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Introduction

SIMON SAUNDERS

According to Aristotle, vacuum is 16 xevov, ‘the empty’; it is ‘space
bereft of body’. What then is ‘space’ and ‘body’? At once we have two
of the central themes of metaphysics: the concept of vacuum is
parasitic on the concept of space and the concept of substance. Most
important of all, it rests on the distinction between the two.

The Ancient World knew many concepts of substance; some of
them appeared to preclude the concept of ‘the empty’. As for space,
Aristotle used the word topos, ‘place’ or ‘container—a continuous,
finite receptacle which persists through change and which is
‘separable’ from matter. What then is this distinction between matter
and the ‘container’ of matter? It is only with the atomists that the
concept of emptiness acquires an absolute character; the distinction is
made out in terms of the existence or non-existence of atoms.

The atomists were surely correct in their basic tenet: in some sense
the world is atomistic. Surely, then, in some sense it is possible to
distinguish matter from void. What appears undeniable, however, is
that in the present state of theoretical physics there are many levels to
this notion of existence. Certain entities—particles—categorically
exist. Others—virtual particles, energy, fluctuations—exist in some
sense, perhaps in a relative sense (differences in energy, etc.). Others—
negative-energy particles, Rindler quanta, wave-functions—perhaps
do not exist. Equally, there are levels to the concept of space: there is
the manifold; there is a topology and a differentiable structure; as we
add an affine structure and a metric there is geometry. If the vacuum is
the least that exists, where in our catalogue of realities is the least and
most simple object?

Let me come to the concept of force. Action at a distance poses few
problems to the atomist void; it is the reification of force, first the
‘powers’ and ‘ethers’ of eighteenth-century theories of electricity,
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2 S. Saunders

magnetism, and heat, and later the forces associated with the wave
theory of light—it is these that present difficulties. The elastic—-solid
ether of Fresnel is the fall-out of the material aspect of light, and it falls
everywhere, filling the void. Is this ether ‘empty enough’ to count as
vacuum? But then we must consider how this ether is used.

Empty space, whatever it is, now controls the dynamics of material
bodies. It has a dynamic role in the organization of matter, because
when we consider electromagnetism, it seems that matter, and
functional relationships between particles of matter, are not able to
do the job on their own. Of course space, too, may be thought of as an
organization principle applied to matter. The vacuum is to causation
what space is to geometric relationships.

What of geometry? Throughout all the debates of antiquity and
through to the controversy over the elastic—solid ether, this strand to
the concept of vacuum runs straight as a die: geometry is Euclidean.
But it is not space so much as body that has geometric properties—
primary properties, at that; res extensa, the Cartesian reality outside
of the mental. Euclidean geometry is a set of positioning laws,
‘Lagerungs-Gesetze’, a phrase still used by Einstein in 1924. In the
early nineteenth century this situation changed; at precisely the same
time that the vacuum became ether, physical space became a
geometric space.

Of course, from a contemporary standpoint, the ‘Absolute Space’
of Newton is necessarily a Euclidean space. So much is implicit in the
laws of motion. Their invariance group makes of physical space and
time a geometry—Newtonian space—time. But the recognition of this
fact requires an understanding of the group concept and this came
late, at the end of the century. The vacuum is now an organization not
only of bodies, but also of itself.

This is just what we see in the electromagnetic ether; the
organization in question was, however, to be provided by the
Newtonian mechanics. At the same time, the ether was to act
contiguously and in accordance with Maxwell’s equations. With
Lorentz, the material subject of this action becomes particulate. By
the end of the century, the ether was conceived of in relationship to
Absolute Space, Newtonian mechanics, atomism, Maxwell’s electro-
magnetism, and contiguous action—a witch’s brew. In retrospect, it is
remarkable that so sophisticated and elaborate a theory as the
electrodynamics of Lorentz could be constructed at all, let alone that
it could claim the empirical success which it in fact did; in any event, it
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was the recognition of the role of space—time geometry that banished
the Lorentz ether and restored to the concept of vacuum a certain
austerity.

Just how this emerged I shall not try to summarize; I leave it to
Albert Einstein’s ‘On the Ether’ (Chapter 1) appearing for the first
time in English translation. This paper was written in 1924, following
the work of Bose and of Compton, but prior to the discovery of
quantum mechanics. As an historical review of the theory of ether,
most particularly from the point of view of general relativity, it is very
nearly the last document of this kind which dates from the classical
era. Strangely enough, it is also one of the only foundational surveys
in which Einstein may be said to speak for his generation. In the year
1924 the light quantum hypothesis entered the mainstream, but by
1926 so too had quantum mechanics; Einstein bids us reluctant
farewell.

However, in this paper Einstein makes only limited reference to the
light quantum hypothesis; when he does, it is to call into question the
independent reality of the electromagnetic field, not the metaphysical
assumptions of his critique. In particular, he makes no connection
between the light quantum and the concept of contiguous action.

Events over the next four years transformed this picture out of all
recognition. The picture has scarcely stopped changing since. This
collection is concerned with many different aspects of quantum
theory and the fundamental forces, but there is one very simple
feature of quantum field theory which has an immediate relevance to
the ether, and the history with which Einstein is concerned. That is
the discovery by Paul Dirac, as interpreted and elaborated by Pascual
Jordan shortly after, that bosons and fermions may be described as
excitations of quantum fields, whether they be photons, electrons, or
protons.

We know what Einstein thought of quantum field theory (he was
not interested). From this time his attention was focused exclusively
on the foundations of quantum mechanics and classical field theory.
But it is of interest to reassess the various transformations of ether
from a perspective broad enough to include the quantum theory of
fields; that, at any rate, is the programme of Simon Saunders and
Harvey Brown in their ‘Reflections on Ether’ {Chapter 3). One other
contribution is relevant. Roger Penrose, in “The Mass of the Classical
Vacuum’ (Chapter 2), gives a brief but succinct account of an
important gap in Einstein’s critique: the question of the locality or
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otherwise of the energy momentum distribution within the gravita-
tional field itself. Einstein was fully aware of this difficulty; as
Saunders and Brown suggest, it may be that he sought the resolution
of this (purely classical) non-locality in his projected classical
synthesis of gravity and the quantum.

What of the concept of vacuum today? Relativity and quantum
theory respectively define what is to count as space that is empty. In
place of the classical critique, we have Riemannian spacetime,
geodesic motion, quantum mechanics, quantum fields, and locality—
the devil’s own cauldron. We know that in some sense the vacuum
should contain least—the least that is useful, or the least that is
necessary, or the least that is operationally definable, which of these
we do not know. But in keeping with the atomistic flavour of
quantum theory, one intuition stands out: the vacuum should contain
no particles. From a more general standpoint, the energy should be a
minimum, In the non-relativistic case these two demands are not too
hard to satisfy; a clear-cut definition of vacuum is possible. For
example, the vacuum of non-relativistic quantum field theory does
not exhibit zero-point fluctuations, in the sense that, there, no linear
combinations of the field (or its canonical conjugate) can be
considered observables (on pain of violating mass superselection); the
uncertainty relationships between the fields may be considered purely
mathematical and of no physical significance. No doubt the non-
relativistic vacuum 1is tractable just because the dynamics is
implemented by distance forces; in the relativistic case the situation is
quite different. And the situation is far worse as soon as one goes to a
more general {locally Lorentzian) space—time; it seems there is no
criterion, based on the particle concept, of what is to count as ‘empty’
space.

In relativistic theory the situation is so difficult that one
sympathizes with the radical approach, by Basil Hiley (‘"Vacuum or
Holomovement’, Chapter 9) and David Finkelstein (‘Theory of
Vacuum’, Chapter 10) in particular, to abandon the traditional
starting-point of the continuous space—-time manifold. Not only have
these authors come to a similar conclusion as to what must be
abandoned in the conventional theory, but they adopt similar
strategies: there must exist an object prior to space—'pre-space’ in the
language of Hiley, ‘causal networks’ according to Finkelstein—and in
both cases this object is an algebraic structure. Further, the ideas of
Grassman have an important influence. Grassman was concerned
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with the algebraic expression of ‘activity’, the relevant heuristic
according to both Hiley and Finkelstein, and he was concerned with
the algebraic expression of set theory, the prerequisite to a quantum
theory of sets as envisaged by Finkelstein. But there the similarities
end. In fact, Hiley and Finkelstein start from diametrically opposed
positions; Hiley is concerned with hidden variable theory, Finkelstein
with the extension of quantum principles to the most elementary
mathematical categories. However, in this enterprise it is Finkelstein
who maintains the principle of locality at the fundamental level, for it
is built into the concept of a ‘causal network’; indeed, the Lorentz
group is to arise from the symmetric group of the ‘binary node’, the (in
some sense favoured) nodal system of the network. What drives the
Finkelstein programme is above all the demand for a locally finite
theory. The algebra that underlies the quantum set theory, and thence
the quantum topology (the basic subject of change), must be finite;
therefore the algebraic operations cannot include negation. (The
orthocomplement on the local logic takes one to the global logic; the
complement of a finite subset of an infinite set is infinite.) Therefore
one must give up unitarity in the representation of the local algebra
defining the topology.

Hiley takes a different view; it is non-locality that is fundamental to
quantum theory, and which governs the determinate motion of
individual systems subject to the quantum potential. What is
characteristic of ‘pre-space’ is that physical space (and locality) are
encoded in the implicate order. The traditional expression of these
concepts is the explicate order. The algebraic description of pre-space
is intrinsically non-local, or ‘a-local’. The various ways in which
distinct explicate orders may be associated with an algebra, and
therefore with distinct definitions of locality, are illustrated with a
simple example: a finite Weyl algebra, corresponding to the
representation of a symplectic geometry over a compact phase space.
In this model the definition of locality is formulated in terms of a
‘neighbourhood relation’. One speculation is this: a unique descrip-
tion of a local space—time manifold may arise only in the classical
limit.

These attempts are speculative, and as yet there are no concrete
returns in the physics and no fundamental innovations in the
mathematics. In the latter respect, more promising is the astonishing
development of a quantum theory of pure topology over 3- and
4-manifolds, and its connection with the classification of knots in
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3-space and differentiable structures on four-dimensional manifolds.
In this rapidly changing field, we are fortunate to have a brief account
from one of its creators; in “Topology of the Vacuum’ (Chapter 11), by
Michael Atiyah, and as elaborated by his student and co-worker
Peter Braam in ‘How Empty is the Vacuum? (Chapter 12), the
principal developments are summarized. Some remarks on the four-
dimensional case: there Donaldson had shown that a certain class of
solutions to the classical Yang—Mills equations—which in a certain
sense correspond to ‘vacuum’ solutions, those that do not describe
any particle fields—has itself an intrinsic topology which does not
depend on the metric used on the original 4-space. In favourable cases
(for example when the original space is compact), this topology
simply determines the differentiable structure of the original space.
The seminal advance of Witten is to show that the resulting invariants
can be computed, using path-integral methods, as expectation-values
of a certain kind of charge arising in the framework of quantum field
theory, invariants that are, recall, independent of the metric. In this
sense Witten has constructed a quantum theory of pure topology.
There is the hope that quantum theory may be formulated on a
manifold prior to the definition of any metrical structure; there should
exist a more elemental vacuum, prior to the introduction of matter,
force, or geometry. In this philosophy the vacuum has no spatial or
temporal relationships, but it is still a topological manifold;
according to Atiyah and Braam, that is all that it contains: it is a
vacuum of ‘pure space’.

It seems that the vacuum need not carry spatial and temporal
relationships. Must it be defined in space—time terms at all, even a
space—time devoid of metrical structure? Atiyah and Braam make of
the vacuum something superficially more simple, because indepen-
dent of the metric; but the physical structure of space-time is made
more complex, because the topology is also subject to quantum law.
But is it necessary that the vacuum be associated at all with the
space—time manifold? There is the temptation of a logical retreat, that
the concept of nothingness, ‘the empty’, should describe that which is
empty of space and time, along with all other physical objects. Indeed,
this is just the possibility offered by a closed universe; ‘absolute
nothingness’ is what is not in the universe, it is what has no physical
properties whatsoever.

This vacuum leads to unicorns and present kings of France. As
Russell lamented long ago, ‘how can a non-entity be the subject of a
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proposition? As he subsequently remarked of his own theory of
descriptions, what is wrong with such concepts, and a theory of
meaning that gives them denotation, is the evident ‘failure of that
fecling for reality which ought to be preserved even in the most
abstract studies’. Such a vacuum is much more like the empty set; it is,
perhaps, the sense of vacuum considered by Descartes, the sense in
which vacuum cannot exist between separated objects (for there
would then be nothing that separates them). This vacuum does not
exist, by definition.

Descartes, in the tradition of his time, believed that geometry could
apply only to physical bodies. But what if geometry applies also to
vacuum? This is Robert Weingard’s proposal; in his ‘Making
Everything Out of Nothing’ (Chapter 8), he stands Descartes on his
head. If vacuum is extended, then it is res extensa; but this is the only
non-mental reality, according to Descartes. Therefore vacuum is all
that exists. To what extent is this a viable interpretation of
contemporary physics?

Weingard is concerned not so much with the present situation in
physics as with the question of principle: what might categorically
prohibit an ontology of pure space? In a series of examples he
demonstrates the versatility of geometric models; the issue is then
whether any significant properties of ‘matter’ must be omitted. The
theories that he considers are almost entirely classical or quasi-
classical (c-number gauge theories); at this level he presents a
convincing case. But they are also bosonic theories, and as Weingard
admits, it is the fermion case that is most problematic.

From a phenomenological point of view, pure geometry is
successful at the level of fields of force. (In my earlier terminology, one
can geometrize the organization of the vacuum on itself.) The sources
of these fields may perhaps be topological structures, but to date no
such theory can claim a shred of empirical success. Ian Aitchison, in
contrast, begins from the phenomenological theory, that is the
standard model, and with the fundamental distinction between force
and matter. In ‘The Vacuum and Unification’ (Chapter 7), we see the
vacuum in allits splendour. The coherence and variety of phenomena
and concepts presently exploited in the standard model are deeply
impressive. The vacuum that emerges is rich: by turns a ferromagnet,
a dielectric, a superconductor, and a thermodynamic phase. Increas-
ingly, this vacuum is reminiscent of ether. Indeed, Aitchison is happy
to draw parallels between the ether of the nineteenth century and the
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grand unified vacuum. He does this not out of any great fondness for
the concept of ether, but through the perception of its unifying role in
dynamics. The fundamental categories of matter, force, and space—
time are most simply united through modification of the vacuum.

The analysis of the zero-point fluctuation due to Sciama in ‘The
Physical Significance of the Vacuum State of a Quantum Field’
(Chapter 6) also demonstrates a methodology. These fluctuations
provide a powerful heuristic, and even if many of the phenomena
described by Sciama can be interpreted in other ways, they are seldom
more simply or intuitively described. Further, the zero-point
fluctuations, unlike the non-zero vacuum expectation values of the
Higgs and Goldstone fields considered by Aitchison, seem to follow
from basic principles of quantum theory. But as Sciama makes clear,
the cosmological implications are all the more pressing; if the
fluctuations are a reality, then so too is their associated energy
density. But this energy density is infinite. It does not seem possible to
eliminate this difficulty by appeal to the conventional philosophy of
renormalization, where the discarded infinities are considered a
symptom of the incompleteness of the theory.

I have emphasized a difficulty of Sciama’s approach; let me also
mention an important success. The existence of a non-zero particle
distribution in the Minkowski vacuum, as described by an accelerat-
ing observer in an ‘appropriate’ coordinate system, is a remarkable
and disturbing feature of relativistic quantum theory. Must we
conclude that the concept of particle is observer-dependent? What of
the energy associated with such a particle distribution? Unruh’s
idealized model of an accelerating particle detector shows further that
such particles (the so-called Rindler quanta) should be experimen-
tally detectable. (This model has unsatisfactory features, however.)
But now, as Sciama shows, the zero-point fluctuations may be
invoked. These can be considered a background ‘noise-power’ to the
field. But its effect on a moving system is given by the Fourier
transform of the auto-correlation function of the field evaluated along
the world-line of the system; this will in general depend on the world-
line. The Rindler quanta are only one more manifestation of the zero-
point fluctuation, and they have energy supplied from this back-
ground.

Unity is fundamental to physical science, but so too is simplicity. In
this empty space of Weingard, Sciama, and Aitchison, there is a great
deal of activity. It may be that we can exploit the vacuum to describe
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observable phenomena—as did the ether theorists before us—but is
the complexity of vacuum forced by the conventional theory?

The answer, it seems, is affirmative. Quite generally, the vacuum of
a quantum field can have no unique definition in terms of particle
number alone. As a system of infinitely many degrees of freedom, the
Stone-Von Neumann theorem which ensures the uniqueness of
representations (up to isomorphism) of the canonical commutation
relationships fails; inequivalent representations of Fock type can be
easily constructed, and there is a non-denumerable infinity of them.
This fact underlies some of the difficulties of renormalization theory
and plays a crucial role in circumventing Haag’s theorem in any
theory with a simple vacuum structure. Therefore the vacuum can
never be specified by the algebra of creation and annihilation
operators alone (unless one has pure kinematics).

But is the number operator the appropriate quantity? Are the
canonical commutation relationships necessary to a relativistic
theory? Dirac showed long ago that they are not. It is fundamental to
quantum theory that the commutation relationships govern the
algebraic structure of the generators of transformations which act on
the initial data; it is not fundamental to quantum theory that the
initial data are specified on a spacelike hyperplane. Dirac found that,
if these initial data are specified on the 3-volume defined by the
motion of a two-dimensional plane spacelike surface along a lightlike
line (i.e. the propagating surface of a plane wave), the aigebra of the
commutation relationships is simplified. It emerged that there are no
commutation relationships between the field and its canonical
conjugate, which appears as a functional of the field; there is no
vacuum fluctuation; and there is a unique and stable vacuum.

These remarkable but neglected properties of the “front’ (or ‘null
plane’) form of quantization (in contrast to the ‘instant’ form, initial
data defined at an instant in time over the whole of space) are
systematically reviewed by Gordon Fleming (“The Vacuum on Null
Planes’, Chapter 5), in the context of Ad* theory. As Fleming
remarks, the new vacuum is embarrassingly trivial, for it seems to
imply that the inequivalent representations are in some sense
illusionary.

What obstructs a clear resolution of these problems is the fact that
an effective renormalization is made in the ‘front’ form of the theory,
differing from the usual regularization of the ‘instant’ form. Its
significance from the point of view of the ‘instant’ theory is unclear,
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and this is the source of the difficulty. As Fleming points out, it may be
that this is trivial. It would be of interest to know different vacua; we
would then have a different and perhaps more tractable approach to
modelling the phenomena, in which the vacuum, empty space,
appears truly empty, so long as by ‘space’ we consider the 3-volume
swept out by a null 2-plane. On the other hand, it may be that the
properties of A$* are not a reliable guide; taken at face value, the
uniqueness of the vacuum, together with Haag’s theorem, imply that
the theory is trivial, which we know to be true in 3 + 1 dimensions. It
would be of interest to know if the vacuum is unique in null-plane
quantization in 2+ 1 dimensions, where Ad* has consistent non-
trivial models.

Like Fleming, Simon Saunders in ‘The Negative-Energy Sea’
{Chapter 4) considers alternative descriptions of familiar theories, by
which the vacuum may be described in a simple and canonical way.
The theory in question is quantum electrodynamics. This theory was
created by Dirac on the basis of what is surely a fiction, the definition
of vacuum as an infinite collection of negative-energy electrons, the
negative-energy sea. No negative-energy state was to remain
unoccupied in the Dirac vacuum. On this basis, antimatter and the
processes of pair creation and annihilation were first discovered. The
sea was soon eliminated from the theory, in a way that left no
interpretation of antimatter at the level of the 1-particle theory, and
which seemed to require new principles (gauge covariance, micro-
causality) foreign to the canonical basis of quantum mechanics. One
does not know why the negative-energy sea led to effectively the same
theory, because, although this vacuum motivates normal-ordering in
a natural way, it seems that there is no connection with gauge
covariance and microcausality.

Saunders offers an explanation of these and other puzzling features
of the relationship between field and 1-particle theories. It turns out
that it is possible to set up the relativistic kinematics in precise
correspondence to the non-relativistic case, that is through a
canonical second quantization, with no reference to the negative-
energy sea. This construction makes sense only for kinematic
observables; nevertheless, it may be possible to read back from the
field theory to a 1-particle analogue of dynamical behaviour. In this
sense the relativistic theory appears as a quantum mechanics with a
difference: the Hilbert space complex numbers are linear transforma-
tions, and they do not commute with all the usual operators. In
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particular, it is precisely the ‘naive’ (non-relativistic) interpretation of
complex numbers which demands the representation of the vacuum
as the negative-energy sea.

Whither relativistic quantum theory? Few would claim that its
conceptual basis is fixed or even robust. In this volume we are
concerned with a concept that is a priori the most simple but
empirically complex; the concept of vacuum comes as close to the
synthetic a priori as any in contemporary physics. It is surely just for
this reason that it plays such a dominant role in the free construction
of ideas: witness the theory of ‘pure space’ described by Atiyah and
Braam. Issues of this kind have a definite philosophical flavour, but, it
must be admitted, the language is excessively mathematical. In this
respect the attempt to reach a wider audience has a real pay-off. There
is something new to be learned, when concepts can be made
intelligible to the non-specialist. The paper that follows sets a high
standard; Einstein was a master of the genre.

A final remark by way of introduction to this paper. In ‘On the
Ether’ Einstein speaks for his generation—almost. A minor point is
his revival of the ether terminology; more important, he cannot resist
making a novel and radical suggestion, one that turned out to be
completely fallacious. This conjecture is unfamiliar and may appear
naive: in effect, Einstein groups, together with the light quantum
hypothesis, difficulties in the explanation of the earth’s magnetic field.
Both are considered challenges to the traditional concept of field. He
suggests that the magnetic field may couple directly to rotating mass
distributions. It is true that at the time no satisfactory explanation
existed for the earth’s magnetic field, but, granted the rudimentary
state of magnetohydrodynamics and geophysics in the twenties,
Einstein’s concern is surprising.

But there is a background to this story. It is a lesser-known aspect
of Einstein’s work that in the period 1910-16 he undertook difficult
and elaborate experiments on the determination of atomic g-factors,
that he was an expert in contemporary gyrocompass design, and that
he was active in seeking a connection between the zero-point energy,
atomic structure, and the magnetization of material media. The
expected result, which follows from the Lorentz theory in application
to the Rutherford model (or equally to that of Bohr), is a g-factor of
unity. Einstein, in collaboration with de Haas, had obtained a result
of this order; their experiments concerned rotating magnetic media,
and the mechanical torque set up on magnetization, as the current
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loops {postulated by Ampére) are oriented parallel to one another.
However, subsequent results suggested a g-factor closer to two, a fact
that received detailed discussion at the Solvay Conference of 1921.
Einstein followed the debates closely; by 1924 evidence for the
anomaly was all but conclusive. As a result, Ampére’s hypothesis is in
crisis and with it the established theory of magnetization. By this time
Barnett, one of the leading experimentalists involved, had speculated
that the converse process to the Einstein—de Haas effect might have
established the magnetic field of the earth. He now considered that
the anomalous g-factor might be related to the anomalous Zeeman
effect. Characteristically, Einstein looks to a new length-scale for
clues for the needed modification of electrodynamics: he considered
the hitherto unexplained magnetic field of the earth. That same year
Goudsmit and Uhlenbeck, with the introduction of electron spin,
made an innovation more radical still. The complete theory of atomic
g-factors rests on Dirac’s 1928 synthesis of relativity and quantum
theory, constituting its earliest and most important success. (For
details T refer to Peter Galison’s beautiful account in How Experi-
ments End, University of Chicago Press, 1987: 27-74; for the
contemporary theory of the earth’s magnetic field see Ronald Menil
and Michael McElhinny, The Earth’s Magnetic Field: Its History,
Origin, and Planetary Perspective, Academic Press, 1983.)



1
On the Ether

ALBERT EINSTEIN

If we are here going to talk about the ether, we are not, of course,
talking about the physical or material ether of the mechanical theory
of undulations, which is subject to the laws of Newtonian mechanics,
to the points of which are attributed a certain velocity. This
theoretical edifice has, I am convinced, finally played out its role since
the setting up of the special theory of relativity. It is rather more
generally a question of those kinds of things that are considered as
physically real, which play a role in the causal nexus of physics, apart
from the ponderable matter that consists of electrical elementary
particles. Therefore, instead of speaking of an ether, one could equally
well speak of physical qualities of space. Now one could take the
position that all physical objects fall under this category, because in
the final analysis in a theory of fields the ponderable matter, or the
elementary particles that constitute this matter, also have to be
considered as ‘“fields’ of a particular kind, or as particular ‘states’ of the
space. But one would have to agree that, at the present state of
physics, such a point of view would be premature, because up to now
all efforts directed to this aim in theoretical physics have led to failure.
In the present situation we are de facto forced to make a distinction
between matter and fields, while we hope that later generations will be
able to overcome this dualistic concept, and replace it with a unitary
one, such as the field theory of today has sought in vain.

It is generally assumed that Newtonian physics does not recognize
an ether, and that it is the undulatory theory of light that first
introduced this ubiquitous medium able to influence physical
phenomena. But this is not the case. Newtonian mechanics has its
‘ether’ in the suggested sense, which, however, is called ‘absolute
space’. In order to understand this clearly, and at the same time to

Originally published as ‘Uber den Ather’, Schweizerische naturforschende Gesellschaft,
Verhanflungen (1924), 105: 85-93. This translation © S. W. Saunders 1991.
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render the ether concept more precise, we have to go back a little
further.

We consider first of all a branch of physics that manages without an
ether, namely Euclidean geometry, which is conceived as the science
of the possible ways of bringing bodies that are effectively rigid into
contact with one another. (We will disregard the light rays which
might otherwise be involved in the origin of the concepts and laws of
geometry.) The laws for the positioning of rigid bodies, excluding
relative motion, temperature, and deforming influences, such as they
are laid down in idealized form in Euclidean geometry, can make do
with the concept of a rigid body. Environmental influences of any
kind, which are present independent of the bodies, which act upon the
bodies, and which are to be considered as influencing the laws of
positioning, are unknown to Euclidean geometry. The same is true of
non-Euclidean geometries of constant curvature, if these are con-
ceived as (possible) laws of nature for the positioning of bodies. It
would be another matter if one considered it necessary to assume a
geometry with variable curvature. This would mean that the possible
contiguous positions of effectively rigid bodies in various different
cases would be determined by the environmental influences. In the
sense considered here, in this case one would have to say that such a
theory employs an ether hypothesis. This ether would be a physical
reality, as good as matter. If the laws of positioning could not be
influenced by physical factors, such as the clustering or state of
motion of bodies in the environment and so on, and were given once
and for all, such an ether would have to be described as absolute
(i.e. independent of the influence of any other object).

Just as the (physically interpreted) Euclidean geometry has no need
of an ether, in the same way the kinematics or phoronomics of
classical mechanics does not require one either. These laws have a
clear sense in physics as long as one supposes that the influences
assumed in special relativity regarding rulers and clocks do not exist.

It is otherwise in the mechanics of Galileo and Newton. The law of
motion, ‘mass x acceleration =force’, contains not only a statement
regarding material systems, but something more—even when, as in
Newton’s fundamental law of astronomy, the force is expressed
through distances, i.e. through magnitudes, the real definitions of
which can be based upon measurements with rigid bodies. For the
real definition of acceleration cannot be based entirely on observa-
tions with rigid bodies and clocks. It cannot be referred back to the



On the Ether 15

measurable distances of the points that constitute the mechanical
system. For its definition one needs in addition a system of
coordinates, respectively a reference body, in a suitable state of
motion. If the state of motion of the system of coordinates is chosen
differently, then with respect to these the Newtonian equations of
motion will not be valid. In these equations, the environment in which
the bodies move appears somehow implicitly as a real factor in the
law of motion, alongside the actual bodies themselves and their
distances from one another, which are definable in terms of measuring
bodies. In Newton’s science of motion, space has a physical reality,
and this is in strict contrast to geometry and kinematics. We are going
to call this physical reality, which enters into Newton’s law of motion
alongside the observable ponderable bodies, the ‘ether of mechanics’.
The fact that centrifugal effects arise in a (rotating) body, the material
points of which do not change their distances from one another,
shows that this ether is not to be supposed a phantasy of the
Newtonian theory, but that there corresponds to the concept a
certain reality in nature.

We can see that, for Newton, space was a physical reality, in spite of
the peculiarly indirect manner in which this reality enters our
understanding. Ernst Mach, who was the first person after Newton to
subject Newtonian mechanics to a deep and searching analysis,
understood this quite clearly. He sought to escape the hypothesis of
the ‘ether of mechanics’ by explaining inertia in terms of the
immediate interaction between the piece of matter under investiga-
tion and all other matter in the universe. This idea is logically
possible, but, as a theory involving action-at-a-distance, it does not
today merit serious consideration. We therefore have to consider the
mechanical ether which Newton called ‘Absolute Space’ as some kind
of physical reality. The term ‘ether’, on the other hand, must not lead
us to understand something similar to ponderable matter, as in the
physics of the nineteenth century.

If Newton called the space of physics ‘absolute’, he was thinking of
yet another property of that which we call ‘ether’. Each physical
object influences and in general is influenced in turn by others. The
latter, however, is not true of the ether of Newtonian mechanics. The
inertia-producing property of this ether, in accordance with classical
mechanics, is precisely not to be influenced, either by the configu-
ration of matter, or by anything else. For this reason, one may call it
‘absolute’.
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That something real has to be conceived as the cause for the
preference of an inertial system over a non-inertial system is a fact that
physicists have only come to understand in recent years. Historically,
the ether hypothesis, in its present-day form, arose out of the
mechanical ether hypothesis of optics by way of sublimation. After
long and fruitless efforts, one came to the conviction that light could
not be explained as the motion of an elastic medium with inertia, that
the electromagnetic fields of the Maxwellian theory cannot in general
be explained in a mechanical way. Under this burden of failure, the
electromagnetic fields were gradually considered as final, irreducible
physical realities, which are not to be further explained as states of the
ether. The only thing that remained to the ether of the mechanical
theory was its definite state of motion. It represented, so to speak, an
‘absolute rest’. If all inertial systems are on a par in the Newtonian
mechanics, therefore also in the Maxwell-Lorentz theory, the state of
motion of the preferred frame of coordinates (at rest with respect to
the ether) appeared to be fully determined. One tacitly assumed that
this preferred system would, at the same time, be an inertial system,
i.e. that the principle of inertia would hold in relation to the
electromagnetic ether.

There is a second way in which the rising tide of the Maxwell-
Lorentz theory shifted still further the fundamental concepts of
physicists. Once the electromagnetic fields had been conceived of as
fundamental, irreducible entities, it seemed they were entitled to rob
ponderable inertial mass of its fundamental significance in mechanics.
It was concluded from the Maxwell equations that an electrically
charged body in motion would be surrounded by a magnetic field the
energy of which would, to a first approximation, depend on the
square of the velocity. What could be more obvious than to conceive
of all kinetic energy as electromagnetic energy? In this way one could
hope to reduce mechanics to electromagnetism, having failed to refer
electromagnetic processes back to mechanical ones. This appeared to
be all the more promising as it became more and more likely that all
ponderable matter was constituted of electrical elementary particles.
At the same time, there were two difficulties which one could not
master. First, the Maxwell-Lorentz equations could not explain how
the electrical charge that constitutes an electrical elementary particle
could exist in equilibrium in spite of the electromagnetic forces of
repulsion. Second, the electromagnetic theory could not explain
gravitation in a reasonably natural and satisfactory manner. In spite
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of all this, the consequences of the electromagnetic theory were so
important that it was considered an utterly secure possession of
physics—indeed, as one of its best founded acquisitions.

In this way the Maxwell-Lorentz theory finally influenced our
understanding of the theoretical foundations of physics to such an
extent that it led to the founding of the special theory of relativity. It
was realized that the electromagnetic equations do not in truth
determine a particular state of motion, but that, in accordance with
these equations—just as in classical mechanics—there is an infinite
manifold of coordinate systems, moving uniformly with respect to
each other, and all on a par, so long as one applies suitable
transformation formulae for the space coordinates and the time. It is
well known that this realization brought about a deep modification of
kinematics and dynamics as a result. The ether of electrodynamics
now no longer had any special or particular state of motion. It had the
effect, like the ether of classical mechanics, of giving preference not to
a particular state of motion, but only to a particular state of
acceleration. Because it was no longer possible to speak of
simultaneous states in different places in the ether in any absolute
sense, the ether became, so to speak, four-dimensional, because there
was no objective arrangement of its space in accordance with time
alone. Also, following the special theory of relativity, the ether was
absolute, because its influence on inertia and light propagation was
thought to be independent of physical influences of any kind. While in
classical physics the geometry of bodies is presumed to be indepen-
dent of the state of motion, in accordance with the special theory of
relativity, the laws of Euclidean geometry for the positioning of
bodies at rest in relationship to one another are applicable only if
these bodies are in a state of rest relative to an inertial system;! this
can easily be concluded from the so-called Lorentz contraction.
Therefore the geometry of bodies is influenced by the ether as well as
the dynamics.

The general theory of relativity removes a defect of classical
dynamics: in the latter, inertia and weight appear as totally different
manifestations, quite independent of one another, in spite of the fact
that they are determined by the same body-constant, i.e. the mass.
The theory of relativity overcomes this deficiency by determining the

! For example, in accordance with the special theory of relativity, the Euclidean
geometry does not apply to a system of bodies that are at rest relative to one another,
but which in their totality rotate in relation to an inertial system.
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dynamical behaviour of the electrically neutral mass-point by means
of the law of the geodesic line, in which the inertia and weight effects
can no longer be distinguished. Thereby it attributes to the ether,
varying from point to point, the metric and the dynamical properties
of the points of matter, which in their turn are determined by physical
factors, to wit the distribution of mass or energy respectively. The
ether of the general theory of relativity therefore differs from that of
classical mechanics or the special theory of relativity respectively, in
so far as it is not ‘absolute’, but is determined in its locally variable
properties by ponderable matter. This determination is complete if
the universe is closed and spatially finite. The fact that the general
theory of relativity has no preferred space-time coordinates which
stand in a determinate relation to the metric is more a characteristic of
the mathematical form of the theory than of its physical content.

Even the application of the formal apparatus of the general theory
of relativity was not able to reduce all mass-inertia to electromagnetic
fields or fields in general. Furthermore, in my opinion, we have not as
yet succeeded in going beyond a superficial integration of the
electromagnetic forces into the general scheme of relativity. The
metric tensor which determines both gravitational and inertial
phenomena on the one hand, and the tensor of the electromagnetic
field on the other, still appear as fundamentally different expressions
of the state of the ether; but their logical independence is probably
more to be attributed to the imperfection of our theoretical edifice
than to a complex structure of reality itself.

I admit that Weyl and Eddington have, by means of a generaliza-
tion of Riemann geometry, found a mathematical system that allows
both types of field to appear as though united under one single point
of view. But the simplest field equations that are yielded by that
theory do not appear to me to lead to any progress in the
understanding of physics. Altogether it would today appear that we
are much further away from an understanding of the fundamental
laws of electromagnetism than it appeared at the beginning of the
century. To support this opinion, [ would here like briefly to point out
the problem of the magnetic fields of the earth and sun as well as the
problem of light quanta, which problems concern, so to speak, the
large-scale structure and the fine structure of the electromagnetic
field.

The earth and the sun have magnetic fields, the orientation and
sense of which stand in approximate relationship to the axes of
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rotation of these heavenly bodies. In accordance with the Maxwell
theory these fields could be produced by electrical currents which flow
in the opposite direction to the rotational movement around the axes
of the heavenly bodies. The sunspots too, which for good reasons are
looked upon as vortices, possess analogous and very strong magnetic
fields. But it is hard to imagine that, in all these cases, electrical
conduction or convection currents of sufficient magnitude are really
present. It rather looks as if cyclic movements of neutral masses are
producing magnetic fields. The Maxwell theory, neither in its original
form, nor as extended by the general theory of relativity, does not
allow us to anticipate field generation of this kind. It would appear
here that nature is pointing to a fundamental process which is not yet
theoretically understood.?

If we have just dealt with a case where the field theory in its present
shape does not appear to be adequate, the facts and ideas that
together make up the quantum theory threaten to blow up the edifice
of field theory altogether. Indeed, the arguments are growing that the
light quantum should be considered a physical reality, and that the
electromagnetic field may not be looked upon as an ultimate reality
by means of which other physical objects can be explained. The
theory of the Planck formula has already shown that the transmission
of energy and impulse by means of radiation takes place in such a
manner as if the latter consisted of atoms moving with the velocity of
light ¢ and with the energy v, and with an impulse hv/c; by means of
experiments on the scattering of X-rays by matter, Compton now
shows that scattering events occur in which light quanta collide with
electrons and transmit part of their energy to the latter, whereby the
light quanta change their energy and direction. So much is factually
certain: the X-rays undergo such changes of frequency in their
scattering as are required by the quantum hypothesis, as predicted by
Debye and Compton.

2 The electrodynamic analogy would suggest the assumption of a relationship of the
form dH= --C dm v xr/r?, in which dm is a mass moving with the velocity v, and r,
respectively r=|r|, is the distance of the origin from this mass. (This formula can,
however, at best be considered only for cyclic motion, and then only as a first
approximation.) The relationship between the magnetic fields of the earth and of the
sun is in this way correctly given as far as the order of magnitude is concerned. The
constant C has the dimension (gravitational constant)!/?/(speed of light). From this
one can estimate the order of magnitude of the constant C. If one puts this numerical
magnitude into the above formula, it will, applied to the rotating earth, give the right
order of magnitude for the magnetic field. These relationships deserve consideration,
but could be accidental.
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Furthermore, a paper has recently appeared by the Indian scientist
Bose, regarding the derivation of the Planck formula, which is
particularly important for our theoretical understanding for the
following reason. Hitherto, all derivations of Planck’s formula have
somewhere made use of the hypothesis of the undulatory structure of
radiation; for example, the factor 8zv?/c?® of this formula, in the
well-known derivation of Ehrenfest and Debye, was obtained by
counting the number of eigenvibrations of the cavity that occur in the
frequency range dv. This counting, which was based on the concepts
of the wave theory, is replaced by Bose by a gas-theoretical
calculation, which he applies to a light quantum situated in the cavity
in the manner of a molecule. The question now arises whether it
would not one day be possible to connect the diffraction and
interference phenomena to quantum theory in such a way that the
field-like concepts of the theory would represent only the expressions
of the interactions between quanta, whereby no longer would an
independent physical reality be ascribed to the field.

The important fact that, according to the theory of Bohr, the
frequency of the radiation is not determined by electrical masses that
undergo periodical processes of the same frequency can only increase
our doubts as to the independent reality of the undulatory field.

But even if these possibilities should mature into genuine theories,
we will not be able to do without the ether in theoretical physics, i.c. a
continuum which is equipped with physical properties; for the general
theory of relativity, whose basic points of view physicists surely will
always maintain, excludes direct distant action. But every contiguous
action theory presumes continuous fields, and therefore also the
existence of an ‘ether’. ’
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The Mass of the Classical Vacuum

R. PENROSE

There is something a bit paradoxical in the lessons classical physics
has to teach us about the physical nature of matter. We may ask,
What indeed is ‘matter’? The commonsense reply might be that it is
the real substance of which actual physical objects—the ‘things’ of
this world—are composed. It is what you, I, and our houses are made
of. How, then, does one actually quantify this substance? Our
elementary physics textbooks provide us with Newton’s clear answer:
it is the mass of an object, or system of objects, that measures the
quantity of matter that it contains. This, indeed, now seems right;
there is no other physical quantity that can seriously compete with
mass as the true measure of total substance. Moreover, it is
conserved—so that the mass of any system whatever must be
unchanging with time.
Yet Einstein’s famous (1905) formula from special relativity,

E=mc?,

tells us that mass and energy are interchangeable with one another.
Mass is still conserved, but now it seems less clearly to be the true
measure of actual substance. Energy, after all, depends upon the
speed with which that substance is seen to be travelling. The energy of
motion in an express train is considerable, but if we happen to be
sitting in that train, then, according to our own reference frame, the
train possesses no motion at all. The energy of that motion (though
not the heat energy of the individual particles, nor the rest-mass
energy of those particles) is now reduced to zero by our particular
choice of frame. The total mass of the express train, being
proportional to its energy, appears to be less to a traveller on the train
than to someone who remains stationary on the ground as the train
speeds by.

© R. Penrose 1991
This article is based largely on a passage (the final section of ch. 5) from The
Emperor’s New Mind, by R. Penrose (Oxford University Press, 1989).



22 R. Penrose

Here the discrepancy in the total mass remains relatively small
because the train’s speed is small compared with the speed of light. On
the other hand, for a striking example where the effect of Einstein’s
mass—energy relation is at its most extreme, consider a z%-meson. It is
certainly a material particle, with a well-defined (positive) mass. After
about 1071° of a second, it decays—almost certainly into a pair of
photons. In the frame of the n®-meson, each photon carries away half
the energy and, indeed, half of the 7°-meson’s mass. Yet this mass is of
the nebulous kind: pure energy. For if we were to travel rapidly in the
direction of one or other of the photons, then we could reduce the
mass—energy of that photon to as small a value as we please.

All this makes for a consistent picture of conserved mass, but it is
not quite the one that we had before. Mass can still, in a sense,
measure ‘quantity of matter’, but there has been a distinct change of
viewpoint. The conserved quantity that takes over the role of mass is
now the entire energy-momentum 4-vector. The time component,

p°=E/c=myc,

describes only the observer-dependent ‘inertial mass’ m; (or, equi-
valently, the energy) of a particle or system relative to the observer.

This 4-vector has a (non-negative) Minkowskian norm my,
defined by

cHmp)?=E* 2 —p-p=0°)’ - (")~ (*)*— ()

where p=(p!, p2, p3) is the 3-momentum. The norm is the rest-mass
my (or, equivalently, the rest energy myc?). One might try to take the
view that m, would be a good measure of ‘quantity of matter’, since
this is observer-independent. However, it is not additive: if a system
splits into two, then the original rest-mass is not the sum of the
resulting two rest-masses. Recall the n%meson decay considered
above. The z%-meson’s rest-mass is non-zero, while the rest-masses of
each of the two resulting photons is zero. (Any particle that moves
with the speed of light must have rest-mass zero.) The additivity
property, now in the sense of vector addition, holds for the entire
4-vector, and this vector must thus be our measure of ‘quantity of
matter’.

Think now of Maxwell’s electromagnetic field. As Maxwell himself
clearly pointed out (18635, 1873), this field carries energy. Thus, by
E=mc?, the ficld must also have mass. Thus, Maxwell’s field is also
matter! This must now certainly be accepted, since Maxwell’s field is
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intimately involved in the forces that bind particles together to form
atoms. There must be a substantial contribution to any body’s mass
from the electromagnetic fields within it. (Though, unfortunately, this
contribution is incalculable, on present theory—which gives infinity
as its provisional, but unhelpful, answer!)

The energy in an electromagnetic field can be described as an
energy density, i.e. as energy per unit volume, which is the normal way
of describing the energy for a continuous medium. It is the spatial
integral of this density that provides the total energy of the system.
The energy density is a component not of a 4-vector, but of a
valence-2 tensor. If there are many continuous media present (e.g.
quantum field descriptions of particles), then we have an energy
density, and hence a corresponding tensor, for each one. We add all
these tensors together to obtain a quantity

T,

ab»

referred to as the energy momentum tensor of the system.

What about Einstein’s gravitational field? In many ways it
resembles Maxwell’s. As with Maxwell’s theory, bodies in motion can
emit waves, and like electromagnetic waves they travel with the speed
of light and carry energy. Yet this energy is not measured in the
standard way, which would be by the above energy momentum
tensor. In Finstein’s equation

R — %Rgab = —8nGT,

(where G is Newton’s gravitational constant, R,, is the Ricci tensor,
d., the metric tensor, and R the scalar curvature), the T, on the right
is supposed to be describing the entire non-gravitational energy. In
vacuum, which in Finstein’s theory means in the absence of all
physical fields except gravity, the energy-momentum tensor is zero,
whence R, =0; but there can still be a gravitational field present. This
gravitational (tidal distortion) field is described by the full Riemann
curvature tensor R, ,, which has a total of 20 components. The Ricci
tensor has just ten components, and the remaining ten collect
together in the form of another tensor,

Cabcd ’

called the Weyl tensor. In vacuum, such as inside a (pure)
gravitational wave, the Weyl tensor still survives, and it can be
thought of as describing the free gravitational field.
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The Weyl tensor is not an appropriate object for directly describing
gravitational energy, however. (It has too many indices, for example.)
Nevertheless, gravity does contribute to the total mass—energy of a
physical system. The simplest way of seeing this is to consider two
masses. When they are far apart, the total energy of the system is
somewhat greater than when they are close together, owing to the
Newtonian potential energy contribution. Thus, by E=mc? they
must have a slightly greater mass when they are far apart than when
they are close together. The difference would have to come from the
gravitational field in the space between the masses. But this cannot
arise as an integral of the energy density locally defined in 7, because
that energy density is zero outside the masses. Also, as mentioned
above, (pure) gravitational waves carry energy, yet the energy density
throughout the waves is everywhere zero.

These problems are related to the fact that the ‘conservation law’

VT ,=0

that is enjoyed by the energy-momentum tensor is a ‘covariant’ one
(V* denoting covariant derivative), and does not give rise to the
integral conservation law that one would like, namely one asserting
that the total energy of a physical system is actually constant. In a
well-known attempt to resolve these issues, Einstein introduced a
quantity ¥, referred to as the energy momentum pseudo-tensor,
which was intended to take the energy of the gravitational field into
account. This did give rise to an integral conservation law, but it
suffered from the very serious drawback of depending heavily on the
particular system of coordinates that happened to have been chosen
for the problem at hand. The components of I, therefore had no
local physical meaning (a difficulty that was already appreciated by
Einstein), and one certainly cannot take this pseudo-tensor descrip-
tion as providing the ‘true’ measure of the mass—energy distribution in
the gravitational field.

One might take the view, nevertheless, that somehow the curvature
of space-time—as measured by the surviving Weyl components of the
curvature tensor—can still represent the ‘stuff” of gravitational waves.
But, as is indicated by the above arguments, gravitational energy is
non-local, which is to say that one cannot determine what the measure
of this energy is by merely examining the curvature of space—time in
limited regions. The energy—and therefore the mass—of a gravita-
tional field is a slippery eel indeed, and refuses to be pinned down in
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any clear location. Nevertheless, it must be taken seriously. It is
certainly there, and has to be taken into account in order that the
concept of mass can be conserved overall. There is even a good (and
positive) measure of mass (due to Bondi 1960, Bondi et al. 1962, and
Sachs 1962) which applies to gravitational waves, but the non-
locality is such that it turns out that this measure can be non-zero in
regions where the space-time is actually completely free of curvature.
Indeed, the region between two impulsive bursts of gravitational
radiation can be completely flat, but the total energy carried by the
wave as a whole simply depends on the extent of this flat region, i.e. on
the distance between the two bursts. (See Penrose 1966 and Penrose
and Rindler 1986; this last reference also describes a ‘quasi-local’
definition which does take into account the non-local properties of
gravitational energy in finite regions.) It seems that, if this
mass—energy is to be located at all, it must in such cases be in this flat
empty space—a region completely free of matter or fields of any kind.
Our ‘quantity of matter’ is now either there, in the emptiest of empty
regions, or it is nowhere at all.

Thus, we see that even before we need consider the mysterious
effects of quantum theory, our theories of physics tell us that there is
something very odd and counter-intuitive about the nature of matter.
We cannot at all draw a clear dividing line between what we call
‘matter’ or ‘substance’ and what we call ‘empty space™—supposedly,
the voids entirely free of matter of any kind. Matter and space are not
totally separate types of entity. Actual substance need not be clearly
localized in space. These are hints that our treasured intuitive views as
to the nature of physical reality are less close to the truth than one
would have thought. The nebulous and non-local additional features
that the quantum theory injects into our picture of the world greatly
strengthen this conclusion, but such conclusions must already be
drawn on the basis of classical theory. We must expect, also, that
future theory will provide us with yet further shocks to our cherished
intuitions.
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Reflections on Ether

SIMON SAUNDERS and HARVEY R. BROWN

1 Introduction

There are special difficulties which obstruct the understanding of
both ether and the elimination of ether from physical science. To be
sure, there is an experimentum crucis—the Michelson—-Morley
experiment—and there is a rival theory which better accounted for
the facts; but we know that in the history of ideas life is not so simple.
The ether was a very great idea, and it dominated more than a century
of science; it did not vanish overnight.

Nevertheless, the concept of ether as formulated in the Lorentz
theory had the ground cut from beneath it. The special theory of
relativity obliterated the distinction between field and the ether as
formulated by Lorentz. Just how special—or should we say suscept-
ible—is the Lorentz theory to the new perspectives of relativity may be
gleaned from Einstein’s remark a half-century later: “The physicist of the
present generation regards the point of view achieved by Lorentz as the
only possible one; at that time, however, it was a surprising and
audacious step, without which the later development would not have
been possible’ (Einstein 1949: 35). The later development is not only
special relativity; it is the concept of unitary field theory, in which the
energy momentum distribution of the field is a reality just as good as
ponderable matter. In fact, Einstein first derived the mass—energy
relationship through an application of relativity to electromagnetism; it
follows that the field has inertia. As a result, the ether qua substance
appears wholly redundant; conversely, if the field has inertia, then the
field is substance. The field is the reality.

The other side of the story is even more devastating for the Lorentz
ether—field distinction. Under Lorentz, almost the only other property
left to the ether was that it be stationary. The difficulties in reconciling

© Simon Saunders and Harvey R. Brown 1991
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this requirement to the null experiment of Michelson and Morley——
using the techniques for handling relative motion of observer and ether
provided by the continuum mechanics—is what led (eventually) to the
Einsteinian analysis of space and time. In 1905 it appeared incontro-
vertible that, whether or not there existed a stationary ether, precisely
which frame of reference was thereby distinguished could not possibly
influence the laws of electromagnetism and was to all intents and
purposes irrelevant to the description of reality.

The Lorentz ether was pole-axed. This is the situation circa 1905. But
it is not, of course, the whole of the story.

In March of that same year Finstein conceived of the quantum
theory. Over the next two years, and in splendid isolation, he pointed
out its significance to the theory of radiation, to the Planck
combinational theory of the black-body spectral distribution, and to
the molecular theory of heat. His understanding of light quanta at this
time was purely phenomenological; but after 1909, he turns with
increasing commitment to a theoretical interpretation of light quanta
as singularities in a c-number field. If he also suggests that each
‘singular point be surrounded by a field of force’, which when
superimposed on one another will ‘in their totality produce an
undulatory force field little different from that in the sense of the
electromagnetic theory of light’ (Einstein 1909: 824-5), one sees no
hint that these forces are allowed to be non-contiguous, that the
forces themselves can be anything other than c-number fields. And to
this Einstein remains committed for the rest of his life.

In Einstein’s new critique of ether (1920 and 1924) we see a revival of
the ether terminology; a different sense of ether, and with a new
reference. The theory of general relativity had once again transformed
the concept of a ‘resting frame’. The class of inertial frames, locally
transformed into one another by the Lorentz transformations, could be
considered a local object, varying from neighbourhood to neighbour-
hood, and generated from the stress-energy tensor of the total matter,
charge, and electromagnetism present in each neighbourhood. In this
way the concept of ‘resting frame’ generalizes to what Einstein now calls
the ‘ether of mechanics’. It is no longer absolute, and it is effective; itisa
part of reality. For precisely the same reasons, the electromagnetic field
may be regarded as ether—ether in this general sense, a continuous
structure subject to contiguous action, effected by and acting upon its
physical environment. The ether of mechanics is a special case of this
general kind of field-ether.
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Einstein’s resurrection of the ether concept brought no converts;
these questions were swept aside by the hurricane impact of quantum
mechanics. And in quantum mechanics, more properly quantum field
theory, Einstein’s strategy is completely undermined. He fears as
much in the paper of 1924: ‘the facts and ideas which together make
up the quantum theory threaten to blow up the edifice of field theory
altogether’. And from his perspective on ether, which we may suppose
equivalent to field-ether, indeed his whole conceptual edifice is in
smithereens.

There is, however, another history of ether, which in a number of
respects foreshadowed the impact of the quantum theory on the field-
ether. It is the representation of a material medium as an atomistic
structure. This was precisely the ‘audacious step’ of Lorentz. When
we realize that according to Maxwell and Hertz a material medium
endowed with electromagnetic properties is ether, we see that Lorentz
carried through a classical analogue of the quantization of a massive
continuum; he atomized this ether—and in the process created the
field-particle dualism inherited (and adapted) by Einstein.

Things are therefore more complicated than they look. Both the’
theory of space—time transformations and the distinction between
field and particle hinged on the concept of ether. The former gave rise
to the Minkowski geometry and the pseudo-Riemannian geometry of
the ether of mechanics; the latter to the theory of quanta. In this
process the Lorentz ether played a transitional role. It was itself born
out of the atomization of material media, a sort of “first quantization’.
This ether is the classical field-ether, and it is atomized again in the
quantization of the electromagnetic field; it is ‘second-quantized’. We
no longer have field-ether, we have quantum field-ether.

These are grand generalizations; to fix our ideas we must take a
closer look at what Lorentz actually did. We find that his inspiration
took root in a conflict no less central, the debate over contiguous
action and action-at-a-distance.

2 Llorentz: Creating the Wave-Particle Duality

Recall that an essential mathematical innovation of Maxwell
theory was the introduction of the displacement current. This step,
and, as it turned out, the concept of electric waves, could be
incorporated within the Continental tradition of action-at-a-
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distance theories. This was Lorentz’s first contribution to electro-
dynamics; he took over Helmholtz’s generalized definition of the
magnetic potential—a definition which included that of Neumann,
Weber, and Maxwell—and the theory of dielectric polarization to
which it was applied, to deduce Snell’s law and the laws of
reflection.

This was in 1875; the Helmholtz theory was in 1870; yet Maxwell’s
theory appeared in 1861 and 1862. On the Continent Maxwell’s
theory met with resistance, obstructed by the obscure and fanciful
ether on which it was based.! Helmholtz and Lorentz conceived of a
medium, effectively a perfect insulator, which is polarized by the
action of the net electric force E at each point. The resulting
polarization P equals €E, with € the inductive capacity. Include this
term in the source equation for the magnetic field in vacuo,

VxB=puj+e JE/0t,

and one has the Maxwell theory. The essential difference between
Maxwell and the Continental school is that the latter conceived of
the vector potential A defined by the current as a mathematical
artifice, not present in the deformation of the medium (except for
that part of A due to the time variation of P), but produced by
distance forces.

It was fundamental to the derivations of Helmholtz and Lorentz
that there was a medium. There was no other reason to consider the
action of distance forces at a point in empty space. But they already
believed in the existence of some medium, because it was required of
the wave theory of light. Not because action must be contiguous, but
because of the reality of light, the medium must exist. But what sort of
medium? For Lorentz the issue was this: is the electromagnetic ether,
that is a medium the displacement and deformation of which
produces electrical and magnetic effects as described by the
Neumann—Weber—Maxwell potentials, a superior model to the
elastic-solid ether of Fresnel? The latter was based on Newtonian
laws, with central potentials; the former on the velocity-dependent
potentials of electrodynamics—more precisely, of Neumann or
Weber electrodynamics. The latter might prove effective where the
elastic—solid theory had completely stalled.

! For references and further details see Whittaker (1910), D’Agostino (1975),
McCormach (1970), and especially Hirosiga (1969).
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Lorentz was no adherent to the doctrine of contiguous action. In
his own words, ‘In deriving the equation of motion of electricity, I
largely follow Helmholtz. Like this physicist [ will start from action at
a distance; we shall thus have the advantage of founding the theory on
the most direct interpretation of the facts’ (1875: 30). Electrodynam-
ical law should not be founded on metaphysical principles of
contiguous action; nevertheless, it may be applied to a polarizable
medium, and deformations and displacements in that medium wili be
local structures. The situation is not so different in continuum
mechanics, where the Newtonian forces that operate, albeit over
short distances, are nevertheless action-at-a-distance forces; as we
shall see, Maxwell too had used distance forces in setting up his model
of the ether.

Consider now Hertz’s great discovery of 1888. Recall that Hertz
had generated and detected electrical waves. This experiment
appeared to confirm the existence of the electromagnetic ether, but by
some it was taken to confirm the doctrine of contiguous action.?
Lorentz did, of course, embrace this point of view, but not until 1891,
and then for reasons that had little to do with the Hertz experiment.?
In the mean time, he had already taken the first steps towards the
separation of the ether from material media, a separation that was
far from obvious from the point of view of Maxwell theory, but
natural within the action-at-a-distance ‘reconstruction’ of wave
propagation. For Maxwell, deformations within a material
medium produce electromagnetic effects; material polarization and
current (whatever, precisely, these might be) enter into the field
equations. So too does the displacement current in the ether. If
both ether and matter ultimately obey Newton’s laws, they are one
system, instantiating the electromagnetic field. But from the point
of view of Neumann—Weber theory, electrical currents act at a
distance on volume elements of the ether; if these currents and

2 Cf. FitzGerald’s remarks (1888: 558) in the opening address to the Association of
Science: ‘The year 1888 will be ever memorable as the year in which this great
question has been experimentally decided by Hertz in Germany and, I hope, by
others in England. It has been decided in favour of the hypothesis that these actions
take place by means of an intervening medium.” Presumably FitzGerald was unaware
of or unimpressed with the Helmholtz—Lorentz treatment of electromagnetic waves
using distance forces.

3 Tt is true that in 1891 Lorentz called the Hertz experiment ‘the greatest triumph
that Maxwell’s theory has attained’. However, it scarcely figured in his detailed
critique of the advantages of Maxwell theory over action-at-a-distance theories.
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polarizations are associated with molecules, one has a clear
separation of the role of the material medium (molecules) and the
role of the ether.

