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INTRODUCTION

1 the structure of archimedes’ on spirals

One may be forgiven for considering this, On Spirals,1 to be Archimedes’

finest. The figures bend and balance as the argument reaches – effortlessly,

quickly, and yet, how, one cannot quite grasp – towards several magnificent

results. These suggest no less than the squaring of the circle: first, a certain line

(defined by a tangent to the circle) is equal to the circumference of the circle;

second, a certain area is equal to the circle’s third.

We are witnesses to Archimedes in action, as he engaged in a campaign of

publications. At some early date, we are told in this treatise, he sent out via his

mathematician friend Conon a complex geometrical challenge containing many

claims. He had gradually discharged this challenge. Previously, he had sent to

Dositheus the two books On the Sphere and the Cylinder (following on the

Quadrature of the Parabola, which contained results independent from the

original challenge sent via Conon). Now, he sends out On Spirals. This, once

again, is sent to Dositheus. Archimedes once again proves some of the claims

contained in that letter to Conon; he also reflects, briefly, on that geometrical

challenge as a whole.

In this treatise, Archimedes promises to find not two, but four results. One

of them is the result on the tangent mentioned above (being equal to the

circumference of the circle). The result on the area of the spiral (being one-

third the circle enclosing it) is proved and then further expanded to two extra,

inherently interesting results, showing the ratios between the entire shells of

spirals enclosing each other as well as the ratios of fragments of shells

enclosing each other. The main results, then, are:

18. The line ΑΖ is equal to the circumference of the circle HΘK.

1 On Spirals translates the title transmitted through the manuscript tradition, περι

ελικων. A slightly expanded version, “Spiral Lines,” is the one most often used by previous

English discussions of Archimedes, and is implied bymy own abbreviation to the title, SL.

1
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24. The spiral area ΑΒΓΔΕΘΑ is one-third the circle.
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27. In the series of shells ΛΜΝΞ,Μ is twice Λ, Ν is three times Μ, Ξ is four
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28. The shell fragmentΞ is to the shell fragmentΠ as (ΑΘ+ 2
3HA):(ΑΘ+⅓ΗΑ).
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The deductive flow of the propositions in this treatise may be summed up as a

table of dependence:

It is apparent that results cluster together in pairs and triplets, and it is

perhaps best to visualize the logical flow as a chart based on such clusters:

The immediate observation is how “shallow” the structure is. There is limited

recursion (the top results are at level “4”: 1–2 leads to 14–15 leads to 16–17

leads to 18–20, and 1–2 leads to 12–13 leads to 24–26 leads to 27–28). A

substantial fraction of the treatise is at the elementary level where one directly

applied widely known results (1–2, 3–4, 10–11, 21–23: notice that some of

this “elementary” level is very complex). Instead of vertical recursion, we see

the horizontal bringing-together of unrelated strands at two key moments of

Proposition Relies on

1
2 1
3
4 3
5 3
6–9
10
11 10
12 1
13 12
14 2
15 2, 14
16 5, 14
17 5, 16
18 4, 7, 8, 13, 14, 15, 16
19 4, 7, 13, 15, 17,
20 4, 7, 13, 14, 16
21
22
23
24 10, 12, 21
25 11, 12, 22
26 11, 12, 23
27 24, 25
28 26

1−2 3−4

5−9

10−11

12−13 14−15
16−17

18−20

21−23

24−26
27−28

the structure of archimedes ’ on sp irals 3
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the treatise: 18–20, bringing together 3–4, 5–9, 12–13, 14–15 and 16–17; and

24–26, bringing together 10–11, 12–13 and 21–23.

Indeed, there are two such moments because there are two separate lines of

reasoning. I set out the logical flow now for each strand apart (for this purpose,

I distinguish 1 from 2, 12 from 13):

We find that the treatise cleaves nearly in half (sixteen propositions serve in

the tangent results, twelve in the area results).2 And cleave it does: the paths to

the tangent results, and to the area results, are essentially independent. The

one complication is the set of results 1–2, 12–13, where:

1 leads to 2

1 leads to 12 leads to 13

2, 13 are used in the tangent results

12 is used in the areas results

It is apparent that the one link shared between the two strands is proposition 12 –

which is in the nature of an alternative definition of the spiral line (that lines

drawn from the start on the spiral line differ from each other in the ratio of the

2 3−4

5−9 14−15

The tangent results

16−17

18−20

13

1

12

10−11 21−23

24−26

27−28
The area results

2 Merely counting propositions is misleading, however, if we measure propositions

by logical size – for the sake of the exercise, by the number of Steps in the proof: we find

183 Steps used in the tangent results, 195 in the area results: the area results are fewer

but on the whole more complex (indeed, the tangent results appear to be slightly padded,

with propositions 6, 9 seemingly unmotivated; they take 25 Steps).

4 introduct ion
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angles theymakewith each other). Archimedes didmake a choice to present this

as a theorem,3 so the two strands do hang together, if by the thinnest of threads.

For indeed Archimedes also made the choice not to display the cleavability of

the treatise. Adding to his bivalence of propositions 12–13, Archimedes inserted

the pair 10–11 before them and, in between, inserted a passage of definitions.

The result is a long passage composed of 10–11, definitions, 12–13, which

cannot be read as leading at all, or strictly, to the tangent results. As for the area

results, those are broken much more powerfully into two segments, 10–11 (as

well as 12), and then the main sequence from 21 onwards.

Archimedes could easily have positioned proposition 12 as a definition or

as a consequence obtained directly from the definitions, and then divided his

treatise into two parts (two books?), one for each set of results. The complex

pattern in which the two strands are brought together serves to maximize the

distance between tools and results, indeed to obscure, at first reading, the very

identity of the tools required for the results obtained.

This, however, somewhat misrepresents Archimedes’ choice as an author. It

is not as if Archimedes was provided with a pile of twenty-eight propositions

which he had to arrange is some form. Rather, he was looking for interesting

things to say about spirals. Considered in this way, his basic choice is seen to be

saying two things or, more precisely, dual-and-more: essentially, one result for

tangents; and then one result for areas, which, however, is expanded to produce

further results (this is seen in the logical flow in the segment 27–28, which

derives directly from 24–26). “Dual-and-more” is a repeated pattern of this

treatise, seen also in the way in which almost all propositions are presented in

pairs or triplets (indeed, since many propositions carry brief corollaries, even

the results that come in pairs display, in fact, the structure of dual-and-more).

The architecture of the treatise as a whole can be derived from these two

principles: a desire to maximize the distance between tools and their applica-

tions; and a repeated pattern of “dual-and-more.” Hence the elegant, combined

pattern of strands within strands. Thus results which are obtained quickly and

effortlessly still make one gasp with wonder: how did we get there?

2 conventions and goals of the translation

The translation follows the same conventions as in the first volume, On the

Sphere and the Cylinder, and I should repeat here the account of the conven-

tions in Netz 2004b: 3–8. I stated there that “There are many possible barriers to

the reading of a text written in a foreign language, and the purpose of a scholarly

translation as I understand it is to remove all barriers having to do with the

foreign language itself, leaving all other barriers intact.” This entails a more-

than-usual literal translation. The following conventions of my translation – and

of Greek mathematics itself – should therefore be explained. (To aid further in

the reading, a glossary was added to this volume, so that when less familiar

3 Even so, it takes a mere six Steps to accomplish this result, and even these are not so

much argument as explication: see the comments on the theorem.
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terms are introduced for the first time, they are accounted for. A marginal note

refers to the Glossary, which is located at the end of the volume.)

1. Greek word order is much freer than English word order, and so, selecting

from among the wider set of options, Greek authors can choose one word order

over another to emphasize a certain idea. Thus, for instance, instead of writing

“A is equal to B,” Greek authors might write “to B is equal A.” This would

stress that the main information concerns B, not A – word order would make

B, not A, the focus. (For instance, we may have been told something about B,

and now we are being told the extra property of B, that it is equal to A.)

Generally speaking, such word order cannot be kept in the English, but I try

to note it when it is of special significance, usually in a footnote.

2. The summation of objects is often done in Greek through ordinary

conjunction. Thus “the squares ABGD and EZHQ” will often stand for what

we may call “the square ABGD plus the square EZHQ.” As an extension of

this, the ordinary plural form can serve, as well, to represent summation: “the

squares ABGD, EZHQ” (even without the “and” connector!) will then mean

“the square ABGD plus the square EZHQ.” In such cases, the sense of the

expression is in itself ambiguous (the following predicate may apply to the

sum of the objects, or it may apply to each individually), but such expressions

are, generally speaking, easily disambiguated in context. Note also that while

such “implicit” summations are very frequent, summation is often more

explicit and may be represented by such connectors as “together with,”

“taken together” or simply “with.”

3. Greek has certain pairs of particles that do not merely govern their own

clause, but also attach to each other to form a single, conjoint clause out of two

separate phrases. One of those conjoint particles becomes nearly technical in

Greek mathematics: te. . . kai. . . (conveyed most idiomatically in English by:

both. . . and. . .). Thus, in expressions such as

the area contained by: te the line AB, kai the spiral AGB

the two elements of the expression, the line and the spiral, are not merely listed

in order, but instead are understood to be conjoined so as to form, together, the

border of a single figure.

To express this technical, somewhat unidiomatic meaning, I translate this

combination into the somewhat unidiomatic English “both. . . as well as. . .”

4. The main expression of Greek mathematics is that of proportion:

“As A is to B, so is C to D.”

(A, B, C and D being some mathematical objects). This expression is often

represented symbolically, in modern texts, by:

A:B::C:D

and I will use such symbolism in my footnotes and commentary. In the main

text I will translate, of course, the original non-symbolic form. Note especially

that this expression may become even more concise, e.g.:

“As A is to B, C to D,” “As A to B, C to D.”

6 introduct ion
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And that it may have more complex syntax, especially:

“A has to B the same ratio as C has to D,” “A has to B a greater ratio than C has

to D.”

The last example involves an obvious extension of proportion, to ratio-

inequalities, i.e. A:B>C:D. More concisely, this may be expressed by:

“A has to B a greater ratio than C to D.”

A ratio can also be “duplicate another”: this means, in terms more transparent

to us today, that it is its square (the ratio of 9 to 4 is duplicate the ratio of 3 to

2); “triplicate” is, in the same sense, a cube (27 to 8 is triplicate 3 to 2).

5. Greek mathematical propositions have, in many cases, the following six

parts:

• Enunciation, in which the claim of the proposition is made, in general

terms, without reference to the diagram. It is important to note that, gen-

erally speaking, the enunciation is equivalent to a conditional statement that

if x is the case, then so is y.

• Setting-out, in which the antecedent of the claim is restated, in particular

terms referring to the diagram (with the example above, x is restated in

particular reference to the diagram).

• Definition of goal, in which the consequent of the claim is restated, as an

exhortation addressed by the author to himself: “I say that. . .,” “it is

required to prove that. . .,” again in the particular terms of the diagram

(with the same example, we can say that y is restated in particular reference

to the diagram).

• Construction, in which added mathematical objects (beyond those required

by the setting-out) may be introduced.

• Proof, in which the particular claim is proved.

• Conclusion, in which the conclusion is reiterated for the general claim from

the enunciation.

Some of these parts will be missing in most Archimedean propositions, but the

scheme remains a useful analytic tool, and I will use it as such in my commen-

tary. The reader should be prepared in particular for the following difficulty. It is

often very difficult to follow the enunciations as they are presented. Since they

do not refer to the particular diagram, they use completely general terms, and

since they aspire to great precision, they may have complex qualifications and

combinations of terms. I wish to exonerate myself: this is not a problem of my

translation, but of Greek mathematics. Most modern readers find that they can

best understand such enunciations by reading, first, the setting-out and the

definition of the goal, with the aid of the diagram. Having read this, a better

sense of the dramatis personae is gained, and the enunciation may be deci-

phered. In all probability the ancients did the same.

6. The main “<. . .>” policy: Greek mathematical proofs always refer to

concrete objects, realized in the diagram. Because Greek has a definite article

with a rich morphology, it can elide the reference to the objects, leaving the

definite article alone. Thus the Greek may contain such expressions as
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“The by the AB, BG”

whose reference is

“The <rectangle contained> by the <lines> AB, BG”

(the morphology of the word “the” determines, in the original Greek, the

identity of the elided expressions, given of course the expectations created by

the genre).

In this translation, most such elided expressions are added inside pointed

brackets, so as to make it possible for the reader to appreciate the radical

concision of the original formulation and the concreteness of reference –

while allowing me to represent the considerable variability of elision (very

often, expressions have only partial elision). This variability, of course, will

be seen in the fluctuating positions of pointed brackets:

“The <rectangle contained> by the <lines> AB, BG,” as against, e.g., “The

<rectangle> contained by the <lines> AB, BG”

(Notice that I do not at all strive at consistency inside pointed brackets. Inside

pointed brackets I put whatever seems to me, in context, most useful to the

reader; the duties of consistency are limited to the translation proper, outside

pointed brackets.)

The main exception to my general pointed-brackets policy concerns points

and lines. These are so frequently referred to in the text that to insist, always,

upon a strict representation of the original, with such expressions as

“The <point> A,” “The <line> AB”

would be tedious, while serving little purpose. I thus usually write, simply,

A, AB

and, in the less common cases of a non-elliptic form,

“The point A,” “The line AB”

The price paid for this is that (relatively rarely) it is necessary to stress that the

objects in question are points or lines, and while the elliptic Greek expresses

this through the definite article, my elliptic “A,” “AB” does not. Hence I need

to introduce, here and there, the expressions

“The <point> A,” “The <line> AB”

but notice that these stand for precisely the same as

A, AB.

I avoid distinguishing, typically, between ευθεια and γραμμη. The precise

translation of ευθεια is “straight <line>,” while the precise translation of

γραμμη, when a straight line is intended, is “<straight> line.” Not wishing to

split such hairs, I have decided to make both simply a “line.” In this treatise

one may often compare straight and curved lines, and it would therefore
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matter occasionally to distinguish between the two; hence my practice will be

inconsistent, occasionally expanding such phrases.

7. The “<=..>” sign is also used, in an obvious way, to mean essentially the

same as the “[SC. . ..]” abbreviation. Most often, the expression following

the “=” will disambiguate pronouns which are ambiguous in English (but

which, in the Greek, were unambiguous thanks to their morphology).

8. Two sequences of numbering appear inside standard brackets. The Latin

alphabet sequence “(a) . . . (b) . . .” is used to mark the sequence of construc-

tions: as each new item is added to the construction of the geometrical config-

uration (following the setting-out) I mark this with a letter in the sequence of the

Latin alphabet. Similarly, the Arabic number sequence “(1) . . . (2) . . .” is used

to mark the sequence of assertions made in the course of the proof: as each new

assertion ismade (whatmay be called “a step in the argument”), I mark thiswith

a number. This ismeant for ease of reference: the footnotes and the commentary

refer to constructions and to claims according to their letters or numbers. Note

that this is purely my editorial intervention, and that the original text had

nothing corresponding to such brackets. (The same is true for punctuation in

general, for which see below.) Also note that these sequences refer only to

construction and proof: enunciation, setting-out and definition of goal are not

marked in similar ways.

9. The “/. . ./” symbolism: for ease of reference, I find it useful to add in

titles for elements of the text of Archimedes, whether general titles such as

“introduction” or numbers referring to propositions. I suspect Archimedes’

original text had neither, and such titles and numbers are therefore mere aids

for the reader in navigating the text.

10. Ancient Greek texts were written without spacing or punctuation: they

were simply a continuous stream of letters. Thus punctuation as used in

modern editions reflects, at best, the judgements of late antiquity and the

middle ages, more often the judgements of the modern editor. I thus use

punctuation freely, as another editorial tool designed to help the reader, but

in general I try to keep Heiberg’s punctuation, in deference to his superb grasp

of the Greek mathematical language, and in order to facilitate simultaneous

use of my translation and Heiberg’s edition.

11. Greek diagrams can be characterized as “qualitative” rather than “quan-

titative.” This is very difficult to define precisely and is best understood as a

warning: do not assume that relations of size in the diagram represent

relations of size in the depicted geometrical objects. Thus two geometrical

lines may be assumed equal, while their diagrammatic representation is of two

unequal lines, and, even more confusingly, two geometrical lines may be

assumed unequal, while their diagrammatic representation is of two equal

lines. Similar considerations apply to angles etc.What the diagrammost clearly

does represent are relations of connection between the geometrical constituents

of the configuration (what might be loosely termed “topological properties”).

12. I make an effort to use the same English word for the same Greek word,

when the Greek word seems to be used in a formulaic context only. This is true,

I believe, for such particles as οũν and δή, which become “now” and “so”

respectively. “Now,” however, is to be read without the sense of time, “so”
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without the sense of consequence. Both are used in the sense of a colloquial

interjectionmarking an emphatic transition, somewhere between a full stop and

a new paragraph. Two words which I do not translate formulaically are δε and

και. The first is often left without translation (as all it means in the Greek is the

absence of asyndeton), sometimes with “and,” “while” or “but” (but never “on

the other hand”). και is “and,” “as well,” “also” or “even.” These words are so

ubiquitous that they have escaped being regimented by the Greek formulaic

language, and the Greek reader does not read them as “mathematical.”

There is no extant commentary on Archimedes’ On Spirals. However, the

manuscripts descended from codex A contain a small set of scholia that may

go back to early Byzantine or late ancient times (they could well be roughly

contemporary with Eutocius, two of whose commentaries were included in

the previous volume). I include these scholia in an appendix (Appendix 2),

and also translate a passage from Pappus’Collection (IV.21–25) (Appendix 1)

that reports on another, alternative approach taken by Archimedes to the

results concerning areas.

In this volume, unlike the preceding one, I do not set apart textual

comments (as the text presents far fewer difficulties).4 I generally translate

the text as printed by Heiberg, and when I differ from it in non-trivial ways

this is accounted for by footnotes or, rarely, the comments themselves. In

Volume I, I divided the comments into smaller headings, whereas now I

4 Since the publication of Volume I there has appeared an important study relevant to

the textual history of Archimedes. A study, indeed, of a topic long neglected: the

Renaissance Latin translation of the works of Archimedes by Jacob of Cremona

(d’Alessandro and Napolitani 2013). The authors illuminate the circumstances of the

making and dissemination of this translation. Relevant to our immediate purpose is their

further suggestion that Jacob could have relied on amanuscript distinct from the codices A,

B or C. Now, when considering such possibilities, base probabilities (or, in other words,

common sense) should not be neglected. What is the likelihood of a manuscript, distinct

fromA, circulating in Italy up till the fifteenth century without leaving any trace other than

Jacob’s own translation? It is for a reason that both Heiberg and Clagett did not seriously

entertain such a scenario. Next, d’Alessandro and Napolitani should have paused to

consider the fact that Jacob’s selection of works is identical to that of A, his order near-

identical. (Note that all three manuscripts, A, B and C, drastically differ in selection and

order. It is thus very unlikely that amanuscript independent fromAwould have had just the

selection and order displayed by Jacob.) This alone makes it extremely likely that Jacob

hadA at least as his primary template. I am frankly surprised by the evidence supposedly to

the contrary adduced by d’Alessandro andNapolitani. They provide a few examples where

Jacob’s text produces bettermathematical sense than that of codex A (and they also note a

systematically distinct diagrammatic set of principles followed by Jacob). Of course, a

systematic survey showingmultiple caseswhere Jacob providesworsemathematical sense

than A – implying a source with its own distinctive corruptions and lacunae – would have

been the evidence required for their case (while a translator, papering over lacunae and

corruptions in his source material, comes not as a surprise at all).

The balance of philological probability was weighed down by a ton of prior

probability against the theory of a lost Greek source to Jacob’s translation.

D’Alessandro and Napolitani drop a feather onto the other scale, and the balance

remains unmoved.
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usually present them as a continuous, discursive text. This difference has to

do with a difference in the character of the commentary, on which more

below.

I noted in the first volume that the comments have the character not so

much of a reference work as of a monograph. Indeed, I went on to explain that

I concentrated on what I perceived to be of relevance to contemporary

scholarship (Netz 2004b: 4). In other words, my goal has been to introduce

Archimedes’ text – in a form as close as possible to the original – to a wider

audience, and to show how this text can be made relevant to contemporary

research in science studies. The interest is in the character of a scientific work

as a text. The first volume emphasized the cognitive and verbal texture of the

text: what information is allowed to be taken over directly from the diagram?

Which verbal variation can be taken to be meaningful, and which is a mere

notational variation? Such questions often do not involve any authorial plan-

ning – it is the genre writing, as it were, and not the author. In today’s jargon,

we say that such questions are “structural” and avoid “agency.” This emphasis

on the structural consequences of genre was easier to accomplish with the

subject matter of the first volume. The first book On the Sphere and the

Cylinder is, relatively speaking, elementary; the second book On the Sphere

and the Cylinder is very discrete in structure, each problem standing on its

own. This stands in contrast to the intricate, elegant structures of On Spirals,

which simply cry out for interpretation in terms of authorial design. And so the

comments in this volume take, on the whole, a different character. The typical

question is not “Why does the Greek mathematical genre force Archimedes to

write as he does?” but rather “Given the options he had, why did Archimedes

choose to write as a he did?”5

The comments represent, of course, my own research agenda, and the first

volume was close to a monograph of mine, The Shaping of Deduction in

Greek Mathematics: A Study in Cognitive History (Netz 1999). Some read-

ers may be aware that I have since published Ludic Proof: Greek

Mathematics and the Alexandrian Aesthetic (Netz 2009), a book whose

emphasis is on the aesthetic preferences of the Hellenistic era and their

impact on Greek mathematics. Netz 2009, as well, emphasizes authorial

design or “agency.” I do mention aesthetic considerations in this volume,

too. However, the comments take a somewhat different character from those

of Netz 2009 (whose introduction, indeed, took On Spirals as paradigmatic

example). The main interest in this volume is not so much in the aesthetic

preferences displayed by Archimedes’ authorial choices as in their episte-

mic consequences. Before I move on to the detail of the comments (where

such observations will be largely implicit), I will say a little more at this

general level.

5 Obviously, I did pay attention to such questions of agency in the first volume as well

(nor do I neglect aspects of the Greekmathematical genre in this volume): the difference

is one of emphasis.
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3 the edge of contestability

I take Geoffrey Lloyd as my starting-point. Thanks to his work, we now see

ancient science within its cultural context: Greek authors engaged in theore-

tical mathematics as well as in such diverse projects as Aristotle’s philosophy

or Galen’s scientific system – because such projects resonated with a cultural

meaning specific to its time and place. The public, the performative, the

political are crucial, and, in all of them, Lloyd emphasizes competitiveness.

In philosophy, it sometimes goes this far (Lloyd 1990: 97):

Once again the competitiveness characteristic of so much Greek intellectual life and

culture is in evidence . . . they may be said to share . . . one recurrent preoccupation of

much Greek political and legal debate, namely the demand for the justification of a point

of view – except that now, in the highest level of philosophical inquiry, this was

redefined as no mere matter of what was subjectively convincing, but on the contrary

one of objective certainty, an incontrovertibility secured by rigorous demonstration.

Or more widely on the Greek scientific project (Lloyd 1990: 95):

At an admittedly very general level the ambition that unites certain mathematical,

philosophical and scientific investigations was . . . to secure incontrovertible conclu-

sions by valid deductions from premises that had to be accepted.

Lloyd is surely right that Greek science takes its meaning from the nature of

Greek competition, and that, starting from the effort to refute one’s opponents,

a premium is placed on such pursuits where refutation can be the more

effective, so that this arms race gives rise to more and more refined logic.

My small qualification has to do with the notion of “incontrovertibility.” I

present to you, as evidence, Archimedes’ practice revealed in the introduction

to this treatise. As we will see below, we are not sure about the reading in one

crucial place, but it is clear enough that Archimedes, in his geometrical

challenge, included results which he knew to be false, so as to be able to

refute his opponents, who would claim to have found their proofs (without

supplying, obviously, any valid proofs of that or, most likely, without supply-

ing any proofs at all). Now, I submit, this is not quite the mindset of the one

who aims to avoid controversy. For, indeed, why did Archimedes send out a

challenge in the first place?Why not send out the complete results, provided in

the most fully rigorous fashion? He did not do that, and instead sent out a

challenge, and a misleading one at that, so as to incite controversy. Thus we

immediately see that the Greeks could not have pursued incontrovertibility

alone because, after all, incontrovertibility, strictly speaking, forecloses

controversy and so makes the cultural exchange, for the Greeks, bereft of

meaning. No: the goal should be to make the most impregnable statements

possible while at the same time inviting polemic concerning those statements.

Lloyd mentions Archimedes in the same study (Lloyd 1990: 89–91) as an

example of the price paid by the Greeks for their emphasis on incontrovert-

ibility. He considers Archimedes’ Method: an argument relying on mechan-

ical assumptions and on indivisibles. Because of that, so Lloyd notes,

Archimedes considered this treatise as merely heuristic. Thus the emphasis

on incontrovertibility constrained the ancient mathematician and prevented
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him6 from considering results which were less than incontrovertible.

Similarly, idealization in the application of the exact sciences – in

Archimedes and elsewhere – was massive, exactly so as to achieve incon-

trovertibility, so that one ended up, in such works as On Floating Bodies,

studying not so much physical phenomena as their geometrical counterparts.

In all of this Lloyd is right, and surely Archimedes does indeed aim for the

most impregnable statements possible. But a point Lloyd does not emphasize

enough, I believe, is that Archimedes made a choice to publish such works as

The Method and On Floating Bodies. That is, he chose to publish works that

directly flirted with invalid argumentation (The Method) or that relied on

strong implicit assumptions concerning the physical world (On Floating

Bodies). This was not playing it safe, and in general Archimedes did not. In

his work he sought danger, not safety. The tendency I see in him is to produce

such text as provokes criticism while at the same time powerfully responding

to it. It is suspended right at the most exposed point, at the edge of contest-

ability: making exactly the most contestable claim that one can still argue for

with impregnable arguments.

This we will see in the detail of our reading. In one proposition after

another, one Step after another, we will see Archimedes making arguments

which are valid, but only on the assumption of much more argument that is not

supplied by Archimedes himself – and whose supplying is often debatable.

Archimedes avoids explicit statements of the grounds for claims and often

avoids the explicit statements of Steps required for the argument. He struc-

tures both the treatise as a whole, as well as individual propositions, so as to

create distance between the tools used, and the results such tools are used for.

And he engages with very subtle foundational issues – how is motion to be

analyzed geometrically? What counts as a solution to a problem? – in a

manner which tends neither to solve nor to remove the difficulty. I will not

anticipate the detail of our reading of such passages, but strong examples may

be found in Archimedes’ reliance on neusis constructions7 (propositions 5–9,

see especially the comments on proposition 7), in the ambiguity concerning

the construction of the spiral and especially the tangent to it (see especially the

comments on propositions 13, 18) and in the argument, and application, of

proposition 11 within proposition 25, which are vital to the area results. But

these are just the key examples: in the comments on almost every proposition

we will note an Archimedean, tantalizing style – but then will also note the

validity of the underlying argument.

6 Here, and in what follows, I will refer to the generic ancient mathematician (as to

the generic ancient reader) as male. This is not precisely true, as there were ancient

female mathematicians and ancient female scientists in more general (Keyser and Irby-

Massie 2008: 1029 counts thirty such authors), but a more inclusive pronoun would be

somewhat more misleading. The sexism of the past cannot be willed away by our own,

more enlightened grammar.
7 A neusis construction is one in which a line, equal to a given line, is set to fulfill a

geometrical configuration without a proof showing how such a configuration may be

constructed.
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Why did Archimedes position himself at the edge of incontestability?

Partly, this does make his work engage with the cultural emphasis on debate.

Now, I do not mean to say this is the only possible way in which mathematics

could, in principle, relate to its culture. Mathematics could also be seen – as

Lloyd suggested – as the limiting case of debate, the place where the debate is

so effectively pursued that it becomes, paradoxically, foreclosed. Arguably,

such a tendency can be read, perhaps, in Euclid. There was a variety of ways in

which the logical clarity of mathematics could participate in the polemical

tendency of Greek culture. Archimedes’ choices reflect not just a broad

cultural pattern but also specific preferences, some perhaps personal, some

perhaps due to his more immediate cultural setting. In Netz 2009 I looked for

the specific cultural preferences of Hellenistic Alexandria and its cultural

area, and the manner in which such cultural preferences could affect

Hellenistic mathematics. Hellenistic poetry – perhaps reflecting its origins

in the court – emphasized the surprising, the breaking of generic boundaries,

the tantalizing and the self-consciously textual. The enigmatic, tantalizing

tendency in Archimedes certainly fits this mold as well. And so it is perhaps

possible to argue that Archimedes’ mathematics is a specifically Hellenistic

way in which mathematics can engage in a culture based on competition: by

tantalizingly provoking, and prevailing, in such a competition.

This is a likely enough historical explanation for Archimedes’ practice.

What I wish to emphasize right now is not so much the historical explanation

as the philosophical consequences. If Archimedes’ work can indeed be char-

acterized as seeking the edge of contestability – the most powerful results one

can argue for – then it tends in Popper’s direction. It aims at the least likely or

the most informative claims. To seek the edge of contestability is not so

different from seeking maximal falsifiability. Now, I do not argue that is a

characteristic of scientific practice as a whole, or that scientific practice is

useful only to the extent that it makes such claims. But this is suggestive for

the way in which authors such as Archimedes can make seminal contributions

in the growth of science. There was a certain peculiar historical setting, a

certain peculiar temperament, that made Archimedes. He aimed not at the

mainstream of incontrovertibility but at the extremes of contestability – with

the epistemic pay-off of such works as The Method, On Floating Bodies,

Spirals . . . such are the epistemic uses of aiming at the extreme, at the edge of

incontestability. If my comments are rather like a monograph, then its aim

may be summed up as follows: a thesis on the epistemic contribution of the

scientific avant-garde.

So much for general statements, and now on to Archimedes himself.
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ON SPIRALS

Archimedes to Dositheus,1 Greetings.

Of those theorems dispatched to Conon,2 about which you keep sending

me <letters> asking that I write down the proofs – many you have, written

down in the <books> conveyed by Heracleides,3 while some I send you,

having written them down as well in this book.

1 The recipient of Archimedes’ Quadrature of the Parabola, On the Sphere and the

Cylinder I,On the Sphere and the Cylinder II andOn Conoids and Spheroids, as well as

this book; likely, judged by the name, of Jewish origin – whatever “Jewish” and “origin”

might mean in this context (Netz 1998b). Dositheus may have been a significant

scientist on his account, but nothing in the correspondence would suggest that; perhaps

he made his own original contributions later. The little that is known of his achievement

(see the Encyclopedia of Ancient Natural Scientists [EANS], q.v. and references there)

suggests a more astronomical, rather than geometrical, career.

What did it mean to be “the recipient of . . . ”? What was the reality underlying the

exchange of scientific works hinted at in introductions such as this one? This, the most

extensive introduction extant from Archimedes, provides us with the clearest sense of

this question, and we will return to discuss this in the general comments below. In more

general terms for the question of the nature of the addressee in ancient expository works,

see now Wietzke 2014: ch. 2.
2 Conon’s scientific achievement is somewhat clearer than that of Dositheus (and,

thanks to Callimachus’ reference to him, he comes across as a fuller historical figure:

Aetia fr. 110 l.7): apparently a leading scientist of his place and time (Alexandria, mid

third century BC), perhaps more an astronomer than a geometer, though definitely an

original geometer as well. Recently deceased, he is mentioned very favorably by

Archimedes in his introductions, suggesting that he would have been the natural

recipient of Archimedes’ works, rather than Dositheus.
3 A vexing prosopographic problem: (a) Eutocius in Apoll. Con. (Heiberg 1913: II,

168.7) mentions a Life of Archimedes written by Heraclius; (b) Eutocius in Arch. DC

(Heiberg 1915: III, 228.20) mentions a life of Archimedes written by Heraclides; (c)

there is an Heraclitus mentioned by Pappus (Pappus (Hultsch 1877: II, 782.5) for a

certain geometrical achievement which might antedate Apollonius; (d) all of these may

or may not be the same as each other and as the Heraclides mentioned in this SL

introduction. Bernard, in his EANS entry s.v. Heraclitus, follows Decorps-Foulquier

Theorem: see Glossary
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Nor should you wonder why I took such a long time publishing their

proofs: this came about because I wanted to allow those who busy themselves

withmathematics to take up studying those <theorems> first. For howmany of

the theorems in geometry appear not to go along the right lines at first, to the

one who eventually perfects them? Conon passed away without taking suffi-

cient time for their study; otherwise he would have made them all clear,

discovering them as well as many others, while advancing geometry a great

deal: for we know that his mathematical understanding was extraordinary, his

diligence unsurpassed.

With many years now having passed since Conon’s death, we are not

aware of even a single problem being set in motion, not by a single

person.4

I also wish to set out each of them, one by one. For it happens that <there

are> a certain two of the <theorems> in it <=the letter to Conon>, not

distinguished apart but added at the end,5 so that those who claim to find all

of them, but publish none of their <=the theorems’> proofs, would be refuted

by promising to find solutions to impossible theorems. So I now find it

appropriate to make clear which are those problems, and which of them are

2000: 10 n.5, against Heiberg’s original index to Eutocius in Arch., as well as Knorr

1986: 294–302, in distinguishing the joint (a) and (b) (these two really must be the same

author) from either (c) or (d). In truth, it would be very striking if an acquaintance of

Archimedes, in the late third or early second century, would write a Life of his friend.

But then again there are few parallels to Archimedes himself. (What comes to mind is

the genre of Socratic dialogue, written by Socrates’ associates soon after his death [see

e.g. Clay 1990] – was Archimedes not a Socrates-like figure?) Decorps-Foulquier’s

plausible suggestion is that the biographer in question was Heraclides Lembus. At any

rate, I note that Decorps-Foulquier’s argument against identifying (a) with (d) is sound,

but not compelling: she points out that Eutocius provides Apollonius’ date ὡς ἱστορεῖ

Ἡράκλειος, which, she argues, (i) means that the Heraclius mentioned is directly para-

phrased by Eutocius (and is not just the basis of educated surmise on his part), (ii) and

therefore could not be a contemporary of Apollonius (who would not provide the date of

his peer!). However, (i) appears to me wrong, since Eutocius very likely relies on an

intermediary source – would we not have heard much more of this biography had he

possessed an actual copy? – in which case ὡς ἱστορεῖ Ἡράκλειος can well mean no more

than “based, according to my intermediary source, on the authority of Heracleius”: from

which (ii) no longer follows.

What can we positively say? We must conclude that someone, perhaps conversant

in geometry, possessing an Heracleophoric name, has traveled between Egypt and

Syracuse in the second half of the third century BC. He could be the author of the

solution from Pappus’ Collection and also could have been Archimedes’ biographer.
4 Archimedes took a long time because (i) he wanted to give others a chance, (ii) he

realizes it may take a long while to solve a problem well, (iii) he first gave a chance to

Conon, (iv) and even following his death wanted to give a chance to everyone else.
5 Themanuscript text of this – one of themost interesting passages, historically, in all

of Archimedes’ works – is garbled beyond hope. I translate my own emendation, and

discuss the problem below in the textual and general comments.
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those whose proofs you have (which were sent to you already), and which I

convey in this book.

So, the first of these problemswas: given a sphere, to find a plane area equal

to the surface of the sphere. This, indeed, was also the first to become clear

following the publication of the book about the sphere.6 For once it is proved

that the surface of every sphere is four times the greatest circle of the <circles>

in the sphere, it is obvious that it is possible to find a plane area equal to the

surface of the sphere.

Second: given a cone or a cylinder, to find a sphere equal to the cone or

cylinder.

Third: to cut the given sphere with a plane, so that its segments have to each

other the ratio assigned.

Fourth: to cut the given sphere with a plane, so that the segments of the

surface have to each other the ratio assigned.

Fifth: to make the given segment of a sphere similar to <another> given

segment of a sphere.7

Sixth: given two segments of a sphere, whether of the same <sphere> or of

another, to find a certain segment of a sphere, which will itself be similar to

one of the <given> segments, while it will have a surface equal to the surface

of the other <given> segment.

Seventh: to cut off a segment from a given sphere with a plane, so that the

segment has to the cone having the same base as the segment and an equal

height, an assigned ratio greater than that which three has to two.

The proofs of all these theorems mentioned, then, Heracleides conveyed.

But the one positioned, separately, following them was false. It is: if a sphere

is cut by a plane into unequal <segments>, the greater segment has to the

smaller a ratio duplicate than the greater surface to the smaller. That this is

false is clear through what was sent before, for it has been set out among those

as follows: if a sphere is cut by a plane into two unequal <segments> at right

<angles> to some diameter of those in the sphere, the greater segment <of the

surface> shall have to the smaller the same ratio, which the greater segment of

the diameter <has> to the smaller; indeed, the greater segment of the sphere

has to the smaller a ratio smaller than that duplicate that which the greater

surface has to the smaller, but greater than half-as-much-again.

And the last one separated from among the problems was a falsehood, too:

that if the diameter of a certain sphere is cut so that the square on the greater

segment is three times the square on the smaller segment, and through the

point <where the diameter was cut> the plane drawn at right <angles> to the

6 Archimedes refers to what we know as “the first book On the Sphere and the

Cylinder” (clearly considering it as a separate publication from what we now call “the

second book”).
7 Presumably what Archimedes has in mind is SC II.5: the problem of constructing a

segment of a sphere, whose volume is that of a given segment, so that it is also similar to

another given segment. (This may be thought of taking a given segment, i.e. a given

volume, and reshaping it to become similar to another given segment.)

Greatest circle: see Glossary

Segment: see Glossary

Assigned: see Glossary

Given: see Glossary

Similar: see Glossary

Ratio greater: see Glossary

Ratio duplicate: see Glossary

Half-as-much-again: see
Glossary

The square on: see Glossary
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diameter cuts the sphere, the figure of this kind, viz. the greater segment of the

sphere, is the greatest among all the other segments which have a surface

equal <to it>. That this is false is clear through the theorems sent before: for it

has been shown that the hemisphere is greatest among the segments of a

sphere, contained by an equal surface.

Following those, the problems concerning the cone are these.8

If a section of a right-angled cone should be rotated, the diameter remaining

fixed, so that the diameter is the axis,9 let the figure drawn by rotation by the

section of the right-angled cone be called a “conoid”; and if a plane touches the

conoid figure, and another plane, drawn parallel to the touching plane, cuts a

certain figure of the conoid, let the cutting plane be called “base“ of the segment

cut off, and <let> the point at which the other plane touches the conoid <be

called> “vertex.”

So, if the figure mentioned is cut by a plane at right <angles> to the axis, it

is clear that the section shall be a circle, but it is required to prove that the

segment cut off shall be half as much again of the cone having a base the same

as the segment and an equal height.

And if two segments of the conoid should be cut by any planes drawn in

whichever way, it is clear that the sections shall be sections of acute-angled cones

if the cutting planes are not perpendicular to the axis, but it is required to prove

that the segments shall have to each other the ratio which the <lines>, drawn from

their vertices to the cutting planes and parallel to the axis, have to each other, in

square.

The proofs of these have not yet been sent to you.

Following these, the problems offered concerning the spiral were these:

– and they are, as it were, a certain other class of problems, having nothing in

common with those mentioned above; the proofs concerning which we

have written for you, in this book. –

They are as follows:

If a straight line, being rotated in a plane in uniform speed, with one of its

ends remaining fixed, should be returned again to where it started from, while

at the same time, even as the line is rotated, a certain point is carried along the

End: see Glossary

8 In what follows Archimedes uses the pre-Apollonian nomenclature for conic

sections, where “the section of a right-angled cone” means our “parabola,” “acute-

angled cone” means our “ellipse” and “obtuse-angled cone” our “hyperbola” (for more

on the history of the nomenclature, see Jones 1986: II.400). By rotating such conic

sections around their axis we may produce solids, and Archimedes calls them, based on

visual analogies, as follows: what we call the “paraboloid of revolution” (a parabola,

rotated) he calls “conoid”; what we call the “ellipsoid of revolution” (an ellipse, rotated)

he calls “spheroid.” The results discussed here would be provided by Archimedes in a

future letter sent to Dositheus now known as the book On Conoids and Spheroids.
9 Perhaps meaning: so that the diameter is called “axis” of the resulting figure.

(Archimedes did not yet introduce theword καλείσθω into the sequence of this particular

text, but he is in a definitive mode nonetheless.)
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line, in uniform speed with itself,10 starting at the fixed end, the point shall draw

a spiral in the plane. So, I claim that11 <1> the area contained by the spiral and

by the line that has been returned to where it started from is a third part of the

circle drawn, with the fixed point as center and with the line traversed by the

point in one rotation of the line as radius.12 And13 <2> if some line touches

the spiral at the end of the spiral which is the last,14 while some other line is

drawn from its fixed end at right <angles> to the line rotated and returned to

position, so that it meets the tangent, I claim that the line produced towards <the

tangent>15 is equal to the circumference of the circle. And16 <3> if the rotated

line and the point carried along it are carried around for many rotations and are

returned to where they started from,17 I claim that – compared to the area added

Touch: see Glossary

10 I.e. the speed is only “uniform with” itself and need not be “uniform with” the

previously mentioned speed of the line in rotation (whatever such being “uniform with”

might mean).
11 Proposition 24. It is important to add at this point that Archimedes’ readers

would not have had this footnote. It is not only that they would have been unable to

find where such proofs were offered: they would have had an extraordinarily hard

time even figuring out what such proofs even meant. The phrasing offered by

Archimedes is opaque, which only becomes worse from one claim to the next. In

the practice of reading the work, most readers would have relied on labeled diagrams

and an explicit setting-out, as well as definition of goal, to work out the precise

meanings – all while reading the propositions themselves. By not being able to refer

at this point to the proposition itself with its diagram, then, Archimedes would have

made it much more difficult to even know, in advance, what the results are that would

justify the treatise. One would have to read to the end, to know the very point of what

one was reading.
12 The word line in the phrase “the line1 traversed by the point in one rotation of the

line2” has two separate meanings. Line1 means the finite line traversed through the

rotation. Line2 means the indefinite line extending out of the fixed point and rotated

about it.
13 Proposition 18.
14 We concentrate on the scenario of a spiral rotated once, fully – the only

scenario provided so far. Under this scenario, the spiral has two ends, its fixed

point and then the one which is the “last” – the point reached at the end of the

rotation. It is this end specified by the phrase “the end of the spiral which is the last.”

