updates or render state updates. This means that calls to UpdateGS
and UpdateRS will propagate to all the children, even though only one is active. In my
opinion, it makes sense to propagate the UpdateRS call to all the children since they are
all representations of the same abstract object. The choice not to prevent propagation
of UpdateGS requires some explanation.

Suppose that an UpdateGS call propagates down a scene hierarchy and reaches a
switch node. If the switch node propagates the call only to the active child, then all
other children have world transformations and world bounding volumes that are
inconsistent with the rest of the scene. As long as those children remain inactive,
this is not a problem. Now suppose that you decide to select a different child to be
active. You most certainly want its geometric state to be current, so you need to call
UpdateGS on that child. Immediately after the update you change the active child back
to the previous one. At this time you do not know that the new active child does
not need an update. Then again, if other operations occurred between the switching,
you do not know if the active child does need an update. The conservative and safe
thing to do is always call UpdateGS when you switch. Unfortunately, if the children
are complicated objects with large subtrees representing them, you could be wasting
a lot of cycles calling UpdateGS when it is not needed. To avoid this, I chose not to
override UpdateGS and just let updates at predecessors take their course through the
scene. If you are daring, modify SwitchNode to maintain an array of Boolean values
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that indicate whether or not the children are up to date, and then override UpdateGS
to use those so that on a switch to a new active child, you only update if needed.

Picking, on the other hand, is limited to the active child. This makes sense since
the active child is presumably the only one you see displayed on the screen. If the
picking had to do with firing a laser gun at the level-of-detail object, even if that
object is not currently visible, it still makes sense to limit the picking to the active
child.

My version of a switch node supports only one active child. You might want a
more general variation that allows you to select a subset of children to be active. It is
simple enough to add a new class to the engine, perhaps called MultiswitchNode, that
allows you to specify which children are active. I leave the implementation details to
you.

For an automated switching system, where the switching is based on some desired
game logic, just derive a class from SwitchNode and add the automation. For example,
Wild Magic has a derived class DlodNode. (The acronym DLOD stands for “discrete
level of detail.”) The class interface is

class DlodNode : public SwitchNode
{
public:

// construction
DlodNode (int iQuantity = 1, int iGrowBy = 1);

// center for level of detail
Vector3f& ModelCenter ();
const Vector3f& GetModelCenter () const;
const Vector3f& GetWorldCenter () const;

// distance intervals for children
void SetModelDistance (int i, float fMinDist, float fMaxDist);
float GetModelMinDistance (int i) const;
float GetModelMaxDistance (int i) const;
float GetWorldMinDistance (int i) const;
float GetWorldMaxDistance (int i) const;

protected:
// Switch the child based on distance from world LOD center to
// camera.
void SelectLevelOfDetail (const Camera* pkCamera);

// drawing
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// point whose distance to camera determines correct child
Vector3f m_kModelLodCenter;
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Vector3f m_kWorldLodCenter;

// squared distances for each LOD interval
TArray<float> m_kModelMinDist;
TArray<float> m_kModelMaxDist;
TArray<float> m_kWorldMinDist;
TArray<float> m_kWorldMaxDist;

};

The parameters you may choose are a model center and ranges of distances for
each child. The model center is, of course, specified relative to the coordinate system
implied by a parent node (if any). The model distance ranges are intended to be
disjoint intervals, but the system does work properly if they overlap slightly. The
world center and world distance ranges are automatically computed by DlodNode.
During the drawing pass, the distance is computed between the world center and the
eye point. The world distance interval that contains the computed distance is located,
and the corresponding child is made active. The distance calculations and the child
selection are implemented in SelectLevelOfDetail, a function that is called by Draw.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestDlodMesh

illustrates how to use DlodNode. The objects are convex polyhedra. Polyhedra with
a larger number of vertices are drawn when the abstract object is close to the eye
point. Polyhedra with a smaller number of vertices are drawn when the object is far
from the eye point. The switching is quite noticeable, but that is the intent of the
sample application. In a game, you want your artists to construct models so that the
switching is not that noticeable.

4.1.4 Continuous Level of Detail

The algorithm I discussed in [Ebe00] for continuous LOD regarding triangle meshes
is from the articles [GH97, GH98]. The book discussion is shy on the details for im-
plementation, but so are the papers (as is true with many research articles since page
limits are usually imposed). I will take the opportunity to illustrate the basic concepts
for triangle mesh decimation by using line mesh decimation in two dimensions.

The simplest example is reduction of vertices in a nonintersecting open polyline
or a closed polyline that is a simple closed curve (not self-intersecting). The polyline
has vertices {Xi}ni=0. The algorithm removes one vertex at a time based on weights
assigned to the vertices. A vertex weight is a measure of variation of the polyline at
the specified vertex. A simple measure of weight wi for vertex Xi is based on the three
consecutive vertices Xi−1, Xi, and Xi+1,

wi = Distance2(Xi , Segment(Xi−1, Xi+1))

Length2(Segment(Xi−1, Xi+1))
, (4.1)
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where Segment(U, V) denotes the line segment from U to V. The vertex that is
removed first is the one corresponding to the minimum weight. Observe that if
the minimum weight is zero, then Xi is already a point on Segment(Xi−1, Xi+1).
Removing zero-weight points first is ideal for polyline reduction.

Special handling is required at the end points X0 and XN . The easiest thing to do
is assign w0 = wn = ∞; that is, the end points are never removed. The polyline is
reduced a vertex at a time until only two vertices remain, the end points. However, it
is possible that Xn = X0, in which case the polyline is closed. Assigning infinite weight
to X0 leads to that point always occurring in a reduction. Instead, the weight formula
can be applied to every vertex in a closed polyline with the understanding that the
indices are selected modulo n.

Other definitions for vertex weights may be used. For example, a larger neigh-
borhood of Xi might be used. Or an interpolating polynomial curve could be used
to assign the curvature of that curve to each vertex. The choices are many, but the
algorithm for determining the order of removal of the vertices can be developed in-
dependently of the weight definition.

The algorithm considered here just removes vertices, one at a time. The vertices
of the reduced polyline form a subset of the vertices of the original polyline. This is
convenient, but not necessary. If Xi provides the minimum weight of all vertices, it is
possible to replace the triple 〈Xi−1, Xi , Xi+1〉 by the pair 〈Yi−1, Yi+1〉, where Yi−1 and
Yi+1 are quantities derived from the original triple, and possibly from other nearby
vertices.

A Simple Algorithm

The simplest algorithm for reduction is a recursive one. Given a polyline P = {Xi}ni=0,
compute the weights {wi}ni=0. Search the weights for the minimum weight wk. Re-
move Xk from P to obtain the polyline P ′ that has n − 1 vertices. Repeat the algo-
rithm on P ′. This is an O(n2) algorithm since the first pass processes n vertices, the
second pass processes n − 1 vertices, and so on. The total number of processed ver-
tices is n + (n − 1) + . . . + 3 = n(n + 1)/2 − 3.

A Fast Algorithm

A faster algorithm is called for. All n weights are calculated on the first pass. When a
vertex Xi is removed from P , only the weights for Xi−1 and Xi+1 are affected. The cal-
culation of all weights for the vertices of P ′ involves many redundant computations.
Moreover, if only a couple of weights change, it is not necessary to search the entire
sequence of weights for the minimum value. A heap data structure can be used that
supports an O(1) lookup. If the heap is implemented as a complete binary tree, the
minimum occurs at the root of the tree. When the minimum is removed, an O(log n)

update of the binary tree is required to convert it back to a heap. The initial construc-
tion of the heap requires a comparison sort of the weights, an O(n log n) operation.
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The fast reduction requires an additional operation that is not part of the classic
heap data structure. The heap is initially reconstructed in O(n log n) time. The mini-
mum value is removed, and the binary tree is reorganized to form a heap in O(log n)

time. The vertex removal causes a change in two weights in the heap. Once those
weights are changed, the binary tree will no longer represent a heap. If we can remove
the two old weights from the heap, we could then add the two new weights. Unfor-
tunately, the classic heap data structure does not support removing an element from
any location other than the root. As it turns out, if a weight is changed in the heap,
the corresponding node in the binary tree can be propagated either toward the root
of the tree or toward the leaves of the tree, depending on how the weight compares
to the weights of its parent or child nodes. Since the propagation can be performed
without changing the tree structure, this update operation is also O(log n). If the
changed weight is smaller than its parent weight, the node is swapped with its parent
node, thereby preserving the heap property. If the changed weight is larger than its
children’s weights, the node is swapped with the child node of largest weight, thereby
preserving the heap property.

Now we encounter the next complication. If a weight at an internal heap node
changes, we need to know where that node is located to perform the O(log n) update.
If we had to search the binary tree for the changed node, that operation is O(n),
a linear search. The only property of a minimum heap is that the weights of the
two children of a node are smaller or equal to the weight of the node itself. That is
not enough information for a search query to decide which child should be visited
during the tree traversal, a necessary piece of information to reduce the search to
O(log n). The solution to this problem is to create a data structure for each vertex
in the polyline. Assuming that the binary tree of the heap is stored in a contiguous
array, the vertex data structure must store the index to the heap node that represents
the vertex. That index is changed whenever a heap element is propagated to its parent
or to a child.

An Illustration

An example is given here for a 16-sided polygon with vertices Xk = Ak(cos(2πk/16),
sin(2πk/16)) for 0 ≤ k < 16, where the amplitudes were randomly generated as
A0 = 75.0626, A1 = 103.1793, A2 = 84.6652, A3 = 115.4370, A4 = 104.2505, A5 =
98.9937, A6 = 92.5146, A7 = 119.7981, A8 = 116.1420, A9 = 112.3302, A10 =
83.7054, A11 = 117.9472, A12 = 110.5251, A13 = 100.6768, A14 = 90.1997, and
A15 = 75.7492. Figure 4.2 shows the polygon with labeled vertices.

The min heap is stored as an array of 16 records. Each record is of the form

HeapRecord
{

int V; // vertex index
int H; // heap index
float W; // weight (depends on neighboring vertices)
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Figure 4.2 The initial 16-sided polygon to be reduced a vertex at a time.

HeapRecord* L; // points to record of left vertex neighbor
HeapRecord* R; // points to record of right vertex neighbor

}

The vertex index and doubly linked list structure represent the polyline itself. As
vertices are removed, the list is updated to reflect the new topology. The weight is
the numeric value on which the heap is sorted. As mentioned earlier, the heap index
allows for an O(1) lookup of the heap records whose weights change because of a
vertex removal. Without this index, an O(n) search on the vertex indices in the heap
would be necessary to locate the heap records to change.

Initialization of the Heap

The heap records are initialized with the data from the original vertices. The vertex
index and heap index are the same for this initialization. Figure 4.3 shows the heap
array after initialization. The heap indices, the vertex indices, and the weights are
shown. The weight of vertex Xi is calculated using Equation (4.1), where the left
neighbor is X(i−1) mod 16 and the right neighbor is X(i+1) mod 16.

To be a min heap, each node Hi in the binary tree must have a weight that is
smaller or equal to the weights of its child nodes H2i+1 and H2i+2. The heap array
must be sorted so that the min heap property at each record is satisfied. This can be
done in a nonrecursive manner by processing the parent nodes from the bottom of
the tree toward the root of the tree. The first parent in the heap is located. In this
example, H7 is the first parent to process. Its only child, H15, has a smaller value, so
H7 and H15 must be swapped. Figure 4.4 shows the state of the heap array after the
swap.
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Figure 4.3 Initial values in the heap array.
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Figure 4.4 The heap array after swapping H7 and H15 in Figure 4.3.
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Figure 4.5 The heap array after swapping H3 and H7 in Figure 4.4.

The next parent to process is H6. The weight at H6 is smaller than the weights of
its two children, so no swapping is necessary. The same is true for the parent nodes
H5 and H4. Node H3 has a weight that is larger than both its children’s weights. A
swap is performed with the child that has smallest weight; in this case H3 and H7 are
swapped. Figure 4.5 shows the state of the heap array after the swap.

Before the swap, the subtree at the child is already guaranteed itself to be a min
heap. After the swap, the worst case is that the weight needs to be propagated down
a linear path in the subtree. Any further swaps are always with the child of minimum
weight. In the example, an additional swap must occur, this time between H7 and
H15. After the swap, the processing at H3 is finished (for now), and the subtree at H3
is itself a min heap. Figure 4.6 shows the state of the heap array after the swap of H7
and H15.

The next parent to process is H2. The weight at H2 is larger than the minimum
weight occurring at child H6, so these two nodes must be swapped. Figure 4.7 shows
the state of the heap array after the swap.

Another swap must occur, now between H6 and the minimum weight child H13.
Figure 4.8 shows the state of the heap array after the swap.

The next parent to process is H1. The weight at H1 is larger than the minimum
weight occurring at child H3, so these two nodes must be swapped. Figure 4.9 shows
the state of the heap array after the swap.

Another swap must occur, now between H3 and the minimum weight child H8.
Figure 4.10 shows the state of the heap array after the swap.
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Figure 4.6 The heap array after swapping H7 and H15 in Figure 4.5.
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Figure 4.7 The heap array after swapping H2 and H6 in Figure 4.6.
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Figure 4.8 The heap array after swapping H6 and H13 in Figure 4.7.
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Figure 4.9 The heap array after swapping H1 and H3 in Figure 4.8.
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Figure 4.10 The heap array after swapping H3 and H8 in Figure 4.9.

The last parent to process is H0. The weight at H0 is larger than the minimum
weight occurring at child H1, so these two nodes must be swapped. Figure 4.11 shows
the state of the heap array after the swap.

Another swap must occur, now between H1 and the minimum weight child H4,
but no other swaps are necessary in that subtree. Figure 4.12 shows the state of the
heap array after the swap. Now the heap array does represent a min heap since the
children weights at each node are smaller or equal to the parent weights.

Remove and Update Operations

The vertex with minimum weight is the first to be removed from the polyline. The
root of the heap corresponds to this vertex, so the root is removed from the heap.
The vertex to be removed is V15. To maintain a complete binary tree, the last item in
the heap array is placed at the root location. Figure 4.13 shows the state of the heap
array after moving the last record to the root position.

The array does not satisfy the min heap property since the root weight is larger
than the minimum child weight. The root node H0 must be swapped with H1, the
child of minimum weight. The swapping is repeated as long as the minimum weight
child has smaller weight than the node under consideration. In this example, H1 and
H4 are swapped, and then H4 and H9 are swapped. Figure 4.14 shows the state of the
heap after the three swaps.

This is the typical operation for removing the minimum element from the heap.
However, in the polyline application, there is more work to be done. The weights of
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Figure 4.11 The heap array after swapping H0 and H1 in Figure 4.10.
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Figure 4.12 The heap array after swapping H1 and H4 in Figure 4.11.

vertices V14 and V0 depended on V15. The right neighbor of V14 was V15, but is now
V0. The left neighbor of V0 was V15, but is now V14. The weights of V14 and V0 must be
recalculated because of the change of neighbors. The old weight for V14 is 187.79, and
the new weight is 164.52. The old weight for V0 is 52.65, and the new weight is 52.77.
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Figure 4.13 The heap array after removing the contents of H0 and moving the contents of H15 to
H0.
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Figure 4.14 The heap after swapping H0 with H1, H1 with H4, and H4 with H9.

Neither change leads to an invalid heap, so no update of the heap array is necessary.
Figure 4.15 shows the state of the heap after the two weight changes. Figure 4.16 shows
the polygon of Figure 4.2 and the polygon with V15 removed.

The next vertex to be removed is V4. The contents of the last heap node H14 are
moved to the root, resulting in an invalid heap. Two swaps must occur, H0 with H1
and H1 with H3. Figure 4.17 shows the state of the heap after these changes.

The adjacent vertices whose weights must be updated are V3 and V5. For V3, the
old weight is 1435.54, and the new weight is 1492.74. This does not invalidate the
heap at node H9. For V5, the old weight is 120.11, and the new weight is 157.11.
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Figure 4.15 The heap after changing the weights on V0 and V14. The new weights are shown in
gray.
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Figure 4.16 (a) The polygon of Figure 4.2 and (b) the polygon with V15 removed.

This change invalidates the heap at node H5. Nodes H5 and H12 must be swapped to
restore the heap. Figure 4.18 shows the state of the heap after the two weight changes
and the swap. Figure 4.19 shows the polygon of Figure 4.16(b) and the polygon with
V4 removed.

The next vertex to be removed is V0. The contents of the last heap node H13 are
moved to the root, resulting in an invalid heap. Two swaps must occur, H0 with H2
and H2 with H6. Figure 4.20 shows the state of the heap after these changes.

The adjacent vertices whose weights must be updated are V1 and V14. The left
neighbor is processed first in the implementation. For V14, the old weight is 164.52,
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Figure 4.17 The heap after moving H14 to H0 and then swapping H0 with H1 and H1 with H3.
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Figure 4.18 The heap after changing the weights on V3 and V5 and swapping H5 and H12. The
new weights are shown in gray.

and the new weight is 65.80. The heap is invalid since the parent node H1 has a weight
that is larger than the weight at H3. Two swaps must occur, H3 with H1 and H1 with
H0. For V1, the old weight is 2258.57, and the new weight is 791.10, but the heap is still
valid. Figure 4.21 shows the state of the heap after the weight change and the swaps.
Figure 4.22 shows the polygon of Figure 4.19(b) and the polygon with V0 removed.

The process is similar for the remaining vertices, removed in the order V14, V6,
V5, V8, V12, V2, V13, V10, V9, and V1. Vertices V7, V3, and V11 remain. Figure 4.23
shows the corresponding reduced polygons. Collapses occur from left to right, top to
bottom.
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Figure 4.19 (a) The polygon of Figure 4.16(b) and (b) the polygon with V4 removed.
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Figure 4.20 The heap after moving H13 to H0, then swapping H0 with H2 and H2 with H6.

Dynamic Change in Level of Detail

The vertex collapses can be computed according to the algorithm presented previ-
ously. An application might want not only to decrease the level of detail by vertex
collapses, but also increase it on demand. To support this, the edge connectivity must
be stored with the polyline. The connectivity data structure will change based on the
given addition or removal of a vertex.

An array of edge indices is used to represent the connectivity. The initial con-
nectivity for an open polyline of n vertices is an array of 2n − 2 indices grouped in
pairs as 〈0, 1〉, 〈1, 2〉, . . . , 〈n − 2, n − 1〉. A closed polyline has one additional pair,
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Figure 4.21 The heap after changing the weight on V14, swapping H3 with H1 and H1 with H0,
and then changing the weight on V1. The new weights are shown in gray.
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Figure 4.22 (a) The polygon of Figure 4.19(b) and (b) the polygon with V0 removed.

〈n − 1, 0〉. If vertex Vi is removed, the pair of edges 〈i − 1, i〉 and 〈i , i + 1〉 must be
replaced by a single edge 〈i − 1, i + 1〉. The change in level of detail amounts to in-
serting, removing, and modifying the elements of an array, but an array is not well
suited for such operations.

Instead, the initial array of edge indices should be sorted so that the last edge
in the array is the first one removed by a collapse operation. If the indices of the
collapsed vertices are sorted as c0, . . . , cn−1 where the last vertex in the array is the
first one removed by a collapse operation, then the initial edge array should be

〈c0, c0 + 1〉, 〈c1, c1 + 1〉, . . . , 〈cn−1, cn−1 + 1〉 = 〈e0, . . . e2n−1〉,
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Figure 4.23 The remaining vertex collapses, occurring left to right, then top to bottom.

where the index sum i + 1 is computed modulo n to handle both open and closed
polylines. To remove the vertex with index cn−1, the last edge 〈e2n−2, e2n−1〉 is simply
ignored. In an implementation, an index to the last edge in the array is maintained.
When the level of detail decreases, that index is decremented. When the level in-
creases, the index is incremented. The removal of the edge indicates that the vertex
with index cn−1 is no longer in the polyline. That same index occurs earlier in the
edge array and must be replaced by the second index of the edge. In the current ex-
ample, e2n−2 = cn−1 and e2n−1 = cn−1 + 1. A search is made in the edge array for the
index emn−1

that is also equal to cn−1, then emn−1
← e2n−1. The mapping mn−1 should

be stored in order to increase the level of detail by restoring the original value of emn−1

to cn−1.
The algorithm is iterative. To remove the vertex with index ck, observe that e2k =

ck and e2k+1 = ck + 1. The edge quantity is decreased by one. A search is made in
〈e0, . . . , e2k−1〉 for the index emk

that is equal to ck, then replacing emk
← e2k+1.

Adding the vertex with index ck back into the polyline is accomplished by replacing
emk

← ck. The iteration stops when k = 1 for open polylines so that the final line
segment is not collapsed to a single point. The iteration stops when k = 5 for closed
polylines so that the smallest level of detail is a triangle that is never collapsed to a
line segment.
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Table 4.1 The vertex collapses for the 16-sided polygon in Figure 4.2.

Vertex Map Edges

15 25 〈3, 4〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 0〉〈0, 1〉〈4, 5〉
4 1 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 0〉〈0, 1〉
0 25 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉〈14, 1〉
14 13 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 6〉〈6, 7〉
6 21 〈3, 5〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉〈5, 7〉
5 1 〈3, 7〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉〈8, 9〉
8 5 〈3, 7〉〈11, 12〉〈7, 9〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉〈12, 13〉
12 3 〈3, 7〉〈11, 13〉〈7, 9〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 1〉〈2, 3〉
2 7 〈3, 7〉〈11, 13〉〈7, 9〉〈1, 3〉〈9, 10〉〈10, 11〉〈13, 1〉
13 3 〈3, 7〉〈11, 1〉〈7, 9〉〈1, 3〉〈9, 10〉〈10, 11〉
10 9 〈3, 7〉〈11, 1〉〈7, 9〉〈1, 3〉〈9, 11〉
9 5 〈3, 7〉〈11, 1〉〈7, 11〉〈1, 3〉
1 3 〈3, 7〉〈11, 3〉〈7, 11〉

Consider the example shown previously that consisted of a 16-sided polygon. The
vertex indices ordered from last removed to first removed are 3, 11, 7, 1, 9, 10, 13, 2,
12, 8, 5, 6, 14, 0, 4, 15. The initial edge array is

〈3, 4〉〈11, 12〉〈7, 8〉〈1, 2〉〈9, 10〉〈10, 11〉〈13, 14〉〈2, 3〉〈12, 13〉
〈8, 9〉〈5, 6〉〈6, 7〉〈14, 15〉〈0, 1〉〈4, 5〉〈15, 0〉,

and the edge quantity is Qe = 16. The vertex quantity is Qv = 16. The removal of
V15 is accomplished by decrementing Qv = 15 and Qe = 15. The last edge 〈15, 0〉 is
ignored (iterations over the edges use Qe as the upper bound for the loop index).
A search is made in the first 15 edges for index 15 and is found at e[25] (in the
edge 〈14, 15〉). That index is replaced by e[25]= 0, where 0 is the second index of
the removed edge 〈15, 0〉. The mapping index is m15 = 25. Table 4.1 lists the vertex
collapses, the mapping indices, and the edge array (only through the valid number of
edges).

Given the final triangle after all collapses, to restore vertex V9 we need to incre-
ment Qv to 4, increment Qe to 4, and set e[5]= 9, where 5 is the mapping index
associated with V9.
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Reordering Vertices

In an application that wants to rigidly transform the polyline, it might be useful to
have the vertices at any level of detail stored as a packed array. This supports any
optimized code for batch-transforming a contiguous block of vertices. The collapse
indices (c0, c1, . . . , cn−1) represent a permutation of (0, 1, . . . , n − 1). The vertices
themselves can be reordered using this permutation. Subsequently, the edge indices
themselves must be converted properly. The reindexing requires the inverse permu-
tation, (d0, d1, . . . , dn−1), where dci

= i. The mapping index does not change since
the edge reindexing does not change the order of items in the edge array. If Ui are the
reordered vertices, then Ui = Vci

. If an edge is E = 〈ei , ej〉, then the reindexed edge
is F = 〈dei

, dej
〉.

For example, the inverse permutation for

�c = (3, 11, 7, 1, 9, 10, 13, 2, 12, 8, 5, 6, 14, 0, 4, 15)

is

�d = (13, 3, 7, 0, 14, 10, 11, 2, 9, 4, 5, 1, 8, 6, 12, 15).

The initial edge array is

〈0, 14〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉
〈12, 15〉〈13, 3〉〈14, 10〉〈15, 13〉.

The vertex collapse table from the last example is reindexed, as shown in Table 4.2.

Triangle Mesh Decimation

The ideas for line mesh decimation apply directly to triangle mesh decimation, but
there are many more tedious details to take care of. A vertex collapse for a line mesh
amounted to removing a vertex of minimum weight and then informing its right
neighbor to connect itself to the left neighbor. For a triangle mesh, the equivalent
concept is an edge collapse. An edge 〈vk , vt〉 of minimum weight is removed. The
vertex vk is the keep vertex and vt is the throw vertex. The edge and vt are removed
from the mesh. All triangles sharing the edge are deleted. All remaining triangles
sharing vt have it replaced by vk. A typical example is shown in Figure 4.24.

The first collapse is from the upper-left image to the upper-right image. The edge
〈v2, v4〉 is removed. The keep vertex is v2, and the throw vertex is v4. The triangles
〈v2, v0, v4〉 and 〈v2, v4, v3〉 are removed. The remaining triangles that shared vertex
v4 now have that vertex replaced by v2.

The second collapse is from the upper-right image to the lower-right image. The
edge 〈v2, v6〉 is removed. The keep vertex is v2, and the throw vertex is v6. The
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Table 4.2 The vertex collapses for the previous example.

Vertex Map Edges

15 25 〈0, 14〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 13〉〈13, 3〉〈14, 10〉
14 1 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 13〉〈13, 3〉
13 25 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 12〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉〈12, 3〉
12 13 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 11〉〈11, 2〉
11 21 〈0, 10〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉〈10, 2〉
10 1 〈0, 2〉〈1, 8〉〈2, 9〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉〈9, 4〉
9 5 〈0, 2〉〈1, 8〉〈2, 4〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉〈8, 6〉
8 3 〈0, 2〉〈1, 6〉〈2, 4〉〈3, 7〉〈4, 5〉〈5, 1〉〈6, 3〉〈7, 0〉
7 7 〈0, 2〉〈1, 6〉〈2, 4〉〈3, 0〉〈4, 5〉〈5, 1〉〈6, 3〉
6 3 〈0, 2〉〈1, 3〉〈2, 4〉〈3, 0〉〈4, 5〉〈5, 1〉
5 9 〈0, 2〉〈1, 3〉〈2, 4〉〈3, 0〉〈4, 1〉
4 5 〈0, 2〉〈1, 3〉〈2, 1〉〈3, 0〉
3 3 〈0, 2〉〈1, 0〉〈2, 1〉

triangles 〈v2, v6, v3〉, 〈v2, v6, v7〉, and 〈v2, v5, v6〉 are removed. No other triangles
shared v6, so the remaining triangles need no adjusting.

The third collapse is from the lower-right image to the lower-left image. The
edge 〈v2, v1〉 is removed. The keep vertex is v2, and the throw vertex is v1. The
triangles 〈v2, v1, v0〉 and 〈v2, v3, v1〉 are removed. No other triangles shared v1, so
the remaining triangles need no adjusting.

A not-so-typical example that illustrates how a mesh can fold over, independent
of the geometry of the mesh, is shown in Figure 4.25. In Figure 4.25(a), the triangles
are counterclockwise ordered as 〈0, 4, 3〉, 〈4, 1, 2〉, and 〈4, 2, 3〉. The collapse of
vertex 4 to vertex 0 leads to deletion of 〈0, 4, 3〉 and modification of 〈4, 1, 2〉 to
〈0, 1, 2〉 and modification of 〈4, 2, 3〉 to 〈0, 2, 3〉. Both modified triangles are visible
in the figure as counterclockwise.

In Figure 4.25(b), the modified triangle 〈0, 2, 3〉 is counterclockwise. This is by
design; collapses always preserve this. But the triangle appears to be clockwise in the
figure: upside down, it folded over. We can avoid the problem by doing a look-ahead
on the collapse. If any potentially modified triangle causes a folding, we assign an
infinite weight to the offending edge to prevent that edge from collapsing.

Another issue when collapsing edges in an open mesh is that the mesh can shrink.
To avoid shrinking, we can also assign infinite weights to boundary edges of the
original mesh. And finally, if we want to preserve the mesh topology, we can assign
infinite weights to edges with three or more shared triangles.
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Figure 4.24 A sequence of three edge collapses in a triangle mesh.

A well-chosen set of data structures is needed to support edge collapse operations.
It is sufficient to store the following information about the mesh:

Vertex =
{

int V; // index into vertex array
EdgeSet E; // edges sharing V
TriangleSet T; // triangles sharing vertex

}

Edge =
{

int V0, V1; // store with V0 = min(V0,V1)
TriangleSet T; // triangles sharing edge
int H; // index into heap array
float W; // weight of edge

}

Triangle =
{

int V0, V1, V2; // store with V0 = min(V0,V1,V2)
int T; // unique triangle index

}
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Figure 4.25 An edge collapse resulting in the mesh folding over on itself: (a) no folding and
(b) folding.

An insert operation modifies the appropriate data structures and creates new
components only when necessary. A remove operation also modifies the data struc-
tures and deletes components only when their reference counts decrease to zero.

The heap is implemented as an array of pointers to Edge objects. It is initialized
just as for polylines. An iteration is made over the edges in the mesh, and the heap
array values are filled in. An initial sort is made to force the array to represent a min
heap. Some pseudocode for the edge collapse is

void EdgeCollapse (int VKeep, int VThrow)
{

for each triangle T sharing edge <VKeep,VThrow> do
RemoveTriangle(T);

for each triangle T sharing VThrow do
{

RemoveTriangle(T);
replace VThrow in T by VKeep;
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InsertTriangle(T);
}

// Set of potentially modified edges consists of all edges
// shared by the triangles containing the VKeep. Modify
// the weights and update the heap.
EdgeSet Modified;
for each triangle T sharing VKeep do

insert edges of T into Modified;

for each edge E in Modified do
{

compute weight E.W;
update the heap at index E.H;

}
}

During the insertion and removal of triangles, edges are inserted and/or deleted
in a weak sense. Multiple attempts are made to insert an edge shared by two modified
triangles. Each time the attempt occurs, the offending triangle has changed, so the
edge weight changes. To reduce the code complexity, we just allow the edge weight
to be updated each time rather than trying to minimize the number of updates. Of
course, if an edge is inserted the first time, its weight is newly added to the heap.

When an edge is deleted, it must be removed from the heap. However, the edge
might not be at the root of the heap. You may artificially set the weight to be −∞ and
call the heap update to bubble the edge to the root of the heap, and then remove it.

Vertices are also deleted and sometimes inserted. Although the edge collapse
makes it appear as if only the throw vertex is deleted, others can be. After each
collapse, you can store the deleted vertex indices in an array that eventually represents
the permutation for reordering vertices.

The function that removes triangles can be set up to store an array of the deleted
triangle indices for use in reordering the triangle connectivity array.

After all edge collapses, you can build the collapse records using the pseudocode

CollapseRecord
{

int VKeep, VThrow; // the edge to collapse
int VQuantity; // vertices remaining after the collapse
int TQuantity; // triangles remaining after the collapse

// connectivity indices in [0..TQ-1] that contain VThrow
int IQuantity;
int Index[];

}
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Dynamic Change in Level of Detail

Each edge collapse in the triangle decimation generated a set of deleted vertices and
a set of deleted triangles. This information is used to generate a sequence of records
representing the collapses. The sequence can be used at run time to change the level
of detail. Just as for polylines, sort the triangle index array so that the last triangles
in the array are the first triangles deleted by an edge collapse. Sort the vertices so that
the last vertices in the array are the first vertices deleted by an edge collapse. This
requires permuting the indices in the triangle connectivity array—something done
as a postprocessing step to the edge collapses.

To decrease the level of detail: Decrement the index array quantity by the amount
stored in the corresponding record. Replace the appropriate indices in the first part
of the array by the index of the deleted vertex.

To increase the level of detail: Increment the index array quantity by the amount
stored in the corresponding record. Restore the appropriate indices in the first part
of the array. This requires remembering where you changed the indices with each
collapse. This mapping can be computed once, at decimation time, and then used
during run time.

The vertex reordering supports batch transforming of contiguous blocks of ver-
tices and avoids having to repack data for the renderer each time the level of detail
changes.

Source Supporting Continuous Level of Detail

The source files that implement the scheme described here are in the Detail subfolder
of the Source folder. In particular, look at the files with first names Wm3CreateClodMesh,
Wm3CollapseRecord, and Wm3ClodMesh. The class for triangle mesh decimation is Cre-
ateClodMesh. The public portion of the interface is

class CreateClodMesh
{
public:

CreateClodMesh (int iVQuantity, Vector3f* akVertex,
int iTQuantity, int* aiTConnect, int& riCQuantity,
CollapseRecord*& rakCRecord);

~CreateClodMesh ();

template <class T> void Reorder (T*& ratVertexAttribute);
};

The creation of the collapse records and reordering of the vertex and index arrays
in the Wild Magic version 3 implementation are nearly the same as what appeared in
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Wild Magic version 2. One major difference, though, is in how vertex attributes are
handled. In version 2, you had to pass the color, normal, and/or texture coordinate
arrays to the CreateClodMesh constructor. The attributes were reordered using the
same permutation applied to the array of vertex locations. In version 3, you reorder
the vertex attributes after the construction of the collapse records. The template
class member function Reorder does the work. The version 2 code could not handle
additional attributes such as texture coordinates for multiple textures. The idea in
version 3 is that you can reorder as many arrays of attributes as you like.

Also, the version 2 class was derived from a base class that provided the vertex-
edge-triangle data structure to support dynamic insertion and removal of mesh
items. The base class had a lot of operations not needed by triangle mesh decimation.
In version 3, I have removed that base class and implemented the data structures
directly in CreateClodMesh.

The source code for CreateClodMesh is about 1200 lines of tedious details. Such
is the fate of dynamic manipulation of meshes. If you can follow the high-level
description I provided previously, you should be able to trace your way through the
source code to understand how it relates to the discussion.

The class ClodMesh is derived from TriMesh. The public interface is

class ClodMesh : public TriMesh
{
public:

// Construction and destruction. ClodMesh accepts
// responsibility for deleting the input arrays.
ClodMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,

bool bGenerateNormals, int iRecordQuantity,
CollapseRecord* akRecord);

virtual ~ClodMesh ();

// LOD selection is based on manual selection by the
// application. To use distance from camera or screen space
// coverage, derive a class from WmlClodMesh and override
// ’GetAutomatedTargetRecord’.
int GetRecordQuantity () const;
int& TargetRecord ();
virtual int GetAutomatedTargetRecord ();

// Geometric updates. The Draw method will call this update
// and adjust the TriMesh quantities according to the current
// value of the target record. You can call this manually in
// an application that does not need to display the mesh.
void SelectLevelOfDetail ();

};
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You must create the collapse records using CreateClodMesh for the triangle meshes
of interest and then pass these to the constructor of ClodMesh. As the source code
comments indicate, you can manually set the target record in the sequence of collapse
records. The next drawing operation will internally call the function SelectLevel-
OfDetail, which updates the active vertex quantity and the active triangle quantity. To
automate the selection of the target record, you need only derive a class from ClodMesh
and override the GetAutomatedTargetRecord.

The sample application in the folder

MagicSoftware/WildMagic3/Test/TestClodMesh

illustrates how to use CreateClodMesh to decimate a TriMesh object that represents
a face and then create a ClodMesh object. The selection of the target record is based
on the distance from the eye point to the center of the world bounding sphere for
the mesh. The further away from the eye point the bounding sphere gets, the fewer
triangles are used in the face. The following function controls the target record when
the camera moves forward in the view direction:

void TestClodMesh::MoveForward ()
{

Application::MoveForward();

Vector3f kDiff = m_spkScene->WorldBound->Center
- m_spkCamera->GetWorldLocation();

float fDepth = kDiff.Dot(m_spkCamera->GetWorldDVector());
if ( fDepth <= m_spkCamera->GetDMin() )
{

m_spkClod->TargetRecord() = 0;
}
else if ( fDepth >= m_spkCamera->GetDMax() )
{

m_spkClod->TargetRecord() =
m_spkClod->GetRecordQuantity() - 1;

}
else
{

// Distance along camera direction controls triangle
// quantity.
float fN = m_spkCamera->GetDMin();
float fF = m_spkCamera->GetDMax();
float fRatio = (fDepth - fN)/(fF - fN);

// allow nonlinear drop-off
fRatio = Mathf::Pow(fRatio,0.5f);
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int iMaxIndex = m_spkClod->GetRecordQuantity() - 1;
int iIndex = (int)(iMaxIndex*fRatio);
m_spkClod->TargetRecord() = iIndex;

}
}

The base class MoveForward is called first, so the camera is moved a small amount
in the view direction. The vector difference between the eye point and the world
bounding sphere is projected onto the view direction. The length of the projection is
the fDepth variable in the code. If that depth is smaller than the near plane distance,
the target record is set to the first one in the list of collapse records, resulting in
all triangles in the mesh being displayed (at least those still in the view frustum).
If the depth is larger than the far plane distance, the target record is set to the last
collapse record, in which case the coarsest-resolution mesh is used for drawing the
face. The face edges were assigned infinite weight, so the mesh becomes flat only but
does not shrink. For depths between the near and far values, the target record index is
chosen between the minimum and maximum indices using a fractional power of the
same proportion that the depth has relative to the near and far distances of the view
frustum. A linear proportion could be used, but I wanted the quantity of triangles
drawn to drop off more rapidly as the face moves away from the eye point. I will save
the screen shots of this for the discussion of sample applications in Section 8.2.5.

4.1.5 Infinite Level of Detail

The classical way for obtaining infinite level of detail is to start with a functional
definition of a surface,

P(u, v) = (x(u, v), y(u, v), z(u, v))

for the parameters (u, v) either in a rectangle domain, usually 0 ≤ u ≤ 1 and 0 ≤
v ≤ 1, or in a triangular domain, usually u ≥ 0, v ≥ 0, and u + v ≤ 1. The parameter
domain is subdivided into triangles and the corresponding vertices are on the 3D
triangle mesh. For example, a rectangle domain can be subdivided a few steps as
shown in Figure 4.26. A triangle domain can be subdivided a few steps as shown in
Figure 4.27.

You have a lot of choices for surface functions to control the actual vertex loca-
tions associated with the input parameters. This topic is covered in more detail in
Section 4.3.

Another possibility for infinite level of detail is subdivision surfaces. These surfaces
are generated by starting with a triangle (or polygon) mesh. A refinement phase cre-
ates new vertices and reconnects them to create new (and usually smaller) triangles. A
smoothing phase moves the vertices to new locations. These two phases are repeated
alternately to any level of detail you prefer. Unlike parametric surfaces, subdivision
surfaces do not have a closed-form expression for the vertex locations. However, such
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Figure 4.26 A few subdivisions of a rectangle domain into triangles.

Figure 4.27 A few subdivisions of a triangle domain into triangles.

expressions are not really necessary if your goal is to generate some shapes for dis-
play. Vertex normals can be computed from the mesh of triangles without relying on
a parametric formula for the surface normals. Wild Magic version 3 does not imple-
ment subdivision surfaces, so I do not describe them in this book. For a well-written
summary of the topic, see [AMH02].

4.2 Sorting

The classic reason for geometric sorting is for correct drawing of objects, both opaque
and semitransparent. The opaque objects should be sorted from front to back, based
on an observer’s location, and the semitransparent objects should be sorted from
back to front. The sorted opaque objects are drawn first, and the sorted semitrans-
parent objects are drawn second.

Geometric sorting is not the only important reason for reorganizing your objects.
In many situations, changes in the render state can cause the renderer to slow down.
The most obvious case is when you have a limited amount of VRAM and more
textures than can fit in it. Suppose you have a sequence of six objects to draw, S1
through S6, and each object has one of three texture images assigned to it. Let I1, I2,
and I3 be those images; assume they are of the same size and that VRAM is limited in
that it can only store two of these at a time. Suppose the order of objects in the scene
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leads to the images being presented to the renderer in the order I1, I2, I3, I1, I2, I3.
To draw S1, I1 is loaded to VRAM and the object is drawn. Image I2 is then loaded to
VRAM and S2 is drawn. To draw S3, image I3 must be loaded to VRAM. There is no
room for it, so one of the images must be discarded from VRAM. Assuming a “least
frequently used” algorithm, I1 is discarded. At that point I3 is loaded, in which case
VRAM stores I2 and I3, and S3 is drawn. S4 requires I1 to be loaded to VRAM. That
image was just discarded, so it needs to be loaded again. Since I2 is the least frequently
used, it is discarded and I1 is loaded. Now VRAM stores I3 and I1. S4 may be drawn. S5
requires I2 to be in VRAM. Once again we have the undesirable situation of having
to reload an image that was just discarded. When all six objects have been drawn,
VRAM has performed four discard operations. Since sending large textures across
the memory bus to the graphics card is expensive, the discards can really reduce the
frame rate.

If we were instead to sort the objects by the images that they use, we would have
S1, S4, S2, S5, S3, and S6. Image I1 is loaded to VRAM, and S1 is drawn. We can
immediately draw S4 since it also uses I1 and that image is already in VRAM. Image
I2 is loaded to VRAM, and both S2 and S5 are drawn. In order to handle the last two
objects, VRAM must discard I1, load I3, and then draw S3 and S6. In this drawing
pass, only one discard has occurred. Clearly the sorting by texture image buys you
something in this example.

In general, if your profiling indicates that a frequent change in a specific render
state is a bottleneck, sorting the objects by that render state should be beneficial. You
set the render state once and draw all the objects.

The first three topics in this section are about geometric sorting. The first is on
sorting of spatial regions using binary space partitioning trees (BSP trees). The BSP
trees are not used for partitioning triangle meshes. The second is about portals, an
automatic method to cull nonvisible geometric objects. The third is on sorting the
children at a node. Since a drawing pass uses a depth-first traversal, the order of the
children is important. The last topic of the section is on deferred drawing to support
sorting by render state.

4.2.1 Binary Space Partitioning Trees

As I have mentioned a few times, I use BSP trees to partition the world as a coarse-
level sorting, not to partition the data in the world. The basic premise is illustrated in
Figure 4.28.

A line partitions the plane into two half planes. The half plane to the side that the
line normal points is gray. The other half plane is white. The view frustum overlaps
both half planes. The eye point is in the white half plane. The region that the view
frustum encloses is the only relevant region for drawing purposes. If you draw a
ray from the eye point to any point inside the gray subregion of the frustum (a
line of sight, so to speak), that ray will intersect any objects in the white subregion
before it intersects any objects in the gray subregion. Consequently, no object in the
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Figure 4.28 An illustration of BSP tree sorting in two dimensions.

gray subregion can occlude an object in the white subregion. If the objects in the
gray subregion are drawn so that the depth buffer is correctly written with depth
information, you can draw the objects in the white subregion with depth buffering
set to write-only. It is not necessary to read the depth buffer for comparisons because
you already know the objects in the white subregion occlude anything in the gray
subregion.

A frequent use of BSP trees is where the separating planes are actual geometry in a
level, most notably walls, floors, and ceilings. If a wall plane splits space into two half
spaces, and if one half space is behind the wall and never visible to the observer, then
you do not even need to draw the region behind the wall. In Wild Magic, disabling
drawing a half space is accomplished by setting the Spatial::ForceCull flag to true.

The classical BSP node in a scene graph has a separating plane and two children.
One child corresponds to the half space on one side of the plane; the other child
corresponds to the other half space. The child subtrees represent those portions of
the scene in their respective half spaces. My BSP node stores three children: two to
represent the portions of the scene in the half spaces, and the third to represent any
geometry associated with the separating plane. For example, in a level with walls, the
wall geometry will be part of the scene represented by the third child. The class is
BspNode and its interface is

class BspNode : public Node
{
public:

BspNode ();
BspNode (const Plane3f& rkModelPlane);
virtual ~BspNode ();

SpatialPtr AttachPositiveChild (Spatial* pkChild);
SpatialPtr AttachCoplanarChild (Spatial* pkChild);
SpatialPtr AttachNegativeChild (Spatial* pkChild);
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SpatialPtr DetachPositiveChild ();
SpatialPtr DetachCoplanarChild ();
SpatialPtr DetachNegativeChild ();
SpatialPtr GetPositiveChild ();
SpatialPtr GetCoplanarChild ();
SpatialPtr GetNegativeChild ();

Plane3f& ModelPlane ();
const Plane3f& GetModelPlane () const;
const Plane3f& GetWorldPlane () const;

Spatial* GetContainingNode (const Vector3f& rkPoint);

protected:
// geometric updates
virtual void UpdateWorldData (double dAppTime);

// drawing
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

Plane3f m_kModelPlane;
Plane3f m_kWorldPlane;

};

The class is derived from Node. The BspNode constructors must create the base class
objects. They do so by requesting three children, but set the growth factor to zero; that
is, the number of children is fixed at three. The child at index 0 is associated with the
positive side of the separating plane; that is, the half space to which the plane normal
points. The child at index 2 is associated with the negative side of the separating
plane. The child at index 1 is where additional geometry may be attached such as
the triangles that are coplanar with the separating plane. Rather than require you to
remember the indexing scheme, the Attach*, Detach*, and Get* member functions
are used to manipulate the children.

The separating plane is specified in model space coordinates for the node. The
model-to-world transformations are used to transform that plane into one in world
coordinates. This is done automatically by the geometric state update system via a call
to UpdateGS, through the virtual function UpdateWorldData:

void BspNode::UpdateWorldData (double dAppTime)
{

Node::UpdateWorldData(dAppTime);
m_kWorldPlane = World.ApplyForward(m_kModelPlane);

}
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The base class UpdateWorldData is called first in order to guarantee that the model-to-
world transformation for BspNode is up to date.

The Transformation class has a member function for transforming a plane in
model space to one in world space, namely, ApplyForward. Let X be a point in model
space and Y = RSX + T be the corresponding point in world space, where S is
the diagonal matrix of world scales, R is the world rotation, and T is the world
translation. Let the model space plane be N0 · X = c0, where N0 is a unit-length
normal vector. The inverse transformation is X = S−1RT(Y − T). Replacing this in
the plane equation and applying some algebra leads to a world plane N1 · Y = c1,
where

N1 = RS−1N0 and c1 = c0 + N1 · T.

If the scale matrix S is not the identity matrix, then N1 is not unit length. In this case
it must be normalized and the constant adjusted,

N′
1 = N1

|N1|
and c′

1 = c1

|N1|
,

resulting in the world plane N′
1 · Y = c′

1.
The virtual function Draw is implemented in BspNode. It is designed to draw ac-

cording to the description I provided previously, the one associated with Figure 4.28.
The source code is

void BspNode::Draw (Renderer& rkRenderer, bool bNoCull)
{

// draw children in back-to-front order
SpatialPtr spkPChild = GetPositiveChild();
SpatialPtr spkCChild = GetCoplanarChild();
SpatialPtr spkNChild = GetNegativeChild();

CameraPtr spkCamera = rkRenderer.GetCamera();
int iLocSide = m_kWorldPlane.WhichSide(

spkCamera->GetWorldLocation());
int iFruSide = spkCamera->WhichSide(m_kWorldPlane);

if ( iLocSide > 0 )
{

// camera origin on positive side of plane

if ( iFruSide <= 0 )
{

// The frustum is on the negative side of the plane or
// straddles the plane. In either case, the negative
// child is potentially visible.



340 Chapter 4 Advanced Scene Graph Topics

if ( spkNChild )
spkNChild->Draw(rkRenderer,bNoCull);

}

if ( iFruSide == 0 )
{

// The frustum straddles the plane. The coplanar child
// is potentially visible.
if ( spkCChild )

spkCChild->Draw(rkRenderer,bNoCull);
}

if ( iFruSide >= 0 )
{

// The frustum is on the positive side of the plane or
// straddles the plane. In either case, the positive
// child is potentially visible.
if ( spkPChild )

spkPChild->Draw(rkRenderer,bNoCull);
}

}
else if ( iLocSide < 0 )
{

// camera origin on negative side of plane

if ( iFruSide >= 0 )
{

// The frustum is on the positive side of the plane or
// straddles the plane. In either case, the positive
// child is potentially visible.
if ( spkPChild )

spkPChild->Draw(rkRenderer,bNoCull);
}

if ( iFruSide == 0 )
{

// The frustum straddles the plane. The coplanar child
// is potentially visible.
if ( spkCChild )

spkCChild->Draw(rkRenderer,bNoCull);
}
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if ( iFruSide <= 0 )
{

// The frustum is on the negative side of the plane or
// straddles the plane. In either case, the negative
// child is potentially visible.
if ( spkNChild )

spkNChild->Draw(rkRenderer,bNoCull);
}

}
else
{

// Camera origin on plane itself. Both sides of the plane
// are potentially visible as well as the plane itself.
// Select the first-to-be-drawn half space to be the one to
// which the camera direction points.
float fNdD = m_kWorldPlane.Normal.Dot(

spkCamera->GetWorldDVector());
if ( fNdD >= 0.0f )
{

if ( spkPChild )
spkPChild->Draw(rkRenderer,bNoCull);

if ( spkCChild )
spkCChild->Draw(rkRenderer,bNoCull);

if ( spkNChild )
spkNChild->Draw(rkRenderer,bNoCull);

}
else
{

if ( spkNChild )
spkNChild->Draw(rkRenderer,bNoCull);

if ( spkCChild )
spkCChild->Draw(rkRenderer,bNoCull);

if ( spkPChild )
spkPChild->Draw(rkRenderer,bNoCull);

}
}

}
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The three children must be drawn in back-to-front order. It is possible that any of
the three children have empty subtrees, so the smart pointers for those children must
be tested to see if they are not null before using them.

The first step, of course, is to determine on which side of the separating plane the
eye point is located. This is the role of the code

CameraPtr spkCamera = rkRenderer.GetCamera();
int iLocSide = m_kWorldPlane.WhichSide(

spkCamera->GetWorldLocation());
int iFruSide = spkCamera->WhichSide(m_kWorldPlane);

As Figure 4.28 indicates, we also need to know how the view frustum is positioned
relative to the separating plane. The Plane class has a member function WhichSide
that determines whether the input point is on the positive side of the plane (return
value is positive), on the negative side of the plane (return value is negative), or on the
plane (return value is zero). The Camera class has a member function WhichSide that
tests the eight vertices of the view frustum to see on which side of the plane they lie.
If all eight lie on the positive side of the plane, the return value is positive. If all eight
lie on the negative side of the plane, the return value is negative. Otherwise, some of
the eight lie on the positive side and some lie on the negative side, and the function
returns zero.

Consider the block of code when the eye point is on the negative side of the plane.
This is the configuration in Figure 4.28. If the view frustum is on the positive side
of the plane or straddles the plane, the gray subregion must be drawn first. This is
the positive child of the BSP node. As you can see in the code, that child is drawn
first. If the frustum is fully on the positive side, then the separating plane does not
cut through it, so any geometry associated with that plane need not be drawn. If
the separating plane does intersect the frustum, then you should draw the geometry
for the plane (if any). The code block that compares iFruSide to zero handles this.
Naturally, when the frustum straddles the plane, you also need to draw the negative
child. That is the last code block in the clause that handles the eye point on the
negative side of the plane.

A technical complication appears to be what to do when the eye point is exactly
on the separating plane. For an environment where you have walls as the separating
planes, you would actually prevent this case, either by some metaknowledge about
the structure of the environment and the eye point location or by a collision detection
system. As it turns out, there is nothing to worry about here. Any ray emanating from
the eye point through the frustum is either fully on one side of the plane, fully on the
other side, or in the plane itself. In my code, though, I choose to order the drawing of
the children based on the half space that contains the camera view direction.

In the code block when the eye point is on the negative side of the plane, the view
frustum straddles the plane, and the BSP node has three children, all the children will
be drawn. In the example of an environment where the plane of a wall is used as the
separating plane, the child corresponding to the nonvisible half space does not need



4.2 Sorting 343

to be drawn. You, the application writer, must arrange to set the ForceCull flag to
true for that child so that the drawing pass is not propagated down the corresponding
subtree. That said, it is possible that the camera moves along the wall to a doorway
that does let you see into the space behind the wall. In this case you need to structure
your application logic to set/unset the ForceCull flag according to the current location
of the eye point. This is the stuff of occlusion culling in a game, essentially keeping a
map of the world that helps you identify which objects are, or are not, visible from a
given region in the world.

The leaf nodes of a BSP tree implicitly represent a region of space that is convex.
The region is potentially unbounded. Many times it is useful to know which of these
convex regions a point is in. The function

Spatial* GetContainingNode (const Vector3f& rkPoint);

is the query that locates the region. The return value is not necessarily of type BspNode.
The leaf nodes of the BSP tree can be any Spatial-derived type you prefer.

A sample application in the folder demonstrates BSP trees used for spatial parti-
tioning.

MagicSoftware/WildMagic3/Test/TestBspNode

More details are provided in Section 8.2.2, but for now suffice it to say that the
world is partitioned into five convex regions. Four regions contain one object each,
and the fifth region contains two objects. Depth buffering is disabled at the root of
the scene. Some of the one-object regions contain convex polyhedra. When the BSP
tree drawing reaches those regions, the polyhedra are drawn with depth buffer reads
disabled and depth buffer writes enabled. In the regions that have nonconvex objects
(torii), depth buffer reads and writes are enabled to get correct drawing.

4.2.2 Portals

The portal system is designed for indoor environments where you have lots of regions
separated by opaque geometry. The system is a form of occlusion culling and attempts
to draw only what is visible to the observer. The regions form an abstract graph.
Each region is a node of the graph. Two regions are adjacent in the graph if they are
adjacent geometrically. A portal is a doorway that allows you to look from one region
into another region adjacent to it. The portals are the arcs for the abstract graph.
From a visibility perspective, a portal is bidirectional. If you are in one region and
can see through a doorway into an adjacent room, then an observer in the adjacent
region should be able to look through the same doorway into the original region.
However, you can obtain more interesting effects in your environment by making
portals unidirectional. The idea is one of teleportation. Imagine a region that exists
in one “universe” and allows you to look through a portal into another “universe.”
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Once you step through the portal, you turn around and look back. The portal is not
there! I am certain you have seen this effect in at least one science-fiction movie. The
Wild Magic engine implements portals to be unidirectional.

The portal system is also a form of sorting in the following sense. The drawing
pass starts in one region. The standard depth-first traversal of the subscene rooted at
the region node is bypassed. Instead, the drawing call is propagated to regions that
are adjacent to the current one and that are visible through portals. Effectively, the
regions are sorted based on visibility. Suppose you have three regions (A, B, and C)
arranged along a linear path, each having portals into the adjacent regions. If you are
in region A and can see through a portal to B, and you can additionally see through
a portal in B to the region C, then C is the farthest region you can see from your
current position. Region C should be drawn first, followed by region B, and then
your own region A. The drawing pass must be careful to prevent cycles in the graph.
The system does have Boolean flags to tag regions whenever they have been visited.
These flags prevent multiple attempts to draw the regions.

The Wild Magic portal system uses a BSP tree to decompose the indoor envi-
ronment. The leaf nodes of the BSP tree are convex regions in space. The class Con-
vexRegion is derived from Node and is used to represent the leaf nodes. Any geometric
representation for the region, including walls, floors, ceilings, furniture, or whatever,
may be added as children of the convex region node. The root of the BSP tree is a
special node that helps determine in which leaf region the eye point is. Another class
is designed to support this, namely, ConvexRegionManager. It is derived from BspNode.
The middle child of such a node is used to store the representation for the outside
of the encapsulated region, just in case you should choose to let the player exit your
indoor environment. Finally, the class Portal encapsulates the geometry of the portal
and its behavior. The abstract graph of regions is a collection of ConvexRegion objects
and Portal objects. Both types of objects have connections that support the graph
arcs.

Figure 4.29 illustrates the basic graph connections between regions and portals.
The outgoing portals for the convex region in the figure can, of course, be the incom-
ing portals to another convex region, hence the abstract directed graph. Figure 4.30

Incoming Portal Portal

Portal Portal Portal

Convex region

Outgoing

Figure 4.29 A ConvexRegion node. The portals with arrows to the node are the incoming portals
to the region. The arrows from the node to the other portals are outgoing portals.
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Figure 4.30 A configuration of three regions, nine portals, and an outside area. (a) The geometric
layout for the regions and portals. (b) The directed graph associated with it.

shows a specific configuration of regions and portals, including the directed graph
associated with it.

The portal P0 is from the outside to inside the collection of regions. The portal is
displayed as if the door is closed. Once a player-character stands in front of the door,
a mouse click can open it. The character steps through, and the door closes behind
him (never to open again). The other doorways each have two unidirectional portals,
so no teleportation occurs in this configuration.

The occlusion culling comes into play as follows. Figure 4.31 shows two regions
with a portal from one region to the other. Using the standard drawing with a frus-
tum, the renderer will draw everything in the gray region shown in Figure 4.31(a),
including the object shown as a small, black disk. That object is not visible to the
observer, but the renderer did not know this until too late when the depth buffer
comparisons showed that the wall is closer to the eye point and occludes the object.

The portal polygon, necessarily convex, is used to construct additional planes for
the purposes of culling objects in the adjacent region. The polygon vertices must be
counterclockwise ordered when viewed from the region that contains the eye point
E. If V0 and V1 are consecutive polygon vertices, the plane containing E, V0, and V1 is
constructed and passed to the camera to be used when drawing the adjacent region.
The smaller frustum used for the adjacent region is shown as light gray in Figure
4.31. Keep in mind that the smaller frustum is only used for culling. The regular view
frustum is still used for drawing, so the renderer may attempt to draw portions of
the walls in the adjacent region, even though they are partially occluded. The idea is
to eliminate occluded objects from the drawing pass. You could design the camera
system to tell the graphics system to use the additional culling planes for clipping,
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(a) (b)

Figure 4.31 Two regions with a portal from one to the other. (a) The gray region depicts the view
frustum. (b) The trimmed version of the view frustum using planes formed by the
eye point and edges of the portal polygon.

but that has the potential to take away resources from other objects.1 The current
consumer graphics hardware is powerful enough that you might as well just let it go
ahead and draw the partially occluded object.

At the top level of the system, we have class ConvexRegionManager. Its interface is

class ConvexRegionManager : public BspNode
{
public:

ConvexRegionManager ();

SpatialPtr AttachOutside (Spatial* pkOutside);
SpatialPtr DetachOutside ();
SpatialPtr GetOutside ();

ConvexRegion* GetContainingRegion (const Vector3f& rkPoint);

protected:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

};

A convex region manager is a BSP tree whose leaf nodes are the ConvexRegion objects.
A subscene representing the outside of the environment, if any, can be attached or

1. For example, each additional clipping plane could cause you to lose the services of a texture unit. For a
portal with a rectangular doorway, you would lose four texture units. On a four-texture-unit card, your
adjacent regions are going to be beautifully colored with vertex colors or material colors. Your artists are
not going to be happy.
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detached via the member functions AttachOutside and DetachOutside. The outside
scene can be as complex as you like, especially so if you plan on an application that
has both an outdoor and an indoor environment.

The main role of ConvexRegionManager is to locate the convex region that contains
the eye point. The function GetContainingRegion supports this query. If the function
returns NULL, the eye point is not in any of the convex regions and, for all practical
purposes, is outside. The Draw function that uses the query is fairly simple:

void ConvexRegionManager::Draw (Renderer& rkRenderer, bool bNoCull)
{

CameraPtr spkCamera = rkRenderer.GetCamera();
ConvexRegion* pkRegion = GetContainingRegion(

spkCamera->GetWorldLocation());

if ( pkRegion )
{

// Inside the set of regions, start drawing with region of
// camera.
pkRegion->Draw(rkRenderer,bNoCull);

}
else
{

// Outside the set of regions, draw the outside scene (if
// it exists).
if ( GetOutside() )

GetOutside()->Draw(rkRenderer,bNoCull);
}

}

A situation you must guard against in your application is the one where the eye
point is outside, but the near plane of the view frustum straddles a separating wall
between inside and outside. The convex region manager determines that the eye point
is outside, so the region traversal for drawing is never initiated. The outside is drawn,
not correctly because the view frustum contains part of the inside environment that
never gets drawn. To see the effect, I have added a conditionally compiled block of
code to the TestPortal sample application. If you enable the block, the initial location
for the camera and view frustum is such that the eye point is outside and the frustum
straddles a wall between the outside and inside. When you move forward with the
up-arrow key, you will see the inside pop into view (the eye point has moved into an
inside region).

The only reason I have ConvexRegionManager in the engine is to provide an auto-
matic method for locating the convex region containing the eye point. The contain-
ment query is called in each drawing pass, even if the eye point has not moved. Since
the object is a BSP tree, presumably with a small height, the cost of the query should
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not be an issue. However, if you were to keep track of the eye point and containing
room through other means, say, by a map you have of the indoor environment, there
is no need for the BSP tree. The graph of ConvexRegion and Portal objects works just
fine without the manager.

The interfaces for the ConvexRegion and Portal classes are

class ConvexRegion : public Node
{
public:

ConvexRegion (int iPQuantity, Portal** apkPortal);
virtual ~ConvexRegion ();
int GetPortalQuantity () const;
Portal* GetPortal (int i) const;

protected:
ConvexRegion ();
virtual void UpdateWorldData (double dAppTime);
int m_iPQuantity;
Portal** m_apkPortal;
bool m_bVisited;

// internal use
public:

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);
};

class Portal : public Object
{
public:

Portal (int iVQuantity, Vector3f* akModelVertex,
ConvexRegion* pkAdjacentRegion, bool bOpen);

virtual ~Portal ();
ConvexRegion*& AdjacentRegion ();
bool& Open ();

protected:
Portal ();
friend class ConvexRegion;
void UpdateWorldData (const Transformation& rkWorld);
void Draw (Renderer& rkRenderer);

int m_iVQuantity;
Vector3f* m_akModelVertex;
Vector3f* m_akWorldVertex;
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ConvexRegion* m_pkAdjacentRegion;
bool m_bOpen;

};

The ConvexRegion constructor is passed an array of outgoing portals associated
with the convex region. The class will use the array pointer directly and will delete
the array during destruction. Because the class takes over ownership of the portal
array, it cannot be shared between convex regions.

The Portal constructor is passed an array of vertices that represent the portal
geometry, a pointer to the adjacent region (so this portal is incoming for that re-
gion), and a Boolean flag indicating whether the portal is initially open or closed.
The vertices must form a planar convex polygon, they must be counterclockwise or-
dered when looking through the portal to the adjacent region, and they must be in
the model space coordinates for the region that contains the portal. All of these con-
straints support constructing the portal planes to be given to the camera for culling.

ConvexRegion overrides the UpdateWorldData virtual function in order to update
the geometric state in its subtree in the normal manner that an UpdateGS processes
the subtree. The outgoing portals themselves might need updating. Since Portal is
not derived from Spatial, these objects are not visited by UpdateGS pass. The convex
region must initiate the update of the portals. The source code is

void ConvexRegion::UpdateWorldData (double dAppTime)
{

// update the region walls and contained objects
Node::UpdateWorldData(dAppTime);

// update the portal geometry
for (int i = 0; i < m_iPQuantity; i++)

m_apkPortal[i]->UpdateWorldData(World);
}

The portal objects must update their own data, and do so with a single batch
update:

void Portal::UpdateWorldData (const Transformation& rkWorld)
{

rkWorld.ApplyForward(m_iVQuantity,m_akModelVertex,
m_akWorldVertex);

}

The drawing function in both classes is an implementation of the traversal of a
directed graph. Because the graph most likely has cycles, the code needs to maintain
Boolean flags indicating whether or not a region has already been visited to prevent an
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infinite loop. The ConvexRegion class has a data member, m_bVisited, for this purpose.
The drawing routine for a convex region is

void ConvexRegion::Draw (Renderer& rkRenderer, bool bNoCull)
{

if ( !m_bVisited )
{

m_bVisited = true;

// draw anything visible through open portals
for (int i = 0; i < m_iPQuantity; i++)

m_apkPortal[i]->Draw(rkRenderer);

// draw the region walls and contained objects
Node::Draw(rkRenderer,bNoCull);

m_bVisited = false;
}

}

The convex region manager starts the drawing pass in the region containing the
eye point. On entry to the drawing function for this region, the visitation flag is false.
The flag is then set to true to indicate that the region has been visited. The outgoing
portals associated with the region are asked to propagate the drawing to their adjacent
regions. During the propagation, if the current region is revisited, its visitation flag
will prevent another recursive call (and avoid the infinite loop). In Figure 4.30, if the
eye point is in region R0, a cycle is formed by following portal P1 into R1, and then
immediately returning to R0 through portal P2. A larger cycle occurs, this one by
following P1 into R1, P6 into R2, and then P8 into R0. Once the graph of regions has
been traversed, the recursive call comes back to the original region and the Node::Draw
call is made. This call is what draws the interior of the region and all its contents. The
visitation flag is reset to false to allow the next drawing call to the portal system.

You might have noticed that this process has the potential for being very slow. I
mentioned that the graph of regions is entirely traversed. In a large indoor environ-
ment, there could be a substantial number of regions, most of them not visible. If
the portal system visits all the nonvisible regions and attempts to draw them anyway,
what is the point? Not to worry. As described earlier, the portals are used to generate
additional culling planes for the camera to use. The planes are used to cull objects
not visible to the observer, including portals themselves! Return once again to Figure
4.30. Suppose the observer is in region R0 and standing directly in front of the door-
way marked portal P1. The observer then looks straight ahead into region R1 through
that portal. The portal planes generated by the observer’s eye point and the edges of
the portal polygon form a narrow frustum into region R1. The portal marked P6 is
not visible to the observer. The portal drawing system will make sure that the region
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traversal does not continue through P6. In this manner, a carefully designed environ-
ment will have only a few potentially visible regions along a line of sight, so only a
few regions will be processed by the renderer.

The portal drawing code is

void Portal::Draw (Renderer& rkRenderer)
{

// only draw adjacent regions if portal is open
if ( !m_bOpen )

return;

// only draw visible portals
Camera* pkCamera = rkRenderer.GetCamera();
if ( pkCamera->Culled(m_iVQuantity,m_akWorldVertex,true) )

return;

// push world planes formed by camera eye point and portal edges
int i0 = 0, i1 = m_iVQuantity - 1;
for (/**/; i0 < m_iVQuantity; i1 = i0++)
{

Plane3f rkPlane(pkCamera->GetLocation(),m_akWorldVertex[i0],
m_akWorldVertex[i1]);

pkCamera->PushPlane(rkPlane);
}

// draw the adjacent region and any nonculled objects in it
m_pkAdjacentRegion->Draw(rkRenderer);

// pop world planes
for (i0 = 0; i0 < m_iVQuantity; i0++)

pkCamera->PopPlane();
}

I mentioned that the Portal constructor takes a Boolean input that indicates
whether or not the portal is “open.” The intent is that if you can see through the
portal, it is open. If not, it is closed. In a typical game, a character arrives at a closed
door, preventing him from entering a region. A magical click of the mouse button
causes the door to pop open, and the character steps into the region. The open flag is
used to support this and controls whether or not a portal propagates the drawing call
to the adjacent region. The first step that the Portal::Draw function takes is to check
that Boolean flag.

The second step in the drawing is to check if this portal is visible to the observer.
The Camera class has support for culling a portal by analyzing its geometry. I will talk
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about this support a litte bit later. If the portal is (potentially) visible (not culled),
the portal planes are constructed and pushed onto a stack of planes that the camera
maintains. Naturally, the plane construction must occur before you attempt to draw
the adjacent region so that those planes can be used for culling objects in that region.
Once pushed, the adjacent region is told to draw itself. Thus, ConvexRegion::Draw
and Portal::Draw form a recursive chain of functions. Once the region is drawn, the
planes that were pushed onto the camera’s stack are now popped because they have
served their purpose.

If the portal is culled, then the drawing pass is not propagated. In my previous
example using Figure 4.30, an observer in region R0 standing in front of portal P1 will
cause the region traversal to start in R0. When portal P1 has its Draw function called,
the portal is open and the portal itself is visible to the camera, so the portal planes are
formed, pushed onto the camera’s stack, and the adjacent region must be drawn. A
traversal over its outgoing portals is made, and the portals are told to propagate the
drawing call. We will find in Portal::Draw for P6 that this portal is not visible to the
observer; the planes for P1 are on the camera’s stack, but not yet those for P6. The
drawing call is not propagated to R1 (through that path).

Now, about the Camera support for pushing and popping portal planes and for
culling portals. The class has the following support interface:

class Camera
{
public:

// access to stack of world culling planes
int GetPlaneQuantity () const;
const Plane3f* GetPlanes () const;
void PushPlane (const Plane3f& rkPlane);
void PopPlane ();

protected:
// world planes:
// left = 0, right = 1, bottom = 2,
// top = 3, near = 4, far = 5,
// extra culling planes >= 6
enum
{

CAM_FRUSTUM_PLANES = 6,
CAM_MAX_WORLD_PLANES = 32

};
int m_iPlaneQuantity;
Plane3f m_akWPlane[CAM_MAX_WORLD_PLANES];

};
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The standard frustum planes always are stored in the first six slots of the array
m_akWPlane. The PushPlane call will append to that array the additional planes; thus
the array is treated like a stack. The maximum number of planes is arbitrarily cho-
sen to be 32. If you need more than this, you should first question your artists as to
why they need such a complex environment before increasing the maximum. The
PopPlane call removes the planes from the stack (not literally, only the stack top index
is decremented). It does make sure that frustum planes are not popped.

The portal culling call is

bool Camera::Culled (int iVertexQuantity, const Vector3f* akVertex,
bool bIgnoreNearPlane)

{
// Start with last pushed plane (potentially the most
// restrictive plane).
int iP = m_iPlaneQuantity - 1;
for (int i = 0; i < m_iPlaneQuantity; i++, iP-)
{

Plane3f& rkPlane = m_akWPlane[iP];
if ( bIgnoreNearPlane && iP == 4 /* camera near plane */ )

continue;

int iV;
for (iV = 0; iV < iVertexQuantity; iV++)
{

int iSide = rkPlane.WhichSide(akVertex[iV]);
if ( iSide >= 0 )
{

// polygon is not totally outside this plane
break;

}
}

if ( iV == iVertexQuantity )
{

// polygon is totally outside this plane
return true;

}
}

return false;
}

The input vertices are iterated and tested against each of the culling planes. If all the
vertices are outside the plane (the outside convention is used for the standard frustum
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planes), then the portal is outside. The convexity of the portal polygon guarantees this
is a correct object-culling test when processing only the vertices of the object.

This culling function can be applied to any geometry, but for portals in particular,
the Boolean variable bIgnoreNearPlane should be set to true. This avoids the situation
when the portal is in the view pyramid—all of the volume inside the planes including
the space between the near plane and the eye point—but is between the eye point and
the near plane. In such a situation you do not want the portal system to cull the portal.
This situation typically occurs when the camera moves through the portal from the
current region to the adjacent region.

A sample application in the folder demonstrates the portal system:

MagicSoftware/WildMagic3/Test/TestPortals

More details are provided in Section 8.2.8.

4.2.3 Sorting Children of a Node

One of the simplest, coarse-level sorting methods to be applied in a scene hierarchy
is to sort the children of a node. How they are sorted depends on what your environ-
ment is and how the camera is positioned and oriented relative to the children of the
node.

To demonstrate, consider the example of a node that has six TriMesh objects that
are the faces of a cube. The faces are textured and are semitransparent, so you can see
the back faces of the cube through the front faces. The global state is set as indicated:

Back-face culling is disabled. Because each face is semitransparent, you must be
able to see it when positioned on either side of the face.

Depth buffering is enabled for writing, but not reading. The faces will be depth
sorted based on the location of the eye point and then drawn in the correct order.
Reading the depth buffer to determine if a pixel should be drawn is not necessary.
For the cube only, it is not necessary to write to the depth buffer. If other objects
are drawn in the same scene using depth buffering with reading enabled, you need
to make certain that the depths are correct. That is why writing is enabled.

Alpha blending is enabled at the node since the face textures have alpha values to
obtain the semitransparency.

The cube is constructed in its model space to have center at the origin (0, 0, 0).
The faces perpendicular to the x-axis are positioned at x = 1 and x = −1. The faces
perpendicular to the y-axis are positioned at y = 1 and y = −1. The faces perpen-
dicular to the z-axis are positioned at z = 1 and z = −1. The camera is inverse-
transformed from the world into the model space of the cube. The back faces and
front faces are determined solely by analyzing the components of the camera view
direction in the cube’s model space. Let that direction be D = (d0, d1, d2). Suppose
that the eye point is at (2, 0, 0) and you are looking directly at the face at x = 1.
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The view direction is (−1, 0, 0). The x = 1 face is front facing. Its outer normal is
(1, 0, 0). The angle between the view direction and the outer normal is larger than
90 degrees, so the cosine of the angle is negative. The dot product of the view di-
rection and outer normal is the cosine of the angle. In the current example, the dot
product is (−1, 0, 0) · (1, 0, 0) = −1 < 0. The x = −1 face is back facing. It has outer
normal (−1, 0, 0). The cosine of the angle between the view direction and the outer
normal is (−1, 0, 0) · (−1, 0, 0) = 1 > 0. Similar arguments apply to the other faces.
The classification for back faces is summarized by the following:

d0 > 0: Face x = 1 is back facing.

d0 < 0: Face x = −1 is back facing.

d1 > 0: Face y = 1 is back facing.

d1 < 0: Face y = −1 is back facing.

d2 > 0: Face z = 1 is back facing.

d2 < 0: Face z = −1 is back facing.

A sorting algorithm for the faces will inverse-transform the camera’s world view
direction to the model space of the cube; the resulting direction is (d0, d1, d2). The
signs of the di are tested to determine the cube faces that are back facing. The six
children of the node are reordered so that the back faces occur first and the front
faces occur second. A sample application in the folder demonstrates this algorithm:

MagicSoftware/WildMagic3/Test/TestSortFaces

More details are provided in Section 8.2.11. Be ready for a couple of unexpected sur-
prises if you implement this without looking at my version first. My original attempt
at implementing this displayed a cube where the faces used the same texture (a water
texture) whose alpha values were all 1

2 . As I rotated the cube, the rendering looked
perfect even without the sorting . If you make the alpha values all 1, the rendering looks
completely wrong (which it should)! I then added some black letters to the texture,
the face names Xp, Xm, Yp, Ym, Zp, and Zm, and restored the alpha values to be 1

2 .
My thought was that I could then detect that the rendering was incorrect. The im-
ages still looked correct. My final change was to make the alpha values 1 for texture
pixels that were black. Now the black letters on a back face were solid black, but the
black letters on a front face were somewhat gray due to blending. Now it is clear that
the rendering is incorrect. Once I added the sorting, the demonstration worked as
advertised.

The other surprise was that some of the faces were flickering depending on the
cube orientation. It turns out that my original sorting scheme filled the beginning
of an array with pointers to the back faces, starting from index 0, and filled the end
of an array with pointers to the front faces, starting from the last array index with
index decrementing. The decrementing caused the order of the front faces to change
each frame, even though neither the cube nor the camera was moving. Apparently
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the numerical round-off errors in the rendering showed up as flickering, probably
due to the color channel values oscillating between two adjacent integer values.

4.2.4 Deferred Drawing

In the introduction to this section, I mentioned some motivations for sorting based
on render state. Wild Magic version 3 has support for sorting generally by providing
a deferred drawing system. The idea is to accumulate a list of the objects to be drawn
rather than drawing those objects at the time they are encountered in the drawing
pass. When the list is complete, a deferred drawing function is called. This function
includes any sorting by render state (or any other processing you care to do), followed
by drawing of the objects (or anything else you care to do).

The Renderer class has the following interface to support deferred drawing:

class Renderer
{
public:

typedef void (Renderer::*DrawFunction)();
DrawFunction DrawDeferred;

// no drawing (useful for profiling scene graph overhead)
void DrawDeferredNoDraw ();

// draw all objects without sorting
void DrawDeferredNoSort ();

protected:
int m_iDeferredQuantity;
TArray<Spatial*> m_kDeferredObject;
TArray<bool> m_kDeferredIsGeometry;

};

The function pointer DrawDeferred is initially NULL, indicating that deferred drawing
is disabled. To enable deferred drawing, just assign to DrawDeferred a pointer to the
function you want to be called when it is time to draw.

The three Renderer functions that manipulate the deferred data members are

void Renderer::DrawScene (Node* pkScene)
{

if ( pkScene )
{

pkScene->OnDraw(*this);
if ( DrawDeferred )
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{
(this->*DrawDeferred)();
m_iDeferredQuantity = 0;

}
}

}

void Renderer::Draw (Node* pkNode)
{

if ( !DrawDeferred )
{

m_pkNode = pkNode;
m_pkGlobalEffect = pkNode->GetEffect();

assert( m_pkGlobalEffect );
(this->*m_pkGlobalEffect->Draw)();

m_pkNode = NULL;
m_pkGlobalEffect = NULL;

}
else
{

m_kDeferredObject.SetElement(m_iDeferredQuantity,pkNode);
m_kDeferredIsGeometry.SetElement(m_iDeferredQuantity,false);
m_iDeferredQuantity++;

}
}

void Renderer::Draw (Geometry* pkGeometry)
{

if ( !DrawDeferred )
{

m_pkGeometry = pkGeometry;
m_pkLocalEffect = pkGeometry->GetEffect();

if ( m_pkLocalEffect )
(this->*m_pkLocalEffect->Draw)();

else
DrawPrimitive();

m_pkLocalEffect = NULL;
m_pkGeometry = NULL;

}
else
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{
m_kDeferredObject.SetElement(m_iDeferredQuantity,pkGeometry);
m_kDeferredIsGeometry.SetElement(m_iDeferredQuantity,true);
m_iDeferredQuantity++;

}
}

The invariant of DrawScene is that m_iDeferredQuantity is zero on entry. If a de-
ferred drawing function has been assigned to DrawDeferred, the Renderer::Draw func-
tions skip the immediate drawing and append the object pointer to the deferred ob-
ject array. The array of Boolean values is used at draw time to quickly determine if the
object is Geometry or Node. This avoids a more expensive run-time type identification
via a dynamic cast of the object pointer. The two arrays in the system automatically
grow when needed. When the scene traversal ends, control is returned to DrawScene
and the deferred drawing function is called. Very simple scheme, is it not?

I have provided two choices for DrawDeferred. The first is DrawDeferredNoDraw
that is stubbed out to do absolutely nothing! Nothing is drawn on the screen. This
function is useful for profiling an application to see what overhead the scene graph
management system generates. The other function is DrawDeferredNoSort and simply
iterates over the array of accumulated objects and calls the appropriate drawing
function:

void Renderer::DrawDeferredNoSort ()
{

// disable deferred drawing
DrawFunction oSave = DrawDeferred;
DrawDeferred = NULL;

for (int i = 0; i < m_iDeferredQuantity; i++)
{

if ( m_kDeferredIsGeometry[i] )
Draw((Geometry*)m_kDeferredObject[i]);

else
Draw((Node*)m_kDeferredObject[i]);

}

// enable deferred drawing
DrawDeferred = oSave;

}

You must disable deferred drawing before drawing the objects, otherwise you will be
in an infinite loop due to the Draw call placing your object right back into the array.
Of course, you must reenable the deferred drawing before exiting.
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If you want to implement other deferred drawing functions, you should add a
new member function to Renderer. For example, if you plan on sorting by texture
state, you might add a function

class Renderer
{
public:

virtual void DrawDeferredTextureSort ();
};

void Renderer::DrawDeferredTextureSort ()
{

// disable deferred drawing
DrawFunction oSave = DrawDeferred;
DrawDeferred = NULL;

SortByTexture();
DrawPrimitivesTextureSort();

// enable deferred drawing
DrawDeferred = oSave;

}

The function Renderer::SortByTexture is an implementation of your own very spe-
cial sorting function to reorder the objects by texture state. This function will sort
m_kDeferredObject, but must simultaneously reorder in the same way the array
m_kDeferredIsGeometry. The global effects that are applied to Node objects are com-
plicated enough that you probably should draw them separately. The sorting can
place all the Geometry objects first in the array, followed by the Node objects. Let
us assume that we also added a data member to Renderer to store the number of
Geometry objects, call it m_iDeferredGeometryQuantity, and that the SortByTexture
function assigns the correct value to it. The drawing function will be a variation on
Renderer::DrawPrimitive, perhaps something like

void Renderer::DrawPrimitivesTextureSort ()
{

previousTextures = INVALID;
int i;
for (i = 0; i < m_iDeferredGeometryQuantity; i++)
{

m_pkGeometry = (Geometry*)m_akDeferredGeometry[i];
m_pkLocalEffect = pkGeometry->GetEffect();

set global state;
enable lighting;
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enable vertices;
enable normals;
enable colors;

if ( currentTextures != previousTextures )
{

enable textures;
previousTextures = currentTextures;

}

set world transform;
draw geometry object;
restore world transform;

if ( nextTextures != currentTextures )
disable textures;

disable colors;
disable normals;
disable vertices;
disable lighting;

}

for (/**/; i < m_iDeferredQuantity; i++)
Draw((Node*)m_kDeferredObject[i]);

}

A sample application that illustrates how the deferred drawing works is on the
CD-ROM in directory

MagicSoftware/WildMagic3/Test/TestDeferredDraw

The scene consists of an environment mapped model and a multitexture mapped
model. The list of objects contains one Node (the environment map is a global effect)
and four Geometry objects (the number of leaves in the multitexture mapped model).
You can press keys to have normal drawing, deferred drawing with no sorting, or
deferred drawing with no drawing.

4.3 Curves and Surfaces

Two geometric types supported by a graphics engine are polylines and triangle
meshes (see Section 3.3). These objects are usually generated by artists and exported
for use in an application. Modeling packages also support two analogous types,
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curves and surfaces. Although these are more commonly used in CAD/CAM systems,
they are useful in games. I will restrict attention to parametric curves and paramet-
ric surfaces, where the positional information is determined as a function of some
parameters.

A graphics engine still requires lower-level primitives for rendering. A curve must
be sampled to produce a polyline, and a surface must be sampled to produce a triangle
mesh. In practice, the curves tend to be specified as a collection of segments, with
each segment defined by a common curve type—for example, Bézier curves, B-spline
curves, or NURBS curves. Similarly, surfaces tend to be specified as a collection of
patches, with each patch defined by a common surface type—for example, Bézier
patches, B-spline patches, or NURBS patches. The situation for surfaces is slightly
more complicated than for curves. The patches come in many flavors; the two most
important are triangle patches and rectangle patches. The polygon adjective refers to
the shape of the parametric domain.

A curve may be defined as a collection of segments that are ordered end to end;
that is, the end point of one segment becomes the starting point of the next segment.
Each end point is shared by two segments, except possibly at the two end points of
the curve. If the curve forms a closed loop, then all segment end points are shared by
two segments. But nothing prevents you from having a more complicated topology.
Each end point may be shared by as many segments as you like (think wireframe
mode when drawing a triangle mesh). A collection of segments with a user-defined
topology for connections is referred to as a curve mesh.

The analogy with surfaces is that a collection of patches is arranged so that at most
two patches share a patch boundary curve. Such a mesh is called a manifold mesh.2 As
with curves, you can have more than two patches sharing a patch boundary curve.
In general, a collection of patches with a user-defined topology for connections is
referred to as a surface mesh.

In Wild Magic version 2, I had support for Bézier patches, with each patch having
one of three types: triangle patch, rectangle patch, or cylinder patch. A Bézier mesh is
a collection of such patches. To visualize the mesh, I had a system for subdividing the
parametric domains of the patches and generating a triangle mesh that approximates
the true surface. Unfortunately, the subdivision scheme was intertwined with the
Bézier patch classes. If you wanted to support other surface types such as B-splines
or NURBS, you would have to duplicate a lot of code that is already in the Bézier
patch classes. Wild Magic version 3 does a lot better. The architecture is such that
the patch definition and patch evaluation are cleanly separated from the subdivision
scheme. All that the subdivision needs is the ability to query a patch for its surface
position given a pair of parameter values. This allows you to add new surface patch
types without having to rewrite any subdivision code.

2. The definition of a manifold mesh is more formal than I have presented. The intuition, though, is as I have
described it here.
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This section describes briefly the interfaces for parametric curves and surfaces.
The emphasis is not on the mathematical aspects. Should you decide to add your
own curve or surface types, you might very well need to understand some of the
mathematics—implementing NURBS surfaces is not trivial, for example. The subdi-
vision schemes are described in a lot of detail. The computer science and engineering
aspects are, at times, complex.

4.3.1 Parametric Curves

A parametric curve in three dimensions is a function P(u) that specifies a position
as a function of the parameter u ∈ [umin, umax]. The first derivative is denoted P′(u).
This is a vector that is tangent to the curve at the corresponding position P(u). The
second derivative is denoted P′′(u). If the curve represents the path of a particle with
respect to time u, then the first derivative is the velocity of the particle and the second
derivative is the acceleration of the particle.

I created an abstract class called CurveSegment that has pure virtual functions
for computing the position and the first, second, and third derivatives. The class
interface is

class CurveSegment : public Object
{
public:

virtual ~CurveSegment ();

float GetUMin () const;
float GetUMax () const;

virtual Vector3f P (float fU) const = 0;
virtual Vector3f PU (float fU) const = 0;
virtual Vector3f PUU (float fU) const = 0;
virtual Vector3f PUUU (float fU) const = 0;

Vector3f Tangent (float fU) const;
Vector3f Normal (float fU) const;
Vector3f Binormal (float fU) const;
void GetFrame (float fU, Vector3f& rkPosition,

Vector3f& rkTangent, Vector3f& rkNormal,
Vector3f& rkBinormal) const;

float Curvature (float fU) const;
float Torsion (float fU) const;

protected:
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CurveSegment (float fUMin, float fUMax);
CurveSegment ();

float m_fUMin, m_fUMax;
};

The class stores the minimum and maximum u values for the curve, but derived
classes must generate their values. The values may be retrieved through the mem-
ber accessors GetUMin and GetUMax. The position, first derivative, second derivative,
and third derivative are computed by the member functions P, PU, PUU, and PUUU, re-
spectively. A derived class must implement these.

If a curve is used as the path for a camera, a common requirement is to specify an
orientation for the camera that is related to the curve geometry. The natural vector to
use for the camera view direction at a point on the curve is the tangent vector at that
point. We need to specify an up vector. The right vector is the cross product of the
view direction and the up vector. One choice for the orientation is the Frenet frame,
of which the tangent vector is one of the members. The other two vectors are called
the normal vector and the binormal vector. The rates of change of these vectors with
respect to changes in arc length s are related by the Frenet-Serret equations:

T′(s) = κ(s)N(s)

N′(s) = −κ(s)T(s) + τ(s)B(s)

B′(s) = −τ(s)N(s),

where κ(s) is the curvature of the curve and τ(s) is the torsion of the curve. In terms
of the curve parameter u, the tangent vector is

T = P′

|P′| ,

the normal vector is

N = (P′ · P′)P′′ − (P′ · P′′)P′

|P′||P′ × P′′| ,

and the binormal vector is

B = T × N.