It was essential to embrace some version of atomism. Hertz, who
did not, also detected inconsistencies in Maxwell’s own treatment of
the ether, supposedly implementing a theory of contiguous action:

Maxwell starts with the assumption of direct action-at-a-distance; he
investigates the laws according to which hypothetical polarizations of the
dielectric ether vary under the influence of such distance-forces; and he ends
by asserting that these polarizations do really vary thus, but without being
actually caused to do so by distance-forces. This procedure leaves behind it
the unsatisfactory feeling that there must be something wrong about either
the final result or the way which led to it. Another effect of this procedure is
that the formulae retained a number of superfluous, and in a sense
rudimentary, ideas which only possessed their proper significance in the older
theory of direct action-at-a-distance. (Hertz 1893: 195-6)

The example Hertz cites is the concept of the displacement current.
The ether displacement D is supposed to result from an applied
electric force E on a portion of the ether. The two are proportional, as
for an elastic medium. But what 1s E, if it is not a distance force? It
cannot also be a displacement in the ether, for then one would have
one displacement producing another, which is absurd. By this very
critique Hertz illustrates the power of the action-at-a-distance
perspective; it enables one to distinguish the field arising from a
remote system (the applied field E) from the field set up by its action
on a medium.

Hertz, in his positivist mode, developed a theory that eliminated
unobservables—the potentials. Following Maxwell, he denied the
distinction between the effects of material media and the effects of the
ether. In modern terms, he advocated the use of the fields D=¢,E + P,
and H=B/u,— M, the net or phenomenological ficlds. In particular,
within a body ‘the lines of force simply represent a symbol for special
conditions of matter’; in just the same way, in vacuo, the lines of force
are a special condition of ether.

A further comment of Hertz is noteworthy. With reference to
Maxwell’s equations,

After these equations are once found, it no longer appears expedient to
deduce them (in accordance with the historical course) from conjectures as to
the electric and magnetic constitution of the ether and the nature of the acting
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forces-—all these things being entirely unknown. Rather is it expedient to start
from these equations in search of such further conjectures respecting the
constitution of the ether. (Hertz 1893: 201; emphasis ours.)*

This was essentially Finstein’s perspective on Maxwell’s theory
with one important difference: there could be no ether, for there could
be no absolute resting frame. Were there then no further conjectures
that one might seek to make concerning the constitution—not of the
ether, but of radiation? Was Maxwell theory complete?

Return to Lorentz. Already in his Ph.D. thesis—that is, in 1875—
he had sharply distinguished the polarization of molecules from the
polarization of the ether. This he did in order to explain the fact that
the dielectric constants and refractive indices of gases are always close
to unity. He made the simple assumption that the dominant
electromagnetic contribution comes from the ether, and not from the
molecules of a dilute system. Indeed, if the inductive capacity of the
molecules is proportional to their number density N, so that
€=¢€,+aN, then from the expression n? = (1 +4ne)/(1 +4ne,) (where
n is the refractive index), and assuming the density p is proportional
to N, there follows the law of Arago and Biot, (n, — 1)/p=constant. In
particular, as p—0 it follows that n—1.

Lorentz speculated that, quite generally, ‘one should take into
account first the ether, and then the molecules lying within it. Then
the distance, size, and form of the latter enter into consideration, from
which the explanation of dispersion and the plane of polarization will
probably result.”® The theory of dispersion which followed three years
later amply fulfilled his expectations. The basic mechanism for the
dispersion was in fact already known; the essential point is to treat
each molecule within the dielectric as elastically bound, but driven by
the incident wave. Maxwell and Sellmeier independently hit on this
mechanism in the context of the elastic solid ether; Lorentz developed
a detailed electrodynamic model in which the molecules were treated
as charged simple harmonic oscillators.

The model was as follows. The molecule is considered to occupy a
small void within the ether, upon which it acts by distance forces. This
action, and the effects of a surface charge induced on the boundary of
the void, modify the polarization induced in the molecule. In this way

4 In his much quoted remark, ‘Maxwell’s theory is Maxwell’s equations’, Hertz did
not mean to deny the existence of ether.
5 Lorentz (1875: 87-8); trans. in Hirosiga (1969: 172).
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the polarizability of individual molecules may be defined in terms of
the polarization set up by an ‘effective’ electric field. On the other
hand, the external electric field is also related to the polarization field
(by the electric susceptibility y); this quantity is just k — 1, where x is
the specific inductive capacity or dielectric constant, the square of the
refractive index. Eliminating the fields leads to a relationship between
the refractive index and the polarizability of the molecule.

This formula depends on the geometry of the cavity and the mass of
the molecule, but not on the magnetic moment of the molecule or the
intermolecular spacing. Neither does it depend on the frequency of
the external field. At this point Lorentz turned to the dependence of
the polarizability on the internal structure of the molecule; if this
varies with the frequency of the effective field, a dispersive effect
results. To this end Lorentz supposed that the molecule can be
modelled as an elastically bound charge e of mass m with char-
acteristic frequency w,. The polarizability x is given by E=«P, and
{according to this model) P =ex, where x is the displacement of the
charge from the centre of oscillation. The equation of motion for the
oscillator is m% =eE —kx, with wj=k/m. When E is an oscillatory
field of frequency w, one obtains the solution x =eE/(k —mw?), so
that x = (k—mw?)/e?; under these assumptions, one has a theory of
dispersion.

Lorentz’s inaugural lecture to the University of Leyden was given
that same year; its title, ‘Molecular Theories in Physics’. In the
following decade Lorentz made a number of contributions to the
rapidly developing kinetic theory of gases, including a note on
Boltzmann’s H-theorem. On electromagnetism he published only on
the magnetic potential (d la Weber and Neumann), on the Hall effect,
and on one other topic: the theory of aberration. As we shall see, this
could only have pushed him further to embrace an absolute
distinction between the electromagnetic ether and material media.
But it was not until 1892 that he elaborated the definitive form of what
is now called the Lorentz theory; it was, essentially, a more developed
form of the dispersion theory of 1878 formulated according to the
Maxwell theory, with a new application to the Fizeau experiment.

Lorentz made a public conversion to Maxwell theory in 1891. As
arguments in its favour, he considered a technical difficulty of the
Helmholtz theory (which need not concern us), and the following
qualitative argument. There is the question of energy: where,
precisely, does electromagnetic energy reside? It was a claim



Reflections on Ether 35

repeatedly made by Maxwell that the ether itself could be set in
motion, and that in this motion resides kinetic energy. Lorentz was
impressed by the fact that the potential energy in the action-at-a-
distance theory depended on the velocities of charged particles ‘and
nevertheless is not a kinetic energy in the ordinary sense of the word’.
He immediately continues: “This is a major difficulty: aithough it is
simpler to denote energy dependent on velocity as kinetic energy, here
it is not the case. In Maxwell’s conception it is considered as such, and
in this I find the first reason to give his theory precedence.”®

Hereafter Lorentz was to speak of a ‘velocity vector’ assigned to
each point of the ether; these ether velocities, together with the electric
displacements, provided the generalized coordinates in Lorentz’s
Lagrangian treatment on which the 1892 theory was founded. But
Lorentz made no attempt to develop a detailed mechanical model; as
always, his motives were pragmatic. As we shall see, the Lagrangian
theory provided a framework with just enough of a mechanical
flavour to obtain the force law of the field on charged particles in
motion (the Lorentz force).

It was this sort of analysis that was so conspicuously absent from
Hertz’s phenomenological approach. It was not just that Hertz had
little sympathy for atomism (Lorentz actually derived the force law
for a continuous charge distribution); as he complained in the
introduction, Hertz ‘hardly concerns himself with the relation of
electromagnetic actions to the laws of ordinary mechanics’. But there
is another connection between Lorentz’s great thesis of 1892 and the
Hertz theory of 1890; the latter’s reluctance to distinguish between
that action of the medium defined by the matter content and that
owing to ether led to the view that the ether should be considered co-
moving with a material body. For consider the consequences of a
stationary ether, or an ether incompletely dragged:

If now we wish to adapt our theory to this view, we have to regard the
electromagnetic conditions of the ether and of the tangible matter at every
point in space as being in a certain sense independent of each other.
Electromagnetic phenomena in bodies in motion would then belong to that
class of phenomena which cannot be satisfactorily treated without the
introduction of at least two directed magnitudes for the electric and two for
the magnetic state. (Hertz 1893: 242)

Now Lorentz’s earlier disposition to distant action had led to the

¢ Lorentz (1891: 93-4); translated in Hirosiga (1969: 183-4).
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fruitful conception of material media as systems of charged molecules.
Adherence to contiguous action might prohibit a particulate view of
the non-material ether, but one could still retain a molecular theory of
matter. One of Hertz’s ‘two ethers’ might be considered the electric
configuration of matter; the remaining ether, the purely electromag-
netic one, is most simply considered at rest.

3 The Resting Ether and the Possibility of Electrodynamics

The connection is not quite watertight; intuitively, even given an
atomistic theory, the ether might be set in motion by the collective
influence of a large number of particles. It was here that Lorentz had
the particular genius to see that the ether might have no other
interaction with matter than that conditioned by its charge
distribution—conditioned, in particular, by the Maxwell source
equations,

VxH=4nJ
V:D=p.

(J is the sum of the conduction and displacement current densities.)
There is no sign here that the ether must be set in bulk motion.
Previously, within the action-at-a-distance theory, Lorentz had
conceived of the interaction between ether and matter with the
molecule at the centre of a cavity within the ether; if the interaction is
to be contiguous the cavity must vanish, but if it is purely
electromagnetic, the only action on the ether is as given by Maxwell.
In this way—mediated, so to speak, by the action-at-a-distance
theory—Lorentz conceived of the Maxwell notion of contiguous
action without the attendant notions of impenetrability and contact
forces. If ether and matter need interact only electromagnetically,
there is no reason why they should not permeate each other. In this
way Lorentz prepares for a precarious synthesis of field and particle
concepts, in which each is an independent reality. The substantive
ether—qua the microscopic structure of media—splits into two parts.
The one may be identified with the atomistic structure of matter; the
other with the substratum of pure electromagnetism. Because the two
are coupled only through charge, there is no reason why the motion of
the one should give rise to a motion of the other, so the substantive
electromagnetic ether is also stationary—an absolute resting frame.



Reflections on Ether 37

The question of the motion of ether had already a long history.
Fresnel had proposed that the elastic—solid ether be stationary
(unaffected by the motion of the earth) in order to explain the
phenomenon of stellar aberration. There is no ‘ether drift’. Lorentz’s
first skirmish with the question of the motion of ether concerned a
competing theory due to George Stokes, who had proposed that the
velocity of the earth relative to the ether varied continuously from
zero (at the earth’s surface) to some constant value at sufficiently large
distances. On this basis Stokes had obtained agreement with the
aberration experiments. Lorentz, in his study of 1886, came to the
conclusion that Stokes’s conception was inconsistent; the relative
velocity could not vanish everywhere at the earth’s surface. Dropping
this assumption, but retaining a variation in ether velocity, Lorentz
obtained a consistent theory midway between that of Fresnel and
Stokes. But he considered nothing was gained thereby; Fresnels
theory was more simple, the hypothesis of no ether drift was to be
preferred.

But what of the motion of the ether in the interior of a moving
medium? Here Fresnel had supposed that the passage of light
induces vibrations in that medium; if in motion relative to the ether
with velocity v, he further supposed there exists an ‘excess’ of ether
within the medium which partakes of that velocity (while the
remaining ether stays at rest)}—the hypothesis of ‘ether drag’. On
this basis he deduced that a wave of velocity u relative to the
medium will propagate at the velocity u+ fv, where f is the drag
coefficient; in particular, if the ether moves with the medium, f will
be unity.

On the somewhat ad hoc assumption that the density of ether in a
body is proportional to the square of the refractive index, Fresnel
obtained the value f=1-—1/n% Remarkably, this prediction was
confirmed by the null result of Airy’s experiment of 1871, an
experiment suggested by Fresnel in 1818. In this experiment a star is
held fixed at the centre of field of view of a telescope, while the
telescope is filled with water. No change was required in the
orientation of the telescope. Even more impressive, Fizeau had in
1851 directly measured the Fresnel drag coefficient, by studying the
fringe-shift using an interferometer in which coherent beams travelled
in opposite directions through flowing water. The observed value of
0.48 compared favourably with the theoretical value of 0.43.

Returning to 1892, it was a weakness of the Hertz theory that it did
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not account for the Fizeau experiment; but Lorentz chose to
challenge the very concept of ether drag:’

In the memoir where Mr. Hertz deals with bodies in motion, he assumes that
the ether contained in them moves with the bodies. Now, optical phenomena
have shown that this is not always the case. I therefore would like to find out
the laws governing the electric motions in bodies which traverse the ether
without dragging it, and it seems to me difficult to attain this end without a
theoretical idea as a guide. (Lorentz 1892: 168)

Here lies the importance of the concept of a stationary ether to the
development of the electrodynamics; if the ether is dragged by matter,
then it is dragged by atoms, and the question of the action of the ether
on moving charges cannot be posed in any simple way. There is a
more simple assumption yet: there is no ether drag. On this basis, it
was possible to set up the electrodynamics.

The Lorentz force law followed from the Lagrangian theory of the
ether together with two hypotheses: the first is the relationship
V-D=p, which is to hold everywhere within the interior of a charged
particle, and the second is the definition of current density within the
particle: J=pv+0D/0t. Here v is the velocity at each point within
the particle, relative to the stationary ether. Modelling charged
particles as extended bodies, however, brought with it the problem of
their structure and stability. Here Lorentz simply assumed that the
bodies are rigid. On the other hand, an immediate pay-off is that the
source expressions are smooth functions of the coordinates just like
the fields; variation of the charge distribution in a given volume
automatically involves a change in the field energy and current
density in that volume, together with the virtual work done by the
field on the charge. Including these terms leads to the expression for
the total force (the Lorentz force):

F=4nc? | pD dt+{ p(vx B) dr.

The power of this theory was remarkable. With it Lorentz
recovered the Maxwell-Hertz theory, results of the old action-at-a-
distance theories, and the Lorentz—Lorenz dispersion formula. His
new derivation of the Fresnel drag coefficient is, however, of
particular interest. In this treatment, the incident radiation induces a

7 Lorentz may have had in mind the unsatisfactory implication of the Fresnel theory
in the context of dispersion; it seems that the ‘extent’ to which ether is dragged (within
one and the same moving body) depends on the frequency of light considered. Is there a
different ether for each wavelength of light?
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polarization field in the dielectric, which interferes with the incident
wave to give rise to a wave of increased phase velocity. Only the
polarization current dP/0t is changed by the motion of the medium,
the displacement current €,0E/0t is unaffected. Since the polarization
current would not exist in the absence of the medium, its dependence
on the velocity of the medium is to be expected. To first order in the
velocity of the medium, the drag coefficient is proportional to the
ratio of the polarization and displacement currents, in accordance
with Fresnel’s law.®

This result is a remarkable achievement, but it should be noted that
from a technical point of view the atomistic structure of the material
medium plays no essential role; one only needs the idea that the
polarization field is associated with the medium, the electric field with
a stationary space. That is, we need only to accept the ‘two ethers’
rejected by Hertz. But it is atomism that makes sense of this idea; the
two ethers may coincide in space, but the one is attached to the atoms
in motion, the other to the space through which they move, the
stationary ether. In this picture the material ether is a dynamical
system of charged particles; distinctive properties of ether, the
constitutive equations that relate the ‘partial fields’ P and M to the
external E and B, are to be determined purely from the properties of
this dynamical system. Further, the ether as ‘support’ to the fields (in
this case the polarization and magnetic fields) can be considered as
the charge-current distribution itself, therefore the atomic configu-
ration of the medium.

The partial fields admit a dual description. On the one hand, they
describe charge and current distributions; on the other, fields on a par
with E and B.° But if the charge and current distributions are
particulate, they are also the consequence of electromagnetic
interactions between these particles; the material ether has therefore a
subordinate role to the purely electromagnetic ether. Compare, for
example, with Whittaker, writing in 1910:

8 Fora treatment along these lines, see Panofsky and Phillips (1972: 193-5,279-80).
There is also the much simpler derivation on the basis of relativity; for light moving
with speed u=c/n, through a medium of refractive index n, which is itself moving with
speed v, an observer at rest will conclude the light is moving with velocity
V={(c/n+v)/(1 +v/nc) (by application of the velocity addition law). To first order in
v/c, this is just ¢/n+(1—1/n?o=u+fo.

 Cf. the discussion in Panofsky and Phillips (1972: 462—4) and their closing remark:
‘In fact, an understanding of the dual physical function of P and M is the principal
requirement for clarity in the classical theory of electric and magnetic media.’
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It may be remarked that Maxwell made no distinction between stress in the
material dielectric and stress in the ether: indeed, so long as it was supposed
that material bodies when displaced carry the contained aether along with
them, no distinction was possible. In the modifications of Maxwell’s theory
which were developed many years afterwards by his followers, stresses
corresponding to those introduced by Maxwell were assigned to the aether,
as distinct from ponderable matter; and it was assumed that the only stresses
set up in material bodies by the electromagnetic field are produced indirectly;
they may be calculated by the methods of the theory of elasticity, from a
knowledge of the ponderomotive forces exerted on the electric charges
connected with the bodies. (Whittaker 1910: 272)

The material ether appeared derivative to the stationary ether,
because electromagnetic forces determine the dynamical behaviour of
the atoms; but these arise in the stationary ether. The idea that the
atomistic structure is itself an aspect to the field—most especially a
massive field—did not of course come into consideration. (We shall
take up this theme shortly.*?)

But the purely electromagnetic ether, the stationary ether of
Lorentz, became increasingly detached from mechanics. In the same
year, 1892, Helmholtz showed that Maxwell’s expression for the
electromagnetic stress evaluated over a closed surface does not
vanish; the stationary ether should not, therefore, be considered in
equilibrium. Lorentz’s (1895) response was simply to deny that
electromagnetic stress acts on ether—although a manifestation of
ether, an action of ether on material bodies, this stress need exert no
reaction on ether: Newton’s third law is denied. This step is entirely
consistent with the basic principle—there is no other action on ether
than that arising from charge, as determined by Maxwell. With this,
the immobility of the Lorentz ether is assured; at the same time, its
detailed description can have no simple relationship to the laws of
mechanics. The stage is set for the ‘electromagnetic world view’ of
the turn of the century, the process by which, failing a reduction of the
structure of ether to mechanics, mechanics is to be subsumed to the
theory of ether.

10 1t is the concept of the massive field that is anachronistic; the idea that material
particles (and in particular charge) could be constructed as structures in ether had been
around for some time. The theory of vortex filaments, a remarkable achievement due to
Helmholtz in 1858, was highly influential and played a prominent role in ether models
by the close of the century. However, these unitary theories of ether do not fit very
happily with the Lorentz concept of the stationary ether and they are not considered in
the text.
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In this matter an immediate difficulty concerns the structure of the
electron. It was another of the empirical successes of the Lorentz
theory that it could account for the so-called normal Zeeman effect.
The phenomenon is as follows. Spectral lines are split when there is an
external magnetic field, and are circularly polarized. The lines appear
as doublets in the direction parallel to the field, and as triplets
perpendicular to the field. Lorentz’s (1895) explanation led to a
spectroscopic determination of the charge to mass ratio of the
electron—a value in agreement with Thomson’s measurement that
same year on the deflection of cathode rays. But as evidence
accumulated for the reality of electrons, so too did theoretical
difficulties for the simple rigid sphere envisaged by Lorentz. In this
problem—the application of electrodynamics to material bodies—
the reconstruction of mechanics faced severe test.

The details of these developments need not concern us; it is
sufficient that they ended in failure. The other great difficulty
confronting the Lorentz theory was the Michelson experiment of
1881, a null result to second order in powers of v/c on the detection of
‘ether wind’. The absence of first-order effects—for example the
demonstration due to Clausius that electrostatic phenomena could
not be effected by the ether wind—was well known; as Potier and
Veltmann showed in the early 1870s, no experiment sensitive only to
effects of first order could detect the ether wind.'! In a short
supplement to his 1892 article, Lorentz explored further the curious
cancellations to this order in the context of the electron theory. But
the Michelson experiment, which had been repeated in 1887 in
collaboration with Morley with a more accurate but null result,
resisted such manoeuvres. Something was amiss with the concept of
the stationary ether.

We are now approaching a crucial phase in the elimination of ether,
but this is a part of our story that has been told many times, and we
shall be correspondingly brief. In the same year, 1892, Lorentz
proposed the contraction hypothesis; this hypothesis, also suggested
by George FitzGerald in 1889, eliminated the second-order effect. All
force fields were considered to increase in a medium moving with
respect to the ether, in such a way as to contract the dimensions of the
medium. Three years later Lorentz presented a more complete

11 1t seems the work of Potier and Veltmann has been largely forgotten; sce
Newburgh and Costa de Beauregard (1975) for discussion and references.



42 S. Saunders and H. R. Brown

discussion, including the notion of ‘local time’, and gave a proof of a
‘correspondence’, valid to first order in v/c, between the Maxwell
equations in a coordinate system stationary with respect to the ether
and those for a moving body in a co-moving coordinate system.!?
The coordinate transformations in question were of the form
X'=x—0ut, ' =t—vx/c?; to explain the (second-order) Michelson—
Morley result, the contraction hypothesis must be assumed in
addition. In 1899 Lorentz wrote down the Lorentz transformations
(up to a scale factor); in 1904 he applied them to prove second-order
invariance of the field equations. (Use of the non-relativistic velocity
addition formula prevented him from obtaining strict invariance.)

Meanwhile, in 1898 Poincaré had questioned the assumptions
underlying the traditional concept of time: “The simultaneity of two
events or the order of their succession, as well as the equality of two
time intervals, must be defined in such a way that the statements of the
natural laws be as simple as possible’ (Poincaré 1898). In 1904 he
returned to this idea in the context of electromagnetism and the
problem of ether: he formulated the relativity postulate and
conjectured on an ‘entirely new mechanics, which would be
characterised above all by the fact that no velocity would be able to
exceed that of light . . .’ (1904:316). In June the following year he gave
an essentially complete discussion of the invariance of the Maxwell
theory under the Lorentz group, and proposed that all of the forces of
physics should transform in the same way, and that therefore
Newton’s theory of gravity must be amended.

Einstein did not know of Poincaré’s papers; he knew of Lorentz’s
work only up to the 1895 paper. Relativity theory, as the
mathematical statement of the covariance of physical laws, was

proposed simultaneously by Einstein and Poincaré,!® and it was

12 Lorentz considered local time subordinate to ‘true’ (Newtonian) time; by 1899 he
was to explain the time dilation as a consequence of the real-length contractions of
physical clocks (e.g. the pendulum). This interpretation was not available within the
theory of corresponding states of 1895, which led to time dilation alone. As it happens,
the transformations of 1895 already contain an invariance principle for the velocity of
light: although not isotropic (except to first order in v/c), the speed of a light ray
propagating in the direction of relative motion of two frames of reference is strictly
invariant. Einstein was familiar with this theory of Lorentz, but not with his later
modifications.

'3 The question of precedence must contend with the following circumstance. The
first to discover the form invariance of the free Maxwell equations was Woldemar Voigt
in 1887. 1t is a remarkable and most unfortunate fact that this paper of Voigt, which
contained the first statement of the Lorentz transformations and the proof of
covariance, remained completely unknown throughout this period.
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anticipated by Lorentz. However, Poincaré persisted in regarding the
length contraction as a real physical effect, and even founded the
theory upon this hypothesis; Lorentz did not adapt to the changed
situation presented by relativity for many years. It was Einstein alone
who followed the implications of relativity to their logical conclusion.

4 Special Relativity and the Electromagnetic Field

Einstein’s presentation of the theory was uniquely his own; it rested
on two principles:

1 The relativity principle The same laws of electrodynamics and
optics will be valid for all frames of reference for which the
equations of mechanics hold good.

2 The principle of the constancy of the velocity of light Light is
always propagated in empty space with a definite velocity ¢ which
is independent of the state of motion of the emitting body.

Einstein referred to the special theory as a theory of principle, founded
on hypotheses that are suggested by experience.!* For all that, the
temptation to read into these laws a purely operational significance
must be resisted. For example, it would be in error to interpret the
relativity principle as the assertion that no electrodynamic or optical
experiment can distinguish a privileged inertial frame of reference;
this would permit the interpretation of, e.g., length contraction as a
real physical effect, experimentally undetectable in a co-moving frame
because of the contraction of all measuring rods in that frame. (This
was precisely Poincaré’s reading of the theory.) In what sense is the
relativity postulate founded on experience? A better reading of
Einstein’s thinking is that he considered the fundamental equations of
electromagnetism and optics as themselves phenomenological; in this
sense their form invariance may also be considered as a generalization
from experience.

The main development of Einstein’s ideas is as follows. From the
two postulates, applied to an operational analysis of the definition of
simultaneity, Einstein established the relativity of lengths and times,

4 Einstein (1949); other examples cited by Einstein were the impossibility of a
perpetuum mobile, as a foundation for thermodynamics, and Galileo’s law of inertia.
Theories of principle are contrasted to constructive theories, which rest on hypotheses
of a more fundamental but conjectural kind.
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and with it the admissibility of transformations that mix space and
time coordinates. Assuming homogeneity of space and time, he
inferred that the equations must be linear,*® and from isotropy, and
by repeated application of the two postulates, derived the Lorentz
transformations.!® Following a discussion of the interpretation of the
contraction and dilation effects, and the derivation of the velocity
addition law, he turned to the electrodynamical part of the theory.
Here he established the covariance of the free Maxwell-Hertz
equations, and compared the old and new interpretations of the
Lorentz force law; he then gave relativistic treatments of the Doppler
effect and aberration, the transformation law for the amplitudes of
light waves, and also for the associated energy and pressure; finally,
he proved covariance for the complete Maxwell-Hertz equations in
the presence of sources. A final section treated the dynamics of slowly
accelerated charges, essentially providing the basis for a relativistic
dynamics, independent of electromagnetism. In this section he
derived expressions for the transverse and longitudinal mass of a
particle. A short note submitted three months later established the
mass equivalence of energy.

So much for the bare facts. For our purposes, two considerations
are important. First, the stationary ether, qua privileged frame of
reference, has been eliminated. It is undermined at a stroke, for the
relativity postulate militates directly against it. Although the conflict
between the Lorentz theory and the Michelson—Morley experiment is
removed (to all orders in v/c), there is nothing privileged about the
ether frame of reference; one might, so to speak, adopt any inertial
frame as ‘the stationary ether’.!” But second, there is nothing to be

15 It seems the first explicit proof that the linearity of the coordinate transformations
is a consequence of the homogeneity of space and time is to be found in Berzi and
Gorini (1969).

16 On the basis of the two postulates, Einstein inferred that the light velocity must
have the same numerical value in all inertial frames. This inference is non-trivial; see
Tzanakis and Kyritsis (1984), Brown and Maia (1990).

17 Einstein summarized the implications of relativity for the ether postulate in these
terms on several occasions. See, for example, his remarks at Salzburg: “The principle of
relativity . . . declares that all laws of nature in relation to a coordinate system X’ which
is in uniform motion relative to the ether, would be the same as the corresponding laws
in relation to a coordinate system K which is at rest relative to the ether. If this is so,
however, we have just as much reason to suppose the ether to be at rest relative to K’ as
to K. It then becomes altogether unnatural to distinguish one of the two coordinate
systems K, K’ by introducing an ether which is at rest relative to it. From this it follows
that one can only reach a satisfactory theory when one can dispense with the ether
hypothesis’ (Einstein 1909: 819).



Reflections on Ether 45

gained by always referring the phenomena to such a resting frame.
This point deserves some amplification. Witness, for example,
Einstein’s opening remarks:

It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries, which
do not appear to be inherent in the phenomena. Take, for example, the
reciprocal electrodynamic action of a magnet and a conductor. The ob-
servable phenomenon here depends only on the relative motion of the
conductor and the magnet, whereas the customary view draws a sharp
distinction between the two cases in which either the one or the other of these
bodies is in motion. For if the magnet is in motion and the conductor at rest,
there arises in the neighbourhood of the magnet an electric field with a certain
definite energy, producing a current at the places where parts of the
conductor are situated. But if the magnet is stationary and the conductor in
motion, no electric field arises in the neighbourhood of the magnet. In the
conductor, however, we find an electromotive force, to which in itself there is
no corresponding energy, but which gives rise—assuming equality of relative
motion in the two cases discussed—to electric currents of the same path and
intensity as those produced by the electric forces in the former case.
Examples of this sort, together with the unsuccessful attempts to discover
any motion of the earth relatively to the ‘light medium’, suggest that the
phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest. (Einstein 1905b: 891)

Einstein immediately goes on to state the relativity postulate. Now,
the thrust of his remarks is as follows. The phenomenon is symmetric
between wire and magnet, but the theoretical description is not: in the
one case there is an electric field with an associated energy, in the
other a pure magnetic field. Yet both act in the same way—inducing a
current in the wire. So Einstein is saying that there should be a way of
looking at electrodynamic theory so as to preserve the symmetry
evident in the phenomenon—for in the latter there is nothing
corresponding to the idea of absolute rest.

The process of induction is, from an atomistic standpoint, nothing
but the operation of the Lorentz force on charged particles; Einstein’s
comparison of the old and new theoretical descriptions bears directly
on this question:

1. If a unit electrical point charge is in motion in an electromagnetic field,
there acts upon it, in addition to the electric force, an ‘electromotive force’
which, if we neglect the terms multiplied by the second and higher powers of
v/c, is equal to the vector-product of the velocity of the charge and the
magnetic force, divided by the velocity of light. (Old manner of expression.)
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2. If a unit electrical point charge is in motion in an electromagnetic field, the
force acting upon it is equal to the electric force which is present at the locality
of the charge, and which we ascertain by transformation of the field to a
system of co-ordinates at rest relatively to the electrical charge. (New manner
of expression.) (Einstein 1905b: 54)

In this way, those features of electromagnetic theory that seem to
pick out a privileged frame of reference are no longer taken as
evidence of such a frame; rather, they are made frame-dependent,
‘auxillary concepts™—they are not fundamental, not part of the
objective reality. These are complications introduced by the choice of
frame—and by the concept of ether.

Lorentz did not see these as complications. Indeed, for a man who
for forty years had laboured with just these ‘auxillary concepts™—
displacement fields, electromotive forces, polarization fields, and the
magnetic force—they were the very stuff of electromagnetic theory. In
1913 he remarked:

According to Einstein, it has no meaning to speak of motion relative to the
ether. He likewise denies the existence of absolute simultaneity.

It is certainly remarkable that these relativity concepts, also those
concerning time, have found such a rapid acceptance.

The acceptance of these concepts belongs mainly to epistemology . . . It is
certain, however, that it depends to a large extent on the way one is
accustomed to think whether one is most attracted to one or another
interpretation. As far as this lecturer is concerned, he finds a certain
satisfaction in the older interpretations, according to which the ether
possesses at least some substantiality, space and time can be sharply
separated, and simultaneity without further specification can be spoken of. In
regard to this last point, one may perhaps appeal to our ability of imagining
arbitrarily large velocities. In that way, one comes very close to the concept of
absolute simultanetty.

Finally, it should be noted that the daring assertion that one can never
observe velocities larger than the velocity of light contains a hypothetical
restriction of what is accessible to us, which cannot be accepted without some
reservation. (Lorentz 1913: 23)

Einstein makes no reference to a further function of ether, what was
for Lorentz a principal (and superior) feature of the Maxwell theory:
it is the ether that carries the energy of the field. Maxwell and Lorentz
considered that this energy could only be a version of kinetic energy
(that there must be some substance, in the motion of which inheres
kinetic energy). But in relativity, where energy itself constitutes mass,
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this argument appears simply archaic. In the special theory even the
distinction between rest-mass energy and kinetic energy is artificial,
and with it the distinction between the ether as substance, the support
of the field, and the field itself.

For Lorentz, however, there remained other functions of ether,
functions that were not so readily assimilated to the field itself:

Although, as the foregoing exposition shows, the role of this medium has
continually gained in significance, on the other hand the attempts to
penetrate further into its nature have fallen increasingly into the background.
Since the development of the theory of relativity many physicists have indeed
gone so far as to no longer speak of an ether at all, but just of the
electromagnetic field propagating itself in space. The question, to what extent
this is expedient, must here be left undecided. In part it reduces to a verbal
question; if one does not want to say that all forces are transmitted through
the ether, or will nevertheless have to explain, according to the theory of
relativity, that they are all propagated in space with the speed of light.
(Lorentz 1914: 333)

Here Lorentz refers to an explanatory role of ether, in accounting
for the constancy of the velocity of propagation, relative to ether, and
independent of the speed of the source. We look in vain to Einstein’s
theory for a similar explanation—it is the bald statement of the
explanandum which constitutes the second postulate of the theory.
For this reason Pauli and Sommerfeld dubbed it the ‘ether
postulate™—for it demands by fiat that feature of the propagation of
light which is most simply and directly explained by the concept of
ether.'® As formulated by Minkowski, however, one has an
explanation for light-constancy: space-time has a geometric struc-
ture, and this structure entails the existence of an invariant velocity.
The fact that light happens to travel at this limiting velocity then
legitimates the second postulate.

It is known that Einstein was reluctant to adopt the formal
perspective of the Minkowski theory;!® had he done so, his
recognition that the velocity of light could not be constant in the
presence of gravitational fields (Einstein 1907) might have led more

18 Against this, one might argue that it is this feature of electromagnetic law that is
explained by the continuum mechanics. But Lorentz had dispensed with a mechanical
foundation to the theory of the electromagnetic ether. There may lurk the intuition that
the ether explains the independence of light speed from the source, but the details of this
explanation fall back on the continuum mechanics—or nothing at all.

19 ‘Superfluous learnedness’; remark to V. Bargmann, reported in Pais (1982: 152).
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directly to the interpretation of gravity as varying space-time
geometry, a point of view that he did not possess prior to 1912.%°
Even then, it was only following an analysis of static fields that
Einstein realized that gravity might be associated with curvature in
space as well as in time. With these developments, the space—time
geometry appears as a physical structure (cf. Einstein’s ‘ether of
mechanics’); Lorentz’s stationary ether, its role usurped by the
Minkowski geometry, is not so much eliminated as given a new
name.

But ether at this level of abstraction played no part in the thinking
of Lorentz. What of that other function of ether, the substantive
support of radiation? The ether in this capacity is a dynamical
structure which underpins the field. Lorentz has his own theory to
blame if, by making the ether immobile, by denying the second law,
this structure appeared remote and irrelevant to the electrodynamics.
Nevertheless, it seems clear enough that Lorentz still hankered after
this function of ether.

As well he might. So long as there is an ecther, there is a
substructure to electromagnetism; there is a definite direction in
which the theory must be deepened, even if the tools and techniques
of the continuum mechanics can no longer be applied. In this
context it matters little that there is, in fact, no privileged reference
frame—no more than it matters to the concept of the microscopic
structure of a material medium.?! It seems that Lorentz lamented
the absence not only of the ether concept, but of any basis by which
to deepen the theory, that is to conceive of the field at an instant of
time, and to then consider: what kind of thing is this field; what is it
made of ? To respond—it is what it is, as described by the solutions
to the Maxwell-Lorentz—Einstein equations of electrodynamics—
simply terminates the discussion. Electromagnetism is made a
closed book.

20 For these developments see e.g. Pais (1982: ch. 11). In late 1907 Einstein
discovered the equivalence principle and applied it to the time dilation associated with
accelerating coordinate systems; for the next five years he was concerned to reformulate
the analysis of simultaneity in the presence of gravity, and to understand the
incompatibility of the equivalence principle with light constancy. The recognition that
the Lorentz transformations cannot hold globally, that they (as also the equivalence
principle) must hold only locally, appeared in 1912, where he uses tensor notation for
the first time. Minkowski did not live to see the flowering of his geometric perspective;
he died in January 1909 at the age of 45.

21 Good relativists all, we often enough need to think of a system at an instant in
time (initial data, field configuration, spacelike hypersurface, etc.).
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5 Light Quanta and the c-Number Field

In this scenario, the field-ether, a system of coupled c-number
functions, is the beginning and end of the story. These functions are
supposed to describe the field completely. The ficld-particle duality
introduced by Lorentz becomes absolute. In 1905 Einstein could
therefore put the matter thus:

A profound formal distinction exists between the theoretical concepts which
physicists have formed regarding gases and other ponderable bodies and the
Maxwellian theory. Whilst we consider the state of a body to be completely
determined by the positions and velocities of a very large, yet finite, number of
atoms and electrons, we make use of continuous spatial functions to describe
the electromagnetic state of a given volume, and a finite number of
parameters cannot be regarded as sufficient for the complete determination of
such a state. (Einstein 1905a: 367)

If Finstein was happy to banish the electromagnetic ether, the
atomization of the material medium, as prescribed by Lorentz
and (in the context of thermodynamics) in accordance with
Boltzmann, was for him an empirical issue. To bring the atomic
hypothesis to the point of experimental test, he had developed the
appropriate tools—the statistical thermodynamics. This work had
preoccupied him for more than four years; since he was examin-
ing the relationship of atomism to the continuum (or thermo-
dynamic) limit, it is hardly surprising that it should bear most
crucially on this new continuum reality, the electromagnetic field.
He found that the ‘profound formal distinction’ leads directly to
the conclusion that no thermal equilibrium can exist between
radiation and matter. The synthesis of particles and fields con-
ceived by Lorentz is inconmsistent with the laws of thermo-
dynamics.

Only if there is no ether, no further microscopic structure to
radiation, is this conclusion forced. There is a very good reason
why neither Rayleigh, nor Jeans, nor Lorentz saw in the
Rayleigh—Jeans spectral distribution cause for concern; they were
not concerned because at the microscopic or ultra-microscopic
level one may always suppose that the structure of the ether
comes into play in new and unforeseen ways. Einstein’s develop-
ment of relativity appears all the more remarkable for its timing;
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the relativity paper was in June, the light quantum paper in
March,2?

There is, however, a possible compromise between the two
theories: to consider that the electromagnetic field is a phenomenolo-
gical reality. And indeed, the light quantum hypothesis removes the
contradiction with thermodynamics just as an ether hypothesis
would: by modifying electrodynamic law at high frequencies,
equivalently, at short distances. Light quanta take on the role of ether
as the microstructure to the field; the Maxwell-Hertz theory appears
as the phenomenological limit. As Einstein put it,

The wave theory of light, which operates with continuous spatial functions,
has worked well in the representation of purely optical phenomena and will
probably never be replaced by another theory: it should be kept in mind,
however, the optical observations refer to time averages rather than
instantaneous values. In spite of the complete experimental confirmation of the
theory as applied to diffraction, reflection, refraction, dispersion, etc., it is still
conceivable that the theory of light which operates with continuous spatial
functions may lead to contradictions with experience when it is applied to the
phenomena of emission and transformation of light. (Einstein 1905a: 368)

Remarks in a similar vein are scattered throughout his papers;
Einstein considered the light quantum hypothesis fully compatible
with the free field theory. Further, it is consistent with the special
theory. Einstein used the neutral term ‘light complex’ throughout the
relativity paper; on obtaining the transformation equations for
energy and frequency, he makes the pointed remark: ‘it is remarkable
that the energy and the frequency of a light complex vary with the
state of motion of the observer in accordance with the same law’. The
September paper of 1905, in which the mass-equivalence of energy
was derived, ends with the statement, ‘If the theory corresponds to the
facts, radiation conveys inertia between the emitting and absorbing
bodies.” In his 1909 paper he is more specific: although the special
thoery of relativity ‘does not in any way change our conception of the

22 B. Hoffmann (1982) has considered the question, Why did not Einstein develop
the emission theory of light along the lines of Ritz (1908), in order to explain the null
result of the Michelson-Morely experiment? As suggested in the text, Einstein
conceded to the Maxwell-Hertz equations phenomenological validity; even if the
emission of light is modelled on a ballistic theory of particles (in which case the null
result of Michelson and Morely follows immediately), from this point of view it would
still be necessary to account for the experiment in terms of the phenomenological wave
equations.
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structure of radiation, in particular the distribution of energy in the
space through which radiation is travelling’, nevertheless,

The electric fields which constitute the light . .. [appear] as independent
structures which are emitted from the light sources in accordance with
Newton’s emission theory of light. As in the latter theory, space which is not
permeated by radiation and which is free of ponderable matter would be
genuinely empty. (Einstein 1909: 820)

Einstein makes covert appeal to a simple intuition; since relativity
requires that the field carry inertia, then the emission of light is at once
the emission of inertia. If the ether was required to provide a
substantive support for the field, it is now redundant, because the
energy distribution of the field is itself substance. In the absence of
radiation and ponderable matter there is no substance, there is empty
space.

What Einstein does not consider, however, is the relationship of the
light quanta to the ether. From the point of view of quantum field
theory, the analogy with the atomization by Lorentz of material
electromagnetic media is all but exact. Massive fields describe the
medium as continuous in the classical limit;?> the atomistic structure
is described by the particle representation of a quantum field. It is
exactly the same for the radiation field. In particular, it is quanta,
whatever their mass, that appear as the substantive substructure of
the field.

Einstein’s early views on light quanta are consistent with this
perspective; for example, in defence of the light quantum hypothesis,
he remarks:

It is by no means certain that we would have to change many of the
assumptions regarding interference phenomena as one has at the moment. I
would compare [the introduction of light quanta] to the process of the
molecularization of the carriers of the electrostatic field. The field produced
by atomized electrical particles is not essentially different from earlier
assumptions and it is not impossible that in radiation theory something
similar will take place. (Einstein 1909: 826)

It was Einstein’s work on the quantum theory of gases in 1924 that
alerted him to the importance of the wave theory of de Broglie. In late

23 Conventional media of any complexity will naturally be constructed from bound
states of the elementary quanta of the field; it must be admitted that there is no simple
or direct route from the field equations to the phenomenological continuum.
Nevertheless, the medium is atomistic only because the quantum field is particulate.
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1925 Schrédinger, attempting to interpret the Bose—Einstein statistics
in the framework of Boltzmann, was led in this way to the wave
theory. The Schrodinger field, conceived of as a classical field (this
was roughly Schrédinger’s point of view), was quantized by Jordan
and Klein the following year. But to read into Einstein’s writings the
suggestion that the field is in some sense only a phenomenology of
quanta would be a mistake. On the contrary: for Finstein, the field is
the support of the quanta. We aiready detect such a view in the
Salzburg address of 1909; it is the basis of what became for Einstein an
idée fixe: the light quanta are to be considered singularities in the
c-number field.

In the first instance the idea would appear to me the most natural, that the
occurrence of the electromagnetic fields of the light is tied to singular (or
individual) points, in the same way as the occurrence of electrostatic fields in
accordance with the theory of electrons. It is not impossible that in such a
theory the entire energy of the electromagnetic field could be considered as
localized in these singularities, just as in the old distant action theory. I would
imagine every such singular point to be surrounded by a field of force which
has the essential character of a plane wave, and the amplitude of which
decreases with distance from the singular point. If many such singularities are
present in intervals of small distances from one another, distances which are
small compared with the dimensions of the field of force of a singular point,
then the fields of force will be superposed on one another, and will in their
totality produce an undulatory force field which will be little different from an
undulatory field in the sense of the present electromagnetic theory of light.
(Einstein 1909: 824)2*

What is implicit is that the ‘fields of force’ are c-number fields.
Presumably they may not, however, carry energy, since it is the light
quanta (singularities) that comprise the energy distribution within
the field. Where the field is continuous presumably it is not field-ether,
because it does not transport inertia. We have a new concept of field.

It is a remarkable fact that something similar was to emerge in the
theory of gravity. We have already indicated the turn of events that
was to follow the extension of relativity to gravity; space-time
geometry becomes a dynamical entity in its own right. Einstein’s later

24 8o far as we know, Einstein never commented on the implications of the later
work of Natanson and Ehrenfest for this neoclassical conception of light. (Recall that
Natanson and Ehrenfest in 1911 concluded that light quanta must be non-individuated
objects, in effect anticipating the Bose statistics.) If, however, the light quanta are
singularities in the field, then their interchange has no meaning, for one obtains the
same field configuration.
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critique of ether runs something as follows: considering the ether not
as a single privileged frame, but as a privileged class of frames (the
local inertial frames), this ether enters into the ‘causal nexus’ of the
world; it determines the kinematics of mass—energy distributions and
is determined in turn by these distributions.

In field theory, the ether of mechanics is the metric tensor, or
perhaps it is the Ricci curvature—in either case it is a tensor field. But
what is of interest is that it is not a local field quantity in the sense of
electromagnetism (or any other particle fields), for there is no
reasonable definition of a local distribution of stress-energy. The
tendency to read into general relativity a theory of physical fields is in
conflict with the geometric basis of the theory.

Einstein was fully aware of this difficulty. Shortly after his
completion of the general relativity, he attempted to define conserva-
tion laws for total energy and momentum; in the process (Einstein
1916), he was led to a local stress-energy tensor for the gravitational
field (as opposed to other particles or fields that might be present)
which was not a tensor density. Subsequently it was recognized that
this stress-energy was indefinite, and that all its components could be
given arbitrary values at a given point (Einstein 1918).

There were many motives for attempting a synthesis of gravity and
electromagnetism; the peculiar circumstance, that neither the ether of
mechanics nor the c-number fields of light in a singularity-free
domain admits a reasonable definition of a stress-energy tensor,
could only have reinforced Einstein’s conviction that the synthesis
was necessary. Each appears the key to the other; geometry
determines the meaning of space—time relationships, and the
quantum theory governs the localization of energy.

We know well enough that Einstein laboured on this task for the
rest of his life. In effect, he took the residue from the ‘first-quantized’
ether—what remains of the ether when the material atomistic
structure of the medium is removed—and quantized it again. Within
the framework of contiguous action and the c-number field, there is
again a residue; it may be unified (perhaps) with the ether of
mechanics.

Einstein’s commitment to the c-number field as the exhaustive
description of the world scarcely wavered. Let us see how this emerges
in his 1924 critique of ether. In this standpoint, the local reality is
virtually defined as ether; however, the atomistic structure of physical
media is explicitly eliminated from this concept:
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It is rather more generally a question of those kinds of things which are
considered as physically real, which play a role in the causal nexus of physics,
apart from the ponderable matter which consists of electrical elementary
particles. Therefore, instead of speaking of an ether, one could equally well
speak of physical qualities of space. Now one could take the position that all
physical objects fall under this category, because in the final analysis in a
theory of fields the ponderable matter, or the elementary particles which
constitute this matter, also have to be considered as ‘fields’ of a particular
kind, or as particular ‘states’ of the space. But one would have to agree that, at
the present state of physics, such a point of view would be premature, because
up to now all efforts directed to this aim in theoretical physics have led to
failure. In the present situation we are de facto forced to make a distinction
between matter and fields, whilst we hope that later generations will be able
to overcome this dualistic concept, and replace it with a unitary one, such as
the field theory of today has sought in vain. (Einstein 1924: 85; emphasis ours;
trans. on p. 13 above)

This dualistic conception is a precondition of the discussion; so too, it
seems, is the commitment to contiguous action:

We can see that for Newton, space was a physical reality, in spite of the
peculiarly indirect manner in which this reality enters our understanding.
Ernst Mach, who was the first person after Newton to subject Newtonian
mechanics to a deep and searching analysis, understood this quite clearly. He
sought to escape the hypothesis of the ‘ether of mechanics’ by explaining
inertia in terms of the immediate interaction between the piece of matter
under investigation, and all other matter in the universe. This idea is logically
possible but, as a theory involving action-at-a-distance, it does not today merit
serious consideration. We therefore have to consider the mechanical ether
which Newton called ‘absolute space’ as some kind of physical reality. The
term ‘ether’, on the other hand, must not lead us to understand something
similar to ponderable matter, as in the physics of the 19th century. (Einstein
1924: 88; emphasis ours; trans. on p. 15 above)

Just as contiguous action binds us to the ether of mechanics as
physical reality, it seems also to demand the ultimate (and not merely
phenomenological) reality of the fields, whether they be introduced to
couple the light quanta, or as descriptions of local geometry. In
Einstein’s final remark, we have an article of faith:

But even if these possibilities should mature into genuine theories, we will not
be able to do without the ether in theoretical physics, i.e. a continuum which
is equipped with physical properties; for the general theory of relativity,
whose basic points of view physicists will surely always maintain, excludes
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direct distant action. But every contiguous action theory presumes
continuous fields, and therefore also the existence of an ‘ether’. (Einstein
1924: 93; trans. on p. 20 above)

6 The Ether and Quantum Field Theory

In 1924 Einstein, as also Bohr, considered c-number functions to
describe exhaustively an ultimate reality. In the electromagnetic case,
these functions controlled the interaction of light quanta, which were
perhaps singularities in the field, and gave rise to the observed fields.
For Bohr these electromagnetic fields were already absolute, for he
denied the existence of light quanta. They were both wrong.
C-number functions do not refer to some ultimate stuffin space-time;
they are what Einstein more prudently considered them in 1905—
statistical averages, or phenomenological fields, over some other kind
of processes, some other kind of entities. Just what these entities are
remains unknown-—remains the goal of physics to find out. But a first
approximation is the concept of light quanta and elementary
particles. Consider again the ‘two ethers’ of Hertz; Lorentz made of
the one an ensemble of interacting charged particles, the particle
interpretation of massive quantum fields coupled to electromagnet-
ism. Einstein made of the other an ensemble of massless uncharged
particles, the photon interpretation of the electromagnetic field
coupled to matter. Rather than consider the ether whatever remains
when this atomistic structure is removed—the ether of pure
vacuum—we may equally consider the ether transmuted into
atomism.?®

What is unsatisfactory about this reading of the ether concept is
that the raison d’étre of ether was the mediation of interactions. So
long as only the material ether is atomized, the electromagnetic ether
that remains does exactly that. But if we atomize both material and
electromagnetic ether, there seems nothing to mediate between the
respective quanta.

Quantum theory is atomism—with a difference. It is not so clear

25 In some sense, quantum field theory is a unitary theory which encompasses wave
and particle theories. Here we adopt the perspective that bears most closely on the
concept of ether, and the transformation of ether by Lorentz. This perspective was
surely anathema to Einstein; however, so far as we know, at no time did he remark on
the duality of field and particle as it presents itself in quantum field theory.
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that quanta are local objects. This line of interpretation seems
definitely to lead to non-local interactions. Consider the following
propositions:

1 Separability Any observable for a physical system has a definite
value, which corresponds to the outcome of any measurement on
the physical system designed to measure that observable.

2 Locality These values are independent of the occurrence and
details of any kind of perturbation suffered by remote systems.

It is well known (Bell 1964) that any theory of physical systems
satisfying these conditions is inconsistent with quantum mechanics.
Therefore quanta cannot be considered physical systems of this kind;
they are non-local systems, or they are local systems subject to non-
local law. This is true regardless of whether or not one sets up a
mediating field (the field could not mediate the quanta by contiguous
action); it seems that Einstein’s programme, if successful, must
contradict quantum mechanics.

Intuitively, it seems clear that quantum theory does not permit any
reasonable expression of the notion of a local ‘causal nexus’. If such a
thing exists at all in the world, it cannot be exhaustively described by a
c-number field, certainly not if the quanta are singularities in the field.
On a more speculative note, it seems very likely that the notion of a
c-number function that literally refers—and exhaustively describes—
fundamental reality is just incoherent, and not merely false. We shall
not know how to make sense of such ideas—or how to establish that
they lack sense—until we know better just how mathematics can
literally refer to the world at all, rather than to the results of
measurement (as in the notion of phenomenological fields). We are
far from any understanding of this kind—but with quantum theory
we have new perspectives.

Consider, for example, elementary quantum mechanics, specifi-
cally in the Schrédinger representation on an L? function space. In
this form quantum mechanics appears as a dualistic theory; the
particle aspect appears primarily in the context of measurement
theory (which we shall pass over), and in the decomposition of the
Hilbert space of the system, for example as an n-fold tensor product,
for a system of n particles. (We shall come on to this in a moment.)
The notion of a physical substructure to quantum systems no longer
gives rise to a phenomenological interpretation of the wave function,
because the wave function does not directly refer to a physical entity.
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We have learnt of other ways of deepening the theory than by
attributing a ‘granularity’ or suchlike to the L? functions themselves;
we have learnt to dispense with an ether.

Some examples: first, in a given application we may suppose that
additional degrees of freedom exist, and additional potentials and
couplings (a methodology that derives from the mechanical founda-
tion of quantum mechanics}); second, explicit or hidden symmetries
may exist which deepen the description (a new methodology,
essentially the creation of Einstein and Dirac); and third, the function
spaces used may contain a non-trivial topology (a contemporary
focus of research, but also the creation of Dirac with his theory of the
monopole).

Quantum field theory stems from the first of these strategies: it was
developed as a particular way of effecting a decomposition of the
Hilbert space, its representation as Fock space. The substructure to
radiation—and this applies equally to massive fields—is implicit in
the replacement of c-number functions by operator-valued fields. The
choice of representation of the field provides the physical description
of this substructure, and we recover the phenomenological fields in
the classical limit. The choice of a Fock representation ensures that
the interpretation of this substructure is particulate. Elementary
quantum mechanics is, in effect, the explicit theory of this sub-
structure.

In this way, the ether of quantum fields may be considered the
theory of the relationship of systems to subsystems, the definition of
the irreducible parts of a composite whole. We have come a long way
from the concept of a medium; the relationship in question is no
longer contiguity.?® In general relativity contiguity is defined by the
usual topology of R*, but the way the tangent spaces fit together is the
business of the space-time metric, Einstein’s ether of mechanics. A

26 In certain approaches to classical and quantum mechanics topology plays a
fundamental role. For example, any approach based on measure theory (e.g. the
Mackey theory) has a natural topology, as does any approach based on a Borel G-
space representation of a space-time symmetry group. (As Weil showed in 1938, the
topology of the group is completely determined by the Borel structure.) At best,
however, one learns that the position operators, etc., satisfy continuity properties
induced from the action of the group. This is satisfactory, and perhaps even necessary,
when the system is in some suitable state corresponding to these operators, but equally,
it may be an artefact of Hilbert space theory. In the lattice theoretic approach, for
example, one does not have a natural definition of topology. (See Saunders 1989: pt. 2
for discussion and references.)
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synthesis of gravity and quantum theory must bring into relationship
these two ethers.

In this respect the so-called ‘Unruh effect’ is of particular interest.
This concerns the apparent observer-dependence of the particle
interpretation of fields on a fixed background metric, and the
impossibility of defining a global particle interpretation unless high
space—time symmetries are present. On the one hand, the particle
interpretation is reminiscent of the ‘auxiliary concepts’ relegated by
Einstein to a subordinate role—which can only be defined by the
choice of a frame of reference. Fulling originally formulated the
difficulty in Minkowski space; the particle interpretation depends on
the decomposition of the field into positive and negative frequency
parts, and this decomposition may be effected in inequivalent ways,
relative to non-inertial frames of reference.?” On the other hand, we
may suppose that it is precisely the ‘ether of mechanics’ that should
provide an observer-independent decomposition of the field, but that
as yet we can formulate this decomposition only in the simplest
situations.

These are only some of the avenues before us. What appears most
remarkable is the apparent continuity with concepts of ether, albeit in
fragmented and more abstract forms. One still remains: the ether as
empty space.

7 The Ether and Vacuum

We have paid only passing attention to the question of the ether in its
ground state, equivalently, radiation-free empty space, equivalently,
vacuum. It is in consideration of the vacuum that the traditional
concept of ether appears most problematic. In the Maxwell sense—
what remains when we have removed everything that can be removed
(therefore radiation but not gravity can be excluded}—the vacuum
has structure in classical general relativity. By the same criterion,
since radiation can be excluded, ether as microstructure to radiation

27 What is required is a field of timelike isometries, everywhere orthogonal to a
family of spacelike hypersurfaces. For Minkowski space, the integral curves of the
generator of boosts satisfy this condition; they may be considered the world-lines of
constantly accelerated observers, for whom the decomposition in question may be
considered in some sense ‘natural’. Unruh’s analysis of the response of an idealized
particle detector in constant acceleration has motivated the view that the differing
particle interpretations are equally real, but relative to the acceleration of the observer.
See Fulling (1973); Unruh (1974).
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would appear to have no existence in the electromagnetic vacuum.
Einstein appeared to adopt this point of view on the basis of the
special theory of relativity—the zero-valued field has no inertia,
hence nothing is present in the pure void.?®

This conclusion seems even more natural on a naive interpretation
of quanta—the interpretation of radiation as a boson gas. But in
quantum field theory, there are two ways in which this conception is
deficient. First, there are the zero-point fields; the field excitation
cannot be everywhere zero, in the state of particle number zero, so
that we cannot after all exclude all electromagnetic activity from a
region of space. Second, there is the more subtle feature of quantum
theory to which we have already alluded. There is a generalization of
the concept of medium; a particle interpretation of a quantum field
defines a relationship of system to subsystem which makes no
reference to contiguity or locality. This is a rather abstract idea, but it
is surely central to the peculiarities of quantum theory; further, this
decomposition is non-trivial even when one determines only that
state in which no quanta are present. The decomposition must be
specified in order to define the vacuum. The ether of vacuum has,
therefore, some existence—but it is a pale and ghostly shadow of its
old self.

On a Lorentzian view, there would have remained the quiescent
ether; the distinction between this and that field configuration in
which all the fields have the value zero appears vanishingly small, yet
in this difference resides the fundamental methodology of nineteenth-
century physics. The dominant heuristic pursued by ether theorists—
Fresnel, Maxwell, and Lorentz among them-—was the application of
the methods of continuum mechanics to the ether; it was essential, for
the construction of the mathematical equations, to consider the
response of the quiescent ether to an applied force or torque. Indeed,
the ether was a tool for the understanding of both the mathematics

28 The same conclusion follows from the traditional concept of ether, the ether of the
continuum mechanics. This ether is the ‘support’ of the field, the excitation of which
constitutes the field. In vacuum, the ether is quiescent—but an independent reality.
This is true of the metrical field of general relativity, Einstein’s ‘ether of mechanics’;
considered as space-time curvature, this ether often appears in a static role, the
‘container’—the medium—of material structures. It is easy to think of gravitational
waves as ‘ripples’ in space—time curvature. But we may not consider radiation as
‘ripples’ in the static electric and magnetic fields, for these fields do not exist in pure
vacuum. The metrical field, by contrast, can no more vanish in the vacuum state than
can space—time itself, a point stressed by Einstein (1920: 21).
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and the phenomena, and in the former case its structure at rest
(quiescent) determines its evolution when excited by external forces.
There are echoes here in modern field theory; specification of the
fields as everywhere zero carries with it at least the statement of
tensoral type of the fields. In the free case this is enough to fix the field
equations completely. (It is in this sense that Minkowski space
explains free electromagnetic field theory.) But the ether also
provided guidance in the construction of interactions; it is no
coincidence that this is just the area in which contemporary theory
must fall back on what is little more than a mathematical aesthetic
(‘minimal coupling’). It is a fundamental limitation of the field-many-
particle equivalence established by Dirac that the particle interpreta-
tion of a quantum field, most especially for the vacuum, does not
assist in the construction of interactions; if this particle interpretation
is the substructure to the field, our new ether for old is unhappily
impoverished.