The term “end of the spiral” is never defined and is of course problematic (the spiral

has only one real “end,” its start; the other end is wherever you wish to put it; it is

therefore a relative term).
15 By “line produced towards <the tangent>” is meant the segment that the tangent

cuts off from the line produced from the center, orthogonal to the start/end position of

the rotating line. Archimedes is being economical here (note that “produced towards” is

a single adjective in Greek,ποταχθεῖσα, and that “circle” is, this time, left undefined), so

as to make his conclusion as succinct as its elegance deserves.
16 Proposition 27.
17 A loose expression: only the line is to be returned, while the point is to continue its

outwards uniform progression – a point left moot by Archimedes’ description.
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by the spiral in the second rotation18 – the <area> added in the third <rotation>

shall be double, <the area added> in the fourth <shall be> triple, <the area added>

in the fifth <shall be> quadruple, and always: the areas added in the latest

rotations shall be multiples, according to the numbers in sequence, of the

<area> added in the second rotation; while the area contained in the first rotation

is a sixth part of the area added in the second rotation. And19 <4> if two points

should be taken on the spiral drawn in a single rotation, and lines are joined from

them to the fixed end of the rotated line, and two circles are drawn with the fixed

point as center, and the lines joined to the fixed end as radii, and the smaller of the

joined <lines> is produced,20 I claim that the area contained by: (i) the circum-

ference of the greater circle which is on the side of the spiral between the <two>

lines and (ii) the spiral itself and (iii) the produced line, has to the area contained

by: (i) the circumference of the smaller circle and (ii) the spiral itself and (iii) the

line joining their <=the two lines> ends, the ratio which the radius of the smaller

circle, together with two thirds the excess bywhich the radius of the greater circle

exceeds the radius of the smaller circle, has to the radius of the smaller circle,

together with one third part of the mentioned excess.

So, theproofs of these andother<theorems>concerning the spiral21 arewritten

by me in this book, and preceding them (as is also <the case> with <any> other

<books provided> in a geometrical way)22 are the <theorems> required for their

<=the four theorems stated above> proofs. And I also adopt, in these theorems,

this lemma, which is also among the <lemmas in> the books sent out before: that,

among unequal lines and unequal areas, the excess by which the greater exceeds

the smaller, itself added onto itself, is capable of exceeding every given <magni-

tude>, of those which are said to be <in a ratio> to each other.23

Joined: see Glossary

Excess: see Glossary

Lemma: see Glossary

18 Area “added”: i.e. we do not look at the entire area covered by the spiral through its

two rotations, but only at the area which the spiral has covered through its second

rotation, excluding what it had already covered through its first rotation.
19 Proposition 28.
20 “Produced” in this context means “extended beyond the smaller circle to reach the

circumference of the greater one.”
21 A significant hedge, made in passing: Archimedes does not commit himself to

provide only those four results (as well as those theorems required for their derivation).
22 Literally “geometrized” (passive participle form of the verb derived from “geome-

try”). This is an intriguing, and unique, usage by Archimedes. The thing “geometrized” is

apparently the textual-conceptual unit of amathematical theoremor a book, and the property

designated as “being geometrized” is stylistic as well as epistemic: the text is furnished in a

certainway and for this reasonmeets a certain logical standard. The other references are:QP

266.2, Meth. 438.20, 486.7 (conceivably this could also be read in 430.24, which is the

Archimedes palimpsest ARCH16rcol. 1 ll. 19–20, Netz et al. 2011: 73). In all those other

cases, the contrast at hand iswith proofs furnished through “mechanical”methods; the usage

here is wider (as perhaps one should understand the parallel passages as well).
23 How do we know that a straight line, multiplied a certain finite number of times,

can be made to exceed a circular line? Since they cannot be made to coincide, such a

claim cannot be made intuitively clear, and so the lemma is required. Whatever the

original motivation of this lemma, it sets out a condition for what “being a ratio” means

and as such would become entrenched in modern mathematics.
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comments

As mentioned in n. 5 above, the text of a certain passage appears to have been

badly garbled in codex A (our only source for the Introduction). The reading

of the codex may be reconstructed as follows:

δυο τινα των εν αυτω μη κεχωρασμενα τελους δε ποτεσσομεν

This is not Greek. Two words are unrecognizable as they stand:

κεχωρασμενα, ποτεσσομεν. The genitive case of τελους is unmotivated, while

the significance of the δε is difficult to make out (hardly surprising, seeing that

this particle is sandwiched between a word with a strange case and a non-

word).

Heiberg in his first edition emended this, fairly moderately, to read

δúο τινὰ αu

̔

τῶν ε

̔

ν αu̓τοῖς μὲν κεχωρισμένα, τέλος δὲ ποθεσόμενα

which he translated into Latin as

quaedam eorum inter ea collocate sint, confici autem non possint

and which Heath renders as

two included among them which are impossible of realization

In his second edition, Heiberg returned to the same passage and revised it

radically to read:

δúο τινὰ τῶν ἐμαυτῳ μήπω πεπερασμένων διὰ τέλους ποτιτεθῆμεν

which he translated into Latin as

duo quaedam eorum, quae a me ipso nondum prorsus ad finem producta sunt, insuper

addita sint

and which Mugler renders as

deux de ces problèmes, que moi-même je n’étais pas encore arrivé à mener à bonne fin,

ont été ajoutés à leur liste

The emendation I follow is

δúο τινὰ τῶν ἐν αu̓τῷ μὴ κεχωρισμένα τέλος δὲ ποθεσόμενα

which I translate as

<there are> a certain two of the <theorems> in it <=the letter to Conon>, not distin-

guished apart but added at the end

Heiberg’s first emendation is difficult as Greek. The position of the μεν is

forced, and its supposed adversative function in the μέν–δέ pair is obscure. Nor

are the meanings ascribed to κεχωρισμένα, ποθεσόμενα at all natural. It is not

for nothing that Heiberg has abandoned it for the sake of a radical revision, in

his second edition. (This revision, I hasten to add, is based on no significant

paleographic finds: to repeat, the palimpsest is not extant for this passage.)

Heiberg’s second emendation involves a radical intervention in the manu-

script text, essentially rewriting it while ignoring the paleographic evidence.

Worse, it makes for strange historical sense. If I understand Heiberg correctly,
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his view was that Archimedes did not yet solve those problems but was

working on them in good faith, on the assumption that they were right. But

how could that make sense for Archimedes the mathematician? For

Archimedes the communicator? (So the task was sent out even before

Archimedes has worked on it?) How would it make sense for the Greek,

even? For the natural syntax of the continuation of the passage is that those

two theorems were added for the purpose of refuting Archimedes’ rivals.

My emendation is very light – it merely corrects an obvious slip of the pen,

from κεχωρασμενα to κεχωρισμένα; and then follows Heiberg’s lead in con-

jecturing a Doric form that would have been surprising to the Byzantine

scribe, resulting in the corruption of an original ποθεσόμενα into the mean-

ingless ποτεσσομεν; I also change the case of τέλος, from genitive to accusa-

tive (with ποτί understood – a victim, then, to the garbling of ποθεσόμενα).24

Unlike Heiberg, I do not emend the words ἐν αυτῷ μη at all. Mostly, I differ

from Heiberg in my interpretation, offering a concrete frame of reference to

the relevant words. But, in truth, with a text as garbled as this one we are

reduced to uncertainty.

What is Archimedes doing in this Introduction, in this correspondence as a

whole? Curiously, a large part of our answer hangs on those garbled words.

So: if we follow Heiberg of 1913 and motivate the genitive case of τέλους

with the preposition διά, the word “end” gains the very different meaning of

“perfect,” lifting us from the concrete realm of the position of different units

of text to the abstract realm of different levels of mathematical achievement.

The term κεχωρισμένον is, in the Archimedean corpus, unique to this

passage. But its central meaning is easy – being set apart (it is a key term of

Aristotle’s philosophy of mathematics, for instance, where mathematicians

merely act as ifmathematical objects were set apart from the material ones). It

can be understood here in a concrete sense – being set apart in the sequence of

writing – or in some metaphorical sense of “being distinguished.” But it is not

a bland way of saying “stated.” The fact that it is used not once but three times

in the continuation of this passage, always in the context of the false theorems,

seems to be significant. Here is what Archimedes says. The first false theorem

was “positioned, separately, following these” (μετὰ ταũτα κεχωρισμένον); the
second was “last separate, among the problems” (ἔσχατον κεχωρισμένον). It is

in this context that Archimedes refers to a result established in the second

book On the Sphere and the Cylinder as κεχώρισται ἐν αu̓τοῖς – “to be found

distinguished among them.” In short, there is a good, concrete sense of

κεχωρισμένον we can assign to two of the following usages, and we can

understand the third, metaphorical usage (κεχώρισται ἐν αu̓τοῖς) as motivated

by the κεχωρισμένον-heavy context. Indeed, the term ἔσχατον below seems to

point to a relevant sense of the word τέλους in our passage, which is also

reminiscent of a passage in the introduction to The Method (Heiberg 1913: II,

24 Parallels for the use of pros . . . telos are usually in the context of a trajectory of

motion whose very end is reached (e.g. Plato, Republic 494 a12: “walk <metaphorical

for ‘practice’> philosophy to the end.” Perhaps the intended meaning in this passage by

Archimedes is indeed “right at the conclusion.”
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430.23–24), where Archimedes promises a certain set of propositions επι τελει

του βιβλιου, “at the end of the book,” as well as of a similar passage following

the analysis of On the Sphere and the Cylinder II.4 (Netz 2004b: 204). In

short, it is likely enough that the terms κεχωρισμενα, τελους, as found in codex

A, could refer to the physical setting of the two false theorems within the letter

sent to Conon.

This would also explain the singular dative form ἐν αυτῷ (in it). Heiberg

emended this twice, first to ἐν αυτοῖς (among them) and then to ἐμαυτῷ (by

myself). It is true that the text does not have explicitly stated an immediate

singular neuter (or masculine) antecedent to which the αu̓τῷ can easily refer.

However, conceptually, the text is all about the letter sent to Conon, perhaps

understood as a βίβλιον. This would not only motivate a singular, but would

also provide a frame of reference for which both κεχωρισμενα, τελους, make

sense: namely, the frame of a certain booklet in which Archimedes’ original

challenge was set.

All in all, then, I offer an emendation which is also an interpretation:

Archimedes speaks of the physical way in which he structured his letter to

Conon. The two false theorems were not explicitly marked in any form,

distinguished, set apart; however, they were set at the end as a kind of

warning.

But, as I said, the questions of the correct emendation have drifted from the

technical questions of paleography and syntax to those of history and corre-

spondence. Let us move on to consider Archimedes’ frame of reference: what

was he doing in this Introduction?

the republic of mathematical letters

and the big letter

Regardless of our ultimate view on the textual question: it points our attention

to what is undoubtedly of central importance in this introduction – meta-

correspondence. Archimedes, writing this letter, writes about his writing of

letters: constructing, in the process, a Republic of Mathematical Letters.

Let us consider some of the history of this republic.

Archimedes sent a letter to Conon, comprised of a set of claims and tasks,

asking for their proofs. A challenge, falling under three categories: spheres,

conoids and spirals. The challenge was perhaps intended initially for Conon

alone (or perhaps was meant to be conveyed by him to the world at large). It

certainly became public property following Conon’s death.

Amajor event, then, in the history of the Republic ofMathematical Letters:

Archimedes sent out his challenge – what I would now call The Big Letter – to

Conon.25

25 Pappus, introducing a long discussion dedicated to the spiral, briefly relates an

altogether different scenario (Hultsch 1876: I, 234.1–3): Conon has proposed the first

problem of the spiral (showing that it encloses an area one-third of a circle). Archimedes
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What happened then? According to Archimedes, nothing. He waited for

responses, expecting them to fall into two possible kinds: a detailed offer of

explicit proofs; or a mere statement that the tasks and claims were obtained. (For

the latter case, he had available to him a ready rebuttal – that in fact two of the

claims were false, so that whoever made a mere statement of having obtained the

tasks and claimsmust have beenmaking a vain, ignorant boast.) But he never did

receive any mathematical response to this letter, not by Conon in his lifetime or

by other mathematicians. Archimedes seems to suggest that Conon was honor-

ably painstaking while other mathematicians were cowardly silent.

The introduction to On Spirals was not Archimedes’ first letter to

Dositheus, nor his first mention of The Big Letter. The first letter to

Dositheus was the introduction to the (extant) Quadrature of the Parabola.

There, it is stated clearly that its main theorem – the ratio of the parabolic

segment to the enclosed triangle – was new.26 This we should understand to

mean that it was not in The Big Letter.

The first bookOn the Sphere and the Cylinder – also extant – followed, and

its introduction suggested once again that its contents were new, i.e. techni-

cally speaking outside the scope of The Big Letter. (That is, none of the

theorems in SC I was directly a proof of a claim, or the fulfillment of a task,

made in The Big Letter.)27

has then solved this problem – though the line of reasoning reported by Pappus differs

from that used in our treatise! Knorr (1978b) went on to build a theory on this

foundation: that what we have is in fact Archimedes’ second treatise on the spiral (the

one reported by Pappus being the first one). Taking Pappus upon his word, and then

following Knorr in his order of publication, would drastically interfere with our under-

standing of the correspondence. I will return to discuss this in greater detail while

discussing proposition 14, which brings out a likely context for the emergence of the

concept of the spiral. To anticipate my conclusion there, I find it likely that Conon has

invented the spiral; I find it possible (but not necessary) that he proposed the first

problem of the spiral; I find it likely (though unprovable) that the result provided by

Pappus is ultimately due to Archimedes; and finally that I differ from Knorr in finding it

impossible that the result provided by Pappus preceded the extant treatise of On Spiral

Lines. Thus I wish to keep the fundamental order of correspondence delineated in this

letter.
26 Heiberg 1913: II, 262.10: “not studied before” (so, not among those already

studied for the sake of The Big Letter).
27 Heiberg 1910: I, 2.6–8 (Netz 2004b: 31–32): “later <than the results of QP> . . .

suggested themselves to us.”

Timeline of Archimedes’ Letters to Conon and Dositheus

The Big Letter to Conon (challenge)

First Letter to Dositheus:Quadrature of the Parabola (not in The Big Letter)

Second Letter to Dositheus: On the Sphere and the Cylinder, I

Third Letter to Dositheus: On the Sphere and the Cylinder, II

Fourth Letter to Dositheus: On Spirals

Fifth Letter to Dositheus: On Conoids and Spheroids
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The second book On the Sphere and the Cylinder, also extant, finally

referred directly to The Big Letter and asserted that Archimedes now began

to publish problems fulfilling tasks set out there, though leaving aside those

theorems concerning the Spiral, or Conoids.28

Now, Archimedes’ statement in the introduction to the first book On the

Sphere and the Cylinder, as if that book was separate from The Big Letter, was

at least disingenuous. As he took pains to clarify in both the introduction to the

second book On the Sphere and the Cylinder, as well as in this introduction to

On Spirals, the main result of the First Book is in fact sufficient to solve one of

the spherical problems of The Big Letter. But this is typical: the entire conduct

of the correspondence from the Quadrature of the Parabola through SC I and

SC II is consistent with the picture Archimedes draws of himself: patiently

waiting – in ambush.

TheQuadrature of the Parabolawas there as a stopgap, as it were, providing

theRepublic ofMathematical Letters with something to chew onwhile thinking

on The Big Letter; the first book On the Sphere and the Cylinder was a teaser,

keeping silent concerning the (rather obvious) import of this book on the first

problem of The Big Letter. Even while producing the spherical part of The Big

Letter, in the second book Archimedes kept silent, again concerning the (rather

obvious) import of that book on the two spurious theorems. The homology

should be emphasized – in the sequence of publication:

SC I! SC II! SL

Each book leads to key results that have a bearing on The Big Letter, revealed

in a later book:

Book Result Bears on

Bearing revealed

in

SC I surface of sphere Big Letter; first

problem

SC II

SC II two final

theorems

Big Letter; false

theorems

SL

Throughout, then, the picture is of Archimedes waiting for the audience to

be caught in surprise: revelations are always retrospective, and the art of

Archimedes thrives in the realm of the tantalizing promise – the defining

characteristic of The Big Letter itself.29

28 Heiberg 1910: I, 168.3–170.2 (Netz 2004b: 185–186).
29 This observation further undermines the idea implicit in Heiberg’s second emen-

dation, as if Archimedes’ two false theoremswere sent out in error. For if so, whywait to

correct the error for after SC II? Having said that, it should be stressed that the secret

revealed retrospectively in each book is quite elementary: one would need to be rather

obtuse not to see the bearing of SC I on the first problem, the bearing of SC II on the two

false theorems. Archimedes reveals retrospectively, in a flourish; to reveal such things in

situ would have been a bit of an anti-climax as, in context, the revelation would appear a

tad too obvious.
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This introduction to On Spirals is the key moment in the correspondence,

as it is the moment where the central revelation is made and the correspon-

dence’s sting is removed: that The Big Letter contained two false theorems.

This brings us back to the textual problem.

the republic of mathematical letters

and the false theorems

Archimedes must have experienced considerable anxiety, having just sent out

his Big Letter. For one response he would not have welcomed would be an

exposition of the error of the two false theorems. How would he be able to

defend himself from the accusation of having committed an error? It seems –

and here I go out on a limb – that, in this letter, Archimedes also reveals the

line of defense he laid out ahead of time: he implanted a textual clue that

would help to show, retrospectively, that he always did realize the peculiar

character of those two theorems. Namely, they were positioned out of order:

while the tasks were all arranged by the three headings of sphere, conoids and

spiral, in that order, the two false theorems, although they clearly relate to the

sphere, are positioned right at the end, following all three types. This, then, is

the sense I read into Archimedes’ words: “For it happens that <there are> a

certain two of the <theorems> in it <=the letter to Conon>, not distinguished

apart but added at the end, so that those who claim to find all of them, but

publish none of their <=the theorems’> proofs, would be refuted by promising

to find solutions to impossible theorems.” Typically, Archimedes does not tell

us, even now, that the theorems were false.30 This he will tell us later on, in

this introduction, as he comes to describe them one by one, when he says:

“That this is false, is clear through what was sent before . . . ” This comes as a

double shock to the reader: once, that a theorem sent out by Archimedes was

in fact wrong; and again, that this falsehood was in plain sight for some time

already – ever since the publication of SC II. Thus the words “so that those

who claim . . . would be refuted” does not yet assume that the reader knows

that the two claims are false (and merely sets up the suspense). The “so that”

clause refers to the special textual mark of extraneous position, which would

allow Archimedes to hit back at his opponents, should they be sharp enough to

discover the falsehood on their own.

So Archimedes is saying, effectively, as follows: I did not mark the

theorems apart in any explicit way (this, after all, would have been to give

the game away); but I did mark them implicitly by positioning them at the end.

Thus they were in some sense μὴ κεχωρισμένα – not explicitly distinguished

apart – but, in another, they were κεχωρισμένα (as he will refer to them later

on) – namely, by being positioned right at the end (and not in their expected

position, as part of the spherical sequence).

30 This follows from my emendation and reading of the Greek. On Heiberg’s first

emendation, this passage already claims – though in Greek which is very difficult to

construe! – that the claims were wrong.
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We do not have a copy of The Big Letter. If we had one, we could see for

ourselves where the two false theorems were positioned. As it is, we are

reduced to guessing. My guess is based on an emendation of a garbled

passage, and on the hunch that Archimedes ought to have some ready-made

mechanism of getting back at his opponents. (Or perhaps there were some

more hints, ammunition that Archimedes kept for the next round: one can

imagine all sorts of acrostics, say, hidden in the original letter.)31 The con-

tinuation of the introduction can be read, I believe, to support my hypothesis.

Archimedes makes several incompatible claims about the position of the

false theorems:

1 “The proofs of all these theorems mentioned, then, Heracleides conveyed.

But the one positioned, separately, following them [τὸ μετὰ ταũτα
κεχωρισμένον] was false.” (Followed by the content of the first false

theorem, and then:)

2 “And the last one separated from among the problems [τὸ ἔσχατον

κεχωρισμένον τῶν προβλημάτων] was false, too.” (Followed by the content
of the second false theorem, and then:)

3 “Following those [μετὰ ταũτα], the problems concerning the cone are

these.”

The natural reading of claim 1 is that the first of the two false theorems

followed those on the sphere, but with a certain separation; this agrees well

with my reading of the passage, as if the two false theorems were positioned

following those on both conoids and spiral. Claim 2 seems to say unequi-

vocally that the second false theorem was positioned right at the end of The

Big Letter as a whole. Claim 3, however, is problematic: it seems to suggest

that the two false theorems preceded the theorems on the cone (by which is

meant the conoid). But this tension between claims 2 and 3 is inevitable on any

interpretation of this passage. Indeed, a natural resolving of this tension is to

suggest that the phrase μετὰ ταũτα in claim 3 means what it did in claim 1:

after the entire chunk of sphere-related problems. Archimedes reverts here to

thinking in terms of the grand tripartition into results having to do with

31 In the manner of Aratus, perhaps, hiding acrostics in his poem (Jacques 1960)?

Of course, an acrostic fits poetry better than prose. How about an anagram? To quote

a famous passage from Newton’s letter to Oldenburg, November 3, 1676 (from

Scriba 1963: 123): “Nevertheless – lest I seem to have said too much – inverse

problems of tangents are within our power, and others more difficult than those, and

to solve them I have used a twofold method of which one part is nearer, the other

more general. At present I have thought fit to register them both by transposed

letters, lest, through others obtaining the same result, I should be compelled to

change the plan in some respects. 5accdml0effhlti413m9n6oqqrSsllt9v3x: i

lab3cddl0emgl0ill4m7n6o3P3q6rSslttSvx3acm4egh 5i414m 5n8oq4r3s6t4vaadd-

meeeeeiijmmnnooprrrsssssttuu.” Newton’s paranoia contrasts with Archimedes’

pleasure of the ambush. Newton felt hunted: Archimedes was hunting. But both

faced the same structural problem: how to assert something in public while keeping

some part of it secret?
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spheres, conoids and spirals, respectively. And then it is indeed true that,

under my hypothesis as well, the results concerning the conoid were after

(μετὰ) the results concerning the sphere (ταũτα: but ταũτα now refers to the

results concerning the sphere, excluding the two false results).

The text is consistent with my guess concerning the structure of The Big

Letter. The text does not prove it, however, and for a good reason: Archimedes

would not be explicit about the structure of The Big Letter, because Dositheus

would be familiar with it anyway. Hence the cryptic references to the μετα

ταυτα: Dositheus would unpick those references based on his knowledge of

the preceding texts. The Big Letter provides this introduction with its basic

framework.

This letter was written for those who were part of the circle of correspon-

dence: for the members of the Republic of Mathematical Letters.

the republic of mathematical letters and

the character of archimedes’ mathematics

This letter is clearly a piece of meta-correspondence, telling its reader about

its relation to past letters: it fulfills the promise of a certain past letter, a

promise only partly fulfilled by other past letters; it removes the sting from a

previous correspondence, by pointing (I suggest) to a textual feature of the

original letter. It reacts to previous letters from Dositheus, which asked again

and again for Archimedes’ own letters. It refers to the concrete act of con-

veying letters, by concrete individuals such as Heracleides.

Among other things, this is a story of Archimedes’ relationship with a

certain network: Conon, Dositheus, Heracleides and unnamed mathemati-

cians. The network is fragile – Conon dies, disrupting it. It is weak – it does

not respond. And it is certainly marked by tension more than by goodwill.

And this is also a story which touches upon the historical unfolding of

Archimedes’ mathematics. This is not a story incidental to Archimedes’

mathematical career: to the contrary, this was his career. Throughout, we

see that Archimedes publishes in the context of a particular communicative

agenda within the network. He sends out a letter so as to challenge. He sends

out further letters so as to reveal his mastery over the challenge. Archimedes

did not just produce mathematical theories – pieces of text independent of

context – which he then communicated in a certain way. A treatise by

Archimedes does not merely set out the truth of a theory. It does more:

divulging and withholding information, engaging with a concrete network

of correspondents.

Hence the discussion of time. Archimedes tells us that he took a long time

discharging the obligations of The Big Letter, as he still does, in fact – the

conoids are not yet published.Why not publish everything at one go? Perhaps,

to take the time to achieve perfection. (Is Archimedes worried of possible

criticism of imperfect publications?) But if so, why publish the claims?

Perhaps, to establish priority? (Conon, unlike the unnamed mathematicians,

was a real menace in this regard.) Certainly one senses the competitive tension
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in words such as “nor should you wonder why I took such a long time” –

Archimedes’ challenge requires time; time is also a source of anxiety, as it

opens Archimedes to the blame of procrastination or perhaps that of a false

claim.

Hence the meaning of the false theorems: to deny the possibility of claim-

ing priority, by claiming to have solved everything without the actual proofs

to support such claims. (Was Conon in on the secret?) Anyway, we interpret

this: the time-delay was functional, meant to allow certain movements in the

network: first Conon, then unnamed mathematicians, are allowed an oppor-

tunity to react.

Consider Archimedes’ words as he moves to the detail of the letter: “I also

wish to set out each of them, one by one [because of the false theorems] . . . So

I now find it appropriate to make clear which are those problems, and which of

them are those whose proofs you have (which were sent to you already), and

which I convey in this book.” Why “wish” (βοúλομαι)? Why “find it appro-

priate” (δοκιμάζομες)? Is it not natural that, introducing a mathematical text,

one would set out its contents? But this is not some neutral table of contents.

Archimedes teases apart the components of past correspondence so as to

distinguish the doable from the impossible, the done already from that

which is merely promised, zeroing in on the task set for the immediate

book. The needs of explanation are a function of a position in the system of

correspondence.

At the level of the challenge, the same is true of proof itself: the needs of

proof are a function of a position in the system of correspondence. We do not

have The Big Letter – the challenge itself. But we come closest to it with the

section on the conoids, where Archimedes still does not divulge his proofs. It

is worth quoting again from this passage:

if the figure mentioned is cut by a plane at right <angles> to the axis, it is clear that the

section shall be a circle, but it is required to prove that the segment cut off shall be half as

much again of the cone having a base the same as the segment and an equal height.

And if two segments of the conoid should be cut by any planes drawn in whichever

way, it is clear that the sections shall be sections of acute-angled cones if the cutting

planes are not perpendicular to the axis, but it is required to prove that the segments shall

have to each other the ratio which the <lines>, drawn from their vertices to the cutting

planes and parallel to the axis, have to each other, in square.

The meaning of “it is required to prove,” δείξαι δεῖ, used twice here, is

especially interesting. This is elsewhere a formulaic variation on the λέγω

ὅτι – as the Greek mathematician sets out the task of a particular proof (in the

“definition of goal,” Proclus’ διορισμός). It is thus merely a way of stating that

“the claim at stake can be formulated as . . . .” Here, however, it has an added,

relative component. The two claims are such that one is required to prove

them, as opposed to other claims which are clear. The phrase “it is required to

prove” is thus reinvested with meaning: “the claim at stake is not in and of

itself clear, so that it is required to prove it.” And it is invested with meaning

precisely because the requirement is not impersonal: it is Archimedes’ manner

of staking out the challenge. The requirement is imposed on those who take up
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Archimedes’ challenge: they need not bother with that which Archimedes

deems “clear,” but they do need to grapple with this, the more difficult part of

the task. Thus the need for proof is not some abstract, logical property: it is a

concrete demand, made of humans in implicit competition.

The very axiomatic structure is imbued with this localized atmosphere, is

made subordinate to the logic of the network of correspondence. Here are

Archimedes’ concluding remarks:

So, the proofs of these and other <theorems> concerning the spiral are written by me in

this book, and preceding them (as is also <the case>with <any> other <books provided>

in a geometrical way) are the <theorems> required for their <=the four theorems stated

above> proofs. And I also adopt, in these theorems, this lemma, which is also among the

<lemmas in> the books sent out before: that, among unequal lines and unequal areas, the

excess by which the greater exceeds the smaller, itself added onto itself, is capable of

exceeding every given <magnitude>, of those which are said to be <in a ratio> to each

other.

Are we right to detect a certain defensive tone? Archimedes does not commit

himself to produce just the proofs pertinent to the four results. He explains that

there is some preceding material given which is necessary to our understand-

ing; that this is the thing done in geometrical books. And the use of the lemma

is defended on the basis that it is among such material in previous books, it is

already established within the correspondence. It would be against the rules of

the game, apparently, to question it now!

“The rules of the game”: because it is difficult to conceive of the corre-

spondence other than as a competition, a tournament – one-sided as it is.

Archimedes always seems to be, in some sense, arrayed against his audience.

The entire correspondence is based on the challenge; the false theorems were

there to unmask would-be takers up of that challenge. It is this sense of

competition which provides the theme of surprise with its saliency.

Archimedes’ tournament of challenging and unmasking, waged against his

contemporary mathematicians, insensibly slides into his campaign of expec-

tations, raised and quashed, waged against us, his readers. I followed this

theme of surprise in my own introduction to Netz (2009), and so I expand here

on this account.

We have already pointed out the theme of retrospective surprise guiding

Archimedes’ correspondence: first, make a challenge; then, answer it; only

then, retrospectively, clarify what your answer did to the challenge. I did

mention, in this regard, the way in which (under my reconstruction)

Archimedes does not even say, at first, that the two false theorems were

false. But this, of course, is a matter of small detail and of conjectural

reconstruction.

More centrally, then – and quite simply, too – Archimedes never tells

Dositheus what this letter is about. It reads mostly like a commentary on The

Big Letter, and for much of the reading one would be forgiven for assuming

that the main point of this letter was to divulge the identity of the two false

theorems. There is a mention of some new results conveyed in this letter, right

at the beginning; but what those new results might be is left veiled and is
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probably not at the forefront of the reader’s attention. Still, the reader familiar

with The Big Letter would prick up his ears, once the transition was made to

the problems “having to do with the cone” (the conoid ones). Surely, the

reader will assume, those are the problems to be studied in this new letter:

especially since this would mean that The Big Letter was tackled in order. It

had, after all, three major parts, in this order – sphere, conoids and spiral: so

the conoids, logically, should follow the sphere.

And yet, only after Archimedes lists the conoid problems does he abruptly

state that “the proofs of these have not yet been sent to you.”(Still leaving

some hope, perhaps, that they are sent now?) And then simply drops the

subject, moving on to the spiral. At this point – finally! – Archimedes breaks

off the discussion to claim – for the first time in his correspondence, appar-

ently – that these problems are “as it were, some different kind of problems,

having nothing in common with those mentioned above” (so why were they

even lumped together with them? And just how are they so different?) Never

mind! The proofs, Archimedes proceeds to tell Dositheus, are now written

down. This leads to a very long and complicated description of problems, one

which is very difficult to unpack by a reader not already familiar with the

study of spirals (little wonder that no one picked up the subject). The order of

the problems, as we will note below, is not precisely that of their solution in

the book (analogous to the way in which the sequence of The Big Letter – (1)

sphere, (2) conoids, (3) spiral – was only partly reflected by the sequence of

Archimedes’ treatises setting out his results: (1) SC II, (3) SL, (2) CS).

introducing the spiral

One final surprise lies in store: the reader may well expect some introductory

content setting out definitions and special lemmas required (in the manner of QP

and SC I sent before; that SC II had none is less surprising, as its subject matter

closely resembled that of SC I). Instead, Archimedes states that he requires one

thing (Archimedes’ Axiom, or the lemma concerning the exceedability of mag-

nitudes in ratio), which, however, is not special to this book but used already in

other books. He then moves on – as we will see – without further warning, to the

sequence of theorems. Thus, we learn to our surprise, whatever introduction one

needs for On Spirals is to be lifted out of the retelling of The Big Letter.

This, it appears, is reduced to the definition of a spiral (there is a surprise

lying in store, for which we need to wait till after proposition 11). Let us stop

and say something regarding this definition. I would not, after all, like to

appear as a rabid sociologist of knowledge who sees mathematical networks

everywhere and mathematical concepts nowhere. There is a concept here, and

a startling one too: the spiral. It might be original to Archimedes, perhaps due

to Conon himself, but, in any case, it appears to be a recent mathematical

object.32 Its definition is not a matter of rephrasing old, established knowl-

edge; it is a matter of setting up a new domain for investigation.

32 See n. 25 above, as well as the general comments on proposition 24.

translat ion and commentary 33

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


Theway inwhichArchimedes does this is of some interest. For the definition

is neither completely general nor completely abstract. Archimedes made a

choice to introduce the object in a concrete and somewhat narrow manner.

It is obvious how the definition is concrete, in that it relies upon actual

motions:

If a straight line, being rotated in a plane in uniform speed, with one of its ends

remaining fixed, should be returned again to where it started from, while at the same

time, even as the line is rotated, a certain point is carried along the line, in uniform speed

with itself, starting at the fixed end, the point shall draw a spiral in the plane.

There is of course nothing shocking in a definition via rotation. Such is the

definition of the cone, in Euclid – a rotating triangle (ElementsXI def. 18) – as

of course is that of the conoid in this very letter (and the spheroid, to come in

CS: Heiberg 1910: I, 252.14–18); rotation played a major part in SC I, in the

theorems starting from proposition 23 involving the rotation of a circle

circumscribing / inscribed by a polygon, to produce a sphere circumscribing

/ inscribed by a sequence of segments of cones. There is, however, something

quite remarkable about the kind of rotation required for the generation of the

spiral. It involves the synchronization of two motions, and in this way it

cannot as simply be read off as a mere shorthand for a statement of a locus.

I explain. When an object is said to rotate around an axis, we can take this to

define a locus of points such that each point lies on the circumference of a

circle whose diameter is orthogonal to the axis, and whose radius is given by a

line defined on the original rotating figure. This of course is roundabout and

verbose, but it is intuitively clear that any rotation definition is in principle

equivalent to such a locus definition, so that, in fact, no special reliance on

motion is made when defining an object via rotation. However, once the

definition involves the synchronization of two rotations, there is no obviously

intuitive way of identifying the locus that the two motions produce and,

instead, following the progress of the object through its combined motion

becomes the only immediate intuitive way for identifying the shape of the

figure. Thus one is led to consider this figure as being nothing other than a

dynamic trace – and not just as a static locus whose shorthand is dynamic.33

Now, while the definition in terms of locus is not immediately apparent, it

is implicit – and one thing which Archimedes deliberately eschewed was to

provide such an abstract locus definition. For the spiral might, after all, be

conceived as a locus, as follows. First, we define an arbitrary point of origin

and an arbitrary line of origin drawn from that point. Then, each given point P

in the plane determines the line drawn from that point P to the point of origin.

Call this the “radius at point P.” Further, this radius at point P also determines

an angle: the angle between the radius at point P and the line of origin. Call

this the “angle at point P.” The condition of the locus of the spiral is this: that,

33 This is a well-known observation, often made in the context of the Quadratrix,

another specialized curve produced by two motions and of a more obviously ad hoc

character: see e.g. Funkenstein 1986: 301ff.; an illuminating discussion which, how-

ever, needs to be revised in light of Knorr 1986: 80ff.
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for any two points on the spiral taken arbitrarily such as P1, P2, the ratio

between the two angles at points P1, P2 is the same as the ratio between the

two radii at points P1, P2. If the angle is twice, the point should be twice out.

Such is the locus definition of the spiral, translating into the language of

proportion what, in Archimedes’ language, is in the language of uniform

speeds (this, indeed, is the content of proposition 12: would it not have

made sense, then, to have turned that proposition into a definition?). Why

does Archimedes avoid such a definition?

More than this: he avoids a more general definition. I have just mentioned

that Archimedes’ uniform speeds express, ultimately, a certain notion of

proportion. But they do so by reducing speeds to a special, trivial case: in

truth, a more general definition ought to have been framed in proportion terms

all along. For it does not really matter that the speeds should be uniform: what

really matters is that the two speeds – that of the rotating line, and that of the

point progressing along the line – should be proportional. A truly general

statement of the definition in terms of motions would be that a spiral is

produced when, at any given two instants m and n, the speeds of rotation

and progression to be represented as rotationm, rotationn, progressionm,

progressionn obey:

rotationm: rotationn:: progressionm: progressionn

Put more simply: if the rotation revs up from (say) 20 rpm to 40 rpm, the

progression should rev up at the same time from (say) 20 km/h to 40 km/h.

(Archimedes’ definition fulfills this proportion requirement in a trivial way,

since he has all rotation speeds, as well as all progression speeds, uniform, that

is, all instantaneous speeds equal to each other.)

Such a general statement is undoubtedly cumbersome, but it is definitely

not beyond the capabilities of Archimedes’ Greek: all one needs is the

language of proportion. Nor does one need the language of acceleration

(one does, however, need the notion of a speed at an instant: but would an

ancient reader necessarily even feel that this was a difficulty?).

We have contrasted Archimedes’ definition with two possible alternatives:

one, more general, has the two motions proportional to each other, rather than

each uniform. Another, more abstract, has the spiral defined as a locus

satisfying a proportion between angles and line segments. Why does

Archimedes prefer a less general and less abstract definition? One can devise

all sorts of complicated explanations in terms of the conceptual difficulties of

instantaneous speed, or of a locus (which, incidentally, would be much more

difficult to define as soon as we move beyond a single rotation: for then we

need the notion of angles greater than four right angles). But it appears to me

much simpler to invoke simplicity itself: Archimedes’ definition has the merit

of being a relatively succinct, and intuitive, way of invoking the object. Read

in its immediate context, the major impression is that of a growth in complex-

ity: starting from a (relatively) simple definition, going through the (rela-

tively) simple first problem, and growing in complexity until we reach the

nearly impenetrable fourth problem – all in the spirit of Archimedes’ gradual,

surprising, revelations. A more sophisticated and, so, complicated, statement

translat ion and commentary 35
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of the definition of the spiral would have taken away from the impression of

the complexity of the results obtained concerning the spiral. And so I return

full circle to the sociology of mathematics. My suggestion is that a certain

piece of the mathematical concepts themselves – the choice of a particular

form of definition – could be motivated by a desire to produce a certain textual

order which, ultimately, could derive from Archimedes’ position within a

network of correspondence.

/1 /

If a certain point is carried along a certain line, moved at uniform

speed with itself, and two lines are taken in it <=the original line>, the

<lines> taken shall have to each other the very same ratio which the

times <have to each other, =the times>, in which the point passed

through34 the lines.

For let a certain point be carried at uniform speed along the line AB,

and let two lines be taken in it, <namely> ΓΔ, ΔE, and let the time, in

which the point passed through the line ΓΔ be the <time> ZH, and

<that> in which <it passed through> the <line> ΔE <be> the <time>

HΘ. It is to be proved that they have the same ratio <to each other>:

the line ΓΔ to the line ΔE, <the same as that> which the time ZH <has>

to the <time> HΘ.35

(a) For let the lines AΔ, ΔB be composed by whatever composition

out of the lines ΓΔ, ΔE in such a manner, so that AΔ exceeds ΔB,36 (b)
and as many times as the line ΓΔ is composed in the line AΔ, so many

times let the time ZH be composed in the time ΛH, (c) while as many

times as the line ΔE is composed in the <line> ΔE, so many times let

the time ΘH be composed in the time KH. (1) Now, since the point

was assumed to be carried at uniform speed along the line AB, (2) it is

clear that, in as much time as it is carried through ΓΔ, in that time it is

34 By “pass through” in this context we mean “pass through to the end.”
35 There is a slight solecism in the line: one expects a singular form, where the Line

ΓΔ has to the line ΔE the same ratio which time ZH has to HΘ. Instead, we have a plural

form, “they have,” reflected by my strained translation. I believe the solecism could

have been original to Archimedes, and I do not try to correct it.
36 A few points require explanation: first, “composition” (see Glossary s.v. compose)

means nearly the same as “multiplication” (one here composes a line segment Y, out of

the line segment X, by attaching in line successive copies of the line segment X: we –

and the Greeks, too – would say that Y is a multiple of X. See the comments). Second,

“whatever” is meant to mean – all the way down to Step 8 – “whatever, as long as the

condition is fulfilled that AΔ>ΔB.” See, however, the following note to Step 9. Finally,

Archimedes implies a “respectively” qualifier: AΔ is composed (=is a multiple) of ΓΔ,

ΔB is composed (=is a multiple) of ΔE.

Composed: see Glossary

36 on sp irals
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also carried through each of the <lines> equal to ΓΔ.37 (3) Now, it is
obvious that it is carried through the composed line AΔ in such a time

as is the time ΛH, (4) since: as many times as the line ΓΔ is composed

in the line AΔ, the time ZH, too, is composed in the time ΛH. (5) So,
through the same things, the point is carried through the line BΔ, too,
in as much time as is the time KH. (6) Now, since the line AΔ is greater

than the <line> BΔ, (7) it is clear that the point passes through the line
ΔA in a longer time than <it passes through> BΔ; (8) so that the time

ΛH is greater than the time KH. (9) And it shall be similarly proved

that, even if times are composed out of the times ZH, HΘ by whatever

composition, so that one exceeds the other, among the <lines,> too,

composed, by the same composition, out of the lines ΓΔ, ΔE, the
<line> related to the exceeding time shall exceed <the other>.38 (10)

Now it is clear that ΓΔ has to ΔE the same ratio which the time ZH has

to the time HΘ.

comments

A treatise by Archimedes often begins with small, almost trivial propositions,

with little apparent bearing on the problem at hand. This proposition appears

to fit the pattern: its relevance to the study of spirals is not obvious (though we

are of course aware of the central role of motion in the very definition of the

spiral). It also has the appearance of a near-trivial observation, its claim true as

a matter of tautology, or definition. Indeed, the logical moves are very

frequently signposted by marks of “obviousness”: Steps 2, 3, 5, 7, 8, 9, 10

are results of arguments. Of these, 2, 7 and 10 are “clear,” 3 is “obvious,”

while 5 is “through these” and 9 is “similarly proved” (i.e. those claims are in

no need of explicit argumentation, their grounds being understood on the basis

A E BΓ Δ

Λ Θ KZ H

Diagram not extant for C.