If you need to compute curvature or torsion, the formulas are

κ = |P′ × P′′|
|P′|3 and τ = P′ · P′′ × P′′′

|P′ × P′′|2 .
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A problem with the Frenet frame that you need to be aware of is that the normal
vectors are sometimes discontinuous as a function of u, and sometimes they are not
uniquely defined. The classic example is a straight-line path. The tangent vectors are
all the same, but any vector perpendicular to the line could serve as a normal vector.
Regardless of the mathematical problems that might arise, class CurveSegment imple-
ments the construction of the Frenet frame via the member functions GetTangent,
GetNormal, and GetBinormal. The implementations compute the formulas mentioned
previously. Along with the position, all may be computed simultaneously with a call
to GetFrame. Functions are provided for curvature and torsion calculations.

4.3.2 Parametric Surfaces

A parametric surface in three dimensions is a function P(u, v) that specifies a position
as a function of the parameters u and v. The two types of domains that Wild Magic
supports are rectangular, where u ∈ [umin, umax]and v ∈ [vmin, vmax], and triangular,
where u ∈ [umin, umax], v ∈ [vmin, vmax], and (vmax − vmin)(u − umin) + (umax −
umin)(v − vmax) ≤ 0. The first-order partial derivatives are denoted Pu and Pv. Both
vectors are tangent to the surface at the corresponding position. Unit-length tangents
are

T0 = Pu

|Pu|
, T1 = Pv

|Pv|
.

As long as the two tangent vectors are linearly independent, a unit-length surface
normal vector is

N = T0 × T1

|T0 × T1|
.

I created an abstract class called SurfacePatch that has pure virtual functions for
computing the position and first and second derivatives. The curve class required a
third derivative for computing torsion, but we have no need for third derivatives on
surfaces. The class interface is

class SurfacePatch : public Object
{
public:

virtual ~SurfacePatch ();

float GetUMin () const;
float GetUMax () const;
float GetVMin () const;
float GetVMax () const;
bool IsRectangular () const;
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virtual Vector3f P (float fU, float fV) const = 0;
virtual Vector3f PU (float fU, float fV) const = 0;
virtual Vector3f PV (float fU, float fV) const = 0;
virtual Vector3f PUU (float fU, float fV) const = 0;
virtual Vector3f PUV (float fU, float fV) const = 0;
virtual Vector3f PVV (float fU, float fV) const = 0;

Vector3f Tangent0 (float fU, float fV) const;
Vector3f Tangent1 (float fU, float fV) const;
Vector3f Normal (float fU, float fV) const;
void GetFrame (float fU, float fV, Vector3f& rkPosition,

Vector3f& rkTangent0, Vector3f& rkTangent1,
Vector3f& rkNormal) const;

void ComputePrincipalCurvatureInfo (float fU, float fV,
float& rfCurv0, float& rfCurv1, Vector3f& rkDir0,
Vector3f& rkDir1);

protected:
SurfacePatch (float fUMin, float fUMax, float fVMin,

float fVMax, bool bRectangular);
SurfacePatch ();

float m_fUMin, m_fUMax, m_fVMin, m_fVMax;
bool m_bRectangular;

};

The class stores the minimum and maximum u and v values for the surface, but
derived classes must generate their values. Also, the derived class must specify if it
uses a rectangular or triangular domain. The Boolean member m_bRectangular is
used for this purpose. The values may be retrieved through the member accessors
GetUMin, GetUMax, GetVMin, GetVMax, and IsRectangular. The position, first derivative,
and second derivative are computed by the member functions P, PU, PV, PUU, PUV, and
PVV. A derived class must implement these.

Analogous to choosing a coordinate frame for a point on a curve, we sometimes
might want a coordinate frame for a point on a surface. To attempt a frame that
smoothly varies as the point moves over the surface is in the realm of the differen-
tial geometry of surfaces, a mathematics-heavy topic. I discussed the concepts briefly
in [Ebe00]. The quick summary is that at each point on the surface, if you were to
move in a direction tangential to that point, the surface curves by some amount.
There will be a tangential direction along which that curvature is maximum, and
one along which that curvature is minimum. These directions are called principal
directions, and the corresponding curvatures are called the principal curvatures. The
member function ComputePrincipalCurvatureInfo computes the principal directions
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Figure 4.32 (a) A curve segment tessellated by a single line segment connecting its end points.
(b) One subdivision step applied to the original tessellation. (c) Two subdivision
steps applied to the original tessellation.

and curvatures. Frames using principal directions have their own mathematical dif-
ficulties. If a point has the property that the minimum and maximum curvatures are
the same, then no matter what tangential direction you move along, the curvature is
the same. Such a point is called an umbilic point. Locally, the surface appears to be a
sphere. At such a point every direction is principal, so a frame varying as you move
along the surface will have a discontinuity at an umbilic.

4.3.3 Curve Tessellation by Subdivision

The subdivision scheme I use for tessellating a curve is simple. Let P(u) be the curve
for u ∈ [umin, umax]. Given two points on the curve, say, P(u0) and P(u1) with u0 <

u1, the parameter interval [u0, u1]is subdivided into two halves [u0, um]and [um, u1],
where um = (u0 + u1)/2. The new point in the tessellation is P(um). The process is
repeated for the subintervals as many times as desired. Figure 4.32 illustrates a few
levels of subdivision.

The first subdivision step does not produce a tessellation that resembles the curve,
but the second subdivision step does. Naturally, more subdivision steps will produce
a polyline that is a better approximation to the curve than the previous step produces.

If you have a collection of curve segments that produce a single curve by ordering
the segments end to end, a subdivision scheme may be applied to all the segments
simultaneously. Let the segments be Pi(u) with parameter intervals [ai , bi], for 0 ≤
i < n. It is not necessary that these intervals be the full domains of the segments.
For a continuous curve, it is necessary that Pi(bi) = Pi+1(ai+1). My implementation
of the subdivision scheme assumes continuity. If you have a collection of segments
that are not ordered end to end, then apply separate subdivision schemes to the
segments.
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Assuming continuity, the initial tessellation is the set of vertices{
P0(a0), P1(a1), . . . , Pn−1(an−1), Pn−1(bn−1)

}
(4.2)

and represents a polyline that approximates the curve. All the first end points of
the curve segments are in the tessellation. The last end point of the last curve is
also included. The initial tessellation has n + 1 vertices. A subdivision step involves
subdividing each parameter interval by calculating the midpoints, ci = (ai + bi)/2,
and inserting the vertices Pi(ci) into the tessellation. The new tessellation is{

P0(a0), Pi(c0), P1(a1), Pi(c1), . . . , Pn−1(an−1), Pi(cn−1), Pn−1(bn−1)
}

.

The process may be repeated on the subintervals [ai , ci]and [ci , bi], and then contin-
uing yet again on the resulting subintervals. The class that implements this scheme is
CurveMesh.3

A portion of the CurveMesh interface is

class CurveMesh : public Polyline
{
public:

CurveMesh (int iSegmentQuantity, CurveSegmentPtr* aspkSegment,
FloatArrayPtr spkParams, bool bAllowAttributes,
bool bAllowDynamicChange);

virtual ~CurveMesh ();

void SetLevel (int iLevel);
int GetLevel () const;

protected:
int m_iSegmentQuantity;
CurveSegmentPtr* m_aspkSegment;
FloatArrayPtr m_spkOrigParams;
int m_iLevel, m_iFullVQuantity;

};

A quantity and array of curve segments are passed to the constructor. They are as-
sumed to be ordered to form a continuous curve. The class assumes responsibility
for deleting the aspkSegment array, so it must be dynamically allocated. The array
spkParams stores the parameter values for the curve segment end points. If there are

3. For now I only support a mesh of curve segments that are ordered end to end. It is possible to support
a general mesh, as described earlier. This will require creating a new class PolylineMesh that represents a
mesh of polylines.
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N segments, this array must have 2(N − 1) values. Curve segment P[i] has domain
[spkParams[2*i],spkParams[2*i+1]]. Continuity requires that P[i](spkParams
[2*i+1]) = P[i+1](spkParams[2*(i+1)]). The polyline produced by the subdivision
is flagged as open. If you want a closed polyline, you should make certain that the
first end point of P[0] matches the last end point of P[N-1].

The default level of subdivision is 0; that is, the polyline that approximates the
curve is the sequence of points in Equation (4.2). To subdivide to a different level, call
the member function SetLevel with an input that is nonnegative. The input is stored
in m_iLevel. The subdivision is always computed from level 0, not incrementally from
the previous level. The total number of vertices in the polyline is stored in m_iFull-
VQuantity.

For display purposes, the polyline needs vertex attributes. Vertex colors are the
most common for polylines, but nothing prevents you from using vertex normals
for dynamic lighting or texture coordinates for texturing with a selected image. The
CurveMesh object will have an Effect attached to it, since the effect stores the vertex
attributes, but the subdivision code knows nothing about these. The problem is
that the new vertices introduced by a subdivision call need to have vertex attributes
calculated. The approach I used in Wild Magic version 2 was to subdivide the vertices
and their attributes simultaneously. The disadvantage to this approach is that the
programmer must decide which vertex attributes to pass to the constructor of the
class.

In Wild Magic version 3 I decided that greater flexibility is provided to the pro-
grammer if the vertex attributes can be processed independently of the subdivision
call. The same philosophy was used in the class CreateClodMesh regarding mesh deci-
mation. The class stored enough information to allow you to assign vertex attributes
to the CLOD mesh after the decimation was performed. Class CurveMesh also stores
information for vertex attribute construction after subdivision, but you have to let the
class know you plan on doing this. The Boolean parameter bAllowAttributes in the
constructor should be set to true when you plan on using vertex attributes. A binary
tree of vertex indices is maintained. A new vertex Vi is inserted into the tessellation
as a result of subdividing a parameter interval [uj , uk] for some indices j and k. The
binary tree node representing index i had two child nodes representing indices j and
k. The curve points at the interval end points are Vj and Vk. If these end points have
scalar attributes assigned to them, say, αj and αk, the scalar attribute assigned to Vi

is the average αi = (αj + αk)/2. The scalar attributes are the individual components
of any vertex attributes—for example, a color channel (R, G, or B), a component of
a texture coordinate, or a component of a normal vector. In the latter case, the nor-
mal components will be interpolated separately, so you need to normalize the results
yourself.

The interface for the binary tree handling is

class CurveMesh : public Polyline
{
public:

float* GetAttributes (int iSize, const float* afAttr) const;
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protected:
class VertexTree
{
public:

VertexTree ();

int V[2];
};
VertexTree* m_akVTree;
bool m_bBuildVertexTree;

};

The internal structure is the simplest you can think of for a binary tree. The member
function is designed so that you never have to reallocate attribute arrays in the Effect
object attached to the CurveMesh object. An attribute array corresponding to the
initial vertices in the tessellation is passed to GetAttributes. The number of float
components is passed as the size. For example, if you have an array of ColorRGB,
iSize is set to 3, and the pointer to the array is typecast as a float* and passed to
the function. The return value is an array of the same type, ColorRGB in our example,
and has the same number of elements as vertices in the current tessellation. You have
the responsibility of replacing the old attribute array in the Effect object with the new
one. Just a note on the implementation of GetAttributes. The function must traverse
the binary tree of indices. A recursive call is not necessary, though, because the tree is
stored as an array in an order that guarantees a forward iteration over the array will
generate new attributes from array slots with already valid attributes.

The way that you compute attributes is illustrated in the sample application that
is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestSurfaceMesh

A CurveMesh object is created with the Boolean flag set to true for building and
managing the binary tree. An Effect object is attached that has vertex colors for the
initial vertices of the tessellation. In the key handler of the application, when the plus
key is pressed, the level of tessellation is increased. The vertex attributes are updated
by

m_spkCurve->SetLevel(m_iLevel);
pkEffect = m_spkCurve->GetEffect();
iOrigQuantity = pkEffect->ColorRGBs->GetQuantity();
afOrigColors = (const float*)pkEffect->ColorRGBs->GetData();
akColor = (ColorRGB*) m_spkCurve->GetAttributes(3,afOrigColors);
iVQuantity = m_spkCurve->Vertices->GetQuantity();
pkEffect->ColorRGBs = new ColorRGBArray(iVQuantity,akColor);
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The first line of code causes the curve to be subdivided to a specified level. The effect
is accessed from the curve. The color array for the initial tessellation is fetched from
the effect and then passed to the GetAttributes function so that a new color array can
be computed with the aid of the binary tree of indices. The effect needs to be updated
by giving it the new color array.

Another feature that is useful is to allow the curve itself to change, in which case
all the vertices in the tessellation must be recomputed. For example, if your curve is
a Bézier curve with control points, any change in the control points will require the
curve mesh to be updated. If you want to allow dynamic changes of this type, you
need to set the constructor input Boolean parameter bAllowDynamicChange to true.
Support for dynamic updates is provided by the interface

class CurveMesh : public Polyline
{
public:

void OnDynamicChange ();

protected:
class CurveInfo
{
public:

CurveInfo ();

CurveSegmentPtr Segment;
float Param;

};
void InitializeCurveInfo ();
bool m_bAllowDynamicChange;
CurveInfo* m_akCInfo;

};

Whenever your curve segments have been modified, you must call the method On-
DynamicChange. The internal data structure associated with the updates, nested class
CurveInfo, stores information for each vertex in the current tessellation. During the
subdivision process, the parameters that generate the new vertices are temporarily
stored until the subdivision terminates. At that time the temporary information is
deleted, so the parameters associated with the vertices in the tessellation are dis-
carded. The curve segments to which the parameters were associated are also tempo-
rarily stored during subdivision, and they, too, are discarded at the end of the process.
A dynamic change requires us to remember the parameter values and curve segments,
which is exactly what CurveInfo does.

A final feature is provided by the interface
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class CurveMesh : public Polyline
{
public:

void Lock ();
bool IsLocked () const;

};

The ability to vary the level of subdivision and compute vertex attributes might be
exercised during the development of an application. If you should decide that no
more adjustments must be made to the CurveMesh object, it is recommended that you
discard all the memory that is used internally to support these operations by calling
Lock. This function deletes the array of curve segments and the parameter array that
were passed to the constructor. If a binary tree of vertex indices was requested during
construction, the array to store that is also deleted. However, the array to allow
dynamic changes is retained so that you can morph the curves, if so desired. Once
you call Lock, you cannot “unlock” and have the data restored. That can only be done
by constructing another object from the same input data you originally used. Also,
after a Lock call, any calls to SetLevel are ignored.

A few words are in order about the subdivision process itself. The class CurveMesh
has two private functions that are called by SetLevel. The first one is Allocate. Its job
is to compute the number of vertices required by the specified level for subdivision.
A private, nested class called Edge is used to represent an edge connecting two ver-
tices. This class simply stores the curve segment that is used to subdivide the edge, a
pair of indices into the vertex array where the edge end points are stored, and a pair of
parameters that generated those end points via the curve segment. The function Allo-
cate creates arrays large enough to store both the vertices and edges. It computes the
initial vertices that correspond to the parameters passed to the CurveMesh constructor.
It also initializes the edges using the level 0 information—the parameters passed to
the constructor and the indices to the vertices just computed. If the number of initial
vertices is V0, then the number of initial edges is E0 = V0 − 1. A subdivision produces
V1 vertices and E1 edges, where

V1 = V0 + E0, E1 = 2E0.

Each edge has a new vertex associated with it (the midpoint in parameter space), so
E0 new vertices are generated. Since the new vertex implies the edge is split into two
edges, the number of edges doubles.

The second private function is Subdivide. Its job is to fill in the vertex and edge
arrays with the new vertices and edges implied by the subdivision step. The algorithm
process is straightforward, but the implementation has a subtle twist. Each old edge
is split into two new edges. The new edges must be stored in the array created by
Allocate, but should not overwrite any old edges not yet processed. In order for this
to happen, you have to iterate backwards over the old edges in the array and write
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the new edges to the correct locations. I also want this to happen in a manner that
preserves the ordering of the vertices so that I can iterate over the final set of edges
and generate the polyline.

For example, suppose that the old edges are E0, E1, and E2. E0 will be split into
two edges E′

0 and E′
1, E1 will be split into two edges E′

2 and E′
3, and E2 will be split

into two edges E′
4 and E′

5. The array that Allocate creates has six slots, and the first
three slots are filled with the old edges:

[
E0 E1 E2 ∅ ∅ ∅

]

The symbol ∅ indicates that the slots are empty. Clearly, if we were to compute E′
0 and

E′
1 and store them in the slots currently occupied by E0 and E1, we would overwrite

E1 before it was processed, which is an error. Instead, split E2 by computing E′
4 and

E′
5 and storing them at the end of the array. The array becomes

[
E0 E1 E2 ∅ E′

4 E′
5

]

Split E1 by computing E′
2 and E′

3 and storing them in the next available slots at the
end of the array. The array becomes

[
E0 E1 E′

2 E′
3 E′

4 E′
5

]

Notice that E2 has been overwritten, but since we already processed that edge, this is
not a problem. Finally, split E0 by computing E′

0 and E′
1 and storing them in the final

available slots. The array becomes

[
E′

0 E′
1 E′

2 E′
3 E′

4 E′
5

]

The edge E0 will be overwritten by this process. It is essential to compute E′
1 first and

store it before you compute E′
0 and overwrite E0. The implementation of Subdivide

does compute the new edges in the order E′
i+1 followed by E′

i
, so there is no problem

on the overwriting.
The uniform subdivision scheme described here does not take into account the

shape of the curve. Adaptive subdivision schemes will choose to subdivide a subinter-
val depending on the variation between the curve and the line segment connecting to
that subinterval. A few adaptive schemes are described in [Ebe00]. Should you choose
to use one of them, you will need to either modify the CurveMesh source code or im-
plement a new class.
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(a) (b)

Figure 4.33 (a) A triangulated region in the parameter domain. (b) One subdivision step applied
to the triangulated region.

4.3.4 Surface Tessellation by Subdivision

The subdivision scheme for surfaces is more complicated than that for curves. The
surface tessellation is a triangle mesh, even if the surface patches are rectangles. Only
a subset of the rectangle domain may be used to control the positions during the
subdivision of a triangle. Consider a triangle in the parameter domain with vertices
(u0, v0), (u1, v1), and (u2, v2). The surface has corresponding vertices P(ui , vi) for
0 ≤ i ≤ 2. The triangle is subdivided into four smaller triangles by introducing new
parameter points at the midpoints of the three edges. The process is repeated on the
subtriangles as many times as desired. Figure 4.33 illustrates a level of subdivision.
The more subdivision steps you take, the better the triangle mesh approximates the
surface.

If the initial number of vertices is V0, the initial number of edges is E0, and the
initial number of triangles is T1, a subdivision step will produce new numbers of
vertices, edges, and triangles according to

V1 = V0 + E0, E1 = 2E0 + 3T0, T1 = 4T0.

These equations are motivated by Figure 4.33. Each edge in the triangulation receives
a new vertex, which corresponds to the midpoint of the edge in parameter space.
Thus, the new number of vertices is E0, increasing the total number to V0 + E0. An
edge is split into two, adding 2E0 edges to the triangulation. Three additional edges
are added per triangle to form the new interior triangle, a total of 3T0 edges for those
interior triangles. The total number of edges is 2E0 + 3T0. Clearly, one triangle is
replaced by four, so the new number of triangles is 4T0.

The class that supports the surface subdivision, SurfaceMesh, closesly resembles
CurveMesh. A portion of the SurfaceMesh interface is



374 Chapter 4 Advanced Scene Graph Topics

class SurfaceMesh : public TriMesh
{
public:

SurfaceMesh (Vector3fArrayPtr spkVertices, IntArrayPtr spkIndices,
bool bGenerateNormals, Vector2fArrayPtr spkParams,
SurfacePatchPtr* aspkPatch, bool bAllowAttributes,
bool bAllowDynamicChange);

virtual ~SurfaceMesh ();

void SetLevel (int iLevel);
int GetLevel () const;

protected:
Vector3fArrayPtr m_spkOrigVertices;
IntArrayPtr m_spkOrigIndices;
Vector2fArrayPtr m_spkOrigParams;
SurfacePatchPtr* m_aspkPatch;
int m_iLevel, m_iFullVQuantity, m_iPatchQuantity;

};

In the CurveMesh class, I automatically generated the vertices from the curve seg-
ments. That can also be done in the SurfaceMesh class, but I found it to be more
convenient to provide those vertices to the constructor. If this is not done, and you do
not even pass the number of vertices to the constructor, an iteration must be made
through the index array to count the number of vertices. If the indices do not form a
contiguous range of integers, special case code must be written to deal with this. So,
I pass the vertex and index arrays for the initial tessellation, a TriMesh (the class from
which SurfaceMesh is derived). The Boolean flag bGenerateNormals, if true, tells the
TriMesh to generate vertex normals.

The index array has 3N elements and represents a collection of triangles that
share the vertices. Each triangle has a surface patch associated with it. The array
of surface patches is aspkPatch and must have N elements. Each triangle also has
three parameter pairs assigned to its vertices; the parameters are in the domain
of the surface patch associated with the triangle. The array of parameter pairs is
spkParams and must have 3N elements. The evaluation of the surface patch at the
three parameter pairs must reproduce the three input vertices for the triangle. The
class SurfaceMesh assumes the responsibility for deleting the input array of patches,
so this array should be dynamically allocated.

To subdivide, just call SetLevel with the desired level of subdivision. You should
not make the value too large. Each additional level quadruples the number of trian-
gles. It does not take too large a level to produce more triangles than a graphics driver
is designed to handle.

The handling of vertex attributes is identical to what was used in CurveMesh.
To support computation of vertex attributes after subdivision, the input Boolean



4.3 Curves and Surfaces 375

parameter bAllowAttributes to the constructor must be set to true. The relevant
interface is

class SurfaceMesh : public TriMesh
{
public:

float* GetAttributes (int iSize, const float* afAttr) const;

protected:
class VertexTree
{
public:

VertexTree ();

int V[2];
};
VertexTree* m_akVTree;
bool m_bAllowAttributes;

};

A binary tree of indices is used to assist in computing the attributes of a new vertex
from those of the two old ones that contributed to it.

The dynamic changes to a surface are also handled in a manner identical to that
used for curves. The relevant interface is

class SurfaceMesh : public TriMesh
{
public:

void OnDynamicChange ();

protected:
class SurfaceInfo
{
public:

SurfaceInfo ();

SurfacePatchPtr Patch;
Vector2f Param;

};
void InitializeSurfaceInfo ();
bool m_bAllowDynamicChange;
SurfaceInfo* m_akSInfo;

};
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When dynamic changes are enabled, the surface information array stores the surface
patch and parameter value that correspond to each vertex in the tessellation. This
allows a quick update of the vertices whenever the patch itself changes—for example,
when a Bézier patch has its control points modified.

A locking mechanism for surfaces is in place, just like the one for curves. The
interface is

class SurfaceMesh : public TriMesh
{
public:

void Lock ();
bool IsLocked () const;

};

When Lock is called, the original vertex array, index array, and patch array are all
deleted. If vertex attributes were allowed, the binary tree of indices is also deleted.
The surface information array is not deleted so that you can continue to morph the
surface, if so desired. Once locked, you cannot unlock the surface, and any calls to
SetLevel are ignored.

The subdivision process is supported by two functions, Allocate and Subdivide,
that are analogous to the ones found in CurveMesh. They are much more complicated,
though, because of the necessity to manage a vertex-edge-triangle table during the
subdivision process. In the curve mesh code, the old edges were split into new edges
and stored in the same array containing the old edges. Care was taken not to overwrite
old edges before they were processed. The surface mesh code instead uses a hash set of
edges to support the subdivision. The triangle mesh representation does not explicitly
store edges, so to determine the unique edges in the mesh, you need to iterate over
the index array and locate those edges. The hash set data structure stores only the
unique edges and provides, effectively, a constant lookup time for edges.4 During
the iteration over the index array, an edge can be encountered multiple times—the
number of times the edge is shared by triangles. To avoid splitting the same edge
multiple times, the nested class Edge that represents an edge has a reference counter
whose value is the number of times an edge is currently shared. After an old edge
is split, the two new subedges are distinct objects. The old edge must be removed
from the hash set. Since the old edge is visited multiple times, the reference count is
decremented on each visit, and when the count becomes zero, the edge is removed
from the hash set.

4. A hash set data structure is implemented in Wild Magic. If you choose to use the Standard Template Library
(STL) set template, be aware that the lookup time is on the order of O(log n) for n elements. The set
stores its elements according to an ordering imposed by the template parameter class. The lookup is a
binary search. Wild Magic’s structure uses a hash table and has a lookup time on the order of O(1 + α),
where α is related to the number of hash collisions. See Section 2.1.1 for details about hash sets.
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The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestSurfaceMesh

illustrates the use of both CurveMesh and SurfaceMesh.

4.4 Terrain

Outdoor games have a need for realistic-looking terrain. How you create the terrain
data will depend on the type of game. For example, if you are writing a flight sim-
ulator, most of the terrain will be observed from a high altitude. The detail on the
terrain is not as much of an issue as for games where the player-characters are close
to the ground. The detail near the character is expected to be at high resolution. Ter-
rain that is far away requires less detail, but if the triangle mesh used for the terrain
close-up is the same one used for the faraway view, the graphics system can spend a
lot of cycles drawing many triangles that affect only a handful of pixels. Recall that
this concept has been visited already (see Section 4.1). A terrain system might very
well be constructed to use level-of-detail algorithms. Whether a flight simulator or
a game played on the ground, the potential is great for having a large amount of
terrain. This is particularly an issue for game worlds that are designed to have new
regions added to them. It is likely that not all the terrain data will fit into available
memory on the PC or console, so it must be paged from disk to memory on demand,
and hopefully in a manner that does not catch the player’s attention. A terrain system
in a game engine needs to manage the data efficiently, essentially requiring a virtual
memory management system. This section discusses these concepts and how Wild
Magic supports them.

4.4.1 Data Representations

You have a variety of choices to make regarding the representation of the terrain.
A triangle mesh may be used for terrain. If the world up vector is in the direction
(0, 0, 1), and the reference height plane (perhaps sea level) is z = 0, each vertex
(x , y , z) represents the height z above the reference plane at a location (x , y) in
that plane. In this sense, the z-value is a function of (x , y), say, z = f (x , y), and
the terrain is referred to as a height field, the graph of the function f . Well, you could
make the situation more complicated, and perhaps more interesting, by allowing the
terrain to fold over—it is no longer the graph of a function. Most terrain algorithms
are designed to manage large amounts of terrain and deal with level of detail, but
are restricted to height fields, so I restrict my attention to height fields only in this
discussion.



378 Chapter 4 Advanced Scene Graph Topics

A triangle mesh gives an artist a chance to strut his stuff and design some
really good-looking environments. I recall the artist-generated terrain in the three-
dimensional version of Panzer General, produced by Mindscape some years ago. The
geometry and the applied textures of the triangles were well designed to hide the
sharp-edge artifacts that are inherent in low-polygon-count models. Generating a
large amount of terrain in this manner can be time consuming. For larger worlds,
automatic or semiautomatic height field generation is desirable. Even if some of the
texture generation is automated, the final results still need an artist’s expertise to
touch up the images. Realizing that large chunks of terrain will be stitched together,
height fields tend to be generated over rectangular grids in the xy-plane with uniform
sampling in each dimension. The heights over a rectangular grid can be generated by
creating gray-scale bitmaps whose intensities are proportional to the desired heights.
This approach allows even engineers such as myself to quickly build a terrain sys-
tem.5 Height fields created in this manner lend themselves to some level-of-detail
algorithms, all based on decimation schemes for regular triangulations of the spatial
grid.

An alternative, one I suspect is not used regularly in the art pipeline, is to repre-
sent the terrain by surface patches. Patches with rectangular domains that are tiled
in the xy-plane are equally viable for terrain modeling as are height fields generated
by bitmap images. Should you choose to incorporate level of detail, you are not re-
stricted to a triangulation imposed by a regular grid in the xy-plane. The tessellation
of the surface to produce a triangle mesh for the renderer may be controlled by the
shape of the surface itself. Regions of large curvature are given a high density of tri-
angles; regions of low curvature are given many fewer triangles. Finally, surface patch
representations even allow you to fit a height field on a regularly sampled grid, with
the hope that you can replace a large amount of data (all the height samples) by a
much smaller amount (for example, control points for the surface). This is an attrac-
tive proposition for game consoles that tend to have limited memory, a slow bus, but
lots of processing power to tessellate on the fly.

4.4.2 Level of Detail

My discussion in [Ebe00] for level of detail regarding terrain is based on a SIGGRAPH
paper [LKR+96]. At the time I wrote that book, CPUs were very slow compared
to current processors, and the graphics cards had not yet evolved to use hardware
texturing and lighting. The triangle throughputs were not phenomenal either. A
continuous-level-of-detail terrain algorithm was quite attractive and was our choice
at NDL to put into NetImmerse. A year after Lindstrom’s paper appeared in SIG-
GRAPH, the ROAM algorithm appeared [DWS+97]. ROAM and its variants became

5. The lack of art skills shows up even more quickly when we engineers attempt to create our own bitmaps
for texturing!
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Figure 4.34 The mesh topology for a 3 × 3 block of vertices.

much more popular methods for terrain systems, but I never got around to imple-
menting a version for Wild Magic. The second edition of 3D Game Engine Design is
scheduled to appear in print by the end of 2005. The terrain chapter will be replaced
by a description of ROAM and its variations, and the engine that ships with that book
will have an implementation.

That said, I will still talk briefly about the terrain implemention in Wild Magic.
Terrain level of detail, whether Lindstrom’s algorithm or the ROAM algorithm, in-
volves modifying the triangle count in a mesh in a view-dependent manner. If you
can understand the basic concepts, you will be able to roll your own system. Many of
the figures here are from [Ebe00]; my apologies for the duplication.

Vertex Simplification

At the lowest level in the terrain system is a 3 × 3 block of vertices. The mesh topology
for the block is shown in Figure 4.34. The mesh has eight triangles, all sharing the cen-
ter vertex of the block. Vertices can be removed from the edges to form configurations
with fewer triangles. Figure 4.35 shows the possibilities.

These are distinct modulo rotations and reflections of the blocks. For example,
configuration 0 can be rotated 90 degrees to produce a two-triangle block where
the diagonal edge connects the upper-left vertex to the lower-right vertex. The four
corner vertices always exist in each configuration, and the other five vertices can be
included or removed. The number associated with a configuration is the number of
vertices from those five that the block contributes to the full triangle mesh.

The height field is defined on a grid of (2n + 1) × (2n + 1) locations in the xy-
plane, where n ≥ 1. The grid is considered to be a collection of adjacent 3 × 3 blocks,
each one having the triangle configuration shown in Figure 4.34. A level-of-detail
algorithm will decide when to add or remove vertices from these 3 × 3 blocks. The
addition or removal is not done in the sense of allocating or deallocating memory.
Instead, a data structure is used to represent a vertex and stores a Boolean flag indi-
cating whether or not the vertex participates in the current tessellation of the height
field. The class ClodTerrainVertex is my data structure for the vertex. The interface is
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Figure 4.35 The seven distinct triangle configurations.

class ClodTerrainVertex
{
public:

ClodTerrainVertex ();

void SetDependent (int i, ClodTerrainVertex* pkDependent);
ClodTerrainVertex* GetDependent (int i);
bool GetEnabled () const;
void Enable ();
void Disable ();

protected:
ClodTerrainVertex* m_akDependent[2];
bool m_bEnabled;

};

The class is not derived from Object. Higher-level classes in the terrain sys-
tem have the responsibility for managing the terrain vertices. The data member
m_bEnabled stores whether or not the vertex participates in the tessellation. Access
to the data member is through the functions GetEnabled, Enable, and Disable.

The ClodTerrainVertex also has an array of two pointers to ClodTerrainVertex
objects. You should recognize this as a simple binary tree data structure. The tree
exists because the enabling or disabling of a vertex can affect the status of other
vertices in the height field. Figure 4.36 shows a simple situation of two adjacent 3 × 3
blocks. The dependency means that if V occurs in the tessellation, so must VL and
VR since they are shared by those triangles that also share V.
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Figure 4.36 Two adjacent 3 × 3 blocks of vertices. The arrows indicate that the vertex V on the
shared edge has two dependent vertices, VL and VR.
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Figure 4.37 A single block with nine vertices labeled and all eight triangles drawn. The candidate
vertex for disabling is V12, and the candidate vertical line segment for screen space
height measurement is 〈M12, V12〉.

The decision to disable a vertex is based on the screen space height between the
vertex and the edge that would occur if the vertex were disabled. Figure 4.37 shows a
three-dimensional view of the block.

The mathematics is a bit horrendous for computing the screen space height of
the vertical line segment. Section 3.3.5 of [Ebe00] has all the details. Despite the
complexity, the main idea is that if the screen space height of the vertical line segment
is smaller than a user-specified threshold, presumably a threshold that is a fraction of
a pixel, the vertex V12 is disabled in the tessellation. The player will never notice the
collapse of two edges to one because the collapse occurs at a subpixel level. That’s the
theory. The Lindstrom paper made an approximation to the screen space distance
that was valid when the eye point is far from the terrain. I called this the distant
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(a) (b)

Figure 4.38 Four adjacent 3 × 3 blocks. (a) All vertices disabled. (b) All vertices enabled.

terrain assumption. This is a reasonable assumption for a flight simulator, but not
for a character walking on the ground. I provided an alternative approximation that
is valid when you are close to the terrain and called it the close terrain assumption.

If all vertices that are allowed to be disabled in the 3 × 3 blocks are disabled,
the triangle quantity has been reduced. What to do at that point? The decimation
scheme may be applied at a higher level. First, two adjacent 3 × 3 blocks that are
completely decimated have configuration 0 as shown in Figure 4.35, but with an
additional constraint. The diagonal edge must be reflected between the two blocks.
The block having the configuration 0 exactly as shown in the figure is said to be an
even block. The adjacent block must be an odd block. Figure 4.38 shows four adjacent
3 × 3 blocks, one at minimum resolution (all vertices disabled) and one at maximum
resolution (all vertices enabled).

The four blocks that were simplified as shown in the left of the figure combine
to form a 3 × 3 block of the vertices still enabled. This block is a subset of a 5 × 5
block. However, as a 3 × 3 block at a higher level, there are again five vertices—
all but the four corners—that may be considered for disabling. Each of them has
two dependents, just as in the case of original resolution. This observation allows
us to continue the triangle decimation to produce potentially larger blocks of 3 × 3
vertices that contain triangles of large area. These will occur when the blocks are in the
distance. The result is that the renderer has to draw only a small number of triangles
to cover a small number of pixels.

Block Simplification

The previous discussion led us to see that we can process blocks of vertices that
are larger than the lowest-resolution 3 × 3 blocks in the height field. The class that
represents the blocks is ClodTerrainBlock. The interface is

class ClodTerrainBlock
{
public:

unsigned char GetX () const;
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unsigned char GetY () const;
unsigned char GetStride () const;
float GetDelta (int i) const;
float GetDeltaMax () const;
float GetDeltaL () const;
float GetDeltaH () const;
const Vector3f& GetMin () const;
const Vector3f& GetMax () const;

void SetEven (bool bSet);
bool GetEven () const;
void SetProcessed (bool bSet);
bool GetProcessed () const;
void SetVisible (bool bSet);
bool GetVisible () const;
void SetVisibilityTested (bool bSet);
bool GetVisibilityTested () const;

bool BitsSet () const;
void ClearBits ();

// creation of the quadtree
void Initialize (ClodTerrainPage* pkPage,

ClodTerrainBlock* pkBlock, unsigned short usBlock,
unsigned char ucX, unsigned char ucY,
unsigned char ucStride, bool bEven);

// allows for changing the height data during run time
void UpdateBoundingBox (ClodTerrainPage* pkPage,

ClodTerrainBlock* pkBlock, unsigned short usBlock,
unsigned char ucStride);

// test for intersection of page’s bounding box and view frustum
void TestIntersectFrustum (const ClodTerrainPage* pkPage,

const Camera* pkCamera);

// distant terrain assumption
void ComputeInterval (const Vector3f& rkModelEye,

float fTolerance);

// close terrain assumption
void ComputeInterval (const Vector3f& rkModelDir,

const Vector3f& rkModelEye, float fTolerance,
Vector2f& rkLoc, float fSpacing);
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void SimplifyVertices (ClodTerrainPage* pkPage,
const Vector3f& rkModelEye, const Vector3f& rkModelDir,
float fTolerance, bool bCloseAssumption);

void Disable (ClodTerrainPage* pkPage);

// quadtree indexing
static unsigned short GetParentIndex (unsigned short usChild);
static unsigned short GetChildIndex (unsigned short usParent,

unsigned short usIndex);
static bool IsFirstChild (unsigned short usIndex);
static bool IsSibling (unsigned short usIndex,

unsigned short usTest);

protected:
// bit flags for m_ucFlags
enum
{

EVEN_PARITY = 0x01,
PROCESSED = 0x02,
VISIBLE = 0x04,
VISIBILITY_TESTED = 0x08,
BITS_MASK = 0x0E // all but even parity bit

};

void GetVertex9 (unsigned short usSize,
ClodTerrainVertex* pkVOrigin,
ClodTerrainVertex* apkTVertex[9]);

unsigned char m_ucX, m_ucY, m_ucStride, m_ucFlags;
float m_fDelta[5], m_fDeltaMax;
float m_fDeltaL, m_fDeltaH;
Vector3f m_kMin, m_kMax;

};

This class is not derived from Object. Another class, called ClodTerrainPage, man-
ages a collection of blocks by organizing them in a quadtree. The ClodTerrainBlock
interface gives ClodTerrainPage all that it needs to manage the blocks. As you can
see, the interface itself is quite complicated. The tedious and long details of what
ClodTerrainBlock does are in Section 11.5 of [Ebe00], which I recommend you read
to understand the actual code in Wild Magic. This code contains the essence of the
algorithm in [LKR+96].

The class ClodTerrainPage represents a single tile, or page, in the height field. Its
interface is
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class ClodTerrainPage : public TriMesh
{
public:

// size = 2^p + 1, p <= 7 (size = 3, 5, 9, 17, 33, 65, 129)
ClodTerrainPage (unsigned short usSize,

unsigned short* ausHeight, const Vector2f& rkOrigin,
float fMinElevation, float fMaxElevation, float fSpacing,
float fUVBias = 0.0f);

virtual ~ClodTerrainPage ();

// height field access
unsigned short GetSize () const;
const unsigned short* GetHeights () const;
const Vector2f& GetOrigin () const;
float GetMinElevation () const;
float GetMaxElevation () const;
float GetSpacing () const;

// pixel tolerance on projected vertex height
void SetPixelTolerance (const Renderer* pkRenderer,

float fTolerance);
float GetPixelTolerance () const;

// Height field measurements. If the location is not in the
// page, the return value is Mathf::MAX_REAL.
float GetHeight (float fX, float fY) const;

// texture coordinates for the page
Vector2fArrayPtr GetUVs () const;
float& UVBias ();

protected:
friend class ClodTerrainBlock;

// streaming support
ClodTerrainPage ();
void InitializeDerivedData ();

// queue handlers
void AddToQueue (unsigned short usBlock);
unsigned short RemoveFromQueue ();
unsigned short ReadFromQueue (unsigned short usIndex);
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// page simplification
bool IntersectFrustum (const Camera* pkCamera);

// block simplification
void SimplifyBlocks (const Camera* pCamera,

const Vector3f& rkModelEye, const Vector3f& rkModelDir,
bool bCloseAssumption);

// vertex simplification
void SimplifyVertices (const Vector3f& rkModelEye,

const Vector3f& rkModelDir, bool bCloseTerrainAssumption);

// simplification
friend class ClodTerrain;
void ResetBlocks ();
void Simplify (const Renderer* pkRenderer,

const Vector3f& rkModelEye, const Vector3f& rkModelDir,
bool bCloseAssumption);

// tessellation
float GetX (unsigned char ucX) const;
float GetY (unsigned char ucY) const;
float GetHeight (unsigned short usIndex) const;
float GetTextureCoordinate (unsigned char ucIndex) const;
void Render (ClodTerrainBlock& rkBlock);
void RenderTriangle (unsigned short usT, unsigned short usL,

unsigned short usR);
void RenderBlocks ();

virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

// height field
unsigned short m_usSize, m_usSizeM1;
unsigned short* m_ausHeight;
Vector2f m_kOrigin;
float m_fMinElevation, m_fMaxElevation, m_fSpacing;
float m_fInvSpacing, m_fTextureSpacing, m_fMultiplier;

// texture parameters
float m_fUVBias;

// simplification
float m_fPixelTolerance, m_fWorldTolerance;
bool m_bNeedsTessellation;
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unsigned short* m_ausLookup;
int m_iConnectLength;

// (2^p+1) by (2^p+1) array of vertices, row-major order
ClodTerrainVertex* m_akTVertex;

// (2^p+1) by (2^p_1) array of texture coordinates, row-major
// order
Vector2fArrayPtr m_spkUVs;

// maximum quantities
int m_iTotalVQuantity, m_iTotalTQuantity, m_iTotalIQuantity;

// quadtree of blocks
unsigned short m_usBlockQuantity;
ClodTerrainBlock* m_akBlock;

// circular queue of indices for active blocks
unsigned short* m_ausQueue;
unsigned short m_usQueueQuantity;
unsigned short m_usFront, m_usRear;
unsigned short m_usNumUnprocessed;
unsigned short m_usItemsInQueue;

// for internal use (by ClodTerrain)
public:

// stitch/unstitch (r,c) and (r,c+1)
void StitchNextCol (ClodTerrainPage* pkNextCol);
void UnstitchNextCol (ClodTerrainPage* pkNextCol);

// stitch/unstitch (r,c) and (r+1,c)
void StitchNextRow (ClodTerrainPage* pkNextRow);
void UnstitchNextRow (ClodTerrainPage* pkNextRow);

};

This interface is also highly complex. The constructor takes as input a single,
square height field. The heights are passed in as a one-dimensional array of unsigned
short, but they represent a two-dimensional square array of size usSize. The size
is limited to be of the form 2n + 1 for 1 ≤ n ≤ 7. The form itself allows the block-
based simplification as a quadtree. The upper bound on 7 is the largest integer for
which the number of triangles in the full-resolution mesh representing the page is
smaller than the maximum value of an unsigned short. That is, a 129 × 129 page has
2 · 129 · 129 = 33,282 triangles. The maximum unsigned short (2 bytes) is 65,536. If
you were to use a 257 × 257 page, there are 132,098 triangles, and a 4-byte integer
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is needed to index the triangles. Terrain pages can use a lot of memory. Limiting the
indices to 2-byte unsigned values reduces the memory usage by quite a significant
amount. Moreover, by using 2-byte indices, the ClodTerrainBlock values m_ucX, m_
ucY, and m_ucStride each can be 1-byte quantities. If a 4-byte index is used, the
ClodTerrainBlock values would have to be 2-byte quantities. Once again, we are
reducing memory usage significantly. The use of 2-byte integers for height is also
designed to reduce memory usage.

The constructor also accepts parameters for the world origin of the terrain page,
the minimum and maximum heights associated with the page, the world distance
between adjacent spatial samples, and a bias number for the texture coordinates
associated with a texture to be applied to the page. The unsigned short height values
are mapped to the range of heights between the minimum and maximum elevation
in order to produce the true world heights. More on the bias number later.

The tolerance on screen space height used to determine whether or not a vertex
is disabled is controlled via the member function SetPixelTolerance. If your applica-
tion is running on a computer with a slow CPU or a low-end graphics card, you can
set the tolerance to a larger number. If large enough, noticeable popping occurs—but
better that than running at only a few frames per second.

The member function GetHeight lets you query the terrain page for the height at
a specified (x , y) on the page. If the (x , y) value does not occur exactly at a sam-
ple point in the height field, the triangle containing the point is located and a linear
interpolation is used to compute the height. I chose this instead of bilinear interpo-
lation in order that the (x , y , h) value be exactly on the triangle mesh surface. This is
useful when picking is used to keep the camera a fixed height above the surface. Any
smoothing of camera motion should occur as a postprocess to the picking operation.

The member functions GetUVs and UVBias will be discussed later. The simplifica-
tion functions are buried in the protected section of ClodTerrainPage. The intent is
that you have even a higher-level manager for the simplification, namely, the class
ClodTerrain. This is the topic of the next section.

4.4.3 Terrain Pages and Memory Management

I had implemented Lindstrom’s algorithm [LKR+96] in the version of Wild Magic
that shipped with [Ebe00], but the source code illustrated the level-of-detail manage-
ment only for a height field over a single rectangular domain. A high-level description
of how to handle tiled terrain was presented in [Ebe00], and I even had some stitch-
ing code in place to support the tiling, but I suspect the book did not present enough
information for someone to implement a system to handle it (judging by some of
the technical support email I received about it). I will now discuss this topic and the
implementation of it in the engine. The management applies to tiled terrain whether
or not you incorporate level of detail. In the event you do, issues must be addressed
regarding the stitching of adjacent tiles to avoid cracking in the combined mesh.
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Figure 4.39 The page ordering for a 2 × 2 grid of terrain pages.

Page Stitching

The first issue to deal with is stitching of the pages when the pages are using a level-of-
detail algorithm. If you have no level of detail, and the pages are at a fixed resolution,
there is no stitching to do. The level of detail can cause vertices on the edge of its
page to be disabled. The level of detail at an adjacent page can cause vertices on
the equivalent edge to be disabled. But the sets of disabled vertices might not be the
same. If they are not, cracking occurs along the shared edge. Two adjacent blocks on
the same page do not have this problem because the vertices on the shared edge are
exactly the same in memory. When the adjacent blocks are in different pages, each
block has its vertices that it manages. The vertices on the shared edge are abstractly
the same, but there are two copies of them that need to be handled in an identical
manner.

What needs to happen is that the vertices on one page boundary need to be told
who their dependents are on the other page. This dependency is slightly different than
within a single block. Specifically, the dependent of a vertex on the other page is that
vertex that is abstractly equivalent. If one of the copies is in the tessellation, so must
be the other copy.

The pages in the terrain have to be numbered with row and column indices. This
allows you to identify which pages have to be stitched together, including whether
the stitching occurs along a row or along a column. The height fields are functions
z = h(x , y) with the xy-plane using right-handed coordinates. The column index
increases with x, and the row index increases with y. For example, looking down the
positive z-axis, a 2 × 2 grid of pages is labeled as shown in Figure 4.39. The pages are
Prc, where r is the row index and c is the column index.

Figure 4.40 shows how to set up the dependencies for two pages sharing a row
edge. The symbol s in the figure is the page size. The last indexed row or column in a
page is s − 1. The stitching code is
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Figure 4.40 Vertex dependencies between two pages sharing a row edge.

void ClodTerrainPage::StitchNextRow (ClodTerrainPage* pkNextRow)
{

// ’this’ is page (r,c), ’pkNextRow’ is page (r+1,c)
int iSize = (int)m_usSize;
int iMax = iSize - 2;
int iYThis = iSize - 1;
int iYNext = 0;
for (int iX = 1; iX <= iMax; iX++)
{

int iIThis = iX + iSize*iYThis;
int iINext = iX + iSize*iYNext;
ClodTerrainVertex* pkVThis = &m_akTVertex[iIThis];
ClodTerrainVertex* pkVNext = &pkNextRow->m_akTVertex[iINext];
pkVNext->SetDependent(1,pkVThis);
pkVThis->SetDependent(0,pkVNext);

}
}

The vertex pkVThis refers to the one in the figure that has “dep 0” written below it. The
vertex pkVNext refers to the one in the figure to which the arrow of “dep 0” points. The
connection is also made in the other direction.

Figure 4.41 shows how to set up the dependencies for two pages sharing a column
edge. The stitching code is
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Figure 4.41 Vertex dependencies between two pages sharing a column edge.

void ClodTerrainPage::StitchNextCol (ClodTerrainPage* pkNextCol)
{

// ’this’ is page (r,c), ’pkNextCol’ is page (r,c+1)
int iSize = (int)m_usSize;
int iMax = iSize - 2;
int iXThis = iSize - 1;
int iXNext = 0;
for (int iY = 1; iY <= iMax; iY++)
{

int iIThis = iXThis + iSize*iY;
int iINext = iXNext + iSize*iY;
ClodTerrainVertex* pkVThis = &m_akTVertex[iIThis];
ClodTerrainVertex* pkVNext = &pkNextCol->m_akTVertex[iINext];
pkVNext->SetDependent(0,pkVThis);
pkVThis->SetDependent(1,pkVNext);

}
}

The vertex pkVThis refers to the one in the figure that has “dep 0” written to the right
of it. The vertex pkVNext refers to the one in the figure to which the arrow of “dep 0”
points. The connection is also made in the other direction. The stitching functions
have counterparts that do the unstitching.

Terrain Page Management

The second issue to deal with is the management of pages in memory. Not all the
pages for a large world will fit into physical memory. This requires having a rudimen-
tary virtual memory management system in place. The class ClodTerrain provides
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this system, as well as all of the initialization and simplification that goes with the
continuous-level-of-detail terrain. The class interface is

class ClodTerrain : public Node
{
public:

ClodTerrain (const char* acHeightPrefix,
const char* acImagePrefix, Renderer* pkRenderer,
float fUVBias = 0.0f, ColorRGBA* pkBorderColor = NULL);

virtual ~ClodTerrain ();

int GetRowQuantity () const;
int GetColQuantity () const;
unsigned short GetSize () const;
float GetMinElevation () const;
float GetMaxElevation () const;
float GetSpacing () const;

float GetHeight (float fX, float fY) const;

ClodTerrainPage* GetPage (int iRow, int iCol);
ClodTerrainPage* GetCurrentPage (float fX, float fY) const;
ClodTerrainPagePtr ReplacePage (int iRow, int iCol,

const char* acHeightPrefix, const char* acImagePrefix,
const char* acHeightName, const char* acImageName);

ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
ClodTerrainPage* pkNewPage);

void Simplify ();

void SetPixelTolerance (float fTolerance);
float GetPixelTolerance () const;

float& UVBias ();
ColorRGBA& BorderColor ();

protected:
ClodTerrain ();

void LoadPage (const char* acHeightPrefix,
const char* acImagePrefix, int iRow, int iCol);

int m_iRows, m_iCols;
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unsigned short m_usSize;
float m_fMinElevation, m_fMaxElevation, m_fSpacing;
ClodTerrainPagePtr** m_aaspkPage;

float m_fPixelTolerance;
Renderer* m_pkRenderer;
bool m_bCloseAssumption;

int m_iCameraRow, m_iCameraCol;

float m_fUVBias;
ColorRGBA m_kBorderColor;

};

The first two parameters of the constructor are the paths to the directories that
contain the height field data and the texture images plus the names of the files in
those directories. The sample application

MagicSoftware/WildMagic3/Test/TestTerrain

has three different resolution height files stored in the directories

MagicSoftware/WildMagic3/Test/TestTerrain/Height32
MagicSoftware/WildMagic3/Test/TestTerrain/Height64
MagicSoftware/WildMagic3/Test/TestTerrain/Height128

The number suffix refers to n in the page size (2n + 1) × (2n + 1). The corresponding
texture images are in the directories

MagicSoftware/WildMagic3/Test/TestTerrain/Image32
MagicSoftware/WildMagic3/Test/TestTerrain/Image64
MagicSoftware/WildMagic3/Test/TestTerrain/Image128

The height and image prefixes passed to the ClodTerrain constructor are

‘‘Height128/height’’
‘‘Image128/image’’

The path is relative to the working directory of the application. Let us assume that we
are working with the files with suffix 32. The loading code assumes that there exists a
file

‘‘Height32/height.wmhf’’

The extension stands for Wild Magic Height File. The file is binary and contains
the number of rows (4-byte signed integer), the number of columns (4-byte signed
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integer), the size of the page (2-byte unsigned short, the value 32 in this example),
the minimum elevation (4-byte float), the maximum elevation (4-byte float), and
the spacing between samples (4-byte float). If there are R rows and C columns, the
remaining files in the directory should be

‘‘Height32/height.r.c.wmhf’’

for 0 ≤ r < R and 0 ≤ c < C. In the sample application, R = C = 8, so there are 64
height fields. The texture images have the same numbering scheme: files are of the
form

‘‘Image32/image.r.c.wmif’’

where the extension stands for Wild Magic Image File.
All the height and image files are loaded. For each pair of a height and image file,

a ClodTerrainPage is created and a pointer to it is stored in a two-dimensional array.
The pages are stitched together using

// terrain has m_iRows by m_iCols pages
for (iRow = 0; iRow < m_iRows; iRow++)
{

for (iCol = 0; iCol+1 < m_iCols; iCol++)
{

m_aaspkPage[iRow][iCol]->StitchNextCol(
m_aaspkPage[iRow][iCol+1]);

}
}

for (iCol = 0; iCol < m_iCols; iCol++)
{

for (iRow = 0; iRow+1 < m_iRows; iRow++)
{

m_aaspkPage[iRow][iCol]->StitchNextRow(
m_aaspkPage[iRow+1][iCol]);

}
}

I have chosen to use a toroidal topology for the pages. For a large enough world,
players will not notice that they are on a torus rather than a sphere. The wraparound
is accomplished by

int iColsM1 = m_iCols-1;
for (iRow = 0; iRow < m_iRows; iRow++)
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{
m_aaspkPage[iRow][iColsM1]->StitchNextCol(

m_aaspkPage[iRow][0]);
}

int iRowsM1 = m_iRows-1;
for (iCol = 0; iCol < m_iCols; iCol++)
{

m_aaspkPage[iRowsM1][iCol]->StitchNextRow(
m_aaspkPage[0][iCol]);

}

Even with this topology, you are not obligated to use only a fixed set of terrain
pages. Once the stitching is in place, the pages are added as child nodes to the ClodTer-
rain object. At this point you should consider the collection of terrain pages as the
active set . The active set can change over time. The old pages may be replaced by new
ones as desired, with the decision to replace most likely based on the current camera
location and the direction in which it is headed. The active set and the page replace-
ment scheme are essentially a memory management system. More on replacing pages
a bit later.

Simplification

After the terrain pages are attached to the ClodTerrain object, the terrain needs to be
simplified using the block and vertex dependencies. This is accomplished through the
member function ClodTerrain::Simplify. This function is the workhorse of the ter-
rain system. Each time the camera moves, either positionally or rotationally, Simplify
must be called. After all, the continuous-level-of-detail system is designed to be view
dependent. Ignoring the issue with toroidal wraparound, the simplification would be

void ClodTerrain::Simplify ()
{

// get camera location/direction in model space of terrain
const Camera* pkCamera = m_pkRenderer->GetCamera();
Vector3f kWorldEye = pkCamera->GetWorldLocation();
Vector3f kWorldDir = pkCamera->GetWorldDVector();
Vector3f kModelEye = World.ApplyInverse(kWorldEye);
Vector3f kModelDir = kWorldDir*World.GetRotate();

// ... page management goes here ...

// Initialize the pages (setup for quadtree blocks to
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// be simplified).
int iRow, iCol;
for (iRow = 0; iRow < m_iRows; iRow++)
{

for (iCol = 0; iCol < m_iCols; iCol++)
m_aaspkPage[iRow][iCol]->ResetBlocks();

}

// simplify only the potential visible pages
for (iRow = 0; iRow < m_iRows; iRow++)
{

for (iCol = 0; iCol < m_iCols; iCol++)
{

ClodTerrainPage* pkPage = m_aaspkPage[iRow][iCol];
if ( pkPage->IntersectFrustum(pkCamera) )
{

pkPage->Simplify(m_pkRenderer,kModelEye,kModelDir,
m_bCloseAssumption);

}
}

}
}

First, the simplification algorithms assumes camera information in the coordi-
nate system of the terrain, so the camera eye point and world direction are inverse
transformed to the terrain model space. Second, the active blocks in the quadtree are
reset via ResetBlocks. This sets the blocks’ states so that the simplification step can de-
cide where in the quadtree new blocks need to become active. Third, only the pages
that are potentially visible are simplified. There is no reason to simplify a nonvisible
page. Now it is possible that a nonvisible page will be modified if it is stitched to one
that is visible.

I placed a comment in the previous code block that indicates the page manage-
ment code must be placed at that location. Each terrain page has associated with it
a model space origin. The origin was assigned to it when it was loaded by ClodTer-
rain, and it is based on the row and column indices for the page and on the sample
spacing for the pages. In a toroidal topology, if you were to move the camera along a
straight-line path, you would eventually return to the page you started at. The cam-
era has a different eye point vector than it did the first time it was on the page, but
the page model space origin is the same. This is a mismatch in coordinates. The page
management code must update the model space origins for the pages in the active set
to make them consistent with the camera eye point vector. The code block to handle
this is

float fLength = m_fSpacing*(m_usSize-1);
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float fInvLength = 1.0f/fLength;
int iNewCameraCol = (int)Mathf::Floor(kWorldEye.X()*fInvLength);
int iNewCameraRow = (int)Mathf::Floor(kWorldEye.Y()*fInvLength);
if (iNewCameraCol != m_iCameraCol || iNewCameraRow != m_iCameraRow)
{

m_iCameraCol = iNewCameraCol;
m_iCameraRow = iNewCameraRow;

// translate page origins for toroidal wraparound
int iCMinO = m_iCameraCol - m_iCols/2;
int iCMinP = iCMinO % m_iCols;

if ( iCMinP < 0 )
iCMinP += m_iCols;

int iRMinO = m_iCameraRow - m_iRows/2;
int iRMinP = iRMinO % m_iRows;

if ( iRMinP < 0 )
iRMinP += m_iRows;

int iRO = iRMinO, iRP = iRMinP;
for (int iRow = 0; iRow < m_iRows; iRow++)
{

int iCO = iCMinO, iCP = iCMinP;
for (int iCol = 0; iCol < m_iCols; iCol++)
{

ClodTerrainPage* pkPage = m_aaspkPage[iRP][iCP];
Vector2f kOldOrigin = pkPage->GetOrigin();
Vector2f kNewOrigin(iCO*fLength,iRO*fLength);
Vector2f kTrn = kNewOrigin - kOldOrigin;
pkPage->Local.Translate().X() = kTrn.X();
pkPage->Local.Translate().Y() = kTrn.Y();

iCO++;
if ( ++iCP == m_iCols )

iCP = 0;
}

iRO++;
if ( ++iRP == m_iRows )

iRP = 0;
}
UpdateGS();

}
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The camera world coordinates are not confined by the toroidal topology. The
camera can be anywhere in the xy-plane, and the terrain appears to be infinite to
the observer. The array of pages Prc is effectively infinite, where r and c are any
integer values. The first four lines of code determine which page Prc contains the
camera world coordinates (x , y). The variable iNewCameraRow is r , and the variable
iNewCameraCol is c. The previous page is stored in the member variables m_iCameraRow
and m_iCameraCol. The new row and column indices are compared to the old ones. If
they have not changed, the page origins are consistent with the camera coordinates. If
the origins are changed, the final UpdateGS call makes sure all the world data is correct
and consistent with the new origins.

Replacing Pages

The topology of the mesh of pages is toroidal, but this does not mean that you should
think of the game world as the surface of a torus. Enough pages are stored in the
system so that only a few intersect the view frustum at one time. The simplification
algorithm is only applied to this subset of pages. The fact that other, invisible pages
are toroidally stitched together does not affect the simplification of the visible pages.
For all practical purposes, the pages in the view frustum can be part of a world built
on an infinite plane or of a world built on a large sphere (that locally looks like an
infinite plane).

As the camera moves about the terrain, the ClodTerrain::Simplify function up-
dates the page origins to be consistent with world coordinates. An application can also
monitor the current row and column associated with the camera. When the camera
gets close enough to pages of interest, the current pages can be replaced by new ones
loaded from disk. In this sense the world really can be built as if it were infinite. Two
functions exist in ClodTerrain that allow you to replace a page in a specified row and
column:

ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
const char* acHeightPrefix, const char* acImagePrefix,
const char* acHeightName, const char* acImageName);

ClodTerrainPagePtr ReplacePage (int iRow, int iCol,
ClodTerrainPage* pkNewPage);

The first function requires you to provide the same prefixes that were passed to
the ClodTerrain constructor; the assumption is that the replacement pages are in the
same location and use the same naming convention. You need to provide the actual
page names for the files located in the prefix directories. The second function allows
you to replace a page with one already stored in memory. The idea is that you might
have just replaced a page with a new one, only to find out that the player quickly
returned to a location that requires putting back the old page. You can keep a cache of
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recently visited pages in memory for quick replacement. How big the cache is depends
on the target platform and how much memory you are willing to expend in order to
replace pages quickly.

Texturing Issues

When stitching pages together, a visual anomaly can occur. If the textures on two
pages somehow are mismatched at a shared edge of a page, the game players will def-
initely notice. Even if artists have done their best to hide the mismatch, the graphics
system itself can cause problems. The issue was already discussed in Section 3.4.3 and
has to do with how texture coordinates are handled near the edges of the texture. For a
terrain system, the only reasonable choice you have is to use the clamp-to-edge mech-
anism to make sure that bilinear filtering and mipmapping do not cause problems
along shared edges.

An artist’s assistance with the texture images will also help hide any artifacts at
page boundaries, and the terrain design itself may be carefully chosen to help. For
example, if you have terrain pages with flat spots, say, a river, and the page boundaries
run down the middle of the river, that might be noticeable to a player. You might
consider designing the pages so that boundaries occur in places of low probability that
a character might see. For example, you could place them along ridges of a mountain,
knowing that the character will not get close enough to notice any seams.

4.5 Controllers and Animation

Animation is supported in Wild Magic by the concept of a controller. A controller
manages various quantities that are time varying. Character animation, for example,
might be implemented by controlling the local transformations at each joint in the
hierarchy representing the character. Motion is not the only quantity that can be
controlled. For example, you might have a material attached to an object whose alpha
value varies over time, and a controller can be built to vary the alpha value. You name
it. If it varies with time, you can control it.

The base class for a controller is appropriately named Controller. The interface is

class Controller : public Object
{
public:

virtual ~Controller ();

Object* GetObject () const;

virtual bool Update (double dAppTime);
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enum // RepeatType
{

RT_CLAMP,
RT_WRAP,
RT_CYCLE,
RT_QUANTITY

};

int RepeatType; // default = RT_CLAMP
double MinTime; // default = 0.0
double MaxTime; // default = 0.0
double Phase; // default = 0.0
double Frequency; // default = 1.0
bool Active; // default = true

protected:
Controller ();

// the controlled object
friend class Object;
virtual void SetObject (Object* pkObject);

// Conversion from application time units to controller time
// units. Derived classes may use this in their update
// routines.
double GetControlTime (double dAppTime);

// Regular pointer used for controlled object to avoid
// circular smart pointers between controller and object.
Object* m_pkObject;

double m_dLastAppTime;
};

This is an abstract base class that provides the basic services for managing the time
values that affect the controlled object. The SetObject function is used by the Object
class when a controller is attached to it. The virtual function Update in the Controller
class is the main entry point for modifying the managed object’s state. The input value
is the application time, a value of type double to guarantee a 64-bit value for time. The
Active data member in the controller interface is just a switch to indicate whether or
not the object is to be updated in the Update call. The update function is implemented
in any class derived from Controller; the behavior, of course, is dependent on what
that derived class is intended to modify over time. The application can be creative in
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the ways that it calls the controller update functions. However, the main mechanism
is an update function that applies to a scene graph hierarchy. The controller updates
are called when various objects in the scene graph are visited during a depth-first
recursion.

Sometimes the time scale of the controller is different than that of the application.
For example, some modeling packages use units different than seconds for time-
varying quantities. The exporter can preserve such units, but provide information
on how that maps to seconds. This information is stored using the MinTime, MaxTime,
Phase, and Frequency data members. The only allowable mappings to seconds are
linear functions. That is, if ta is the application time, f is the frequency, and p is
the phase, then the controller time is

tc = f ∗ ta + p.

The default frequency is f = 1, and the default phase is p = 0. Further modi-
fications of the controller time tc are allowed based on the value of the repeat type
parameter. This parameter ties the controller time to the minimum and maximum
times, both extreme times in the same units as the controller time. If the repeat type
is clamp, the controller time is clamped to the interval bounded by the minimum tmin
and maximum tmax times. That is,

// repeat type = CLAMP
tc = f*ta + p;
if ( tc < tmin )

tc = tmin;
else if ( tc > tmax )

tc = tmax;

This mode guarantees that the time-varying quantities change only on the specified
interval.

If the repeat type is wrap, the time varies from tmin to tmax, then is wrapped
around back to tmin and the animation starts anew. The code for computing the time
is

// repeat type = WRAP
tc = f*ta + p;
mult = (tc - tmin)/(tmax - tmin);
integer_part = floor(mult);
fractional_part = mult - integer_part;
tc = tmin + fractional_part*(tmax - tmin);

If the repeat type is clamp, the time varies from tmin to tmax, then reverses direction
to decrease back to tmin, and once again reverses direction, thus causing a cyclical
behavior in time. The code for computing the time is
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// repeat type = CYCLE
tc = f*ta + p;
mult = (tc - tmin)/(tmax - tmin);
integer_part = floor(mult);
fractional_part = mult - integer_part;
if ( integer_part is even )
{

// forward in time
tc = tmin + fractional_part*(tmax - tmin);

}
else
{

// backward in time
tc = tmax - fractional_part*(tmax - tmin);

}

The conversion from application time to controller time is implemented in the
function GetControlTime. The derived class has the option of whether or not to call
this in the Update function.

The remainder of this section is a discussion of the classes in the engine that are
derived from Controller.

4.5.1 Keyframe Animation

One of the most commonly used methods for animation is keyframe animation. Each
node of a scene hierarchy has its local transformations computed by interpolating a
small set of translations, rotations, and scales. An artist will generate the sets of trans-
formations, and each transformation is assigned a time for the animation. The engine
interpolates those transformations at all other times to generate smooth motion. The
artist-generated transformations are called keyframes, a term from classical 2D ani-
mated cartoon production. Such cartoons are generated by having the main artists
draw a sequence of important frames, and other artists, called in-betweeners, fill in
the gaps between consecutive frames by drawing a lot more frames. The keyframe
controller in the graphics engine is the equivalent of the in-betweeners.

The controller class supporting keyframe animation is KeyframeController and
has the interface

class KeyframeController : public Controller
{
public:

KeyframeController ();
virtual ~KeyframeController ();
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FloatArrayPtr TranslationTimes;
Vector3fArrayPtr TranslationData;

FloatArrayPtr RotationTimes;
QuaternionfArrayPtr RotationData;

FloatArrayPtr ScaleTimes;
FloatArrayPtr ScaleData;

virtual bool Update (double dAppTime);

protected:
static void GetKeyInfo (float fCtrlTime, int iQuantity,

float* afTime, int& riLastIndex, float& rfNormTime,
int& ri0, int& ri1);

Vector3f GetTranslate (float fNormTime, int i0, int i1);
Matrix3f GetRotate (float fNormTime, int i0, int i1);
float GetScale (float fNormTime, int i0, int i1);

int m_iTLastIndex;
int m_iRLastIndex;
int m_iSLastIndex;

};

The class manages three arrays of data, one for the translations, one for the
rotations (stored as quaternions), and one for the uniform scales. Wild Magic version
3 just introduced the ability to have nonuniform scales at the Geometry leaf nodes,
but I have not modified the keyframe controller class to handle nonuniformity. Each
array of transformation data has an associated array of keyframe times. The times at
which translation, rotation, and scale are specified do not have to be the same. The
keyframe controller does allow them to be the same since the data members are smart
pointers.

Most of the interface just exposes the data members so that you can set them.
The Update function is the override of the one in the base class Controller. Its job
is to determine the pair of keys (for each channel) whose times bound dAppTime. If
you have a long animation sequence with n keys, ordered by time, of course, a linear
search will be O(n). Since the keys are ordered, you can instead use a binary search
that is O(log n). For a real-time application, even this can use a lot of CPU cycles.
The lookup occurs for each channel in each controller at rates such as 60 frames per
second. A faster approach uses time coherency. The chances that the current pair of
keys will be the same pair on the next call to Update is nearly 100 percent. If it is not,
the chances are high that the next pair of keys bound the input time. Simply save the
index of the first key of the bounding pair and start a linear search from that pair
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on the next call. The asymptotic behavior is O(1) with a very small constant. If you
want to experiment, implement the linear search and profile it on a large animation
sequence with a slowly varying time, and then profile the method as I implemented
it. You will see significant differences.

The fast lookup is implemented in the method GetKeyInfo. The input fCtrlTime is
the mapping of dAppTime by the base class GetControlTime. The array of times is passed
by iQuantity and afTime. The index from the last search is riLastIndex. The values
returned from the function call through passed parameters are rfNormTime, a value
that normalizes time to the interval [0, 1], and the indices ri0 and ri1 for the pair of
keys that bound the input time. If t0 and t1 are the bounding times and t is the input
time, the normalized time is u = (t − t0)/(t1 − t0). The normalized time is passed
to GetTranslate for linear interpolation of two vectors, to GetRotate for spherical
linear interpolation of two quaternions, and to GetScale for linear interpolation of
two scalars. The transformations computed by the interpolations are for the local
transformations of the Spatial object to which the controller is attached.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestSkinnedBiped

is designed to illustrate keyframe animation as well as skinning. The character is
animated at most of its joints using keyframe controllers.

4.5.2 Morphing

The definitions of morphing are many. Most of them have the flavor of modifying
one object in some well-defined manner to look like another object. The version of
morphing that I have implemented as a controller involves a sequence of Geometry
objects, called targets, all of the same class type and all having the same number of
vertices. Given a vertex on one object, there are corresponding vertices on all the other
objects. A weighted average of each collection of corresponding vertices is computed;
the result is an object that is a weighted combination of the targets. Think of the
weights as an array of numbers summing to 1. The array of weights is applied to all
sets of corresponding vertices. A set of weight arrays is provided for the morphing,
and each set is assigned a time. These act as keyframes: An artist has provided the
weights to be used on the objects at a small number of snapshots in time, and a
morphing controller does the in-betweening by interpolating the weight arrays and
applying the resulting weight array to the set of targets to produce the in-between
object.

The class MorphController implements this concept. Its interface is

class MorphController : public Controller
{
public:

MorphController (int iVertexQuantity, int iTargetQuantity,
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int iKeyQuantity);
virtual ~MorphController ();

int GetVertexQuantity () const;
int GetTargetQuantity () const;
int GetKeyQuantity () const;

void SetVertices (int i, Vector3fArray* pkVertices);
Vector3fArray* GetVertices (int i) const;

void SetTimes (FloatArray* pkTimes);
FloatArray* GetTimes () const;
void SetWeights (int i, FloatArray* pkWeights);
FloatArray* GetWeights (int i) const;

virtual bool Update (double dAppTime);

protected:
MorphController ();

void GetKeyInfo (float fCtrlTime, float& rfTime,
float& rfOmTime, int& ri0, int& ri1);

int m_iVertexQuantity;
int m_iTargetQuantity;
Vector3fArrayPtr* m_aspkVertices;

int m_iKeyQuantity;
FloatArrayPtr m_spkTimes;
FloatArrayPtr* m_aspkWeights;

int m_iLastIndex;
};

The constructor is passed the number of vertices in a target, the number of
targets, and the number of keys for the weight arrays. The majority of the public
interface is for setting and getting the vertex, target, and key data.

Suppose there are V vertices, T targets, and K keys. A weight array has elements
wi for 0 ≤ i ≤ T − 1 with wi ≥ 0 and

∑T −1
i=0 wi = 1. If Xi is the set of corresponding

vertices to be weighted, with Xi from target i, then the output vertex is

X =
T −1∑
i=0

wiXi .



406 Chapter 4 Advanced Scene Graph Topics

Observing that wT −1 = 1 −∑T −2
i=0 wi, the expression is rewritten as

X = X0 +
T −1∑
i=1

wi(Xi − X0).

If the differences Xi − X0 are precomputed, then the new expression requires three
less multiplications than the old one. The storage requirements are also slightly less:
one floating-point value per array of weights since we do not need to store w0. For a
large amount of morphing data and a lot of keys, this small difference can add up to
a large one, both in memory and speed.

An artist can generate all T targets, but an exporter from the modeling pack-
age or an importer can be written to precompute the vector differences. The
MorphController class does assume the precomputing has happened. The data mem-
ber m_aspkVertices is an array of T vertex arrays; each vertex array is the geometric
data of the target and has V vertices. The vertex array m_aspkVertices[0] stores the
original target. The vertices are the X0 in the weighted average equation. The remain-
ing vertex arrays m_aspkVertices[i] for i ≥ 1 store the vector differences Xi − X0.

The data member m_aspkWeights is an array of K weight arrays. Each array repre-
sents weights w1 through wT −1, so each array stores T − 1 floating-point values. The
weights w0 are not stored. The keyframe times are stored in m_spkTimes, an array of
K floating-point values.

The Update function takes the input application time dAppTime and must look up
the pair of consecutive keys that bound that time. The process is identical to the one
used in KeyframeController. Time coherency allows an O(1) lookup by saving the
index of the first key of the bounding pair found in the last update call and then
using it as the starting point for a linear search in the current update call. That index
is stored in m_iLastIndex. The fast lookup is implemented in the method GetKeyInfo.
The input fCtrlTime is the mapping of dAppTime by the base class GetControlTime.
The outputs are the normalized time, rfTime, and one minus that time, rfOmTime.
The indices for the bounding pair of keyframe times are returned in ri0 and ri1.
If t0 and t1 are the keyframe times and t is the control time, the normalized time is
u = (t − t0)/(t1 − t0).

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestMorphController

is designed to show morphing. There are five targets and six keys. The object is a face
with 1330 vertices and 2576 triangles.

4.5.3 Points and Particles

A simple interface is provided for controlling a collection of points stored as a Poly-
point geometric object. The class is PointController and has the interface
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class PointController : public Controller
{
public:

virtual ~PointController ();

// The system motion, in local coordinates.
float SystemLinearSpeed;
float SystemAngularSpeed;
Vector3f SystemLinearAxis;
Vector3f SystemAngularAxis;

// Point motion, in the model space of the system.
float* PointLinearSpeed ();
float* PointAngularSpeed ();
Vector3f* PointLinearAxis ();
Vector3f* PointAngularAxis ();

virtual bool Update (double dAppTime);

protected:
// streaming support
PointController ();

// for deferred allocation of the point motion arrays
void Reallocate (int iVertexQuantity);
virtual void SetObject (Object* pkObject);

virtual void UpdateSystemMotion (float fCtrlTime);
virtual void UpdatePointMotion (float fCtrlTime);

// point motion (in model space of system)
int m_iPQuantity;
float* m_afPointLinearSpeed;
float* m_afPointAngularSpeed;
Vector3f* m_akPointLinearAxis;
Vector3f* m_akPointAngularAxis;

};

The class is abstract since the default constructor is protected and no constructors
exist. The intention is that you implement whatever physics you desire by deriving a
class from this one.

The set of points is referred to as a system. That system, when viewed as a single
entity, moves according to its linear velocity and rotates according to its angular ve-
locity. In physics simulations where the points represent a rigid body, the origin of the
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system is chosen to be the center of mass of the points, and the coordinate axes are
chosen to be the principal directions of the inertia tensor. The class interface lets you
set the linear velocity as a linear speed, SystemLinearSpeed, and the unit-length di-
rection, SystemLinearAxis. The angular velocity is set by choosing the angular speed,
SystemAngularSpeed, and the unit-length rotation axis, SystemAngularAxis.

In a nonrigid system, each point can have its own linear and angular velocity.
These are set by the member functions that expose the arrays of quantities, Point-
LinearSpeed, PointLinearAxis, PointAngularSpeed, and PointAngularAxis. The arrays
have the same number of elements as the Polypoint object the controller manages. To
avoid accidentally reallocating any of the arrays with the wrong number of elements,
the array pointers are not exposed in the public interface.

The important functions to override in a derived class are UpdateSystemMotion
and UpdatePointMotion. The Update function of PointController computes the con-
trol time from the application time dAppTime and then calls the two motion updates
with the control time. PointController does provide implementations. The system
motion update changes the local translation by computing how far the system has
moved in the direction of linear velocity and adding it to the current local translation.
Similarly, the local rotation is updated by multiplying it by the incremental rotation
implied by the angular speed and angular axis. The local translation of each point is
updated using the distance traveled by the point in the direction of its linear velocity.
The point does not have a size, so how does one interpret angular velocity? The point
could be a summary statistic of an object that does have size. Each point may have
a normal vector assigned to it (Polypoint objects can have vertex normal arrays). If
normal vectors are attached to the points, those vectors are rotated by the new local
rotation matrix.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestPolypoint

is designed to illustrate point controllers. The application creates a class called Ran-
domController that is derived from PointController. The system linear and angular
velocities are always zero, so the system motion update has no effect on the points.
However, the point motion update is implemented to randomly move the points
around in a cubic region of space.

Another controller, ParticleController, is used to manage the quantities in the
Particles class. The interface is

class ParticleController : public Controller
{
public:

virtual ~ParticleController ();

// The system motion, in local coordinates.
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float SystemLinearSpeed;
float SystemAngularSpeed;
Vector3f SystemLinearAxis;
Vector3f SystemAngularAxis;

// Point motion, in the model space of the system.
float* PointLinearSpeed ();
Vector3f* PointLinearAxis ();

float SystemSizeChange;
float* PointSizeChange ();

virtual bool Update (double dAppTime);

protected:
// streaming support
ParticleController ();

// for deferred allocation of the point motion arrays
void Reallocate (int iVertexQuantity);
virtual void SetObject (Object* pkObject);

virtual void UpdateSystemMotion (float fCtrlTime);
virtual void UpdatePointMotion (float fCtrlTime);

// point motion (in model space of system)
int m_iLQuantity;
float* m_afPointLinearSpeed;
Vector3f* m_akPointLinearAxis;

// size change parameters
float* m_afPointSizeChange;

};

The structure of this controller is nearly identical to PointController with a cou-
ple of exceptions. First, the points are not allowed any angular velocity. This choice
was made because the particles are displayed as billboards that always face the camera,
and an attempt to reorient them physically would be inconsistent with their visual
display. Second, the particles have sizes, and a size adjustment applies to all the parti-
cles. The size quantities themselves may vary over time. The function UpdateSystem-
Motion has the responsibility for varying SystemSizeChange, and the function Update-
PointMotion has the responsibility for varying the elements of m_afPointSizeChange.
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B1
V1(1.0 of B1 , 0.0 of B2)

B2

V2(0.75 of B1 , 0.25 of B2)
V3(0.5 of B1 , 0.5 of B2)

V4(0.25 of B1 , 0.75 of B2)
V5(0.0 of B1 , 1.0 of B2)

Figure 4.42 A skin-and-bones system consisting of two bones that influence five vertices. The
vertex closest to the joint formed by the two bones is equally influenced by the bones.
For each vertex farther from the joint, one bone influences it more than the other
bone.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestParticles

is designed to illustrate particle controllers. The application creates a class called
BloodCellController that is derived from ParticleController. The system linear and
angular velocities are always zero, so the system motion update has no effect on the
points. However, the point motion update is implemented to randomly move the
particles around in a cubic region of space. The particles use a texture image with an
alpha channel. They appear as if they are spherically shaped, red blobs. Well, to my
imagination, they look like animated blood cells.

4.5.4 Skin and Bones

Skin-and-bones animation, or simply skinning , is the process of attaching a de-
formable mesh to a skeletal structure in order to smoothly deform the mesh as the
bones move. The skeleton is represented by a hierarchy of bones, each bone positioned
in the world by a translation and orientation. The skin is represented by a triangle
mesh for which each vertex is assigned to one or more bones and is a weighted av-
erage of the world positions of the bones that influence it. As the bones move, the
vertex positions are updated to provide a smooth animation. Figure 4.42 shows a
simple configuration of two bones and five vertices.
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The intuition of Figure 4.42 should be clear: Each vertex is constructed based on
information relative to the bones that affect it. To be more precise, associate with bone
Bi the uniform scale si, the translation vector Ti, and the rotation matrix Ri. Let the
vertex Vj be influenced by nj bones whose indices are k1 through knj

. The vertex has
two quantities associated with bone Bki

: an offset from the bone, denoted �jki
and

measured in the model space of the bone, and a weight of influence, denoted wjki
.

The world space contribution by Bki
to the vertex offset is

ski
Rki

�jki
+ Tki

.

This quantity is the transformation of the offset from the bone’s model space to
world space. The world space location of the vertex is the weighted sum of all such
contributions,

Vj =
nj∑
i=1

wjki

(
ski

Rki
�jki

+ Tki

)
. (4.3)

Skinning is supported in current graphics hardware. The skinning in Wild Magic
was implemented originally to use the CPU to do all the algebraic calculations be-
cause, at the time, the hardware support was not always there. The CD-ROM that
ships with [Ebe03a] has a shader program for handling skinning. Wild Magic version
3 has a software-based skin-and-bones controller, called SkinController. It should be
easy enough to write one that uses the graphics APIs rather than using shaders, but
the class will be Effect-derived since the renderer has to be given the responsibility
to pass the bone matrices to the hardware through the graphics API interface.

The class interface for the software-based skinning is

class SkinController : public Controller
{
public:

SkinController (int iVertexQuantity, int iBoneQuantity,
Node** apkBones, float** aafWeight, Vector3f** aakOffset);

virtual ~SkinController ();

int GetVertexQuantity () const;
int GetBoneQuantity () const;
Node* GetBone (int iBone) const;
float& Weight (int iVertex, int iBone);
Vector3f& Offset (int iVertex, int iBone);

virtual bool Update (double dAppTime);

protected:
SkinController ();
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int m_iVertexQuantity; // vq
int m_iBoneQuantity; // bq
Node** m_apkBones; // bones[bq]
float** m_aafWeight; // weight[vq][bq]
Vector3f** m_aakOffset; // offset[vq][bq]

};

The constructor is told how many vertices are in the skin (iVertexQuantity), how
many bones affect the skin (iBoneQuantity), the array of (pointers to) bones them-
selves (apkBones), and the matrix of weights (aafWeight) and offsets (aakOffset) that
determine how the skin vertices are constructed from the bones. The input arrays are
the responsibility of the controller to delete, so they should be dynamically allocated.
The weights and offsets must be allocated with the system template function Allocate
that was discussed in Section 2.1.6. The controller is attached to a TriMesh object.

The relationship between the bones and the vertices can be thought of as a matrix
of weights and offsets whose rows correspond to the vertices and whose columns
correspond to the bones. For example, if there are three vertices and four bones, then
the following array illustrates a possible relationship:⎡

⎢⎢⎢⎢⎣
B0 B1 B2 B3

V0 w00, �00 ∅ w02, �02 w03, �03

V1 ∅ w11, �11 ∅ w13, �13

V2 w20, �20 ∅ ∅ w23, �23

⎤
⎥⎥⎥⎥⎦

An entry of ∅ indicates that the bone does not influence the vertex. In this case the
implied weight is 0. The indexing in the matrix is the same one referenced in Equation
(4.3). The skin vertices are

V0 = w00

(
s0R0�00 + T0

)+ w02

(
s2R2�02 + T2

)+ w03

(
s3R3�03 + T3

)
V1 = w11

(
s1R1�11 + T1

)+ w13

(
s3R3�13 + T3

)
V2 = w20

(
s2R2�20 + T2

)+ w23

(
s3R3�23 + T3

)
.

The Update function is

bool SkinController::Update (double dAppTime)
{

if ( !Controller::Update(dAppTime) )
return false;

// The skin vertices are calculated in the bone world
// coordinate system, so the TriMesh world transform must be
// the identity.
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Geometry* pkGeom = StaticCast<Geometry>(m_pkObject);
pkGeom->World = Transformation::IDENTITY;
pkGeom->WorldIsCurrent = true;

// compute the skin vertex locations
assert( m_iVertexQuantity == pkGeom->Vertices->GetQuantity() );
Vector3f* akVertex = pkGeom->Vertices->GetData();
for (int i = 0; i < m_iVertexQuantity; i++)
{

Vector3f kTmp = m_apkBones[0]->World.ApplyForward(
m_aakOffset[i][0]);

akVertex[i] = m_aafWeight[i][0]*kTmp;
for (int j = 1; j < m_iBoneQuantity; j++)
{

kTmp = m_apkBones[j]->World.ApplyForward(
m_aakOffset[i][j]);

akVertex[i] += m_aafWeight[i][j]*kTmp;
}

}

pkGeom->UpdateMS();
return true;

}

The assumption is that the world transformations of the bones are current. The
bones affecting a skin are normally stored in a subtree of the scene hierarchy. This is
particularly true when the skin is for a biped model, and the hierarchy represents the
biped anatomy. In the depth-first traversal from an UpdateGS call, the bones must be
visited first before its associated skin is visited. In [Ebe00] I said that the bone tree and
skin should be siblings of the same parent. This is not necessary. In fact, frequently
asked questions about the SkinnedBiped.mgc model (in Wild Magic version 2) were
about how the biped was structured as a scene hierarchy and why was it that the skins
were not stored as siblings of their bone trees. As it turns out, the biped model had
its skins stored the way they were to minimize the render state changes associated
with material state. The model is small enough that the material state changes are
negligible. In Wild Magic version 3, I refactored the model so that the skins are
siblings of their bone trees. But, of course, this is not necessary! All that matters is
that the skin is visited after its bone tree in a depth-first traversal.

The skin vertices are constructed in the world coordinates of the bone tree. Any
nonidentity local or world transformations stored at the TriMesh skin will cause it to
be transformed out of that coordinate system, an error. The SkinController::Update
function sets the skin’s world transformation to be the identity. The automatic update
that occurs in the Spatial class must be informed not to compute the world transfor-
mations. I talked about this in Section 3.2.3. The controller sets the WorldIsCurrent
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Boolean flag as a message to the automatic system not to compute world transforma-
tions. Other Controller-derived classes might also have to pass this message.

The main task of the update routine is to compute the skin vertices for the cur-
rent state of the bone tree. Equation (4.3) must be computed. You have a choice about
which order to execute the double loop. Is the outside loop over the bones or over the
vertices? I chose wrongly in Wild Magic version 2, not thinking about the perfor-
mance issues. I had the bone loop on the outside. Some folks in the MIT Multimedia
Lab, who were using Wild Magic version 2 for their Alpha Wolf AI demonstration,
corrected my thinking and pointed out that my choice was thrashing the memory
cache because of all the jumping around in memory the program had to do regard-
ing vertex access. Wild Magic version 3 has the loops in the other order. If you look at
the previously displayed source code, the intuition is clear. The vertex array akVertex
has its elements accessed in order, so no jumping around in memory here. Each ver-
tex is initialized using the bone at bone array index 0. In the inner loop, the weights
and offsets are accessed repeatedly. Since the arrays are of the form array[i][j] and j
is the index changing most rapidly, no jumping around in memory is occurring here
either.