But there is the third strategy by which quantum and classical
theories alike can be deepened, and that concerns the topology of the
¢-number field solutions. In a nonlinear theory, the zero-valued fields
may not satisfy the field equations. In that case the vacuum defined as
the field configuration of minimum energy is non-trivial; it has a
topological structure, for in general no deformation in the (time-zero)
fields will permit one to pass from one vacuum to another without
passing through configurations of infinite energy. Considerations of
this kind underlie familiar phenomena such as the Bohm~Aharanov
effect.

In a suitable regime of energy, the quantum theory of fields of this
kind (for the most part Yang-Mills) is supposed to describe quanta.
The interactions among these quanta will be determined in part by
the vacuum with respect to which they are defined. The vacuum in
such a theory determines the phenomenological laws, just as did the
ether in the theory of electromagnetism.

Earlier the material ether of ponderable media was peremptorily
dismissed from discussion. The vacuum, a space from which
everything that can be removed has been removed, contains no such
matter. But consider the following analogy. A linear (i.e. elastic)
mechanical medium will support a certain phenomenology (wave
fields, various kinds of stress, linear response coefficients, etc.). This
phenomenology may count as ‘filled space’, its absence as ‘empty
space’. In particular, empty space may be considered as the
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no-phonon state (no quanta of sound), or perhaps as the zero-
temperature state, the state of minimum energy with respect to the
(fixed) atomic structure of the medium. Excite the medium beyond a
certain limit and we obtain a nonlinear response; excite it further, and
the atomic structure breaks down. If the medium cools, we may see a
new atomic structure, a new medium with quite different properties—
we will see a new ‘vacuum’.

We have described processes that occur in dying stars and the
formation of new planets; these ‘vacua’ are the material ethers of
Maxwell and Hertz. Similar processes with no atomic disassociation
are a part of everyday life; in fact, nowhere are such phenomena more
complex and more intricately related than in biology. Above all, the
concept of ether engages a distinction that becomes yet more central,
and more profound: the distinction between fundamental and
phenomenological law.
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4
The Negative-Energy Sea

SIMON SAUNDERS

1 Introduction

The Dirac hole theory was developed in response to a growing crisis
over the Dirac theory of the electron. It predicts the existence of
antiparticles in relativistic quantum theory; the antiparticle came into
existence as a ‘hole’ in a sea of negative-energy particles. In 1972
Heisenberg said ‘I think that this discovery of antimatter was perhaps
the biggest jump of all the big jumps in physics in our century.” He was
speaking of the phenomenology, of pair creation and annihilation
processes, the basic mechanisms of relativistic dynamics. But the
conceptual basis, the concept, of antimatter has a corresponding
importance.

If this concept was initially tied to the negative-energy sea, that is
not the case any longer. The negative-energy sea remains a wide-
spread heuristic device to introduce antimatter; a review of the hole
theory is still given in most clementary textbooks on relativistic
quantum theory. But nowadays no one would claim that the
negative-energy sea actually exists; it is no longer taken as a literal
description of the vacuum. How is it, then, that the hole theory can be
dispensed with? What takes its place? We know that in some sense
antiparticle states are related to negative-energy states; relativity
leads to antimatter because the constraint EZ—p2c?=m?c* is
satisfied by negative energies as well as positive energies. The
question is, In what precise sense, if not in the sense of the Dirac hole
theory?

One of the most widespread heuristics, due to Feynman and
Stueckelberg, identifies antiparticles with negative-energy particles
moving backwards in time. Antimatter arises just because it is
possible for positive-energy particles to scatter backwards in time
with negative energies, emitting energy in the process {pair annihila-

© Simon Saunders 1991
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tion). This heuristic finds a natural expression in the path-integral
approach to quantum theory. However, this approach marks a
decisive break with the canonical theory (in particular, with the exact
Hilbert space theory). A good reason to be interested in the canonical
formulation of the concept of antimatter is to understand better the
relationship between the relativistic and the non-relativistic theory.
For these reasons I shall omit discussion of the Feynman—
Stueckelberg interpretation.

In what follows I shall first sketch the history of the Dirac theory;
afterwards I shall concentrate on a more recent development in the
canonical framework which, I believe, throws new light on both the
hole theory and the field theory which replaced it. This development
has its origins in the Segal theory of quantization; what is
characteristic of this approach is that complex numbers are built
into the classical solution manifold in a geometric way, and this
manifold is then identified with the 1-particle Hilbert space. In this
way the negative-energy sea is encoded into the mathematical
description of the antiparticle states. Something like this was
already achieved in the mid-1930s, but mediated by the fields; the
Segal theory makes explicit a Hilbert space analogue. Because my
concern is to explore the interpretation of quantum electro-
dynamics within the canonical framework, I shall consider only the
linear quantum electrodynamics. Dirac himself was led to the hole
theory purely on the basis of the linear equation; in the linear case
we already see all the important features of relativistic quantum
theory.

In elementary quantum mechanics the vacuum is very simple; it is
the quantum analogue of the Newtonian vacuum. In the vacuum not
only are there no particles, but there is no theory. There is no Hilbert
space, there is no time evolution, one cannot write down equations for
this vacuum. The vacuum concept (as distinct from the concepts of
space and time) can be described only informally. We have the same
situation in classical particle mechanics. But in quantum field theory
(also in continuum mechanics and classical field theory), the vacuum
is modelled in the mathematics. One might say that in these theories
‘what exists’ becomes a dynamical quantity, for which non-existence
takes on the value zero. (As one value among others, the vacuum
must be modelled in the mathematics.) The idea of ‘vacuum’ is
relativized to the observable content of the theory, be it states of a
medium, excitations of a field, or particle number. In quantum
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electrodynamics, despite the field aspect, the vacuum is defined not as
the zero-valued fields (there is no state in which all the fields have
eigenvalue zero), still less as a zero-valued wave function (which is not
even a state), but rather in terms of the absence of any particles. The
canonical vacuum is the state of emptiness.

It might seem that this concept of vacuum is essentially unique, and
almost as simple as in the elementary theory. Every particle
observable has the value zero with probability one.! Nevertheless,
there are self-adjoint operators for which this is not the case, for
example certain combinations of the quantum fields. From the point
of view of these operators, the vacuum is not at all trivial. Properties
of the vacuum picked out in this way may still be interpreted in
particulate terms (almost entirely, in perturbation theory), and there
is a direct connection with the picture of the quantum field as a
collection of harmonic oscillators (zero-point energy); but it seems to
me that a more immediate problem is to understand why such
operators arise in particle mechanics in the first place. In particular,
one wants to understand how in the Dirac theory even well defined
particle observables are required to have vacuum expectation values
that are non-zero (and in fact infinite).

There is a more general problem. As I have indicated, the Dirac
vacuum brings in its wake the concepts of antimatter and pair
creation and annihilation processes. These transform the quantum
theory into an edifice of remarkable phenomenological expressive-
ness and real mathematical complexity. The mathematical frame-
work of non-relativistic quantum field theory was reasonably well
understood by the late 1920s;> more than sixty years later, the
simplest of (non-trivial) relativistic theories still resists any compar-
able elucidation. My objective is this: to characterize better those
features of relativistic theory that are responsible for this pathology.

! More precisely, every self-adjoint operator that can be defined as the canonical
second quantization of a particle operator has eigenvalue zero in the vacuum state.
This is true of the non-relativistic theory; it is also true of the theory developed in
Section 7, without recourse to normal-ordering.

2 Thavein mind the proof of equivalence of the interacting Galilean field theory with
a many-particle ensemble due to Jordan and Klein (1927); see also Tomonaga (1962).
The detailed analysis of Fock space methods came somewhat later (Fock 1932; Cook
1953); these and later developments in the mathematical theory of quantum fields are
irrelevant to the present discussion, because one can always restrict the field theory toa
finite-particle subspace of the Fock space. (This is not possible in the relativistic case.)
For applications of non-Fock representations, see Saunders {1988).
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In the historical review of Sections 2-6 we observe shifts in the
theoretical perspective in due chronological sequence; however, the
framework is throughout tied to fermionic theories. The character-
ization proposed in Sections 7 and 8 fits naturally into this framework
but in fact applies equally to fermionic and bosonic theories.

The latter results are restricted; they apply only to global kinematic
observables. This theory is, however, exact. It must be born in mind
that the conventional theory can be made rigorous only in the
kinematic limit; the Fourier analysis is available only for the {ree field,
and in its absence one has no precise particle interpretation.

2 The Origins of the Hole Theory

In 1928 Dirac wrote down a wave equation, which is Lorentz-
covariant and first-order in the time observative:

(ity*3, —meWp(x, 1) =0.

For an external c-number field with potential 4,(x, t), one then has,
for a particle of charge —e,

[w(;-ha" - g A,(x, t)) —mc}//(x, £)=0.

In these equations y°, y*, y2, y* are 4 x 4 complex matrices, and y is a
4-component complex-valued function on space—time. The y matrices
provide a representation of the Clifford algebra which is unique up to
isomorphism. They satisfy y*y”+y"y*=[y*, 9], =2g*". ¥ is usually
called a Dirac spinor, or bispinor. Dirac was led to this equation
because he was looking for a first-order analogue of the Klein-
Gordon equation, namely

(O +m?c*/h*)px, t)=0

where ¢ is a complex scalar function; for an external electromagnetic
potential 4, this becomes

|:<ih6u - g A, z)) <ih6" - g AR(x, t))—m2c2:|¢(x, £)=0.

The Dirac equation is a linearized square root of this equation; that
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is, there are linear combinations P, P’ of ¢, A, and m such that Py =0,
and such that P’ Py =0 is the Klein—Gordon equation. For this to be
possible, P, P’ must contain matrices, and correspondingly y must be
a many-component object. Dirac found that it is not possible to
linearize the square-root equation with two-dimensional matrices;
the minimum dimension is four, and then one has the Clifford
algebra. This follows from the requirement

(—ihy*d,—me) (ihy*0, —me)=h>10 + m*c?.

Dirac wanted a first-order equation because he thought that only
then could one find a probability interpretation, and define a
transformation theory, as in the non-relativistic quantum mechanics.
In retrospect, it is clear that he sought a Schrodinger equation,’
which must indeed be first-order in time; but Dirac also demanded
covariance, which is to ask too much. The result is a wave equation
which, used as a Schrodinger equation, leads to a theory that is much
more than a sum of its parts.

Initially Dirac had only a fragmented formalism; defining the free
Hamiltonian by analogy to Schrédinger theory, he obtained the
operator (i=1, 2, 3):

Hp=—ihy®y'0,4+v°mc?.
Likewise, he considered the quantity

[ Sw e (x) d3x,

the probability density. (The summation is over the spinor com-
ponents.) Unfortunately, although this density is positive definite, the
spectrum of the free Hamiltonian is not; formally, there exist
functions w exp[ —i(Et—p-x)/h), weC*, which satisfy the wave
equation for both signs of F.

Initially this formalism yielded some striking results: it predicted
the correct g-factor for the electron and the Sommerfeld equation for
the spectral lines of the hydrogen atom. For these reasons, the
negative-energy difficulty did not lead to the abandoning of the
theory. It was acknowledged from the beginning; Dirac (1928)
suggested that the negative-energy solutions might correspond to
positive-charge particles, and that they could be rejected on this basis.

3 1 use the term to mean the infinitesimal form of the unitary time evolution with
positive generator on the Hilbert space of states.
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A few months later he conceded that they could not simply be
excluded from the theory, because in the presence of interactions
there might be transitions from positive- to negative-energy states
and these could not be eliminated by fiat. The theory was then to be
thought of as an approximation. But increasingly, it became clear
that the difficulty could not be contained or restricted to any non-
trivial dynamical regime. Heisenberg, one of the first to perceive the
extent of the departure from the principles of quantum mechanics,
went so far as to remark: ‘the saddest chapter of modern physics is and
remains the Dirac theory’.* Much later he was to say: ‘up till that time
I had the impression that in quantum theory we had come back into
the harbor, into the port. Dirac’s paper threw us out into the open sea
again’ (Heisenberg 1963). At this stage one couldn’t modify the
mathematics too much because there seemed to be too much truth
contained in the theory.

There were two further developments that made the difficulty of
negative-energy states that much more acute. One was the demon-
stration, due to Oskar Klein (1929}, that even for time-independent
potentials there may be no solution of the Dirac equation with only
positive-frequency parts (the ‘Klein paradox’). The other was the
discovery, made independently by Igor Tamm (1930) and Ivor Waller
(1930), that the negative-frequency parts played an essential role in
the classical limit of the Klein—Nisjima scattering formula; that is, in
order to get the Thomson formula, it was necessary in perturbation
theory to sum over intermediate negative-frequency states.

These states had to be taken seriously. Dirac saw from the
beginning that they had to correspond to particles of opposite charge.
In the Klein-Gordon case, which also admits negative-energy
solutions, there had been suggestions to the same effect.’

But a consistent interpretation proved elusive; classically, a
negative-energy negative-charge particle behaves in an external
electric field just as a positive-energy positive-charge particle; if the
electromagnetic potentials are reversed, it actually behaves in an
identical way to its positive-energy partner. Its space—time world—line
would be identical. But surely, this is a peculiarity of conservative
systems; intuitively it seems clear that a negative-energy particle will
have to emit energy as it speeds up, and that is unphysical. Dirac

4 Letter to Pauli, 31 July 1928 (Heisenberg 1928).
5 See e.g. Fock’s (1926) derivation where he used a proper time parameter, and the
Klein (1926) derivation on 5-dimensional space—time.
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could not just posit that the negative-frequency states are positive-
charge positive-energy states.®

If one thinks about negative energy, one has to work in terms of the
absence of positive energy; and if one also thinks about positive
charge, one might be led to think of it as the absence of negative
charge. From that, it is a short step to the idea that a particle of
positive charge and positive energy might correspond to the absence
of a particle of negative charge and negative energy.

This notion, that the absence of a particle is a physical thing, and
has a dynamical role in the theory, had already been employed in
quantum theory, and has precursors in classical physics.” The most
familiar example is the Bohr theory, where one has electron
transitions to orbits that are not closed, which do not have their full
complement of electrons. Dirac cited internal conversion, where an
inner electron is gjected by absorption of X-rays, and remarked that
this absence of an electron is described by a wave function and plays
much the same role as a physical particle.

The difference is this: there is nothing analogous to the almost-
filled Bohr orbitals; there is nothing with respect to which this
absence may be defined. It was here that Dirac made a truly
revolutionary hypothesis. The negative-energy particles indeed exist,
but they exist everywhere and in such abundance that in general
transitions to such states will be forbidden by the Pauli exclusion
principle. At the same time, if there were an available negative-energy
state, it would appear as an absence of negative energy and negative
charge, and hence (relative to the background) as a particle of positive
energy and positive charge. If there are very few missing negative-
energy clectrons, and if these transactions are the only empirical
manifestation of the existence of the negative-energy sea, then we
would scarcely be aware of its existence.

¢ This reasoning is contained in Dirac (1929). Nevertheless, the identification is
made out in Section 7; the problem posed by Dirac is eliminated by use of Segal’s
methods.

7 For example, discussing an analysis due to I. J. Thomson of the magnetic field
associated with a charged moving conductor, G. F. FitzGerald (1881) showed that the
displacement currents set up in the ether by the time-varying electric field could not be
circuital. As an example he considered a charged parallel-plate capacitor; if one plate
approaches the other, the electric field is ‘annihilated’ by the plate, the electric
displacement is therefore destroyed, and there must exist a corresponding displacement
current. (This current evidently has non-zero divergence; FitzGerald then showed that
the total current, including that arising from the motion of the charged plate, is
circuital.)
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The assumption of the negative-energy sea is extravagant, even by
the standards of the physics of our day. One assumes that each finite
volume of space has infinite charge and infinite energy, to make
conceptual sense of the theory. In an illuminating remark, Wightman
was later to comment:

it is difficult for one who, like me, learned quantum electrodynamics in the
mid 1940s to assess fairly the impact of Dirac’s proposal. I have the
impression that many in the profession were thunderstruck at the audacity of
his ideas. This impression was received partly from listening to the old-timers
talking about quantum-electrodynamics a decade-and-a-half after the
creation of hole theory; they still seemed shell-shocked. (Wightman 1972: 99)

Familiarity breeds tolerance; one suspects that for later generations it
is not so much that the negative-energy sea is considered a fiction, but
that no categorical basis seems to exist by which mathematical artifice
may be distinguished from the reality.

To understand the significance of the Dirac vacuum, one has to
explore the mathematical background of quantum theory at a deeper
level. To understand the immediate context in which Dirac worked,
one has to understand the second quantization process, and his
theory of the equivalence of the quantized electromagnetic field with a
many-boson system. The second quantization will play an important
role in all that follows, so I shall start with this theory.

3 Canonical Second Quantization

Starting from a canonical 1-particle theory, with a Hilbert space b,
one defines creation and annihilation operators as maps between n-
and (n+ 1)-particle spaces, which are constructed as symmetrized or
anti-symmetrized tensor products of the 1-particle Hilbert space. The
total Hilbert space must contain all these finite particle subspaces, so
it is of the form

n
H=FsH)=2 S, ® b;.
n i=1
Here S indicates the appropriate symmetrization and S, is a
representation of the symmetrization operator for the permutation
group of order n. (Later on we suppress the subscript S.) Each b;isa

copy of b.
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To make the connection with field theory, it is essential that the
particles are identical; that is, the states that are built up by successive
applications of the creation operator cannot contain information as
to which particle is in which state. This being so, the set of occupation
numbers, a string of integers n, n, ... n; ... ,isenough to parameter-
ize these states, where each subscript i determines a particular state ¢;
of the l-particle theory and each occupation number »n; fixes the
number of particles in that state. (We suppose the states ¢, form an
orthonormal basis for b).) In terms of this parameterization, the action
of the annihilation and creation operators is just

a(g):fny .o DM g (1))
a*(¢):|ny .. .ony D=+ DY R L (1)L D,

(The normalization constants are slightly different in the antisym-
metric case.) These operators are adjoints of each other, as our
notation suggests; as a result, if one is a linear map on the 1-particle
space b, the other must be antilinear; that is, for any complex scalar A,

a*(Ag)=Aa*(¢)
a(Ad)=1a(¢) 1)

The antilinearity of the annihilation operator is so important that it is
helpful to see why it holds in an intuitive way. For a state e §4(b) of
theformf,®f,®f;® - - ®f, @ permutations, and arbitrary feh, we
have

a(Nn=m"*f,f0LH®f;® - - ®f,@ permutations.  (2)

The antilinearity of the annihilation operator is therefore a conse-
quence of the antilinearity of {.,.)> in its first entry, the hermitean
inner product on h.

Using these operators, one can write down the operator on an
n-particle Hilbert space which corresponds to a 1-particle operator 4
on b, such that this operator makes no reference to particle identity,
namely

n-fold tensor sum

ARI® - RIDIV4A® - RI® - IR - RI®4L.  (3)

n-fold
tensor product

For an arbitrary orthonormal basis {¢;}, an equivalent definition is
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Z a*(¢j)<¢j, Apya(d,).

ij

The important point about this operator is that it duplicates the
action of (3) on any n-particle subspace (i.e. whatever the value of n);
therefore this expression, but not (3), can be used in a theory in which
the particle number is specified along with the state, that is as part of
the specification of the initial conditions. This is a first step towards
generalizing the theory to deal with dynamical situations in which the
particle number is variable.

The operator Z;,a*(¢;) (¢;, Ad;)a(¢;) is called the second quantiza-
tion of the 1-particle operator 4; it is usually denoted dI'(4). dI"is a
structure-preserving map independent of the orthonormal basis used
in its definition. In particular, self-adjointness and positivity are
preserved by dI'. If 4 generates the unitary group U, then we define
the group generated by dI'{4) as the second quantization of U, which
we denote I'(U). It follows that

[(U) dT(A)T(U) "' =dT(UAU 1), )

which provides an important class of unitary evolutions on Fs(b)
(i.e. those determined by unitary 1-particle evolutions on b).

The creation and annihilation operators can also be used to
construct the total number operator; the quantity Z,a*(¢;)a(¢;)
applied to an n-particle state returns that state unaltered, except that
it is multiplied by the constant #; likewise, the operator a*(¢,)a(¢,) is
the number operator for the state ¢,. Note that the total number
operator is the second quantization of the identity; i.e.,

dr( =3 a*(¢;)<¢;, I$;>a(9,). (5)

The number operator for the state ¢, is the second quantization of the
projection operator on to the subspace spanned by the state ¢,.

The transformation theory can be applied to these quantities in a
rigorous way; formally, one often uses the improper position and
momentum eigenfunctions also.

dI'(A4) has a simple interpretation. Applied to any many-particle
state, it gives the appropriate action of the 1-particle operator on each
particle in an ensemble. On states of the form #, the c-number
{¢;, A¢;> under the summation is multiplied into each c-number
{¢;, [, left as residue of the annihilation of the 1-particle state f; (cf.
(2)), and the state ¢, is returned to the state vector # in its place; since
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we sum over all i, j, we evaluate the total transition amplitude for each
particle under the influence of 4. This construction also works for 2-,
3-, or n-particle operators; for example, a second quantized 2-particle
operator dI'(B) is written

Z a*(¢i)a*(¢j) < ¢i¢j’B¢k¢l > a(¢y)a(d,)

ijkl
(where I have written ¢,¢, for the symmetrized 2-particle state and
<., .> for the induced inner product on the 2-particle subspace).
Figure 1 provides a graphic illustration of the action of this operator.

I shall call the second quantization described above the canonical
second quantization, to avoid confusion with other formalisms which
go by the name of ‘second quantized’ theories. I have emphasized the
intuitive aspects of the canonical second quantization, because if one
considers the dynamics of a linear quantum field in an external
potential according to its Fock space action, one might expect that
the particle aspect of the field should reveal this very simple character,
and one should have exactly the same dynamics as for a particle
ensemble, each particle of which is subject to this external potential.
That is what happens in the non-relativistic case; there, the quantum
field theory is very simple and mathematically soluble, subject to the
usual limitations of mechanics (for the three-or-more-body problem).
There is no difficulty in principle in non-relativistic quantum field
theory. In this respect the bilinearity of dI' in creation and an-
nihilation operators is absolutely crucial; if the evolution is defined in
this way (i.e. as the second quantization of an n-particle evolution),
the particle number is automatically invariant. This feature is
fundamental to quantum mechanics; the dynamics is implemented in
terms of the transition of a particle from one state into another (the
annihilation of a particle in one state and its creation in another). This
bilinearity is not a technicality; it reflects the logical structure of the
particle theory.?

However, this is not at all the situation in the relativistic case, even
for a linear field coupled to an external potential. The problem arises
entirely from the existence of negative-energy states; the simplest
interactions connect positive- and negative-energy states. Nowadays

8 There is also a connection with group theory, which leads to the Bargmann mass
superselection rule. Essentially, the mass arises not as a Casimir invariant, but in the
choice of the central extension of the Galilean group; see e.g. Sudarshan and Mukunda
(1974).
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FiG. I The action of the operator.

Za*(¢i)a*(¢j) < ¢i¢j B b > ald)ald)

ijkl
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it is usually said that there is no 1-particle relativistic quantum
mechanics, so of course the field theory is not the canonical second
quantization of any !-particle theory. Rather, using perturbation
theory to read back from the field theory, one learns that what
happens on the particle level is pair creation and annihilation, which
cannot be understood in terms of particle dynamics (excluding
Feynman—Stueckelberg methods).

This point of view arose in the mid-1930s, but Dirac had already
considered a similar problem in 1927. He attempted to extend the
canonical particle framework so as to describe individual absorption
and emission processes. This is worth a closer look.

4 The First Dirac Vacuum

One might say that Dirac sought to provide a precise particle
interpretation of the emission and absorption of light quanta by
atoms.® This was Einstein’s great ‘heuristic hypothesis’, which after
more than twenty years was at last to find a proper mathematical
expression. Dirac had formulated a quantum electrodynamics which
led to such processes by applying his theory of action-angle variables,
developed in his relativistic g-number (matrix) mechanics of the
Compton effect in 1926, transferred to the radiation field in place of
the mechanical atom.'® At the same time, he had discovered that
similar techniques applied to the non-relativistic (linear) Schrédinger
equation yielded a formalism equivalent to the quantum mechanics of
a many-particle boson system (the canonical second quantization
which I have just described). Dirac tried to bring the two into
correspondence: obviously, the difficulty is the mechanical descrip-
tion of the creation and annihilation of photons.

The problem is simple. Because Dirac wanted to describe the back-
reaction on the field, the potential J is no longer an external
perturbation, and must be considered a dynamical entity in its own

9 There are many routes to Dirac’s (1927) development of quantum field theory
(wave-particle duality, quantum electrodynamics, the correspondence principle, the
Einstein theory of 4 and B coefficients, the Kramers—Heisenberg dispersion theory, the
Compton effect); the details need not concern us here.

19 1n his theory of the Compton effect he had used the action-angle operators to
describe transitions of the atom, not of the field. The action-angle operators provided
the algebraic structure of the creation and annihilation operators; see Dirac (1926a,
1926b).
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right. It becomes, in fact, a quantum field. However, it immediately
appears—in support of Einstein’s original conceptions—that the
Hamiltonian derived from this potential contains an isolated creation
(or annihilation) operator.!! How to relate this theory to the
canonical theory? There one can only obtain operators of the form
dI'(A4); necessarily, these are bilinear in creation and annihilation
operators, which is only to say that net particle creation and
annihilation processes cannot be described in the mechanical theory.

We have another way of understanding this difficulty if we look
at Dirac’s proof of the equivalence between a g-number linear
Schrédinger equation and a boson ensemble. It is implicit here that
the c-number Schrodinger equation for each boson is formally
identical to the g-number equation. When one tries to do the same
thing for the radiation field coupled to charge, the interaction
Lagrangian contains a term linear in the vector potential; hence the
field equations are inhomogeneous and no longer linear. Consider for
example the electrostatic case; there is an interaction density of the
form V(x, t)p(x, t), with V the electrostatic potential and p the charge
density. (In the non-relativistic theory, the latter is bilinear in creation
and annihilation operators: no net particle creation or annihilation
here.) If one looks at the field equations, the g-number version of what
should be the 1-particle Schrédinger equation is obviously nothing of
the kind. Because the Lagrangian contains the term pV, the field
equations contain the inhomogeneous term p, one has Poisson’s
equation VV'= —ep, which cannot be understood as a g-number
version of a Schrodinger equation. The equivalence between
Schrédinger and field equations exploited by Dirac has disappeared.

We are faced with a difficulty which is perhaps more acute than that
of the negative-energy states. (Dirac began with the hard problems.)
In order to get out of this difficulty and preserve a relationship
between the canonical second quantized theory and the quantized
field theory, Dirac considered that photon number is also conserved;
the apparent annihilation of a photon is in reality the process in which
a photon of frequency v makes a transition to a photon of frequency
zero. That is, there are many (infinitely many) zero-frequency
photons present all the time, and individual creation and annihilation

11 According to Dirac, the reality of the potential required its expansion as the sum
of creation and annihilation operators for the (positive-frequency) light-quanta. Dirac
used a non-relativistic description (for photons!). The negative-frequency difficulty
does not arise.
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processes become photon transitions to and from this new vacuum.
In this way Dirac described the quantized electromagnetic field as a
particle theory; this was his resolution of the wave-particle duality as
formulated by Einstein.'? There is no precise mathematical basis to
this theory, but we have the first indication that the dynamics can be
changed dramatically by modification of the vacuum. This was
already clear in 1927.

5 The Negative-Energy Sea

Whereas one might accept that a vacuum filled with zero-frequency
photons is still a nothingness, because a zero-frequency photon is just
like a vacuum state of a classical field, the situation is different when
the vacuum is full of massive charged electrons. What of the
gravitational properties of this vacuum? How does this vacuum
respond to electromagnetic fields? Even if there are no holes present,
there must be other empirical consequences of this idea. What can it
mean to have infinite charge and mass in finite volume?

It was a bold and radical and quite outrageous suggestion. Pauli,
even after the discovery of the positron, was absolutely against it. As
he later put it, ‘success seems to have been on the side of Dirac rather
than of logic’. We have seen Heisenberg’s reaction;'® Bohr also was
sceptical. It is well known that Anderson, the discoverer of the
positron, was indifferent to the Dirac theory (Anderson and
Anderson 1983). The theory was exotic and speculative; prior to the
discovery of the positron, only a handful of experts was concerned
with it.

But the hole theory was successful; its heuristic power was

12 Dirac observed that the 1-particle ‘analogue’ of photon creation and annihilation
(transition to and from the zero-frequency state) could not be written ‘as an algebraic
function of canonical variables’. In this sense Dirac did not achieve a complete
mechanical description of the interaction (contrast with the hole theory). On this point,
von Neumann was later to take an anti-realist stand: ‘Tt is difficult to find a direct, clear-
cut, interpretation of the interaction energy . . . nevertheless, we can accept this with
the interpretation that each model-description is only an approximation, while the
exact content of the theory is furnished solely by the expression for the Hamiltonian
operator’ (von Neumann 1932: 282-3; the ‘model-description’ is the particle theory, the
Hamiltonian is derived from the field).

13 1In early 1934 Heisenberg wrote: ‘I regard the Dirac theory . . . as learned trash
which no one can take seriously’ (1934a). Three months later he was able to eliminate it
from the formalism (see below).
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immense. If there is a hole present, then a positive-energy electron
may make a transition to this state with the emission of energy. This
would appear as the annihilation of both the electron and the hole. If
a negative-energy electron absorbed energy, so that its total energy
became positive, it would leave behind it a hole in the negative-energy
sea, and this would appear as the creation of a positive-energy
electron together with a hole. The inferences follow effortlessly.
Phenomena of this kind were soon observed.

The sequence of events went something like this. To begin with,
physicists were not then disposed to predict the existence of new kinds
of particles. There was only one sub-atomic positively charged
particle known, and that was the proton. Weyl had already suggested
that the negative-frequency states describe the proton; Dirac rejected
their identification with protons, for reasons already summarized, but
he suggested that these might appear as the holes in the negative-
energy sea. The mass difference, he surmised, may be accounted for by
the interaction among all the negative-energy electrons. This was in
November 1929; by March of the following year, he (and, independ-
ently, Oppenheimer) calculated the cross-section for electron—proton
decay. Even given the ambiguity introduced by the electron—proton
mass difference, the result was much too large to be consistent with
the stability of ordinary matter. The same conclusion was reached by
Tamm one month later; by the end of the year Weyl had gone into
print retracting his earlier suggestion. In May 1931 Dirac predicted
the existence of the positron. It was observed by Anderson that
summer.**

The way was open to evaluate scattering cross-sections for a
number of new phenomena (all to be experimentally observed).
Between 1930 and 1935 the following processes were considered (the
calculations used c-number potentials for the radiation):

et +e~ -y (Dirac, Oppenheimer, Tamm)
y+y—et +e” (Breit, Wheeler)
et +e " —»y—e* +¢~ (Bhabba)
y+y—et +e” —y+4y (Halpern)

The fundamental fact is that, by redefining the ground state of the

14 This sequence of events is well documented; see e.g. Bromberg (1976) and Pais
(1986) for further details and references.
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electron theory, the standard ideas of 1-particle quantum theory?'®
immediately lead to a phenomenology typical of a many-particle
theory. The idea of pair creation and annihilation had actually been
around for some time; some progress had been made in studying the
equilibrium properties of such processes using semi-classical argu-
ments. But with the hole theory, pair creation and annihilation
became 1-particle processes; there is the interpretation, and there is
the mathematical formalism. Immediately one could calculate cross-
sections and apply the perturbation theory to deduce the existence of
more complex processes that proceed by virtual states (such as the
Bhabba and Halpern scattering). It is often said that the Dirac hole
theory transforms the 1-particle theory into a many-particle theory;
we see that it also works the other. way: prima facie many-particle
processes involving pair creation and annihilation can be treated
using the formalism of the 1-particle theory.

In the processes that we have considered the negative-energy sea
plays a purely passive role, in restricting the number of negative-
energy states available for such transitions. In other processes the
sea is more active: its response to an external field should be just
like a dielectric. The negative-energy electrons will be polarized
and an induced polarization field will be set up. This is the
vacuum polarization, first investigated by Dirac in 1934, and here
for the first time the full intricacies of the hole theory were
encountered. To deal with them Dirac used a variant of the
Hartree self-consistent field method. This step leads naturally to
the calculation of the effective charge that will produce the ‘net’
field, that is the external field together with the polarization field
of the vacuum; in other words, he was led to the idea of charge
renormalization. This is the first time that the notion of renormali-
zation entered quantum physics.'®

15 Here, by ‘1-particle system’ I mean a particle that may be found in positive- or
negative-frequency states. The term ‘particle—antiparticle system’ is unsatisfactory,
because it suggests that one has a particle pair; rather than introduce this or an even
more cumbersome terminology, I shall leave it to the context to distinguish the
1-particle system in the present sense from a 1-particle system defined over positive-
frequency states alone. No confusion will result.

16 Tn other situations, €.g. the interacting non-relativistic field considered by Jordan
and Klein (1927: 761--2), the quantum theory effectively removes a renormalization
problem of the classical theory; the self-energy of the classical field theory disappears
through normal-ordering. (This is the only application of normal-ordering to the non-
relativistic theory.)
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6 The Standard Formalism

With these developments, the Dirac hole theory became part of the
basic vocabulary of physics. Every practising high-energy physicist
knows the theory well; it has an apparently enduring heuristic role.
But the negative-energy sea is no longer considered a literal
description of reality. What, then, became of the theory, and how do
we do without it today?

There seem to be two answers to this question. The first is that we
have learnt to dispense with this heuristic and to rely on the
mathematics unaided. The second is that we have a new theory,
formally similar, basd on the Feynman-Stueckelberg heuristic and
path-integral methods.

This new theory I will have to place on one side. It is the first
response that concerns us; it is based on what used to be called the
second-quantized hole theory, or the Jordan—-Wigner formulation,
but now it is called the Dirac field theory. I shall call it simply the
standard formalism. The fundamental step was to reformulate the hole
theory as a second-quantized theory (in a rather imprecise sense).
This step was taken by a number of people in 1934—by Fermi, in
connection with the theory of f-decay; by Heisenberg, in order to
eliminate the negative-energy sea and the asymmetry between
positive and negative charge; and by Fury and Oppenheimer, in their
systematic reconstruction of the Dirac hole theory. It was reinforced
by the new impetus to field theory provided by Pauli and Weiskopf,
Yukawa, and the rapid growth of meson physics from the mid-1930s.
I shall not discuss these developments; I shall only present the second-
quantized version, more or less as did Heisenberg (1934b).

To begin with, consider the canonical second-quantization. If for
our orthonormal basis we use instead the ‘improper’ momentum
eigenfunctions, we are led to the ‘operator’ b,{p) annihilating an
electron (of positive or negative energy) of four momentum p. The
subscript r picks out one of the two spin eigenstates with respect to a
selected component of spin.!” Taking the Fourier transform,

17 There is an unfortunate complication here in connecting the standard formalism
to the canonical theory. The details will not be relevant to what follows, but in
parenthesis let me say this: the plane-wave expansion was first written down for the
1-particle solutions of the Dirac equation. Therefore the bispinor appears explicitly.
On ‘second-quantizing’, the expansion coefficient b, was made into an annihilation
operator. In the canonical framework, it is simpler to work with annihilation operators
of the form a{¢), with ¢ a 1-particle state (and if possible avoid a parametrization of the
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extended over both halves of the mass shell,'® we obtain the point
field

Y(x)= 2 w,(pb,(p) e” "+ du*

E>Q r

+j Y. w(p)b,(p) ™ dpu”.

<0 r

Here the summation is over the two linearly independent spin
states, and u* is the invariant measure on the mass shells (which
includes constants in  and ). It is usual to rewrite this by letting r run
over four values, one pair for each sign of the energy: r=1, 2 for the
positive-mass shell and r=3, 4 for the negative-mass shell; i.e., for
positive-energy solutions,

2)1/2

w,(p)=w,((p? +m?c?)'/2, p),

and for negative-energy solutions,
Wi 2(P)=w,[ —(* +m?c?)!/2, p]

(and similarly for b). One can then carry out the integral over the
energy p,, obtaining the familiar form,

Y(x)= Q2mh) 2 f

P3

[ Y. b(p)w,(p) e

r=1,2

ip-xih d3p
+ Y b(—pw(—pe ’]m

r=3,4

(here p, = + (p? -+m?3c?)!/?; the normalization is Ww,w,=2p,/cd,;).
We now consider the canonical second quantized operators. By
formal application of the transformation theory (using ‘improper’

space of states). In that case ¢ includes the bispinor. (This is what we shall do in
Section 7.) If one treats instead the quantities b,(p) as annihilation operators, then they
must act on the Fock space over the s =1 spinor représentations constructed by Wigner
(1939) (and not over the solution space of the Dirac equation). This feature of the
standard formalism is perhaps not a technicality when it comes to perturbation theory;
in kinematics, however, it is well understood.
) 18 For the time being we can consider the Fourier transform an application of the
transformation theory in the canonical theory; viewed in this way, we must expand
over a complete set of states, therefore over both positive- and negative-energy states.
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position eigenstates'®), any operator A(x) which is local in the
1-particle theory (a multiplicative function or finite derivative in
configuration space coordinates) can be written in the form
JZY*(x)A(x)y(x) d*x. Applied to the 1-particle Hamiltonian H, one
obtains, after some manipulation,

dT(H)=| 3 po[N, (p)— N, (—p)]1dp/p,,

r=1,2
where we define the number operators:

N (p)=bX@p)b,(p) (for positive-frequency states)
N (p)=>b¥, , (p)b,. ,(p) (for negative-frequency states).

As in the 1-particle theory, the canonical second quantized energy
is indefinite. The total charge is the second quantization of —el, and
one verifies that

dI'(—el)= —ef ZZ [N, (P)+ N, (=p)1 d°p/cp,.
r=1,

This is negative definite, as we expect (since the charge of electrons,

whether positive- or negative-frequency, is negative).

So much for the canonical second quantization. Despite the formal
manipulations, everything can be made rigorous and put into the
canonical framework. But if we now consider the action of the
negative-energy creation and annihilation operators on the Dirac
vacuum, the negative-energy sea, clearly the annihilation operator
will create a hole (positron) and the creation operator will annihilate
a hole, or will give the value zero if there is no hole present.
Accordingly, let us change our notation; we shall replace b;(—p) by
d*(p) and b,(—p) by d¥(p). (The change in sign in p is for convenience;
using the symbol d rather than b eliminates the need for the index
values 3 and 4, and the * indicates whether we are dealing with a
creation or annihilation operator with respect to the positrons.)

19 These are doubly improper, since they have little to do with particle position.
This part of my treatment is undoubtedly clumsy, and should be replaced by a more
fundamental treatment of the Fourier transform. However, 1 wish to avoid a detour
into the representation theory of abelian groups; interested readers are referred to
Mackey (1963) for a general perspective.
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Similarly, b¥,,(—p) is replaced by d4,(p); the anticommutation
relationships obeyed by these operators are unchanged by these
substitutions. (This would not be true if they obeyed commutation
relationships).

The effect of these substitutions is that when we evaluate the
quantities dI'(H), dI"(—el), we obtain the quantities as above except
that now N, (—p)=4,p)d¥p); the order of the creation and
annihilation operators is reversed. That being so, this term cannot be
interpreted as the positron number operator.

This can easily be remedied; we use the anticommutation
relationships (ACRs) to write these quantities (the original number
operators for negative-energy electrons) in terms of number opera-
tors for positrons. The latter are given by the quantities N, (p)=
d¥(p)d,(p); in this way we obtain d,(p)d¥(p)= — N, (p)+ positive
infinite constant. The expressions for the total energy and charge (E
and Q) become:

E= J Y. pol N, (p)+ N, (p)] d3p/p, — positive inf. const.

r=1,2

Q=—e| Y [N*(p)—N~(p)] d°p/cp,— positive inf. const.

r=1,2

The change in sign in these quantities is crucial. The infinite constants
correspond, in the hole theory, to the infinite negative energy and
negative charge of the negative-energy sea. The remaining contribu-
tion to the energy (charge) is now positive definite (indefinite). But as
yet the spectrum of these operators is unchanged, nor could it be
changed merely by a change in notation and use of the ACRs.

In quantum field theory it is standard practice to subtract such
infinite constants (zero-point subtractions) produced by the reorder-
ing; the reordering followed by the setting to zero of all c-numbers is
called normal-ordering. By this ‘standard practice’, however, the
spectrum of the operator is changed. The subtraction makes the energy
into a positive operator, and the spectrum of the charge operator is no
longer negative definite. Mathematically, therefore, the zero-point
subtraction is far from trivial. By this same practice, we also find that
we have a new basis for the theory: if one now writes down the
momentum expansion for the quantum field y(x) with the ‘correct’
interpretation of the operator components, and normal-orders all
expressions for physical observables, one need make no reference
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whatsoever to the Dirac hole theory. That is, if from the word go we
write the quantum field as

Y(x)= Y wp)b,(p) e~ du*

E>Q r

+ Y Wi (P)AF(—p) e P dp”

E<O r

and normal-order the physical observables, we need never bother
with the hole theory. The negative-energy sea has done its work once
we have the ‘correct’ particle interpretation of the field, which is to say
the plane-wave expansion above, and once we no longer demand a
physical interpretation of the normal-ordering process.2® In particu-
lar, using the Lagrangian theory and Feynman diagrams, we can
develop a formal perturbation theory for interactions which lends
itself readily enough to intuitive visualization. The relevant heuristic
is that particles are created and destroyed in pairs, so as to preserve
charge; these are not transition processes of a single particle involving
negative- and positive-frequency states. Both intuitively and in the
mathematics, we can no longer treat the resulting theory as the
canonical second quantization of a 1-particle theory. The technique
for making the energy positive (correct momentum space expansion
+normal-ordering) does not seem to make any sense at the 1-particle
level; a precise correspondence is lost. In this respect we have the same
situation as in the Dirac hole theory (with the negative-energy sea as
vacuum), but actually the situation is worsened; we have no physical
basis for the rift with the canonical theory.

Nowadays no one would regard the use of this Fourier expansion
or of the normal-ordering as logically dependent on the Dirac hole
theory; they are supposed to stand in their own right. At the same
time, the entire theory can be regarded as a quantum field theory, and
the link with the 1-particle theory becomes hopelessly tenuous. One
looks upon the Dirac equation as a classical field equation, itself
derived from a classical Lagrangian. The quantization of this theory
is to yield the standard formalism (correctly interpreted), as above.

20 Thisis to be considered a purely mathematical technique which does not stand in
need of justification. For an account along these lines, see Wightman (1972). In the
theory of Section 7, the normal-ordering has a fundamental significance. Path-integral
theory also places a more fundamental perspective on normal-ordering. (This is easiest
to understand in Euclidean theory; see e.g. Simon 1974, sec. 1.1).



The Negative-Energy Sea 87

There is, however, a connection between the antimatter fields and the
negative-energy solutions. The latter contribute negative energy to
the total field energy. (The use of anticommutators on quantization
allows us to change the sign of this contribution, depending on
whether we consider it a creation field or an annihilation field.) This
part of the field y is the antiparticle (creation) field. But the negative-
energy solutions disappear from the Fock space description (there are
no negative-energy states); there is a doubling-up of states, and their
distinction is made at the g-number level. What were before
calculations of transition amplitudes at the level of the states become
analysis at the level of the fields; particularly, it is analysis on the
c-number bispinors that occur in the plane-wave expansion.

1t does not appear possible to understand antimatter at the level of
the states. As a result, certain questions, such as the definition of states
when one does not have a scattering situation, or the meaning of the
Wigner negative-energy representations of the Lorentz group (which
now appear to be excluded by fiat), cannot even be formulated. It is
the canonical theory that imparts precision to these questions.

Let me pursue the question of the independence of the standard
formalism from the Dirac hole theory. The problem is to justify the
plane-wave expansion of the fields. It turns out that the necessary
assumptions have a natural interpretation in field theory; the field
must be a linear combination of creation and annihilation operators.
This is implicit in some earlier discussions, but (so far as I know) there
is no very clear statement prior to Weinberg (1964). One reason for
this neglect is that the precise definition of the creation and
annihilation operators—namely an explicit action on a concrete
Fock space—was not and could not have been available prior to the
late 1950s because of the difficulty in relating the Dirac bispinors to
the Wigner spinor representations. This problem (cf. fn. 17) requires
the distinction between representations on Hilbert space and those on
Hilbert space bundles;?* the explicit bispinor c-numbers that occur in
the plane-wave expansion should be understood as transformation
matrices between the C* fibre sitting over the base space and the
Wigner C?-valued Hilbert space of spinors.

But neither was Weinberg concerned with the logical status of the
plane-wave expansion. He was trying to demonstrate the indepen-
dence of the S-matrix theory from Lagrangian methods. To this end

21 A crucial link that was first investigated in a physical application by Joos (1962).
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he was driven to work from first principles. He found®? that in
kinematics, if one is to get covariant operators that commute (or
anticommute) at spacelike separation, it is necessary to take linear
combinations of creation and annihilation operators. Even then, it is
not necessary that one have an annihilation operator for a particle
state and a creation operator for an antiparticle state. (They could be
creation and annihilation operators for a single species of particle.)
However, in that case the field will (in general) be complex, but it will
not transform in any simple way under (global) gauge transforma-
tions; it will not transform as y—exp(if)y, with 6 a c-number. The
reason is that, if the field ¥ is a linear combination of creation and
annihilation fields on the same Fock space, then if the annihilation
field (say) transforms as b—exp(if)b, the creation field must
transform as b* —»exp(—if)b* because it is the adjoint field. So the
final upshot is that, if we want to have a covariant, causal, field that is
complex, but transforms simply under gauge transformations, then
we must introduce a new Fock space (the antiparticle space), and the
linear combination of annihilation operators on the particle space
and creation operators on the antiparticle space (together with its
adjoint) is the only possible operator expansion.

Weinberg was happy to have isolated simple assumptions concern-
ing the field, sufficient for the derivation of the plane-wave
expansions; with these, the Feynman rules could be defined, and on
the S-matrix philosophy no further appeal to a dynamical theory
(such as the Lagrangian theory) was necessary. For our purposes,
what is important is that these are just the properties of the field as
required in Lagrangian theory; the field is covariant, causal, and
gauge-covariant.

In this way the standard formalism can be considered logically
independent of the Dirac hole theory. However, one must still
motivate the normal-ordering process, and one finds that the
antiparticle states have no relationship to the negative-energy
I-particle states. On the contrary, they are identical to the positive-
energy states. This needs careful consideration.

The antiparticle states (the elements of the antiparticle Fock space)
behave identically under Lorentz transformations, including space
and time inversions, as the particle states. (In particular, they have

22 The summary that follows is a slight modification of Weinberg (1964), along the
lines of Novozhilov (1975).
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positive energy.) One merely supposes that these states are distinct, so
that b,(p) #d,(p). What makes them distinct? First and last, it is the
action of the fields. It is the way the fields couple the two kinds of
states that leads to the characteristic dynamics whereby pairs of
particles {one in each class of states) are destroyed and created. What
prevents single creation and annihilation processes, or pair processes
of other kinds (each from the same class of states), is the requirement
that the Hamiltonian be gauge-invariant.

This is something new to the principles of elementary quantum
mechanics, although its impact—in particular, its implications for
measurement theory and the transformation theory—is somewhat
reduced under the rubric of charge superselection. 1t is often said that
operators that connect states of different total charge do not exist. But
the meaning of this statement is unclear. There is nothing comparable
in the non-relativistic theory. The mass superselection rule has a
different origin; the gauge invariance of the Hamiltonian is there a
consequence of the fact that it is self-adjoint.

I have omitted mention of charge conjugation. One might think
that the explicit definition of this operator will clarify the relation-
ships between matter and antimatter on the one hand, and positive-
and negative-frequency states on the other. It is even said that the
introduction of charge conjugation restored the symmetry between
positive and negative charge, and cleared the way to the elimination
of the negative-energy sea. In fact, the charge conjugation adds little
to our understanding.

In the Weinberg construction, this operator (denote €) is defined
by the interchange of the b operators with the d operators, or simply
by the interchange of the two Fock spaces (for particle and
antiparticle). Since these are identical as function spaces, it is trivial
that € is unitary.

However, at the level of the fields it can be written in a way that is
formally identical to the charge operator € in the 1-particle theory,
which is antiunitary. The details are as follows. If one takes the
adjoint (complex conjugation plus matrix transposition) of the Dirac
equation in the presence of an external field,

[w(mau - ‘5 A”(x)> —mc}//(x) =0,

one obtains the equation (superscript ¢ is matrix transpose)
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Vix) [?“‘( —ihd, — g A,(x, t)) - mc:I =0.

From the defining properties of the y matrices, it follows that
Yo7 =9 (i=1, 2, 3); so inserting a factor y°y° between §* and y*,
and operating from the right by y°, one obtains, on taking the matrix

transpose,
, € -
[y"‘( —ihd, — - A,(x, t)) - mc]y“’x//(x) =0.

This equation is not quite in the right form, because of the
transposition of the y matrices. However, if there exists a matrix C
such that Cy*'C ™' = —y*, we may insert a factor C~'C and operate
from the left by C to obtain

[y“(ih&u + g A,(x, t)) - mc:ltﬂ‘(x, t)=0

where we have written ¥°=Cy® (the positron state). This is the
Dirac equation for a particle of positive charge.

Actually, if ¥ is a positive-frequency state, then y° is a negative-
frequency state, so that to obtain positive-frequency solutions of the
positive-charge Dirac equation we must take the charge conjugate of
negative-frequency negative-charge solutions. The map 4. y—
Cy*"y=y* is called the 1-particle charge conjugation operator; a
matrix C with the defining property above exists and can be chosen
unitary; because of the complex conjugation, however, % is antilinear
(hence antiunitary).

However, it seems that one cannot consistently define charge
conjugation within the 1-particle theory. The reason is that the total
charge (and likewise the charge current density) do not change sign
under the 1-particle charge conjugation. Since the charge operator is
just —el, it is obvious that this operator is invariant under charge
conjugation, contrary to physical requirements.

The relationship with the charge conjugation € for the quantum
field is as follows. The formal application of the operator € to the field
takes one from the field to its adjoint, hence is equivalent to the
interchange of b and d, even though it defines transformations of the
form b—b*, d—d*. Since these transformations are antilinear, it
seems we must have an antiunitary transformation (and an anti-
automorphism with respect to the fields); but if ¢ is automorphic and
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one normal-orders after its application, then one obtains the same
transformation as €. The total charge now changes sign under charge
conjugation, because (normal-ordered) it is no longer a multiple of
the identity.

This is a curious situation; the charge conjugation appears at once
antilinear at the level of the fields and unitary at the level of the Fock
space. On the other hand, if the gauge transformation of the fieids
is induced by that of the states, the particle and antiparticle states
must stand in antilinear correspondence,?? in contradiction to the
unitarity of €.

The standard formalism presents puzzling features, and the
relationship between the 1-particle and field-charge conjugation
operators is one more example. The particle interpretation of the
fields, from which follows all of the mathematical pathology of
relativistic quantum theory, is secured if the fields are covariant,
gauge-covariant, and cusal, but these requirements make no sense at
the 1-particle level. The distinction between matter and antimatter
cannot be made out at the level of the states, and the negative-energy
representations of the Lorentz group play no role in the theory. We
are a long way from the clear-cut heuristics of the Dirac hole theory.?*

Confronted with this situation, one feels a certain exasperation.
Surely the antiparticle field is the negative-frequency field solution of
the field equation, just as the negative-energy state is the solution of
the wave equation. The connection between antimatter and negative
energy should be direct and simple. In order to make it so, we must
find a formulation of the canonical theory which directly relates
g-number and ¢-number versions of the same equations. Fortunately,
that has been worked out for us.

7 Quantization and Complex Numbers

I refer to the so-called geometric quantization, due to several workers,
but above all to Irving Segal.?> He was concerned specifically with the

23 je., if the transformation a(f)—exp(if)a(f) arises from the transformation

f—exp(iBY, feh, and f and g are respectively particle and antiparticle states, then we
must have g—exp(—if)g.

24 These obscurities are eliminated in the theory that follows; I omit, however, a
discussion of covariance and microcausality, which hinge on the analysis of locality
(see Saunders 1989, sec. 3.4).

25 See e.g. Segal (1964, 1967). For a review of the more general theory, see e.g.
Woodhouse (1980).
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quantization of linear classical fields; in its more developed form
(following Souriau 1966, and Kostant 1970) it provides a quantiza-
tion process—and with it a representation theory—which generalizes
the Dirac correspondence between commutation relationships and
the Poisson bracket. This theory leads to a rigorous quantum theory
of much more general systems, e.g. constrained systems on manifolds;
however, we will make use only of the basic construction provided by
Segal.

This construction is applicable in all cases where a rigorous Fock
space representation has been established in quantum field theory. It
can be considered a generalization of the canonical theory; its novel
features disappear in the non-relativistic limit.

Suppose that we have a linear dynamical system and an associated
phase space, that is a pair ¥,  where V is a real vector space?% and w
a bilinear form, antisymmetric for bosons (the symplectic form) and
symmetric for fermions; and let us introduce a canonical transforma-
tion J such that J>= —1. With the aid of this, we can construct a
complex vector space and a sesquilinear inner product, and can
complete the vector space to obtain a Hilbert space®” (denote V).
The point of this construction is that symplectic (bosons) or orthogonal
{fermions) transformations on V which preserve J automatically become
unitary transformations on V,. In particular, the Hamiltonian flow, the
group of transformations on ¥ corresponding to the (classical) time
evolution, becomes a weakly continuous group of unitary transfor-
mations on ¥, so long as it preserves J. The quantum mechanical
Hilbert space # is then given as the space of analytic?® functions on
this space. In quantum field theory, V is already a function space, the
space of classical solutions to the classical field equations,?® and # is
naturally represented as the Fock space over ¥;. The complexified

26 This does not mean that ¥ might not also be a complex vector space (i.e. that it is
also complex-linear); the point is that we use only the real-linear structure.

27 This procedure was foreshadowed in the work of Stueckelberg and his
co-workers in the early 1960s; see e.g. Stueckelberg and Guenin (1962) and references
therein.

28 Unitarity and analyticity are both defined with respect to J. This Hilbert space of
analytic functions was first introduced by Fock (1928); see Bargmann (1961) for a
systematic treatment. An analytic function has a power series expansion; when it is
defined on a function space (as in classical field theory), the term in this expansion
linear in vectors in V is the 1-particle component of this state.

29 More precisely, the space of Cauchy data for the field. For the Dirac field, this can
be identified with square-integrable C*-valued functions on R3. The theory can be
formulated in a covariant way, but we do not need this here.
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phase space has a natural correspondence with the 1-particle
subspace of /. In the simplest case the dynamics is simply lifted from
the classical Hamiltonian flow on V, so that we can regard the
induced evolution as the canonical second quantization of a
l-particle evolution. In this way we can preserve a very close
correspondence with the 1-particle theory (or, equivalently, with the
c-number solutions to the field equations). Indeed, although we start
from a field theory, the relationship of the field to the particle
interpretation is the same as in the canonical second quantized
theory.3¢

For interacting theories of physical interest (even linear theories)
one cannot put this construction on any simple basis; in particular,
there does not exist a canonical complex structure J which is
preserved under the time evolution. We see that the complex
structure J, which tells us what we mean by complex numbers in the
Hilbert space theory, also tells us what we mean by particle number
(or more generally a particle interpretation) for a quantum field. The
favourable case roughly coincides with the situation where the field is
kinematic (it actually includes time-independent external couplings);
otherwise we shall suppose that interactions lead to a change in J and
the particle interpretation is shifted; quanta have been created or
destroyed.

In perturbation theory, too, one defines the asymptotic states (and,
by the assumption of completeness, even the interacting states) in
terms of the kinematic description of the quantum field. So this is a
familiar limitation. What is the kinematic description? It is provided
by the decomposition of the field into positive- and negative-
frequency parts. Here the complex numbers that enter into the
classical fields play a crucial role; for a given spacelike hypersurface
& and solution ¢, one finds functions ¢* and ¢~ such that
¢=¢* +¢ ", and when & is translated in time the complex phase of
these functions on & rotates in opposite directions.?!

This complex structure, the i that (may) appear in the field
equations, we shall call the natural complex structure. These are the

39 On this basis I shall at times speak of the field quantization as a canonical second
quantization of a l-particle theory. By this I mean no more than that from the
field quantization one can read off the 1-particle theory, to which it is related by the
functor I'.

31 A sufficient condition for the decomposition to be possible is that the space-time
admits a timelike Killing vector field everywhere orthogonal to a family of spacelike
hypersurfaces; see e.g. Ashtekar and Magnon (1975).
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complex numbers that are usually used in Hilbert space theory. They
are also the complex numbers that are used to define the gauge
transformation properties of the fields (and to define the gauge-
invariant objects in the theory, i.e. the observables). We recall that, if
we switch this gauge transformation to the Hilbert space level, the
particle and antiparticle states are rotated in opposite directions (cf.
fn. 23). In some sense, multiplication by i at the level of the fields is
mirrored in the Hilbert space by multiplication by the imaginary unit
(of the Hilbert space) on the particle states, and by minus the
imaginary unit on the antiparticle states. We may conjecture that it is
J that determines what we mean by complex numbers in the quantum
theory of a classical system, in particular by the particle interpreta-
tion of a quantum field, and that J is related to the natural complex
structure through the decomposition into positive- and negative-
frequency parts. That is just what happens; J is given by multiplica-
tion by i for a positive-frequency solution, and multiplication by —i
for a negative-frequency solution.

To see the implications for what we mean by positive- and negative-
energy 1-particle states, let us use the canonical second quantization
and suppose that the free evolution of the quantum field is generated
by the free evolution on the I-particle subspace as in equation (5),
which by the foregoing can be identified with the space V. In that
case, with respect to J, the field evolves as the canonical second
quantization I" of the unitary evolution:

foexp(—JHt/h)f

where fe V. The requirement that the energy be positive means that
H must be a positive operator. (It is self-adjoint because of Stone’s
theorem.) Equivalently, H can have only positive (generalized)
eigenfunctions. Since we know that the solution manifold V contains
positive- and negative-frequency solutions, this appears inconsistent
with the infinitesimal form of the evolution (the Schrédinger
equation). However, it is the complex structure J which must now be
used; that is, we now have
of

Hf=Jh P ©)
When J is given by multiplication by —i on the negative frequency
solutions, of the form f ~ =w exp(iEt/h), we obtain Hf “=Ef ~. If J
has the natural action (multiplication by i) on the positive frequency
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states, then H will be a positive operator on V,; since (6) must yield
the same evolution as the field equation, it is obvious that
H= —iJHy,where Hy is the usual Dirac Hamiltonian. (The meaning
of this notation will shortly become clear.)