37 This acts as Archimedes’ effective definition of “uniform speed”: if a point passes

an arbitrary length X in a given time T, it will pass any length equal to the arbitrary

length X at the same given time T. The “it is clear” may mark, perhaps, the more

“intuitive” character of the claim (which, after all, is not based on any explicit

definition).
38 The force of “whichever composition” becomes more powerful at this point. It

turns out that it does not matter if the composition is in fact such that AΔ>ΔB or such that

AΔ<ΔB (indeed, even though Archimedes refers only implicitly to that point, AΔ=ΔB

should be as good). What matters is that the following argument should be based on the

assumption of the particular direction of excess.What was left out in Step a was an οu̓δὲν
διαϕέρειν marker, a claim that this case is as good as any other, that the AΔ>ΔB is

arbitrarily chosen.
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of previous arguments). Step 8 is the least marked of the conclusions in this

proposition: that since

(5) the point gets through BΔ in the time KH.

(7) the point gets through ΔA in a longer time than BΔ.

((3) Understood as background: the point gets throughΔAin timeΛH)

(8) so that the time ΛH is greater than the time KH.39

Now, the overall strategy of the proposition is to construct an arbitrary case, and

to show the result (8) for that arbitrary case. The result is then generalized, from

the arbitrary case to that of any chosen case, in Step 9; and the conclusion of that

general statement for any chosen line is stated in Step 10. Thus Step 8 is in some

sense the real demonstrated outcome of the proposition, and its relative position

as a genuine “result,” not a mere obvious statement, is well understood.

This, however, masks the more important structure of the proposition, where

Step 8 is indeed a very easy result. The most important work of the proposition

happens not there, but later: in the transition from 8 to 9 and then from 9 to 10.

The transition from 8 to 9 is fairly characterized by “it shall be similarly

proved”: one can indeed provide similar proofs for cases other than those where

AΔ>ΔB (very obviously for the case AΔ<ΔB, since, after all, the precise

direction of the sign does not matter at all for the proof; slightly more difficult

for AΔ=ΔB). However, what this leaves unstated is that the very structure of the

proof has shifted: the task for the labeled proof, it turns out, was not to show the

result for AΔ>ΔB, but for the other case as well, or indeed more generally

(which Archimedes never clarifies explicitly) for any sign of the relation.

The transition from 9 to 10 is quite unfairly characterized. To say that the

transition from 9 to 10 is “clear” depends on one’s conception of what grounds

a proportion claim. Archimedes obviously relies on a statement equivalent to

Euclid’s famous definition (famously ascribed to Eudoxus) that first:second::

third:fourth when any equimultiples of the first and the third are both bigger,

both smaller and both equal to any equimultiples of the second and the fourth.

Or even more algebraically, the condition for the proportion a:b::c:d is that,

for any arbitrary M, N:

Ma �� Nb ! Mc �� Nd

39 This is the Step least marked as “obvious.” However, even here the particle used is

ὥστε for “so that” (signaling a rather direct transition), not the ἄρα, “therefore,” used for

evenmoderately striking conclusions in the pair ἐπεί–ἄρα. This is indeed a theoremwithout

a single ἄρα. One also notes the prevalence of particles marking a major transition: the ten

Steps of the proof contain five οũνs and a δή, that is, most Steps of the proof are marked as a

major transition. This is not a mark of an extreme episodic structure, but rather signals the

extreme “distance” inwhich the proof is conducted: Archimedes does not somuch argue, as

talk about an argument. (This is also related to the typical Archimedean stylistic feature of

having the propositions directly following a general introduction somewhat more “general”

and distant in character: more in the comments below on propositions 3–4).

38 on sp irals

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


Archimedes may of course rely on some version other than Euclid’s

(maybe on Eudoxus’ original version?). It does not help the reader that the

equimultiple relation is well hidden in Archimedes’ formulation (that the

antecedent line segments and times are multiplied equally is a non-transparent

result of the way in which Steps b and c are set up). What Archimedes does

emphasize is the arbitrary, “whichever” character of the equimultiples chosen

(which, however, once again is muddied by the peculiar statement in Step a

apparently limiting the discussion to the case AΔ>ΔB). In truth, the argument

from 9 to 10 is understood by someone who is very attuned to the possible

applications of Euclid’s definition of proportion – as is the case of course with

all modern scholars of ancient mathematics. Perhaps the same would have

been true for Archimedes’ audience, as well. Even so, the application of the

definition is subtle and difficult. It is therefore striking that Archimedes makes

no gesture towards the clarification of the relevant definition, and of its

applicability in this case. The proposition, it turns out, is only deceptively

easy. The clarity claimed by Step 10 is, so to speak, “ironic”: Archimedes is

using the language of simplicity to hide a deeply conceptual argument.

The conceptual difficulty may have to do with the objects themselves; it

may also affect the way in which the definition of proportion is used. For

Archimedes’ striking avoidance of the language of “multiplication” (used in

at least Euclid’s version of the definition of proportion) may be related to the

kind of object being multiplied.

The notion of “composition” here is quite striking. The verb σúγκειμαι is
very rich inmathematical meanings (including, for instance, the synthesis in the

analysis-and-synthesis pair), but its relevant meaning here is that of “addition.”

We have used it just above, in the statement of Archimedes’ Axiom, in the

expression “added itself onto itself” – the understoodmeaning being indefinitely

many times, as many as are required to exceed. This already includes the idea

that addition may be iterated, and this, finally, is the meaning here – a “compo-

sition” means “repeated addition.” Now, Greek has a straightforward term to

cover just this – multiplication – the one in use in Euclid’s definition of

proportion! So why not say that the objects should be multiplied by some

arbitrary factor? Perhaps, time is not the kind of thing one can “multiply.” It

is possible to compose larger units of time out of smaller ones, but Archimedes

is cautious in naming the act of composition and does not assimilate “time” to a

kind of number. (At the level of the diagram, however, both are undifferentiated

quantities, hence undifferentiated line segments.)

/2 /

If, with each of two points being carried along a certain line – not the

same – each at uniform speed with itself, two lines are taken on each

of the lines,40 of which let both the first – as well as the second – be

40 I.e. on each of the lines one takes two lines, so that altogether one takes four lines

(always understanding “line” to mean here “line segment”).

/2/ 39
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traversed by the points in equal times,41 the taken lines shall have the

same ratio to each other.42

Let a certain point be carried along the line AB, at uniform speed

with itself, and another <be carried> along KΛ <at uniform speed with

itself>. And let two lines be taken in AB, <namely> ΓΔ, ΔE, and
<two> in KΛ, <namely> ZH, HΘ, and let the point carried along the

line AB pass through the line ΓΔ in an equal time, in which the other

<point>, carried along KΛ, <passes> ZH, and, similarly, let the point

pass through the line ΔE, too, in an equal <time>, in which the other

<passes through> HΘ. It is to be proved that ΓΔ has to ΔE the same

ratio which ZH has to HΘ.
(a) So, let the time in which the point passes through the line ΓΔ be

the <time> MN. (1) In this very time the other point, too, passes

through ZH. (b) So also, again: let <the time> in which the point

passes through the line ΔE be the time NΞ. (2) In this very time the

other point, too, passes through HΘ.43 (3) So both have the same ratio:

“ΓΔ to the line ΔE, <the same ratio> which the time MN has to the

<time> NΞ”; as well as “ZH to HΘ, <the same ratio> which the time

MN has to the <time> NΞ.”44 (4) Now, it is clear that they have the

same ratio: ΓΔ to ΔE, <the same> which ZH <has> to HΘ.

comments

This theorem is very much a continuation of the preceding one (it thus begins

a theme of paired propositions): it is not explicitly a corollary mostly because

A E BΓ Δ

Λ Θ KZ H

ΞM N

All the codices agree except

for the position of M. It is to

the right of Z in EH (perhaps

so in codex A?), right under Z

in DG4; it is to the left of Z in

codex C, so that the entire figure

is completely symmetrical: I

assume this was the original

form.

41 The thought is that we pick the four line segments in sequence. First, we find a line

segment from line X and another line segment from line Y. Both are traversed by their

respective point in the same time, say an hour. Those are the “first.” We then pick

another line segment from line X and yet another from line Y. Both are traversed by their

respective point in the same time, say a day. Those are the “second.” Altogether there

are two first and two seconds and four line segments in all.
42 Namely: as first is to second in line X, so first is to second in line Y.
43 Steps 1–2 essentially restate the setting-out in different terms, based on the Steps

of the construction a, b, whose only function is to introduce a new unit, that of time.
44 Step 3 is an application of the preceding theorem to the conditions set out by the

preceding Steps a, b, 1, 2. The first part of the claim of Step 3 follows from Steps a, b; the

second part of the claim follows from Steps 1, 2.

40 on sp irals
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it calls for a different construction. It also maintains the same spirit of apparent

ease and argumentative “distance,” in this case with a mere four Steps, two of

which are embedded in the construction; another is a distant “so”; while the

last one is an “it is clear” (well motivated, in this case, as the argument for Step

4 is roughly that of the transitivity of proportion). It would have been feasible

to prove propositions 1 and 2 in a single proposition, where proposition 1 is

merely an interim result. Indeed, proposition 1 as such is not required later on

in the book; it is merely a stepping-stone for proposition 2. That this was not

done was probably for the sake of the appearance of simplicity itself: a single

composite proposition 1+2 would have been somewhat cumbersome and

difficult to follow. Archimedes preferred to have two propositions, one see-

mingly, and the other truly, simple; or he might have wanted pairs, as such: the

architecture is overdetermined.

The goal of propositions 1+2 is also somewhat masked by their division into

two parts. As it is, we follow through a system of two propositions, each with its

own goal, and one has an illusion of treating the broad questions of uniform

speeds and proportions, in the spirit of a general theory of mathematical/physical

science. In truth, Archimedes has no interest at all in physical science in this

treatise, and the function of these preliminary two propositions is precisely to

sterilize the physical component of the definition: even though the spiral is

defined through motions, these motions are found equivalent to geometrical

proportions so that, in the actual course of the treatise, the spiral is treated as if

its definition was purely geometrical. This brings us back to the problem of the

definition: why define the spiral as physical in the first place? I will return to such

questions when more evidence is brought in, following proposition 24.

The proposition further follows its preceding one in terms of the character

of the diagram. Once again, times and line segments are treated on a par.

However, there is a subtle addition to this equivalence of times and lines. Even

though, within proposition 2, the figure for the times is structurally different

from that of the figures for the lines (the lines are divided into four segments;

the times are divided into two), if we compare the figures for propositions 1

and 2 we find an even deeper equivalence: the lower line, for the times, in

proposition 1, is used again, essentially unchanged, in proposition 2, now

however signifying lines rather than times – further establishing the implicit

standardization of time as a geometrical object.

/3 /

Given circles, however many in number, it is possible to take a straight line

which is greater than the circumferences of the circles. (a) For with a polygon

circumscribed around each of the circles (1), it is clear that the line composed

of all the perimeters <=of the polygons> shall be greater than all the circum-

ferences of the circles.45

45 SC I.1; though perhaps in this context it is simply taken for granted that the

perimeter of a polygon is greater than the circle it circumscribes.

/3/ 41
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/4 /

Given two unequal lines, both a straight <line> and a circumference of

a circle, it is possible to take a straight line smaller than the greater of

the given lines, and greater than the smaller <=of the given lines>.

(1) For with the straight <line> being divided into as many equal

segments – asmany times such that the excess, bywhich the greater line

exceeds the smaller, itself being added to itself, shall exceed the straight

<line>,46 the single segment shall be smaller than the excess.47 (2) Now

then, if the circumference is48 greater than the straight <line>, with one

segment49 being added to the straight <line>, it is clear that it shall be

greater than the smaller of the given <lines>, and smaller than the

greater; (3) for the added <line>, too, is smaller than the excess.50

comments

In between Steps 2 and 3, Heiberg inserts another step – with no textual

authority – which would have read as:

(3) while if it <=the circumference> is smaller, with one segment being added to the

circumference, it shall similarly be greater than the smaller, and smaller than the greater

This assumes that the original text covered the two cases, circumference>

straight as well as straight>circumference. The main reason to adopt this

reading is the particle μέν in Step 2, which expects the δέ provided by

Heiberg in Step 3. Furthermore, the loss of a hypothetical Step 3 could be

accounted for by its very long homoioteleuton (though still it would be a

46 Guaranteed by Archimedes’ Axiom. We assume the case – which will be made

explicit in the next Step – where the circumference is greater than the straight line. This

implicit picking of one sign out of the two possible ones is of course reminiscent of the

argument of proposition 1; here it is less innocent.
47 This Step is opaquely phrased. Call the circumference C, the straight line S. The

excess is C-S. We divide the straight line into “as many times.” Which “as many

times”? The same as we required for multiplying the excess so it would exceed the

circumference. The “as many times” is n, such that n(C-S)>S, when (n-1)(C-S)<S.

Since n(C-S)>S, it follows that C-S>S/n or, verbally, the excess is greater than the

straight line divided into “as many times.”
48 The Greek has the subjunctive verb form meaning “if the circumference should

be . . . .” This is the standard expression used in general enunciations (“if a line should

be cut . . . ”) and which I translate with a simple indicative, as it carries no more than

the meaning of a general rule. Note, however, that Archimedes’ language in the

original would have suggested, then, that he relies on something akin to an implicit

lemma (and not just an ad hoc observation).
49 Namely, the segment resulting from dividing the straight line into “as many times”

segments.
50 Why the need to recall the claim of Step 1? One needs, as it were, to state twice a

claim which is not, strictly speaking, true. See the general comments.

Added to itself: see Glossary
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curiously long – and curiously “neat” – lacuna). An attractive emendation, but

no more than a conjecture. Removing Heiberg’s hypothetical Step 3, we have a

couple of diagram-less claims each backed by a single sentence; perhaps

Heiberg is right, and the second is backed by a rather complex sentence.

Are these even propositions? Should they be numbered as such?

Now will be a good time to discuss the question of “what counts as a

proposition” in general terms. The following table sets out the “titles” of the

various segments of the text of On Spirals, in Heiberg’s edition, codex A and

codex C. The mark “Des” for codex C represents a lacuna in that manuscript.

An ‘X’ means that a mark is missing at that point.

Heiberg Codex A Codex C

1 1 Des

2 2 Des

3 3 3

4 4 Des

5 5 X

6 6 X (not reported by Heiberg)

7 7 Des

8 8 Des

9 9 Des

10 10 X

Cor X X

11 11 11

Cor X X

Defs X X

12 12 12

13 13 13

14 14 X (not reported by Heiberg, uncertain)

15 15 15

16 16 16

17 17 X (not reported by Heiberg)

18 18 18

[2nd figure] 19 19

19 20 20

20 21 X (not reported by Heiberg)

21 22 22

Cor X 23 (not reported by Heiberg)

22 23 X (not reported by Heiberg)

Cor X 24 (at middle; not reported by Heiberg)

23 24 X (not reported by Heiberg)

Cor X X

24 25 25

[2nd figure] 26 26

25 27 27
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(cont.)

Heiberg Codex A Codex C

[2nd figure] 28 X (uncertain)

Cor X 29

26 29 X

[2nd figure] 30 30

27 31 31

28 X Des

Several observations emerge.

First, such titles as “corollary” (πόρισμα) or the unique “Definitions” (ὅροι)

are not attested inmedievalmanuscripts. This is indeed the general rule formost

such titles in ancient mathematics, an important observation made by Fowler

1999: 222 n.1.

Second, in the manuscript tradition, the numbers of “propositions” seem to be

related at least in some cases not to what we call “propositions” but to what we

call “diagrams” (this is reminiscent of the way in which Pappus uses diagrams to

count propositions: see Netz 1999: 37 n.66). Thus, when the propositions 18, 24,

25 and 26 bifurcate into two cases, each with its own diagram, the manuscripts

tend to label this with a separate number. Related to this, codex C tends to

position the diagrams of its propositions immediately following the main argu-

ment and preceding the corollary, when present. As a consequence, the corollary

follows upon the diagram and thus gets its own separate numbering.

Third, it appears that the scribe of codex C did not make a consistent effort to

copy all proposition numbers. Of the sequence of thirty-one numbers the

manuscript could have used, seven are lost because of lacunae in the parchment.

Of the remaining twenty-four, seven appear to have been omitted by the scribe:

about 30 percent. This is a remarkable level of lassitude on the part of the scribe

who, otherwise, does not appear to stray far from the text transmitted by codex

A. Clearly, however, some archetype of C had a complete set of numbers, which

on its overall structure (though not in its individual detail) agreedwith that of A.

The sporadic application of proposition numbers on the part of the scribe of

C is perhaps best understood as a mark of a certain attitude: that such numbers

were scholiastic in character and did not stand for the voice of the author. (I

would assign such an understanding not to the scribe of C, but perhaps to some

archetype: the scribe of C does not strike me as anyone deeply engaged with

anything like the authorial voice of Archimedes.)

All the more remarkable that not one, but two minuscule manuscript

traditions – those of A and of C – chose to label both proposition 3 and 4 by

their own, separate numerals, and this in the absence of diagrams.51 My own

51 One should add, though, that the manuscripts agree so well for the text of SL that

one may assume that they do in fact derive from a common archetype, one not far away:

in all likelihood, SL stems from a single majuscule codex. The numeration represents,

then, a single event in late antiquity.
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impression is that this stretch of text does not make such a strong claim of

propositional status. Instead, Archimedes wraps up a preliminary stage with-

out fully fledged, complex arguments. Those are rapid remarks, making

claims that are apparently even easier than the preceding, “easy” two proposi-

tions. The lack of diagrams in this case makes those claims take an “intro-

ductory” character, perhaps reminiscent of the stage where one makes general

claims of a more “axiomatic” nature (and, indeed, those propositions are close

to the axiomatic level of Archimedes’ Axiom itself). As such, those proposi-

tions are in line with a widespread technique in Archimedes of a gradual

modulation from the general introduction to the fully fledged sequence of

proved theorems (Netz 2009: 103–104).

The appearance of the great ease of propositions 3–4 is even more decep-

tive than that of propositions 1–2. Indeed, I am not even sure we should

consider proposition 4 as valid.

Recall the task. We have two unequal lines, one straight, one curved

(specifically, this is described as a “circumference of a circle,” though one

assumes that this description is meant to cover arcs as well). We wish to

squeeze a third line in between (which may be either straight or curved).

In Step 1, it is taken for granted that a line is found, equal to the difference

between the two lines. This is not straightforward. To claim to be able to do

this constructively is to claim to be able to find a straight line equal to any

given curved line, which is tantamount to squaring the circle. Obviously then

the claim is to be understood non-constructively, as a mere realist statement

that such a line, equal to the difference, exists (a realist sentiment which in and

of itself is unproblematic; see Knorr 1983: but in this case this realist senti-

ment already suggests the turn to neusis constructions, from proposition 5 on:

see below).

If so, however, Step 1 is thrown further into doubt. For it is envisaged that

the straight line (here assumed to be the smaller of the two given lines) be

divided into the same number of equal segments, as many times as it took for

the difference, added onto itself, to exceed the same, smaller, straight line.

Yet, if the difference is not produced but is instead merely assumed to exist,

there is no mechanism associated with its finding, or with the finding of the

number of times it takes, added itself onto itself, to exceed a given line. Thus,

once again, the number of times into which the line should be divided is not

given but is simply assumed to subsist in some unknowable fashion. This,

however, makes the entire apparatus of Steps 1–2 quite redundant. For if there

is no constructive operation at all, but a mere ontological statement, why

should we not assert, to begin with, that, given a difference, there is a

difference smaller than it (say, its half), which we may then add onto the

smaller line?

In short, because of the difficulties of an actual construction transforming

straight into curved lines, there is no real sense in which the problem of

proposition 4 is really solvable. From a strictly axiomatic point of view, it

would have been best to treat it as a postulate. Indeed, it is most akin to

Archimedes’ Axiom, whose language implicitly asserts that straight and

curved magnitudes, added themselves onto themselves, may exceed each

/4/ 45

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


other. I am not sure Archimedes is assuming that this postulate already allows

him to achieve other comparisons between straight and curved lines. Perhaps

he is aware of axiomatic gaps, but does not see them as crucial – it is enough

for him that the problem is ontologically feasible, and the proof is not a real

axiomatic reconstruction of the way in which the task is achieved, but is rather

a sketch making its ontological feasibility somewhat more vivid. This cavalier

attitude to problem-solving – especially in the context of the treatment of the

spiral – is interesting. If Archimedes does not seek to map out the precise

axiomatic underpinning of the relations of curved to straight lines, we are

prevented from reading the treatise as a tool for an axiomatically sound

solution to such problems as the quadrature of the circle or the trisection of

the angle: more on this in the comments on propositions 7, 24 below.

Or possibly, the preference to make this claim into a proposition and not a

postulate reflects no more than a stylistic decision to avoid an explicit axio-

matic introduction to this treatise (once again, then, motivated by the com-

munication strategy of the introductory letter, all organized around the

surprise of the spiral being flung upon the reader). Archimedes, still, may

have been wary of the claims made here, sufficiently so as to provide them

with a status in between the postulate and the proposition – occupying the

middle of those incommensurables – briefly argued for, but diagram-less.

What we see through the entire sequence of propositions 1–4 is apparent

ease masking conceptual complexity: a duality typical of this treatise.

/5 /

Given a circle and a line touching the circle, it is possible to draw a straight

line from the center of the circle to the tangent, so that the straight line

between the tangent and the circumference of the circle has to the radius52

<of the circle> a smaller ratio than the circumference of the circle which is

between the touching point and the <line> drawn through to the given

circumference (however big)53 of a circle.54

52 Here and elsewhere in the translation, the English word “radius” stands for the

Greek formulaic expression “the <line drawn> from the center” – which, however,

being fixed in its formulaic form, literally carries the very samemeaning, in this context,

as our “radius.” In this particular case I eschew literalness for the sake of a slightly less

cumbersome text.
53 “However big” means not so much that the circumference of the circle is arbitrary

(which is an understood meaning of a “given,” anyway) but rather that this problem,

surprisingly, is not limited to a certain range of values for the given circumference (or

arc). In technical terms, the problem does not possess a διορισμός.
54 The proposition does not possess amuch-needed definition of goal (see the general

comments). In terms of the diagram, the task is to produce a line ZK so that

ZΘ:ΘK<arcBΘ:E. It is to be noted that the given “circumference” is provided as a

mere quantitative mark, which is therefore drawn – as such marks generally are – as a

straight line. If a time is a straight line, why can’t a circumference be so?
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(a) Let there be given a circle, ABΓ, its center K, (b) and let ΔZ touch the

circle at the <point> B, (c) and let there also be given a circumference of a

circle, however big. (1) It is possible to take a certain line greater than the

given circumference,55 (d) and let the line E be greater than the given

circumference; (e) and let AH be drawn from56 the center K parallel to ΔZ,

(f) and let HΘ be set equal to E, verging towards B.57 (g) So then: let a line

joined from the center K to the <point> Θ be produced; (2) so, ΘZ has to ΘK

the same ratio which BΘ <has> toΘH.58 (3) Therefore ZΘ has toΘK a smaller

ratio than the <ratio> which the circumference BΘ has to the given circum-

ference, (4) because the line BΘ is smaller than the circumference BΘ, (5)

while ΘH is greater <than> the given circumference. (6) Now then, ZΘ, too,

has to the radius a smaller ratio than the circumference BΘ has to the given

circumference.

comments

As we move on from the general statement to the construction in Step a, we

expect a setting out and definition of goal, explaining in the concrete terms of

the diagram what the difficult constructions of the enunciation actually mean.

This Archimedes avoids, treating the enunciation as if it partly stood for a

definition of goal; hence he moves back, in Steps 5 and 6, to speak of “the

given circumference” (rather than E), and, in Step 6, to speak of “the radius”

(rather than ΘK).

Δ

A K
H

ZB

E

Θ

Γ

The diagram is not

preserved in codex C. DE

have the line ΔZ extended

slightly rightwards,

beyond Z; perhaps so in

codex A. B is unique in

making the KΘ=ΘH.

55 Proposition 3.
56 A tiny solecism, as pointed out by Heiberg: “through” would be smoother than

“from.” This could be an authorial solecism: Archimedes half forgets the segment AK,

which, indeed, plays no role in the argument (I do not think this is a late mistake,

Archimedes writing KH instead of AH; see the comments on proposition 9).
57 To set an object “verging towards” a point P means (quite intuitively) that we set

up a line segment, equal to a given value, so that, if it be extended, it would pass through

the point P. This is technically known as a “neusis construction.” More in the general

comments here and on proposition 7.
58 The triangles BΘZ, KΘH are similar (Elements I.15, I.29; Step e of the construc-

tion); then Elements VI.4.

Verging: see Glossary
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This is in some sense a continuation of the preceding propositions.

Proposition 1 and 2 did have an “it is required to prove” segment, but their

settings-out started out, somewhat surprisingly, with such an expression as:

“Let a certain point be carried along the line AB”

The definite article on the line AB is natural only if the line has been set out

already. Thus the impression is of an informal setting-out – in character with

the overall informal, “distant” nature of the arguments. Propositions 3–4,

following that, are no arguments at all and certainly have no formal proposi-

tional structure. Here, in proposition 5, we have hit, finally, upon some

genuine geometry. It is not obvious that the task is doable, especially with

its claim to avoid any διορισμός (that is, the claim is that the task is doable

under any quantitative parameters). It takes some (elementary) ingenuity to

achieve it – and Archimedes calls up the heavy tool of a neusis construction.

Finally, even though the discourse is still marked by such particles of transi-

tion as δή (Steps g, 2) and οũν (Step 6), we do have here – for the first time in

this treatise – the argumentative particle ἄρα (Step 3). Even so, Archimedes

keeps something of an informal air – which will be extended further in the

sequence of propositions leading up to 9. Only proposition 10 would be the

first fully formed, independent proposition in this treatise.

I wonder if this is related to the other notable feature of this proposition,

namely, its neusis construction. In a neusis construction we avoid an explicit

construction of a required geometrical entity, merely asking that it be placed

under certain conditions: the standard case, as in here, is of a line segment of a

given length placed so that its continuation would pass through a given point

(“verging,” the literal meaning of νεũσις). In this case, in Step f the point H is

found so that HΘ “verges” towards the point B (or, if you will, so that the lines

BΘ, ΘH are on a line), while ΘH=E (namely, the given circumference). That

the line “verges” as it does is crucial for the sake of the similarity of the

triangles, which then allows us to transfer a proportion involving the given

line, here represented by ΘH, to another proportion involving the line BΘ.

There are two difficulties here. First, there is no argument to show that the

point H can be found through any mechanism whatsoever, be it ruler or

compass or some more complicated tool. There is not even a hint, in the text

as transmitted, that such a mechanism is called for (in the manner in which

Archimedes, in SC II.4 [Netz 2004b: 204], draws our attention to the need for

solving a specialized problem; on the other hand, Archimedes is equally silent

on the need for solving the problem of finding two mean proportionals, in SC

II.1 [Netz 2004b: 189]). Second, even given such a mechanism of finding the

point H, we first need to turn the magnitude E into a linear magnitude, i.e. to

square the circle.

Take the neusis first. It is clear, through considerations of continuity, that,

given a straight line segment E, there is some arrangement such as ΘH which

satisfiesΘH=E. This is because, with a point such as H positioned very near Γ,

we can make a line such asΘH as small as we please. On the other hand, as the

point H is carried away from Γ, the lineΘH becomes progressively greater; so

that it is indeed clear that at some point it would be exactly equal to E. This
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“sliding” operation may well be the implicit meaning of the neusis operation.

However, this is not a solution of a task: this is a mere ontological observation

that (given certain realist assumptions of continuity) a line solving the task

exists.

But then again, why should Archimedes even aim for anything more

powerful than such an ontological observation? For, after all, the other

difficulty – that of the need to square the circle – makes the entire operation

depend essentially on a mere ontological statement that a certain line exists

(rather than that a certain line can be found). An explicit solution of the neusis

construction would have pushed the entire burden of non-constructivism to

the quadrature aspect, but would still not have made this proposition into a

constructive one. It is thus still in sequence with propositions 3–4: a gesture

towards problem-solving, still aware of the limitation imposed by the impos-

sibility of squaring the circle – and, for this reason, among others, limiting

itself to the gesture.

But can the neusis even be constructed explicitly? This was the task that

Knorr set himself in 1978; I will return to discuss this in the comments on

proposition 7 below.

/6 /

Given a circle and, in the circle, a line smaller than the diameter, it is

possible to extend a line from the center of the circle towards its

circumference, cutting the line given in the circle, so that the line

taken off <=from the extended line> between the circumference and

the line given in the circle, has to the <line> joined from the end of the

extended <line> which is on the circumference, to the other end of the

line given in the circle, the ratio laid down, if the given ratio is smaller

than the <ratio> which the half of the <line> given in the circle has to

the perpendicular drawn on it <=the line given> from the center.59

(a) Let there be given a circle, ABΓ, its center K, (b) and let there be
given a line in it, smaller than the diameter, <namely> ΓA, (c) and a

ratio, which Z has to H, smaller than the <ratio> which ΓΘ has to KΘ,
(d) KΘ being a perpendicular, (e) and let KN be drawn from the center

parallel to AΓ, (f) and <let> ΓΛ <be drawn> at a right <angle> to KΓ.60

(1) So, the triangles ΓΘK, ΓKΛ are similar.61 (2) Now then, it is: as ΓΘ
to ΘK, so KΓ to ΓΛ;62 (3) therefore Z has to H a smaller ratio than KΓ
to ΓΛ. (g) So, that ratio which Z has to H, let KΓ have this to a <line>
greater than ΓΛ.63 (h) Let it have it to BN, and let BN be set between

59 In the terms of the diagram: BE:BΓ is to be equal to a given ratio; the given ratio is

to be smaller than ΘΓ:ΘK.
60 Why is ΓΛ not directly drawn as a tangent? A puzzling omission.
61 Elements I.29 and the construction Step e; the construction Steps d, f; Elements I.32.
62 Elements VI.4. 63 Elements V.10.

Perpendicular: see Glossary
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the circumference and the line <=line KN>,64 <passing> through Γ65 –
(4) and it is possible to cut the line in this way66 – (5) and it shall fall

outside67 – (6) since it <=BN> is greater than ΓΛ. (7) Now, since KΓ68

has to BN the same ratio which Z has to H, (8) EB, too, shall have to

BΓ the same ratio which Z <has> to H.69

B

E
A

K N
HZ

Θ Γ

Λ

DG have Z, but EH4 have Ξ
instead, and so would have A. C

has Z, so the mistake probably

crept in only with A. Codex C

has M instead of N; also, it

introduces a Z at the intersection

of the line KN with the circle

(it also, perhaps related, has BΛ,
rather than BN, as a single

straight line; BN extends more

rightwards). G has the line KΘ
as perpendicular, KB to its

right; it does not complete the

diameter leftwards beyond K.

GH have Z, H equal. The

reading of E in codex C is

uncertain.

64 The reference of “the line” to KN is surprising, since a “line” so far has been the

given line, that is, AΓ. Clearly Archimedes is thinking with his geometrical agenda,

rather than his words, in mind. The line KN is “the line” in the sense that it is the base on

which the neusis-like line BN is expected to “slide.”
65 This is of the same class as a neusis construction. It is not one, technically

speaking, for the trivial reason that the line does not “verge” towards a given point

such as Γ, but instead passes through it. While in the previous proposition it was

intuitively seen that the line can be as big or as small as we wish through considerations

of continuity, as it “slides” along what was there the base, KH, so in this proposition it is

intuitively clear that the line can be as big as we please, but can never become smaller

than ΓΛ under the topological arrangement of the diagram, and that implied by the

requirement that the line pass through (rather than “verge towards”) Γ.
66 I do not believe this refers to some independent solution for the task of the neusis-

like construction (it would be a very offhand way of asserting such a major claim).

Instead, I think Steps 4–6 simply emphasize the same thing in different ways: that since

BN>ΓΛ, the line constructed in this way does indeed pass through Γ and extends

between the circumference and the line KN, that is, they verify that the topology of

the diagram holds under the neusis assumption.
67 Outside of what? Once again Archimedes talks with his agenda in mind, not

clarifying his intention to his readers. It appears that the important requirement is that

B should fall “above”AΓ or (from the perspective of the center of the circle) “outside” it.
68 Heiberg has corrected to KB; since both are radii, the equivalence between the two

can also be taken tacitly. The transition into the following Step 8 definitely assumes,

however, we have so transformed implicitly Step 7 to mean KB:BN::Z:H. See following

note. I thank J. Wietzke for pointing out this textual observation.
69 Elements VI.2 and Step e of the construction. It is a mark of the relative sophis-

tication of this argument that, for the first time, some genuine implicit geometrical

argument (carried somewhat implicitly) is at work – albeit of a very elementary

character.
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comments

The diagram has several surprising features, all removed by Heiberg.

First, Z is greater than H. I am not convinced that this could come about

through scribal error. It is somewhat less logical than Heiberg’s choice, of

making Z smaller than H, since it is required that Z:H be smaller than a certain

ratio. If the given ratio is smaller than equality (i.e., in this case, if ΓΘ<KΘ,

which happens when Γ falls on the quadrant from due north-west to due north-

east), clearly Z has to be smaller than H; but there are no analogous conditions

when Z has to be greater than H. It is intriguing that codex A placed the point

Γ rather high, while codex C placed it rather low, but probably not too much is

to be read into it, and the sequence of two unequal lines, Z and H, does not

signify a ratio with a given direction of size but a more abstract statement of a

ratio which is allowed to include inequality.

Second, this discussion of the apparent sizes of Z and H assumes that one

can compare them with the apparent sizes of ΓΘ, ΘK in any realistic fashion.

The diagram avoids this by drawing a series of metrically “false” arrange-

ments. They seem to be driven by a desire to position B in the simplest

position possible – the middle of the arc AΓ. From this it follows that EK

appears perpendicular to the line AΓ. The “real” perpendicular, ΘK, is thus

pushed aside (away fromN) so that the angle atΘ is non-right,ΘΓ is no longer

half AΓ, and the triangles ΘΓK, KΓΛ lose their apparent similarity. (Codex C

further has a very bad right angle KΓΛ – indeed ΓΛ appears more co-linear

with BΓ, in its diagram, than ΓN does: but this is probably just error on the part

of C’s scribe.) I do not think this is meant to “generalize” somehow the import

of the proposition; it merely shows how little Archimedes appears to care for

metrical accuracy.

Third, the line KN is extended all the way as an entire diameter. This is

comparable to the way in which, in Step e of the previous proposition, the line

AH was extended “from” K (why not through K? Why go all the way to A to

begin with?). This is in fact a consistent feature of propositions 5–9. I am not

at all sure what this should be taken to mean, but one thing it does bring out

powerfully is the extent to which the entire set of five problems is understood

to refer to the very same basic construction – of which see more below.

/7 /

Given the same, and with the line in the circle being produced, it is

possible to extend <a line> from the center towards the produced

<line> so that the <line> between the circumference and the produced

<line> has the ratio laid down to the <line> joined from the end of

the <line> taken off inside to the end of the produced <line>, if the

given ratio is greater than the <ratio> which the half of the <line>

given in the circle has to the perpendicular drawn on it from the center.

(a) Let the same be given, (b) and let the line in the circle be

produced, (c) and let the given ratio, which Z has to H, be greater
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than the <ratio> which ΓΘ has to ΘK; (1) Now then, it shall be greater

than the <ratio> which KΓ has to ΓΛ.70 (2) So, that ratio which Z has to

H, KΓ shall have to a <line> smaller than ΓΛ.71 (d) Let it have it to IN,
verging towards Γ. ((3) It is possible to cut in such a way:72 (4) and it

<=IN> shall fall inside ΓΛ, (5) since it is smaller than ΓΛ.) (6) Now,
since KΓ has to IN the same ratio which Z <has> to H, (7) EI, too, shall

have to IΓ the same ratio, which Z <has> to H.73

comments

The proposition is couched within the very same constraints as the previous

one: the same circle, the same given line. The task is slightly different: in

proposition 6 we have a ray extending from the center of the circle so that it

cuts first the given line, and then the circumference (the sequence of the ray:

K-E-B). We then connect BΓ and demand that BE:BΓ should be a given ratio.

Here, in proposition 7, we have the ray extending from the center of the circle

so that it cuts first the circumference, and only then the given line (K-I-Γ). We

then connect IΓ and demand that EI:IΓ should be a given ratio. EI is in a sense

the same as BE – it is the intercept of the ray between the given line and the

circumference; BΓ is in a sense the same as IΓ – it is the line joining the cut of

the ray with the circumference, and the cut of the given line with the

circumference. Thus the entire difference is that of the relative positioning

of given line and circumference, and the two propositions 6–7 can be seen

nearly as the two cases of a single proposition. However, the different cases

give rise to a fairly significant substantive difference – in proposition 6, it

follows from the configuration that the task is doable only if the ratio is

smaller than a certain minimum; in proposition 7, it follows from the config-

uration that the task is doable only if the ratio is greater than the same

minimum. The two tasks are the same, but they are also literally “inside-

out” reflections of each other: what proposition 6 accomplishes inside the

circle, proposition 7 accomplishes outside it.

A

K N

I

E

HZ

Θ Γ

Λ

Codex C is missing for this

diagram. D has Z>H

substantially, E has Z>H by a

slight difference. G has N, Λ
much closer; cramped

together. Codex A had the

label Ξ inserted at the

intersection of KΛ and the

circle (omitted only by B).

70 Step 3 of preceding proposition. 71 Elements V.10.
72 Cut what? Perhaps KΛ?
73 Elements I.29, I.15, VI.4: same as Step 2 of proposition 5.
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The language of sameness builds on the previous tendency – from proposi-

tion 5 onwards and really from the beginning of the treatise on – to avoid a fully

explicit proposition. We did not have an explicit setting-out and definition of

goal in propositions 5–6, and the reliance on “the same” in this proposition

avoids, effectively, the construction as well.We are asked, in Step b, to have the

given line produced, and, in Step c, the condition on the given ratio is reversed;

but other than this the entire construction is skipped, and so we have to figure

out for ourselves the new significance of the letter E – it is in fact the “same,” i.e.

the intersection of the ray with the given line. We also have to figure out for

ourselves the identity of I – which is somehow the same as B from the preceding

proposition, i.e. the intersection of the ray with the circumference,74 but is also

something else, namely the end point of the “sliding” line of the verging, or

neusis, operation. As it is, we have to figure out contextually the conditions for

this “verging” operation. Much of the proof is skipped as well: Step 1 carries

over from the argument of the preceding proposition (hence the particle ουν and

the more distant “shall be” – the result is surveyed from afar rather than directly

asserted), and Step 2 no more than unpacks it, while Step 6 does no more than

reiterate a construction. The one remaining substantial argument – Step 7 – does

not carry over from the preceding proposition (it is indeed directly dependent

upon the configuration, so that the argument would have to be different in the

two propositions). However, it is exactly the same as an analogous argument in

the proposition before that, number 5, a fact of which the reader is surely aware.

Hence this brief proposition is really “the same,” an elaborately stated task

whose solution, at this stage, calls for no explicit construction argument at all.

why neusis?

That the argument is so curtailed depends essentially on the neusis operation,

inherently an argument-curtailing operation – in a sense, it substitutes the

mere ontological claim, of the existence of a solution, for the actual task of

finding such a solution. Now, proposition 7 is the first among propositions 5–9

to be used later on in the treatise, in the main sequence of results concerning

the spiral, in proposition 18, Step c. For this reason, Knorr’s fundamental

study of neusis inOn Spiral Lines (1978a) was centered around proposition 7,

and it is time for us to turn there.We should study this in detail, as the question

brings up the goals and nature of ancient problem-solving, and of course

because of the centrality of Knorr to the study of On Spirals.

The question is why Archimedes uses a neusis construction. This can be

further divided into two questions: (a) what were the alternatives available to

Archimedes and (b) why did he not choose them?

74 Incidentally, Heiberg does have a B in the diagram of proposition 7, as the

intersection of the diameter with the circle, further from Λ – same as A in the diagram

of proposition 5. Indeed, as is true for all the diagrams of 5–9, the diameter is extended

through the circle; but there is no manuscript authority for this label B. (This is based on

codex A alone: the diagram of codex C is not preserved.)
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Until Knorr (1978a), the alternative was seen as one between a neusis (or an

operation closely equivalent to it) and “stronger” construction tools, i.e. going

beyond those of Euclid’s Elements. This essentially follows Pappus (Collection

IV.52–54: see Sefrin-Weis 2010: 301–311), who has offered a solution using

conic sections (so that a complex figure involving a parabola and the opposite

sections of the hyperbola, superimposed on the original circle, determines the

length of the line to be inserted in the neusis). Pappus does not ascribe this

solution to Archimedes: instead, he criticizes Archimedes (in a much mutilated

passage, Hultsch 1876: I, 302.14–18) for offering a “solid” construction when a

“plane” one is available. It is not entirely clear that this is a criticism of the

neusis or of its application, or that Pappus sees his conic sections as a remedy for

whatever criticism he intends. That Pappus’ solution involves conic sections is a

mark, to be sure, of the naturalness of conic sections to the advanced geometers

of antiquity.75

The alternative appears to be that Archimedes relies, directly, on a neusis or

some equivalent solution. It is sometimes suggested that he could rely on

neusis-producing curves – in effect, the curve traced by a mechanical instru-

ment (whether conceived hypothetically or concretely) equivalent to a sliding

ruler. Perhaps the conchoid (or, more precisely, a version thereof), defined by

Nicomedes and reported, in most detail, in Eutocius’ commentary on

Archimedes’ II.1 (Netz 2004b: 298–303)? – Such was von Fritz’s (1962) view.