An optimization that I do not have in place, but that I am not in a rush to
implement since a hardware-based skinning implementation should be next on the
list, is to compute the forward transformation and vertex update inside the inner loop
only when a weight is positive. When the weight is zero, the vertex update is the zero
vector and does not affect the current vertex value.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestSkinnedBiped

illustrates the skin-and-bones controller. All the skin-and-bones data associated with
the biped is stored as raw data, loaded by the application, and assembled to form the
biped scene graph. The biped is also animated using keyframe controllers. This appli-
cation gives you an idea of the intricacies and complexities of building an animated
biped that looks good.

4.5.5 Inverse Kinematics

Inverse kinematics (IK) is an intriguing topic, but a very difficult thing to implement
when you have to reproduce what a modeling package produces. The algorithms that
are used to determine transformations in a chain of nodes are varied, and folks really
like to throw in their own hacks and variations to make the motion smooth and
robust. If you have no idea what algorithm the modeling package uses, it is nearly
impossible to reverse-engineer and match it. One of the main curses is the handling
of joint angles by thinking of them as Euler angles. As long as there is only one degree
of rotational freedom at a joint, not a problem. But when you have two or three
degrees of rotational freedom at a joint, my intuition fails me on how to control the
associated angles. The angles are typically specified in terms of rotations about the
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coordinate axes. But once you apply that first rotation, the new coordinate axes are
not the original ones. Naturally, you can choose the second angle to be relative to
an axis in the new coordinate system, but if two modeling packages choose different
conventions, you either have to map both somehow into your single IK controller
class or you have to have multiple IK controller classes. I do not like either alternative.
At any rate, I chose Wild Magic to have a single IK controller class. You make your
choices, you live by the consequences.

The IK system represents a linear chain of Node objects. The system has three sepa-
rate types of objects. Joints are represented by the class IKJoint. The class encapsulates
how the transformations at a node are allowed to be updated, and it controls the up-
dates themselves. There is a one-to-one correspondence between nodes in the chain
and joints. That is, each node is viewed as a joint in the IK system. Certain nodes
in the chain are required to reach one or more goals. These nodes are said to be end
effectors, and the goals are targets. The class IKGoal encapsulates a pair consisting of
an end effector and a target. The classical situation is that the root node of a chain
is fixed (the shoulder of a character) and the node at the opposite end of the chain
is the only end effector (the hand of a character). A goal might be for the character
to grab a mug on a table. The IKGoal object pairs up the hand node (the end effec-
tor) and the mug node (the target). A node can have multiple goals: one is normally
called the primary goal, and others are called secondary goals. For example, consider
a chain of nodes: shoulder, elbow, hand. In attempting to have the hand grab a mug,
you might notice the elbow moves in ways that appear unanatomical. A primary goal
would be to attract the elbow away from the torso by requiring that node to remain
close to a target positioned on the side of the elbow opposite the torso. A secondary
goal might be to attract the elbow toward the floor using another target between the
elbow and the floor. The final type of object is the IK controller itself, conveniently
named IKController.

Figure 4.43 illustrates an IK system. Using the analogy of a biped’s arm, the joint
J0 is the shoulder, the joint J1 is the elbow, the joint J2 is the wrist, and the joint
J3 is the hand. The goal for the hand is G0, a target it must reach for. However, we
do not want the elbow to bend backwards (a painful proposition for the character),
so the goal for the elbow is G1. The target associated with the goal is not necessarily
stationary. It might be positioned based on the locations of joints J0 and J2 in an
attempt to keep the V-shaped chain from J0 through J1 to J2.

Goals

The simplest class to describe is IKGoal. Its interface is

class IKGoal : public Object
{
public:

IKGoal (Spatial* pkTarget, Spatial* pkEffector, float fWeight);
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J0
J1

G1

G0

J2

J3

Figure 4.43 An IK system for a linear chain of four nodes.

SpatialPtr GetTarget ();
SpatialPtr GetEffector ();
float Weight;

Vector3f GetTargetPosition () const;
Vector3f GetEffectorPosition () const;

protected:
IKGoal ();

SpatialPtr m_spkTarget;
SpatialPtr m_spkEffector;

};

As mentioned previously, the class encapsulates a joint that is an end effector and
a target that the end effector attempts to reach. In addition to the target and end
effector, the constructor also takes a weight value that is positive. This value represents
how much influence the goal should have when attempting to position the joints to
reach all the targets. The function GetTargetPosition returns the world translation
of the target, whereas GetEffectorPosition returns the world translation of the end
effector.

Joints

The joint class is IKJoint and has the interface

class IKJoint : public Object
{
public:

IKJoint (Spatial* pkObject, int iGoalQuantity, IKGoalPtr* aspkGoal);
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virtual ~IKJoint ();

// index i is for the joint’s parent’s world axis[i]
bool AllowTranslation[3];
float MinTranslation[3];
float MaxTranslation[3];
bool AllowRotation[3];
float MinRotation[3];
float MaxRotation[3];

protected:
// streaming
IKJoint ();

// support for the IK update
friend class IKController;

// the managed object
Spatial* m_pkObject;

// joint update
Vector3f GetAxis (int i);
void UpdateWorldSRT ();
void UpdateWorldRT ();
bool UpdateLocalT (int i);
bool UpdateLocalR (int i);

// the goals affected by this joint
int m_iGoalQuantity;
IKGoalPtr* m_aspkGoal;

};

The constructor takes as input the object whose transformations it will control.
All but the last object in a chain must be Node-derived in order to have the chain
links (parent-child links). The last object is not necessarily Node-derived. The clear
choice for the input type is therefore Spatial. The other two input parameters form
an array of goals that are affected by any translation or rotation of the joint. The
update functions in IKJoint make calculations based on these goals.

Each object has up to six degrees of freedom, three for translation and three
for rotation. The translational degrees of freedom are naturally the components of
a translation vector,

T = (Tx , Ty , Tz).
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The rotational degrees of freedom are in Euler angles for rotations about the coordi-
nate axes,

R = Rz(θz)Ry(θy)Rx(θx).

The engine’s convention is to multiply a matrix on the left of a vector, RV, so the
x-axis rotation is applied first, followed by the y-rotation, and then the z-rotation.
The joints can be constrained. The translations are constrained by setting MinTrans-
lation and MaxTranslation for each of the three components of translation, indexed
by i with 0 ≤ i ≤ 2. The index i = 0 is for Tx, the index i = 1 is for Ty, and the index
i = 2 is for Tz. The default ranges are (−∞, +∞), so any translation is allowed. The
rotations are constrained by setting MinRotation and MaxRotation for each of the three
angles of rotation. The index i = 0 is for θx, the index i = 1 is for θy, and the index
i = 2 is for θz. The default ranges are [−π , π], so any rotation is allowed. A joint need
not use all its degrees of freedom. You may select which degrees of freedom you want
by setting AllowTranslation or AllowRotation with the appropriate input indices.

The IKController that manages the joints is allowed access to the protected mem-
bers by being a friend of the IKJoint class. This allows us not to expose the update
functions in the public interface. All the control you have over a joint is through its
parameters exposed via the public interface. The member function UpdateWorldSRT
updates the world transformations for the object managed by IKJoint. This is the
same update used in UpdateGS and multiplies the parent’s world transformation with
the object’s local transformation. This particular member function is called for each
joint in the IK chain (in order from parent to child, and so on) to make sure that any
node used as an end effector has up-to-date world data. The member function Up-
dateWorldRT has a similar behavior, except that it does not take into account the scale.
This function is called during iterations of the cyclic coordinate descent (CCD) algo-
rithm that is applied to move the joints around to allow the end effectors to reach
their goals. Before the update to the world translation and world rotation can be
called, the local translation and rotation must be computed. This occurs through Up-
dateLocalT (local translation) and UpdateLocalR (local rotation), functions that are
also called during the CCD algorithm. The two local transformations are at the heart
of the updates. These are computed based on trying to minimize the distances be-
tween the end effectors and their targets.

In [Ebe00, Section 9.2.3, pages 352–354] I discuss list manipulators with one end
effector. A joint may be rotated to meet one of three types of goals:

Rotate to point. Rotate a joint to minimize the distance between the end effector
and a point target.

Rotate to line. Rotate a joint to minimize the distance between the end effector
and a line target.

Rotate to plane. Rotate a joint to minimize the distance between the end effector
and a plane target.
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Figure 4.44 A four-node chain whose last node is the end effector E. The joint position P is to
be translated in the unit-length direction U to minimize the distance from E to the
goal’s target G. The point E′ attains the minimum distance to the goal.

The only operation of these I support in the engine is rotate to point. A joint may be
translated to meet one of three types of goals:

Slide to point. Translate a joint to minimize the distance between the end effector
and a point target.

Slide to line. Translate a joint to minimize the distance between the end effector
and a line target.

Slide to plane. Translate a joint to minimize the distance between the end effector
and a plane target.

All three of these imply that the connector between the joint and its parent joint must
have varying length. Rather than thinking of physically stretching the material of the
connector, think of a rod that has multiple segments that can be expanded—a radio
antenna on an automobile, for example. The only operation of these I support in the
engine is slide to point.

The function UpdateLocalT implements slide to point. A small amount of mathe-
matics is in order to understand the source code of the function. Figure 4.44 illustrates
the configuration that goes with the mathematics.

The translated joint is P′ = P + tU for some t . The chain of nodes rooted at P is
also translated by the same amount, so E′ = E + tU for some t . Using the fact that
G − E′ must be perpendicular to the line, we have

0 = U · (G − E′) = U · (G − E − tU) = U · (G − E) − t ,

in which case

E′ = E + (U · (G − E))U.
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For a single goal, an associated weight is irrelevant and may as well be chosen as
w = 1.

If there are n goals, each goal having an end effector Ei, a target Gi, and a weight
wi, for 0 ≤ i < n, the minimization of distances must occur jointly for all the goals.
That is, the new positions for the end effectors, call them E′

i
, must minimize the sum

of the weighted squared distances

n−1∑
i=0

wi|Gi − E′
i
|2.

The translation of P to P + tU is a rigid motion that can only cause the end
effectors to be translated by the same amount, so E′

i
= Ei + tU. The sum of the

weighted squared distances is a function of t ,

F(t) =
n−1∑
i=0

wi|Gi − Ei − tU|2. (4.4)

This is a quadratic function of t and must attain its minimum when the derivative
F ′(t) = 0. The derivative is

F ′(t) =
n−1∑
i=0

2wi(Gi − Ei − tU) · (−U) = 2

(
n−1∑
i=0

wiU · (Gi − Ei) − t

n−1∑
i=0

wi

)
.

Setting the derivative equal to zero and solving for t yields

t =
∑n−1

i=0 wiU · (Gi − Ei)∑n−1
i=0 wi

. (4.5)

The function IKJoint::UpdateLocalT is an implementation of the minimizer:

bool IKJoint::UpdateLocalT (int i)
{

Vector3f kU = GetAxis(i);
float fNumer = 0.0f;
float fDenom = 0.0f;

float fOldNorm = 0.0f;
IKGoal* pkGoal;
int iG;
for (iG = 0; iG < m_iGoalQuantity; iG++)
{

pkGoal = m_aspkGoal[iG];
Vector3f kGmE = pkGoal->GetTargetPosition() -

pkGoal->GetEffectorPosition();
fOldNorm += kGmE.SquaredLength();
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fNumer += pkGoal->Weight*kU.Dot(kGmE);
fDenom += pkGoal->Weight;

}

if ( Mathf::FAbs(fDenom) <= Mathf::EPSILON )
{

// weights were too small, no translation
return false;

}

// desired distance to translate along axis(i)
float fT = fNumer/fDenom;

// clamp to range
Vector3f kTrn = m_pkObject->Local.GetTranslate();
float fDesired = kTrn[i] + fT;
if ( fDesired > MinTranslation[i] )
{

if ( fDesired < MaxTranslation[i] )
{

kTrn[i] = fDesired;
}
else
{

fT = MaxTranslation[i] - kTrn[i];
kTrn[i] = MaxTranslation[i];

}
}
else
{

fT = MinTranslation[i] - kTrn[i];
kTrn[i] = MinTranslation[i];

}

// test if step should be taken
float fNewNorm = 0.0f;
Vector3f kStep = fT*kU;
for (iG = 0; iG < m_iGoalQuantity; iG++)
{

pkGoal = m_aspkGoal[iG];
Vector3f kNewE = pkGoal->GetEffectorPosition() + kStep;
Vector3f kDiff = pkGoal->GetTargetPosition() - kNewE;
fNewNorm += kDiff.SquaredLength();

}



422 Chapter 4 Advanced Scene Graph Topics

if ( fNewNorm >= fOldNorm )
{

// translation does not get effector closer to goal
return false;

}

// update the local translation
m_pkObject->Local.SetTranslate(kTrn);
return true;

}

The function GetAxis(i) gets the joint’s parent’s world axis direction for the spec-
ified index. The translations are always computed in the parent’s world coordinate
system, not the joint’s world coordinate system, because we want to update the joint’s
local transformations. If the joint has no parent, it is the root of a scene graph. The
coordinate system is the standard Euclidean one, so the axis retrieved by GetAxis is
one of (1, 0, 0), (0, 1, 0), or (0, 0, 1).

The first loop is over those goals that are affected by the joint’s motion. This is an
implementation of the formula in Equation (4.5). The sum of squared distances in
Equation (4.4) is computed and stored in fOldNorm. After an unconstrained transla-
tion, the theory says that the sum of squared distances can only get smaller. However,
a constrained translation might cause the sum to become larger. The new sum of
squares is computed after the constrained translation. If larger than the old one, the
translation is not allowed. If smaller, it is allowed and the local translation for the
joint is modified. The IKController will do the work equivalent to an UpdateGS call to
the remaining joints in the chain, thus guaranteeing that all world data is current for
any future iterations of the CCD.

The function UpdateLocalR implements rotate to point. A small amount of math-
ematics is also in order to understand the source code of the function. Figure 4.45
illustrates the configuration that goes with the mathematics.

Using P as the center of a rotation, the vector E − P must be rotated by an angle
θ to reach E′ − P. Using a standard formula for rotation of a vector,

E′ − P = (E − P) + (sin θ)U × (E − P) + (1 − cos θ)(U × (U × (E − P)).

Define V = U × (E − P), W = U × V, σ = sin θ , and γ = cos θ . Then

E′ − P = (E − P) + σV + γ W.

We need to choose θ to minimize the squared distance between G and E′. The
squared distance is

F(θ) = |G − E′|2.
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G

E

P E

Figure 4.45 A four-node chain whose last node is the end effector E. The joint position P is to be
rotated about an axis with unit-length direction U to minimize the distance from E
to the goal’s target G. For the sake of illustration, suppose that axis is out of the plane
of the page. The point E′ attains the minimum distance to the goal.

The candidate angles to obtain the global minimum for the function occur when the
first derivative is zero. The derivative is

F ′(θ) = −2(G − E′) · dE′

dθ
.

Setting this to zero,

0 = (G − E′) · dE′

dθ
= ((G − P) − (E′ − P)

) · d(E′ − P)

dθ
= (G − P) · d(E′ − P)

dθ
.

The last equality is true since the squared distance |E′ − P|2 is a constant for all angles
θ ; the vector difference represents the fixed-length connector that is rotated about P.
The derivative of a constant is zero, so

0 = d

dθ
|E′ − P|2 = 2(E′ − P) · d(E′ − P)

dθ
.

Continuing the analysis of F ′(θ) = 0,

0 = (G − P) · d(E′ − P)

dθ
= (G − P) · (γ V + σW) = γ V · (G − P) + σW · (G − P).

This implies

(σ , γ ) = ± (V · (G − P), −W · (G − P))√
[V · (G − P)]2 + [W · (G − P)]2

.
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The angles whose sines and cosines satisfy this equation could produce maxima
as well as minima. We have to choose whether the leading sign is positive or negative
in order to obtain the minima. The second-derivative test is used for this purpose.
The second derivative is

F ′′(θ) = σ [2V · (G − P)]− γ [2W · (G − P)],

and we need this to be positive for a local minimum. The correct choice of sign,
therefore, is positive, in which case

(σ , γ ) = (V · (G − P), −W · (G − P))√
[V · (G − P)]2 + [W · (G − P)]2

,

and

F ′′(θ) = 2
√

[V · (G − P)]2 + [W · (G − P)]2 > 0.

An angle that minimizes F(θ) is

θ = atan 2((G − P) · U × (E − P), −(G − P) · U × (U × (E − P))),

where atan 2 is the standard mathematics library function for the inverse tangent, but
returns an angle in the interval [−π , π].

If there are n goals, each goal having an end effector Ei, a target Gi, and a weight
wi, for 0 ≤ i < n, the minimization of distances must occur jointly for all the goals.
That is, the new positions for the end effectors, call them E′

i
, satisfy the rotation

conditions

E′
i
− P = (Ei − P) + (sin θ)U × (Ei − P) + (1 − cos θ)(U × (U × (Ei − P))

and must minimize the sum of the weighted squared distances

F(θ) =
n−1∑
i=0

wi|Gi − E′
i
|2.

Only a single angle θ is involved since the rotation about P is a rigid motion.
Define Vi = U × (Ei − P) and Wi = U × Vi. The definitions for σ and γ are as
before. The derivative of F is computed similarly as in the case of one goal,

F ′(θ) = −2
n−1∑
i=0

wi(Gi − P) · (γ Vi + σWi),

and the second derivative is

F ′′(θ) = −2
n−1∑
i=0

wi(Gi − P) · (σVi − γ Wi).



4.5 Controllers and Animation 425

Setting F ′(θ) = 0 leads to

0 = γ

n−1∑
i=0

Vi · (Gi − P) + σ

n−1∑
i=0

Wi · (Gi − P)

and has the minimizing solution

(σ , γ ) =
(∑n−1

i=0 Vi · (Gi − P), −∑n−1
i=0 Wi · (Gi − P)

)
√

[
∑n−1

i=0 Vi · (Gi − P)]2 + [
∑n−1

i=0 Wi · (Gi − P)]2
.

The choice of positive sign in front of the fraction guarantees that F ′′(θ) > 0 so that
indeed we have a minimum. An angle that minimizes F is

θ = atan 2

(
n−1∑
i=0

(Gi − P) · U × (Ei − P), −
n−1∑
i=0

(Gi − P) · U × (U × (Ei − P))

)
.

(4.6)

The function IKJoint::UpdateLocalR is an implementation of the minimizer:

bool IKJoint::UpdateLocalR (int i)
{

Vector3f kU = GetAxis(i);
float fNumer = 0.0f;
float fDenom = 0.0f;

float fOldNorm = 0.0f;
IKGoal* pkGoal;
int iG;
for (iG = 0; iG < m_iGoalQuantity; iG++)
{

pkGoal = m_aspkGoal[iG];
Vector3f kEmP = pkGoal->GetEffectorPosition() -

m_pkObject->World.GetTranslate();
Vector3f kGmP = pkGoal->GetTargetPosition() -

m_pkObject->World.GetTranslate();
Vector3f kGmE = pkGoal->GetTargetPosition() -

pkGoal->GetEffectorPosition();
fOldNorm += kGmE.SquaredLength();
Vector3f kUxEmP = kU.Cross(kEmP);
Vector3f kUxUxEmP = kU.Cross(kUxEmP);
fNumer += pkGoal->Weight*kGmP.Dot(kUxEmP);
fDenom -= pkGoal->Weight*kGmP.Dot(kUxUxEmP);

}
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if ( fNumer*fNumer + fDenom*fDenom <= Mathf::EPSILON )
{

// undefined atan2, no rotation
return false;

}

// desired angle to rotate about axis(i)
float fTheta = Mathf::ATan2(fNumer,fDenom);

// factor local rotation into Euler angles
float afEuler[3];
m_pkObject->Local.Rotate().ToEulerAnglesZYX(afEuler[2],

afEuler[1],afEuler[0]);

// clamp to range
float fDesired = afEuler[i] + fTheta;
if ( fDesired > MinRotation[i] )
{

if ( fDesired < MaxRotation[i] )
{

afEuler[i] = fDesired;
}
else
{

fTheta = MaxRotation[i] - afEuler[i];
afEuler[i] = MaxRotation[i];

}
}
else
{

fTheta = MinRotation[i] - afEuler[i];
afEuler[i] = MinRotation[i];

}

// test if step should be taken
float fNewNorm = 0.0f;
Matrix3f kRot(kU,fTheta);
for (iG = 0; iG < m_iGoalQuantity; iG++)
{

pkGoal = m_aspkGoal[iG];
Vector3f kEmP = pkGoal->GetEffectorPosition() -

m_pkObject->World.GetTranslate();
Vector3f kNewE = m_pkObject->World.GetTranslate() +

kRot*kEmP;
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Vector3f kGmE = pkGoal->GetTargetPosition() - kNewE;
fNewNorm += kGmE.SquaredLength();

}

if ( fNewNorm >= fOldNorm )
{

// rotation does not get effector closer to goal
return false;

}

// update the local rotation
m_pkObject->Local.Rotate().FromEulerAnglesZYX(afEuler[2],

afEuler[1],afEuler[0]);
return true;

}

The structure is nearly identical to that of UpdateLocalT. The joint’s parent’s world
coordinate system is used to select axes to rotate about. The first loop in the source
code computes the arguments to the atan2 function in Equation (4.6). It is amazing,
is it not, that a few lines of code are backed up by so much mathematics! The compu-
tation of fOldNorm is used to support constrained rotations. If the constraints cause an
increase in the sum of squared distances (the new norm), then the rotation is rejected.
Notice that the order of Euler angles in the composition of rotations is fixed. Should
a modeling package do otherwise, most likely the IKJoint class should allow yet an-
other parameter to its constructor that selects which order of composition should be
used.

Controllers

The class IKController is a container for the IKJoints and IKGoals in the IK system.
Its interface is

class IKController : public Controller
{
public:

IKController (int iJointQuantity, IKJointPtr* aspkJoint,
int iGoalQuantity, IKGoalPtr* aspkGoal);

virtual ~IKController ();

int Iterations; // default = 128
bool OrderEndToRoot; // default = true

virtual bool Update (double dAppTime);
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protected:
IKController ();

int m_iJointQuantity;
IKJointPtr* m_aspkJoint;

int m_iGoalQuantity;
IKGoalPtr* m_aspkGoal;

};

The class assumes responsibility for the input arrays and will delete them. They
should be dynamically allocated. The IKJoint objects will also have arrays of pointers
to the IKGoals passed to IKController. Only those goals affected by the motion of a
joint are assigned to that joint (by you in the application code).

The Update function is an implementation of the CCD algorithm. You have two
ways to control the algorithm. You may choose the maximum number of iterations
for a single call of Update by setting Iterations to whatever you like. The joints are
processed one at a time in each iteration. You may also choose whether the joints are
processed from the root joint to the end joint or in the opposite direction. The default
is to work your way from the last joint toward the root, the idea being that if the last
joint is an end effector and it is already near its goal (time coherency plays a role here),
then most of the motion should occur near the end effector.

Before starting the CCD iterations, the Update call makes certain that all the joints’
world data is up to date. This is done by

for (iJoint = 0; iJoint < m_iJointQuantity; iJoint++)
m_aspkJoint[iJoint]->UpdateWorldSRT();

This is not your standard UpdateGS pass. One joint has a child node that is another
joint, and the update applies only to that connection. The first joint might have
other children, but they are not updated by UpdateWorldSRT. Is this an error? No. The
IKController update is called in the Spatial::UpdateWorldData function, and all of
the IKJoint objects are updated by this call. On return to the Node::UpdateWorldData
that spawned the Spatial::UpdateWorldData call, any joints with other child subtrees
will have those children updated.

The CCD loop for processing from end to root is

for (iIter = 0; iIter < Iterations; iIter++)
{

for (iJoint = 0; iJoint < m_iJointQuantity; iJoint++)
{

int iRJoint = m_iJointQuantity - 1 - iJoint;
pkJoint = m_aspkJoint[iRJoint];
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for (i = 0; i < 3; i++)
{

if ( pkJoint->AllowTranslation[i] )
{

if ( pkJoint->UpdateLocalT(i) )
{

for (j = iRJoint; j < m_iJointQuantity; j++)
m_aspkJoint[j]->UpdateWorldRT();

}
}

}

for (i = 0; i < 3; i++)
{

if ( pkJoint->AllowRotation[i] )
{

if ( pkJoint->UpdateLocalR(i) )
{

for (j = iRJoint; j < m_iJointQuantity; j++)
m_aspkJoint[j]->UpdateWorldRT();

}
}

}
}

}

The logic is simple. For each joint, determine which translations are allowed.
When one is allowed, call the minimizer function UpdateLocalT to translate the joint.
If the translation does reduce the sum of squared distances between goals and end ef-
fectors, the return value of the update is true, indicating the translation was accepted.
In this case, the local transformations of the joint have changed. Its successor joints in
the IK chain must be notified that their world transformations need updating. This
is performed by UpdateWorldRT. The same logic applies to the rotations. If a rotation
is allowed and the minimizer is able to reduce the sum of squared distances, then
the joint’s local rotation is modified and the successors update their world transfor-
mations.

The sample application on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestInverseKinematics

has a simple IK system consisting of two joints, one with a single translational degree
of freedom and one with a single rotational degree of freedom. Only one goal exists
in the IK system.



C h a p t e r 5
Advanced Rendering
Topics

This chapter discusses obtaining visual effects that are considered more advanced
than vertex coloring, lighting and materials, texturing, and multitexturing. The

chapter consists of two sections. Section 5.1 elaborates on the Effect class that was
introduced in Section 3.4.5. Wild Magic has a collection of derived classes that imple-
ment various effects obtainable through the fixed-function pipeline—through graph-
ics API features that were available before the introduction of shader programming.
The first section describes all these derived classes.

The topic of Section 5.2 is shader programming support in the scene graph man-
agement system. The emphasis is on the integration into the engine, not on actually
writing shaders. For the latter, see [Eng02, Eng03, Fer04].

5.1 Special Effects Using the Fixed-Function
Pipeline

The effects system was introduced in Section 3.4.5 and is new to Wild Magic. The
base class is Effect and has the interface

class Effect : public Object
{
public:

Effect ();
virtual ~Effect ();

431



432 Chapter 5 Advanced Rendering Topics

virtual Effect* Clone ();

ColorRGBArrayPtr ColorRGBs;
ColorRGBAArrayPtr ColorRGBAs;
TArray<TexturePtr> Textures;
TArray<Vector2fArrayPtr> UVs;

// internal use
public:

// function required to draw the effect
Renderer::DrawFunction Draw;

};

At its lowest level, this class is a container for vertex colors, whether RGB or
RGBA, for texture images, and for texture coordinates. The class is not abstract, so
you can create effects immediately. The renderer only allows you to have one set of
colors. If you set ColorRGBs and ColorRGBAs, the renderer will use the latter set. You
can have multiple textures and texture coordinates. The engine places no limit on the
number, but the renderer will use only as many as the hardware supports. If your
effect really does require 16 texture units, expect to be disappointed when you run
your application on a card that has only 8 texture units. If you do supply multiple
textures, the semantics of how the units combine together to produce a desired
multitexture effect are up to you. Your control over this is through the combine mode
of the Texture class (see Section 3.4.4).

The Clone function exists to create a new effect of the same class type, but shares
vertex colors and textures. Each class derived from Effect can override this behav-
ior and decide what is copied and what is shared. The reason for such a function
originated with the Particles class. An Effect-derived object attached to a Parti-
cles object can only influence the particle’s point locations. The rendering system
displays particles by automatically generating four times the number of vertices as
points and then quadruplicating the vertex attributes associated with the particles’
points. A second Effect object had to be created and attached to the TriMesh that gets
sent to the renderer for drawing. Since the effects are stored polymorphically through
the Effect base class, I needed a virtual function in the Effect class to give me a copy
of one effect, but of the same class type as the original effect. I can imagine other
circumstances where you need similar cloning behavior.

Although you can manage your own Effect object, you will find it more con-
venient to derive a class that encapsulates the semantics you desire. Some advanced
features require more than just combining vertex colors and texture images. For ex-
ample, environment mapping, bump mapping, and projected texturing all have spe-
cial needs that require explicit low-level rendering code to be written that is different
than the DrawPrimitive call provides. If you derive from Effect and have to imple-
ment a Renderer-derived class drawing function to go with it, you can conveniently
store a pointer to that function in the data member Draw. Some of the effects already
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in the engine have no need for specialized drawing, so their Draw members are set to
DrawPrimitive. In fact, the base class Effect sets its Draw member to DrawPrimitive by
default.

This section contains a description of each of the Effect-derived classes that I
have added to Wild Magic. This is by no means a comprehensive coverage of all the
special effects you would ever need in an application, but it should suffice to show
you how to write your own.

5.1.1 Vertex Coloring

The simplest effect is one that just stores vertex colors. The class is VertexColorEffect
and has the interface

class VertexColorEffect : public Effect
{
public:

VertexColorEffect (ColorRGBArray* pkColorRGBs);
VertexColorEffect (ColorRGBAArray* pkColorRGBAs);
virtual ~VertexColorEffect ();

virtual Effect* Clone ();

protected:
VertexColorEffect ();

};

You can construct an effect using either an array of RGB colors or an array of RGBA
colors. The Clone function creates an effect that shares the current object’s vertex
color array.

A sample use is

// create a tetrahedron
int iVQuantity = 4;
Vector3f* akVertex = new Vector3f[iVQuantity];
akVertex[0] = Vector3f(0.0f,0.0f,0.0f);
akVertex[1] = Vector3f(1.0f,0.0f,0.0f);
akVertex[2] = Vector3f(0.0f,1.0f,0.0f);
akVertex[3] = Vector3f(0.0f,0.0f,1.0f);
Vector3fArray* pkVertices = new Vector3fArray(iVQuantity,akVertex);

int iIQuantity = 12; // 4 triangles
int* aiIndex = new int[iIQuantity];
aiIndex[ 0] = 0; aiIndex[ 1] = 1; aiIndex[ 2] = 3;
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aiIndex[ 3] = 0; aiIndex[ 4] = 3; aiIndex[ 5] = 2;
aiIndex[ 6] = 0; aiIndex[ 7] = 2; aiIndex[ 8] = 1;
aiIndex[ 9] = 1; aiIndex[10] = 2; aiIndex[11] = 3;
IntArray* pkIndices = new IntArray(iIQuantity,aiIndex);

TriMesh* pkTetra = new TriMesh(pkVertices,pkIndices,false);

// create a vertex color effect
ColorRGB* akColor = new ColorRGB[iVQuantity];
akColor[0] = ColorRGB(0.0f,0.0f,1.0f);
akColor[1] = ColorRGB(0.0f,1.0f,0.0f);
akColor[2] = ColorRGB(1.0f,0.0f,0.0f);
akColor[3] = ColorRGB(0.0f,0.0f,0.0f);
ColorRGBArray* pkColors = new ColorRGBArray(iVQuantity,akColor);

VertexColorEffect* pkEffect = new VertexColorEffect(pkColors);
pkTetra->SetEffect(pkEffect);

The tetrahedron is built from scratch. The class StandardMesh hides the construc-
tion details for some types of objects. For example,

TriMesh* pkTetra = StandardMesh().Tetrahedron();
int iVQuantity = pkTetra->Vertices.GetQuantity();
ColorRGB* akColor = new ColorRGB[iVQuantity];
akColor[0] = ColorRGB(0.0f,0.0f,1.0f);
akColor[1] = ColorRGB(0.0f,1.0f,0.0f);
akColor[2] = ColorRGB(1.0f,0.0f,0.0f);
akColor[3] = ColorRGB(0.0f,0.0f,0.0f);
ColorRGBArray* pkColors = new ColorRGBArray(iVQuantity,akColor);
VertexColorEffect* pkEffect = new VertexColorEffect(pkColors);
pkTetra->SetEffect(pkEffect);

5.1.2 Single Textures

To attach a single texture to an object, use the class TextureEffect. Its interface is

class TextureEffect : public Effect
{
public:

TextureEffect (Texture* pkTexture, Vector2fArray* pkUVs);
virtual ~TextureEffect ();

virtual Effect* Clone ();
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protected:
TextureEffect ();

};

The choice of parameters for the Texture object is up to you. The defaults give you
replacement mode. You must also provide the texture coordinates. The number of
elements of the array should match the number of vertices for the object to which the
effect will be attached. The Clone member creates another TextureEffect that shares
the texture object and texture coordinates of the original object.

A sample use is

// create a rectangle in the xy-plane
int iVQuantity = 4;
Vector3f* akVertex = new Vector3f[iVQuantity];
akVertex[0] = Vector3f(0.0f,0.0f,0.0f);
akVertex[1] = Vector3f(1.0f,0.0f,0.0f);
akVertex[2] = Vector3f(1.0f,1.0f,0.0f);
akVertex[3] = Vector3f(0.0f,1.0f,0.0f);
Vector3fArray* pkVertices = new Vector3fArray(iVQuantity,akVertex);

int iIQuantity = 6; // 2 triangles
int* aiIndex = new int[iIQuantity];
aiIndex[ 0] = 0; aiIndex[ 1] = 1; aiIndex[ 2] = 2;
aiIndex[ 3] = 0; aiIndex[ 4] = 2; aiIndex[ 5] = 3;
IntArray* pkIndices = new IntArray(iIQuantity,aiIndex);

TriMesh* pkRect = new TriMesh(pkVertices,pkIndices,false);

// create texture coordinates
Vector2f* akUV = new Vector2f[iVQuantity];
akUV[0] = Vector2f(0.0f,0.0f);
akUV[1] = Vector2f(0.2f,0.0f);
akUV[2] = Vector2f(0.2f,0.2f);
akUV[3] = Vector2f(0.0f,0.2f);
Vector2fArray* pkUVs = new Vector2fArray(iVQuantity,akUV);

// create a texture, repeated pattern, trilinear mipmapping
Texture* pkTexture = new Texture;
pkTexture->CoordU = Texture::WM_REPEAT;
pkTexture->CoordV = Texture::WM_REPEAT;
pkTexture->Mipmap = Texture::MM_LINEAR_LINEAR;

// create a texture effect
TextureEffect* pkEffect = new TextureEffect(pkTexture,pkUVs);
pkRect->SetEffect(pkEffect);
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5.1.3 Dark Maps

A dark map is a multitexturing scheme whereby you draw a base texture and then
modulate it by a texture that represents some lighting in the scene, giving the ap-
pearance that the object is affected by some lights. Why not call this a light map? The
modulation is a multiplication of the two texture images. Since the normalized color
channels are in the interval [0, 1], the product of two color channel values is a num-
ber smaller than both of the inputs (when neither input is 1). The result is that the
final colors appear to be darker than the inputs.

The class representing the process is DarkMapEffect and has the interface

class DarkMapEffect : public Effect
{
public:

DarkMapEffect (Texture* pkPrimaryTexture,
Vector2fArray* pkPrimaryUVs, Texture* pkSecondaryTexture,
Vector2fArray* pkSecondaryUVs);

virtual ~DarkMapEffect ();

virtual Effect* Clone ();

protected:
DarkMapEffect ();

};

The constructor takes as input two texture objects and two sets of texture coor-
dinates. The primary texture refers to the base texture. The secondary texture refers
to the image that represents the (fake) lighting. The application mode for the pri-
mary texture is Texture::AM_REPLACE. This is automatic; you do not need to do this
explicitly with the input pkPrimaryTexture. The application mode for the secondary
texture is Texture::AM_MODULATE and is also set automatically for you. The two modes
together tell the renderer to multiply the secondary colors with the primary colors to
produce the final colors on the object to which the effect is attached. The Clone func-
tion creates a new dark map object that shares the textures and texture coordinates of
the original object.

The use of this class is similar to TextureEffect, except that you have to create two
texture objects and two sets of texture coordinates. A sample application showing off
dark maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestMultitexture

The application shows the primary texture (a wooden door image), the secondary
texture (a Gaussian blob), the dark map, and a light map (see the next section and
Figure 5.1).
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5.1.4 Light Maps

In the previous section on dark maps, I asked why they are not called “light maps.”
The answer had to do with the modulation of colors. A light map may be thought
of instead as the combination of a primary texture and a secondary texture using
addition of colors rather than multiplication. The sum of two color channels can only
make the result brighter than the inputs.

The class encapsulating this concept is LightMapEffect and has the interface

class LightMapEffect : public Effect
{
public:

LightMapEffect (Texture* pkPrimaryTexture,
Vector2fArray* pkPrimaryUVs, Texture* pkSecondaryTexture,
Vector2fArray* pkSecondaryUVs, bool bHardAdd = true);

virtual ~LightMapEffect ();

virtual Effect* Clone ();

protected:
LightMapEffect ();

};

The structure of the class is nearly identical to that of DarkMap, but with two
exceptions, one minor and one major. The minor exception is that the secondary
texture has an application mode of Texture::AM_ADD. This tells the renderer to add the
secondary texture to the primary one. In many cases, the addition causes a washed-
out look, as if the lights are too bright. The constructor to LightMap has a Boolean
parameter that allows you to use a different mode for light maps. The addition is
referred to as hard addition. If you set the Boolean parameter to false, you get
what is called soft addition. I already talked about obtaining this effect through alpha
blending in Section 3.4.1 using the interpolation equation (3.7).

Figure 5.1 is a comparison of the two effects. You can see that the light map using
hard addition has a washed-out effect at the center of the image. The light map using
soft addition has a more subtle appearance.

5.1.5 Gloss Maps

A gloss map is a texture that is used to modulate the specular lighting on a surface.
This gives the surface a shininess in some places, as if those places reflect more spec-
ular light than other places. The class that encapsulates this effect is GlossMapEffect
and has the interface
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Figure 5.1 Multitexturing to obtain dark maps and light maps. Upper left: Primary texture is a
wooden image. Upper right: Secondary texture to combine with the primary texture.
Lower left: A dark map. Lower middle: A light map using hard addition. Lower right:
A light map using soft addition. (See also Color Plate 5.1.)

class GlossMapEffect : public Effect
{
public:

GlossMapEffect (Texture* pkTexture, Vector2fArray* pkUVs);
virtual ~GlossMapEffect ();

virtual Effect* Clone ();

protected:
GlossMapEffect ();

};

The interface is not very interesting. The texture to be used for modulating the spec-
ular lighting is passed to the constructor. The texture coordinates are also passed. The
Clone function creates a new object that shares the texture and texture coordinates of
the old one.
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So how do we actually get the effect of glossiness? This Effect-derived class is our
first example for which a specific rendering function has been added to the system.
The base class interface is

class Renderer
{
// internal use
public:

virtual void DrawGlossMap () = 0;
};

The function is pure virtual, so any Renderer-derived class must implement it.
The declaration is in a public section tagged for internal use only. This allows the
GlossMapEffect class to assign the virtual function pointer to the Draw member of the
base class Effect. The constructor of GlossMapEffect is

GlossMapEffect::GlossMapEffect (Texture* pkTexture,
Vector2fArray* pkUVs)

{
Draw = &Renderer::DrawGlossMap;
pkTexture->Apply = Texture::AM_MODULATE;
Textures.Append(pkTexture);
UVs.Append(pkUVs);

}

The first line is the function pointer assignment. The second line shows that the
application mode for the texture is modulation. This is the case because we will be
modulating the specular lighting.

The effect is a local one, so you can only attach a GlossMapEffect object to a
Geometry-derived object. Gloss mapping is implemented using a multipass process.
The first pass involves drawing only material colors, but no textures. That means you
need a MaterialState global state attached either to the Geometry object itself or to a
predecessor in the scene. You also need a Light attached that will cause the material
properties to be rendered. The renderer will only use specular lighting.

The second pass lights the object with ambient and diffuse colors, and the results
are blended with the texture. Although you do not need to attach an AlphaState object
to the scene, if you were required to do so, you would set the SrcBlend member to
AlphaState::SBF_ONE and the DstBlend member to AlphaState::SBF_SRC_ALPHA. The
blending equation is

(rd , gd , bd , ad) ← (rs , gs , bs , as) + as(rd , gd , bd , ad).

That is, the current color in the frame buffer (the destination, the colors subscripted
with d) is modulated by the alpha channel of the texture (the source, the colors
subscripted with s) and then added to the texture colors. The idea is that any texture
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image value with an alpha of one will appear to be specular, but texture image values
of zero will not. The recommendation is that your alpha channel in the texture have
only values of zero or one.

A sample application illustrating gloss maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestGlossMap

The application has two squares that can be rotated simultaneously. A directional
light and a material are attached to the scene, thus affecting both squares. One square
has no effects attached to it and is only lit using the material colors. The other square
has a gloss map attached to it. The texture image has all white RGB values, but the
alpha values are zero in the background and one on the pixels that lie in a text string
“Magic”. As you rotate the squares, you see that the first square has a certain specular
color to it. The second square has the same color but only in the region covered
by the text string, giving it a glossy look. Figure 5.2 shows a couple of snapshots
of the squares. The up axis has the direction (0, 1, 0). The light is directional with
direction (0, −1, 0). When the squares are rotated to fully face the camera, both
squares become completely black since the light no longer influences the visible
surfaces.

5.1.6 Bump Maps

The classical lighting model for triangle meshes involves normal vectors specified
only at the mesh vertices. The lights, materials, and vertex normals are combined
to form colors at the vertices that are then interpolated across the triangle during ras-
terization. Unfortunately, this process does not allow for subtle variations in lighting
within the triangle. To remedy this, you can use bump mapping . The idea is to sim-
ulate a surface patch by assigning to a mesh triangle a collection of surface normal
vectors at points inside the triangle. Any lighting that can use these normals should
give the planar triangle the appearance that it has variation like a surface. The prob-
lem, though, is you can only specify vertex normals.

Graphics APIs and hardware support this concept by allowing you to spec-
ify surface normals using a texture image, called the normal map. Normal vectors
(nx , ny , nz) have components in the interval [−1, 1], which can be mapped to in-
tervals [0, 255] and rounded so that the components are integer valued. Once in this
format, the three components can be stored as the RGB channels in the texture image.

Given a surface position, a surface normal, and a light, we can compute the color
due to lighting at the surface position using the same model of lighting that is applied
to vertices in a triangle mesh. Just as the renderer has to interpolate vertex colors to
fill in the pixel colors in the rasterized triangle, so must the renderer interpolate to fill
in the pixel colors at points not exactly corresponding to a texel in the normal map.
If all we have is a single light, we need to generate light vectors at those same surface
positions in order to compute the final color. The components of these light vectors
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Figure 5.2 Three different rotations of the squares. The left square has lighting only via a
material. The right square has a gloss map attached to it.

may be mapped to the interval [0, 255], just as the normal components were. The
graphics system will compute the dot product of surface normals and light directions
as a multiplication of the RGB values corresponding to those vectors, producing what
looks like diffuse lighting. The result of this can then be blended with the texture map
that is assigned to the surface, thus giving you a finely detailed and lit surface. This
process is referred to as dot3 bump mapping .

To generate a light vector at each point on the surface, we will generate a light vec-
tor at each triangle mesh vertex, map it to an RGB value and store in a vertex color
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array, and let the rasterizer interpolate the vertex colors in the usual manner. To have
the light vector vary smoothly from vertex to vertex, we need to have a parameteriza-
tion of the surface and transform the light vector into the coordinates relative to the
parameterization. However, the triangle mesh was most certainly generated without
such a coordinate system in mind. Well, maybe it was. The texture coordinates them-
selves may be thought of as inducing a parameterization of the surface. Each point
(x , y , z) has a texture coordinate (u, v), so you may think of the surface parametri-
cally as (x(u, v), y(u, v), z(u, v)). Now we do not actually know the functions for the
components. All we know are sample values at the vertices. The application should
provide vertex normals, either manually or through the automatic generation mech-
anism the engine provides. If we can estimate one tangent vector at the vertex, the
other tangent vector is a cross product of the first tangent and the normal. Thus, the
problem of generating a coordinate system reduces to estimating a tangent vector at
a vertex, assuming that the surface is parameterized by the texture coordinates.

This brings us to a little more mathematics. Consider a triangle with vertices P0,
P1, and P2 and with corresponding texture coordinates (u0, v0), (u1, v1), and (u2, v2).
Any point on the triangle may be represented as

P(s , t) = P0 + s(P1 − P0) + t (P2 − P0),

where s ≥ 0, t ≥ 0, and s + t ≤ 1. The texture coordinate corresponding to this point
is similarly represented as

(u, v) = (u0, v0) + s((u1, v1) − (u0, v0)) + t ((u2, v2) − (u0, v0))

= (u0, v0) + s(u1 − u0, v1 − v0) + t (u2 − u0, v2 − v0).

Abstractly we have a surface defined by P(s , t), where s and t depend implicitly
on two other parameters u and v. The problem is to estimate a tangent vector relative
to u or v. We will estimate with respect to u, a process that involves computing the
rate of change of P as u varies, namely, the partial derivative ∂P/∂u. Using the chain
rule from calculus,

∂P

∂u
= ∂P

∂s

∂s

∂u
+ ∂P

∂t

∂t

∂u
= (P1 − P0)

∂s

∂u
+ (P2 − P0)

∂t

∂u
.

Now we need to compute the partial derivatives of s and t with respect to u. The
equation that relates s and t to u and v is written as a system of two linear equations
in two unknowns:

[
u1 − u0 u2 − u0
v1 − v0 v2 − v0

] [
s

t

]
=
[

u − u0
v − v0

]
.
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Inverting this leads to

[
s

t

]
=

[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

] [
u − u0
v − v0

]
(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)

.

Computing the partial derivative with respect to u produces

[
∂s/∂u

∂t/∂u

]
=

[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

] [
1
0

]
(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)

=

[
v2 − v0

−(v1 − v0)

]
(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)

.

Combining this into the partial derivative for P, we have

∂P

∂u
= (v2 − v0)(P1 − P0) − (v1 − v0)(P2 − P0)

(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)

= (v1 − v0)(P2 − P0) − (v2 − v0)(P1 − P0)

(v1 − v0)(u2 − u0) − (v2 − v0)(u1 − u0)
, (5.1)

which is an estimate of a vertex tangent vector. If the vertex normal is named N and
the normalized tangent in Equation (5.1) is named T, then the other tangent vector
is named B = N × T. Unfortunately, the second tangent has been called the binormal
vector. This term usually applies to curves (the Frenet frame), but the name is not
generally used for surfaces (the Darboux frame).

Given a primary texture for the mesh, the surface normals in a normal map, and
a light, we can compute the light vectors and store them in a vertex color array. All of
this data is sent to the renderer and, assuming the graphics API has support for dot3
bump mapping, combined in the right way to obtain the special effect. The class that
encapsulates this, BumpMapEffect, has the interface

class BumpMapEffect : public Effect
{
public:

BumpMapEffect (Image* pkPrimary, Vector2fArray* pkPrimaryUVs,
Image* pkNormalMap, Vector2fArray* pkNormalUVs,
Light* pkLight);

virtual ~BumpMapEffect ();

virtual Effect* Clone ();



444 Chapter 5 Advanced Rendering Topics

Light* GetLight () const;

protected:
BumpMapEffect ();

LightPtr m_spkLight;

// internal use
public:

void ComputeLightVectors (Geometry* pkMesh);
};

This effect represents another multipass process that has a specific renderer func-
tion associated with it, namely,

class Renderer
{
// internal use
public:

virtual void DrawBumpMap () = 0;
};

The function is pure virtual, so any Renderer-derived class must implement it.
The declaration is in a public section tagged for internal use only. This allows the
BumpMapEffect class to assign the virtual function pointer to the Draw member of the
base class Effect when constructing an object. As with GlossMapEffect, the BumpMap-
Effect may be attached only to a Geometry-derived object. The Clone function creates
a new object that shares the light.

The image for the primary texture is passed to the constructor, along with the
corresponding texture coordinates. The constructor creates the Texture object itself
and sets the application mode to Texture::AM_REPLACE. The normal map and its cor-
responding texture coordinates are also passed to the constructor. The construction
of the Texture object is

pkTexture = new Texture;
pkTexture->SetImage(pkNormalMap);
pkTexture->Apply = Texture::AM_COMBINE;
pkTexture->Filter = Texture::FM_LINEAR;
pkTexture->Mipmap = Texture::MM_LINEAR;
pkTexture->CombineFuncRGB = Texture::ACF_DOT3_RGB;
pkTexture->CombineSrc0RGB = Texture::ACS_TEXTURE;
pkTexture->CombineOp0RGB = Texture::ACO_SRC_COLOR;
pkTexture->CombineSrc1RGB = Texture::ACS_PRIMARY_COLOR;
pkTexture->CombineOp1RGB = Texture::ACO_SRC_COLOR;
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The Texture::AM_COMBINE mode is used with a special combination function
for dot3 bump mapping. The graphics API on the back end must support this
function.

Finally, a light is passed to the constructor. Based on the light’s position and ori-
entation in the model space of the triangle mesh, the light vectors are computed at the
mesh vertices using the vertex normals and the estimate of the vertex tangents. This
work is done on the CPU, not the GPU, and is implemented in ComputeLightVectors.
Notice that the input to this function is the actual Geometry object—something the
effect knows nothing about. Not to worry. The renderer is given both the object and
the effect, so the DrawBumpMap implementation will call ComputeLightVectors and pass
it the mesh.

The implementation of ComputeLightVectors is long, but at a high level is not
too complicated. I will not reproduce the code here in the text—you can find it
on the CD-ROM. The first part of the code computes a light vector for the light
object. The light vector is the direction for a directional light. For a point or spot
light, the light vector is the difference between the light position and the world
translation vector for the triangle mesh, then used for all vertices. You could com-
pute the light vector for each vertex by computing the world location for the vertex
(the geometry object stores vertices in model space) and then subtracting it from
the light’s position. This can consume enough CPU cycles that the hack of using
a single vector is probably justified for most settings. If it is not, feel free to mod-
ify the code. The light vector is then transformed to the model space of the triangle
mesh.

The second part of the code iterates through the triangles of the mesh and at-
tempts to compute the tangent T obtained from Equation (5.1). All three vertices of
a triangle are processed, but the RGB representation of the light vector at the vertex
is computed only once for a vertex. The color black is used as a flag to indicate that
the vertex has not yet been visited, in which case its RGB value is computed. The code
for tangent calculation is quite lengthy, but is designed to avoid numerical problems
when triangles in the mesh are nearly degenerate (triangle slivers). The last chunk of
code in the loop maps the light vector components to [0, 255] and stores them in the
vertex color array.

A sample application illustrating bump maps is on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestBumpMap

The application has a single square with a sunfire texture and the text string “alpha”.
The normal map was computed using finite differences of a monochrome image of
the text string. Figure 5.3 shows a snapshot of the square.

You can rotate the square in the application. If you rotate it so that the square is
almost edge on to the view direction, you will see that the appearance of embossed
text goes away.
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Figure 5.3 Illustration of dot3 bump mapping. (See also Color Plate 5.3.)
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Figure 5.4 The mapping of a texture coordinate to a point on an object.

5.1.7 Environment Maps

An environment map is a texture drawn on a surface that gives the appearance of the
surface reflecting the environment around it. We need to assign texture coordinates
to the geometric object to which the environment map is attached. These depend on
the eye point’s location and the object’s location and orientation. Figure 5.4 illustrates
how a texture coordinate is assigned to a point on the surface.

The point on the surface is P, the unit-length surface normal is N, the eye point is
located at E, the direction of view to the point is V, the reflection of the view direction
through the surface normal is R, and the texture coordinate assigned to the surface
points is (u, v). The view direction is calculated as

V = P − E

|P − E| ,
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and the reflection vector is

R = V − 2(N · V)N(Rx , Ry , Rz) = (cos θ sin φ , sin θ sin φ , cos φ),

where the last equation is the representation of the vector in spherical coordinates
with θ ∈ [0, 2π) and φ ∈ [0, π]. The texture coordinates are u = θ/(2π) and v =
φ/π , so

u =
{

1
2π atan 2(Ry , Rx), Rx ≥ 0

1 + 1
2π atan 2(Ry , Rx), Rx < 0

and v = 1

π
acos(Rz).

In practice, the texture coordinates are computed only for the vertices of a triangle
mesh.

The mapping of a texture map, a planar entity, onto a curved surface can lead to
distortion. Also, if the texture is required to wrap around a cylindrically or spherically
shaped surface, the texture seams can be visible. Variations on environment mapping
have been developed to circumvent these problems. The most popular one currently
appears to be cubic environment mapping , where the target surface is a cube instead
of a sphere. In Wild Magic, I currently only have support for sphere mapping , where
the texture image itself is defined on a sphere and then mapped (with distortion) to
a planar image.

The class that encapsulates spherical environment mapping is EnvironmentMapEf-
fect and has the interface

class EnvironmentMapEffect : public Effect
{
public:

EnvironmentMapEffect (Image* pkImage, int iApplyMode);
virtual ~EnvironmentMapEffect ();

virtual Effect* Clone ();

protected:
EnvironmentMapEffect ();

};

The first input to the constructor is the texture image to be used as the environment
map. Because the texture coordinates vary with the location of the eye point and the
location and orientation of the surface, you are not required to pass to the constructor
an array of texture coordinates. Most graphics APIs provide support for automatically
calculating texture coordinates associated with sphere mapping, so I take advantage
of this. The application mode is usually Texture::AM_REPLACE, but it can be other
modes that allow you to include multitexturing with the environment map and other
texture images. The Clone function creates a new object that shares the texture image
and copies the application mode of the current object.
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The constructor is

EnvironmentMapEffect::EnvironmentMapEffect (Image* pkImage,
int iApplyMode)

{
Draw = &Renderer::DrawEnvironmentMap;

Texture* pkTexture = new Texture;
pkTexture->SetImage(pkImage);
pkTexture->Apply = iApplyMode;
pkTexture->Filter = Texture::FM_LINEAR;
pkTexture->Mipmap = Texture::MM_NEAREST;
pkTexture->Texgen = Texture::TG_ENVIRONMENT_MAP;
Textures.Append(pkTexture);
UVs.Append(NULL);

}

The filtering mode is bilinear, and no mipmapping is enabled. You can change
these, of course, after you construct an EnvironmentMapEffect object. This is the first
example we have encountered where the Texgen data member of the Texture object
is assigned a value. The value will tell the renderer that the texture is an environment
map and needs to have its texture coordinates automatically generated. Consequently,
we do not need to give the renderer an array of texture coordinates.

The effect is yet another that has a specially written renderer drawing function.
In fact, this effect is the first one that is a global effect . Because you are not restricted
to attaching the effect to a Geometry object, you can attach an EnvironmentMapEf-
fect object to a Node object in the scene. The OpenGL version of the drawing func-
tion is

void OpenGLRenderer::DrawEnvironmentMap ()
{

// Access the special effect. Detach it from the node to
// allow the effectless node drawing.
assert( DynamicCast<EnvironmentMapEffect>(m_pkGlobalEffect) );
EnvironmentMapEffectPtr spkEMEffect =

(EnvironmentMapEffect*)m_pkGlobalEffect;
m_pkNode->SetEffect(NULL);

// Draw the Node tree. Any Geometry objects with textures
// will have the environment map as an additional one, drawn
// after the others according to the apply mode stored by the
// environment map.
m_pkNode->Draw(*this);



5.1 Special Effects Using the Fixed-Function Pipeline 449

// reattach the effect
m_pkNode->SetEffect(spkEMEffect);

}

The node at which the EnvironmentMapEffect object is attached generates the
function call to DrawEnvironmentMap. The node’s effect is temporarily stored, and then
the node’s effect pointer is set to NULL. This allows the node drawing code to be
reentrant, not causing yet another call to DrawEnvironmentMap. See Section 3.5.6 for
all the details of multipass operations at nodes. The node is told to draw itself. Once
done, the EnvironmentMapEffect object is reattached to the node.

The setup of the graphics API to generate the texture coordinates is implemented
in the virtual function EnableTexture. The specific details depend on the graphics
API. For example, in the OpenGL renderer version, the enabling and disabling code
is

// in EnableTexture(...)
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glTexGeni(GL_S,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);
glTexGeni(GL_T,GL_TEXTURE_GEN_MODE,GL_SPHERE_MAP);

// in DisableTexture(...)
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);

Because the global effect occurs at an interior node, the UpdateRS call will place
its texture object at the end of the array of the textures stored in the leaf geom-
etry objects. Once the local effect textures are drawn on the geometry object, the
global effect texture is blended with them. This is where the application mode passed
to the constructor of EnvironmentMapEffect comes into play. If you set the mode to
Texture::AM_REPLACE, any previous textures drawn to the geometry object are over-
written. More interesting effects occur when you use a different application mode.
The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestEnvironmentMap

illustrates these effects. A mesh representing a face is loaded and has a sunfire texture
attached to it as a TextureEffect object. The mesh is the child of a node in the scene.
That node has an environment map attached to it as an EnvironmentMapEffect object.
The face is initially displayed with replacement mode for the environment map, so
you do not see the sunfire texture. You can press the plus key to toggle among various
application modes. Figure 5.5 shows the results.



Figure 5.5 Screen shots from the environment map sample application. Top left: Replacement
mode. Top right: Modulation mode. Bottom left: Blend mode. Bottom right: Add
mode. (See also Color Plate 5.5.)
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5.1.8 Projected Textures

A projected texture is a texture that is applied to an object as if it were projected from
a light source onto the object. You may think of this as the model of a motion picture
projection system that casts an image on a screen. Another realistic example is light
passing through a stained-glass window and tinting the objects in a room. The class
that encapsulates this effect is ProjectedTextureEffect.

The interface of ProjectedTextureEffect is

class ProjectedTextureEffect : public Effect
{
public:

ProjectedTextureEffect (Image* pkImage, Camera* pkCamera,
int iApplyMode);

virtual ~ProjectedTextureEffect ();

virtual Effect* Clone ();

Camera* GetCamera () const;

protected:
ProjectedTextureEffect ();

CameraPtr m_spkCamera;
};

The first input to the constructor is the image for the projected texture. The second
input is a camera whose eye point defines the projector location and whose frustum
parameters determine how the image is projected onto objects. The application mode
is the third parameter and specifies how the projected texture should be combined
with any previous textures drawn on the object. The Clone function creates a new
object and shares the image and camera of the current object.

The constructor is

ProjectedTextureEffect::ProjectedTextureEffect (Image* pkImage,
Camera* pkCamera, int iApplyMode)
:
m_spkCamera(pkCamera)

{
Draw = &Renderer::DrawProjectedTexture;

Texture* pkTexture = new Texture;
pkTexture->SetImage(pkImage);
pkTexture->Apply = iApplyMode;
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pkTexture->Filter = Texture::FM_LINEAR;
pkTexture->Mipmap = Texture::MM_LINEAR_LINEAR;
pkTexture->Texgen = Texture::TG_PROJECTED_TEXTURE;
Textures.Append(pkTexture);
UVs.Append(NULL);

}

The filtering mode is bilinear and the mipmap mode is set for trilinear interpolation.
Once again the Texgen parameter is assigned a value, in this case letting the renderer
know that the texture coordinates are to be automatically generated for the object.
These coordinates depend on the projector (the camera model) and the target of the
projection (the triangle mesh).

A specialized renderer function exists for drawing projected textures, namely,
Renderer::DrawProjectedTexture. The base class function is tagged as pure virtual,
so all derived-class renderers must implement this function. The effect is global in
that you can attach such an effect to a node in the scene, not just to geometry leaf
objects. Just like environment maps, because the texture occurs at an interior node,
the UpdateRS call will guarantee that the projected texture will be the last texture that
is applied to the geometry objects. The specialized function is identical in structure
to that of environment mapping:

void OpenGLRenderer::DrawProjectedTexture ()
{

// Access the special effect. Detach it from the node to
// allow the effectless node drawing.
assert( DynamicCast<ProjectedTextureEffect>(m_pkGlobalEffect) );
ProjectedTextureEffectPtr spkPTEffect =

(ProjectedTextureEffect*)m_pkGlobalEffect;
m_pkNode->SetEffect(NULL);

// Draw the Node tree. Any Geometry objects with textures
// will have the projected texture as an additional one, drawn
// after the others according to the apply mode stored by the
// projected texture.
m_pkNode->Draw(*this);

// reattach the effect
m_pkNode->SetEffect(spkPTEffect);

}

The setup of the graphics API to generate the texture coordinates is implemented
in the virtual function EnableTexture. The specific details depend on the graphics
API. For example, in the OpenGL renderer version, the enabling code is
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glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

// Select the camera coordinates of the model for the projected
// texture coordinates: (s,t,r,q) = (x_cam,y_cam,z_cam,w_cam)
glTexGenfv(GL_S,GL_EYE_PLANE,(const float*)Vector4f::UNIT_X);
glTexGenfv(GL_T,GL_EYE_PLANE,(const float*)Vector4f::UNIT_Y);
glTexGenfv(GL_R,GL_EYE_PLANE,(const float*)Vector4f::UNIT_Z);
glTexGenfv(GL_Q,GL_EYE_PLANE,(const float*)Vector4f::UNIT_W);
glTexGeni(GL_S,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR);
glTexGeni(GL_T,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR);
glTexGeni(GL_R,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR);
glTexGeni(GL_Q,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR);

// Create the transformation to map (s,t,r,q) to the coordinate
// system of the projector camera.
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glLoadIdentity();

// bias and scale the texture so it covers the near plane
glTranslatef(0.5f,0.5f,0.0f);
glScalef(0.5f,0.5f,1.0f);

// set the perspective projection for the projector camera
Camera* pkCamera = ((ProjectedTextureEffect*)pkEffect)->GetCamera();
float fL, fR, fB, fT, fN, fF;
pkCamera->GetFrustum(fL,fR,fB,fT,fN,fF);
glFrustum(fL,fR,fB,fT,fN,fF);

// set the model-view matrix for the projector camera
Vector3f kLoc = pkCamera->GetWorldLocation();
Vector3f kUVec = pkCamera->GetWorldUVector();
Vector3f kDVec = pkCamera->GetWorldDVector();
Vector3f kLookAt = kLoc + kDVec;
gluLookAt(kLoc.X(),kLoc.Y(),kLoc.Z(),kLookAt.X(),kLookAt.Y(),

kLookAt.Z(),kUVec.X(),kUVec.Y(),kUVec.Z());

The comments in the source code make it clear what steps must be taken to get the
graphics API to generate texture coordinates relative to the projector. The disabling
code is
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glMatrixMode(GL_TEXTURE);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);

glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);

A matrix was pushed onto the texture matrix stack in the enabling code, so it must
be popped in the disabling code.

The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestProjectedTexture

illustrates the projected texture effect. A mesh representing a face is loaded and has
no texture associated with it. A sunfire texture is projected onto the face. Figure 5.6
shows the face in a couple of orientations. Notice that the face moves relative to the
observer, but the projected texture does not since the projector is fixed in space in this
application.

5.1.9 Planar Shadows

The Wild Magic engine implements projected planar shadows. An object in the scene
casts shadows onto one or more planes due to light sources; one light is associated
with each plane (possibly the same light). The class that encapsulates this is Planar-
ShadowEffect and has the interface

class PlanarShadowEffect : public Effect
{
public:

PlanarShadowEffect (int iQuantity);
virtual ~PlanarShadowEffect ();

virtual Effect* Clone ();

int GetQuantity () const;
void SetPlane (int i, TriMeshPtr spkPlane);
TriMeshPtr GetPlane (int i) const;
void SetProjector (int i, LightPtr spkProjector);
LightPtr GetProjector (int i) const;
void SetShadowColor (int i, const ColorRGBA& rkShadowColor);
const ColorRGBA& GetShadowColor (int i) const;
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Figure 5.6 Illustration of projected textures. (See also Color Plate 5.6.)

protected:
PlanarShadowEffect ();

int m_iQuantity;
TriMeshPtr* m_aspkPlane;
LightPtr* m_aspkProjector;
ColorRGBA* m_akShadowColor;

};

The constructor is passed the number of planes on which the object will cast a
shadow. Each plane has an associated light source for projecting the shadow and a
shadow color. The planes, projectors, and colors are all set by the member functions
of the class.

This effect is a global effect. You may attach it to a Node object in the scene graph.
A specialized drawing function is provided, namely, Renderer:DrawPlanarShadow. The
base class function is pure virtual, so the derived-class renderers must implement
them.
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The OpenGL implementation uses a stencil buffer to guarantee that the shadow
cast on the planar geometry is clipped against that geometry. The abstraction of the
drawing routine is

draw the node subtree;
for each projection plane do
{

enable depth buffering;
enable stencil buffering;
draw the plane; // stencil keeps track of pixels drawn
disable stencil buffering;
disable depth buffering;

compute the shadow projection matrix;
push onto the model-view matrix stack;

enable alpha blending;
set current color to shadow color;
enable stencil buffering;

disallow global state changes;
disallow lighting;
disallow texturing;
draw the node subtree; // shadow only occurs where plane is
allow texturing;
allow lighting;
allow global state changes;

disable stencil buffering;
restore current color;
disable alpha blending;

pop projection matrix from model-view matrix stack;
}

The shadow caster is drawn first. Each projection plane is processed one at a time.
The plane is drawn with the stencil buffer enabled so that you keep track of those
pixels affected by the plane. The shadow caster needs to be drawn into the plane from
the perspective of the light projector. This involves computing a shadow projection
matrix, which I will discuss in a moment. The matrix is pushed onto the model-view
matrix stack so that the resulting transformation places the camera in the correct
location and orientation to render the caster onto the projection plane, which acts as
the view plane. The only colors we want for the rendering are the shadow colors, so
the rendering system provides the ability for you to tell it not to allow various render
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state changes. In this case we disallow just about everything except the current color.1

The caster is rendered into the plane, but with stencil buffering enabled yet again, the
only pixels blended with the shadow color are those that were drawn with the plane.
The stencil buffer only allows those pixels to be touched. The remainder of the code
is the restoration of rendering state to what it was before the function call was made.

The projection matrix construction requires a small amount of mathematics. The
projection plane is implicit in the TriMesh representation of the plane. We need to
know the equation of the plane in world coordinates. The TriMesh::GetWorldTriangle
function call returns the three vertices of the first triangle in the mesh of the plane,
and from these vertices we can construct the plane equation. The light source is either
directional, in which case the projection is an oblique one, or positional, in which case
the projection is a perspective one. The homogeneous matrices for these projections
are computed by the Matrix4 class. The mathematical details are in Section 2.2.4, in
particular in the subsection entitled “Operations Specific to 4D.”

The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestPlanarShadow

illustrates the projected, planar shadow effect. A biped model is loaded and drawn
standing on a plane. Another plane perpendicular to the first is also drawn. The biped
casts two shadows, one on the floor plane and one on the wall plane. Figure 5.7 shows
a screen shot from the application. The light is a point source. You can move the
location with the x, y, and z keys (both lowercase and uppercase). Press the G key to
animate the biped and see the shadow change dynamically.

5.1.10 Planar Reflection

The Wild Magic engine implements planar reflections. An object in the scene casts
reflections onto one or more planes. Thinking of the planes as mirrors, each plane
has some amount of reflectance, say, a value in the interval [0, 1]. A reflectance of 0
means the plane does not reflect at all. A reflectance of 1 means the plane fully reflects
the image. Values between 0 and 1 give varying degrees of reflectance. The class that
encapsulates this is PlanarReflectionEffect and has the interface

class PlanarReflectionEffect : public Effect
{
public:

PlanarReflectionEffect (int iQuantity);
virtual ~PlanarReflectionEffect ();

1. The Direct3D renderer does not have the concept of current color. An alternative method for blending the
shadow into the plane is used.



458 Chapter 5 Advanced Rendering Topics

Figure 5.7 Illustration of projected, planar shadows. (See also Color Plate 5.7.)

virtual Effect* Clone ();

int GetQuantity () const;
void SetPlane (int i, TriMeshPtr spkPlane);
TriMeshPtr GetPlane (int i) const;
void SetReflectance (int i, float fReflectance);
float GetReflectance (int i) const;

protected:
PlanarReflectionEffect ();

int m_iQuantity;
TriMeshPtr* m_aspkPlane;
float* m_afReflectance;

};
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The constructor is passed the number of planes on which the object will cast a
reflection. Each plane has an associated reflectance value. The planes and reflectances
are all set by the member functions of the class.

This effect is a global effect. You may attach it to a Node object in the scene graph.
A specialized drawing function is provided, namely, Renderer:DrawPlanarReflection.
The base class function is pure virtual, so the derived-class renderers must implement
them.

The OpenGL implementation uses a stencil buffer for drawing the planes, just as
it did for planar shadows. The abstraction of the drawing routine is

enable depth buffering;
enable stencil buffering;

for each reflecting plane do
{

// see comment (1) after source code
disable writing to depth buffer;
disable writing to frame buffer;
render plane into stencil buffer;

// see comment (2) after source code
enable writing to depth buffer;
enable writing to frame buffer;
render plane to write depth buffer to ‘far’;
restore depth buffer state to normal;

// see comment (3) after source code
compute the reflection matrix;
push onto the model-view matrix stack;

// see comment (4) after source code
enable extra clip plane for reflection plane;

// see comment (5) after source code
reverse the culling direction;

// see comment (6) after source code
draw node subtree with culling disabled;

restore the cull direction;
disable extra clip plane;
pop the model-view matrix stack;
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// see comment (7) after source code
enable alpha blending;
set blending color to (r,g,b,a) = (0,0,0,reflectance);
disallow alpha state changes;
render the plane;
allow alpha state changes;
disable alpha blending;

}

disable stencil buffering;
disable depth buffering;
draw the node subtree;

The steps of the pseudocode are the following:

1. Render the reflecting plane into the stencil buffer. No pixels are written to the
depth buffer or color buffer, but we use depth buffer testing so that the stencil
buffer will not be written where the plane is behind something already in the
depth buffer.

2. Render the reflecting plane again by only processing pixels where the sten-
cil buffer contains the plane’s assigned stencil value. This time there are no
changes to the stencil buffer, and the depth buffer value is reset to the far clip-
ping plane. This is done by setting the range of depth values in the viewport
volume to be [1, 1]. Since the reflecting plane cannot also be semitransparent,
it does not matter what is behind the reflecting plane in the depth buffer. We
need to set the depth buffer values to the far plane value (essentially infinity)
wherever the plane pixels are, so that when the reflected object is rendered, it
can be depth-buffered correctly. Note that the rendering of the reflected ob-
ject will cause depth values to be written, which will appear to be behind the
mirror plane. Writes to the color buffer are now enabled. When the reflecting
plane is rendered later and blended into the background, which should con-
tain the reflected caster, we need to use the same blending function so that the
pixels where the reflected object was not rendered will contain the reflecting
plane’s colors. In that case, the blending result will show that the reflecting plane
is opaque when in reality it was blended with blending coefficients summing
to one.

3. The reflection matrix is computed using a function in the class Matrix4. The
mathematical details are in Section 2.2.4, in particular, in the subsection entitled
“Operations Specific to 4D.”
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4. Enable a clip plane so that only objects above the mirror plane are reflected. We
do not want objects below the clip plane to be reflected because we cannot see
them.

5. Reverse the cull direction. This is necessary because of the use of the reflection
matrix. The triangles in the meshes need to be treated as if their vertices are
ordered in the opposite direction that they normally are in. In the actual imple-
mentation, a flag is set in the Renderer class telling the CullState processing code
to treat back-facing triangles as front facing, and vice versa. This allows us not
to assume that all models use back-facing triangles or all use front-facing trian-
gles.

6. The rendering of the reflected object only draws where the stencil buffer contains
the reflecting plane’s stencil value. The node object is told to draw itself. The
actual function call takes two arguments: The first is the renderer itself. The
second argument is a Boolean flag indicating whether or not to allow culling by
bounding volumes. In this case the culling is disabled to allow out-of-view objects
to cast reflections.

7. The reflecting plane will be blended with what is already in the frame buffer, ei-
ther the image of the reflected caster or the reflecting plane. All we want for the
reflecting plane at this point is to force the alpha channel to always be the re-
flectance value for the reflecting plane. The reflecting plane is rendered wherever
the stencil buffer is set to the plane’s stencil value. The stencil buffer value for the
plane will be cleared. The normal depth buffer testing and writing occurs. The
frame buffer is written to, but this time the reflecting plane is blended with the
values in the frame buffer based on the reflectance value. Note that where the
stencil buffer is set, the frame buffer has color values from either the reflecting
plane or the reflected object. Blending will use a source coefficient of 1 − α for
the reflecting plane and a destination coefficient of α for the reflecting plane or
reflected object.

The sample application on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test/TestPlanarReflection

illustrates the planar reflection effect. A biped model is loaded and drawn standing
on a plane. Another plane perpendicular to the first is also drawn. The biped casts
two reflections, one on the floor plane and one on the wall plane. Figure 5.8 shows a
screen shot from the application. The reflectance for the wall mirror is set to be larger
than the reflectance of the floor. Press the G key to animate the biped and see the
reflections change dynamically.
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Figure 5.8 Illustration of planar reflections. (See also Color Plate 5.8.)

5.2 Special Effects Using Vertex and Pixel
Shaders

Current-generation consumer graphics hardware is programmable; the programs are
called shader programs. The two categories of shader programs are vertex shaders
and pixel shaders. Such programs give you more control over the rendering process
than the fixed-function pipeline that restricts you to the standard graphics API calls.
In fact, the fixed-function pipeline can be implemented with a collection of shader
programs.

The prototypical vertex shader computes colors at the vertices of a triangle mesh
by using vertex normals, material colors, lights, and the standard lighting equations.
The prototypical pixel shader interpolates texture coordinates at the vertices and
uses them as a lookup into a texture image in order to assign colors to pixels in the
rasterized triangles. Having the ability to write your own vertex and pixel shaders
allows you to be more creative with special effects—in most cases producing effects
that cannot be done in the fixed-function pipeline.
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As with any procedural programming language, a shader program may be
thought of as a function that has inputs and outputs. At the lowest level, the function
is implemented in an assembly-like language. The inputs to a vertex shader pro-
gram include vertex positions (naturally), but also include other vertex attributes
such as normals and colors. The inputs can also include user-defined constants that
are managed at a higher level in the engine (or application). The outputs include ver-
tex positions, possibly modifed from the input, and other attributes that are needed
later in the pipeline—for example, in a pixel shader or by the fixed-function pipeline.
The inputs to a pixel shader program include items such as the outputs from a vertex
shader program, texture coordinates, texture unit information (to access the textures
themselves), and user-defined constants.

The twist in all this is how the function is actually executed. Both OpenGL and
Direct3D allow you to pass to them a text string representation of the function. You
do not explicitly “call” the function, but you do provide all the inputs, directly or in-
directly. Some of the inputs are made available through the mechanisms already pro-
vided in the fixed-function pipeline. For example, in OpenGL you give the graphics
system pointers to the arrays of vertex locations, colors, normals, and texture coordi-
nates, and you set up the texture units with the texture parameters and images. Other
inputs are made available by passing render state information to the graphics system
outside of the standard API for that system. For example, in OpenGL the parame-
ters for a light are copied into arrays and passed to the graphics system via a special
function that supports shaders. This happens outside the usual mechanism starting
with glEnable(GL_LIGHTING). User-defined constants must also be passed through the
special function.

Implementing support for shaders in Wild Magic is partitioned into three sepa-
rate topics. First, the shader program and its associated constants must be encapsu-
lated in classes in the scene graph management system. This is discussed in Section
5.2.1. Second, the renderer API must be expanded to include management of shaders
and to draw objects with shaders attached. Section 5.2.2 describes the evolution of
the Renderer class to support shaders. Third, the path that takes you from writing a
shader program to adding engine support for that shader is a long and tedious one.
Using nVidia’s Cg Toolkit, I built a tool that actually generates Wild Magic source
code from a shader written in the Cg language. Similar tools for automatic source
code generation can be built for other toolkits that assist you in building shaders.
Section 5.2.3 discusses briefly the issues involved with source code generation.

5.2.1 Scene Graph Support

To support shader programs in Wild Magic version 3, I needed to implement a
subsystem in the scene graph management system that encapsulates both the shader
programs and the constants that go with them. Wild Magic version 2 had a subsystem
that was patched into the scene graph management system, but it was a bit awkward
to use. That version included a lot of class member functions and data that turned
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out not to be used. I have streamlined the system and made it more readable and
understandable.

In Wild Magic version 2, the base class for shaders included enumerations that
made it clear that the class was storing programs for both OpenGL and Direct3D.
The shader programs themselves are part of the class data. Because the program
formats are specific to the graphics API you choose, there has to be some dependency
on the graphics API. A major goal of the scene graph management system is to be
independent of the back-end rendering system, so the inclusion of shader support
becomes problematic. My solution was to allow for the weakest dependency possible.
The shader support in the engine proper has no indication that a graphics API exists
on the back end. The abstract base class, Shader, has a pointer to the text string
that represents the program and an array of constants, of class type ShaderConstant,
associated with the program. The derived classes for Shader are VertexShader and
PixelShader, both abstract. These also have no explicit dependencies on the graphics
API.

A class derived from VertexShader or PixelShader introduces the dependency.
That class stores a static array of text strings, one for OpenGL and one for Direct3D
(more can be added for other graphics APIs). The constructor sets the Shader text
string pointer to the appropriate static text string in the derived class. The selection
is based on whatever renderer library was linked into the application. This required
adding a static function to Renderer that acts as run-time type identification. Each
Renderer-derived class implements this function, with the assumption that only one
derived-class renderer may exist in an application. To the best of my knowledge, this
assumption is safe to make! The interface for Renderer has added to it the following:

class Renderer
{
public:

// Only one type of renderer can exist in an application. The
// active renderer type implements GetType() to return one of
// the enumerations.
enum
{

RT_OPENGL,
RT_DIRECT3D,
RT_QUANTITY

};
static int GetType ();

};

Class Renderer does not implement GetType; rather, each derived class does. The
enumerations are indexed starting at 0 and are used as the indices into the static array
of text strings that each shader class uses to store the shader programs. The correct
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shader program is selected simply by the act of linking in the derived-class renderer
library of your choice.

To motivate the architecture of the Shader class, let us work through a specific
example of a shader-based effect from start to finish. The shader produces a charcoal
effect when drawing an object. The application illustrating this is on the CD-ROM in
directory

MagicSoftware/WildMagic3/Test/TestCharcoalEffect

It uses the algorithm and Cg vertex and pixel shader programs (with minor varia-
tions) in [MG02]. The Cg vertex shader program is

void vmain(
in float4 i_f4Position : POSITION,
in float3 i_f3Normal : NORMAL,
in float2 i_f2TexCoord : TEXCOORD0,

out float4 o_f4Position : POSITION,
out float4 o_f4Color : COLOR,
out float2 o_f2TexCon : TEXCOORD0,
out float2 o_f2TexRan : TEXCOORD1,
out float2 o_f2TexPap : TEXCOORD2,

uniform float4x4 SCTransformMVP,
uniform float4x4 SCTransformM,
uniform float AmbientIntensity,
uniform float ContrastExponent,
uniform float3 SCLightDirection0,
uniform float3 SCLightDirection1)

{
// Transform the vertex by the model-view and the projection
// matrix, concatenated as SCTransformMVP.
float4 f4ProjectionPosition = mul(SCTransformMVP,i_f4Position);
o_f4Position = f4ProjectionPosition;

// Calculate the illumination at a vertex from two directional
// lights and using only the ambient and diffuse contributions.
// The normal is transformed by the model-to-world matrix
// SCTransformM. Only the intensity is computed so that the
// output color is gray-scale.
float3 f3Normal = mul((float3x3)SCTransformM,(float3)i_f3Normal);
float fDiffuse1 = saturate(-dot(f3Normal,SCLightDirection0));
float fDiffuse2 = saturate(-dot(f3Normal,SCLightDirection1));
float fGray = saturate(fDiffuse1+fDiffuse2+AmbientIntensity);
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// enhance the contrast of the intensity
float fEnhancedGray = pow(fGray,ContrastExponent);

// create the gray-scale color (same value in all channels)
o_f4Color = fEnhancedGray.xxxx;

// The input texture coordinates are used as a lookup into a random
// texture map. The lookup value is used as the first component of
// the texture coordinate for a contrast texture. The second
// component is the enhanced gray-scale intensity. The use of a
// random texture map avoids banding artifacts that occur when the
// input texture coordinates are used directly.
o_f2TexRan.xy = i_f2TexCoord;
o_f2TexCon.x = 0.0;
o_f2TexCon.y = fEnhancedGray;

// A paper texture is overlaid. The texture coordinates for the
// vertex are in screen space. The components of the clip
// coordinates are in [-1,1], so they must be mapped to [0,1] for
// the final texture coordinates.
float fProj = 1.0/f4ProjectionPosition.w;
float2 f2ClipCoords = f4ProjectionPosition.xy*fProj;
o_f2TexPap.xy = (f2ClipCoords+1.0)*0.5;

}

The OpenGL output from the Cg Toolkit is shown next with the comments
removed for brevity. The Direct3D output is similarly structured, but not listed here.
I added the C++ style comments in the book text to emphasize which of the local
variables are associated with the vertex shader inputs.

!!ARBvp1.0
PARAM c12 = { 0, 1, 2, 0.5 };
TEMP R0, R1, R2;
ATTRIB v24 = vertex.texcoord[0]; // i_f2TexCoord
ATTRIB v18 = vertex.normal; // i_f3Normal
ATTRIB v16 = vertex.position; // i_f4Position
PARAM c9 = program.local[9]; // ContrastExponent
PARAM c8 = program.local[8]; // AmbientIntensity
PARAM c11 = program.local[11]; // SCLightDirection1
PARAM c10 = program.local[10]; // SCLightDirection0
PARAM c4[4] = { program.local[4..7] }; // SCTransformMVP
PARAM c0[4] = { program.local[0..3] }; // SCTransformM
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MOV result.texcoord[1].xy, v24;
DP4 R0.x, c0[0], v16;
DP4 R0.y, c0[1], v16;
DP4 R0.z, c0[2], v16;
DP4 R0.w, c0[3], v16;
MOV result.position, R0;
DP3 R2.x, c4[0].xyzx, v18.xyzx;
DP3 R2.y, c4[1].xyzx, v18.xyzx;
DP3 R2.z, c4[2].xyzx, v18.xyzx;
DP3 R1.x, R2.xyzx, c10.xyzx;
MIN R1.x, c12.y, -R1.x;
MAX R1.y, c12.x, R1.x;
DP3 R1.x, R2.xyzx, c11.xyzx;
MIN R1.x, c12.y, -R1.x;
MAX R1.x, c12.x, R1.x;
ADD R1.x, R1.y, R1.x;
ADD R1.x, R1.x, c8.x;
MIN R1.x, c12.y, R1.x;
MAX R1.xy, c12.x, R1.x;
MOV R1.zw, c9.x;
LIT R1.z, R1;
MOV result.color.front.primary, R1.z;
MOV result.texcoord[0].x, c12.x;
MOV result.texcoord[0].y, R1.z;
RCP R1.x, R0.w;
MAD R0.xy, R0.xyxx, R1.x, c12.y;
MUL result.texcoord[2].xy, R0.xyxx, c12.w;

END

The program, stored as a text string, is what you provide to the OpenGL API
through a call to glProgramStringARB. The vertex positions, normals, and texture co-
ordinates are managed by OpenGL. All you do is provide OpenGL with the arrays
to these quantities. Management of the six other inputs is the engine’s responsibility.
These are called shader constants, each represented by an object from the class Shader-
Constant. The four inputs with the SC prefix are state constants that you have to pass
to the OpenGL API outside of its usual fixed-function pipeline. The other two inputs
are user-defined constants and are specific to your shaders. The naming conventions
in the Cg program for the state constants (prefixed by SC) and user-defined constant
(no prefix) are designed to allow the automatic source code generator to create names
for class data members and functions using my coding conventions for the engine. All
six constants are passed to the OpenGL API through a call to glProgramLocalParame-
ter4fvARB.
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The interface for the ShaderConstant class is

class ShaderConstant : public Object
{
public:

// state constants
enum
{

SC_TRANSFORM_M, // 4x4 modelworld matrix
SC_TRANSFORM_P, // 4x4 projection matrix
SC_TRANSFORM_MV, // 4x4 modelview matrix
SC_TRANSFORM_MVP, // 4x4 modelview*projection matrix
SC_CAMERA_POSITION, // (x,y,z,1)
SC_CAMERA_DIRECTION, // (x,y,z,0)
SC_CAMERA_UP, // (x,y,z,0)
SC_CAMERA_RIGHT, // (x,y,z,0)
SC_FOG_COLOR, // (r,g,b,a)
SC_FOG_PARAMS, // (start, end, density, enabled)
SC_MATERIAL_EMISSIVE, // (r,g,b,a)
SC_MATERIAL_AMBIENT, // (r,g,b,a)
SC_MATERIAL_DIFFUSE, // (r,g,b,a)
SC_MATERIAL_SPECULAR, // (r,g,b,a)
SC_MATERIAL_SHININESS, // (shiny, -, -, -)
SC_LIGHT_POSITION, // (r,g,b,a)
SC_LIGHT_DIRECTION, // (r,g,b,a)
SC_LIGHT_AMBIENT, // (r,g,b,a)
SC_LIGHT_DIFFUSE, // (r,g,b,a)
SC_LIGHT_SPECULAR, // (r,g,b,a)
SC_LIGHT_SPOTCUTOFF, // (angle, cos, sin, exponent)
SC_LIGHT_ATTENPARAMS, // (const, lin, quad, intensity)
SC_NUMERICAL_CONSTANT, // (f0,f1,f2,f3)
SC_QUANTITY,
SC_USER_DEFINED // (f0,f1,f2,f3)

};

// state constant options
enum
{

SCO_NONE = -1,
SCO_MATRIX = 0,
SCO_TRANSPOSE = 1,
SCO_INVERSE = 2,
SCO_INVERSE_TRANSPOSE = 3,
SCO_LIGHT0 = 0,
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SCO_LIGHT1 = 1,
SCO_LIGHT2 = 2,
SCO_LIGHT3 = 3,
SCO_LIGHT4 = 4,
SCO_LIGHT5 = 5,
SCO_LIGHT6 = 6,
SCO_LIGHT7 = 7,

};

ShaderConstant (int iSCType, int iSCOption, int iRegister,
int iRegisterQuantity);

virtual ~ShaderConstant ();

int GetSCType () const;
int GetSCOption () const;
int GetRegister () const;
int GetRegisterQuantity () const;
float* Data ();
void SetRegisterData (int i, float fData0, float fData1 = 0.0f,

float fData2 = 0.0f, float fData3 = 0.0f);

protected:
ShaderConstant ();

int m_iSCType; // enum with SC_ prefix
int m_iSCOption; // enum with SCO_ prefix
int m_iRegister; // register to store data (1 reg = 4 floats)
int m_iRegisterQuantity; // registers needed for constant
float* m_afData; // the constant’s data

};

Each constant is stored using multiples of four floats; each quadruple is referred
to as a register, which is how the data is stored and manipulated on the graphics
hardware—as 128-bit quantities. The number of the register associated with the
constant is stored in m_iRegister. The number of registers required for the constant
is stored in m_iRegisterQuantity. Constants do not have to use all four components
of the register. The matrix constants use four registers for a total of 16 floating-
point numbers (the matrices are stored as homogeneous transformations). The other
constants use one register each. The actual data is stored in the m_afData array. The
engine has the responsibility for assigning this data as needed.

The enumeration for state constants lists all the possibilities for shader inputs
related to render state. If a constant is user defined, it is tagged with the SC_USER_
DEFINED value. The data member m_SCType stores this enumerated value.
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Table 5.1 The ShaderConstant objects associated with the inputs to the example vertex shader program.