To make further progress, we need a little more of the theory of
complex structures on orthogonal and symplectic spaces. For the
bosonic field, we assume that the solution manifold ¥V is a complex
linear vector space equipped with a symplectic form w, with the usual
complex structure given by multiplication by i (the natural complex
structure). In favourable cases one can find a canonical mapping J on
V (i.e. with w(Jf, Jg)=w(f, g)) such that J2= —1. It then automatic-
ally follows that

(fs g)y=o(f, Jg)

is a symmetric form on ¥, and that

{faoi=Ug)tio(f, g)

is sesquilinear on V;; that is, it is sesquilinear with respect to
multiplication of elements of V' by ‘the complex numbers’ a+Jb,
a,beR. When (.,.); is non-degenerate, it follows that <.,.>;
provides a Hilbertian norm and we may complete to obtain a Hilbert
space.

This is how we obtain the bosonic field theory; to obtain the
fermionic theory we have instead of a symplectic form a symmetric
non-degenerate bilinear form. For the Dirac field it is

s, 9)=5( [P0 &t [ v %) g

{here and in the following the spinor summation is suppressed); now
S(Jy, ¢) is automatically antisymmetric and we may write

S 905=8W, §)+iS(JY, ¢), ®)

so that in both cases what fixes the Hilbert space and the properties of
the operators is the complex structure J. In particular, we must
choose J such that the Hamiltonian H is a positive operator.

This is at the 1-particle level; at the level of the Fock space, the
creation and annihilation operators also depend critically on the
complex structure J. To see this we recall equation (1):

a(if)= —ia(f)
a*(if)y=ia*(f).
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Therefore in terms of the real-linear self-adjoint field,

O(f)=(#/2)"*[a(f) +a*(/)],
we have3?
a(f)=(2h) " '2[O(f) +i®(if)]
a*(f)=(2h)"2[O(f)—i®(f)], ©)

and, as follows from the action of a, a*, we see that

La(f), a*(9)]: =</ 9D»

and that for fermions

[@(f), ©(g)]. =hS(f, 9),

while for bosons

[O(f), D(g)]- =ik (f, g).

In the present approach it is the field @ that is considered
fundamental, defined by an algebra independent of the complex
structure J. If, in the foregoing, we consider the Hilbert space complex
numbers given by J, we obtain from (9) new creation and annihilation
operators:

a;(f)=(2h) " V2[D(f) +i®(Jf)]
aj(f)y=(2h) " 2[(f)—i®(Jf)], (10)

The field @ is called the Segal field. It is real-linear, causal, and
self-adjoint.3® Assuming that it is given, the freedom in the particle
interpretation corresponds to the freedom in the choice of J. Once Jis
chosen, then (10) tells us what are to count as creation and
annihilation operators, and it is J that tells us the (anti)commutation

32 Usually the factor /A appears only in the relationship between the Segal field and
the creation and annihilation operators in the bosonic case. The issue here is a little
subtle and I shall not pursue it. For a conservative critique, see Rosenfeld (1963: 355).

33 In non-relativistic quantum mechanics, the Segal field is of the form P + Q, where
P and Q are the momentum and position operators. Its physical interpretation is
obscure; mathematically, it is the generator of the Weyl algebra of the fields {boson
case), and algebraically, it generates the Clifford algebra of the fields (fermion case).
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relationships for a;, because it defines the inner product (., .»; (via
(8)). In this way, we find3*

La;(f), a3(g)] s =</, 97,
Lan(f), ax(@)] s =<{fs $On- (11
As we have seen, if we choose the complex structure
J=iP* —iP~

(where P¥ are projection operators on to the positive- and negative-
frequency subspaces of V), the negative-frequency solutions no
longer have negative energy in the sense of Schrédinger, i.e. according
to (6). We shall call this choice of J the particle complex structure. We
make the natural assumption that the negative-frequency states are the
positive-energy antiparticle states.

Now consider the relationship between the creation and annihila-
tion operators defined by the natural and particle complex structures
(what we shall call the natural and particle creation and annihilation
operators). The two are linked through the Segal field ®, which is
independent of the complex structure. We see that:

(21)2ay(f)=O(f) +iD(if ) =@(f) +i®[J(P* —P7)f]
=®(f ")+ O(f 7)) +iD(Jf T)—i®(Jf )
=(2h)2[a,(f ") +a}(f )],

and similarly for a%(f); that is,?*
ay(N=a,(f ") +af(f™)
af(f)=a,(f ") +a¥(f").

We see that the natural annihilation and creation operators are
combinations of annihilation and creation operators for particles and
antiparticles; this is just the particle interpretation of the (usual)
physical fields, for example the Dirac field ¢ and its adjoint ¥*. We

34 Quantities defined with respect to the natural (or particle) complex structure
have subscript N (respectively, J).

35 Sofaras I know, these equations first appeared in Bongaarts (1972). Segal treated
only the real scalar field; for the treatment of the complex scalar field, see Saunders
(1989, sect. 3.4).
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can therefore identify a, with ¥, etc., and a,(f *) with b, a,(f ) with
d, and a*(f 7), a*(f *) with b* and the d*, respectively.>®

Now that we have the particle creation and annihilation operators,
we can canonically second-quantize any 1-particle operator. Since for
the identity 1,

<f+a ﬂg_>1=<f+9g~>J=0:
we have from (5) that

dT,(1) =§ ay(fia,(fe) =§kl af(fda;(f¢) +; aj(f)a,(fi)-

Therefore with the obvious identifications,
dI,()=N*+N".

Similarly, one sees that the total energy is positive: if H, is the
Hamiltonian defined by the natural complex structure, then —iJHy is
the particle Hamiltonian which is clearly positive (what we denoted H
in (6)), and its second quantization is the sum of the energy of all the
particles and the energy of all the antiparticles. The 1-particle charge
operator, on the other hand, is given by iJe; obviously, the positive-
frequency states have eigenvalue —e, and the negative frequency
states have eigenvalue + e; the total charge operator is its canonical
second quantization:

dl,(iJe)=—eN* +leN~.

In fact, all the global kinematic observables can now be obtained
by a canonical second quantization with respect to the particle
complex structure. At the same time, since we now see that the
physical fields are the natural annihilation and creation operators
(with their particle interpretation fixed by the particle complex
structure), the conventional theory can now be understood as a
canonical second quantization with respect to the natural complex
structure followed by normal-ordering. Both the Fock space action of
the natural creation and annihilation operators and the normal-
ordering process are defined by the particle complex structure.

1t is helpful to prove this equivalence in detail. For this we need the
explicit relationship between (., .>; and (., .>y. From (7}, (8) it
follows that

36 The identification is figurative (see fn. 17).
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fooon={fs &x,

whereas

L= 9 On+g7.f Dn- (12)

(Note carefully the order of f and g.) We also need the relationship
between 1-particle operators defined by the two complex structures.
To determine this we consider only those observables X which can be
obtained from the classical theory and which preserve the two
complex structures; X then generates a one-parameter group of
orthogonal transformations on ¥, which is the same as the group of
transformations generated by X, on ¥y and by X, on V, (each as
generators of unitary transformations with respect to the relevant
complex structure). It then follows that

Xy=—iJX,. (13)

(We have already used this relationship above.)
The equivalence in question is therefore between

dly(Xy): = 32 ag(f) {fes XnSpnan(f)):
kj

(where we must normal-order with respect to the action of ay on
F(V,), that is in terms of the particle complex structure J), and

dU,(X ) =3 af(f) {fe> Xsf25a,(f)-
kl

In evaluating the first expression, the requirement that the Hamil-
tonian flow generated by X preserves the complex structures (in
particular J) means that Xy, X, do not connect negative- and
positive-frequency states (i.e. (f *, Xpf d>u=<f", X, ™ >,=0). We
then obtain

dy(Xy): = Z La¥(fa,(f) S Xnf O
Kl

—ay(f)a,(f ) S » Xnfi Ond

(Note carefully the order of the indices k, 1; the minus sign is due to
normal ordering.) From (12) and (13), it now follows that

<fk+9 XNfl+>N=<fk+’ XJfl+>.l
<fk~a XNfl_>N= ‘<fl‘3 XJfk_>J’
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and we obtain

dly(Xy): = kz; La¥(fa,(f ) X f T,
+aj(f7)a, (ST XS ol

that is,
:dly(Xy) s =dI (X)), (14)

as claimed.

8 Interpretation

What is the upshot of all this? We cannot say that the conventional
theory is equivalent in all respects to the canonical second quantized
theory with respect to the particle complex structure; this is true only
for a limited class of global operators (which preserve particle
number). In particular, the equivalence does not hold for local
multiplicative operators, for these connect positive- and negative-
frequency states. (They are ‘odd’ operators, in the sense of
Schrédinger; equivalently, they do not commute with J.37) For these
the RHS of (14), if considered a perturbation, would induce
transitions from particle to antiparticle states, which would be a
complete disaster. In this situation we must read back from the
standard formalism; it seems that the complex structure must also
change under the evolution. One must abandon or extend the
canonical theory, because one does not have a fixed Hilbert space (of
the form & (V})) to host a unitary evolution.

In the standard formalism, the LHS of (14) still makes sense as an
operator on & (V;): that is why it is possible to develop a formal
perturbation theory. From the canonical point of view, the standard
formalism is a quantum mechanics over two complex structures; the
natural complex structure is used to determine the creation and
annihilation operators (which are the physical fields) and the

37 There are intimate connections with the problem of defining a (position space)
Born interpretation in relativistic theory; in the Foldy—Wouthuysen representation,
equivalently the Newton—Wigner representation, J is a local operator. To keep the
discussion within reasonable bounds I shall not pursue the matter here; relevant
material may be found in Segal (1964), Goodman and Segal (1965), Streater (1988),
and Saunders (1989).
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canonically second quantized operators, but their action on Fock
space is expressed in terms of the particle complex structure. (The
physical Fock space is #(V}), and not & (V)= (V).) Just because
the two complex structures do not coincide, the operators :dI'y(Xy):
(or dT'y(Xy), for that matter) contain products of linear combinations
of particle creation and annihilation operators. Therefore, they
describe pair creation and annihilation processes.

In the non-relativistic field theory, the particle complex structure is
identical to the natural complex structure. In this case the physical
fields are simply the canonical particle creation and annihilation
operators; in the 1-particle theory, every real-linear operator extends
to a complex-linear (or antilinear) operator. The implication of the
foregoing is that these are special features of the non-relativistic limit
which do not survive in the relativistic theory, not even in kinematics.

There is also the implication that in some sense the relativistic
theory is the canonical theory where the concept of charge replaces
the concept of particle. What the natural creation and annihilation
operators (the physical fields) create and destroy are units of charge.
The natural complex structure attaches to the charge, and the particle
complex structure to the particle number. This is borne out by the
role of the total charge and number operators as generators of phase
transformations (gauge transformations of the first kind). The charge
generates phase transformations in the physical fields; i.e.,

exp(idl'y(1)6) :ay(f)—>ay(exp(if)f)=exp(—if)ay(f)

(using the antilinearity of a, on % (}Yy)), but the number operator
dI',(1) generates phase transformations in the complex numbers that
are used in the Hilbert space:

exp(J dI';(1)6) :a,(f)—a,(exp(J6)f) = exp(—ib)a,(f)

(using the antilinearity of a; on & (V,)). For example, if we express the
action of exp(i dI'y([)6) on ay, in terms of the physical Hilbert space
F (V,), we find the curious properties that we noted were required in
the Weinberg construction:

ay(f)—>ax[exp(i6)f1=a,[exp(JOf * )]+ ajlexp(—Jof 7)]
=exp(—if)a,(f ) +exp(—if)aX(f 7).
Therefore, despite the fact that according to the canonical theory the

annihilation and creation operators transform oppositely, the
particle annihilation operator and antiparticle creation operator
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transform in the same sense under the gauge transformations of the
physical fields. We see explicitly that the gauge transformations of the
Dirac fields are induced by gauge transformations on the Hilbert
space, but by the natural complex structure and not by the particle
one. The conserved quantity is the charge;*® the conserved quantity
under rotations in the particle complex structure is the particle
number. Because the interaction Hamiltonian is required to be
gauge-invariant with respect to the natural complex structure (i.e.
bilinear in the natural annihilation and creation operators, the Dirac
field, and its adjoint), it is the former and not the latter that is
conserved in the dynamics.

It is now easy to understand why the charge conjugation operator
has such different properties in the 1-particle theory and in the
standard formalism. Recall that this operator is unitary in the field
theory, but antilinear in 1-particle theory; further, it does not (as it
should) change the sign of the 1-particle charge. We can formulate
these differences as follows. Whereas

Q::dly(—el): » — :dly(—el):,

in the 1-particle theory the operator —el is invariant under any
unitary (or antiunitary) mapping defined on V). But there is a
corresponding map on ¥, because :dI'y(—el): =dI',(ieJ) and the
latter is a canonical second quantization (with no normal ordering);
hence in particular T'(U) dT',(X\[(U) "' =dI"(UXU ') (where U is
unitary if and only if I'(U) is unitary). On V, the charge conjugation
must be unitary.

This is just what we find; a simple calculation shows that
(Jf)¢=Jf.3° With respect to our new notion of complex numbers, the
charge conjugation is linear, despite the complex conjugation
contained in its action (intuitively, (J(f; +f5 )= —if f°+if; ‘'~
—if [ +if S =J(f{ +f5)=Jf). At the same time, the 1-particle
charge now changes sign, because it is no longer the identity on V;,
but rather the operator eiJ, so that under % (using its linearity with
respect to J, and antilinearity with respect to N),

CeiJE 1= —eil.

38 Strictly speaking, we should be second-quantizing — el rather than [ to obtain the
physical charge.

3% In detail: in a representation with y° real, one has y°=y%, y%y*Ty%=y* (} is
complex conjugation followed by matrix transposition). Recalling that €y*¢ =
—yH, PE=tiy'p /m, then (Jf ) =€y"Jf= —i€y" (y*p YW €~ f  =iy'p fo=Jf".
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In summary, we are led to a point of view in which the (linear)
standard formalism appears as a quantum mechanics of charge
(‘charge dynamics’), represented (through the normal ordering) in the
kinematic limit as a quantum mechanics of particles. In both cases the
quantum mechanics is in canonical second quantized form. On this
view there is no non-trivial particle dynamics on a fixed complex-
linear space (not even in Fock space*®); that is, there no particle
Hilbert space description of the dynamics. In the kinematic case, only
observables that commute with J can be defined.

To pursue these implications would take us too far afield and into
difficult terrain. For what it is worth, C*-algebra theory also leads to
a similar conclusion, in so far as one finds that the evolution cannot be
unitarily implemented within any one representation, and in semi-
classical quantum gravity the metric dependence of the particle
interpretation of quantum fields has a natural expression in terms of
inequivalent complex structures on Hilbert space.*’ The almost
complete failure of the constructive programme in quantum field
theory—in which the existence of a particle Fock space is an axiom—
is in itself remarkable.*? The present theory offers a new perspective
which is both simple and radical. It is simple because (for linear fields)
the standard formalism can be understood as a canonical second
quantization; contact with the Il-particle theory is preserved.
Relativistic quantum theory is cast into a form almost identical to the
non-relativistic theory. It is radical because the modification of the
complex structure ramifies throughout the interpretive and mathe-
matical framework of the theory.*® It may be that one can formulate a

40 In the present framework Fock space is defined as # (V); J cannot be preserved
by the evolution.

41 See Ashtekar and Magnon (1975), Woodhouse (1980: 284-7). For a self-
contained introduction along more conventional lines, see Birrel and Davies (1982).

42 This programme has culminated in the result that 1¢* theory in 3 + 1 dimensions,
a super-renormalizable quantum field theory, has in fact only the trivial solution S=1.
A similar conclusion seems to hold for QED itself. For a review see e.g. Huang (1989).

43 1t seems to me that the absence of complex linearity during interactions, or with
respect to certain operators, may have a decisive bearing on measurement theory. As I
have argued elsewhere (Saunders 1988), the measurement problem requires exact
mathematics; we know that the world is not Galilean, and that relativistic effects,
however small, are always present in the measurement process. See also the conjecture
of Maxwell (1988), according to which scattering processes differing in particle number
for the outgoing states should not be considered coherent, and that of Penrose (1989),
where the ‘l-graviton® criterion (for longitudinal gravitons) likewise signals the
breaking of coherence. The present framework may provide a theoretical basis for these
conjectures.
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theory in which the complex structure is changing with time;
however, we must first formulate an interpretation of a Hilbert space
theory in which the usual local operators are no longer complex-
linear. If these things can be done, we will have an interpretation of
relativistic theory of some beauty; the complex numbers of the
Hilbert space theory will determine the particle interpretation and
will themselves change with time, subject to the dynamics. In this way
the existence of particles is built into the dynamics. For linear
interactions this could even be studied at the 1-particle level.

This is a radical view; a more conservative approach is that there is
no exact theory of interactions, not because complex linearity fails
but because the standard formalism is incomplete.** Actually, the
best one can do is claim that, so long as one has a scattering situation,
there is a relativistic quantum theory on a particle Hilbert space.
There is, after all, a clear enough intuition of a particle dynamics, in
which an incoming particle state evolves into a coherent superposi-
tion of outgoing particle states, all within a fixed Hilbert space. This
seems to conform to the basic framework of elementary quantum
mechanics.

But charge superselection, the fact that only gauge-invariant
operators count as physical observables, is not an incidental feature
to this picture; on the contrary, charge superselection, and with it the
construction of a field theory over the tensor product of the particle
and antiparticle Fock spaces, can be looked on as a way of rewriting
quantum mechanics over a ‘number’ field with imaginary unit of the
form J, in the conventional format of the non-relativistic theory. The
unrestricted complex linearity of the non-relativistic theory is
preserved through elaborate constraints on what is to count as an
observable. The distinction between the two Fock spaces still
depends on the decomposition of the field into positive- and negative-
frequency parts (this is why we need a scattering situation); each Fock
space has the natural complex structure, but the usual self-adjoint
operators of elementary theory cannot act on these spaces. (They map
states out of each Fock space altogether.)

Is this unrestricted complex linearity? This may better be
considered a fiction; if it is so qualified at the relativistic level, the

44 This point of view is particularly natural in path-integral quantization. Although
the present theory indicates that the standard formalism actually describes the
dynamics in the natural Fock space (‘charge dynamics’), the path-history space
appears to preserve complex linearity at the expense of unidirectional evolution in time.
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unrestricted version that appears when we descend to the non-
relativistic limit may be an idealization of no fundamental physical
significance.

I shall conclude with a last look at the negative-energy sea. The
complex structure J leads to a reinterpretation of the negative-energy
solutions, much as did the hole theory; consider now their
relationship. Here we must bear in mind the fact that the Dirac
negative-energy sea enforces a dynamical interpretation as well as a
kinematic one. The properties of antimatter were deduced both from
the assumption of the Dirac vacuum and from dynamical considera-
tions (transitions to vacant negative-energy states with the emission
of energy). By means of the exclusion principle, these properties could
be deduced from the physical picture of the vacuum.

Consider now the following theorem, which holds when V'is a finite
(say s)-dimensional space. (I owe this observation to Professor
G. Segal of the Mathematical Institute, University of Oxford.) In the
fermion case the natural Fock space is the exterior algebra over V,
ie Vo@i-; Al_, V; (where each V, is a copy of V and V,, is the
one-dimensional vector space C). Consider each n-particle sub-
space Al., V; there is a unique antilinear isomorphism with the
(s —n)-particle subspace, or a linear isomorphism = with the
complex conjugate {s—n)-particle subspace:

n s—n
AV Vi. 15)

i=1 i=1
(This is the generalization of the Hodge x-operator to the complex
case.*®) For the negative-frequency subspace of ¥ (the antiparticle
states), this is equivalent to replacing the action of multiplication by i
by multiplication by —i, so it also implements the change from the
natural complex structure on these states to the particle complex
structure. It does so, however, by replacing a vector in the
n-antiparticle state by a vector in the (s— n)-particle state. But this is
the prescription of the Dirac hole theory; the vacuum state, with n=0
and s infinite, is replaced by the (s—n=oco)-particle state*®—the
negative-energy sea. We can guess what is going on; even when n#0,

45 The Hodge * transformation is an isomorphism resting on the canonical duality
between differential forms and tangent vectors. For real spaces this duality is bilinear;
in the complex case it is sesquilinear. (There is no positive-definite non-singular bilinear
form on V' x V, with V complex.)

46 Note that, for s finite, both states are rays, i.c. one-dimensional.
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(15) continues to ensure that the ‘Dirac dual’ (s —n)-particle state,*’
using the natural complex structure, is equivalent to the physical
n-antiparticle state using the particle complex structure. The holes
behave as do the antiparticles.*®

We see that the Dirac vacuum enforces a different notion of
complex numbers at the Hilbert space level from that suggested by the
non-relativistic theory. We may conclude that the negative-energy
sea is what the particle vacuum looks like using the wrong notion of
complex numbers (the natural complex structure). If the particle
vacuum is to appear really empty, then we must use the particle
complex structure at the Hilbert space level.
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The Vacuum on Null Planes

GORDON N. FLEMING

1 Historical Introduction

In 1949 Dirac published a comparison of three distinct approaches
that one could take to describing the initial conditions and dynamical
evolution of Lorentz covariant quantum theory (Dirac 1949, 1950).
One motivation for presenting the comparison was Dirac’s recogni-
tion that, in the two approaches that were not used at the time, the
description of dynamical evolution had simpler properties, in some
respects, than those in the conventional approach. The conventional
approach was called by Dirac the Instant Form of quantum
dynamics, and the two alternatives were called the Front Form and
the Point Form.

The Instant Form employs the specification of initial data and
fundamental commutation relations among the basic dynamical
variables on spacelike hyperplanes, which can always be associated
with a definite instant in some inertial frame (Fig. 1). The dynamical
evolution of the system is determined by the structure, expressed as a
functional of the basic dynamical variables, of those Poincaré group
generators which, interpreted actively, are associated with transfor-
mations that change the initial data hyperplane.! In that frame of
reference in which the initial data hyperplane is instantaneous, those
generators are: (1) the time component of the total 4-momentum
(Hamiltonian), for infinitesimal time translations, and (2) the boost
generators, for infinitesimal reorientations of the hyperplanes. The
remaining six generators of the Poincaré group—those for spatial
translations and rotations—correspond to transformations that

© Gordon N. Fleming 1991

Presented to the 1987 Oxford University Symposium on the Vacuum in Quantum
Field Theory, June 1987.

! T take ‘Poincaré group’ to be synonymous with Inhomogeneous Lorentz group.
See Wigner (1939); Wightman (1960: 159).
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Py A %

FiG. 1 Spacelike hyperplanes and the light cone for Instant Form
quantization (in 2+ 1 dimensions).

leave the instantaneous hyperplanes unchanged but transform sets of
initial data on them into other possible sets. These transformations
comprise the so-called stability group of the instantaneous hyper-
planes; and, whether instantaneous or not (a frame-dependent
matter), the stability group of any spacelike hyperplane is isomorphic
to the six-parameter Euclidean group of spatial translations and
rotations. As stated before, this is the conventional approach to
relativistic quantum theory, with which we are all familiar, and even
my arguments on behalf of hyperplane dependence? are just intended
to foster the explicit exploitation of the hyperplane dependence that is
inherent in this scheme and/or can be consistently added to it.

In the Front Form, as envisaged by Dirac, the initial data and the
fundamental commutation relations are presented on null hyper-

2 Fleming (1966, 1985, 1988); Fleming and Bennett (1989).
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planes, or null planes for short (Fig. 2). These null planes are flat
three-dimensional sections of Minkowski space-time which are
tangent to light cones and thus, in any inertial frame, have the
‘appearance’ of an advancing wave-front of a plane electromagnetic
wave in vacuum.The dynamical evolution of a physical system in this
scheme is monitored from null plane to null plane either by
translation, with the null plane remaining parallel to itself, or by
reorientation (sliding around the light cone), but always preserving
the null-plane character. It turns out, as Dirac discovered, that null
planes have a seven-parameter stability group, so that the dynamical
evolution is determined by the structure of only three independent
generators of the Poincaré group. To put it another way, when
interactions are turned on in the Front Form, only three Poincaré
generators change their structure. In Dirac’s view, this recommended
the further study of the Front Form to the physics community.

The three Poincaré generators that carry the dynamical structure
in the Front Form are not any of the ten generators with which we are
familiar from our experience with the Instant Form. Instead, one
-analyses the Poincaré group with respect to those subgroups and
quotients associated with the transformation and propagation of
null-plane data. In the context of that analysis, the three dynamical
generators appear, the remaining having purely kinematical roles to
play. From this analysis one learns that the stability group of a null
plane is isomorphic to {(E, x D) x T,, where D is the dilation group.

In the Point Form the initial data and fundamental commutation
relations were given on Lorentz-invariant hyper-hyperboloids of
revolution lying inside future light cones. As indicated by their
definition, the stability group for these hyper-hyperboloids is
isomorphic to the homogeneous Lorentz group, leaving the four
translation generators to carry all the dynamical structure. The
advantage in this form is that the dynamical evolution is generated by
a subgroup of the Poincaré group and the subgroup is Abelian.
Nevertheless, with the exception of a few studies exploring the general
formalism,? this form has not enjoyed any subsequent development,
and I will not refer to it further.

The Front Form, however, after lying neglected for two decades,
was rediscovered in the late 1960s in the context of so-called current
algebra calculations in high-energy particle physics. These calcula-

3 Fubini et al. (1973); Sommerfield (1974) di Sessa (1974); Gromes et al. (1974).
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Fic.2 A null hyperplane with associated coordinates and the light cone for
Front Form quantization (in 2+ 1 dimensions).

tions depended critically upon the use of clever approximations for
performing a sum over a complete set of intermediate states in a non-
perturbative calculation. of matrix elements of commutators of
generalized charge and current operators. Fubini and Furlan (1965)
showed that these clever approximations were much more easily
come by and justified in an inertial frame in which the 3-momentum
of some physical system of particles was very, very large, approaching
infinity in the ideal limit. In 1966 Weinberg provided an ‘explanation’
of the utility of these infinite momentum frame calculations by
showing that in perturbation theory, treated in the old-fashioned
time-ordered way (Heitler graphs rather than Feynman graphs), all
vacuum fluctuation graphs and the troublesome Z-graphs disap-
peared (Weinberg 1966). Susskind (1968) and Bardacki and Halpern
{1968) then showed that the infinite momentum limit methods were
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equivalent to calculations with new time coordinates which labelled
members of a set of parallel null planes. With this, Dirac’s idea had
been rediscovered. Then in the 1970s, systematic expositions of
standard quantum field theories in null-plane form,* as well as
rigorous studies of the foundations of null-plane quantization of
fields,> appeared. The essential upshot of these studies, which by no
means exhausted all the important issues that could be addressed,
were as follows.

1 In the absence of interactions, null-plane quantization of fields
is physically equivalent to conventional Instant Form quantization of
fields. They are two forms of the same (trivial) theory.

2 Notwithstanding this equivalence, the number of independent
basic dynamical variables is essentially cut in half when one makes the
transition from Instant Form to Front Form or null-plane quantiza-
tion. Whereas in the Instant Form the commutator (anti-commu-
tator) algebra of the basic fields is, modulo constraints, Abelian
{(anti-Abelian) and must be augmented by the canonical conjugate
fields to form an irreducible algebra, in the Front Form the basic
fields themselves already form an irreducible algebra and the
canonical conjugate fields are explicit functionals of the basic fields.

3 The vacuum appears to be trivial in null-plane quantized field
theory! In other words, if one defines the free-field vacuum in the
usual way, as the state devoid of field quanta, then turning on
interactions does not modify, or undermine, the defined vacuum. The
quanta-free state remains the stationary ground state of the system.
This means that an interaction-independent Fock space structure can
be identified (Fock 1932, 1934) and Haag’s Theorem (Haag 1955),
prohibiting the interaction picture, does not apply. Perturbatively,
this triviality of the vacuum can be attributed to the positive semi-
definite spectrum of one component of the null-plane 3-momentum.
Such a spectrum prohibits the virtual creation or annihilation of
quanta out of or into the vacuum.

4  The invariance of the vacuum is not the invariance of the world!
That is, Coleman’s Theorem (Coleman 1966) does not apply to null-
plane quantization. Again, this is a consequence of the spectrum
condition mentioned above, coupled with the fact that for massive

4 Kogut and Soper (1970); Rohrlich (1971); Chang et al. (1973); Chang and Yan
(1973); Yan (1973); Casher (1876); Bart and Fenster (1977).

> Leutwyler et al. (1970); Driessler (1975, 1977); Gal-Ezer and Horwitz (1976);
Streit (1977).
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states the lower end of the semi-definite spectrum corresponds to
infinite energy.

5 Inthe absence of interactions, the field algebras for a given spin
but different masses, restricted to a null plane, are unilateraily
equivalent (Leutwyler et al. 1970). This reversal of the situation found
in Instant Form quantization is ultimately traceable to the mass
parameter not appearing in the momentum-space-invariant volume
element when null-plane variables are employed.

Spurred by these developments, a number of workers adopted null-
plane quantization ideas to the introduction of relativistic bound
state wave functions for dealing with quark models of hadrons.® At
the same time, however (late 1970s), strong cautionary notes were
sounded concerning the singular nature of certain calculations in the
null-plane formalism,” and the apparent absence of some desirable
features for building a rigorous scattering theory such as the cluster
decomposition property (Suzuki et al. 1976). Unfortunately, these
questions and doubts concerning the internal consistency of null-
plane quantization were not finally resolved before the interests of the
theoretical physics community were redirected by the move to centre-
stage of the topics of instantons and non-perturbative vacuum
structure,® supersymmetry,® and, lastly, string theories.*®

Today the null-plane quantization of fields is no longer systematic-
ally studied. We do not really know whether it is equivalent, in the
presence of interactions, to the Instant Form quantization of fields.
The apparent triviality of the vacuum is prima facia evidence that it is
not so equivalent, at least not for modern field theories with complex
vacuum structure (Aitchison 1985). But where and why does the
equivalence break down, and could it be reinstated with some fixing?
Can one even address the Casimir interaction problem in the context
of null-plane quantization?'! We don’t know, and nobody seems to
be studying the problem. On the other hand, several workers still use
null-plane perturbation theory to do high-energy collision calcula-

6 Ida and Yabuki (1976a; 1976b); Berestetsky and Terentev {1976); Terentev
(1977); Thorn (19794, 1976).

7 Hagen and Yee (1976); Singh and Hagen (1977); Steinhardt (1979).

8 Coleman (1977); Callan and Coleman (1977).

° Wess and Zumino (1974a, 1974b, 1974c); Wess (1976).

10 Scherk and Schwartz (1974); Gliozzi et al. (1977); Green and Schwartz (1984,
1985).

11 See Casimir (1948); Ambjern and Wolfram (1983).



The Vacuum on Null Planes 117

tions, and use null-plane quantization concepts to analyse hadrons as
quark-bound states.’? All of this is carried out with total neglect of
the underlying vacuum structure problem. Is this a justifiabie or even
a consistent practice? We don’t know!

In the following sections, I will present a survey of some of the
concepts and technical ideas involved in null-plane quantization and
its relation to Instant Form quantization. No pretence is made to
either exhaustive coverage or rigour of treatment. The discussion
should be adequate to give readers unfamiliar with null-plane
quantization a feel for the issues involved in the following questions:
Is null-plane quantized field theory physically equivalent to Instant
Form quantized field theory in those cases where interactions are
present {(especially if non-perturbative methods must be employed to
extract the consequences of the theory), and, if they are not
equivalent, coud they be made equivalent by ‘modest’ adjustments?
To illuminate these issues, I discuss the kinematics of null-plane
coordinates in Section 2, free-field quantization for a scalar field in
Section 3, and vacuum structure in Section 4. In Section 5 I briefly
entertain two conjectures on how the apparent incompatibility of
null-plane and Instant Form quantization might be removed by
‘modest’ adjustments.

2 Null-Plane Coordinates and Poincaré Transformations

A null-plane coordinate system is one in which the expression for the
invariant interval, AS?, between two space-time points, takes the
off-diagonal form

AS?=2Ax*Ax~ —Ax? 1)

where Ax is a Euclidean two-vector. The coordinates x ¥, x ~, and
x=(x', x?) can always be related to some Minkowski coordinate
system (inertial frame) by

Xi

% (x°+x3),  £=(x', x?). @

12 Hornbostel, Brodsky and Pauli (1990).
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The invariant form (1) corresponds to a metric tensor of the form

+ - 1 2
+ 0 1 0
— tr 0 0 o0
"= 0 0 -1 0 ®)
2 0 o0 0 -1
which, in turn, yields the inner product
px,=p°x°—p-x=p*x"+ppT—p-X 4)

where p* are defined in the manner of (2).

Making the conventional choice to regard x * as the ‘time’ variable,
we see that different values of x* designate different members of a
family of parallel null planes.To apprehend the action of the Poincaré
group transformations on these null-plane coordinates and the
parallel null planes singled out by them, it is convenient to break
down the Poincaré transformations into subsets. The general
Poincaré transformation can be analysed into a composition of
transformations from these subsets. We begin with members of the
stability subgroup.

(i) Translations in the null plane:

x'=x"4a", X =x+a, xt=x*. (5
(ii)) Rotation in the null plane:
x¥'=x%* = xX'=cosx+sin 0% ; (6a)
- — 2 1
X =(x* —x7). (6b)
(iii) ‘Galilean boost’ in the null plane:
_ U)? _
x"=x'—U’>E+( 2) xT, ¥=x—U"x"; (7a)
xT=x". {(7b)

(iv) Dilatation:

)

o
=
b
I
—
S
-
=
[
i
l
=
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All the transformations that can be formed from these sets by
composition leave the x * =0 null plane unchanged. Such transfor-
mations form the stability group of the x ¥ =0 null plane. This is a
seven-parameter group. The restriction to x ¥ =0 is required only by
the dilatations that would clearly alter a null plane with x * #0. As we
will see in a moment, however, for each of the x ¥ # 0 null planes there
is a transformation, different from but analogous to dilatation, which
leaves that null plane unchanged. Continuing with the listing, we have
the following.

(v) Translation of the null plane:
x'=x", X=X, xtP'=xt+at. ©)

(vi) ‘Galilean boost’ of the null plane:

x'=x", X=xX=x-U%x"; (10a)
_ U+)? )
x+’=x+—U+)E+( 2) x". (10b)

These last sets contain transfer motions that change all the x * null
planes. We do note, as promised, that the combination of type (iv)
and a type (v) transformation,

xT=2x", X=X, xV'=ixt+at, an

leaves invariant the particular null plane designated by x* =
a”*/(1—A). This transformation plays the role of dilatation in the
stability subgroup for this null plane.

Several of the transformations have been referred to as ‘Galilean’.
This points to the similarity in their formal structure to Galilean-like
boosts in a two-dimensional Euclidean space. This ‘Galilean’
structure was initially much prized by practitioners of null-plane
dynamics, both for its intuitive appeal (one could use one’s non-
relativistic intuition in setting up calculations) and for the simplifica-
tions in dynamical structure it seemed to impose (see later sections).
Eventually, however, it came to be seen as a two-edged sword,
bringing with it, as it did, unpleasant singular behaviour in many
perturbation theory calculations.
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3 Null-Plane Quantization of Free Fields

The equivalence of null-plane and conventional, Instant Form,
quantization for free fields will be illustrated by the simple example of
a single self-adjoint scalar field. In the case of Instant Form
quantization, the space-time field operator can be expressed in the
form of a Fourier integral as

- o _3 d*k (. )

o(x, x0)=(2m) 32 j Sﬁ{A(k) exp[ik - x —k°x%)]

+ A7 (k) exp[ —i(k-x—k°x°)] (12)

where the 4 * (k) create free quanta with 4-momenta k*= (k% k)=
[/(&k*+x?), k] and satisfy

[AK), AW)]=0;  [AK), A" K)]=2k0*k—-K). (13)

These commutation rules in turn yield the canonical equal-time
commutation rules for the space-time field,

[P(x, x°), d(x, x°)]=0; (14a)
[A(x', x°), Opd(x, x°)] - 3> (x=x). (14b)

We now attempt to simply rewrite these relations in terms of the
coordinates and variables appropriate to nuli-plane quantization.
Introducing

k* =\—/1—2— (k°+Kk3) (15a)
and
k=(k', k%), (15b)
we note that
T Ap+
2k0 3k —Kk)=2k* S(k* —k*") 5*(k-K), (16b)

and

K°x°—k-x=k x*+k*x™ —k-x. 17
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If we add to this the recognition that creation or annihilation of
quanta with four momenta, k, k®=./(k*+«?), is equivalent to
creation or annihilation of quanta with null-plane momenta k, k%,
k™ =(k>+x*)/2k™", we can put

ATKy=A(k k) (18)
and write

dx, x=d(x, x ", x")

kdk* .,
=(2m) 37 Jd 2kd+ {Ak, k™)
explitk-x—k*x =k x*)]

+ ATk kTyexp[—i(k-x—k*x"—k~x*)]} (19)

where
[AK, k"), Ak, k*)]=0 (20a)
[AK, k), Atk kt)]=2k* 8kt —k*")6*(k—F) (20b)
and
k242
k™= (20¢)

The basic space-time commutation relations are now to be evaluated
at equal x* rather than at equal x°, i.e. on members of the
appropriate family of null planes rather than on instantaneous
hyperplanes. Using (19) and (20), we find

[BGE, x5 x %), (%, x 75 x )] = fo(x " —x ) 65— %), (21a)
[P(F, x ;xT), 0 (%, x ;x¥)] =1 8(x~ —x7")6}x—%). (21b)

As these last are the basic commutation relations postulated for
null-plane quantized scalar fields, we see that in the case of free fields
null-plane quantization is just a simple rewriting in null-plane
coordinates of conventional, Instant Form quantization.

We are immediately moved to ask what it is that blocks this
rewriting when interactions are present. In simplest terms, the answer
is that in the presence of the interactions the quantities

AK)exp(—ik®x°®)  and  A*(k)exp(ik®x®) (22)
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occurring in (12) become
Ak, x% and Atk x°), (23)
while the quantities
Ak, k)exp(ik™x*) and ATk kMexp(ik~x*) (24)
occurring in (19) become
Ak, k*',x*y  and  AY(k k', x7) (25)

It is now impossible to establish the connection between (23) and
(25) prior to solving the non-trivial, nonlinear equations of motion
for the interacting fields. If we assume equivalence of the two forms of
quantization, then a temporally highly non-local relation between the
two types of creation and annihilation operators can be written down.
But in the absence of the assumption, we cannot test for the
satisfaction of this relation without solving the equations of motion.

Returning now to (21) we note that the equal null-plane
commutator for the field with itself is not zero (21a), while the
commutator of the field with its canonical conjugate (21b), is
obtained by explicit differentiation, on the null plane, of the field—field
commutator. To confirm that the canonical conjugate to the field is
just the x ~ derivative of the field, and thus is a null-plane generalized
functional of the field, we need only rewrite the free field Lagrangian
density,

Lix)=3{0"$(x) 0,p(x)—k*$*(x)}, (26a)
in null-plane coordinates,
L(x)=3{20,¢(%, x7,x ;x") 0_d(x,x ;x7)
—3p(%, x s x ) 0(x, x T3 x ) —Kk2P(X, X5 x )}, (26b)
This yields

N OL(x,xT;xT)
XX )= 35 g i x )]
=d_¢E,x";x%). 27)

The factor of 1 occurring in (21b) as well as the non-vanishing of
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(21a), can be traced to the functional dependence of ¢(%, x ~; x ) and
II(x, x ~; x ), which renders the standard canonical commutation
relations internally inconsistent on null planes.

Since the canonical conjugate to the field on a null plane is
determined by the field itself on the same null plane, it appears that
the field, over all the points of the null plane, comprises an irreducible
set of operators. In other words, every operator in the state space of
the field-theoretic system can be written as a null-plane generalized
functional of the field itself. In particular, the null-time derivative of
the field, 84}3(2, x~;x"), is not required in the functionals. The
dynamical circumstance that permits this is the first-order character
of the equations of motion for the field in null-plane coordinates.
Thus, the wave equation

(O +x2)P(x)=0 (28a)
becomes
(20,0_—*+K>)P(x,x ' xT)=0. (28b)

This equation can be integrated over x ~ to yield

3. 9(% x; x+)=% fdx"&(x‘-x_’)(az—'cz)&(i, x7'5x7)

+arbitrary function of X and x*. (29)

The arbitrary function is set equal to zero on the ground that a
non-zero value would contribute infinite energy to the states of the
system. With this elimination we see that 4, ¢(%, x "; x ) is itself a
functional of the field over the x* null plane, thus confirming the
irreducibility of the null-plane field algebra.

4 Vacuum Structure on Null Planes

There are two intuitively natural ways to define a vacuum state for a
quantum-field-theoretic system. One is that the vacuum is the state of
lowest energy, which energy can conventionally be taken to be zero.
The existence of such a state, necessarily an energy eigenstate,
presumes the energy spectrum of the field system to have a lower
bound. Such a lower bound seems required to prevent runaway
collapse of the world modelled by the system. The second intuitive
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definition of the vacuum state is that it is the state devoid of field
quanta, i.e. the state that is transformed to the null vector, 0, by
application of any annihilation operator. Both of these definitions
appeal to our conception of the vacuum as the state with nothinginit,
the empty state. In the first definition it has no energy, while in the
second it has no quanta, no particles. Unfortunately, in quantum
theory, as we know, the concepts of energy and particles have become
sufficiently subtle as to play havoc with our intuitive expectations. A
third approach to the vacuum concept, closely related to the previous
ones but not quite as immediately appealing, is through symmetry
considerations. The vacuum state is that state which is invariant
under all transformations of the space-time symmetry group of the
theory. We expect the former definitions to yield this feature since, if
the vacuum is empty, how can it appear differently to different inertial
observers?

In practice, these concepts of the vacuum mesh well together in the
absence of interactions, whether one employs Instant Form quantiza-
tion or null-plane quantization. Upon turning on interactions,
however, the null-plane quantization scheme seems to yield a distinct
benefit in that the three conceptions of the vacuum state remain
compatible. In the Front Form quantization scheme the presence of
interactions renders the three conceptions incompatible. The state
without field quanta is not even stationary, let alone free of energy
and space-time-invariant, while the zero-energy, space-time-
invariant state carries a complex array of field quanta. Let’s see how
this works.

In the absence of interactions, the normal-ordered Hamiltonian,
expressed in terms of momentum eigenstate creation and annihilation
operators, is

N d3p . .
Po= J‘ﬁ p°47 (p)4(p)

1 . o
- j pd* )A(p) (30a)

for the instant form, and

+ =2 2
P=Jd" d215<p +")2+(ﬁ,p+>fi(ﬁ,p+) (30b)

2p* 2p*

for the null-plane form. Similar expressions hold for all the generators
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of the Poincaré group of space-time symmetry transformations. For
all these operators, when applied to a state vector, the first thing that
hits the state vector is the annihilation operator, A(p)=A(p, p ™). If
the state in question contains no ficld quanta, it is transformed into
the null vector and we have an eigenvector with zero eigenvalue of the
energy, the null-plane energy, or whatever quantity is represented by
the space-time generator we apply.

Now suppose we turn on interactions. For simplicity we will
assume the interaction to be a normal-ordered A¢(x)* term added to
the Lagrangian density. This will add to the Instant Form energy
operator the term

y) Jd3x: d(x, x0)*: (31a)
and to the null-plane energy operator the term
Afd%zdx—:(z?(x,x—;xﬂ“: (31b)

where the colons signify normal-ordering of the fourth power of the
field. When rewritten in terms of momentum eigenvector creation and
annihilation operators, both of these expressions yield a term that
does not contain any annihilation operators. For the Instant Form
energy, we get the term

ny-o [ L0 Ty pe s,
2p? 2p3 2p3 2pg

/’i +(p1 ’ XO)A‘ +(p2 > XO)A? +(p3’ XO)A‘ +(P4, xO)’ (323)

(P +P2+P3+Pps)

while for the null-plane energy, we get the term

(27[)_6)"Jap1 apz Eps ap4

’3 S(pr + + +
27 207 207 2p7 (py +py +p3 +p4)
8*(p, +152+I53+ﬁ4)1‘i+(171’ pis x+)/i (P2 Py 5x ")
A* Py, p3 s x VAT By pi s x7T) (32b)
where dp=dp* d%p.
Now, on the face of it, when these terms in the energy operators hit

the quanta free state, they will transform it to a linear superposition of
4-quanta states. The quanta free state is no longer the zero-energy
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eigenstate, it would seem. This is true for the Instant Form, but there
is a saving catch for the null-plane form. Unlike the other momentum
variables, the variables p;, ..., p; have a positive semi-definite
spectrum, and the delta function, 8(p;” + p5 +p5 +ps ), can yield a
contribution only if p;' =p,” =p; =p; =0. But this, remembering
(20c), is the case in which each quanta contributes infinite energy to
the system. It seems desirable on physical grounds, and is consistent
with the remarks following (29) systematically to eliminate such
states from the formalism. More rigorously, one can show that if
IQ; x*) is the no-quanta state at null-time x* and if |y) is any
normalizable state such that all its n-quanta state functions are of
arbitrary fast decrease at infinity in all components of the individual
quanta 4-momenta, then

(PP |Q; x*)=0. (33a)

Since the [‘P) in question are dense in the state space, the demand that
(33a) be a continuous antilinear functional of ]‘P) yields

Pl x*)=0, (33b)

and the no-quanta state is the stationary vacuum.

This conclusion holds up when one examines the dynamical
evolution of the system from the standpoint of null-plane perturba-
tion theory. Employing what is sometimes called ‘old-fashioned’ or
‘time-ordered’ perturbation theory, but using null-time ordering
rather than ordinary time ordering, we remember that, at each
interaction (vertex) in the perturbative calculation, all the com-
ponents of the total 3-momenta must be rigorously conserved. But in
the null-plane formalism the 2 component has only a non-negative
spectrum. Thus, no quanta can emerge {rom the vacuum (p* =0)
with non-vanishing p *, not even temporarily as virtual states, and no
set of quanta, with non-vanishing p *, can disappear into the vacuum
without violating p ™ conservation. In the language of perturbation
theory diagrams, this means that all vacuum fluctuation diagrams
and all so-called Z-graph diagrams are eliminated since they violate
p* conservation at the vertices (see Fig. 3). The one loophole of
quanta with all p* =0 emerging from or annihilating into the vacuum
is nicely dispatched by the fact that the corresponding p ~ = oo yields
infinite energy denominators in the calculation, thus killing the
probability for the transition.

We mention in passing that our presumed choice to work with null-
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K'=0
Vacuum fluctuation diagram forbidden
since kT + k3 + k% + k§ = O implies
ki=ky=ki=ki=0.
ky
K=0

K=0  Z-graph diagram forbidden since
ki + k&3 + k% +ki =0, and

0=k} + ki +ki+k; implies
kKi=ki=ki=ki=ki=k=0.

ks

Fi16.3 Null-time-ordered perturbation theory diagrams forbidden owing to
conservation of non-negative total K* at each interaction vertex.

time-ordered perturbation theory is not much of a choice at all. In
Instant Form perturbation theory the relationship between the time-
ordered version and the manifestly covariant Feynman version is just
that in the latter one calculates at once the contribution from all time-
ordered diagrams related to one another by rearranging the time
ordering of their vertices (accompanied by appropriate particle—
antiparticle transformations). In most instances, those rearrange-
ments yield Z-graph structure, which is forbidden in null-plane
perturbation theory. Thus, in the null-plane formalism there is little
difference between time-ordered perturbation theory and Feynman
perturbation theory.
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We now turn to a different aspect of vacuum structure, the
relationship between global and local symmetries. In 1966, Coleman
published a paper with the provocative title. ‘The Invariance of the
Vacuum is the Invariance of the World’. In that paper he showed that
a generalized charge, which can be expressed as the volume integral of
the time component of a local generalized 4-current density, can have
the vacuum as a null eigenvector if and only if the generalized
4-current density is locally conserved. Having the vacuum as a null
eigenvector means that the vacuum state would be invariant under
the unitary group resulting from exponentiating the generalized
charge, while having the generalized 4-current density conserved is
the standard manifestation of an underlying continuous symmetry
via Noether’s theorem, at least in a Lagrangian formulation. This was
a surprising result, since one intuitively expected the vacuum state to
be empty of generalized charges whether a corresponding local
symmetry was present in the theory or not. The consensus that
seemed to emerge from this theorem was that, in the absence of the
corresponding local symmetry, the generalized charges did not really
exist as well defined operators (Orzalesi 1970). In this way one could
avoid the awkward question of the value of such charges in the
vacuum state. With the study of null-plane quantization, however, a
second, welcome, surprise came in the recognition that Coleman’s
theorem did not hold in the null-plane case. Let’s see how that works
at the heuristic level.

First, in the Instant Form quantization scheme, let the generalized
charge be

QxOEJd3Xﬁ°(X, x). (34)

Then, if IQ) is the vacuum state and we assume it is a null eigenvector,
ie. if

0,0|Q)=0, (35)

we have

d . 0
0= g0 Gl = [ @5 5 7' x0)0)

- j dox 3,7%(x, x%)|Q), (36)
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since

closed sutface at
spacelike infinity

jd3xV‘9(x, x°)[Q)=3€ do - §(x, x9)|Q)=0. (37)
For the 4-divergence of the 4-current, however, we have

0, 94(x)=d(x)= exp(% ﬁﬂxﬂ> 43(0)exp< - % f"‘xu>, (38)

and since
PrQ)=0, (39)
we find
O=jd3xanﬁ”(x, xO)[Q)
=exp<% 1‘>°x°> (2nh)*5* (p)$(0)|Q) (40a)
or
83(p)$(0)|Q)=0. (40b)
Now let {(p=0, p°=Mc,.. | denote any null eigenbra of total

3-momentum with definite total energy p°c=Mc?. From (40b), it
follows that

(p=0, p°=Mc, ...|p(0)|Q)=0. (41a)

Since both [Q) and the scalar field ¢(0) are invariant under
homogeneous Lorentz transformations, this last equation is equiva-
lent to

®*, ... |$0)|Q)=0 (41b)
for a complete set of p* eigenbras. Therefore
$(0)|Q)=0. (42)

But it is well known in Instant Form local field theory that a local field
that has the vacuum state as a null eigenvector is itself zero. Thus,

$(0)=0 43)
and from (38),
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$(0)=0,5"(x)=0.
In the null-plane quantization scheme, we start from
Qx+sfdx“d2fﬁ+()3,x_;x+) (44)
and
0.-|Q)=0, (45)
which yields

0--< (Qx+iﬂ>)=fd"" 2% 0, 5% (%,x 75 x7)|Q)
dx

=jdx‘ d?%0, 9%, x 75 x1)|Q). (46)
Once again using (38) and (39), we find, this time,
8(p*) 8 (P)$(0)|Q)=0 (47a)
or
(p*=0,P=0,p =c,...|$0)Q)=0 (47b)

for any null eigenbras of P* and P. But in this case Lorentz
transformations cannot change the p* =0, p~ = co values. Thus we
cannot generate a complete set of total 4-momentum eigenbras by
Lorentz transformations, and thus we cannot obtain the vector
equation (42). Coleman’s theorem does not hold in null-plane
quantization. The null-plane vacuum can be empty of generalized
charge in the absence of a corresponding local conservation law and
associated symmetry.

5 Conjectures on Equivalence

Let us first consider the Casimir effect in quantum electrodynamics
or, more generally, Casimir-like effects in general quantum field
theories (see Casimir 1948). This shall be identified here as the
problem posed by the introduction, into an otherwise vacuum state of
a quantized field, of pieces of macroscopic matter carrying mobile
sources of the quantized field (charged particles) which are con-
strained to remain in the pieces of matter. One calculates the
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geometry-dependent change of energy of the system relative to the
undisturbed vacuum state, and from this, the forces exerted on the
macroscopic matter. The standard approach, in Instant Form
quantized field theory, is to treat the macroscopic matter as simply
changing the boundary conditions on the vacuum fluctuations of the
quantized field and thereby changing the energy of the system.

This will not do in null-plane quantized field theory, as there are no
vacuum fluctuations to modify. It would seem that there, a more
detailed account of the coupling between the matter-bound sources
and the quantized field is required to reproduce the Casimir-like
effects. If'such a treatment were to succeed, it would suggest that the
standard boundary condition approach in the Instant Form is
misleadingly glib and simplistic. It would be interesting to resolve this
question.

Finally, is it at all possible for null-plane quantized field theory to
be equivalent to Instant Form quantized field theory for non-Abelian
gauge fields with non-trivial vacuum structure of the degenerate or
multiple-phase sort found in Quantum-Chromodynamics, Electro-
weak, and Grand Unification theories? On the face of it, our account
of the vacuum in null-plane field theory would suggest that the
equivalence was not possible. The null-plane vacuum seems inher-
ently trivial. We should remember, however, that in order to
determine a unique solution to the field equation for a free scalar field
(and these considerations would continue to apply to all other cases
in null-plane field quantization), we discarded an infinite family of
solutions on the ground that they would contribute infinite energy
to the system. If one could consistently associate these infinite
energies with something like the zero-point energies of distinct
vacuum phases, one might be able to employ the discarded solutions
to model in null-plane quantization the vacuum complexity we see in
Instant Form quantization. In any case, one should not yet regard the
issue of the relationship between the distinct forms of field
quantization, discovered long ago by Dirac, to be closed.
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The Physical Significance of the
Vacuum State of a Quantum Field

D. W. SCIAMA

1 Introduction

Even in its ground state, a quantum system possesses fluctuations and
an associated zero-point energy, since otherwise the uncertainty
principle would be violated. In particular, the vacuum state of a
quantum field has these properties. For example, the electric and
magnetic fields in the electromagnetic vacuum are fluctuating
quantities. This leads to a kind of reintroduction of the ether, since
some physical systems interacting with the vacuum can detect the
existence of its fluctuations. However, this ether is Lorentz-invariant,
so there is no contradiction with special relativity. The aim of this
paper is to discuss the physical significance of these zero-point
fluctuations and to comment on the zero-point energy.

This discussion is not straightforward because we meet at the
outset two fundamental unsolved problems. Despite this handicap,
we can make considerable progress in understanding the subject,
because provisional calculations which have been constructed to
sidestep these problems lead to numerical results for various effects
which are in remarkable agreement with experiment. Presumably,
then, some significance attaches to these calculational procedures,
although a full understanding is still lacking.

The problems are as foilows.

1 The zero-point energy of a quantum field in Minkowski
space-time is infinite.
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This article is a revised version of material to be found in ‘Black Holes and
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2 This zero-point energy can produce no gravitational field if the
Minkowski space-time is to be the consistent background
geometry. Moreover, any actual field so produced (perhaps
associated with a cosmological term in Einstein’s field equations
of general relativity) is known from experiment to be extremely
small on any scale except possibly a cosmological one.

Problem 1 is often solved by arguing that, gravitation apart, the
zero of energy can be changed by a fixed amount without altering any
physically significant quantities. One may therefore subtract out the
zero-point energy of a quantum field in Minkowski space-time,
thereby reducing it to the more comfortable value of zero. Technically
this is often done by normal-ordering the field operators. This process
does not remove the field fluctuations, which, as I have said, are
physically measurable.

Problem 2 remains unsolved. The most attractive proposal made
so far uses the fact that the zero-point energy of a fermion field is
negative, while that of a boson field is positive. Perhaps the fermion
and boson fields that actually exist in nature are such that their zero-
point energies exactly cancel out. This would be true, for example, if
supersymmetry were an exact symmetry of nature, since the
supersymmetry relates fermion fields to boson fields in just the
required way. Unfortunately, we know from observation that
supersymmetry can be at most a broken symmetry. (For example, we
know that there does not exist a spin zero partner of the electron with
the same mass as the electron itself. Any such electron must have a
mass exceeding 80 GeV.) No one has been able to show that the
breaking of supersymmetry could leave intact the cancellation of the
zero-point energies.

A further complication arises from the fact that the physical effects
produced by zero-point fluctuations of the field can equally well be
attributed to other components of the physical system, owing to the
various couplings that exist between the components. This is a very
familiar situation in physics which has caused some confusion in the
literature on our topic, although it is now well understood. To give an
elementary exampie of what is involved, we can consider the classical
electrostatic interaction between two charges. This interaction can be
attributed either to a Coulomb-type long-range effect directly from
one charge to the other, or as arising from a Lorentz force exerted by
the field of one charge and evaluated at the position of the other
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charge. These pictures are related by elementary algebra involving
the equations for the coupling between the various degrees of
freedom, and one cannot say that only one of them leads to a
‘physically real’ representation. This may seem to be an obvious
point, but we will see later that one must be careful about it in
connection with zero-point fluctuations.

In attempting to understand this subject, I have found it helpful to
follow an historical approach, particularly because the idea of zero-
point energy in quantum theory was originally proposed fourteen
years before it was shown to be a property of a harmonic oscillator in
the quantum mechanics of 1925. Numerous attempts to detect zero-
point energy differences in different systems were also made in those
early years, and, as we shall see, the first reliable positive measure-
ment was made only a few months after the discovery of quantum
mechanics, and constituted the first experimental test of that
revolutionary theory.

2 The Zero-Point Energy of a Harmonic Oscillator

Zero-point energy was introduced into physics by Max Planck in
1911. In a renewed attempt to understand the interaction between
matter and radiation and its relation to the black body radiation
spectrum, Planck put forward the hypothesis that the absorption of
radiation occurs continuously while its emission is discrete and in
energy units of hv. On this hypothesis, the average energy € of a
harmonic oscillator at temperature 7 would be given by
1 hv
€= 5 hv + ehv/le .

Thus the oscillator would have an energy Shv even at the absolute zero
of temperature.

Planck abandoned his hypothesis in 1914 when Fokker showed
that an assembly of rotating dipoles interacting classically with
electromagnetic radiation would possess statistical properties (such
as specific heat) in conflict with observation. Planck then became
convinced that no classical discussion could lead in a satisfactory
manner to a derivation of his distribution law for black body
radiation. Nevertheless the idea of zero-point motion for a quantum
harmonic oscillator intrigued physicists, and the possibility was much
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discussed before its existence was definitely shown in 1925 to be
required by quantum mechanics, as a direct consequence of
Heisenberg’s uncertainty principle.