This, in geometrical principle, is not much different from the view that

Archimedes assumed a mechanical solution directly based on sliding a marked

ruler.76 This last view was endorsed by Zeuthen (1886: 261–265), but I think

Knorr is somewhat unfair in saying that Dijksterhuis followed Zeuthen. What

Dijksterhuis did say, in his incisive manner, is worth quoting in full (1987: 138):

75 There seems to be some confusion as to what Pappus wishes to achieve with the

conic sections. Does he claim that their use avoids a solid solution? See Knorr 1978a:

90–91 for a statement of this puzzle (even if one need not follow Knorr’s detailed

resolution of this puzzle, based on hypothetical ancient sources with different defini-

tions of a “solid problem”: see also Sefrin-Weis 2010: 303–304). In truth, not too much

should be read into this episode, I believe. Pappus operates under the commentator’s

requirement of finding something to say – I should know – and Archimedes’ neusis is a

very attractive target. Naturally, Pappus would report criticism of Archimedes (or invent

it, and then politely ascribe it to unnamed others); naturally, he would offer his own

solution; naturally, this would involve conic sections – the tools that come most

naturally to someone like Pappus (as well as to most of his predecessors).
76 There is a difference. The conchoid lifts the operation of the sliding ruler into the

ontological level of a curve. That is, the instrument drawing the conchoids can be

reconceived as a tool tracing an otherwise real curve – one whose ontological indepen-

dence may be taken for granted – especially once enough is known about the properties

of such a curve. To repeat: at some point, we may then feel that this curve “exists” in the

sense in which triangles and circles (and conic sections, of course) “exist.” So, at this

point, invoking the presence of a conchoid as part of our geometrical configuration may

still involve an ontological leap of faith – we ask for an object whose construction was

not provided in explicit elementary terms – but no longer an intrusion of the mechanical,

whose presencemay be troubling for metaphysical reasons, or simply because it is felt to

be an ad hoc, deus ex machina kind of solution.
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The commentators not infrequently speculate on the question how Archimedes could

have performed the neuseis in question. The most obvious answer seems to be: as

neuseis. [Neusis] does not indeed fit very well with the traditional prescript that in

planimetric construction only straight lines and circles are to be used, but there is not the

slightest evidence that this restriction applied in Greek mathematics to non-elementary

problems.

Dijksterhuis does go on to muddle his statement by referring to practical ways

one could perform such a neusis, including the insertion of a marker ruler, but

this clearly is not his main point, which was instead that Archimedes’ neusis

meant just that – in Dijksterhuis’ words from the same paragraph: “The

insertion of line segments of a given length between two given curves.”

Knorr improved on these two alternatives. Now, it does appear that the

problem, strictly speaking, is non-elementary: that is, it is impossible to

produce SL 5–9, as stated, by ruler and compass alone. However, Knorr

paid attention to the way in which Archimedes applied propositions 5–9

(concentrating, once again, on the application of proposition 7 within propo-

sition 18). This allows one to pick a less strict problem, which is also doable

by elementary techniques.77

In propositions 5–9 Archimedes repeatedly constructs line segments such

as EI, IΓ so that a proportion is satisfied such as:

EI : IΓ :: Z : H ðthe ratio Z : H givenÞ
This, indeed, is a non-elementary problem. However – and here is Knorr’s

breakthrough observation – in proposition 18, Step 3, as well as in all other

applications of propositions 5–9,78 what is really required are line segments

such as EI, IΓ so that a ratio inequality is satisfied such as:

Z : H < EI : IΓ < Z : Θ (the line segments Z, H, Θ given)79

We need not a proportion but a ratio inequality. Now, to construct a ratio that

fulfills an inequality is patently easier, and it is an immediate idea to imple-

ment a process of bisection so that a ratio is ultimately “squeezed” between

the two given ratios. This is not at all trivial, however, as the interrelated terms

EI, IΓ can be precisely “squeezed” between given boundaries, only with a

77 Sefrin-Weis (2010: 309) claims that Knorr’s solution involves a “convergence”

which strikes her as more akin to Archimedes’ heuristic proofs. I do not see how this

holds for Knorr’s solution (1978a: 82–84), which merely uses a somewhat loose,

modern language for describing a precise geometrical solution.
78 Or, strictly speaking, propositions 5, 7–8, as Archimedes does not seem to apply 6

and 9.
79 This is associated with Z being the radius of the circle, H being the length of a

segment of the tangent to the spiral, Θ being the circumference of the circle. In

proposition 18 it is shown how an impossibility follows from assuming that H≠Θ: the

very possibility of squeezing a ratio in between Z:H and Z:Θ, smaller than the one and

greater than the other, will lead to a contradiction. See proposition 18 below for more

detail.
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certain amount of trigonometry. But as Knorr proceeds to show, the trigono-

metry required is all available through the techniques of early Greek astron-

omy used by Archimedes himself in The Sand-Reckoner. Thus Knorr ends up

doing two things (1978a: 82–84):

1 Revising the terms of the problem from a proportion to an inequality of

ratios (which, however, is sufficient for the purposes of the actual applica-

tion of propositions 5–9), and

2 Producing an explicit – if very complicated – solution of this problem of

inequalities, through standard techniques, namely bisection and trigono-

metric operations already available in Archimedes’ time.

Following on from this achievement, Knorr went on to ask why Archimedes

did not avail himself of such an approach. And the solution he obtained is, by

necessity, the same as that quoted from Dijksterhuis: Archimedes did not use

elementary methods to substitute for his neusis because he thought neusis was

good enough. Knorr goes on to suggest a very fine-grained diachronic

account, as if neuses were acceptable in Archimedes’ time, but already by

Apollonius’ time they would have been suspect (Knorr 1978a: 89). The

argument appears to be that Apollonius produced a study of neuses where,

apparently, various neusis problems were solved through elementary techni-

ques, while Nicomedes produced his conchoid curve that produced a neusis.

Here I begin to differ. If Knorr means to say that, up to a certain point in time,

neuses were considered to be sound and then, through some décalage, they no

longer were, and so, for that reason, Apollonius and Nicomedes set out to

investigate how they could be replaced by other, sounder approaches, then I

am not sure the evidence can support such a claim.80

It stands to reason that at any time in the history of Greek mathematics –

fourth, third or second centuries BC – studies dedicated to showing how

neuses can be effected, or dedicated to the properties of a curve such as the

conchoid, would have been inherently interesting. On the other hand, there is

no reason to believe that at any time in the history of Greek mathematics a

neusis would have been considered exactly on a par with a more explicit

solution: for, if neusis is just as good, we might as well give the game up.

As long as one has a binary, “sound” vs. “unsound” classification of solu-

tions, one is reduced to a binary historical analysis, a décalage from the early

acceptance to the later exclusion of certain techniques. But this binary division

makes no historical sense: the crucial point is that neusis can be assumed to be a

80 Of course, it is quite possible that geometers working after Apollonius and

Nicomedes, while still accepting the epistemological soundness of neuses, would find

their use less natural, since now one had many more techniques “on the shelf” available

from the work of Apollonius and Nicomedes. But is this not beside the point? There

were very few geometers active in the generations immediately following Apollonius

and Nicomedes, anyway. Later Greek geometry was pursued in very different intellec-

tual climates, where it is hard to deny that – particularly in late ancient geometry – much

more interest was given to the explicit classification and “proper” allocation of problems

within this classification: hence Pappus’ treatment of Archimedes.
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valid solution and, at the same time, replacing it by a more explicit solution can

still be an interesting exercise. Instead of the binary, we need to think in terms of

a gradation, or even a many-dimensional space, of solutions that are more or

less “elegant,” “neat,” “simple” or “elementary.” The history of the choices

between such solutions can be equally subtle and many-dimensional: each

choice would depend on a complex web of historical and textual constraints.

So let us retrace our steps, putting Archimedes’ choice within its historical

and textual context. Knorr’s elementary solution is comparable to

Archimedes’ solution of problems in On the Sphere and the Cylinder I.3–6,

where polygons are inscribed and circumscribed around circles so that their

sides satisfy given ratio inequalities (Netz 2004b: 46–57). Furthermore, SC

I.3–6 has a role in the argumentative structure of SC I comparable to that of SL

5–9 in the argumentative structure of SL. (The polygons in SC I “squeeze” a

certain relation between spherical magnitudes, in the manner in which the line

segments in SL “squeeze” a certain relation between spiral magnitudes.)

Indeed, it appears that Knorr’s solution is an attempt to fit the approach

taken in SC I to the tasks of SL. This exacerbates the interpretative problem.

It is not merely that Archimedes could in principle have conceived of Knorr’s

solution. Rather, he already did (and it is largely thanks to this that Knorr

could come up with his own alternative solution!).

Now, why use a neusis here – SL 5–9 – but not there – SC I.3–6? Now, it

would have been geometrically a non-starter to attempt a neusis construction in

SC I.3–6.81 The question then really is just why not follow an explicit, SC I.3–6-

type solution, of the kind offered by Knorr, in SL? And for an answer, as usual,

we need seriously to contemplate the counter-factual. Then, I believe, it

becomes immediately obvious that such an alternative would have been, for

Archimedes, architecturallywrong. A full set of solutions to SL 5–9 on the lines

of Knorr’s suggestion would have been an enormous addition to the structure of

On Spiral Lines, achieving, in great, complex and indeed tedious detail, what is

essentially an elementary problem. It is already clear that Archimedes wanted

the introductory chapters to be brief. There is a clear sense ofmere preparation.

And indeed, mere preparation this is. In the actual context of SL, these are

tools for the proof of certain theorems. Seen from the perspective of those later

theorems, there could be nothing wrong with a solution based on neusis: for

the theorems assert that certain geometrical configurations have certain prop-

erties, and it is quite immaterial how we come about constructing those

81 In SC I.3–6, the task is to produce equilateral polygons around the circles and the

sectors set down; hence the main difficulty is not one of finding the line segments of the

sides of polygons that satisfy the proportion (in itself a trivial operation), but of conducting it

in such away that the line segments involved form equilateral polygons, i.e. they subtend an

angle at the center which is some integer division of the circle or the sector as a whole. To

satisfy both the ratio inequality and the integer division of the angles, one really needs to

keep the inequality as such – an inequality – and not transform it into a strict proportion. On

the other hand, the task in SL 5–9 really involves just finding a single line segment satisfying

the inequality, so that any line segment will do; thus onemight as wellmake it a definite line

segment and insert it through a neusis operation.
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configurations. Knorr comes close to this point, only to deny it. To quote him

(1978a: 84): “It has frequently been proposed . . . that Archimedes does not

require the actual construction of the neusis, but only the possibility that it may

be effected.”82 How could Knorr reject this claim? He could not suggest that

an explicit construction was called for as a proof of the existence of the

required object: he was, already in 1978, in possession of his mature under-

standing (Knorr 1983) of the Greek problem as a geometrical exercise of

technique, rather than an existence proof. So, instead, he went on as follows:

“there are two points weighing against this defense. First, even admitting this

as Archimedes’ intention, we must demand a proof of the possibility of the

construction, but he does not give one” (Knorr 1978a: 84). This is a very weak

argument – after all, there is much here that Archimedes elides and leaves for

the reader to see intuitively – but I think Knorr errs here because he concen-

trates so much on proposition 7. In the following propositions 8 and 9, Steps h

and g respectively, Archimedes offers an argument – tantalizingly implicit,

but an argument nonetheless – for why a line satisfying the neusis construction

can be found. That no such argument is offered in propositions 5–7 is a result

of the extremely curtailed nature of those proofs, as well as the fact that the

possibility is indeed very obvious in those propositions.83

The final twist, however, is this: as we read propositions 5–9, we have no

way of knowing that they will be applied in a context where their mode of

construction would be immaterial. For all we know, they could be tools useful

for later problems, so that relying on a neusis here would make those later

problems, too, rely on a neusis. To the extent that a neusis is a less explicit and

therefore less compelling mode of problem-solving, later problems relying on

5–9 would be affected as well by the use of neusis here. In short, propositions

5–9 are open to criticism as less than compelling solutions, to the extent that

they are seen as goals in themselves, or as tools for later problems. They are

not open to this criticism to the extent that they are mere tools for later

theorems. But this is not at all clear to the reader as he goes through the

treatise: the neuses in propositions 5–9 thus demand a certain suspension of

the reader’s critical functions, or rather – seeing that a Greek reader would be

unlikely to suspend criticism – they invite criticism, only to have such

criticism allayed through a reading of the treatise as a whole. Archimedes

82 Knorr refers to Zeuthen 1886: 265, Heath 1897: cvii–ix, Heath 1921: II, 386–388

and Tannery 1912: 314.
83 Knorr goes on to say as follows: “Second, Archimedes does in fact introduce the

actual construction of the neusis in prop. 7 and 8. His own procedure thus legitimizes the

criticism raised by Pappus and raises the question, not of whether the neusis is possible,

but of how the neusis is to be effected.” I admit I do not quite follow Knorr’s meaning

here. If he intends to say that by explicitly saying that a line should be inserted as verging

to a line, one raises the question of how the verging is to be effected, then this is no more

than a petitio principii, for, exactly as Dijksterhuis put it, the natural reading of

Archimedes’ text is that the verging is to be effected by a verging. Introducing the

actual construction of the neusis does not in and of itself raise the question of how it is to

be effected: it answers this question.
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seems to court criticism of the kind he knows he will be able to answer –

inviting the entire sequence of detractors and defenders from Pappus on, all

the way down to Knorr andmyself. We have all been caught in the same snare.

And, if so, the use of neusis too has a meaning within the specific commu-

nication environment set out in the introduction to On Spiral Lines.

/8 /

Given a circle and a line in the circle smaller than the diameter and

another touching the circle at the end of the <line> given in the circle, it is

possible to extend a certain line from the center of the circle towards the

<given> line so that the <line> taken off from it <=the extended line>

between the circumference of the circle and the line given in the circle

has to the line taken off from the tangent the ratio laid down, if the given

ratio is smaller than the <ratio> which the half of the <line> given in the

circle has to the perpendicular drawn on it from the center of the circle.

(a) Let there be a given circle, <namely> the <circle>ABΓΔ,84 (b) and
let a line be given in the circle, smaller than the diameter, <namely> ΓA,
(c) and let ΞΛ touch the circle at the <point> Γ, (d) and <let there be

given> a ratio, which Z has to H, smaller than the <ratio> which ΓΘ has

to ΘK; (1) So, it shall also be smaller than the <ratio> which ΓK has to

ΓΛ, (e) if KΛ is drawn parallel toΘΓ.85 (f) So, let KΓ have toΞΓ the same

ratio which Z has to H – (2) and ΞΓ is greater than ΓΛ.86 (g) Let a

circumference of a circle be drawn around K, Λ, Ξ.87 (3) Now, since ΞΓ
is greater than ΓΛ, (4) andKΓ,ΞΛ are at right <angles>with each other,88

(h) it is possible to set another <line>, equal to MΓ, <namely> IN,

verging towards K.89 (5) So, the <rectangle> contained by the <lines>

84 The point Δ is inert in this proposition (and redundant for defining a circle). So was

B in the previous proposition. There is a gradual tendency to “pad” the alphabet so as to

establish some local continuity in the reference of the major labels, doubtless related to

the overall continuity between the propositions and their lack of an explicit setting-out

and definition of goals (so that the particular labels take on some more “general” force).
85 Steps 1–e reprise Step 1 of the previous proposition and 3 of the proposition before

that – by now an argument so tired that even its required construction of parallel lines is

hastily mentioned as an afterthought.
86 Follows directly from Steps 1, f (Elements V.10).
87 Curiously, not a problem solved in the Elements, though easily provided by

Elements III.1. Archimedes nearly neglects to suggest that one needs to produce a

certain geometrical task in constructing this circle – a significant omission, as the

existence of a unique solution depends upon there being a unique circle determined

by three points; but then again, perhaps it does not really matter to Archimedes that his

solution should be unique.
88 Step C, Elements III.16.
89 The “possibility” statement is not followed by an actual construction (so let it be so

positioned . . .), but rather the possibility is taken as tantamount to the actual
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ΞIΛ has to the <rectangle contained> by the <lines> KE, IΛ the same

ratio which ΞI <has> to KE.90 (6) and also the <rectangle contained> by

KIN to the rectangle contained by KI, ΓΛ <=is the same as rect.(ΞI,IΛ):
rect.(KE,IΛ)>.91 (7) So that IN to ΓΛ, too, is as ΞI to KE.92 (8) So that

also: ΓM to ΓΛ, and ΞΓ to KΓ,93 (9) and to KB94 (10) is as ΞI to KE.95

(11) And the remaining IΓ to BE96 has the same ratio which ΞΓ <has> to

ΓK.97 (12) and which H <has> to Z.98 (13) Now, KN fell on the tangent,

and the <line> between the circumference and the line, <namely> BE,

has to the line taken off from the tangent the same ratio, which Z <has> to

H.

A B
E

K
Δ

M

N

I

HZ

Θ

Ξ

Γ

Λ

The diagram of codex C is not

extant. H has the point Θ
positioned so that it appears to

be on the “upper” intersection

of the two circles. G has ZH

on the right-hand side. D has

Z>H (slightly), E has Z>H

(substantially). The diagram of

B has been completely erased

and redrawn by a second hand

(and is not yet available in a

digitally enhanced form).

construction. In this case it is evident that the point of the “possibility” is not to state that

the neusis problem is solvable, but rather to point out that because ΞΓ>ΓΛ, while ΞΓK is

a right angle (Steps 3–4), one can find IN=ΓM so that IN is positioned “above” Γ,

ensuring the intercept of BE above the given line. A possible argument would be: any IK

makes IK>KΓ (Elements I.19, 32), thus KN>KM.Hence KNmust lie “nearer the center”

than KM (Elements III.15), but ΞΛ is a diameter (Elements III.1), so clearly I is nearer

the center, i.e. the bisection of ΞΛ, than Γ is: but for it to be nearer the bisection of ΞΛ,
when ΞΓ>ΓΛ, is to be “above”: I must be “above” Γ. (Dijksterhuis 1987: 137 has a

different argument altogether, based on purely quantitative reasoning. I note inciden-

tally that Heiberg, who apparently thinks the “it is possible” claim refers to the

solvability of the neusis construction, also ignores the need for this argument.)
90 Elements VI.1.
91 See scholion. rect.(ΞI,IΛ)= rect.(KI,IN) (Elements I.35), while through Elements

VI.2 IK:KE::IΛ:ΓΛ, hence rect.(KI,ΓΛ)= rect.(KE,IΛ). See the comments. It follows

immediately of course that rect.(KI,IN):rect.(KI,ΓΛ) is also the same as ΞI:KE.
92 From the previous Step it followed implicitly that rect.(KI,IN):rect.(KI,ΓΛ)::ΞI:

KE, from which, via Elements VI.1, we have IN:ΓΛ::ΞI:KE. See the textual comments.
93 So far the clause implicitly states ΓM:ΓΛ::ΞΓ:KΓ, based on Elements III.35 and

analogous to previous reasoning.
94 The clause states KB=KΓ (radii of circle) and revises the clause so far to state ΓM:

ΓΛ::ΞΓ:KB.
95 The force of Step 10 is ΓM:ΓΛ::ΞI:KE. This follows directly from Step 7 and the

construction (Step h) IN=ΓM. The upshot of Steps 8–10 is ΞΓ:KB::ΞI:KE.
96 IΓ is what remains from ΞΓ, minus ΞI; BE is what remains from KB, minus KE.
97 We start withΞΓ:KB::ΞI:KE (upshot of Steps 8–10).With ElementsV.16 we have

ΞΓ:ΞI::KB:KE, and with V.19 we have (“remaining”) ΞΓ:IΓ::KB:BE, or ΞΓ:IΓ::ΓK:BE
(radii in circle), or (Elements V.16 again, to close the circle) ΞΓ:ΓK::IΓ:BE.

98 Construction Step f. The upshot of Steps 11–12 is IΓ:BE::H:Z.

Rectangle contained: see
Glossary
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comments

Heiberg prints a different text for my Step 6 so that Steps 5–7 end up as:

(5) So, the <rectangle> contained by the <lines> ΞIΛ has to the <rectangle

contained> by the <lines> KE, IΛ the same ratio which ΞI <has> to KE, (6) and

also the <rectangle contained> by KIN has to the rectangle contained by KI, ΓΛ

the same ratio which IN <has> to ΓΛ (7) so that IN to ΓΛ, too, is as ΞI to KE.
The reasoning is supposed to be as follows: since rect.(ΞI,IΛ)=rect.(KI,IN)

(Elements III.35), while rect.(KE,IΛ)=rect.(KI,ΓΛ) (ElementsVI.2), it follows

from Steps 5–6, through Elements V.19, that ΞI:KE::IN:ΓΛ.
My reading is less transparent than Heiberg’s. Instead of Step 6 stating the

near-identity

(6) rect.(KI,IN):rect.(KI,ΓΛ)::IN:ΓΛ

I have it stating, implicitly at that, a more difficult claim (which calls for the

kind of reasoning Heiberg needs for the transition from Step 6 to Step 7):

(6) rect.(KI,IN):rect.(KI,ΓΛ)::rect.(ΞI,IΛ):rect.(KE,IΛ)

My own transition to Step 7 does not call for a very complex argument, but it

calls for some unpacking: one needs to understand what was stated only

implicitly in Step 6, and then to manipulate that implicit expression.

Heiberg’s text follows Commandino. Mine is the manuscripts’ reading.

While a homoioteleuton can be invoked to account for a lacuna of nine words

(which is what Heiberg assumes), this is not a terribly compelling homoiote-

leuton, as the only shared bit is “ΓΛ” which, in the first instance, is within the

longer expression KI, ΓΛ. Probably Commandino and Heiberg were struck by

the abrupt, implicitly worded text of Step 6: “and also the <rectangle con-

tained> by KIN to the rectangle contained by KI,ΓΛ.” Also what, you wish to

ask? This indeed has no precedent in the treatise so far. But this kind of

implicit wording becomes rampant in this proposition so that, if anything, the

context makes this particular, strange grammar an argument in favor of the

manuscripts’ reading.

the implicit

While fully located within the set of constraints developed, by now as routine,

through propositions 5–7, this proposition is of an entirely different character.

Let us quickly follow the thought underlying the construction. In proposi-

tion 6, we needed to find a certain segment intercepted between the given line

and circumference (there labeled BE), so that its ratio to BΓ – the point Γ

determined by the given line – should be fixed. Here, once again, we start with

the line intercepted between the given line and circumference – also labeled

BE – but instead of the chord BΓ we look for the segment of the tangent IΓ.

BE:IΓ is to be the given ratio.

Now, because the two line segments BE, BΓwere connected in proposition

6 at the point B, it was easy to think of them as a triangle and to subsume their

ratio within the simple proportions defined by triangles and parallel lines.
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Here, however, BE and IN no longer share a vertex (otherwise ΞIΓΛwould no

longer be a tangent, touching at just one point!), hence the route of the simple

triangle is blocked.

What can we do? Here is one way of thinking about this:

First, conceive of the two segments IΓ, BE as the residues of greater lines on

which hopefully wemay gain traction. It is clear what these should be for BE: it is

very naturally conceived as the difference between BK, KE. Let us therefore

conceive of IΓ, too, as the difference between two other lines,ΞΓ,ΞI (though note
carefully: at this stage we do not know what Ξ is – it is just an arbitrary point).

Now, it is clear that our problem will be solved if we obtain:

ΞΓ : BK :: ΞI : KE :: given ratio

At which point it is very natural to think of the equality BK=ΓK from which

we know we need:

ΞΓ : ΓK :: ΞI : KE :: given ratio

Now, the “ankle” where ΞΓ, ΓK meet each other is highly suggestive of the

property of proportion with the meeting of chords in a circle: here’s a way of

employing the ratio ΞΓ:ΓK. There ought to be some usable circle whose

circumference hosts not only Ξ and K but also M and Λ so that:

ΞΓ : ΓK :: ΓM : ΓΛ

And since the circle is so far completely undetermined (wemerely require it to

pass through K), we might as well make the point Λ stand on the diameter, in

an arrangement more reminiscent of the preceding propositions.

Thus, at this point, we look for a circle passing through the two points K, Λ

so that:

MΓ : ΛΓ :: ΞI : KE :: given ratio

And it is a happy thought that one can combine Elements III.35 (applied for

another intersection of chords) together with the standard results on triangles

and parallels, to derive:

NI : ΓΛ :: ΞI : KE :: given ratio

Which solves our problem as long as NI=MΓ.

It is apparent at this point that a construction where ΞΓ:ΓK is the given

ratio, with a circle drawn through K, Λ and Ξ thus found, and IN inserted,

verging towards K, equal to ΓM, would solve the problem.

The net result of this line of thought is that we spring our scaffolding for

proportions outwards, to encompass a circle external to the one given in the

proposition, even while keeping the old scaffolding of a set of parallel lines.

This provides for a very elegant configuration – circle, parallel lines, yet

another circle – and an elegant conceptual combination: Elements III.35

together with Elements VI.2. This proposition is the first elegant piece of

accomplished geometry in this book.

All of this is “implicit.” In technical terms, this proposition offers a

synthesis, whereas my account above was more akin to an analysis. It
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appears that the argument prefers the implicit at other, more elementary

levels of organization as well. Clearly this is the case with the two clusters of

Steps:

(8) So that also: ΓM to ΓΛ, and ΞΓ to KΓ, (9) and to KB (10) is as ΞI to KE

(11) And the remaining IΓ to BE has the same ratio which ΞΓ <has> to ΓK,

(12) and which H <has> to Z

As I explain in my footnotes, Steps 8–10 end up stating that ΞΓ:KB::ΞI:KE;
Steps 11–12 end up stating that IΓ:BE::H:Z. The first result, of 8–10, is the key

geometrical result required for the argument; the second, of 11–12, is the

actual goal of the proposition (stated in particular terms). But neither is said:

both have to be reconstituted from several clauses, each with its own argu-

mentative claim. Nor are the various argumentative claims along the way fully

set out: we need to work out that Step 8 actually asserts that ΓM:ΓΛ::ΞΓ:KΓ,
that Step 9 refers to the equality of radii KΓ=KB, that Step 12 reminds us that

ΞΓ:ΓK::H:Z. Each of those interim claims are very easy: the equality of radii is

true by definition, ΓM:ΓΛ::ΞΓ:KΓ is a very central property of proportion in a
circle, while ΞΓ:ΓK::H:Z is true by construction. One is therefore not asked to

supply, on the fly, some complicated result; rather, avoiding a fully fledged

statement of such simple claims makes them much more difficult to compute

than they ought to be.

I believe the same should be understood for the sequence Steps 5–7,

discussed in the textual comments above, with its elliptic statement of Step

6 and the implicit argument of Step 7: we now see how such a reading – that of

the manuscripts – is in keeping with the proposition as a whole.

Going further back: the first four Steps 1–4 essentially provide the grounds

for the feasibility of the neusis construction, as explained in n. 89 above. The

main feasibility claim, however, is left mostly implicit (Steps 3–4 state the

grounds for the possibility, but do not sketch the somewhat complicated

argument required) – so much so that Heiberg felt that the feasibility claim

asserted that one can solve in general such a neusis (and not that the config-

uration at hand ensures that I is “above” Γ).

To sum up: the proof has four main segments: 1–4, 5–7, 8–10, 11–12. The

segment 1–4 belongs to the construction proper. Its main argument is implicit.

The segment 5–7 sets up the tools used by the proof. It is elliptic and difficult

to follow. The segment 8–10 reaches the main result, while the segment 11–12

shows how the main result accomplishes the task: both are stated through a

sequence of implicit, unfinished clauses.

What is the aim of this implicit character? On the one hand, it keeps this

proposition within the bounds of the previous ones. It is not evidently longer

than any of the propositions 5–7. Even in the qualitative terms of the “air” of a

complex argument, the proof employs no ἄρα, using instead the usual particles

of observation-from-a-distance, δή (Steps 1, 5) and οũν (Step 13), as well as

the connector of a downgraded, mere-epiphenomenal-consequence result,

ώ

̓

στε (Steps 7, 8). Other than this, the melding of arguments to each other

allows Archimedes to attach logically separate claims as mere clauses
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connected via various forms of “and.” The impression is as if no complex

geometrical argument is at stake at all.

On the other hand, the implicit character of the proposition serves to support

its elegant structure. Add in an explicit argument why I is above Γ, and an explicit

unpacking of Steps 5–7, 8–10, 11–12, and one would look at an argument much

longer than that of any of the preceding propositions, one that would appear like

rather heavy work. The proposition as it stands is very difficult for the reader, but

it does provide for a sense of effortlessness on the side of the author.

On the one hand, the implicit character of this proposition makes

Archimedes appear less sophisticated than he really is (little argument!). On

the other hand, it makes Archimedes appear more sophisticated (look how easy

this is for him!). Those are two different models of sophistication, the first more

pedagogic and explanatory, the othermore adversarial and elliptic. The choices,

as ever, are choices within a pattern of communication. And if Archimedes

opens himself up for the criticism of the one whomerely claims to prove – well,

the next proposition will show that he is, after all, capable of making his claims

explicit. Thus propositions 8–9 are the Archimedean exchange inminiature: the

challenge to the reader in proposition 8; its partial lifting in 9.

Indeed, perhaps one possible key to the character of proposition 8 is to

consider it in context. One obvious feature of the sequence of propositions 5–9

is its gradual transition into geometrical complexity: while there is an under-

lying conceptual gap separating 5–7 from 8–9, the implicit, brief character of

proposition 8 makes it appear as something of a bridge leading on to the final

claim in this geometrical sequence.

/9 /

Given the same things, and with the line given in the circle being

produced, it is possible to extend a line from the center of the circle

towards the produced line, so that the <line> between the circumfer-

ence and the extended line has to the <line> taken off from the tangent

towards the touching point the ratio laid down, if the given ratio is

greater than the <ratio> which the half of the line given in the circle

has to the perpendicular drawn on it from the center.

(a) Let a circle be given, <namely> the <circle> ABΓΔ, (b) and let a

line be drawn through the circle, smaller than the diameter, <namely>

ΓA, (c) and letΞΓ touch the circle at the <point> Γ, (d) and <let a ratio be
given>, which Z has toH, greater than the <ratio> ΓΘ has toΘK; (1) so, it
shall be greater, also, than the <ratio> which KΓ has to ΓΛ.99 (e) Now, let
KΓ have to ΓΞ the same ratio, which Z <has> to H. (2) Therefore that

<line =ΓΞ> shall be smaller than ΓΛ.100 (f) So, again, let a circle be drawn

99 Same as Step 1 in the previous proposition: now, without even drawing the parallel

line explicitly!
100 Elements V.10.
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through the points Ξ, K, Λ. (3) Now, since ΞΓ is smaller than ΓΛ, (4) and
KM, ΞΓ are at right <angles> to each other,101 (g) it is possible to set a

<line>, equal to ΓM, <namely> IN, verging towards K. (5) Now, since

the <rectangle contained> by ΞIΛ is to the <rectangle contained> by ΛI,
KE as ΞI to KE,102 (6) but the <rectangle contained> by ΞIΛ is equal to

the <rectangle contained> byKIN103 (7)while the <rectangle contained>

by ΛI, KE is equal to the <rectangle contained> by KI, ΓΛ (8) because of

its being: as KE to IK, so ΛΓ to ΛI,104 (9) therefore also: as ΞI to KE, so
the <rectangle contained> by KIN to the <rectangle contained> by KI,

ΓΛ, (10) that is, as NI to ΓΛ, (11) that is, as ΓM to ΓΛ.105 (12) And it is

also: as ΓM to ΓΛ, ΞΓ to KΓ,106 (13) that is to KB;107 (14) therefore it is:
as ΞI to KE, so ΞΓ to KB,108 (15) and the remaining IΓ to the remaining

BE is asΞΓ to ΓK.109 (16) And the ratiowhichΞΓ has to ΓK, is that which
H has to Z.110 (17) So, KE fell on the produced <line>, and the <line>

between the produced <line> and the circumference, <namely> BE,

has to ΓI, the line taken off from the tangent, the same ratio, which Z

<has> to H.

A

B

K

Δ

E
N

M

I

HZ

Θ

Ξ

Γ

Λ

D has the entire figure

substantially tilted

clockwise, and so has E

(much more subtly). In

both, this may be because

of space concerns, but

perhaps codex A had the

same tilt. D misses Δ; H
misses A and positions B

at the same point as Γ. D
has Z>H (by much), E

(by little). Codex C is

badly preserved. It has Δ
instead of Λ, and misses

the “real” Δ. It cannot be
judged if it has B, N and

E. It has an extra line

(similar to that of

proposition 6) extending

from K in a north-by-

northwest direction

towards the line AE. I

now judge (pace Netz et

al. 2011) that the line AE

did extend, as it should,

to the right of the upper

circle. The diagram of B

has been completely

erased and redrawn by a

second hand (and is not

yet available in a

digitally enhanced form).

101 Step C, Elements III.16. 102 Elements VI.1.
103 Elements III.35. I invert the original Greek case order (“to ΞIΛ is equal KIN”) to

preserve the word order which, in English, carries the pragmatics of topic and comment.
104 Elements VI.2, Step 8 supporting Step 7 and making explicit an essential part of

the argument of the preceding proposition. For the transition from 8 to 7, see Elements

VI.16.
105 The upshot of Steps 9–11 is ΞI:KE::ΓM:ΓΛ (ElementsVI.1, and construction Step

g, respectively).
106 Elements III.35.
107 The upshot of 12–13 is ΓM:ΓΛ::ΞΓ:KB. Step 13 is based on KΓ, KB both being

radii.
108 One implicitly draws (Elements V.16) the result ΞI:ΞΓ::KE:KB.
109 Elements V.17 applied on the implicit result of the previous Step 14 (see preced-

ing note).
110 Step e of the construction.
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comments

Steps 9–11, 12–13 are technically a “meld” in the manner of 6, 8–10, 11–12 of

the preceding proposition, in the sense that one cannot understand the mean-

ing of Steps 10, 11 without reading 9 as well, or understand Step 13 without

reading 12 as well.

There is a difference, though: Steps 9 and 12, the host clauses, are fully

syntactic on their own: the meld is at the edges. Put more concretely, there is

an important cognitive difference between

(i) (1) A, that is B, (2) is equal to C

and

(ii) (1) A is equal to B, (3) that is to C

Themeld of (i) is internal; the meld of (ii) is at the edges. As a consequence, (i)

has no explicit statement: (1), the host clause, is not a fully formed expression.

As a consequence, the parasite clause (2) does not have a clear template in

which to fit – it does not read as a simple call for substitution. (ii), on the other

hand, does have the explicit statement (1), which now serves as host to (2) in a

much more straightforward manner – we are asked to replace B by X in order

to derive the implicit claim.

Indeed, the connector “that is” is, simply, a more obvious call for substitution

(unlike the various enigmatic “ands” thrown about in the previous proposition).

The substitutions themselves, finally, are very clear (Step 10:ElementsVI.1, Step

11: construction Step g, Step 13: radii in circle respectively).

Most important, all of this has been said in the preceding proposition.

There is simply less burden on the reader now: to the extent that the reader

took anything away from the preceding proposition, he should understand the

flow of the argument much more clearly.

It is clear that this proposition is much less implicit in and of itself: in

particular, the underlying logic of combining Elements III.35 and Elements

VI.2 is made explicit for the first time, in Step 8. One further notices the three

instances of the particle αρα, “therefore,” providing an air of a “normal” proof.

Those “therefore”s emerge as the argument becomes more fully spelled out,

but the particle is introduced even when the argument as such is unchanged

from previous proofs: Step 2 of proposition 8 was connected by a paratactic

“and”;111 Step 2 of this proposition, stating essentially the same claim (with a

sign difference), based on the same reasoning, has “therefore.” This, in and of

itself, is a plausible ground for trusting the manuscripts’ evidence. That is, I do

not believe that the text of proposition 8 was once more expanded, or that that

of proposition 9 was once more abbreviated. For, if so, why would a meddling

scribe, abbreviating proposition 8, or another one, expanding 9, also change

the connectors in those propositions? Not that this is a solid scenario to begin

111 δέ in the manuscripts. Heiberg, following Torelli, emends to δή, a possible,

though unnecessary, emendation – which is still a “distant” marker of transition, not a

marker of argumentative consequence.
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with: the syntactic structures of proposition 8 are too tight, and it is for a

reason that past editors have not expanded them (other than expanding

Step 6). Nor is it clear why a scholiastically minded scribe should expand 9

and not 8.

In short, I believe the structure we see is intentional: proposition 8 is almost

entirely implicit, proposition 9 is more explicit. Of course, it is still not fully

explicit. The underlying argument for why the neusis is possible at that point –

i.e. why I ought to fall “beneath” Γ – is left implicit here, as was the analogous

argument in the preceding proposition; the several uses of “that is” smooth

considerably the argument in its final transitions; the basic arrangement of the

general statement in terms of “given the same things,” together with the (by now

familiar) avoidance of a definition of goal, all provide the argument with a some-

what curtailed character. Most important, this is the nature of the neusis construc-

tion itself, which points to the feasibility of a construction instead of providing it

explicitly. Thus the overall pattern of propositions 5–9 is maintained; they are

propositions in outline. Archimedes chose to make the outline gradually more

concrete.

First of all, this is because the significance of the neusis construction is

changed between propositions 5–7 and propositions 8–9. In propositions 5–7,

the act of neusis provides the bulk of the geometrical work, and therefore these

propositions foreground their mere statement of a possibility, background the

actual geometrical argument accomplished. In propositions 8–9, the act of

neusis looms smaller: it is by now familiar, while a much more complex and

elegant geometrical construction is called for. Thus propositions 8–9 fore-

ground the actual geometrical argument accomplished, background the mere

statement of a possibility.

The transition from 5–7 to 8–9 is a leap in the forcefulness of the argument.

This leap is smoothed by having the argument of proposition 8 drastically

curtailed, so as to resemble more closely those of propositions 5–7. Finally,

proposition 9 is the first proposition in this book to resemble “normal geo-

metry,” and we may well expect the book to turn normal, with a sequence of

fully fledged geometrical arguments.

Possibly the most puzzling feature of this treatise is the presence of proposi-

tions 6 and 9, which do not serve any function in the deductive structure of the

treatise. It is possible that Archimedes saw his chain of deductions differently

from us, or that he planned other parts of the treatise (which we may have lost)

or that he simply wanted to add in more propositions for their own sake (as we

recall, the introduction explicitly stated that the treatise may include results

beyond those stated). But such suggestions appear far-fetched: Archimedes

surely must have known exactly which constructions were required for proposi-

tions 18–20 (he must have started working on propositions 5–9 only because he

knew he needed certain well-defined constructions, emerging from the study of

18–20). There is no reason to see the treatise as it stands as in some major way

incomplete: propositions 6 and 9 are the major complication in its structure

which otherwise is very carefully arranged. And propositions 6 and 9 are

certainly not what we would consider extremely interesting in their own right

(even though 8–9 are definitely elegant).
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FromArchimedes’ point of view, his starting-point was a set of propositions –

5, 7 and 8 – which fit very well the pattern of paired propositions typical of the

treatise as awhole (in this case, a pair because one needs to apply the result for the

two cases of a double proof by contradiction or “the method of exhaustion”). He

then decided to pad the results. The consequences of this aremultiple. First, since

the readers are not provided with cross-references, it becomes more difficult for

them to know which results are required in 18–20 (in this way, the way in which

18–20 is put together becomes more opaque). Second, the passage of proposi-

tions 5–9 becomes more gradual. Third, the entire introductory set gains in size

relative to the main set of results, later on. It seems likely that such architectural

consequences are not unintended (Archimedes could easily have avoided them,

and chose not to). If these consequences are intended, we imagine anArchimedes

who does not wish to set out very clearly the grounds for his key claims; and who

wishes to extend the introductory passage, the “development section” of his

sonata, so as to intensify anticipation.

As well he might. At this point, we may well be expecting the geometrical

work to start in earnest. This expectation is not to be fulfilled.

/10 /

If however many lines are set in order, exceeding each other by an

equal <difference>, and the excess is equal to the smallest <line>,

and other lines are set equal to them <=the lines exceeding each

other> in number112 while, in magnitude, each is equal to the great-

est <line> <=among the lines exceeding each other>,113 the

In the footnotes to this proposition the following abbreviations are used:

SameLine sum of same lines (A, B+I, Γ+K etc.)

DiffLine sum of different lines (A, B, Γ etc.)

SameSquare sum of all the squares on the same lines (on A, B+I, Γ+K, etc.)
DiffSquare sum of all the squares on the different lines (A, B, Γ etc.)
SmallRects sum of all rectangles such as on I,B, on K,Γ, on Λ,Δ etc.

BigRect rectangle contained by (I, DiffLine)

112 I.e. if the first sequence of unequal lines has eight lines, then the equal lines, too,

should be eight in number.
113 I.e. each of the equal lines is equal to the greatest of the unequal lines. In concrete

numerical terms: we may have the smallest as 2, and then the sequence of the lines

exceeding each other is 2, 4, 6, 8, 10, 12, 14, 16; the equal lines are all 16. (There are

numerical examples accompanying the diagram in both codices A and C, but the

numbers are hard to read from C: I use those of A, and I suppose those of C are the

same, or some corrupt version thereof, so that this scholion of concrete numerical values

is probably from late antiquity at the latest.) Note that Archimedes himself – as well as

the diagram and the scholiast – observes the sequence downwards (even though the

determining relationship is of exceeding).

Magnitude: see Glossary

Equal in number: see
Glossary

Equal in magnitude: see
Glossary
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squares114 on the <lines> equal to the greatest <line> <=among the

lines exceeding each other>, adding on both:115 the square on

the greatest <line>,116 and the <rectangle>117 contained by both: the

smallest <line> <=among the lines exceeding each other>, and the

<line> equal to all the <lines> exceeding each other by an equal

<difference>118 – shall be three times all the squares that are on the

<lines> exceeding each other by an equal <difference>.119

Let there be, however, many lines set in order,120 exceeding each

other by an equal <difference>, <namely> the <lines> A, B, Γ, Δ, E, Z,
H, Θ, and let Θ be equal to the difference, and let I, equal to Θ, be
added to B; K, equal to H, <be added> to Γ; L, equal to Z, to Δ; M,

equal to E, to E; N, equal to Δ, to Z; Ξ, equal to Γ, to H; O, equal to B,
toΘ – (1) and the lines that come to be121 are equal to each other and to

the greatest <=of the lines exceeding each other =A>122 – Now, it is to

be proved that the squares on all the <lines> A, as well as the <lines>

coming to be, adding on both: the square on A and the <rectangle>

contained by both:Θ and the <line> equal to all the <lines> A, B, Γ, Δ,
E, Z, H, Θ are three times all the squares on A, B, Γ, Δ, E, Z, H, Θ.