Input m_iSCType m_iSCOption m_iRegister m_iRegisterQuantity

SCTransformM SC_TRANSFORM_M SCO_NORMAL 0 4

SCTransformMVP SC_TRANSFORM_MVP SCO_NORMAL 4 4

AmbientIntensity SC_USER_DEFINED SCO_NONE 8 1

ContrastExponent SC_USER_DEFINED SCO_NONE 9 1

SCLightDirection0 SC_LIGHT_DIRECTION SCO_LIGHT0 10 1

SCLightDirection1 SC_LIGHT_DIRECTION SCO_LIGHT1 11 1

Register c12 SC_NUMERICAL_CONSTANT SCO_NONE 12 1

The enumeration for state constant options lists additional interpretations of
the shader inputs; the value is stored in m_iSCOption. Two categories exist for these.
The first category has to do with the matrix constants. If a shader needs the trans-
pose of the model-to-world transformation, the corresponding constant has type
SC_TRANSFORM_M and option SCO_TRANSPOSE. The two labels tell the engine to store the
transposed matrix in the data array of the shader constant. The second category has
to do with the light constants. Most graphics systems support up to eight lights. The
option SCO_LIGHTi for 0 ≤ i < 8 is used whenever the type is one of the SC_LIGHT*
enumerated values. The engine then knows from which light the data array should
be assigned.

Our example vertex shader has seven shader constants with the assignments
shown in Table 5.1. You might have thought there were six constants, but do not over-
look register c12, which stores numerical constants used within the shader program
itself.

Make sure you understand how the register numbers and register quantities are
related to the quantities shown in the shader program. Notice that register c12 stores
four numbers: x = 0, y = 1, z = 2, and w = 0.5. Only the x, y, and w fields are used
in the program and correspond to the use of constants in the Cg program lines

o_f2TexCon.x = 0.0; // use of c12.x
float fProj = 1.0/f4ProjectionPosition.w; // use of c12.y
o_f2TexPap.xy = (f2ClipCoords+1.0)*0.5; // use of c12.y, c12.w

The Cg pixel shader program for the charcoal rendering is

void pmain (
in float4 i_f4Color : COLOR,
in float2 i_f2TexCon : TEXCOORD0,
in float2 i_f2TexRan : TEXCOORD1,
in float2 i_f2TexPap : TEXCOORD2,
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out float4 o_f4Col : COLOR,
uniform sampler2D ContrastTexture,
uniform sampler2D RandomTexture,
uniform sampler2D PaperTexture,
uniform float4 Constants)

{
// generate a random number in the range [0..1]
float4 f4Random = tex2D(RandomTexture,i_f2TexRan);

// get the paper texture color
float4 f4PaperColor = tex2D(PaperTexture,i_f2TexPap);

// user-defined parameter "smudge"
// 0.5 = normal smudge
// 0.0 = no lighting smudging
// 1.0 = no contrast map, only diffuse lighting
float fSmudge = Constants.x;

// user-defined parameter "display paper"
// 0.0 = display paper
// 1.0 = no paper
float fPaper = Constants.y;

// perform a lookup into the contrast-enhanced texture map
i_f2TexCon.x += f4Random.x;
float4 f4Contrast = tex2D(ContrastTexture,i_f2TexCon);

// Blend the contrast-enhanced texel with the contrast-enhanced
// vertex color.
float4 f4SmudgeColor = lerp(f4Contrast,i_f4Color,fSmudge);

// If fPaper is large enough, it will saturate the paper color
// to white, which will cancel out the alpha blending in the
// next step.
f4PaperColor = saturate(f4PaperColor+fPaper);

// alpha blend with the background, drawn as a polygon
o_f4Col = f4PaperColor*f4SmudgedColor;

}

The corresponding OpenGL output from the Cg Toolkit, minus the Cg com-
ments, but with my comments added, is

// program.local[0] stores i_f4Color
// fragment.texcoord[0] stores i_f2TexCon
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// fragment.texcoord[1] stores i_f2TexRan
// fragment.texcoord[2] stores i_f2TexPap
// texture unit 0 has the ContrastTexture
// texture unit 1 has the RandomTexture
// texture unit 2 has the PaperTexture
// register c[0] stores Constants (smudge,paper,-,-)

!!ARBfp1.0
PARAM u0 = program.local[0];
TEMP R0;
TEMP R1;
TEMP R2;
TEX R0.x, fragment.texcoord[1], texture[1], 2D;
TEX R1, fragment.texcoord[2], texture[2], 2D;
ADD R0.x, fragment.texcoord[0].x, R0.x;
ADD_SAT R1, R1, u0.y;
MOV R2.y, fragment.texcoord[0].y;
MOV R2.x, R0.x;
TEX R0, R2, texture[0], 2D;
ADD R2, fragment.color.primary, -R0;
MAD R0, u0.x, R2, R0;
MUL result.color, R1, R0;
END

A single ShaderConstant object is needed to manage the Constants input. The
smudge and paper parameters are both contained in the same register, using only
two of the floating-point components of the register. Table 5.2 is the pixel-shader
equivalent of Table 5.1.

Table 5.2 The ShaderConstant object associated with the inputs to the example pixel shader
program.

Input m_iSCType m_iSCOption m_iRegister m_iRegisterQuantity

Constants SC_USER_DEFINED SCO_NONE 0 1

The Shader class encapsulates the shader program and the array of ShaderConstant
objects that are associated with the inputs to the shader program. The interface is

class Shader : public Object
{
public:

virtual ~Shader ();
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enum // ShaderType
{

ST_VERTEX_SHADER,
ST_PIXEL_SHADER,
ST_QUANTITY

};
virtual int GetShaderType () const = 0;

void SetProgram (const char* acProgram);
const char* GetProgram () const;
int GetConstantQuantity () const;
const ShaderConstantPtr GetConstant (int i) const;
void AddConstant (ShaderConstant* pkConstant);

protected:
Shader ();

const char* m_acProgram;
TArray<ShaderConstantPtr> m_kConstant;

};

The class is abstract since the only constructor is protected and the function
GetShaderType is pure virtual. The only two derived classes will be VertexShader and
PixelShader, each implementing GetShaderType in the obvious way. Their interfaces
are solely designed to implement GetShaderType and provide no other functionality:

class VertexShader : public Shader
{
public:

VertexShader () {}
virtual ~VertexShader () {}
virtual int GetShaderType () const { return ST_VERTEX_SHADER; }

};

class PixelShader : public Shader
{
public:

PixelShader () {}
virtual ~PixelShader () {}
virtual int GetShaderType () const { return ST_PIXEL_SHADER; }

};

The constructors are public, so you can instantiate objects from either class.
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The m_acProgram data member of Shader is a pointer to the actual text string
that represents the shader program. Shader sets this to NULL. Classes derived from
VertexShader and PixelShader must set this pointer to the appropriate string. As
mentioned earlier, the selection mechanism is automatic based on which renderer
library is linked into the application. The m_kConstant data member is an array that
stores the shader constants.

The Shader interface is designed to allow you to set the pointer to the program text
string and to set the shader constants. Even though VertexShader and PixelShader
are instantiatable, they do not set a program string or constants. You may construct
executable shader programs solely with VertexShader and PixelShader objects—you
do not have to derive classes—but it is your responsibility to handle the reading and
writing of shader constants. This requires knowledge of the ordering of the constants
in the m_kConstant array and how they relate to the shader program. Wild Magic
version 2 included string names for the constants, but the memory usage might be
an issue. More of an issue is that the constants were accessed by string name without
a hash table to support fast searches. I found this to be cumbersome and chose instead
to automatically generate source code with interfaces that access the constants by
meaningful names. Not wanting to force a user to have to generate a class per shader,
the VertexShader and PixelShader classes can be the only shader objects in an engine
or application.

Back to the example at hand, the charcoal rendering effect. The sample applica-
tion has a class, CharcoalVShader, that implements a vertex shader based on the vertex
shader program mentioned earlier in this section. Its interface is

class CharcoalVShader : public VertexShader
{
public:

CharcoalVShader ();
virtual ~CharcoalVShader ();

void SetAmbientIntensity (float fAmbientIntensity);
float GetAmbientIntensity () const;
void SetContrastExponent (float fContrastExponent);
float GetContrastExponent () const;

private:
static const char* ms_aacProgram[Renderer::RT_QUANTITY];

};

Recall that two user-defined constants appeared as inputs to the vertex shader
program. The shader program inputs were named AmbientIntensity and Contrast-
Exponent. The choice of member function names uses the shader program names. The
static array of strings is used to store the shader programs. The value of Renderer::RT_
QUANTITY is currently 2, indicating that a shader program exists for OpenGL (at in-
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dex 0, the value of Renderer::RT_OPENGL) and for Direct3D (at index 1, the value of
Renderer::RT_DIRECT3D).

The constructor for the class has an implementation that begins with

CharcoalVShader::CharcoalVShader ()
{

// shader program (load the type of the current renderer)
m_acProgram = ms_aacProgram[Renderer::GetType()];

// ... other code goes here ...
}

The OpenGL renderer and the Direct3D renderer both implement the function Ren-
derer::GetType, but only one renderer may be linked into the application. The correct
array index is returned by GetType based on which renderer is linked. The static array
occurs at the end of the file Wm3CharcoalVShader.cpp and stores directly in the file the
shader program strings shown earlier in this section.

The constructor has seven blocks that create the shader constants to go with the
shader program. A couple of those are

CharcoalVShader::CharcoalVShader ()
{

// ... other code goes here ...

// model-view projection matrix
iType = ShaderConstant::SC_TRANSFORM_MVP;
iOption = ShaderConstant::SCO_MATRIX;
iReg = 0;
iRegQuantity = 4;
pkConst = new ShaderConstant(iType,iOption,iReg,iRegQuantity);
m_kConstant.Append(pkConst);

// ... other code goes here ...

// ambient intensity
iType = ShaderConstant::SC_USER_DEFINED;
iOption = ShaderConstant::SCO_NONE;
iReg = 8;
iRegQuantity = 1;
pkConst = new ShaderConstant(iType,iOption,iReg,iRegQuantity);
pkConst->SetRegisterData(0,0.2f);
m_kConstant.Append(pkConst);

// ... other code goes here ...
}
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The inputs to the ShaderConstant constructor are exactly those listed in Table 5.1.
The set/get functions of the ambient intensity are implemented as

void CharcoalVShader::SetAmbientIntensity (float fAmbientIntensity)
{

m_kConstant[2]->Data()[0] = fAmbientIntensity;
}

float CharcoalVShader::GetAmbientIntensity () const
{

return m_kConstant[2]->Data()[0];
}

The set/get functions are convenient wrappers for an application to access the
shader constant data. If you had chosen to create a VertexShader object to rep-
resent the charcoal vertex shader, you would have to remember that component
0 of register constant 2 stores the ambient intensity. You would also have to use
Shader::SetProgram to set the pointer to the program text string and Shader::
AddConstant to add the seven constants to the array of constants since you do not
have access to the protected members of Shader or VertexShader.

The sample application also has a class CharcoalPShader that encapsulates the
charcoal pixel shader. Its interface is

class CharcoalPShader : public PixelShader
{
public:

CharcoalPShader ();
virtual ~CharcoalPShader ();

void SetSmudgeFactor (float fSmudgeFactor);
float GetSmudgeFactor () const;
void SetPaperFactor (float fPaperFactor);
float GetPaperFactor () const;

private:
static const char* ms_aacProgram[Renderer::RT_QUANTITY];

};

The static array stores the text strings that represent the pixel shader programs for
OpenGL and Direct3D. The constructor is similar to that of CharcoalVShader:

CharcoalPShader::CharcoalPShader ()
{

// shader program (load the type of the current renderer)
m_acProgram = ms_aacProgram[Renderer::GetType()];
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// (smudge,paper,-,-)
int iType = ShaderConstant::SC_USER_DEFINED;
int iOption = ShaderConstant::SCO_NONE;
int iReg = 0;
int iRegQuantity = 1;
ShaderConstant* pkConst = new ShaderConstant(iType,iOption,

iReg,iRegQuantity);
pkConst->SetRegisterData(0,0.0f,0.0f);
m_kConstant.Append(pkConst);

}

The single shader constant manages both user-defined values. They are stored in
the first two components of the register and are accessed by

void CharcoalPShader::SetSmudgeFactor (float fSmudgeFactor)
{

m_kConstant[0]->Data()[0] = fSmudgeFactor;
}

float CharcoalPShader::GetSmudgeFactor () const
{

return m_kConstant[0]->Data()[0];
}

void CharcoalPShader::SetPaperFactor (float fPaperFactor)
{

m_kConstant[0]->Data()[1] = fPaperFactor;
}

float CharcoalPShader::GetPaperFactor () const
{

return m_kConstant[0]->Data()[1];
}

Once again, the set/get member functions are convenient for accessing the constants
by name rather than having to remember which array slots they are assigned to.

The two shaders need to be passed to the renderer. But keep in mind that they
require other inputs such as vertex locations, textures, and texture coordinates. More-
over, the vertex shader needs two directional lights. Some more packaging of data is
called for. My choice was to use the Effect mechanism to do this. The engine has a
class ShaderEffect whose interface is

class ShaderEffect : public Effect
{
public:
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ShaderEffect ();
virtual ~ShaderEffect ();

virtual Effect* Clone ();

VertexShaderPtr VShader;
PixelShaderPtr PShader;

protected:
virtual void DoCloning (Effect* pkEffect);

};

The class just adds two data members on top of those of Effect (color arrays, textures,
and texture coordinates). The Clone function creates a new ShaderEffect that shares
the shader objects. A ShaderEffect object is attached to a Geometry object as a local
effect. The engine does not yet have support for global shader effects, but they are
possible and will be implemented at a later date.

Since shaders are handled outside the fixed-function pipeline, the Renderer::
DrawPrimitive function does not apply to them. The constructor is

ShaderEffect::ShaderEffect ()
{

Draw = &Renderer::DrawShader;
}

and chooses a drawing function that the renderer class has specifically for shaders.
The charcoal shader example has a derived class

class CharcoalEffect : public ShaderEffect
{
public:

CharcoalEffect (Image* pkPaperImage);
virtual ~CharcoalEffect ();

virtual Effect* Clone ();

void GenerateUVs (int iVQuantity);
void SetSmudgeFactor (float fSmudgeFactor);
void SetPaperFactor (float fPaperFactor);

protected:
CharcoalEffect ();
virtual void DoCloning (Effect* pkClone);
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Image* GetContrastImage (int iWidth, int iHeight,
float fNoiseDensity, float fContrastExponent);

Image* GetRandomImage (int iWidth, int iHeight);
};

The paper texture required by the shaders is passed to the constructor. The
smudge and paper factors that are part of the pixel shader are exposed by Charcoal-
Effect and passed along to the CharcoalPShader object. The shader constants for the
CharcoalVShader object are chosen to be fixed numbers for the sample application,
so they are not exposed through the CharcoalEffect interface. The protected mem-
ber functions GetContrastImage and GetRandomImage generate the other two textures
required by the pixel shader.

In the application, the skinned biped is loaded. A single instance of CharcoalEf-
fect is stored in the application. The biped model is traversed, and each time a Ge-
ometry object is found, the CharcoalEffect object is cloned and is attached. Since the
effect needs one set of texture coordinates (the others are generated by the shaders),
the GenerateUVs call is made with an input equal to the number of vertices of the Ge-
ometry object. The texture coordinates are generated and stored in the cloned effect.
Figure 5.9 shows four screen shots from the application.

5.2.2 Renderer Support

Just as textures (and their images) and arrays can be bound to the renderer so that the
data is cached in VRAM on the graphics card, so can shader programs. The binding
mechanism used in Shader is the same one used in Texture and TCachedArray:

class Shader : public Object
{
// internal use
public:

// Store renderer-specific information for binding and
// unbinding shader programs.
BindInfoArray BIArray;

};

Since the binding mechanism is used so often, I encapsulated the entire system
in two classes, BindInfo and BindInfoArray. The first time a renderer sees a Shader
object, it is bound to the renderer and a unique identifier is stored in the BIArray data
member, together with a pointer to the renderer so that the shader resources can be
freed up when a shader is destroyed. The destructor is



Figure 5.9 Four screen shots from the TestCharcoalEffect sample application. Top left: No
smudge, display paper. Top right: No smudge, no display paper. Bottom left: Smudge,
display paper. Bottom right: Smudge, no display paper. (See also Color Plate 5.9.)
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Shader::~Shader ()
{

// Inform all renderers using this shader that it is being
// destroyed. This allows the renderer to free up any
// associated resources.
const TArray<BindInfo>& rkArray = BIArray.GetArray();
for (int i = 0; i < rkArray.GetQuantity(); i++)

rkArray[i].User->ReleaseShader(this);
}

and is structured just like the destructors for Texture and TCachedArray.
The Renderer class itself provides interface calls to release the resources:

class Renderer
{
public:

virtual void ReleaseShader (Shader* pkShader) = 0;
void ReleaseShaders (Spatial* pkScene);

};

The derived classes must implement ReleaseShader since they must use specific
knowledge of the graphics API to release the resources. The ReleaseShaders func-
tion implements a traversal of the input scene that calls ReleaseShader for the vertex
and pixel shaders of any ShaderEffect object it finds.

The Renderer interface also provides enable and disable functions that are used by
the drawing routines. These are similar to the enable and disable functions used for
textures and cached arrays:

class Renderer
{
protected:

virtual void EnableShader (VertexShader* pkVShader) = 0;
virtual void EnableShader (PixelShader* pkPShader) = 0;
virtual void DisableShader (VertexShader* pkVShader) = 0;
virtual void DisableShader (PixelShader* pkPShader) = 0;

};

These are pure virtual functions that the derived classes must implement, once again
because the details are specific to a graphics API.

The only drawing function currently that supports shaders is
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class Renderer
{
public:

void DrawShader ();
};

The implementation is similar to DrawPrimitive, except that fog, material, and light
state handling by the fixed-function pipeline is bypassed, and the shaders provide
these to the graphics API themselves. The DrawPrimitive function has the block

set world transformations;
draw the geometric object;
restore world transformations;

The DrawShader function inserts code for processing the shaders:

set world transformations;
enable vertex shader;
enable pixel shader;
draw the geometric object;
disable pixel shader;
disable vertex shader;
restore world transformations;

The enabling occurs after the setting of world transformations because the shaders
might need to access the current matrices (model-to-world, model-view, or pro-
jection).

The enabling in OpenGL for a vertex shader is listed next. The pixel shader has
nearly identical code.

void OpenGLRenderer::EnableShader (VertexShader* pkVShader)
{

glEnable(GL_VERTEX_PROGRAM_ARB);

GLuint uiID;
pkVShader->BIArray.GetID(this,sizeof(GLuint),&uiID);
if ( uiID != 0 )
{

// shader already exists in OpenGL, just bind it
glBindProgramARB(GL_VERTEX_PROGRAM_ARB,uiID);

}
else
{

// shader seen first time, compile it
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glGenProgramsARB((GLsizei)1,&uiID);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB,uiID);

const char* acProgram = pkVShader->GetProgram();
glProgramStringARB(GL_VERTEX_PROGRAM_ARB,

GL_PROGRAM_FORMAT_ASCII_ARB,(GLsizei)strlen(acProgram),
acProgram);

pkVShader->BIArray.Bind(this,sizeof(GLuint),&uiID);
}

int iCQuantity = pkVShader->GetConstantQuantity();
for (int i = 0; i < iCQuantity; i++)
{

// get a constant
ShaderConstantPtr spkConstant = pkVShader->GetConstant(i);
int iSCType = spkConstant->GetSCType();

// numerical constants are handled automatically by openGL
if ( iSCType == ShaderConstant::SC_NUMERICAL_CONSTANT )

continue;

// constant is based on render state
int iOption = spkConstant->GetSCOption();
float* afData = spkConstant->Data();
if ( iSCType != ShaderConstant::SC_USER_DEFINED )

(this->*ms_aoSCFunction[iSCType])(iOption,afData);

// constant is user defined
int iRQuantity = spkConstant->GetRegisterQuantity();
int iRegister = spkConstant->GetRegister();
for (int j = 0; j < iRQuantity; j++)
{

glProgramLocalParameter4fvARB(GL_VERTEX_PROGRAM_ARB,
iRegister+j,&afData[4*j]);

}
}

}

The first large block of code checks if the shader has been encountered for the first
time. If so, the graphics API is given it to compile, and you get a unique identifier to
be stored in the VertexShader object. If the shader is encountered again, the unique
identifier tells OpenGL that the shader is already compiled and in VRAM, so there
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is nothing to do except bind it. This is the same mechanism used for textures and
cached arrays.

The second large block of code is the processing of shader constants. Numerical
constants in the shader program are handled automatically by OpenGL, so nothing
needs to be done with them. On the other hand, the Direct3D renderer must be told
about the numerical constants, even though they are stored in the program itself. If
the constant is user defined, the data array of the constant is passed to OpenGL via
the function glProgramLocalParameter4fvARB.

If the constant is a state constant, the data array needs to be filled in with the
current state information before it is passed to glProgramLocalParameter4fvARB. How
the array gets filled depends on the type of the constant and the option (if any) as
specified by the m_iSCType and m_iSCOption variables in ShaderConstant. There are a
lot of types and options. Rather than have a large switch statement in the code, I chose
to implement a set of functions, each one handling a type. The functions are stored
in a static array of function pointers, ms_aoSCFunction, so that the function lookup is
O(1) time.2 The interface for this mechanism is

class Renderer
{
protected:

virtual void SetConstantTransformM (int, float*) = 0;
virtual void SetConstantTransformP (int, float*) = 0;
virtual void SetConstantTransformMV (int, float*) = 0;
virtual void SetConstantTransformMVP (int, float*) = 0;
void SetConstantCameraPosition (int, float*);
void SetConstantCameraDirection (int, float*);
void SetConstantCameraUp (int, float*);
void SetConstantCameraRight (int, float*);
void SetConstantFogColor (int, float*);
void SetConstantFogParams (int, float*);
void SetConstantMaterialEmissive (int, float*);
void SetConstantMaterialAmbient (int, float*);
void SetConstantMaterialDiffuse (int, float*);
void SetConstantMaterialSpecular (int, float*);
void SetConstantMaterialShininess (int, float*);
void SetConstantLightPosition (int, float*);
void SetConstantLightDirection (int, float*);
void SetConstantLightAmbient (int, float*);
void SetConstantLightDiffuse (int, float*);
void SetConstantLightSpecular (int, float*);

2. If you had a switch statement with n cases, and each case is equally likely to occur, the time of locating
the correct case is O(n). You expect that, on average, you will use n/2 units of time searching through the
cases.
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void SetConstantLightSpotCutoff (int, float*);
void SetConstantLightAttenParams (int, float*);

typedef void (Renderer::*SetConstantFunction)(int,float*);
static SetConstantFunction

ms_aoSCFunction[ShaderConstant::SC_QUANTITY];
};

The number of functions is exactly SC_QUANTITY, and the static array is assigned
the function pointers in Wm3Renderer.cpp. The first input to the function is the option
value. The second input is a pointer to the data array of the shader constant. The first
four functions are pure virtual because access to the matrices of the graphics system is
specific to the graphics API. The remaining functions have access to the appropriate
state from Renderer (the camera member) and Geometry (global state and lights). A
couple of typical functions are

void Renderer::SetConstantCameraPosition (int, float* afData)
{

Vector3f kWLocation = m_pkCamera->GetWorldLocation();
afData[0] = kWLocation.X();
afData[1] = kWLocation.Y();
afData[2] = kWLocation.Z();
afData[3] = 1.0f;

}

void Renderer::SetConstantFogParams (int, float* afData)
{

FogState* pkFog = StaticCast<FogState>(
m_pkGeometry->States[GlobalState::FOG]);

afData[0] = pkFog->Start;
afData[1] = pkFog->End;
afData[2] = pkFog->Density;
afData[3] = ( pkFog->Enabled ? 1.0f : 0.0f );

}

void Renderer::SetConstantLightDiffuse (int iOption, float* afData)
{

Light* pkLight = m_pkGeometry->Lights[iOption];
assert( pkLight );

if ( pkLight && pkLight->On )
{

afData[0] = pkLight->Diffuse.R();
afData[1] = pkLight->Diffuse.G();
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afData[2] = pkLight->Diffuse.B();
afData[3] = pkLight->Diffuse.A();

}
else
{

afData[0] = 0.0f;
afData[1] = 0.0f;
afData[2] = 0.0f;
afData[3] = 1.0f;

}
}

The SetConstantTransform* functions in the OpenGL renderer access the model-
to-world matrix directly from m_afWorldMatrix. This matrix is current because the
EnableShader calls occur after the SetWorldTransformation call in DrawShader. The
model-view and projection matrices are read from the OpenGL API via calls to glGet-
Floatv using the appropriate input flags. It is important to remember that OpenGL
represents matrices differently than Wild Magic. The SetConstantTransform* calls do
the right thing in making sure the final matrices are in the format OpenGL expects.

5.2.3 Automatic Source Code Generation

Wild Magic version 2 used nVidia’s Cg Toolkit to generate the low-level shader pro-
grams from those written in the Cg language. The toolkit produces output for both
Direct3D and OpenGL. The engine came with a program called CgConverter that
used the Cg Toolkit to process shader programs and write both renderers’ outputs
to a single file. The vertex shaders were written to files with extension wvs, and the
pixel shaders were written to files with extension wps. The engine had code to load
these files and allow you to access shader constants by string names.

I chose an alternate approach for Wild Magic version 3. A tool has been added,
called CgToWm3, that automatically generates Wild Magic source code. The input is a
vertex or pixel shader (or both) written in the Cg language. The output consists of
classes for the shaders and a corresponding shader effect. For example, the TestChar-
coalEffect sample application was automatically generated (except for the applica-
tion files). The Cg file is charcoal.cg and contains both a vertex shader and a pixel
shader; the code generation produces classes CharcoalVShader (derived from Ver-
texShader), CharcoalPShader (derived from PixelShader), and CharcoalEffect (de-
rived from ShaderEffect). As long as the shader constant naming conventions are
adhered to, you will see class member data and functions named in the style that the
rest of the engine uses.

Of course, you are not obligated to use Cg or generate source code automatically.
The descriptions in previous sections are enough to show you how to write your own
source from the assembly-like shader programs.



C h a p t e r 6
Collision Detection

The topic of collision detection is quite popular these days, especially regarding
physics engines that attempt to simulate physically correct behavior of two

colliding objects. The physics engine uses a collision detection system to determine the
physical constraints and then uses a collision response system to change the motion
of the colliding objects. The book [Ebe00] discusses only collision detection. In this
chapter, I will talk about collision detection algorithms that are implemented in Wild
Magic.

The black-box physics system that relies solely on the collision detection system
to detect the constraints for solving the Newtonian equations of motion is what many
practitioners think of as a physics engine. In fact, an engine can be based on a much
broader foundation, including using known constraints to determine the Lagrangian
equations of motion. Usually the reduction of dimensionality via known constraints
leads to equations of motion that have better stability when solving numerically, es-
pecially in physical systems that model frictional forces. The book [Ebe03a] discusses
the concepts you will find in any physical simulation. Chapter 7 discusses the support
in Wild Magic for a small number of these ideas.

The nature of collision detection algorithms depends on the types of objects
involved and what information is needed by the caller of a collision detection query. I
choose to categorize collision detection algorithms according to the following broad
categories:

1. Stationary objects. Both objects are not moving.

(a) Test-intersection queries. Determine if the two objects are intersecting. The
algorithms need only determine if the objects are intersecting, not what the
set of intersection is.

487
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(i) Use an intersection-based method?
(ii) Use a distance-based method?

(b) Find-intersection queries. Determine the intersection set of the objects. This
set is the empty set when the objects are not intersecting.

(i) Use an intersection-based method?
(ii) Use a distance-based method?

2. Moving objects. One or both objects are moving. If both are moving, you may
subtract the velocity of the first from the velocity of the second and handle the
problem as if one object is stationary and the other is moving. Invariably, the
application will limit the time interval over which the intersection query applies,
say, [0, tmax] for some user-specified tmax > 0. If the objects intersect during that
time interval, they will intersect at a first time tfirst ∈ [0, tmax], called the contact
time. The set of intersection at the first time is called the contact set .

(a) Test-intersection queries. Determine if the two objects will intersect during the
time interval. The algorithms need only determine if the objects will intersect.
The contact time might not be needed by the application. Since it is a natural
consequence of the intersection algorithm, it is usually returned to the caller
anyway. The query does not involve computing the contact set.

(i) Use an intersection-based method?
(ii) Use a distance-based method?

(b) Find-intersection queries. Determine the contact time and contact set of the
objects. This set is the empty set when the objects do not intersect during the
time interval.

(i) Use an intersection-based method?
(ii) Use a distance-based method?

As you can see, even a general categorization leads to a lot of possibilities that a
collision detection system must handle.

At the lowest level you must decide whether to use an intersection-based method
or a distance-based method. The intersection-based method amounts to choosing
representations for the two objects, equating them, and then solving for various
parameters. For example, consider finding the intersection between a line and a
plane. The line is represented parameterically as X = P + tD, where P is a point
on the line, D is a unit-length direction, and t is any real number. The plane is
represented algebraically as N · (X − Q) = 0, where N is a unit-length normal vector
and Q is some point on the plane. For X to be on both the line and the plane, we need

N · (P + tD − Q) = 0.

Define � = Q − P. As long as N · D �= 0, we may solve for

t̄ = N · �

N · D
. (6.1)
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The point of intersection is computed by substituting t̄ into the t-value of the line
equation. If N · D = 0, the line is either fully on the plane when N · � = 0 or disjoint
from the plane otherwise.

A distance-based method uses a parametric representation of the plane as well as
one for a line. Let X(t) = P + tD be the parameterized point on the line. If Q is a
point on the plane and U and V are unit-length and orthogonal vectors in the plane,
then a point on the plane is Y(r , s) = Q + rU + sV for real numbers r and s. The
squared distance between a point on the plane and a point on the line is

F(r , s , t) = |Y(r , s) − X(t)|2

= |Q + rU + sV − P − tD|2

= r2 + s2 + t2 − 2rtU · D − 2stV · D + 2rU · �+
2sV · � − 2tD · � + |�|2 ,

where � = Q − P. The distance between the plane and the line is attained by a triple
(r , s , t) that minimizes F(r , s , t). From calculus, F is a quadratic function whose
minimum occurs when the gradient ∇∇∇F = (0, 0, 0). That is,

(0, 0, 0) = ∇∇∇F

=
(

∂F

∂r
,
∂F

∂s
,
∂F

∂t

)

= 2(r − tU · D + U · �, s − tV · D + V · �,

t − rU · D − sV · D − D · �).

(6.2)

This is a linear system of equations in three unknowns. We may solve for the t

value by substituting the first two equations into the third:

0 = t − rU · D − sV · D − D · �

= t − (tU · D − U · �)U · D − (tV · D + V · �)V · D − D · �

= t (1 − (U · D)2 − (V · D)2) + (U · �)(U · D) + (V · �)(V · D) − D · �.

(6.3)

The vectors U, V, and N form an orthonormal set. They may be used as a coor-
dinate system to represent the line direction,

D = (D · U)U + (D · V)V + (D · N)N.

It is easily shown that

1 = |D|2 = (D · U)2 + (D · V)2 + (D · N)2,

in which case

1 − (U · D)2 − (V · D)2 = (D · N)2. (6.4)
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Also,

D · � = (D · U)(U · �) + (D · V)(V · �) + (D · N)(N · �),

in which case

(U · �)(U · D) + (V · �)(V · D) = D · � − (D · N)(N · �). (6.5)

Substituting Equations (6.4) and (6.5) into Equation (6.3) leads to

0 = (N · D)[tN · D − N · �].

As long as N · D �= 0, the solution to the equation is t̄ , the same solution as in
Equation (6.1). Of course, this is to be expected! To solve for r and s, you can
substitute t̄ into the t-values of the first two equations of (6.2), with the results
denoted r̄ and s̄. In the event the line and the plane intersect, you may verify that
F(r̄ , s̄ , t̄ ) = 0. If the line and the plane do not intersect, F(r̄ , s̄ , t̄ ) > 0, which is the
squared distance between the line and the plane.

Clearly the intersection-based approach is simple to design and implement be-
cause it uses only basic algebra. The distance-based approach is quite a bit more com-
plicated and uses calculus. Why would you ever consider using the distance-based
approach? For a line and a plane—never. However, consider the added complexity
of computing an intersection between a line segment and a planar rectangle in three
dimensions. The intersection of the line containing the line segment and the plane
containing the rectangle does not help you decide immediately if the segment and
the rectangle intersect. More work must be done. In particular, the line-plane inter-
section point must be tested for containment in the rectangle.

The distance-based approach is nearly identical to what was shown earlier. Sup-
pose the line segment is parameterized by P + tD for |t | ≤ t0 for some t0 > 0. The
point P is the center of the segment in this representation. Assuming the rectan-
gle has center Q and axis directions U and V, the parameterization is Q + rU + sV
for |r| ≤ r0 and |s| ≤ s0 for some r0 > 0 and s0 > 0. The minimization of F(r , s , t)

now occurs on the domain (r , s , t) ∈ [−r0, r0]× [−s0, s0]× [−t0, t0]. This might still
appear to be heavy-handed compared to the intersection-based approach, but the
mathematics of computing the minimization leads to an efficient implementation.
Moreover, the idea extends to many types of object-object intersection queries.

Do I still hear some skepticism about ever using a distance-based approach? Con-
sider the case of moving objects for which you want to know the first time of contact.
The design and implementation of intersection-based algorithms can be difficult, de-
pending on the type of objects. Moreover, you might try a bisection algorithm on the
time interval of interest, [0, tmax]. If the objects are not intersecting at time 0, but they
are intersecting at time tmax, you may test for an intersection at time tmax/2. If the
objects are intersecting at this time, you repeat the test at time tmax/4. If the objects
are not intersecting at this time, you repeat the test at time 3tmax/4. The subdivision
of the time interval is repeated until you reach a maximum number of subdivisions
(provided by the application) or until the width of the current time subinterval is
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(a) (b)

Figure 6.1 (a) A convex object. No matter which two points you choose in the set, the line
segment connecting them is in the set. (b) A nonconvex object. A pair of points in
the set is shown for which the line segment connecting the points is not fully in the
set.

small enough (threshold provided by the application). The fact that the subdivision
is guided solely by the Boolean results at the time interval end points (intersecting
or not intersecting) does not help you formulate a smarter search for the first con-
tact time. A distance-based algorithm, on the other hand, gives you an idea of how
close you are at any specified time, and this information supports a smarter search.
This is the topic of Section 6.1. The general algorithm assumes only the existence of
a distance calculator for each of the objects in the query, independent of the object
type.

Intersection and distance algorithms for general objects can be extremely compli-
cated. For that reason, practitioners restrict their attention to what are called convex
objects. If S is a set of points representing the object, the set is said to be convex when-
ever the line segment connecting two points X and Y is contained in the set no matter
which two points you choose. That is, if X ∈ S and Y ∈ S, then (1 − t)X + tY ∈ S for
all t ∈ [0, 1]. Figure 6.1 shows two planar objects, one convex and one not convex.

For objects that are not convex, a typical approach to computing intersection or
distance is to decompose the object into a union of convex subobjects (not necessarily
disjoint) and apply the intersection-based and/or distance-based queries to pairs of
convex subobjects, with one subobject from each object in the intersection query.

Even with the restriction to convex objects, some object types are difficult to
analyze in an intersection query. The algorithms tend to be easier to design and
implement when one of the objects is a linear component—a line, a ray, or a line
segment. Section 6.3 discusses line-object intersections. If both objects are not linear
components, the algorithms can be much more complicated, both in design and in
implementation. For example, computing the distance between two convex polyhe-
dra is generally viewed as a difficult problem. The GJK algorithm is considered one
of the best methods for solving this, but it is quite challenging to make it robust with
floating-point arithmetic. A good book devoted to this topic is [vdB03]. Section 6.4
discusses object-object intersections, but the algorithms are limited to a small num-
ber of simple cases.
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6.1 Distance-Based Methods

The topic of this section is the computation of the contact time between two moving
convex objects. The assumption is that you have a distance calculator for the pair
of stationary objects, call it d(A0, A1), where A0 and A1 are the objects and d is a
function that computes some measure of distance. The natural measure is the true
distance, but squared distance is acceptable as we will see. A signed distance is also
allowed and provides strong information about the contact time. Whether or not you
can obtain an accurate contact set, in addition to the contact time, depends on the
object types. You might want only a subset of the contact set because the full set takes
too many computational cycles to construct for a real-time application.

The motion itself can be complicated, making the analysis of d(A0, A1) over time
difficult. To simplify matters, I will assume that both A0 and A1 are rigid bodies
moving with constant linear velocities V0 and V1, respectively. The notation Ai(t) =
Ai + tVi refers to the set of points that is initially the set Ai, but varies over time
because of the velocity. For example, if Ai is the set of points for a line segment with
center Ci, unit-length direction Ui, and extent ei > 0, then

Ai = {Ci + sUi : |s| ≤ ei}.

The moving set is

Ai(t) = {(Ci + tVi) + sUi : |s| ≤ ei}.

The segment moves with constant linear velocity, but no angular velocity about
its center. Generally, the time-varying distance function is

f (t) = d(A0(t), A1(t)) = d(A0 + tV0, A1 + tV1), t ∈ [0, tmax]. (6.6)

The contact time is the value tfirst ∈ [0, tmax] for which f (tfirst) = 0, but f (t) > 0 for
t ∈ [0, tfirst). It is possible that tfirst = 0, in which case the objects are initially inter-
secting and the distance is zero. It is also possible that f (t) > 0 for all t ∈ [0, tmax],
in which case the distance is always nonzero on the interval. The contact set C is the
intersection of the two initial sets moved by their respective velocities to contact time:

C = (A0 + tfirstV0) ∩ (A1 + tfirstV1). (6.7)

Observe that we may reduce the problem to one stationary and one moving object
by subtracting the velocity of the first object from the second. That is, let A0 be
stationary and use the velocity V1 − V0 for A1. The distance function is

f (t) = d(A0, A1(t)) = d(A0, A1 + t (V1 − V0)). (6.8)

The contact time in this situation will be the same as when both objects are moving,
namely, tfirst. However, if you compute the contact set, you must move the two initial
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Figure 6.2 The graphs of f (t) for three different point velocities. (a) The velocity is not parallel
to any box axis, and the moving point does not intersect the box. (b) The velocity
is not parallel to any box axis, and the moving point does intersect the box. (c) The
velocity is parallel to a box axis, and the moving point does not intersect the box.

sets by their respective velocities, as mentioned previously. It is not the case that
C = A0 ∩ (A1 + tfirst(V1 − V0)).

To illustrate the basic concepts, consider an example of a single point A0 =
{(x0, y0, z0)} with constant linear velocity V = (vx , vy , vz) and a stationary axis-
aligned box A1 = {(x , y , z) : |x| ≤ ex , |y| ≤ ey , |z| ≤ ez}. First, consider the
squared-distance function for the point-box pair:

d2(A0, A1) = d2
x
(A0, A1) + d2

y
(A0, A1) + d2

z
(A0, A1),

where

d2
x

=
⎧⎨
⎩

|x0 − ex|2, x0 > ex

0, |x0| ≤ ex

|x0 + ex|2, x0 < −ex

d2
y

=
⎧⎨
⎩

|y0 − ey|2, y0 > ey

0, |y0| ≤ ey

|y0 + ey|2, y0 < −ey

d2
z

=
⎧⎨
⎩

|z0 − ez|2, z0 > ez

0, |z0| ≤ ez

|z0 + ez|2, z0 < −ez

The moving point has coordinates P + tV = (x0 + tvx , y0 + tvy , z0 + tvz). These
components replace those in the squared-distance equation to obtain a time-varying
function f (t). Figure 6.2 shows the graph of f (t) for three different velocities of the
point.

Figure 6.2(a) indicates that the minimum of f (t) occurs at a single value of t .
The path of the point is a straight line whose direction is not parallel to a box axis,
so your imagination should make it clear why there is a single closest point on the
line to the box. Figure 6.2(b) corresponds to the linear path passing directly through
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the box. The squared-distance function d2(A0, A1) will report a distance of zero for
any point on the segment of intersection between the linear path and the box. The
horizontal section of the graph of f (t) corresponds to the segment of intersection.
Figure 6.2(c) corresponds to a linear path whose direction is parallel to a box axis,
but the path does not intersect the box. Your imagination should convince you that
the segment of intersection of the linear path and the box faces perpendicular to the
path direction is a set of points all equally close to the box. The graph of f (t) in Figure
6.2(c) has a horizontal section that corresponds to the segment of intersection.

A generic, numerical method that searches for the minimum of a function will be
quite content with the graph in Figure 6.2(a). The same numerical method might be
confused by the flatness of the other two graphs. In particular, if you are searching for
a minimum distance of zero, the minimizer might very well locate one of the t-values
that produces f (t) = 0, but that t-value is not tfirst. Some numerical root finders
will have similar problems with Figure 6.2(b). For example, a bisection routine could
also locate a t-value where f (t) = 0, but it will not be the first such t-value. On the
other hand, Newton’s method with an initial guess of t = 0 should have no problems
finding the first time of intersection because our restrictions that the objects be
convex and the velocities be constant and linear cause f (t) to be a convex function:

f ((1 − s)t1 + st2) ≤ (1 − s)f (t1) + sf (t2) (6.9)

for 0 ≤ s ≤ 1 and for any t1 and t2 in the domain of the function. Intuitively, the graph
of f on the interval [t1, t2]is always below the line segment connecting (t1, f (t1)) and
(t2, f (t2)). If Newton’s method is initiated at a value t0 < tfirst for a convex function,
the successive iterations ti for i ≥ 1 will also satisfy ti < tfirst. The flat spot to the right
of tfirst will not affect the iteration scheme.

Using the same example of a moving point and a box, suppose instead we have
a measure of signed distance, or even a pseudosigned distance. The idea is that when
the point is outside the box, the distance measurement is positive. When the point is
inside the box, the distance measurement is negative. That measurement can be the
negative of the distance from the point to a box face, or it can be a measurement that
varies approximately like the distance. All that matters for contact time is that we can
compute the time where distance is zero. The actual function value used for points
inside the box do not have to actually be distances or signed distances. The signed-
distance function is chosen to be the distance d(A0, A1) whenever P is outside or on
the box. If P is inside the box, the signed distance is

s(A0, A1) = − min{ex − x0, ex + x0, ey − y0, ey + y0, ez − z0, ez + z0}.

Naturally, you may choose to use the signed, squared distances for f (t). With
signed distance, the root finding using something like bisection will be better behaved
because the roots are isolated. However, the graph of f (t) might still have flat spots,
as illustrated in Figure 6.3. A flat spot can occur, for example, when the linear path of
the point is parallel to a box axis and just intersects the box slightly inside one of the
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t

f (t)

Figure 6.3 Using signed distance, the function f (t) has an isolated root at t = tfirst, but still
might have a flat spot.

nonperpendicular faces. The signed-distance function can still be zero on an entire
interval of t-values, but this now happens when the linear path is coplanar with a
box face. In situations like these, you should consider structuring your application to
decide that the path does not intersect the box.1

6.1.1 A Plan of Attack

The issues discussed so far allow us to build a plan of attack for computing the
distance between moving objects and for computing the contact time, if any. The
three types of distancelike measurements we can use are distance, squared distance, or
signed distance (or pseudosigned distance). I make use of the following information
about our convex functions: They are piecewise differentiable, so the functions are
not differentiable at only a few points. The minimum of such a function occurs
either where its derivative is zero or where its derivative does not exist. In fact, there
can be only one such point where either happens; call it tc. For points t < tc, either
the derivative exists and is negative, f ′(tc) < 0, or the derivative does not exist. In
the latter case, the one-sided derivatives are negative. Similarly, for t > tc, either the
derivative exists and is positive, f ′(tc) > 0, or the derivative does not exist. In the
latter case, the one-sided derivatives are positive.

To compute the distance between moving objects, a numerical minimizer should
be used. It does not matter which distancelike measurement you use. To compute
the contact time, Newton’s method is appropriate for any of the distancelike mea-
surements as long as the initial guess is t0 = 0. Because f (t) is a convex function,
the convergence is a sure thing. However, you need to have an implementation of
the derivative function f ′(t), even if it is only defined piecewise. If you prefer to use

1. The distinction is between a transverse intersection, where the path direction takes the point strictly inside
the box, and a tangential or grazing intersection, where the point never enters the interior of the box.
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bisection for a guaranteed bounded number of iterations, you should use a signed-
distance function. Bisection does not require derivative evaluations.

6.1.2 Root Finding Using Newton’s Method

We are interested in computing the first time tfirst for which f (tfirst) = 0, but f (t) > 0
for t ∈ [0, tfirst). Given an initial guess t0 = 0, the iterates are

ti+1 = ti − f (ti)

f ′(ti)
, i ≥ 0,

where f ′(t) is the derivative of f (t). I suggest iterating until one or more stopping
conditions are met:

The function value f (ti) is sufficiently close to zero. The threshold on zero is user
defined.

The domain value ti has not changed much from ti−1; that is, |ti − ti−1| is suffi-
ciently close to zero. The threshold on zero is user defined.

A maximum number of iterations has been calculated. The maximum number is
user defined.

Of course, if f (t0) is zero (within the threshold value), then the two objects are
assumed to be initially intersecting. In this case, no iterates need to be generated and
tfirst = 0. If the process terminates because you have exceeded the maximum number
of iterations, you should test the value of f at the last iterate to see how close it is
to zero. If sufficiently larger than zero, the likelihood is that f does not have a zero
on the original time interval, in which case the objects do not intersect during that
interval.

6.1.3 Root Finding Using Bisection

A signed (or pseudosigned) distance function is assumed. Initially, set t0 = 0 and
t1 = tmax. If f (t0) ≤ 0 within the zero threshold value, then the objects are initially
intersecting and tfirst = 0. Otherwise, f (t0) > 0 and the objects are not initially in-
tersecting. If f (t1) < 0, then there must be a contact time somewhere on the interval
[t0, t1]. Compute tm = (t0 + t1)/2 and evaluate f (tm). If f (tm) < 0, the search con-
tinues by repeating the process on the subinterval [t0, tm]. If f (tm) > 0, the search
continues on the subinterval [tm, t1]. If f (tm) ≤ 0 within the zero threshold, then tm
is labeled as the contact time. The number of subdivisions is user defined.

If f (t0) > 0 and f (t1) > 0, there is no guarantee that f (t) = 0 for some t ∈ [t0, t1].
Without any derivative information, I suggest that you repeat the bisection search
on both subintervals [t0, tm] and [tm, t1]. On any subintervals for which the function
values at the end points multiply to a positive number, repeat the search on both
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subintervals. If you ever find a subinterval [t0, t1] where f (t0) > 0 and f (t1) < 0,
only this subinterval should be searched further. If instead you find a subinterval
where f (t0) < 0 and f (t1) > 0, then you should restrict your search for the contact
time to subintervals with maximum value smaller than t0—the current interval gives
you a “last time of contact,” when one object finally finishes passing through the
other.

Your numerical method gets a big boost if you have derivative information. If
you compute f (t0) > 0 and f (t1) > 0 and the one-sided derivatives at t0 and t1 are all
positive, then it is not possible for the function to have a zero on [t0, t1], so there is no
reason to apply bisection and subdivide.

6.1.4 Hybrid Root Finding

In order to obtain a robust algorithm for root finding, a blending of Newton’s method
and bisection is useful. The idea is simple. Starting on an interval [tmin, tmax], let
the initial value for Newton’s method be t0 = tmin. Compute the next iterate, t1 =
t0 − f (t0)/f

′(t0). If t1 ∈ [tmin, tmax], then accept the iterate and repeat the process.
However, if t1 �∈ [tmin, tmax], reject the iterate and apply a bisection step t1 = (tmin +
tmax)/2. Determine which of the subintervals [tmin, t1] or [t1, tmax] bounds the root,
and then repeat the process on that subinterval.

6.1.5 An Abstract Interface for Distance Calculations

Okay, I threatened not to include much mathematics in this book. The previous dis-
cussion is a motivation about the support I have added to Wild Magic for computing
distance between moving objects and determining the contact time. The base class is
an abstract interface for computing distance:

template <class Real>
class Distance
{
public:

// abstract base class
virtual ~Distance ();

// Static distance queries. The defaults return MAX_REAL.
virtual Real Get (); // distance
virtual Real GetSquared (); // squared distance
virtual Real GetSigned (); // signed distance

// Dynamic distance queries. The function computes the
// smallest distance between the two objects over the time
// interval [0,tmax]. If the Boolean input is ‘true’, the
// contact time is computed when the distance
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// d <= ZeroThreshold, and is available via GetContactTime().
// The defaults return MAX_REAL.

virtual Real Get (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1,
bool bComputeContactTime);

virtual Real GetSquared (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1,
bool bComputeContactTime);

virtual Real GetSigned (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1,
bool bComputeContactTime);

// Derivative calculations for dynamic distance queries. The
// defaults use finite difference estimates
// f’(t) = (f(t+h)-f(t-h))/(2*h)
// where h = DifferenceStep. A derived class may override
// these and provide implementations of exact formulas that
// do not require h.

virtual Real GetDerivative (Real fT,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

virtual Real GetDerivativeSquared (Real fT,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

virtual Real GetDerivativeSigned (Real fT,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

// numerical method for root finding
enum
{

NM_NEWTONS, // root finding for f(t) or f’(t)
NM_BISECTION, // root finding for f(t) or f’(t)
NM_HYBRID, // mixture of Newton’s and bisection

};
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int RootFinder; // default = NM_NEWTONS
int MaximumIterations; // default = 8
Real ZeroThreshold; // default = Math<Real>::ZERO_TOLERANCE
Real DifferenceStep; // default = 1e-03

// The time at which minimum distance occurs for the dynamic
// queries.
Real GetContactTime () const;

// Closest points on the two objects. These are valid for
// static or dynamic queries. The set of closest points on a
// single object need not be a single point. In this case, the
// Boolean member functions return ‘true’. A derived class
// may support querying for the full contact set.
const Vector3<Real>& GetClosestPoint0 () const;
const Vector3<Real>& GetClosestPoint1 () const;
bool HasMultipleClosestPoints0 () const;
bool HasMultipleClosestPoints1 () const;

protected:
Distance ();

// root finders for f(t) = 0
Real ComputeFRootNewtons (Real fTMax,

const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

Real ComputeFRootBisection (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

Real ComputeFRootHybrid (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

// root finders for f’(t) = 0
Real ComputeDFRootNewtons (Real fTMax,

const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

Real ComputeDFRootBisection (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);
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Real ComputeDFRootHybrid (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

Real m_fContactTime;
Vector3<Real> m_kClosestPoint0;
Vector3<Real> m_kClosestPoint1;
bool m_bHasMultipleClosestPoints0;
bool m_bHasMultipleClosestPoints1;

};

The only constructor is protected, so the class is abstract. The function Get()
computes the true distance between the objects. The function GetSquared() computes
the squared distance between the objects. In most implementations, the squared
distance is computed first, and the true distance obtained by a square root operation.
The function GetSigned() computes the signed (or pseudosigned) distance between
the objects. If this quantity is not well defined, as is the case for the distance from a
point to a line, the true distance is returned.

The functions Get, GetSquared, and GetSigned that take the four inputs are used
for dynamic distance queries. The maximum time for the interval is the first input.
The velocities of the two objects are the second and third inputs. The minimum of
f (t) is computed by solving for tmin ∈ [0, tmax], the time at which the one-sided
derivatives of f ′ multiply to a nonpositive number. The root finder that you want
to use is selected via the data member RootFinder (Newton’s, bisection, or a hybrid).

The fourth input of these functions indicates whether or not you want the contact
time computed. If you set this to true and the computed distancelike function is zero
(within the zero threshold) or negative at some time tmin ∈ [0, tmax], then the root
finder of choice (Newton’s, bisection, or a hybrid) is used to locate the contact time
tfirst ∈ [0, tmin], the smallest root for f (t) = 0. The contact time is returned via the
member function GetContactTime. If the contact time does not exist on the specified
time interval, GetContactTime returns Math<Real>::MAX_REAL.

The protected functions Compute* are the actual numerical methods for comput-
ing the roots of f and f ′. The functions GetClosest* return a pair of closest points,
one on each of the objects. If an object has a set of closest points containing more than
one element, the Boolean function HasMultipleClosestPoints* returns true. The de-
rived class may or may not implement an interface that allows you to access the entire
contact set.

6.2 Intersection-Based Methods

As noted previously, the intersection-based methods generally involve setting up
some algebraic equations involving various parameters in the object representations
and then solving those equations in closed form. The example I used was quite
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simple, computing the intersection of a line and a plane. The line is parameterized
by X(t) = P + tD, and the plane is implicitly defined by N · (X − Q) = 0. Replacing
the line equation into the plane equation, you may solve symbolically for t = (N ·
�)/(N · D), where �= Q − P, with care taken when the denominator is zero or close
to zero.

A slightly more complicated example is to compute the intersection of a triangle
with vertices Pi, 0 ≤ i ≤ 2, and a plane N · (X − Q) = 0. The algorithm involves
determining where the vertices of the triangle are relative to the plane. If all three
vertices are strictly on one side of the plane, there is no intersection. If P0 and P1 are
on opposite sides of the plane, then the edge 〈P0, P1〉 intersects the plane at a point
I0. One of the other two triangle edges must also intersect the plane, say, at I1. The
line segment 〈I0, I1〉 is the set of intersection.

Yet more complicated is computing the intersection of two triangles. For the most
popular algorithm, see [Möl97]. In a nutshell, when the two triangles are not parallel
and not coplanar, the method computes the line segment of intersection of the first
triangle with the plane of the second triangle. The line segment is trimmed to the
subsegment that is contained in the second triangle.

The analysis is generally more complicated when the objects are moving. An
extreme case is when you have two moving objects that are convex polyhedra. A find-
intersection query must first determine the contact time. At that time the polyhedra
are just touching, but without interpenetration. If you are to move the objects by their
velocities using the contact time, you can construct the contact set. This set can be a
single point, a line segment, or a convex polygon. The latter case occurs when the two
polyhedra are in face-face contact. The two faces are convex and coplanar polygons.
Within the common plane you need to compute the intersection of two convex
polygons, an algorithm that is tractable but that takes some effort to implement in
an efficient manner.

If you leave the realm of convex polyhedra, all bets are off regarding simplicity (or
complexity), even if the objects are convex. For example, consider the difficulties of
computing the set of intersection of two bounded cylinders. Even a test-intersection
query is challenging. A discussion of this algorithm using the method of separating
axes is in [SE02]. The worst case for separation is that you have to compute the roots
of a fourth-degree polynomial. The test-intersection query for two ellipsoids requires
computing the roots of a sixth-degree polynomial.

A collision detection library with support for many object types and both test-
and find-intersection queries, whether the objects are stationary or moving, will be
one very large chunk of source code! Not much in common can be factored out of
the specific queries.

6.2.1 An Abstract Interface for Intersection Queries

The abstract interface that supports intersection queries is fairly small compared to
that for distance. The class is Intersector:
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template <class Real>
class Intersector
{
public:

// abstract base class
virtual ~Intersector ();

// Static intersection queries. The default implementations
// return ‘false’. The Find query produces a set of
// intersection. The derived class is responsible for
// providing access to that set, since the nature of the set
// is dependent on the object types.
virtual bool Test ();
virtual bool Find ();

// Dynamic intersection queries. The default implementations
// return ‘false’. The Find query produces a set of first
// contact. The derived class is responsible for providing
// access to that set, since the nature of the set is dependent
// on the object types. The first time of contact is managed
// by this class.

virtual bool Test (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

virtual bool Find (Real fTMax,
const Vector3<Real>& rkVelocity0,
const Vector3<Real>& rkVelocity1);

// The time at which two objects are in first contact for the
// dynamic intersection queries.
Real GetContactTime () const;

protected:
Intersector ();

Real m_fContactTime;
};

The interface supports the top-level queries. The method Test() supports the
test-intersection query for stationary objects, and the method Find() supports the
find-intersection query for stationary objects. The methods Test and Find whose in-
puts are the maximum time for the interval and the velocities of the objects support
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the test- and find-intersection queries for moving objects. Many of the derived classes
may very well implement the queries using distance-based methods. Unlike the inter-
face Distance, there are no natural base-class functions that apply to all intersection
cases. The majority of the work goes into the Intersector-derived classes.

6.3 Line-Object Intersection

When one of the objects in an intersection query is a linear component , that is, either
a line, a ray, or a line segment, the algorithm design tends to require a minimum of
algebra and the implementation tends to be straightforward.

We have already seen the simplicity in computing the intersection of a line and a
plane. If the line is X(t) = P + tD and the plane is N · (X − Q) = 0, and if the line is
not parallel to the plane, then t = (N · �)/(N · D), where � = Q − P. Suppose now
that all you had was a ray, where t ≥ 0 is a constraint. The intersection algorithm still
amounts to computing the t-value as shown, but you must test to see if t ≥ 0. If it is,
then the ray intersects the plane. If it is not, then no intersection occurs. Similarly, if
you have a segment, where t ∈ [t0, t1], then t is computed as shown, but you must test
if it is in the specified interval. If it is, the segment intersects the plane. If not, there is
no intersection.

A few objects of interest to intersect with a linear component are triangles,
spheres, and oriented bounding boxes. Triangles are of interest because they are the
basis for triangle meshes, of which most of the scene graph data is built from. Appli-
cations invariably have a need for computing the intersection of a linear component
with a triangle mesh. I describe three such examples in this section: picking, terrain
following, and collision avoidance.

If the triangle meshes are part of a scene hierarchy, it is possible to cull meshes
from consideration if their bounding volumes are not intersected by the linear com-
ponent. Hierarchical culling of this type can provide a significant increase in perfor-
mance. The system requires test-intersection queries between linear components and
bounding volumes and find-intersection queries between linear components and tri-
angles. Both queries are discussed in this section.

6.3.1 Intersections between Linear Components
and Triangles

Let the linear component be represented parametrically by X(t) = P + tD, where D
is a unit-length vector. There is no restriction for t if the component is a line, but
t ≥ 0 for a ray and t ∈ [t0, t1] for a segment. The triangle has vertices Vi for 0 ≤ i ≤ 2.
Points in the triangle are represented by barycentric coordinates,

b0V0 + b1V1 + b2V2 = V0 + b1E1 + b2E2,
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where b0 + b1 + b2 = 1; E1 = V1 − V0, E2 = V2 − V0; and 0 ≤ b1, 0 ≤ b2, and b1 +
b2 ≤ 1. Equating the two representations, and defining Q = P − V0, we have

Q + tD = b1E1 + b2E2. (6.10)

This is a system of three equations in the three unknowns t , b1, and b2. Although
we could set up the matrices for the system and solve it using a standard numerical
solver for linear systems, let us solve it instead using vector algebra. Define N =
E1 × E2. Apply the cross product of E2 to Equation (6.10) to obtain

Q × E2 + tD × E2 = b1E1 × E2 + b2E2 × E2.

This reduces to

Q × E2 + tD × E2 = b1N.

Dot this equation with D to obtain

D · Q × E2 + tD · D × E2 = b1D · N.

This reduces to

D · Q × E2 = b1D · N.

Assuming the triangle and line are not parallel, D · N �= 0 and

b1 = D · Q × E2

D · N
. (6.11)

Similarly, apply the cross product with E1 on the left of the terms in Equation (6.10),
and then dot the result with D to obtain

b2 = D · E1 × Q

D · N
. (6.12)

Finally, apply a dot product with N to Equation (6.10) and solve for

t = −Q · N

D · N
. (6.13)

Equations (6.11), (6.12), and (6.13) are the parameters for the point of intersec-
tion of a line with the triangle. If the linear component is a ray, then you must test if
t ≥ 0. If it is, then the ray intersects the triangle in the same point that the line does. If
it is not, there is no intersection. If the linear component is a segment, then you must
test if t ∈ [t0, t1]. If it is, then the segment intersects the triangle in the same point that
the line does. If it is not, there is no intersection.
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When the line and triangle are coplanar, I choose to label the configuration as no
intersection. The implementations are architected to minimize the operations that
are performed. In particular, if some of the partial results allow you to conclude that
the point of intersection is outside the triangle, there is no reason to complete the
computations. The intersection query can directly report that there is no intersection.
The test-intersection query avoids any divisions. The find-intersection query defers
the divisions by D · N until they are absolutely needed. The test-intersection query
for a line and a triangle is

template <class Real>
bool IntrLine3Triangle3<Real>::Test ()
{

// compute the offset origin, edges, and normal
Vector3<Real> kDiff = m_rkLine.Origin - m_rkTriangle.V0;
Vector3<Real> kEdge1 = m_rkTriangle.V1 - m_rkTriangle.V0;
Vector3<Real> kEdge2 = m_rkTriangle.V2 - m_rkTriangle.V0;
Vector3<Real> kNormal = kEdge1.Cross(kEdge2);

// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = line direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
Real fDdN = m_rkLine.Direction.Dot(kNormal);
Real fSign;
if ( fDdN > Math<Real>::ZERO_TOLERANCE )
{

fSign = (Real)1.0;
}
else if ( fDdN < -Math<Real>::ZERO_TOLERANCE )
{

fSign = (Real)-1.0;
fDdN = -fDdN;

}
else
{

// Line and triangle are parallel, call it a "no
// intersection" even if the line does intersect.
return false;

}

Real fDdQxE2 = fSign*m_rkLine.Direction.Dot(
kDiff.Cross(kEdge2));
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if ( fDdQxE2 >= (Real)0.0 )
{

Real fDdE1xQ = fSign*m_rkLine.Direction.Dot(
kEdge1.Cross(kDiff));

if ( fDdE1xQ >= (Real)0.0 )
{

if ( fDdQxE2 + fDdE1xQ <= fDdN )
{

// line intersects triangle
return true;

}
// else: b1+b2 > 1, no intersection

}
// else: b2 < 0, no intersection

}
// else: b1 < 0, no intersection

return false;
}

To avoid the divisions, observe that the tests b1 ≥ 0, b2 ≥ 0, and b1 + b2 ≤ 1 are
replaced by |D · N|b1 ≥ 0, |D · N|b2 ≥ 0, and |D · N|(b1 + b2) ≤ |D · N|. The find-
intersection query is similar in structure, but computes the point of intersection if
there is one.

template <class Real>
bool IntrLine3Triangle3<Real>::Find ()
{

Vector3<Real> kDiff = m_rkLine.Origin - m_rkTriangle.V0;
Vector3<Real> kEdge1 = m_rkTriangle.V1 - m_rkTriangle.V0;
Vector3<Real> kEdge2 = m_rkTriangle.V2 - m_rkTriangle.V0;
Vector3<Real> kNormal = kEdge1.Cross(kEdge2);

Real fDdN = m_rkLine.Direction.Dot(kNormal);
Real fSign;
if ( fDdN > Math<Real>::ZERO_TOLERANCE )
{

fSign = (Real)1.0;
}
else if ( fDdN < -Math<Real>::ZERO_TOLERANCE )
{

fSign = (Real)-1.0;
fDdN = -fDdN;

}
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else
{

return false;
}

Real fDdQxE2 = fSign*m_rkLine.Direction.Dot(
kDiff.Cross(kEdge2));

if ( fDdQxE2 >= (Real)0.0 )
{

Real fDdE1xQ = fSign*m_rkLine.Direction.Dot(
kEdge1.Cross(kDiff));

if ( fDdE1xQ >= (Real)0.0 )
{

if ( fDdQxE2 + fDdE1xQ <= fDdN )
{

// line intersects triangle
Real fQdN = -fSign*kDiff.Dot(kNormal);
Real fInv = ((Real)1.0)/fDdN;
m_fLineT = fQdN*fInv;
m_fTriB1 = fDdQxE2*fInv;
m_fTriB2 = fDdE1xQ*fInv;
m_fTriB0 = (Real)1.0 - m_fTriB1 - m_fTriB2;
return true;

}
// else: b1+b2 > 1, no intersection

}
// else: b2 < 0, no intersection

}
// else: b1 < 0, no intersection

return false;
}

The division by D · N is deferred until you know that the line does intersect
the triangle. The two functions are methods of a class IntrLine3Triangle3 that is
derived from the abstract interface Intersector. The derived class stores the line t-
value and the triangle (b0, b1, b2) values for access by the application. These may
be used to compute the point of intersection. The class for ray-triangle intersec-
tion is IntrRay3Triangle3, and the class for segment-triangle intersection is IntrSeg-
ment3Triangle3. Both classes have similar Test and Find member functions, but with
the extra tests on the computed t-value to see if it meets the constraints for a ray or
for a segment.
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6.3.2 Intersections between Linear Components and
Bounding Volumes

The two main bounding volumes used in the engine are spheres and oriented bound-
ing boxes. In this section I will discuss the test-intersection and find-intersection
queries for both types of bounding volumes.

Spheres

The usual parameterization is used for a linear component, X(t) = P + tD for a
unit-length vector D. The sphere has center C, radius r , and is defined implicitly by
|X − C| = r .

To compute the points of intersection, if any, between a line and a sphere, replace
the parametric line equation into the squared-sphere equation to obtain

0 = |X − C|2 − r2 = |tD + P − C|2 − r2 = |tD + �|2 − r2

= t2 + 2D · �t + |�|2 − r2. (6.14)

The formal solutions are

t = −D · � ±
√

(D · �)2 − (|�|2 − r2).

The discriminant of the equation is δ = (D · �)2 − (|�|2 − r2). If δ > 0, the
quadratic equation has two distinct, real-valued roots. The line intersects the sphere
in two points. If δ = 0, the quadratic equation has a single repeated, real-valued root.
The line intersects the sphere in one point. If δ < 0, the quadratic equation has no
real-valued roots, and the line and sphere do not intersect. The find-intersection
query is an implementation of this algorithm. Only if δ > 0 do you compute the
relatively expensive square root. The test-intersection query is simply a test on δ. If
δ ≥ 0, the line and sphere intersect. Otherwise, they do not intersect. The test for
δ ≥ 0 is equivalent to showing that the distance from the sphere center to the line is
smaller or equal to the sphere radius.

The line-sphere intersection is handled by the class IntrLine3Sphere3 that is de-
rived from Intersector. The test-intersection query is

template <class Real>
bool IntrLine3Sphere3<Real>::Test ()
{

Vector3<Real> kDiff = m_rkLine.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
Real fA1 = m_rkLine.Direction.Dot(kDiff);
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Real fDiscr = fA1*fA1 - fA0;
return fDiscr >= (Real)0.0;

}

and the line-sphere find-intersection query is

template <class Real>
bool IntrLine3Sphere3<Real>::Find ()
{

Vector3<Real> kDiff = m_rkLine.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
Real fA1 = m_rkLine.Direction.Dot(kDiff);
Real fDiscr = fA1*fA1 - fA0;

if ( fDiscr < (Real)0.0 )
{

m_iQuantity = 0;
}
else if ( fDiscr >= ZeroThreshold )
{

Real fRoot = Math<Real>::Sqrt(fDiscr);
m_afLineT[0] = -fA1 - fRoot;
m_afLineT[1] = -fA1 + fRoot;
m_akPoint[0] = m_rkLine.Origin +

m_afLineT[0]*m_rkLine.Direction;
m_akPoint[1] = m_rkLine.Origin +

m_afLineT[1]*m_rkLine.Direction;
m_iQuantity = 2;

}
else
{

m_afLineT[0] = -fA1;
m_akPoint[0] = m_rkLine.Origin +

m_afLineT[0]*m_rkLine.Direction;
m_iQuantity = 1;

}

return m_iQuantity > 0;
}

The find-intersection query computes the square root only when it is needed.
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Figure 6.4 Possible graph configurations for a quadratic polynomial Q(t) for t ≥ 0.

For the ray-sphere test-intersection query, we could find the points of intersection
for a line and sphere and then decide if either of the t-values are nonnegative. This
involves computing a square root, an operation that can be avoided in the following
way. Consider a quadratic equation Q(t) = t2 + 2a1t + a0, the format of Equation
(6.14). The ray intersects the sphere if Q(t) = 0 has one or two roots for t ≥ 0. If
Q(0) ≤ 0, the ray origin P is inside the sphere and the ray must intersect the sphere
once. Accordingly, the graph of Q(t) is a parabola that opens upwards. For large
t , Q(t) must be positive, so there is a root somewhere on the interval (0, ∞). If
Q(0) > 0, the ray origin is outside the sphere. If the graph of Q(t) touches or crosses
the horizontal axis, then Q(t) has one root or two roots; otherwise, it has no roots.
Figure 6.4 illustrates the possibilities.
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Notice that a0 = Q(0) is the height of the graph at time zero and 2a1 = Q′(0) is
the slope of the graph at time zero. In Figure 6.4(a) and 6.4(b), a0 ≤ 0. The origin
of the ray is inside (or on) the sphere when a0 ≤ 0. Regardless of the sign of a1, the
graph must intersect the t-axis in a single point. Geometrically, if the ray starts inside
the sphere, it can only intersect the sphere once. The other cases a0 > 0 correspond
to the ray origin being outside the sphere. Figure 6.4(c) shows the case a0 > 0 with
a1 > 0. It is not possible for the graph to intersect the axis, so there are no roots. The
ray does not intersect the sphere. Figure 6.4(d), (e), and (f) is for the case a0 > 0
and a1 < 0. The quadratic function decreases initially, reaches a minimum, and then
increases forever. The question is only whether the function decreases enough so that
the graph either touches the axis or passes through the axis. The graph does not reach
the axis when a2

1 − a0 < 0. The discriminant of the quadratic equation is negative, so
the only roots are complex valued; the ray cannot intersect the sphere. The graph
touches the axis at a single point when a2

1 − a0 = 0; in this case, the ray is tangent to
the sphere. Finally, if a2

1 − a0 > 0, the quadratic equation has two positive roots, and
the ray must intersect the sphere in two points.

The ray-sphere intersection is handled by the class IntrRay3Sphere3, which is
derived from Intersector. The test-intersection query is very similar to that of line-
sphere, but checks for a1 ≥ 0 as a quick no-intersection result:

template <class Real>
bool IntrRay3Sphere3<Real>::Test ()
{

Vector3<Real> kDiff = m_rkRay.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
if ( fA0 <= (Real)0.0 )
{

// P is inside the sphere
return true;

}
// else: P is outside the sphere

Real fA1 = m_rkRay.Direction.Dot(kDiff);
if ( fA1 >= (Real)0.0 )

return false;

// quadratic has a real root if discriminant is nonnegative
return fA1*fA1 >= fA0;

}

The find-intersection query for the ray and sphere uses the logic in Test, but
replaces the return statements with root-finding code:
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template <class Real>
bool IntrRay3Sphere3<Real>::Find ()
{

Vector3<Real> kDiff = m_rkRay.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
Real fA1, fDiscr, fRoot;
if ( fA0 <= (Real)0.0 )
{

// P is inside the sphere
fA1 = m_rkRay.Direction.Dot(kDiff);
fDiscr = fA1*fA1 - fA0;
fRoot = Math<Real>::Sqrt(fDiscr);
m_afRayT[0] = -fA1 + fRoot;
m_akPoint[0] = m_rkRay.Origin +

m_afRayT[0]*m_rkRay.Direction;
return true;

}
// else: P is outside the sphere

fA1 = m_rkRay.Direction.Dot(kDiff);
if ( fA1 >= (Real)0.0 )
{

m_iQuantity = 0;
return false;

}

fDiscr = fA1*fA1 - fA0;
if ( fDiscr < (Real)0.0 )
{

m_iQuantity = 0;
}
else if ( fDiscr >= ZeroThreshold )
{

fRoot = Math<Real>::Sqrt(fDiscr);
m_afRayT[0] = -fA1 - fRoot;
m_afRayT[1] = -fA1 + fRoot;
m_akPoint[0] = m_rkRay.Origin +

m_afRayT[0]*m_rkRay.Direction;
m_akPoint[1] = m_rkRay.Origin +

m_afRayT[1]*m_rkRay.Direction;
m_iQuantity = 2;

}
else
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{
m_afRayT[0] = -fA1;
m_akPoint[0] = m_rkRay.Origin +

m_afRayT[0]*m_rkRay.Direction;
m_iQuantity = 1;

}

return m_iQuantity > 0;
}

Consider now a line segment P + tD for |t | ≤ e with e > 0. Further analysis
of the graph of Q(t) = t2 + 2a1t + a0 may be applied for the segment-sphere test-
intersection query. We need to determine the relationships among a0, a1, and the
segment parameters that cause Q(t) to have roots in the interval [−e, e]. The logic I
use is slightly different than that for rays. Figure 6.5 shows the nine possible configu-
rations for the graph of Q(t):
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Figure 6.5 Possible graph configurations for a quadratic polynomial Q(t) for |t | ≤ e.
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(a) The quadratic function has no roots when a2
1 − a0 < 0. The segment is outside

the sphere and does not intersect the sphere.

(b) The quadratic function has opposite signs at the end points, Q(−e)Q(e) ≤ 0,
with Q(−e) > 0. The smaller of the two quadratic roots is in [−e, e], namely,

t = −a1 −
√

a2
1 − a0.

The end point P − eD is outside the sphere, and the end point P + eD is inside
the sphere. The segment intersects the sphere in a single point.

(c) The quadratic function has opposite signs at the end points, Q(−e)Q(e) ≤ 0,
with Q(−e) < 0. The larger of the two quadratic roots is in [−e, e], namely,

t = −a1 +
√

a2
1 − a0.

The end point P − eD is inside the sphere, and the end point P + eD is outside
the sphere. The segment intersects the sphere in a single point.

(d) The quadratic function is positive at the end points, Q(−e) > 0 and Q(e) > 0.
The derivative at the left end point is Q′(−e) ≥ 0. The function is monotonic
increasing on [−e, e], so there are no roots. The segment does not intersect the
sphere.

(e) The quadratic function is positive at the end points, Q(−e) > 0 and Q(e) > 0.
The derivative at the right end point is Q′(e) ≤ 0. The function is monotonic
increasing on [−e, e], so there are no roots. The segment does not intersect the
sphere.

(f) The quadratic function is positive at the end points, Q(−e) > 0 and Q(e) > 0.
The derivatives at the end points are of opposite sign, Q′(−e) < 0 and Q′(e) > 0.
The discriminant is negative, a2

1 − a0 < 0, but we already handled this condition
in case (a).

(g) The quadratic function is positive at the end points, Q(−e) > 0 and Q(e) > 0.
The derivatives at the end points are of opposite sign, Q′(−e) < 0 and Q′(e) > 0.
The discriminant is zero, a2

1 − a0 = 0. The function has a single repeated root at
t = −a1. The segment is tangent to the sphere.

(h) The quadratic function is positive at the end points, Q(−e) > 0 and Q(e) > 0.
The derivatives at the end points are of opposite sign, Q′(−e) < 0 and Q′(e) > 0.
The discriminant is positive, a2

1 − a0 > 0. The function has two roots at

t = −a1 ±
√

a2
1 − a0.

The segment intersects the sphere in two points.

(i) The quadratic function is negative at the end points, Q(−e) < 0 and Q(e) < 0.
The function has no roots on [−e, e]. The segment is inside the sphere, but does
not intersect the sphere.
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Regarding the test-intersection query, case (a) is easily checked. Cases (b) and
(c) are tested by Q(−e)Q(e) ≤ 0. Cases (d) and (e) are combined into 2(a1 − e) =
Q′(−e) ≥ 0 or 2(a1 + e) = Q′(e) ≤ 0. A single mathematical statement that repre-
sents the Boolean expressions is |a1| ≥ e. It is also necessary to make certain that
Q(−e) > 0 (or Q(e) > 0). Case (f) is included in case (a). Cases (g) and (h) are
known to produce roots when Q(−e)Q(e) > 0; assuming we have already tested
cases (b) and (c), nothing needs to be done here. Finally, case (i) also occurs when
Q(−e)Q(e) > 0, but Q(−e) < 0 (or Q(e) < 0). The class for segment-sphere in-
tersection is IntrSegment3Sphere3 and is derived from Intersector. Its Test member
function implements the logic discussed here. I have slightly changed the coding from
the actual source to emphasize which cases are handled by the code.

template <class Real>
bool IntrSegment3Sphere3<Real>::Test ()
{

Vector3<Real> kDiff = m_rkSegment.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
Real fA1 = m_rkSegment.Direction.Dot(kDiff);
Real fDiscr = fA1*fA1 - fA0;
if ( fDiscr < (Real)0.0 )

return false; // cases (a) and (f)

Real fTmp0 = m_rkSegment.Extent*m_rkSegment.Extent + fA0;
Real fTmp1 = ((Real)2.0)*fA1*m_rkSegment.Extent;
Real fQM = fTmp0 - fTmp1;
Real fQP = fTmp0 + fTmp1;
if ( fQM*fQP <= (Real)0.0 )

return true; // cases (b) and (c)

// ... actual code ...
// return fQM > (Real)0.0
// && Math<Real>::FAbs(fA1) < m_rkSegment.Extent;

if ( fQM < (Real)0.0 )
return false; // case (i)

if ( fA1 >= m_rkSegment.Extent )
return false; // case (d)

if ( fA1 <= -m_rkSegment.Extent )
return false; // case (e)

return true; // cases (g) and (h)
}
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The find-intersection query for the segment and sphere uses the logic in Test, but
replaces the return statements with root-finding code:

template <class Real>
bool IntrSegment3Sphere3<Real>::Find ()
{

Vector3<Real> kDiff = m_rkSegment.Origin - m_rkSphere.Center;
Real fA0 = kDiff.Dot(kDiff) -

m_rkSphere.Radius*m_rkSphere.Radius;
Real fA1 = m_rkSegment.Direction.Dot(kDiff);
Real fDiscr = fA1*fA1 - fA0;
if ( fDiscr < (Real)0.0 )
{

m_iQuantity = 0;
return false;

}

Real fTmp0 = m_rkSegment.Extent*m_rkSegment.Extent + fA0;
Real fTmp1 = ((Real)2.0)*fA1*m_rkSegment.Extent;
Real fQM = fTmp0 - fTmp1;
Real fQP = fTmp0 + fTmp1;
Real fRoot;
if ( fQM*fQP <= (Real)0.0 )
{

fRoot = Math<Real>::Sqrt(fDiscr);
m_afSegmentT[0] =

( fQM > (Real)0.0 ? -fA1 - fRoot : -fA1 + fRoot );
m_akPoint[0] = m_rkSegment.Origin + m_afSegmentT[0] *

m_rkSegment.Direction;
m_iQuantity = 1;
return true;

}

if ( fQM > (Real)0.0
&& Math<Real>::FAbs(fA1) < m_rkSegment.Extent )
{

if ( fDiscr >= ZeroThreshold )
{

fRoot = Math<Real>::Sqrt(fDiscr);
m_afSegmentT[0] = -fA1 - fRoot;
m_afSegmentT[1] = -fA1 + fRoot;
m_akPoint[0] = m_rkSegment.Origin +

m_afSegmentT[0]*m_rkSegment.Direction;
m_akPoint[1] = m_rkSegment.Origin +



6.3 Line-Object Intersection 517

m_afSegmentT[1]*m_rkSegment.Direction;
m_iQuantity = 2;

}
else
{

m_afSegmentT[0] = -fA1;
m_akPoint[0] = m_rkSegment.Origin +

m_afSegmentT[0]*m_rkSegment.Direction;
m_iQuantity = 1;

}
}
else
{

m_iQuantity = 0;
}

return m_iQuantity > 0;
}

As with ray-sphere intersection finding, the square roots in the segment-sphere
intersection finding are computed only when they are needed.

Oriented Bounding Boxes

The find-intersection queries for linear components and oriented bounding boxes
(OBBs) are implemented using clipping methods. The linear component is clipped
against one OBB face at a time. If the entire linear component is clipped, the lin-
ear component and the OBB do not intersect; otherwise, they do intersect and the
clipped linear component contains the points of intersection. The clipped compo-
nent is either a segment, yielding two points of intersection, or a singleton point,
yielding one point of intersection.

To simplify the clipping algorithm, the linear component is transformed into the
coordinate system of the OBB. Let the component have origin P and unit-length
direction D. Let the OBB have center C, axis directions Ui, and extents ei for 0 ≤
i ≤ 2. The component origin in OBB coordinates is P′ = (x0, x1, x2), where

P = C +
2∑

i=0

xiUi

and xi = Ui · (P − C). The component direction in OBB coordinates is D′
= (x0, x1, x2), where
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Figure 6.6 Two planar, convex objects that are not intersecting. A line is shown with the intervals
of projection of the objects. The intervals are disjoint.

D =
2∑

i=0

xiUi

and xi = Ui · D. In the OBB coordinates (x0, x1, x2), the clipping occurs against the
six planes xi = ±ei. Liang-Barsky clipping is used; the details are not interesting and
are not shown here. See the Find methods in the classes IntrLine3Box3, IntrRay3Box3,
and IntrSegment3Box3. All of these are Intersector-derived classes.

The test-intersection queries use the method of separating axes, described in great
detail in [Ebe00] and [SE02]. The application to linear components and OBBs is
also described in [Ebe00]. The idea of the method is that given two convex objects
whose intervals of projection onto a line are disjoint, then the convex objects are not
intersecting. Figure 6.6 shows two such objects in the plane.

A line for which the projections are disjoint is called a separating axis. Con-
struction of a separating axis can be very complex when the objects themselves are
complex. However, in the case of convex polyhedra, convex polygons, and linear com-
ponents, the set of potential separating axes is a finite set.

The following construction provides a lot of intuition about separation. Given
two sets A and B, the Minkowski sum of the sets is

A + B = {a + b : a ∈ A, b ∈ B}.

Each element of A + B is the sum of two points, one in each of the sets. The
Minkowski difference of the sets is

A − B = {a − b : a ∈ A, b ∈ B}.
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Figure 6.7 (a) Triangles A and B; (b) set −B; (c) set A + B; (d) set A − B. The origin is drawn
as a small, black dot so that you can understand where the sets are located in the
plane.

Each element of A − B is the difference of two points, one in each of the sets.2 Figure
6.7 shows a Minkowski sum and a Minkowski difference of two triangles.

The sum and difference sets are drawn to show the origin and the sets B and
−B with the set A placed at each of the vertices. Notice that the areas of A + B and
A − B are larger than the areas of the input triangles. The sum and difference are, in
fact, dilation operations.

2. Do not confuse the Minkowski difference A − B with set difference A \ B = {x : x ∈ A, x �∈ B}. Jay Stelly,
of Valve Software, points out that the term Minkowski difference might be confused with Minkowski
subtraction. Minkowski addition of a set A and a singleton set {b} is defined by A + {b} = {a + b : a ∈ A}.
Minkowski addition of two sets A and B is A ⊕ B = ∪b∈B(A + {b}), a union of sets. This operation
is used for dilation of a set A by a set B. Minkowski subtraction of two sets A and B is defined by
A � B = ∩b∈B(A + {b}), an intersection of sets. This operation is used for erosion of a set A by a set B.
As long as B contains the origin, it is easily shown that A � B ⊆ A ⊆ A ⊕ B. The Minkowski sum A + B

and the Minkowski addition A ⊕ B are the same set. On the other hand, the Minkowski difference A − B

and the Minkowski subtraction A � B are not the same set . In fact, if we define the set −B = {x : −x ∈ B},
then A − B = A + (−B), in which case A − B is a dilation of the set A by the set −B.
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E0

E1

F1

F0

D

Figure 6.8 An OBB and a line. The OBB is extruded along the line in the direction D. The
illustration is based on the OBB having its center at the origin. If the center were not
at the origin, the extruded object would be translated from its current location.

How does this relate to separation of convex sets? Suppose A and B are convex
sets, whether in the plane or in space (or in higher-dimensional spaces). If they
intersect, then there exists a point X ∈ A ∩ B. This point causes the Minkowski
difference A − B to contain the origin 0. If they do not intersect, then A ∩ B = ∅ and
A − B cannot contain the origin. Determining if two convex sets intersect is equivalent
to determining if the Minkowski difference contains the origin.

In three dimensions, when A and B are convex polyhedra, convex polygons, or
linear components, the Minkowski difference is itself a convex polyhedron, convex
polygon, or linear component. The test for whether or not the difference set contains
the origin is straightforward. If the difference set is a convex polyhedron, the origin
is against each face to see if it is outside the face—and outside the polyhedron—or
inside the face. If it is inside all faces, it is in the polyhedron. If the difference set is
a convex polygon, then we must restrict our attention to the plane of the polygon. If
that plane does not contain the origin, then A and B are separated. If the plane does
contain the origin, we must test for containment in the convex polygon. If the origin
is outside an edge, it is outside the polygon. If it is inside all edges, it is in the polygon.
If the difference set is a linear component, we need only test if the origin is a point on
that component.

Lines and OBBs

The application of the method of separating axes to a line and an OBB is described
here. The Minkowski difference of the OBB and the line is an infinite convex poly-
hedron obtained by extruding the OBB along the line and placing it appropriately in
space. Figure 6.8 illustrates this process in two dimensions.

Eight of the OBB edges are perpendicular to the plane of the page. Two of those
edges are highlighted with points and labeled as E0 and E1. The edge E0 is extruded
along the line direction D. The resulting face, labeled F0, is an infinite planar strip
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with a normal vector U0 × D, where U0 is the unit-length normal of the face of the
OBB that is coplanar with the page. The edge E1 is extruded along the line direction
to produce face F1. Because edges E0 and E1 are parallel, face F1 also has a normal
vector U0. The maximum number of faces that the infinite polyhedron can have is six
(project the OBB onto a plane with normal D and obtain a hexagon), one for each
of the independent OBB edge directions. These directions are the same as the OBB
face normal directions, so the six faces are partitioned into three pairs of parallel faces
with normal vectors Ui × D.

Now that we have the potential separating axis directions, the separation tests are

|U0 · D × �| > e1|D · U2| + e2|D · U1|
|U1 · D × �| > e0|D · U2| + e2|D · U0|
|U2 · D × �| > e0|D · U1| + e1|D · U0|

where � = P − C. The term Ui · D × � is used instead of the mathematically equiv-
alent Ui × D · � in order for the implementation to compute D × � once, leading
to a reduced operation count for all three separation tests. The implementation of
IntrLine3Box3::Test using this method is straightforward:

template <class Real>
bool IntrLine3Box3<Real>::Test ()
{

Real fAWdU[3], fAWxDdU[3], fRhs;

Vector3<Real> kDiff = m_rkLine.Origin - m_rkBox.Center;
Vector3<Real> kWxD = m_rkLine.Direction.Cross(kDiff);

fAWdU[1] = Math<Real>::FAbs(
m_rkLine.Direction.Dot(m_rkBox.Axis[1]));

fAWdU[2] = Math<Real>::FAbs(
m_rkLine.Direction.Dot(m_rkBox.Axis[2]));

fAWxDdU[0] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[0]));
fRhs = m_rkBox.Extent[1]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[1];
if ( fAWxDdU[0] > fRhs )

return false;

fAWdU[0] = Math<Real>::FAbs(
m_rkLine.Direction.Dot(m_rkBox.Axis[0]));

fAWxDdU[1] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[1]));
fRhs = m_rkBox.Extent[0]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[0];
if ( fAWxDdU[1] > fRhs )

return false;
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Figure 6.9 An OBB and a ray. The OBB is extruded along the ray in the direction D. The faces
F0 and F1 are generated by OBB edges and D. The faces F2 and F3 are contributed
from the OBB.

fAWxDdU[2] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[2]));
fRhs = m_rkBox.Extent[0]*fAWdU[1] + m_rkBox.Extent[1]*fAWdU[0];
if ( fAWxDdU[2] > fRhs )

return false;

return true;
}

Rays and OBBs

The infinite convex polyhedron that corresponds to the Minkowski difference of a
line and an OBB becomes a semi-infinite object in the case of a ray and an OBB.
Figure 6.9 illustrates in two dimensions.