The second argument is more relevant to the subject matter of this
paper. It involves the influence of zero-point motion on the
Einstein—Hopf (1910) derivation of the black body radiation
spectrum. That derivation involved a study of the interchange of
energy and momentum between a harmonic oscillator and the
radiation field. It led to the Rayleigh—Jeans distribution rather than
to Planck’s because of the classical assumptions which were originally
used for the harmonic oscillators and the radiation field. In the
Einstein—Hopf{ calculation the mean square momentum of an
oscillator was found to be proportional to the mean energy of the
oscillator and to the mean energy density of the radiation field.
Einstein and Stern now included the zero-point energy of the
oscillator in its mean energy, in the hope of deriving the Planck rather
than the Rayleigh—Jeans distribution, but found that they could do so
only if they took hv rather than hv for the zero-point energy.

The reason for this difficulty is their neglect of the zero-point energy
of the radiation field itself. It is not a consistent procedure to link
together two physical systems only one of which possesses zero-point
fluctuations in a steady state. These fluctuations would simply drive
zero-point fluctuations in the other system or be damped out,
depending on the relative number of degrees of freedom in the two
systems. This point is fundamental to our later considerations. I
merely note it here, and return to it in detail later on. Parenthetically,
I may add that it was Nernst who, in 1916, first proposed that ‘empty’
space was everywhere filled with zero-point electromagnetic
radiation.

3 The Discussion of Einstein and Stern (1913)

We now know that the main considerations of Einstein and Stern are
wrong, and we mention them here purely for their historical interest.
However, one correct remark that they made will be of importance for
us later on. When one takes the classical limit kT> hv for the Planck
distribution, one finds

hy 1 hy
W‘_—lﬁkT—E hv+hv X O(ﬁ),
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whereas

1 hv hv

In a sense, then, the correct classical limit is obtained only if the
zero-point energy is included.

Einstein and Stern gave two independent arguments in favour of
retaining the zero-point energy, one involving rotational specific
heats of molecular gases and the other, the derivation of the Planck
distribution itself. In the first argument it was assumed that a freely
rotating molecule would possess a zero-point energy. However, we
now know that this is not the case according to quantum mechanics.

4 The Experimental Verification of Zero-Point Energy

For a single harmonic oscillator, the existence of a zero-point energy
would not change the spacing between the various oscillator levels
and so would not show up in the energy spectrum. It might, of course,
alter the gravitational field produced by the oscillator. This is a
difficult question which we shall touch on later. For the experimental
physicists influenced by Planck and by Einstein and Stern, demon-
strating the existence of zero-point energy amounted to finding a
system in which the difference in this energy for different parts of the
system could be measured. It was soon realized that a convenient way
to do this was to look for isotope effects in the vibrational spectra of
molecules. The small change in mass associated with an isotopic
replacement would lead to a small change in vibrational frequency
and so to a small change in the zero-point energy, and in the energies
of all the vibrational levels. These changes might then show up in the
vibrational spectrum of the system.

Many attempts were made to find this effect, but the first conclusive
experiment was made by Mulliken in 1925, in his studies of the band
specttum of boron monoxide. This demonstration (made only a few
months before Heisenberg (1925) first derived the zero-point energy
for a harmonic oscillator from his new matrix mechanics) provided
the first experimental verification of the new quantum theory.

Since then, zero-point effects have become commonplace in
quantum physics, for example in spectroscopy, in chemical reactions,
and in solid-state physics. Perhaps the most dramatic example is their
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role in maintaining helium in the liquid state under its own vapour
pressure at absolute zero. The zero-point motion of the atoms keep
them sufficiently far apart on average so that the attractive forces
between them are too weak to cause solidification. We can express
this in a rough way by defining an effective temperature 7, such that
kT, is equal to the zero-point energy per atom. For helium T,
exceeds a classical estimate of the melting point under its own vapour
pressure. Thus, even close to absolute zero helium is ‘hot’ enough to
be liquid.

5 Dynamic Effects of Zero-Point Energy

Usually the boundary conditions associated with a physical system
limit the range of normal modes that contribute to the ground state of
the system and so to the zero-point energy. A trivial example is a
harmonic oscillator, which corresponds to a single normal mode of
frequency v and so to a zero point energy $hv. In more complicated
cases the range of normal modes may depend on the configuration of
the system. This would lead to a dependence of the ground-state
energy on the variables defining the configuration and so, by the
principle of virtual work, to the presence of an associated set of forces.
One important example of such a force is the homopolar binding
between two hydrogen atoms when their electron spins are antiparal-
lel (Hellmann 1927). When the protons are close together, each
electron can occupy the volume around either proton. The resulting
increase in the uncertainty of the electron’s position leads to a
decrease in the uncertainty of its momentum and so to a decrease in its
zero-point energy. Thus, there is a binding energy associated with this
diatomic configuration, and the resulting attractive force is respon-
sible for the formation of the hydrogen molecule. By contrast, when
the electron spins are parallel, the Pauli exclusion principle operates
to limit the volume accessible to each electron. In this case the
effective force is repulsive.
More relevant to the present paper is the force that arises when
some of the normal modes of a zero rest-mass field such as the
electromagnetic field are excluded by boundary conditions. This is
the famous Casimir (1948) effect. If one places in Minkowski
space—time two parallel flat perfect conductors, then the boundary
conditions on the conductors ensure that normal modes whose
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wavelength exceeds the spacing of the conductors are excluded. If
now the conductors are moved slightly apart, new normal modes are
permitted and the zero-point energy is increased. Work must be done
to achieve this energy increase, and so there must be an attractive
force between the plates. This force has been measured, and the zero-
point calculation verified. This agreement with experiment is
important, since it shows that calculations with the zero-point energy
of a continuous field does have some correspondence with reality,
although the total energy associated with modes of arbitrarily high
frequency is infinite. The Casimir effect show that finite differences
between different configurations of infinite energy do have physical
reality. Another example of this principle for zero-point effects is the
Lamb shift, which we shall consider shortly.

6 Zero-Point Noise and Damping

We shall need to understand the properties of zero-point fluctuations
when the associated density of states is large, for example in a
continuous field. In such a case the zero-point fluctuations can be an
important source of noise and damping, these two phenomena being
related by a fluctuation-dissipation theorem. We shall now consider
various examples of these zero-point effects.

X-ray Scattering by Solids

The noise associated with zero-point fluctuations was discovered in
1914 by Debye during his study of X-ray scattering by solids. His
main concern was to calculate the influence of the thermal vibrations
of the lattice on the X-ray scattering, but he showed in addition that, if
one assumes with Planck that the harmonic oscillators representing
these vibrations have a zero-point motion, then there would be an
additional scattering which would persist at the absolute zero of
temperature. This additional scattering is associated with the
emission of phonons by the X-rays, this emission being induced by the
zero-point fluctuations. Thus, noise and damping are related together
as in Einstein’s theory of Brownian motion. Here we have the first
example of a ‘spontaneous’ radiation process, which can be regarded
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as being induced by the coupling of the radiating system to a field of
zero-point fluctuations. We shall meet other examples of this process
later.

Einstein Fluctuations in Black Body Radiation

We note in passing here that the interference between the zero-point
and thermal fluctuations of the electromagnetic field gives a
characteristic contribution to the Einstein fluctuations of the energy
in a black body radiation field, namely the term ‘linear’ in the energy
density. This term would be absent for a classical radiation field
pictured as an assembly of waves.

The Lamb Shift

An electron, whether bound or free, is always subject to the stochastic
forces produced by the zero-point fluctuations of the electromagnetic
field, and as a result executes a Brownian motion. The kinetic energy
associated with this motion is infinite, because of the infinite energy in
the high-frequency components of the zero-point fluctuations. This
infinity in the kinetic energy can be removed by renormalizing the
mass of the electron (Weisskopf 1949). As with the Casimir effect,
physical significance can be given to this process in situations where
one is dealing with different states of the system for which the
difference in the total renormalized Brownian energy (kinetic plus
potential) is finite. An example of this situation is the famous Lamb
shift between the energies of s and p electrons in the hydrogen atom;
according to Dirac theory, the energy levels should be degenerate.
Welton (1948) pointed out that a large part of this shift can be
attributed to the effects of the induced Brownian motion of the
electron, which alters the mean Coulomb potential energy. This
change in electron energy is itself different for an s and p electron, and
so the Dirac degeneracy is split. This theoretical effect has been well
verified by the observations.

One can also regard the Lamb shift as the change in zero-point
energy arising from the dielectric effect of introducing a dilute
distribution of hydrogen atoms into the vacuum. The frequency of
each mode is simply modified by a refractive index factor (Feynman
1961; Power 1966; Barton 1970).
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The Vacuum as a Dissipative System

A physical system containing a large number of closely spaced modes
behaves as a dissipator of energy, as well as possessing fluctuations
associated with the presence of those modes (the fluctuation-
dissipation theorem). Now the vacuum states of the electromagnetic
field constitutes an example of a system with closely spaced energy
levels, there being (87/¢3) v dv modes with frequencies lying between
v and v+dv. We would expect this state also to possess a dissipative
character related to the zero-point fluctuations; indeed, Callen and
Welton (1951) proved this in their quantum mechanical derivation of
the fluctuation-dissipation theorem.

In this derivation the dissipation is represented simply by the
absorption of energy by the dissipative system. This can be justified by
the expectation that the energy absorbed is divided up among so
many modes that we may neglect the possibility that it is later re-
emitted into its original modes with its initial phase relations intact.
The absorption rate is calculated by second-order perturbation
theory and is found to depend quadratically on the external force
acting on the system. This enables an impedance function to be
defined in the usual way. This function also appears in a linear
relation between the external force acting on the system and the
response of the system to this force. A familiar example would be the
relation between an impressed electric field, the resulting current
flow, and the electrical resistance of the system. The rate of energy
absorption (and hence the resistance) clearly depends on the coupling
between the external disturbance and the system, and on the density
of states in the system.

Callen and Welton then proceeded to calculate the quantum
fluctuations of the system in its unperturbed state. These fluctuations
also depend on the density of states. The procedure is quite general,
but for simplicity they restricted themselves to the case where the
system is in thermal equilibrium at temperature 7, so that its states
are occupied in accordance with the Boltzmann distribution e ~#/*T,
By eliminating the density of states, the following relation is obtained
between the mean square force { ') associated with the fluctuations
and the frequency-dependent impedance function, R(v):

(V3> = 2 fw RMWE®v, T) dy,

T Jjo

where
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1 hv

E(v, ﬂ=§hv+m,

which is the mean energy of a harmonic oscillator at temperature 7.
The presence of the zero-point energy $hv shows that the zero-point
fluctuations {as well as the thermal fluctuations) are a source of noise
power and damping, and therefore satisfy the fluctuation-dissipation
theorem.

This theorem can be interpreted in three ways.

1 Itshowshow the damping rate Ris determined by the equilibrium
fluctuations {(¥?> (Nyquist relation).

2 It shows how the noise power (V)2 is determined by the
absorption coefficient R (Kirchhoff relation).

3 It shows how the damping rate is proportional to the density of
states in the dissipative system. In fact, the mean square force
{V?*) is proportional to the mean square electric field, which in
turn is proportional to the energy in the dissipative system. This
energy is given by the Planck distribution plus the zero-point
contribution. This is the content of the fluctuation-dissipation
theorem when R(v) is regarded as proportional to the density of
states, that is as proportional to v? dv. When the dissipative
system is the vacuum (7=0), this remains true. Thus, the
impedance of the vacuum is proportional to v2.

Radiation Damping

An important illustration of these ideas was given by Callen and
Welton, who showed that the radiation damping of an accelerated
charge could be interpreted in this way. The non-relativistic form of
this damping force is

2e2d%

3c¥de?’
and if the charge is oscillating sinusoidally with frequency v, then the
associated impedance function turns out to be

2
2e”
3¢

This is precisely of the expected form (that is, proportional to v?, the
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impedance of the vacuum). Thus, the dependence of the damping
force on d?v/dt? is simply a manifestation of the density of states for
the vacuum electromagnetic field.

A similar analysis can be carried out for the radiation damping of a
perfect conductor accelerating through Minkowski space—time. The
radiation emitted by such a conductor could be computed in terms of
the currents that must flow to guarantee that the conductor is perfect.
However, a more elegant method, and one that is more in harmony
with the approach taken in this paper, is to adapt the Casimir effect to
amoving boundary. This method is based on the requirement that the
zero-point fluctuations must vanish on the boundary. This require-
ment leads to a finite change in the zero-point energy, which can be
extracted from the infinite total energy by special techniques. The
two-dimensional problem can be solved exactly by de Witt’s point-
splitting method (de Witt 1975, Fulling and Davies 1975), and one
again finds a radiation damping force which in the non-relativistic
limit is proportional to d?v/d¢2.

The Zero-Point Noise of an Electric Circuit

As another illustration of these ideas, I can mention Weber’s (1954)
discussion of the zero-point noise of an electric circuit. One can
quantize such a circuit and show that its zero-point fluctuations
represent a measurable source of noise. For example, a beam of
electrons passing near such a circuit would develop a noise
component from this source. Associated with this noise is a damping
of the electron beam caused by ‘spontaneous’ emission by the beam
into the circuit. The zero-point noise is thus physically real, and is
unaffected by a change in the origin of energy which might be
introduced to remove in a formal way the infinite total energy
associated with the zero-point fluctuations of arbitrarily high
frequency.

The Damping of Zero-Point Fluctuations

The work of Callen and Welton and of Weber was generalized by
Senitzky (1960), who studied the damping of a quantum harmonic
oscillator coupled to a loss mechanism (reservoir) idealized as a
system whose Hamiltonian is unspecified but which possesses a large
number of closely spaced energy levels. Senitzky assumed that the
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coupling was switched on at time ¢, so that for t<t, the harmonic
oscillator executed its zero-point motion undisturbed by the
reservoir. After t,, however, the fluctuating forces exerted by the
reservoir would damp out the zero-point motion of the oscillator by a
now familiar mechanism. To avoid a conflict with the Heisenberg
uncertainty principle, we require that the zero-point fluctuations of
the reservoir also introduce sufficient noise into the oscillator to
restore its zero-point motion to the full quantum mechanical value
Lhv. Senitzky showed that after a few damping times the zero-point
motion of the oscillator would be effectively driven by the zero-point
motions of the reservoir. This is a beautiful quantum example of the
relation between noise, damping, and equilibrium which Einstein
discovered in 1905.

We now apply these ideas to the interaction of a two-level atom
with the vacuum electromagnetic field.

If the atom is initially in an excited state, we expect it to make a
transition to the ground state, at the same time emitting one or more
quanta of radiation. The question arises whether this transition is
induced (stimulated) by the zero-point fluctuations of the vacuum or
is a reaction to spontaneous radiation emitted by the atom. As I
mentioned in the introduction, this question has caused some
confusion in the literature, and the physical reality of the zero-point
fluctuations has been challenged by Pauli and other physicists. The
matter has now been resolved. There is in fact no unique answer
because, as is often the case in physics, one can substitute one set of
variables for another in the calculation owing to the coupling between
different degrees of freedom which it is necessary to introduce in order
for the transition to take place. In the present case one can
interchange at will operators for the atom and for the field, since these
commute. One can in this way change the relative contributions of
spontaneous and stimulated emission to the total transition rate. A
good account of this question has been given by Cohen-Tadjoui
(1966), who points out that if we demand that each contribution be
governed by a hermitian term in the interaction Hamiltonian, so that
according to the precepts of quantum mechanics each contribution is
physically real, then the spontaneous and stimulated contributions
are precisely equal.

If we adopt this representation, then we also have to say that when
the atom is in the ground state these two processes are equal and
opposite (Fain and Khanin 1969). In other words, the atom in its
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ground state is continually radiating to and absorbing energy from
the zero-point fluctuations of the vacuum electromagnetic field at
equal rates, and these two processes undergo complete destructive
interference. As in the classical case considered by Planck, the
radiation rate is determined by the noise power in the zero-point
fluctuations of the atomic dipole moment, and the absorption rate is
determined by the noise power in the zero-point fluctuations of the
electromagnetic field. Each of these powers is 1hv per mode, so the
two processes come into equilibrium without any net transfer of
energy.

From this point of view, the hydrogen atom has a stable ground
state in which the electron does not fall into the proton only because
the system is kept ‘pumped up’ by the zero-point fluctuations of the
vacuum electromagnetic field. This raises the question of deciding
whether this mechanism constitutes a ‘detection’ of these zero-point
fluctuations. This is a purely semantic matter, but we shall follow the
usual convention, and regard an atom as detecting an ambient noise
power only when the atom is thereby sent into an excited or ionized
state. On the other hand, we should regard the Lamb shift and
‘spontaneous’ decay of the atom as representing a detection of the
zero-point fluctuations. Again, it is a noise power that is being
detected, since the energy shift and the decay rate can be combined
into a complex quantity which is proportional to the Fourier
transform of an autocorrelation function (Barton 1970; Agarwal
1974, 1975).

With these ideas in mind, we can now reconsider Einstein and
Stern’s attempt to include zero-point motion in the Einstein-Hopf
derivation of the fluctuation formula for black body radiation. The
damping force F arising from uniform motion ¥ of the harmonic
oscillator is given by (Einstein 1909)

F=n,V,

H=2\" 73D )
Now the zero-point fluctuations of the radiation field possess an

energy shv per mode, and there are (87/c3)v? dv modes between v and
v+dv. Hence these fluctuations have a spectrum

where
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zr=—3 v dv.

We now note that for this spectrum the friction co-efficient n, vanishes.
The fundamental reason for this is clear. In the vacuum state there is
no rest-frame defined (Lorentz-invariance of the vacuum), and so a
uniform inertial motion cannot be damped out by a frictional force.
Consistency therefore requires that the zero-point fluctuations
should have a Lorentz-invariant spectrum, which a straightforward
calculation shows must have the form v* dv.

It follows that Einstein’s result for #, relates only to those
fluctuations associated with the Planckian thermal component of the
wave field (although, as we have seen, allowance must be made for the
interference between the thermal waves and the zero-point fluctua-
tions). This conclusion follows also from Einstein’s derivation using
the inverse of the Boltzmann relation S=k In W, since the entropy
associated with the zero-point fluctuations vanishes, and so there can
be no zero-point fluctuations in the entropy.

7 Response Theory

Response theory was initiated in 1931 by Onsager, who extended
Einstein’s theory of Brownian motion by taking into account the
perturbation of the dissipative system by the system being dissipated.
He related this perturbation to the equilibrium fluctuations of the
unperturbed dissipative system by an ansatz which was very much in
Einstein’s spirit. He assumed that if, as a result of these fluctuations,
the system at one instant deviated appreciably from its mean
configuration, then on average it would regress back to the mean at
the same rate as if the deviation had been produced by an external
perturbation. This average regression would represent an irreversible
approach to equilibrium and so would determine the generalized
friction co-efficient associated with the response of the system to the
external perturbation. In the approximation envisaged, the perturba-
‘tion would have a linear effect, and as an example we may consider an
electric current as the response to an impressed voltage. The linear
coeflicient of this response, the resistance, not only would govern the
rate at which the current would die irreversibly away after the voltage
is removed, but also would govern the rate of dissipation associated
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with Joule heating. With Onsager’s ansatz we would expect this
resistance to be determined by the equilibrium fluctuations of the
unperturbed system, and so we would have a further reason for
obtaining a fluctuation-dissipation relation.

Of course, the friction coefficient determines only the out-of-phase
response of the system. However, we would also expect the in-phase
response, that is the reactance of the system, to be determined by the
equilibrium fluctuation spectrum. This follows from the dispersion
relations which are a direct consequence of the causality requirement
that the response of the system should not precede the disturbance to
it. The reactance at any frequency can then be determined by an
integral of the friction over all frequencies; the friction is, of course,
itself determined by the fluctuation spectrum.

One can also calculate the total response directly: this was first
done by Kubo (1957). Kubo used the fact that an averaging of an
observable over a system in thermal equilibrium involves multiplying
the observable by e #*T, where H is the Hamiltonian of the system
and T is its temperature. This is very similar to multiplying the
observable by a quantum mechanical time-evolution operator, with
the temperature acting as the reciprocal of an imaginary time. By
exploiting this analogy, and using complex variable methods, Kubo
arrived at the following fluctuation-response relation:

rwt)=P0, 1) [ G 01,00 a

where the complex conductivity ¢, is given in terms of an external
field E,(v) by

j a= abEb s
P(v, T) is the Planckian function (with zero-point contribution),
1 — e HvkT
Py, T) = ————,

and {(j,(¢)j,(0)) represents the quantum thermal correlation function
of the unperturbed current fluctuations in the system. Note, in
particular, that by microscopic reversibility,

Jal®)ip(0)> = {Ja(0)j, (),

and so
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these are just Onsager’s reciprocal relations.

8 Zero-Point Fluctuations and Accelerated Observers

So far in our discussion of quantum fluctuations, we have implicitly
assumed that they are being evaluated in an inertial frame of
reference. To make our first contact with modern developments, we
ask the apparently innocent but Einsteinian question: How would
they appear to an accelerating observer? In particular, if the observer
were carrying with him a detector in the form of a harmonic oscillator
or an atom, what would this detector register?

In order to answer this question, we recall Planck’s classical
discussion of the interaction between electromagnetic radiation and a
harmonic oscillator, and the corresponding quantum analogue. For
an inertial oscillator the absorption rate is proportional to the noise
power in the electromagnetic field, and the emission rate is
proportional to the noise power of its own dipole osciilations.
Because of the present application we must now make explicit an
important detail. The absorption rate is proportional to the positive
Jfrequency component of the noise power (see e.g. Mandel and Wolf
1965). For an accelerated oscillator, we can imagine in a crude
fashion that the acceleration results from the oscillator being pulled
by a rope. The effect of the rope might be to distort the oscillator
appreciably, but we are not really interested in effects of this type,
which depend on the structure of the oscillator and which, in principle
at least, could be calculated in a straightforward manner. We are
interested in the kinematical effects arising purely from the fact that
the world-line of the oscillator is no longer a geodesic. We shall
therefore assume that our oscillator is so robust that we may neglect
any structure-sensitive effects arising from the action on it of an
external force.

We shall therefore suppose that its absorption and emission rates
remain proportional to the noise powers in the field and its own
oscillations, respectively. However, the absorption rate now depends
on the positive frequency components of the noise as measured by the
accelerating detector. Because of our robustness assumption we may
suppose that, if the oscillator is initially in its ground state, the noise
power of its own zero-point oscillations is ihv, where v is the
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frequency variable conjugate to the proper-time of the oscillator.
However, this is no longer true for the noise power in the field. This
noise power must now be evaluated along the accelerated world-line
of the oscillator, which deviates from a geodesic. By the Wiener—
Khinchine theorem, this noise power is the Fourier transform of the
autocorrelation function of the field evaluated along the accelerated
world-line. Now we would expect such an autocorrelation function to
be the same along all timelike geodesics in a vacuum electromagnetic
field, since the vacuum state is Lorentz-invariant and we can
transform any timelike geodesic (in Minkowski space—time) into any
other by a Lorentz transformation. But there is no reason to expect
the autocorrelation function to be the same along a non-geodesic
(that is, accelerating) world-line, which of course would take us
outside the Lorentz group.

We now come to the most remarkable feature of this situation. If
the world-line is that of a uniformly accelerated observer, in the sense
of special relativity, then the additional noise power in the field has a
precisely thermal spectrum, with the temperature T given by

B ha
T 2re’

where a is the observer’s proper acceleration. This result was
discovered only in 1976, by W. G. Unruh (although a closely similar
result was obtained by P. C. W. Davies in 1975). It should not be
regarded as a casual algebraic coincidence, because, as we shall see,
the quantum fluctuations about this mean state are also precisely those
derived by Einstein for thermal radiation at temperature T.

Uniform acceleration can be defined by reference to an instant-
aneous inertial frame relative to which the accelerated observer has
zero velocity. At any instant we may define the proper acceleration as
the acceleration relative to such an inertial frame. If this proper
acceleration is independent of time, then we say that the acceleration
is uniform. An example of such motion is provided by a classical
electric charge subject to a uniform, static, electric field. A good
discussion of the properties of this motion has been given by Rindler
(1966). In particular, he shows that if the motion is confined to, say,
the z-axis, then the world-line is a rectangular hyperbola in the z, ¢
plane, with asymptotes z = +ct. These asymptotes are the world-lines
of light-rays, and represent event horizons for the accelerating
observer. No event occurring outside the region bounded by these

kT
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asymptotes can communicate with an observer confined to this
region. This inability of the light to catch up with the observer is
compatible with special relativity (indeed, demanded by it) because
the observer is accelerating. The velocity of light is invariant only
relative to an inertial observer.

To bring out this, and other, features of uniformly accelerated
motion, it is sometimes helpful to use a non-inertial frame of reference
attached to the accelerating observer. To arrive at a coordinate
system that is as extensive as possible, we may consider a family of
accelerating observers, one for each rectangular hyperbola with
asymptotes z= = ct. The natural coordinate system to use is then the
co-moving one in which, along each hyperbola, the space coordinate
is constant while the time coordinate is proportional to the proper
time as measured from an initial instant =0 in some inertial frame.
It turns out to be convenient to choose a different constant of
proportionality along each hyperbola, namely, the associated proper
acceleration. When one calculates the vacuum noise along the world-
line of an accelerating observer, one obtains the thermal result
already mentioned. One also finds the Einstein fluctuations associ-
ated with this thermal state.

Another aspect of this thermal state is the role played by the
horizon. We might expect it to be important from the following
simple physical consideration. In order to establish that he is
observing an essentially thermal distribution, an observer must
maintain his acceleration at a constant rate for a time long enough for
him to observe several oscillation cycles of the ambient radiation field
at frequencies near the peak of the Planck distribution. It follows
immediately from dimensional considerations that during this time
the observer’s change in velocity, as measured in a single inertial
frame, is close to the velocity of light. Thus, the asymptotic part of the
motion plays a crucial role in the establishment of the thermal
distribution, and this part is closely related to the occurrence of an
event horizon.

The role of the horizon can be demonstrated more precisely in
connection with our previous remark that we are justified in
regarding the Rindler state as truly thermal only if the fluctuations
about the equilibrium state satisfy Einstein’s relation. In conventional
thermal physics, the randomness that underlies these fluctuations
would arise partly from the radiation being produced by a very large
number of excited atoms which would be radiating independently,
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and partly from a quantum origin. As Jordan showed, Einstein’s
relation can be derived statistically for any quantum radiation field
with random phases, the linear term arising from the interference
between the zero-point motion and the excited motion. However, a
quadratic term involving only the zero-point motion is absent, so that
in the vacuum state there would be no fluctuations of the zero-point
energy. This is consistent with the conventional procedure of setting
the entropy of the vacuum state to zero.

The situation is quite different for fluctuations evaluated along a
Rindler hyperbola. The inertial vacuum state is itself a pure state, but
it involves the zero-point motion of modes which lie entirely beyond the
Rindler event horizons. These modes are correlated with the modes of
the Rindler space-time, but they cannot be detected by a Rindler
observer. Accordingly, the correlation is broken; the Rindler observer
detects a purely random field and so obtains the Einstein relation for
the fluctuations. This then guarantees the consistency of the thermal
Rindler state. For example, a mirror coupled to the thermal field
would develop the appropriate fluctuations in its translational
motion. We can therefore associate the usual non-zero entropy with
this thermal state.

We finally consider the particle description which a Rindler
observer would give for the quantum wave-field he observes. It was
first pointed out by Fulling in 1973 that, since the Rindler metric is
static, it is possible to construct creation and annihilation operators
for the field using normal modes defined with respect to Rindler time
7. One can also define a vacuum state in the usual way, as that which is
destroyed by all those annihilation operators. This state will be
invariant under the group that preserves the Rindler metric
{consisting of the transformations T—1 +1,, and displacements and
rotations in the x,y plane). Fulling’s main point was that this
quantization procedure is inequivalent to the usual one carried out in
an inertial frame. In particular, the vacua are different (as we have
already mentioned), and a positive-frequency state for an inertial
observer may not be a positive-frequency state for a Rindler observer.

It was Unruh (1976) who pointed out that the Fulling—Rindler
particles that correspond to an inertial vacuum have a thermal
distribution (cf. also Davies 1975). He pointed out in addition that a
Rindler detector would detect these particles. In this sense, Fulling—
Rindler particles are ‘real’ particies. There is no particular mystery
about this. It corresponds to my earlier remark that the noise along a
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Rindler hyperbola is greater than the noise along a geodesic, and that
it is this excess noise that excites a Rindler detector.

9 Do Zero-Point Fluctuations Produce a Gravitational Field?

We now wish to comment on the unsolved problem of the relation
between zero-point fluctuations and gravitation. If we ascribe an
energy +hv to each mode of the vacuum radiation field, then the total
energy of the vacuum is infinite. It would clearly be inconsistent with
the original assumption of a background Minkowski space—time to
suppose that this energy produces gravitation in a manner controlled
by Einstein’s field equations of general relativity. It is also clear that
the space—time of the real world approximates closely to the
Minkowski state, at least on macroscopic scales. It thus appears that
we must regularize the zero-point energy of the vacuum by
subtracting it out according to some systematic prescription. At the
same time, we would expect zero-point energy differences to gravitate.
For example, the (negative) Casimir energy between two plane-
parallel perfect conductors would be expected to gravitate; otherwise,
the relativistic relation between a measured energy and gravitation
would be lost. Similarly, the regularized vacuum energy in a curved
space—time would be expected to gravitate, where the regularization
is achieved by subtracting out the Minkowski contribution in a
systematic way.

This procedure is needed in order to obtain a pragmatically
workable theory. The difficulty with it is that existing theory does not
tell which is the fiducial state whose energy is to be set to zero. It is no
doubt an intelligent guess that one should take Minkowski
space—time for this fiducial state, but the awkward point is that this
(or any other) choice is not prescribed by existing theory. Clearly,
something essential is missing.

Another way of looking at this problem is in terms of the
cosmological constant. If the vacuum energy density is a local
quantity, one would expect that, for reasons of symmetry, it would
have to have the form Ag,,, and so correspond to the ‘cosmological’
term in Einstein’s field equations. One is reminded of the related
problem that, in grand unified and supergravity type theories, one
would expect to have a cosmological term of order 1012 times greater
than any allowed by observational cosmology. Some very fine-tuned
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cancellations seem to be required to achieve agreement with
observation. One sees occasional claims that some varieties of
superstring theory lead naturally to the vanishing of the cosmological
constant, but no agreement has yet been reached on this point. We
here face a fundamental problem of outstanding importance. Its
solution may still require a radical change in our theories beyond our
present imagining.
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7

The Vacuum and Unification

I.J. RCAITCHISON

1 Introductory Survey

It is a common observation that fundamental physics seems to have
progressed, over the last hundred years or more, in the direction of
ever greater unification. It is fair to describe this movement as
progress, because it does appear that the drive towards unification
has, in many diverse ways, acted as a powerful heuristic device in
constructing phenomenologically successful theories. Less widely
noted, perhaps, is the crucial role that the vacuum (as currently
understood) has played, and still plays, in many aspects of the
unification programme. This is what I want to examine, very briefly,
in the present contribution.

‘Unification’ is a very broad notion, and it will help to have some
sort of chart to navigate by. Referring to Fig. 1, in which historical
time is increasing down the page (roughly), it was traditional to
distinguish three fundamental conceptual categories: ‘Matter’,
‘Force(s), and ‘Space-time’. We shall be concerned with unification
within and between these categories.

Our first example (Section 2) will be the unification, under the
‘Force(s) column, of electricity and magnetism achieved by Maxwell.
This is now a well studied topic, so we can be very sketchy. Our
purpose is to emphasize Maxwell’s clear dependence on a literal
mechanical model of the vacuum, in the formative stages of his
theory.

As time went by, of course, this mechanical ether came to seem less
and less necessary, or plausible, and the electromagnetic field
emerged as a new, non-mechanical, concept; its vibrations were
supposed not to require the existence of any underlying mechanical
contraption. Gravity was also naturally regarded as a field theory. A
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clear distinction remained, however, between the field and its sources:
the latter, of course, were electric charges for electromagnetism, and
masses for gravity, both of which were thought of as associated with
matter.

With the advent of quantum mechanics, this distinction between
force-fields and their matter sources began to break down. On the one
hand, matter, instead of being disctete and particle-like, revealed (in
electron diffraction, for example) continuous, wavelike aspects—such
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as were characteristic of wave-fields. On the other, the energy of
electromagnetic radiation was found to be quantized. These
developments eventually led to the notion of a gquantum field,
which—until the appearance of strings!-—remained our most
fundamental concept. All particles were understood to be quantized
excitations of appropriate quantum fields. Nevertheless, what
appeared to be one fundamental distinction between ‘matter-fields’
and ‘force-fields’ still persisted: the typical matter quanta (electrons,
quarks, etc.) are fermionic, while the force quanta (photons, gluons,
W*, Z°, gravitons) are bosonic.

From its very beginning, with Dirac’s treatments of spontaneous
decay and of pair creation, quantum field theory provided a rich and
powerful conceptual framework for discussing the vacuum. The state
with no visible particles in it is one in which all the quantum fields are
unexcited: it is the ground (or lowest energy) state of the field system.
This quantum vacuum need by no means be featureless—any more
than the ground state of a complicated many-body system need be. In
Section 3 we shall consider how specific features of the quantum
vacuum, established or hypothetical, played a crucial role in several
recent unification ‘moves’. We shall briefly recall the well-known
vacuum polarization effects which lead to the possibility of equal
strengths (at very short distances) for the weak, electromagnetic, and
strong interactions; and the way in which, via the ‘Higgs mechanism’,
the vacuum takes the blame for the wide differences in the observed
ranges of these forces.

The Higgs mechanism is not without its problems (Section 4).
One-—the so-called ‘hierarchy problem™—provides some motivation
for a further unification move, of a potentially very fundamental
nature: the unification of fermions and bosons via supersymmetry. If,
as suggested above, we think of ‘matter’ as fermionic and ‘force’ as
bosonic, supersymmetry would provide a unification of matter-fields
and force-fields.

Thus far we have followed the ‘Matter’ and ‘Force(s) columns of
Fig. 1. The other problem with the Higgs mechanism engages us with
the remaining column, since it involves cosmology—and that was
related to ‘Space-time’, of course, by Einstein’s General Relativity.
The category ‘Space-time’ itself accepts the unification (in some
sense) of space and time achieved in Einstein’s Special Theory of
Relativity. His General Theory gave a geometrical interpretation to
gravity, supplying for the first time a link between the ‘Force(s) and
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the ‘Space—time’ columns, and inspiring the even grander vision of a
geometrical basis for all forces.

The earliest proposal for such geometrical unification was Kaluza’s
(1921) suggestion that gravity could be unified with electro-
magnetism (then the only other identified force) by formulating
general relativity not in four dimensions but in five. This suggestion
was further developed by Klein in 1926, and formed a major theme in
Einstein’s work on unified field theory. In the developed theory, the
crucial idea was that for some unexplained reason the fifth dimension
was compactified, that is, curled up so as to have the topology of a
circle, rather than an infinitely extended line. If the radius of the circle
was small enough, direct observational evidence for the fifth
coordinate might be impossible, all observed phenomena involving
merely averages over positions on the circle.

How may this idea be described within the framework of quantum
field theory? One plausible way of approaching quantum gravity is to
regard the fundamental field of classical general relativity-—the metric
tensor—as a quantum field. It would then be subject to quantum
fluctuations, which would include the possibility of different space—time
geometries. In the absence of matter sources, the ground state of this
quantum metric field system—the gravitational vacuum—should yield
four-dimensional Minkowski space, M*. In the modern version of
Kaluza—Klein theory, one hopes that the vacuum of the five-
dimensional general relativity is not Minkowski space, M>, but rather
the product M* x S* of the four-dimensional M* with a circle S. Such
an outcome is, of course, very unsymmetrical as regards the four
coordinates of our own M*, and the compactified coordinates of S*.
Thus the vacuum is here, as in the Higgs mechanism, associated with a
loss of symmetry-—which, however, then allows a unification move to
be made! In Section 5 we shall briefly discuss a possible way in which
this vacuum-breaking of the five-dimensional symmetry might be
understood dynamically.

We have now arrived midway down the ‘Space-time’ column,
opposite the various forces known today. Gravity and electromagnet-
ism are no longer the whole story, and five dimensions are not enough
to provide for a geometrical unification of all presently identified
forces: at least ten dimensions seem to be needed. Attempts to find a
realistic ten- (or even eleven-) dimensional supergravity theory
(unifying gravity with unified matter-force) were widely pursued in
the early 1980s. The basic idea was still the same as in the original
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Kaluza—Klein picture, but now the vacuum configuration in the
compactified dimensions had to be that appropriate to the group
structure, and to the particle multiplet structure of the phenomenolo-
gically well established ‘standard model’ for elementary particles.

Then in 1984 came the discovery by Green and Schwartz of a
consistent quantum theory of all forces including gravity (technically,
the first ‘anomaly-free’ theory) based on a framework going beyond
the local quantum field concept. This was a (super)string theory, in
which the fundamental object has a finite extension, of order the
Planck length (~10733 cm). In such theories, the whole of our
mundane physics at distances much greater than this tiny size—
geometry, symmetries, and matter content—is viewed as merely the
ground state of the superstring system: in short, as its vacuum.
Figure 2 shows part of the title page of a paper that generated much
additional enthusiasm for the superstring idea. These considerations,
which have brought us to the end of Fig. 1, will be briefly described in
the concluding section.

2 The Mechanical Vacuum of Maxwell’s Electromagnetic
Theory

As indicated in Fig. 1, to the classical physicist matter and force were
clearly separated. The nature of matter was intuitive, based on
everyday macroscopic experience; force, on the other hand, was more
problematical. Contact forces between extended bodies were easy to
understand, but forces that seemed capable of acting at a distance
caused difficulties. As Maxwell reminded his audience in a Royal
Institution lecture entitled ‘On Action at a Distance’,

so far was Newton from asserting that bodies really do act on one another ata
distance, independently of anything between them, that in a letter to Bentley,
which has been quoted by Faraday in this place, he says:— ‘It is inconceivable
that inanimate brute matter should, without the mediation of something else,
which is not material, operate upon and affect other matter without mutual
contact, as it must do if gravitation, in the sense of Epicurus, be essential and
inherent in it . . . That gravity should be innate, inherent, and essential to
matter so that one body can act upon another at a distance, through vacuum,
without the mediation of anything else, by and through which their action
and force may be conveyed from one to another, it is to me so great an
absurdity that I believe no man who has in philosophical matters a competent
faculty of thinking can ever fall into it. (Maxwell 1890, ii: 311 ff.)
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Newton could find no satisfactory mechanism for the transmission of
the gravitational force between two distant bodies, though he
certainly tried hard to find one in terms of pressure forces in an
intervening ‘medium’.

The nineteenth century saw the precise formulation of the more
intricate force laws of electromagnetism. Here too the distaste for
action-at-a-distance theories led to numerous mechanical, or fluid
mechanical, models of the way electromagnetic forces, and light, are
transmitted. Because of the ‘rotatory’ character of the action of a
current on a magnet, as discovered by Oersted, ‘many minds’, as
Maxwell put it, ‘were set a-speculating on vortices and streams of
aether whirling around the current’ (1890, ii: 317 ff.). In his own series
of papers in 1861-2 entitled ‘On Physical Lines of Force’, Maxwell
made essential use of vortex models, as he struggled to give physical
and mathematical substance to Faraday’s empirically won concepts
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of lines of force. Here, for example, is a quotation from the first paper
in the series, which was entitled “The Theory of Molecular Vortices
Applied to Magnetic Phenomena’:

Let us now suppose that the phenomena of magnetism depend on the
existence of a tension in the direction of the lines of force, combined with a
hydrostatic pressure; or in other words, a pressure greater in the equatorial
than in the axial direction: the next question is, what mechanical explanation
can we give of this inequality of pressures in a fluid or mobile medium? The
explanation which most readily occurs to the mind is that the excess of
pressure in the equatorial direction arises from the centrifugal force of
vortices or eddies in the medium having their axes in directions parallel to the
lines of force. (Maxwell 1861a: 165)

The existence of the ‘medium’ is quite taken for granted; the
problem is to imagine a dynamics for it which could account for the
observed electromagnetic phenomena.

The vortex model was significantly elaborated in the second paper
in the series, entitled “The Theory of Molecular Vortices Applied to
Electric Currents’. Here is Maxwell’s introduction of the famous ‘idle
wheels’, which allowed adjacent vortices to rotate smoothly in the
same sense:

We know that the lines of force are affected by electric currents, and we know
the distribution of those lines about a current; so that from the force we can
determine the amount of the current. Assuming that our explanation of the
lines of force by molecular vortices is correct, why does a particular
distribution of vortices indicate an electric current? A satisfactory answer to
this question would lead us a long way towards that of a very important one,
‘what is an electric current?

I have found great difficulty in conceiving of the existence of vortices in a
medium, side by side, revolving in the same direction about parallel axes. The
contiguous .portions of consecutive vortices must be moving in opposite
directions; and it is difficult to understand how the motion of a part of the
medium can coexist with, and even produce, an opposite motion of a part in
contact with it.

The only conception which has at all aided me in conceiving of this kind of
motion is that of the vortices being separated by a layer of particles, revolving
each on its own axis in the opposite direction to that of vortices, so that the
contiguous surfaces of the particles and of the vortices have the same motion.

In mechanism, when two wheels are intended to revolve in the same
direction, a wheel is placed between them so as to be in gear with both, and
this wheel is called an ‘idle wheel’. The hypothesis about the vortices which I
have to suggest is that a layer of particles, acting as idle wheels, is interposed
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between each vortex and the next, so that each vortex has a tendency to make
the neighbouring vortices revolve in the same direction with itself. (Maxwell
1861b: 288)

In an imaginative but strictly economical stroke, Maxwell now
proposed to put these new hypothetical entities to good use: he
suggested that the motion of the ‘particles, acting as idle wheels’
constituted an electric current. With this idea he was able to explain
the phenomenon of induced currents, as illustrated in his famous
diagram reproduced here as Fig. 3.

Fi1G. 3 Maxwell’s vortex ether.

Referring to this diagram, Maxwell wrote:

We shall in the first place examine the process by which the lines of force are
produced by an electric current.

Let AB, Plate VIII, p. 488, fig. 2, represent a current of electricity in the
direction from A to B. Let the large spaces above and below AB represent the
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vortices, and let the small circles separating the vortices represent the layers of
particles placed between them, which in our hypothesis represent electricity.

Now let an electric current from left to right commence in AB. The row
of vortices gh above AB will be set in motion in the opposite direction to
that of a watch. (We shall call this direction +, and that of a watch —.)
We shall suppose the row of vortices kI still at rest, then the layer of
particles between these rows will be acted on by the row gh on their lower
sides, and will be at rest above. If they are free to move, they will rotate in
the negative direction, and will at the same time move from right to left, or
in the opposite direction from the current, and so form an induced current.
(Maxwell 1871: 291)

The third paper of the series was entitled ‘“The Theory of Molecular
Vortices Applied to Statical Electricity’, and it is here that the great
unification of light and electromagnetism was proposed:

The velocity of light in air, as determined by M. Fizeau, is 70 843 leagues per
second (25 leagues to a degree) which gives

V=314 858 000 000 millimetres
=195 647 miles per second

The velocity of transverse undulations in our hypothetical medium,
calculated from the electromagnetic experiments of MM. Kojlrausch and
Weber, agrees so exactly with the velocity of light calculated from the optical
experiments of M. Fizeau, that we can scarcely avoid the inference that light
consists in the transverse undulations of the same medium which is the cause of
electric and magnetic phenomena. (Maxwell 1862: 22)

Similar considerations were advanced in his Royal Institution
Lecture, the peroration of which is worth reproducing in full:

But if the luminiferous and the electro-magnetic media occupy the same
place, and transmit disturbances with the same velocity, what reason have we
to distinguish the one from the other? By considering them as the same, we
avoid at least the reproach of filling space twice over with different kinds of
aether.

Besides this, the only kind of electro-magnetic disturbances which can be
propagated through a non-conducting medium is a disturbance transverse to
the direction of propagation, agreeing in this respect with what we know of
that disturbance which we call light. Hence, for all we know, light also may be
an electro-magnetic disturbance in a non-conducting medium. If we admit
this, the electro-magnetic theory of light will agree in every respect with the
undulatory theory, and the work of Thomas Young and Fresnel will be
established on a firmer basis than ever, when joined with that of Cavendish
and Coulomb by the keystone of the combined sciences of light and
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electricity—Faraday’s great discovery of the electromagnetic rotation of
light.

The vast interplanetary and interstellar regions will no longer be regarded
as waste places in the universe, which the Creator has not seen fit to fill with
the symbols of the manifold order of His kingdom. We shall find them to be
already full of this wonderful medium; so full, that no human power can
remove it from the smallest portion of space, or produce the slightest flaw in
its infinite continuity. It extends unbroken from star to star; and when a
molecule of hydrogen vibrates in the dog-star, the medium receives the
impulses of these vibrations; and after carrying them in its immense bosom
for three years, delivers them in due course, regular order, and full tale into
the spectroscope of Mr Huggins, at Tulse Hill.

But the medium has other functions and operations besides bearing light
from man to man, and from world to world, and giving evidence of the
absolute unity of the metric system of the universe. Its minute parts may have
rotary as well as vibratory motions, and the axes of rotation from those lines
of magnetic force which extend in unbroken continuity into regions which no
eye has seen, and which, by their action on our magnets, are telling us in
language not yet interpreted, what is going on in the hidden underworld from
minute to minute and from century to century.

And these lines must not be regarded as mere mathematical abstractions.
They are the directions in which the medium is exerting a tension like that ofa
rope, or rather, like that of our own muscles. The tension of the medium in the
direction of the earth’s magnetic force is in this country one grain weight on
eight square feet. In some of Dr. Joule’s experiments, the medium has exerted
a tension of 200 Ibs. weight per square inch.

But the medium in virtue of the very same elasticity by which it is able to
transmit the undulations of light, is also able to act as a spring. When
properly wound up, it exerts a tension, different from magnetic tension, by
which it draws oppositely electrified bodies together, produces effects
through the length of telegraph wires, and when of sufficient intensity, leads
to the rupture and explosion called lightning.

These are some of the already discovered properties of that which has often
been called vacuum, or nothing at all. They enable us to resolve several kinds
of action at a distance into actions between contiguous parts of continuous
substance. Whether this resolution is of the nature of explication or
complication, I must leave to the metaphysicians. (Maxwell 1890, ii: 322-3)

This is very ‘concrete’ language. Did Maxwell really believe in such
a literal mechanical vacuum? In the first paper of the series referred to
above, he claimed that the theory of molecular vortices was not a
‘mechanical illustration ... to assist the imagination’, or an
‘analog[ y1 but ‘a theory, which if not true, can only be proved to be
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erroneous by experiments which will greatly enlarge our knowledge
of this part of physics’. (Maxwell 1861a). He ended the second paper
in the series on a more guarded, but similar note:

We have now shewn in what way electro-magnetic phenomena may be imitated
by an imaginary system of molecular vortices. Those who have been already
inclined to adopt an hypothesis of this kind, will find here the conditions which
must be fulfilled in order to give it mathematical coherence, and a comparison,
so far satisfactory, between its necessary results and known facts.

Those who look in a different direction for the explanation of the facts, may
be able to compare this theory with that of the existence of currents flowing
freely through bodies, and with that which supposes electricity to act at a
distance with a force depending on its velocity, and therefore not subject to
the law of conservation of energy.

The facts of electro-magnetism are so complicated and various, that the
explanation of any number of them by several different hypotheses must be
interesting, not only to physicists, but to all who desire to understand how
much evidence the explanation of phenomena lends to the credibility of a
theory, or how far we ought to regard a coincidence in the mathematical
expression of two sets of phenomena as an indication that these phenomena
are of the same kind. We know that partial coincidences of this kind have
been discovered; and the fact that they are only partial is proved by the
divergence of the laws of the two sets of phenomena in other respects. We may
chance to find, in the higher parts of physics, instances of more complete
coincidence, which may require much investigation to detect their ultimate
divergence. (Maxwell 1861b: 347-8)

However, by 1864, in the paper (Maxwell 1865) usually cited for
‘the Maxwell equations’, Maxwell had begun to sidestep the issue of
the detailed mechanism of the electromagnetic vacuum. Significantly,
the paper was entitled ‘A Dynamical Theory of the Electromagnetic
Field’, in which the aim was to set down a complete set of field equations
that would account for all the observed phenomena. Later, in 1873,
Maxwell put his field equations into Lagrangian form (the appreciation
of generalized mechanics in Britain having been accelerated by the
publication in 1867 of the Treatise on Natural Philosophy by Maxwell’s
two friends, the ‘Northern Wizards® William Thomson (Lord Kelvin)
and P. G. Tait). Many physicists came to agree with Larmor ‘that the
[construction of a satisfactory Lagrangian] really involves in itseif the
solution of the whole problem’ (quotation taken from Siegel 1981).
After all, the same mathematical equations can describe, when suitably
interpreted, the dynamics of systems of masses, springs, and dampers,
or of inductors, capacitors, and resistors.
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For further discussion of the attitude of Maxwell and his
contemporaries to mechanical ether models, I must refer to the work
of historians (e.g. Siegel 1981). Lest we smile too easily at the naivety
of these great physicists, I show in Fig. 4 a picture, published in 1980,
not wholly dissimilar to Fig. 3. Even the title doesn’t sound totally
unfamiliar:

A COLOR MAGNETIC VORTEX CONDENSATE IN QCD

J. AMBJORN AND P. OLESEN
Nuclear Physics B170[FS1] (1980) 265-282

The point is, surely, that in trying to cross from conceptual terra
that is relatively firma to new islands of knowledge lying beyond the
troubled waters of conflicting theories, partial data, and unexplained
phenomena, the theorist must contrive a bridge out of whatever
material comes to hand. It may be flimsy, but its very lightness can be
tactically advantageous. Once some contact with other land has been
established, heavier structures can be assembled. In the formative
stages, too much weight should not be placed on the new bridge;
eventually, the bridge itself may be discarded, as the waters are forced
back, and the islands united with the growing mainland of
knowledge. At all events, the enormously fertile heuristic value, for
some minds at least, of having a tangible physical model in view when
formulating new theories is surely demonstrated by Maxwell’s great
work of unification—and in his case it was a model, as he said, of
‘what has often been called vacuum, or nothing at all’.

In this spirit we shall now consider our own latter-day version of
Maxwell’s vacuum, and its role in unification. For us, it will be not a
mechanical object—thanks partly to Maxwell’s own work in creating
a field theory of electromagnetism—but rather a quantum-field-
theoretic state, since this sort of stuff is all we have, at present, from
which to make our models.

3 The Quantum Vacuum and ‘Grand Unification’

I gave an introductory account of the vacuum in quantum field theory
in ‘Nothing’s Plenty’ (Aitchison 1985), to which I must refer for
background. In this section I shall have to recapitulate some of what I
said there, before carrying the argument forward in the following
sections.
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A free (non-interacting) quantum field ¢(x, t) is conventionally
represented as a sum of an infinite number of modes. States with
particles present correspond to the states of the field in which some
modes are excited; the vacuum state |O> is the state in which all modes
are unexcited, and the field is in its ground state. Simple though this
sounds, one important caveat should at once be entered: an absolute
distinction between a state with particles in it and one without can be
sustained only in flat space—times. A counter accelerating uniformly
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with respect to a vacuum defined over flat Minkowski space—time will
record a flux of particles, distributed in energy according to a Planck
spectrum with an effective temperature proportional to the accelera-
tion (Davies 1975; Unruh 1976; see also Fulling 1973).

Ignoring from now on this effect of the space—time background, we
recall two important features of the quantum field theory vacuum, as
they relate to unification.

The Effect of Fluctuations

Although the vacuum state is (normally) one in which the average
value of all quantum fields is zero (<0|$|0> =0), the mean square
values of the fields are in general not zero: that is, there are
fluctuations—and this is true even at absolute zero. These fluctua-
tions are observable: those in the electromagnetic field account for
most of the Lamb shift, in hydrogen, while those in charged-particle
(matter) fields give rise to the phenomenon of vacuum polarization,
which accounts for a further contribution (small in hydrogen, but
large in muonic helium) to the Lamb shift. In quantum electrody-
namics, the effect of the vacuum is partially to screen a test charge at
distances = #/mc, where m, is the mass of electron. In other words, at
distances smaller than this size (~4 x 10713 m) the effective electric
charge on a test body will appear to increase. This is the usual effect of
polarization in all normal dipolar media (including, in this respect,
the vacuum of quantum electrodynamics (QED)). A major surprise
was the discovery by Gross and Wilczek (1973) and Politzer (1973)
that in non-Abelian gauge theories (such as those now believed to
describe the strong and weak interactions of quarks and leptons)
vacuum polarization produces a net anti-screening effect: the effective
strong and weak ‘charges’ decrease at small interparticle separation.

It is conventional to discuss this phenomenon in terms of ‘fine-
structure constants’ o, o, and «,, for the electromagnetic, strong, and
weak interactions, respectively. These are (up to factors like 4ze,hic)
just the squares of the appropriate charge: thus, a=e?/4ne hc.
Figure S shows the way in which a increases, while o and o,, decrease,
as the interparticle separation r decreases.

If things worked out in the way suggested by the figure, the basic
strengths (as measured by these fine-structure constants) of all three
different interactions could actually be the same at some appropri-
ately small distance, r, (the ‘grand unification’ scale).
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Fi1Gg. 5 Predicted convergence of the different interaction strengths at the

very short distance r,.
Source: Contemporary Physics 26: 333-91.

Actually, Fig. 5 is an oversimplification; but proper calculations
can be done which lead to qualitatively the same conclusion. The
predicted value of , comes out to be of the order of 1073*! m, a
distance which, though apparently very tiny, is still uncomfortably
large from one point of view. If, at this distance, all forces are
equivalent, presumably the traditional distinction between (strongly
interacting) quarks and {(non-strongly interacting) leptons breaks
down, and transitions can occur between quarks and leptons. These
transitions would allow the proton to decay (e.g. to n% *)—yet it is
known to be extremely stable. Of course, the g«! transitions occur
only over the tiny volume within, say, a sphere of radius ~r,. Detailed
calculations show that the proton lifetime goes roughly as (rp/ru)4
where r, is the proton radius. Though this leads to a very long lifetime
(21031032 years), present limits on the observed proton lifetime are
very hard to reconcile with the simplest grand unification schemes.

The above has illustrated the role of the quantum vacuum in
uncovering a symmetry (at r,) where none appeared to exist (at
r~10715-1071¢ m). The second feature of the quantum field theory
vacuum I need to recall is the way it can (perhaps!) account for a
striking lack of symmetry.
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The Vacuum as the Cause (or Explanation) of Asymmetry

Despite the possible equality (at r,) in fundamental strengths of the
weak, electromagnetic, and strong forces, there still remains a
profound asymmetry between them: their different ranges. As is well
known, in quantum field theory, the range R of a given force is
inversely proportional to the mass M of the quantum of the
associated force field: R=h/Mc. As far as is known, the photon is
massless, and the range of the electromagnetic force is infinite (in this
sense). By contrast, the weak force quanta W =, Z° have masses of the
order of 90 GeV/c?, with an associated force range ~107*® m. How
can these forces possibly be unified? (We leave aside for the moment
the question of the strong force.)

In more physical terms, this question can be rephrased as: Do we
know of any circumstances in which the photon behaves as if it had a
mass? Here we are engaged in fragile bridge-building, trying to reach
a desirable unification aim with the aid of (possibly obsolescent)
concrete physical analogies and models. The answer to this question
is: Yes, in a superconductor. For the present purpose, the crucial
property of a superconductor is the one revealed in the Meissner
effect. If a substance that becomes superconducting at temperatures
below the critical temperature 7, 1s placed in a static external applied
magnetic field at a temperature 7> T, the lines of magnetic flux will
permeate the material; but as the specimen is cooled down below
T=T, the flux is abruptly expelled from the interior of the sample.
However, it is not wholly banished, but penetrates a characteristic
distance A in the surface layers of the material. In fact, the magnetic
field varies approximately as B= B,, ¢~ ** where x is the distance into
the material measured normal the surface; 4 is called the screening
length (see Fig. 6). ' '

Why does the phenomenon mean that the photon behaves as if it
had mass? We can interpret things this way because the range of the
B-field is exponentially attenuated in the superconductor; instead of
an essentially infinite-range electromagnetic field, the B-field has
range of order A. Remembering the relation between ‘range of force’
and ‘mass of quantum’, we can say that, inside a superconductor at
T<T,, the photons in the B-field behave as if they had a mass
m=Hh/Ac.

Consider now a superconductor with two holes in it, such that lines
of B-field pass through the holes (Fig. 7). The flux lines will each
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(a) A superconductor in a field B at a temperature 7" above T; the field
passes into and through the specimen.
(b) Below T, the B field is excluded from the interior of the specimen.
(c) Exponential penetration of the B field into the surface layers of the
specimen, for T<T,.
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Fic. 7 Two flux bundles passing through holes in a superconductor,
below 7.

penetrate a small distance A into the body of the superconductor,
transverse to the walls of the cylindrical holes. If the distance between
the holes is much greater than A, there will be no mutual disturbance
of the two flux bundles. But if the distance apart is of order 4, their
‘leakages’ into the superconductor will begin to overlap and affect
each other: the bundles will interact via an effective force of range ~ A.

This provides an analogy for the action of the weak force. We want
it to ‘penetrate’ only a very short distance, ~#/Mc (where M is the
mass of the W or Z boson) into the physical vacuum. Thus, we shall
suppose that the latter behaves like a superconductor as far as the weak
force is concerned. The matter particles themselves, being regions of
high concentration of weak charge (and weak field energy), may exist
in ‘pockets’ of ‘normal vacuum’, in which the weak superconductivity
has broken down (much as real superconductivity breaks down under
a sufficiently strong applied external field). As a weakly interacting
matter particle passes through the weak superconducting vacuum, it
‘breaks down’ the weak superconductivity up to a distance of order
h/Mc around its trajectory; if two such particles pass within this sort
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of distance of each other, they will interact. Equivalently, we say the
particles interact via the exchange of a W or Z quantum, of mass M
(Fig. 8).