114 As usual, “the squares” means “the sum of the squares.”
115 To the sum of the squares we add on two magnitudes.
116 We add on yet another square on the greatest line: if we started with n lines, there

are by now n+1 squares . . .
117 . . . and we also add a rather complex rectangle.
118 One side of this rectangle is the smallest line – in the concrete numerical example,

it is 2. The other side is much bigger: the sum of all the lines exceeding each other – in

the concrete numerical example, it is 2+4+6+8+10+12+14+16.
119 So, the above sum should be three times the following sum of squares (in the

concrete numerical example): 22+42+62+ . . . +162.
120 This “set in order” (or “set one after the other”) is a bit curious: and what if they

were not so set? This seems to rule out the possibility of some complex algebra of

exceeding: say, C exceeds B which exceeds A, both by the fixed difference, but D also

exceeds B by the same difference and E exceeds A (i.e. D=C, E=A). So they are to

exceed each other while being set in order. Or this may be no more than an exercise in

bookkeeping, clarifying that the sequence of the alphabet, and of the diagram, stands

also for the (decreasing) sequence of magnitude.
121 The synthetic lines produced by adding I to B, K to Γ, etc.
122 One expects Archimedes to have two sequences of lines: one, those exceeding

each other, another, those equal to the greatest; in a surprise move, he builds on the first

sequence to produce the second one, in a way which even calls for a non-transparent

argument. It can be seen that B+I is indeed equal to A: I is constructed equal toΘ which

is the difference and so, with the lines set in order, I does fill up the difference of A from

B. One then needs to follow inductively the sequence of equalities (which, however, are

transparent in the diagram, which is in this instance fairly metrically correct). This

intrusion of an argument happens within the setting-out: now, for a change, we get an

explicit setting-out and definition of goal. The manuscripts have this intrusion as a brief

“and” clause, which Heiberg, following Nizze, emends to a “so” transition (δέ to δή).
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(1) So, the square on BI123 is equal to the squares on I, B and to two

<rectangles> contained by B, I,124 (2) while the <square> on KΓ is

equal to the squares on K, Γ and to two <rectangles> contained by K,

Γ.125 (3) And also similarly, the squares on the other <lines> equal to the

<line> A, are equal to the squares on the segments and to two <rectan-

gles> contained by the segments.126 (4) Now, the <squares> on A, B, Γ,
Δ, E, Z, H, Θ and the <squares> on I, K, Λ, M, N, Ξ, O, adding on the
square on A, are twice the squares on A, B, Γ, Δ, E, Z, H, Θ;127 (5) we
will prove, as what remains, that twice the <rectangles> contained by

the segments in each line of those equal to A, adding on the <rectangle>

contained by both: Θ and the <line> equal to all the <lines> A, B, Γ, Δ,
E, Z, H, Θ, is equal to the <squares> on A, B, Γ, Δ, E, Z, H, Θ.128 (6)
And since two <rectangles>, the <rectangles> contained by B, I are

123 BI does not refer to a line whose end points are B, I, but to a line segment

composed of the two line segments B, I.
124 Elements II.4. 125 Elements II.4.
126 Two observations: (1) this is not a generalization, stating that καθόλου (in

general) the squares – all eight of them – are equal to squares and rectangles, but an

extension, referring explicitly only to the six squares not covered so far. The general-

ization to cover all eight squares is then understood to follow from Steps 1–3 taken

together. This is an interesting vignette for the Greek treatment of generality. (2) Note

that, this time, “the squares” refers not to the sum of the squares but to each square

separately. How can we tell? By figuring out Archimedes’ meaning in context. Another

interesting vignette on the Greek treatment of quantifiers.
127 Directly follows from the constructed equalities I=Θ, K=H etc.
128 Our definition of goal asked us to prove that

Def: of Goal: A2 þ ðBþ IÞ2 þ . . . þ ðΘþ OÞ2 þ A2 þ ðΘ � ðAþ Bþ . . . þ ΘÞ
¼ 3 � ðA2 þ B2 þ . . . þ Θ2Þ

or (inventing a transparent code for the expressions)

Def : of Goal: SameSquareþ A2 þ BigRect ¼ 3 � DiffSquare

Now, in Steps 1–3 we have obtained an equality

A2 þ ðBþ IÞ2 þ . . . þ ðΘþ OÞ2 ¼ ðA2 þ B2 þ . . . þ Θ2Þ þ ðI2 þ K2 þ . . . þ O2Þ
þ2 � ðrect:ðI;BÞ þ rect:ðK;ΓÞ þ . . . þ rect:ðO;ΘÞÞ 1–3

or (some more transparent code)

SameSquare ¼ ðA2 þ B2 þ . . . þ Θ2Þ þ ðI2 þ K2 þ . . . þ O2Þ
þ2 � SmallRects 1–3

so that the Definition of Goal could implicitly be revised to read

D: o G:þ 1� 3 ðA2 þ B2 þ . . . þ Θ2Þ þ ðI2 þ K2 þ . . . þ O2Þ þ 2 � SmallRects

þA2 þ BigRect ¼ 3 � DiffSquare
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equal to two <rectangles>, the <rectangles> contained by B, Θ,129 (7)
while two <rectangles>, the <rectangles> contained byK, Γ are equal to
the <rectangle> contained by both: Θ and four times Γ,130 (8) through
K’s being twice Θ,131 (9) and two <rectangles>, the <rectangles>

contained <by> Δ, Λ are equal to the <rectangle> contained by Θ and

six times Δ, (10) through Λ’s being three times Θ, (11) and similarly

also: the others, twice the <rectangles> contained by the segments are

equal to the <rectangle> contained by both: Θ and the multiple, ever

<ascending> according to the even numbers in sequence, of the follow-

ing line.132 (12) Now, all the <double rectangles> taken together,133

adding on the <rectangle> contained by both:Θ and the <line> equal to

all the <lines> A, B, Γ, Δ, E, Z, H, Θ, shall be equal to the <rectangle>

which we may rearrange as follows

D: o G:þ 1� 3 rev: ðA2 þ B2 þ . . . þ Θ2Þ þ ðI2 þ K2 þ . . . þ O2Þ þ A2

þ2 � SmallRectsþ BigRect ¼ 3 � DiffSquare
But in Step 4 we are reminded that:

ðA2 þ B2 þ . . . þ Θ2Þ þ ðI2 þ K2 þ . . . þ O2Þ þ A2 ¼ 2 � DiffSquare 4

Removing both terms from both sides of the revised and rearranged Definition of Goal,

we are left with:

2 � SmallRects þ BigRect ¼ 1 � DiffSquare 5

This then is the claim of Step 5. “As what remains,” charmingly, has two meanings at

once: this is what remains to be proved, and this is what remains when equation 4 is

subtracted from equation “D. o G. + 1–3 rev.”
129 Follows from construction in the setting-out: I=Θ.
130 Step 6 is governed by a μέν, answered by a δέ in Step 7, which creates an

expectation of parallelism between 6 and 7: thus one expects Step 7 to assert

2*K*Γ=2*Γ*H. The turn midway through Step 7, to assert 2*K*Γ equal not to 2*Γ*H

but to 4*Θ*Γ is thus a lovely surprise. (One could have provided for a symmetry

between Steps 6 and 7 by referring to rect.(B,Θ) in Step 6 as “the <rectangle> contained

by Θ and B.” Not only does Archimedes not wedge the two lines Θ, B together with an

“and” to highlight the fixed term Θ, he even orders them as B, Θ. I can’t believe this is

not intentional.)
131 It follows from the construction of the lines exceeding each other that the second

is twice the first, the third is three times the first, etc. This consequence of the construc-

tion has not been made explicit before, but its special cases are asserted in Steps 8 and

10. From Step 8 it follows that K*Γ=2*Θ*Γ or, doubling both sides, 2*K*Γ=4*Θ*Γ,

which is the claim of Step 7.
132 As we move to a higher multiple, we also move to a “following” line – four times

Γ, six timesΔ, eight times E etc.We now find out why the lines are arranged from greater

to smaller. To recap the meaning of Steps 6–11: they combine to show that:

2 � SmallRects ¼ rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
133 That the reference of the “all taken together” is to the twice of the rectangles is

understood only from the mathematical context.
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contained by both: Θ, and the <line> equal to all: A, as well as three

times B, and five times Γ, and the odd multiple, ever <ascending>

according to the odd numbers in sequence, of the following line.134

(13) And the squares on A, B, Γ, Δ, E, Z, H, Θ, too, are equal to the

<rectangle> contained by the same lines.135 (14) For the square on A is

equal to the <rectangle> contained by both: Θ and the <line> equal to

all: to both A, and the <line> equal to the remaining, of which each is

equal to A136 – (15) For they measure equally: both Θ <measuring> A,

and A <measuring> all the <lines> equal to it, with A137 – (16) so that

134 We have just established:

2 � SmallRects ¼ rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ . . . ÞÞ
Obviously, if we add on both sides rect.(Θ, (A+B+Γ+etc.) – the rectangle we earlier

called BigRect – we obtain

2 � SmallRects þ rect:ðΘ; ðAþ Bþ Γþ . . . Þ ¼ rect:ðΘ; ðAþ three times B

þ five times Γþ seven times Δþ . . . Þ
or

2 � SmallRects þ BigRect ¼ rect:ðΘ; ðAþ three times Bþ five times Γ

þ seven times Δþ . . . Þ
135 I.e. those squares (what I also call DiffSquare) are equal to “the <rectangle>

contained by both: Θ, and the <line> equal to all: A, as well as three times B, and

five times Γ, and the odd multiple, ever <ascending> according to the odd numbers

in sequence, of the following line.” Step 13 – the key step of the proof – is not a

fully fledged statement, and requires Step 12 to unpack its meaning!

Why is Step 13 the key of the proof? Because we have just shown in Step 12 that:

2 � SmallRects þ BigRect ¼ rect:ðΘ; ðAþ three times Bþ five times Γ

þ seven times Δþ . . . Þ

And we now assert in Step 13 that

DiffSquare ¼ rect:ðΘ; ðAþ three times Bþ five times Γþ seven times Δþ . . . Þ
so that, if Step 13 is true, it should follow that

2 � SmallRectsþ BigRect ¼ DiffSquare

This, it was argued in Step 5, is what is required for the claim of this proposition to be true.

Steps 14–21 move on to show that Step 13 is indeed true.

136 If we coin a new term, SameLine, to refer to the sum of the sequence of

lines equal to A (including A itself), Archimedes now asserts in Step 14 that

A2=rect.(Θ, SameLine). It is still not clear why Step 13 follows. His separation of

A from SameLine is in preparation for the operations from Step 16 onwards.
137 Step 15 shows why Step 14 is true (we are still in the dark regarding Step

13). In this particular case Θ is one-eighth A, while A is one-eighth SameLine.

Why? Because in the sequence of lines exceeding each other, the second is twice

the smallest line, the third is three times, etc., so that the greatest line is as many

times the smallest line as there are lines in the sequence; while SameLine has as
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the square on A is equal to the <rectangle> contained by both:Θ and the

<line> equal to A, and the double of B, Γ, Δ, E, Z, H, Θ;138 (17) for the
lines equal to A, all besides A, are doubles of B, Γ, Δ, E, Z, H,Θ.139 (18)
And similarly also: the square on B is equal to the <rectangle> contained

by both: Θ and the <line> equal to both: B and the double of Γ, Δ, E, Z,
H, Θ,140 (19) and again: the square on Γ is equal to the <rectangle>

contained by both:Θ and the <line> equal to both: Γ and the double ofΔ,
E, Z, H, Θ.141 (20) And similarly also the squares on the other <lines>

are equal to the <rectangles> contained by both: Θ and the <line> equal

to both: the <line> itself <=on which the square was formed> and the

double of the remaining142 <lines>.143 (21) Now, it is clear144 that the

many times the greatest line as there are lines in the sequence. This Archimedes

does not explain (nor did he explicitly say that the sequence of lines exceeding

each other yields a series such as 1, 2, 3, . . . n). If we have such a series where A:

B::B:C (A measures B as B measures C) then rect.(A, C)=sq.(B) (Elements VI.17,

since we are dealing with geometrical magnitudes; though “measures” is an

arithmetical term).
138 Step 16 follows from Step 14, not 15 (“so” is meant to skip Step 15). Why does it

follow? It transforms Step 14, assuming rect.(SameLine, excluding A)=2*rect.

(DiffLine, excluding A). See next Step.
139 By the construction in the setting-out (or by the diagram, read metrically), it is

apparent that B=O, Γ=Ξ, etc., so that SameLine as a whole, excluding A, is twice

DiffLine, as a whole, excluding A.
140 This “similarly” argument takes a little decomposition: it is not apparent that the

same structure of argument is preserved as wemove to squares on segments smaller than

A, for, after all, did we not rely on the equality of each couple of segments such as B+I to

A itself? Let us follow this:

“similarly” Steps 14–15: Θ measures B the same number of times as B measures as

many times B’s, as there are lines fromB “downwards” (in this case – seven B’s). So the

square on B is equal to a rectangle contained by: Θ, and seven B’s.

“similarly” Steps 16–17: But seven B’s – i.e. as many B’s as there are going “down-

wards” fromB – are equal to: B, and the double of B, Γ, Δ, E, Z, H,Θ. (First we take B on

its own and then, in the manner of Step 17, we see that the B’s remaining from Γ

onwards – six B’s – are what is produced by doubling Γ,Δ, E, Z, H,Θ, through Γ+Θ=B,Δ

+H=B, etc.)

141 This Step is not in codex C (which Heiberg failed to notice). Codex C has several

obvious errors in the previous Step as well, and I believe it is simply more corrupt here

than A is: no change is required in Heiberg’s printed text.
142 “Remaining”: going “rightwards” in the diagram, or “up” in the alphabet

sequence, or in decreasing magnitude order.
143 Once again, instead of generalizing a result, Archimedes extends it to cover the

remaining cases, the generalization as such remaining implicit.
144 Not immediately clear, perhaps. Let us review.
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squares on all <lines>145 are equal to the <rectangle> contained by both:

Θ and the <line> equal to both: A, as well as three times B, and five

times Γ, and the multiple, according to the odd numbers in sequence, of

the following <line>.146

Sq. (A) = rect. (Θ, (A+ 2*(DiffLine-A) )) Step 14

Sq. (B) = rect. (Θ, (B+ 2*(DiffLine-A-B) )) Step 18

Sq. (Γ) = rect. (Θ, (Γ+ 2*(DiffLine-A-B-Γ) )) Step 19

. . . Step 20

Hence:

DiffSquare ¼ rect: ðΘ; Xð ÞÞ
What is the value of X?

It is the sum:

Aþ Bþ Γþ . . . þ Θþ 2 � ðDiffLine� AÞ þ 2 � ðDiffLine� A� BÞ
þ2 � ðDiffLine� A� B�ΓÞ þ . . .

But A+B+Γ+ . . . +Θ itself is DiffLine.

In other words, we first take DiffLine, then add to it 2*(DiffLine-A), then 2*(DiffLine-

A-B), etc., until DiffLine is exhausted.

We may visualize this as follows:

First Step (DiffLine alone):

X X X X X X X X

A B Γ Δ E Z H Θ

Second Step (adding in 2*(DiffLine-A)):

X X X X X X X

X X X X X X X

X X X X X X X X

A B Γ Δ E Z H Θ

Third Step (adding in also 2*(DiffLine-A-B)):

X X X X X X

X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X X

A B Γ Δ E Z H Θ

At which point it is becomes clear that X will end up being, once DiffLine is exhausted,

once A, plus three times B, plus five times Γ, etc. Hence:

DiffSquare ¼ rect:ðΘ; ðonce A; three times B; five times Γ; etc:ÞÞ
Which is the claim of Step 21.

145 Meaning what I call DiffSquare.
146 Step 21 asserts that the claim of Step 13 is correct.
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/corollary/

Now, from this it is obvious that (i) all the squares on the <lines> equal to the

greatest <line> are smaller than three times the squares on the <lines>

exceeding each other by an equal <difference>147 – (1) since by adding on

certain <magnitudes>148 they are three times – while (ii) they are greater than

three times the remaining squares, without the <square> on the greatest

<line>149 – (2) since the added-on are smaller than three times the square on

the greatest <line>.150 And, furthermore, if similar figures are set up on all the

<lines>, on both the <lines> exceeding each other by an equal <difference> as

well as the <lines> equal to the greatest <line>, (iii) the figures on the <lines>

equal to the greatest <line> shall be smaller than three times the figures on the

<lines> exceeding each other by an equal <difference>, while being (iv)

greater than three times the remaining <figures>, without the figure on the

greatest <line>. (3) For similar figures have the same ratio as the squares.151

147 In my notation: SameSquare < 3*DiffSquare.
148 Namely: the certain thing is (A2 + BigRect). To recall: the main proposition

shows:

SameSquareþ ðA2 þ BigRectÞ ¼ 3 � DiffSquare

So obviously, indeed:
SameSquare < 3 � DiffSquare

149 In my notation: SameSquare > 3*(DiffSquare – A2).
150 Namely: (A2 + BigRect) < 3*(A2). To recall, the main proposition shows that:

SameSquareþ A2 þ BigRect ¼ 3 � DiffSquare
So if

ðA2 þ BigRectÞ < 3 � ðA2Þ
it would follow, subtracting from both sides, that

SameSquare > 3 � ðDiffSquareÞ � 3 � ðA2Þ
or simply

SameSquare > 3 � ðDiffSquare� A2Þ:
How do we get:

ðA2 þ BigRectÞ < 3 � ðA2Þ?
Archimedes does not tell us. But this clearly amounts to

BigRect < 2 � ðA2Þ
which we may now expand to

rect:ðΘ; DiffSquareÞ < 2 � A2

And we have established that:

rect:ðΘ; SameSquareÞ ¼ A2 Step 14

so we are asked to believe that

rect:ðΘ; DiffSquareÞ < 2 � rect:ðΘ; SameSquareÞ
or more simply

DiffSquare < 2 � SameSquare

which is indeed obvious.
151 Recalling Elements VI.20, the apparent ground for the claim. VI.20, however,

discussed only rectilinear figures. The reader would not be able to guess this at this point,

but what would be required eventually, when this result is applied, is a result for similar
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comments

From Implicit to Opaque

Not an easy proposition. But the fundamental point is that Archimedes does

not really try to make it any easier. The same atmosphere of a curtailed,

suggestive argument is carried over from the previous geometrical passage.

But with this much more complicated material – whose very mathematical

nature is difficult to pin down – the implicit becomes opaque. It is hard to

imagine the reader whose eyes do not, on first scrutiny, glaze over. It is also

hard to think that an ancient reader would do better than themodern one: while

the ancient reader would not share the modern’s perplexity about the missing

equations – he was used to reading rhetorical statements of equalities – still, he

did not have the modern’s training in algebraic operations on equations, so

that the subtractions “from both sides” would, if anything, be harder for him.

Let me first try to make the theorem slightly less opaque.

The first thing to understand is that Archimedes has no direct interest in the

claim of proposition 10. It is there purely as a stepping-stone for the corollary, to

be applied in proposition 24 and more easily understood on its own terms: X is

less than Y.

Y > X

What is Y? It is three times the sum of squares on a series rather like 12+22+

32+ . . . +n2. In proposition 24, it will be like the series of the sectors of circles,

divided by equal angles, circumscribed around a spiral line.

What is X? It is the sum of squares equal to each other, of the same number

of terms as in the preceding series, rather like n2+n2+n2+ . . . +n2. It is even

possible to think of it as n3. In proposition 24, it will be like the series of sectors

of a circle, divided by the same equal angles, constituting the circle itself.

Archimedes, then, is interested in showing that:

3 � ð12 þ 22 þ 32 þ . . . þ n2Þ > n3

The reader may wish at this point to verify this with numerical examples; this

urge was felt by ancient or medieval scholiasts, who inserted numerical values

into the diagrams. It is also easy, for a modern reader, to verify this with an

argument from mathematical induction and elementary algebra (we need to

think about how an arbitrary n3 transforms as it becomes the next term in the

series, (n+1)3; it grows by 3n2+3n+1 while, at the same time, the other side of

the equation grows by the addition of 3(n+1)2; the inequality is now seen to be

much less surprising). Obviously, this was not the route that led Archimedes

I K M N Ξ OΛ

B Γ
E Z H Θ

Δ
A

The diagrams in both codices

A and C contained numerals

related to scholia which are

preserved in codex A alone:

see Appendix 2. The diagram

of codex C is hard to make

out (and is atypically set in

the lower margin). It seems

to position the labels as in the

diagram printed. D4 have

both arrays of labels descend

to the right, in various

unstable curves. E has the

lower array descending to the

right, the upper descending

and then ascending. H has

the lower one stable, the

upper one descending; G has

the lower one stable and the

upper one descending and

then ascending. It seems

possible that the archetype of

A had the same arrangement

as C, and then A itself started

out having the upper array

descend, and then corrected

this midway, with the

resulting appearance of a

curve descending and then

ascending (E, which I take

to be A by lectio difficilior).

curvilinear figures (specifically, we will deal with similar sectors). Such an extension of

Elements VI.20 is possible, if laborious, based on Elements XII.2, but it is quite unclear if

Archimedes considered this a gap, or what he expected his readers to make of it. For sure,

here is yet another casewhereArchimedes does not spell out clearly the grounds for a claim.
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to think of this inequality or to prove it to himself and to others. How he came

to think of this, I leave for later. We now need to understand how he comes to

prove it, already in possession of the firm belief that it is true.

So, to convince himself of the inequality, Archimedes constructs an equal-

ity. In general we will have

Y > X

if we have

Y ¼ Xþ Z

And since Archimedes sought to prove

3 � ð12 þ 22 þ 32 þ . . . þ n2Þ > n3

he was looking for a Z that satisfies

3 � ð12 þ 22 þ 32 þ . . . þ n2Þ ¼ n3 þ Z

Now, let us conceive of the sides of the equation the way Archimedes did – as

geometrical objects related to a series of lines.

On the right-hand side of the equation, then, we have three times the series

of squares on lines forming a progression – what I call DiffSquare. On the left-

hand side, we have the series of squares on the big lines equal to each other –

what I call SameSquare. We need to show, then, that:

3 � DiffSquare ¼ SameSquareþ Z

To compare the two, we need first of all to turn SameSquare into the terms of

Diffsquare. Now, each of the squares on the big lines equal to each other can be

reconceived as a composite, through the identity (algebraic for us, geometrical

for the Greeks) (a+b)2=a2+2ab+b2. Steps 1–5 effect this reconception. Each of

the squares in SameSquares becomes two squares and twice a rectangle. The

two squares can be seen as “going and up and down” the series of progressing

squares (but the last, biggest term is counted only once). We find, in sum, that

SameSquare can be reconceived as twice DiffSquare (minus one of the big

squares), together with twice those pesky rectangles. In my terms above:

SameSquare ¼ 2Diffsquareþ 2SmallRects� A2

So now we are looking for a Z satisfying:

3 � DiffSquare ¼ 2Diffsquareþ 2SmallRects � A2 þ Z

or
DiffSquare ¼ 2SmallRects � A2 þ Z

This is essentially achieved by Steps 1–5.

Those pesky rectangles . . . Clearly something ought to be done concerning

SmallRects, and while at first glance each such rectangle seems independent

of the rest so that it seems difficult to reduce them to a meaningful term,

Archimedes observes that, because the lines are arranged in a progression

where the difference is equal to the smallest terms, it also follows that the

second line (arranged from the smallest up) is double the first, the third is three

times the first, etc. Thus we may begin to conceive of all those twice-

rectangles together, as a single rectangle, one of whose sides is simply the

smallest line, while its other side is a complex sum: twice the first line, and

four times the second line, and six times the third line, and so on . . . This is

essentially achieved by Steps 6–11:
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2 � SmallRects ¼ rect:ðΘ; ðtwice Bþ four timesΓþ six times Δþ etc:ÞÞ
So now we are looking for a Z satisfying:

DiffSquare ¼ rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
�A2 þ Z

So, is there a constant Z, such that

DiffSquare� rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
þA2 ¼ Z?

This will be easy to achieve if we can show that

DiffSquare� rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
is such a constant term, and Archimedes shows that it is equal to a rectangle,

the smaller of whose sides is the smallest line, the larger being the sum of all

the lines in the progression (what I call BigRect).

DiffSquare� rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
¼ BigRect

Or, as is found more convenient for Archimedes’ proof:

DiffSquare ¼ rect:ðΘ; ðtwice Bþ four times Γþ six times Δþ etc:ÞÞ
þBigRect

Once this is achieved, our result is obtained. Archimedes achieves this in

Steps 14–21. This is achieved once again by decomposing and recomposing

the components of each of the squares in the series of squares DiffSquare,

similarly to the transformation in Steps 6–11 above.

None of the identities obtained here is self-evident: they involve the

summation of an indefinite number of distinct identities. The last one in

particular (of Steps 14–21) involves in and of itself a complex transformation.

To repeat: no one would have begun to look for any of those identities, without

firmly believing, to begin with, that there ought to be such a Z so that:

3 � ð12 þ 22 þ 32 þ . . . þ n2Þ ¼ n3 þ Z

WhyArchimedes came to believe in this, I will try to explain in my comments

on proposition 24. For now, I concentrate on a separate question: how did it

come about that this (admittedly difficult) result ended up being couched in

such opaque terms, never clarified in the manner I have attempted above?

Let us follow some layers of the opacity.

1. The diagram is the smallest possible.152 It does not draw even all the

terms explicitly called for in the setting-out: in the stingy move of a provincial

152 Not in the number of lines in the sequence picked as a random representative.

Here, Archimedes picks a sequence with eight lines, more than the minimum – a lot

more than the minimum (in general, one wants to have more than the absolute minimum

to ensure the result is not true for some special cases: one is reminded of the use of a

pentagon – not a triangle – for a “general polygon” in SC I.1). I guess that this is because

he does wish, for the arguments 1–3, 6–11, to have two examples followed by a

meaningful “etc.” clause. Argument 1–3 does not use A, while argument 6–11 does

not fully use A or B, but really starts with Γ. Thus, in 6–11, the two genuine examples are

Γ, Δ. There are thus four lines even before the “etc.” clause, and so for the “etc.” clause

to be felt as meaningfully extending over a range, one has four lines beyond Δ. At any
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theater, the two roles of “different” and “equal” lines are taken on by the same

cast, BI serving once, as B, as an unequal line, then again, as the full BI, as an

equal line. This is of course useful: one does see a certain relation in this way.

But one could also first construct the separate equal lines, and then show how

they are equal to given sums of unequal lines. Why does Archimedes not do

so? Partly because the troupe is in a sense too big: one has eight lines in the

sequence (even though fewer would do, as remarked in the footnote). Thus

Archimedes is squeezed out of the alphabet. Still, he has considerable room he

does not utilize. In my footnotes I explain to the reader, and to myself, what

goes on by concentrating on six key terms, as explained in the box on p. 68:

SameLine, DiffLine, SameSquare, DiffSquare, SmallRects, BigRect.

Archimedes could have made the computation of the argument easier on his

readers, too, by constructing magnitudes labeled as such (a mere six letters of

the alphabet!). Even more generous, one could construct, say, a line with three

labels, such as ΠPΣ, so that ΠP equal A and ΠΣ equals DiffLine, and so PΣ

equals DiffLine-A – a construction useful for clarifying, say, Step 14. Indeed,

one could have had a more complicated line in which all of DiffLine is set out

side-by-side, line-by-line, allowing a much easier view of the argument from

Step 14 onwards.

2. Too many labels? But this is because we demand the proposition to do so

much. One other way of clarifying the argument would have been to subdivide

it. One could have a theorem going through the argument of Steps 6–12

2 � SmallRectsþ BigRect ¼ rect:ðΘ; ðAþ three times Bþ five times Γ

þseven times Δþ etc:Þ
and then another theorem going through the argument of Steps 14–20

DiffSquare ¼ rect:ðΘ; ðAþ three times Bþ five times Γ

þ seven times Δþ etc:Þ
from which an easy corollary would be

2 � SmallRects þ BigRect ¼ DiffSquare

Based on this, one could easily derive the main result through the argument

of 1–5.

It is not just that Archimedes made the choice to do everything at once: the

manner in which everything is done at once becomes blurred. That the main

claim is equivalent to Step 5 is a very difficult argument, asking the readers to

engage in a very powerful computation based on Steps 1–4 and the Definition

of Goal. That the result of Step 5 follows from the proposition as a whole is

asserted in Step 20, based on combining Steps 12 and 13 with Step 5 – an

argument that combines complex mental calculation with the need to synthe-

size widely separate chunks of the argument. There is an elliptic character to

the combination of the arguments, which is perhaps inevitable, with each

interim result being so complicated: but the elliptic is not an accident, it is a

basic feature of this proof.

rate, this plethora of lines does not help in making the argument any clearer: it merely

involves the mind in a more complicated set of terms to contemplate – and clogs up the

alphabet.
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3. Archimedes extends practices he has followed for the last nine proposi-

tions: statements are elliptic and tantalizing, the overall structure is “at a

distance.” As I point out in note 133, the reader has to make out for himself

that the reference of the “all taken together,” in Step 12, is to the twice of the

rectangles – that one talks about 2*SmallRects and not just SmallRects.

Immediately following that, Step 13 merely asserts that DiffSquare is equal

to “the same rectangle” – an ellipsis which the reader has to go back and fill in

for himself, once again, to mean “rect.(Θ, (A+three times B+five times

Γ+seven times Δ+etc.).” The net result is that each of the Steps 12–13 –

which, taken together with Step 5, contain the argument of the proposition –

is elliptic. At the point where the key to the argument is supplied, it is supplied

only in part; the reader is asked to supply the difference. But this is of course

done again and again. Step 11 is an obvious “similarly” type extension only if

we have already established that the sequence I, K, Λ . . . is a series of integer

multiples of Θ. A version of this fundamental result is also required for Step

15 (which – implicitly! – shows that Θ:A::A:SameSquare). This fundamental

result is never stated and is left for the reader to compute. Further, everything

in this proposition depends on the extension of results across a series. You

would expect Archimedes to make this as evident as possible, by phrasing the

results for all terms in a precisely repeatable way. But he goes out of his way to

create a jarring, surprising transition between Steps 6 and 7 in the sequence

rect: contained by segments ¼ 2 n � Θ � lower segmentð Þ
for which see note 130 above. He also makes it very difficult to follow the

“similarly” transition from Step 16 to 18. All in all, one can say that the

proposition demands that we combine several lines of thought: 1–5, 6–12,

13–20. Each is very difficult, as is their combination. None are set out clearly.

4. And indeed, once again, this is presented in an atmosphere of surveying

a sequence of claims from a distance, rather than presenting one in argumen-

tative detail. What was natural, with the very elementary claims at the begin-

ning of the treatise, is almost incredible now: there is no ἄρα in this

proposition. It begins with a δή, in Step 1, the major steps from then on

marked by οũν (Steps 4, 12, 21). Key claims such as 5, 6, 13 are introduced by

a mere δέ, perhaps to be translated as “and.” The main difference from

previous propositions is that there is much more use of γάρ, in Steps 14, 15

and 17: relying on this particle, Archimedes can avoid an explicit argument

for the very complex claim of Step 13, presenting it instead as a fiat which is

then briefly argued for retrospectively.

Of course, all of this does not yet mention a final consideration, which

makes the proposition even more opaque: its strange, difficult subject matter.

The point is that Archimedes is not trying to make a difficult subject matter

more accessible through a transparent exposition: he strives, on the contrary,

to maintain the sense of an opaque passage.

And yet, just what is the kind of object studied in this proposition? This is

not easy to answer – in itself, a mark of the opacity of the proposition. We will

return to this question, having taken on board the second, and final, treatment

of this subject matter.
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/11 /

If however many lines are set in order, exceeding each other by an

equal <difference>; and other lines are set in multitude smaller by one

than the <lines> exceeding each other by an equal <difference>,153

each being equal in magnitude to the greatest <=among the original

lines>:154 all the squares on the <lines> equal to the greatest <line>

have to the squares on the <lines> exceeding each other by an equal

<difference> (without the smallest), a ratio smaller than: the square on

the greatest <line>, to the <square>155 equal to both: the <rectangle>

contained by the greatest <line> and the smallest <lines>, as well as a

third part of the <square> on the difference,156 by which the greatest

<line> exceeds the smallest; but, to the squares on the <lines> exceed-

ing each other by an equal <difference> (without the square on the

greatest) <the squares on the lines equal to the greatest have a ratio>

greater than the same ratio <=the ratio of the square on the greatest

In the footnotes to this proposition the following abbreviations are used:

Series One The terms such as ΞN, MΛ, . . . AB
Series Two The terms such as ΞY, MT, . . . ΔO
UnequalSquareSum The sum of squares on the terms of Series One

EqualSquareSum The sum of squares on the terms of Series Two

GreatSquare Square on a line such as AB (any of the terms of

Series Two)

GreatSmallSquare Square equal to the sum of:

Rectangle contained by lines such as (AB, BΔ) +
One-third the square on the difference between

AB, BΔ

153 So, this time: if the original series has, e.g., seven lines/terms, the second series

has six lines/terms . . .
154 . . . all six are equal to the greatest among the first series. Algebraically: Series

One is b, b+a, b+2a, b+3a . . . b+ma. Series Two has m terms, all equal to b+ma. Notice

that this time we are not explicitly told the difference is to be equal to the smallest line.

See the general comments.
155 The reference is in fact ambiguous: a square is equal to an unspecified X (neuter

gender) equal to a rectangle plus the third of a square. What is that X? A square? A

rectangle? An area? A thing? Is it useful that we may ask that question – and that Greek

readers probably did not? Such ambiguities sustain the essential ontological ambiguity

of Greek mathematics: is it about concrete geometrical objects or about generalized,

abstract magnitudes?
156 The Greek word for “difference” is the nominal form of the verb “exceed” used

here. A more literal translation would have been “excess” (I find the word stylistically

awkward, but this may be my own idiosyncratic bias). So, we refer to the square on the

difference of this arithmetical progression.

Multitude: see Glossary
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line, to the square equal to the rectangle and one-third a square

specified above>.157

For let there be however many lines, exceeding each other by an

equal <difference>, set in order, AB greater than ΓΔ, ΓΔ than EZ, EZ

than HΘ, HΘ than IK, IK than ΛM, ΛM than NΞ, and let ΓO, equal to
one difference, be added to ΓΔ, and <let> EΠ, equal to two differences,
<be added> to EZ, and <let> HP, equal to three differences, <be added>

to HΘ, and to the others in the same manner. So, the resulting <lines>

157 Proposition 11 is more complicated than 10, primarily in stating a proportion

inequality rather than a simple equality.

We take one sum, which is the sum of all the squares on the lines/terms of Series

Two – six lines/terms in the example we choose following Archimedes. So it is the sum

of six equal squares. Call this EqualSquareSum (algebraically: m*(b+ma)2). We may

then compare this with two other sums. One is the sum of the squares on the lines/terms

of Series One, but excluding the smallest line/term there – so as to make sure we have,

once again in our example, seven lines/terms, or in general an equal number of terms as

in Series Two (algebraically: (b+a)2+(b+2a)2+ . . . +(b+ma)2). Another is the same sum

of the squares on the lines/terms of Series One, but this time excluding the greatest line/

term (algebraically: b2+(b+a)2+ . . . +(b+(m-1)a)2). Thus we may compare

EqualSquareSum to two versions of UnequalSquareSum: either UnequalSquareSum

minus smallest, or UnequalSquareSum minus greatest. (Clearly, “UnequalSquareSum

minus smallest” is greater than “UnequalSquareSum minus greatest.”)

So we consider EqualSquareSum:UnequalSquareSum minus smallest, (Ratio A)

As well as EqualSquaresum:UnequalSquareSum minus greatest (Ratio B).

Ratio A is the ratio of X to a greater magnitude, Ratio B is the ratio of the same X

to a smaller magnitude. Thus it is natural that Ratio A is smaller than Ratio B.

Specifically, we are told that Ratio A is smaller than a certain Ratio C, but that

Ratio B is greater than the same Ratio C.

What is Ratio C? It is the ratio involving not entire series but single entities (thus a

simpler ratio, reducing the dimension of the degree of freedom of the number of lines in the

series). The antecedent term is the square on the greatest, or GreatSquare (algebraically:

(b +ma)2). The consequent term is the (square equal to the) sum of the rectangle contained

by (greatest, smallest), together with one-third the square on the difference between

greatest and smallest (algebraically: ((b+ma)*b) + 1
3(ma)2). Call this GreatSmallSquare.

And so Ratio C is GreatSquare:GreatSmallSquare.

The theorem sets out to prove that:

(i) EqualSquareSum:UnequalSquareSum minus smallest < GreatSquare:

GreatSmallSquare

(ii) EqualSquaresum:UnequalSquareSum minus greatest > GreatSquare:

GreatSmallSquare

Or, if you prefer a single statement, closer in spirit to Archimedes formulation:

EqualSquaresum:UnequalSquareSum minus greatest > GreatSquare:GreatSmallSquare > EqualSquareSum:UnequalSquareSum minus smallest

I put the last statement in smaller type, so as to fit a single line. Of course, it cannot be

read this way, which hardly matters, which must be part of Archimedes’ point. More in

the notes to follow.
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shall be equal to each other and, each equal to the greatest <line>. Now,

it is to be proved that the squares on all the arising <lines>158 have to all

the squares on all the <lines> exceeding each other by an equal <dif-

ference> (without the square on NΞ) a ratio smaller than the square on

AB to the <area> equal to both: the <rectangle> contained by AB, NΞ,
as well as the third part of the square onNY,159 but that to the squares on

the same <lines> (without the square on AB) they have a greater ratio

than the same ratio.

(a) Let a <line> equal to the difference be taken away from each of

the <lines> exceeding each other by an equal <difference>;160 (1) So,

the ratio which the <square> on AB has to both taken together: the

<rectangle> contained by AB, ΦB, as well as the third part of the

square on AΦ –<all the following> have this ratio: the square on OΔ to

the <rectangle> contained by OΔ, ΔX, as well as the third part of the

square on XO; as well as the square on ΠZ to: the <rectangle>

contained by ΠZ, ΨZ, as well as the third part of the square on ΨΠ;
and the squares on the other <lines> to the similarly taken areas.161

158 That is: the lines arising from adding ΓO to ΓΔ etc. “all the arising lines” are the

same as “all the lines equal to the greatest.” It is very interesting to see how, in the course

of a definition of goal, one reverts to a general, letter-less reference resembling an

enunciation. Letters are avoided, though, not to obtain generality but to avoid even

more clutter. Whichever route one takes – general statement or lettered references –

references are very difficult to establish.
159 Remarkably, already within the definition of goal (i.e. even prior to a formal

“construction” stage) we encounter a letter nowhere established by the text and merely

provided by the diagram (the letter Y). This is due to the manner in which the operation

of adding on lines was merely generally referred to as being “continued in the same

manner.” In fact, all the letters beyond P are unspecified in this proposition. So far, three

letters are unspecified: Σ, T, Y.
160 The effect of this brief “construction” is to set up the point series from Φ to Ϙ. In

this sense it is required prior to Step 1. None of the letters is explicitly specified. In

the diagram the series appears equal to the segment NΞ (the points fromΦ toϘ appear at

the same height as the point N). This is the only indication that NΞ=difference. See the

general comments below.
161 This statement appears somewhat opaque, because of its length as well as its reliance

on letters whose reference was not explicitly specified. The content, however, is absolutely

straightforward: the various ratios which are asserted to be the same with each other are all

the very same ratios, merely transposed visually along the series of lines: AB is exactly the

same as OΔ; AB, ΦB is exactly the same as OΔ, XΔ; AΦ is exactly the same OX. Thus sq.

(AB):rect.(AB,ΦB) + 1
3sq.(AΦ)::sq.(OΔ):rect.(OΔ,XΔ) +

1
3sq.(OX), for no other reason

than sq.(AB):rect.(AB,ΦB) + 1
3sq.(AΦ)::sq.(AB):rect.(AB,ΦB) +

1
3sq.(AΦ). Notice at

this stage that the complicated object “rect.(AB,ΦB) + 1
3sq.(AΦ)” is the same as what

we called “GreatSmallSquare” in the context of the general enunciation.

What is truly curious is that you begin Step 1 with the expectation that there is

some specific geometrical manipulation embedded in the configuration of squares and

rectangles it refers to, establishing a particular proportion statement; but then you
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(2) So, also: all the <squares>, on all the <lines> OΔ,ΠZ, PΘ, ΣK, TM,

YΞ <have this ratio> to all the <rectangles> contained by both: NΞ, as
well as the <line> equal to all the mentioned lines; as well as the one-

third part of the squares on OX, ΠΨ, PΩ, ΣϠ, TϘ, YN shall have the

same ratio which the square on AB <has> to both taken together: the

<rectangle> contained AB, ΦB as well as the third part of the square

on ΦA.162 (3) Now, if the <rectangle> contained by NΞ, as well as
<by> the <line> equal to all the <lines> OΔ, ΠZ, PΘ, ΣK, TM, YΞ, as
well as the third parts of the squares on OX, ΠΨ, PΩ, ΣϠ, TϘ, YN,
should be proved to be smaller than the squares on AB, ΓΔ, EZ, HΘ,
IK, ΛM, but greater than the squares on ΓΔ, EZ, HΘ, IK, ΛM, NΞ, the
claim shall be proved.163

recognize that the proportion statement would have been valid for any geometrical

configuration dreamed up arbitrarily by Archimedes.
162 ElementsV.12.We had a series of trivial proportions A1:B1::A2:B2::A3:B3:: . . . ::

A8:B8 (trivial because A1=A2=A3 etc., B1=B2=B3 etc.). We now compress it all to a

single proportion: A1+A2+A3 . . . + A8: B1+B2+B3+ . . . + B8:: A1:B1

There is only one slight transformation: whereas in the statement of the individual

ratios in Step 1 above, each rectangle was defined by two sides analogous to AΦ, ΦB,

(OX, XΔ; ΠΨ, ΨZ; etc.), Step 2 exploits the equality of the analogous constituents and

transforms the smaller side of each rectangle into the same side NΞ. (It is now assumed

that NΞ is indeed equal to the difference; as Heiberg notes, the argument does not really

require this assumption. See the general comments.) Thus we have one big rectangle

(instead of the summation of seven separate rectangles) whose one smaller side is NΞ,

while its greater side is the summation of the lines AΦ, OX, ΠΨ etc.