The semi-infinite convex polyhedron has the same three pairs of parallel faces as
for the line, but the polyhedron has the OBB as an end cap. The OBB contributes
three additional faces and corresponding normal vectors. Thus, we have six potential
separating axes. The separation tests are

|U0 · D × �| > e1|D · U2| + e2|D · U1|
|U1 · D × �| > e0|D · U2| + e2|D · U0|
|U2 · D × �| > e0|D · U1| + e1|D · U0|
|U0 · �| > e0, (U0 · �)(U0 · D) ≥ 0

|U1 · �| > e1, (U1 · �)(U1 · D) ≥ 0

|U2 · �| > e2, (U2 · �)(U2 · D) ≥ 0

The first three are the same as for a line. The last three use the OBB face normals for
the separation tests. To illustrate these tests, see Figure 6.10.
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Figure 6.10 Projections of an OBB and a ray onto the line with direction Ui (a normal to an
OBB face). The OBB center C is subtracted from the OBB as well as the ray origin
P. The translated OBB projects to the interval [−ei , ei], where ei is the OBB extent
associated with Ui. The translated ray is � + tD, where � = P − C, and projects to
Ui · � + tUi · D.

The projected OBB is the finite interval [−ei , ei]. The projected ray is a semi-
infinite interval on the t-axis. The origin is � · Ui, and the direction (a signed scalar)
is D · Ui. The top portion of the figure shows a positive signed direction and an origin
that satisfies � · Ui > ei. The finite interval and the semi-infinite interval are disjoint,
in which case the original OBB and ray are separated. If instead the projected ray
direction is negative, D · Ui < 0, the semi-infinite interval overlaps the finite interval.
The original OBB and ray are not separated by the axis with direction Ui. Two similar
configurations exist when � · Ui < −ei. The condition |Ui · �| > ei says that the
projected ray origin is further away from zero than the projected box extents. The
condition (Ui · �)(Ui · D) > 0 guarantees that the projected ray points away from
the projected OBB.

The implementation of the test-intersection query is

template <class Real>
bool IntrRay3Box3<Real>::Test ()
{

Real fWdU[3], fAWdU[3], fDdU[3], fADdU[3], fAWxDdU[3], fRhs;

Vector3<Real> kDiff = m_rkRay.Origin - m_rkBox.Center;

fWdU[0] = m_rkRay.Direction.Dot(m_rkBox.Axis[0]);
fAWdU[0] = Math<Real>::FAbs(fWdU[0]);
fDdU[0] = kDiff.Dot(m_rkBox.Axis[0]);
fADdU[0] = Math<Real>::FAbs(fDdU[0]);
if ( fADdU[0] > m_rkBox.Extent[0]
&& fDdU[0]*fWdU[0] >= (Real)0.0 )

return false;
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fWdU[1] = m_rkRay.Direction.Dot(m_rkBox.Axis[1]);
fAWdU[1] = Math<Real>::FAbs(fWdU[1]);
fDdU[1] = kDiff.Dot(m_rkBox.Axis[1]);
fADdU[1] = Math<Real>::FAbs(fDdU[1]);
if ( fADdU[1] > m_rkBox.Extent[1]
&& fDdU[1]*fWdU[1] >= (Real)0.0 )

return false;

fWdU[2] = m_rkRay.Direction.Dot(m_rkBox.Axis[2]);
fAWdU[2] = Math<Real>::FAbs(fWdU[2]);
fDdU[2] = kDiff.Dot(m_rkBox.Axis[2]);
fADdU[2] = Math<Real>::FAbs(fDdU[2]);
if ( fADdU[2] > m_rkBox.Extent[2]
&& fDdU[2]*fWdU[2] >= (Real)0.0 )

return false;

Vector3<Real> kWxD = m_rkRay.Direction.Cross(kDiff);

fAWxDdU[0] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[0]));
fRhs = m_rkBox.Extent[1]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[1];
if ( fAWxDdU[0] > fRhs )

return false;

fAWxDdU[1] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[1]));
fRhs = m_rkBox.Extent[0]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[0];
if ( fAWxDdU[1] > fRhs )

return false;

fAWxDdU[2] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[2]));
fRhs = m_rkBox.Extent[0]*fAWdU[1] + m_rkBox.Extent[1]*fAWdU[0];
if ( fAWxDdU[2] > fRhs )

return false;

return true;
}

Segments and OBBs

The semi-infinite convex polyhedron that corresponds to the Minkowski difference
of a ray and an OBB becomes a finite object in the case of a segment and an OBB.
Figure 6.11 illustrates in two dimensions.

The infinite convex polyhedron has the same three pairs of parallel faces as for
the ray and line, but the polyhedron has the OBB as an end cap on both ends of
the segment. The OBB contributes three additional faces and corresponding normal



6.3 Line-Object Intersection 525

E0

E1

D
F1

F5

F4

F2
F3

F0

Figure 6.11 An OBB and a segment. The OBB is extruded along the segment in the direction
D. The faces F0 and F1 are generated by OBB edges and D. The faces F2 and F3 are
contributed from the OBB at one end point; the faces F4 and F5 are contributed from
the OBB at the other end point.
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Figure 6.12 Projections of an OBB and a segment onto a line with direction W. The OBB center
C is subtracted from the OBB as well as the segment origin P. The translated OBB
projects to an interval [−r , r]. The translated segmet is � + tD, where � = P − C,
and projects to W · � + tW · D.

vectors, a total of six potential separating axes. The separation tests are

|U0 · D × �| > e1|D · U2| + e2|D · U1|
|U1 · D × �| > e0|D · U2| + e2|D · U0|
|U2 · D × �| > e0|D · U1| + e1|D · U0|
|U0 · �| > e0 + e|U0 · D|
|U1 · �| > e1 + e|U1 · D|
|U2 · �| > e2 + e|U1 · D|,

where e is the extent of the segment. Figure 6.12 shows a typical separation of the
projections on some separating axis. The intervals are separated when W · �− e|W ·
D| > r or when W · � + e|W · D| < −r . These may be combined into a joint state-
ment: |W · �| > r + e|W · D|.
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The implementation of the test-intersection query is

template <class Real>
bool IntrSegment3Box3<Real>::Test ()
{

Real fAWdU[3], fADdU[3], fAWxDdU[3], fRhs;

Vector3<Real> kDiff = m_rkSegment.Origin - m_rkBox.Center;

fAWdU[0] = Math<Real>::FAbs(m_rkSegment.Direction.Dot(
m_rkBox.Axis[0]));

fADdU[0] = Math<Real>::FAbs(kDiff.Dot(m_rkBox.Axis[0]));
fRhs = m_rkBox.Extent[0] + m_rkSegment.Extent*fAWdU[0];
if ( fADdU[0] > fRhs )

return false;

fAWdU[1] = Math<Real>::FAbs(m_rkSegment.Direction.Dot(
m_rkBox.Axis[1]));

fADdU[1] = Math<Real>::FAbs(kDiff.Dot(m_rkBox.Axis[1]));
fRhs = m_rkBox.Extent[1] + m_rkSegment.Extent*fAWdU[1];
if ( fADdU[1] > fRhs )

return false;

fAWdU[2] = Math<Real>::FAbs(m_rkSegment.Direction.Dot(
m_rkBox.Axis[2]));

fADdU[2] = Math<Real>::FAbs(kDiff.Dot(m_rkBox.Axis[2]));
fRhs = m_rkBox.Extent[2] + m_rkSegment.Extent*fAWdU[2];
if ( fADdU[2] > fRhs )

return false;

Vector3<Real> kWxD = m_rkSegment.Direction.Cross(kDiff);

fAWxDdU[0] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[0]));
fRhs = m_rkBox.Extent[1]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[1];
if ( fAWxDdU[0] > fRhs )

return false;

fAWxDdU[1] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[1]));
fRhs = m_rkBox.Extent[0]*fAWdU[2] + m_rkBox.Extent[2]*fAWdU[0];
if ( fAWxDdU[1] > fRhs )

return false;

fAWxDdU[2] = Math<Real>::FAbs(kWxD.Dot(m_rkBox.Axis[2]));
fRhs = m_rkBox.Extent[0]*fAWdU[1] + m_rkBox.Extent[1]*fAWdU[0];
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Figure 6.13 (a) A view frustum with a point selected on the near plane. The pick ray has an
origin that is the eye point E, in world coordinates, and a direction that is from
the eye point to the selected point. (b) The viewport on the near plane with screen
coordinates (x , y) listed for the selected point.

if ( fAWxDdU[2] > fRhs )
return false;

return true;
}

6.3.3 Picking

A classical application for line-object intersection is picking—selecting an object
drawn on the screen by clicking a pixel in that object using the mouse. Figure 6.13
illustrates a pick ray associated with a screen pixel, where the screen is associated with
the near plane of a view frustum.

The eye point E, in world coordinates, is used for the origin of the pick ray. We
need to compute a unit-length direction W, in world coordinates. The pick ray is then
E + tW for t ≥ 0.
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Constructing a Pick Ray

The screen has a width of W pixels and a height of H pixels, and the screen coordi-
nates are left-handed (x to the right, y down). The selected point (x , y) is in screen
coordinates, where 0 ≤ x ≤ W − 1 and 0 ≤ y ≤ H − 1. This point must be converted
to world coordinates for points on the near plane. Specifically, we need a correspond-
ing point Q = E + nD + xvR + yvU, where rmin ≤ xv ≤ rmax and umin ≤ yv ≤ umax,
and where n is the distance from the eye point to the near plane. This is a matter of
some simple algebra:

(xp , yp) =
(

x

W − 1
, 1 − y

H − 1

)

(xv , yv) = ((1 − xp)rmin + xprmax , (1 − yp)umin + ypumax).

The first equation lists the normalized viewport coordinates, (xp , yp), that live in the
set [0, 1]2. Observe that the left-handed screen coordinates are converted to right-
handed normalized viewport coordinates by reflecting the y-value. The pick ray
direction is

W = Q − E

|Q − E| = nD + xvR + yvU√
n2 + x2

v
+ y2

v

.

The pick ray may now be used for intersection testing with objects in the world to
identify which one has been selected.

The construction is accurate as long as the entire viewport is used for drawing the
scene. The Camera class, however, allows you to select a subrectangle on the screen in
which the scene is drawn, via member function SetViewPort. Let xpmin, xpmax, ypmin,
and ypmax be the viewport settings in the camera class. The default minimum values
are 0, and the default maximum values are 1. If they are changed from the defaults, the
pick ray construction must be modified. Figure 6.14 shows the screen with a viewport
that is not the size of the screen.

The new construction for (xv , yv) is

(xp , yp) =
(

x

W − 1
, 1 − y

H − 1

)

(xw , yw) =
(

xp − xpmin

xpmax − xpmin

,
yp − ypmin

ypmax − ypmin

)

(xv , yv) = ((1 − xw)rmin + xwrmax , (1 − yw)umin + ywumax).

The conversion is as if the smaller viewport really did fill the entire screen. This makes
sense in that the world coordinate pick ray should be the same for a scene regardless
of whether you draw the scene in the full screen or in a subrectangle of the screen.
The Camera implementation for constructing the pick ray is
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Figure 6.14 The viewport on the near plane with screen coordinates (x , y) listed for the selected
point. The viewport is not the entire screen.

bool Camera::GetPickRay (int iX, int iY, int iWidth, int iHeight,
Vector3f& rkOrigin, Vector3f& rkDirection) const

{
float fPortX = ((float)iX)/(float)(iWidth-1);
if ( fPortX < m_fPortL || fPortX > m_fPortR )

return false;

float fPortY = ((float)(iHeight-1-iY))/(float)(iHeight-1);
if ( fPortY < m_fPortB || fPortY > m_fPortT )

return false;

float fXWeight = (fPortX - m_fPortL)/(m_fPortR - m_fPortL);
float fViewX = (1.0f-fXWeight)*m_fRMin + fXWeight*m_fRMax;
float fYWeight = (fPortY - m_fPortB)/(m_fPortT - m_fPortB);
float fViewY = (1.0f-fYWeight)*m_fUMin + fYWeight*m_fUMax;

rkOrigin = GetWorldLocation();
rkDirection =

m_fDMin*GetWorldDVector() +
fViewX*GetWorldRVector() +
fViewY*GetWorldUVector();

rkDirection.Normalize();
return true;

}

Since the Camera class does not store the width and height of the screen, those
values must be passed to the function. The reason not to store them is that the
screen dimensions are allowed to change (via resizing of the application window, for



530 Chapter 6 Collision Detection

example), but the camera model is not dependent on those changes. The Renderer
class does store the screen dimensions.

Scene Graph Support

Now that we know how to construct a pick ray, we actually have to do the intersection
testing with the scene. Wild Magic supports this in a hierarchical manner, using the
bounding volumes attached to the nodes in a scene hierarchy. Starting with the root
node, a test-intersection query is made between the pick ray and the world bounding
volume of the node. If the ray does not intersect the bounding volume, then it cannot
intersect the scene contained in the bounding volume—no intersection occurs. If
the pick ray does intersect the world bounding volume, then the test-intersection
query is propagated to all the children of the node (in the usual depth-first manner).
The propagation continues recursively along a path to a leaf node as long as the ray
and bounding volumes along that path intersect. If the ray and leaf node bounding
volume intersect, then a find-intersection query between the ray and whatever the
leaf node represents must be made. The query depends on the actual class type of the
leaf; the information reported by the query is also dependent on the class type.

The subsystem for hierarchical picking is based in class Spatial. The relevant
interface is

class Spatial
{
public:

class PickRecord
{
public:

virtual ~PickRecord ();

Pointer<Spatial> IObject; // the intersected leaf object
float T; // the pick ray parameter (t >= 0)

protected:
PickRecord (Spatial* pkIObject, float fT);

};

typedef TArray<PickRecord*> PickArray;

virtual void DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults);

static PickRecord* GetClosest (PickArray& rkResults);
};
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The nested class PickRecord represents the minimal amount of information that
a find-intersection query computes, the parameter t for which the pick ray P + tD
intersects an object. Each Spatial-derived class derives its own pick record class from
PickRecord and adds whatever information it wants to return from a successful find-
intersection query, instigated by a call to DoPick. The ray parameter can be used to
sort the intersection points after a call to DoPick.

Notice that the PickRecord does not have the capability for run-time type infor-
mation (RTTI). However, RTTI is obtained by using the Object-based RTTI for the
PickRecord data member IObject. Once that member’s type is known, the PickRecord
can be cast to the appropriate PickRecord-derived class.

A find-intersection query can produce a lot of intersection results. Thus, a con-
tainer class for pick records is needed to store the results. I have chosen a dynamic
array, named PickArray, that stores an array of pointers to PickRecord objects. The
entry point to the query is the function DoPick. The inputs are the origin and direc-
tion for the pick ray, in world coordinates, and an array to store the pick records.
On return, the caller is responsible for iterating over the array and deleting all the
PickRecord objects.

In most cases, the picked object is the one closest to the origin of the ray. The
function GetClosest implements a simple search of the array for the pick record with
the minimum t-value.

The Node class is responsible for the test-intersection query between the pick ray
and world bounding volume and for propagating the call to its children if necessary.
The DoPick function is

void Node::DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults)

{
if ( WorldBound->TestIntersection(rkOrigin,rkDirection) )
{

for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if ( pkChild )

pkChild->DoPick(rkOrigin,rkDirection,rkResults);
}

}
}

The implementation is straightforward. The BoundingVolume class has support for
the test-intersection query with a ray. If the ray intersects the bounding volume, an
iteration is made over the children and the call is propagated. The SwitchNode class
has a similar implementation, but it only propagates the call to the active child.

The most relevant behavior of DoPick is in the class TriMesh, which represents a
mesh of triangles. The class introduces its own PickRecord type:
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class TriMesh
{
public:

class PickRecord : public Geometry::PickRecord
{
public:

PickRecord (TriMesh* pkIObject, float fT, int iTriangle,
float fBary0, float fBary1, float fBary2);

// Index of the triangle that is intersected by the ray.
int Triangle;

// Barycentric coordinates of the point of intersection.
// If b0, b1, and b2 are the values, then all are in [0,1]
// and b0+b1+b2=1.
float Bary0, Bary1, Bary2;

};
};

The pick record stores the index of any triangle intersected by the ray. It stores
the barycentric coordinates of the intersection point with respect to the triangle. This
allows the application to compute interpolated vertex attributes as well as the actual
point of intersection. The base class for the pick record is Geometry::PickRecord, but
in fact Geometry has no such definition. The compiler resorts to checking further
down the line and finds Spatial::PickRecord as the base class.

The implementation of DoPick is

void TriMesh::DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults)

{
if ( WorldBound->TestIntersection(rkOrigin,rkDirection) )
{

// convert the ray to model space coordinates
Ray3f kRay(World.ApplyInverse(rkOrigin),

World.InvertVector(rkDirection));

// compute intersections with the model space triangles
const Vector3f* akVertex = Vertices->GetData();
int iTQuantity = Indices->GetQuantity()/3;
const int* piConnect = Indices->GetData();
for (int i = 0; i < iTQuantity; i++)
{

int iV0 = *piConnect++;
int iV1 = *piConnect++;



6.3 Line-Object Intersection 533

int iV2 = *piConnect++;

Triangle3f kTriangle(akVertex[iV0],akVertex[iV1],akVertex[iV2]);
IntrRay3Triangle3f kIntr(kRay,kTriangle);
if ( kIntr.Find() )
{

rkResults.Append(new PickRecord(this,kIntr.GetRayT(),i,
kIntr.GetTriB0(),kIntr.GetTriB1(),kIntr.GetTriB2()));

}
}

}
}

A test-intersection query is made between the pick ray and the world bounding
volume. If the ray intersects the bounding volume, a switch is made to a find-
intersection query to determine which triangles are intersected by the ray, and
where. The triangle vertex data is in model coordinates, whereas the pick ray is
in world coordinates. We certainly could transform each model triangle to world
space and call the find-intersection query, but that involves potentially a large num-
ber of vertex transformations—an expense you do not want to incur. Instead, the
pick ray is inverse-transformed to the model space of the triangle mesh, and the
find-intersection queries are executed. This is a much cheaper alternative! For each
triangle, a ray-triangle find-intersection query is made. If an intersection occurs, a
pick record is created and inserted into the array of pick records.

One potential inefficiency is that the triangles are processed in a linear traversal. If
the mesh has a very large number of triangles and the ray intersects only a very small
number, a lot of computational time will be spent finding out that many triangles are
not intersected by the ray. This is a fundamental problem in ray-tracing applications.
One of the solutions is to use a hierarchical bounding volume tree that fits the triangle
mesh. The idea is to localize in the mesh where intersections might occur by culling
out large portions of the bounding volume tree, using fast rejection algorithms for
ray-object pairs. Well, this is exactly what we have done at a coarse level, where the
nodes of the tree are the Node objects in the scene. I have not provided a fine-level
decomposition at the triangle mesh level for the purposes of picking , but it certainly
can be added if needed. That said, I have bounding volume hierarchy support for
object-object intersections (see Section 6.4.2).

A couple of the sample applications use picking. The application

MagicSoftware/WildMagic3/Test/TestCastle

allows you to pick objects in the scene. If you pick using the left mouse button, the
name of the selected geometry object is displayed in the lower-right portion of the
screen. If you pick using the right mouse button, the selected geometry object is
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displayed as a wireframe object. This allows you to see what is behind the scenes (pun
intended).

Another application using picking is

MagicSoftware/WildMagic3/Test/TestMorphController

This application displays a morphing face in the lower portion of the screen. A
reduced viewport is used for the display. The upper portion of the screen displays the
five targets of the morph controller. Each target is displayed in its own small viewport.
The picking system reports which target you have selected, or if you selected the
morphing face, or if nothing has been selected. The application illustrates that the
pick ray must be chosen using the camera’s viewport settings and cannot always
assume the viewport is the entire screen.

6.3.4 Staying on Top of Things

Given a 3D environment in which characters can roam around, an important feature
is to make certain that the characters stay on the ground and not fall through! If
the ground is a single plane, you may use this knowledge to keep the camera (the
character’s eye point, so to speak) at a fixed height about the plane. However, if the
ground is terrain, or a set of steps or floors in an indoor level, or a ramp, or any
other nonplanar geometry, the manual management of the camera’s height above the
current ground location becomes more burdensome than you might like.

The picking system can help you by eliminating a lot of the management. The
idea is to call the picking system each time the camera moves. The pick ray has
origin E (the camera eye point) and direction −U (the downward direction for the
environment). Do not use the camera’s up vector for U. If you were to pitch forward
to look at the ground, the up vector rotates with you. The environment up vector is
always fixed. The smallest t-value from the picking tells you the distance from the eye
point to the closest object below you. You can then update the height of the camera
using the t-value to make certain you stay at a fixed height.

The application

MagicSoftware/WildMagic3/Test/TestCastle

implements such a system. The relevant application function is

void TestCastle::AdjustVerticalDistance ()
{

// retain vertical distance above "ground"
Spatial::PickArray kResults;
m_spkScene->DoPick(m_spkCamera->GetLocation(),

Vector3f(0.0f,0.0f,-1.0f), kResults);
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if ( kResults.GetQuantity() > 0 )
{

Spatial::PickRecord* pkRecord =
Spatial::GetClosest(kResults);

assert( pkRecord );
TriMesh* pkMesh = DynamicCast<TriMesh>(pkRecord->IObject);
assert( pkMesh );
TriMesh::PickRecord* pkTMRecord =

(TriMesh::PickRecord*)pkRecord;

Vector3f kV0, kV1, kV2;
pkMesh->GetWorldTriangle(pkTMRecord->Triangle,kV0,kV1,kV2);
Vector3f kClosest =

pkTMRecord->Bary0*kV0 +
pkTMRecord->Bary1*kV1 +
pkTMRecord->Bary2*kV2;

kClosest.Z() += m_fVerticalDistance;
m_spkCamera->SetLocation(kClosest);

for (int i = 0; i < kResults.GetQuantity(); i++)
delete kResults[i];

}
}

void TestCastle::MoveForward ()
{

Application::MoveForward();
AdjustVerticalDistance();

}

The MoveForward function is called when the up arrow is pressed. The base class
MoveForward translates the camera’s eye point by a small amount in the direction of
view. The AdjustVerticalDistance adjusts that translation in the environment up
direction to maintain a constant height above the ground or other objects. As you
wander around the castle environment, you will notice that you always stay on top of
things, including the ground, stairs, and ramps.

6.3.5 Staying out of Things

We have seen how to stay on top of things by using the picking system. In the same 3D
environment, it is also important not to let the characters walk through walls or other
objects. Collision avoidance, as it is called, is a broad topic. Typically, the avoidance is
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based on a test-intersection query of the bounding volume of the character against the
various objects in the environment. This is complicated to get right, and potentially
expensive if the object-object intersection algorithm is complicated.

An alternative that is not exact, but just a heuristic, is to cast a small number
of pick rays from the eye point out into the scene. Consider this a form of probing
(sometimes called stabbing , in the occlusion culling literature) to see what objects
might be in the way. The more dense the set of rays, the less likely you will accidentally
allow the character to pass through an object. However, the more dense the set, the
more expensive the picking computations become. The balance between number of
pick rays and speed of the testing will, of course, depend on your environments.

The application

MagicSoftware/WildMagic3/Test/TestCastle

supports collision avoidance via picking in addition to maintaining a constant height
above the ground.

6.4 Object-Object Intersection

The test-intersection and find-intersection queries for a pair of objects, neither one
a linear component, can be anywhere from simple to nearly intractable, especially
when the objects are in motion. Having a fully featured collision detection library
that handles almost every type of query you can imagine is a commercial endeavor. I
certainly have not provided full support for every possible type of collision, but I have
provided a couple of simple systems to illustrate some of the concepts. This section
talks about those systems.

6.4.1 Collision Groups

In an environment with n objects that can potentially collide with each other, your
first instinct to compute intersections is to do a pairwise comparison. Choosing two
objects at a time, and realizing that you should not compare an object against itself,
there are n(n − 1)/2 combinations. For large n, you can spend a lot of time making
the comparisons when, in fact, not many objects collide.

At a high level, you can try to reduce n by partitioning the objects into collision
groups. Each group represents a small number of potentially colliding objects, but
two groups are deemed not to interact with each other. For example, you might have
an indoor level with two rooms separated by a doorway. The objects in one room
form a collision group; the objects in the other room form another collision group.
As long as the objects stay in their respective rooms, you can test for collisions in each
group independently of the other group. In the event, though, that one object passes
through the doorway from one room into another, then you will need to update
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the collision groups accordingly. It would be good to structure your environment so
that two objects from the different groups cannot simultaneously pass through the
doorway!

To convince you the grouping actually buys you some performance, consider
when you have 10 objects. If all are in a single group, you have 10 · 9/2 = 45 pairs
of objects to test. If the objects are in two disjoint groups, say, 5 objects per group,
then each group has 5 · 4/2 = 10 pairs of objects to test. The total number of pairs to
test for the two groups is 20.

The class I have chosen for grouping objects is called CollisionGroup. I will discuss
the actual interface in Section 6.4.2. For the time being, I want to provide motivation
for how you might structure such a class.

For a group of objects, an intersection query is structured according to the fol-
lowing pseudocode. The group is organized as an array of objects for simplicity of
indexing.

for (i0 = 0; i0 < group.size; i0++)
{

for (i1 = i0+1; i1 < group.size; i1++)
{

DoIntersectionQuery(group[i0],group[i1]);
}

}

The first thing that should catch your attention is that the code does not appear
to show you how any intersections are handled. It is possible for the DoIntersection-
Query function to accumulate information related to the intersections and return that
information for processing. For example,

for (i0 = 0; i0 < group.size; i0++)
{

for (i1 = i0+1; i1 < group.size; i1++)
{

results = DoIntersectionQuery(group[i0],group[i1]);
DoProcessQuery(results);

}
}

The results minimally will include the intersection set for stationary objects and the
contact time and contact set for moving objects.

The pseudocode also does not show how physical parameters are introduced to
the system, such as the maximum time for a query and object velocities. The maxi-
mum time is independent of the objects, so it may be passed as a single parameter.
Implementing a robust collision for deformable objects is a difficult task, so the re-
striction is made here that the objects are rigid and move with constant linear velocity
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during the time interval. The velocity may change from time interval to time inter-
val, thus implying a piecewise linear path of motion for an object. The pseudocode
becomes

for (i0 = 0; i0 < group.size; i0++)
{

for (i1 = i0+1; i1 < group.size; i1++)
{

QueryResults results = DoIntersectionQuery(maxTime,
group[i0],velocity[i0],group[i1],velocity[i1]);

DoProcessQuery(results);
}

}

Another issue. I placed the DoProcessQuery function call inside the inner loop.
This implies that the objects are manipulated during the group intersection query itself .
Alternatively, you can accumulate the results of all the queries and process outside the
loops:

QueryResults allResults;
for (i0 = 0; i0 < group.size; i0++)
{

for (i1 = i0+1; i1 < group.size; i1++)
{

QueryResults results = DoIntersectionQuery(maxTime,
group[i0],velocity[i0],group[i1],velocity[i1]);

allResults.Append(results);
}

}
DoProcessQuery(allResults);

The results of a query are different if you process all intersections using the
current state of the objects than if you change an object’s state in the middle of
a query. For example, if you have three objects A(t0), B(t0), and C(t0), where t0
indicates the time for the current state, then the decision to postpone processing
intersections to outside the loop results in the following queries:

results0 = DoIntersectionQuery(t1,A(t0),B(t0));
results1 = DoIntersectionQuery(t1,A(t0),C(t0));
results2 = DoIntersectionQuery(t1,B(t0),C(t0));
allResults = results0 + results1 + results2;
DoProcessQuery(allResults); // new states A(t1), B(t1), C(t1)



6.4 Object-Object Intersection 539

A change in an object’s state during the query leads to different semantics:

results = DoIntersectionQuery(t1,A(t0),B(t0));
DoProcessQuery(results); // new states A’(t0), B’(t0)
results = DoIntersectionQuery(t1,A’(t0),C(t0));
DoProcessQuery(results); // new states A(t1), C’(t0)
results = DoIntersectionQuery(t1,B’(t0),C’(t0));
DoProcessQuery(results); // new states B(t1), C(t1)

In the latter case, state A(t0) was modified to A′(t0) and then modified to A(t1). The
final state is not necessarily (and usually not) the final state obtained by the former
case.

My choice is not to process the results incrementally. I prefer to accumulate the
query results and process all at the same time. One benefit, for example, is that you
may sort the queries for the pairs of objects based on the contact time. Each object
can be moved a distance corresponding to the minimum contact time, at which time
the objects are known not to be interpenetrating.3

In the pseudocode, the processing is postulated to happen explicitly after all
queries are made for the pairs of objects. How you process the queries is most def-
initely specific to your application. Rather than providing a virtual function DoPro-
cessQuery in the CollisionGroup class and requiring you to derive a class from Col-
lisionGroup to override the behavior of the virtual function, I chose a callback mech-
anism that is designed to report the results of a query via a user-supplied callback
function. An element of the collsion group must encapsulate an object, the object’s
velocity, a callback function to be executed when the object collides with another ob-
ject, and any other information relevant to perform an intersection query. The class
I designed for the encapsulation is called CollisionRecord. The specifics of the class
are described in Section 6.4.2. The collision group intersection query is

for (i0 = 0; i0 < group.size; i0++)
{

CollisionRecord record0 = group[i0];
for (i1 = i0+1; i1 < group.size; i1++)
{

CollisionRecord record1 = group[i1];
record0.DoIntersectionQuery(record1);

}
}

3. More correct is to say that the objects are not abstractly interpenetrating. In the presence of exact arith-
metic, no objects are interpenetrating. When using floating-point arithmetic, numerical round-off errors
can lead to situations where the objects are slightly interpenetrating.
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The geometric nature of the intersection query can be as complicated as the ob-
jects are. At the lowest level, the query should resolve to intersections between prim-
itive objects, in our case triangles that make up the objects (at least those represented
by triangle meshes). When a triangle-triangle intersection query is performed, and an
intersection occurs, the callbacks associated with each collision record are executed
and passed all the relevant information associated with the intersection, including
which high-level objects own the triangles. Your application has implemented the
callbacks and is free to do with the information as it will—process the intersection
immediately or accumulate the results for processing after the collision group query
terminates. In this manner, I have given you the power to do whatever you want to
with the low-level results. As is always the case, with great power comes great re-
sponsibility. My callback scheme provides mechanism, but not policy. You have the
responsibility for deciding how to process the data.

6.4.2 Hierarchical Collision Detection

There are many ways to implement a collision detection system. Wild Magic does not
have a fully featured system that handles every possible situation you can imagine,
and it does not have a fully featured physics system. As many programmers have
discovered, these systems are nontrivial to build and difficult to make robust. What
I discuss here is just one collision detection subsystem that would occur in a fully
featured system.

The method involves a hiearchical decomposition of a triangle mesh using a
bounding volume tree. The root node of the tree represents the entire mesh. An in-
terior node represents a submesh. In particular, I use a binary tree representation, so
the two children of an interior node represent submeshes whose union is the mesh
at the interior node. A leaf node represents one or more triangles in the original
mesh (the default is one). Each node has associated with it a bounding volume that
bounds the mesh associated with the node. The premise of such a data structure is
simple—localize the query to subsets of triangles that potentially intersect by using
the bounding volumes for culling large portions of the mesh that cannot intersect.

If you have two triangle meshes to be involved in a collision query, the naive
approach to handle the query is to test each pair of triangles, one triangle from
each mesh, for intersection. This is an expensive proposition when the meshes have
large numbers of triangles. Consider the worst case when the two meshes do not
intersect. You would process all pairs of triangles only to find out that no pair has an
intersection. Using a bounding volume tree, the bounding volumes of the two root
nodes are tested for intersection. If the bounding volumes do not intersect, then the
meshes do not intersect. The bounding volume test is a quick rejection test and is akin
to culling of objects in the rendering system.

How does the localization work? If the bounding volumes at the roots of the
trees do intersect, the meshes might or might not intersect. More work must be
done to decide which is the case. The trees are descended recursively, comparing
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(a)

(c) (d) (e)

(b)
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Figure 6.15 (a) Neither C0 nor C1 intersects R0. The triangle meshes do not intersect. (b) C1
intersects R0, but C0 does not. The submesh associated with C0 cannot intersect the
mesh associated with R0. The subtree of C1 must be traversed to find intersections,
but the subtree of C0 must not. In this example, the mesh of C1 does not intersect the
mesh of R0. (c) C0 intersects R0, but C1 does not. The submesh associated with C1
cannot intersect the mesh associated with R0. The subtree of C0 must be traversed to
find intersections, but the subtree of C1 must not. In this example, the mesh of C0
does intersect the mesh of R0. (d) Both C0 and C1 intersect R0. The subtrees rooted
at the children must be traversed to obtain more information about the nature of
intersections, if any. In this example, the mesh of C0 intersects the mesh of R0,
but the mesh of C1 does not. (e) Both C0 and C1 intersect R0. The subtrees rooted
at the children must be traversed to obtain more information about the nature of
intersections, if any. In this example, both child meshes intersect the mesh of R0.

bounding volumes along the way. I choose to use a depth-first search on one tree
for a comparison of the bounding volumes against that of a fixed node in the other
tree. Breadth-first searches are also possible. Let R0 be the bounding volume of the
root of the first tree and R1 be the bounding volume of the root of the second tree.
Given that R0 and R1 intersect, the child bounding volumes of the root of the second
tree, call them C0 and C1, are compared to R0. The possibilities are shown in Figure
6.15.

The ideal, optimal case is when the two objects intersect at a single pair of tri-
angles. A single path of bounding volumes is processed in each tree to narrow down
the possible intersections to a pair of leaf nodes of the tree. This eliminates a lot of
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calculations. On the other hand, if the trees are very deep, the large number of in-
tersection tests for pairs of triangles are replaced by a large number of intersection
tests for bounding volumes, in which case the localization costs more than if you had
simply dealt only with triangle-triangle pairs. The break-even point for the number
of triangles in a mesh versus the depth of the tree is something you should determine
based on your own data and target platform. For current CPUs running at 2 to 3 GHz,
my rule of thumb is that once the tree depth becomes 8 or 9, the tree approach is no
longer cost-effective. If depth 0 corresponds to a single root node, and depth 1 cor-
responds to a root and two children, then depth n corresponds to a complete binary
tree with 2n+1 − 1 nodes, of which 2n are leaf nodes. A tree of depth 9 has 512 leaf
nodes, so the largest triangle mesh involved in the collision query is limited to 512
triangles. Should you choose to include objects in a collision query with thousands
of triangles, you might want to consider something more practical such as using a
collision proxy, a triangle mesh that has many fewer triangles, but approximately the
same shape as your object. The proxy is not displayable geometry and is only used as
a coarse-resolution approximation solely for collision queries.

The concept of a bounding volume was already discussed in Section 3.2.2, but
in the context of culling objects from the rendering system. The abstract base class
is BoundingVolume and provides an interface to support visual culling. That same
interface also has functions to support collision culling using bounding volume trees.
Two of the derived bounding volume classes are SphereBV (bounding spheres) and
BoxBV (oriented bounding boxes). The bounding volume trees may use any bounding
volume type that the engine implements. The use of SphereBV is the essence of sphere
trees, as discussed in [Hub96]. The use of BoxBV is the essence of the popular OBB
trees (in RAPID), as discussed in [GLM96].

The hierarchical collision system must support constructing the trees as well as
the collision queries themselves. The abstract class BoundingVolumeTree has all this
support. The construction code is detailed, much of it independent of the bounding
volume type. The base class contains the factored code that supports all types. A few
functions that are specific to the bounding volume type are implemented in derived
classes, namely, SphereBVTree and BoxBVTree.

Class BoundingVolumeTree

The interface for BoundingVolumeTree is

class BoundingVolumeTree
{
public:

virtual ~BoundingVolumeTree ();

// tree topology
BoundingVolumeTree* GetLChild ();
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BoundingVolumeTree* GetRChild ();
bool IsInteriorNode () const;
bool IsLeafNode () const;

// member access
const TriMesh* GetMesh () const;
const BoundingVolume* GetWorldBound () const;
int GetTriangleQuantity () const;
int GetTriangle (int i) const;
const int* GetTriangles () const;

void UpdateWorldBound ();

protected:
BoundingVolumeTree (const TriMesh* pkMesh);
BoundingVolumeTree (int eBVType, const TriMesh* pkMesh,

int iMaxTrisPerLeaf = 1, bool bStoreInteriorTris = false);

void BuildTree (int eBVType, int iMaxTrisPerLeaf,
bool bStoreInteriorTris, const Vector3f* akCentroid,
int i0, int i1, int* aiISplit, int* aiOSplit);

static void SplitTriangles (const Vector3f* akCentroid,
int i0, int i1, int* aiISplit, int& rj0, int& rj1,
int* aiOSplit, const Line3f& rkLine);

// for quick-sort of centroid projections on axes
class ProjectionInfo
{
public:

int m_iTriangle;
float m_fProjection;

};
static int Compare (const void* pvElement0,

const void* pvElement1);

// model bounding volume factory
typedef BoundingVolume* (*CreatorM)(

const TriMesh*,int,int,int*,Line3f&);
static CreatorM ms_aoCreateModelBound[

BoundingVolume::BV_QUANTITY];

// world bounding volume factory
typedef BoundingVolume* (*CreatorW)(void);
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static CreatorW ms_aoCreateWorldBound[
BoundingVolume::BV_QUANTITY];

// mesh and bounds
const TriMesh* m_pkMesh;
BoundingVolumePtr m_spkModelBound;
BoundingVolumePtr m_spkWorldBound;

// binary tree representation
BoundingVolumeTree* m_pkLChild;
BoundingVolumeTree* m_pkRChild;

int m_iTriangleQuantity;
int* m_aiTriangle;

};

The constructor BoundingVolumeTree(int, const TriMesh*, int, bool) is the en-
try point to construction of the tree. The first parameter is the type of the bounding
volume to use and is provided by the derived-class constructors. The mesh subdivi-
sion is based on projecting the triangle centroids onto some line and then splitting
by the median of the centroids. All triangles whose centroids are on one side of the
median become one submesh, and the remaining triangles form the other submesh.
The idea is to produce a balanced tree to minimize the tree depth. The constructor
computes the triangle centroids and then passes control to the function BuildTree to
do the subdivision.

The BuildTree function partitions the triangles and stores the indices in an array,
grouped by which submesh the triangles are in. The algorithm is memory efficient in
that it uses two index arrays whose sizes are the number of triangles. The indices in
the first array are partitioned and stored in the second array. On the next subdivision
the indices in the second array are partitioned and stored in the first array. The arrays
reverse roles on each subdivision step.

The first thing BuildTree does is compute a model bounding volume for the
current mesh. The same function uses geometric information from this bounding
volume to determine the line that the centroids of the triangles of the current mesh
will be projected onto in order to split the mesh into two submeshes. The second step
in BuildTree is to create a world bounding volume. This volume is computed from the
model bounding volume and the mesh transformations on each intersection query.
The code in BuildTree for these steps is

Line3f kLine;
m_spkModelBound = ms_aoCreateModelBound[eBVType](m_pkMesh,i0,i1,

aiISplit,kLine);
m_spkWorldBound = ms_aoCreateWorldBound[eBVType]();
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Notice the use of static arrays that store function pointers. These create bounding
volumes of the specific type indicated by eBVType. Your first instinct might be to
use virtual functions for model and world bounding volume creation; the base class
would declare the virtual functions as pure, and the derived classes would implement
them. For example,

Line3f kLine;
m_spkModelBound = CreateModelBound(m_pkMesh,i0,i1,aiISplit,kLine);
m_spkWorldBound = CreateWorldBound();

The class SphereBVTree overrides the two virtual functions to create SphereBV ob-
jects. Likewise, the class BoxBVTree overrides the two virtual functions to create
BoxBV objects. But this does not work! The problem is that BuildTree is called in the
constructor for BoundingVolumeTree. That means CreateModelBound and CreateWorld-
Bound are indirectly called during the base class construction. The C++ language
insists that direct or indirect calls to virtual functions during a base class construc-
tor call can only be resolved to be calls to the implementation of those functions in
the base class. In the current situation, CreateModelBound resolves to BoundingVol-
umeTree::CreateModelBound, not to a derived class CreateModelBound. This is an error
since the virtual function in the base class is pure.4

I really do want the correct derived-class functions to be called. Since C++ does
not support this, I had to hack a bit. My choice was to store static arrays of the
creation functions in the base class, and then each derived class fills in the array
elements during pre-main construction. For example, SphereBVTree uses the pre-
main initialization macros and implements

void SphereBVTree::Initialize ()
{

ms_aoCreateModelBound[BoundingVolume::BV_SPHERE] =
&SphereBVTree::CreateModelBound;

ms_aoCreateWorldBound[BoundingVolume::BV_SPHERE] =
&SphereBVTree::CreateWorldBound;

}

The size of the array is the current number of bounding volume types; this
information is stored in class BoundingVolume:

// run-time type information
enum // BVType

4. Some compilers trap this error when in debug mode. For example, Microsoft Visual Studio will generate
an exception and report an attempt to call a pure virtual function.
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{
BV_SPHERE,
BV_BOX,
BV_QUANTITY

};
virtual int GetBVType () const = 0;

Effectively, this is a user-managed virtual function table lookup, but with semantics
different than what C++ supports.5

The creation of model bounding volumes is specific to the type of bounding
volume. The SphereBV bounding volume uses the average of the mesh vertices as the
sphere center. The smallest radius is computed for the sphere centered at the average
to contain all the mesh vertices. The line used for splitting the mesh is chosen to be
the best line of fit to the vertices using orthogonal least squares. The direction of
the line is the eigenvector of the covariance matrix of the vertices that corresponds
to the largest eigenvalue. The BoxBV bounding volume is computed to have a center
that is the average of the vertices. The covariance matrix associated with this center
is computed, and the eigenvectors are extracted from it. The eigenvectors are used as
the box axis directions. The extents of the vertices in these directions are computed.
The box obtained from these axes and extents is the model bound. Notice that the
center of this box is not necessarily the one used to generate the covariance matrix.

BuildTree uses the line returned from the model bounding volume construction
and passes it to the SplitTriangles function. This function projects the centroids of
the current triangle mesh onto the line, computes the median, and partitions the
triangle indices. A bounding volume tree is computed for each submesh in a recursive
manner by twice calling the BuildTree function.

The default number of triangles per leaf node of the tree is 1. When a recursive
call is made to BuildTree for a mesh of one triangle, the triangle index is stored at
the leaf node. The member variable m_iTriangleQuantity is set to 1, and the array
m_aiTriangle is allocated to contain a single element, the triangle index. The con-
structor for BoundingVolumeTree actually allows you to specify more than one triangle
per leaf node via input iMaxTrisPerLeaf. At some point the call to BuildTree is for
a submesh whose number of triangles is smaller or equal to iMaxTrisPerLeaf. In
this case, a leaf node is created, and m_iTriangle is set to the number of triangles
in the submesh. The array m_aiTriangle is allocated to store all the triangle indices
for the submesh. Another parameter to the constructor is bStoreInteriorTris. If this
Boolean flag is set to true, the interior nodes of the bounding volume tree also al-
locate m_aiTriangle and store the indices for the submesh represented by the node.

5. Wild Magic version 2 had a similar scheme, but the bounding volume creation functions were imple-
mented in the BoundingVolume-derived classes. Wild Magic version 3 implements the creation functions in
the BoundingVolumeTree to better encapsulate the hierarchical collision solely within the bounding volume
tree system.
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This information might be useful in some applications, but not others, so I leave it to
you to decide whether or not you want the information stored.

Class CollisionRecord

The collision group is a collection of collision records. Each record encapsulates the
triangle mesh, its bounding volume tree, the object linear velocity (the object is rigid),
a callback to be executed if an intersection occurs between this object and another,
and callback data that can be passed to the callback function. The class interface is

class CollisionRecord
{
public:

typedef void (*Callback) (CollisionRecord& rkRecord0, int iT0,
CollisionRecord& rkRecord1, int iT1, void* pvIntersectionData);

// Construction and destruction. CollisionRecord assumes
// responsibility for deleting pkTree, so it should be
// dynamically allocated.
CollisionRecord (TriMesh* pkMesh, BoundingVolumeTree* pkTree,

Vector3f* pkVelocity, Callback oCallback, void* pvCallbackData);

~CollisionRecord ();

// member access
TriMesh* GetMesh ();
Vector3f* GetVelocity ();
void* GetCallbackData ();

// intersection queries
void TestIntersection (CollisionRecord& rkRecord);
void FindIntersection (CollisionRecord& rkRecord);
void TestIntersection (float fTMax, CollisionRecord& rkRecord);
void FindIntersection (float fTMax ,CollisionRecord& rkRecord);

protected:
TriMesh* m_pkMesh;
BoundingVolumeTree* m_pkTree;
Vector3f* m_pkVelocity;
Callback m_oCallback;
void* m_pvCallbackData;

};



548 Chapter 6 Collision Detection

The TestIntersection query is for static objects; that is, the velocity vectors are
ignored (assumed to be zero velocity). The implementation is

void CollisionRecord::TestIntersection (CollisionRecord& rkRecord)
{

// convenience variables
BoundingVolumeTree* pkTree0 = m_pkTree;
BoundingVolumeTree* pkTree1 = rkRecord.m_pkTree;
const TriMesh* pkMesh0 = m_pkTree->GetMesh();
const TriMesh* pkMesh1 = rkRecord.m_pkTree->GetMesh();

pkTree0->UpdateWorldBound();
pkTree1->UpdateWorldBound();

const BoundingVolume* pkWorldBV0 = pkTree0->GetWorldBound();
const BoundingVolume* pkWorldBV1 = pkTree1->GetWorldBound();
if ( pkWorldBV0->TestIntersection(pkWorldBV1) )
{

BoundingVolumeTree* pkRoot;

if ( pkTree0->IsInteriorNode() )
{

pkRoot = m_pkTree;

// compare Tree0.L to Tree1
m_pkTree = pkRoot->GetLChild();
TestIntersection(rkRecord);

// compare Tree0.R to Tree1
m_pkTree = pkRoot->GetRChild();
TestIntersection(rkRecord);

m_pkTree = pkRoot;
}
else if ( pkTree1->IsInteriorNode() )
{

pkRoot = rkRecord.m_pkTree;

// compare Tree0 to Tree1.L
rkRecord.m_pkTree = pkRoot->GetLChild();
TestIntersection(rkRecord);

// compare Tree0 to Tree1.R
rkRecord.m_pkTree = pkRoot->GetRChild();
TestIntersection(rkRecord);
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rkRecord.m_pkTree = pkRoot;
}
else
{

// at a leaf in each tree
int iMax0 = pkTree0->GetTriangleQuantity();
for (int i0 = 0; i0 < iMax0; i0++)
{

int iT0 = pkTree0->GetTriangle(i0);

// get world space triangle
Triangle3f kTri0;
pkMesh0->GetWorldTriangle(iT0,kTri0);

int iMax1 = pkTree1->GetTriangleQuantity();
for (int i1 = 0; i1 < iMax1; i1++)
{

int iT1 = pkTree1->GetTriangle(i1);

// get world space triangle
Triangle3f kTri1;
pkMesh1->GetWorldTriangle(iT1,kTri1);

IntrTriangle3Triangle3<float> kIntersector(
kTri0,kTri1);

if ( kIntersector.Test() )
{

if ( m_oCallback )
{

m_oCallback(*this,iT0,rkRecord,iT1,
&kIntersector);

}

if ( rkRecord.m_oCallback )
{

rkRecord.m_oCallback(rkRecord,iT1,
*this,iT0,&kIntersector);

}
}

}
}

}
}

}
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The function first tells the bounding volume tree nodes to compute their world
bounding volumes from their model bounding volumes and the triangle mesh
model-to-world transformation. The world bounding volumes are tested for (static)
intersection. If the test fails, the meshes represented by the tree nodes cannot intersect
and the function returns. If the test succeeds, the CollisionRecord::TestIntersection
function is called recursively on the children of the first tree’s node and compared to
the second tree’s current node. If the first tree’s node is a leaf node, the second tree is
recursively processed to compare its bounding volumes against the leaf node bound-
ing volume of the first tree. It is possible that eventually a leaf node of one tree is
compared to a leaf node of another tree. At that time we are ready to test for in-
tersection between the triangles at the leaf nodes. An all-pairs comparison is made,
but now the assumption is that each leaf node has only one (or only a few) trian-
gles, so efficiency is not a question anymore—the localization of the intersection has
occurred.

For each triangle-triangle pair, a test-intersection query is made. If it succeeds,
the callback functions are called. The intersector is passed to the callback so that the
intersection set may be accessed, if necessary, to process the triangles.

The FindIntersection(CollisionRecord&) implementation is nearly identical, ex-
cept that the triangle-triangle static test-intersection query is replaced by a static
find-intersection query. The TestIntersection and FindIntersection queries that
take the maximum time are designed for moving objects. The world bounding vol-
ume static test-intersection is replaced by a dynamic test-intersection. The triangle-
triangle static test- or find-intersection queries are replaced by triangle-triangle dy-
namic test- or find-intersection queries.

Triangle-Triangle Intersection Queries

The triangle-triangle intersection queries are implemented in the class IntrTrian-
gle3Triangle3 class, which is derived from Intersector.

The static test-intersection query uses the method of separating axes to decide
whether or not the triangles are intersecting.

The static find-intersection query uses a straightforward geometric construction.
If the planes of the triangles are not parallel, the line of intersection of the planes
is computed. The intersection of the first triangle with this line is computed and
produces a line segment. The intersection of the second triangle with the line is
computed, producing another line segment. The intersection of the two line segments
is the intersection set of the triangles.

The dynamic test-intersection query also uses the method of separating axes,
but with an extension that handles objects moving with constant linear velocity.
The extension is discussed in [Ebe00] and [SE02]. The dynamic find-intersection
query also uses the method of separating axes when the triangles are not initially
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intersecting. The extension to handle moving objects also is designed to compute the
contact time and contact set.

Class CollisionGroup

The interface for CollisionGroup is

class CollisionGroup
{
public:

CollisionGroup ();
~CollisionGroup ();

// CollisionGroup assumes responsibility for deleting the
// collision records, so the input records should be
// dynamically allocated.
bool Add (CollisionRecord* pkRecord);
bool Remove (CollisionRecord* pkRecord);

// Intersection queries. If two objects in the group collide,
// the corresponding records process the information
// accordingly.

// The objects are assumed to be stationary (velocities are
// ignored) and all pairs of objects are compared.
void TestIntersection ();
void FindIntersection ();

// The objects are assumed to be moving. Objects are compared
// when at least one of them has a velocity vector associated
// with it (that vector is allowed to be the zero vector).
void TestIntersection (float fTMax);
void FindIntersection (float fTMax);

protected:
TArray<CollisionRecord*> m_kRecord;

};

This is a simple wrapper to encapsulate an array of collision records. You may add
and remove collision records as desired. The first two functions TestIntersection and
FindIntersection have the obvious implementations.
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void CollisionGroup::TestIntersection ()
{

// objects are assumed to be stationary, compare all pairs
for (int i0 = 0; i0 < m_kRecord.GetQuantity(); i0++)
{

CollisionRecord* pkRecord0 = m_kRecord[i0];
for (int i1 = i0+1; i1 < m_kRecord.GetQuantity(); i1++)
{

CollisionRecord* pkRecord1 = m_kRecord[i1];
pkRecord0->TestIntersection(*pkRecord1);

}
}

}

void CollisionGroup::FindIntersection ()
{

// objects are assumed to be stationary, compare all pairs
for (int i0 = 0; i0 < m_kRecord.GetQuantity(); i0++)
{

CollisionRecord* pkRecord0 = m_kRecord[i0];
for (int i1 = i0+1; i1 < m_kRecord.GetQuantity(); i1++)
{

CollisionRecord* pkRecord1 = m_kRecord[i1];
pkRecord0->FindIntersection(*pkRecord1);

}
}

}

The second two functions are for moving objects and provide a slight increase
in performance because two objects without velocities specified are assumed to be
stationary and not intersecting. Such pairs are not processed by the system. This is
useful, for example, when you have moving objects in a room. The objects may collide
with each other and with the walls of the room. However, two walls are not moving
and cannot intersect, so there is no point in initiating a collision query for two walls.

void CollisionGroup::TestIntersection (float fTMax)
{

// objects are assumed to be moving, compare all pairs
for (int i0 = 0; i0 < m_kRecord.GetQuantity(); i0++)
{

CollisionRecord* pkRecord0 = m_kRecord[i0];
for (int i1 = i0+1; i1 < m_kRecord.GetQuantity(); i1++)
{

CollisionRecord* pkRecord1 = m_kRecord[i1];
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if ( pkRecord0->GetVelocity()
|| pkRecord1->GetVelocity() )
{

pkRecord0->TestIntersection(fTMax,*pkRecord1);
}

}
}

}

void CollisionGroup::FindIntersection (float fTMax)
{

// objects are assumed to be moving, compare all pairs
for (int i0 = 0; i0 < m_kRecord.GetQuantity(); i0++)
{

CollisionRecord* pkRecord0 = m_kRecord[i0];
for (int i1 = i0+1; i1 < m_kRecord.GetQuantity(); i1++)
{

CollisionRecord* pkRecord1 = m_kRecord[i1];
if ( pkRecord0->GetVelocity()
|| pkRecord1->GetVelocity() )
{

pkRecord0->FindIntersection(fTMax,*pkRecord1);
}

}
}

}

An application illustrating the hierarchical collision system is on the CD-ROM,

MagicSoftware/WildMagic3/Test/TestCollision

The application creates two finite cylinders, each with a single color. Wherever the
cylinders intersect, the triangle colors are modified to highlight those involved in the
intersection. Figure 6.16 shows a couple of screen shots. The cylinders are red and
blue. The intersecting triangles on the red cylinder are colored in yellow. Those on
the blue cylinder are colored in cyan.

6.4.3 Spatial and Temporal Coherence

The CollisionGroup intersection queries for moving objects just iterate over all pairs
of objects and execute a query per pair. A smarter system will take advantage of spatial
and temporal coherence. If two objects are far away at one instance of time and do
not intersect, the chances are they are still far away at the next instance of time. It is



Figure 6.16 A couple of screen shots showing the triangles of intersection between two cylinders.
(See also Color Plate 6.16.)



6.4 Object-Object Intersection 555

useful to have a system that knows not to even initiate an intersection query for this
situation.

An effective system is described in [Bar01] and performs well in practice. I dis-
cussed this system in [Ebe03a]. Rather than try to rewrite that material, I just repeat
it here (not quite verbatim), but with a discussion of the actual implementation.

To each object, we associate an axis-aligned bounding box (AABB). If two AABBs
do not intersect, then the objects contained by them do not intersect. If the AABBs
do intersect, we then test if the enclosed objects intersect. Each time step the objects
move and their AABBs must be updated. Once the AABBs are updated for all the ob-
jects, we expect that the intersection status of pairs of objects/AABBs has changed—
old intersections might no longer exist, new intersections might now occur. Spatial
and temporal coherence will be used to make sure the update of status is efficient.

Intersecting Intervals

The idea of determining intersection between AABBs is based on sorting and update
of intervals on the real line, a one-dimensional problem that we will analyze first.
Consider a collection of n intervals Ii = [bi , ei] for 1 ≤ i ≤ n. The problem is to
efficiently determine all pairs of intersecting intervals. The condition for a single pair
Ii and Ij to intersect is bj ≤ ei and bi ≤ ej . The naive algorithm for the full set of
intervals just compares all possible pairs, an O(n2) algorithm.

A more efficient approach uses a sweep algorithm, a concept that has been used
successfully in many computational geometry algorithms. First, the interval end
points are sorted into ascending order. An iteration is made over the sorted list (the
sweep) and a set of active intervals is maintained, initially empty. When a begin-
ning value bi is encountered, all active intervals are reported as intersecting with
interval Ii, and Ii is added to the set of active intervals. When an ending value ei

is encountered, interval Ii is removed from the set of active intervals. The sorting
phase is O(n log n). The sweep phase is O(n) to iterate over the sorted list—clearly
asymptotically faster than O(n log n). The intersecting reporting phase is O(m) to
report the m intersecting intervals. The total order is written as O(n log n + m). The
worst-case behavior is when all intervals overlap, in which case m = O(n2), but for
our applications we expect m to be relatively small. Figure 6.17 illustrates the sweep
phase of the algorithm.

The sorted interval end points are shown on the horizontal axis of the figure.
The set of active intervals is initially empty, A = ∅. The first five sweep steps are
enumerated as follows:

1. b3 encountered. No intersections reported since A is empty. Update A = {I3}.
2. b1 encountered. Intersection I3 ∩ I1 is reported. Update A = {I3, I1}.
3. b2 encountered. Intersections I3 ∩ I2 and I1 ∩ I2 reported.

Update A = {I3, I1, I2}.



556 Chapter 6 Collision Detection

I5

I4

I3

I2

I1

b3 b1 b2 e3 e1 b5 b4 e5 e2 e4

Figure 6.17 The sweep phase of the algorithm.

4. e3 encountered. Update A = {I1, I2}.
5. e1 encountered. Update A = {I2}.

The remaining steps are easily stated and are left as an exercise.
A warning is in order here: The sorting of the interval end points must be handled

carefully when equality occurs. For example, suppose that two intervals [bi , ei] and
[bj , ej] intersect in a single point, ei = bj . If the sorting algorithm lists ei before bj ,
when ei is encountered in the sweep we remove Ii from the set of active intervals.
Next, bj is encountered, and intersections of Ij with the active intervals are reported.
The interval Ii was removed from the active set on the previous step, so Ij ∩ Ii is
not reported. In the sort, suppose instead that bj is listed before ei by the sorting
algorithm. Since bi was encountered earlier in the sweep, the set of active intervals
contains Ii. When bj is encountered Ij ∩ Ii is reported as an intersection. Clearly, the
order of equal values in the sort is important. Our application will require that we
report just-touching intersections, so the interval end points cannot be sorted just
as a set of floating-point numbers. Tags need to be associated with each end point
indicating whether it is a beginning point or an ending point. The sorting must take
the tag into account to make sure that equal end point values are sorted so that values
with a “begin” tag occur before values with an “end” tag. The tags are not a burden
since, in fact, we need them anyway to decide during the sweep what type of end point
we have encountered. Pseudocode for the sort and sweep is

struct EndPoint
{

enum Type { BEGIN = 0, END = 1 };
Type type;
double value;
int interval; // index of interval containing this end point
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// EndPoint E1, E2;
// E1 < E2 when
// E1.value < E2.value, or
// E1.value == E2.value AND E1.type < E2.type

}

struct Interval
{

EndPoint P[2];
};

void SortAndSweep (int n, Interval I[])
{

// use O(n log n) sort
array<EndPoint> L = Sort(n,I);

// active set of intervals (stored by index in array)
set<int> A = empty;

// (i,j) in S means I[i] and I[j] overlap
set<int,int> S = empty;

for (i = 0; i < L.size(); i++)
{

if ( L[i].type == EndPoint::BEGIN )
{

for (each j in A) do
S.Insert(j,L[i].interval);

A.Insert(L[i].interval);
}
else // L[i].type == EndPoint::END
{

A.Remove(I[L[i].interval]);
}

}
}

Once the sort-and-sweep has occurred, the intervals are allowed to move about,
thus invalidating the order of the end points in the sorted list. We can re-sort the
values and apply another sweep, an O(n log n + m) process. However, we can do
better than that. The sort itself may be viewed as a way to know the spatial coherence
of the intervals. If the intervals move only a small distance, we expect that not many of
the end points will swap order with their neighbors. The modified list is nearly sorted,
so we should re-sort using an algorithm that is fast for nearly sorted inputs. Taking
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advantage of the small number of swaps is our way of using temporal coherence to
reduce our workload. The insertion sort is a fast algorithm for sorting nearly sorted
lists. For general input it is O(n2), but for nearly sorted data it is O(n + e), where e

is the number of exchanges used by the algorithm. Pseudocode for the insertion sort
is

// input: A[0] through A[n-1]
// output: array sorted in place
void InsertionSort (int n, type A[])
{

for (j = 1; j < n; j++)
{

key = A[j];
i = j-1;
while ( i >= 0 and A[i] > key )
{

Swap(A[i],A[i+1]);
i-;

}
A[i+1] = key;

}
}

The situation so far is that we applied the sort-and-sweep algorithm to our collec-
tion of intervals, a once-only step that requires O(n log n + m) time. The output is a
set S of pairs (i , j) that correspond to overlapping intervals, Ii ∩ Ij . Some intervals
are now moved, and the list of end points is re-sorted in O(n + e) time. The set S

might have changed, and two overlapping intervals might not overlap now. Instead,
two nonoverlapping intervals might now overlap. To update S we can simply apply
the sweep algorithm from scratch, an O(n + m) algorithm, and build S anew. Bet-
ter, though, is to mix the update with the insertion sort. An exchange of two “begin”
points with two “end” points does not change the intersection status of the intervals.
If a pair of “begin” and “end” points is swapped, then we have either gained a pair
of overlapping intervals or lost a pair. By temporal coherence, we expect the number
of changes in status to be small. If c is the number of changes of overlapping status,
we know that c ≤ e, where e is the number of exchanges in the insertion sort. The
value e is expected to be much smaller than m, the number of currently overlapping
intervals. Thus, we would like to avoid the full sweep that takes O(n + m) time and
update during the insertion sort that takes smaller time O(n + e).

Figure 6.18 illustrates the update phase of the algorithm applied to the intervals
shown in Figure 6.17. At the initial time the sorted end points are {b3, b1, b2, e3, e1,
b5, b4, e5, e2, e4}. The pairs of indices for the overlapping intervals are S = {(1, 2),
(1, 3), (2, 3), (2, 4), (2, 5), (4, 5)}. Now I1 moves to the right and I5 moves to the
left. The new end points are denoted b̄1, ē1, b̄5, and ē5. The list of end points that was
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Figure 6.18 The update phase of the algorithm when intervals have moved.

sorted but now has had values changed is {b3, b̄1, b2, e3, ē1, b̄5, b4, e5, e2, e4}. The
insertion sort is applied to this set of values. The steps follow:

1. Initialize the sorted list to be L = {b3}.
2. Insert b̄1, L = {b3, b̄1}.
3. Insert b2, L = {b3, b̄1, b2}.

(a) Exchange b̄1 and b2, L = {b3, b2, b̄1}. No change to S.

4. Insert e3, L = {b3, b2, b̄1, e3}.
5. Insert ē1, L = {b3, b2, b̄1, e3, ē1}.
6. Insert b̄5, L = {b3, b2, b̄1, e3, ē1, b̄5}.

(a) Exchange ē1 and b̄5, L = {b3, b2, b̄1, e3, b̄5, ē1}. This exchange causes I1 and I5
to overlap, so insert (1, 5) into the set S = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4),
(2, 5), (4, 5)}.

7. Insert b4, L = {b3, b2, b̄1, e3, b̄5, ē1, b4}.
8. Insert ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, b4, ē5}.

(a) Exchange b4 and ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4}. This exchange causes
I4 and I5 to no longer overlap, so remove (4, 5) from the set S = {(1, 2), (1, 3),
(1, 5), (2, 3), (2, 4), (2, 5)}.

9. Insert e2, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2}.
10. Insert e4, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2, e4}.
11. The new list is sorted and the set of overlaps is current.
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Figure 6.19 Axis-aligned rectangles overlap when both their x-intervals and y-intervals overlap.

Intersecting Rectangles

The algorithm for computing all pairs of intersecting axis-aligned rectangles is a
simple extension of the algorithm for intervals. An axis-aligned rectangle is of the
form [xmin, xmax]× [ymin, ymax]. Two such rectangles intersect if there is overlap be-
tween both their x-intervals and their y-intervals, as shown in Figure 6.19. The rect-
angles are [x0, x1]× [y0, y1] and [x2, x3]× [y2, y3]. The rectangles overlap because
[x0, x1]∩ [x2, x3] �= ∅ and [y0, y1]∩ [y2, y3] �= ∅.

In the two-dimensional setting, we maintain two sorted lists, one for the end
points of the x-intervals and one for the end points of the y-intervals. The initial
step of the algorithm sorts the two lists. The sweep portion is only slightly more
complicated than for one dimension. The condition for overlap is that the x-intervals
and y-intervals overlap. If we were to sweep the sorted x-list first and determine that
two x-intervals overlap, that is not sufficient to say that the rectangles of those x-
intervals overlap. We could devise some fancy scheme to sweep both x- and y-lists
at the same time, but it is simpler just to do a little extra work. If two x-intervals
overlap, we will test for overlap of the corresponding rectangles in both dimensions
and update the set of overlapping rectangles as needed.

Once we have the sorted lists and a set of overlapping rectangles, we will move the
rectangles and must update the lists and set. The process will use an insertion sort to
take advantage of spatial and temporal coherence. The x-list is processed first. If an
exchange occurs so that two previously overlapping intervals no longer overlap, the
corresponding rectangles no longer overlap, so we can remove that pair from the set
of overlaps. If an exchange occurs so that two previously nonoverlapping intervals
now overlap, the corresponding rectangles may or may not overlap. Just as we did for
the initialization phase, we will simply test the corresponding rectangles for overlap
in both dimensions and adjust the set of overlaps accordingly.
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Intersecting Boxes

You should see clearly that the algorithm for axis-aligned rectangles in two dimen-
sions extends easily to axis-aligned boxes in three dimensions. The collision system
itself has the following outline:

1. Generate AABBs for the objects of the system.

2. Using the sort-and-sweep method, compute the set S of all pairs of intersecting
AABBs.

3. Determine which AABBs intersect using the fast insertion sort update.

4. For each pair of intersecting AABBs, call the intersection query between the
corresponding collision records.

5. When all intersecting pairs are processed, move the objects according to your
collision response system.

6. Recompute the AABBs for the objects.

7. Repeat step 3.

The implementation of the system for intersecting boxes is in the class Intersect-
ingBoxes:

template <class Real>
class IntersectingBoxes
{
public:

typedef typename int BoxPair[2];

IntersectingBoxes (TArray<AxisAlignedBox3<Real>>& rkBoxes);
~IntersectingBoxes ();

void Initialize ();

void SetBox (int i, const AxisAlignedBox3<Real>& rkRect);
void GetBox (int i, AxisAlignedBox3<Real>& rkRect) const;

void Update ();

const TSet<BoxPair>& GetOverlap () const;

private:
class EndPoint
{
public:
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Real Value;
int Type; // ‘0’ if interval min, ‘1’ if interval max
int Index; // index of interval containing this end point

// support for sorting of end points
bool operator< (const EndPoint& rkEP) const
{

if ( Value < rkEP.Value )
return true;

if ( Value > rkEP.Value )
return false;

return Type < rkEP.Type;
}

};

void InsertionSort (TArray<EndPoint>& rkEndPoint,
TArray<int>& rkLookup);

TArray<AxisAlignedBox3<Real> >& m_rkBoxes;
TArray<EndPoint> m_kXEndPoint, m_kYEndPoint, m_kZEndPoint;
TSet<BoxPair> m_kOverlap;

TArray<int> m_kXLookup, m_kYLookup, m_kZLookup;
};

The function Initialize is called by the constructor and does the sort-and-sweep
to initialize the update system. However, if you add or remove items from the array
of boxes after the constructor call, you will need to call this function once before you
start the multiple calls of the update function.

After the system is initialized, you can move the boxes using the function SetBox.
It is not enough to modify the input array of boxes since the end point values stored
internally by this class must also change. You can also retrieve the current box infor-
mation using GetBox. When you are finished moving boxes, call the Update function
to determine the overlapping boxes. An incremental update is applied to determine
the new set of overlapping boxes. If (i , j) is in the overlap set, then box i and box j

are overlapping. The indices are those for the input array. The set elements (i , j) are
stored so that i < j .

The members m_kXLookup, m_kYLookup, and m_kZLookup are used for the following
purposes. The intervals are indexed 0 ≤ i < n. The end point array has 2n entries.
The original 2n interval values are ordered as b[0], e[0], b[1], e[1], . . . , b[n-1],
and e[n-1]. When the end point array is sorted, the mapping between interval values
and end points is lost. In order to modify interval values that are stored in the end
point array, we need to maintain the mapping. This is done by the lookup tables of
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2n entries. The value m_kLookup[2*i] is the index of b[i] in the end point array. The
value m_kLookup[2*i+1] is the index of e[i] in the end point array.

The sample application on the CD-ROM that illustrates this is

MagicSoftware/WildMagic3/Test/TestIntersectingBoxes

The application shows a collection of boxes that are moving. Whenever two boxes
overlap, the box colors are changed.



C h a p t e r 7
Physics

7.1 Numerical Methods for Solving
Differential Equations

The equations of motion for a physical simulation can always be written as a system
of nonlinear equations of the form

dX

dt
= F(t , X), t ≥ 0, X(0) = X0. (7.1)

The vector X represents the physical states of the simulation, typically including
position, linear velocity, orientation, and angular velocity. The system is an initial-
value problem since the state vector is specified at the initial time t ≥ 0.

The differential equations are almost never solvable in closed form, so numerical
methods must be used for approximating the solution. The simplest is Euler’s method.
The idea is to replace the first derivative of Equation (7.1) by a forward difference
approximation:

X(t + h) − X(t)

h
= F(t , X(t)).

The value h > 0 is the step size of the solver. Generally, the smaller the value of h, the
less error you make in the approximation. This is solved for the term involving t + h:

X(t + h) = X(t) + hF(t , X(t)). (7.2)

At time step t , if the state X(t) is known, then Euler’s method gives you an approxi-
mation of the state at time t + h, namely, X(t + h).

565
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Euler’s method is the prototype for a numerical solver for ordinary differential
equations. The function F is a given. Knowing the input time t , a step size h, and an
input state X(t), the method produces an output time t + h and a corresponding state
X(t + h). The general concept is encapsulated by an abstract base class, OdeSolver,
with the following interface:

template <class Real>
class WM3_ITEM OdeSolver
{
public:

// abstract base class
virtual ~OdeSolver ();

// The system is dx/dt = F(t,x). The dimension of x is passed
// to the constructor of OdeSolver.
typedef void (*Function)(

Real, // t
const Real*, // x
void*, // user-specified data
Real*); // F(t,x)

virtual void Update (Real fTIn, Real* afXIn, Real& rfTOut,
Real* afXOut) = 0;

virtual void SetStepSize (Real fStep) = 0;
Real GetStepSize () const;

void SetData (void* pvData);
void* GetData () const;

protected:
OdeSolver (int iDim, Real fStep, Function oFunction,

void* pvData = NULL);

int m_iDim;
Real m_fStep;
Function m_oFunction;
void* m_pvData;
Real* m_afFValue;

};

The only constructor is protected. Its first input iDim is the number of states, the
dimension of the system. The second input fStep is the step size h > 0 of the system.
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The general mathematical function to evaluate is F(t , X). The function type used
for the solver, type Function, is of a slightly different format. It takes t and X as its first
two parameters. It also allows you to pass data through a void* parameter. Various
physical quantities might be associated with F, but are not known to the Function
representation until run time. These may be passed as the user-specified data. If
you were to return the output as an array pointer, you would have to dynamically
allocate memory on each call. To avoid the dynamic allocation, an array for the
output components is passed to the Function for you to fill in. In most cases, this
means you only need a single array for output that is used for each call to the function.
The base class provides this storage in member m_afFValue.

OdeSolver allows you to modify the step size by SetStepSize. This is a pure virtual
function, so every derived class must implement it. Minimally, the function assigns
fStep to the member data m_fStep, but many solvers have related quantities that
should be computed once and cached for reasons of efficiency in the iterations of
the solver. The current step size is read by GetStepSize.

The user-specified data is stored in the OdeSolver object. It is passed to the Func-
tion object on each call. You can set and get the user-specified data via member
functions SetData and GetData.

The calculation of the output time and state from the input time and state is the
role of Update. It is clear which function parameters are inputs and which are outputs.

7.1.1 Euler’s Method

The class OdeEuler is an implementation of Euler’s method. The interface is

template <class Real>
class OdeEuler : public OdeSolver<Real>
{
public:

OdeEuler (int iDim, Real fStep,
typename OdeSolver<Real>::Function oFunction,
void* pvData = NULL);

virtual ~OdeEuler ();

virtual void Update (Real fTIn, Real* afXIn, Real& rfTOut,
Real* afXOut);

virtual void SetStepSize (Real fStep);
};



568 Chapter 7 Physics

The update function is

template <class Real>
void OdeEuler<Real>::Update (Real fTIn, Real* afXIn, Real& rfTOut,

Real* afXOut)
{

m_oFunction(fTIn,afXIn,m_pvData,m_afFValue);
for (int i = 0; i < m_iDim; i++)

afXOut[i] = afXIn[i] + m_fStep*m_afFValue[i];

rfTOut = fTIn + m_fStep;
}

The first line of the function evaluates F(t0, X0), where t0 is the input time and
X0 is the input state. The loop computes the components of the output state X1 =
X0 + hF(t0, X0). The last line of code computes the output time t1 = t0 + h.

A sample illustration of OdeEuler numerically solves the system of differential
equations

dx

dt
= t − ay ,

dy

dt
= bx , (x(0), y(0)) = (1, 2),

where a and b are some physical parameters.

void F (float fT, const float* afX, void* pvData, float* afFValue)
{

float* afData = (float*)pvData;
afFValue[0] = fT - afData[0]*afX[1]; // t - a*y
afFValue[1] = afData[1]*afX[0]; // b*x

}

int iDim = 2;
float fStep = 0.001f;
float fA = <some physical parameter>;
float fB = <some physical parameter>;
float afData[2] = { fA, fB };
OdeEuler kSolver(iDim,fStep,F,afData);

float fT = 0.0f;
float afState[2] = { 1.0, 2.0f }; // (x(0),y(0))

int iNumSteps = <desired number of steps to take>;
for (int i = 1; i <= iNumSteps; i++)
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{
// new time and state replaces old time and state
kSolver.Update(fT,afState,fT,afState);

// ... process output fT and afState here ...
}

7.1.2 Midpoint Method

Euler’s method is simple to implement, but it is neither accurate enough nor stable
enough to apply to most differential equations. A family of methods that are better for
applications are the Runge-Kutta methods. These are discussed in standard textbooks
on numerical methods (for example, [BF01]). The midpoint method is one of the
methods in this family. The mathematical formulation is

t0, X0 initial time and state

Y = X0 + (h/2)F(t0, X0) first step

X1 = X0 + hF(t0 + h/2, Y) second step

t1 = t0 + h.

Notice that the output state is obtained by a composition

X1 = X0 + hF(t0 + h/2, X0 + (h/2)F(t0, X0).

The Runge-Kutta methods all have this flavor. The midpoint method is a second-
order method: F is evaluated twice in the algorithm.

The class interface for the midpoint method is

template <class Real>
class OdeMidpoint : public OdeSolver<Real>
{
public:

OdeMidpoint (int iDim, Real fStep,
typename OdeSolver<Real>::Function oFunction,
void* pvData = NULL);

virtual ~OdeMidpoint ();

virtual void Update (Real fTIn, Real* afXIn, Real& rfTOut,
Real* afXOut);
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virtual void SetStepSize (Real fStep);

protected:
Real m_fHalfStep;
Real* m_afXTemp;

};

The update method is

template <class Real>
void OdeMidpoint<Real>::Update (Real fTIn, Real* afXIn,

Real& rfTOut, Real* afXOut)
{

int i;

// first step
m_oFunction(fTIn,afXIn,m_pvData,m_afFValue);
for (i = 0; i < m_iDim; i++)

m_afXTemp[i] = afXIn[i] + m_fHalfStep*m_afFValue[i];

// second step
Real fHalfT = fTIn + m_fHalfStep;
m_oFunction(fHalfT,m_afXTemp,m_pvData,m_afFValue);
for (i = 0; i < m_iDim; i++)

afXOut[i] = afXIn[i] + m_fStep*m_afFValue[i];

rfTOut = fTIn + m_fStep;
}

The previous example that illustrated the use of OdeEuler is easily modified to use
OdeMidpoint. The line of code

OdeEuler kSolver(iDim,fStep,F,afData);

is replaced by

OdeEuler OdeMidpoint(iDim,fStep,F,afData);

The differential equation numerical solvers in Wild Magic were designed to make it
this easy to change the type of the solver in an application.
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7.1.3 Runge-Kutta Fourth-Order Method

The most common Runge-Kutta method used in applications is one that is fourth
order. The mathematical formulation is listed next and has the same flavor as the
midpoint method—a nested composition of F:

t0, X0 initial time and state

K1 = hF(t0, X0) no nesting

K2 = hF

(
t0 + h

2
, X0 + K1

2

)
singly nested

K3 = hF

(
t0 + h

2
, X0 + K2

2

)
doubly nested

K = hF(t0 + h, X0 + K3) triply nested

X1 = X0 + 1

6
(K1 + 2K2 + 2K3 + K4)

t1 = t0 + h

The class interface for the Runge-Kutta fourth-order method is

template <class Real>
class WM3_ITEM OdeRungeKutta4 : public OdeSolver<Real>
{
public:

OdeRungeKutta4 (int iDim, Real fStep,
typename OdeSolver<Real>::Function oFunction,
void* pvData = NULL);

virtual ~OdeRungeKutta4 ();

virtual void Update (Real fTIn, Real* afXIn, Real& rfTOut,
Real* afXOut);

virtual void SetStepSize (Real fStep);

protected:
Real m_fHalfStep, m_fSixthStep;
Real* m_afTemp1;
Real* m_afTemp2;
Real* m_afTemp3;
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Real* m_afTemp4;
Real* m_afXTemp;

};

The temporary arrays are used to store the Ki during the construction of the output
state. The convenience variables m_fHalfStep and m_fSixthStep store h/2 and h/6,
respectively.

The update function is

template <class Real>
void OdeRungeKutta4<Real>::Update (Real fTIn, Real* afXIn,

Real& rfTOut, Real* afXOut)
{

int i;

// first step
m_oFunction(fTIn,afXIn,m_pvData,m_afTemp1);
for (i = 0; i < m_iDim; i++)

m_afXTemp[i] = afXIn[i] + m_fHalfStep*m_afTemp1[i];

// second step
Real fHalfT = fTIn + m_fHalfStep;
m_oFunction(fHalfT,m_afXTemp,m_pvData,m_afTemp2);
for (i = 0; i < m_iDim; i++)

m_afXTemp[i] = afXIn[i] + m_fHalfStep*m_afTemp2[i];

// third step
m_oFunction(fHalfT,m_afXTemp,m_pvData,m_afTemp3);
for (i = 0; i < m_iDim; i++)

m_afXTemp[i] = afXIn[i] + m_fStep*m_afTemp3[i];

// fourth step
rfTOut = fTIn + m_fStep;
m_oFunction(rfTOut,m_afXTemp,m_pvData,m_afTemp4);
for (i = 0; i < m_iDim; i++)
{

afXOut[i] = afXIn[i] + m_fSixthStep*(m_afTemp1[i] +
((Real)2.0)*(m_afTemp2[i] + m_afTemp3[i]) +
m_afTemp4[i]);

}
}

Once again, the sample using OdeEuler is easily modified to use OdeRungeKutta4
by replacing the constructor call.
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7.1.4 Implicit Equations and Methods

Equation (7.1) defines the derivative of the state explicitly in terms of the time and
the state of the system. Some physical models might have the derivative defined by an
implicit equation:

F(t , X(t), dX(t)/dt) = 0. (7.3)

If an algebraic manipulation allows you to solve for the derivative explicitly in terms
of the other variables, then explicit numerical methods can be applied to the prob-
lem. If it is not possible to solve for the derivative explicitly, an additional level of
processing must occur to solve the system. Specifically, think of Equation (7.3) as

G(t , X(t), Y) = 0,

where t and X(t) are known values, but Y is an unknown quantity. A root-finding
method such as Newton’s method can be used to construct the root Y of G. A forward
finite difference for the derivative is then used to compute the next state, namely,

X(t + h) − X(t)

h
= Y

or

X(t + h) = X(t) + hY.

The occurrence of implicit equations for the output state can occur, even if the
differential equation is an explicit one. For example, Euler’s method used a forward
finite difference to approximate the derivative:

F(t , X(t)) = dX(t)

dt

.= X(t + h) − X(t)

h
.

Solving for X(t + h) yields Equation (7.2). If we were instead to use a backward finite
difference, we obtain

F(t , X(t)) = dX(t)

dt

.= X(t) − X(t − h)

h

or

X(t) = X(t − h) + hF(t , X(t)).

To put this into the format of Equation (7.2), replace t by t + h:

X(t + h) = X(t) + hF(t + h, X(t + h)). (7.4)
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The technical problem here is that the output state X(t + h) occurs on both the left-
hand and right-hand sides of the equation. Rewrite this to the standard form of an
implicit equation:

0 = G(t , X(t), X(t + h)) = X(t) + hF(t + h, X(t + h)) − X(t + h).

Thinking of G as a function of its last component Y,

G(t , X(t), Y) = 0,

we may use a root finder to compute Y. The output state is X(t + h) = Y.
Since we are making approximations at various stages of the algorithm, rather

than using multiple iterations in a root finder for G, we can use a single iteration to
define a numerical method for the differential equation. Let Y0 = X(t) be the initial
guess for the output state. One interation of Newton’s method is

Y1 = Y0 − DG(t , X(t), Y0)
−1G(t , X(t), Y0),

where DG is the matrix of first-order partial derivatives of the components of G
with respect to the components of Y. This is the multidimensional generalization of
Newton’s method for a function of one variable, yi+1 = yi − F(yi)/F

′(yi). In one
dimension, you divide by the derivative of F . In multiple dimensions, you “divide”
by the derivatives in the sense of matrix inversion. The value Y1 is used as the output
state. In terms of the original state vector, the method is

X(t + h) = X(t) + h (I − hDF(t , X(t)))−1 F(t , X(t)). (7.5)

The class that implements Equation (7.5) is OdeImplicitEuler. The interface is

template <class Real>
class OdeImplicitEuler : public OdeSolver<Real>
{
public:

// The function F(t,x) has input t, a scalar, and input x,
// an n-vector. The first derivative matrix with respect to
// x is DF(t,x), an n-by-n matrix. Entry DF[r][c] is the
// derivative of F[r] with respect to x[c].
typedef void (*DerivativeFunction)(

Real, // t
const Real*, // x
void*, // user-specified data
GMatrix<Real>&); // DF(t,x)

OdeImplicitEuler (int iDim, Real fStep, Function oFunction,
DerivativeFunction oDFunction, void* pvData = NULL);
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virtual ~OdeImplicitEuler ();

virtual void Update (Real fTIn, Real* afXIn, Real& rfTOut,
Real* afXOut);

virtual void SetStepSize (Real fStep);

protected:
DerivativeFunction m_oDFunction;
GMatrix<Real> m_kDF;
GVector<Real> m_kF;
GMatrix<Real> m_kIdentity;

};

The update function is

template <class Real>
void OdeImplicitEuler<Real>::Update (Real fTIn, Real* afXIn,

Real& rfTOut, Real* afXOut)
{

m_oFunction(fTIn,afXIn,m_pvData,m_kF);
m_oDFunction(fTIn,afXIn,m_pvData,m_kDF);
GMatrix<Real> kDG = m_kIdentity - m_fStep*m_kDF;
GMatrix<Real> kDGInverse(m_iDim,m_iDim);
bool bInvertible = kDG.GetInverse(kDGInverse);

if ( bInvertible )
{

m_kF = kDGInverse*m_kF;
for (int i = 0; i < m_iDim; i++)

afXOut[i] = afXIn[i] + m_fStep*m_kF[i];
}
else
{

memcpy(afXOut,afXIn,m_iDim*sizeof(Real));
}

rfTOut = fTIn + m_fStep;
}

The first five lines of code compute the inverse derivative matrix DG−1. If the matrix
is indeed invertible, the output state is computed according to Equation (7.5). If it is
not invertible, the output state is set to the input state, but the output time is t + h.
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7.2 Particle Physics

The engine supports physical simulation of particle systems. The n particles are point
sources with positions Xi, masses mi, and velocities Vi, for 0 ≤ i < n. Forces Fi =
miAi are applied to the particles, where Ai is the acceleration of the particle. The
simulation is modeling using Newton’s equations of motion:

Ẍi = Fi(t , Xi , Ẋi)/mi , 0 ≤ i < n.

This is a second-order system of ordinary differential equations and is converted to a
system of first-order equations:[

Ẋi

V̇i

]
=
[

Vi

Fi(t , Xi , Vi)/mi

]
. (7.6)

The system is solved using the Runge-Kutta fourth-order method.
The class that encapsulates the particle system is ParticleSystem. Its interface is

listed next. The template parameters include Real for the floating-point type and
TVector, which is either Vector2 or Vector3 to support 2D or 3D systems.

template <class Real, class TVector>
class ParticleSystem
{
public:

ParticleSystem (int iNumParticles, Real fStep);
virtual ~ParticleSystem ();

int GetNumParticles () const;
void SetMass (int i, Real fMass);
Real GetMass (int i) const;
TVector* Positions () const;
TVector& Position (int i);
TVector* Velocities () const;
TVector& Velocity (int i);
void SetStep (Real fStep);
Real GetStep () const;

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity) = 0;

virtual void Update (Real fTime);

protected:
int m_iNumParticles;
Real* m_afMass;
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Real* m_afInvMass;
TVector* m_akPosition;
TVector* m_akVelocity;
Real m_fStep, m_fHalfStep, m_fSixthStep;

// temporary storage for solver
typedef TVector* TVectorPtr;
TVectorPtr m_akPTmp, m_akDPTmp1, m_akDPTmp2;
TVectorPtr m_akDPTmp3, m_akDPTmp4;
TVectorPtr m_akVTmp, m_akDVTmp1, m_akDVTmp2;
TVectorPtr m_akDVTmp3, m_akDVTmp4;

};

Many of the class member functions are accessors. The simulation is supported by
the virtual functions Acceleration and Update. The right-hand side of Equation (7.6)
has the force divided by mass, which is the acceleration of the particle. The member
function Acceleration is what a derived class implements to represent Fi/mi for each
particle. The acceleration depends on the time t , the current particle position Xi, and
the current particle velocity Vi.