What kind of a mechanism could lie behind this conjectured
behaviour? In a real superconductor, the reason the B field is zero in
the interior of the sample is that, in the surface layer of thickness ~ 4,
currents are set up which produce an internal B field opposing the
applied field; and below T, this B field cancels the external one within
the body of the superconductor. These screening currents are of
course carried by the electrons in the material, so this phenomenon
cannot be understood without reference to the charged current-
carrying matter in the superconductor. Carrying over the same
mechanism to the weak superconducting vacuum therefore requires
the existence of a ‘weak current-carrying matter field’, which provides
the necessary screening currents throughout the physical vacuum.
This is a remarkable proposal, since we are now not talking about a
fluctuation phenomenon; this matter field has got to be genuinely
present in the vacuum. Normally it is assumed that the average value
of all fields in the vacuum is zero: <0|<$|0> =0, for all quantum fields.
For the unification of QED and weak interactions to work, according
to the above scheme, we have to reckon with a situation in which this
is no longer true. The field (or fields) that have a non-zero vacuum
value are called generically Higgs fields, after P. W. Higgs, one of the
originators of this mechanism (Higgs 1964) whereby normally
massless quanta acquire mass. The corresponding ‘abnormal’
vacuum |(~)> may be called a Higgs vacuum, and is such that
<0|¢[0y = f #0, for some Higgs field(s) §.

There is actually nothing inherently unreasonable in the idea that
the state of minimum energy (the vacuum) may be one in which some
field quantity has a non-zero average value. Plenty of condensed-
matter physics examples exist which display this feature—for
example, the ferromagnet below its transition temperature, where
there is a net alignment of the atomic spins. However, it remains a
conjecture that something like this actually happens in the weak
interaction case; at present, no dynamical basis for the Higgs
mechanism exists, and it is purely phenomenological.

The form of the relation between a non-zero value of f = (0¢[0)
and the mass of the force quantum is easily guessed on dimensional
grounds. In units A=c=1, a boson field has the dimension of a mass.
Also, if the weak charge g were ‘switched off’, we would expect the
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Weak superconducting vacuum

~h/Mc

F16. 8 A chunk of vacuum illustrating its ‘superconducting’ property with

respect to the weak interaction.
Source: Contemporary Physics 26: 333-91.

effect to vanish. Thus we would guess that the effective mass of the W
or Z quantum in the Higgs vacuum would be of order gf, which is
correct. Inserting numerical factors, the known value of g, and the
vector boson masses, one finds that a vacuum expectation value
Jw =250 GeV is required.

A Higgs vacuum must also be invoked in the context of the ‘grand
unification’ of the three non-gravitational forces. In Fig. 5 we were led
to the idea that the forces had a similar strength at distances of order
r,~1073 m, As usual, we may translate this distance into an
equivalent mass via M, =#/r ¢, which comes out at M, ¢~ 10°GeV.
The grand unified force field will contain some quanta (‘U’) with this
mass M,,. It is the exchange of these quanta, in fact, that can mediate
proton decay. We require a second, independent, Higgs mechanism
to generate mass for the ultra-heavy quanta. The corresponding
f-value, f,, is presumably of order 10'> GeV.

Finally, we note that yet another non-zero vacuum value appears
to be required, associated with the dynamics of the strong force
between quarks, described by the theory called quantum chromo-
dynamics (‘QCD’). Technically, this is somewhat different from the
previous two examples, and is referred to as a ‘Goldstone’ rather than
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a ‘Higgs’ mechanism (see e.g. Aitchison 1982: ch. 6). The associated
f-value is f, ~90 MeV. We remark that this f~value does not imply
anything about the range of the QCD force: it does not serve to give
the gluons mass. It would take us too far afield here to explain why
this is so—and why, in fact, the strong force apparently has the
remarkable property of forbidding the existence of free isolated
quarks (‘confinement’). Nevertheless, this latter property can prob-
ably again be understood in terms of vacuum structure (see
Section 6.4 of Aitchison 1985). It is this (QCD) vacuum that Fig. 4 is
supposed to represent—Maxwell’s vortices come around again!

After all this, I need hardly emphasize the centrality of hypotheses
about the vacuum to the whole edifice of unification of the non-
gravitational forces. Are the above pictures models, or are they true?
As always, and as Maxwell reminds us, experiment must be the judge.
The average values f of Higgs fields are constants—but these
quantum fields can presumably also support excitations, as usual,
which correspond to massive quanta (‘Higgs bosons’). Very little is
known about their mass, or masses, but they may be in the region
from about 100 GeV to | TeV. The discovery of a Higgs boson—a
quantum vibration of the Higgs vacuum—would be of enormous
importance. The study of its properties should provide clues to the
real mechanism of mass-generation.

4 Two Problems with the Story so Far

Certain rather elaborate properties of the vacuum have been posited,
which allow unification of electromagnetic, weak, and strong forces.
In this section I note two problems with this general picture, which
themselves indicate {possibly) the need for further unification.

The Hierarchy Problem

This problem relates to the two very different values of the gauge
boson masses introduced in the unification of the electroweak
interactions (M, M, ~90 GeV/c?) on the one hand, and of all three
non-gravitational interactions (M, ~10!> GeV/c?) on the other.
{Equivalently, we note the disparity between f, ~250 GeV and
f,~10"% GeV.) It seems, in the first place, most implausible that, as
Fig. 5in fact presupposes, one would encounter no new physics at all
as one passed through the 13 orders of magnitude separating these
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energies {or, in Fig. 5, distances). Yet this is not the real problem.
Figure 5 refers to the behaviour of the fine-structure constants of the
theories, as a consequence of vacuum polarization effects. These
effects turn out to induce a logarithmic variation of the ‘constants’
with distance scale (or, equivalently, energy scale). That is why the
convergence of the three constants to a unified value takes so many
orders of magnitude in scale to achieve. However, vacuum fluctua-
tions have another effect: they can cause shifts in the masses of
particles, much as an electron, moving through a crystal, generally
behaves as if it had an ‘effective’ mass different from its mass in free
space. These mass shifts depend much more strongly on the distance
(or energy) scale than do the fine-structure constants. In fact, the mass
shifts will generally be of the same order as the energy scale (not its
logarithm). Here is where the problem arises: mass shifts induced by
grand unified interactions will inevitably tend to pull all masses (e.g.
those of Wand Z bosons) up to that of the ‘grand unified’ bosons, M,,.
How can the hierarchy of scales be maintained?

The gauge boson masses themselves arise from non-zero vacuum
values of Higgs fields. Thus, to explore the problem we really have to
consider the separate electroweak and grand unified Higgs fields,
which are denoted generically by H and £ respectively, where
(0|A|0) =fy~250 GeV and (0|Z|0>=f,~10'° GeV. We might
imagine ‘insulating’ the A from the £ in the assumed fundamental
interactions of the theory, by forbidding all couplings between them.
In this way, the two widely different energy scales would have no
‘communication’ with each other. But such couplings will actually be
induced by perturbative corrections (see €.g. Ross 1985: 181 ff), which
require the existence of fundamental A-E couplings if the theory is to
be renormalizable. These couplings are typically of the form H?%2:
and when £ is replaced by its vacuum value in this expression, we see
(recalling that the mass term for a scalar field is m2¢$?) that
contributions to the H mass are inevitably generated, which are of
order 10!% GeV/c?. In turn, this mass will feed into a huge mass
correction for the W and Z particles.

Of course, matters are more complicated than sketched here. In
particular, there are various terms in the ‘H?3% potential, and
perhaps cancellation can be arranged between them, and/or between
them and a ‘bare’ mass term—but these cancellations have to be
repeated in each separate order of perturbative correction.

If we regard such delicate cancellations (two numbers of order
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10*5 GeV/c? conspiring to produce one of order 10? GeV/c?) as
unsatisfactory in a fundamental theory, we have a problem: the
‘hierarchy problem’. Two ways out have been proposed. One is to
regard the electroweak Higgs field, at least, as not elementary, but as
composite, i.e. as a bound state of some as yet unknown matter-fields.
It is then no longer point-like, but has a characteristic size, which
provides a physical cut-off to the scale of corrections to its mass (Ross
1985: 279 ff). If this size is of order = h/(1 TeV/c), then all
perturbative mass shifts will be of order <1 TeV/c?, and no
unnatural cancellations will have to be appealed to in holding the
Higgs mass, and vector-boson masses, at the same level, i.e.
21 TeV/c?. This hypothesis (of compositeness) is actually very
analogous to the ‘superconductor’ picture sketched in the previous
section: the Higgs field for a real superconductor is precisely not an
elementary field, but a bound state of two electrons (a ‘Cooper pair’).
It is therefore a rather attractive proposal. It is also phenomenologi-
cally exciting, since it seems clear that, if true, it would imply the
existence of a rich new spectroscopy of bound states in the TeV region,
such as could be found by future accelerators. Unfortunately,
however, there are technical problems with the detailed imple-
mentation of the idea (Ross 1985: 280 ff), and no fully acceptable
model along these lines (generally called ‘technicolour theories’)
seems to exist.

The other strategy is to arrange for the perturbative corrections,
which generated the necessity for the undesirable H%£2 potential, to
cancel among themselves. This is a very radical suggestion, since
some of these corrections involve bosons, and others fermions, in the
intermediate states (in the sense of quantum mechanical perturbation
theory). But it is precisely this difference which, qualitatively, suggests
the possibility of a cancellation: in the language of Feynman graphs,
boson loops and fermion loops enter with opposite signs! But more
than this sign difference is needed: clearly, the boson and fermion
coupling constants must also be all interrelated. In fact, there has to
be a supersymmetry (Ross 1985: sec. 10.5) between the bosons and
fermions in the theory. Thus, our search for unification of the force,
and attendant problems consequent upon proposed vacuum struc-
ture, have led—in one scenario at least—to the possibility of an even
more profound unification.

Of course, the snag with this is that we do not observe any
symmetry between fermions and bosons! Such a symmetry would
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imply, for instance, the existence of a spinless particle degenerate in
mass with the electron—indeed, to every known ‘elementary particle’
there should correspond a degenerate ‘superparticle’ of appropriately
different spin. Nothing like this, of course, is seen; hence supersym-
metry has to be a ‘broken’ symmetry, the superparticles somehow
acquiring different masses from the normal particles. However, in
that case the delicate cancellation between boson and fermion loops,
which solved the hierarchy problem, is lost. Thus, if this solution to
the problem is to be preserved, the mass of the superparticles cannot
be too high—in fact, probably not much more than about 1 TeV/c?.
It seems, therefore, that on either ‘leg’ of these two responses to the
hierarchy problem, one must anticipate new physics around the
1 TeV energy region, which is a remarkable prediction.

We turn now to another problem associated with Higgs-type
vacua.

The Cosmological Constant Problem

This is an even worse ‘fine-tuning’ problem. The difficulty arises from
the vacuum energy density which is carried by non-vanishing Higgs
fields. In a normal vacuum, almost by definition, the energy density is
zero and all fields have zero average values. But in a Higgs (or
Goldstone) vacuum there are some fields ¢ with constant remnant
values, which we have denoted generically by the symbol f. Such
constants carry no kinetic energy, but they will in general contribute a
term V(f) to the potential energy of the vacuum. On dimensional
grounds, we expect this vacuum potential energy density to be of
order f*. (Any other widely different value would necessitate the
introduction of a new dimensionless fundamental constant.) This
energy density is presumed constant throughout all of space—and it
would have remarkable cosmological implications (Linde 1974);
Ross 1985: sec. 12.7), as we now discuss.

Assuming a homogeneous and isotropic expanding universe, the
metric following from Einstein’s equations of General Relativity (GR)
is that introduced by Robertson and Walker, which involves the
quantity R(z), a time-dependent factor setting the scale of the
universe. For zero curvature, the dynamical equations of GR give

R\? 8n
(ﬁ) :7GNP (1)
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where Gy, is Newton’s constant (~ 10738 GeV ™2 in units i=c=1),
and p is the energy density. Generally p is considered to be either
radiation- or matter-dominated. In particular, it has no constant
part, which would correspond to a ‘cosmological constant’ term. To
see the effect of such a term, suppose p is a constant and set
8n

3 Gap=n. 2)
Then it is easy to see from (1) that the scale size grows exponentially
with time, as

R(t)= R, exp[ A12(t—1,)]. G)

Current observations are consistent with matter-dominated expan-
sion, which grows as %3, This gives a very severe bound on the
possible magnitude of A:

AY2<10742 GeV. “4)

On the other hand, we have just argued that a Higgs vacuum leads
precisely to a constant p, of order f#, where fis order 10!° GeV for
grand unification, and 250 GeV for electroweak unification. From
(2), these give

A gE~10M GeV. %)
ALZ~ 10714 GeV. 6)

Even (6) is 28 orders of magnitude away from (3).

Of course, this vacuum potential energy density is a constant, and
we might feel that we are free to cancel it away by subtracting the
appropriate constant value from V. But again, this is another (and
worse) fine-tuning problem.

Actually, exponential growth in R—which is called inflation—is
believed to be a highly desirable feature in the very early stages of the
evolution of the universe (see e.g. Ross 1985: sec. 12.8; Guth and
Steinhardt 1984; Aitchison 1985: sec. 6.4.4). A typical value of f
required (via p ~f ) for this very early inflation is of order 101% GeV,
not very different from the ‘grand unified’ f,. Perhaps this is
significant.

At all events, the fact remains that the vacuum value of 7 had better
be pretty nearly zero now. The idea that the value of the (effective)
potential energy can change as a system evolves is familiar in a
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condensed matter context. A system may cool down, for example, so
as to pass through a critical temperature where a phase transition
occurs. Such a change in phase can be modelled in terms of an
appropriately chosen V. Applying this idea to the expanding and
cooling universe, one can arrive at a possible form of potential V()
shown in Fig. 9—where only one scalar field ¢ is in play. We imagine

V(9)

o ¢

Fic. 9 Potential energy density versus Higgs field, modelling slow ‘roll-
over’ phase transition.

that at t ~0 the field system starts at 4 near the origin, with a value of
V appropriate to early inflation. Then the field ‘rolls’ slowly down the
shallowly sloping part of ¥ (the universe inflating meanwhile), before
making a sharp transition to the equilibrium value ¢,, for which
V(¢,) (and hence A) is zero. Note that ¢, is non-zero, and could
perhaps be identified with f,.

Supersymmetry may be able to help here, once again, since it turns
out that in a (globally) supersymmetric theory the value of the
potential, and hence of A, has to be zero at its minimum (cf. the
Abstract in Fig. 2). But of course, supersymmetry cannot be exact, as
we have seen—and if the scale of its breaking is ~ 1 TeV we are back
with a gross violation of (3).

Even if such ideas can reconcile the nggs mechanism with
cosmology, there will remain the energy density associated with the
QCD (Goldstone) vacuum parameter f, (Section 3). It is very hard to
see what possible principle can arrange for this energy to be zero
‘naturally’. Are we here beginning to face problems akin to the absurd
‘rigidity’ of the nineteenth-century ether? There is little doubt that
Higgs (and Goldstone) fields are our modern equivalents of those
earlier mechanical contrivances populating the plenum, albeit very
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subtly. As in those days, we must push forward with such concepts as
we have, until perhaps some new Einstein appears to explain why it is
really not necessary to look at things this way at all.

The discussion has now brought us most of the way down the first
two columns of Fig. 1, and gravity and cosmology have been
mentioned; it is time to tackle the third column.

5 Kaluza—Klein Theories

It is obvious that I cannot possibly provide here an adequate
introduction to this topic: once again, I want to direct my remarks at
the possible role of the vacuum in this type of geometrical unification.
An excellent recent compendium is provided by Appelquist et al.
(1987); despite its title, this volume includes many historical papers,
including those by Kaluza and Klein.

Classical general relativity employs ten basic fields, the com-
ponents of the metric g, where x stands for (x°, x!, x2, x3). The

uv?

Einstein—Hilbert action, which leads to the field equations of GR, is

I= - Jd“x\/—g.@ )

167Gy

whereg=det g,,, Z is the scalar curvature, and a possible cosmologi-
cal constant term (which would add 2A to #£) is omitted. On
dimensional grounds (with A=c=1), we see that G, has dimension
(mass)~2:in fact, we already gave the value Gy=1073% GeV~2. It is
interesting to compare this situation with that in the weak
interaction; there, Fermi’s original theory employed a basic strength
parameter G, which also carried dimension (mass)” 2. Today, we
know that Fermi’s constant is not really fundamental, and that its
‘dimensionfulness’ originates from the mass of the ¥ bosons: indeed,
the electroweak theory gives Gp=./2g*/8My?, where g is the
dimensionless weak charge. Could the dimensions of Newton’s
gravitational constant be explained in a similar way? In other words,
could we get a theory of gravity characterized by a fundamental mass
(or length) and a dimensionless strength? Could we then unify all the
forces?

It is clear, first of all, that we do not want to involve any kind of
Higgs mechanism to generate the mass scale (~101° GeV) associated
with G . (By the way, this mass scale is of course the Planck mass,
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M,.) To do so would surely imply that gravitational forces extend
only over distances of order #/(10'° GeV/c)~1073° m (the Planck
length, Lp), very far from the truth! Furthermore, if g,,(x) is indeed
the fundamental field of gravity, the quanta of its quantized version
g, (x) have spin 2, and this seems quite different from the spins of the
quanta of the other force-fields. (But could the vacuum somehow
reconcile even these differences?) These considerations seem to rule
out any obvious inclusion of the gravity fields in the unification
framework as so far developed: something new is needed.

Given that we abandon Higgs, where can a gravitational length
{(Lp) or mass (M}) scale come from? We could suppose that this is
indeed a natural length scale associated with the most fundamental
objects of all (as is done in string theory, Section 6). Alternatively, we
might suppose—having heard of the Kaluza—Klein idea—that such a
length might represent the effective size of a highly compactified fifth
dimension.

The introduction of a fifth coordinate dimension does allow a
geometrical unification of gravitation and electromagnetism, as
Kaluza showed. The metric field g,,y (x°, x*, x2, x3, x*) now has 15
components. These can be regarded as comp -ising 10 for the standard
g,» of GR, 4 for the vector potential 4*, and 1 scalar field ¢. There is
much more to this than mere arithmetic. First, a special coordinate
transformation involving the ‘fifth® coordinate x* turns out to
correspond to a gauge transformation on 4*—allowing the latter to
be interpreted geometrically. Second, the five-dimensional version of
the action (6), when expanded in terms of g,,,, 4*, and o, contains the
four-dimensional action (6), a Maxwell action for 4", and the usual
kinetic term for o, provided that all dependence of these fields on the
fifth coordinate x* is dropped. (Kaluza also, in fact, assumed that ¢
was a constant.) Thus, a remarkably unified geometrical picture
emerges.

Why can the dependence on x* be ignored? Assuming that the
dimension is compactified to an S* of radius R, we can Fourier
analyse the fields according to

F(x, x*) =Y F®(x) "R (8)

where Fis g,,, A,, or o and x is (x°, x?, x%, x*). In the quantum
version of this theory, we interpret n/R as a momentum-like quantity,
and expect that the n 70 harmonics in (8) correspond to excitations of
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mass n/R. If R is of order the Planck length, these are of order the
Planck mass, and thus are totally ignorable at conventional energy
scales.

The idea was carried further by Klein in 1926, who related the
electromagnetic charge to Newton’s constant and R. In modern
terms, we would say that, since transformations in the fifth coordinate
are associated with gauge transformations on the vector potential 4%,
the charges on the n #0 modes in (7) must be determined. Indeed, the
nth harmonic carrries a charge

e,=n(16nGy)*/R; ®

the charge is quantized because the fifth dimension is compact (n is
integer to ensure periodicity in (7)), the elementary unit being
(16nGy)'?/R. The corresponding fine-structure constant is 4Gy/R,
so that if we identify this with 1/137, R~ 100L,~ 10733 m.

All this is very liberating—but what mechanism can we imagine for
the required compactification of the fifth dimension? It is possible
that vacuum dynamics can supply the answer. The essential idea is a
variant of the Casimir effect (Aitchison 1985: sect. 3.2). In the simplest
version of this effect, we consider the change in the zero-point energy
(~Z,3hw,) of the radiation field when we simply position two large
conducting plates a distance d apart in vacuo. The zero-point energy
(z.p.e.) can be regarded as being associated with vacuum fluctuations
in the fields. The introduction of the plates forces the fields to have
nodes on the surfaces of the plates; thus the wave numbers, and hence
the frequencies of the allowed modes, will depend on the separation d.
Changing d will change the z.p.e. by a finite amount. In physical
terms, this means that work has to be done to establish the required
boundary conditions when the plates are moved. This work can be
regarded as a potential energy function which depends on d. In the
present case, V(d) is negative, indicating an attractive force between
the plates (which has been measured). Instead of this ‘plate’ geometry,
we might consider the effect of introducing a spherical shell, of radius
r. In the electromagnetic case this produces a positive V(r)}—so that it
cannot, for example, cancel repulsive Coulomb forces, were we to
regard the system as a model for the electron, say (as Casimir himself
originally hoped it might be). Suppose, however, we consider a
gravitational analogue, and interpret r as the radius of the
Kaluza—Klein (K—K) compactified fifth dimension. Vacuum fluctua-
tions of the gravitational fields, subject to the boundary
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conditions at x*=r, will produce an effective potential V(r), which
might indicate a tendency—on energetic grounds—for r to decrease
(compactify) ‘spontaneously’.

The calculation of V(r) in a 5-dimensional Kaluza—Klein (quant-
ized) gravity theory was done by Applequist and Chodos (1983), to
one loop order. Subtracting off a constant part (corresponding to
an—infinite!—cosmological constant), they found that V, the change
in the z.p.e. per unit three-dimensional volume, was negative and
proportional to r 4.

Thus, according to this calculation, there is a dynamical tendency
for the fifth coordinate to shrink. Unfortunately, it collapses
indefinitely—but the calculation is not reliable as soon as r is order Lp
(any more than the electromagnetic one would be for the plate
separations of order an atomic spacing). There would be a large prize
attached to a successful calculation of the equilibrium value r=R (if
such exists), since from (9) this would be tantamount to a calculation
of the electromagnetic charge! A number of proposals were made in
order to achieve stability. For example, Rubin and Roth (1983a)
discussed whether, at high enough temperatures, thermal pressure
effects could counterbalance collapse; and Rubin and Roth (19835)
and Tsokos (1983) noted that the addition of massive fermions can
change the sign of V at short distances.

But of course, the simple K—~K model, in which only electromagnet-
ism is considered, apart from gravity, is not satisfactory. To interpret
the weak and strong gauge forces in terms of compactified geometry,
we must go to more dimensions than five. The standard model
SU(3). x SU(2), x U(1), needs at least an additional seven dimen-
sions, beyond our own M*. The extra dimensions constitute what is
called the ‘internal manifold’, since they are the geometrical origin of
the ‘internal’ symmetries. A significant new feature now appears, as
soon as the internal manifold has more than one dimension: it will in
general have curvature. Candelas and Weinberg (1984) exploited the
tendency of the (positive) energy associated with such a curvature to
produce stability against collapse. They considered manifolds of the
form M* x S¥, where S¥ is an N-sphere and N is odd. They included
both bosonic and fermionic matter-fields, and were able to find a V
with a stable minimum. Unfortunately, about 10* or 10° different
species of matter-fields were required to produce gauge couplings (via
the generalization of (9)) of the right order of magnitude. (Further
possibilities along these lines are collected in Appelquist et al. 1987.)



The Vacuum and Unification 189

There is, however, something of a conceptual problem associated
with having an internal manifold with curvature, such as an S¥. The
trouble is that oppositely-handed versions of our low-energy leptons
would then exist—which, since they have not been observed, must be
presumed to be very massive. Now fermions of only one handedness
(or ‘chirality’) can introduce certain diseases into the theory, called
‘anomalies’. It is believed that anomalies have to be cancelled for the
theory to make sense. Indeed, the anomalies associated with leptons of
both chiralities would cancel each other out. The snag is that the
anomalies due to our familiar low-energy leptons are already cancelled
by corresponding contributions from the quarks. This is surely too big
a coincidence to be accidental—though exactly what its significance is
remains obscure. At any rate, the heavy leptons of opposite chirality
are not needed, and it is believed that the fermion spectrum in higher-
dimensional theories should be chiral (i.e. of one handedness only).

An interesting way out recalls the Cremmer—Scherk (1976) model
of spontaneous compactification. If additional non-Abelian gauge
fields in a monopole configuration are added as a background to the
higher-dimensional theory, then the index theorem (which relates
chirality to topological charge) allows the fermion spectrum to be
chiral (Ranjbar-Daemi et al., 1983).

This suggestion naturally raises questions. Where do these
background gauge fields come from, and why are they automatic-
ally in a monopole configuration? Is such a configuration energetic-
ally preferred? Here I cannot resist throwing out a no doubt wild
idea. A remarkable new type of gauge-field structure, in ordinary
quantum mechanics, has recently been discovered by Berry (1984).
It occurs in theories in which the dynamical degrees of freedom
separate into two classes—fast’ and ‘slow’—distinguished by their
time rates of change, or equivalently by the characteristic energy
level differences for the two types of excitation; one thinks, for
example, of electronic and nuclear degrees of freedom in a molecule.
In one formulation of such a situation, the ‘fast’ degrees of freedom
(which of course are coupled to the ‘slow’ ones) are integrated out,
and an effective Lagrangian (or Hamiltonian) for the dynamics of
the slow coordinates is obtained. This Lagrangian includes, quite
characteristically, a gauge-field contribution which is induced by
the process of integrating out the fast coordinates (Wilczek and Zee
1984; Li 1987a, 1987b; Kuratsuji and Ida 1985a, 1985b, 1987; a
recent review is provided in Aitchison 1987). Even more remark-
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able, this gauge field frequently appears precisely in a monopole-like
configuration!

1t is tempting to wonder whether the coordinates x°, x!, x2, x> of
our own space—time could be regarded as ‘slow’ in the above sense,
while some of those associated with a compactified internal manifold
x4, x>, ... would be ‘fast’. Integrating fields over the fast internal
coordinates might then induce an effective monopole-like gauge
structure, which would allow chiral fermion multiplets. A simple model
somewhat along these lines has been suggested by Duncan and Segre
(1987). Of course, we have to explain why some compactification
occurs, as usual; maybe there is some kind of self-consistency here, since
the Cremmer—Sherk mechanism will come into play once background
monopole fields exist, and the Berry phenomenon may generate such
fields if some internal dimensions were compactified. To begin to
address such issues would seem to require a generalization of the Appel-
quist—Chodos z.p.e. calculation, to allow for Berry-type phenomena.

Though a slight detour, it is worth mentioning here another
application of the ‘adiabatic’ approximation in a vacuum {specifi-
cally, Casimir energy) context. Instead of starting with a five-
dimensional Einstein action, as in the original X—K approach, one
could consider a theory without any explicit gravitational action,
consisting only of matter fields in a (five-dimensional) space-time
background. A simple scalar field Lagrangian would then involve a
kinetic piece g™~ 8,,¢ 8,9, for example, where g™ is the 5-D metric.
Integrating out the fifth coordinate yields an effective action which is
essentially the Casimir energy (Myers 1987), and which can be
expanded in powers of derivatives acting on the fields—which we
know to include the 4-D g#” and a Maxwell field 4#. The quantity
setting the scale in this expansion is the radius R of the compactified
dimension—or, equivalently, the associated mass 1/R. Thus, the
expansion is in powers of (RJ) where 0 is a typical field gradient.
‘Adiabaticity’ in this context means that <R, or that the field
gradients are small compared with R ~*. In this case only the first few
terms in the expansion need be considered.

Toms (1983) did such a calculation for a 5-D theory with scalar and
spinor fields. It is clear that the expansion of the effective action, in
powers of derivatives, must yield a sequence of terms the form of
which is severely constrained, a priori, by general covariance. In fact,
the lowest-order term is a cosmological constant, and the next is an
Einstein curvature term together with a Maxwell action (both
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second-order in derivatives). Thus, a 4-D gravitational action has
been ‘adiabatically induced’—and its contribution is the natural
geometric quantity, the curvature of the parameter manifold. The
coeflicient of the Einstein term has to be related to Gy ; and this fixes
the magnitude of the radius R to be (Toms 1983) some 100 Planck
lengths.

The idea was pushed to higher dimensions by Awada and Toms
(1984), who showed that the 4-D Einstein—-Yang—Mills action could
be induced, in adiabatic approximation, from an effective (Casimir)
action obtained by integrating out higher dimensions with a non-
Abelian K-K metric. In all cases, one generates—as usuall—an
unacceptably large cosmological constant term.

Returning to the main line of historical development, we have
reached, in the era of supergravity and non-Abelian K—K theories,
roughly the years 1983—4. At that point, a paper by Green and
Schwartz (1984) appeared, which triggered an enormous switch of
emphasis towards (super)string theories. They showed how to
construct, via a superstring theory, a quantum theory of gravity
which was free of (gravitational) anomalies, the latter being cancelled
by anomalies associated with the other interactions, provided the
internal gauge group was SO(32). This was a quite remarkable
‘reason’ for having all the forces!

String theories abandon the ‘point particle and local field’
framework that has served us since Maxwell’s time. They postulate as
fundamental objects things with extension—in the case of strings,
extension in effectively one dimension. Thus, in place of the
space-time trajectory or world-line of a point particle, we have a
world-sheet of a string. Naturally, the extension had better be quite
small—and it is indeed supposed to be of the order of the Planck
length L,. This implies, as we have seen in other contexts, that
excitations of the quantized string will have a mass ~M,.
Consequently only the ground—or vacuum—state of the string is
likely to come in (though the excited states play a role in anomaly
cancellation).

Bosonic strings can be consistently formulated only in 26
dimensions; supersymmetric strings can get by with 10. The latter (via
the Green—Schwartz mechanism) allow for consistent quantization of
gravity;indeed, they may well be free of all divergences. Soon after the
Green—Schwartz discovery, a new kind of superstring theory was
found, the ‘heterotic’ type (Gross et al. 1985; Freund 1985). This too
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successfully describes a quantum gravity, and has an alternative
internal gauge group, Eg x Eg. It is this type that was particularly
favoured by the analysis of the paper in Fig. 2, since it can be
compactified so as to yield a four-dimensional world not unlike
our own.

String theory is developing extremely rapidly, and is by no means a
fully deductive theory as yet. In particular, no complete ‘second-
quantized’ version of the theory is yet to hand. As one way of
understanding what is meant by this, consider the path-integral
method of quantization for a point particle. One passes, character-
istically, from a picture in which a classical particle moves from 4 to B
along one specific (classical) path, to one in which one has to sum over
all paths, weighted by the factor ¢S/, where S is the action. By this
process one effectively moves from the classical variables x(¢) to the
quantum operator X(¢). For a string, the place of the classical path is
taken by the world-sheet. To ‘“first-quantize’ such a theory, one has to
imagine summing over all possible world-sheet configurations,
beginning with a stated initial one and ending with a final one. By this
process, one passes from the classical string coordinate x,(c, 7) to the
quantum operator x,(o, 7}—here o and 7 label the world-sheet and u
runs over the 26 dimensions, for a bosonic string. What about ‘second
quantization’? In ordinary quantum field theory, one introduces field
operators ¢(x)—or, equivalently, one works with generating func-
tionals which involve integrating over all possible field configu-
rations, with some measure D 4(x). In string theory the analogue of the
latter step would seem to be some integration of the form
D®[x,(o, t)], where the fields are defined with string arguments. The
precise form of this measure is not known, at least for interacting
strings.

Until we have an analogue of the ‘Feynman rules’ for string
theories, we cannot answer some obvious questions that arise in
connection with superstring-inspired unification. In particular, even
assuming we had one unique string theory, we need to explain why the
low-energy world in which we actually live is its ground state. In other
words, why is the compactification scheme found by the authors of
Fig. 2, say, energetically preferred? There are very many solutions of
the classical field equations of superstring theories—all of which are
candidate ground states, or vacua.

All the same, it is pretty mind-blowing to reflect that our own four-
dimensional world, its geometry, its matter content, and its force,
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may all be just the dynamically determined ground state or vacuum—
of a superstring! Vacuum dynamics, and unification, can hardly be
taken further.
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8
Making Everything Out of Nothing

ROBERT WEINGARD

1 Descartes’ Theory of Space

I want to begin with Descartes. This may seem strange, since
Descartes argues that a vacuum is impossible. But by this he
meant simply that two things could not be separated by a distance
and yet have, literally, nothing between them. If there were,
literally, nothing between two objects, they would be in contact. If
there is a distance or extension between two objects, then that
distance is a property of something, namely an extended sub-
stance.

Indeed, Descartes held that there is only what he calls ‘a distinction
of reason’ between space and matter. Really, the whole universe, with
the exception of God and mental substances (minds), is a single
substance extended indefinitely in three dimensions. That it is
extended in three dimensions is its principle attribute. This means, on
the one hand, that all there is to the substance is that it is so extended,
the extension constituting or defining the substance; and on the other
hand that all the phenomena of the material world are to be explained
solely in terms of this extension.

What we ordinarily call ‘matter’ and ‘empty space’ are therefore
just different regions of the one all-embracing extension. In
Descartes’ sense of matter, there cannot be space without matter;
but in our ordinary usage of ‘matter’ and ‘physical object’, there
can be. Indeed, in that ordinary sense we can plausibly say that on
Descartes’ view everything is made of empty space; i.e., everything
is reduced to geometrical properties of space. I think we can fairly
say, then, that, as we use the word, not only does Descartes think
a vacuum can exist, but really, he thinks that all there is is the
vacuum,.

Descartes wants to reduce physical objects to geometrical proper-
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ties of space. But his conception of space as an extended substance
imposes severe limitations on him. First, since extension in three
dimensions is the principle attribute of space, he has to identify
quantity of matter with the volume of the region of space that matter
occupies. How then can he explain phenomena like condensation or
melting where a given quantity of matter appears to change its
volume? Second, Descartes, like his contemporaries, takes for
granted that space is topologically and metrically Euclidean. How
then can different regions of space be geometrically different enough
so that they can be identified with different material substances like,
say, gold and banana ice cream?

To solve this second problem, Descartes focuses on the property of
shape. Although he thinks there is a single continuous extended
substance, he conceives of it as being divided up into little regions of
different shapes, which behave as particles that can move with respect
to each other. In effect, he thinks of the universe as being continuously
filled with particles of several distinct shapes. Thus, although he
attacks the atomists’ distinction between matter and the void,
Descartes in practice appropriates much of the atomists’ explana-
tions.

For example, the above problems of condensation and melting are
given atomistic solutions. Water consists of distinctly shaped regions
of space, 1.e. particles. In steam they are relatively far apart, but they
become more densely packed when the steam is condensed to water.
At the same time, air particles, with their own distinctive shape, which
were evenly distributed throughout the steam, are displaced from the
region where the water condenses and fill up the region where there is
no longer steam. The point is, the quantity of matter in the region
occupied by the steam has not changed during condensation: its
pieces have merely been rearranged.

2 Some Problems for Descartes’ Geometrical Theory of
Everything

It is well known that such a theory faces severe difficulties. Let me
focus on two of these that are relevant to our story. First, consider
space at some instant of time. It is divided up into many regions of
different shapes. But what distinguishes one region (particle) from
another at that instant? Space is homogeneous and isotropic, its only
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property being that it is extended in three dimensions. I do not see
how, then, on geometrical grounds, space at a given instant can be
considered to be divided up into particles one way rather than
another. Rather, what makes one region a particle, instead of part of
two particles, is that it preserves its shape relative to other regions
during motion. And that this occurs does not follow from the fact that
the region has a certain shape at a given time. Besides shape, then,
Descartes has to bring something like causal powers into his
explanatory scheme: namely, that some regions (particles) preserve
their shape when colliding with other particles, while other regions,
say a bunch of air molecules, do not.

Second, Descartes has a problem about motion. Since he thinks of
the single extended substance as an incompressible fluid, he knows
that one portion of the fluid cannot move uniess it moves into a place
vacated by the simultaeous motion of an adjacent portion of the fluid.
Because of this, he thinks that all motion of the fluid takes place along
closed paths. One portion of the fluid moves in step with all the other
portions along the closed path so that, as it were, no empty places
appear. For Descartes, however, a portion of the fluid is nothing but a
portion of extended substance. How then can a portion of extension
move, leaving a place (that is extended) for an adjacent portion of
extension to occupy?

The point is that, for Descartes, there is no ‘real distinction’
between the extension of a region of extended substance and the
substance itself of which it is the extension. So a portion of the
substance cannot move, leaving an extended place for another
portion of the substance to occupy. This is not to say, however, that
one cannot work out a theory of motion using a relational theory of
place. I am only saying that Descartes cannot do this because for him
the extension (or distance) between two points is a property of a
substance, not a relation between two things.

3 Solving Descartes’ Two Problems

Both of the above problems arise because Descartes does not have a
rich enough notion of geometry. Because he knows only about
Euclidean geometry, he does not have sufficient geometrical
resources for his project. So he is forced to use the shape of a region of
space as his basic explanatory tool. And this, as we saw, leads him
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outside the sphere of geometry. However, we know that Euclidean
geometry is not the only conceivable geometry, and by allowing space
to have a variable curvature and topology, we can solve the above
problems.

If we identify each elementary particle with a region of space with a
distinctive curvature and/or multi-connected topology, different
particles will be distinguished in a purely geometrical way. At any
instant, whether a region of space is a particle, a part of two different
particles, etc., will depend solely on the geometry of that region at that
instant.

That takes care of our first problem. As for the second one,
Descartes’ problem arises because, to put it crudely, he identifies the
principle property of space—extension—with the stuff of space. If
these two can somehow be separated, then the properties will be free
to move while the stuff—extension—does not. Again, I think we can
do this with our space of variable curvature and topology by
conceiving of the motion of particles on analogy with the motion of
the letters on the illuminated news sign in Times Square. The letters
move, not by anything moving, but by the sequential blinking of the
lights of which the sign is composed. Similarly, we can conceive of the
motion of a particle as the motion of a geometrical property. Regions
of space do not move, but the geometry of adjacent regions change in
such a way that a pattern of geometrical properties—the pattern we
identify with a certain particle—moves. Just as in the Times Square
sign, only a pattern moves, not the ‘material’ instantiating the
pattern.

4 Extending Descartes’ Programme—Space-Time and the
Mind

We have taken care of Descartes’ two problems by allowing space to
have inhomogeneous time-dependent metrical and topological
properties. However, we still have not explained the physical world
solely in terms of the geometry of space, for we have also used time as
an additional ingredient in our explanations. A complete geometriza-
tion of physics must give a geometrical explanation of time as well.
And as we all know from relativity, we can do this by making time an
additional dimension. We thus take four-dimensional space-time,
rather than three-dimensional space, as our fundamental geometrical
entity.
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But independently of our Cartesian desire to geometrize time,
relativity tells us that it is necessary to geometrize time if we are to
geometrize the rest of the universe, in particular, if we are to give a
geometrical account of gravity. For example, suppose we try to
account for gravity in terms of the curvature not of four-dimensional
space—time, but of three-dimensional space. Galileo’s principle tells
us that the trajectory of a particle in a gravitational field depends only
on its initial position and velocity, but not on its constitution. In an
affinely connected space, one and only one geodesic passes through
any point in a given direction. Thus, in three dimensions the initial
speed of the particle would be irrelevant, its trajectory being
determined by the initial direction of motion only. However, in four-
dimensional space—time, the initial three-space velocity does deter-
mine a direction in space-time, allowing the geometrizing of gravity.

We have just seen that, although Descartes does not include time as
part of the geometry, we can extend geometry to include it. Descartes
also thinks that the mind cannot be given a geometrical explanation,
and we ought to question that as well. His arguments are really
arguments against a physicalist account of mind, and almost no
philosopher today accepts them. Either the arguments simply do not
work, as a majority believe, or, according to a minority, they work
too well and there are no minds; that is, eliminativism is correct.

However, some non-eliminativists have felt that the existence of
mind poses problems for the space-time view of the universe. This is
because they think we know from our own conscious experience that
we persist through time as a subject of change, the same conscious-
ness having different thoughts and sensory experiences at different
times. And this is supposed to be incompatible with four-dimensional
space-time in which no entity can change its space-time position just
because time is part of the geometry.

What we call ‘change’ in space—time is simply, as Russell argued
long ago, differences at different times (different space—time regions).
For an entity, whether a banana or a mind, to persist or move through
time, and therefore through space-time, would require a time
dimension outside of space-time with respect to which this change or
movement took place. And therefore mind cannot be explained solely
within the framework of space-time.

But the quick reply to this is that what we know from our own
conscious experience is that it seems to us that we persist through
time, that we are the same consciousness moving from one time to
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another. However, this fact, it seems clear to me, does not require that
anything persists or moves through time (space—time). It simply
requires that each instantaneous state of consciousness contain the
thoughts, for example that it is perceiving things now which it did not
perceive yesterday; that it used to think things it is not thinking now;
etc. (Of course, we are to understand a token reflexive account of
‘now’ here.) And this is compatible with the mind being composed of a
series of instantaneous states of consciousness. That is, the ‘mind’is a
four-dimensional entity (or an aspect of a four-dimensional entity like
the history of a person’s brain), each three-dimensional slice of which
is an instantaneous state of consciousness.

5 Two Questions

My own feeling is that we can conceive, in broad outline anyway, how
everything—minds, bananas, and stars—could be composed out of
the vacuum in the sense of curved empty space-time. But two
questions arise. The first concerns what ‘empty’ means here; the
second whether, and in what sense, contemporary physics fills in the
details of the broad outline. Our major concern is with this second
question, but let us begin by turning briefly to the first one.

Since we are interested in constructing everything out of curved
empty space-time, ‘empty’ does not mean that there are no physical
objects. Intuitively, we mean that such objects are nothing more than
aspects of the geometry of space-time. But now, let us carry out our
discussion within the framework of general relativity. Then the
standard view is that space—time is empty if and only if the energy
momentum tensor field T is everywhere zero. But it might be objected
that, while T=0 means there is no non-gravitational energy, it does
not mean there is no energy. For T does not include gravitational
energy. That is, the objection is claiming that the gravitational field,
even though it is an aspect of the geometry, is a physical field. And
thus, a space—time containing a gravitational field but nothing else
can not be considered empty, i.e. a vacuum.

Assuming that there is a gravitational field in a region S of
space—time if and only if the curvature tensor field R #0 throughout
S, only a flat space-time will be empty according to the above
suggestion. But the curvature tensor is a function of the metric g. That
is really the physical field of general relativity, and in that sense even
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flat space—time is not empty. On this view, then, according to general
relativity there cannot be a vacuum, empty of all particles and fields,
because any space—time will at least contain a metric field.

On the other hand, will anyone who takes this view accept anything
as a vacuum? Is there any level of geometric structure which, if it
alone existed, would count as being completely empty? My view is
that this issue is, at least in part, a matter of definition. Here, I just
want to mention that some people might not accept my equating
geometry with the vacuum (or as one sense of vacuum).

The second question concerns the extent to which contemporary
physics shows us how to carry out the details of the programme of
constructing everything out of geometry. As we have seen, in general
relativity time and gravity are geometrized by extending the geometry
of the universe to the four dimensions of space-time and identifying
gravity with the metric curvature of space—time. Let us next consider
electromagnetism and ask, Can we give a geometrical account of the
electromagnetic field within the framework of general relativity?
There are two answers to this which I want to briefly look at: the
already unified field theory of Rainich, and the theory of Kaluza and
Klein.

6 The Already Unified Field Theory

This approach starts from the combined Einstein-Maxwell equations
of standard general relativity,

k
Ruu - %guuR = Zi (F:)va - %gquwzew)’ (1)
D, F*=0, 2)
Ew/w+qu/v+E)w/u=0' (3)

Here F is treated non-geometrically, as a field that exists in addition
to the geometry of space-time. Since F carries energy and mo-
mentum, it is a source of the gravitational field and space-time is
curved in its presence, in accordance with the general relativistic field
equation (1), while (2) and (3) are Maxwell’s source-free equations.

Now note that (1), with the anti-symmetry of F, implies that the
curvature-invariant R satisfies
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so that (1) becomes
k 1
Ruv =C_2 (Ft:vov_fgquwzew)' (5)

Thinking of F as a non-geometrical field, we interpret (5) as F
imposing a condition on the Ricci tensor R, and thus on the metric g.
Given suitable boundary conditions, we solve for the g,, in terms of
the given F,,,. However, in 1925 Rainich showed that the content of (5)
can be expressed in purely geometric terms by (4) along with (6),

RYR;, =30,(R,,.R™), (6)

in the following sense. The Ricci tensor R, can be expressed in terms
of an anti-symmetric tensor F as in (5) if and only if the purely
geometric conditions (4) and (6) are satisfied.

This suggests that we regard the use of F in (5) as just a convenient
device for expressing the purely geometric conditions (4) and (6). On
this view, then, a region of space—time containing an electromagnetic
field is nothing more than a region of space—time with a distinctive
kind of curvature. This curvature is specifed partly by (4) and (6). But
that takes into account only the anti-symmetry of F and the way it
couples to gravity. We also need to translate Maxwell’s equations (2)
and (3) into purely geometric conditions. In particular, for the
identification to work, we need to show that any given geometry
corresponds to a unique F that satisfies Maxwell’s equations. (Note
that we don’t have to show that each F corresponds to a unique
geometry, any more than the mind-body materialist has to show that
each mental state or event corresponds to a unique physical state or
event.) For non-null regions of space-time (R, R**#0), and null
regions of dimension less than 4, this has been done. But there are null
regions of dimension 4 whose geometry does not uniquely determine
F {Geroch 1966). This is a problem for the already unified theory, to
which we will return shortly.

I need to mention one other aspect of this approach. This concerns
the fact that it translates the source-free Maxwell’s equations into
conditions on space-time geometry. How then does the theory
account for electromagnetic fields that originate from sources,
namely charged particles and their currents? The answer of Misner
and Wheeler (1957) is to give a geometrical account of the sources as
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well as the fields. Along the lines mentioned earlier in connection with
Descartes, they suggest (developing an idea of Einstein and Rosen
1935) that a charged particle is a region of space—time with a multi-
connected topology.

If we think of the plane of a sheet of paper as a three-dimensional
spatial slice, then a multi-connected region can be represented by the
intrinsic geometry of a handle as depicted in Fig. 1. If electric field

Electric field lines E

Surface §

FiGc. 1

lines thread their way through the handle, then the flux of the electric
field E over the surface S surrounding one end of the handle will be
non-zero and so will look like a charged particle. But really, divE=0
and the field is sourceless. We just don’t recognize that the region is
multi-connected, so we think S completely encloses a region of space.

7 Problems with the Already Unified Theory

I want to consider three problems for the already unified theory. The
first, which has already been mentioned, is that there are null
gravitational fields, R, R*’ =0, which do not determine a unique F.
So there are distinct electromagnetic fields that are compatible with
the same curved geometry. It has been argued by Geroch (1966) that
this is not a problem, since any F that we can measure involves test
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charges and so, because of the presence of these charges, will be non-
null. So we will never meaure (detect) an electromagnetic field that is
not uniquely determined by the geometry.

But I think that this response to the null field problem does not
work. For the theory allows that we could detect electromagnetic
fields that would have been null except for the perturbation of the test
charge. If we detect such a field, we would accept that as detection of a
null field, just as we always correct for the effects of our measuring
devices. And that would be evidence that such null fields exist where
we have not made any measurements, not that there are only
perturbed null fields associated with measurements; that is, the
response works only if we accept that, in general, measurements tell
us only what exists during measurements. And this is a view not even
supported, I would argue, by quantum mechanics.

The second problem is that the Misner—Wheeler strategy for
constructing ‘charged particles’ cannot be carried through within
general relativity. There are no time-independent, regular particle-
like solutions to the general relativistic field equation R,,=0. And the
third is that we now know that there is a close connection between the
electromagnetic and weak interactions. But that connection is not
one that can be understood in terms of the curvature of four-
dimensional space—time.

However, it turns out that on our second approach towards a
geometrical account of the electromagnetic field we can understand
the connection between the electromagnetic and the weak force. So let
us now turn to the Kaluza—-Klein theory.

8 The Kaluza—Klein Theory

The basic idea of the original Kaluza—Klein theory is to get the extra
degrees of freedom for the electromagnetic field by going to five-
dimensional relativity. The metric tensor then has 15 independent
components, instead of the 10 it has in four dimensions. That leaves
us five new components to work with, four of which can be the
components of the electromagnetic four-vector potential.

Lettingu=1,...,4,i=1,..., 5, the admissible coordinate trans-
formations are assumed to be

5 =5 +13(x),
X =fu(xu), (7)
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and the five-dimensional metric is not a function of x>. Here we are
taking the x* to be coordinates of four-dimensional space~time, while
x5 is a coordinate for the extra space dimension. Then, from the
expression for an arbitrary coordinate transformation,
ox' ox’
P =y 8
ySu 0)35 agu y” ( )

we see that, under a pure four-dimensional space-time transforma-
tion ¥3=x73,

ox?
LI 9
Y 5u o= Vsv 9)
while under a pure x° transformation, x*=x* and
__ 9
’)}514:@?55“’_’))511' (10)

Thus, the mixed components y, transform as a four-vector under
ordinary four-dimensional space-time transformations, but by (10)
pick up the gradient of a scalar function under a pure x°
transformation. Assuming further that the topology of five-dimen-
sional space-time is M* x S* and that x* coordinizes the circle S*, an
x> coordinate transformation is a U(1) gauge transformation along
the circle. And we can identify the y,, with the components of the
electromagnetic four-vector potential.

However, the components of the metric g of our familiar four-
dimensional space—time cannot be identified with the 1-4 space-time
components y,, of the five-dimensional metric. Instead, the relation
between y and g is given by

_ [guv+AuAv¢2’ Au‘b}
"= 4,9, ¢ |

To get the splitting of the five-dimensional metric y into a
four-dimensional space-time metric and four-dimensional vector
field, we have to use a frame that gives non-zero cross terms y,s, u <5.
Therefore, there is no single series of four-dimensional slices of the
five-dimensional space-time that can be identified with ‘observable’
four-dimensional space-time. Instead, the observable metric g is an
abstraction from the different slices.

This is analogous to the rotating disc frame in flat four-dimensional
space—time. Although space—time is flat, you can easily see that three-

(11)
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dimensional space relative to the disc is curved. Measuring rods
tangential to the disc contract relative to those that lie along a radius.
Because the world-lines of the disc are not orthogonal to any single
series of spacelike hypersurfaces, space relative to the disc is an
abstraction from the actual hypersurfaces of space—time.

Note what this means. Suppose we start with Einstein’s empty
space-time equations in five dimensions. If we express this in terms of
the four-dimensional metric g and the potentials 4,,, it splits into the
coupled Einstein—-Maxwell equations in four dimensions. In four
dimensions, the space—time metric g is coupled to the electromagnetic
field F, and is therefore curved. From the point of view of four-
dimensional relativity, the curvature of space-time is due to the
energy of the electromagnetic field. But from the five-dimensional
perspective, the electromagnetic energy-—momentum tensor is not
fundamental. It is, instead, a geometrical term that arises in rewriting
the five-dimensional Einstein equations. Instead of a causal account,
we thus have a geometrical explanation for why the electromagnetic
field is associated with curved four-dimensional space—time.

In the Kaluza—Klein theory, it is assumed that the radius / of the
extra compact space dimension is very small, perhaps on the order of
the Planck length. That explains why we never notice the fifth
dimension as a dimension of space. (We certainly do notice it, because
we notice the electromagnetic field.) Within classical Kaluza—Klein
theory there is no explanation for the smallness of this radius, but in
the quantum version there is. This is interesting to us because hereisa
place where the quantum mechanical vacuum connects with the
classical vacuum, i.e. with geometry.

The aspect of the quantum mechanical vacuum or ground state
relevant here is vacuum fluctuations. While the vacuum expectation
{0 E[O} of the electric field E is zero, the mean square deviation
{O|E 2[O> #0. Thus there is a (divergent) vacuum energy density, the
so-called zero-point energy. If we consider two parallel conducting
plates a distance d apart, in otherwise empty space, the plates impose
a boundary condition on the zero-point modes. They must vanish on
the plates. Taking the energy density p of the vacuum as our reference
energy, we find that the difference p—p,, when the plates are a
distance d apart, is finite after introducing a suitable regularization,
such as a high-frequency cut-off of the order of the interatomic
distance of the atoms of the conductor. This leads to a finite energy
per unit area of the plates of the form
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¢
- 33—, c> 0,
which gives an attractive force,
3¢
f = = FrE
d

between the plates. This is the well-known Casimir effect.

In the five-dimensional Kaluza—Klein theory, the finite ‘circumfer-
ence’ of the compact fifth dimension imposes a boundary condition
on the vacuum fluctuations of the high-dimensional gravitational
field. Analogous to the Casimir effect, we get a cut-off-independent
zero-point energy per unit volume of the form

’

— lc—4, ¢ >0.
Again, this gives rise to an attractive ‘force’ which causes the fifth
dimension to contract. The force gets stronger as I decreases, which
drives | towards the Planck length.

We saw that in the already unified field theory there is the problem
of giving a geometrical account of the sources of the electromagnetic
field. In four-dimensional relativity there are no time-independent
particle-like solutions. But they do exist in five-dimensional relativity.
The reason is, roughly, that the Euclidean version of a time-
dependent four-dimensional solution can be made into a time-
independent five-dimensinal space—time, just by adding —dt? to the
metric (or line element). A simple example is based on the Euclidean
Taub—Nut solution. This can be written

ds? = H[dx> +4m(1 —cos 8)d¢]? +% (dr? +r%d6%+r? sin?0 d¢?)

(12)

H=1+2,
r

Since from (11) we recognize the general Kaluza—Klein metric as
ds?>=®(dx> + A,dx*)* + g, dx"dx",

we see that 4, is proportional to 4m((1 —cos #), which is a Dirac
monopole. In terms of the unit vectors ¢ and F,
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4m(l —cos 8) . 4mi
=———~——m( cos )d) and B=curl A :g.
r

¢ rsin 8
Here we have a particle-like electromagnetic field embedded in a
perfectly regular geometry, albeit a five-dimensional one, and
assuming that x° is suitably periodic. While this is an advance over
the already unified theory, the problem of geometrizing sources is not
completely solved in Kaluza—Klein because only some sources can be
so treated, but not all.

But the Kaluza—Klein solutions have an independent philosoph-
ical interest that is relevant to our discussion. Because of analogies
with two-dimensional creatures trying to understand three dimen-
sions, as in flatland and sphereland, and the fact that the fourth
spatial dimension is of the same type as the other ones, most
philosophers® would argue that the interpretation of the extra
dimension in Kaluza—Klein as a real, physical space dimension is
perfectly intelligible. What some of them do question, after granting
its intelligibility, is whether we must interpret the extra space
dimension this way, or can regard it as just a mathematical device for
finding four-dimensional theories.

There are, I think at least two things we can say here. First, thisis a
problem that affects all physical theories that postulate unobservable
entities or properties. One can ask the same question about atomic
theory. Does it really describe very small entities, or can we regard it
as just a useful formal device for describing and manipulating
macroscopic phenomena? And since it is the same problem, the same
moves in support of one side or the other can be given.

But second, there are Kaluza—Klein space-times which are not
plausibly interpreted in terms of four-dimensional space-time fields
(Gross and Perry 1983). Our monopole is one of them. There are also
magnetic dipole solutions, dipoles that do not come from moving
currents and have zero angular momentum. (This comes from the
Euclidean Kerr metric.) These are structures that really require the
geometry of the four space dimensions to be understood (Gross and
Perry 1983).

In the case of the monopole, for the Dirac string to be a gauge
artefact (i.e. to be unobservable), the extra space dimension must be
periodic. Since the radius of the fifth dimension is related to the

! But not all: see e.g. Van Cleve (1987).
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electric charge in Kaluza—Klein theory, this is just the geometrical
version of Dirac’s charge quantization condition. Similarly, it is the
non-trivial topology of the four-dimensional spatial slices that makes
the magnetic dipole stable, that is prevents the annihilation of the
monopole—antimonopole pair that make up the dipole.

Just to forestall misunderstanding, compare this with the embed-
ding of three-dimensional spherical space, S, in four-dimensional
Euclidean space. If physical space has the structure of S*, it might be
argued that we can explain the properties of space by the hypothesis
that it is a three-dimensional hypersphere in a four-dimensional
Euclidean space. Maybe this is right. But if our evidence is just that
the geometry of space is S*, we do not have to make this additional
hypothesis. The hypothesis that space is S* stands on its own, and a
higher dimension embedding space is not required for its intelligib-
ility. In the above Kaluza—Klein examples, however, the extra space
dimension does play a crucial role in the understanding of the three-
dimensional monopoles and dipoles.

9 [Extensions of Kaluza—Klein

One of the problems with the already unified theory is that, by
explaining electromagnetism in terms of the curvature of four-
dimensional space—time, it could not shed any light on the connection
between electromagnetism and the weak interaction. However, we
can extend the Kaluza—Klein theory so that we can include not only
the weak interaction, but the strong interaction as well. We do this by
adding more than one compact space dimension. Namely, we add
enough compact space dimensions so that the SU(3} x SU(2) x U(1)
gauge symmetries are realized as isometries in the extra dimensions.
“And then the gauge fields emerge from the metric in a way analogous
to the five-dimensional theory.

Unfortunately, this beautiful theory faces a very serious problem. It
does not admit of chiral fermions. We know that right- and left-
handed fermions belong to different representations of SU(2) x U(1).
Since these fermions get mass (those that do) by spontaneous
symmetry-breaking, they will be massless modes of a (4+ N)-
dimensional spinor field.

Now there are two possibilities. The first is that chirality is a low-
energy effect. The higher-dimensional fermions are vector-like, but
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for some reason we have not seen the mirror partners of the observed
fermions. The second is that the fermions are chiral from the start in
the higher dimensions. The problems with the first are obvious. There
are no observed mirror fermions; the family structure repeats itself,
and as Witten remarks (1981, 1985), the anomalies cancel already,
without the mirror fermions. So the second approach is the favoured
possibility.

But there are very strong arguments against the possibility of chiral
fermions in the higher-dimensional Kaluza-Klein theories. As an
example, consider the massless Dirac equation in 4+ N dimensions:

YD =Dy + 9Dy =0,

so y“DJ acts as a mass operator and we are interested in its zero
eigenvectors. In order to have chiral fermions, that is, left- and right-
handed fermions transforming according to different representations
of the gauge group G, G must admit of complex representations. But
when the gauge fields come from the metric, the zero modes of y*D}
transform according to a real representation of G.

We can get an idea of how the gauge fields coming from the
geometry can make a difference by noting that

(y*Dy)* = —ED,D"+ 4R,

where R is the curvature scalar of the N-dimensional compact space,
and D,=3,+gT“A:. Because the 4] are components of the metric,
we get the connection with the geometrical quantity R. It turns out
that —XD, D* is a non-negative operator, so in any compact space
with R> 0 everywhere, the Dirac operator has no zero modes (Witten
1981, 1985).