The outcome, in terms of the general enunciation, is to state:

EqualSquareSum:(A Certain New Combination)::GreatSquare:GreatSmallSquare

Other than A Certain New Combination, all the terms are established already by

the general enunciation. This, however, is not transparent, because the general enun-

ciation was never specified in complete terms.
163 Step 2 has established that:

EqualSquareSum:(A Certain New Combination)::GreatSquare:GreatSmallSquare

We need in the general enunciation to prove that:

(i) EqualSquareSum:UnequalSquareSum minus smallest < GreatSquare:

GreatSmallSquare

(ii) EqualSquaresum:UnequalSquareSum minus greatest > GreatSquare:

GreatSmallSquare

Thus Archimedes can state quite straightforwardly (through Elements V.8) that all he

needs to show is that:

(i) A Certain New Combination < UnequalSquareSum minus smallest

(ii) A Certain New Combination > UnequalSquareSum minus greatest

In the following we first set out to study comparison (ii) A Certain New Combination is

to be compared with UnequalSquareSum minus greatest.
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(4) So, the <rectangle> contained by: NΞ, as well as <by> the

<line> equal to all the <lines> OΔ, ΠZ, PΘ, ΣK, TM, YΞ, as well as
the third parts of the squares on OX, ΠΨ, PΩ, ΣϠ, TϘ, YN, are equal
to the squares on XΔ, ΨZ, ΩΘ, ϠK, ϘM, NΞ and the <rectangle>

contained by: NΞ, as well as the <line> equal to all the <lines> OX,

ΠΨ, PΩ, ΣϠ, TϘ, YN, and the third part of the squares on OX, ΠΨ, PΩ,
ΣϠ, TϘ, YN;164 (5) while the squares on AB, ΓΔ, EZ, HΘ, IK, ΛMare

equal to the squares on BΦ, XΔ, ΨZ, ΩΘ,ϠK, ϘM and the <squares>

on AΦ, ΓX, EΨ, HΩ, IϠ, ΛϘ, and the <rectangle> contained by BΦ
and the double of AΦ, ΓX, EΨ, HΩ, IϠ, ΛϘ.165 (6) Now then, the

squares on the <line> equal to NΞ are common to each,166 (7) while

This, however, would be clear only under a precise reading of Step 2, which

translates it (as I did in n. 162 above) into the terms of the general enunciation. The

reader was not supplied such a translation, and therefore the claim of Step 3 appears as

quite a surprise.
164 The Step asserts effectively:

rect:ðNΞ;OΔþ ΠZþ PΘþ ΣKþ TMþ YΞÞ ¼
sq:ðXΔÞ þ sq:ðΨZÞ þ . . . þ sq:ðNΞÞ þ . . . þ rect:ðNΞ;OXþ ΠΨþ PΩþ ΣϠ

þTϘþ YNÞ
This is obvious if we consider that rect.(NΞ,OΔ) = sq.(XΔ) + rect.(NΞ, OX) (in the

rectangle NΞ, OΔ, we subdivide the long side OΔ into its constituent parts XΔ, OX, and

then exploit the equality NΞ=XΔ).

What the Step obtains is a reformulation of A Certain New Combination.
165 Elements II.4 applied successively to each of the unequal lines; BΦ is taken (in

the rectangle) as equal to each of the smaller sides. What this Step obtains is a

reformulation of UnequalSquareSum minus smallest.
166 “To each” – namely, to the reformulated version of both A Certain New

Combination as well as UnequalSquareSum minus smallest. The first, A Certain New

Combination, became in Step 4:

sq: XΔð Þ þ sq:ðΨZÞ þ . . . þ sq: NΞð Þ þ rect:ðNΞ; OXþ ΠΨÞ þ . . . þ YNÞ
þ1=3sq: OXð Þ þ sq: ΠΨð Þ þ . . . þ sq: YNð Þ

The latter, UnequalSquareSum minus smallest, became in Step 5:

sq: BΦð Þ þ sq: XΔð Þ þ . . . þ sq: ϘMð Þ þ sq: AΦð Þ þ sq: ΓXð Þ � . . . þ sq: ΛϘð Þ
þrect:ðBΦ; 2 � AΦþ ΓXþ . . . þ ΛϘÞ

The implicit upshot of Steps 3–5 is that we need to compare the terms above.

The terms are now each composed of three components. The first component in

both is a series of squares, in magnitude all equal to NΞ, in multitude all equal to the

number of lines in the diagrams minus one. Intriguingly, the “minus one” is different in

each of the terms (the first misses out the “first” square, on BΦ; the latter misses out the

“last” square, on NΞ). This makes the claim of Step 6 much more difficult to perceive.

Once we do perceive it, we recognize that our goal is to compare now the following two

terms, each with two components (that is, we can “cancel out” the first components):
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the <rectangle> contained by NΞ and the <lines> equal to OX, ΠΨ,
ΩP, ϠΣ, ϘT, YN is smaller than the <rectangle> contained by BΦ,
and the double of AΦ, ΓX, EΨ, HΩ, IϠ, ΛϘ167 (8) through the lines

now mentioned <=AΦ, ΓX, . . ., ΛϘ> being equal to the <lines> ΓO,
EΠ, PH, IΣ, ΛT, YN,168 but greater than their remainders;169 (9) and

the squares on AΦ, ΓX, EΨ, HΩ, IϠ, ΛϘ <are greater than the third

part of the squares on OX, ΠΨ, PΩ, ΣϠ, TϘ, YN>.170 (10) For this has
been proved in the above.171 (11) Therefore the said areas are smaller

than the squares on AB, ΓΔ, EZ, HΘ, IK, ΛM.172

rect:ðNΞ;OXþ ΠΨÞ þ . . . þ YNÞ þ 1=3sq:ðOXÞ þ sq:ðΠΨÞ þ sq:ðYNÞ

and

sq:ðAΦÞ þ sq:ðΓXÞ þ . . . þ sq:ðΛϘÞ þ rect:ðBΦ; 2 � AΦþ ΓXþ . . . þ ΛϘÞ
167 The claim now is rect.(NΞ, OX+ΠΨ)+ . . . +YN)<rect.(BΦ, 2*AΦ+ΓX+ . . . +ΛϘ).

This involves yet another of the components of the terms compared in the (implicit)

outcome of Steps 3–5. What remains in need of comparison are the terms 1
3sq.(OX)+sq.

(ΠΨ)+sq.(YN) | sq.(AΦ)+sq.(ΓX)+ . . . +sq.(ΛϘ).
168 The series AΦ . . . ΛϘ is the same as the series NY . . . ΓO, “rotated 180 degrees.”
169 The “remainder” of ΓO is ΓX, the “remainder” of ΠE is EΨ, and so too TΛ (whose

remainder is ΛϘ), and YN (whose remainder is nothing). Thus the “remainders” of the

entire series ΓO, EΠ, PH, IΣ, ΛT, YN are the series ΓX, EΨ, HΩ, IϠ, ΛϘwhich is smaller

by one line than the series AΦ, ΓX, EΨ, HΩ, IϠ, ΛϘ.
Now, if we wish to compare the double of A and B, and B is subdivided into B1,

B2, (“lines” and “remainders”), of which A equals B1 but is greater than B2, then surely

the double of A is greater than B. Thus Step 8 indeed justifies Step 7.
170 The manuscripts omit the last clause, almost certainly a scribal error (corrected

by editors from Commandino on). It is a marvel that more such scribal errors were not

made in the transmission of this heavy, lumbering piece of text.

The claim now is:

sq:ðAΦÞ þ sq:ðΓXÞ þ . . . þ sq:ðΛÞ > 1=3sq:ðOXÞ þ sq:ðΠΨÞ þ . . . þ sq:ðYNÞ

This Step 9 completes the comparison of the two three-component terms established by

Steps 3–5. In Step 6, we learn that a certain component in the first term is equal to a certain

component in the second one. In Step 7 we learned that another component in the first term

is smaller than another component in the second one; we now learn in Step 9 that the

remaining component in the first term is also smaller than the remaining component. One of

the component pairs is equal, the other two are smaller, and thus the term as a whole is

smaller.
171 Step 9 is indeed exactly claimed in proposition 10 (as restated in the corollary).
172 This reverts to the statement of Step 3, and we learn that “the said areas” refers not

to the combination set up in the reformulation of Step 3 within Steps 4–5, but to the

original set referred to in Step 3, much more salient in the proof as a whole and called

above “A Certain New combination”:

rect:ðNΞ;OΔþ ΠZþ . . . þ YΞÞ þ 1=3ðsq:ðOXÞ þ sq:ðΠΨÞ þ . . . þ sq:ðYNÞ
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And we will prove what remains, that they <=the said areas> are

greater than the squares on ΓΔ, EZ, HΘ, IK, ΛM, NΞ.173 (12) So, again,
the squares on ΓΔ, EZ, HΘ, IK, ΛM, NΞ are equal to the <squares> on

XΓ, EΨ, HΩ, IϠ, ΛϘ and the <squares on XΔ, ΨZ, ΩΘ, ϠK, ϘM,

NΞ>174 and the <rectangle> contained by: NΞ, and the double of all the
<lines> ΓX, EΨ, HΩ, IϠ, ΛϘ.175 (13) And the <squares> on XΔ, ΨZ,
ΩΘ,ϠK,ϘM, NΞ are common176 (14) while the <rectangle> contained

by:NΞ, and the <line> equal to all the <lines>OX,ΠΨ, PΩ,ΣϠ,TϘ, YN,
is greater than the <rectangle> contained by NΞ and the double of all the

<lines> ΓX, EΨ, HΩ, IϠ, ΛϘ.177 (15) And also: the squares on XO, ΨΠ,

173 We now wish to show

A Certain New Combination > UnequalSquareSum minus smallest

or, in more explicit terms,

rect:ðNΞ;OΔþ ΠZþ . . . þ YΞÞ þ 1=3ðsq:ðOXÞ þ sq:ðΠΨÞ þ . . .

þsq:ðYNÞ > sq:ðΓΔÞ þ sq:ðEZÞ þ . . . þ sq:ðNΞÞ
174 A lacuna in the text, emended by Commandino.
175 As the “again” suggests, this Step 12 exactly repeats the argument of Step 5

above, reapplying Elements II.4.

We have once again reformulated sq.(ΓΔ)+sq.(EZ)+ . . . +sq.(NΞ) into a three-

component term:

sq:ðXΓÞ þ sq:ðEΨÞ þ . . . þ sq:ðΛϘÞ þ sq:ðXΔÞ þ sq:ðΨZÞ þ . . . þ sq:ðNΞÞ
þ rect:ðNΞ; 2 � ΓX þ EΨ þ . . . þ ΛϘÞ

176 Without making this explicit, Archimedes in what follows will assume the same

decomposition of A Certain New Combination as in Step 4, so that this also becomes a

three-component term:

sq:ðXΔÞ þ sq:ðΨZÞ þ . . . þ sq:ðNΞÞ þ rect:ðNΞ;OXþ ΠΨþ . . . þ YNÞ
þ 1=3ðsq:ðOXÞ þ sq:ðΠΨÞ þ . . . þ sq:ðYNÞÞ

Remember, however, the three-component term established just above:

sq:ðXΓÞ þ sq:ðEΨÞ þ . . . þ sq:ðΛϘÞ þ sq:ðXΔÞ þ sq:ðΨZÞ þ . . . þ sq:ðNΞÞ
þ rect:ðNΞ; 2 � ΓXþ EΨþ . . . þ ΛϘÞ

What we need to do is to show that the first three-component term is greater than the

second. We are reminded now that one of the components is indeed common to both

terms, so it can effectively be ignored. We are left comparing

rect:ðNΞ;OXþ ΠΨÞ þ . . . þ YNÞ þ 1=3sq:ðOXÞ þ sq:ðΠΨÞ þ . . . þ sq:ðYNÞ

and

sq:ðXΓÞ þ sq:ðEΨÞ þ . . . þ sq:ðΛϘÞ þ rect:ðNΞ; 2 � ΓXþ EΨþ . . . þ ΛϘÞ
177 Another component is dealt with now:

rect:ðNΞ;OXþ ΠΨÞ þ . . . þ YNÞ > rect:ðNΞ; 2 � ΓXþ EΨÞ þ . . . þ ΛϘÞ
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ΩP,ϠΣ,ϘT,YNare greater than three times the squares on ΓX, EΨ, HΩ,
IϠ,ΛϘ.178 (16) For this, too, has been proved.179 (17) Therefore the said
areas are greater than the <squares> on ΓΔ, EZ, HΘ, IK, ΛM, NΞ.

/corollary/

And furthermore, if similar <figures> are set up on all the <lines>, on both the

<lines> exceeding each other by an equal <difference> as well as the <lines>

equal to the greatest <line>, all the <figures> on the <lines> equal to the greatest

shall have to the <figures> on the <lines> exceeding each other by an equal

<difference> (without the smallest figure) a smaller ratio than the square on the

greatest <line> to the <square> equal to both: the <rectangle> contained by the

greatest <line>, and then the smallest <line>, as well as a third part of the

<square> on the difference, but, to the figures on them <= the lines exceeding

each other> (without the <figure> on the greatest), <the figures on the lines equal

to the greatest have a ratio> greater than the same ratio <=the ratio of the square

on the greatest line, to the square equal to the rectangle and 1
3 a square specified

above>. (1) For similar figures shall have the same ratio as the squares.180

comments

A Less Difficult Proof

Proposition 11 has two parts – Steps 4–11, 12–17 – which are exactly

analogous, and for this reason the relative brevity of the second part, 12–17,

N
Λ

ΩΨXΦ

I
H

E
ΓI

A O Π P Σ T Y

B Δ Z Θ K M Ξ

A has the label series Φ, X, Ψ
etc. on a slight descending

trajectory, but not codex C,

whose flat line I reproduce

without conviction. DE4 as

well as C read Y for Ϙ, and so

did probably the common

archetype to AC. EH has T for

Ϡ, 4 has an ambiguous reading

between Ϡ and T. I suspect A

had the correct reading Ϡ and

that the errors are independent

(otherwise I would expect a T

in 4, too). D has Λ for A.

The argument is analogous to that of Step 8 (double the second series,ΓX+EΨ+ . . . +ΛϘ, is
the first series, OX+ΠΨ)+ . . . +YN, but without YN; so, clearly, double the second series is

smaller than the first series). This time, however, the argument is left implicit.

It now remains to compare:

1=3sq:ðOXÞ þ sq:ðΠΨÞ þ . . . þ sq:ðYNÞ and sq:ðXΓÞ þ sq:ðEΨÞ þ . . . þ sq:ðΛϘÞ
178 The claim now is sq.(OX)+sq.(ΠΨ)+ . . . +sq.(YN) > 3*(sq.(XΓ)+sq.(EΨ)+ . . . +sq.

(ΛϘ)). This completes the comparison (albeit, confusingly, with the transformation of a

“one-third” formulation to a “three-times” one): the first term is greater than the second.
179 This is the other part of the corollary to proposition 10 above, completing the

application of the preceding proposition in full.
180 Elements VI.20.
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does not count as a genuine ellipsis: a reader who has followed the argument

of 4–11 is well prepared indeed to fill in the gaps in 12–17. (In proposition 10,

by contrast, a large part of the difficulty of the argument had to do with the

way in which the task was subdivided into smaller tasks whose overall

arrangement was only incompletely specified by the text itself.) There are

complications. Thus the main task, that of the definition of goal, is reinter-

preted explicitly at Step 3 and then only implicitly in Steps 4–5: when the

reinterpreted task of Steps 4–5 is obtained in Steps 6, 7, 9, the reader has to

piece them together by himself and then see that, because they apply to the

implicitly reformulated goal of Steps 4–5, it also applies to the explicit goal of

Step 3. This is in the spirit of the complicated demands put on the reader in

proposition 10, but of course in a much milder form.

It is not that Archimedes makes an effort to present the proposition in a more

accessible way (the surface appearance of proposition 11 is, if anything, more

complex: see below); rather, the nature of the task of this proposition is simpler.

The proposition appears to deal with a more complicated subject matter – that of

a proportion statement instead of an equality – but, as Steps 1–3 clarify, the

proportion reduces to an equality statement. And while the terms used appear

convoluted, they are indeed contrived in a precise sense. What makes them

appear especially complex – the reference to a third of a set of squares – is in fact

calculated as a direct application of proposition 10 so that the very complexity of

the formulation simplifies the solution, saving us the trouble of a specialized

proof (required in the preceding proposition). It is almost better to think of

proposition 11 as a kind of corollary to proposition 10: a twist on the way in

which the result of proposition 10 can be presented (the terms of proposition 10

are added onto other terms and then inserted into a proportion statement).

The major difference between propositions 10 and 11 is that proposition 10

demands, while proposition 11 does not, that the smallest term be equal to the

difference. Of course, proposition 10 is applied inside proposition 11, but this

is because its application is limited to a subset of the lines: the set of lines in

proposition 11 to which proposition 10 is applied is the series ΓX, EΨ, . . ., ΛϘ,
where the difference is indeed equal to the smallest, since ΛϘ is indeed the

smallest difference, not the smallest term – that is, we are not guaranteed

explicitly by the proposition that ΛϘ=NΞ. This equality is indeed assumed by

the proposition, in the manner in which the construction move (a) spells itself

out in the diagram (i.e. there is no extra point above or below N; instead, the

point on the line YΞ, homologous in function to the points Φ, X etc., is

assumed to be the same as N)181 and then in Steps 2–3, which directly assume

line NΞ as equal to a difference. This is essentially a matter of economy:

181 In what sense is it established by the diagram that NΞ=ϘM? Probably not in the

sense that the two appear equal (i.e. N appears to be of the same height as Ϙ). In the

manuscript evidence, N appears somewhat higher (than Ϙ, which may be mislabeled as

Y), and the entire row is somewhat “undulating” in appearance. Perhaps Archimedes’

original drawing was as sharp as Heiberg’s, but nothing in the practices of Greek

mathematics as a whole makes us think the diagram was designed to represent such

metrical facts directly. Indeed, one is at first struck to see that, in the diagram of
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instead of having the line YΞ divided at two points, one standing for “the first

term of the progression,” the other standing for “the length equal to the

difference of the progression,” both are represented by the same line NΞ.

However, the functions are kept separate: the manipulations of the proof that

operate on NΞ as the difference never use its equality with the smallest term.

Nothing in the argument would differ if, instead of referring to NΞ, one would

refer to some other line, let us say $Ξ ($ then positioned parallel to Ϙ,Ϡ and

above or below N). Such a diagram (and text) would have set out the argument

in a clean way. As it happens, the reader must establish its validity for himself

and verify, step by step, that the separation of functions is followed.

It is hard to account for all of that. Had the enunciation of proposition 11 lost

its reference to the equality of the difference with the smallest line? Almost

certainly not, since then its application in proposition 25 would be false. It is also

hard to imagine a textual corruption whereby some kind of “$,” a distinction in

the diagram itself between the two functions of “N,” was lost – for then we

would face not only a false diagram but also a text which is repeatedly false in its

references to one of the functions of N. None of these is promising; and sowe are

led to the conclusion that the proposition states a general claim, and then its

proof appears to work with a more narrow case, its validity verifiable only

through a step-by-step process of distinguishing two functions of the same point.

Themost fundamental point is that, now, the reader would not bother, since

(a) the future application of proposition 11 is nowhere suggested, and there-

fore the reader is not made aware of the significance of the general application

of the proposition; and (b) the reader is conditioned by the preceding proposi-

tion to assume that the reference is indeed to the case where the smallest term

equals the difference. It would be egregiously unlikely for any reader, at this

stage, to bother to verify the general validity of the proof, instead of taking it

automatically to refer to the narrow case (and, if anything, to consider the

absence of explicit restriction in the general enunciation to be a mere over-

sight, perhaps intended to be completed based on the preceding proposition).

In short, the proposition sets itself up to be read as stating less than it actually

does. More on this when we get to the application of the proof in proposition

25. But the reader may well notice already: in the case of propositions 5, 7, 8,

Archimedes masked their future application by “padding” them with proposi-

tions 6 and 9; in this case, the future application is masked with a misleading

enunciation and diagram.

Be that as it may, it does remain striking that the identity of the terms seems

to rely so powerfully on the diagram: which brings us to the question of the

overall character of the argument and its subject matter.

proposition 11, the smallest term is not the same as the difference. But, on a closer look,

one notices that the difference is not very sharply maintained as the same; and that, more

remarkably, the smallest term does not appear equal to the difference in proposition 10

either.Metrical equality is not represented bymeasured equality in the diagram. Instead,

the diagram conveys structural information: the entire row from Φ to N, undulating as it

is, is clearly homologous; N is unique on its line YΞ.
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The Subject Matter?

A further difference between propositions 10 and 11 has to do with the main

source of validity. Most of the argument of proposition 10 is mediated through

claims of computation: adding up terms, one sees that they build up a series of

odd numbers. Proposition 11 has nothing of this kind but instead relies, again

and again, on the diagram – whose functioning in the proof is much more in

the spirit of Greek geometrical proofs.

I explain: in a move quite untypical of Greek geometry, the diagram of

proposition 10 had two line segments, adjacent (sharing a point) referred to

not by the labels on the points of their extremes (one of which is shared) but by

two labels directly on the line segments themselves. This means that such a

term as BI refers not to a line segment whose ends are B, I, but to a composite

made of B, I: something rather like B+I. Now, typically, the relations denoted

by diagrammatic labels are of a topological character: lines overlap or inter-

sect. In proposition 10 the relations denoted by diagrammatic labels took a

more “algebraic” significance: two values could be added together. Indeed,

expressions such as BI are in fact quite rare even in proposition 10: almost

always – with two crucial exceptions in Steps 1–2 – the proposition refers to

segments in isolation.182 Which further serves to highlight the strangeness of

proposition 10: it involved no spatial interaction of the constituents (beyond

the treatment, in Steps 1–2 and those following from them, of two line

segments as a base for a square on the segment composed on both, as well

as being bases for individual squares and an individual rectangle).

Proposition 11 is muchmore “normal” in this regard. Labels refer to points,

and so the two-letter term (the only kind of term used in this proposition)

refers to a line segment. The spatial composition and decomposition of such

line segments may be represented by the diagram and its labeling, and is done

so repeatedly in the proof: Steps 4, 5, 8 are based on such decompositions and

underlie practically all of the argument from Steps 4 to 11 (together with the

application of proposition 10). Analogously, Steps 12, 14 rely on similar

decompositions (and while the analogue to Step 4 remains implicit in the

182 By “isolation” I mean the absence of immediate concatenation of such labels as

BI. The proposition does frequently refer to an aggregate of such terms as A, B, Γ, Δ, E,

Z, H, Θ. Now, in a modern edition the difference is clear: immediate concatenation is

marked as a single string such as BI; an aggregate is marked by commas inserted inside

the aggregate. Such distinctions are not typically respected in the medieval manuscripts

(where, if anything, long series of terms are often presented as a sequence of concate-

nated pairs, so that A, B, Γ, Δ, E, Z, H,Θ, for instance, may well be laid out as AB ΓΔ EZ,

HΘ), and could well have been altogether ignored in the ancient papyrus tradition. I take

the distinction as meaningful, at the level of mathematical contents: what modern

editions typically represent by immediate concatenation is naturally seen as a single

mathematical object; what modern editions typically represent through a series of

commas is more naturally seen as a plurality of mathematical objects, considered

together for some purpose. To be “naturally seen” is of course to some extent a matter

of judgement, so that the definition offered here is subjective and somewhat fuzzy.
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sequence 12–17, this makes its reliance upon the diagram even more crucial).

Furthermore, consider Step 1, setting up the starting-point for the proof: it

relies on nothing else than the pointing-out of a homology running through

the diagram. This is similar to the manner in which the various small sides of

the rectangles are collapsed into a single small side NΞ, or BΦ (Steps 3, 5): the

equality is textually based but is certainly mediated, in the mind of its reader,

via the diagram. (More complex is the “180 degree rotation” required by

Step 6.) Indeed, as pointed out above, the very identity of the segment NΞ as

simultaneously the smallest term and the difference is based on the diagram

alone. And, most simply, the identity of many of the letters is not given by the

text (which provides some of the construction elliptically) but by the diagram.

This diagrammatic activity carries a price: the complexity of the decom-

positions explains the need for labeling via points – and for more variety in the

many-term composites. In proposition 10, the composites almost always

involved the banal series A, B, Γ, Δ, etc. In proposition 11, we have a rich

variety, with terms starting from, say, OΔ; or from its part OX; or from its part

XΓ. The heavy use of long lists of composites (of which more below),

constantly changing their contents, is what underlies the first impression

that proposition 11 is impenetrably difficult.

Here, then, is an opposition: proposition 10 is more computational; propo-

sition 11 is more diagrammatic. But be careful: proposition 11 is not necessa-

rily “spatial,” or “geometrical.” This is a more precise way of stating its

apparent impenetrability. It uses the tools of a geometrical argument, without

taking benefit of visual, geometrical intuitions. There is no space outside that

of the diagram used in this proof. Claims which cannot be visualized through

the diagram (e.g. that certain sets of squares are common to two different

combinations of terms) are not visualized at all and are instead mediated

verbally. Commenting on the previous proposition, I noted how useful it

would have been to denote six key combinations by special terms, and to

refer to them as such. In the previous proposition, such labeling shortcuts

would have made the argument simpler. In this proposition, they would have

made the argument more visual. But as it is, the argument is not entirely

visual. It is visual only as long as it refers to its lattice, which in and of itself

does not carry a set of geometrical intuitions.183

183 What I think we need to clarify in our minds is the distinction between the

“diagrammatic” and the “geometrical.” An argument can be “diagrammatic” to the

extent that it relies on diagrams (and in Greek mathematics, whose diagrams take a very

precise form, this has a very precise meaning: use linear systemsmarked by letters). And

an argument can be “geometrical” to the extent that it evokes a certain order of reality

consisting of geometrical figures (and in Greek mathematics, where this order takes a

very precise form, this has a very precise meaning: refer to the universe characterized by

Euclid’s main theorems). I suggest, then, that the argument of propositions 10–11 is

only minimally geometrical (it does, after all, essentially rely on Elements II.4);

proposition 10 is not even deeply diagrammatic (it is, instead, mostly computational).

Proposition 11 presents the very interesting case of a proposition which is minimally

geometrical and yet heavily diagrammatic.
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What do I mean by saying that the lattice does not carry a set of geometrical

intuitions? I mean, essentially, that there is no toolbox of established geome-

trical results whose reference is a lattice of punctuated lines. It is this which

ultimately explains the “strangeness” of this pair of propositions. The decision

by Archimedes not to break up proposition 10 into its constituents was

decisive. Had we had a series of four or five propositions reaching the

conclusions of propositions 10–11, we would have had a mini-theory setting

up a universe of mathematical knowledge surrounding the manipulation of

certain sequences. But Archimedes never allows such a universe any chance,

as it were, to “congeal.” The lattice of punctuated lines – a geometrical, Greek

analogue to themodern study of series – was presented byArchimedes not as a

newly founded theory, but as a strange, incongruous stump.

But why should Archimedes linger in such a universe, create such a theory?

Indeed – and this must be stressed again and again – none of this is of any

interest to Archimedes apart from the study of spiral lines. He would most

likely not have come to conceive of any of those theorems, and most certainly

would not have come to present them, had they not been required for proposi-

tions 24–25; and he came to conceive of the claims, in those propositions, only

because he realized that they emerge from the theory of the spiral. In other

words, to understand propositions 10–11 we need to understand 24–25, and I

will return to explain the origins of those theorems, then, in my comments on

those propositions below. For now, we are with Archimedes, pressing on with

the spiral.

/definitions/

/1/ If a straight line is joined in a plane and, being rotated at uniform speed

however many times, with one of its ends remaining fixed, is returned again to

where it started from, while at the same time, even as the line is rotated, a

certain point is carried along the line, at uniform speed with itself, starting at

the fixed end, the point shall draw a spiral in the plane. /2/ Now, let the fixed

end of the line – <a line> which is itself being moved around – be called the

start of the spiral, /3/ and the position of the line, from which the straight line

started to rotate – the start of the rotation.

/4/ Let a straight line,184 through which the point carried along the line185

passes during the first rotation, be called first;186 and <a line>, which the same

point completes during the second rotation, second; and let the other <lines>,

similarly to these, be called by the same name <=number> as the rotations; /5/

and let the area taken by both the spiral drawn during the first rotation, as well

184 Meaning “a line segment.”
185 The word “line” here does not refer to the same line segment defined here. Rather,

the expression “the point carried along the line” is there to establish, taken as a whole,

the identity of the moving point of the spiral.
186 Somewhat obscured bymy use of italics is the fact that definition 4 defines not the

terms “first,” “second” but rather “first line,” “second line” etc.; and similarly in the

following, the term defined is “first area,” “second area,” etc.
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as by the line, which is first, be called first, and <the area> taken by both the

spiral drawn during the second rotation as well as by the second line, second,

and let the others be called in this manner in sequence.

/6/ And if from the point, which is the start of the spiral, some straight line

is drawn, let those things which are at the same side of that line, at which the

rotation is made, be called preceding, and those at the other side, following.187

/7/ Let the circle drawn with the point, which is the start of the spiral, as

center, and the line, which is first, as radius, be called first, and <let> the

<circle> drawn with the same center and with the double line as radius <be

called> second, and <let> the other <circles be called> in sequence with these

in the same manner.

comments

It is certainly startling for the definition of the spiral to appear all of a sudden

now. But it is not new: Archimedes did employ essentially the same definition

in his introductory letter (see pp. 20–21), and the likeliest reading of that was

that he was quoting (whether verbatim or not) from the original letter to

Conon. Archimedes has been describing the production of spiral lines for

quite some time.

Still, we did not expect a definition so belated. Indeed, because of the

theorematic appearance of the first definition (and because of the lack of any

marking or numbering of this set of definitions), one could well imagine that

the words “If a straight line joined in a plane . . . ” are the beginning of yet

another theorem, rather than a definition. The surprise may well be intended

and forms part of the overall trend of the prose of this treatise (indeed, of

Archimedean prose in general): as the text proceeds from one theme to the

next, the transitions are made intentionally rough. This segmentation of the

text – no less than that of the spiral – is left unmotivated. And so we entered,

unexpectedly and without explanation, the strange world of propositions 10–

11– to leave it again, with no more explanation, just as unexpectedly. We do

have a sense, though, that the main character – the spiral – has finally appeared

upon the scene and that the main action of the treatise is about to unfold;

previous textual segments now appear, in retrospect, as so much preparation.

The interlude of definitions is a powerful textual marker.

There is a more specific effect to the appearance of the spiral, in this form,

in the context of this particular book. As stated above, Archimedes could have

made a choice, here, to quote the letter to Conon explicitly in providing the

definition of the spiral, once again, in the introductory letter to this treatise;

hemade a choice to repeat the definition of the spiral twice in this book – in the

introductory letter and in this interlude of definitions. Thus this textual marker

187 Imagine that we draw a line Λ from the center of the clock, pointing to the hour 4.

Imagine that the rotation drawing the spiral starts pointing at 12 and moves clockwise.

Then the area from 12 to 4 “precedes” the line Λ, while the area from 4 to 12 “follows”

the line Λ.
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serves not merely within the text to separate the introductory material from the

main geometrical action. It also functions intertextually. In the middle of the

treatise, Archimedes brings to the reader’s mind once again the letter he has

sent to Conon. It is as if he was saying that “now, at last, the promise will be

fulfilled . . . ” – the introductory material is introductory for a certain purpose,

which emerges not out of an abstract mathematical reality but out of a

particular, material correspondence. Here, one final time, is what I wrote to

Conon; and here, at last, is what I did not.

The statement, as noted above, reads like a theorem – a conditional,

subjunctive in the antecedent, indicative in the consequent: if a drawing is

made in a certain manner, it does draw, in fact, a spiral line. The identity of the

term “spiral” is perhaps then established previously (this, after all, is a natural

Greek word);188 the validity of the claim is perhaps left for the reader’s visual

intuition. (How otherwise? The meaning of the word in natural Greek does not

have a pre-existing mathematical definition, so that there is no way to prove

that just this construction constructs just this object.) Archimedes simulta-

neously asserts that a natural way of bringing about a “coil” is through the

drawing specified here; and also postulates that he shall be using the word

“spiral” to refer only to the line arising from this construction.

Could the line between definitions and theorems be blurred? There is at

least one more suspect for that: the last definition “7” asks us that to call “the

<circle> drawn with the same center [the start of the spiral] and with the

double line as radius second.” I emphasize the words the double line.

Clearly, in context, we expect Archimedes to define the second circle by its

having, as radius, the second line (the first circle was defined, just now, by

having, as radius, the first line). Archimedes moves from the expected expres-

sion the second line to another expression, the double line, but surely this is

not felt as a genuine difference. There is no intention, say, that the definition of

the second circle should be different in character from that of the first circle;

and as Archimedes proceeds to ask us to generalize the definition to following

circles, clearly he does not ask us to choose this or that definition (the n line or

the n-times line). It is taken as if the alternatives are obviously equivalent,

because it is indeed a very easy theorem (through the definition of the spiral

188 It means “coiled” (adjective) or “coil” (noun). The nominative singular form ἕλιξ

has a word count of 225 instances in the TLG, most of which are in a non-mathematical

sense. (As is often true for Greek mathematical words, a great many of the occurrences

of the mathematical sense are in the corpus of philosophical commentary, where the

object sometimes appears as a token figure or as an example making some point about

the linear and the curved.) I can’t seem to trace, myself, archaic occurrences (the poetic

form εἷλιξ, too, is not attested prior to Nicander); however, Attic dramatists already use

the word (Liddell and Scott cite Aristophanes and Euripides, and through the Thesaurus

Linguae Graecae I find Sophocles, as well), and there is no reason to think it was in any

sense perceived as “technical” for the readers of Archimedes. It derives rather trans-

parently from the truly ubiquitous verb (attested from Homer onwards) ἑλίσσω, “turn

around.”
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and perhaps proposition 1) that the n-line is n-times the first line. Thus we find

that proposition 7 contains – implicitly and unproblematically – a theorem.

The expression “start of the spiral” encapsulates a significant geome-

trical intuition: the spiral essentially has a starting-point – and this is an

essential feature of its geometrical existence (in this, after all, the spiral

differs from both its parents – the line and the circle).189 As for the

remaining definitions, they imply, taken together, the role that integer

numbers play in the making of the geometry of the spiral. We will see

much more of that below.

/12 /

If however many lines, drawn from the start of the spiral, fall on the

spiral during a single rotation, making the angles equal to each other,

they <=the falling lines> exceed each other by an equal <difference>.

Let there be a spiral, on which <are> the lines AB, AΓ, AΔ, AE, AZ
making equal angles to each other. It is to be proved that AΓ exceeds
AB, and AΔ <exceeds> AΓ by an equal <difference>, and the others

similarly.

(1) For, <in the time> in which the rotated line reaches from AB to

AΓ, in that time the point being carried along the straight <line> passes

through the difference, by which ΓA exceeds AB, (2) and, in which

time <it reaches> from AΓ to AΔ, in that <time the point> passes

through the difference, by which AΔ exceeds AΓ. (3) And the rotated

line reaches both from AB to AΓ and from AΓ to AΔ in an equal time,

(4) since the angles are equal.190 (5) Therefore the point carried along

the straight <line> passes through the difference, by which ΓA
exceeds AB, and through the difference, by which AΔ exceeds AΓ,
in an equal time. (6) Therefore AΓ <exceeds> AB and AΔ <exceeds>

AΓ by an equal <difference>, as well as the rest <of the lines,

accordingly>.

189 There is an important verbal choice here, of mathematical consequences.

Archimedes chose to have the same word for the beginning point as well as the

beginning line of the spiral, hence the term “start.” Otherwise, it would be quite natural

to refer to the “start of the spiral” as the “center of the spiral.” Avoiding this term tends

to de-emphasize the relationship between the spiral and the circle, and to emphasize

more the dynamic character of the spiral. It is not altogether clear, however, that such

terminology is original to Archimedes in this treatise (clearly the spiral was discussed in

some detail between him and Conon; see p. 33); we cannot be certain that such verbal

decisions imply a deliberate Archimedean choice. For whatever reason, then, let us note

that the spiral, as developed here, has a start rather than a center.
190 This seems like an implicit definition of “being rotated at uniform speed with

itself.”

Fall: see Glossary
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comments

The diagram displays the equal angles quite explicitly, and measurably: half a

right angle each. (It is for this reason, to be sure, that we have exactly four

lines drawn, to divide a straight line into four equal angles.) There is an inert

extra line at the top, mysteriously labeled by the point H byHeiberg.While the

angles are metrically persuasive, the spiral itself is not (though the illusion

might be good enough). AB is a small semi-circle; BΓΔEZ trace another

semicircle, double in radius (which is then inertly continued upwards, a

further eighth of a rotation). The claim of the proposition, then, is most

decidedly not metrically expressed by its diagram: while the angles do exceed

each other by an equal amount, the lines are all equal. (Remarkably, this was

noted and corrected by the scribe of codex D; Heiberg’s diagram, of course, is

indeed metrically correct.)

The significance of this theorem is in evoking the language of propositions

10–11: as we hear now that lines are to exceed each other by an equal

difference, we expect such lines to display, soon, the properties of the pre-

ceding propositions, in this way beginning to tie together the various themes

developed so far in the treatise. However, this is not exactly Archimedes’

plan, and the following proposition does not take up the theme of proposition

12, leading instead in yet a new direction.

/13 /

If a straight line touches the spiral, it will touch it at one point only.

Let there be a spiral, on which are <the points> A, B, Γ, Δ, let the
point A be the start of the spiral, and let the line AΔ be the start of the

rotation, and let a certain line, ZE, touch the spiral. So, I say that it

touches it at one point only.

(a) For let it touch, if possible, at two points: Γ, H (b) and let AΓ, AH
be joined, (c) and let the angle contained by AH, AΓ be bisected,191

(d) and letΘ be the point at which the <line> bisecting the angle falls on

the spiral. (1) So, both AH exceeds AΘ and AΘ <exceeds> AΓ by an

BA

E

Z

T

Δ

191 The literal Greek is “cut in two,” meaning in this technical context “cut in two

equal parts.”

Codex D has a different

diagram altogether, as in

the thumbnail.
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equal <difference> (2) since they contain equal angles to each other;192

(3) so that AH, AΓ are twice AΘ. (4) But they are also greater than

double the <line> in the triangle, AΘ, bisecting the angle.193 (5) Now, it
is clear that the point at which AΘ meets the straight <line> ΓH is

between the points Θ, A.194 (6) Therefore EZ cuts the spiral, (7) since

some <part> of the points in the <line> GQH is inside the spiral; (8) but

it was assumed to be tangent; (9) therefore EZ touches the spiral at one

point only.

comments

This proposition is somewhat related to Elements III.2, the first theorem

provided by Euclid for the circle: that the straight line joining any two points

on the circle passes wholly inside the circle. Why? Because any straight line

falling inside the triangle whose two sides are the two radii of the circle, is

smaller than the radii themselves (this in turn is true for very elementary

Δ

Θ

Γ

A

B

E

H

Z

B D G

B, D and G (as well as a second

hand in E) each have a distinct

diagram (see thumbnails).

Codex C certainly missed Z,

and probably E as well.

192 Proposition 12.
193 This – the one genuine geometrical action of the theorem – is left implicit.

It can be obtained as a very elementary result, e.g. as follows: in the triangle

ABC, AD bisects the angle CAB. Have the side ABAC, and find the point E on

AB such that (angle AED)=(angle ADC) (certain to be found, since (angle ABD)

<(angle ADC)). From the similarity of the triangles AED, ADC we have rect.

(AE, AC)=sq.(AD), and a fortiori rect. (AB,AC)>sq.(AD). Since, when any rect.

(P,Q)=sq.(R) we have 2R<P+Q, a fortiori when rect.(P.Q)>sq.(R) 2R<P+Q. It

follows that 2*AD<AC+AB.
194 If we have a genuine triangle AΓH and a genuine angle bisector along the line

AΘ, it has to be smaller than AΘ by the property stated in Step 4 above. Notice that we

did not yet exit the proof-by-contradiction stage, and we are still working under the

assumption of a touching at two points; see the comments.
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considerations of triangles). In this case, Spirals 13, we have a more limited

claim: that one line, namely the midway line between the two lines of the

spiral, is similarly smaller (and this for a somewhat more complicated reason

having to do with considerations of triangles). Not only is this passage similar

to Elements III.2, it would also not feel out of place within the middle section

of Conics I, propositions 17–36, dedicated mostly to results of touching and

cutting between curves and straight lines, and mediated mostly through proofs

by contradiction of a similar character. In short, the sense is that we embark on

a project comparable to book III of the Elements or to Apollonius’Conics I. In

such an imaginary treatise – “The Elements of Spiral Lines” – one could have

developed at leisure some basic theorems, and then constructions (say, given

certain points on the spiral, to find its start). The function of this proposition

within the program set in the introduction is not at all obvious, and so the

reader, once again, looks for a different program altogether. The effect of

proposition 12, suggesting how propositions 10–11 could be developed for the

sake of the main task of the treatise, has been subverted.

If we are led to think of The Elements of Spiral Lines, then this theorem

appears deficient. What is most striking is a reliance on intuition that goes well

beyond the axiomatic apparatus available.