The update function is the call into the Runge-Kutta solver. A particle is immov-
able if it has infinite mass. Equivalently, the inverse of the mass is zero. Only particles
with finite mass are affected by the applied forces.

template <class Real, class TVector>
void ParticleSystem<Real,TVector>::Update (Real fTime)
{

// Runge-Kutta fourth-order solver
Real fHalfTime = fTime + m_fHalfStep;
Real fFullTime = fTime + m_fStep;

// first step
int i;
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akDPTmp1[i] = m_akVelocity[i];
m_akDVTmp1[i] = Acceleration(i,fTime,m_akPosition,

m_akVelocity);
}

}
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
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{
m_akPTmp[i] = m_akPosition[i] +

m_fHalfStep*m_akDPTmp1[i];
m_akVTmp[i] = m_akVelocity[i] +

m_fHalfStep*m_akDVTmp1[i];
}
else
{

m_akPTmp[i] = m_akPosition[i];
m_akVTmp[i] = TVector::ZERO;

}
}

// second step
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akDPTmp2[i] = m_akVTmp[i];
m_akDVTmp2[i] = Acceleration(i,fHalfTime,m_akPTmp,

m_akVTmp);
}

}
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akPTmp[i] = m_akPosition[i] +
m_fHalfStep*m_akDPTmp2[i];

m_akVTmp[i] = m_akVelocity[i] +
m_fHalfStep*m_akDVTmp2[i];

}
else
{

m_akPTmp[i] = m_akPosition[i];
m_akVTmp[i] = TVector::ZERO;

}
}

// third step
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{
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m_akDPTmp3[i] = m_akVTmp[i];
m_akDVTmp3[i] = Acceleration(i,fHalfTime,m_akPTmp,

m_akVTmp);
}

}
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akPTmp[i] = m_akPosition[i] +
m_fStep*m_akDPTmp3[i];

m_akVTmp[i] = m_akVelocity[i] +
m_fStep*m_akDVTmp3[i];

}
else
{

m_akPTmp[i] = m_akPosition[i];
m_akVTmp[i] = TVector::ZERO;

}
}

// fourth step
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akDPTmp4[i] = m_akVTmp[i];
m_akDVTmp4[i] = Acceleration(i,fFullTime,m_akPTmp,

m_akVTmp);
}

}
for (i = 0; i < m_iNumParticles; i++)
{

if ( m_afInvMass[i] > (Real)0.0 )
{

m_akPosition[i] += m_fSixthStep*(m_akDPTmp1[i] +
((Real)2.0)*(m_akDPTmp2[i] + m_akDPTmp3[i]) +
m_akDPTmp4[i]);

m_akVelocity[i] += m_fSixthStep*(m_akDVTmp1[i] +
((Real)2.0)*(m_akDVTmp2[i] + m_akDVTmp3[i]) +
m_akDVTmp4[i]);

}
}

}
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Compare this to the Runge-Kutta solver that is implemented in class OdeRunge-
Kutta4. The current solver iterates over the particles, applying the Runge-Kutta algo-
rithm to each one, but ignoring those particles with infinite mass. Notice that each
step involves updating two arrays named m_akDPTmp* and m_akDVTmp*. The first type
of array corresponds to Ẋi = Vi in Equation (7.6), and the second type of array cor-
responds to V̇i = Fi(t , Xi , Vi)/mi in Equation (7.6).

You may derive classes from ParticleSystem to build your own customized parti-
cle systems. The next section describes a few such classes that represent mass-spring
systems.

7.3 Mass-Spring Systems

A popular choice for modeling deformable bodies is mass-spring systems, which I
discussed in detail in [Ebe03a]. This section contains a brief summary of the ideas,
of which two are important for implementation purposes. First, the springs con-
necting the masses are modeled using Hooke’s law and lead to the equations of mo-
tion. I solve these numerically using Runge-Kutta fourth-order methods. Second, the
topology of the connections of the masses by springs must be handled by an imple-
mentation. Curve masses are modeled as a one-dimensional array of particles (e.g.,
hair or rope), surface masses as two-dimensional arrays (e.g., cloth or water sur-
face), and volume masses as three-dimensional arrays (e.g., gelatinous blob or viscous
material).

7.3.1 Curve Masses

A curve mass is represented as a polyline of vertices, open with two end points or
closed with no end points. Each vertex of the polyline represents a mass. Each edge
represents a spring connecting the two masses at the end points of the edge. Figure
7.1 shows two such configurations.

The equations of motion for an open linear chain are as follows. The masses mi

are located at positions Xi for 1≤ i ≤ p. The system has p − 1 springs connecting the
masses; spring i connects mi and mi+1. At an interior point i, two spring forces are
applied, one from the spring shared with point i − 1 and one from the spring shared
with point i + 1. The spring connecting masses mi and mi+1 has spring constant ci

and rest length Li. The differential equation for particle i is

miẍi = ci−1

(|xi−1 − xi| − Li−1

) xi−1 − xi

|xi−1 − xi|

+ ci

(|xi+1 − xi| − Li

) xi+1 − xi

|xi+1 − xi|
+ Fi , (7.7)
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Figure 7.1 Two curve mass objects represented as mass-spring systems.

where Fi represents other forces acting on particle i, such as gravitational or wind
forces. With the proper definitions at the two boundary particles of c0, cp, L0, Lp,
X0, and Xp+1, Equation (7.7) also handles fixed boundary points and closed loops.

The class that implements a deformable curve mass is MassSpringCurve and is
derived from ParticleSystem. The interface is

template <class Real, class TVector>
class MassSpringCurve : public ParticleSystem<Real,TVector>
{
public:

MassSpringCurve (int iNumParticles, Real fStep);
virtual ~MassSpringCurve ();

int GetNumSprings () const;
Real& Constant (int i); // spring constant
Real& Length (int i); // spring resting length

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int m_iNumSprings;
Real* m_afConstant;
Real* m_afLength;

};
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The number of particles in the mass-spring system is passed to the constructor. The
second parameter, fStep, is the step size used in the Runge-Kutta numerical solver.
After construction, you must set the spring constants and spring resting lengths via
the appropriate member functions.

The Acceleration function is an override of the base class virtual function and is
what is called by the Runge-Kutta numerical solver. This function handles the internal
forces that the springs exert on the masses. The implementation is

template <class Real, class TVector>
TVector MassSpringCurve<Real,TVector>::Acceleration (int i, Real fTime,

const TVector* akPosition, const TVector* akVelocity)
{

TVector kAcceleration = ExternalAcceleration(i,fTime,
akPosition,akVelocity);

TVector kDiff, kForce;
Real fRatio;

if ( i > 0 )
{

int iM1 = i-1;
kDiff = akPosition[iM1] - akPosition[i];
fRatio = m_afLength[iM1]/kDiff.Length();
kForce = m_afConstant[iM1]*(((Real)1.0)-fRatio)*kDiff;
kAcceleration += m_afInvMass[i]*kForce;

}

int iP1 = i+1;
if ( iP1 < m_iNumParticles )
{

kDiff = akPosition[iP1] - akPosition[i];
fRatio = m_afLength[i]/kDiff.Length();
kForce = m_afConstant[i]*(((Real)1.0)-fRatio)*kDiff;
kAcceleration += m_afInvMass[i]*kForce;

}

return kAcceleration;
}

This is a straightforward implementation of the right-hand side of Equation (7.7).
The end points of the curve of masses are handled separately since each has only one
spring attached to it.

We must also allow for external forces such as gravity, wind, and friction. The
function ExternalAcceleration supports these. Just as in the ParticleSystem class,
the function represents the acceleration Fi/mi for a force Fi exerted on the particle i.



7.3 Mass-Spring Systems 583

Figure 7.2 A surface mass represented as a mass-spring system with the masses organized as a
two-dimensional array.

Derived classes override this function, but the default implementation is for a zero
external force.

The sample application on the CD-ROM that illustrates the use of MassSpring-
Curve is

MagicSoftware/WildMagic3/Test/TestRope

The application models a rope as a deformable curve mass.

7.3.2 Surface Masses

A surface mass is represented as a collection of particles arranged as a two-
dimensional array. An interior particle has four neighbors as shown in Figure 7.2.

The masses are mi0, i1 and are located at Xi0, i1 for 0 ≤ i0 < n0 and 0 ≤ i1 < n1. The
spring to the right of a particle has spring constant

c
(0)
i0, i1

and resting length L
(0)
i0, i1

.

The spring below a particle has spring constant

c
(1)
i0, i1

and resting length L
(1)
i0, i1

.

The understanding is that the spring constants and resting lengths are zero if the
particle has no such spring in the specified direction.

The equation of motion for particle (i0, i1) has four force terms due to Hooke’s
law, one for each neighboring particle:
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mi0, i1Ẍi0, i1 = ci0−1, i1

(
|Xi0−1, i1 − Xi0, i1| − Li0−1, i1

) Xi0−1, i1 − Xi0, i1

|Xi0−1, i1 − Xi0, i1|

+ ci0+1, i1

(
|Xi0+1, i1 − Xi0, i1| − Li0+1, i1

) Xi0+1, i1 − Xi0, i1

|Xi0+1, i1 − Xi0, i1|

+ ci0, i1−1

(
|Xi0, i1−1 − Xi0, i1| − Li0, i1−1

) Xi0, i1−1 − Xi0, i1

|Xi0, i1−1 − Xi0, i1|

+ ci0, i1+1

(
|Xi0, i1+1 − Xi0, i1| − Li0, i1+1

) Xi0, i1+1 − Xi0, i1

|Xi0, i1+1 − Xi0, i1|
+ Fi0, i1. (7.8)

As in the case of linear chains, with the proper definition of the spring constants
and resting lengths at the boundary points of the mesh, Equation (7.8) applies to
the boundary points as well as the interior points.

The class that implements a deformable surface mass is MassSpringSurface and is
derived from ParticleSystem. The interface is

template <class Real, class TVector>
class MassSpringSurface : public ParticleSystem<Real,TVector>
{
public:

MassSpringSurface (int iRows, int iCols, Real fStep);
virtual ~MassSpringSurface ();

int GetRows () const;
int GetCols () const;
void SetMass (int iRow, int iCol, Real fMass);
Real GetMass (int iRow, int iCol) const;
TVector** Positions2D () const;
TVector& Position (int iRow, int iCol);
TVector** Velocities2D () const;
TVector& Velocity (int iRow, int iCol);

Real& ConstantR (int iRow, int iCol); // spring to (r+1,c)
Real& LengthR (int iRow, int iCol); // spring to (r+1,c)
Real& ConstantC (int iRow, int iCol); // spring to (r,c+1)
Real& LengthC (int iRow, int iCol); // spring to (r,c+1)

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);
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virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int GetIndex (int iRow, int iCol) const;
void GetCoordinates (int i, int& riRow, int& riCol) const;

int m_iRows; // R
int m_iCols; // C
TVector** m_aakPosition; // R-by-C
TVector** m_aakVelocity; // R-by-C

int m_iRowsM1; // R-1
int m_iColsM1; // C-1
Real** m_aafConstantR; // (R-1)-by-C
Real** m_aafLengthR; // (R-1)-by-C
Real** m_aafConstantC; // R-by-(C-1)
Real** m_aafLengthC; // R-by-(C-1)

};

This class represents an R × C array of masses lying on a surface and connected
by an array of springs. The masses are indexed by mr , c for 0 ≤ r < R and 0 ≤ c < C

and are stored in row-major order. The other arrays are also stored in linear memory
in row-major order. The mass at interior position Xr , c is connected by springs to the
masses at positions Xr−1, c, Xr+1, c, Xr , c−1, and Xr , c+1. Boundary masses have springs
connecting them to the obvious neighbors: an “edge” mass has three neighbors, and
a “corner” mass has two neighbors.

The base class has support for accessing the masses, positions, and velocities
stored in a linear array. Rather than force you to use the one-dimensional index i

for the two-dimensional pair (r , c), I have provided member functions for accessing
the masses, positions, and velocities using the (r , c) pair. To avoid name conflict, Po-
sitions is used to access the one-dimensional array of particles. In the derived class,
Positions2D is the accessor for the same array, but as a two-dimensional array. Si-
multaneous representations of the arrays require the class to use System::Allocate
and System::Deallocate for dynamic creation and destruction of the array. The pro-
tected functions GetIndex and GetCoordinates implement the mapping between one-
and two-dimensional indices.

The spring constants and spring resting lengths must be set after a class object is
constructed. The interior mass at (r , c) has springs to the left, right, bottom, and top.
Edge masses have only three neighbors, and corner masses have only two neighbors.
The mass at (r , c) provides access to the springs connecting to locations (r , c + 1)
and (r + 1, c). Edge and corner masses provide access to only a subset of these. The
caller is responsible for ensuring the validity of the (r , c) inputs.
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Figure 7.3 A volume mass represented as a mass-spring system with the masses organized as a
three-dimensional array. Only the masses and springs on the three visible faces are
shown. The other connections are shown, but without their springs.

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in class MassSpringCurve. The sample application on the CD-ROM that illus-
trates the use of MassSpringSurface is

MagicSoftware/WildMagic3/Test/TestCloth

The application models a cloth as a deformable surface mass.

7.3.3 Volume Masses

A volume mass is represented as a collection of particles arranged as a three-
dimensional array. An interior particle has eight neighbors as shown in Figure 7.3.

The masses are mi0, i1, i2 and are located at Xi0, i1, i2 for 0 ≤ ij < nj , j = 0, 1, 2. In
the direction of positive increase of index ij , the spring has a spring constant

c
(j)

i0, i1, i2
and resting length L

(j)

i0, i1, i2

for j = 0, 1, 2. The understanding is that the spring constants and resting lengths are
zero if the particle has no such spring in the specified direction.

The equation of motion for particle (i0, i1, i2) has eight force terms due to
Hooke’s law, one for each neighboring particle:
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mi0, i1, i2Ẍi0, i1, i2 =

ci0−1, i1, i2

(
|Xi0−1, i1, i2 − Xi0, i1, i2| − Li0−1, i1, i2

) Xi0−1, i1, i2 − Xi0, i1, i2

|Xi0−1, i1, i2 − Xi0, i1, i2|

+ ci0+1, i1, i2

(
|Xi0+1, i1, i2 − Xi0, i1, i2| − Li0+1, i1, i2

) Xi0+1, i1, i2 − Xi0, i1, i2

|Xi0+1, i1, i2 − Xi0, i1, i2|

+ ci0, i1−1, i2

(
|Xi0, i1−1, i2 − Xi0, i1, i2| − Li0, i1−1, i2

) Xi0, i1−1, i2 − Xi0, i1, i2

|Xi0, i1−1, i2 − Xi0, i1, i2|

+ ci0, i1+1, i2

(
|Xi0, i1+1, i2 − Xi0, i1, i2| − Li0, i1+1, i2

) Xi0, i1+1, i2 − Xi0, i1, i2

|Xi0, i1+1, i2 − Xi0, i1, i2|

+ ci0, i1, i2−1

(
|Xi0, i1, i2−1 − Xi0, i1, i2| − Li0, i1, i2−1

) Xi0, i1, i2−1 − Xi0, i1, i2

|Xi0, i1, i2−1 − Xi0, i1, i2|

+ ci0, i1, i2+1

(
|Xi0, i1, i2+1 − Xi0, i1, i2| − Li0, i1, i2+1

) Xi0, i1, i2+1 − Xi0, i1, i2

|Xi0, i1, i2+1 − Xi0, i1, i2|
+ Fi0, i1, i2. (7.9)

With the proper definition of the spring constants and resting lengths at the boundary
points of the mesh, Equation (7.9) applies to the boundary points as well as the
interior points.

The class that implements a deformable volume mass is MassSpringVolume and is
derived from ParticleSystem. The interface is

template <class Real, class TVector>
class WM3_ITEM MassSpringVolume : public ParticleSystem<Real,TVector>
{
public:

MassSpringVolume (int iSlices, int iRows, int iCols, Real fStep);
virtual ~MassSpringVolume ();

int GetSlices () const;
int GetRows () const;
int GetCols () const;
void SetMass (int iSlice, int iRow, int iCol, Real fMass);
Real GetMass (int iSlice, int iRow, int iCol) const;
TVector*** Positions3D () const;
TVector& Position (int iSlice, int iRow, int iCol);
TVector*** Velocities3D () const;
TVector& Velocity (int iSlice, int iRow, int iCol);
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Real& ConstantS (int iS, int iR, int iC); // to (s+1,r,c)
Real& LengthS (int iS, int iR, int iC); // to (s+1,r,c)
Real& ConstantR (int iS, int iR, int iC); // to (s,r+1,c)
Real& LengthR (int iS, int iR, int iC); // to (s,r+1,c)
Real& ConstantC (int iS, int iR, int iC); // to (s,r,c+1)
Real& LengthC (int iS, int iR, int iC); // to (s,r,c+1)

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int GetIndex (int iSlice, int iRow, int iCol) const;
void GetCoordinates (int i, int& riSlice, int& riRow,

int& riCol) const;

int m_iSlices; // S
int m_iRows; // R
int m_iCols; // C
int m_iSliceQuantity; // R*C
TVector*** m_aaakPosition; // S-by-R-by-C
TVector*** m_aaakVelocity; // S-by-R-by-C

int m_iSlicesM1; // S-1
int m_iRowsM1; // R-1
int m_iColsM1; // C-1
Real*** m_aaafConstantS; // (S-1)-by-R-by-C
Real*** m_aaafLengthS; // (S-1)-by-R-by-C
Real*** m_aaafConstantR; // S-by-(R-1)-by-C
Real*** m_aaafLengthR; // S-by-(R-1)-by-C
Real*** m_aaafConstantC; // S-by-R-by-(C-1)
Real*** m_aaafLengthC; // S-by-R-by-(C-1)

};

This class represents an S × R × C array of masses lying in a volume and con-
nected by an array of springs. The masses are indexed by m(s , r , c) for 0 ≤ s < S,
0 ≤ r < R, and 0 ≤ c < C and are stored in lexicographical order. That is, the index
for the one-dimensional array of memory is i = c + C(r + Rs). The other arrays
are also stored in linear memory in lexicographical order. The mass at interior po-
sition Xs , r , c is connected by springs to the masses at positions Xs−1, r , c, Xs+1, r , c,
Xs , r−1, c, Xs , r+1, c, Xs , r , c−1, and Xs , r , c+1. Boundary masses have springs connecting
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them to the obvious neighbors: a “face” mass has five neighbors, an “edge” mass has
four neighbors, and a “corner” mass has three neighbors.

The base class has support for accessing the masses, positions, and velocities
stored in a linear array. Rather than force you to use the one-dimensional index
i for the three-dimensional triple (s , r , c), I have provided member functions for
accessing the masses, positions, and velocities using the (s , r , c) triple. To avoid
name conflict, Positions is used to access the one-dimensional array of particles.
In the derived class, Positions3D is the accessor for the same array, but as a three-
dimensional array. Simultaneous representations of the arrays require the class to
use System::Allocate and System::Deallocate for dynamic creation and destruction
of the array. The protected functions GetIndex and GetCoordinates implement the
mapping between one- and three-dimensional indices.

The spring constants and spring resting lengths must be set after a class object
is constructed. The interior mass at (s , r , c) has springs attaching it to six neigh-
bors. Face masses have only five neighbors, edge masses have only four neighbors,
and corner masses have only three neighbors. The mass at (s , r , c) provides access
to the springs connecting to locations (s + 1, r , c), (s , r + 1, c), and (s , r , c + 1).
Face, edge, and corner masses provide access to only a subset of these. The caller is
responsible for ensuring the validity of the (s , r , c) inputs.

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in classes MassSpringCurve and MassSpringSurface.

The sample application on the CD-ROM that illustrates the use of MassSpringVol-
ume is

MagicSoftware/WildMagic3/Test/TestGelatinCube

The application models a gelatinous cube as a deformable volume mass.

7.3.4 Arbitrary Configurations

In general you can set up an arbitrary configuration for a mass-spring system of p

particles with masses mi and location xi. Each spring added to the system connects
two masses, say, mi and mj . The spring constant is cij > 0, and the resting length is
Lij .

Let Ai denote the set of indices j such that mj is connected to mi by a spring—the
set of adjacent indices, so to speak. The equation of motion for particle i is

miẌi =
∑
j∈Ai

cij

(|Xj − Xi| − Lij

) Xj − Xi

|Xj − Xi|
+ Fi . (7.10)

The technical difficulty in building a differential equation solver for an arbitrary
graph is encapsulated solely by a vertex-edge table that stores the graph. Whenever
the numerical solver must process particle i via Equation (7.10), it must be able to
iterate over the adjacent indices to evaluate the Hooke’s law terms.
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The class that implements a mass-spring system with an arbitrary configuration
of masses and springs is MassSpringArbitrary and is derived from ParticleSystem.
The interface is

template <class Real, class TVector>
class MassSpringArbitrary : public ParticleSystem<Real,TVector>
{
public:

MassSpringArbitrary (int iNumParticles, int iNumSprings,
Real fStep);

virtual ~MassSpringArbitrary ();

int GetNumSprings () const;
void SetSpring (int iSpring, int iParticle0, int iParticle1,

Real fConstant, Real fLength);
void GetSpring (int iSpring, int& riParticle0,

int& riParticle1, Real& rfConstant, Real& rfLength) const;

Real& Constant (int iSpring);
Real& Length (int iSpring);

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
class Spring
{
public:

int Particle0, Particle1;
Real Constant, Length;

};

int m_iNumSprings;
Spring* m_akSpring;

// Each particle has an associated array of spring indices for those
// springs adjacent to the particle. The set elements are spring
// indices, not indices of adjacent particles.
TSet<int>* m_akAdjacent;

};
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The constructor requires you to specify the number of particles and the number
of springs in the system. The parameter fStep is the step size used in the Runge-Kutta
numerical solver. After construction, you must call SetSpring for each spring that
you want in the system. If spring i connects particles p1 and p2, the order of the
parameters in the function call is irrelevant. It is possible to have two springs that
connect the same pair of particles, but I suggest just using at most one spring per
pair.

The array member, m_akAdjacent, is an array of sets of integers. The set
m_akAdjacent[i] represents Ai and contains those integers j for which a spring con-
nects particle i to particle j .

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in classes MassSpringCurve, MassSpringSurface, and MassSpringVolume.

The sample application on the CD-ROM that illustrates the use of MassSpring-
Arbitrary is

MagicSoftware/WildMagic3/Test/TestGelatinBlob

The application models a gelatinous blob as a deformable volume mass. The blob has
the topology of an icosahedron.

7.4 Deformable Bodies

There are many ways to model deformable bodies in a physics simulation. A model
that is designed to conform to the physical principles of deformation will most likely
be expensive to compute in a real-time application. Instead, you should consider less
expensive alternatives. I will mention a few possibilities here.

The SurfaceMesh class, described in Section 4.3, supports dynamic updating of
the mesh vertices, which makes it a good candidate for representing a deformable
body. You must provide the physics simulation that modifies the mesh vertices during
run time. A pitfall of simulations is allowing arbitrary motion of vertices, which
leads to self-intersections of the mesh. A collision detection system can help you
determine—and prevent—self-intersections, but by doing so, you add an additional
layer of expense to the computations. Once physics hardware becomes available on
consumer machines, the expense will be negligible.

The MorphController class similarly allows you to dynamically deform a mesh.
Whereas the deformations of SurfaceMesh-derived objects are controlled by chang-
ing the surface parameters of the derived class, the deformations of objects with a
MorphController attached are controlled by a set of keyframes. The keyframes them-
selves may be dynamically modified.

Yet more classes in the engine that support deformable objects are PointCon-
troller and ParticleController. Their interfaces allow you to specify the positions
and velocities whenever your choose. A physical simulation will set these quantities
accordingly.
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The possibilities are endless. The IKController and SkinController classes may
also be used for deformation. Animation via controllers directly supports the concept
of deformation: It is just a matter of animating the data that directly, or indirectly,
affects the vertices of a mesh. The popular rag doll physics is an excellent example of
how to blend together deformable objects and collision detection and response.

7.5 Rigid Bodies

The last topic of the chapter is rigid bodies. Creating a general physics engine that
handles interacting bodies is quite difficult. However, an engine will contain the foun-
dations for computing unconstrained motion using Newton’s equations of motion.
The collision detection system computes the physical constraints that occur during
run time. A careful separation of the collision detection subsystem and the collision
response subsystem is called for. The two subsystems must interact, but the separa-
tion allows you to more easily diagnose problems and identify which subsystem is
causing problems when your simulation shows that some objects are not conforming
to the physical principles you had in mind.

A particle can be thought of as a rigid body without size or orientation; it has a
position, velocity, and applied forces. Many objects in a physical simulation, though,
are not particles and have size and orientation. The standard representation for a rigid
body in a real-time application is a polyhedron. A coordinate system is chosen for the
body for the purposes of positioning and orienting the object in space. For physical
and mathematical reasons, the center of mass is chosen to be the body origin, and
the body coordinate axes are chosen to be the principal directions of inertia. The
direction vectors turn out to be eigenvectors of the inertia tensor for the body. The
choice of coordinate system allows us to decompose the motion calculations into
translation of the center of mass (position, linear velocity, and linear acceleration)
and rotation of the body (orientation, angular velocity, and angular acceleration).
Yet another simplifying assumption is that the mass of the rigid body is uniformly
distributed within the body.

Here is a very brief summary of the material in [Ebe03a] regarding unconstrained
motion of a rigid body. Let X(t) and V(t) denote the position and velocity, respec-
tively, of the center of mass of the rigid body. The linear momentum of the body is

P(t) = mV(t). (7.11)

Newton’s second law of motion states that the rate of change of linear momentum is
equal to the applied force,

Ṗ(t) = F(t), (7.12)
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where m is the mass of the body, Ẍ(t) is the linear acceleration of the body, and F(t)

is the applied force on the object. The equations of motion pertaining to position and
linear momentum are

Ẋ = m−1P, Ṗ = F. (7.13)

Similar equations of motion can be derived for the orientation matrix R(t) of the
body. In the coordinate system of the rigid body, let b denote the time-independent
position of a point relative to the origin (the center of mass). The world coordinate
of the point is

Y(t) = X(t) + R(t)b.

The inertia tensor in body coordinates is the 3 × 3 symmetric matrix,

Jbody =
∫

B

(
|b|2I − bbT

)
dm, (7.14)

where B is the set of points making up the body, I is the identity matrix, and dm

is the infinitesimal measure of mass in the body. For a body of constant density δ,
dm = δ dV , where dV is the infinitesimal measure of volume in the body. As we will
see later in this section, the integration in Equation (7.14) can be computed exactly
for a constant-density, rigid body that is represented by a polyhedron. The resulting
formula is an algebraic expression that is easily computed.

The inertia tensor in world coordinates is

J (t) =
∫

B

(
|r|2I − rrT

)
dm = R(t)JbodyR(t)T, (7.15)

where r(t) = Y(t) − X(t) = R(t)b. The inertia tensor is sometimes referred to as the
mass matrix.

The rate of change of the orientation matrix, R(t), is related to the angular
velocity vector, W(t) = (w0, w1, w2), by

Ṙ(t) = Skew(W(t))R(t), (7.16)

where S = Skew(W) is the skew-symmetric matrix whose entries are S00 = S11 =
S22 = 0, S01 = −w2, S10 = w2, S02 = w1, S20 = −w1, S12 = −w0, and S21 = w0.

The angular momentum, L(t), and angular velocity, W(t), are related by

L(t) = J (t)W(t), (7.17)

where J (t) is the inertia tensor defined by Equation (7.15). Notice the similarity of
Equation (7.17) to Equation (7.11). The linear momentum is defined as mass times
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linear velocity, and the angular momentum is defined as mass matrix times angular
velocity.

The equivalent of Newton’s second law of motion, which relates linear accel-
eration and force, is the following, which states that the rate of change of angular
momentum is equal to the applied torque:

L̇(t) = τ(t), (7.18)

where τ(t) is the torque applied to the rigid body. The equations of motion pertaining
to orientation and angular momentum are

Ṙ = Skew(W)R , L̇ = τ . (7.19)

The angular velocity is dependent on other known quantities, namely,

W(t) = J−1L = RJ−1
bodyR

T L. (7.20)

Equations (7.13), (7.19), and (7.20) can be combined into a single system of
differential equations that model the unconstrained motion of the rigid body. The
state vector is S = (X , P, R , L), and the system of equations is

dS

dt
= d

dt

⎡
⎢⎢⎣

X
R

P
L

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Ẋ
Ṙ

Ṗ
L̇

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m−1P
Skew(RJ−1

bodyR
TL)R

F
τ

⎤
⎥⎥⎦= G(t , S). (7.21)

This system is first-order, so it may be solved numerically using your favorite differ-
ential equation solver. My choice is the Runge-Kutta fourth-order method. The input
parameters are the mass m and body inertia tensor Jbody, both constants during the
physical simulation. The force F and torque τ are vector-valued functions that your
application must present to the simulator. The initial state, S(0), is also specified by
your application. Once all these quantities are known, the numerical solver is ready
to be iterated.

Although Equation (7.21) is ready to solve numerically, most practitioners choose
to use quaternions to represent the orientation matrices. If R(t) is the orientation
matrix, a corresponding quaternion is denoted q(t). The equivalent of Equation
(7.16) for quaternions is

q̇(t) = ω(t)q(t)/2, (7.22)

where ω = W0i + W1j + W2k is the quaternion representation of the angular velocity
W = (W0, W1, W2). The system of equations that I really implement is
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⎡
⎢⎢⎣

Ẋ
q̇

Ṗ
L̇

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m−1P
ωq/2

F
τ

⎤
⎥⎥⎦ . (7.23)

After each iteration of the numerical solver, the application must transform the
rigid body to its new world coordinates. The use of quaternions will require us to con-
vert between quaternions and rotation matrices. The classes Matrix3 and Quaternion
support these conversions.

7.5.1 The Rigid Body Class

The class that encapsulates a rigid body is RigidBody and has the interface

template <class Real>
class RigidBody
{
public:

RigidBody ();
virtual ~RigidBody ();

// set/get position
Vector3<Real>& Position ();

// set rigid body state
void SetMass (float fMass);
void SetBodyInertia (const Matrix3<Real>& rkInertia);
void SetPosition (const Vector3<Real>& rkPos);
void SetQOrientation (const Quaternion<Real>& rkQOrient);
void SetLinearMomentum (const Vector3<Real>& rkLinMom);
void SetAngularMomentum (const Vector3<Real>& rkAngMom);
void SetROrientation (const Matrix3<Real>& rkROrient);
void SetLinearVelocity (const Vector3<Real>& rkLinVel);
void SetAngularVelocity (const Vector3<Real>& rkAngVel);

// get rigid body state
Real GetMass () const;
Real GetInverseMass () const;
const Matrix3<Real>& GetBodyInertia () const;
const Matrix3<Real>& GetBodyInverseInertia () const;
Matrix3<Real> GetWorldInertia () const;
Matrix3<Real> GetWorldInverseInertia () const;
const Vector3<Real>& GetPosition () const;
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const Quaternion<Real>& GetQOrientation () const;
const Vector3<Real>& GetLinearMomentum () const;
const Vector3<Real>& GetAngularMomentum () const;
const Matrix3<Real>& GetROrientation () const;
const Vector3<Real>& GetLinearVelocity () const;
const Vector3<Real>& GetAngularVelocity () const;

// force/torque function format
typedef Vector3<Real> (*Function)
(

Real, // time of application
Real, // mass
const Vector3<Real>&, // position
const Quaternion<Real>&, // orientation
const Vector3<Real>&, // linear momentum
const Vector3<Real>&, // angular momentum
const Matrix3<Real>&, // orientation
const Vector3<Real>&, // linear velocity
const Vector3<Real>& // angular velocity

);

// force and torque functions
Function Force;
Function Torque;

// Runge-Kutta fourth-order differential equation solver
void Update (Real fT, Real fDT);

protected:
// constant quantities (matrices in body coordinates)
Real m_fMass, m_fInvMass;
Matrix3<Real> m_kInertia, m_kInvInertia;

// state variables
Vector3<Real> m_kPos; // position
Quaternion<Real> m_kQOrient; // orientation
Vector3<Real> m_kLinMom; // linear momentum
Vector3<Real> m_kAngMom; // angular momentum

// derived state variables
Matrix3<Real> m_kROrient; // orientation matrix
Vector3<Real> m_kLinVel; // linear velocity
Vector3<Real> m_kAngVel; // angular velocity

};
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The constructor creates an uninitialized rigid body. The rigid body state must be
initialized using the Set functions before starting the physical simulation. The Get
functions allow you access to the current state of the rigid body.

The constant quantities for the rigid body are the mass and inertia tensor in body
coordinates. Because the differential equation solver must divide by mass and use the
inverse of the inertia tensor, these are computed once and stored. If you want a rigid
body to be immovable, set its inverse mass to zero and its inverse inertia tensor to the
zero matrix. In effect, the body mass is infinite, and the body is too heavy to rotate.

The state variable in Equation (7.23) includes position, orientation (represented
as a quaternion), linear momentum, and angular momentum. These values are stored
by the class. The other quantities of interest are derived from the state variables:
the orientation matrix (derived from the quaternion orientation), the linear velocity
(derived from the linear momentum and mass), and the angular velocity (derived
from the angular momentum, the inertia tensor, and the orientation matrix). The
derived variables are guaranteed to be synchronized with the state variables.

The class defines a function type, called RigidBody::Function. The force F and
torque τ in Equation (7.23) possibly depend on many variables, including the current
time and state of the system. If you think of the equations of motion as Ṡ = G(t , S),
then the function type RigidBody::Function represents the function on the right-
hand side, G(t , S). The class has two data members that are in public scope, Force
and Torque, which are set by your application.

The member function Update is a single iteration of the Runge-Kutta fourth-order
solver. The implementation is

template <class Real>
void RigidBody<Real>::Update (Real fT, Real fDT)
{

Real fHalfDT = ((Real)0.5)*fDT;
Real fSixthDT = fDT/((Real)6.0);
Real fTpHalfDT = fT + fHalfDT;
Real fTpDT = fT + fDT;

Vector3<Real> kNewPos, kNewLinMom, kNewAngMom, kNewLinVel;
Vector3<Real> kNewAngVel;
Quaternion<Real> kNewQOrient;
Matrix3<Real> kNewROrient;

// A1 = G(T,S0), B1 = S0 + (DT/2)*A1
Vector3<Real> kA1DXDT = m_kLinVel;
Quaternion<Real> kW = Quaternion<Real>((Real)0.0,m_kAngVel.X(),

m_kAngVel.Y(),m_kAngVel.Z());
Quaternion<Real> kA1DQDT = ((Real)0.5)*kW*m_kQOrient;
Vector3<Real> kA1DPDT = Force(fT,m_fMass,m_kPos,m_kQOrient,

m_kLinMom,m_kAngMom,m_kROrient,m_kLinVel,m_kAngVel);



598 Chapter 7 Physics

Vector3<Real> kA1DLDT = Torque(fT,m_fMass,m_kPos,m_kQOrient,
m_kLinMom,m_kAngMom,m_kROrient,m_kLinVel,m_kAngVel);

kNewPos = m_kPos + fHalfDT*kA1DXDT;
kNewQOrient = m_kQOrient + fHalfDT*kA1DQDT;
kNewLinMom = m_kLinMom + fHalfDT*kA1DPDT;
kNewAngMom = m_kAngMom + fHalfDT*kA1DLDT;
kNewQOrient.ToRotationMatrix(kNewROrient);
kNewLinVel = m_fInvMass*kNewLinMom;
kNewAngVel = kNewROrient*m_kInvInertia*kNewROrient.Transpose()

*kNewAngMom;

// A2 = G(T+DT/2,B1), B2 = S0 + (DT/2)*A2
Vector3<Real> kA2DXDT = kNewLinVel;
kW = Quaternion<Real>((Real)0.0,kNewAngVel.X(),kNewAngVel.Y(),

kNewAngVel.Z());
Quaternion<Real> kA2DQDT = ((Real)0.5)*kW*kNewQOrient;
Vector3<Real> kA2DPDT = Force(fTpHalfDT,m_fMass,kNewPos,

kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

Vector3<Real> kA2DLDT = Torque(fTpHalfDT,m_fMass,kNewPos,
kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

kNewPos = m_kPos + fHalfDT*kA2DXDT;
kNewQOrient = m_kQOrient + fHalfDT*kA2DQDT;
kNewLinMom = m_kLinMom + fHalfDT*kA2DPDT;
kNewAngMom = m_kAngMom + fHalfDT*kA2DLDT;
kNewQOrient.ToRotationMatrix(kNewROrient);
kNewLinVel = m_fInvMass*kNewLinMom;
kNewAngVel = kNewROrient*m_kInvInertia*kNewROrient.Transpose()

*kNewAngMom;

// A3 = G(T+DT/2,B2), B3 = S0 + DT*A3
Vector3<Real> kA3DXDT = kNewLinVel;
kW = Quaternion<Real>((Real)0.0,kNewAngVel.X(),kNewAngVel.Y(),

kNewAngVel.Z());
Quaternion<Real> kA3DQDT = ((Real)0.5)*kW*kNewQOrient;
Vector3<Real> kA3DPDT = Force(fTpHalfDT,m_fMass,kNewPos,

kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

Vector3<Real> kA3DLDT = Torque(fTpHalfDT,m_fMass,kNewPos,
kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

kNewPos = m_kPos + fDT*kA3DXDT;
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kNewQOrient = m_kQOrient + fDT*kA3DQDT;
kNewLinMom = m_kLinMom + fDT*kA3DPDT;
kNewAngMom = m_kAngMom + fDT*kA3DLDT;
kNewQOrient.ToRotationMatrix(kNewROrient);
kNewLinVel = m_fInvMass*kNewLinMom;
kNewAngVel = kNewROrient*m_kInvInertia*kNewROrient.Transpose()

*kNewAngMom;

// A4 = G(T+DT,B3), S1 = S0 + (DT/6)*(A1+2*(A2+A3)+A4)
Vector3<Real> kA4DXDT = kNewLinVel;
kW = Quaternion<Real>((Real)0.0,kNewAngVel.X(),kNewAngVel.Y(),

kNewAngVel.Z());
Quaternion<Real> kA4DQDT = ((Real)0.5)*kW*kNewQOrient;
Vector3<Real> kA4DPDT = Force(fTpDT,m_fMass,kNewPos,

kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

Vector3<Real> kA4DLDT = Torque(fTpDT,m_fMass,kNewPos,
kNewQOrient,kNewLinMom,kNewAngMom,kNewROrient,kNewLinVel,
kNewAngVel);

m_kPos = m_kPos + fSixthDT*(kA1DXDT + ((Real)2.0)*(kA2DXDT +
kA3DXDT) + kA4DXDT);

m_kQOrient = m_kQOrient + fSixthDT*(kA1DQDT +
((Real)2.0)*(kA2DQDT + kA3DQDT) + kA4DQDT);

m_kLinMom = m_kLinMom + fSixthDT*(kA1DPDT +
((Real)2.0)*(kA2DPDT + kA3DPDT) + kA4DPDT);

m_kAngMom = m_kAngMom + fSixthDT*(kA1DLDT +
((Real)2.0)*(kA2DLDT + kA3DLDT) + kA4DLDT);

m_kQOrient.ToRotationMatrix(m_kROrient);
m_kLinVel = m_fInvMass*m_kLinMom;
m_kAngVel = m_kROrient*m_kInvInertia*m_kROrient.Transpose()

*m_kAngMom;
}

Its structure is similar to the previous implementations we have seen for the
Runge-Kutta solvers. The exception is that after each of the four steps in the solver, the
derived variables must be computed. The orientation matrix is computed from the
orientation quaternion, the linear velocity is computed from the linear momentum
and inverse mass, and the angular velocity is computed from the orientation matrix,
the inverse inertia tensor, and the angular momentum.

Two applications illustrating the use of RigidBody are on the CD-ROM:

MagicSoftware/WildMagic3/Test/TestBouncingBalls
MagicSoftware/WildMagic3/Test/TestBouncingTetrahedra
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The first application is fairly simple from the point of view of collision detection—
it is easy to compute the contact time and contact point between two spheres. The
second application is more complicated: it sets up the collision detection as a linear
complementarity problem (LCP) and uses a numerical solver for the LCP. LCPs and
their numerical solution are a complicated topic that I will not discuss here. See
[Ebe03a] for details and references to the literature.

7.5.2 Computing the Inertia Tensor

The RigidBody class requires you to initialize the body by specifying its mass and
body inertia tensor. Generally, the inertia tensor is a complicated, mathematical beast.
For constant-density bodies that are represented by polyhedra, the tensor can be
computed in closed form. The document [Ebe03b] is about deriving the equations
for the inertia tensor. The paper [Mir96] is what practitioners had been using for the
equations, but is less efficient regarding the calculations, and the equations are more
detailed and tedious to implement. A discussion of [Ebe03b] is also in [Ebe03a].

The essence of the algorithm is that the entries of the inertia tensor are triple
integrals evaluated over the region of space occupied by the body. Each integral has
an integrand that is a quadratic polynomial. The divergence theorem from calculus
allows you to convert the volume integrals to surface integrals. Because the object
is a polyhedron, the surface integrals are reduced to a sum of integrals over the
polyhedron faces. Each of these integrals is easily computed in closed form.

A single function is provided for computing the mass, center of mass, and the
inertia tensor for a rigid body with constant density and represented by a polyhedron:

template <class Real>
void ComputeMassProperties (const Vector3<Real>* akVertex,

int iTQuantity, const int* aiIndex, bool bBodyCoords,
Real& rfMass, Vector3<Real>& rkCenter,
Matrix3<Real>& rkInertia);

The polyhedron must be represented by a closed triangle mesh. Each edge of the mesh
is shared by exactly two triangles. The first parameter of the function is the array of
vertices for the mesh. The second parameter is the number of triangles in the mesh.
The third parameter is the index array, which has 3T indices for T triangles. Each
triple of indices represents a triangle in the mesh, and the indices are for lookups in
the vertex array.

The parameter bBodyCoords is set to true when you want the inertia tensor in body
coordinates. For the purposes of the class RigidBody, this is what you want. If you
want the inertia tensor in world coordinates, set the Boolean parameter to false.

The last three parameters (the mass of the body, the center of mass, and the inertia
tensor) are the output of the function.



C h a p t e r 8
Applications

The last topic of this book is about creating applications. The example in Section
1.1 showed you how much source code must be written to simply create and

display a window. The WinMain function is about 135 lines of code. Its duties are

create the application window

create a renderer whose output is displayed in the application window

set up the camera model for the renderer

display the window

start the message pump so that the window can receive and process events
(mouse, keyboard, termination)

draw the triangle during idle time

exit the message pump, destroy the renderer, and destroy the window

The event-processing function is WndProc, and it is about 250 lines of code. A
switch statement is used to determine the type of event that has occurred. In this
particular application, the pressing of character keys is trapped in order to translate
and rotate the triangle. The pressing of arrow keys, paging keys, and home or end
keys is trapped in order to translate and rotate the camera. The only other event
trapped is the signal to terminate the application. Conceptually, the event handler
code is simple, but its size is large.

601
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The drawing function is DrawIt and is purely specific to the OpenGL renderer.
Such drawing will be customized for a particular application.

The WinMain and WndProc functions have a lot of code that you should expect to be
common to all applications. Object-oriented principles dictate that you should make
every attempt to factor out the common code for reuse.

Many programmers are accustomed to developing on a single platform. Even
with code factoring for reuse on their preferred platforms, in most cases the resulting
system will not work for other platforms. The WinMain and WndProc are specific to
the Microsoft Windows platform. A Unix or Linux platform will use the standard
entry point, main, and, most likely, an X-Windows base layer for window creation
and event handling. The Macintosh OS X platform is Unix based and also uses main
as the entry point. However, the Macintosh has no native concept of command line
parameters, unless you execute programs from a terminal window. Even if you intend
your applications to be run from a terminal, getting keyboard and mouse events
hooked up to an application is a nontrivial process—one that is quite specific to the
Macintosh.

Clearly, this discussion should be the motivation for writing an interface for an
application layer. The first goal of the interface is to hide the extensive code for the
application setup and to avoid the drudgery of creating repeatedly the base code for
each of your applications. Write it once; use it often. Should you choose to have
portable software, the second goal of the interface is to hide the platform-specific
details of the application.

8.1 Abstraction of the Application

The Wild Magic version 3 engine has an application subsystem whose features include
the following:

The initialization and termination of objects via registered functions. This mech-
anism was described in detail in Section 2.3.8.

A console application layer for those applications requiring neither a window nor
a renderer. For example, the ScenePrinter tool is an application on the CD-ROM
that traverses a scene graph and creates an ASCII file of information about it.

A window application layer that supports both 2D and 3D applications. Derived
classes are provided for the 2D and 3D window applications. The 2D layer has
only a renderer for drawing to a bitmap that is later sent to the graphics card to
be used as the entire screen. The 3D layer has a camera, as well as a renderer, and
is the basis for nearly all the sample applications that are on the CD-ROM.

An application library that supports both console and windowed applications, so
you need only link in one library for any application, regardless of its type. In
contrast, for Wild Magic version 2, you had to create either a console application
with no linking of any application library, or a 3D application with linking of a 3D
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application library, or a 2D application that was derived from the 3D application
layer as a quick hack to support such applications.

The application types in Wild Magic version 3 are ConsoleApplication, Window-
Application2, and WindowApplication3. Your application will be a derived class from
one of these. The application library is designed so that your applications are portable
across all platforms that have implemented a few required functions in the appli-
cation layer. My libraries hide operating system dependencies, the initialization and
termination subsystem, the creation of windows and renderers, and the handling of
events such as key presses and mouse clicks. The abstract interface is by no means
complete, but suffices for most applications. You certainly can add to the application
layer as needed.

8.1.1 Processing Command Line Parameters

The standard entry point into an application is the function

int main (int iQuantity, char** apcArgument)
{

// iQuantity >= 1 is always true
// apcArgument[0] is the name of the executing module

// ... process command line arguments here ...

return 0;
}

The first parameter is the number of strings that occur in the second parameter,
an array of pointers to character strings. The input parameters are optional, so it
is okay to call main() or main(int). The compiler will correctly parse the statement
in all cases. The function actually has a third optional parameter, which is used
for passing the environment variables, but I do not deal with those in Wild Magic.
Clearly, anyone writing an application that accepts inputs to main must be prepared
to parse the array of strings.

The age-old approach to processing command line parameters is represented by
Henry Spencer’s getopt routines. The getopt routines are limited in that the option
names have to be a single letter. Also, the main routine must contain a loop and
a switch statement (of options), which repeatedly fetches an argument and decides
which option it is and which action to take. I wrote my own command line parser,
which allows option names of length greater than 1, and which allows one to get an
argument anywhere in the main routine. This tends to keep the parameter processing
and actions together in a related block of code.

The class is Command and has the following interface:
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class Command
{
public:

Command (int iQuantity, char** apcArgument);
Command (char* acCmdline);
~Command ();

int ExcessArguments ();

Command& Min (double dValue);
Command& Max (double dValue);
Command& Inf (double dValue);
Command& Sup (double dValue);

int Boolean (char* acName); // returns existence of option
int Boolean (char* acName, bool& rbValue);
int Integer (char* acName, int& riValue);
int Float (char* acName, float& rfValue);
int Double (char* acName, double& rdValue);
int String (char* acName, char*& racValue);
int Filename (char*& racName);

const char* GetLastError ();

protected:
// constructor support
void Initialize ();

// command line information
int m_iQuantity; // number of arguments
char** m_apcArgument; // argument list (array)
char* m_acCmdline; // argument list (single)
bool* m_abUsed; // arguments already processed

// parameters for bounds checking
double m_dSmall; // bound for argument (min or inf)
double m_dLarge; // bound for argument (max or sup)
bool m_bMinSet; // if true, compare: small <= arg
bool m_bMaxSet; // if true, compare: arg <= large
bool m_bInfSet; // if true, compare: small < arg
bool m_bSupSet; // if true, compare: arg < large

// last error strings
const char* m_acLastError;
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static char ms_acOptionNotFound[];
static char ms_acArgumentRequired[];
static char ms_acArgumentOutOfRange[];
static char ms_acFilenameNotFound[];

};

The constructor Command(int,char**) takes as input the arguments to routine
main. In a Microsoft Windows application, the constructor Command(char*) takes as
input the command line string to WinMain. I have designed the Wild Magic version
3 application layer to use only main, so you have no need for the second form of the
constructor.

After all arguments are processed, the method ExcessArguments may be called to
check for extraneous information on the command line that does not match what
was expected by the program. If extra or unknown arguments appear, then the return
value is the index within the command line string of the first such argument.

When parsing options whose arguments are numerical values, it is possible that
upper and lower bounds are required on the input. The bounds for input X are set
via calls to Min (min ≤ X), Max (X ≤ max), Inf (inf < X), or Sup (X < sup). These
methods return *this so that a Command object can set bounds and acquire input
within the same statement. Some examples are shown later in this section.

The supported option types are Booleans (the option takes no arguments), inte-
gers, reals, strings, or filenames. Each type has an associated method whose first char*
parameter is the option name and whose second parameter will be the option ar-
gument, if present. The exceptions are the first Boolean method (an option with no
argument) and filenames (an argument with no option). The return value of each
method is the index within the command line string, or zero if the option did not
occur on the command line.

The function GetLastError returns information about problems with reading
command line parameters. The errors are “option not found”, “option requires an
argument”, “argument out of range”, and “filename not found”. The user has the
responsibility for calling GetLastError.

A simple example of command line parsing is the following. Suppose that you
have a program for integrating a function f (x) whose domain is the half-open in-
terval [a , b). The function will be specified as a string, and the end points of the
interval will be specified as real numbers. Let’s assume that we want 0 ≤ a < b < 1.
Your program will use samples of the function to produce an approximate value for
the integral, so you also want to input the number of partition points as an integer.
Finally, your program will write information about the integration to a file.

#include "Wm3Command.h"
using namespace Wm3;

// usage:
// "integrate [options] outputfile" with options listed below:
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// " -a (float) : left endpoint (a >= 0, default=0.0)"
// " -b (float) : right endpoint (a < b < 1, default=0.5)"
// " -num (int) : number of partitions (default=1)"
// " -func (string): expression for f(x)"
// " -debug : debug information (default=none)"
// " outputfile : name of file for output information"

int main (int iQuantity, char** apcArgument)
{

Command kCmd(iQuantity,apcArgument);

// get left end point (0 <= a is required)
double dA = 0.0f;
kCmd.Min(0.0).Double("a",dA);
if ( kCmd.GetLastError() )
{

cout << "0 <= a required" << endl;
return 1;

}

// get right end point (a < b < 1 is required)
double dB = 0.5;
kCmd.Inf(dA).Sup(1.0).Double("b",dB);
if ( kCmd.GetLastError() )
{

cout << "a < b < 1 required" << endl;
return 2;

}

// get number of partition points (1 or larger)
int iPoints = 1;
kCmd.Min(1).Integer("num",iPoints);
if ( kCmd.GetLastError() )
{

cout << "num parameter must be 1 or larger" << endl;
return 3;

}

// get function expression (must be supplied)
char acFunction[128];
if ( !kCmd.String("func",acFunction) )
{

cout << "function must be specified" << endl;
return 4;

}
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// get output filename
char acOutfile[128];
if ( !kCmd.Filename(acOutfile) )
{

cout << "output file must be specified" << endl;
return 5;

}

// want debug information?
bool bDebug = false;
kCmd.Boolean("debug",bDebug);

// check for extraneous or unknown options
if ( kCmd.ExcessArguments() )
{

cout << "command line has excess arguments" << endl;
return 6;

}

// your program code goes here
return 0;

}

8.1.2 The Application Class

The base class of the entire application library is quite simple. It is called Application
and has the following interface:

class Application
{

WM3_DECLARE_TERMINATE;

public:
virtual ~Application ();

static Application* TheApplication;
static Command* TheCommand;

typedef int (*EntryPoint)(int, char**);
static EntryPoint Run;

protected:
Application ();

};



608 Chapter 8 Applications

WM3_REGISTER_TERMINATE(Application);
#include "Wm3Application.mcr"

The class is abstract since its only constructor is protected. This class contains
the minimum support for all the application types: console, 2D windowed, and 3D
windowed. The engine is designed to handle a single application; that is, the existence
of multiple instances of the same application is unknown to the engine. Because only
a single instance of an application is assumed, a pointer to the unique application
object is stored in the base class and is named TheApplication. The event handlers
of the windowed applications are C-style functions that are not member functions
in the Application class hierarchy. The handlers must be able to pass along events to
the application object. They do so through the TheApplication pointer. The base class
also stores a unique object for the command line parameters. The uniqueness is clear:
you cannot pass two command lines to the same executable module.

The entry point to the application is through the static data member Run. The int
parameter is the number of command line arguments. The char** parameter is the
array of argument strings. The final derived classes (your applications) must set this
function pointer to an appropriately designed function. The mechanism is described
later in this section. A function pointer is used rather than a member function to
allow all application types to coexist in the library. If a member function were to be
used instead, each application type would have to implement that function, leading
to multiply defined functions in the library—an error that the linker will report to
you.

In Section 2.3.8, I mentioned a small code block for the main function. The actual
source code is in the file Wm3Application.cpp. Since main is what the compiler expects
as the entry point, the function cannot be a class member. The code is

int main (int iQuantity, char** apcArgument)
{

Main::Initialize();

int iExitCode = 0;
if ( Application::Run )
{

Application::TheCommand = new Command(iQuantity,apcArgument);
iExitCode = Application::Run(iQuantity,apcArgument);
delete Application::TheCommand;

}
else
{

iExitCode = INT_MAX;
}

Main::Terminate();
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delete Application::TheApplication;
return iExitCode;

}

The actual code is slightly different than what was discussed in Section 2.3.8.
As discussed previously, all registered initialization functions are executed be-

fore the application is run. The application itself is created during the initialization
phase—more on this a little bit later. If the application Run function pointer has not
been set, the application cannot run. This error will occur if you forget to use the
initialization system properly when creating your application classes.

Assuming the application’s Run function is set, the command line object is created
for use by the application, and then the Run function is executed. On completion,
the command line object is destroyed. All registered termination functions are then
executed. The goal is to trap object leaks that the application might have.

The deletion of the application object is delayed until the very end of the main
function, which forces you to correctly clean up any objects in your application when
a termination callback is executed. I made this choice so that the graphics system has
a chance to release any resources that are associated with the application: textures,
shader programs, cached arrays, and anything else you might have cached in VRAM
on the graphics card. If you have not freed all your objects, Main::Terminate will
complain loudly that you forgot to clean up!

8.1.3 The ConsoleApplication Class

Console applications do not require a window for displaying results. In a straight-
forward C or C++ program, you would implement such an application using main
directly. My application layer supports console applications, but they require more
setup than just implementing a single function—a natural consequence of the design
of main in the Application class.

The ConsoleApplication class has the interface

class ConsoleApplication : public Application
{
public:

ConsoleApplication ();
virtual ~ConsoleApplication ();

virtual int Main (int iQuantity, char** apcArgument) = 0;

protected:
static int Run (int iQuantity, char** apcArgument);

};
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The class is abstract because of the presence of the pure virtual function Main. This is
not to be confused with the class Main. I choose to use the name because, effectively,
the function is the entry point into an application that resembles the standard appli-
cation entry point int main(int,char**). Your applications must implement Main.

The Run function is

int ConsoleApplication::Run (int iQuantity, char** apcArgument)
{

ConsoleApplication* pkTheApp =
(ConsoleApplication*)TheApplication;

return pkTheApp->Main(iQuantity,apcArgument);
}

A console application will set the function pointer Application::Run to its own Run
function pointer. When Application::Run is executed by the main function in class
Application, the ConsoleApplication::Run will be executed. All that it does is pass on
the command line parameters to the derived class’s implementation of Main. This is
technically not required since Application::TheCommand was already constructed in
main, and the derived class has access to it. However, I did not want to force you
to use the command line object; you can parse the parameters yourself, if you so
choose.

The final piece of the puzzle is to derive a class from ConsoleApplication and hook
up the Run function by using the initialization mechanism. An additional macro is
provided, in the file WmlApplication.mcr, to implement the initialization and create
the application object, both without having to type in the code yourself. The macro
is WM3_CONSOLE_APPLICATION and is defined by

#define WM3_CONSOLE_APPLICATION(classname) \
WM3_IMPLEMENT_INITIALIZE(classname); \
\
void classname::Initialize () \
{ \

Application::Run = &ConsoleApplication::Run; \
TheApplication = new classname; \

}

The initialization function sets the Application::Run function pointer so, indeed,
your application will be run when you click the “go” button. The second line of code
in the initialization function acts as a factory to create an object from your specific
application class.

The following example illustrates what you must do for a hypothetical class My-
ConsoleApplication:
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// in MyConsoleApplication.h

#include "Wm3ConsoleApplication.h"
using namespace Wm3;

class MyConsoleApplication : public ConsoleApplication
{

WM3_DECLARE_INITIALIZE;
public:

MyConsoleApplication ();
virtual ~MyConsoleApplication ();
virtual int Main (int iQuantity, char** apcArgument);

protected:
// ... whatever else you need goes here ...

};

WM3_REGISTER_INITIALIZE(MyConsoleApplication);

The declaration macro for initialization is used to indicate your intention to have
an Initialize function called by Main::Initialize. The registration macro generates
the code to force the registration of Initialize with class Main.

The source file has

// in MyConsoleApplication.cpp

#include "MyConsoleApplication.h"
using namespace Wm3;

WM3_CONSOLE_APPLICATION(MyConsoleApplication);

int MyConsoleApplication::Main (int iQuantity, char** apcArgument)
{

// ... do your thing here ...
return 0;

}

The order of events is

1. The MyConsoleApplication::Initialize function is registered pre-main, that is,
before int main(int,char**) executes.

2. int main(int,char**) is executed.

3. Main::Initialize is called.
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4. MyConsoleApplication::Initialize is called. The function pointer ConsoleAppli-
cation::Run is assigned to Application::Run. A MyConsoleApplication object is
dynamically created, and its pointer is assigned to Application::TheApplication.

5. Application::TheCommand is dynamically created, using the int and char** param-
eters that were passed to int main(int,char**).

6. The function that Application::Run points to is executed. In this case, it is
ConsoleApplication::Run, which, in turn, calls the function MyConsoleApplica-
tion::Main for your application object.

For the most part, all these details are hidden from you. All you should care about are
creating the skeleton class, as shown, and implementing the Main function for your
particular needs.

8.1.4 The WindowApplication Class

The mechanism for working with windowed applications is similar to that for console
applications. The base class for such applications is WindowApplication and is the
common framework that occurs in 2D and 3D applications. The portion of the
interface similar to the console interface is

class WindowApplication : public Application
{
public:

WindowApplication (const char* acWindowTitle, int iXPosition,
int iYPosition, int iWidth, int iHeight,
const ColorRGB& rkBackgroundColor);

virtual ~WindowApplication ();

virtual int Main (int iQuantity, char** apcArgument);

protected:
static int Run (int iQuantity, char** apcArgument);

};

The Run function is

int WindowApplication::Run (int iQuantity, char** apcArgument)
{

WindowApplication* pkTheApp = (WindowApplication*)TheApplication;
return pkTheApp->Main(iQuantity,apcArgument);

}

and has exactly the same purpose as that of ConsoleApplication::Run.
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The mechanism to hook up your application to be run is supported by the macro

#define WM3_WINDOW_APPLICATION(classname) \
WM3_IMPLEMENT_INITIALIZE(classname); \
\
void classname::Initialize () \
{ \

Application::Run = &WindowApplication::Run; \
TheApplication = new classname; \

}

The macro is structured exactly the same as the WM3_CONSOLE_APPLICATION macro.
Unlike the console applications, an additional layer occurs between your application
and the WindowApplication class. The derived class WindowApplication2 supports 2D
applications; the derived class WindowApplication3 supports 3D applications.

An example to illustrate setting up a 3D application uses a hypothetical class
MyWindowApplication:

// in MyWindowApplication.h

#include "Wm3WindowApplication3.h"
using namespace Wm3;

class MyWindowApplication : public WindowApplication3
{

WM3_DECLARE_INITIALIZE;
public:

MyWindowApplication ();
virtual ~MyWindowApplication ();

// ... other interface functions go here ...
protected:

// ... whatever else you need goes here ...
};

WM3_REGISTER_INITIALIZE(MyWindowApplication);

The source file has

// in MyWindowApplication.cpp

#include "MyWindowApplication.h"
using namespace Wm3;
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WM3_WINDOW_APPLICATION(MyWindowApplication);

MyWindowApplication::MyWindowApplication ()
:
WindowApplication3("MyWindowApplication",0,0,640,480,

ColorRGBA::WHITE)
{

// ... initializations go here ...
}

// ... your class implementation goes here ...

The WindowApplication::Main is implemented by WindowApplication, in comparison
to ConsoleApplication::Main, which required the override to occur in the final appli-
cation class. The implementations of WindowApplication::Main are platform specific
because the windowing systems and event handling are platform specific. More about
this later.

Construction

The WindowApplication class and its derivations all have a constructor of the form

class WindowApplication : public Application
{
public:

WindowApplication (const char* acWindowTitle, int iXPosition,
int iYPosition, int iWidth, int iHeight,
const ColorRGB& rkBackgroundColor);

};

The window title is intended to be displayed on the title bar of the window. The
position parameters are the location on the screen of the upper-left corner of the
window, the width and height are the size of the window, and the input color is used
for clearing the background by setting all pixels to that color. The final application
class always declares the default constructor whose implementation calls the base
class constructor with the appropriate parameters.

A portion of the WindowApplication is devoted to the access of the members set by
the constructor

class WindowApplication : public Application
{
public:

const char* GetWindowTitle () const;
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int GetXPosition () const;
int GetYPosition () const;
int GetWidth () const;
int GetHeight () const;
void SetRenderer (Renderer* pkRenderer);
void SetWindowID (int iWindowID);
int GetWindowID () const;

protected:
const char* m_acWindowTitle;
int m_iXPosition, m_iYPosition, m_iWidth, m_iHeight;
ColorRGB m_kBackgroundColor;
int m_iWindowID;
Renderer* m_pkRenderer;

};

The Get routines have the obvious behavior. A typical windowing system will assign
a unique identifier (a window handle) to each window it creates. During the window
creation, that identifier must be stored by the window for identification purposes
throughout the program run time. The data member m_iWindowID stores that value
and is assigned by a call to SetWindowID. The renderer creation is dependent on the op-
erating system, the windowing system, and the graphics API (OpenGL or Direct3D,
for example). The platform-specific source code will create a renderer and then pass
it to the WindowApplication object by calling the function SetRenderer. Notice that
the renderer is stored polymorphically through the abstract base class Renderer—a
requirement for the WindowApplication interface to be platform independent.

Event Handling

All windowing systems have mechanisms for handling events such as key presses,
mouse clicks and motion, and repositioning and resizing of windows. They also have
mechanisms for repainting the screen when necessary and for idle-time processing
when the event queue is empty. The class WindowApplication has a collection of event
callbacks—functions that are called by the platform-specific implementations of the
event handlers and dispatchers. These callbacks are

class WindowApplication : public Application
{
public:

virtual bool OnPrecreate ();
virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnMove (int iX, int iY);
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virtual void OnResize (int iWidth, int iHeight);
virtual void OnDisplay ();
virtual void OnIdle ();
virtual bool OnKeyDown (unsigned char ucKey, int iX, int iY);
virtual bool OnKeyUp (unsigned char ucKey, int iX, int iY);
virtual bool OnSpecialKeyDown (int iKey, int iX, int iY);
virtual bool OnSpecialKeyUp (int iKey, int iX, int iY);
virtual bool OnMouseClick (int iButton, int iState, int iX,

int iY, unsigned int uiModifiers);
virtual bool OnMotion (int iButton, int iX, int iY);
virtual bool OnPassiveMotion (int iX, int iY);

void RequestTermination ();
};

The typical structure of the main function in a windowing system is the following
pseudocode:

int WindowApplication::Main (...)
{

(1) do work if necessary before window creation;
(2) create the window;
(3) create the renderer;
(4) initialize the application;
(5) display the window;
do_forever
{

if ( message pending )
{

(6) if message is to quit, break out of loop;
(7) dispatch the message;

}
else
{

(8) do idle processing;
}

}
(9) terminate the application;

}

Naturally, this function runs forever until a message is sent for the application to quit.
The event callbacks are executed directly, or indirectly, during this function call. The
callback OnPrecreate is called during stage (1). The window creation (2) is specific
to the windowing system used by the operating system. The renderer creation (3) is
specific to the graphics API. Stage (4) is managed by the callback OnInitialize. The
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window display (5) is part of the windowing API and is not part of my application
library. The message pump is the do_forever loop. If the quit message is received, the
loop is exited and the application terminates.

The application is given a chance to clean up at stage (9) via the callback OnTermi-
nate. The decision for an application to terminate can be implicit in the architecture
(for example, when a user clicks on the window “close” button) or explicit (for exam-
ple, when a user presses a specified key). In my applications, the default key is ESC.
The function RequestTermination is called within my application library code and
generates a quit message. The implementation is platform specific. For example, the
Microsoft Windows API function PostMessage is called to post a WM_DESTROY message
to the message queue.

Stage (7) is where the events are dispatched to an event handler. In my applica-
tion architecture, the handler accesses the application object through the Applica-
tion::TheApplication pointer, determines the type of the event that has occurred,
and then tells the application object to execute its corresponding callback. Window
translation generates an event that causes OnMove to be called. Window resizing gen-
erates an event that causes OnResize to be called. If a window is partially covered or
minimized, and then uncovered or maximized, the window must be repainted (in
part or in full). This type of event causes OnDisplay to be called.

Key presses are events that cause the functions OnKeyDown, OnKeyUp, OnSpecialKey-
Down, and OnSpecialKeyUp to be called. The special keys are the arrow keys; the insert,
delete, home, end, page up, and page down keys; and the function keys, F1 through
F12. The callback OnSpecialKeyDown is executed when one of these keys is pressed. The
callback OnSpecialKeyUp is executed when the key is released. The remaining keys on
the keyboard are handled similarly by OnKeyDown and OnKeyUp.

The key identifiers tend to be constants provided by the platform’s windowing
system, and their values are not consistent across platforms—another source of non-
portability. WindowApplication has a collection of const data members that are as-
signed the key identifiers in each platform-dependent implementation. These data
members provide a consistent naming convention for your applications so that they
may remain portable. For example, a few of these data members are

class WindowApplication : public Application
{
public:

// keyboard identifiers
static const int KEY_ESCAPE;
static const int KEY_LEFT_ARROW;
// ... other const data members ...

// keyboard modifiers
static const int KEY_SHIFT;
static const int KEY_CONTROL;
// ... other const data members ...

};
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Mouse events include pressing a mouse button and moving the mouse, which
generate calls to OnMouseClick, OnMotion, and OnPassiveMotion. If your development
platform is Microsoft Windows or X-Windows, you might have been tempted to
have more mouse callbacks such as OnLeftMouseDown and OnMiddleMouseUp, which is
reasonable for hardware and operating systems that support multiple-button mice.
However, a Macintosh mouse has only a single button, so I refrained from having
anything other than OnMouseClick. I do pass in the button type (iButton), a but-
ton state (iState), and button modifiers (uiModifiers). The platform-independent
names I use for these are

class WindowApplication : public Application
{
public:

// mouse buttons
static const int MOUSE_LEFT_BUTTON;
static const int MOUSE_MIDDLE_BUTTON;
static const int MOUSE_RIGHT_BUTTON;

// mouse state
static const int MOUSE_UP;
static const int MOUSE_DOWN;

// mouse modifiers
static const int MOD_LBUTTON;
static const int MOD_MBUTTON;
static const int MOD_RBUTTON;

};

So in fact, you can write application code that works fine under Microsoft Windows
and X-Windows, but not on the Macintosh. My advice is to use only the left mouse
button MOUSE_LEFT_BUTTON for applications you intend to be portable. Alternatively,
you can rewrite the Macintosh application code in a manner that maps combinations
of the mouse button and modifiers to simulate a three-button mouse.

Mouse motion is handled in one of two ways. For mouse dragging, the idea is
to detect that the mouse is moving while one of the mouse buttons is pressed. The
callback that is executed in this situation is OnMotion. For processing mouse motion
when no mouse buttons are pressed, the callback OnPassiveMotion is executed.

The OnPrecreate and OnInitialization callbacks return a Boolean value. In nor-
mal situations, the returned value is true, indicating that the calls were successful and
the application may continue. If an abnormal condition occurs, the returned value
is false. The application terminates early on such a condition. For example, if your
OnInitialize function attempts to load a scene graph file, but fails to find that file, the
function returns false and the application should terminate. Naturally, you should
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structure your applications to be successful. But if an abnormal condition occurs, exit
gracefully!

The key and mouse callbacks also return Boolean values. If the value is true, the
callback has processed the event itself. For example, if your application implements
OnKeyDown to process the X key, and the X key is actually pressed, your callback will
detect that key and do something, after which it returns true. If the callback does
not do anything when Y is pressed, and the callback receives the Y key and ignores
it, the return value is false. This mechanism gives a final application the ability to
determine if my base class key handlers processed the keys, and then choose to ignore
that key itself. That said, nothing forces you to call the base class functions. The value
you return is ignored by the platform-specific event handlers.

The idle processing is handled by the callback OnIdle. The 3D applications make
extensive use of this callback in order to achieve real-time frame rates. You might be
tempted to use a system timer to control the frame rate. The problem, though, is that
many system timers have a limited resolution. For example, the WM_TIMER event in
the Microsoft Windows environment occurs at an approximate rate of 18 times per
second. Clearly, this will not support real-time applications.

Finally, a few interface functions in WindowApplication support font handling.
Recall that the Renderer class can be told to use fonts other than the default ones
used by the graphics API. If your application will overlay the rendered scene with
text, you most likely will need to know font metrics in order to properly position the
text. Simple metrics are provided by

class WindowApplication : public Application
{
public:

int GetStringWidth (const char* acText) const;
int GetCharWidth (const char cCharacter) const;
int GetFontHeight () const;

};

The implementations are dependent on the windowing system, so they occur in the
source files containing the platform-specific code.

The Microsoft Windows platform-specific code that implements a portion of the
WindowApplication interface is in the file Wm3MsWindowApplication.cpp. The file in-
cludes the definitions of the const data member keyboard bindings and mouse bind-
ings; RequestTermination; the implementations of the font metrics GetStringWidth,
GetCharWidth, and GetFontHeight; an event handler (named MsWindowEventHandler);
and the WindowApplication::Main function. The Main function is the same for 2D and
3D applications.

The renderer creation in Main produces either an OpenGL renderer or a Di-
rect3D renderer. An external function, MsCreateRenderer, is called. If you choose
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to use OpenGL, the stub file Wm3WglApplication.cpp is compiled into the applica-
tion library. This stub contains an implementation of MsCreateRenderer that gen-
erates an OpenGL-based renderer. If you choose to use Direct3D, the stub file
Wm3DxApplication.cpp is compiled into the application library, and it includes an
implementation of MsCreateRenderer that generates a Direct3D-based renderer. Of
course, this makes it impossible to compile an application library that supports both
OpenGL and Direct3D simultaneously. But, after all, why would you want to do that?

8.1.5 The WindowApplication3 Class

The class that supports the 3D applications is WindowApplication3 and is derived from
WindowApplication. Its interface is a bit lengthy:

class WM3_ITEM WindowApplication3 : public WindowApplication
{
public:

WindowApplication3 (const char* acWindowTitle, int iXPosition,
int iYPosition, int iXSize, int iYSize,
const ColorRGB& rkBackgroundColor);

virtual ~WindowApplication3 ();

virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnDisplay ();
virtual bool OnKeyDown (unsigned char ucKey, int iX, int iY);
virtual bool OnSpecialKeyDown (int iKey, int iX, int iY);
virtual bool OnSpecialKeyUp (int iKey, int iX, int iY);
virtual bool OnMouseClick (int iButton, int iState, int iX, int iY,

unsigned int uiModifiers);
virtual bool OnMotion (int iButton, int iX, int iY);

protected:
// camera motion
void InitializeCameraMotion (float fTrnSpeed, float fRotSpeed,

float fTrnSpeedFactor = 2.0f, float fRotSpeedFactor = 2.0f);
virtual bool MoveCamera ();
virtual void MoveForward ();
virtual void MoveBackward ();
virtual void MoveUp ();
virtual void MoveDown ();
virtual void TurnLeft ();
virtual void TurnRight ();
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virtual void LookUp ();
virtual void LookDown ();
CameraPtr m_spkCamera;
Vector3f m_akWorldAxis[3];
float m_fTrnSpeed, m_fTrnSpeedFactor;
float m_fRotSpeed, m_fRotSpeedFactor;
bool m_bUArrowPressed, m_bDArrowPressed, m_bLArrowPressed;
bool m_bRArrowPressed, m_bPgUpPressed, m_bPgDnPressed;
bool m_bHomePressed, m_bEndPressed, m_bCameraMoveable;

// object motion
void InitializeObjectMotion (Spatial* pkMotionObject);
bool MoveObject ();
void RotateTrackBall (float fX0, float fY0, float fX1,

float fY1);
SpatialPtr m_spkMotionObject;
int m_iDoRoll, m_iDoYaw, m_iDoPitch;
float m_fXTrack0, m_fYTrack0, m_fXTrack1, m_fYTrack1;
Matrix3f m_kSaveRotate;
bool m_bUseTrackBall, m_bTrackBallDown;
bool m_bObjectMoveable;

// performance measurements
void ResetTime ();
void MeasureTime ();
void UpdateFrameCount ();
void DrawFrameRate (int iX, int iY, const ColorRGBA& rkColor);
double m_dLastTime, m_dAccumulatedTime, m_dFrameRate;
int m_iFrameCount, m_iTimer, m_iMaxTimer;

};

Most of the event callbacks are stubbed out in the base class WindowApplication
to do nothing. The event callbacks in the derived class that have some work to do are
listed in the public section of the interface.

The protected section of the interface is decomposed into three subsections. The
first subsection contains the declaration of the camera, m_spkCamera, to be used by the
renderer. Naturally, you can create your own cameras, but the one provided by this
class is the one that gets hooked up to various events in order to translate and rotate
it. The remaining data members in the subsection are all related to handling camera
motion. The camera can be moved via the arrow keys and other special keys.

The second subsection is related to object motion; the object is specified by your
application—typically the entire scene graph. Only rotations are supported by the
application library. Objects can be rotated in two ways. First, you can rotate the object
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using the function keys F1 through F6. Second, the class has a virtual trackball that
surrounds the scene. Dragging the mouse with the left button depressed allows you
to rotate the trackball.

The third subsection is for performance measurements—specifically for measur-
ing the frame rate of your application.

The following subsections discuss each of these topics.

Camera Motion

Given a camera with eye point E, view direction D, up direction U, and right direc-
tion R, all in world coordinates, the tendency is to update the position of the eye point
and the orientation of the camera relative to the camera coordinate frame itself . The
operations are summarized here. The new coordinate frame quantities are denoted
with prime symbols: E′, D′, U′, and R′.

Let s > 0 be the speed of translation. The translation in the view direction causes
only the eye point location to change:

E′ = E ± sD.

The translation in the up direction is

E′ = E ± sU,

and the translation in the right direction is

E′ = E ± sR.

Let θ > 0 be an angle of rotation. The corresponding rotations are counterclock-
wise in the plane perpendicular to the rotation axis, looking down the axis at the
plane; the direction you look in is the negative of the axis direction. The eye point is
never changed by the rotations. The rotation about the view direction preserves that
direction itself, but changes the other two:

[
U′
R′
]

=
[

cos θ − sin θ

sin θ cos θ

] [
U
R

]
. (8.1)

In the implementation, after the rotation you need to assign the results back to the
storage of the vectors; that is, U ← U′ and R ← R′. The rotation about the up vector is

[
R′
D′
]

=
[

cos θ − sin θ

sin θ cos θ

] [
R
D

]
, (8.2)



8.1 Abstraction of the Application 623

and the rotation about the right vector is

[
D′
U′
]

=
[

cos θ − sin θ

sin θ cos θ

] [
D
U

]
. (8.3)

As I mentioned, the tendency is for you to want to update the camera frame in
this manner. The problem in an application, though, is that you usually have a world
coordinate system that has a preferred up direction that remains fixed throughout
the application’s lifetime. The up vector for the camera changes on a roll about the
view direction and on a pitch about the right vector. After a roll, a translation in
the camera up direction is not a translation in the world up direction. After a pitch,
a translation in the camera view direction is not a translation perpendicular to the
world up direction. Consider the situation where the camera represents the viewing
system of a character player. If the character walks along a horizontal floor and his
view direction is parallel to the floor, any translation of his eye point should keep
him on that floor. Now imagine that the character looks down at the floor. His view
direction is no longer parallel to the floor. If you were to translate the eye point in the
view direction, the character would walk toward the floor (and directly through it).
Preferable would be to have the character walk parallel to the floor, even though he
is looking down. This requires using the world coordinate frame for the incremental
translations and rotations and applying the transformations to the camera frame.

The array m_akWorldAxis stores the world coordinate frame for the purposes
of camera motion. The translation speed is m_fTrnSpeed, and the rotation speed is
m_fRotSpeed. The other two float data members in the camera motion section,
m_fTrnSpeedFactor and m_fRotSpeedFactor, are multiplicative (or division) factors for
adjusting the current speeds. The member function InitializeCameraMotion initial-
izes the speeds and factors. It also uses the camera’s local coordinate axes at the time
of the call to initialize m_akWorldAxis. The camera local axes are presumably set in the
application’s OnInitialize call to place the camera in the world coordinate frame of
the scene graph. The entry 0 of the world axis array may be thought of as the view
direction in the world. The entry 1 is thought of as the up vector, and the entry 2
is thought of as the right vector. The Boolean member m_bCameraMoveable indicates
whether or not the camera is set up for motion. By default, the value is false. The
value is set to true when InitializeCameraMotion is called.

The member functions MoveForward and MoveBackward translate the camera frame
in the world view direction:

void WindowApplication3::MoveForward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc += m_fTrnSpeed*m_akWorldAxis[0];
m_spkCamera->SetLocation(kLoc);

}
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void WindowApplication3::MoveBackward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc -= m_fTrnSpeed*m_akWorldAxis[0];
m_spkCamera->SetLocation(kLoc);

}

The translation keeps the camera parallel to the plane perpendicular to the world
up vector, even if the observer is looking down at that plane. Similarly, the member
functions MoveUp and MoveDown translate the camera frame in the world up direction:

void WindowApplication3::MoveUp ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc += m_fTrnSpeed*m_akWorldAxis[1];
m_spkCamera->SetLocation(kLoc);

}

void WindowApplication3::MoveBackward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc -= m_fTrnSpeed*m_akWorldAxis[1];
m_spkCamera->SetLocation(kLoc);

}

Note that in the four functions the translations change neither the camera axis
directions nor the world axis directions. I do not provide implementations for trans-
lating left or right.

The member functions TurnLeft and TurnRight are rotations about the world up
vector:

void WindowApplication3::TurnLeft ()
{

Matrix3f kIncr(m_akWorldAxis[1],m_fRotSpeed);
m_akWorldAxis[0] = kIncr*m_akWorldAxis[0];
m_akWorldAxis[2] = kIncr*m_akWorldAxis[2];

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}
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void WindowApplication3::TurnRight ()
{

Matrix3f kIncr(m_akWorldAxis[1],-m_fRotSpeed);
m_akWorldAxis[0] = kIncr*m_akWorldAxis[0];
m_akWorldAxis[2] = kIncr*m_akWorldAxis[2];

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

The first blocks of code in the functions perform the rotations in Equation (8.2).
You might think that only the camera view direction and right vectors need to be
updated, but that is only the case when the camera up vector is in the same direction
as the world up vector. If the observer is looking down at the floor, a rotation about
the world up vector will change all the camera axis directions. Thus, the second blocks
of code in the functions apply the rotation to all the camera axis directions.

The member functions LookUp and LookDown are pitch rotations about the world’s
right vector:

void WindowApplication3::LookUp ()
{

Matrix3f kIncr(m_akWorldAxis[2],-m_fRotSpeed);

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

void WindowApplication3::LookDown ()
{

Matrix3f kIncr(m_akWorldAxis[2],m_fRotSpeed);

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

Notice that the incremental rotations are calculated about the world’s right vector.
The other two world axis directions must not change! The incremental rotation is
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designed to rotate only the camera coordinate frame. I do not provide implementa-
tions for roll rotations about the world direction vector.

The member function MoveCamera ties the camera motion functions to key press
events:

bool WindowApplication3::MoveCamera ()
{

if ( !m_bCameraMoveable ) return false;
bool bMoved = false;
if ( m_bUArrowPressed ) { MoveForward(); bMoved = true; }
if ( m_bDArrowPressed ) { MoveBackward(); bMoved = true; }
if ( m_bHomePressed ) { MoveUp(); bMoved = true; }
if ( m_bEndPressed ) { MoveDown(); bMoved = true; }
if ( m_bLArrowPressed ) { TurnLeft(); bMoved = true; }
if ( m_bRArrowPressed ) { TurnRight(); bMoved = true; }
if ( m_bPgUpPressed ) { LookUp(); bMoved = true; }
if ( m_bPgDnPressed ) { LookDown(); bMoved = true; }
return bMoved;

}

The up and down arrow keys control forward and backward translation. The home
and end keys control up and down translation. The left and right arrow keys control
rotation about the up vector. The page up and page down keys control rotation about
the right vector.

You will notice the use of the remaining eight Boolean data members: m_bUArrow-
Pressed, m_bDArrowPressed, m_bLArrowPressed, m_bRArrowPressed, m_bPgUpPressed,
m_bPgDnPressed, m_bHomePressed, and m_bEndPressed. These exist solely to avoid a clas-
sic problem in a real-time application when the operating system and event system
are inherently not real time: The keyboard events are not processed in real time. If
you implement OnSpecialKeyDown to include calls to the actual transformation func-
tion such as MoveForward, you will find that the camera motion is not smooth and
appears to occur in spurts. The problem is the speed at which the windowing system
processes the events and dispatches them to the event handler. The workaround is
to use the OnSpecialKeyDown and OnSpecialKeyUp only to detect the state of the spe-
cial keys: down or up, pressed or not pressed. The function call MoveCamera is made
inside the idle loop. When the up arrow key is pressed, the variable m_bUArrowPressed
is set to true. As long as the key is pressed, that variable is constantly set to true at
the frequency the events are processed. However, from the idle loop’s perspective, the
value is a constant true. The MoveForward function is called at the frequency the idle
loop is called—a rate that is much larger than that of the event system. The result is
that the camera motion is smooth. When the up arrow key is released, the variable
m_bUArrowPressed is set to false, and the calls to MoveCamera in the idle loop no longer
translate the camera.

The translation and rotation speeds are adjustable at run time. My default imple-
mentation of OnKeyDown is
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bool WindowApplication3::OnKeyDown (unsigned char ucKey,
int iX, int iY)

{
if ( WindowApplication::OnKeyDown(ucKey,iX,iY) )

return true;

// standard keys
switch ( ucKey )
{
case ’t’: // slower camera translation

if ( m_bCameraMoveable )
m_fTrnSpeed /= m_fTrnSpeedFactor;

return true;
case ’T’: // faster camera translation

if ( m_bCameraMoveable )
m_fTrnSpeed *= m_fTrnSpeedFactor;

return true;
case ’r’: // slower camera rotation

if ( m_bCameraMoveable )
m_fRotSpeed /= m_fRotSpeedFactor;

return true;
case ’R’: // faster camera rotation

if ( m_bCameraMoveable )
m_fRotSpeed *= m_fRotSpeedFactor;

return true;
case ’?’: // reset the timer

ResetTime();
return true;

};

return false;
}

The call to WindowApplication::OnKeyDown is to detect if the ESC key has been pressed,
in which case the application will terminate. The camera translation speeds are con-
trolled by keys t and T ; the camera rotation speeds are controlled by keys r and R.

Object Motion

An object in the scene can be rotated using keyboard or mouse events. Usually, the
object is the entire scene. To allow object motion, call the function InitializeObject-
Motion and pass the object itself. The data member m_spkMotionObject points to that
object. The Boolean data member m_bObjectMoveable, whose default value is false, is
set to true by the function call.
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We must decide first what the semantics of the rotation are. If the object has
a parent (i.e., it is not the root of the scene), then the coordinate system of the
object is that of its parent. The columns of the parent’s world rotation matrix are the
coordinate axis directions. To be consistent with the choice made for classes Camera
and Light, whenever a rotation matrix represents coordinate axes, column 0 is the
direction vector, column 1 is the up vector, and column 2 is the right vector. Roll is a
rotation about the direction vector, yaw is rotation about the up vector, and pitch is
rotation about the right vector. Let Q be the rotation matrix about one of these axes
by a predetermined angle. If R is the object’s local rotation matrix, then the update
of the local rotation matrix is R ← QR. If the object is the root of the scene, the
world rotation matrix is the identity matrix. Column 0 is (1, 0, 0) and is the direction
vector, column 1 is (0, 1, 0) and is the up vector, and column 2 is (0, 0, 1) and is the
right vector. The incremental rotation matrix Q is computed using these axes and the
predetermined angle.

To rotate the object via keyboard events, a mechanism similar to camera motion
is used. The data members m_iDoRoll, m_iDoYaw, and m_iDoPitch are state variables
that keep track of the pressed states of various keys. Roll is controlled by the F1 and F2
keys. If neither key is pressed, the default state for m_iDoRoll is zero. If F1 is pressed, m_
iDoRoll is set to −1. If F2 is pressed, m_iDoRoll is set to +1. The signed values indicate
the direction of rotation about the axis of rotation: −1 for clockwise rotation, 0 for
no rotation, and +1 for counterclockwise rotation. Similarly, yaw is controlled by the
F3 key (m_iDoYaw is set to −1) and the F4 key (m_iDoYaw is set to +1), and pitch is
controlled by the F5 key (m_iDoPitch is set to −1) and the F6 key (m_iDoPitch is set
to +1). The state of the keys is detected in OnSpecialKeyDown and OnSpecialKeyUp, just
as was the case for camera motion via arrow keys and other special keys. The state
tracking mechanism guarantees that the rotations occur in the idle loop and are not
limited by the slower event handler.

The function MoveObject, called in the OnIdle callback, is used to update the
local rotation of the object whenever one of the six function keys is pressed. Its
implementation is

bool WindowApplication3::MoveObject ()
{

if ( !m_bCameraMoveable || !m_spkMotionObject )
return false;

Spatial* pkParent = m_spkMotionObject->GetParent();
Vector3f kAxis;
Matrix3f kRot, kIncr;

if ( m_iDoRoll )
{

kRot = m_spkMotionObject->Local.GetRotate();
fAngle = m_iDoRoll*m_fRotSpeed;
if ( pkParent )
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kAxis = pkParent->World.GetRotate().GetColumn(0);
else

kAxis = Vector3f::UNIT_X;
kIncr.FromAxisAngle(kAxis,fAngle);
m_spkMotionObject->Local.SetRotate(kIncr*kRot);
return true;

}

// ... similar blocks for yaw and pitch go here ...

return false;
}

The rotation axis is computed according to my earlier description. The rotation angle
is either plus or minus the rotation speed parameter; the choice of sign depends on
which function key was pressed.