If we admit elementary gauge fields into our theory, then we can
have chiral fermions in higher dimensions. But then, from the point of
view of Kaluza—-Klein theory, we have lost our motivation for
introducing higher dimensions, which was to give a geometrical
explanation of the gauge fields.

We can contrast this with string theory. In string theory we also
have extra space dimensions, but they are not postulated to explain
the gauge fields. Rather, consistent quantization of the string requires
extra dimensions. The extra dimensions come about naturally, but
the gauge fields do not get a geometrical explanation (at least, not in
terms of the geometry of space-time).
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10 The Gauge Field as Geometry: Another Point of View

The Kaluza—Klein idea is one attempt to give a geometrical
interpretation to the gauge fields. But if we reject Kaluza—Kiein, there
is still a geometrical option opew to us. We can note that the gauge
fields form a connection, 7942, on the fibre bundle whose base space
is four-dimensional space-time and whose typical fibre is the internal
space of the quantum fields. This can also be regarded as a
geometrical interpretation of the gauge fields. In going from
Newtonian mechanics to general relativity, we go from a three-
dimensional spatial geometry to a four-dimensional space-time
geometry in which gravity is the metric curvature of that geometry.
Similarly, the unified gauge interaction field strength is the curvature
of the connection of an expanded geometry, of which four-
dimensional space—time is just a component.

If you like, you can regard calling this geometry an extension of the
notion of ‘geometry’. But it is a natural extension because of the
structural, or formal, similarity to what we already call geometry.
However, I want to make two remarks about this extension. The first
brings us back to the subject of monopoles; the second is that there is
more to the view that the gauge field is geometry than that it can be
given a certain mathematical formulation.

First, concerning the idea of the gauge field as part of the geometry,
some have thought that there is much more to it than [ have indicated
above. That is, they have thought that, ontologically, the internal
space directions are somehow on a par with the four dimensions of
spacetime. As a case in point, the t' Hooft Polyakov monopole has
been offered as an example of how this is to be understood.

This monopole is a composite field configuration built out of a
SU(2) gauge field and a triplet of scalar fields. Of relevance to our
present discussion, the asymptotic structure of the scalar fields is of
the form

¢ =bfa, r=[x")?+(x?)?+(x3)2]2 (13)

The index a refers to the SO(3) internal space. But if we regard the ¢°
as the components of a spatial vector, then ¢ =>bf is a radial vector
field in three-dimensional physical space. As the spatial vector field ¢
changes direction in physical space as we move around the monopole,
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the internal space vector with components ¢ changes direction in the
internal space. Thus, it seems that a given direction in physical space
is also a direction in the internal space.

But this apparent mixing of internal and physical spaces is an
illusion.? For take any three scalar fields ¢ that form an SO(3) triplet
of the internal space. Then we can define the vector field ¢*%x*, and as
the vector field changes direction in physical space, it also changes
direction in the internal space. But this is artificial. Rather than taking
¢'R* + $*X? + ¢3%3 as my physical space vector, I could have chosen
some other combination, such as ¢3%! + ¢ %%+ ¢*%>. The point is,
the SO(3) triplet ¢*, by itself, does not pick out a unique direction in
physical space, and so does not establish a correspondence between
the internal and physical spaces. It is just a convention as to what
direction in physical space I associate with ¢°.

In the case of the monopole, it looks as if a unique physical space
direction is picked out because of the form of equation (13). It is
natural to take b(x“/r) as the component in the direction X“; but,
again, it is just a convention that we do so.

On the other hand, and this is my second point, I do think there is
more to the view that the gauge field is geometry than that it can be
given a certain mathematical formulation. In classical mechanics, for
a system of s particles with kinetic energy 7, we can write

2Tdr* = Y my(dx? +dy? +dz}?).

i=1

If there are m kinematical constraints, we can express the 3s
rectangular coordinates x;, y;, z;, in terms of n=3s—m generalized
coordinates g;, and write

ds*=2Tdt*= Y g,4dqdq;.

ij=1

The evolution of the system will then be a geodesic in the
n-dimensional space with metric g,;.

We have given a geometrical formulation of the classical mechanics
of particles. But I do not think that we would regard the fact that

2 1 thank Tim Maudlin of the Rutgers University Department of Philosophy for this
observation.
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mechanics can be formulated in this way as telling us about the
geometry of physical space (assuming the classical mechanics were
correct). This is because this is a reformulation of the mechanics of s
particles in three-dimensional Euclidean space, in terms of one
‘particle’ in 3s—m dimensions with a curved metric. Since each
formulation is a complete theory of mechanics, the g;; is not an
extension of the geometry of Euclidean three space. Rather, we
believe that ontologically, the three-dimensional Euclidean space
formulation is fundamental. This is because, for example, we believe
that there could have been a different number of particles, the
constraints could have been different, etc., without affecting three-
dimensional space. In the case of the gauge field, however, we are not
giving a reformulation of the geometry of space-time. Instead, we are
making a genuine addition to it.

Note that it is conceivable that the dimension of physical space
depend on the number of particles in it. Perhaps, when there are n
particles, space has 3+mn, or 3+3n, or some other number of
dimensions. But then, that would be not a reformulation of
mechanics, but a new theory of physical space altogether.

11 A Final Observation About Fermions

Even if we accept the view that the gauge connection is part of the
geometry, we have not given a geometrical account of everything. In
particular, we have not given a geometrical account of Fermi fieids.
Let me end with the following observation.

The geometry of space-time is a classical, macroscopic structure. It
can (presumably) be given a quantum mechanical account because
Bose fields have coherent states, whose expectation values are the
classical quantities. We can try to extend space-time geometry to
include the electromagnetic field, and the other gauge fields, because
they are also Bose fields.

Now it is also true that Fermi fields can exhibit classical,
macroscopic behaviour. The He* superfluid and superconductivity
are two examples. But the basic particles of these phenomena are
composite bosons. In elementary particle physics (and chemistry),
however, what we see are not composite bosons, but fermions
engaging in the basic interactions. These are the quanta of fermion
fields which do not admit of ‘macroscopic’ coherent states.
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Vacuum or Holomovement

B. J. HILEY

1 Introduction

Quantizing the gravitational field presents some formidable prob-
lems. The deep link between gravity and space-time implies that, if
quantization is to be successfully carried out, then radical changes in
our understanding of space-time will be needed. In this paper I will
explore some new ideas about space-time that can be motivated
through a purely algebraic approach to quantum mechanics and
which call into question the notion of absolute locality. In order to
bring out these ideas, a brief review of the classical and quantum
notions of the vacuum, particularly in their relation to our
understanding of space—time structure, is first presented. This sets the
context in which the new approach can be introduced. It is centred
around the novel notion of the holomovement, a notion that provides
the ground form from which both space—time and matter itself can be
abstracted. Thus, in this approach it is the holomovement that
provides the source of all being.

2 The Classical Vacuum

The history of the vacuum has had, in my view, a rather curious
evolution. Throughout history, opinions as to its nature seem to
swing from one extreme to the other. It has been considered at times
to be ‘full’ or substantive, while at other times it has been treated as
‘empty’ or void. Even from the earliest days, there has been little
agreement. For instance, Parmenides argued that ‘emptiness is
nothingness, and that which is nothing cannot be’. To him the

© B. J. Hiley 1991
I would like to thank David Bohm and Philip Davies for their many helpful
discussions on the questions raised in this paper.
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vacuum had to be a compact plenum which he regarded as being
constituted as one continuous unchanging whole. And it is logic alone
that forced him to the conclusion that movement is mere illusion. But
surely, movement is more than just illusion. Material substance is
perceived as constantly changing, some changes being rapid, others
being extremely slow. Is this not more naturally explained by the
Democritian atoms moving from one region of space to another not
already occupied by other atoms, i.e. into empty regions? Therefore,
to conceive of movement of substantive entities, must we not surely
have an empty vacuum?

This notion of a void, of the empty vacuum, provided the backcloth
for the development of Newtonian physics. Stengthened by the
differential calculus, particle mechanics grew from the primitive
concepts supplied by Democritus and extended qualitatively by
Lucretius. Particles-in-motion would provide a mechanical explana-
tion of all physical processes. Even light, in Newton’s view, was
particulate in nature, with ‘corpuscles’ moving through the vacuum,
sometimes being reflected and sometimes being transmitted when
they reached a transparent boundary. However, their predicted
behaviour once they entered the medium was not supported by
experiment, and it was wave theory that ultimately triumphed with its
simpler explanations of interference and diffraction. The corpuscular
theory was abandoned until the event of the quantum theory.

But how could a wave be sustained in ‘empty space’? Surely, all our
experience of wave phenomena was mechanical in origin and
required a medium in which the vibrations could be sustained. The
mechanical ethos had become so deeply ingrained that an explana-
tion of electromagnetic fields in terms of vibrations in some kind of
substantive ether was strongly advocated. Thus a plenum-like
vacuum was reintroduced, and by the end of the nineteenth century it
became fashionable to take this ether very seriously, and to seek an
explanation of the ultimate source of all physical phenomena,
including the atoms themselves, in terms of structures or invariant
features of the plenum itself (such as vortices).

It was the failure to detect any movement of the earth relative to
this Maxwellian plenum that began to raise serious doubts about the
existence of such a ‘substance’. Not only had experiments like those of
Michelson and Morley failed to detect any such movement through
the ether, but the very structure of the special theory of relativity
made it appear that any attempt to look for such an ether was
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doomed to failure. The seemingly inevitable conclusion appeared to
be that the vacuum is ‘really empty’, a notion that has dominated the
more recent developments in physics. The reaction against the
reintroduction of such an ether or plenum has been so strong that any
theory that dared to calil on such a notion was for a time deemed to be
unacceptable and even preposterous. In the 1960s and 1970s I often
came across such a reaction when I tried to discuss de Broglie’s use of
a ‘sub-quantum medium’ as a means of providing a possible
explanation of the quantum formalism. The objection was not so
much against the attempt to find a more physically intuitive
explanation of quantum phenomenon, but rather against the
introduction of the ‘sub-quantum medium’. The retort, ‘Surely
Einstein has shown us that the vacuum is “empty” and the
reintroduction of such an outmoded way of thought will not provide a
satisfactory understanding of phenomena’, was not uncommon. Yet
in relativistic quantum field theory the notion of ‘vacuum polariza-
tion” had already emerged and was being used quite freely, albeit in a
very formal way.

But it is not necessary to evoke quantum field theory. Einstein
(1924) himself did not react so strongly against the notion of an ether.
What he questioned was the need to interpret Maxwell’s equations
mechanically, i.e. in terms of vibrations of a plenum-like substance.
Was it necessary to regard the notion of field as an attribute of
substance, or could it be regarded as something in its own right?
Einstein {1969) argued that Maxwell’s equations successfully
accounted for a large number of phenomena and that was not
necessary to interpret the field quantities in terms of any deeper
structure. Nothing was to be gained by trying to interpret these fields
in terms of an underlying substance, as demanded by the mechanical
approach. Newtonian mechanics was clearly limited, so why continue
to use an outmoded conceptual form? Let the continuous field be
regarded as an entity in its own right.

Of course, it would now be possible to take the electromagnetic
field itself as an ether and attempt to account for all the properties of
matter in terms of this field alone. Indeed, many efforts were made in
this direction. However, there were processes that were clearly not
electromagnetic in origin. Gravity was one of the more obvious
examples, and it soon became evident that something more was
needed.

Einstein was the first to realize that the electromagnetic field
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contained a further limitation, namely, that Maxwell’s equations are
invariant only in special frames of reference, the inertial frames. But
why single out this particular class of frames as privileged? Should we
not extend the principle of relativity to include all frames of reference,
both inertial and non-inertial? A serious problem in generalizing the
ideas to all frames seemed to be that the accelerating frames still
contained a vestige of the Newtonian absolute, namely, the
space-time continuum itself. Einstein did not see this as a serious
problem, because he had noticed that the inertial frames themselves
also treated the space~time continuum as an absolute. First of all, it
should be noted that the inertial frame provide a manifold of events
that are coordinated into a space—time continuum, and since the
relations between these events are independent of the actual inertial
frame, we can regard this continuum as ‘physically real’; Finstein
(1924) actually went as far as to call it an ‘ether’. But it is not an ‘ether’
to be explained in mechanical terms; rather, the aim would be to
account for this ether in terms of a deeper, new, fundamental field
which is to be considered as an entity in its own right.

This Minkowski space—time continuum is also absolute in another
sense, namely that, while the continuum has a physical effect in that
material processes can be used to measure space and time intervals,
the manifold itself is not influenced by physical conditions (Einstein
1960). Thus, not only do we have the limited nature of the
electromagnetic field together with its dependence on a set of
favoured frames, but we also have a further limitation in that the
theory actually relies on an independent and absolute space-time
continuum.

The above remarks clearly indicate the limitations of the special
theory, of Maxwell’s equations and the Lorentz group, and it was
therefore necessary to consider some form of generalization. The first
key assumption in this generalization was to retain the notion of a
field as primary. If we want to change the absolute nature of
space—time, material processes must influence the space—time conti-
nuum itself so that the fundamental field used to describe the
structure of space—time should be shaped by the presence of matter.
To achieve this, we would try to express the structure of space—time
through some set of differential equations that involves matter itself.
But now, not only would these equations be invariant to the Lorentz
transformations, but they would also be invariant to a much larger
group of transformations in order to remove the special role played
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by the set of inertial frames. If we chose the larger set of
transformations to be the group of all coordinate transformations,
then no frame would be privileged. All frames of reference would be
equally valid, and we could extend the principle of relativity by
requiring the laws of physics to be invariant in all frames of reference.
In this way one arrives at the principle of general relativity. Following
on from this, Einstein was able to include gravity via the space—time
metric, and all that remained was to find how space-time is affected
by the matter that it contains.

It is not necessary to recall here the details of Einstein’s arguments
that finally led him to his field equations,

Ruv—%gusz Tuv' (1)

All that is necessary is to emphasize that it is the field that is taken as
basic, and that an explanation of this field is not to be looked for in
terms of any underlying material medium. The field is the explana-
tion, and it is this field that characterizes the structure of space—time.
To Einstein (1924), terms like ‘the gravitational field’, ‘the structure of
space—time’, and ‘the ether’ were all synonymous.

In this context the question of whether the ether, or the vacuum,
was ‘full’ or ‘empty’ becomes somewhat ambiguous. If we did not
regard the gravitational field as substantive, we would conclude that
the ether is ‘empty’ in the sense of containing no matter. But it could
also be regarded as ‘full’ in the sense that the metric field is always
present, although in the absence of matter it is only potentially active.
T use the word ‘potential’ because we would observe its presence only
through the behaviour of particle probes. But this ambiguity of the
notion of ‘emptiness’ has been commented upon a number of
occasions before. Descartes, for example, reminded us that in
common speech ‘the term empty usually means, not a place where
there is no object at all but simply a place where there is no object such
as we think there ought to be’. He gives the example of a water jug
which is called empty if it contains no water; but, of course, it does
contain air. He goes on to remind us ‘that a space containing nothing
sensible is “empty” even if it is full of created and self-subsistent
matter’ (see Smart 1964). Maxwell (1954) sums up this position rather
aptly: ‘the vacuum is that which is left in a vessel after we have
removed everything which we can remove from it.’

Now returning to general relativity, it should be remembered that
Einstein (1969) himself did not regard the theory as expressed
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through the field equations (1) to be complete. To quote from his
autobiography, ‘The right hand side [of equation (1)] is a formal
condensation of all things whose comprehension in the sense of a field
theory is still problematical’ (Einstein 1969: 75). It is as if this term
were an interim ‘asylum ignorantiae’ (see Hyland 1979). Indeed, it was
not clear how a particle as such could be described in this theory. To
complete the theory, Einstein wanted to regard the particle itself as a
concentration of field energy or, perhaps, even a singularity in the
gravitational field so that gravity, particles, and, of course, electro-
magnetism could be described by one single field, the ‘unified field’.
Einstein was unable to fulfil his hopes, and physics took another
direction which was forced on it by quantum mechanics.

3 The Quantum Vacuum

In the conventional approach to non-relativistic quantum theory, the
idea of a position in space is formally replaced by an operator. Bohr
argued that this was necessary because at the quantum level the
position of an object becomes somewhat ambiguous, this ambiguity
being understood in terms of the uncertainty principle AxAp=xh.
Indeed, this result can be shown to follow directly from the properties
of the operators. On the other hand, time is not replaced by an
operator and continues to be treated as a parameter. Nevertheless, an
energy—time uncertainty principle is introduced using an entirely
different set of arguments. There is no operator generalization of time
in going to the relativistic quantum theory. Instead of attempting to
find an operator for time to put it on the same footing as position,
progress was actually made by making position a parameter again,
while making the field quantities operators. Thus there was a return
to a classical Minkowski space-time where both position and time
are treated as parameters. In other words, space-time is again
assumed to be absolute in the Einstein sense discussed above.
Although it is the field that is again taken as basic, there is no single
unified quantum field. Rather, there are a series of individual but
interacting fields, each being classified by their spin and rest energy.
Furthermore, the particles are not singularities of the field, but are
represented by the normal modes of the field with quantized energies
(the quanta). The excitation and de-excitation of these modes are
interpreted as the ‘creation’ and ‘annihilation’ of ‘particles’. In this



Vacuum or Holomovement 223

context, a new notion of a ‘vacuum’ is introduced which is not directly
related to the space-time structure. Formally, one introduces a
‘vacuum state’ |0> through the equation

2,]0> =0, @)

where g, is an annihilation operator of the field.

There are several features of these vacuum states that make it hard
to conceive of them as ‘empty’. A quantum field always has a residual
zero-point energy which appears as a consequence of the non-
vanishing of the mean square average of the field in its ground state.
Thus, although there are no field excitations present in the form of
quanta, there is nevertheless a residue activity which actually has
experimental consequences. If we consider the electromagnetic field,
for example, then fluctuations in this activity can be interpreted as
spontaneous creation and annihilation of virtual photons, or virtual
particle-antiparticle pairs (i.e. vacuum polarization). When the
electromagnetic field is in interaction with, say, the electron (whether
treated as a particle or a field), this vacuum polarization can produce
observable changes, as is seen in the hyperfine structure of hydrogen
(e.g. the Lamb-Retherford shift).

In particle physics, the notion of the vacuum state has increasingly
played an important role. There are many different vacuum states,
with notions such as ‘false vacuums’, tunnelling from one vacuum
state to another (Coleman 1977), ‘unitary inequivalent vacuum
states’ that arise in interacting quantum field theories (Emch 1972),
and so on. In present theories, these vacuum states are treated as
entities in their own right, but no attempt is made to account for their
variety in terms of any deeper structure. However, it seems clear that
the vacuum states are being treated as if they are ‘ground states’ of
some deeper physical process. Indeed, 1 would like to suggst that
these ‘ground states’ are actually quantum states of some underlying
structure which, as has been indicated, is limited by the special role of
the inertial frame and the absolute nature of the space-time
continuum, as discussed above.

Some attempts have been made to address the difficulty of this
absolute continuum by extending quantum field theory to curved
space—times. Perhaps the most illuminating general discussion of this
problem from our point of view has been made by Davies (1984).
What he made clear was that, if a field theory is constructed in an
inertial frame, then the same field analysed from the point of view of a
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non-inertial frame required a different vacuum state from the one
used in the inertial frame, so that each non-inertial frame would
require its own vacuum state.

To illustrate what is involved, suppose we consider the plane wave
decomposition of a scalar field in an inertial frame. Then we can write

¢ = Zk: (@it a(d)). ()

We will require a vacuum state |0) defined by 4,/0)> =0.

Let us now turn to consider what this field looks like in an
accelerating frame. We can again decompose the field

© =Y @ +ayl) )
k

where ¢, will be the appropriate set of (calculable) modes appropriate
to the accelerating frame. (See Birrell and Davies 1982 for details.)
The relation between the set of annihilation and creation operators
(ay, a}) and (@,, a}) can be shown to be the Bogolubov transforma-
tion,

dk=a,’j;aj~ﬂ,’fjaT
a =04 J ﬂk} i )

where « and f are determined by the nature of the accelerating frame.
In this decomposition there exists a vacuum state ]O) defined by

a,|0>=0,
so that if
<0]afa;|0y =0, (6)
then
<0]d}deO>=; lﬂﬁ] 2. ™

The meaning of this result is as follows. If we begin initially with
two inertial frames and assume the field ¢ is in the ground state, then
neither observer will see any ¢-quanta present. If one of the frames is
made to accelerate, then the field relative to this frame must be
analysed as in equation (4), while the vacuum state remains |0) (free-
field Heisenberg plcture) If B;;#0, the accelerating frame will then
find quanta present in the field. Thus an accelerating field will have a



Vacuum or Holomovement 225

different vacuum state, and the inertial observer’s vacuum state will
not be empty relative to the accelerating observer’s frame.

Although the above argument was developed specifically in terms
of an accelerating observer, it can be generalized, in principle, to any
non-inertial frame. Thus we see a new kind of ambiguity arising in the
notion of the vacuum. What is empty to some observers will ‘contain
particles’ for others, so that the vacuum itself has become a relative
concept and we must conclude that there is no unique vacuum.

Davies (1984) has presented a particularly clear discussion of these
ideas and has argued strongly in favour of using the ‘Copenhagen
spirit’ of quantum mechanics. Here Bohr’s key idea (1961) was that
one cannot make a sharp separation between the form of the
experimental conditions and the content (meaning) of the resuits.
This implies that there was no unambiguous way of attributing
properties to particles except in the context of a particular given
experimental situation. In the extension of these ideas to relativistic
field theories, one argues that there is no unambiguous way of
attributing properties to fields except in the context of a given
experimental situation. Since the ‘particle’ is an excited state of the
field, it follows that the notion of ‘particle’ itself cannot be given an
unambiguous meaning except in the context of some experimental
situation. Thus in Bohr’s view we should not talk about ‘particles’
existing in their own right. Rather, we must always talk about
particles and vacuums in relation to specific arrangements of
detectors.

This will, of course, provide a completely consistent interpretation
of the formalism in its relation to specified experiments. However, it
should be noticed that this whole approach assumes that nothing can
be said about quantum processes other than in the context of
measurement. But one of the key motivations in extending quantum
theory to curved space—times and to gravity is, ultimately, to discuss
cosmology in a quantum context. If we are to raise questions about
the evolution of the universe, then it seems very difficult to see how we
can obtain meaningful answers if we are able to discuss only its
evolution in terms of specific experimental arrangements. What we
require is a discussion of quantum processes in themselves, so that we
need not place undue emphasis on measurement processes.

The Copenhagen interpretation to which Davies appeals actually
denies that it is possible to obtain an unambiguous description of an
individual process at the quantum level, even in principle. Bohr’s
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analysis that led to such a conclusion is subtle and somewhat
involved, depending to a large extent on what physicists today would
regard as philosophical arguments. It is not possibie in this short
paper to appraise Bohr’s analysis, but, briefly, what emerges from his
approach is that quantum processes are so ambiguous that it is not
possible to have an ontological description of the individual process.
Thus, in some sense quantum physics is reduced to epistemology. In
spite of this particular kind of ambiguity, the statistical results of
given experimental arrangements are quite unambiguous, and it is
these results that should be the concern of physics.

It has generally been assumed that Bohr had reached the correct
conclusion and that the only way forward is to extend the quantum
algorithm to all areas of quantum physics. To make this extensionina
coherent manner, it has generally been assumed that the wave
function should be taken as giving the most complete description of
the state of a quantum system while the time evolution of this function
provides the most complete account of the evolution of the system, in
spite of the difficulties to which such a statement leads.

4 Towards a Quantum Ontology

For a number of years, David Bohm and I have been exploring an
alternative approach to the quantum theory that does allow a
description of the evolution of an individual quantum process in a
way that reproduces all the known results of quantum mechanics and
in consequence does not put primary emphasis on measurement. The
main aim of our work has been to develop and clarify the conceptual
structure that is necessary to provide a consistent account of the
evolution of these individual processes. The hope is that, by having a
clear physical understanding of these processes, it will be possible to
open up new approaches that may be relevant to future physics.

In our various publications we have shown that it is possible to
provide an internally consistent ontological description of individual
quantum processes both for particles and for fields. For example, in
the non-relativistic theory, our approach gives the particle ontologi-
cal status in the sense that every particle has simultaneously a definite,
but unknown, position and momentum. In consequence, the particles
follow well defined trajectories which can actually be calculated for
many situations from the theory. The trajectories are unlike classical
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trajectories in the fact that they are determined not only by a classical
potential, but also by a qualitatively new potential which we call the
quantum potential. This means, for example, that even in ‘empty’
space, in which there is no classical potential at all, the particle need
not move in a straight line because it can be acted on by a quantum
potential. Indeed, it is the appearance of this new potential that
produces results that are consistent with quantum phenomena.

The quantum potential itself is determined from the wave function
which is assumed to satisfy the Schrédinger equation. In using the
wave function in this manner, we do not regard it as specifying the
most complete description of the state of the system. Rather, we
regard it as describing a pair of real coupled fields which together
shape the evolution of the individual quantum system. These fields
have new properties which are totally different from those of classical
fields. We have suggested that new concepts, such as ‘active
information’, are needed in order to comprehend the action of these
fields and provide a consistent ontology.

An extensive investigation of this approach has been carried out for
various situations such as stationary states, barrier penetration,
quantum transitions, etc. The main purpose in studying these
examples was to see how the quantum potential determines the
evolution of an individual quantum process. Indeed, it became clear
that one can provide a clear insight into how individual effects come
about, and can even talk about a specific time at which a transition
actually takes place, without the need to introduce a measuring
instrument. In this way, measurement is reduced to a special subclass
of transitions (see Bohm and Hiley 1987).

Recently these ideas have been extended to relativistic quantum
boson fields (see Bohm et al. 1987). Here the individual field can be
given a well-defined meaning, and the quantum aspects of the field
stem from the presence of an additional ‘super-quantum potential’, so
that once again the deviations from the classical behaviour arise as a
result of the action of this super-quantum potential. In this view, the
energy of the excited states of the field are continuously distributed in
the field as a whole, while the notion of quanta arise as a result of the
nature of the super-quantum potential. For example, in the case of
absorption of a quantum of energy from the field, it is the nonlinearity
and non-locality of the super-quantum potential that causes the
energy to be ‘swept in’ from the entire field so that it concentrates a
single quantum of energy at the absorber. In this way we see that,
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although the field is continuously distributed, it manifests itself in a
discrete, particle-like way.

One of the most important lessons that we learn from this whole
approach is that it is indeed possible to produce a consistent
ontological account of an individual quantum process. Thus, we have
provided a counter-example to the apparently compelling position
that Bohr and those who followed him have proposed. What has
become clear is that their position is not a necessary consequence of
physical phenomena themselves, but arises from adopting a particu-
lar philosophical position. In a forthcoming book Bohm and I have
analysed their position in detail and have shown that this approach
depends upon certain key assumptions that are by no means essential
(Bohm and Hiley 1991). If these are dropped, then it is possible to
explore new approaches to quantum phenomena which do not make
the assumption that the individual process is so ambiguous that it is
only through measurement that one can achieve unambiguous
results. I believe that this now opens up the possibility of developing
new ontological descriptions that will be of particular significance for
quantum gravity and quantum cosmology. In this way we will be able
to study the evolution of the cosmos without needing to regard
measurement as an essential basic element of the theory. But all of this
will follow only if we give up the notion that the wave function is a
function of state and the thinking that goes with it.

5 Locality, Non-locality, and Pre-space

What I would like to do in the remainder of this paper is to give a
qualitative outline of a particular form such a new theory might take,
concentrating on those aspects of the proposals that are pertinent to
the questions discussed in this paper. In particular, I want to consider
some of the deeper ideas that are implicit in our study of the quantum
potential approach which I think will survive, although much of the
original form of its structure will not.

A superficial analysis of our approach to non-relativistic quantum
mechanics might lead to the impression that somehow a new
potential is being ‘plastered’ onto the classical ontology. Such a
conclusion would be misleading, because the appearance of this new
potential radically alters the nature of the ontology. The quantum
potential is not like a classical potential. In classical physics fields act
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mechanically by transferring energy and momentum from the field to
the system. In contrast, the quantum potential depends not on the
strength or intensity of a field, but on the form of the field. This can be
seen most easily by looking at the mathematical expression for the
quantum potential, which is Q= —(#%/2m)V2R/R where R is the
amplitude of the quantum field. Thus we see that, if the field intensity
is multiplied by an arbitrary constant, the potential does not change.
This implies that very weak fields can produce large effects. These
effects do not come from the transfer of energy and momentum from
the quantum field to the particle; rather, there is a redirection of the
energy within the particle itself. A direct consequence of this is that
systems separated by large distances can be strongly interacting.

In the non-relativistic theory it is straightforward to show that this
force is, in general, non-local. This non-locality arises in many-body
systems which are characterized by a non-product wave function. In
these systems non-locality means that particles separated by very
large distances can be ‘locked together’ so that any change in the
behaviour of one particle instantaneously produces corresponding
changes in the others. Non-locality does not arise in systems that are
described by a simple product of single-particle wave functions. Since
these wave functions are a special case of a non-product wave
function, we must conclude that, in contrast to classical physics,
quantum physics takes non-locality to be basic while locality arises in
special cases.

At first sight this non-locality seems to contradict the theory of
relativity, which requires that no signal be transmitted faster than the
speed of light. But it should be noted that this unexpected and
unpleasant feature of non-locality arises from a non-relativistic
theory in which there is, of course, no upper limit to the speed of
transmission. However, what is even more surprising is that this non-
locality persists even in the relativistic field theory that we have
examined. Here one finds that the field at different points can be
coupled non-locally through the quantum potential, and, indeed, it is
this coupling that offers an explanation of the photon cascade
experiments that were actually used in the Einstein—-Podolsky—Rosen
(EPR) experiment. In spite of this non-locality, the ensembie average
over many field configurations produces results that are identical
with those calculated from standard quantum mechanics. Thus, both
locality and Lorentz invariance emerge at a statistical level even
though they are not present at the level of the individual field.
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Furthermore, at the classical level, where the quantum potential is
negligible, only locality remains, and in the relativistic domain ali
individual processes are Lorentz-invariant.

Bohr was implicitly aware of these ‘non-local’ features of quantum
mechanics, but because his approach was based on the assumption
that reality was inherently ambiguous, we cannot use such a notion at
the level of individual processes, and therefore the question of non-
locality, and indeed of locality itself, was not relevant in the quantum
mechanics. Locality is a classical concept, and it is only at this level
that it has significance. It is true that the quantum field is local, but
this field is only part of an algorithm and, contrary to present
convention, it was not taken to be a function of state of the individual.
In fact, quantum mechanics requires a different way of thinking, and
to emphasize this Bohr suggested that the word ‘phenomenon’ should
be used in a new way that was different from that commonly used in
physics. He writes: ‘I advocate the application of the word
phenomenon exclusively to the observations obtained under specified
circumstances, including an account of the whole experimental
arrangement’ (Bohr 1961: 64). If we add to this the fact that ‘we are
not dealing with an arbitrary renunciation of a more detailed analysis
of atomic phenomena, but with a recognition that such an analysis is
in principle excluded’, we are naturally led to the notion of the
‘wholeness of the quantum phenomenon’, which cannot be further
subdivided even in principle (Bohr 1961: 62). Thus it was not a
question of trying to find a mechanism at the individual level in order
to account for non-locality, but it was that the phenomenon itself
could be given a statistical meaning only within the arena of classical
space-time. In so far as Davies is applying the spirit of Bohr’s
approach to quantum field theory in curved space-time, the
space-time continuum in this formalism is thus classical in essence
and the vacuum states are merely part of the algorithmic description
through which the phenomenon is revealed. The quanta, therefore,
have meaning relevant only to the measuring instruments, as Davies
correctly remarks.

In contrast to Bohr’s position, the interpretation through the
quantum potential gives primary relevance to the space—time
manifold in which an actual process is assumed to evolve and each
individual process can be described unambiguously. Within this
context, it is assumed that space and time are to be treated in exactly
the same way as in non-quantum physics, both in the non-relativistic
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and the relativistic theories. That is, space—time has built into it an
a priori notion of locality, together with a Galilean or Lorentz
symmetry. In neither theory is there any need to repiace position and
time by operators, and therefore one avoids the inconsistency that
appears when the standard non-relativistic theory is extended to
include relativity in the usual approach, a difficulty that I referred to
earlier. But the appearance of the key new notions of non-locality
and, perhaps more importantly, wholeness raises the question of
whether space-time can ultimately remain as a classical absolute
object.

This is not the only reason for questioning the role of space—time.
Indeed, there is an informed view that if gravity is to be successfully
quantized then the continuous space-time manifold will, in all
probability, have to be abandoned as an a priori given starting-point.
As Wheeler (1967) has so eloquently pointed out, the fluctuations of
the metric can become so violent that the very notion of a well-defined
and permanent neighbourhood is called into question. It is as if the
continuum develops fluctuating topological features of which the
‘wormbhole’ is, perhaps, the best known example. Thus, the appear-
ance of these new fluctuating topologies suggests that the notion of an
absolute locality is beginning to break down. However, it seems that
this notion has not been directly questioned because the basic
differential manifold structure is still retained. But if non-locality is a
key factor at the quantum level, then this will not fit naturally into the
space-time manifold because the manifold arose specifically as an
expression for an absolute notion of locality. Indeed, if the notion of a
field is added to the manifold, it provides the ideal description for
‘action-through-contact’. Thus, the appearance of any form of
‘fluctuating metric’ or ‘action-at-a-distance’ will not fit naturally into
the concept of a manifold. But our analysis of quantum theory
through the quantum potential suggests that both locality and
Lorentz invariance can arise statistically, and therefore a natural
suggestion to make is that the space-time manifold should itseif be
thought of as arising statistically from some deeper, as yet
unspecified, structure. The quantum vacuum state provides a hint of
this structure, but lacks the necessary relation with space—time. In
order to bring out this new possibility, we have called this deeper
structure, ‘pre-space’.

Before proceeding to examine the possibilities for pre-space, we
should pause to consider our attitudes towards the notion of locality
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in more detail. It is a deeply held belief that locality is essential for the
description of physical processes (see Davies 1989), and, indeed, some
would even go as far as to say that science itself is not possible without
a notion of absolute locality. I want seriously to question this
assumption. In doing so I am not going to deny that it has been
successful, particularly at the classical level; nor do I pretend that it
will be easy to give up such a notion. Indeed, I am not even sure it will
be possible ultimately to proceed without such a notion, but I feel
strongly that the issue should be debated.

In order to motivate my own approach to locality, let me recall one
of the main principles used in the development of both special and
general relativity, namely the removal of certain absolutes. New-
tonian mechanics was built on the concepts of absolute time and
absolute simultaneity. It was through the emergence of the Lorentz
group that both of these became relative concepts. The further step to
general relativity rested on the fact that this group left space—time
itself as an absolute with the inertial frames playing a special role. As
was explained earlier, it was the removal of this special role that led to
the space-time manifold being defined, not as an a priori given
absolute, but as a structure that depended on the distribution of
matter in it. However, what still remained was the notion of absolute
locality.

To Einstein (1971), this notion of absolute locality seemed essential
for physics. The appearance of non-locality in quantum mechanics
led him to suggest that the theory itself was in some sense incomplete
and therefore only provisional. It was necessary to find a deeper
theory which would account for quantum phenomena by restoring
locality. Einstein himself never succeeded in this aim, and now the
Bell inequalities (Bell 1987) have clearly shown that this will not be
possible. I feel that non-locality is an essential feature of quantum
processes and that we must accommodate it by calling into question
the notion of a differential manifold.

The suggestion I would like to make is that we replace the notion of
absolute locality by a relational notion of locality. The possibility that
locality could be relational becomes apparent only when the
object—image relationship in the hologram is considered. The
essential point here is that it needs only a small portion of the
hologram itself to reconstruct an image of the original object with all
its neighbourhood relations intact (although, of course, the image
loses some of its original sharpness). The important principle
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emerging from this consideration is that in the hologram the local
features of the original object are carrried non-locally. Thus what is
local in one representation (the original object) becomes non-local in
another (the hologram), and vice versa. But the relation between
these two ‘frames of reference’ is such that the structural content is the
same in both frames. What makes the object frame more fundamental
to us is that the object has meaning for us in the classical world which
we take to be a preferred frame. Normally this is taken to be a
Newtonian frame. Clearly, thisis not an absolute frame. It is preferred
simply because of its utility and not because it has any absolute
significance. Relativity has explained all that.

Relational properties actually play an important role in quantum
mechanics. One can see this most clearly in the causal interpretation
(see Bohm and Hiley 1987). To explain this idea, let us first recall that
measurement in quantum theory is, in general, active and not passive.
This point can be brought out most clearly again through the causal
interpretation, but it is already implicit in the usual approach. It
arises because of the nature of the quantum potential, which is such as
to cause the system and the measuring apparatus temporarily to ‘fuse’
to form an inseparable whole before the apparatus finally evolves into
one of its distinct final states. Each of these final states is correlated to a
final state of the system which is, in general, different from its initial
state. It is as if the measured properties of the particle are, in general,
‘created’ by the measurement itself. The properties not being measured
also undergo uncontrollable and unpredictable changes, and it is this
that is ultimately responsible for the uncertainty principle. In other
words, in quantum mechanics measurement is a transformation in
which both system and apparatus actually participate. Thus, although
the particles have intrinsic properties, the properties that are measured
have meaning only in the context of the particular apparatus involved.
Making different measurements again transforms the system and
reveals new properties. It is in this sense that measurement plays an
active role and the properties are thus relational.

There is one notable exception to all of this in the causal
interpretation, and that involves position itself. It can be shown that
position is the only non-relational property in the causal interpreta-
tion. This means that the position of a particle can be measured
without changing it, and in that sense position can be regarded as an
intrinsic property. It is this property that gives space-time its
privileged and absolute role in the causal interpretation.
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Indeed, one of Heisenberg’s objections to the causal interpretation
was the special role given to space—time. He pointed out that the non-
relativistic transformation theory suggested that it was the operators
that carried the essential quantum structure and that the position
representation was no more fundamental than, say, the momentum
representation. I believe Heisenberg was right to emphasize the
importance of the algebraic structure of the operators, and I also
believe that his objection to the causal interpretation was right, but
for different reasons. For me, it is the need to give up an a priori given
space—time and to introduce a relational notion of locality that limits
the validity of the causal interpretation. This, of course, means that
the causal interpretation cannot carry us any further.

Giving up space—time as a basic entity implies also that neither the
particle nor the field can be taken as basic any longer. As explained
above, this is essentially because the space—time manifold evolved
from first taking particles-in-local-interaction and then fields-in-
local-interaction as the basic explanatory form for physics. Thus it is
clear that, if we are to develop a decriptive form that uses not a notion
of absolute locality, but rather a relational notion of locality, some
very radical new ideas will be needed.

6 The Holomovement and the Abstraction of Space—Time

1 believe that the clue as to which direction to proceed in is already
implicit in the algebraic structure of the operator formalism, but in
order to develop these ideas it is necessary to introduce a different way
of looking at physical processes. First we must break with the
traditional view that operators are to be thought of as ‘observables’
which simply give the results of some sort of measurement. Rather,
recall the argument that, in quantum mechanics, measurement
should be regarded as a particular case of a more general process of
transformation in which both ‘system’ and ‘observing apparatus’
participate as a whole. In Bohr’s language, it is not possible to make a
sharp separation between the two. Thus, every transformation
irreducibly connects at least two distinguishable aspects of a total
process.

In a reductionist framework one would tend to regard the end-
points of the connection as basic and the connection itself as
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secondary. But here it is the connection that is taken to be basic, while
the end-points are abstracted as distinguishable features of the
connection. Furthermore, it is important to note that this connection
is not passive but active. Thus activity or becoming, or more simply
movement, is now taken as basic. Within this basic movement there
will be quasi-stable, semi-autonomous features, some of which will
have particle-like properties. Thus, particles themselves are merely
‘ripples’ on the ‘sea’ of underlying activity. In this outlook there are no
ultimate particles out of which all other particles are formed. Rather,
we will have quasi-invariant forms which can transform into each
other and can be self-organized into hierarchies of larger quasi-stable
isolatable systems. The totality from which these features will emerge
is called the holomovement, a term that was first introduced by Bohm
(1980) and later given a preliminary mathematical form by Bohm et
al. (1970). The prefix ‘holo’ is chosen to emphasize the indivisibility
that is so important in quantum processes.

The term ‘holomovement’, then, describes the totality of processes
containing not only the quasi-stable features which we sense either
directly or indirectly with the aid of our detection instruments, but
also in the transient, very fast processes to which our present
instruments are insensitive. It is the latter that correspond to what
quantum mechanics calls the vacuum state and which de Broglie
inappropriately called the ‘sub-quantum medium’. In our view,
therefore, the vacuum itself has a very rich structure of activity to
which our instruments cannot respond directly (i.e., it is empty only
in the sense of Descartes). It is this activity that is responsible for the
zero-point energy. It can also be regarded as the source of the
quantum potential, but before we can establish a firm connection
between the two, it is first necessary to obtain a better understanding
of its deeper structure and to explore how its properties may be
revealed indirectly in the behaviour of the quasi-invariant features
that are accessible to our instruments.

In order to carry out this task we must find an appropriate
mathematical form with which to describe this deeper structure. Our
first thought in this direction was to regard each connection as a one-
dimensional directed simplex, so that the totality of these one-
dimensional connections would form a simplicial complex or
multiplex. This approach enabled us to exploit the isomorphism
between an abstract cohomology theory and the de Rham cohomo-
logy that appears significant in the old quantum theory. What
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emerged from this work was that the main equations of quantum
mechanics could be reformulated in a way that was independent of an
assumed continuous space-time manifold. This was actually illus-
trated in some detail for Maxwell’s equations, but one could extend
these ideas to include the Schrédinger and Dirac equations. Indeed,
the Dirac operator can simply be written as a sum of the boundary
and coboundary operator, a fact that was later exploited in lattice
quantum chromodynamics (see Becher and Joos 1982).

Although the results were of some interest, the simplicial complex
does not capture the essence of activity, nor was it particular to
quantum mechanics, as the application to Maxwell’'s equations
illustrates. Quantum mechanics with its product and linear super-
position of operators suggests that it is the algebraic structure that is
essential. In my first attempts to relate this algebraic structure to the
basic notion of activity, my attention was drawn to some of the early
work of Grassmann (1894), Hamilton (1967), and Clifford (1882).
Although these names are very familiar because of their very
significant contributions to algebraic geometry, it is not generally
realized that what motivated them was not simply a desire to
understand static geometry; all of them took activity or becoming as
the basic form from which all emerges, and it was through an algebra
that they found a natural way to describe activity.

Both Grassmann and Hamilton were uncompromising: mathem-
atics, they claimed, was about thought; it was not about a material
reality. It was a way of studying relationships in thought: not a
relationship of content, but a relationship of form in which a content
could be carried. To quote Hamilton (1831), ‘Relations between
successive thoughts thus viewed as successive states of one more
general and changing thought, are the primary relations of algebra.’
Thus, mathematics is to do with ordering forms that are created
through thought and hence of thought. The fact that these forms
could be ‘useful’ for helping us order physical phenomena was, to
them, almost incidental.

The central question that Grassmann addressed was how one
thought became another. Can we ever say that we have an entirely
new thought which is completely independent of the old thought? Or
isit that they are distinct but related? I like to regard them as opposite
poles of an essential relationship that exists between the poles
themselves. They are then inseparable in the sense that the old
thought contains implications of the new thought and the new
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thought contains a trace of the old. As Bergson (1922} puts it,
‘evolution implies a real persistence of the past in the present’. It is the
relationship that is essential. But one can go further. The relationship
itself is also of thought, and this, in turn, must be one pole of another
essential relationship, so that thought itself can be understood as a
structure of relationships ordered in some form of hierarchy. By
considering this structuring in thought, Grassmann was able to break
out of the straitjacket of our three-dimensional world, and for the first
time it became possible to describe mathematically spaces of
dimensions higher than three.

Grassmann insisted that his theory of space was but a particular
realization of the more general notion that he was working towards.
Nevertheless, he saw each point of space as a distinctive form in a
continuous process of becoming, and motion was conceived of as a
continuous generation of one distinctive form followed by another.
To Grassmann the succession of these distinctive forms was not to be
regarded as the generation of a series of independent points; rather,
each successive point was considered the opposite pole of its
immediate predecessor so that pairs of points became essentially
related, and it is this relationship that Grassmann called his ‘field of
extensives’. Indeed, to strengthen the essential link between pairs of
points, he wrote the points enclosed in square brackets, [p;p;],
to emphasize the unity of the poles. Higher-order connections
of distinctive forms could then be written as [p;p;p,] and so on.

These extensives are not yet the vectors, bivectors, trivectors, etc.,
that present mathematics uses in what is called a Grassmann algebra.
The original basic forms that motivated Grassmann have long been
forgotten or ignored, and only those features that are more
appropriate for static visualization have been retained. Thus, the very
notion of becoming that Grassmann felt to be so important in his
approach to algebras has been lost. In fact, this emphasis on the static
forms occurred very early in the development of algebraic geometry,
and by the 1880s the notion of activity had already been replaced by
the static forms of a vector, bivector, etc., together with the exterior
product that we now associate with Grassmann algebras today. In
fact, Clifford (1882), in contrasting this static view that had emerged
from Grassmann’s work with Hamilton’s own approach, found it
necessary to restate the fact that Hamilton had put the emphasis on
activity, and to point out that the quaternion product, for example,
was actually based on the notion of transformation or activity. By
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extending these ideas, Clifford was able to generalize the quaternion
algebra to a hierarchy of algebras that bore his name. Could it be
more than good fortune that relativistic quantum mechanics uses the
Clifford algebra in such a fundamental way?

In order to develop the connection between activity and algebras in
the quantum context, it is necessary to be aware of the fact that
quantum mechanics can also be formulated in a purely algebraic
approach which does not refer to operators on a Hilbert space. This
algebraic approach had its origins in Heisenberg’s work and was
investigated originally in some detail by Segal (1946). (An excellent
summary of the algebraic approach to quantum field theories can be
found in Haag and Kastler 1964.) In general these approaches are
very formalistic, and not immediately transparent; consequently it is
not at all obvious how this approach could be related to the intuitive
ideas outlined in the previous paragraphs.

In order to bring out this connection, Fabio Frescura and I (1980q,
1980b, 1984) attempted to show in a less rigorous, but hopefully more
intuitive, way how it was possible to present a purely algebraic theory
of non-relativistic quantum mechanics. Two algebras emerge in this
work. First there is the symplectic (Heisenberg) quasi-algebra defined
by the generating set {1, D;, Q;, E;} over the complex field through
the relations

[D;, Qj]=6ij; [D;, Djjz[Qia Qj]=0; Ei2=Ei;
D.E,=0; EQ;=0, (8)

where D is an algebraic displacement operator (cf. —id/0x in the
Schrodinger representation), O the position operator (cf. x), and
E=TILE, is the primitive idempotent which is intimately connected
with the vacuum state.

The second algebra to arise is the Clifford algebra, defined by the
set of generating elements {1, A;, 8;} over the complex field through
the relations

{A;, Gj}=5ij; {A;, Aj}={0i’ Oj}'—_(); P}=P;
AP =0; P§,=0, 9

where 0 is a Grassmann number, A its conjugate, and P=I1P; is the
primitive idempotent. In this case P,=A0,. The algebra of Dirac
matrices y, are a sub-algebra in the algebra defined in terms of
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0,+A,. The elements of the algebra that correspond to the vectors in
Hilbert space are just the minimal left ideals.

Nowhere in this work does there appear the space—time con-
tinuum; nevertheless, the algebras themselves carry the main
space-time symmetries. We could regard this structure as pre-space.
Thus, for example, the quaternion Clifford algebra carries the spatial
rotations, while the higher-dimensional Dirac-Clifford algebra
carries the Lorentz boosts. The symplectic algebra carries the space
displacements and the time displacement. Hence it appears that the
space—-time continuum is not a prerequisite for these symmetries. If
this is, in fact, a correct conclusion, then the next essential question
that we must raise is whether the presence of these symmetries will
enable us to abstract out a space-time manifold from the algebra
itself. This is a difficult task which has not yet been completely solved,
but it is possible to illustrate how this may be achieved, in principle, if
one starts with a very simple algebra. Of course, this algebra is far too
simple to capture all the features that will be necessary in a complete
theory, but nevertheless it does give an insight into how this might
work.

The algebra that we shall use is a finite polynomial Weyl algebra,
C?2, generated over the complex field by a set of generating elements
{1, e}, e}, subject to the relations

eoel =wefeq;  (eg)"=1;  (e})'=1, (10)

where w=exp(2ni/n) (see Davies 1981).

The physical significance of this particular algebra can be seen by
letting n—oo. In this limit the algebra becomes essentially the
symplectic algebra with e} being identified with D and e{ being
identified with Q. Thus, when n is finite we can regard this algebra as
carrying the structure of a two-dimensional phase space with a finite
number of points rather than a two-dimensional continuum.

To abstract this phase space from the algebra, we must first indicate
how one abstracts ‘generalized points’ from the algebra. An
important clue in how to proceed in this task has been provided by
Eddington (1958), who argued that, in a purely algebraic approach to
physical phenomena, there are elements of existence defined not in
terms of some hazy metaphysical concept of existence, but in the sense
that existence is represented by an element in the algebra that
contains only two possibilities: existence or non-existence. He
assumed that existence is represented by an idempotent in the
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appropriate algebra. In our view, in which we take activity as basic, it
is not so much that points exist but that they persist. They persist not
in the sense that they are static, but rather that they continually
transform into themselves. Clearly, the element that transforms into
itself is the idempotent because P-P=P. (The product represents
succession.) Thus, in the algebra, generalized points are going to be
represented by elements of activity that transform into themselves so
that the generalized points will correpond to a set of idempotents in
the algebra.

Let us now illustrate this procedure in the case of the Weyl algebra
C?Z. Because the algebra is finite, it is possible to find a complete set of
pairwise orthogonal primitive idempotents €;. One such set will be

1 ‘
g=- w % (11)
oy

The ¢, will satisfy the relation Z,6,=1 and €} =¢;. It is our contention
that the set {€;} constitutes a set of generalized points in our phase
space. To show that this set can be used to represent a finite set of
points in ‘space’, let us introduce a ‘position’ operator X defined by

1 .
X=-Yjo *e=3 je,, (12)
m ok j

so that
Xe,=je, (13)

Thus, each primitive idempotent is labelled by the eigenvalue of the
‘position’ operator X. If we choose €, as the point at the origin, its
neighbouring point is €, since there exists a unit displacement
operator, T, such that

€, =Te, T
so that in general
€;=Te,T7. (14)

It is.then not difficult to show that the element 7~ is just e} for this
particular set of idempotents. Thus, the set of primitive idempotents
forms a linear ordered array that can be regarded as the position
space. Furthermore, each point is connected to its neighbour by the
element ef .
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Of course, this set of idempotents is not unique, and there exist
many equivalent sets of idempotents each with its own translation or
neighbour relation. Since the algebra is rather trivial, all these
representations are ‘physically’ the same, and there is no way to
distinguish them. If we regard the algebra C? as describing the
holomovement, then within this holomovement there exist many
possible realizations of this ‘space’. In the language of David Bohm
(1980), the holomovement is an implicate order within which there
are many realizations of the explicate order we call space. With a
richer algebraic structure there exists the possibility of inequivalent
‘spaces’, and clearly some physical criterion will be needed to
distinguish between these spaces. Therefore we have the possibility
that different observers will be able to abstract different spaces and
the spaces will have a different content.

Returning to the Weyl algebra C?, we notice that there is a
symmetry between ej and e?. Clearly, it should be possible to use e?
as a translation operator for a different set of primitive idempotents,
€;, such that e‘j=e}’e‘0e9 ;- This set of points would now represent a
space that is, in some sense, dual to the set of points represented by the
set €;. We would expect this set of generalized points to have a
particular significance even within this simple algebra. To bring out
this relation, we first note that we can introduce an operator X using
the equation

X “€;=je; (15)
where
oo s
X' ==) jo %, (16)
n jk

The meaning of these particular generalized points becomes more
transparent if we write the X-displacement in the form

Tx(a) = exp( - iaP)’

with a=2zn/n and P the momentum operator. But we can also write a
p-displacement as

T,(a)=expliax).

Then we can identify e} =exp(2niP/n) and e =exp(—2niX/n).
This suggests that X~ should, in fact, be identified with P, i.e.
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the discrete momentum, so that the dual space is nothing but
the momentum space. Thus, this algebra contains two sets of
distinguished elements that can represent either the points of a
discrete position space or a discrete momentum space. These gen-
eralized points are not independent but are related by a similarity
transformation,

€=8¢S71, (17
where
1 . .
S=—Zw’(‘_")eg“‘. (18)
L

S'is, in fact, a discrete Fourier transformation (see Davis 1981), as one
would expect.

The important feature from our point of view is that both sets of
points cannot be displayed simultaneously. The reason for this is that
the €; are the eigenfunctions of X, while €; are the eigenfunctions of P.
But X and P do not commute. In fact,

1 N
[X, P1==) (s—jya Pw e, (19)

Jkrs

This means that €; and €| cannot be realized simultaneously. In more
general terms, we say that it is not possible to explicate both the
momentum space and the position space simultaneously. In other
words, the discrete phase space is carried implicitly by the algebra. Itis
in this sense that the algebra is given a primary role, and its linear sub-
spaces then correspond to the position and the momentum spaces
which can not be realized together. In this way the position and
momentum spaces are not a priori given, but are distinctive features
carried by the algebra.

In quantum mechanics the points of space are labelled by means of
the kets, i.e., ]x . The relation between this labelling and our
algebraic structure emerges through the minimal left ideals. To show
how this comes about, let us generate a minimal left ideal, #°, from
€,- Recall that

$°=Jz¢80,

where o/ spans all the elements of the algebra C2. The basis of this
ideal is
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2O(j) = ;11_ Yot (20)
Furthermore,
XZL()=j2°3), 1)
LO>j+a)=ey L0, (22)
so that if we identify #°(j) with |x,> we have
X|x> =i (23)
and
%100 =Ta)|x)>. (24)

These results are exactly what one would expect from the usual
approach to quantum mechanics.

We are now in a position to discuss the relational notion of locality
within the algebraic structure. The holomovement is a structure of
activity with no a priori notion of absolute locality within it. In fact, it
should be regarded as a-local. In the example of the Weyl algebra, we
chose a particular ‘local’ order by giving special significance to the
element e;. Thus we have essentially imposed a local order on the
space. This order is arbitrary since it is possible to make an inner
automorphism and produce a new set of ‘generalized points’ with a
new neighbourhood operator. Thus, for example, we can define a new
set of generalized points €,

€=26Z"", (25)

where Z is some element of C?2. These ‘space’ points will also have a
corresponding dual ‘momentum’ space €. In fact, there are many
such inner automorphisims in the algebra. Each will have its own
unique order and therefore its own neighbourhood relation. If we use
a neighbourhood element to define locality, then there exist many
different locality relations, each related to another by an inner
automorphism.

We can also bring these ideas out within the present formalism of
quantum mechanics by examining the Schrodinger representation in
the same spirit. The principle of locality is built into this represen-
tation through the fact that the dynamical operators are functions of
x and 0/0x. Furthermore, it is the requirements of continuity and
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single-valuedness of all physically significant operators that give rise
to the correct energy levels and transition probabilities. Thus the
Schrédinger representation has built into it a notion of locality,
whereas the Heisenberg representation, and hence the algebraic
approach, does not. In order to make the latter completely equivalent
to the Schrodinger representation, one needs to introduce a
neighbourhood operator. This can be done as follows. First, let us
consider the Schrddinger representation in the discrete case. Here
Y{x) will correspond to a weighting function on the discrete points,
x;, through the relation l//j=<lel//>. We then replace dy/0x by
¥j+1—Y;and o4y /ox? by Vi1 =20+,

Under an inner automorphism, the point labelled by ]x > will go
over into a linear combination,

]x}) 22 Cl)ckj]xk>’ (26)
k

so that
V=Y Chi. (27)
k

The combination ¥;,, —y;_ will then go into
Z [Cltj+1 - C;ck,j— 1]'/’1:-
k

It is clear that the difference operator has been replaced by another
one that is ‘non-local’, i.e. one that connects points from all over the
original space (as if each point had been ‘exploded’ into the whole
space).

To tie in more closely to the algebraic notation used above, we can
define two neighbourhood relations, N* and N, through the
equations

N+|xj>=[xj+1>
N“|xj>=]xj_1> (28)

Then under the inner automorphism, fx =%,C jk[x;), these opera-
tors become

NY|xy=Y, Z CEC s mm| X
m

N7x0 =2 % ChCipmm| X (29)
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In this case all the points in the space are neighbours of each other,
and so the neighbourhood operators no longer have their original
simple meaning that they had in equation (28). Thus, in the limit of an
infinitely dense array, continuity has lost its simple meaning. But even
though the ‘space’ has lost its ‘local’ meaning under the transform, the
physical content is of the theory as reflected in the measurable
quantities is unchanged. Indeed, we have something analogous to a
hologram in which the locality relations are carried non-locally
throughout the hologram. Non-locality is thus implicitly incorpor-
ated into quantum mechanics and is a direct result of associating a
basis that is not invariant to an inner automorphism.

It is clear from the above considerations of both the Weyl algebra
and the Schrédinger representation that the locality relation is
imposed from outside the structure. The Weyl algebra brings this out
most clearly, whereas in the case of the Schrédinger representation
the choice does not appear arbitrary because it uses the classical
space—~time continuum. In some sense this arbitrary imposition does
not introduce serious limitations because within both structures all
representations are equivalent. On the other hand, this arbitrariness
implies that the physical relationships that are independent of this
change of basis are no longer tied to the position space in which
classical events are acted out. It is this feature that has led us to ask
whether, in fact, there is a need for a basic a priori given space-time
manifold. The suggestion then is that perhaps the space-time
manifold is an essentially classical construct that has ultimately to be
abstracted from the appropriate algebra that describes the holo-
movement.

The algebra that we have explored above is very simple and
contains only equivalent representations. Indeed, as soon as one goes
on to consider systems with an infinite number of degrees of freedom,
inequivalent representations are the rule rather than the exception.
Thus, the general algebra describing the holomovement would
contain many ‘space-time’ representations, each with its own
structure of generalized points and, in the continuum limit, its own
manifold structure. The set of all these representations would then
provide the basis for a statistical space—time to emerge.