We wish to consider a straight line, EZ, and a spiral line, AΓΘH.We define

a certain point on the spiral,Θ, which gives rise to a straight line AΘ. We then

identify the point at which the straight line EZ cuts the straight line AΘ, and

we find that this point (not labeled by this proposition) is “inside” the line

segment AΘ. This is the argument down to Step 5, and it is straightforward.

The trouble is the conclusion we wish to draw from it. After all, there is no

contradiction yet: a line is allowed to cut another line where it pleases. What

does Archimedes find objectionable about this arrangement? Step 6 goes on to

assert that, under this arrangement, the line EZ cuts the spiral AΓΘH, which is

explicated in Step 7 by the observation that some parts of the line EZ fall

inside the spiral. This Step 6, finally, is supposed to provide for a contra-

diction, by Step 8, since the line was assumed to be a tangent.

We find several things.

First, we are supposed to know what’s “inside” a spiral. There is no

definition of that, and apparently the term is supposed to gain its significance,

and verification, through visual intuition.

Second, we are told that a line “cuts” the spiral simply because it has a

single point inside it (and two points coinciding with it). As a minimum, one

would expect to be told that the line also has some points outside the spiral

(even that would still allow room for more axiomatic foundations than those

available here, assuring that a line being “outside” and “inside” a curve must

cut it; but let us not insist on that). How do we know that the straight line has

certain segments “outside” the spiral? Do we not judge this purely based on

the diagram?

Third, it appears that the two terms “touch” and “cut” are assumed,

directly, to rule each other out: a straight line is not allowed to cut a curve at

one point and touch it at others. This, then, would be a direct application of the

definition of “touching” from the Elements (Definition III.2), where a line
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“touches” a circle when “making contact, and produced, it does not cut it.”

Such, indeed, appears to be the underlying logic of Steps 6, 8, 9 which simply

juxtapose the verbs “touch,” “cut” to produce a contradiction. But this is

patently false for many curves, including the spiral itself! For, obviously, a

straight line touching the spiral during the first rotation will cut it during all

higher rotations. Clearly, we are still within the terms of the preceding

proposition 12 (which indeed is even applied in this proposition), calling for

a single rotation.

But even this does not really solve the problem. To some extent I merely

pointed out the usual Greek problems with the definition of “tangent” (or,

really, the lack thereof for any curves other than the circle), so that any

treatment of tangency seems to contain a visual–intuitive component. But

there is more than this: the theorem truly is deficient as a matter of logic. For

surely we can envisage the following kind of curve: one where the same line is

a tangent at two points and, in between, cuts through the curve. So one could

imagine the straight line EZ touching the spiral at the points Γ, H, continuing

outside the curve for a while and then “lacing in” somehow to pass through the

point where EΓHZ, AΘ cut each other. It would be hard not to argue, then, that

the same straight line was a tangent to the spiral at two points, even though the

results of Step 6 and 8 still applied: one could both cut and touch a curve in

such a way. Surely Archimedes’ intuition is not that this is an invalid applica-

tion of the term “tangent” (in which case all he does is to apply, mechanically,

a verbal form from Euclid), but rather the substantial point that, even though

some curves could both cut and touch, the spiral is not like this. But to believe

that the spiral is not like this is precisely to assume what we need to prove in

this proposition.

This problem would be mostly resolved, had Archimedes shown that all

points between Γ, H are inside the spiral (and not just one point). The

difficulties with the vague definition of “touching” would remain, but the

argument would be made clear, and certainly free of a petitio principii. This

stronger claim is in fact true, and while I cannot see an easy way there, it is

certainly within themeans available to Archimedes.195 I can only imagine that

195 We need to show that, in an arbitrary triangle with an arbitrary internal line such

as ABXΔ (AB>AΔ>AX), a spiral drawn throughA,B,Xwill cut AΔ further away fromΔ

at a point such as E.We concentrate just on the case where the angle BΔA is right (which

loses no generality, as, with an acute angle instead, we have the internal lines in the

triangle becoming at first smaller, so, obviously, inside the spiral – until, that is, they hit

the right angle and begin catching upwith the spiral again; and so, in general, other cases

can be extended from the case of the right angle as a fortiori). We need to show, in other

words, that at this point AX<AE, that is (AX-AΔ)<(AE-AΔ), that is (AB-AΔ):(AX-AΔ)

>(AB-AΔ):(AE-AΔ), that is

ðAB� AΔÞ : ðAX� AΔÞ > ðangle BAΔÞ : ðangle XAΔÞ
ðproposition 14; independent of proposition 13Þ

Now, we know from a result stated, without proof, in Aren. (Heiberg 1913: I, 232.3–10)

that:
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Archimedes was aware of the truth of the stronger claim and believed in the

validity of proposition 13 based on this awareness; and that he chose to present

proposition 13 as he did for strategic reasons: perhaps not to burden the rather

trivial claim with a very heavy proof; perhaps to use for this purpose proposi-

tion 12 (to create the impression that this, in fact, was the entire purpose of

proposition 12). At any rate, we see that Archimedes was quite ready, in the

support of a claim he knew to be true, to deploy an argument which he knew to

be deficient. This is in line with the attitude displayed again and again so far in

the book: brisk to the point of flirting with invalidity. (So brisk, indeed, that

the one piece of geometrical reasoning Archimedes does employ – Step 4 – is

left implicit, elementary as it is.)

Surely the proposition falls short as a theorem in The Elements of Spirals.

But then again, it is not. Being brisk to the point of flirting with invalidity

would not do for a Euclid, or for the Apollonius of Conics I. But it seems to be

an effective strategy for Archimedes’ purpose, in this treatise. We still need to

follow a few propositions to find out better what this strategy is about.

We have repeatedly noted the role of visual intuition in this brisk proof.

Note, finally, that the diagram is not designed to support such intuitions.

True to the spirit of the figures of proof by contradiction, it presents impos-

sibility via a patently impossible visual structure: in this case, the straight line

BΔ : XΔ > ðangle BAΔÞ : ðangle XAΔÞ:

(This is the kind of trigonometric result Archimedes uses in his astronomical calculations.)

So all we need to show is

ðAB� AΔÞ : ðAX� AΔÞ > BΔ : XΔ

ðfrom which we would a fortiori get our desired resultÞ

or

ðAB� AΔÞ : BΔ > ðAX� AΔÞ : XΔ

or, with the circle drawn in the triangle cutting Φ,Γ

BΓ : BΔ > XΦ : XΔ

Extend BΦ, have BH parallel to XΦ. Now:

BH : BΔ ¼ XΦ : XΔ

So all we need to show is:

BΓ > BH

But since ΔΦ crosses through the segment BΓ, while the angle BHΔ is obtuse, this is

obvious.

To be sure, Archimedes would find a more elegant argument (I suspect mine is

extremely inelegant). But the result is very obviously within Archimedes’ means; it also

refers, quite clearly, to the type of argument from proportion inequalities one uses in the

trigonometry of astronomical calculations.
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EZ is broken sharply into two parts, inflecting where the point Θ would have

cut it.196 The choices made in drawing this figure speak to the logic of the

argument. This manuscript’s diagram is clearer than Heiberg’s in one respect,

it makes the function of Θ unambiguous (as a point on the spiral). Heiberg,

who allows the line EZ on the segment ΓH to coincide with the spiral (so as to

make it as line-like as possible) makes the pointΘ ambiguous between a point

on the spiral and a point on the line EZ; but the entire point of the argument is

that the line EZwill not, in fact, meet the line AΘ on the spiral. Thus Heiberg’s

diagram is truly confusing. However, the manuscripts’ diagram is no less

problematic: it depicts the point where the line AΘ is to meet with EZ as lying

outside the spiral, indeed at the outermost point of the broken line EZ. This is

exactly not what the proof of the impossible case requires: Step 5 – the actual

claim obtained within the reductio phase of the argument – explicitly makes

the lines AΘ, EZ cut each other inside the spiral, giving rise to the impossi-

bility. For indeed, the diagram of the manuscripts has the patent impossibility

of a broken line, but it does not have the line cutting the spiral! It is as if the

argument proceeded by showing that a line, touching the spiral at two points,

would have to be broken: an impossibility. But this was not Archimedes’ line

of reasoning: it was that a line touching the spiral at two points would have to

cut through it somewhere in between. Now, the scribe of manuscript D,

perhaps aware of this difficulty, offered his own revised diagram with the

line EZ passing wholly inside Γ,H. But this clearly won’t do either, for now the

diagram does not display the case of the contradiction at all, but rather

displays the state of affairs the proposition shows to be true: we are no longer

even in the reductio phase.

The most direct way of drawing a diagram to fit the requirements of this

particular reductio, within the standards of representation for Greek mathe-

matics, would be to have a line broken three times: first passing as a tangent

through the point Γ; then lacing its way into the spiral to reach the point Θ;

then emerging out so as to be able to become a tangent, once more, at point

H. This is precisely the arrangement required by the statement of the

reductio argument. Why would Archimedes not draw such a figure?

Perhaps because this is the case he wishes to ignore in this theorem: he

merely takes it for granted that a spiral and a straight line would not be

allowed to display such a lacing pattern, and so it suits him best to draw the

case of the reductio in a more abstract way, one that merely suggests the

contours of the problem at hand. The diagram, like the argument, is brisk,

produced at a certain distance.

196 The diagram makes a decision, left unspecified by the proposition, that the

straight line EZ should, in between the points Γ, H, be wholly outside the spiral (and

not coincide with it). Manuscripts BG, followed by Heiberg, made the milder choice to

display the straight line as coinciding with the spiral through the length ΓH; manuscript

D made the choice to display the straight line as wholly inside the spiral through this

length.
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/14 /

If, from the point that is <the> start of the spiral, two lines fall on the

spiral drawn during the first rotation, and are produced to the circum-

ference of the first circle, the lines falling on the spiral shall have to each

other the same ratio that the circumferences of the circle between the

end of the spiral and the ends of the lines which were produced so as to

come to be on the circumferences <have to each other> (the circumfer-

ences being taken in the preceding direction, from the end of the spiral).

Let there be a spiral drawn in the first rotation, ABΓΔEΘ, and let the
point A be <the> start of the spiral, and let the line ΘA be <the> start

of the rotation, and let ΘKH be the first circle, with the lines AE, AΔ
falling on the spiral from the point A, and further falling on the

circumference of the circle on the <points> Z, H. It is to be proved

that they have the same ratio: AE to AΔ, <the same> which the

circumference ΘKZ <has> to the circumference ΘKH.
(a) For, the line AΘ being rotated, (1) it is clear that the point Θ is

carried at a uniform speed along the circumference of the circle ΘKH
while A, being carried along the line, passes through the line AΘ,
(2) and the point Θ, being carried along the circumference of the

circle, <passes through> the circumference ΘKZ, while the point A

<passes through> the line AE, (3) and again both the point A <passes

through> the line AΔ and Θ <through> the circumference ΘKH, each
being carried itself at uniform speed with itself. (4) Now, it is clear

that they have the same ratio: AE to AΔ, <the same> which the

circumference ΘKZ <has> to the circumference ΘKH. [(5) For this
has been proved outside, in the first <propositions>.]

(6) And similarly it shall be proved that even if one of the falling

<lines> should fall on the end of the spiral, the same thing happens.

comments

This theorem could have been positioned anywhere following proposition 2.

In particular, it is independent of the two preceding theorems concerning the

A

EZ

H

B
K

Θ

Δ

Γ

In codices AC the spiral

was drawn as a

combination of two

semicircles. Codices BDG

redrew it to appear like a

spiral (BD further

positioned the point A to be

at the center of the circle

ZΘK). G has the point Θ
slightly to the left of A. H,

and perhaps C, have lost

the point Γ.
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spiral, and so the impression does accumulate that we proceed now “horizon-

tally,” in a kind of Elements of Spiral Lines.

How do we even knowwe rely on proposition 2? Step 5makes this explicit,

but Heiberg suspects, reasonably, that this is a late scholion. Otherwise, the

verbal clues are minimal. What could provide such verbal clues? The key

requirements for the application of proposition 2 would have been that the

points move “in an equal time” and that each moves “in uniform speed with

itself.” As it is, Archimedes never mentions “equal time” (using instead

certain connectors to express this idea: both X happens as well as Y, the

understood meaning being that the two happen simultaneously). “Uniform

speed with itself” is alluded to in the language of Step 1 and is explicitly

quoted only in the language of Step 3. The conclusion of Step 4 does not really

appear to follow from the application of proposition 2: rather, the connector

“it is clear that . . . ” suggests that the derivation of Step 4 from Steps 2–3 is

designed to be intuitive in and of itself, which of course it is. Proposition 2, as

well, has the same feel of a distant, brief argument, merely presenting the

grounds for claims that are supposed to be self-evident. The spiral has led us

back full circle.

Step 6 is extraordinary. Nothing in the argument relied on the point Z being

distinct fromΘ: there was no reason why the greater circumference should not

be identical with an entire circumference of a circle. It is not often that a Greek

geometrical text invites us explicitly to generalize the argument to cases not

apparent in the diagram. Rather, the expectation is that such generalizations

will be carried automatically. What this Step suggests perhaps is that the term

“circumference of a circle,” unqualified, is understood in ordinary circum-

stances to mean “less than an entire circle,” and so, for this reason, one needs

the further explication of Step 6 to generalize not so much beyond one’s

diagram as beyond one’s language. More of this problem of generalization

and segmentation of the logical space to come below.

/15 /

And if lines fall from the start of the spiral on the spiral drawn during

the second rotation, the lines shall have to each other the same ratio,

which the said circumferences together with an entire circumference

of a circle taken <have to each other>.

Let there be a spiral, on it <the circumferences> ABΓΔΘΛEM,197

ABΓΔΘ drawn in the first rotation, and ΘΛEM in the second, and let

the lines AE, AΛ fall <on them>. It is to be proved that AΛ has to AE

the same ratio which the circumference ΘKZ together with an entire

197 Codex A has α ABΓΔΘ, C has αι ABΓΔΘ. Heiberg suggested one should perhaps

read τὰ ABΓΔΘ, but printed the reading of codex A, which is cautious but in a very

difficult sense. Torelli (without the benefit of C) emended drastically to αABΓΔΘΛEM.

I find myself leaning towards Torelli’s heavy intervention, largely because I’m sup-

posed to produce a translation and so I’d better have some sense in my text.
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circumference of the circle <has> to ΘKH together with an entire

circumference of the circle.

(1) For in as much time198 as the point A, carried along the line

<AΛ>, passes through the line AΛ; the point Θ, carried along the

circumference of the circle, also passes through both the circumfer-

ence of the circle entirely and yet again the circumference ΘKZ,
(2) and again: <in as much time as> the point A <passes through>

the line AE, Θ also <passes through> both the circumference of the

circle entirely and yet again the circumference ΘKH, each carried at

uniform speed itself with itself. (3) Now, it is clear that the line AΛ has

the same ratio to AE, which the circumference ΘKZ together with an

entire circumference of the circle <has> to the circumference ΘKH
together with an entire circumference of a circle.

(4) It shall be proved in the samemanner that, even if lines should fall

on the spiral drawn during the third rotation, they have the same ratio to

each other which the said circumference, together with the entire cir-

cumference of the circle taken twice, <has to the other circumference

with the circle taken twice>; (5) and similarly, it is proved that the lines

falling on the other spirals, too, have the same ratio which the said

circumference together with the entire circumference of the circle

taken as many times, as the number, smaller by one, of the rotations,

<has to the other circumference with the circle taken that many times>;

(6) even if one falling line should fall on the end of the spiral.

comments

Propositions 14–15 are reminiscent of propositions 1–2. In both cases, we

have a single theorem divided into two textual segments, because two separate

diagrams are required for two steps of the same claim. Indeed, in the case of

propositions 14–15, one hardly needed any separation. One could simply have

A

M

Z

H
E

B

K

Θ

Δ

Λ

Γ

Codices AC drew the

spiral as the combination

of four semicircles.

Codices BDG redrew it as

a spiral, with codices BD

moving the point A to the

center of the circle. Codex

G added an external circle

with A as center, AM as

radius; it also has M, Θ to

the northwest of A. Codex

C may have lost the label

M (the reading is very

difficult at that point).

198 Translating ὅσῳ, the reading of the manuscripts, as against ἴσῳ, Heiberg’s

emendation following codex B. I thank J. Wietzke for pointing out this textual

observation.
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stated the claim of proposition 15, Step 5, suitably arranged, as a single

general statement of which propositions 14–15 provide a single proof.

The sequence we do have, instead, appears to be rather muddled.

Propositions 14–15, taken together, make six separate claims:

Lines falling on the spiral, and the circumferences associated with them,

are in the same ratio:

1. when both circumferences are smaller than a circle (14, Steps 1–5)

2. when one circumference is equal to a circle, the other smaller than a circle

(14, Step 8)

3. when both circumferences are more than one circle but fewer than two

(15, Steps 1–3)

4. when both circumferences are more than two circles but fewer than three

(15, Step 4)

5. when both circumferences are more than any number (n) of circles (n>2)

but fewer than (n+1) (15, Step 5)

6. when one circumference is equal to exactly (n+1) circles, the other

smaller than that (but greater than (n) circles) (15, Step 6).

Propositions 14–15make the rather arbitrary choice tomake an explicit (though

very minimal) argument for claims 1, 3, and to let claims 2, 4–6 follow by

analogy. But why do that?Why not let claim 3, equally, follow by analogy from

claim 1? (Certainly the “it shall be similarly proved” operator can go as far as

that). And again, why not prove all the various cross-integer results which

appear equally valid (say, that with two lines, one falling on the first rotation, the

other on the second, the ratio shall be as the associated circumferences)?

We notice several things. First, we find that Archimedes strongly wishes to

maintain the sense of easy claims and proofs. A single general statement, based

on proposition 15, Step 5, would have appeared unwieldy: complex and heavily

relying on numerical values (a bit like propositions 10–11 above, or some later

propositions such as 28 below). Perhaps, the overall composition requires a

certain lull now, before the main action of the treatise begins in earnest.

Second, whereas a straight line, being extended, remains qualitatively the

same thing, a spiral is different: there appears to be a qualitative difference

between a spiral less than a single rotation, a spiral of a complete single

rotation, a spiral that goes beyond that, etc. etc. The “inflexion points,” where

a spiral completes a rotation, strike one, at first glance, as constituting

qualitatively different categories of the spiral. Archimedes, who possesses

much more understanding of the spiral, must already know that this first

impression is largely wrong and that the spiral, for most purposes of this

treatise, is qualitatively homogeneous along its rotations. He never tries,

however, to convey the homogeneity of the spiral.

Third, when faced by an essentially open choice about how to segment the

logical space opened by the many cases, Archimedes opts for a pair of cases,

ignoring some (cross-integer) results and relegating some of the results to a

“corollary” status (it was merely Heiberg’s choice not to label 14, Step 6, and

15, Steps 4–6, as “corollaries”); an architecture of “twice over – and then

some.” We will see more of this below.
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/16 /

If a straight line touches the spiral drawn in the first rotation, and a line

should be joined from the touching point to the point which is <the>

start of the spiral, the angles which the tangent makes with the joined

<line> will be unequal, and that in the preceding <lines will be>

obtuse, while in the following <lines> acute.

Let there be a spiral onwhichABΓΔΘ, drawn in the first rotation, and
let the point A be <the> start of the spiral, and the line AΘ <be the> start

of the rotation, and the <circle>ΘKH <be the> first circle, and let some

straight lineΔEZ199 touch the spiral atΔ, and letΔA be joined fromΔ to

A. It is to be proved that ΔZ makes an obtuse angle with AΔ.
(a) Let a circle, ΔTN, be drawn, with A as center and AΔ as radius.

(1) So, it is necessary that the circumference of the circle in the

preceding <lines> falls inside the spiral, but in the following <lines>

outside, (2) through the fact that, among the lines falling on the spiral

from A, the <lines> in the preceding are greater than AΔ, but those in
the following are smaller. (3) Now, that the angle contained by the

<lines> AΔZ is not acute, is clear, (4) since it is greater than the

<angle> of a semicircle.200

But it is to be proved as follows that it is not a right <angle>:

(5) For let it be, if possible, a right <angle>; (6) therefore EΔZ
touches the circle ΔTN.201 (7) So, it is possible to insert a line from

A to the tangent, so that the line between the tangent and the

circumference of the circle has to the radius of the circle a smaller

ratio than the circumference between the touching point and the

falling <line> has to the given circumference.202 (b) So, let it fall

<as> the line AI. (8) So, it cuts the spiral at Λ, (9) and the circum-

ference of the circle ΔNT at P. (c) And let the line PI have to the

199 Heiberg corrects the manuscripts’ reading into EΔZ simply because it breaks

from the lettering rule that lines are lettered in spatial sequence (preferring an alphabetic

sequence to a spatial one). I would rather see here an exception to the rule than go

against the reading shared by both A and C.
200 “The angle of the semicircle” is the angle contained by the radius and the

circumference of the circle (it is naturally visualized as the angle at the “base” of a

semicircle, hence the name); in other words, an angle whose one side is a curved line.

The angle of the semicircle is proved by Euclid, Elements III.16, to be greater than any

acute angle, so Step 3 indeed follows as an a fortiori from Step 4; Step 4 in turn follows

from Step 1, or perhaps from the diagram as interpreted by that Step. Once again: the

entire sequence of propositions 12 onwards is steeped with the concerns, and claims, of

Euclid’s Elements III.
201 Elements III.16 – the same theorem as the one stating that the angle of the

semicircle is greater than any acute angle.
202 Proposition 5 – recalled with many verbal changes. See the comments.
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<line> AP a smaller ratio than the <ratio> which the circumference

ΔP has to the circumference ΔNT.203 (10) Therefore IA in its

entirety, too, has to AP a smaller ratio than the circumference

PΔNT to the circumference ΔNT,204 (11) that is, <than the ratio>

which the circumference ΣHKΘ has to the circumference HKΘ.205

(12) But that <ratio> which the circumference ΣHKΘ has to the

circumference HKΘ, the line AΛ has to AΔ; (13) for this has been
proved.206 (14) Therefore AI has to AP a smaller ratio than, indeed,

ΛA <has> to AΔ, (15) which indeed is impossible. (16) For PA is

equal to AΔ.207 (17) Therefore the <angle> contained by the

<lines> AΔZ is not a right <angle>. (18) And it was proved that

neither is it acute. (19) Therefore it is obtuse. (20) Thus the

remainder is acute.

(21) And it shall be proved similarly that even if the tangent touches

the spiral at the end, the same thing shall happen.

HN

K

E

B

A

T
P

Z

I

Δ

Λ

Σ
Θ

Γ

Codex D Codex G

203 Step c explicates and completes the statement of Step a: the line of AI is to fall,

fulfilling the condition of Step 7, so that the given circumference defining the construc-

tion is specified as the circumference ΔNT.
204 Extension to inequalities of Elements V.18.
205 Step 11 claims PΔNT:ΔNT::ΣHKΘ:HKΘ (can be argued based on Elements

VI.33, though is perhaps best seen as directly intuitive). It follows implicitly from

Steps 10–11 that IA:AP<ΣHKΘ:HKΘ.
206 Proposition 14. The implicit result obtained above, together with Step 12, gives

rise to Step 14.
207 Radii in a circle. Step 16 transforms Step 14, implicitly, into the inequality: IA:

AΔ<ΛA:AΔ or (Elements V.8) IA<ΛA, the impossibility of which derives from the

diagram as interpreted by Step 8.

Codices AC drew the spiral as a

sequence of two semicircles.

Codices DG redrew it as a spiral

and also produced a different

orientation as in the thumbnails.

Codex C misses H, K.
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comments

At one level this proposition fits the character of propositions 12–15: it is an

elementary result about the spiral, reminiscent of the fundamental Euclidean

theorems on the circle. This proposition is closest in spirit to Elements III.16,

showing that the tangent is at right angles to the radius.On Spirals 16 invokes

a language specific to Euclid’s proposition (“angle of the semicircle”), and in

its main argument it follows a similar line of thought: trying to interpose a line

between the tangent and the circle, we find the absurdity of a line being

smaller than its part.208 (One wonders if the entire line of thought giving

rise to proposition 5 and its application here may have come from this kernel-

idea.) The relation between the two results, on the spiral and the circle, is

pleasing and somehow goes towards explicating what kind of a creature the

spiral is: it is like a circle that keeps “popping out.”

At another level this proposition goes back to the earlier stage of proposi-

tions 5–9 in its explicit reference to proposition 5 but also in the overall scale

and texture of the argument: it is brief and yet geometrically interesting.209

Remarkably, Archimedes evokes the texture of propositions 5–9 by the

deliberate deployment in the diagram of the letter I – a very marked choice

within Greek geometry. This is especially remarkable, because the letter I was

not used in proposition 5, which this proposition requires. Instead, it was used

in the later propositions 7–9. The sense is therefore that Archimedes relies not

so much on the individual claim of proposition 5 but rather on proposition 5 as

a segment among several results obtained before (this is perhaps further

underlined by the remarkably imprecise quotation of the text of proposition

5, which makes the reference appear not to be a direct application of the

particular claim of the textual segment “proposition 5”). This fits a certain

tendency of this “elementary” stage of the argument, already from proposition

12 onwards, to reprise the themes of the preceding “introductory” stage.

Proposition 12 reprises themes from propositions 10–11 (it referred to lines

exceeding each other by an equal amount; proposition 13 then followed upon

the result of proposition 12). Propositions 14–15 heavily relied on proposition

2, the stage of the argument bringing together time and proportions. And now

this proposition 16 very directly continues the line of thought from proposi-

tions 5–9, tangents drawn to precise specifications. These were the three key

moments of the introductory stage: times and proportions; tangents; lines

208 In the diagram of Elements III.16, AE is the tangent and AΓΦ is hypothetically

drawn between AE and the circumference; Γ is where angle ΔΓA is right (by hypothesis,

lines AΦ, AE are distinct, and so they make right angles with point A on distinct points);

ΔΓ cuts the circle at H. From angle ΔΓA’s being right, it follows that ΔA>ΔΓ or,

impossibly, ΔH>ΔΓ.
209 The geometrical interest arises from the combination of the proposition. Step 11

is a direct application of proposition 5 (which is not about the spiral at all); Step 12

follows from proposition 14, a very elementary result, almost true by definition, for the

spiral. The combination of these simple yet very distinct results elegantly gives rise to

the impossibility of Step 14.
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exceeding each other. Archimedes reprises them, in perturbed sequence: first

the third, then the first, now the second. The complex zigzag of the introduc-

tory stage is re-zigzagged or, more precisely, re-zagzigged.

/17 /

And furthermore, if the line touches the spiral drawn in the second

rotation, the same thing shall happen.

(a) For let the line EZ touch the spiral drawn in the second rotation

at Δ, (b) and let the rest be constructed the same as before. (1) So,

similarly, the <parts> of the circumference of the circle PNΔ in the

preceding <parts> of the spiral shall fall inside, while the <parts> in

the following <fall> outside.

Now, the angle <contained> by the <lines> AΔZ is not a right

<angle>, but obtuse.210 For let it be, if possible, a right <angle>; (2) so,

EZwill touch the circle PNΔ at Δ. (c) So, again, let AI be drawn with the
tangent and let it cut the spiral at X, (d) and the circumference of the

circle PNΔ at P. (e) And let PI have to PA a smaller ratio than the <ratio>

which the circumference ΔP has to the circumference of the circle ΔPN
in its entirety and [to] ΔNT. (3) For this has been proved possible.211

(4) Therefore IA in its entirety has to AP a smaller ratio than the

circumference PΔNT together with an entire circumference of the circle

to the circumference ΔNT together with an entire circumference of the

circle.212 (5) But the ratio which the circumference PΔNT together with

the circumference of the circle ΔNTP in its entirety has to the circum-

ference ΔNT together with the circumference of the circle ΔNTP in its

entirety – that ratio the circumference ΣHKΘ together with the circum-

ference of the circleΘΣHK in its entirety has to the circumference HKΘ
together with the circumference of the circle ΘΣHK in its entirety,

(6) and the ratio which the last mentioned circumferences have – that

ratio the line XA has to the line AΔ; (7) for this has been proved.213

(8) Therefore IA has to AP a smaller ratio thanAX toAΔ;214 (9) which is

210 The argument that it is not acute is taken over implicitly from the preceding

proposition, Steps 1–3.
211 Proposition 5, again; the one difference is that the given circumference is more

than a circumference of a circle.
212 The argument of Steps 8–10 of the preceding proposition, telescoped.
213 Proposition 15 (and not, unlike Step 13 of the preceding proposition, proposi-

tion 14).
214 The sequence of argument in Steps 4–8 is: (4) IA:AP is smaller than a certain ratio

of circumferences derived from circle ΔPNT (based on the construction, from proposi-

tion 5). (5) The same ratio of circumferences is transferred to one derived from the circle

ΣHKΘ. (6) The last ratio is transformed (from proposition 15) to a ratio of lines of the

spiral: XA:AΔ. We end up with: IA:AP<XA:AΔ. All this follows exactly the argument
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indeed impossible [(10) for PA is equal to AΔ,215 (11) while IA is greater

than AX].216 (12) Now, it is clear that the angle contained by the <lines>

AΔZ is obtuse; (13) thus the remaining <angle> is acute.

(14) And the same things shall happen, even if the tangent should

touch at the end of the spiral.

(15) And it shall be proved similarly, that if some line should touch

the spiral drawn in however many rotations, even if at its end, it shall

make the angles with the line joined from the touching point to the

start of the spiral unequal: the <angle> in the preceding <parts>

obtuse, and in the following, acute.

comments

Heiberg dislikes Steps 10–11. He attributes them to a scholiast and argues

that the proper place for this, more expanded argument would be in proposi-

tion 16, Step 16 (where Archimedes merely asserts the equality of the radii

as in Step 10 here, and does not mention the inequality of the line segments

lying on a single line, as in Step 11 here). Indeed, Heiberg wonders if

proposition 16, Step 16, too, could not be an interpolation, Archimedes

merely stating in both propositions, without explanation, that an impossi-

bility was reached.

These are questions of consistency. Would Archimedes be implicit con-

cerning some complex geometrical arguments – as we see him throughout the

of Steps 8–14 in the preceding proposition, with the difference that we refer to proposi-

tion 15, not 14 (which are no more than different cases of the same proof).
215 Radii of the circle.
216 The construction, or the diagram; as well as Step 1. See the comments on the

textual question concerning Steps 10–11.

H

Z

I

X

T

K
N

P

A
B

Γ
E

Δ

Θ

Codices BD have the point

Δ higher; codices EGH4

have the point I lower, and

thus probably codex A.

Codex C did not produce a

continuous spiral at all:

see thumbnail. Codex A

had O instead of Θ
(corrected by BE), K

instead of X (corrected by

BD), Ϙ instead of I

(corrected by D; B is

hidden in the gutter at this

point). Codex C missed Θ.
H has Π for Γ (so, perhaps,
E, that also has Π for T);

it also positions H nearer

the point Δ.
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treatise – and then be quite explicit concerning quite trivial claims such as the

equality of the radii? Could Archimedes be more explicit here, less explicit

there, concerning the very same argument? Could he even – against our

intuitions – move in the direction of making his arguments more explicit?

Indeed, the more common trajectory is that of growing implicitness. Most

notably, this proposition 17 simply takes for granted that the angle cannot be

acute, which required an interesting, if brief, argument in the preceding propo-

sition. I wonder if Archimedes even noted how precisely explicit he was

concerning this trivial claim of proposition 16, Step 16 / proposition 17, Steps

10–11. The claim quickly explicates information packed into the diagram.

Perhaps, with the diagram powerfully present in one’s mind, one “sees” the

same text, encoded in a dual visual–verbal format, in both proposition 16,

Step 16 and proposition 17, Steps 10–11. Such speculations aside, we definitely

need to assume that, if Archimedes was indeed the author of both claims, then

he probably did not proofread his text carefully for consistency. This in and of

itself would not be surprising: we may compare this with the very distant,

almost distorted way in which the text of proposition 5 is quoted in its applica-

tion by those two propositions. It is not necessarily that Archimedes did not

bother with such textual details; it is quite possible that he preferred the richer

texture of imprecise repetition, preferring variatio to consistency.

This textual question is an example of the main theme of this proposition,

which we see repeated throughout the treatise: a binary repetition. More

precisely, the theme is that of “dual – and more.” A claim is asserted,

reasserted and opened up (once or both times) further beyond the dual repeti-

tion. In the pair of propositions 16–17 this takes the form:

1st rotation (further: end of same) / 2nd rotation (further: end of same) (further: any

rotation)

Both propositions 16–17 contain a brief extension to the end of the rotation;

proposition 17 contains another extension, to any rotation. This is almost the

same as the structure of propositions 14–15:

1st rotation (further: end of same) / 2nd rotation (further: 3rd rotation) (further: any

rotation) (further: end of any rotation)

In a different way, propositions 10–11 also display a similar structure:

A complex equality with squares (further: inequality) (further: other similar figures) / A

complex ratio inequality with squares (further: other similar figures)

Propositions 14–15, 16–17 differ from propositions 10–11mostly in themanner

of their deductive dependence: in 14–15, 16–17 this takes the form of repetition

(proposition 15 follows the same deductive structure as 14; proposition 17

follows the same deductive structure as 16), while in 10–11 this takes the

form of application (the most difficult claim of proposition 11 derives from

proposition 10). All three, however, display deductive duality: two propositions

strongly related in their logical structure to each other, and only rather weakly,

in comparison, related to other results in this treatise or elsewhere. The same is

true also of the pair of propositions 12–13 which, while not engaging in the

corollaries of “furthermore” are also two propositions strongly related in
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their logic (13 does almost nothing, geometrically, beyond applying 12), and

only more weakly related to other results (the result that they do quote –

proposition 1 – is very trivial). The sequence of propositions 10–17 is made

of four consecutive islands each consisting of two propositions.

Looking back, we see the same structure in propositions 1–2: very similar

claims, with proposition 2 applying nothing beyond proposition 1; as well as

in propositions 3–4, if indeed they are to count as such. In short – with the

exception of the sequence of problems 5–9 – everything in this treatise so far is

made of dual islands. In the more significant pairs 10–11, 14–15, 16–17 this

takes the specific form of “dual – and more.”

This of course reflects to some extent the structure of the spiral itself. The

spiral rotates, repeating the same things, and then rotates some more, all the

while appearing, at first glance, to change its qualitative nature. Archimedes,

then, reflects this with claims that repeat and then open themselves up for

further, open-ended repetition. But note that this geometrical necessity does

not truly constrain Archimedes’ structuring of his dual islands. Instead, textual

duality is a choice. We noted already, in propositions 14–15, that the choice to

prove the claim separately for these two cases, and then to generalize without

proof for other cases, is in fact not geometrically motivated: it would make

perfect sense, geometrically, to have a single argument showing the validity of

both 14, 15, as well as their corollaries. The same is true for propositions 16–

17 – which becomes obvious once we note that the only logical difference

between 16 and 17 is that 16 relies on 14, while 17 relies on 15. The

geometrically unmotivated distinction between 14 and 15 is imported into a

geometrically unmotivated distinction between 16 and 17.

Propositions 14–15 and 16–17 are a single claim, exploded into a “dual –

and more” structure. Propositions 10–11 and 12–13 are unnecessarily

restricted to the dual. As pointed out above (p. 79), proposition 10 could

become much clearer by being broken into several smaller arguments, turning

the overall structure of propositions 10–11 into an entire passage with four to

five propositions, comparable to the preceding passage with propositions 5–9.

Further, propositions 10–11 do not absolutely require the “further” structure

of their corollaries (though admittedly this is a natural enough structure). One

could also make the claims, from the start, at the level of the generality of

similar plane figures, and then, in the course of the proof, transform the claims

for similar plane figures to claims for squares. Once again: this is perhaps less

elegant, but the point remains that the geometry, in and of itself, does not force

the “dual – and more” structure.

As for propositions 12–13, the reliance of proposition 13 on the proof of

proposition 12 is very much a geometrical error (which Archimedes surely

recognized). The alternative would be to base proposition 13 on a more

complex, trigonometric result, so that if one still wishes to provide proposition

12 (which is indeed required independently by the treatise), the duality is lost:

most natural perhaps would be to have proposition 12 stand alone, and have

proposition 13 expanded (rather than bifurcated) to include the complex

trigonometric argument. Instead of a dual island, one would have two separate

monads, one much bigger than the other.
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“Dual – and more” is a procrustean bed to which Archimedes fits, deliber-

ately, much of this treatise. And if this structure mirrors the geometrical

structure of the spiral, then the relation of geometrical and textual structure is

not that of geometry forcing an author, unwittingly, to follow a certain textual

pattern. Rather, we have here an author patterning his text, perhaps as an

elaborate meta-textual statement, or perhaps, more simply, because of an

interest in creating patterns.

The pattern has been rich, almost kaleidoscopic. A series of zigzags in the

introduction (1–2, 5–9, 10–11, to which we may add the minimal pair 3–4);

answered by a related, but differently patterned, zigzag in the intermediate

stage (12–13, 14–15, 16–17). Almost everything – but with one important

exception – is composed of dual islands. The structure of “dual – and more” is

paramount in the pairs 10–11, 14–15, 16–17, which therefore crosses the

border from the introductory to the intermediate. This structure also gradually

becomes more and more central to the treatise, perhaps to suggest how we get

near to the main theme of finding results about this “dual – and more” object

which is the spiral.

Which we are about to do. We have reached the middle of the treatise

measured in its bulk, and the next proposition, to our shock, will bring us our

first substantial result and the squaring of the circle.

/18 /

If a straight line should touch the spiral drawn in the first rotation at the

end of the spiral, and a certain <line> is drawn from the point, which is

<the> start of the spiral, at right <angles> to the start of the rotation,

the drawn <line> shall meet the touching <line>,217 and the line

between the tangent and the start of the spiral shall be equal to the

circumference of the first circle.

Let there be a spiral ABΓΔΘ, let the point A be <the> start of the

spiral, the lineΘA<the> start of the rotation, and the circleΘHK the first

<circle>. And let some line, <viz.>ΘZ, touch the spiral atΘ, and let AZ
be drawn from A at right <angles> to ΘA. (1) So, that <line> shall meet

ΘZ, (2) since ZΘ, ΘA contain an acute angle.218 Let it meet the <point>

Z. It is to be proved that ZA is equal to the circumference of the circle

ΘKH.
(3) For if not, it is either greater or smaller. (a) Let it first be, if

possible, greater. (b) So, I took a certain line, ΛA,219 smaller than the

217 I usually use simply “the tangent” for what I translate here as “the touching

<line>”; I use this more complex form to highlight the elegant similarity of this with the

preceding “the drawn <line>.” Later in my translation I will return to using “tangent.”
218 Proposition 16 (as well as the parallels postulate).
219 The diagram positions Λ on the circumference of the circle, a typical economy of

ancient diagrams; in fact the position of Λ on AZ cannot be determined.
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line ZA but greater than the circumference of the circle ΘHK.220

(4) So, there is a certain circle, ΘHK, and a line in the circle, smaller

than the diameter, ΘH,221 and a ratio, which ΘA has to AΛ, greater
than the <ratio> which the half of HΘ has to the perpendicular to it

<=to HΘ> drawn from A (5) because <it is> also <smaller than> the

<ratio> which ΘA has to AZ.222 (c) Now, it is possible to extend

<a line> from A towards the produced <line> AN, so that the <line>

between the circumference and the produced <line>, NP, has toΘP223

the same ratio which ΘA <has> to AΛ.224 (6) Now, NP shall have to

PA a ratio which the line ΘP has to AΛ.225 (7) And ΘP has to AΛ a

smaller ratio than the circumference ΘP to the circumference of the

circle ΘHK; (8) for the line ΘP is smaller than the circumference

ΘP,226 (9) while the line AΛ is greater than the circumference of

the circle ΘHK.227 (10) Now, NP, too, shall have to PA a smaller

ratio than the circumference ΘP to the circumference of the circle

ΘHK.228 (11) Now, NA, in its entirety,229 too, has to AP a smaller

ratio than, indeed, the circumference ΘP together with the circumfer-

ence of the circle in its entirety to the circumference of the circle

220 Proposition 4. The verb form is extraordinary; it seems to suggest Archimedes’

personal presence, filling in for an impossible geometrical act (so that’s how I squared

the circle – the precise meaning of finding AΛ).
221 While this is not immediately obvious in the diagram, H is understood to be the

point where the tangent to the spiral ZΘ cuts through the circleΘHK. Heiberg points out

that, to be equal to the diameter, ΘH would have to pass through the center of the circle

A (Elements III.7), that is, through the start of the spiral, impossible for a tangent

(proposition 13). In all likelihood the claim is just taken to be visually obvious. Notice,

finally, that all that the point H does in this proposition is to underwrite the applicability

of proposition 7, that is, to locate the position of the line, extended, on which N is to be

found.
222 If we join the perpendicular from the point A to the line HΘ (or ZΘ), it is then a

perpendicular inside the right-angled triangle ΘAZ, with the similarities of internal

triangles following (Elements VI.8). In particular we have: (half HΘ):(perpendicular)::

ΘA:AZ. (Bear inmind that the perpendicular bisects the chord HΘ:Elements III.3.) Step

4 points out that ΘA:AΛ<ΘA:AZ (AZ>AΛ by construction (Elements V.8). From this,

together with the geometrical consideration above (left implicit by Archimedes), Step 4

follows.
223 Line, that is, and not circumference. 224 Proposition 7.
225 Step 5, Elements V.16, gives NP:ΘA::ΘP:AΛ; ΘA=PA (radii in circle; this

transition between radii is a very typical move in the spiral lines: one dials along the

circle until one hits the spirally significant line).
226 In a sense follows fromArchimedes’ treatment of concavity inOn the Sphere and

the Cylinder I; probably generally taken for granted in Greek geometry.
227 By hypothesis: Step a. Step 7 follows from 8–9 via Elements V.8, with V.16.
228 Steps 6–7; extension to inequality of Elements V.11.
229 The phrase “in its entirety” is inert here, merely anticipating its application to a

“circumference in its entirety” which in turn acts as an allusive reference to proposition 15.
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ΘHK.230 (12) And the ratio which the circumference ΘP with the

circumference of the circle ΘHK in its entirety has to the circumfer-

ence of the circle ΘHK – that ratio XA has to AΘ;231 (13) for this has
been proved; (14) therefore NA has to AP a smaller ratio than, indeed,

XA <has> to AΘ; (15) which indeed is impossible; (16) for NA is

greater than AX232 (17) while AP is equal to ΘA.233 (18) Therefore
ZA is not greater than the circumference of the circle ΘHK.