The WindowApplication3::OnKeyDown implementation allows you to adjust the ob-
ject rotation speed when the function keys are pressed. This is accomplished by the r

key (decrease the rotation speed) and the R key (increase the rotation speed).
The application class has some data members and functions to support rotating

an object by the mouse. The rotation is accomplished via a virtual trackball that
is manipulated by the callbacks OnMouseClick and OnMotion. In order to rotate, the
virtual trackball must be enabled (m_bUseTrackBall is set to true), there must be
a motion object (m_spkMotionObject is not null), and the left mouse button must
generate the events (input iButton must be MOUSE_LEFT_BUTTON).

The virtual trackball is assumed to be a sphere in the world whose projection
onto the screen is a circle. The circle center is (W/2, H/2), where W is the width of
the screen and H is the height of the screen. The circle radius is r = min{W/2, H/2}.
Figure 8.1 shows a typical projection.

The trackball uses a right-handed, normalized coordinate system whose origin is
the center of the circle and whose axis directions are parallel to the screen coordinate
axes: x right and y up. Scaling occurs so that in this coordinate system the square is
defined by |x| ≤ 1 and |y| ≤ 1. The circle itself is defined by x2 + y2 = 1. The starting
point of a mouse drag operation is shown in Figure 8.1 and is labeled (x0, y0). The
ending point of the mouse drag is denoted (x′

1, y′
1). Any point that is outside the circle

is projected onto the circle. The actual ending point used by the trackball is labeled
(x1, y1) in the figure.

Imagine the starting and ending points being located on the sphere itself. Since
the circle is x2 + y2 = 1, the sphere is x2 + y2 + z2 = 1. The z-axis is defined to be
into the screen, so the hemisphere on which you select points satisfies z ≤ 0. The
(x , y , z) coordinate system is shown in Figure 8.1. The points (xi , yi) are mapped to
the sphere points

Vi = (xi , yi , −
√

1 − x2
i − y2

i ).
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(x0, y0)

x

y
z (x1, y1)

(x1, y1)
(0, 0)

Figure 8.1 The projection of a virtual trackball onto the screen. The circle of projection is
positioned at the center of the screen. The bounding square of the circle is shown.

The rotation of the trackball implied by the mouse drag has a rotation axis that is
perpendicular to the plane containing the sphere center and the two sphere points.
The rotation needs to be computed in world coordinates, so be aware that the cross
product V0 × V1 is in the normalized coordinate system, not in the world. A vector
(xi , yi , zi) in the normalized coordinate system corresponds to the world vector

Wi = xiR + yiU + ziD,

where R, U, and D are the camera’s right, up, and direction vectors, respectively, in
world coordinates. The cross product of the two vectors is

W0 × W1 = (x0R + y0U + z0D) × (x1R + y1U + z1D)

= (y1z0 − y0z1)R + (x0z1 − x1z0)U + (x1y0 − x0y1)D.

The world coordinates (y1z0 − y0z1, x0z1 − x1z0, x1y0 − x0y1) are not generated
by (x0, y0, z0) × (x1, y1, z1). They are generated by (z0, y0, x0) × (z1, y1, x1). This has
to do with the camera axis ordering (D, U, R), which corresponds to a tuple (z, y , x).

The rotation axis in world coordinates is W0 × W1. The angle of rotation is the
angle between the two vectors, θ = cos−1(W0 · W1). The member function Rotate-
TrackBall computes the axis, angle, and the corresponding rotation matrix, call it Q.
If the object is the root of the scene, the local rotation matrix R is updated just as we
did for the keyboard-driven rotation: R ← QR.

If the object has a parent, the update is more complicated. The object has a model-
to-world transformation that positions and orients the object in the world. If X is a
model space point, the corresponding world space point is

Y = RwSX + Tw ,
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where Rw is the world rotation, S is the diagonal scaling matrix, and Tw is the world
translation. In all my sample applications, I arrange for the object’s world translation
to be the origin so that the rotation is about the origin. The process of doing so is
sometimes referred to as a center-and-fit operation. After this operation, the world
translation is Tw = 0, so

Y = RwSX.

The world rotation is constructed from the object’s parent’s world rotation and
from its local rotation. The relationship is

Rw = RpR�,

where Rp is the parent’s world rotation and R� is the object’s local rotation. The world
point is therefore

Y = RpR�SX.

The trackball motion applies a world-to-world rotation matrix, which we called
Q. The transformation of the world point Y to the rotated point Z is

Z = QY = (QRpR�)SX.

We do not want to modify the parent’s rotation matrix by multiplying on the left
by Q. Instead, we wish to adjust the local rotation R� while preserving the parent
rotation. If R′

�
is the adjusted local rotation, we need

RpR′
�
= QRpR�.

Solving for the adjusted local rotation,

R′
�
= (RT

p
QRp)R�.

The expression RT
p
QRp is a similarity transformation and is viewed as the represen-

tation of the rotation Q in the coordinate system of the object. The matrix Q by itself
represents the rotation in the parent’s coordinate system.

The source code for RotateTrackBall is lengthy, but a straightforward implemen-
tation of the ideas is discussed here:

void WindowApplication3::RotateTrackBall (float fX0, float fY0,
float fX1, float fY1)

{
if ( (fX0 == fX1 && fY0 == fY1) || !m_spkCamera )
{

// nothing to rotate
return;

}
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// get first vector on sphere
float fLength = Mathf::Sqrt(fX0*fX0+fY0*fY0);
float fInvLength, fZ0, fZ1;
if ( fLength > 1.0f )
{

// outside unit disk, project onto it
fInvLength = 1.0f/fLength;
fX0 *= fInvLength;
fY0 *= fInvLength;
fZ0 = 0.0f;

}
else
{

// compute point (x0,y0,z0) on negative unit hemisphere
fZ0 = 1.0f - fX0*fX0 - fY0*fY0;
fZ0 = ( fZ0 <= 0.0f ? 0.0f : Mathf::Sqrt(fZ0) );

}
fZ0 *= -1.0f;

// use camera world coordinates, order is (D,U,R),
// so point is (z,y,x)
Vector3f kVec0(fZ0,fY0,fX0);

// get second vector on sphere
fLength = Mathf::Sqrt(fX1*fX1+fY1*fY1);
if ( fLength > 1.0f )
{

// outside unit disk, project onto it
fInvLength = 1.0f/fLength;
fX1 *= fInvLength;
fY1 *= fInvLength;
fZ1 = 0.0f;

}
else
{

// compute point (x1,y1,z1) on negative unit hemisphere
fZ1 = 1.0f - fX1*fX1 - fY1*fY1;
fZ1 = ( fZ1 <= 0.0f ? 0.0f : Mathf::Sqrt(fZ1) );

}
fZ1 *= -1.0f;

// use camera world coordinates, order is (D,U,R),
// so point is (z,y,x)
Vector3f kVec1(fZ1,fY1,fX1);
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// create axis and angle for the rotation
Vector3f kAxis = kVec0.Cross(kVec1);
float fDot = kVec0.Dot(kVec1);
float fAngle;
if ( kAxis.Normalize() > Mathf::ZERO_TOLERANCE )
{

fAngle = Mathf::ACos(kVec0.Dot(kVec1));
}
else // vectors are parallel
{

if ( fDot < 0.0f )
{

// rotated pi radians
fInvLength = Mathf::InvSqrt(fX0*fX0+fY0*fY0);
kAxis.X() = fY0*fInvLength;
kAxis.Y() = -fX0*fInvLength;
kAxis.Z() = 0.0f;
fAngle = Mathf::PI;

}
else
{

// rotation by zero radians
kAxis = Vector3f::UNIT_X;
fAngle = 0.0f;

}
}

Vector3f kWorldAxis =
kAxis.X()*m_spkCamera->GetWorldDVector() +
kAxis.Y()*m_spkCamera->GetWorldUVector() +
kAxis.Z()*m_spkCamera->GetWorldRVector();

Matrix3f kTrackRotate(kWorldAxis,fAngle);

const Spatial* pkParent = m_spkMotionObject->GetParent();
if ( pkParent )
{

const Matrix3f& rkPRotate = pkParent->World.GetRotate();
m_spkMotionObject->Local.SetRotate(

rkPRotate.TransposeTimes(kTrackRotate)*rkPRotate *
m_kSaveRotate);

}
else
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{
m_spkMotionObject->Local.SetRotate(kTrackRotate *

m_kSaveRotate);
}

m_spkMotionObject->UpdateGS();
}

The first part of the code computes the world axis of rotation and the angle of
rotation, just as I described here. The last part of the code updates the object’s local
rotation based on the trackball motion. The incremental update matrix is Q if the
object has no parent, but RT

p
QRp if the object has a parent.

You should notice that the update uses a data member named m_kSaveRotate.
The trackball rotation is always anchored to the starting point. When that point is
selected, the object’s current local rotation is saved. The trackball rotation is always
applied to the original local rotation.

The mouse event callbacks are simple enough:

bool WindowApplication3::OnMouseClick (int iButton, int iState,
int iX, int iY, unsigned int)

{
if ( !m_bUseTrackBall
|| iButton != MOUSE_LEFT_BUTTON
|| !m_spkMotionObject )
{

return false;
}

float fMult =
1.0f/(m_iWidth >= m_iHeight ? m_iHeight : m_iWidth);

if ( iState == MOUSE_DOWN )
{

// get the starting point
m_bTrackBallDown = true;
m_kSaveRotate = m_spkMotionObject->Local.GetRotate();
m_fXTrack0 = (2*iX-m_iWidth)*fMult;
m_fYTrack0 = (2*(m_iHeight-1-iY)-m_iHeight)*fMult;

}
else
{

m_bTrackBallDown = false;
}
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return true;
}

bool WindowApplication3::OnMotion (int iButton, int iX, int iY)
{

if ( !m_bUseTrackBall
|| iButton != MOUSE_LEFT_BUTTON
|| !m_bTrackBallDown
|| !m_spkMotionObject )
{

return false;
}

// get the ending point
float fMult =

1.0f/(m_iWidth >= m_iHeight ? m_iHeight : m_iWidth);
m_fXTrack1 = (2*iX-m_iWidth)*fMult;
m_fYTrack1 = (2*(m_iHeight-1-iY)-m_iHeight)*fMult;

// update the object’s local rotation
RotateTrackBall(m_fXTrack0,m_fYTrack0,m_fXTrack1,m_fYTrack1);
return true;

}

When the left mouse button is pressed, the callback OnMouseClick is executed. The
trackball is set to its down state, the object’s local rotation R is saved, and the starting
point is calculated from the screen coordinates of the mouse click. As the mouse is
dragged, the callback OnMotion is continually called. It computes the ending point
and then calls the trackball rotation function to compute the incremental rotation Q

and update the object’s local rotation to QR.

Performance Measurements

Nearly all my sample applications include measuring the frame rate using function
calls in the OnIdle callback. The rate is stored in the data member m_dFrameRate. The
data member m_dAccumulatedTime stores the accumulated time used by the applica-
tion. The function MeasureTime updates the accumulated time with the time differ-
ence between the last time the function was called, a value stored in m_dLastTime, and
the current time as read by System::GetTime. The data member m_iFrameCount stores
the number of times OnIdle has been called and is the number of frames displayed.
The frame rate is the ratio of the number of the frame count and the accumulated
time.
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Because the application can run quite rapidly, the resolution of the System::
GetTime call might be too coarse to use on a frame-by-frame basis. If you have con-
cerns about the resolution, I provided a miniature timer that is designed to have
the accumulated time updated less frequently than each frame. The data member m_
iTimer is the clock counter. The starting value for the counter is stored in the data
member m_iMaxTimer. My libraries use a default of 30, but you are certainly welcome
to set it to a different value in the constructor of your application. The idea is that
m_iTimer is decremented on each frame. Once it reaches zero, System::Time is read,
the accumulated time is updated, and m_iTimer is reset to m_iMaxTimer. The Measure-
Time implementation is

void WindowApplication3::MeasureTime ()
{

// start performance measurements
if ( m_dLastTime == -1.0 )
{

m_dLastTime = System::GetTime();
m_dAccumulatedTime = 0.0;
m_dFrameRate = 0.0;
m_iFrameCount = 0;
m_iTimer = m_iMaxTimer;

}

// accumulate the time only when the miniature time allows it
if ( --m_iTimer == 0 )
{

double dCurrentTime = System::GetTime();
double dDelta = dCurrentTime - m_dLastTime;
m_dLastTime = dCurrentTime;
m_dAccumulatedTime += dDelta;
m_iTimer = m_iMaxTimer;

}
}

The initial value of m_dLastTime is −1, indicating that the frame rate measuring
system is uninitialized. You may reset the measuring system via ResetTimer, which
just sets the last time to the invalid −1. A convenience function for displaying the
frame rate in the lower-left corner of the screen is DrawFrameRate.

A convenience key is provided for the ResetTimer call, namely, the question mark
(?) key.
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8.2 Sample Applications

A large number of sample applications are located on the CD-ROM in the directory

MagicSoftware/WildMagic3/Test

Most of them are implemented in the same manner that I will describe here. Some
of the samples are described briefly, some in more detail. My goal is to emphasize the
highlights of the applications and not to cover every minute detail.

A typical application ships with only a single header file and a single source file.
Naturally, a game application will have a large number of files, but the samples here
are just for illustration of the engine features and for testing, as the directory name
Test already hints at, so there is no need for many files.

The skeleton application code includes the header file and is of the form

#ifndef TESTAPPLICATION_H
#define TESTAPPLICATION_H

#include "Wm3WindowApplication3.h"
using namespace Wm3;

class TestApplication : public WindowApplication3
{

WM3_DECLARE_INITIALIZE;

public:
TestApplication ();

// the most common overrides
virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnIdle ();
virtual bool OnKeyDown (unsigned char ucKey, int iX, int iY);

protected:
// some helper functions go here

// the root of the scene
NodePtr m_spkScene;

// other data as needed goes here

private:
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// for testing streaming of classes
void TestStream ();

};

WM3_REGISTER_INITIALIZE(TestApplication);

#endif

The skeleton source file is of the form

#include "TestApplication.h"
WM3_WINDOW_APPLICATION(TestApplication);

TestApplication::TestApplication ()
:
WindowApplication3("TestApplication",0,0,640,480,

ColorRGB(1.0f,1.0f,1.0f))
{

// initialize some data here, if needed
}

bool TestApplication::OnInitialize ()
{

if ( !WindowApplication3::OnInitialize() )
return false;

// set up the camera
m_spkCamera->SetFrustum(...);
Vector3f kCLoc(...);
Vector3f kCDir(...);
Vector3f kCUp(...);
Vector3f kCRight = kCDir.Cross(kCUp);
m_spkCamera->SetFrame(kCLoc,kCDir,kCUp,kCRight);

// create the scene
m_spkScene = new Node(...);
// set up scene here

// initial update of objects
m_spkScene->UpdateGS();
m_spkScene->UpdateRS();

// use this if you want to move the camera
InitializeCameraMotion(...);
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// use this if you want to rotate the scene
InitializeObjectMotion(m_spkScene);
return true;

}

void TestApplication::OnTerminate ()
{

m_spkScene = NULL;
// other smart pointers set to NULL here
// other cleanup goes here
WindowApplication3::OnTerminate();

}

void TestApplication::OnIdle ()
{

// accumulate time for frame rate measurement
MeasureTime();

if ( MoveCamera() )
{

// do any necessary work here
}

if ( MoveObject() )
{

// do any necessary work here, minimally...
m_spkScene->UpdateGS(...);

}

// do the drawing
m_pkRenderer->ClearBuffers();
if ( m_pkRenderer->BeginScene() )
{

m_pkRenderer->DrawScene(m_spkScene);
DrawFrameRate(8,GetHeight()-8,ColorRGBA::WHITE);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

// count number of times OnIdle called
UpdateFrameCount();

}
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bool TestApplication::OnKeyDown (unsigned char ucKey,
int iX, int iY)

{
// give application chance to exit on ESC key press
if ( WindowApplication3::OnKeyDown(ucKey,iX,iY) )

return true;

switch ( ucKey )
{
// other cases here as needed

case ’s’:
case ’S’:

TestStream();
return true;

}

return false;
}

void TestApplication::TestStream ()
{

Stream kOStream;
kOStream.Insert(m_spkScene);
kOStream.Save("TestApplication.wmof");

Stream kIStream;
kIStream.Load("TestApplication.wmof");
NodePtr spkScene = (Node*)kIStream.GetObjectAt(0);

}

An alternative OnInitialize is used when a center-and-fit operation is required
to center the scene graph in the view frustum. The skeleton is

bool TestApplication::OnInitialize ()
{

if ( !WindowApplication3::OnInitialize() )
return false;

// create the scene
m_spkScene = new Node(...);
Node* spkTrnNode = new Node;
m_spkScene->AttachChild(spkTrnNode);
// set up scene here, attach to spkTrnNode
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// set up camera for center-and-fit
m_spkScene->UpdateGS();
spkTrnNode->Local.Translate() =

-m_spkScene->WorldBound->GetCenter();
m_spkCamera->SetFrustum(...);
Vector3f kCDir(...);
Vector3f kCUp(...);
Vector3f kCRight = kCDir.Cross(kCUp);
Vector3f kCLoc =

-3.0f*m_spkScene->WorldBound->GetRadius()*kCDir;
m_spkCamera->SetFrame(kCLoc,kCDir,kCUp,kCRight);

// initial update of objects
m_spkScene->UpdateGS();
m_spkScene->UpdateRS();

// use this if you want to move the camera
InitializeCameraMotion(...);

// use this if you want to rotate the scene
InitializeObjectMotion(m_spkScene);
return true;

}

The idea is to create the scene and add a child node. The actual scene graph
is attached to the child. The world bounding volume of the scene is computed by
the UpdateGS call. The child node is translated by the center of the world bounding
volume. When the next UpdateGS call occurs, the scene will have a world bounding
center at the origin. Thus, rotations applied to the scene are about the origin. This
process is the “center” portion of the center-and-fit operation. The “fit” portion is to
position the camera sufficiently far from the scene so that you can see the entire scene
in the view frustum. As a default, I choose to use three times the radius of the world
bounding volume. If the camera eye point is located at E, the camera view direction
is D, and the world bounding radius is r , then E = 0 − 3rD. I included the origin 0
to stress the fact that we have translated the scene so that its center is at the origin,
and the eye point is looking at the origin, but moved away 3r units along the line of
sight.

The remainder of this section covers the scene graph structures and highlights
of some of the sample applications. The subsection names are the application names
without the Test prefix. The scene hierarchy for an application is listed as an Explorer-
like control. A node name is listed on one line, and the children are listed on the next
lines, but indented to imply they are indeed children of the node at the previous level
of indentation. Global state, lights, and effects attached to the nodes are listed in angle
brackets after the node name.
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8.2.1 BillboardNode Sample

The TestBillboardNode sample illustrates the use of the class BillboardNode. Two
objects are managed as billboards: a rectangle, a two-dimensional object, and a torus,
a three-dimensional object. Both objects automatically rotate to face the camera. The
rotation is about the model space up vectors of the objects. In this case, those vectors
are perpendicular to a displayed ground plane. The scene graph is

Scene(Node) <Wireframe>
Ground(TriMesh) <Texture>
Billboard0(BillboardNode)

Rectangle(TriMesh) <Texture
Billboard1(BillboardNode)

Torus(TriMesh) <Texture>

To cause the automatic updates, the OnIdle function has the block of code

if ( MoveCamera() )
{

m_spkBillboard0->UpdateGS();
m_spkBillboard1->UpdateGS();

}

Whenever the camera has moved, MoveCamera returns true. Camera motion requires
updating the billboards, which is what the UpdateGS calls do.

Figure 8.2 shows screen shots based on two different camera positions. See Sec-
tion 4.1.1 for a discussion about billboards.

8.2.2 BspNode Sample

The TestBspNode sample illustrates the use of the class BspNode. The world is par-
titioned by four BSP planes, as illustrated in Figure 8.3. The vertices in the fig-
ure are V0 = (−1, 1), V1 = (1, −1), V2 = (−1/4, 1/4), V3 = (−1, −1), V4 = (0, 0),
V5 = (1, 1/2), V6 = (−3/4, −3/4), V7 = (−3/4, 3/4), and V8 = (1, 1). The four bi-
nary separating planes are labeled. The normal vector for each plane is shown, and
it points to the positive side of the plane. That side of the plane corresponds to the
positive child for the BSP node representing the plane.

The regions R0 through R4 are what the five BSP leaf nodes represent. The sample
application places a triangle mesh in each region. Region R0 contains a torus, region
R1 contains a sphere, region R2 contains a tetrahedron, region R3 contains a cube,
and region R4 contains an octahedron. The torus is the only nonconvex object in the
scene.

The scene graph of the application is
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Figure 8.2 Two screen shots from the TestBillboard application. (See also Color Plate 8.2.)

Scene(Node) <Wireframe, ZBuffer>
Ground(TriMesh) <Texture>
Bsp0(BspNode)

Bsp1(BspNode)
Bsp3(BspNode)

Torus(TriMesh) <ZBuffer, Texture>
Plane3(TriMesh) <Wireframe, Cull, VertexColor>
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Figure 8.3 The partitioning of the world by four BSP planes. Only the square region defined by
|x| ≤ 1 and |y| ≤ 1 is shown.

Sphere(TriMesh) <Texture>
Plane1(TriMesh) <Wireframe, Cull, VertexColor>
Tetrahedron(TriMesh) <Texture>

Plane0(TriMesh) <Wireframe, Cull, VertexColor>
Bsp2(BspNode)

Cube(TriMesh) <Texture>
Plane2(TriMesh) <Wireframe, Cull, VertexColor>
Octahedron(TriMesh) <Texture>

A screen shot from the application is shown in Figure 8.4. The four separating
planes are visually represented by four rectangles drawn in wireframe mode. The
WireframeState object is shared by all four planes, and the planes also share a Cull-
State object. The culling state is disabled so that you can see the wireframe no matter
which side of a plane you are on. Each plane has its own VertexColorEffect object so
that the plane colors are distinct.

As you navigate through the scene, what you will find is somewhat boring.
Clearly, no artist was harmed in the making of this demonstration! The point of the
demonstration is the sorting of objects so you do not need to use depth buffering.
Nothing about this process is visible to you, unless I were to get the sorting wrong,
of course. A ZBufferState object is attached to the root node of the scene graph and
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Figure 8.4 A view of the scene for the BSP sample application. Compare the view with the
partitioning shown in Figure 8.3. (See also Color Plate 8.4.)

completely disables the depth buffer—no reading, no writing. The torus is not con-
vex, so for completely correct drawing of only the torus, a depth buffer is needed. A
ZBufferState object is attached to the torus mesh and enables reading and writing of
the buffer. The other objects are convex and, by themselves, do not need depth buff-
ering. The objects are drawn in the correct order because of the BSP tree. See Section
4.2.1 for a discussion about BSP trees.

8.2.3 CachedArray Sample

Section 3.5.5 talked about caching vertex arrays on the graphics card. The Test-
CachedArray sample application is very simple and has the scene graph structure

Scene(Node)
Switch(SwitchNode)

SphereNotCached(TriMesh) <Texture>
SphereCached(TriMesh) <Texture>
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The screen shots are not enlightening, so none are provided. A sphere mesh is
created that is not told to cache itself on the graphics card, but an identical sphere
mesh is told to cache itself. A sphere has 16,256 vertices and 32,256 triangles. The
sample allows you to toggle between which sphere is drawn; the c key does the
toggling. The important aspect of the demonstration is the difference in frame rates.
On my ATI Radeon 9800 Pro graphics card, the uncached sphere draws at about 120
frames per second. The cached sphere draws at about 1200 frames per second, a 10-
fold increase in speed.

8.2.4 Castle Sample

The TestCastle sample application is a walk-through of a very large data set that I had
an artist build.1 You may navigate through the data set, both outside and inside the
castle. The picking system is used to keep the camera a fixed height above whatever
you are walking over (see Section 6.3.4). A ray is cast from the camera eye point
vertically downward. The picking system calculates the closest point along the ray
to the eye point, computes the distance to that point, and then adjusts the location of
the eye point using the distance to remain a constant height above what is below you.

The picking system is also used to keep you from walking through objects, walls,
and any other obstacles (see Section 6.3.5). A small number of rays are cast within a
cone whose vertex is the eye point and that opens downward. The cone height is the
distance from the eye point above the ground. If any nonground objects are within
the cone, as detected by the picking, the camera is not allowed to move. This is not
an aggressive test, and the density of pick rays might not be sufficiently large to detect
very small objects entering the cone of interest.

The picking system is overloaded to handle a few more things. If you point at
an object and click with the left mouse button, the name of the object is displayed
in the lower portion of the screen—useful when building a level. If you notice an
object that is not correctly built, you can easily determine its name and report it to
the artist in charge. In fact, I used this system to figure out why one of the castle rooms
appeared to have clockwise triangles when they should have been counterclockwise.
It turned out that the artist had used a reflection matrix, but Wild Magic supports
only rotations. Another system that picking supports is to selectively turn wireframe
on for an object. You may do this with a click of the right mouse button (or CTRL
plus button click on the Macintosh).

1. The artist is Chris Moak, and the artwork was done in 2001. The model was built in 3D Studio Max,
but at the time I had only a minimal exporter. In fact, I still only have a minimal exporter. Trying to
get data out of the modeling package and converted to Wild Magic objects is like pulling teeth. The
Max model has multitextures and lighting, but the exporter at the time did not handle multitextures,
and the lighting is not correctly converted. You can visit Chris’s site and see some of his other work at
http://home.nc.rr.com/krynshaw/index.html.
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(a)

(b)

Figure 8.5 Two screen shots from outside the castle. (a) The solid view of the scene. (b) The
same view, but in wireframe mode. (See also Color Plate 8.5.)

Figure 8.5 shows screen shots from the first screen that appears when the applica-
tion runs. As you can see in Figure 8.5(b), the data set is enormous! The disk size of
the scene is about 12 MB. Two versions of the data set are provided: one for uncached
data and one for cached data. The data set is not portalized, but someday I will do
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that. Unfortunately, the model needs a lot of reorganizing to support portals. Figure
8.6 shows screen shots from a location inside the castle.

8.2.5 ClodMesh Sample

The TestClodMesh sample was discussed in Section 4.1.4, but with regard to the algo-
rithm used for continuous level of detail. The scene graph structure is

Scene(Node) <Wireframe, Material, DirectionalLight>
CenterAndFitTranslation(Node)

Face(ClodMesh)

The material and light are used for coloring the face. The application shows how
to adjust the level of detail from the collapse records based on the distance the face is
from the eye point. The up and down arrow keys are used to move the camera forward
and backward, respectively. As the camera moves away from the face, the resolution
of the face triangle mesh is reduced. The number of triangles in the mesh is displayed
at the bottom of the screen.

You can also press the c key to show the face at a lower resolution than the
original. The collapse record number is 500, and the number of triangles in the mesh
at that resolution is 1576. The original number of triangles is 2576.

Figure 8.7 shows some screen shots from the application. Observe that the face in
the distance is a convincing rendering of the face that you saw close-up. The reduced-
resolution face drawn close-up makes it clear that the mesh is significantly distorted
from the original, but that the distortion makes no difference when the face is distant.

8.2.6 Collision Sample

In Section 6.4, I discussed hierarchical collision detection using bounding volume
hierarchies. The application that illustrates this system is TestCollision. The scene
graph structure is very simple:

Scene(Node) <Wireframe>
Cylinder0(TriMesh) <Texture>
Cylinder1(TriMesh) <Texture>

The TextureEffect objects are distinct because the cylinders use different texture
coordinates, but they both use the same Texture object. The image of the Texture
object is quite small—a 2 × 2 array. The four texels have different colors: blue, cyan,
red, and yellow. Cylinder 0 is short, wide, and initially colored blue by assigning all
vertices the same texture coordinate that corresponds to the blue texel. Cylinder 1
is tall, narrow, and initially colored red by assigning all vertices the same texture
coordinate that corresponds to the red texel.



(a)

(b)

Figure 8.6 Two screen shots from inside the castle. (a) The solid view of the scene. (b) The same
view, but with the distance wall clicked to place it in wireframe mode. You can see
the water and sky outside the castle. The name of the clicked mesh is also displayed
at the bottom of the screen. (See also Color Plate 8.6.)
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(a) (b) (c)

Figure 8.7 (a) The face drawn with the original resolution, (b) the face at the reduced resolution
but at the same distance from the camera, and (c) the face at the reduced resolution
but far away from the camera.

Initially, the cylinders have the same center and axes, so the two are intersecting.
Wherever the cylinders intersect, the triangle colors are modified to highlight those
involved in the intersection. Figure 6.16 shows a couple of screen shots. The intersect-
ing triangles on the red cylinder are colored in yellow, and those on the blue cylinder
are colored in cyan. The color changes for those triangles occur in the collision call-
back function, TestCollision::Response.

You can reorient the scene graph by using the virtual trackball. The cylinders
move in unison when you drag with the left mouse button down. Additionally, you
can move the red cylinder by using the keyboard. The x and X keys translate the
cylinder in the direction of the world’s x-axis. The lowercase key causes a transla-
tion in the negative direction; the uppercase key causes a translation in the positive
direction. The cylinder is similarly translated in either the world’s y-axis by using
the y and Y keys or in the world’s z-axis by using the z and Z keys. The cylinder
may be rotated about its center. The rotations are also about the world’s coordinate
axes. The r and R keys cause a rotation about the x-axis, the a and A keys cause
a rotation about the y-axis, and the p and P keys cause a rotation about the z-
axis.

Notice that the use of the r and R keys conflicts with the default behavior of the
application library—to use those keys for adjusting the rotation speed. To circumvent
the default behavior, the OnKeyDown function has the following implementation:
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bool TestCollision::OnKeyDown (unsigned char ucKey, int iX, int iY)
{

if ( WindowApplication::OnKeyDown(ucKey,iX,iY) ) return true;
if ( Transform(ucKey) ) return true;
switch ( ucKey )
{
case ’w’:
case ’W’:

m_spkWireframe->Enabled = !m_spkWireframe->Enabled;
return true;

}
return false;

}

In most of the applications, the derived-class virtual function calls the same
function in its immediate base class. The call you would see is

if ( WindowApplication3::OnKeyDown(ucKey,iX,iY) ) return true;

since WindowApplication3 is the base class. The base class virtual function implements
key handlers for r and R, as well as for some other keys. To avoid the handlers, I
instead call the virtual function for the class of WindowApplication, which is what
WindowApplication3 derives from. That class’s virtual function just checks to see if
the ESC key is pressed—an indication that the application wants to terminate. The
Transform function is defined in TestCollision and implements the handlers for the
keys mentioned earlier that control translation and rotation of cylinder 1.

In other applications, you might want to avoid only some of the key handlers in
the base class. For example, you might want to avoid r and R handling, but keep the
behavior for t and T . The derived class OnKeyDown function could be implemented by

bool DerivedClass::OnKeyDown (unsigned char ucKey, int iX, int iY)
{

switch ( ucKey )
{
case ’r’: // handler for r

return true;
case ’R’: // handler for R

return true;
}
return WindowApplication3::OnKeyDown(ucKey,iX,iY);

}

Because your handlers for r and R occur first, the base class handlers are skipped.
Alternatively, you can completely skip the base class handlers and process all the key
presses yourself.
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The collision group management and hierarchical collision detection are handled
in the following manner: The scene graph is constructed in the member function
CreateScene. The last part of that function contains the block of code

CollisionRecord* pkRec0 = new CollisionRecord(m_spkCyln0,
new BoxBVTree(m_spkCyln0,1,false),NULL,Response,this);

CollisionRecord* pkRec1 = new CollisionRecord(m_spkCyln1,
new BoxBVTree(m_spkCyln1,1,false),NULL,NULL,NULL);

The CollisionRecord constructor has the form

CollisionRecord (TriMesh* pkMesh, BoundingVolumeTree* pkTree,
Vector3f* pkVelocity, Callback oCallback,
void* pvCallbackData);

The data members m_spkCyln0 and m_spkCyln1 are smart pointers to the cylinder
TriMesh objects and passed as the first parameters to the constructors. The second
parameters are the bounding volume hierarchies that correspond to the objects. In
this sample, I chose to use oriented bounding box volumes. You can replace BoxBVTree
by SphereBVTree to see that the application still behaves as expected. The cylinder
objects are both considered to be stationary, so the pointers to the velocity vectors
are NULL, indicating that the objects have zero velocity.

The Callback parameter is a function pointer. The callback has the form

void (*Callback) (CollisionRecord& rkRecord0, int iT0,
CollisionRecord& rkRecord1, int iT1,
Intersector<float>* pkIntersector);

The two collision records of the objects involved in the collision are passed to the
callback, as well as the indices of the two triangles involved in a collision. The last pa-
rameter is the triangle-triangle intersector that was used to determine that a collision
has occurred (or will occur). You need to typecast the object to the appropriate class
based on the type of intersection query you initiated (test/find, stationary/moving).
The application implements a single callback, called Response. Since the callback must
be a C-style function, the application member function is static.2 Notice that the
constructor for the collision record pkRec0 is passed the function Response, but the
constructor for pkRec1 is passed NULL. In the sample application, the collision response
is handled by only one of the objects—no double processing here. In other applica-
tions, you might very well pass callback functions to all the collision records.

2. A nonstatic member function in the C++ language has an implicit first parameter, a pointer to the calling
object. You are accustomed to the pointer being named this. For example, a nonstatic member function
void MyClass::F (int i) implicitly has the signature void F (MyClass* this, int i).
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The last parameter to the constructor is a void* pointer that allows you to store
object-specific data to be used in the callbacks. The callbacks themselves access the
data through the collision records passed to them. This application does not have a
need for object-specific data, but other applications might pass, for instance, physical
parameters that are needed to correctly modify the physical behavior of the colliding
objects.

The callback in this application is

void TestCollision::Response (CollisionRecord& rkRecord0, int iT0,
CollisionRecord& rkRecord1, int iT1, Intersector<float>*)

{
TriMesh* pkMesh;
const int* aiIndex;
Vector2f* akUV;
int i0, i1, i2;

// mesh0 triangles that are intersecting,
// change from blue to cyan
pkMesh = rkRecord0.GetMesh();
aiIndex = pkMesh->Indices->GetData();
i0 = aiIndex[3*iT0];
i1 = aiIndex[3*iT0+1];
i2 = aiIndex[3*iT0+2];
akUV = pkMesh->GetEffect()->UVs[0]->GetData();
akUV[i0] = ms_kCyanUV;
akUV[i1] = ms_kCyanUV;
akUV[i2] = ms_kCyanUV;

// mesh1 triangles that are intersecting,
// change from red to yellow
pkMesh = rkRecord1.GetMesh();
aiIndex = pkMesh->Indices->GetData();
i0 = aiIndex[3*iT1];
i1 = aiIndex[3*iT1+1];
i2 = aiIndex[3*iT1+2];
akUV = pkMesh->GetEffect()->UVs[0]->GetData();
akUV[i0] = ms_kYellowUV;
akUV[i1] = ms_kYellowUV;
akUV[i2] = ms_kYellowUV;

}

No physical response is implemented here. Only the texture coordinates of the
intersecting triangles are changed to cause a color change. A triangle on cylinder 0 is
changed from blue to cyan, and a triangle on cylinder 1 is changed from red to yellow.
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Also part of CreateScene is

m_pkGroup = new CollisionGroup;
m_pkGroup->Add(pkRec0);
m_pkGroup->Add(pkRec1);
m_pkGroup->TestIntersection();

A collision group is created to manage the two cylinders. The collision records for the
cylinders are inserted into the group. The final call is the entry point into the collision
detection system, a test-intersection query for stationary objects. During this call,
the Response function will be called, which involves intersections of triangles on the
circular ends of cylinder 0 and the sides of cylinder 1.

The OnKeyDown handler processes the keys that move cylinder 1. After the cylin-
der’s local transformation is updated, in Transform, the following block of code is
executed:

m_spkCyln1->UpdateGS(0.0f);
ResetColors();
m_pkGroup->TestIntersection();

The change in local transformation requires you to update the cylinder, both for
display purposes and for collision detection purposes. The function ResetColors
resets the texture coordinates of the two cylinders so that they are drawn in their
original colors. The final call starts the collision detection system, once again causing
the callback Response to be called.

8.2.7 InverseKinematics Sample

The TestInverseKinematics sample application is a simple illustration of inverse kine-
matics (IK). The IK system consists of a variable-length rod that is attached to the
ground at one end point. The end point is visualized by drawing a cube centered at
that location. The other end point is the end effector and is also visualized by draw-
ing a cube centered at the location. It is allowed to translate in the vertical direction,
which happens to be the z-axis. The rod can also rotate about the z-axis. Another
cube is in the scene, has only translational degrees of freedom, and acts as the goal
for the end effector. The application allows you to reposition and reorient the goal
using key presses. The IK system responds accordingly to try to reach the goal.

The scene graph structure is

Scene(Node) <Wireframe>
Ground(TriMesh) <VertexColor>
IKSystem(Node)

Goal(Node)
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GoalCube(TriMesh) <VertexColor>
Joint0(Node) <IKController>

OriginCube(TriMesh) <VertexColor>
Rod(Polyline) <VertexColor>
Joint1(Node)

EndCube(TriMesh) <VertexColor>

The IK system is encapsulated by a subtree of the scene. The system includes the
goal and a linear chain of two nodes. As you translate the goal, the end effector tries
to reach it. The rod changes length during the motion. The polyline representing the
rod is a child of joint 0. The origin of the rod is the local translation value of joint 0,
so it is reasonable to make the polyline a child of joint 0. The end point of the rod is
the local translation value of joint 1. The end point is a duplicate of that translation,
so in order to properly display the polyline representing the rod, the application must
update the polyline end point after the UpdateGS call that has occurred at the IKSystem
node. It is only after the update that the new joint 1 translation is known. The change
to the end point requires an UpdateMS and an UpdateGS call to be applied to the Rod
object.

The polyline end point update is encapsulated in the member function UpdateRod.
It must be called after any UpdateGS call visits the IKSystem node. This happens in
the Transform function that is called during an OnKeyDown event. Also, the trackball
is hooked up to the application. Because the trackball rotates the scene, and the
UpdateGS call for the scene is called indirectly through the OnMotion callback in the
application library, the TestInverseKinematics application must implement OnMotion
to trap the event, allow the trackball to rotate the scene, and then call UpdateRod
afterward. The implementation is

bool TestInverseKinematics::OnMotion (int iButton, int iX, int iY)
{

bool bMoved = WindowApplication3::OnMotion(iButton,iX,iY);
if ( bMoved )

UpdateRod();
return bMoved;

}

Figure 8.8 shows a screen shot from the sample application. Initially, the goal is
sitting on the ground plane at one unit of distance away from the origin of the IK
system. The screen shot shows a configuration where the goal was moved vertically
upward and then translated parallel to the plane by a small distance. The end effector
moved upward to match the goal’s vertical translation and then rotated about the
vertical axis to match the goal’s horizontal translation.
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Figure 8.8 A screen shot from TestInverseKinematics.

8.2.8 Portals Sample

Portals, convex regions, and convex region managers were discussed in Section 4.2.2,
and the BSP trees that support the system were discussed in Section 4.2.1. The Test-
Portals sample application illustrates the ideas of those sections, but has a quite
lengthy implementation—a consequence of my hand-building the indoor environ-
ment for the convex region manager. Such an environment would be built in a real
game using a modeling package. The exporting tools should be built to have the abil-
ity to automatically portalize the environment. For this process to succeed, the artists
must be given careful instructions on how to order the rooms and construct the scene
graph in the modeling package. The discussion here is about the construction of
the environment without support from a modeling package or automatic portaliz-
ing tool. If you walk away with anything from this sample, it should be that any tools
that automate difficult tasks are really good to have!

The indoor environment is a region bounded between the planes z = 0 and z = 2.
A cross section in the xy-plane is shown in Figure 8.9. The environment has nine
square and four diagonal rooms. The square rooms are named Cxy. The subscript
refers to the location of the center point of the room. For example, C20 is the room
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Figure 8.9 A cross section of the environment for the TestPortals sample.

whose center point is at (x , y) = (2, 0), and C0m4 is the room whose center point is
at (x , y) = (0, −4) (the m stands for “minus”). The diagonal rooms are named Dxy.
The subscript refers to the signs of x and y for the quadrant containing the room.
For example, Dpp is the room in the quadrant for which both x and y are positive,
and Dmp is the room in the quadrant for which x < 0 and y > 0 (the m stands for
“minus,” the p stands for “plus”).

Each room has a floor located on the plane z = 0 and a ceiling located on the
plane z = 2. Each room is bounded by four other planes. Table 8.1 lists the rooms
and bounding planes.

The plane equations are written in the form in which they are used in the BSP tree
construction. The coefficients on the left-hand side tell you the normal vector for the
plane. For example, −x + y = 4 has a normal vector (−1, 1, 0).

A BSP tree that implements the partitioning of the environment using an
Explorer-like representation is

CRM (-z = 0)
[+] outside
[-] BSP:R (z = 2)

[+] outside
[-] BSP:RR (x = 1)

[+] BSP:RRL (y = 1)
[+] BSP:RRLL (x + y = 4)

[+] BSP:RRLLL (x + y = 6)
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Table 8.1 The bounding planes for the rooms in the indoor environment.

Room Bounding planes

C00 x = 1, −x = 1, y = 1, −y = 1

C20 x = 1, x = 3, y = 1, −y = 1

C40 x = 3, x = 5, y = 1, −y = 1

Cm20 −x = 1, −x = 3, y = 1, −y = 1

Cm40 −x = 3, −x = 5, y = 1, −y = 1

C02 x = 1, −x = 1, y = 1, y = 3

C04 x = 1, −x = 1, y = 3, y = 5

C0m2 x = 1, −x = 1, −y = 1, −y = 3

C0m4 x = 1, −x = 1, −y = 3, −y = 5

Dpp x + y = 6, x + y = 4, x = 1, y = 1

Dpm x − y = 6, x − y = 4, x = 1, −y = 1

Dmp −x + y = 6, −x + y = 4, −x = 1, y = 1

Dmm −x − y = 6, −x − y = 4, −x = 1, −y = 1

[+] outside
[-] Dpp

[-] outside
[-] BSP:RRLR (-y = 1)

[+] BSP:RRLRL (x - y = 4)
[+] BSP:RRLRLL (x - y = 6)

[+] outside
[-] Dpm

[-] outside
[-] BSP:RRLRR (x = 3)

[+] BSP:RRLRRL (x = 5)
[+] outside
[-] C40

[-] C20
[-] BSP:RRR (-x = 1)

[+] BSP:RRRL (y = 1)
[+] BSP:RRRLL (-x + y = 4)

[+] BSP:RRRLLL (-x + y = 6)
[+] outside
[-] Dmp

[-] outside
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[-] BSP:RRRLR (-y = 1)
[+] BSP:RRRLRL (-x - y = 4)

[+] BSP:RRRLRLL (-x - y = 6)
[+] outside
[-] Dmm

[-] outside
[-] BSP:RRRLRR (-x = 3)

[+] BSP:RRRLRRL (-x = 5)
[+] outside
[-] Cm40

[-] Cm20
[-] BSP:RRRR (y = 1)

[+] BSP:RRRRL (y = 3)
[+] BSP:RRRRLL (y = 5)

[+] outside
[-] C04

[-] C02
[-] BSP:RRRRR (-y = 1)

[+] BSP:RRRRRL (-y = 3)
[+] BSP:RRRRRLL (-y = 5)

[+] outside
[-] C0m4

[-] C0m2
[-] C00

The tree is implemented in the scene graph as a tree of BspNode objects. The root of
the tree is a ConvexRegionManager object, labeled CRM. The other nodes are labeled
BSP and show their corresponding planes. The notation after the BSP lists the path to
the node. If you were to sketch the tree so that the positive child branches to the left of
the parent node and the negative child branches to the right, a path RRLRL indicates
to go right twice, go left once, go right once, then left once. The path names are used
in the source code.

The BSP tree construction is in the application member function CreateBspTree.
The function is significantly long, so I will not reproduce it here. You can follow
along by reading the source code. The first large block of source code creates the
ConvexRegionManager object and all the BspNode objects. The splitting planes are the
ones mentioned in the previous display of the BSP tree. The objects are assigned
names by calling SetName; the node’s path name is used.

The second large block of source code creates the cube and diagonal rooms as
ConvexRegion objects. The functions used for creation are CreateCenterCube for C00;
CreateAxisConnector for C20, C02, Cm20, and C0m2; CreateEndCube for C40, C04, Cm40,
and C0m4; and CreateDiagonalConnector for Dpp, Dpm, Dmp, and Dmm. The names
assigned to those nodes are the room names, as defined earlier. Each room has two,
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Figure 8.10 The vertex and index assignments for the room C00. The view is of the room with the
ceiling removed and the walls folded outward. The floor is dark gray, the walls are
light gray, and the portal cutouts are white.

three, or four portals. The arrays of Portal objects are created within the four Create*
functions.

The third large block of source code has the responsibility for setting up the
adjacency graph of the convex regions. The indices into the portal arrays are shown
in Figure 8.9. The opening between adjacent rooms is represented by a portal in each
array of portals for the rooms. The index is immediately next to the opening. For
example, room C40 has three outgoing portals. The opening at y = 1 has the index 0
immediately to its right, but inside C40. The corresponding Portal object occurs in
slot 0 of the array. The opening at y = −1 is represented by the Portal object in slot
1 of the array. Finally, the opening at x = 3 is represented by the Portal object in slot
2 of the array.

The fourth, and final, block of source code has the responsibility for setting the
parent-child links in the BSP tree.

The construction of the triangle meshes for the rooms is also accomplished by a
large amount of source code, which mainly sets vertex and index values. Room C00 is
constructed according to Figure 8.10. The walls contain a total of 24 triangles, 4 per
wall. The floor and ceiling are constructed as separate objects to allow for textures that
are different than what is used on the walls. This room also contains four rectangular
objects that are used to verify that the culling planes generated by the portals are
actually doing their job.

The end rooms with three portals each are constructed according to Figure 8.11,
and the four cube rooms adjacent to the center room and the four diagonal rooms
are constructed according to Figure 8.12.
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Figure 8.11 The vertex and index assignments for the end rooms. The view is of the room with
the ceiling removed and the walls folded outward. The floor is dark gray, the walls
are light gray, and the portal cutouts are white.
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Figure 8.12 The vertex and index assignments for the connector rooms. The view is of the room
with the ceiling removed and the walls folded outward. The floor is dark gray, the
walls are light gray, and the portal cutouts are white.
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Figure 8.13 The vertex and index assignments for the outside. Two views are presented: (a) the
top viewed from the top and (b) the bottom viewed from the top. Additional triangles
occur on the walls that connect the top with the bottom.

The outside geometry is a separate object. It is constructed by the function Cre-
ateOutside and is only vertex colored. Figure 8.13 shows the vertex and index assign-
ments.

The sample application allows you to verify that the portal system is working in
two ways: First, you want to make certain that rooms are culled. Second, you want
to make certain that objects in rooms are culled if their bounding volumes are not
visible through the portal. Figure 8.14 shows screen shots from the application. The
same views are shown in wireframe mode in Figure 8.15. Notice that in Figure 8.15(b)
the wireframe for the rooms that are left- and right-adjacent to the center room show
up, so in the distant view, those rooms were culled.

Figure 8.16 shows two views of the scene: one with just a sliver of the water-
textured rectangle showing and one with that rectangle hidden. Figure 8.17 shows
the same views in wireframe mode. Notice that in Figure 8.17(b) the wireframe of
the water-texture rectangle is missing. This means the object has been culled. In
particular, the plane formed by the eye point and right edge of the doorway is what
culls the object.

8.2.9 ScreenPolygon Sample

The TestScreenPolygon sample application shows how to use screen space polygons
for both the background and foreground of an application. The screen space polygons



(a)

(b)

Figure 8.14 Screen shots from the TestPortals application. (a) A view of the scene when the eye
point is at some distance from the center room. (b) A view of the scene when the eye
point is closer to the center room. (See also Color Plate 8.14.)



(a)

(b)

Figure 8.15 Wireframe views corresponding to Figure 8.14. (See also Color Plate 8.15.)



(a)

(b)

Figure 8.16 Screen shots from the TestPortals application. (a) A view of the scene where a sliver
of the water-texture rectangle is showing. (b) A view of the scene when the eye point
is closer to the right wall, and the rectangle is hidden. (See also Color Plate 8.16.)
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(b)

Figure 8.17 Wireframe views corresponding to Figure 8.16. (See also Color Plate 8.17.)
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Figure 8.18 A screen shot from the TestScreenPolygon application. (See also Color Plate 8.18.)

are not part of the scene graph, since they are not three-dimensional geometry that
requires the formal update system to adjust world bounding volumes and world
transformations. You must manage the objects separately. The application has two
screen space polygons: The background polygon covers the entire screen and has a
TextureEffect attached to it; the foreground polygon is a convex pentagon with a
TextureEffect attached to it. The texture has an alpha channel with values that make
the texture semitransparent. An AlphaState object is also attached to the foreground
polygon so that it is blended into whatever is displayed on the screen. The skinned
biped model is part of the application. The order of drawing is background polygon,
skinned biped, foreground polygon (with blending). Figure 8.18 is a screen shot from
the sample.

You may animate the biped and notice that the rendering of it is always between
the foreground and background polygons. Also notice that the frame rate is displayed
on top of the foreground polygon, yet another layer in the system.

The OnIdle loop is structured slightly differently than other applications:

void TestScreenPolygon::OnIdle ()
{

MeasureTime();

MoveCamera();
if ( MoveObject() )

m_spkScene->UpdateGS();
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m_pkRenderer->ClearZBuffer();
if ( m_pkRenderer->BeginScene() )
{

// draw background polygon first
m_pkRenderer->Draw(m_spkBackPoly);

m_pkRenderer->DrawScene(m_spkScene);

// draw foreground polygon last
m_pkRenderer->Draw(m_spkForePoly);

// text goes on top of foreground polygon
DrawFrameRate(8,GetHeight()-8,ColorRGBA::WHITE);

m_pkRenderer->EndScene();
}
m_pkRenderer->DisplayBackBuffer();

UpdateFrameCount();
}

Usually the applications call ClearBuffers to clear the frame buffer as well as the
depth buffer. However, we know that the background screen polygon fills the entire
screen, so there is no reason to spend time clearing the frame buffer; thus, only
ClearZBuffer is called.

After the BeginScene call, the renderer is told to draw the background polygon,
followed by the scene, and then followed by the foreground polygon. The last drawing
call displays the frame rate on top of everything else.

8.2.10 SkinnedBiped Sample

Wild Magic version 2 used the skinned biped model as a demonstration of skin-and-
bones animation. The model also has keyframe controllers for animating the joints
of the biped. The sample application loaded the already created model and simply
displayed it on the screen. The animation was controlled manually by pressing keys.
One of the most frequent questions about that sample was “How did you build the
biped?”

The model was built in 3D Studio Max by an artist and then exported to the
engine format. In particular, the skin of the model occurred in six triangle meshes,
but the meshes were not stored as siblings of the bone trees that affected them. Each
mesh had the same material applied to it, so the artist apparently wanted to have
the drawing sorted by render state. The meshes are small enough that the sorting is
not an issue for real-time display. In Wild Magic version 3, I manually decomposed
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the old model and saved the parts to files of raw data. The TestSkinnedBiped sample
application shows how the parts are reassembled so that the skins are siblings of the
bone trees that affect them. In fact, I decomposed the skins even further into single
anatomical pieces. One of the original skins contained vertices for the face, arms, and
legs because a skin-color material was used for all those parts. This skin has been
decomposed into separate skins for the face, left arm, right arm, left leg, and right
leg. The other decomposed skins consist of a left shoe, a right shoe, a left ankle, a
right ankle, hair, a shirt, and pants.

The scene graph structure is shown in the member function LoadModel. The
source code lines are indented to show you the hierarchy. Two functions are called
when building the scene, GetNode and GetMesh. The GetNode function loads up the
raw data for interior nodes, including the keyframe controller data. The GetMesh func-
tion loads up the raw data for leaf nodes, including the triangle meshes and the skin
controller data.

You have seen an inordinate number of screen shots with the skinned biped, so
no point showing you yet another one!

8.2.11 SortFaces Sample

I discussed sorted drawing in Section 4.2.3. The TestSortFaces sample application is
an implementation of the ideas. In the sample, I created a Node-derived class called
SortedCube. The scene graph of the application is just an instance of this new class:

Scene(SortedCube) <Cull, ZBuffer, Alpha>
XpFace(TriMesh) <Texture>
XmFace(TriMesh) <Texture>
YpFace(TriMesh) <Texture>
YmFace(TriMesh) <Texture>
ZpFace(TriMesh) <Texture>
ZmFace(TriMesh) <Texture>

The cube consists of six TriMesh objects, each with an RGBA texture applied to
it. The texture images have the names of the six faces: Xp, Xm, Yp, Ym, Zp, and Zm.
The names are in black, and the texels have alpha values of 1, so the names are opaque.
The background of the images is a water texture whose alpha values are 0.5, making
it semitransparent. The AlphaState object is attached to the SortedCube to allow for
alpha blending.

Since we want to see the back sides of the back-facing polygons when viewing
them through the front faces, we need to disable back-face culling. The CullState
object is attached for this purpose.

Finally, since the SortedCube is designed to sort the faces to obtain a correctly
rendered scene, we do not want to rely on the depth buffer to sort on a per-pixel
basis. A ZBufferState object is attached to the SortedCube object. Reading of the depth
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Figure 8.19 A screen shot from the TestSortedFaces application. (See also Color Plate 8.19.)

buffer is disabled, since the sorted faces preclude our having to compare depths.
However, writing of the depth buffer is enabled. This does not matter in the current
sample, but if you were to add other objects to the scene, the depth buffer values
from semitransparent objects must be set in order to guarantee the other objects
are correctly drawn (presumably most of them will use depth buffering). Figure 8.19
shows a screen shot from the sample.

8.2.12 Terrain Sample

The TestTerrain sample application is a straightforward use of the ClodTerrain class.
A ClodTerrain object is created. The default height and texture data are the highest
resolution available: the pages are 129 × 129, and the texture images are 128 × 128. A
FogState object is attached to the terrain in order to hide the rendering artifacts when
terrain pages enter the view frustum through the far plane.

A sky dome is also loaded. This is the same object used in the TestCastle data set.
To give the appearance of the sky being infinitely far away from the camera, whenever
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the camera moves, the sky dome moves with it. These updates occur in the OnIdle
callback:

if ( MoveCamera() )
{

// The sky dome moves with the camera so that it is always in view.
m_spkSkyDome->Local.Translate() = m_spkCamera->GetLocation();
m_spkSkyDome->Local.Translate().Z() = 0.0f;
m_spkSkyDome->UpdateGS();

}

The center point of the hemispherical dome is tied to exactly the eye point.
As you move about the terrain, the simplification system automatically adjusts

the triangle mesh resolution. If the application runs slowly on your machine, try a
less aggressive tolerance by pressing the minus key. For a more aggressive tolerance,
press the plus key. You can also speed up the system by using the coarser-resolution
height fields and/or texture images.

The c and C keys let you toggle between the close assumption and the distant
assumption that were discussed in Section 4.4. Also, at any time you can force a
simplification with the m or M keys.

As mentioned in Section 4.4, all of the camera motion virtual functions are
overridden by TestTerrain. Once the camera has moved, the terrain simplification
must occur. For example,

void TestTerrain::MoveForward ()
{

WindowApplication3::MoveForward();

Vector3f kLoc = m_spkCamera->GetLocation();
float fHeight = m_spkTerrain->GetHeight(kLoc.X(),kLoc.Y());
kLoc.Z() = fHeight + m_fHeightAboveTerrain;
m_spkCamera->SetLocation(kLoc);
m_spkCamera->UpdateGS();
m_spkTerrain->Simplify();

}

The base class function is called to determine the new camera location. The cam-
era has moved along its view direction, but the height above the terrain is required
to be a constant. The five lines of code after the base class call adjust the camera eye
point to have that constant height. The last line of code causes the simplification of
the terrain to occur. Figure 8.20 shows a couple of screen shots from the sample ap-
plication.



Figure 8.20 Screen shots from the TestTerrain application. (See also Color Plate 8.20.)
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8.3 Sample Tools

This section describes briefly a few tools that ship on the CD-ROM. Tools for import-
ing and exporting are the most difficult to write and maintain. One problem is that
the modeling packages have their own scene management systems that do not easily
map onto that of Wild Magic. Another problem is that finding adequate documenta-
tion that describes how to export from a package is nearly impossible. Maintenance of
the exporters is a challenge because the companies that produce modeling packages
release updates on a frequent enough basis that forces you to update your exporters
to go with the new versions.

8.3.1 3dsToWmof Importer

This is a simple tool that reads in files based on the old 3D Studio Max file for-
mat. The files have extension *.3ds. The importer is very basic: it imports geometry,
textures, and some keyframe animation data. The file format does not support skin-
and-bones. Wild Magic version 2 has an exporter for 3D Studio Max version 4 that
I am currently upgrading to use Wild Magic version 3 in conjunction with 3D Stu-
dio Max version 6. The exporter supports keyframe animation and skin-and-bones
in addition to the standard features such as lighting, material, and textures. If the ex-
porter is not finished by the time the book is in print, you will be able to download it
from the Wild Magic Web site.

8.3.2 Maya Exporter

Also on the CD-ROM is an exporter for Maya version 6. This exporter has a good
number of features and does support keyframe animation and skin-and-bones. The
Maya scene graph structures are sufficiently similar to those of Wild Magic, which
reduces some of the pain of writing an exporter for that package.

8.3.3 BmpToWmif Converter

The Wild Magic Image Format (WMIF) is a simple format. The class Image encap-
sulates the image reading and writing system. Since the format is for my engine,
standard tools for converting file formats are not available. The BmpToWmif converter
takes a 24-bit RGB Microsoft Windows bitmap and converts it to an RGB WMIF. A
command line option allows you to specify an alpha value that is applied to all the
texels, so you can create RGBA WMIF files with semitransparent texels.
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8.3.4 WmifToBmp Converter

After converting bitmap images to WMIF images, sometimes those original bitmaps
get lost. It is handy to convert the WMIF images back to 24-bit RGB Microsoft
Windows bitmaps, and the WmifToBmp converter does this. The alpha channel of the
WMIF image is written to disk as a separate bitmap.

8.3.5 ScenePrinter Tool

For a human-readable printout of a scene graph, use the ScenePrinter tool. The
tool uses the StringTree class in the scene graph streaming system to produce ASCII
output for the data members of each object in the scene. The program is a simple
console application that loads the scene in a Stream object and then calls the SaveText
member function of the Stream object.

8.3.6 SceneTree Tool

The SceneTree tool is a Microsoft Windows application that uses a Windows tree
control to display a scene. If I ever get enough spare time, I will port this to the Linux
and Macintosh platforms.

I find this tool quite useful for quickly examining the contents of a scene and to
see what effects and controllers are attached. In fact, the heart of the tool is encapsu-
lated by the files TreeControl.h and TreeControl.cpp. You can include these in your
application code and create a tree control window from directly in your application.
This window provides a more descriptive view of your data than do the “watch” win-
dows in Visual Studio, since the watch windows know nothing about the high-level
aspects of your data.

Figure 8.21 shows a screen shot of the SceneTree tool applied to the Skinned-
Biped.wmof model.

8.3.7 SceneViewer Tool

The SceneViewer tool is a simple viewer that does a center-and-fit operation on the
loaded scene graph. You can rotate the scene using the virtual trackball or using the
function keys F1 through F6. All the usual camera navigation is enabled via the arrow
keys, home, end, page up, and page down. Nothing fancy, but enough to quickly view
a scene that was saved to the Wild Magic Object Format (WMOF).



Figure 8.21 A screen shot of the SceneTree tool.



A p p e n d i x

Coding Conventions

I have various programming conventions I follow to make my code consistent and
readable. Code consistency is, in my opinion, not a debatable concept; however,

what is readable to one programmer might not be readable to another. Many pro-
grammers take a strong philosophical stance about code formatting and are not will-
ing to compromise in the least. I am no different in that I feel strongly about my
choices. This appendix describes my conventions and, in some cases, why I have se-
lected them.

A.1 File Naming and Organization

My source code libraries have files of various types, each type identified by its file
extension. Wild Magic version 3 filenames all have the prefix Wm3. The prefix for
Wild Magic version 2 filenames is Wml. I changed the prefix to allow an application
to include both versions of the library. This allows you to use version 2 functions that
are not yet ported to version 3, and it supports any conversions you might have to
make to scene graphs that were created in version 2 of the product.

The files have various extensions. Header files have the extension h and contain
class and function declarations. Source files have the extension cpp for C++ code.1

C++ allows you to have inlined source. For example, in a hypothetical header file
MyClass.h, the class declaration contains

1. The OpenGL renderer uses GLEW for extension handling, a system with a C source file of extension c. I
do not write C code in my own source.

677
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class MyClass
{
public:

void SetMyVariable (int i) { m_iMyVariable = i; }
int GetMyVariable () const { return m_iMyVariable; }

private:
int m_iMyVariable;

};

You may optionally use the inline keyword to prefix these statements. Unfortu-
nately, including the body of a function in the class declaration is only considered
a suggestion to the compiler. Whether or not the code is inlined depends on which
compiler you are using. Some compilers provide a language extension to force the
compiler to inline code, but the extensions are not portable, so I avoid them. I pre-
fer to make the class declaration as readable as possible. The inline code distracts
me from reading what the interface is. I place all the inline bodies in a separate file,
what I call an “inline file.” The file extension is inl. My version of the previous exam-
ple is

// ... contents of MyClass.h ...
class MyClass
{
public:

void SetMyVariable (int i);
int GetMyVariable () const;

private:
int m_iMyVariable;

};

#include "MyClass.inl"

// ... contents of MyClass.inl ...
inline void MyClass::SetMyVariable (int i)
{

m_iMyVariable = i;
}

inline int MyClass::GetMyVariable () const
{

return m_iMyVariable;
}
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In summary, my organization of the header file is designed for you to quickly
identify the public interface that is available to you, not for you to see implementation
details of functions.

I use macros in the Object system of the library to support subsystems that require
you to use similar code blocks in each class you define in the system. I place macros in
files with an extension mcr. If you are using Microsoft’s Visual Studio on a Windows
platform, it is convenient for readability to have macro files processed by the syntax
highlighting system. You can edit the Windows registry to make this happen. For
Visual C++ 6 you need to modify the key

HKEY_CURRENT_USER
Software

Microsoft
DevStudio

6.0
Text Editor

Tabs/Language Settings
C/C++

This key has an item “File Extensions” of type REG_SZ. Right-click on this name, select
the “Modify” option, and append to the string “;mcr”. Files with the extensions in this
list are syntax colored by the same editor scheme, in this case the one for cpp files. For
Visual C++ 7 (any version), add a new entry with the extension .mcr to the registry
path as shown:

HKEY_LOCAL_MACHINE
SOFTWARE

MICROSOFT
VisualStudio

7.0
Languages

File Extensions
.mcr

The “Name” field of the new entry is (Default) and the “Type” field is REG_SZ. The
“Data” field needs to be the same one that shows up in the registry key .cpp. You can
make a copy of that field by selecting the entry .cpp, right-clicking on the “Name”
field, and selecting the “Modify” option. An edit control appears and shows the
“Data” field highlighted. Press CTRL-C to copy the contents. Cancel out of that
menu. Now select the registry key .mcr, right-click on “Name”, and select the “Mod-
ify” option. Select the edit control and press CTRL-V to paste the contents from the
previous copy.
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A.2 Comment Preamble and Separators

All of the library files begin with the comment block

// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2004. All Rights Reserved
//
// The Wild Magic Library (WM3) source code is supplied under the terms of
// the license agreement http://www.wild-magic.com/License/WildMagic3.pdf and
// may not be copied or disclosed except in accordance with the terms of that
// agreement.

I change the copyright notice annually. The license agreement is occasionally mod-
ified, but the conditions of the agreement can only become less restrictive over
time.

The cpp files make use of comment separators between the functions. I find that
comment separators make it easier for me to locate function blocks during scrolling
than by having only blank line separators. Part of this ease might be related to the col-
oring provided by syntax highlighting in my editor of choice, the Visual Studio editor.
Because each comment separator starts with two forward slashes and is completed
with 76 hyphens, the cursor, when at the end of one of these lines, is highlighting
column 79. I tend to display a source file fully maximized in the editor window. My
editor window is set up so that column 79 is at the right edge of the window, a vi-
sual warning when typing to help me avoid typing past that point. The reason for 78
columns of text is that the standard printer settings allow 80 columns of text before
a carriage return is automatically inserted. I structure my source files so that when
printed, no automatic carriage returns are inserted that would corrupt the format-
ting of the source page. Of course, this is not a problem if your printer is set up to use
more columns per page, but to be on the safe side, I assume the worst case for users
of the code.

For example, in Wm3Geometry.cpp, the first two functions are constructor calls. The
first comment separator is used to separate global declarations from the functions.
The remaining comment separators are used to separate the functions.

#include "Wm3Geometry.h"
#include "Wm3Light.h"
#include "Wm3Texture.h"
using namespace Wm3;

WM3_IMPLEMENT_RTTI(Wm3,Geometry,Spatial);
WM3_IMPLEMENT_ABSTRACT_STREAM(Geometry);
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//-----------------------------------------------------------------
Geometry::Geometry ()

:
Lights(8,8)

{
memset(States,0,GlobalState::MAX_STATE*sizeof(GlobalState*));

}
//-----------------------------------------------------------------
Geometry::Geometry (Vector3fArrayPtr spkVertices)

:
ModelBound(BoundingVolume::Create()),
Lights(8,8),
Vertices(spkVertices)

{
memset(States,0,GlobalState::MAX_STATE*sizeof(GlobalState*));
UpdateModelBound();

}
//-----------------------------------------------------------------

The number of hyphens here is smaller than in the source code so that the comment
separator fits within the bounds of this book!

A.3 White Space

The adequate use of white space is one of the least agreed upon topics regarding
coding conventions. Different programmers invariably have different guidelines for
spacing. This section describes my choices, for good or for bad.

A.3.1 Indentation

I use a level of indentation of four for each code block. I never use hard-coded tabs to
obtain this indentation for two reasons. First, when viewing the code, a reader might
have his editor set up to map a tab to a different number of spaces than I do. Second,
a printer might also be set up to use a different number of spaces for a tab than I use.
All white space in my source files occurs as a result of blank characters or blank lines.
For example,

void SomeFunction (int i)
{

// This comment indented 4 spaces from previous brace.
if ( i > 0 )
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{
// This comment indented 4 spaces from previous brace.
printf("positive i = %d\n",i);

}
else
{

// This comment indented 4 spaces from previous brace.
printf("nonpositive i = %d\n",i);

}
}

A.3.2 Blank Lines

I have no predefined rules for when (or when not) to use blank lines as white space. I
try to use a blank line between code blocks when those blocks are not closely related.
Usually, I have a comment at the beginning of a block to describe its purpose.

A.3.3 Function Declarators

Function definitions, whether C-style or C++ member functions, occur in header
files. The corresponding function bodies are either in a source file (extension cpp) or
in an inline file (extension inl). Whether a definition or declaration, the declarator
consists of a list of variables, possibly empty. Each item in the list contains a type name
and an identifier name. Following the ANSI standard, if an identifier is not used in
the function, the name is omitted. The type name–identifier pairs are separated by a
comma and a blank. For example, a constructor for Vector2 is

template <class Real>
Vector2<Real>::Vector2 (Real fX, Real fY)
{

m_afTuple[0] = fX;
m_afTuple[1] = fY;

}

The declarator consists of two type name–identifier pairs, Real fX and Real fY.
These are separated by a comma-blank pair. If the declarator is longer than 78 char-
acters, the list is split at the last comma occurring before the 78 characters and con-
tinued on the next line with an indentation level of 4. For example,

void Camera::SetFrame (const Vector3f& rkLocation,
const Vector3f& rkDVector, const Vector3f& rkUVector,
const Vector3f& rkRVector)
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{
Local.SetTranslate(rkLocation);
Local.SetRotate(Matrix3f(rkDVector,rkUVector,rkRVector,true));
OnFrameChange();

}

If the list must be split multiple times, the second and all later lines are all indented to
the same level. For a function that is const, sometimes the list does fit on a single line,
but the const does not. I split the line so that const occurs on the next line, indented
to a level of 4.

A.3.4 Constructor Initializers

The initialization of class members before the constructor body is called is accom-
plished by a comma-delimited list that follows a colon after the function declarator.
I always place the colon on a separate line after the declarator, indented by one level.
The list of initializations is on the next line at the same level. If the list does not fit
on one line, it is split after the last comma that fits in the 78-character line. Some
examples are

TriMesh::TriMesh (Vector3fArrayPtr spkVertices,
IntArrayPtr spkIndices, bool bGenerateNormals)
:
Geometry(spkVertices)

{
GeometryType = GT_TRIMESH;
Indices = spkIndices;
if ( bGenerateNormals )

GenerateNormals();
}

BoxBVTree::BoxBVTree (const TriMesh* pkMesh, int iMaxTrisPerLeaf,
bool bStoreInteriorTris)
:
BoundingVolumeTree(BoundingVolume::BV_BOX,pkMesh,

iMaxTrisPerLeaf,bStoreInteriorTris)
{
}

Although you can initialize all members in the constructor initializer list, I usually
only initialize members that are themselves class objects. Native-type members are
initialized in the body of the constructor.
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A.3.5 Function Calls

Function calls are formatted with no white space between arguments. If the argument
list does not fit on one line, it is split at the last comma that fits on the line. The
remainder of the list on the next line is indented one level. For example,

SubdivideByVariation(m_fTMin,kPMin,m_fTMax,kPMax,fMinVariation,
iMaxLevel,riNumPoints,pkList->m_kNext);

If the list is split multiple times, the second and later lines containing the list are
indented to the same level.

A.3.6 Conditionals

The formatting I use for if, while, and for statements is

if ( some_condition )
{
}

while ( some_condition )
{
}

for (initializers; terminate_conditions; updaters)
{
}

I use spaces to separate the Boolean conditions from the parentheses in the if and
while statements, but not in the for statements. I do not recall a particular reason
for these choices, and perhaps someday I will make these consistent regarding use of
white space.

If some_condition is a compound Boolean expression that is too long to fit within
the 78-character bound, I split the expression at a Boolean operator. The Boolean
operator is left justified with the if or while keywords, and the remainder of that line
is vertically justified with the previous line. For example,

bool Controller::Update (double dAppTime)
{

if ( Active
&& (dAppTime == -Mathd::MAX_REAL
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|| dAppTime != m_dLastAppTime) )
{

m_dLastAppTime = dAppTime;
return true;

}
return false;

}

If the expression to be evaluated when the Boolean conditional is true is a single
line of code, I do not use braces:

if ( some_condition )
evaluate_expression;

If the Boolean condition is split, I do include braces for readability:

if ( some_condition
&& some_other_condition )
{

evaluate_expression;
}

I do not like splitting the for statement. For example, in Spatial::
UpdateWorldData, you will see a block of code

TList<GlobalStatePtr>* pkGList;
for (pkGList = m_pkGlobalList; pkGList; pkGList = pkGList->Next())

pkGList->Item()->UpdateControllers(dAppTime);

I prefer this block over the following one:

for (TList<GlobalStatePtr>* pkGList = m_pkGlobalList;
pkGList; pkGList = pkGList->Next())

{
pkGList->Item()->UpdateControllers(dAppTime);

}

A.4 Braces

As you may have already noticed, my braces for a single code block are aligned in the
same column:
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if ( i > 0 )
{

// The starting and ending brace for this block are aligned.
}

Some people prefer Berkeley-style braces, but I do not:

if ( i > 0 ) {
// I do not use this style of braces.

}

A.5 Pointer Types

This topic is one I have found to be quite philosophical among programmers. In the
C language, you can declare pointer types and dereference them as illustrated next:

// declare piValue0 and piValue1 to be pointers to integers
int *piValue0, *piValue1;

// Assign 17 to the memory location pointed to by piValue0.
// The * is used to dereference the pointer.
*piValue0 = 17;

// Assign the value in the memory location pointed to by piValue0
// to the memory location pointed to by piValue1. The * are used
// to dereference the pointers.
*piValue1 = *piValue0;

// After this assigment, piValue0 and piValue1 refer to the same
// memory location.
piValue1 = piValue0;

I am a firm believer in the object-oriented stance that pointers are objects and
that a pointer type is representable as a class. This is supported by C++ in that you
can overload the dereferencing operators operator*() and operator->(). A natural
consequence of accepting pointers as objects leads to my choice of formatting:

int* piValue0; // declaration, int* is the pointer type
*piValue0 = 17; // dereference of the pointer type

In declarations, the asterisk immediately follows the type because type* denotes a
pointer type. In assignments, the asterisk is used to dereference the pointer.

The fact that the C language allows declaration of multiple variables on the same
line is, in my opinion, not a valid argument for separating the asterisk from the type
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name. The C language was partly designed to allow compact statements. Having to
use the verbose

int* piValue0;
int* piValue1;

instead of the compactly written

int *piValue0, *piValue1;

was, no doubt, viewed as wasteful by proponents of the latter form. However, whether
C or C++, you can use

typedef int* IntPtr; // or (gasp!): typedef int *IntPtr;
IntPtr piValue0, piValue1;

In fact, the type definition really does emphasize the fact that you are dealing with a
pointer type.

The problems of integer types and pointer types are deeper than this. The C and
C++ languages have constraints on how the sizes of different integer types compare,
but these constraints allow for variability between platforms and CPUs. For example,
it is guaranteed that

sizeof(short) <= sizeof(int) <= sizeof(long)

but sometimes you have to be careful about writing code whose behavior might
change (for the worse) between the cases where equality or strict inequality occurs.
To avoid such problems, developers tend to provide wrapper types to indicate exactly
what the size of the type is. Pointers to the various types are also specified. For
example,

// System meets the constraints:
// sizeof(char) = sizeof(unsigned char) = 1, ‘char’ is signed
// sizeof(short) = sizeof(unsigned short) = 2
// sizeof(int) = sizeof(unsigned int) = 4
typedef char Int8;
typedef char* Int8Ptr;
typedef unsigned char UInt8;
typedef unsigned char* UInt8Ptr;
typedef short Int16;
typedef unsigned short UInt16;
typedef short* Int16Ptr;
typedef unsigned short* UInt16Ptr;
typedef int Int32;
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typedef unsigned int UInt32;
typedef int* Int32Ptr;
typedef unsigned int* UInt32Ptr;

// if system has 64-bit signed integers declared as __int64 ...
typedef __int64 Int64;
typedef __int64* Int64Ptr;

// ... or if system has 64-bit ‘long’
typedef long Int64;
typedef long* Int64Ptr;

With such a system in place to avoid integer-size dependencies, the declaration
issue of “where do you place the asterisk” goes away. I do not currently have such
wrappers in place. If you were to add the wrappers, the main problem will be to avoid
name clashes if other libraries provide wrappers with the same names.

A.6 Identifier Names

The coding conventions for choosing identifier names are presented in this section.

A.6.1 Variables

I have a rigid naming system for variables. The style is similar to Microsoft’s Hun-
garian notation, but a bit more extensive. Class data members in private or protected
scope are prefixed as follows: A nonstatic member is prefixed with m_, but a static class
data member is prefixed with ms_. Class data members in public scope do not have a
prefix. Their names start with a capital letter, and all complete words in the name
have their first letter capitalized. For example,

class MyClass
{
public:

int MyIntegerValue;

void SetMyFloatValue (float fMyFloatValue);
float GetMyFloatValue () const;

protected:
float m_fMyFloatValue;
static short ms_sMyStaticShortValue;

};
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Table A.1 Prefixes used to identify the type of an identifier.

Prefix Type Prefix Type

c char e enumerated value

uc unsigned char k class object

s short p pointer

us unsigned short r reference

i, j int a array

ui unsigned int o function pointer

l long v void

ul unsigned long t template variable

f float h handle (Microsoft Windows)

d double q interface (Microsoft COM)

b bool

Any data members in public scope do not have side effects when you read or
write them. If you need side effects, you should provide public member accessors. In
the example, these are SetMyFloatValue and GetMyFloatValue. Static public members
also are not prefixed. For example, Vector2 has static public members ZERO (the zero
vector), UNIT_X (the vector (1, 0)), and UNIT_Y (the vector (0, 1)).

Sometimes variables are defined in file scope but are not members of a class.
These global variables are either publicly accessible in another file, through an extern
declaration, or private to the file containing them by adding a static modifier. A
publicly accessible global variable is prefixed with g_. A private global variable is
prefixed with gs_. I try to avoid publicly accessible global variables; if they need to
be accessible, I place them in class scope and either make them public in the class
or provide accessor functions in the class. Private global class objects occur regularly
when a class needs help with pre-main initialization and post-main termination. For
example, see the macros in the file Wm3Main.mcr that use global, static variables.

Variables that are local to a code block have no prefix. Names for local variables
and names for other variables minus the prefixes consist of lowercase letters that spec-
ify the type of the variable. After those letters are alphanumeric characters. Multiple
words within a single identifier are capitalized for readability. I do not use under-
scores in identifier names except for the prefixing or for enumerations. The letters
used for type are listed in Table A.1.

Based on user input, I made a few exceptions to the rules. Integer-valued loop
indices may use single-letter names, typically i, j, or k. I also allow j as a prefix for an
int variable.
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A.6.2 Classes and Functions

Class names and function names are identifiers and are also alphanumeric. Multiple
words within a single identifier are capitalized for readability. The mathematics-
based classes that use templates with a parameter Real have names following the
conventions here. Template classes that are not mathematics based use a prefix of
T before the class name. For example, the container classes are of this type, such as
TArray and TSet.

A.6.3 Enumerations

To avoid potential portability problems with enumerated types, specifically that the
type might use different numbers of bytes on different platforms, I declare an enu-
meration, but store the values in an int variable. For example,

class FogState
{
public:

enum // DensityFunction
{

DF_LINEAR,
DF_EXP,
DF_EXPSQR,
DF_QUANTITY

};

int DensityFunction; // default: DF_LINEAR
};

This is in contrast to using

class FogState
{
public:

enum DensityFunctionType
{

DF_LINEAR,
DF_EXP,
DF_EXPSQR,
DF_QUANTITY

};

DensityFunctionType DensityFunction; // default: DF_LINEAR
};
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This might no longer be an issue on current platforms with current operating
systems, but previously, the Macintosh used to choose the smallest integer type that
would store all the enumerations (but allowed you to reconfigure the system to make
the value larger). In the current example, a char could be used since there are only
four enumerations with implicitly assigned values 0 through 3. Not wanting to take
chances with my streaming system, I avoid supplying a name for the enumerated type
and store the values as an int.

I also use some manner of prefix on the enumerations, the prefix suggestive of
the type. This practice avoids global name clashes, especially with the file windows.h,
when the scope containing an enumerated value is ambiguous.

A.7 C++ Exceptions

I am not a fan of C++ exceptions (or of Java exceptions). Call me a dinosaur,
but I prefer to use assertions to trap unexpected conditions during testing in the
development environment. In fact, I use the assert macro generously.

In situations where I believe an unexpected condition can occur at run time in the
actual consumer product (for example, trying to load a file from a specific location
only to find out the file does not exist), I use what I call the assert-recover paradigm.
The assert exists in case you can trap the problem during development time in a
debug build of the product. However, if the unexpected condition occurs at run time,
you would like the program to recover gracefully—certainly it should not crash. Code
is added after the assert that is designed to gracefully exit the code block containing
the assertion.

For example, in an application’s OnInitialize callback:

bool MyApplication::OnInitialize ()
{

if ( !WindowApplication3::OnInitialize() )
return false;

Stream kStream;
bool bLoaded = kStream.Load("MyScene.wmof");
assert( bLoaded );
if ( !bLoaded )

return false;

// ... finish initializing ...
return true;

}

The developer expected the scene graph file to occur in a certain directory. If someone
deletes that file, or if the file is located in another directory, the stream load will
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fail. The assert exists for you to trap the problem, if possible, at development time.
But the test of bLoaded and the return of an error code is the recovery phase. The
application will terminate gracefully.

In quite a few places, I have only assert statements. The intent is that the only way
this can fail is if I completely overlooked something during the initial development,
and I want to catch the problem later before I ship the code. That said, if your test
programs do not yield full coverage of the source code, a development error might
lead to a run-time error in the consumer product. For a bullet-proof system, you
would always use the assert-recover paradigm. My recommendation at development
time is to use some type of code coverage tool to let you know what portions of your
code have not been visited. You can then add test programs to your testing matrix to
force those code blocks to be exercised.

A.8 Header File Organization

One of the topics least paid attention to is header file organization. A header file
has a few roles; the main one is to expose a programming interface to a user. The
header file also declares the classes and their data members and functions so that the
compiler knows how to process the symbols in the source files. A class is generally
not independent of the world around it. For example, the Matrix2 class encapsulates
2 × 2 matrices, but relies on knowledge about the Vector2 class. The header file for
Vector2 must be included in either the header file or source file for Matrix2. Generally,
the dependencies between classes in the library imply a hierarchical organization of
the header files. I am about to tell you my two favorite stories regarding header file
organization. Each of the stories has a lesson to learn.

A.8.1 Include Guards and Nested Header Files

The first story on header file organization is about making life easy for your fellow
programmers and clients of your source code. I worked for a short time at a lo-
cal North Carolina company as a developer in statistical graphics. My development
depended on libraries produced by other programmers in our group, as well as on
libraries produced by other groups in the company. The initial source code samples
that I had to learn from contained on the order of one to two dozen #include state-
ments for various header files from the libraries. Much of the source code itself was
not lengthy, so it was unclear to me why so many header files were being included. I
started removing all but those header files I believed to have the interfaces needed to
compile the source code file at hand, only to discover that the compiler generated a
massive number of error statements about undefined symbols.

The problem? Most of the header files themselves did not include header files for
subsystems that their corresponding source files required. Moreover, the header files
were not using include guards to prevent multiple compilation. The implication is that
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whenever I decided to include a particular header file to access the services exposed
by that header file, I had to figure out all the other header files that were required by
the one of interest and include them first, and in the correct order! Needless to say,
this was very inconvenient. I mentioned this to my manager, including a suggestion
that the system should be modified. He was also a developer in the group, quite proud
of what he built, and he took offense, telling me that the use of include guards and
nesting of header files was not a general solution. For as large and old a company as
this was, I was quite surprised at the design decision not to use include guards and
not to nest headers in the natural order.

The lesson for me in this was to beware of programmers with a lot of experience
and pride who start justifying what they do based on authority instead of justifying
what they do based on analytical reasoning. The lesson for you is “Use include guards
and nest those headers.”

For example, the file Wm3Line3.h contains

#ifndef WM3LINE3_H
#define WM3LINE3_H

#include "Wm3Vector3.h"

namespace Wm3
{

template <class Real>
class WM3_ITEM Line3
{

// ... declarations go here ...
};

}

#endif

The Line3 class uses the interface of the Vector3 class, so the header for the math class
is included. If I had not included the header, you would have to do the following in
your source:

#include "Wm3Vector3.h"
#include "Wm3Line3.h"
using namespace Wm3;

Line3f MyFunction ()
{

return Line3f(Vector3f::ZERO,Vector3f::UNIT_X);
}
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The order of the header files is important. If you include Wm3Line3.h first, the compiler
complains because it does not recognize Vector3 that occurs in that header file. There
is no reason to force your users to figure out the includes and ordering; if your header
file requires the interface, your header file includes the header for the interface.

The include guards prevent multiple compilation of header files that are indirectly
included by other header files. For example, if you have an application that uses
Wm3Matrix3.h as well as Wm3Line3.h, your source file would have

#include "Wm3Line3.h"
#include "Wm3Matrix3.h"

Both of these header files indirectly include Wm3Vector3.h. The first time the compiler
encounters Wm3Vector3.h is in Wm3Line3.h. The portion of the compiler symbol table is
built for that occurrence of the header. The compiler encounters Wm3Vector3.h a sec-
ond time when it processes Wm3Matrix3.h. If we were to allow the second compilation
to take place, the compiler would generate errors about multiply defined symbols.
Fortunately, the include guard prevents this. The include guard for Wm3Vector3.h
is WM3VECTOR3_H. The first time Wm3Vector3.h is visited, the compiler discovers that
WM3VECTOR3_H is not defined. The next line of code in the header file defines
WM3VECTOR3_H. The second time Wm3Vector3.h is visited, the compiler notices that
WM3VECTOR3_H is defined, and will simply skip over the contents of the header file
(until it reaches the #endif statement). Thus, in a single source file, a header file is
only ever processed once.

If you have two source files, each including Wm3Vector3.h, the compiler will
process the file twice. The conditional compilation of include guards is in effect on
a per-source-file basis. Most compilers provide what is called a precompiled header
system. This system is designed to deal with the multiple-source-file problem. With
precompiled headers enabled, Wm3Vector3.h is only ever processed once by the com-
piler, even if it shows up in multiple source files.

The include guards avoid multiple compilation, and they support safely nesting
include files so that your users do not have to guess about header file dependencies.
So how do you know if you have organized the files properly? What I do is have a
dummy source file that includes a single header file. For example,

// contents of dummy.cpp
#include Wm3TriMesh.h"

Press the compile button. If you have not properly nested header files that are needed
by the TriMesh system, you will get compiler errors. Do this test for each file in your
library. Tedious? Yes, it is. Do you want to provide quality source code and libraries
to your customer? Then you will find that tedious tasks abound—we like to call it
quality assurance and quality control.
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A.8.2 Minimizing Compilation Time

The second story on header file organization is about spending less time compiling
and more time developing. My short stay at the company doing statistical graphics
is much less known than my longer stay at a North Carolina game engine company.
When I started at this company, the development machines had Intel Pentium 133
MHz CPUs and Microsoft Windows 95 as the operating system. The compiler was
Microsoft Visual C++ version 4. The game engine source was of moderate size, not
nearly as large as the Wild Magic code is now. The time it took to compile the entire
engine was about 20 minutes. Needless to say, you cringe when you have a need to
make changes to header files that most of the engine is dependent on. The flip side
is that a 20-minute compile does give you time to work with pencil and paper or
anything else that does not tie you to your computer.

Given the number of source files, I thought 20 minutes was excessive. Some inves-
tigation showed that a single header file included all of the header files in the engine,
and this single header file was included in each and every source file, presumably for
the convenience of the programmers not having to think about what to include. This
is the exact opposite stance of the programmers at the other company!