The above discourse has been intended to bring out the new
possibilities that the algebraic approach offers. In all that has been
said, I have not yet specifically introduced any new content. To show
that such a possibility exists, consider first the analogy of the metric in
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general relativity. The canonical diagonal metric g,, can be
transformed into a non-diagonal form,

o¢* do*

S b (30)
n
Now as long as a global transformation exists, there is no new content
in the theory. However, when the curvature is non-zero, only local
transformations can be found, which reduce the metric to diagonal
form, and we have the possibility of new content, namely gravitation.
A similar argument can be applied to the neighbourhood matrix. In
the present theory it is assumed that the matrix can be reduced
everywhere by a unitary transformation. However, it may not be
possible to make all neighbourhood matrices diagonal together.
Indeed, the appearance of non-locality in quantum theory may arise
from just such a difficulty. Thus we open up the possibility of new
content and therefore new physics.

7 Conclusion

I have tried to argue in this paper that a purely algebraic approach to
quantum phenomena opens up the possibility of obtaining a
generalized ontology of individual quantum processes which does not
require an a priori given space-time manifold to describe their
evolution. Rather than use the notion of fields-in-interaction on the
space-time manifold, we should start with the notion of the
holomovement which assumes that the basic form is activity or
transformation, and that material processes can be abstracted from
this activity in terms of quasi-local, semi-autonomous features of this
total activity. It has also been demonstrated that space-time itself is
to emerge from this structure. Indeed, it is essential to regard the
material process and space-time to be abstracted together, so that the
particle content depends on the abstracted space—time in an essential
way and vice versa.

The appearance of inequivalent representations in a general
algebra suggests that there may be many different ‘space-times’ with
different ‘particle’ contents and different ‘locality’ relations. All of
these will be present in the algebra together. In order to provide a
framework in which to comprehend the multiplicity of ‘space-times’,
it is essential to use Bohm’s notion of the implicate order. In these
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terms, the holomovement is an implicate order, and the abstraction of
a particular space—time from within it corresponds to the emergence
of a particular explicate order. In this view, different explicate orders
can have different ‘space—times’ with a different ‘particle’ content.
Thus, the appearance particles that resulted from the Bogolubov
transformation discussed in Section 2 does not arise merely from the
measurement process; rather, the accelerating frame of reference
demands a different explicate order, i.e. the abstraction of a different
space-time from the algebra of the holomovement. This implies that
physical processes themselves determine which particular explicate
order is relevant in a given situation, and one of the important
questions is to determine what factors generate a particular explicate
order.

One of the very novel features in our suggestions is that all the
various inequivalent representations are present together in the
algebra, so that all the different ‘space—times’ will be implicit in
the holomovement. But only one ‘space—time’ can be explicated in
any one situation; the rest remain implicit. Consequently we no
longer have the Descartesian ideal that all of nature can, as it were, be
laid out before us for our intellectual perusal. Rather, only a certain
limited aspect can, in any one situation, be presented at the expense of
the rest. This is, I believe, the deeper truth lying behind Bohr’s
principle of complementarity.

It must be emphasized that the main purpose of this paper has
been to draw attention to the new possibilities latent in the
algebraic structure which I believe provides a new ontological
approach to quantum processes. It is hoped that this approach,
which is at present under further development, will offer a new
way to address the problems that arise in the quantization of the
gravitational field.
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Theory of Vacuum

DAVID FINKELSTEIN

1 Introduction

Today the vacuum is recognized as a rich physical medium, subject to
phase tramsitions, its symmetry broken by non-vanishing vacuum
values for several important fields akin to the permanent magnetization
of a ferromagnet, and supporting the emission, propagation, and
absorption of particles. A general theory of the vacuum is thus a theory
of everything, a universal theory. It would be appropriate to call the
vacuum ‘ether’ once again, as long as we remember its local Lorentz
invariance. The most workable theories of the vacuum today are
quantum field theories. In these the vacuum serves as the law of nature,
as reviewed below. The structure of the vacuum is the central problem
of physics today; the fusion of the theories of gravity and the quantum is
asubproblem. Here I develop a quantum—space—time description of the
vacuum. Finstein considered such a programme in the 1930s:

To be sure, it has been pointed out that the introduction of a space-time
continuum may be considered as contrary to nature in view of the molecular
structure of everything which happens on a small scale. It is maintained that
perhaps the success of the Heisenberg method points to a purely algebraic
method of description of nature, that is to the elimination of continuous
functions from physics. Then, however, we must also give up, by principle,
the space-time continuum. It is not unimaginable that human ingenuity will
some day find methods which will make it possible to proceed along such a
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path. At the present time, however, such a program looks like an attempt to
breathe in empty space. (Einstein 1936: 378)

Einstein’s stand is not for the continuum but against the quantum,
which he considers no better than thermodynamics as a fundamental
language. After a half-century of breathing exercises, many physicists
who accept the quantum are also willing to leave the continuum:

It may well be that the marriage of gravitation and quantum mechanics
requires a few more drastic revisions of our ideas. For example, our
description of space-time as a continuum may have to be replaced by a
discrete granular structure at extremely short distance. (National Research
Council 1986a: 97)

It may be that local Lagrangian field theory is not the correct approach to
quantum gravity. Perhaps, as some believe, the basic quantum quantities
are not the variables describing a space-time continuum but a more discrete
structure. (National Research Council 1986b: 74)

Quantum network dynamics (QND), which I sketch here, is such
a discrete quantum theory, a generalization of graph theory. It
retains and even extends the most basic principles of quantum field
theory, such as relativistic locality, quantum superposition, and
local Lorentz invariance; but initially it sacrifices unitarity for local
finiteness and local relativity. QND is a fusion of quantum theory
and space—time theory with a natural trial y vector for the vacuum
network. This vacuum network has hypercubical symmetry, yet is
exactly Lorentz-invariant, and supports an action principle leading
to the Dirac equation for the motion of its holes. QND suggests that
gravity is a macroscopic quantum effect (so that it should not be
canonically quantized). The fundamental questions of QND are:

"o What are the fundamental modules of the physical network?
e How are they interconnected in the normal phase?
e What are the disturbances in this topology during the dynamical
evolution of the physical network?

The normal phase of the physical network I understand to be the
vacuum. Here I propose answers to the first two questions; and a
strategy for the third. This note may be regarded as a philosophical
version of a more mathematical one already published (Finkelstein
1989), which gives further references.
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2 Basic Principles

The main guiding principles that have evolved in this process of
theory development are a form of monism and (as mentioned above)
locality, superposition, relativity, and finiteness.

2.1 Topological Monism

There is just one activity going on in the world, whose fine structure
we must determine. The topology of this activity is the only physical
variable there is.

The quantum topology of QND is based upon a quantum set
theory as classical topology is based on classical set theory; the
underlying elements of quantum set theory anticommute rather than
commute. The foundation of Peano’s classical set theory as well as of
his theory of the natural numbers, which may be read as the classical
theory of a discrete future time axis, is an operator : which forms the
unit set 1= {o} from any set .. In Section 4.5 I adjoin a quantum 1 to
the usual quantum linear space kinematics and Grassmann product.
In QND 1 is the causal successor operation.

2.2 locality

Locality (of the Einsteinian kind) is the principle that fundamental
concepts and laws connect events only to their infinitesimal neighbour-
hood. (More abstractly put, a class or property P of fields on a manifold
is said to be localif, for every fieldf, fis in Pif and only if for every point p
of the manifold there is a neighbourhood N of p and a field f in P, such
that f=f, on N.) For example, any property expressed by a differential
equation of finite order with respect to space-time coordinates is a local
property; the concept of a scalar field is a local concept; and the concept
of a coordinate system is non-local, since it is not enough to verify its 1-1
property one neighbourhood at a time.

Locality convinced Newton that his own beautiful and powerful
theory of gravity was merely phenomenological rather than funda-
mental, leaving it to Einstein to provide the first plausible local theory
of gravity. Today experimental verifications of locality and superpo-
sition, whose results go beyond any classical local theories according
to Bell’s theorem, decide in favour of the quantum principle of
superposition and against its classical reformulations, which lead to
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non-local theories. Thus, in judging physical theories, locality has
been given more weight than accurate experimental predictions and
common sense, when it came down to a choice, and this judgement
has been vindicated subsequently by further experimental successes.
The most advanced form that locality has taken in this century is the
gauge theory of fundamental forces.

The locality principle seems to catch something fundamental about
nature. I will not give it up here. Instead I seek out and eliminate some
dissonances between locality and the other principles 1 have
mentioned. Localized they become local finiteness, local superposi-
tion, local monism, and local relativity. The next paragraphs deal
with the first three of these; we return to the fourth later.

2.3 local Finiteness

Having learned that the world need not be Euclidean in the large, the
next tenable position is that it must at least be Euclidean in the small,
a manifold. The idea of infinitesimal locality presupposes that the
world is a manifold. But the infinities of the manifold (the number of
events per unit volume, for example) give rise to the terrible infinities
of classical field theory and to the weaker but still pestilential ones of
quantum field theory. The manifold postulate freezes local topologi-
cal degrees of freedom which are numerous enough to account for all
the degrees of freedom we actually observe.

The next bridgehead is a dynamical topology, in which even the
local topological structure is not constant but variable. The problem
of enumerating all topologies of infinitely many points is so absurdly
unmanageable and unphysical that dynamical topology virtually
forces us to a more atomistic conception of causality and space-time
than the continuous manifold. Atomism has contended against the
continuum principle for millenia, and a thoroughly atomistic
conception of space and time dominated Islamic thought in the late
Middle Ages. QND reinstates this atomism in a quantum form. The
usual space-time manifold describes a special case of high order
which is conditional and not truly fundamental in nature.

Continuum theories generally start from mathematically meaning-
less concepts, like the products of singular distributions. We are more
likely to develop a correct theory of nature from a meaningful theory
than from a meaningless one. Here we apply Einsteinian locality to
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the network. Instead of infinitesimal neighbourhoods, we speak of
nearest neighbours, finite in number.

2.4 local Superposition

The global quantum principle of superposition says that the physical
properties of the system form not a Boolean algebra but a projective
geometry. The fundamental duality of projective geometry between
the space and its dual expresses a bimodality of the logic between
input and output; if vectors represent inputs (to the endosystem from
the exosystem, which includes the experimenter and environment)
then dual vectors represent outputs, and the two annul each other for
a forbidden transition. The term ‘superposition’ refers to the linear
combination of such vectors.

A maximally informative predicate of the system is represented by a
ray of a linear space, which serves as phase space, and a more general
predicate by a subspace. Superposition thus leads not only to
quantum indeterminacy, but to a continuity in possibilities which
replaces the continuity of actualities that we have renounced for the
sake of local finiteness: it interpolates an infinite number of
possibilities ‘between™—in a sense peculiar to quantum theory that is
neither topological nor casual, but statistical or logical—two
mutually exclusive possibilities. Quantum dilemmas have infinitely
many horns, though each experimenter can see only two.

Since fundamental principles must be local, and the superposition
principle is supposed here to be fundamental, we infer a principie of
local superposition: the independent elements of the world and their
causal connections to their neighbours also have projective, not
Boolean, logics, subject to quantum superposition. We extend
superposition to the fundamental space-time topological connec-
tions in this work. It then follows for everything else from the monism
of Section 2.1.

Superposition and intensionality We extend the superposition
principle to classes or predicates of quanta in this work. The principle
of intensionality of classical logics associates a property with any
given (finite) coliection of entities, namely the property of belonging
to that collection. A simple Slater determinant y vector describes a set
of fermionic quanta and indeed corresponds to a Von Neumann class
of quanta, represented by the projection operator upon the subspace
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spanned by the columns in the determinant. But a superposition of
Slater determinants also describes an authentic quantum set of quanta,
and yet defines no class of quanta in the Von Neumann sense. Evidently
there are many more sets than classes in the Van Neumann logic, which
thus violates intensionality by limiting superposition. I extend the Von
Neumann logic in Section 4.4 to embrace such superpositions.

The sacrifice and rebirth of unitarity Local superposition permits us
to formulate a quantum principle of local relativity. The Lorentz
group in its most fundamental spinor form SL, acts upon the linear
space of Y vectors describing the immediate successors of an event,
and respects their causal connection.

This leads to a most productive contradiction. The principles of
local finiteness, relativity, and superposition are inconsistent with the
standard principle of unitarity; for there is no finite dimensional
unitary representation of the Lorentz group. There are many
indications that unitarity is the one to sacrifice. Unitarity already
contradicts Finsteinian locality and finiteness separately (if they are
taken in their strongest senses), as follows.

¢ Unitarity is a non-local condition in field theory; it involves an
integral over all space.

o Unitarity rests on the orthocomplement or negation operation of
the quantum logic, and the orthocomplement of a finite-dimen-
sional subspace is infinite-dimensional. A finitistic quantum logic
with an infinite number of possibilities (like that of Section 4.4)
cannot have a negation operation.

e Unitarity expresses conservation of probability in time and is
meaningful only for entities that persist in time, like stable particles.
Since the entities of which we assemble particles in QND are
transient events, there can be no unitarity among the basic
principles.

The unitary group is reborn in QND as a spontaneous breaking of
the linear group of the linear space of quantum theory, a property of

the condensed phase, like ferromagnetism.
We return to local relativity in Section 4.5.

2.5 local Dynamics

The concept of dynamical law as a one-parameter group of global
transformations is clearly non-local except in a purely timelike one-
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dimensional world, but Heisenberg’s idea of dynamical law in its most
general form, simply as a differential equation for the dynamical
variables, is satisfactorily local. Its generalization to networks is a
collection of operator equations relating variables at neighbouring
events. We may use the action principle of quantum mechanics,
despite its global appearance, to define such a local system of
equations. A local dynamical theory will possess two algebras of
variables: a kinematic algebra (KA) free of dynamical equations, and
a dynamical algebra (DA) whose variables obey the dynamical
equations. The dynamical algebra is a quotient of the kinematical one
modulo the dynamical equations (DE):

DA =KA/DE.

Quantum theories whose { vectors describe what happens at a
single time may be called synchronic. They compress an input process
that may actually be distributed over time into one initial instant.
They assign inputs and outputs to different liner spaces, thus blocking
their linear superposition and tacitly positing a superselection rule.

Theories whose  vectors are histories of what happens in all of
space-time may be called diachronic. The Schwinger—Feynman
quantum action principles are essentially diachronic theories. In the
Schwinger (1970) source theory, a source is an element of a single linear
space which I will call S, and describes both input and output (i/o)
processes over the entire experimental space-time region, allowing
their superposition and lifting the superselection law between them.
Sources are called ‘superlocal’ because sources separated by timelike
intervals, just like those separated by spacelike intervals, represent
independent choices of the experimenter and are not related by
dynamical equations. The distinction between input and output is
made within S purely on the basis of the sign of the frequency.

In ordinary practice, Sis an algebra with the addition operation +
for quantum superposition; a constant i that (like 1) stands for the
vacuum as an element of S and for a quantum phase shift of a quarter-
period as a multiplier on S; and a product v (symmetric for bosons,
antisymmetric for fermions) for the joint action of sources. If the
algebra S'is to be free of superselection laws, then its underlying ring
of coefficients must be commutative; we provisionally assume the
complex numbers C as is usual.

Each vector of the dual space S® assigns a transition amplitude to
each source. It therefore expresses a dynamical law or force law, and is
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called a field for short. We write F for an algebra of fields dually
isomorphic to S, such that Fand S are included in each other’s duals.
Each field determines a system of propagators, and one field <vac| in
particular determines the vacuum propagators. This is called the
vacuum field or the law of nature. It stores the forms of all the
phenomenological interactions, and the charges, masses, and other
coupling constants of the experimental quanta.

Feynman’s path amplitude represents the dynamical law and is
therefore an element of F, not S, defining the vacuum field.

Since histories and variables assign numerical values to each other,
they are categorically dual. The algebra of dynamically allowed
histories (DH) is therefore a sub-algebra, the dual concept to a
quotient algebra, of the algebra of kinematically allowed histories
(KH); namely the sub-algebra that annuls DE:

DH=KH\DE.
DH is just the phase space of the theory.’

3 The Marriage of hand ¢

The chasm between  and c is the key problem of physics today. I once
took it for granted that the way to bridge it is to quantize gravity, and
assigned quantum logics and relativity to different stories of the tower
of physics, reversing their order (compare the right-hand side of Fig. 1
with the left-hand side of Fig. 2) but maintaining their separation
(Finkelstein 1968). Now there seem to be no floors that divide them
(Fig. 2, right-hand side).

There may be no further need to unify quantum theory and gravity
if gravity and inertia are already macroscopic quantum effects. This
suggestion evolves from a growing list of parallels between the stories
of relativity and quantum theory which I have used in teaching them
in recent decades:

¢ Each of these two theories has its own new fundamental constant (h
and c) and a correspondence principle recovering the old physics in
the transition to a singular limit (-0, c—> ).

¢ Each is fundamentally epistemological, in that it sets a universal
limitation upon the i/o processes that link us with our experimental

! John Barrett, personal communication.
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systems (h limiting the determinacy of these processes, ¢ the signal

speed).

¢ In each singular limit, basically non-commutative processes
become commutative (p and x determinations for h—0, boosts for
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c¢—o0). The novel non-commutativity is expressed by a pair
paradox (the two slits, the two twins).

e Each constant links time ¢ to another fundamental physical
variable (energy E for h, space x for ¢}, so that the new theory is
conceptually more unified than the old in an unanticipated way
(clocks then defining energies and distances respectively).

e Each theory extends the principle of relativity to a wider class of
transformations and a richer class of experimenters (Dirac’s
quantum transformation theory, Einstein’s special relativity).

¢ Each is expressible completely as the theory of a transfer relation
for i/o experiments (the allowed transition of quantum theory, the
causal relation of special relativity).

¢ The signals that one uses operationally to define the space—time
points and causal relations of relativity are actually ensembles of
quanta.

(Itis not difficult to extend this paraliel from  and c to Boltzmann’s
constant k, with quantum theory, space-time theory, and thermo-
dynamics appearing as successively coarser statistical descriptions of
the same processes.) This suggests that space-time vectors and ¥
vectors belong not to widely separate levels, as in Fig. 1, but to the
same level as in Fig. 2. QND is the simplest theory of that kind I could
make.

3.1 Incoherent and Coherent Quantization

This presents a challenge: how do we extract space—time vectors from
quantum ¥ vectors? The two have different interpretations. The
space~time vector can be the result of an observation; the ¥ vector
cannot, but describes the observation itself. Space—time vectors have
classical (commuting) properties, while ¥ vectors support quantum
(non-commuting) ones. Space-time vectors (or suitable scalar
products thereof) are themselves observable in single experiments,
while ¥ vectors are merely probability amplitudes.

From our experience with h—0, there are two ways to extract
macroscopic classical variables from y vectors as t—0: incoherent
and coherent. In both we use large quantum ensembles to produce
macroscopic behaviour, but these ensembles may be incoherent (as in
the Thomas—Fermi model of the atom, where we add probabilities) or
coherent (as in superfluidity, where we add amplitudes). In one case
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what emerges as the classical variable is a probability distribution p,
in the other a probability amplitude distribution . We may call the
respective inverse processes (going from macroscopic theory to
quantum) coherent and incoherent quantization, according as they
start from experiences with or without quantum phase data.

Canonical quantization of space-time structure (like that of a
harmonic oscillator or a hydrogen atom) would yield a system having
the usual space~time (or oscillator or atom) as a high-quantum-
number excitation. In the classical limit of many excitations we lose
all quantum phase information. Canonical quantization thus begins
from a theory without quantum phases; I call it an incoherent
quantization.

On the other hand, for example, we would make a correct theory of
Josephson potentials not by canonically quantizing them but by
coherently quantizing them, because they are themselves quantum
phases.

Nambu has long ago pointed out that it is likely that the physical
vacuum is actually a quantum condensation, a low-quantum-number
limit, and this is now rather widely accepted. 1 propose that
space—time structure too is a macroscopic quantum effect, and that
gravity (specifically, the spin metric oy of Infeld and van der
Waerden) is a quantum phase, an order parameter of the condensate.
Then the quantum theory must relax to our usual space—time, not be
excited to one, and one should not quantize o4y canonically, any
more than we do the velocity of liquid helium II, but should seek a
quantum dynamical system whose macroscopic quantum y vectors
define o4,.. Since we start from y already carrying quantum phase
information, this may be called a coherent quantization.

4. The ldea of the Network

1 give now the simplest classical concept of space—time structure I can
imagine on which we may practise coherent quantization.

4.1 Principle of Maximal Information

I am guided in my choice by the superposition principle. Since
fundamental descriptions must admit superposition, they must give
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maximal information. I call this heuristic rule the principle of
maximal information.

To put it more paradoxically, the only theories that may succeed at
the atomic level are those that run the maximum risk of failure. For
example, the Schrédinger equation of quantum theory concerns
atomic statements of maximal information, not maximal generality:
statements of maximum risk, therefore, not minimum.

To put it more formally, since equations give more information
than relations of inequality, I insist on an equation-based theory, not
a relation-based one.

For example, the lattice logic of Von Neumann is not much more
suitable than thermodynamics as a language for any fundamental
theory, no matter how useful it is for some didactic purposes, since its
elements too have lost their quantum phases. But the Copenhagen
quantum theory is relatively free from this criticism, in that it respects
all the quantum phases of the endosystem and ignores only those of
the exosystem.

I apply this principle in the next section.

4.2 Classical Causal Network

In the most familiar formulation of a causal structure, the elementary
entities are point events «, f, . . . and they support a causal relation
aCp. At once, locality compels us to reject C as fundamental variable
in favour of its germ, the local connection relation acf, ‘x connects to
# (it being understood that this connection is meant to be immediate
and to define the sense of time from past to future). When acf we say
that « is an input to f, and B is an output from o.

Then maximum risk compels us to reject the causal relation acp,
which says little about §, in favour of the dynamical equation:
B=1{a, v ... vay), which we read as saying that f is the successor of
events o, ..., 0y, and which defines f maximally. This change in
expression makes no difference in the classical theory but affects the
quantum theory to come. The operator i generalizes Peano’s
successor operation of Section 2.1.

In a dynamical theory it seems necessary to divide the events o into
dynamical processes J (analogous to timelike future vectors) and
space-time events a. In the language of graphs, these are oriented
edges and vertices. In the simplest and provisional ‘one-particle’
theory, one of each enters into the dynamical equation:

B=1(dva). 1)
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An equation of the form (1) giving the N successors oy,
X=1,..., N, of an event a, is called an N-ary node, or N-ode. A
binary node, for example, is represented by a graph such as

<

Any collection of nodes defines a classical causal network. The
classical network is invariant under exchange of the inputs to any
event, and each N-ary node has the group Sy, the symmetric group on
its N final events.

Mathematical topology today still describes timeless undirected
spatial connections. Its module is a simplex, a set of points with all
possible two-way connections. This is because Euler could cross the
bridges of Konigsburg in both directions. But our paths in space-time
are one-way streets. It would be atavistic to think of the world
topology as simplicial; physical topology needs to be built on
asymmetric physical connections, with nodes replacing simplices.

4.3 Classical Sets

I express this prequantum network theory in a set algebra Ser
adapted to subsequent quantization. The sets of SET are ancestrally
finite; this is the only kind of set we admit. Let 1 be the null set; 0, the
undefined set; v, the disjoint union of classical sets, giving 0 when the
sets are not disjoint; 7, the monad operator 1: a»10={a}, forming
the monad (= unit set) of a.

When we read the symbol « as a set, 1o is the unit set or monad of «,
1100 is the monad of the monad of «, and so forth. When weread ¢ as a
class or predicate, as we are entitled to do by the principle of
intensionality, 1a is an identity predicate, the predicate of being «, and
11 is the predicate of being the predicate of being «, and so forth. We
omit an intersection operation because it gives us no new sets; we
omit complementation because the complement of a set in SET is not
finite, hence not in SET. This language is rich enough to write our sets,
but not to say much about them; we enlarge our vocabulary for
dynamics in Section 4.4.

The concepts of 0 and v are C. S. Peirce’s (Peirce 1931-5), but the
symbols are Grassmann’s (Pierce uses oo and +; 0 is called 8 by
Eilenberg 1976); ‘I’ means ‘nothing’ but ‘0’ means nothing. : is
Peano’s (1988). Set theory, primarily concerned since Cantor with the
infinite, is often called the theory of the e relation. The set theory that
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we actually need is the theory of Peano’s 1 operation, which is more
informative; for aeb does not define b, but the stronger statement
1a=b does. The relational view of set theory has been the greatest
obstacle in the way of the present network theory, and the
superposition principle and the maximum information principle of
Section 4.1 seem to have at last cleared this obstacle.

Each event is now the set of its inputs. Each set represents a
classical dynamical network. The successors of an N-ode form a set of
N elements or N-ad. SET is the algebra of kirematically allowed
histories of the classical network.

Since set theory is a universal language for mathematics, it at first
sounds trivial to say that the world may be described in it. But usually
the same set symbols are given many different interpretations in
physics, according to need; just consider, say, the variety of physical
quantities that are represented by numbers: masses, charges,
coordinates, and so on. The actual language is then not set theory, but
a richer one with many logically independent concepts adjoined to set
theory, such as distinguished sets, or proper individuals. Here we give
each of the three set symbols 1, v, 1 a single uniform physical
interpretation (and 0 none at all). This is a genuine unification. To
make this possible, we have had to adapt the set theory slightly. Our
physical set theory does not have exactly the same primitives U, € as
the usual mathematical set theory. The usual f survives as 1, but U
and € have been replaced by v and 1 to meet the needs of QND.

4.4 Quantum Sets

In the quantum theory the classical sets of Section 4.3 are regarded as
Y vectors (coherent states) of the quantum set. The unit sets
anticommute. The most general  vector or ket for a quantum set
representing a quantum network is called a get. Qets form a
Grassmann algebra QET with zero 0, unity 1, product v, and linear
operator 1 interpreted like the same symbols of SET, and with one new
operation, +, interpreted as quantum superposition. QET is gener-
ated from 1 by 1, v, and +. At first I also assume a complex
imaginary i among the coefficients of the quantum theory; this is
expected to be replaced at a later stage by a linear operator i with an
approximate superselection law. I write 1 also as the qet bracket (ocl.

The qet bracket combines the ket bracket |<x> of Dirac, the set
bracket of Cantor, and the extensions of Grassmann. They nest like
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sets, add like kets, and multiply like extensions (the product v
combining the Grassmann product of fermionic quantum kinematics
and the disjoint union of set theory).

I take QET to be the algebra KH of kinematically allowed histories
of the quantum network.

Duality symmetry demands an operator 1” to go with 7, obeying the
same laws for dual gets that 1 does for gets. Let QET,, be the subspace
of QET consisting of grade-N gets, so that i: QET—»QETl\is bijective; we
define 12 as the inverse of 1 on QET, and 0 on QETy, for N # 1. With i?
we can make the most general dual vector from 1; by combining these
with the vectors of QET we can make the most general finite linear
operator on QET. This is enough for QND.

The quantum kinematics is expressed by + and v, and local
causality by v and :. In the usual quantum theory these principles are
assigned to different stories of the tower of physics of Fig. 1 (+
coming last, hence on top, as in archaeology). The fusion of relativity
and quantum kinematics in QET permits the free intermixing of these
principles.

QET is the algebra of both classes and sets. That is, I stipulate that
the quantum properties of any quantum system with Fermi—Dirac
statistics described in a linear space H constitute not merely the
projective geometry of H but the Grassmann algebra over H.
Grassmann had no interpretation for non-product elements of his
algebra of higher grade, calling them ‘imaginary’. Quantum super-
position provides the interpretation of these elements that
Grassmann lacked.

This fusion is crucial for QND and has the following curious
consequences:

Second Fermi-Dirac quantization maps a linear space H into the
Grassmann algebra VH over H, and the vectors ¢ of H into
generators of VH. Since 1 does these, we may call it a quantization
operator. {Quantification would be a better name than quantization,
since 1 leads from a theory of “True or false? to one of ‘How many?’.)
Quantization is ordinarily not usable as a dynamical operator, since
it enlarges the Hilbert space, but is carried out only by the theorist in
setting up the kinematics, perhaps once or twice or (nowadays) thrice
during the invention of a theory. For networks 1 is a dynamical
operator because VQET = QET. Now 1 becomes something that can go
onin nature. Quantization occurs at least 102 times per second in the
vacuum network, according to the estimate of Section 5.6.
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The quantum network may be regarded as a relativistic quantum
generalization of a neural network. A node consisting of an event with
its N successors corresponds to a neuron, but to one that exists only
long enough for a single excitation; otherwise it would define a rest-
frame.

4.5 Local Relativity

This is a form of the principle of equivalence: special relativity
{specifically, Lorentz invariance) works in the tangent space. In the
quantum network theory, events are subject to the same kind of
quantum kinematics ordinarily used for fermions in quantum
mechanics, except that events, being entirely transient entities, obey a
non-unitary quantum theory. I call the following postulate the
quantum equivalence principle, where now equivalence of two
quantum entities means that no physical variable is changed by their
permutation:

The inputs to an event are equivalent quantum entities
with Fermi-Dirac statistics.

This principle is incorporated in our interpretation of the causal node.
In the quantum theory the group of a binary node is no longer S, but
SL,, identified with relativistic SL,. The quantum equivalence
principle gives rise in the following condensation to the Einstein
equivalence principle, that SL, is a valid symmetry in the tangent
space of the manifold. But the binary node does not support time
reversal T or parity P; it is made of two-component irreversible
spinor entities, not reversible vector ones. There is no need to break P
or T in QND; the problem is to create them, as by the following
condensation.

5 The Vacuum Condensate
I now form a trial vacuum for QND.

5.1 The Basic Module

The first thing to account for is the group SL, of the infinitesimal
macroscopic causal relation of the tangent space. I infer that each
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event in the normal network has two successors which transform as a
spinor. That is, in the actual world, events are related to their
successors not by infinitesimal vectors but by finite spinors. I write
two basic spinors as (Z|=(1|, <}|. The two successors {yrz| of the
event Y are given by

l/’z=<<2\ V‘H

Call these finite spinorial analogues of tangent vectors ‘chronons’
for short. After Z chronons, a path from an arbitrary event i may
arrive at any of the events ¢y 5 with Z binary indices. I write (Z)
for a sequence of Z indices of the type Z. Then a basis for the algebra
of kinematically allowed paths is defined inductively by

l/’):'(2) = <<Z’I v ‘/’(E)l'

Each of the polyspinors 5, describes not merely an endpoint but
an entire path, which may be developed from the endpoint by
unbracketing it.

The next thing to understand is the dominance of the vector
representation D(3, 3) in local space-time structure. The space-time
manifold (actually, its tangent bundle) seems to be made of vectors,
not spinors. I infer that two fermionic chronons in sequence form a
pair described by a get with the vectorial transformation law of
(Ex* Zl {(chronon and complex conjugate chronon). Hence it follows
that the operator 1 is antilinear. Then spinors and ‘antispinors’
(complex conjugated spinors) alternate in sequence in Y 5. I write ¢
for the pair index X * =. The module is described by a pair spinor {s|
and the path with even Z has the form v ,,. Thus the basic module of
our trial vacuum has one initial and four final events, but less
symmetry than the ‘pentacle’ considered earlier (cf. Finkelstein and
Rodriguez 1984, 1986).

The actual vacuum may well be made of superpositions of several
different modules, with complex amplitudes to be determined.

5.2 The Topology of the Vacuum

Finally, we must account for the macroscopic observable nature of
space—time vectors. They are not quantum ¥ vectors, or states,
describing quantum channels, but serve as parameters, or even (for
one-particle theory) as observables themselves. To make such
concrete vectors we must ‘condense’ the y vector. I infer a bosonic
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condensation of a large number of modules into a four-dimensional
quantum lattice. In superconductivity, electrons pair with rather
remote P transforms; in the vacuum, chronons pair with neighbour-
ing C transforms. The algebra of dynamically allowed paths DH in
the vacuum is then the symmetric subspace of the tensors ¥, I write
X, for the symmetrizing operator, normalized to be idempotent; {5}
for a symmetric sequence of o, the collective index of a symmetric
tensor; and y,, for the symmetrized tensor X . The paths in the
condensate have the form ¥, with a symmetric sequence of
Z/2 o-indices. It means that two paths which differ only in the order
of their elements or chronons lead to the same event. This specifies the
connection of the basic nodes of the network in the normal phase.

One may identify the coordinate operator x” on this reduced
algebra with the Bose—Einstein creation operator Z‘.+(<7|E+ , and the
momentum operator J, with the dual destruction operator, so that
their commutation relations follow not from the differential calculus
but from simple algebra. (For N =2 there is also the possibility that x
and 0 are linear combinations of the creation and destruction
operators.)

A Y, is defined by four integers giving the number of indices of
four independent kinds—four occupation numbers, in other words.
These basic events thus form a four-dimensional hypercubical
network which may be regarded as a synthesis and extension of
Feynman’s two-dimensional draughts-board? and Penrose’s (1971)
two-dimensional spin network. A simple candidate for the Dirac
dynamics of a spin } quantum is given elsewhere along the lines of
Feynman’s draughts-game (National Research Council 1986b).
What moves on the network are not separate draughts-pieces,
however, but topological defects in the network itself. Such a network
theory is more unified than the most unified field theories.

Such a quantum condensation may account for the following
features of standard physics, which would otherwise be incomprehen-
sible in network theory.

5.3  Supermobility

The Law of Inertia and momentum conservation are problems in any
discrete space-time, since the network is not invariant under

2 Feynman and Hibbs (1965; ch. 2); see also the Nobel Address of R. P. Feynman
(1972: esp. 168-9).
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translation. The corresponding momentum transfer in a crystal is an
Umklapp process. Since we see no Umklapp in the vacuum up to
enormous energies £, we may be inclined to place an extremely low
upper bound 1/E on the fundamental cell size or chronon of the
network. But this would be incorrect if inertia is a macroscopic
quantum effect. Since Newton’s First Law states that the mobility of a
particle, usually defined as (d[force]/d velocity])~! at zero velocity,
is infinite in zero-temperature vacuum, we may call the Law of Inertia
supermobility, to emphasize that it belongs to the same family as the
other more recently discovered macroscopic quantum phenomena,
superfluidity and superconductivity. Since the event-pairing occurs
between neighbours in space-time rather than momentum space, the
vacuum in thermal equilibrium is presumably not a two-fluid system
like liquid He II.

5.4 Macroscopic Vectors

Momenta and gauge vector fields are macroscopic dynamical
variables and yet have to be made out of microscopic quantum
vectors like the spinors y* of each cell, which are not. Such
‘condensation’ of ¥ vectors into macroscopic variables occurs in the
other two main superflows. Here spinors y* and antispinors =" must
pair and condense to vectors Y=, All physical time-space vectors v*
are regarded as macroscopic ¥ vectors v™* of condensed aggregates of
Z-Z* pairs, present only in the low-temperature phase, vacuum I.
The usual Minkowski coordinate and derivative operators may be
modelled in network theory by the creation and annihilation
operators for such pairs. There must be a fundamental constant with
the dimensions of time to convert our pure numerical operators to
physical time units. I designate this ultimately small quantum of time
or chronon by n (tav), so that it is as far in the alphabet as it is in
magnitude from Cantor’s alephs. In the limit as a fundamental time
scale n—0, the algebra of these creation and annihilation operators
approaches that of the space—time coordinates and energy momenta.

55 Reality

Spinors and pair spinors are complex, yet time—space and gauge
vectors are real. If this is a spontaneous breaking of gauge invariance
as in superconductivity, then it is necessary to Hermitian-symmetrize
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the module (| before forming the sequence Y(o); I leave this step
for later.

5.6 Time Asymmetry and Parity Violation

The chronons <Z| do not support time reversal and parity. In the
ordered phase, Vacuum I, we may use the predecessors of an event to
define the T transform of its successors, and we may use the next-
nearest successors to define the P transform of the successors. In the
disordered phase, Vacuum II, these symmetries disappear. We
identify this disappearance tentatively with the weak P and T
violation. Then on dimensional grounds (which are not reliable in a
theory with so many large dimensionless numbers available) the
critical temperature T, and the chronon n should be closer to
My, ~10% GeV, the mass of the W particle, than to the Planck mass
Mp,~10*° GeV. This suggests that balls of Vacuum II are produced
in experiments today as well as in the creation of the universe. The
experimental implications of this are not yet known.

5.7 Internal Particle Symmetries

To convey the philosophy of this approach to nature, let me sketch a
tentative programme for understanding the inertial particle sym-
metries in network dynamics. Fortunately, these all seem to be gauge
symmetries, and may therefore act on defects in the vacuum network,
in the way that the Burgers vector does on defects in a crystal. The
path from gauge fields to topology is already rather well marked in a
simplicial theory of space-time:

¢ Every gauge field is the commutator of a momentum 4-vector with
itself.

* Momentum is represented by the exterior derivative of differential
geometry.

e The exterior derivative is a limit of the coboundary operator of
cohomology.

¢ The coboundary operator and its commutation relations express
the topology of the complex (Finkelstein and Rodriguez 1984,
1986).

If we can chase through this line of connections in the present
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network theory of space-time, we will arrive at a topological theory of
the gauge fields.

Since we already have the network correspondent to spin, and none
to charge or the other coupling constants, the first step will likely be a
theory of the transport of spin in the vacuum network, describing
which defects in the network produce torsion and curvature in
space—time. That would constitute a quantum theory of gravity.

The next part of the problem will be to extend the gauge theory of
nets from gravity to the other interactions. This will require us to
assign defect transformations to the known internal symmetry
generators.

In the most immediate model of colour SU, symmetry within
network theory, each event supports not only the two ‘external’
chronons already described, which link up into long fibres of the
macroscopic vacuum, but also three additional microscopic ‘internal’
chronons, which do not. This vacuum resembles a fur-covered
draughts-board. Although the global structure of the network is four-
dimensional, as if the nodes were binary, each node is actually a
5-ode. The colour group then mixes the internal chronons. This
discrete quantum version of Kaluza—Klein theory puts a heavy
responsibility on the network dynamics, which must bind just three
internal chronons to every two external ones, but QND suggests that
such a structure actually exists. More generally, colour ought to label
a natural trio of distinguishable defects in the vacuum network which
are isomorphic but not mixed by SL,; I have not found such defects
yet, except for the loops already described.

In the vacuum network every event has two local SL, groups. One
is the symmetry of the binary node already discussed; the second is a
T-image of the first, mixing two predecessors. Its existence depends
on the condensate structure. In the vacuum network one combina-
tion of these two SL, generators survives as an exact global
relativistic symmetry; perhaps this leaves another combination for an
approximate internal particle symmetry.

5.8 Concepts of Dynamics

Once we have fixed a kinematics, like QET, the problem is a dynamical
law. I do not trust the concept of dynamics of Section 2.5 very far. In
the diachronic quantum descriptions, the dynamical law is merely an
element of the space F of fields, and the concept of an eternal constant
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dynamical law or vacuum seems atavistic. In this section I speculate
on alternative concepts of dynamics.

It is tempting to seek principles influencing, if not determining, the
law within the one surviving story of the physics building of Fig. 2,
rather than adding a new story. The only natural alternative to an
eternal law that I can imagine at present is an evolving one, along the
lines suggested by C. S. Peirce in his theory of the First Flash (his term
was significantly more accurate than ‘Big Bang’, since light is older as
well as faster than sound; I shall use it for the first quantum event of
the Big Bang), and in other writings on his evolutionary cosmology.
One first step toward an evolutionary dynamics is to move the law
from its classical locus outside the dynamical theory to within the
realm of evolving entities; this step is already taken in the diachronic
quantum theories, where the ambient vacuum is the law. A next step,
according to one speculation, is to organize the vacuum out of
quasilocal genetic elements capable of reproduction and selection.
Schrédinger taught us to think of organic structure as encoded in an
‘aperiodic crystal’; perhaps we must learn to think of vacuum
structure in the same way. The module constructed in Section 5.1 is
the simplest vector structure; the actual modules may carry much
more information.

A variable dynamics is already built into ordinary physics in the
concept of external field. For example, Newton’s law of motion for the
earth is contingent on the absence of strong gravitational waves; if we
include the gravitational field in the system, Newton’s law is no longer
even a candidate for the dynamical law. Similarly, Dirac’s equation
governs a hydrogen atom only in the absence of external muon
beams. In general, quantum theory insists on dividing the system into
(I will say) exosystem and endosystem, but does not tell us where to
put the quantum partition. Each experimenter within the same
exosystem is represented in quantum theory by a complete set of
endosystem variables. The concept of dynamical law is relative to the
quantum partition; by shifting this interface we may convert an
external field, with no evolutionary equations, to an internal one,
governed by a dynamical law, although a most complex one, since it
governs what was the experimenter before the shift. We know that
external fields can change the charges and masses in the endosystem.
It seems most likely that the entire dynamical law of the endosystem is
a surrogate description of the exosystem.

It requires an extension of relativity to deal with such shifts.
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e First relativities, including Einstein’s, fix endosystem and exo-
system, and merely permute the descriptors among each other.
There is really only one Experimenter in classical mechanics, who
measures everything.

¢ Second relativities, like the Dirac quantum transformation theory,
are more general; they fix the endosystem but change the
experiment: one may determine the x component of spin, another
the y. There is a genuine plurality of experimenters in quantum
theory; but they all look at the same endosystem.

¢ Third relativity shifts the quantum partition between exosystem
and endosystem: one endosystem is the nucleus of the atom,
another includes the electrons as well. The third relativity principle
is: Descriptions of the system with different partitions are mutually
consistent. To my knowledge, this was first used by Von Neumann
in his theory of measurement, when he postulates that the
determinations by an experimenter I of an experimentee 111 do not
depend on whether the apparatus II is lumped with I or III. Since
third relativity is properly stronger than the relativity principles of
general relativity, it may conceivably provide a stronger restriction
of the dynamical principle.

6 Summary

In diachronic theories the vacuum carries all the information of the
dynamical law. QND is a diachronic theory that fuses quantum and
relativity principles in a fundamental and locally finite way. What is
usually called unification keeps the vertical structure of physics more
or less intact, and seeks a horizontal merger on the top levels. In QND
particles are defects in the vacuum network and their unification is a
consequence of a vertical merger of all the levels of the usual quantum
field theory (quantum predicate algebra, quantum kinematics,
quantum topology, and quantum chronometry) into the one of
QND. Minkowski space—-time is a macroscopic quantum effect, with
an underlying periodic condensation. Defects in this periodic
structure give rise naturally to gauge fields. The hypercubical lattice
of gets constructed here is proposed for this periodic structure.
Network theory requires us to adapt quantum logic to classical set
theory in order to fuse them. The quantum logic of classes I use here
fulfils principles of intensionality and extensionality that Von Neu-



274 D. Finkelstein

mann’s lacks. The set theory is based on disjoint union and the 1
operator instead of union and the e relation, and is isomorphic to the
class theory.

Networks provide a fundamental theory of quantum spin: a spin
transformation permutes the two causal inputs to an event among
themselves. The ‘quantum two-valuedness’ of Pauli counts the two
successors of each event.
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Topology of the Vacuum

MICHAEL ATIYAH

1 Introduction

The fundamental concepts in physics concerning the nature of matter
and force, and their relationship to space—time, have always found
their most precise and productive form in a mathematical framework.
Radical new developments in physics have had a major impact on
mathematics and vice versa. The most striking example of this
interaction in the twentieth century is certainly Einstein’s General
Theory of Relativity, in which gravitational force is interpreted as the
curvature or distortion of space-time. This has provided a paradigm
for the interpretation of all fundamental forces and has been the
mechanism leading to ‘unified field theories’.

In a field theory, dealing with forces such as gravitation or
electromagnetism, empty space—the vacuum—alters its nature in the
presence of the relevant force. This alteration takes the form of a
geometrical distortion which will change the trajectory of any
material object that enters the appropriate position of space. This is
what we might call the classical theory of the vacuum, classical in the
sense of pre-quantum theory.

Quantum theory requires us to modify our physical ideas in
profound ways, and we must inevitably start by re-examining the
classical vacuum. Quantum field theory attempts to deal with the
classical force-fields in a quantum-mechanical way, and the quantum
vacuum that emerges from this theory is a complex and mysterious
structure which stretches mathematics to its utmost limits. Quantum
fields fluctuate and convert themselves into particles in a bewildering
manner, indicating in particular the fact that the conventional
separation between force and matter cannot be maintained.

A genuine quantum vacuum should therefore be devoid of both

© Michael Atiyah 1991
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matter and fields of force. There should be no particles and no
geometric distortion of space-time. This ultimate vacuum might
appear so empty of features as to be mathematically trivial and
uninteresting. It is a further surprise of quantum theory that this is a
misleading conclusion. The quantum vacuum does indeed have
interesting geometrical features, but these relate not to the traditional
geometry of Euclid, Riemann, etc., involving measurement, but to
that modern branch of the subject known as topology, which is
concerned with qualitative properties of space. Unlike measurement,
which can be conducted on a small local scale, topological features
are visible only on a ‘global’ scale.

This relation between topology and the quantum vacuum has been
recognized only quite recently, and its full implications are just now
being explored. It is still too early to predict how this will alter our
understanding of the universe, but it is clear that we have reached a
deeper level in the dialogue between mathematics and physics.

The purpose of the paper is to indicate briefly what topology is and
how it relates to quantum theory. Much of the material described is
due to Edward Witten of the Institute for Advanced Study in
Princeton (Witten 1989).

2 The Bohm—-Aharonov Effect

A fundamental experiment, first suggested by Bohm and Aharonov,
consists in sending a beam of electrons round a solenoid carrying a
magnetic flux (Aharonov 1986). The experiment shows that the
electrons exhibit interference patterns, depending on the strength of
the magnetic flux. Thus, the electrons are physically affected by the
magnetic field even though the field lies entirely inside the solenoid
and the electrons travel in the exterior region (Fig. 1).

This Bohm—Aharonov effect therefore shows that, even in a force-
free region, there are physical effects. These effects are quantum-
mechanical, since they correspond to phase shifts in the wave function
of the electron, and they have a topological origin since the force-free
region has a cylindrical hole in it. This exhibits clearly the basic
relation between quantum theory and topology, particularly in
relation to notions of the vacuum.

Topology may be roughly defined as the study of ‘holes’ and related
phenomena. The size of a hole and its exact location is irrelevant in
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Source: H. Brown and H. R. Harré (eds.), Philosophical Foundations of Quantum Field Theory,
Clarendon Press, Oxford, 1988, Fig. 3.15.
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topology. In a different context, one might describe Christopher
Columbus as an experimental topologist, demonstrating that the
earth was spherical.

Going beyond the single cylindral hole or flux tube of the
Bohm-Aharonov experiment, we can consider a complicated knotted
configuration of tubes. The study and classification of such knotsis a
typical and difficult problem in topology. The more elaborate the
knot, the more intricate is the structure of the external vacuum. In
fact, over the past few years it has emerged that the topology of knots
is intimately related to physics, and that the formal machinery of
quantum field theory can be used to solve difficult topological
problems in the theory of knots.

These developments strongly suggest that topological aspects of
3-dimensional space, as manifested by knots, should play some
fundamental role in quantum physics. Moreover, this should involve
the basic physical framework, prior to the introduction of matter or
force, in other words ‘the vacuum’.

3 Topological Quantum Field Theories

The relation between the topology of knots and quantum field theory
which has just been alluded to has been very beautifully elaborated in
a recent work of Witten (1988). Moreover, this is just the latest of a
number of different theories due to Witten, all of which may
generically be described as ‘topological quantum field theories’. The
essential characteristics of such theories are that they have the formal
structure of a quantum theory (e.g. dealing with probabilities), but
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that the information they produce is purely topological (e.g.
information about the nature of a knot). There is no measurement or
genuine dynamics in such theories; they deal with nature at a more
primordial level. At a later stage one may imagine superimposing a
more conventional physical theory on to the topological background.
The first of these ‘topological quantum field theories’ to have been
discovered was not the one related to knots in 3-dimensional space,
but a more intricate one (Witten 1988) related to the deep
mathematical results of Simon Donaldson (Oxford) on
4-dimensional geometry. The four dimensions are those of space—
time, but the physical significance of Donaldson’s work remains
unclear. However, the emergence of ‘topological quantum field
theories’ is likely to have a major impact on current thinking, and
may possibly herald a conceptual and technical breakthrough. At the
very least, the significance of topological ideas for the study of the
quantum vacuum has been highlighted and has already had
significant consequences of a purely mathematical character.
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How Empty is the Vacuum?

PETER J. BRAAM

1 Introduction

Classically, a portion of space is called a vacuum if there are no
particles, in particular no air molecules, in it. This definition allows
for the presence of an electromagnetic field in the vacuum.

Quantum-mechanically, this cannot be correct, since the electro-
magnetic field is built up of photons, small particles carrying the
electromagnetic interaction. So a more up-to-date definition would
define a vacuum to be ‘empty space’, without electromagnetic fields or
particles present.

If, one day, we have a quantum theory of gravity, it may well be that
the Riemannian metric on space, the abstract entity that allows us to
measure lengths, is a particle in the quantum-gravitational sense.
Then we would have to define the vacuum to be a ‘pure space’ in
which metric properties no longer play a role. Bending and stretching
will leave such a vacuum unaffected, and the structure of such spaces
is governed by topology, rather than geometry. Conceivably, the
modelling of space by so-called manifolds (see below) will have to be
given up at some stage, so a yet more final definition may identify the
vacuum with a ray in a Hilbert space.

Clearly, the classical notion of vacuum, allowing for space with
metric properties and Maxwell fields in it, seems most interesting. We
shall come back to this in Section 4. However, it may come as a
surprise that the theory of what we called ‘pure space’ is very rich as
well. Our story is about what can be learned about ‘pure space’
through considering ‘fields’ on the space.

© Peter J. Braam 1991
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suggesting many improvements.
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2 Some Mathematical Preliminaries

First of all, I should point out that, to a mathematician, empty space
does not necessarily mean good old 3-dimensional Euclidean space.
A good class of spaces to work with are manifolds, spaces which
locally look like everyday vector spaces. Examples of manifolds are
the sphere and the doughnut. Both are not equivalent to a Euclidean
space, as the doughnut has a loop, which cannot be found in a
Euclidean space; similarly, the sphere has a hole of dimension 3,
bounded by the 2-dimensional surface. These loops and holes are not
going to disappear if we stretch or bend the space, so they are non-
trivial in a topological sense.

Manifolds exist in all dimensions. The 2-dimensional ones are easy
to understand. If they are oriented they look like one in the sequence
drawn in Fig. 1.

Fic. 1 Two-dimensional manifolds.

In dimension 3 things are much harder. For instance, here is a class
of 3-manifolds which is still only partly understood. Remove a
knotted circle from 3-dimensional Euclidean space. We are left with a
3-dimensional space in which the circle is absent. It can be shown that
two such spaces are the same, up to bending and stretching, if and
only if the knots we took out were the same. Some experimenting with
a rope will quickly show that many inequivalent knots exist.

Also, the topological structure of 4-dimensional manifolds is very
complicated and only partly understood. Unfortunately, it is a little
harder to indicate the complications encountered in 4-dimensional
topology.

Surprisingly enough, the theory is less complicated if we go over to
dimensions 5 or higher. It is a remarkable and poorly understood fact
that topology is complicated exactly in the dimensions of space and
space—time. In the same spirit, it is not so surprising that precisely in
these dimensions methods of physics are currently being exploited
very successfully to answer topological questions.
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3 The Jones—Witten Theory of Knots

Starting in the early 1980s, V. Jones found many new invariants of
knots (Jones 1987). Some outstanding problems in knot theory have
been solved using Jones’s theory; yet, from a purely mathematical
point of view, the theory is not quite satisfactory.

Essentially, Jones first draws the knot in the plane as the closure of
a braid (cf. Fig. 2). To compute the invariants he applies a very

k\w k

\\ \/

FiG. 2 Braid and closure.

complicated formula, which depends on the precise form of the braid.
The result is an invariant for knots. The key point is as follows. A knot
is the closure of many different braids. Jones’s formulae depend on
choosing an arbitrary braid to represent the knot. Thus the formulae
are really formulae for braids, which happen to give the same answer
on all braids representing the same knot. Therefore it becomes very
difficult to see what properties of the knot itself are really expressed by
these formulae. It was an outstanding problem for several years to
find an intrinsic, geometric definition of the Jones polynomials,
without referring to braids.

This problem has recently been resolved by Ed Witten. Witten
describes a quantum field theory for a 3-manifold with knots in it. The
theory has no unnecessary ingredients; only the ambient 3-manifold
and an oriented collection of knots is given. Witten then produces a
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large amount of invariants, all resulting from a path integral over
fields. Conformal field theory allows for a careful analysis of the
properties of such integrals, and Witten shows that the invariants
should coincide with the Jones polynomials.

Because Witten’s theory is intrinsic, it lends itself to generaliza-
tions. Probably the most profound one is that he can define invariants
for knots in arbitrary 3-manifolds, where the concept of braids is not
present.

It is fair to say that Witten’s theory is one about pure space. His
field theory does not rely on metric properties of the 3-manifold, and
is therefore a topological quantum field theory. A special feature of
such theories is that there are no dynamics: any path in the
configuration space satisfies the Euler—Lagrange equation. Also, the
theory is manifestly a topological invariant; that is, if two spaces with
knots differ only by bending and stretching, the answers will be the
same.

It will be a very challenging task to provide a solid mathematical
foundation for Witten’s theory.

4 Vacuum Solutions and the Donaldson—Witten Theory

To begin our discussion of 4-dimensional space, pick a 4-dimensional
manifold X with a metric on it. Instead of looking at Maxwell fields,
we look for gauge fields on X which satisfy the Yang-Mills equations.
We do not include further particle fields, which is customary when
gauge theory is used in particle physics. The Yang—Mills equations
are the analogous equations to the Maxwell equations in case one
studies gauge fields describing the weak or strong interaction. Such
fields on X are called vacuum solutions, much in the spirit of the
classical vacuum discussed above.

A vacuum solution has a quantized charge k=0, 1, . . . If we fix the
charge we find a complicated space of solutions called the Yang—Mills
moduli space. This moduli space depends on X and the metric on X 'so
it is not yet a topological invariant of X.

The moduli space has all kinds of loops and holes. Some holes in
the moduli space will disappear if we vary the metric on X, others
persist. Clearly, the ones that persist must be (differential) topological
invariants of X. It was Donaldson’s remarkable observation
(Donaldson 1983) that such loops did exist and contained deep
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information about the 4-manifold. So Donaldson’s theory is one
using classical vacuum to say something about pure space. It is a very
powerful theory. It shows, for example, that even on good old
4—dimensional Euclidean space there are infinitely many inequivalent
ways of defining differentiability of functions; that is, the differential
topology of 4-dimensional vector spaces is very non-trivial.

Also here Witten (1988) has developed a complicated supersym-
metric quantum field theory, such that expectation values of certain
observables give the relevant information about persisting loops.
Atiyah, Donaldson, and Quillen established that the theory has the
flavour of an algebraic topological theory in infinite dimensions, and
it might be possible to give it a rigorous foundation without having
rigorously to construct the much feared Feynmann path integrals on
infinite-dimensional spaces.

Witten’s quantum field theory in its original version depends on a
metric on X just like Donaldson’s theory. Witten shows that his
expectation values do not change if we vary the metric, thereby
showing that they are topological invariants—that is, invariants of
pure space. However, his theory is full of all kinds of fields and
superfields. So again, a non-vacuous theory gives information about
the ultimate vacuum, pure space.

We shall end this paper with a more technical description of this
Donaldson-Witten theory. In gauge theory the issue is to find anti-
self-dual connections on some bundle over the 4-manifold X. These
are precisely the connections for which the self-dual part of the
curvature vanishes. Thus we are looking for zeroes of a function s
defined on the space 4 of connections; the function assigns to a
connection the self-dual part of its curvature, which is an element of
an infinite-dimensional vector space V. Gauge invariance enters the
picture in the following way. If we apply a gauge transformation to
the connection, then the self-dual part of the curvature is conjugated
by this gauge transformation. Thus the function s does not descend to
a function on the quotient space A/G of connections modulo gauge
transformations, as its values get twisted in V. Instead, it becomes a
section of a vector bundle W over 4/G. Looking for anti-self-dual
connections modulo gauge transformations amounts to looking for
the zeroes of a section of this bundle.

We shall now assume that there are only finitely many zeroes of this
section. In practice this situation is not always met, but it does happen
in interesting situations. Donaldson’s invariant is now simply the
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number of zeroes, that is the number of anti-self-dual connections,
counted with signs.

As indicated in Fig. 3, non-triviality of a bundle can force a section
to have zeroes. Generally, the number of zeroes of a section of a
bundle E over a compact manifold M is an invariant of E, called the

Section

/

O of section, forced by twist

Fibres of ——\ Base space,
Mébius bundle the circle

Fi1G. 3 Mobius bundle with section.

Euler number. In particular, it is independent of the section. The
Euler number can be computed in various ways, and this is precisely
the distinction between Donaldson’s theory and the Witten—
Donaldson theory.

First of all, one can simply compute the number of zeroes of a
section; in the case at hand, this amounts to solving the self-dual
Yang-Mills equations. A more sophisticated approach is to integrate
a differential form over the total space of E. The form is the square of
the Thom class of the bundle. In the Yang—Mills case we are
integrating the square of the Thom class over the infinite-dimensional
bundle W over an infinite-dimensional space 4/G, and such integrals
are normally called Feynman path integrals. This is more or less what
Witten does to compute Donaldson’s polynomial invariants, but
there is one further observation to be made.

An expression for the Thom class itself can be obtained by using
G-equivariant cohomology of the spaces V' and A; the equivariant
cohomology of a G-space P is the ordinary cohomology of the space
(EG x P)/G, where EG is the umiversal G-bundle over BG, the
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classifying space of G. De Rham-type models for equivariant
cohomology can be found and lead to a more computational version
of equivariant cohomology; in particular, Mathai and Quillen (1986)
derived completely explicit expressions for the Thom classes using
such models. As established by Atiyah, Witten’s Lagrangians are
precisely Mathai et al.’s formulae for the gauge theory case.

The original formula used by Witten is based on the so-called
Cartan model of equivariant cohomology. It depends on the existence
of a connection on the bundie E. In the case of gauge theory, a
connection on the bundle W over 4/G can be found using a metric on
the original 4-manifold X, thereby breaking the natural symmetry of
the problem. Soon after Witten’s paper appeared, various physicists
found out that the general covariance of the Lagrangian can be made
obvious if one uses the formula for the Thom class arising from the
Weyl algebra model of equivariant cohomology. The expression for
the Thom class of E no longer requires a connection on E. This
formula had also been found by Mathai et al.
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