The problem? A compiler spends a very large portion of its time processing the
symbol table. If every source file includes every header file, the compiler is really busy
processing all those symbols over and over. A single header file containing all other
header files is not much of an issue with a couple of source files, but when you have
a large library with a lot of source files, clearly another solution is needed. Yes, more
tedious tasks to attend to. The source files should attempt to include only what they
need and no more. This goal, and a proper and efficient nesting of header files, will
lead to reduced compilation time and reduced headaches for clients of your code.
At the aforementioned company, I took charge of the source files one weekend and
rewrote all the source files to include only what they needed and modified headers to
include only what they needed. The compile time for the entire engine was reduced
from 20 minutes to 3 minutes. This is a significant reduction, I must say.

The guidelines I use for header file organization are the following: A header file
for class A should include a header file for class B if the header file for class A makes
use of objects from class B. If class A only has pointers or references to objects from
class B, use a forward declaration. For example,

#ifndef CLASSA_H
#define CLASSA_H

#include "ClassB.h"
class C;

class A
{
public:
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A (const B& rkBObject, C* pkCObject);

protected:
BObject m_kBObject;
C* m_pkCObject;

};

#endif

Class A has a data member that is an object from class B. This counts as using an
object from class C, so you need to include ClassB.h. However, class A has a pointer to
an object of class C. A forward declaration is sufficient for this header file to compile
when it is a single include in a dummy source file.

This is my strong version of header file organization. A weaker version allows you
to include a header file, even if the compiler does not require it. In the previous
example, this version of the rule allows

#ifndef CLASSA_H
#define CLASSA_H

#include "ClassB.h"
#include "ClassC.h";

class A
{
public:

A (const B& rkBObject, C* pkCObject);

protected:
BObject m_kBObject;
C* m_pkCObject;

};

#endif

The idea is that if class C is commonly used whenever class A is used, there is no rea-
son for users to have to keep including both ClassA.h and ClassC.h. The compromise
is to include it for them. Do not be tempted to make everything easy; otherwise you
will end up with a single header file that includes all other header files!

Sometimes forward declarations are necessary, particularly when header files have
circular dependencies. One such example in Wild Magic pertains to the Spatial and
Light classes. The Spatial class maintains a list of pointers to Light objects that
illuminate it. However, Light is derived from Spatial. The following will not compile:
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#ifndef WM3SPATIAL_H
#define WM3SPATIAL_H
#include "Wm3Light.h"
class Spatial
{

TList<Light*>* m_pkLightList;
};
#endif

#ifndef WM3LIGHT_H
#define WM3LIGHT_H
#include "Wm3Spatial.h"
class Light : public Spatial
{
};
#endif

One of the header files must forward-declare the other class. Since Light is derived
from Spatial, it needs Wm3Spatial.h to be included, so the only choice to break the
circular dependency is

#ifndef WM3SPATIAL_H
#define WM3SPATIAL_H
class Light;
class Spatial
{

TList<Light*>* m_pkLightList;
};
#endif

#ifndef WM3LIGHT_H
#define WM3LIGHT_H
#include "Spatial.h"
class Light : public Spatial
{
};
#endif

The circularity shows up when you use smart pointers. In Spatial, the actual light
list contains smart pointers:

#ifndef WM3SPATIAL_H
#define WM3SPATIAL_H
class Light;
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class Spatial
{

TList<LightPtr>* m_pkLightList;
};
#endif

As it turns out, this code will not compile. The LightPtr symbol is a typedef in
Wm3Light.h. You cannot access the definition unless you include Wm3Light.h. However,
the inclusion fails because of the circular dependency. The solution is not to use the
typedef:

#ifndef WM3SPATIAL_H
#define WM3SPATIAL_H
class Light;
class Spatial
{

TList<Pointer<Light> >* m_pkLightList;
};
#endif

This compiles, but do not be tempted to remove the blank space between the two
closing angle brackets. Compilers have an awful time trying to distinguish between >>
as two closing angle brackets and >> used as operator>>. If you have used the Standard
Template Library (STL), you probably have already encountered this issue.
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A
abstract interface, 181–184
abstract layer, 45
Acceleration function, 577,

582, 586, 589, 591
active intervals, 555
AddInitializer function, 143
addition

hard, 211, 437, 438
soft, 211, 437, 438

AddTerminator function, 144
adjacent indices, 589
Adjoint function, 82
adjoint matrix, 82
AdjustVerticalDistance

function, 535
AdjustWindowRect function, 6
affine algebra, 174
AglRenderer class, 277
algebraic operations, 70
Align function, 100
Allocate function, 371, 376,

585, 589
alpha blending, 203–204, 354

classical method, 208
classic equation, 208–209
coefficients, 209
default behavior, 212
defined, 208
destination coefficients, 210,

212
destination color, 208
source coefficients, 210, 211
source color, 208
use of, 214
See also global states

alpha channels, 439
AlphaState class, 209–210, 212,

213

alpha testing
AlphaState interface and,

213
default, 213
defined, 212
examples, 214–215
pseudocode, 212

ambient lights
defined, 223
specular modulator, 227
See also lights

angles
Euler, 414, 418
joint, 414
of rotation, 418, 622
sines/cosines, 424
specification, 414–415

angular momentum, 594
angular velocity, 594
animation

defined, 121
keyframe, 402–404
skin-and-bones, 410–414
support, 158
via controllers, 592

Append operation, 49
Application class, 607–609

constructor, 608
defined, 607
interface, 607–608

application layers, 27
applications, 601–675

abstraction, 602–637
command line parameter

processing, 603–607
console, 609–612
entry point to, 608
header file, 637
library, 602

object motion, 621
sample, 637–672
skeleton code, 637–641
subsystem, 602–603
TestBillboardNode, 642, 643
TestBspNode, 642–645
TestCachedArray, 645–646
TestCastle, 646–648
TestClodMesh, 648
TestCollision, 648–654
TestInverseKinematics,

654–656
TestPortals, 656–662
TestScreenPolygon, 662–668
TestSkinnedBiped, 668–669
TestSortFaces, 669–670
TestTerrain, 670–672
types, 603
windowed, event handlers,

608
ApplyForward function, 173,

339
ApplyInverse function, 173,

176
arithmetic operations, 81
arrays, 33–35

allocation, 52
constructor, 33
contiguous, 81
deallocation, 35, 53
dynamic, 165
edge, 323, 324, 326
elements, removing, 34
global, 141
heap, 313–319
initializer, 144
largest-indexed element, 32
manipulation, 23
n × m, 14

703
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arrays (continued)
pointers, 66–67
reallocation, 35
shared, 294
size, 32
three-dimensional, 51–53
two-dimensional, 49–51
typecast, 66–67
vertex, 23, 294

assignment operators, 80
AttachChild function, 163
AttachOutside function, 347
automatic portaling systems,

274
axis-aligned bounding boxes

(AABBs), 555
generating, 561
intersecting intervals,

555–560
intersection determination,

561
updating, 555

B
back buffers, 279
back-facing triangles, 220
background colors

in back buffer clearing, 23
replacement, 25

backward finite difference,
573

barycentric coordinates, 503
Base class, 64, 65
BeginScene function, 281, 282
Bézier curves, 370
Bézier mesh, 361
Bézier patches, 361
bilinear interpolation, 24, 233,

240, 388
coordinates on image

boundaries and, 238
illustrated, 235
infinite, 300

BillboardNode class, 300–302
defined, 300
interface, 300–301
use of, 302

billboards, 300–302
alignment, 301, 302
constrained, 301
continuous, 300
corners, 305
defined, 299
discrete, 300
model space, 301
rectangular, 300
squares, 303, 304
world transforms

computation, 301
See also level of detail (LOD)

binary number comparisons,
69

binary space partitioning (BSP)
trees, 336–343

as coarse-level sorting, 336
leaf nodes, 343
sorting in two dimensions,

337
for spatial partitioning, 343

BindInfoArray class, 479
BindInfo class, 293, 479
binding

public access, 293
texture, 295

binormal vectors, 363, 443
bisection

algorithm, 490
derivative evaluations and,

496
root finding with, 496–497

blocks
in distance, 382
even, 382
management, 384
odd, 382
resetting, 396
simplification, 382–388

state, setting, 396
BloodCellController class, 410
BmpToWmif converter, 673
bones

defined, 410
model space, 411
offset, 411
vertices relationship, 412
See also skinning

Booleans, 605
border colors, 238–239
bounding sphere, 180
BoundingVolume class, 181,

182–183, 531, 542
bounding volumes, 177–184

abstract interface, 181–184
better-fitting, 180
calling, 183
child, 187
in collision determination,

180–181
complexity, 179
convex, 177, 178
creating, 183–184
for culling, 178–180
default type, 180
defined, 177
input, 183
inside view frustum planes,

271
intersection, testing for,

180–181
intersection with linear

components, 508–527
iterative growing algorithms,

194
location, 181
model, 188
model computation, 544
in Spatial class, 184
sphere, 178
test, 540
types of, 508
union of, 177
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world, 186, 187, 189–190,
193, 544

See also oriented bounding
boxes (OBBs); spheres

BoundingVolumeTree class
constructor, 544, 545, 546
defined, 542
interface, 542–544

bounding volume trees,
540–542

defined, 540
interior nodes, 546
leaf nodes, 540
types, 542
using, 540

bounds
model, 154
transformations relationship,

157
world, 155

BoxBV class
bounding volume, 546
defined, 542
use of, 542

BoxBVTree class, 542
braces, 685–686
BspNode class, 337–338

constructors, 338
defined, 337
interface, 337–338

BSP nodes, 337
children, 342
classical, 337
plane specification, 338
positive child, 342
See also binary space

partitioning (BSP) trees
buffers

back, 279
clearing, 23
depth, 279
input, 48, 49
stencil, 279
swap, 12, 13

BuildTree function, 544
BumpMapEffect class

attaching, to objects, 444
defined, 443
interface, 443–444
virtual function pointer

assignment, 444
bump mapping, 432, 440–446

defined, 440
dot3, 441, 443, 445, 446
illustrated, 446
sample application, 445

C
C++ exceptions, 691–692
caching

support, 292, 295
vertex buffer objects for, 295

Camera class, 263–265, 342
bit flag, 271
culling interface, 272
culling portal support, 351
defined, 263
interface, 263–264
local translation, 264
object culling support,

270–275
picking interface, 276
pick ray implementation,

528–529
public interface, 273–274
support interface, 352
viewport parameters

interface, 268
camera models, 28, 259–276

coordinate system, 259–260
defined, 259
view frustum and, 261

CameraNode class, 263
cameras

attaching to global state, 263
coordinate frame, 622
coordinate system, 9, 264

curve as path for, 363
direction vector, 260
local coordinate axes, 623
location specification, 4
movement about terrain, 398
origin, 260
position, 264
renderers and, 259–298
right vector, 260
rotation, 15
translation, 5
up vector, 260
world coordinates, 398

center-and-fit operation, 631
central processing unit (CPU),

158
CgConverter program, 486
Cg pixel shader, 470–472
Cg Toolkit, 466, 486
Cg vertex shader program,

465–466
CharcoalEffect class, 486

defined, 478
interface, 478–479
object, 479

CharcoalPShader class, 486
constructor, 476–477
defined, 476
interface, 476

CharcoalVShader class, 486
constructor, 475
defined, 474
interface, 474
object, 479

children, sorting, 354–356
Clamp method, 104
clamp-to-edge mechanism,

399
class names, 690
Clear method, 44
clipping

algorithm, 517
defined, 259
planes, 274
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ClodTerrainBlock class,
382–384

defined, 382
interface, 382–384

ClodTerrain class, 391–393
constructor, 393, 398
defined, 391–392
interface, 392–393

ClodTerrainPage class, 384–387
creation, 394
defined, 384
interface, 385–387
page, 384

ClodTerrainVertex class,
379–380

array, 380
defined, 379
interface, 380

Clone function, 432, 438, 444,
447, 451, 478

clones
controls, 136, 137
default, 135
illustrated, 137

cloning, 133–137
defined, 135
operations, 137

close terrain assumption, 382
clouds

EMBMI, 151, 152
exporting, 152
geometry, 151

coding conventions, 677–698
braces, 685–686
C++ exceptions, 691–692
classes and functions, 690
comment preamble and

separators, 680–681
constructor initializers, 683
enumerations, 690–691
file naming/organization,

677–679
identifier names, 688–691
pointer types, 686–688

variables, 688–689
white space, 681–685

collision avoidance, 535–536
basis, 536
defined, 535
support, 536

collision detection, 487–563
algorithms, 487
defined, 487
distance-based methods,

488, 492–500
hierarchical, 540–553
intersection-based methods,

488, 500–503
library, 501
moving objects, 488
queries, 487
stationary objects, 487–488
subsystems, 592
system, 487

collision determination,
180–181

bounding volumes in,
180–181

for triangle meshes, 180
CollisionGroup class

defined, 537
FindIntersection function,

552
interface, 551
TestIntersection function,

552
collision groups, 536–540

collision records, 547
defined, 536
intersection query, 539–540
management, 652
objects in, 536
organization, 537
updating, 536–537

collision proxies, 542
collision queries, 542
CollisionRecord class

defined, 539

interface, 547
TestIntersection query,

548–549
collision records, 652

for cylinders, 654
defined, 547
find-intersection query, 550
passing callback functions to,

652
test-intersection query,

548–549
collision response system, 487
ColorRGBA class, 103, 104–105
ColorRGB class, 103, 104
colors, 103–105

background, 23, 25
border, 238–239
classes, 103
combination of, 209
constant, 249
destination, 208, 211
hard addition, 211
material, 216, 249
modulated, 104
particle, 306
previous, 245
primary, 243–244, 245
saturation, 211
shadow, 456
soft addition, 211
source, 208, 211
texture, 245
vertex, 288

Command class, 603–605
constructor, 605
defined, 603
interface, 604–605

command line parsing, 605–607
comment separators, 680–681
ComparesFavorably function,

207, 212
comparison operators, 69

color, 104
sorting support, 69
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compilers, 46, 142
complicated scenes, 27
ComputeFromData method, 183
Compute function, 500
ComputeLightVectors function,

445
ComputePrincipalCurvatureInfo

function, 365–366
conditionals, 684–685
ConsoleApplication class,

609–612
defined, 609
derived class, 610
example, 610–612
interface, 609
Main function, 610
Run function, 610

console applications, 609–612
constants

mathematical, 55–57
register component use, 469
shader, 467, 470
state, 467, 469, 470
storage, 469
user-defined, 467, 469

constructors
copy, 80, 120
default, 80, 90, 171, 211
initializers, 683
See also specific constructors

continuous LOD, 309–311
decrease, 324, 331
defined, 300
dynamic change, 322–325,

331
fast algorithm, 310–311
heap initialization, 312–317
increase, 331
remove and update

operations, 317–322
reordering vertices, 326
simple algorithm, 310
source supporting, 331–334
terrain algorithm, 378

triangle mesh decimation,
326–330

See also level of detail (LOD)
Controller class

defined, 399
interface, 399–400

controllers, 121
animation support through,

158, 592
base class, 399
defined, 399
index, 159
inverse kinematic, 158, 415,

427–429
keyframe, 158, 402, 414
management, 399
morphing, 192, 404–406
object management, 121
particles, 408–410
pointers, 128, 131
points, 406–408
repeat type, 401
semantics, 159
skin, 192
updates, 192, 401
uses, 121
vertex, 158–159

controller time
application time conversion,

402
clamp type, 401
modifications, 401
repeat type, 401
scale, 401
wrap type, 401

convex function, 494
convex objects, 491
convex polyhedra, 309, 343

infinite, 524
semi-infinite, 522

ConvexRegion class, 348–
349

constructor, 349
interface, 348

ConvexRegionManager class, 346,
346–347

interface, 346
role, 347

convex regions, 347, 349,
656

drawing routine for, 350
manager, 350, 656

coordinate axes, 4, 9
coordinate frame, 622
coordinate systems

camera, 9
defined, 259–260
independent, 154
lights, 229
matrix mode and, 12
normalized, 630
storage, 264
trackball, 629

CopyFrom function, 183, 184
Copy function, 134
core classes, 28
core systems, 28, 31–147

low-level, 31–53
mathematics, 53–105
object, 105–147

cosine function, 59–60
counterclockwise rotation, 76,

77
CreateBspTree function, 659
CreateClodMesh class, 368

collapsing records with, 333
defined, 331
interface, 331
source code, 332

Create function, 182
CreateModelBound function, 545
CreateModel function, 21–22
CreateScene function, 652, 654
cubic environment mapping,

447
cubic polynomial curves, 97,

98, 99
Culled function, 271, 272, 273
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culling, 83, 178–180, 219–221
in adjacent regions, 345
back-face, 354
bounding volumes for,

178–180
defined, 219, 259
direction, reversing, 461
disabling, 220
objects, 261, 270–275
occlusion, 343, 345
plane-at-a-time, 178–179,

261
planes, 353
state, 644
triangle, 219
See also global states

CullState class, 219–220
CurveInfo class, 370
curve masses, 580–583

illustrated, 581
representation, 580
sample application, 583
See also masses

CurveMesh class, 367–369
Boolean flag, 369
constructor, 367
interface, 367
sample application, 377
vertex attribute construction

information, 368
curve meshes, 361
curves

Bézier, 370
curvature, 363
defined, 361
dynamic updates, 370
parametric, 361, 362–364
patch boundary, 361
as path for cameras, 363
tessellation by subdivision,

366–373
torsion, 363

CurveSegment class, 362–364
defined, 362

Frenet frame construction,
364

interface, 362–363
cyclic coordinate descent

(CCD) algorithm, 418,
428

iterations, 428
loop, 428–429
Update function and, 428

D
DarkMapEffect class, 436
dark maps, 436

defined, 436
illustrated, 438

data management, 27
data structures, 33–45

arrays, 33–35
hash sets, 38–39
hash tables, 35–37
lists, 39–41
sets, 41–43
stacks, 43–44
strings, 44–45

Deallocate function, 585, 589
debugging, 106
decompositions

Euler angle, 101
for picking, 533
polar, 168–169
singular value, 168, 169

DecrementReferences function,
115, 117, 118

deferred drawing, 356–360
data members manipulation,

356–358
disabling, 356, 358
enabling, 356
functions, 358
functions, implementing,

359
with no drawing, 360
with no sorting, 360

reenabling, 358
deformable bodies, 591–592
degrees of freedom, 417–418
degrees to radians, 56
depth buffering, 203, 206–208,

354
aspects, 206
defined, 206
disabling, 214, 343
enabling, 214
using, 208
See also global states

Derived class, 64
derived classes, 278
DetachChildAt function, 163
DetachChild function, 163
DetachOutside function, 347
determinant

computation, 82
evaluation, 72
formal, 72

Determinant function, 82
diagonal matrices, 168, 169
differential equations

Euler’s method, 565, 566,
567–569

implicit equations and,
573–575

midpoint method, 569–
570

numerical methods for
solving, 565–575

for particles, 580–581
Runge-Kutta fourth-order

method, 571–572
second-order system, 576

diffuse light, 223
Direct3D, 16, 149

pre-/postdraw semantics,
281

renderers for, 149, 150
working in, 277

directed acyclic graph (DAG),
164, 165



Index 709

directional lights, 457
defined, 223
diffuse modulator, 227
direction, 224
orientation change, 224
unit-length direction, 227
See also lights

DisableColorRGBAs function,
289

DisableColorRGBs function, 289
DisableLight function, 287
DisableTexture function, 290,

291
DisableVertices function, 288
discrete LOD, 306–309

defined, 300, 306
See also level of detail (LOD)

DisplayBackBuffer function,
280

distance
calculations, abstract

interface for, 497–500
calculators, 492
function, 492
measure computation, 492
between moving objects, 495
pseudosigned, 494
signed, 492, 494
squared function, 493, 494
time-varying function, 492

distance-based methods,
492–500

complexity, 490
defined, 489
plan of attack, 495–496
root finding (bisection),

496–497
root finding (hybrid), 497
root finding (Newton’s

method), 496
skepticism, 490
See also collision detection

Distance class, 497–500
defined, 497
interface, 497–500

DistanceTo function, 103
distant terrain assumption,

381–382
dithering, 221–222

defined, 221
example, 222
pattern, 222
See also global states

DitherState class, 222
divergence theorem, 600
DlodNode class, 308–309
DoIntersectionQuery function,

537
DoPick function, 531, 532–533
DoProcessQuery function, 538,

539
dot3 bump mapping, 441, 445

defined, 441
illustrated, 446
support, 443

DotPerp function, 72
dot perp operation, 72
dot product implementation,

96
double-buffered drawing, 279
DrawDeferredNoDraw function,

358
DrawDeferredNoSort function,

358
DrawElements function, 292
DrawEnvironmentMap function,

250, 448–449
Draw function, 278, 281, 283

BspNode class, 339
ConvexRegionManager class,

347
Node class, 296–297
Portal class, 351
pure virtual, 283
Renderer class, 358

DrawGlobalFeature function,
298

drawing
to back-buffer, 282
complicated scenes, 27

deferred, 356–360
double-buffered, 7, 279
single-pass, 281–284
traversal, 283–284
triangle meshes, 17–26
triangles, 2–17

DrawIt function, 11, 22, 24, 602
DrawPlanarReflection

function, 459–460
DrawPlanarShadow function,

455, 456
DrawPrimitive function,

285–292, 359–360, 478,
482

defined, 285
drawing, 292
global state, setting, 286
lighting, enabling/disabling,

286
operations order, 285
texture units, 289–290
transformation matrix,

restoring, 291
transformation matrix,

setting, 285
vertex colors, 288
vertex normals, 288
vertices, 187–188

DrawProjectedTexture
function, 452

DrawScene function, 281, 282
DrawShader function, 482
DxRenderer class, 277
dynamic-link libraries (DLLs),

46, 68
dynamic typecast, 110–111

caller, 111
defined, 105

E
edge arrays, 323, 324, 326
Edge class, 371
edge collapses

defined, 326
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edge collapses (continued)
keep vertices, 326, 327
mesh folding on itself result,

329
operation support, 328
pseudocode, 329–330
records, 330, 331
sequence of, 328
throw vertices, 326, 327
triangles deleted by, 331

edges
bubble, 330
deletion, 330
infinite weights, 327
insertion, 330

Effect class, 296
defined, 231, 431
encapsulation, 249
function pointer data

member, 250
interface, 250, 431–432
objects, 432
vertex colors storage, 250

effects, 248–251
advanced, 284
global, 249, 250, 284
local, 296
multitexturing and, 250
system, 248
See also renderer state

eigendecomposition, 83, 86
EigenDecomposition method,

83
eigenvalues, 83
eigenvectors, 83
EnableColorRGBAs function, 289
EnableColorRGBs function, 289
EnableLight function, 287
EnableTexture function,

289–290, 291, 449, 452
EnableVertices function, 288
EndianCopy functions, 47
endian order, 46
EndScene function, 281, 282

enumerations, 690–691
EnvironmentMapEffect class,

447–448
constructor, 448
defined, 447
interface, 447
objects, attaching, 448, 449

environment-mapped, bump-
mapped, iridescent
(EMBMI) clouds, 151, 152

environment mapped model,
360

environment mapping, 240,
242, 432

cubic, 447
sphere, 447

environment maps, 446–450
defined, 446
reflection vector, 447
sample application, 449
sample screen shots, 450
view direction, 446

Euler angles, 86, 414, 418, 427
decompositions, 101
order of, 427

Euler’s method
approximation, 565
defined, 565
forward finite difference, 573
implementation, 567–568
as prototype, 566

even blocks, 382
event callbacks, 615–616

key, 617
mouse, 618, 634–635
OnIdle, 619, 628, 635
OnInitialize, 616–617, 618,

640–641, 691
OnMotion, 629, 635
OnMouseClick, 629, 634–635
OnMove, 617
OnPrecreate, 616, 618
OnTerminate, 617
Response, 652

event handling, 13–14, 615–620
ExcessArguments method, 605
executables (EXEs), 68
ExternalAcceleration

function, 586, 589,
591

F
factorization

performance issues, 170
prototype, 87

Factory function, 126
far plane, 259
filenames, 605
files

cpp, 680
extensions, 677
handling, 48–49
header, 677, 679, 692–698
inline, 678
naming, 677–678
organization, 679
source, 677

file-static data, 140, 141
file-static pointers, 140
filtering

bilinear, 234
with multiple images,

234–237
with single images, 232–234

FindIntersection function,
551, 552, 553

find-intersection queries, 488
with clipping methods,

517–518
collision records, 550
dynamic, 550–551
line-sphere intersection, 509
line-triangle intersection,

506–507
picking, 531
ray-sphere intersection,

511–513
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segment-sphere intersection,
516–517

static, 550
Find method, 502
finite difference, 573
fixed-function pipeline, 431

defined, 30
special effects with, 431–562

fixed-function pipelines, 149
flat shading, 222
flickering, 356
floating-point numbers, 66, 75
fog, 217–218

calculation, 217
class, 217
density, 217
exponential, 218
factor, 218
squared exponential, 218
See also global states

FogState class, 217
forward finite difference, 573
frame rate, 635, 636
Frenet frame, 363, 364
Frenet-Serret equations, 363
FromEulerAnglesUVW method,

86
front-facing triangles, 219, 220
frustum

settings, 9
view, 3, 179, 259, 265–268

frustum planes, 260, 261
bottom, 262
bounding volume inside,

271
equations, 262
far, 259, 262
left, 262
near, 259, 261, 262
normals, 178
right, 262
storage, 353
top, 262

Function function, 597

functions
declarators, 682–683
names, 690
pointers, 250
See also specific functions

G
GenerateColorRGBAs function,

304
GenerateColorRGBs function,

304, 305–306
GenerateOrthonormalBasis

function, 73, 74, 75
GenerateParticles function,

303
GenerateUVs function, 304
geometric operations, 70–75
geometric state, 166–196

bounding volumes, 177–184
current, 307
transformations, 167–177
updates, 307, 338

geometric types, 196–203
implementation, 196
line segments, 198–200
particles, 202–203
points, 197–198
triangle meshes, 200–202

geometric updates, 184–196
defined, 184
with geometric quantities

change, 195
Geometry interface, 187–188
illustrated, 189
Node member functions, 188
of scene graph, 189
scene hierarchy, 195
as side effects, 194
Spatial interface data

members, 184–185
Geometry class, 152, 153, 159

enumerations for geometric
types, 196

geometric updates and,
184–196

global states storage, 205
interrelationships, 153
lights support, 230
motivation, 154
objects, 160
render state updates and,

251–259
geometry objects, 156–157

as leaf nodes, 160
special effects application,

158
GetAllObjectsByID function,

114
GetAttributes function, 369
GetAxis function, 422
GetBinormal function, 364
GetChild function, 163
GetClosest function, 500
GetColumnMajor function, 81
GetContactTime function, 500
GetContainingRegion function,

347
GetContrastImage function, 479
GetControlTime function, 402
GetCoordinates function, 585
GetDiskUsed function, 123, 129,

133
GetEffectorPosition function,

416
GetElements function, 42
GetFrame function, 364
Get function, 500
GetGlobalStateType function,

206
GetHeight function, 388
GetID function, 293
GetIndex function, 585
GetIntermediate function, 99
GetKeyInfo function, 404, 406
GetLastError function, 605
GetLight function, 230
GetLightQuantity function, 230
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GetLinkID function, 133
GetMemoryUsed function, 123,

126
GetName function, 112
GetNormal function, 364
GetObjectByID function, 114
GetObjectByName function, 114
GetObjectCount function, 123
getopt routines, 603
GetParent function, 162
GetQuantity function, 198
GetRandomImage function, 479
GetReferences function, 114
GetShaderType function, 473
GetSigned function, 500
GetSquared function, 500
GetTangent function, 364
GetTargetPosition function,

416
GetTime function, 635, 636
GetTop method, 44
GetTriangleQuantity function,

201
GetType function, 107, 108, 464,

475
GetUVs function, 388
GetWorldTriangle function, 457
gimbal locks, 87
glActiveTextureARB function,

19
glClientActiveTextureARB

function, 19
glDrawElements function, 23
GLEW, 17
glFrustum function, 266
glLookAt function, 12
global arrays, 141
global effects, 249, 250, 284, 296

multipass support and,
295–298

Renderer function, 298
GlobalState class, 204, 205
global states, 203–223, 641

alpha blending, 203–204,
208–215

attached to interior nodes,
204

attaching cameras to, 263
Boolean data members, 286
culling, 219–221
defined, 203
depth buffering, 203,

206–208
derived classes, 206
dithering, 221–222
fast access, 204
fog, 217–218
list of, 258
materials, 216
pointers, 205
shading, 222–223
storage, 205, 259
types of, 203
wireframes, 221

GlossMapEffect class, 437–439
constructor, 439
defined, 437
interface, 438
objects, attaching, 439
virtual function pointer

assignment, 439
gloss maps, 437–440

defined, 437
implementation, 439
sample application, 440

glPopMatrix function, 13
glTexEnvi function, 25
gluLookAt function, 9
gluPerspective function, 266
GlutRenderer class, 277
glVertexPointer function, 23
goals, 415–416

array, 417
defined, 415
end effector, 424
influence, 416
minimization of distances,

420
primary, 415
secondary, 415

types of, 418, 419
weights, 420

Gouraud shading, 222
Gram-Schmidt orthonormal-

ization
applying, to columns, 83
defined, 72
implementation, 72–73
Orthonormalize use, 74

graphics APIs, 27, 28
graphics processing units

(GPUs), 158, 299
graphs

abstract, 122
nodes, 122
scene, 122, 126–133, 150,

299–429
greedy algorithms, 194
grouping nodes, 160, 161
GrowToContain function, 183,

184

H
hard addition, 211

defined, 437
light maps with, 438

hash function
default, 36
evaluation, 36, 38

hash sets, 38–39
element insertion, 38
iteration, 38–39

hash tables, 35–37
class, 35
item visitation, 37
iterations, 37
key-value pair removal, 36
time requirement, 35

HasMultipleClosestPoints
function, 500

header files
compilation time,

minimizing, 695–698
extension, 677
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include guards, 692, 693, 694
nested, 692–694
organization, 692–698
organization guidelines,

695–698
strong organization, 696

heap
after changing weight,

swapping, changing
weight, 323

after changing weights, 320
after changing weights and

swapping, 321
after moving and swapping,

321, 322
array, after removing

contents, 319
array, after swapping, 313,

314, 315, 316, 317, 318
array, initial values, 313
contents, 319
implementation, 329
index, 311
initialization, 312–317
invalid, 319, 320, 321
last node, 320
mini, 311, 312
records, 312
removing minimum element

from, 317
state, 321
update, 330

height fields
automatic generation, 378
defined, 377, 379
level-of-detail algorithms,

378
on sampled grid, 378
over rectangular grid, 378
page in, 384
semiautomatic generation,

378
hierarchical collision detection,

540–553
collision query support, 542

collision records, 547–550
sample application, 553
tree construction support,

542
triangle-triangle intersection

queries, 550–551
See also collision detection

hints
defined, 171
flags, 176
setting, 172

Hooke’s law, 583, 589
hybrid root finding, 497

I
identifier names, 688–691

classes and functions, 690
enumerations, 690–691
variables, 688–689

identity matrix, 5, 76
idle loops, 626

callback, 281–282
defined, 10

IKController class, 592
defined, 415
interface, 427–428

IKGoal class, 415–416
constructor, 416
defined, 415
interface, 415–416

IKJoint class, 415–417
defined, 415
interface, 416–417
objects, 428
UpdateLocalR function, 422,

425–427
UpdateLocalT function,

420–422
implicit equations, 573–575
in-betweeners, 402
include guards, 692, 693, 694
IncrementalReferences

function, 114–115
index controllers, 159

indexing, 326, 412
indices, 154

adjacent, 589
edge, 322, 323
heap, 311
mapping, 325
triangle, 330
vertex, 312
vertex, deleted, 330

inertia tensor
complexity, 600
computing, 600
rigid bodies, 593
in world coordinates, 593

infinite LOD, 300, 334–335
obtaining, 334
subdivisions of rectangle

domain, 335
subdivisions of triangle

domain, 335
See also level of detail (LOD)

initialization, 139–147
C-style, 140
dynamic, 142
function additions, 143
function call, 143
function registration, 142
order, 147
pre-main, 139, 142, 146
services, 146
static function, 141

InitializeFactory function,
126

Initialize function, 144,
562

InitializeObjectMotion
function, 627

initializers
adding, 143
array, 144
calling, 147
execution, 144

instances, 163
management, 165
multiple, 165
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instancing, 163–166
defined, 163
of models, 166

integers, 605, 687
interpolation

bilinear, 24, 233, 235, 240,
388

linear, 404
nearest-neighbor, 25, 234
quaternions, 95–101
sequence of unit-length

quaternions, 98
spherical linear, 95
spherical quadrangle, 96–97
triangle meshes, 24, 25
trilinear, 236, 237, 452

intersecting boxes, 561–563
outline, 561
sample application, 563
system implementation,

561–562
IntersectingBoxes class

defined, 561
interface, 561–562

intersection-based methods,
500–503

abstract interface, 501–503
algorithm design/

implementation, 490
defined, 488–489
See also collision detection

intersections
convex objects and, 491
intervals, 555–560
linear components and

bounding volumes,
508–527

linear components and
OBBs, 517–527

linear components and
spheres, 508–517

linear components and
triangles, 503–507

line-OBB, 520–522

line-object, 503–536
line-plane, 490
line-sphere, 508–509
nonconvex objects and, 491
object-object, 536–563
ray-OBB, 522–524
ray-sphere, 510–513
rectangles, 560
segment-OBB, 524–527
segments of, 494
segment-sphere, 513–517
two cylinders, 554
two triangles, 501

Intersector class, 501–502
IntervalRandom function, 57
intervals

active, 555
intersecting, 555–560
nonoverlapping, 558
overlapping, 558, 560
reported, 556
sorted, end points, 555, 556

IntrLine3Box3 class, 521–522
IntrLine3Sphere3 class,

508–509
defined, 508
find-intersection query, 509
test-intersection query,

508–509
IntrLine3Triangle3 class, 507
IntrRay3Box3 class, 523–524
IntrRay3Sphere3 class, 511–513

defined, 511
find-intersection query,

511–513
test-intersection query, 511

IntrRay3Triangle3 class, 507
IntrSegment3Box3 class,

526–527
IntrSegment3Sphere3 class,

515–517
defined, 515
find-intersection query,

516–517

test-intersection query, 515
IntrSegment3Triangle3 class,

507
IntrTriangle3Triangle3 class,

550
inverse kinematic controllers,

158, 415, 427–429
inverse kinematics (IK),

414–429
algorithms, 414
goals, 415–416
joints, 415, 416–427
sample application, 429
system, 415
system illustration, 415, 416

inverse mass, 597
inverse permutation, 326
inverse transformations, 13,

169, 175
computation, 175
implementation, 176–177
rotation, 175
scale, 175
translation, 175
See also transformations

InvSqrt function, 54
IsDerived function, 107
IsEmpty method, 44
IsExactly function, 106
IsFull method, 44

J
joints

angles, 414
constraining, 418
defined, 415
local transformations,

update, 422
management, 418
motion, 428
position, 419
rotation, 417, 418
transformation, 417
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K
key events, 617
keyframe animation, 402–404

defined, 402
sample application, 404
support class, 402–403

KeyframeController class,
402–403

defined, 402
interface, 402–403

keyframe controllers, 158, 414
keyframes

defined, 402
times, 406
weights as, 404

key-value pair, 36, 37

L
Laplace expansion theorem, 82
leaf nodes, 160, 161, 189

bounding volume tree, 540
BSP tree, 343
recomputing, 189
render state at, 252
in scene hierarchy, 213

level of detail (LOD), 299–335
billboards, 299–302
categories, 299–300
continuous, 300, 309–334
discrete, 300, 306–309
dynamic change, 322–325,

331
infinite, 300, 334–335
terrain, 378–388
terrain pages, 389

Light class, 224, 225–229
interface, 225, 228–229
light support, 225

lighting, 223
color computation due to,

440
diffuse, 216
enabling/disabling, 286–287
models, 223

specular, 216
LightMapEffect class, 437
light maps, 437

defined, 437
with hard addition, 438
with soft addition, 437

lights, 223–230
adding/removing from list,

230
ambient, 223, 227
ambient contribution, 226
array of, 230
attenuation factor, 225–226
coordinate system, 229
creating, 225
diffuse, 223
diffuse contribution, 226
directional, 223, 224, 227,

457
incorrect use of, 224
intensity factor, 226
list of, 258
physical attributes, 223
point, 224, 227
smart pointers to, 230
specular, 223
specular contribution,

226
spot, 22, 224, 227
support for, 229–230
turning on/off, 225
types, 223

light vectors, 440–441
computing, 445
generating, 441–442
point lights, 445
spot lights, 445

LightWave left-handed
coordinates, 263

LightWave objects, 224
linear complementarity

problems (LCPs), 600
linear components, 491

intersection with bounding
volumes, 508–527

intersection with OBBs,
517–527

intersection with spheres,
508–517

intersection with triangles,
503–507

See also specific types of
components

linear interpolation, 404
linear momentum, 592,

593–594
linear velocity, 594
line loops, 197
line-OBB intersection, 520–522

illustrated, 520
Minkowski difference, 520
picking, 527–534
separation tests, 521

line-object intersection,
503–536

linear components and
bounding volumes,
508–527

linear components and
triangles, 503–507

See also intersections
lines, 102

distance to point, 102
intersection with spheres,

508–509
line segments, 196, 198–200

collection of, 196, 198
disjoint, 200
end points, 199, 200
See also geometric types

line strips, 197
linkers, 142
Link function, 126, 132
link IDs

accessing, 133
defined, 130

lists, 39–41
construction support, 39
deleting, 40
need, 39
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lists (continued)
node allocation, 40
node counting, 40
node insertion, 41
node removal, 40–41
node search, 41

Load function, 48, 126, 130, 131
local coordinate axes, 623
local effects, 296
local transformations, 155, 156

as homogeneous matrices,
168

joint, 422
See also transformations

logarithmic function, 98
LookDown function, 625
LookUp function, 625
loops

CCD algorithm, 428–429
idle, 10, 281–282, 626
line, 197
starting, 9–10

low-level system, 31–53
data structures, 33–45
endianness, 46–47
file handling, 48–49
memory allocation/

deallocation, 49–53
platform-specific

encapsulation, 45–46
system time, 47
See also core systems

M
magnification, 234
Main function, 608–609, 612,

614
MakeObliqueProjection

method, 88
MakePerspectiveProjection

method, 89
MakeReflection method, 89–90
manifold mesh, 361

mapping indices, 325
maps

bump, 440–446
dark, 436
environment, 446–450
gloss, 437–440
light, 437
normal, 440, 444

masses
accessing, 585, 589
boundary, 588–589
center of, 600
computing, 600
corner, 589
curve, 580–583
edge, 589
face, 589
inverse, 597
surface, 583–586
times linear velocity, 593–594
volume, 586–589

mass matrix, 593–594
MassSpringArbitrary class,

590–591
constructor, 591
defined, 590
interface, 590
use illustration, 591

MassSpringCurve class, 581–582
Acceleration function

implementation, 582
defined, 581
interface, 581
use illustration, 586

MassSpringSurface class,
584–586

defined, 584
interface, 584–585
use illustration, 586

mass-spring systems, 580–591
arbitrary configurations,

589–591
curve masses, 580–583
number of particles in, 582

spring constants, 583, 585,
589

surface masses, 583–586
volume masses, 586–589

MassSpringVolume class,
587–589

defined, 587
interface, 587–588
use illustration, 589

materials, 216
colors, 216, 249
specular highlights, 216

MaterialState class, 216
mathematics functions, 53–61

alternate versions, 55
basic, 53–57
constants, 55–57
cosine, 59
fast, 57–61
FastCos0, 58
FastInvCos0, 59
FastInvCos1, 60
FastInvSin0, 59
FastInvSin1, 59
FastInvSqrt, 60
FastInvTan0, 60
FastInvTan1, 60
FastSin1, 58
FastTan0, 59
FastTan1, 59
forms, 54
IntervalRandom, 57
InvSqrt, 54
Sign, 57
sine, 55, 58
Sqr, 54
SymmetricRandom, 57
tangent, 60
trigonometric, 57–61
UnitRandom, 57

mathematics system, 53–105
colors, 103–105
fast functions, 57–61
functions, 53–57
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lines, 102
matrices, 75–90
planes, 102–103
quaternions, 90–102
vectors, 61–75
See also core systems

matrices, 75–90
adjoint, 82
arithmetic operations, 81
assignment operators, 80
classes, 78
common operations, 78–80
comparison, 81
constructors, 80
conventions, 14, 75–78
creation, 80
data, transferring, 81
diagonal, 168, 169
eigendecomposition, 83
eigenvalues, 83
eigenvectors, 83
handling, 23
homogeneous, 174
identity, 5, 76
inversion, 169
invertible, 82
mass, 593
member access, 80–81
memory layout, 75
operation application, 76
operations specific to 2D,

82–84
operations specific to 3D,

85–88
operations specific to 4D,

88–90
orientation, 594
orthogonal, 169
products, 81
projection, 457
reflection, 460
rotation, 4, 5, 14, 76
skew-symmetric, 76
square, 75, 82

symmetric, 83, 86
trace, 86
typecast, 75

Matrix3 class, 595
matrix-matrix operation, 75
matrix-vector operation, 75
Maya exporter, 673
MeasureTime function, 635–

636
defined, 635
implementation, 636

member access
by array brackets, 68
matrices, 80–81
named, 69
vectors, 68–69

memory
allocation, 49–53
deallocation, 49–53, 140
footprint, 123
increasing usage, 13
leaks, 140
management, 388–399
streaming, 124–125
terrain page use, 388

memory layout
matrices, 75
vectors, 61–67

mesh classes, 32
message pump, 9–10
midpoint method

class interface, 569–570
defined, 569
mathematical formulation,

569
minification, 235
Minkowski difference

defined, 518
illustrated, 519
line-OBB, 520
ray-OBB, 522
segment-OBB, 524
in three dimensions, 520

Minkowski sum, 518, 519

mipmapping, 234–237
algorithms, 236
application of, 235
defined, 235

model bounding sphere
computing world bounding

sphere from, 172
transformation, 172–173

models
bound, 154
bounding volume, 188
camera, 259–276
environment mapped, 360
instancing of, 166
multitexture mapped, 360
normals, 154
scale, 154
vertices, 154

model-to-world transforma-
tion, 13, 338

modifiers, 159
modular continuity, 185
MorphController class, 591

defined, 404
interface, 404–405

morphing, 404–406, 534
defined, 404
sample application, 406
weight arrays for, 404

motion
camera, 622–627
control, 399
object, 621–622, 627–635
trackball, 631

mouse events, 618
MoveBackward function, 623,

624
MoveCamera function, 626
MoveDown function, 624
MoveForward function, 535, 623
MoveObject function, 628–629
MoveUp function, 624
moving objects, 488

distance computation, 495
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moving objects (continued)
test-/find-intersection

queries for, 503
MsCreateRenderer function,

619–620
multiple-inheritance systems,

111
multiplication, 91–92
multitexture mapped model,

360
multitexturing, 242–248

blending equations, 246
defined, 242
effects and, 250
multipass, 250
single-pass, 250
See also renderer state

MyConsoleApplication class,
610–612

defined, 610
order of events, 611–

612
source file, 611

MyFunction function, 120
MyWindowApplication class,

613–614
defined, 613
interface, 613–614

N
n × m arrays, 14
namespaces, 106
name strings, 112
nearest-neighbor interpolation,

25, 234
near plane, 259
Newton’s method, 573,

574
Node class, 152, 153, 531

Draw function, 296–297
encapsulation, 184
geometric updates and,

184–196
interrelationships, 153

motivation for, 155–157
render state updates and,

251–259
nodes

BSP, 337
child, 163
end effectors, 415
grouping, 160, 161
leaf, 160, 161, 189, 213, 343
linear list of, 257
local transformation

modification, 157
rectangular boxes, 189
states, 257
subgraph of, 166
switch, 300, 306
Utensil Group, 161

nonuniform scaling, 167
diagonal matrix, 168
nonsupport, 169

normalized viewport
coordinates, 528

Normalize function, 71, 100
normal map, 440, 444
null pointers, 256
numerical minimizer, 495
numerical root finders, 494
NURBS surfaces, 362

O
OBB trees, 542
Object class, 108, 110

hierarchy, 135
name strings, 112
reference counter, 114
streaming support, 125–126
unique identifiers, 113–114

object culling, 178–180,
270–275

additional planes, 274
bounding volume straddling

plane, 273
force-culled, 271
planes, 274

See also culling
object-object intersection,

536–563
collision groups, 536–540
hierarchical collision

detection, 540–553
spatial/temporal coherence,

553–563
See also intersections

objects, 150
calling, 73
in collision groups, 536
convex, 491
copied, 137
copying, 133–137
degrees of freedom, 417–418
dynamically allocated, 115
extra spins, 96
geometry, 156–157, 158
grouping, 156
hierarchy, 155–156
instances, 163–166
linear component, 491
link, 131
link order, 133
links between, 130
loading, 130
loading, from disk, 45
management, 121
memory address, 130
motion, 621, 627–635
moving, 488
nonvisible, 84
OBB containing, 84
pointers as, 686
registration, 126, 127
rotation, 621–622
semitransparent, 213, 214
sharing, 114
sorting, 335–360
stationary, 487–488
texture, 435
top-level, 122, 123, 129
velocities, 500
in view volume, 259
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object system, 105–147
cloning, 133–137
controllers, 121
initialization and

termination, 139–147
name strings, 112
run-time type information,

105–111
sharing and smart pointers,

114–120
streaming, 122–133
string trees, 138–139
unique identification,

113–114
See also core systems

odd blocks, 382
OdeEuler class, 567–569

defined, 567
implementation, 567–568
sample illustration, 568–569

OdeImplicitEuler class,
574–575

defined, 574
interface, 574–575
update function, 575

OdeMidpoint class, 569–570
defined, 569
interface, 569–570
update method, 570

OdeRungeKutta4 class, 571–572
defined, 571
interface, 571–572
update function, 572

OdeSolver class, 566
OnDisplay method, 617
OnDraw function, 283, 284, 296
OnDynamicChange method, 370
OnFrameChange function, 264,

265
OnFrustumChange function, 266
OnViewPortChange function,

268
open-closed principle, 159
OpenGL, 3, 149

calls, replacing, 16

double-buffered drawing
with, 7

Extension Wrangler Library,
17

matrix convention, 14
pre-/postdraw semantics

and, 281
renderers for, 149, 150
support, 277
versions, 17

OpenGLRenderer class, 276–277
operator[] accessor, 34, 91, 104
organization, this book, 28–30
orientation matrix, 594
oriented bounding boxes

(OBBs), 83
axes, 84
bounding volume hierarchy

of, 84
clipping method, 517–518
component coordinates, 517
component direction,

517–518
intersection with linear

components, 517–527
intersection with lines,

520–522
intersection with rays,

522–524
intersection with segments,

524–527
polygon enclosed by, 84
separating axes method, 518
values, 181
See also bounding volumes

orthogonal matrices, 169
Orthonormalize function, 74,

83, 86
orthonormal set, 489

P
parametric curves, 361,

362–364
curvature, 363

defined, 362
as path for cameras, 363
torsion, 363
See also curves

parametric surfaces, 361,
364–366

defined, 364
See also surfaces

parent-child relationship, 155
partial derivatives, computing,

442, 443
ParticleController class,

408–409, 591
defined, 408
interface, 408–409
structure, 409

particle physics, 576–580
particles, 196

attributes, 306
billboard squares for, 304
colors, 306
controller, 408–410
defined, 202
differential equation,

580–581
display of, 302–306
finite mass, 577
forces acting on, 581
location, 202, 203, 303
in mass-spring system, 582
model space of, 303
one-dimensional array, 585
rendering, 304
as rigid bodies, 592
sizes, 203
texture image, 410
world rotation matrix, 303
See also geometric types

Particles class, 202–203,
302–304

defined, 302
interface, 302–303
vertex attributes, 304

ParticleSystem class, 576–577
classes, deriving, 580
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ParticleSystem class (contin-
ued)

defined, 576
interface, 576–577
template parameters, 576

particle systems
class, 576–577
defined, 202, 302
simulation of, 576

patches
array, 374
Bézier, 361
boundary curves, 361
defined, 361
evaluation, 374
querying, 361
rectangle, 361
with rectangular domains,

378
triangle, 361

PeekMessage function, 10
perp operation

defined, 71
dot, 72
perpendicular, 72

physics, 565–600
deformable bodies, 591–592
differential equations,

565–575
mass-spring systems,

580–591
particle, 576–580
rigid bodies, 592–600

picking, 275–276, 527–534
decomposition for, 533
defined, 275, 527
find-intersection query,

531
hierarchical, 530
initiating, 276
pick ray construction and,

528–530
ray, 276
sample applications, 533–534

scene graph support,
530–534

system, 534
test-intersection query, 531,

533
pick rays, 527–530

Camera implementation,
528–529

constructing, 528–530
defined, 527
direction, 528, 534
origin, 527, 534

PickRecord class, 531–532
defined, 531
interface, 532
objects, 531

pitch, 87
PixelShader class, 464, 473–474

GetShaderType function
implementation, 473

instantiation, 474
interface, 473

pixel shaders, 149
Cg, 470–472
defined, 150, 462
enabling in OpenGL, 483
inputs, 486
prototypical, 462
support implementation,

463
writing, 462
See also shader programs

PlanarReflectionEffect class,
457–459

constructor, 459
defined, 457
interface, 457–458

planar reflections, 249, 295,
457–462

defined, 457
as global effect, 459
illustrated, 462
reflectance setting, 457, 461
sample application, 461

PlanarShadowEffect class,
454–455

constructor, 455
defined, 454
interface, 454–455

planar shadows, 454–457
caster, 456
colors, 456
as global effect, 455
illustrated, 458
projected, 454
sample application, 457

plane-at-a-time culling,
178–179

Plane class, 342
planes, 102–103

clipping, 274
constant, 102
culling, 353
frustum, 260, 261, 262, 353
input, 176
light source, 455
maximum number of, 353
negative side, 103
output, 176
perpendicular, 274
popping, 274
positive side, 103
pushing, 274
reflecting, 460
removing, 353
signed distance to, 103
transformation of, 175

PointAngularAxis function, 408
PointAngularSpeed function,

408
PointController class, 406–

407, 591
defined, 406
interface, 407

pointers
controller, 128, 131, 406–408
disk, 130
file-static, 140
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function, 250
global state, 205
null, 256
as objects, 686
parent, 162
parent, lookups, 165
smart, 114–120, 230
types, 686–688

point lights
defined, 224
direction change, 224
light vector, 445
unit-length vector, 227

PointLinearAxis function, 408
PointLinearSpeed function, 408
points, 196, 197–198

collection of, 196, 197
curve, 368
end, 199, 200
index array, 198
shared, 200
umbilic, 366
See also geometric types

point systems
defined, 407
illustrated, 410
motion update, 410
nonrigid, 408
origin, 407–408

polar decomposition, 168–169
polygons

adjective, 361
convex, 349
portal, 345, 354
screen space, 291, 662–667
vertex collapses for, 325
vertices, 345

polyhedra
convex, 309, 343, 491
touching, 501

polylines
closed, 197, 200, 309,

322–323, 324
generation, 360
open, 196, 200, 309, 322, 324

produced by subdivision, 368
reduced, vertices, 310
variation of, 309
vertex colors, 368
of vertices, 580

polymorphism, 118
polynomial curves, 310
PopState function, 252
Portal class, 348–349

constructor, 349, 351
defined, 344
interface, 348–349

portals, 343–354
bidirectional, 343
bIgnoreNearPlane variable

and, 354
culling, 352
culling call, 353
defined, 343
drawing code, 351
for generating culling planes,

350
incoming, 344
outgoing, 344, 349, 352
planes, 350, 352
planes, pushing/popping,

352
polygon, 345, 354
in sorting, 344
unidirectional, 343, 345
updating, 349
visibility, 351

previous color, 245–246
primary colors, 243–244, 245
principal curvatures, 365–366
principal directions, 365

computing, 365–366
frames using, 366

PrintInUse function, 115
projected shadows, 249
ProjectedTexture class, 248
ProjectedTextureEffect class,

451–452
constructor, 451–452
defined, 451

interface, 451
projected textures, 240, 242,

432, 451–454
application, 249
defined, 451
illustrated, 455
problem, 248
sample application, 454
See also special effects;

textures
projection matrix, 457
projection planes, 89
PropagateStateFromRoot

function, 253, 254, 256
PropagateToRoot function, 187
pseudosigned distance, 494
public interface, 171

convention, 186
exposing data members to,

185
PushState function, 252

Q
Qform function, 82
quadratic form, 82
quadratic polynomial graph

configurations
ray-sphere intersection, 510
segment-sphere intersection,

513
Quaternion class, 90, 99, 595
quaternions, 90–102

addition, 91, 102
algebraic properties, 91–93
angular velocity, 101
comparison functions, 91
components access, 91
computational costs, 87
default constructor, 90
defined, 90
interpolation, 95–101
member access methods,

90–91
memory, 90
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quaternions (continued)
multiplication, 92
multiplicative inverse, 94
physics, 101–102
products, 92
rotations, 93–95
scalar multiplication, 91–92,

102
standard constructors, 90
symbolic representation, 91
typecasting, 90
unit-length, 93, 94
utility, 93

queries
collision detection, 487, 540,

542
collision group intersection,

539–540
containment, 347
find-intersection, 488,

506–507, 511–513,
516–517

group intersection, 538
intersection, 184, 501–503
object state change during,

539
patch, 361
renderer, 280
RTTI, 107, 108
test-intersection, 487–488,

501, 505–506, 511, 515
triangle-triangle intersection,

550–551
which-side-of-plane, 178,

180
QueryPerformanceCounter

function, 47
QueryPerformanceFrequency

function, 47
quick rejection test, 540

R
radians to degrees, 56

range checking, 34
ray-OBB intersection, 522–524

illustrated, 522
projections, 523
separation tests, 522
test-intersection query,

523–524
rays

intersection with triangles,
504

pick, 527–530
ray-sphere intersection,

510–513
find-intersection query,

511–513
graph configurations, 510
quadratic equation, 511
test-intersection query, 511

reals, 605
rectangle patches, 361
rectangles

axis-aligned, 560
in denoting grouping nodes,

161
intersecting, 560
overlapping, 560
vertices, 6

reentrancy, 295
reference counters, 114

increment/decrement, 114
manipulating, 115

reflections
4 × 4 homogeneous

transformation for, 90
matrix, 460
planar, 249, 295, 457–462
planes, 89

reflection vector, 447
RegisterFactory function,

126
Register function, 126
registers, 469
reindexing, 326
ReleaseShader function, 481

ReleaseTexture function, 294,
295

RemoveAllLights function, 230
RemoveAll method, 34
Remove method, 34, 43
Renderer class, 152, 153

deferred drawing interface,
356

defined, 276
enable/disable functions, 481
interface, 277–278, 464, 481
interrelationships, 153
motivation for, 157–158

renderers
building, 149
cameras and, 259–298
defined, 149
derived-class, 278
notifying, 294
querying, 280
requirements, 158
vertices and, 157
virtual functions, 278

renderer state, 203–259,
248–251

effects, 248–251
global state, 203–223
at leaf node, 252
lights, 223–230
multitexturing, 242–248
restoration, 457
textures, 230–242
updates, 251–259, 307

rendering
advanced topics, 431–486
architecture, 276–280
cameras for, 263
particles, 304
portable layer, 277
reflected object, 461
scene graph management vs.,

150–151
tiled, 267, 268

Reorder function, 332
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reordering vertices, 326
RequestTermination method,

617
ResetColors function, 654
Response function, 654
RestoreScreenTransformation

function, 291
rigid bodies, 592–600

angular momentum, 593
angular velocity, 593
class, 595–600
defined, 592
immovable, 597
inertia tensor, 593
initializing, 600
linear momentum, 592,

593–594
motion calculations, 592
motion equation, 593
standard representation, 592
unconstrained motion, 592,

594
RigidBody class, 595–600

applications using, 599–600
constructor, 597
defined, 595
Function function, 597
interface, 595–596
Update function, 597–599

ROAM algorithm, 378–379
description, 379
variants, 378–379

roll, 87
root finding

with bisection, 496–497
hybrid, 497
with Newton’s method, 496
numerical, 494

RotateTrackBall function, 630,
631–634

rotation matrices, 4, 5, 171
counterclockwise, 76
interpolation, 87
local, 264

particles, 303
quaternion, 93
representation, 76
rotational slerp, 87–88
rotation definition, 88
unit length quaternions and,

94
update, 14
x-axis, 77
y-axis, 78
z-axis, 78

rotation(s)
about right axis, 15–16
about right vector, 623
about up vector, 622
about view direction, 16
angle of, 100, 418, 622
axis, 100
camera, 15
composition of, 90
counterclockwise, 77, 622
incremental, 625–626
inverse transformation, 175
joint, 417, 418
object, 621–622
quaternion, 94
trackball, 630, 634
triangle, 3, 4
twist, 101

round-off errors, 56, 356
Run function, 609, 610
Runge-Kutta methods, 102

defined, 569
fourth-order method,

571–572
midpoint method, 569–570
numerical solver, 582
solver, 577, 580

run-time type information
(RTTI), 105–111, 531

caller object, 106, 107
defined, 105
input object, 106, 107
name, 108, 128

queries, 107, 108
single-inheritance class trees,

105–109
static and dynamic

typecasting, 110–111
strings, 130

S
sample applications, 637–672

TestBillboardNode, 642, 643
TestBspNode, 642–645
TestCachedArray, 645–646
TestCastle, 646–648
TestClodMesh, 648
TestCollision, 648–654
TestInverseKinematics,

654–656
TestPortals, 656–662
TestScreenPolygon, 662–

668
TestSkinnedBiped, 668–669
TestSoftFaces, 669–670
TestTerrain, 670–672

sample tools, 673–675
Save class, 128
scalar multiplication, 91–92,

102
scale

inverse transformation, 175
nonuniform, 177
uniform, 177

ScaleByMax method, 104, 105
scene graph management, 28

changes and, 151
core, 29
core classes, 28, 152–166
defined, 150
rendering system vs.,

150–151
shader program support,

463–479
sharing, 294
visibility determination, 150
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scene graphs
advanced topics, 299–429
defined, 150
deleting, 293
geometric update of, 189
illustrated, 164, 166
loading, 129–133
memory footprint, 123
reconstruction, 129
roots of, 122
saving, 126–129
string trees applied to, 138
written to disk, 129

scene hierarchies
leaf nodes, 213
updating need, 195

ScenePrinter tool, 138, 674
scenes

defined, 150
organization, 213
root node, 129
writing memory blocks to,

133
SceneTree tool, 138, 674, 675
SceneViewer tool, 674
ScreenPolygon class, 292
screen space

height, 388
polygons, 291, 292

segment-OBB intersection,
524–527

illustrated, 525
Minkowski difference, 524
projections, 525
separation tests, 525
test-intersection query,

526–527
segments

array, 367
curve, 361
defined, 361
of intersections, 494
intersection with triangles,

504

line, 196, 198–200
quantity, 367
storage during subdivision,

370
tessellated by single line, 366

segment-sphere intersection,
513–517

configuration descriptions,
514

find-intersection query,
516–517

graph configurations, 513
test-intersection query, 515

SelectLevelOfDetail function,
309, 333

self-intersections, preventing,
591

separating axes
defined, 518
line-OBB, 521
potential, 518
ray-OBB, 522
segment-OBB, 525

SetActiveQuality function, 198
SetAlphaState function, 286
SetChild function, 163
SetConstantCameraPosition

function, 485
SetConstantFogParams

function, 485
SetConstantLightDiffuse

function, 485–486
SetConstantTransform

function, 486
SetDirection function, 229
SetElement method, 34
SetFrustum method, 266, 267
SetGeometryType function, 199
SetGlobalState function, 286
SetLevel function, 374, 376
SetLight function, 230
SetLocal function, 185
SetMaxQuantity method, 35
SetName function, 112

SetObject function, 400
sets, 41–43

assert-and-repair paradigm,
42

elements insertion, 43
elements modification, 42
elements quantity, 42
elements removal, 43
initial maximum quantity, 42
memory overhead, 41
searching, 43
STL, 41

SetScale function, 171
SetScreenTransformation

function, 291
SetTranslate function, 171
SetViewPort function, 528
Shader class, 472–474

architecture, 465
binding mechanism, 479
defined, 464
interface, 472–473, 474
shader program

encapsulation, 472
ShaderConstant class, 467–470

constructor inputs, 476
interface, 468–469
objects, 467, 470, 472
variables, 484

shader constants
defined, 467
vertex shader, 470

ShaderEffect class, 477–478
defined, 477
interface, 477–478
objects, 478, 481

shader programs
benefits, 462
defined, 462
drawing function support,

481–482
DrawShader function and,

482
encapsulation, 472
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executable, 474
as functions, 463
global effects, 478
inputs, 469, 474
low-level, 486
paper texture, 479
pixel shader, 462
renderer support, 479–486
scene graph support,

463–479
support, implementing, 463
text string representation,

474
vertex shader, 462

shaders
defined, 30, 149
pixel, 149, 150
vertex, 149–150
writing, 150

ShadeState class, 222–223
shading, 222–223

flat, 222
Gouraud, 222
models, 222
modes, 223
See also global states

shadows
caster, 456
colors, 456
planar, 454–457

sharing, 114–120
signed distance

defined, 492
flat spot, 494, 495
function, 494, 495
measure, 494

Sign functions, 57
simplification

algorithms, 396
block, 382–388
terrain, 671
terrain pages, 395–398
vertex, 379–382

Simplify function, 398

sine function, 55, 57, 58
fast approximations to, 58
inverse, 59

single-inheritance systems
class trees, 105–109
defined, 105
hierarchy illustration, 106

single-pass drawing, 281–284
behavior, 284
with DrawPrimitive function,

285
traversal, 283–284

single textures, 434–435
singular value decomposition,

168, 169
skeleton application code,

637–641
header file, 637–638
OnInitialize callback,

640–641
source file, 638–640
See also applications

skew-symmetric matrix, 76
skin-and-bones. See skinning
SkinController class, 411–413,

592
defined, 411
interface, 411–412
Update function, 413

skinning, 404, 410–414
bones, 410–414
data, 414
defined, 410
hardware-based, 414
sample application, 414
skin, 410, 413
software-based, 411
support, 411
update routine, 414

skins
defined, 410
world transformation,

413
Slerp function, 88, 96

smart pointers, 114–120
alias, 116
array, 259
assignment to self, 117
comparison, 118
defined, 114
eliminating, 255
as function parameters, 119
implementation warning,

117
to lights, 230
NULL assignment, 119
to texture images, 232
typecast, 118
use guidelines, 119

soft addition, 211
defined, 437
light map using, 438

SortByTexture function, 359
SortedCube class, 669
sorting, 29, 335–360

with BSP trees, 336–343
by texture state, 359
children of nodes, 354–356
coarse-level, 336
deferred drawing and,

356–360
for faces, 355
geometric, 335
portals, 343–354
spatial regions, 336
vertices, 331

source support continuous
LOD, 331–334

Spatial class, 152, 153, 158, 160
bounding volumes in, 184
design goal, 160
encapsulation, 184
geometric updates and,

184–196
hierarchical picking, 530
interrelationships, 153
lights support, 229–230
motivation for, 154–155
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Spatial class (continued)
render state updates and,

251–259
spatial hierarchy design,

160–163
special effects

bump maps, 440–446
dark maps, 436
environment maps, 446–450
with fixed-function pipeline,

431–462
gloss maps, 437–440
light maps, 437
planar reflection, 457–462
planar shadows, 454–457
projected textures, 451–454
renderer support, 479–486
scene graph support,

463–479
single textures, 434–436
with vertex and pixel shaders,

462–486
vertex coloring, 433–434

specular highlights, 223
specular light, 223
SphereBV class, 182, 542

bounding volume, 546
defined, 542
objects, 545
use of, 542

SphereBVTree class
defined, 542
pre-main initialization

macros, 545
spheres, 178

bounding, 180
intersection with line,

508–509
intersection with linear

components, 508–517
intersection with ray,

510–513
intersection with segment,

513–517

testing, 178
See also bounding volumes

sphere trees, 542
spherical environment

mapping, 447
spherical linear interpolation,

95
acronym, 96
equation, 96

spherical quadrangle
interpolation, 96–97

defined, 96–97
of four quaternions, 97

SplitTriangles function,
546

spot lights
angle, 227
defined, 224
direction change, 224
direction vector, 227
light vector, 445
modulator, 227
position, 227
unit-length vector, 227
See also lights

Sqr function, 54
square-distance function, 489,

493, 494
stacks, 43–44

full, 44
iterating over, 44
operations, 44

Standard Template Library
(STL), 31, 698

applications using, 68
functionality, 33
maps, 32

state, 28
state constants, 467, 469, 470
static typecast, 110–111

in C-style, 110, 111
safety, 110
using, 110

stencil buffers, 279

stitching terrain pages, 389–391
code, 390–391
visual anomaly, 399
See also terrain; terrain pages

Stream class, 49, 122, 129, 133
streaming, 122–133

deep copy side effect, 133
defined, 122
disk, 124
memory, 124–125
to memory block, 133
object registration, 126–127
support, 125
to/from disks, 123
typical usage, 124

stream loader, 128
strings, 44–45, 605

names, 134
reading, 44, 45
RTTI, 130
type, 45

Strings class, 44, 45
StringTree class, 138–139
string trees, 138–139

applied to scene graphs, 138
control code, 138
creation, 139
nodes, 139
saving, 139
tools using, 138

Subdivide function, 371, 376
subdivision

adaptive schemes, 372
Boolean results and, 491
curve segment storage, 370
curve tessellation by,

366–373
default level, 368
level, varying, 371
polyline produced by, 368
surfaces, 334
surface tessellation by,

373–377
uniform scheme, 372
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vertex attributes after, 374
subdivision functions, 371, 376
surface masses, 583–586

deformable, 584, 586
illustrated, 583
implementation class,

584–585
representation, 583
sample application, 586

surface mesh
code, 376
defined, 361

SurfaceMesh class, 591
defined, 373
interface, 374
sample application, 377

SurfacePatch class, 364–365
surfaces

dynamic changes, 375, 376
locking mechanism, 376
NURBS, 362
parametric, 361, 364–366
subdivision, 334
tessellation by subdivision,

373–377
vertices, 373

SwapBuffers function, 12, 13
swaps, 314, 321

heap arrays after, 314, 315,
316, 317

repeating, 317
sweep algorithm

defined, 555
phase, 556
pseudocode, 556–557
update phase, 559

switching, 308, 309
SwitchNode class, 531
switch nodes

active child support, 308
defined, 300, 306

SymmetricRandom function, 57
System functions, 46–47
system headers, 31, 45–46

system timers, 619

T
tangents

function, 60
unit-length, 364
vectors, 97, 99, 363, 364

target records, 333
targets, 406

defined, 404
display in viewport, 534
goals, 415
weighted combination of,

404
TArray class, 42
templates, 53–54

member functions, 52
vector, 67–68

TerminateFactory function, 126
termination, 139–147

function additions, 143
function call, 143
function registration, 142
post-main, 142

terrain, 377–399
algorithm design, 377
camera movement about,

398
clamp-to-edge mechanism,

399
close assumption, 382
data representations,

377–378
distant assumption, 381–382
fold over, 377
as height field, 377
level of detail, 378–388
objects, 29
simplification, 671
tiled, handling, 388
uses, 377
vertex simplification,

379–382

terrain pages, 384
as child nodes, 395
collection, as active set, 395
dependencies, 389
design, 399
invisible, 398
level of detail, 389
management, 391–395
memory management and,

388–399
memory use, 388
numbering, 389
ordering, 389
replacing, 395, 398–399
simplification, 395–398
stitching, 389–391
stitching code, 390–391
subset, 398
texturing issues, 399
toroidal topology, 394
vertex dependences (sharing

column edge), 391
vertex dependences (sharing

row edge), 390
world origin, 388

TestBillboardNode sample,
642–643

defined, 642
scene graph, 642
screen shots, 643

TestBspNode sample, 642–645
defined, 642
illustrated, 645
scene graph, 642–643

TestCachedArray sample,
645–646

TestCastle sample, 646–648
defined, 646
picking system, 646
screen shots (inside), 649
screen shots (outside), 647

TestCharcoalEffect sample,
480, 486

TestClodMesh sample, 648
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TestCollision sample, 648–654
callback, 653
defined, 648
OnKeyDown function, 650–651
Response function, 650
scene graph structure, 648
Transform function, 651

TestIntersection function,
183, 551, 552, 552–553

test-intersection queries,
487–488

collision records, 548–549
dynamic, 550
line-sphere intersection,

508–509
line-triangle intersection,

505–506
picking, 531, 533
ray-OBB intersection,

523–524
ray-sphere intersection, 511
segment-OBB intersection,

52–67
segment-sphere intersection,

515
separating axes method, 518
static, 550
triangle-triangle pairs, 550
for two ellipsoids, 501

TestInverseKinematics sample,
654–656

defined, 654
IK system encapsulation,

655
implementation, 655
scene graph, 654–655
screen shot, 656

Test method, 502
TestPortals sample, 656–662

environment cross section,
657

indoor environment
bounding planes, 658–659

screen shots, 663, 665

vertex and index
assignments, 661–662

wireline views, 664, 666
TestScreenPolygon sample,

662–668
defined, 662
OnIdle loop, 667–668
screen shot, 667

TestSkinnedBiped sample,
668–669

TestSortFaces sample, 669–670
defined, 669
scene graph, 669
screen shot, 670

TestTerrain sample, 670–672
defined, 670
OnIdle callback, 671
screen shots, 672
terrain simplification, 671

texels
defined, 234
interpolation at, 238
size, 235

Texture class, 210
blending equation

information, 249
defined, 230–231
interface, 231, 235–236, 240–

241, 242–243, 249–250,
292–293

texture coordinates, 22, 231,
479

arrays, 24, 231
automatic generation of,

240–242
computation, 447
cylinders, 654
at image boundaries, 238
interpolated, 232
out-of-range, 238–240
with sphere mapping, 447

TextureEffect class, 434–435
defined, 434
interface, 434–435

sample use, 435
texture images, 231, 393, 440

affine drawing, 232
draw control, 232
filtering with, 232–237
magnification, 234
numbering scheme, 394
particle, 410
perspective-correct drawing,

232
projection type, 232
samples, 234
smart pointer to, 232

textures, 17, 230–242
alpha channel, 439
apply mode, 242
artifacts, 234
binding, 295
blending, 242
bound to graphics card, 292
bump maps, 440–446
cached, 292–295
checkerboard, 233
color, 245
dark maps, 436
decal, 215
deleting, 293
environment maps, 446–450
global effect, 448, 449
gloss maps, 437–440
information, 24
light maps, 437
loading, 21
objects, 435
primary, 26, 242
projected, 240, 242, 248, 249,

451–454
secondary, 25, 242, 248
single, 434–435
soft addition, 211
state, sorting by, 359
sunfire, 454
toggle, 20
unbinding, 294
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See also renderer state
TextureState class, 248, 249
texture units, 24

configuring, 248
different numbers of,

290–291
disabling, 26, 289–290
enabling, 289–290

THashSet class, 38
THashTable class, 35
three-dimensional arrays,

51–53
allocation/deallocation,

51–53
storage, 51

3D Game Engine Design
(3DGED), 1

3D picking, 180
3DsToWmof importer, 673
tiled rendering, 267, 268
tiled terrain, 388
TimesTranspose function, 81
time-varying distance function,

492
TList class, 39, 40
ToAngle method, 83
ToAxisAngle method, 86
ToEulerAnglesUVW method, 86
tools, sample, 673–675

BmpToWmif converter, 673
Maya exporter, 673
ScenePrinter, 674
SceneTree, 674, 675
SceneViewer, 674
3DsToWmof importer, 673
WmifToBmp converter, 674

trackballs
coordinate system, 629
motion, 631
projection, 630
rotation, 630, 634
virtual, 629, 630

Transformation class, 339

transformations
4 × 4 homogeneous, 89
affine, 167
algebraic operations for, 173
bounds relationship, 157
homogeneous, 174–175
identity, 173
inverse, 13, 169, 175,

176–177, 339
joint, 417
local, 155, 156, 157, 168, 422
model bounding sphere,

172–173
model-to-world, 13, 183, 338
of planes, 175
propagation, 156
restoring, 291
setting, 291
similarity, 631
support, 167
world, 155, 156, 164,

169–170, 186
translation

inverse transformation, 175
in right direction, 622
in up direction, 622
in view direction, 622

Transpose function, 81
TransposeTimes function, 81
trees

bounding volume, 540, 542,
546

BSP, 336–343
directed, 105, 107
OBB, 542
single-inheritance, 105–109
sphere, 542
string, 138–139

tree structure, 163
triangle meshes, 196, 200–202

application screen shots, 18
bilinear interpolation, 24
class, 201

collision detection for, 180
in collision queries, 540
decimation, 309, 326, 328
defined, 201
destroying, 22
drawing, 17–26
generation, 360
nearest-neighbor

interpolation, 25
shrinking, avoiding, 327
in terrain design, 378
textures, 17, 20
with vertex normals,

201–202
without normals, 202
See also geometric types

triangle patches, 361
triangles

back-facing, 220
center point, 3, 4
centroids, 544
configurations, 380
double-sided, 220
drawing, 2–17
drawing application screen

shots, 17
front-facing, 219, 220
insertion, 330
intersection, 501
intersection with linear

components, 503–507
intersection with rays, 504
intersection with segments,

504
partitioning, 544
point representation, 503
removal, 330
rotating, 3
unit-length normals, 202
vertex normal and, 202
vertices, 2, 4, 11, 12, 200

triangle soup, 200, 201
defined, 200
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triangle soup (continued)
sent to renderer, 201

triangle-triangle intersection
queries, 550–551

dynamic, 550–551
implementation, 550
static, 550

trigonometric functions, 57–61
cosine, 59–60
fast, 58
inverse, 58
sine, 55, 57, 58, 59
tangent, 60
See also mathematics

functions
trilinear interpolation, 236,

237, 452
defined, 236
illustrated, 237

TriMesh class, 201, 203, 332,
374, 531

TSet class, 41, 42
TStack class, 43
TurnLeft function, 624
TurnRight function, 624, 625
two-dimensional arrays, 49–51
typecast

dynamic, 110–111
smart pointers, 118
static, 110–111

U
umbilic point, 366
uniform scaling, 167, 170
unique identifiers, 113–114
UnitCross function, 74
UnitRandom function, 57
UpdateBS function, 187, 194
Update function, 400, 403, 406,

412, 413, 562
UpdateGS function, 187, 190,

192, 194, 195–196, 229
UpdateLocal function, 419

UpdateLocalR function, 422,
425–427

UpdateLocalT function,
420–422, 429

UpdateModelNormals function,
188, 201

UpdateMS function, 188, 192
UpdatePointMotion function,

408, 409
UpdateRS method, 252, 255,

256, 258
updates

geometric, 184–196
geometric state, 307
heap, 330
local transformations, 422
render state, 251–259, 307

UpdateState function, 252, 254,
258

UpdateSystemMotion function,
408, 409

UpdateWorldBound function,
188, 192, 229, 264

UpdateWorldData function, 187,
188, 191–192, 258, 301

UpdateWorldSRT function, 418
updating the render state,

251–259
common situation for, 253
defined, 251
initiation, 253
interfaces, 251–252
semantics, 254

user-defined constants, 467,
469

UVBias function, 388

V
variables, 688–689
vectors, 61–75

algebraic operations, 70
basic operations, 67–68
basis, 68

binormal, 363, 443
camera direction, 260
camera right, 260
camera up, 260
classes, 61, 67–68
comparison operators, 69
constant, 68
with float components, 67
geometric operations, 70–75
homogeneous, 174
input, 73, 176
light, 440–442, 445
member access, 68–69
memory layout, 61–67
normal, 363, 364
normalized, 71
output, 176
perpendicular, 71
reflection, 447
returned, 73
tangent, 97, 99, 363, 364
templates, 67–68
unit-length, 71, 100
zero, 68
See also mathematics system

velocities
angular, 594
changes, 538
constant linear, 537–538
linear, 593–594
object, 500

vertex arrays, 23
vertex collapses

for 16-sided polygon, 325
computing, 322
illustrated, 324
table, 326, 327

VertexColorEffect class,
433–434

defined, 433
interface, 433
sample use, 433–434

vertex coloring, 433–434
vertex controllers, 158–159
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VertexShader class, 464,
473–474

GetShaderType function
implementation, 473

instantiation, 474
interface, 473
object, 483

vertex shaders
Cg, 465–466
defined, 149–150
enabling in OpenGL,

482–483
inputs, 466–467, 486
prototypical, 462
shader constants, 470
support implementation,

463
writing, 462
See also shader programs

vertex simplification, 379–382
vertex weights

adjacent, 320
calculation of, 310
defined, 309
definitions for, 310

vertices
batch-transforming, 326
colors, 288
disabled, 382
far plane, 260
index, 312
keep, 326, 327
model, 154
near plane, 260
normals, 288
offset, 411
order of application, 156
polygon, 345
polyline of, 580
reduced polyline, 310
renderer and, 157
reordering, 326, 331
sorting, 331
surface, 373

throw, 326, 327
vertices (triangle), 2, 4, 200

colors, 12
connecting, 22
locations, 12
normals, 201, 202
transformed to world

coordinates, 11
view frustum, 179

camera model and, 261
defined, 259
parameters, 265–268
specifying, 3
symmetric, 267

viewport parameters, 268–270
defined, 268
offset window, 269
orientation, 269–270
position, 269–270

viewports
current, 276
normalized coordinates, 528
on near plane, 529
settings, 275, 534
target display in, 534

view volume, 259
virtual function tables

base class, 64
derivation support, 62
derived class, 64
results, 65
virtual function pointers, 62

virtual trackballs, 629, 630
volume masses, 586–589

deformable, 587
illustrated, 586
implementation class,

587–588
representation, 586
sample application, 589
See also masses

VRAM, 335–336
discard operations, 336
limited, 335

W
weighted squared distances,

420, 424
WglRenderer class, 277
WhichSide function, 103, 183,

342
which-side-of-plane query, 178,

180
white space, 681–685

blank lines, 682
conditionals, 684–685
function calls, 684
function declarators,

682–683
indentation, 681–682
See also coding conventions

Wild Magic, 17
abstract system layer, 45
architecture, 28
classes, 67
class hierarchy, 30
collision detection support,

30
defined, 1, 28
renderers, 149

Win32, 3, 5
WindowApplication3 class,

620–636
defined, 620
interface, 620–621
LookDown function, 625
LookUp function, 625
MoveBackward function, 624
MoveDown function, 624
MoveForward function, 623
MoveObject function,

628–629
MoveUp function, 624
OnKeyDown function, 629
OnMotion callback, 635
OnMouseClick callback,

624–625
TurnLeft function, 624
TurnRight function, 624, 625
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WindowApplication class,
612–620

constructor, 614–615
defined, 612
event callbacks, 615–616
font handling support, 619
interface, 612
Main function, 614

windowing systems
event handling, 615–620
main function structure, 616

windows
creation step, 6
dimensions, 6
title, 7
width/height, 3

WinMain function, 601, 602
WinProc function, 10, 13
wireframes, 221

as application members, 221

defined, 221
enabling/disabling, 221
See also global states

WireframeState class, 221
Wm3System file, 31
WmifToBmp converter, 674
WndProc function, 601, 602
world bound, 155

children, 157
defined, 155
parent, 157

world bounding volumes, 186
calculation, 187
propagation, 190, 191, 194
recomputation, 189
updating, 193

world coordinates
camera, 398
inertia tensor in, 593

triangle vertices
transformation to,
11

world transformations, 155,
156, 164

as compositions, 186
computation, 169–170, 186
directly setting, 186
in public scope, 186
See also transformations

X–Z
yaw, 87
z-buffers

defined, 206
state, 253
state members, 215
state pointer, 254



About the CD-ROM

Elsevier CD-ROM License Agreement

PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING
THIS CD-ROM PRODUCT. This CD-ROM Product is licensed under the terms con-
tained in this CD-ROM license agreement (“Agreement”). By using this CD-ROM
Product, You, an individual or entity including employees, agents and representa-
tives (“You” or “Your”), acknowledge that You have read this agreement, that You
understand it, and that You agree to be bound by the terms and conditions of this
agreement. Elsevier Inc. (“Elsevier”) expressly does not agree to license this CD-ROM
Product to You unless You assent to this agreement. If You do not agree with any of the
following terms, You may, within thirty (30) days after Your receipt of this CD-ROM
Product, return the unused CD-ROM Product and all accompanying documentation
to Elsevier for a full refund.

Limited Warranty and Limitation of Liability

Neither Elsevier nor its licensors represent or warrant that the CD-ROM Product
will meet Your requirements or that its operation will be uninterrupted or error-
free. We exclude and expressly disclaim all express and implied warranties not stated
herein, including the implied warranties of merchantability and fitness for a partic-
ular purpose. In addition, neither Elsevier nor its licensors make any representations
or warranties, either express or implied, regarding the performance of Your network
or computer system when used in conjunction with the CD-ROM Product. We shall
not be liable for any damage or loss of any kind arising out of or resulting from Your
possession or use of the software product caused by errors or omissions, data loss
or corruption, errors or omissions in the proprietary material, regardless of whether
such liability is based in tort, contract or otherwise and including, but not limited to,
actual, special, indirect, incidental or consequential damages. If the foregoing lim-
itation is held to be unenforceable, our maximum liability to You shall not exceed
the amount of the purchase price paid by You for the software product. The reme-
dies available to You against us and the licensors of materials included in the software
product are exclusive.

If this CD-ROM Product is defective, Elsevier will replace it at no charge if the
defective CD-ROM Product is returned to Elsevier within sixty (60) days (or the
greatest period allowable by applicable law) from the date of shipment.
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YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WAR-
RANTY RECITED ABOVE, ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS
AND AGENTS, MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RE-
SPECT TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION
THE PROPRIETARY MATERIAL, AND SPECIFICALLY DISCLAIM ANY WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT WILL ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS
OR AGENTS, BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, WITH-
OUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR IN-
ABILITY TO USE THE CD-ROM PRODUCT REGARDLESS OF WHETHER SUCH
DAMAGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE DEEMED
TO RESULT FROM THE FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR
OTHER REMEDY.

Software License Agreement

This Software License Agreement is a legal agreement between Magic Software, Inc.,
a North Carolina corporation, and any person or legal entity using or accepting any
Software governed by this Agreement. The Software is available on the CD-ROM in
The Book, 3D Game Engine Architecture, which is published by Morgan Kaufmann
Publishers. The Software includes computer source code, the associated media, any
printed materials, and any online or electronic documentation. The Software and any
updates are available online from the Web site www.wild-magic.com.

By installing, copying, or otherwise using The Software, you agree to be bound by
the terms of this Agreement. If you do not agree to the terms of this Agreement, you
may not use The Software, and you should remove The Software from your computer.
The Software is protected by copyright laws and international copyright treaties, as
well as other intellectual property laws and treaties. The Software is licensed, not sold.

This Agreement shall be effective on the first day you use or accept The Software
governed by this Agreement, whichever is earlier.

The parties agree as follows:

1. Grant of License. We grant you a nonexclusive license to use The Software subject
to the terms and conditions of the Agreement:

(a) Book Ownership. You must own a copy of The Book to use The Software.
Ownership of The Book by two or more people does not satisfy the intent
of this constraint.

(b) Transferability. If you sell your copy of The Book to another person or legal
entity, you must also transfer The Book’s CD-ROM to the purchaser. You
must destroy all copies of The Software on your computer(s), and you must
destroy any backup copies that you have made of The Software.
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(c) No Source Code Redistribution. You may not redistribute any of the source
code files of The Software, whether the original files or modified versions
of the files. In this sense, The Software does not conform to the Open
Source Definition as stated by the Open Source Initiative at the Web site
www.opensource.org . We encourage you to report bugs and make suggestions
for improvement. In this way The Software can evolve (and has evolved) in a
controlled and disciplined manner that benefits all its users.

(d) Binary Distribution. The Software may be used by you for noncommercial
or commercial products. When distributed to end users, your products are a
redistribution of The Software, but in a binary format obtained by compiling
the source code to object code using a C++ compiler. Redistribution of The
Software in binary format, either as part of an executable program or as
part of a dynamic link library, is allowed subject to the following conditions:
The intent of this Agreement is that any product, whether noncommercial
or commercial, is not built solely to wrap The Software for the purposes of
redistributing it or selling it as if it were your own product. The intent of
this clause is that you use The Software, in part or in whole, to assist you
in building your own original products. An example of acceptable use is to
incorporate The Software in a game to be sold to an end user. An example
that violates this clause is to compile a library from only The Software, bundle
it with the headers files as a Software Development Kit (SDK), then sell that
SDK to others.

2. Disclaimer of Warranty. We make no warranties at all. The Software is transferred
to you on an “as is” basis. You use The Software at your own peril. You assume all
risk of loss for all claims or controversies, now existing or hereafter, arising out of
use of The Software. We shall have no liability based on a claim that your use or
combination of The Software with products or data not supplied by us infringes
any patent, copyright, or proprietary right. All other warranties, expressed or
implied, including, without limitation, any warranty of merchantability or fitness
for a particular purpose are hereby excluded.

3. Limitation of Liability. We will have no liability for special, incidental or conse-
quential damages even if advised of the possibility of such damages. We will not
be liable for any other damages or loss in any way connected with The Software.

4. Entire Agreement, Amendments. This Agreement represents the complete and ex-
clusive statement of the Agreements between the parties relating to the licensing
of The Software and maintenance of The Software and supersedes all prior Agree-
ments and representations between them relating to such licensing. Modifications
to this Agreement shall not be effective unless in writing and signed by the party
against whom enforcement is sought. The terms of this Agreement shall not be
amended or changed by any purchase order or acknowledgment even if we have
signed such documents.
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5. North Carolina Law, Severability. This Agreement will be governed by North
Carolina law. If any provision of this Agreement shall be unlawful, void, or for
any reason unenforceable, it shall be deemed severable from and shall in no way
affect the validity or enforceability of the remaining provisions of this Agreement.

Installing and Compiling the Source Code

The Wild Magic engine is portable and runs on PCs with Microsoft Windows
2000/XP operating systems or Linux operating systems. The engine also runs on
Apple computers with the Macintosh OS X operating system (version 10.2.3 or
higher). OpenGL renderers are provided for all the platforms. Project files are pro-
vided for Microsoft Visual Studio .NET 2003 on Microsoft Windows. Make files are
provided for Linux. Xcode project files are provided for the Macintosh.

For convenience of copying, the platforms are stored in separate directories on
the root of the CD-ROM. The root of the CD-ROM contains three directories and
one PDF file:

Windows
Linux
Macintosh
ReleaseNotes3p0.pdf

Copy the files from the directory of your choice. The directions for installing and
compiling are found in the PDF file. Please read the release notes carefully before
attempting to compile. Various modifications must be made to your development
environment and some tools must be installed in order to have full access to all the
features of Wild Magic.

Updates and Bug Fixes

The Web site for version 3 of the Wild Magic engine is www.wild-magic.com. Updates
and bug fixes will be posted, and a history of changes is maintained at the site.