(d) So, again, let ZA be, if possible, smaller than the circumference

of the circle ΘHK. (e) So, I took a certain line, again, AΛ, greater than
AZ but smaller than the circumference of the circle ΘHK,234 (f) and,
from Θ, I draw ΘM parallel to AZ. (18) Now, again, there is a circle,

ΘHK, and in it a line smaller than the diameter, ΘH, and another

<line>, touching the circle at Θ, and a ratio, which AΘ has to ΘΛ,
smaller than the <ratio> which the half of HΘ has to the perpendicular

to it <=HΘ> drawn from A (19) since it is also smaller <than> the

<ratio> which ΘA has to AZ.235 (20) Now, it is possible to draw

the <line> AΠ from A to the tangent, so that PN, the <line> between

the line in the circle and the circumference, has to ΘΠ, the <line>

taken off from the tangent, the ratio which ΘA has to AΛ.236 (21) So,
AΠ shall cut the circle at P, (22) and the spiral at X.237 (23) And also

alternately: NP shall have to PA the same ratio which ΘΠ <has> to

ZH

P
X

N

A

B

K

Δ

Θ

Λ
Γ

BDG have the point Z higher,

at the level of A; H4 have ZΘN
flat. I suspect codex A

(preserved only by E) had Z

slightly higher than Θ, as does
codex C and as I print it. The

segment of the spiral ΘX is

probablymissing from codex C,

and was a straight line (as I print

it), in codex A, “corrected” to a

curved line by codex D alone.

BDG have removed, in a sense

“correctly,” the line segment of

ZA, extended to the circle to the

northwest of A. Codex A had H

instead of K (corrected by G,

missed by D; B has K correctly

but differently positioned, at

“10 o’clock” of the circle).

Codex C may have missed the

letter altogether (the text is

difficult to read).

230 Step 10 yields Step 11 via an extension to inequalities of Elements V.18:

NP : PA < ðcircumf:ΘPÞ : ðcircumf:ΘHKÞ gives rise to

NPþ PA : PA < ðcircumf :ΘPÞ þ ðcircumf:ΘHKÞ : ðcircumf:ΘHKÞ
231 We now identify point X; the result is a direct application of proposition 15.
232 Inclusion; the key observation once again is proposition 13 guaranteeing that the

point N lies outside the spiral.
233 Radii in a circle. 234 Proposition 4.
235 Exactly the same as Step 4 above. 236 Proposition 8.
237 The parallel statement is not made in the first part of the proposition (so that the X

appears there as a purely diagrammatically defined point). Quite possibly this is a textual

lacuna. But then again, is it not interesting that the phrasing of Step 19 is more full than

that of the parallel Step 4?
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AΛ.238 (24) But ΘΠ has to AΛ a greater ratio than the circumference

ΘP <has> to the circumference of the circleΘHK; (25) for the lineΘΠ
is greater than the circumference ΘP,239 (26) while AΛ <is> smaller

than the circumference of the circle ΘHK.240 (27) Therefore NP has a

greater ratio to AP than the circumference ΘP <has> to the circum-

ference of the circle ΘHK;241 (28) so that PA, too, has to AN a greater

ratio than the circumference of the circle ΘHK <has> to the circum-

ference ΘKP.242 (29) But the ratio which the circumference of the

circle ΘHK has to the circumference ΘKP – that <ratio> the line ΘA
has to AX; (30) for this has been proved.243 (31) Therefore PA has to

AN a greater ratio thanΘA to AX; (32) which indeed is impossible.244

(33) Therefore ZA is neither greater nor smaller than the circumfer-

ence of the circle ΘHK; (34) therefore <it is> equal.

B

K

AZ

M

P
X

N
H

ΘΠ

Λ
Γ

I print the points N and P close

to each other on the circle. In

both codices A and C, the

points coalesced (I don’t

believe this was authorial). In

codex A, point H then became

positioned on the line ZP

between Z and P, while N and

P were positioned on the same

point. In codex C, all three

points N, P and H were

positioned on the same point.

Furthermore, codex C made

the line ZH into a tangent of

the circle, cutting the line MΘ
between Θ and Π. Codices
BDG have corrected the

diagram, with BG pushing P

slightly away from H (as I

suspect was in the original)

and D pushing it into the

bisection of HΘ (as Heiberg

eventually did as well). The

diagrams thus lost the separate

line AH; I do not dare

introduce it without

manuscript authority (D drew

it, BG did not). Codex A had Z

well to the left of M; codex C

had it slightly to its right.

C has X for K and may

have lost Λ (the text is diffi-

cult to read at this part of the

page; I am now sure, how-

ever, it did not lose H). Codex

A had the label N squeezed

into the space between the

spiral and the circle, above

the line AΠ. To fit it better, it

was rotated counter-clock-

wise and so was mistaken for

a Z and so copied by EH4,

corrected by BDG. Codex A

had Ξ for Z, corrected by

BDG. The label Λ is hidden

within B’s gutter.

238 Operating on Step 20 with Elements V.16. We also switch ΘA, PΘ (radii in a

circle).
239 This is not a trivial claim (it is analogous to Step 7 in the previous case, where,

however, one needed to compare a chord with its arc; now we make a far more difficult

comparison “outside” the circle). Heiberg suggests drawing another tangent from the

point Π, on the other side of ΠA fromΘ. By symmetry, the two tangents are equal, as are

the circumferences associated with them. However, from the axiomatic apparatus of ΣX

we can show that the two tangents together are greater than the two circumferences

together, so that each tangent such asΘΠ is greater than each circumference such asΘP.
240 By construction; Step d. Step 24 follows from Steps 25–26 via Elements V.8.
241 Heiberg’s Greek (not his Latin translation) has a very rare misprint: ΠP for NP.
242 First we invert to AP:NP::(circle ΘHK):(circumference ΘP). Subtracting – and

extending the operation into inequalities (ElementsV.16, 19) – we have: AP:NA>(circle

ΘHK):(circumference ΘKP). Notice that circumference ΘKP is understood as the

complement to the circumference ΘP.
243 Proposition 14.
244 By now the structure of the argument is familiar: ΘA=PA (radii), so that Step 31

translates (via Elements V.8) to: AX>AN, but from the construction, diagram and

proposition 16 it follows that this cannot be.
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comments

Now that’s some sleight of hand. How come we even got to consider the

circumference of the circle? What, in all we’ve accomplished so far in this

treatise, or even in this proposition itself, establishes the value of π? And how

does the spiral even come in – why does it even matter that the line that

measures the circumference of the circle is derived from a spiral in the

particular way it is?

One thing, as usual, is clear: Archimedes makes no effort to answer such

questions. To be fair, he is committed to a method of proof by contradiction,

and this typically does not provide this kind of answer. We do not see why the

lines are to be equal; merely that their inequality breeds an absurdity. Worse,

the particular line of thought adopted here does not at all allow an easy

transformation of the negativity of the proof by contradiction into any positive

statement. If we look at the extreme case where the assumptions of the

contradiction no longer hold and the lines are just equal, and we try to figure

out what holds true in such a scenario, we find ourselves staring into a void: for

the constructions allowed by propositions 7–8, which form the scaffolds for

the proof, no longer apply, so that, in the extreme case where the lines are

equal, the very construction required by the proof becomes impossible. Not

only proposition 18 but already propositions 7–8 are designed around a proof

by contradiction and cannot be adapted to a positive claim.

I need first of all, then, simply to explain Archimedes’ reasoning in this

proposition and then to try to account for its origins.

We are looking (in the first part, which I will pick as my example) for a

contradiction arising fromAZ>circumference of the circle.Well, if it is bigger

than that circumference, we can find a smaller line AΛ equal to the circum-

ference! (Not really, of course, since actually finding such an AΛ is precisely

squaring the circle; but this is immaterial since anyway we are engaged in the

counterfactual of a proof by contradiction, so that AΛ cannot be found, in fact,

in a deeper sense.) So we have:

ZA > AL ðStep bÞ
An inequality is a good thing to have. Through the technique of proposition 7,

we may find, based on this inequality, a line NP satisfying

NP : ΘP :: ΘA : AΛ ðStep cÞ

or

NP : ΘA :: ΘP : AΛ

But it is not difficult to see that

ΘP : AΛ < ðcircumf :ΘPÞ : ðcircumf : circleÞ ðStep 7Þ

so that we have

NP : ΘA < ðcircumf :ΘPÞ : ðcircumf : circleÞ ðStep 10Þ
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or, through an extension of Elements V.18,

NA : AP < ðcircumf :ΘPÞ þ ðcircumf :circleÞ : ðcircumf : circleÞ ðStep 11Þ

But from proposition 15 we also have

ðcircumf :ΘPÞ þ ðcircumf : circleÞ : ðcircumf : circleÞ :: XA : AΘ ðStep 12Þ

so that we have

NA : AP < XA : AΘ ðStep 14Þ

which quickly becomes

NA < XA

Which is absurd (via proposition 13). We see no reason why one should have

believed such a proposition in the absence of its proof. It depends, in parti-

cular, on proposition 7; and at this point it becomes clear that no one would

have sought proposition 7, either, unless one already believed in the truth of

proposition 18.

Indeed, we are now in a position, finally, to understand Archimedes’

willingness to rely on a neusis, in proposition 7. As pointed out by Knorr,

the neusis could have been avoided, had Archimedes sought, in Step c of this

proposition 18, to rely not on an equality but on an inequality, which (we now

see) is clearly what he required. As I pointed out above, the proof envisaged by

Knorr would have been architectonically wrong at that early position of the

treatise.

But let us now see in greater detail why a neusis suffices, after all.

The appeal to Step b follows, directly, in the construction upon Step b.

Here are two consecutive geometrical stipulations, and I quote them in order:

(b) So, I took a certain line, ΛA, smaller than the line ZA but greater than the

circumference of the circle ΘHK . . . (c) Now, it is possible to extend <a line> from A

towards the produced <line> AN, so that the <line> between the circumference and the

produced <line>, NP, has to ΘP the same ratio which ΘA <has> to AΛ.

The second, we now see, is ultimately based on a neusis: on the realist

assumption that a line equal to a straight line can be fitted at a certain

position.

But Archimedes does not consider the second on its own; the line AN is

considered together with the line ΛA, the two conjured into being so as to

allow the comparison upon which Archimedes will build his absurdity. And

we immediately notice: the first is actually worse than the second. The

specification of the line ΛA asks not that we fit a line equal to a straight line

at a certain position; no, it asks we that we fit a line equal to a curved line at a

certain position. If Step b asks us to assume, in realist fashion, the squaring of

the circle, why then can’t Step c ask us to assume, in the same realist fashion,

the permissibility of a neusis?

To understand proposition 7, we find, we need to understand proposition

18. But the question remains: how to understand proposition 18 itself?
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I repeat the difficulty we face. We saw above how Archimedes proved

(a part of) proposition 18; but, to prove it, he had to have had some reason to

go down that path. This is a very familiar type of puzzle in the historiography

of ancient mathematics, where very often it is hard to “read back,” from the

proof, just why it was formulated to begin with, and what the first principles

were from which it could be derived (modern calculus was created to a large

extent by practicing mathematicians trying to resolve such puzzles in their

reading of Greek geometry: they sought some “first principles” underlying all

those various puzzles). And this particular instance is one of the most cele-

brated of all such puzzles. For indeed the prize is big – a squaring of the circle,

and the proof is remarkably frustrating to a reader motivated to find its

principles, for it is simultaneously very simple and very opaque. Many past

scholars have tried their hand, including of course Knorr245 and

Dijksterhuis.246 Heath provides an entire appendix to his History of Greek

Mathematics, dedicated to this puzzle.247

One is naturally led to think – especially if one is modern – of what nearly

happens. What would happen if we let the line ΘZ slide till it almost

coincides with ΘΛ, if we let Θ and H be so near each other that the

circumference ΘH becomes nearly indistinguishable from the chord ΘH, if

we let the perpendicular to the chord ΘH be nearly indistinguishable from

the radius AP? Such is the approach taken by Dijksterhuis. In truth,

Dijksterhuis – his usual sober self – does not really claim that his account

was by any means Archimedes’: he is merely claiming to provide a way for

a modern to grasp the truth of Archimedes’ claim. Let us review this

quickly, translating Dijksterhuis’ language of limits into a more geometrical

language, and using Archimedes’ second diagram (Dijksterhuis also help-

fully labels the point where the perpendicular bisects the chord HΘ by the

letter E).248

As the points become very close, we have:

(1) PE:PΘ::AΘ:AZ (near similarity of triangles), and also

(2) PE:PΘ::XE:(circumference PΘ) (XE becomes nearly the same as PE, PΔ

becomes nearly the same as circumference PΘ, both by virtue of ZΘ

being a tangent).

But note carefully: XE is the progress the generating line makes as it moves along

the circumference PΘ from the position AX to the position AΘ, and so the ratio

XE:(circumference PΘ) is simply the ratio of the progress of the generating line to

the circumference it traverses during its progress, a ratio which is a constant for

whichever stage we take in the growth of the spiral. We might as well take the

entire spiral, so that:

245 Knorr 1986: 164–165. 246 Dijksterhuis 1987: 271.
247 Heath 1921: II, 556–561.
248 Dijksterhuis’ diagram also applies to the general case where the tangent touches

the spiral at an arbitrary point; I revert to Archimedes’ treatment of the case of a single

rotation.
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(3) XE:(circumference PΘ)::AΘ:(circle ΘHK)

Joining (1), (2) and (3) we have now established:

(4) AΘ:AZ::AΘ:(circle ΘHK) or indeed:

(5) AZ=circle ΘHK

This is quite elegant, but it is not clear that anything such as (1) or (2) would

even cross Archimedes’ mind.

I will not reprise Knorr’s andHeath’s arguments. They both provide a more

elaborate geometrical construction than that of Dijksterhuis, and in their

treatments the language of limits is postponed until a stage in the argument

in which they make an observation of the character that “if the line is slightly

moved it becomes intuitively apparent that it will (impossibly) cross such and

such a line.” Both reconstructions are a geometrically acceptable, intuitive

way of stating a claim equivalent to limits. But there is a fundamental question

here as to which puzzle we are even trying to resolve. Is it (a) given the basic

arrangement of the diagram of this proposition, how do we find a straight line

along AΛ such that it equals the circumference of the circle? Or (b) given a

spiral, why would one start looking for a proof that AΛ=circumference? The

elaborate construction of Knorr is designed really as an answer to (a), but

surely it makesmore historical sense to imagine that Archimedes had, already,

some inkling of the truth of the result to even bother trying such a proof.249

Heath does provide an answer to (b), and I am persuaded that, its anachronisms

removed, it must be along the right lines. This then is what I now concentrate on

(Heath 1921: II, 557): “He must have considered the instantaneous direction of

the motion of the point P describing the spiral, using for this purpose the

parallelogram of velocities.” Kinematic thinking certainly seems to be relevant.

Let us think of it as a race: one point – call it circular point or simplyΘ – begins

running around along the circumference of a circle – call it ΘHK. Meanwhile,

another point – call it linear point or simply A – begins running along a line –

call it AΘ. The property of the spiral is that the two points end up meeting at

exactly the point Θ: the point Θ completed its rotation even as the point A

reached all the way up to the circumference of the circle.

Now let us re-imagine the race. The linear point is still linear and pursues

the same path. The circular point, however, is now positioned at a certain

point Ѱ, along the line perpendicular to AΘ, and such that AѰ is equal to the

circumference of the circle ΘHK. They both keep their speeds, and now, once

again, they conclude their motions at the same instant: the lengths, as well as

the speeds, are, after all, the same. For the circular point to cover the linear

length AѰ takes exactly as much time as it took it to complete a rotation along

the circumference of the circle: for AѰ is equal to the circumference.

249 To be fair, it may be that Knorr would admit as much, and that his reconstruction

is designed to answer the very narrow question of why, assuming Archimedes was

looking for just this proof, he found it in precisely the way he did. I will return to discuss

this question in the comments on proposition 20 below.

/18/ 121

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


We now move on to consider what Heath calls “the parallelogram of

velocities” (of which, of course, already the pseudo-Aristotelian Mechanics

are aware).250 Let us imagine that there is but a single moving object that

operates in two directions simultaneously: the object moves fromѰ towards A

at the speed of the original circular motion; the object also moves from the

same pointѰ orthogonally upwards, in the speed of the original linear motion.

Well, clearly the twomotions would compose to a single motion along the line

ѰΘ: we end at the point Θ. So this is a manner of composing two motions –

one of a “circular” character, one of a “linear” character – and this manner of

composing the two motions ends up at the ending point of the spiral line.

But the spiral line, too, is some kind of composition of the same two

motions. And so we begin to wonder how the line ѰΘ and the spiral line

interrelate. And at this stage of our thinking it begins to look as if it is not

unreasonable that ѰΘ should be tangent to the spiral. This is somehow a fair

compromise. Had the line ѰΘ passed here inside the spiral instead, it would

somehow suggest that its tendency, at this point, would be “more circular than

linear.” Had it passed here through the spiral on its way out of it (presumably

having entered the spiral before), it would somehow suggest that its tendency,

at this point, would be “more linear than circular.” And if so, Archimedes

might well begin to ponder the question whether a tangent to the spiral cuts a

line from the perpendicular to the generator of the spiral, which is equal to a

circumference of a circle.

However, such words as “tendency, at this point being more circular than

linear” etc. are not much different from Heath’s words “[considering] the

instantaneous direction of the motion of the point Π describing the spiral” –

painfully anachronistic words. The difference, in part, is that I do not require

Archimedes to have more than intuitions and suspicions. But there is a deeper

question. The issue of anachronism is not just a matter of a wrong terminol-

ogy: it is a matter of a wrong, inappropriate manner of thinking. It is just

difficult to imagine Archimedes looking at a line and starting to wonder what

the tendency of its tangent might be at a certain point: there was no tradition of

proving theorems based on such considerations and no natural way for this

problem to present itself to one’s mind. Being less anachronistic, verbally,

does not really help us.

Let me then try to retrace our steps. In truth, we should start thinking about

this at a much more basic level – start thinking about the historical conception

250 A “proof” of the parallelogram of forces is offered in [ps.-?]Aristotle’s

Mechanics 848b13–23. In a sense, of course, the composition of motions is always at

the heart of the operation of On Spiral Lines, and, to the extent that we take any reports

on Eudoxus seriously, it would have to be essential to Greek geometrical astronomy

already by the fourth century (in the much more complicated problem of composing at

least two three-dimensional circular motions along spheres. The literature on Eudoxus’

astronomical geometry is large, and the evidence is best accessed through Henry

Mendell’s translation with commentary, on his website: www.calstatela.edu/faculty/

hmendel/Ancient%20Mathematics/Philosophical%20Texts/Astronomy/Simplicius%

20InDeCael.pdf).
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of the spiral. And now it becomes clear that if a Greek mathematician begins

to conceive of a line composed of two motions, at fixed speeds, one linear and

one circular, he does not do this to prove that, say, the area covered by such a

line is such and such or that it has some other properties inherent in it. One

does not invent objects for no reason and then study them in abstraction. No:

there ought to have been a motivation anterior to the spiral itself. You

conceive of such a line for a purpose, and the purpose surely would have

been to apply this spiral, with its composite motions, to obtain results con-

cerning the circle (and, ideally, to square the circle). And so one must have

conceived the composite motion of the spiral to begin with, so as to allow

some kind of transformation of the circumference of the circle into a straight

line. The most natural way to achieve this is by the following consideration:

motions of a fixed speed and a given duration cover the same length, whether

they are linear or circular (as can be seen from proposition 2, one of the

cornerstones of this treatise). And if so, we could square the circle – linearize

its circumference – by considering such a circumference as the result of a

motion which is equivalent, in speed and duration, to the motion along a

straight line. And so the spiral line is conceived for the sake of the triangle of

the composition of motions AΘѰ, and one would be intent on looking actively
for the position of Ѱ along the line AΛ. And that this position is obtained by

the tangent would then come as at least one plausible option among many.

Indeed, looking at this particular question, one could easily be led to think,

locally for this problem (even if such a procedure did not become established

as a general mathematical technique), of the property of the tangent as

expressing a local composition of motions.

This kind of thinking even has a very obvious parallel elsewhere in

Archimedes. I ascribe here to Archimedes the thought that motions of a

fixed speed and a given duration cover the same length, whether they are

linear or circular. Thus one is allowed to move from straight to curved

kinematic statements, so that a composition of motions obtained with

straight lines can be assumed to be the same as that of curved lines, and a

single point would serve the same function with both compositions. In The

Method, Archimedes explicitly proposed a claim such that if all components

of two figures, pair-wise, balance at a point, so would the entire figures,

whether two-dimensional or three-dimensional (or one-dimensional or two-

dimensional). Thus one would be allowed to move from two-dimensional to

three-dimensional statements of balance, and a single point would serve the

same function – balance at a point – for both arrangements (all particular

pairs as well as entire figures). In both cases – On Spirals as well as The

Method – the fundamental intuition is physical: why should it matter, as

we move things, whether they move along straight or curved lines? Why

should it matter, as we balance things, whether we pair them pair-wise or as a

whole set?

There is even a potential that Archimedes conceived of such a parallel

himself: for the one major group of objects studied throughout his career,

which he avoids mentioning in The Method, are the segments of the spiral

line. Could it be because he conceived of the segments of the spiral line as
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essentially distinct, in their geometrical development, from other figures?

Effectively, I suggest that, throughout his major work, Archimedes con-

ceived of his geometrical objects as possessing certain physical affinities.

With most other figures, this affinity was with statics (geometrical objects

possessed, in their physical guise, a center of the weight). With On Spirals,

this affinity was with kinematics (spiral lines, in their physical guise,

represented a certain composition of motions). The physical affinity

becomes quite pronounced in On Spirals: the discussion does have stages

which are explicitly kinematic. However, there is no explicit suggestion

that the geometrical tangent has a kinematic analogue in the composition of

motions at a point, and, in this sense, On Spirals does not go as far as The

Method.

It should be emphasized that Archimedes, in a clear sense, did not

square the circle: no construction is offered with which the circle may be

squared. It is no less important to note that Archimedes, himself, did not

emphasize this point. This can be seen, with hindsight, in propositions 16–

17. We now note that they make, in fact, a much weaker claim than is

mathematically justified. They assert that the angle of the tangent to the

line drawn from the start of the spiral is always acute. This, I would say, is

no less than misleading. Natural language pragmatics – not to mention the

assumptions of a Greek mathematician making as radical a claim as he

could – all suggest that if one asserts that a certain angle is acute, nothing

more precise can be known about it. The implication, then, is that the angle

may change from spiral to spiral (perhaps within the same spiral?) as long

as it remains acute.

In fact, the angle of the tangent to the spiral such as ZΘA is a fixed angle,

the one of a right-angled triangle such that its two sides AΘ, AZ are in the ratio

of a radius to the circumference of a circle (we may say, nearly 81 degrees).

Indeed, this is not merely an interesting observation but one that settles the

fundamental character of the spiral: we end up showing that all spirals are

similar or that really there is only one spiral, not many – that their only

difference would be that of scale. Spirals (in the manner defined by

Archimedes) are not like ellipses, that can be made more or less elongated –

that have a certain parameter according to which they change their form. They

are like circles: they always have exactly the same form. And they are also like

circles in that they cannot be squared: that is, their defining angle in fact

cannot be named. This of course is the reason Archimedes does not dwell on

the property of the fixed angle of the spiral. He would not be able to mention it

without highlighting the fact that he cannot name this angle or, more gener-

ally, solve the problem of finding a tangent to a spiral at a given point

(obviously: for this problem is exactly equivalent to the squaring of the circle).

Archimedes’ silence on this point is magnified by a misleadingly weak claim

in propositions 16–17, all serving to present proposition 18 in the best possible

light – a tangent that, incredibly, squares the circle (as your mind’s eye turns

towards the question of the tangent’s constructability, there’s a flash from a

small shiny object).
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/19 /

And if a line should touch the spiral drawn in the second rotation at its

end, and a certain <line> should be drawn from the start of the spiral at

right <angles> to the start of the rotation, that <line> shall meet the

tangent, and the line between the tangent and the start of the spiral

shall be twice the circumference of the second circle.

For let there be the spiral ABΓΘ, drawn in the first rotation, and

ΘET, in the second; and <let> the circleΘKH be the first <circle> and

the <circle> TMN, the second <circle>. Let there be a certain line

touching the spiral at Θ, <viz.> TZ, and let ZA be drawn at right

<angles> to TA. (1) So, the <line> itself shall meet TZ, (2) on account

of its being proved that the angle <contained> by AT, TZ is acute. It is

to be proved that the line ZA is twice the circumference of the circle

TMN.

(3) For if it is not twice, it is either greater than twice or smaller than

twice. (a) Let it first be, if possible, greater than twice. (b) And let a

certain line, ΛA, be taken, smaller than the line ZA but greater than

twice the circumference of the circle TMN.251 (4) So, there is a certain

circle, TMN, and a given line in the circle smaller than the diameter,

<viz.> TN,252 and <the ratio> which TA has to AΛ, greater than the

<ratio> which the half of TN has to the perpendicular drawn on it from

A.253 (c) Now, it is possible to extend AΣ from A towards TN,

produced, so that the <line> between the circumference and the

produced <line>, <viz.> PΣ, has to TP the same ratio which TA

<has> to AΛ.254 (d) So, AΣ shall cut the circle at P,255 (e) and the

spiral at X; (5) and alternately: PΣ shall have the same ratio to TA,

which TP <has> to AΛ.256 (6) And TP has to AΛ a smaller ratio than

the circumference TP to the double of the circumference of the circle

TMN; (7) for the line TP is smaller than the circumference TP257

(8) while the line AΛ <is> greater than the double of the circumfer-

ence of the circle TMN;258 (9) therefore PΣ has a smaller ratio to AP

than the circumference TP has to the double of the circumference of

the circle TMN.259 (10) Now, ΣA, in its entirety, has to AP a smaller

ratio than the circumference TP together with the circumference of the

circle TMN, counted twice, to the circumference of the circle TMN,

251 Proposition 4. The order of the letters TMN is curious.
252 Elements III.7, proposition 13. 253 Elements III.3, V.8, VI.8.
254 Proposition 7.
255 The point P is defined only post factum, having been used already in its defined

sense in Step c.
256 Elements V.16. 257 See n. 226 above to proposition 18, Step 8.
258 Step a: hypothesis. Step 6 follows on the basis of Elements V.8.
259 Between Steps 6,9, line TA has become AP (radii in a circle).
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counted twice.260 (11) But the ratio which the mentioned circumfer-

ences have <to each other> – XA has that ratio to AT. (12) For this has

been proved.261 (13) Therefore AΣ has to AP a smaller ratio than XA

to TA; (14) which indeed is impossible.262 (15) Therefore the line ZA

is not greater than twice the circumference of the circle TMN.

(16) And similarly, it shall be proved that neither is it smaller than

twice. (17) Now, it is clear that it is twice.

It is to be proved through the same manner: also,263 if a certain line

should touch the spiral, drawn in whichever rotation, at the end of

the spiral, and <the line> drawn from the start of the spiral in right

angles to the start of the rotation meets the tangent, it is a multiple of

the circumference of the circle, counted according to the number of

the rotation, in the same number.

comments

The explicit proof in this proposition (Steps 1–15) is exactly identical with the

first part of the proof in the preceding proposition 18 (Steps 1–18). This gives

rise to two questions, one semiotic and the other mathematical. First, how is

this identity conveyed? Second – a question with which we are familiar by

now – why does Archimedes bother to repeat the very same proof twice?

For the semiotic question: the first thing we note is that Archimedes never

says that the two proofs are identical. He does comment in proposition 19,

Step 16 that it shall be proved “similarly” that the line is not smaller than twice

the circle; but this reads in context not as the statement that this should be

proved “similarly” to the corresponding passage in proposition 18 but rather

A

M

Z

N
T

P
X

H

B

K
E

Γ
Λ Θ

Σ
Codex C had the line ΣZ pass

lower so it “misses” T from

beneath. Codex A, which has it

pass through A, ends up with

the label N attached to the line

segment ZT instead of the arc

TM, which is the “mistake” I

print, as I can well imagine how

this is authorial (the reference of

N remains clear enough; this

mistake is corrected by codices

BD, who also position Z at the

level of A, followed by

Heiberg). H is positioned mis-

leadingly close to the second

circle, K –misleadingly close to

the spiral (both should lie on the

first circle; both corrected by

BD; Heiberg, remarkably,

misplaced K between the spiral

and the second circle). Codex A

(perhaps also C) had Ξ instead

of Z, corrected by BDG. C also

might have had Σ instead of E

and might have lost P. Λ, Z are

lost within B’s gutter.

260 Extension to inequalities of Elements V.18.
261 Proposition 15 (“corollary”).
262 Elements V.8 and the usual implied equality of radii AT=AP.
263 The manuscripts are missing the word “that.” Most likely this is a scribal error,

but since the text could marginally make sense without the word, I try translating

without it.
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that this should be proved “similarly” to the first part of the proof of proposi-

tion 19.

It is also noticeable that Archimedes does not truncate the proof of propo-

sition 19 appreciably. Proposition 18 had three steps not present in proposition

19: Step 5 – explaining why the ratio is smaller than the required limit – and

Steps 16–17 – explaining why the final result is absurd. Both are very brief

backwards-looking γαρ-justifications. Otherwise the flow of the proof is

precisely the same, no step skipped. Indeed, it is possible to find moments

where Archimedes is more explicit in the later proof. Step 5 in proposition 19,

unlike its counterpart Step 6 in proposition 18, explicitly refers to its operation

as “alternately,” thus signaling its logical ground. Even more striking: in

proposition 19 Archimedes spells out (if post factum) the reference of the

labels P, X; these are completely unspecified in proposition 18.

I do not think this represents any conscious choice on the part of Archimedes

to bemore expansive in the latter proposition. Rather, it appears that hemade no

effort to make the proofs textually identical, instead generating independently

the precise wording of the individual claims. Consider the variability of the

wording between proposition 18, Step 10 and proposition 19, Step 9:

I underline three textual segments in proposition 18: “Now” as against

“Therefore” (οũν / ἄρα); too, absent from proposition 19;264 “shall have” and

not “has.” I underline one textual segment in proposition 19: “has” in the second

part of the proportion statement (elided in the version of proposition 18).

This elided “has” may hold the key to the textual practice we see here. It is

the kind of expression we automatically supply in our head when it is absent,

so that making it overt, or failing to do so, is, up to a certain point, not a

meaningful choice, perhaps not a conscious choice at all. Perhaps, in a similar

fashion, the marker “alternately” may or may not be present, and the statement

still could remain the same. To some extent, Archimedes might have felt the

same at an even higher level of textual organization: perhaps he felt making

explicit the reference of labels, or even asserting a backwards-looking γάρ-

justification, are mere variations on the same expression. To use a somewhat

archaic expression: perhaps such differences were, to Archimedes, mere sur-

face structure, the deep structure remaining the same.

If so, we end up concluding that the proof of proposition 19 is meant to be

exactly identical with that of proposition 18.

18, Step 10 19, Step 9

Now, NP, too, shall have to PA a

smaller ratio than the circumfer-

enceΘP to the circumference of the

circle ΘHK.

Therefore PΣ has a smaller ratio to AP

than the circumference TP has to

the double of the circumference of

the circle TMN.

264 The word “too” forces a complete make-over of the word order in English, but

this is purely a translation artifact: the position of “a small ratio” is the same in the two

versions in the original Greek.
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It could be argued that I’m making the wrong comparisons: I looked at

exactly those passages where the claims of proposition 19 do not differ,

mathematically, from those of proposition 18. But what are those mathematical

differences I ignored? Well, the diagram and the construction are different,

allowing for a second rotation of the figure. Then, in Step b, line ΛA is assumed

to be greater than twice the circumference (and not greater than the circumfer-

ence itself, as in proposition 18). Finally, in Step 11, XA:AT is the same as the

ratio of an arc plus two rotations, to two rotations, whereas in proposition 18 it

was the same as the ratio of an arc plus a single rotation, to a single rotation. The

claim of proposition 18 is based on proposition 15; the claim of proposition 19 is

based on the corollary to proposition 15. (But this difference is elided in the

texts of propositions 18–19, which merely assert that “this has been proved.”)

This is all there is: other than those differences, the two proofs are identical.

What becomes clear at this point is that wherever one draws the tangent, the

construction of proposition 7 would allow one to generate an absurdity with the

assumption that the line intercepted by the tangent is greater than the spiral

rotated as far as the point of tangency; for the result of proposition 15 does not

determine the position on the rotation of the spiral where the ratios are to be

evaluated: there is no singularity associated with the complete rotation. At any

rate, the extension to the case of an interim point, not associatedwith a complete

rotation, involves much less mathematical effort than the extension of the claim

of the first part of proposition 19 – applying proposition 7 – to the claimmade in

Step 16, which would require the application of proposition 8.

That Archimedes, then, would move on to provide yet a third identical

explicit proof of exactly the same result, now applying to the interim points, is

rather shocking.

/20 /

If a straight line should touch the spiral drawn in the first rotation, not

at the end of the spiral, and a line should be joined from the touching

point to the start of the spiral, and a circle should be drawn with the

start of the spiral as center, and the joined <line> as radius, and a

certain <line> should be drawn from the start of the spiral at right

<angles> to the <line> joined from the touching point to the start of

the spiral, that <line> shall meet the tangent, and the <line> between

both the point at which it falls and the start of the spiral shall be equal

to the circumference of the drawn circle – that between the touching

point and the section, at which the drawn circle cuts the start of the

rotation, the circumference taken towards the preceding <parts> from

the point which is in the start of the rotation.265

265 Archimedes takes enormous pains to specify precisely the circumferenceKMNΔ;

see the general comments.
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Let there be a spiral on which <is> the <line>266 ABΓΔ, drawn in

the first rotation, and let a certain line, EZ, touch it at Δ, and let AΔ be

joined from Δ to the start of the spiral, and let a circle, ΔMN, be drawn

with A as center and AΔ as radius, and let that <circle> cut the start of

the rotation at K, and let ZA be drawn perpendicular to AΔ. (1) Now, it
is clear that that <line> shall fall <on it>.267 But it is to be proved that

the line ZA is also equal to the circumference KMNΔ.
(2) For, if not, it is either greater or smaller. (a) Let it be, if possible,

first, greater, (b) and let a certain line be taken, AΛ, smaller than the

line ZA and greater than the circumference KMNΔ. (3) So, again,
there is a circle, the <circle> KMN, and a line in the circle smaller than

the diameter, ΔN,268 and a ratio, which ΔA has to AΛ, greater than the
<ratio> which the half of ΔN has to the perpendicular drawn on it from

A.269 (c) Now, it is possible to extend AE from A towards NΔ,
produced, so that EP has to ΔP the same ratio which ΔA <has> to

AΛ. (4) For this has been proved to be possible.270 (5) Now, EP shall

also have to AP the same ratio which ΔP has to AΛ.271 (6) But ΔP has

to AΛ a smaller ratio than the circumference ΔP <has> to the circum-

ference KMΔ, (7) because ΔP is smaller than the circumference ΔP,272

(8) while AΛ is greater than the circumference KMΔ.273 (9) Now, the
line EP has a smaller ratio to PA than the circumference ΔP <has> to

the circumference KMΔ; (10) so that AE, too, has to AP a smaller ratio

than the circumference KMP to the circumference KMΔ.274 (11) But
the ratio which the <circumference> KMP has to the circumference

266 The Greek has the feminine form of the article “the,” most naturally implying

“line.” The same formula in proposition 16 used the neuter plural, for the more

natural “points”; the feminine here probably reflects the feminine noun “spiral”

itself, so that the precise translation might need to be “the spiral on which the

<spiral> ABΓΔ.” This uneasy expression stems from the uneasy position of the

figure of the spiral, studied here extensively perhaps for the first time in the history

of Greek mathematics and not yet settled into its formulaic expressions. What

appears to be meant is that we envisage the potentially infinite spiral extending all

the way from its start outwards; and we pick out the segment associated with a

line=spiral such as (in this case) ABΓΔ.
267 I.e. that ZA shall cut ΔA. Exactly as in the previous two propositions, this follows

from the acute angle at AΔZ, which in this case derives from the basic statement of this

result in proposition 16.
268 Elements III.7, proposition 13. 269 Elements III.3, V.8, VI.8.
270 Proposition 7.
271 Implicitly alternating the proportion of Step c (ElementsV.16) and then using the

equality of radii ΔA=AP.
272 SC? Visual intuition?
273 The hypothesis of Step b. Step 6 following through Elements V.8.
274 An extension to inequalities of Elements V.18.
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KMΔ – that <ratio> XA has to AΔ;275 (12) therefore EA has to AP

a smaller ratio than AX to ΔA; (13) which indeed is impossible.276

(14) Therefore ZA is not greater than the circumference KMΔ.
(15) Similarly to the above it shall be proved that neither is it smaller.

(16) Therefore <it is> equal.

And it shall be proved through the same manner also that if a line

should touch the spiral drawn in the second rotation, not at the end of

the spiral, and <if> the rest should be constructed the same, the line

that meets the tangent, between both the point at which the <line>

falls on the tangent and the start of the spiral, is equal to the

circumference, in its entirety, of the drawn circle, and yet with the

<circumference> between the mentioned points, the circumference

taken in the same way; also, that if a certain line should touch the

spiral drawn in whichever rotation, not at the end of the spiral, and

<if> the rest should be constructed the same, the line between the

mentioned points is a multiple of the circumference of the drawn

circle, by a number smaller by one than the <number> by which the

rotations are counted, and yet equal to the <line> similarly taken

between the mentioned points.

K

A

P
X

B

E

N

M

Z

Λ

Γ

Δ

Codex DCodex B Codex G

275 Proposition 14. Once again, Archimedes reverts to the original statement of his

results (just as the acute angle required by Step 1 is based on the original statement of

proposition 16).
276 Elements V.8 and the usual implied equality of radii.

The diagram breaks sharply

from the horizontal standard; in

codex C, the lower point cuts

well into the text. It is variously

rotated to become more hori-

zontal by BDG (see thumb-

nails) as well as by Heiberg.

Codex C has the point Δ
slightly lower than A. The line

ΔP is missing (reinstated by

BD), a conceivably authorial

omission.
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comments

Here is the same proof, yet a third time, not even substantially abbreviated.

There is one very minor acknowledgment of repetition (“again,” in Step 3),

and it is also more clearly marked, in Step 15, that the extension of the proof

technique to the second case is based not on the first case, but rather on the

second case of proposition 18. But there is no strategic statement to the effect

that this proof is indeed an exact replica of previous proofs.

There is some variety in the regime of internal cross-references, i.e. the

manner in which Archimedes explicitly appeals, or fails to do so, to previous

results inside On Spirals: in proposition 20, finally, we merely assert (instead

of appealing to proposition 13) that the line falls upon the tangent. But

proposition 20, all of a sudden, decides to make the appeal to proposition 7

explicit (in Step 4) instead of just suggesting it via its formulaic language –

while at the same time proposition 20 drops the explicit reference to proposi-

tion 14 (in Step 11). Other than this variability – and of course the “surface

structure” variability of choices of mathematical expression – the proof is

exactly the same as that of the preceding two propositions (taking just the first

case of proposition 18).

What is Archimedes doing? Is it even Archimedes doing it? One attractive

option would be to imagine some kind of editorial intervention, expanding a

single proof by Archimedes, for a single case, to a series of proofs for various

cases. But if so, it is hard to explain the precise arbitrary distribution: why

provide the first part only in propositions 19–20? Why have such a degree of

variability in the “surface structure”? Why, indeed, have this very clearly

stated generalization at the end of proposition 20? Finally, no section seems to

stand on its own: it is difficult to see how proposition 18, out of the entire

series, could have been the only proposition proved: would Archimedes not

have gestured towards a generalization (the way our text does at the end of

proposition 20)? Such judgements are always subjective, but the text of

propositions 18–20 has the variety, and confidence, of an authorial voice.

If authorial, we need to understand Archimedes’ motivation. There ought

to be something which he felt that an explicit recapitulation did, and which a

mere statement of extendibility would not. Archimedes felt that he needed to

spell out how to repeat the proofs for the cases of 19–20; he could not just state

that they were repeatable (in the manner in which he states this at the end of

proposition 20, for further extensions).

Let us then consider the options available to Archimedes. As we saw

already for propositions 16–17, he could have made one sweeping, general

claim which does not ask for repeatability, and simply applies to all cases

directly; or he could have pursued one single case and then claimed its

repeatability.

How could Archimedes provide one sweeping, general claim? This, on the

face of it, does not appear to be so difficult. All we need to do is to pick any of

the diagrams of propositions 18–20 and in the text refer to the spiral in general

terms and the point at which the tangent touches the spiral – as a “random”

one. Say, with the diagram of proposition 20, the text would ask that a spiral is
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drawn (with no reference made to its being drawn during its first rotation), and

that a tangent touches it at an arbitrary point Δ. The general definition of goal

would ask that we prove a claim roughly the same as the generalization at the

end of proposition 20 (of which 18 and 19 are, in a sense, special cases). The

reductio assumption – and therefore the definition of the point Λ – will be once

again open-ended (“let us assume that it is not the multiple-and-then-some

that the point Δ represents; so it is either greater or smaller, etc.”). Then, in

the equivalent of proposition 20, Step 11, the ratio of the generating lines and

the circumference will have to be expressed in a general language (which has

been achieved already, after all, at the ends of propositions 14–15).

I can see two reasons Archimedes would not like this. First, as suggested

above for propositions 16–17, he might have felt uncomfortable with the

generalization of a spiral figure. This is important, if we consider that the

diagram of one (and the diagram accompanying a proof for spirals must

represent a particular spiral) is to be taken to cover them all: for it would

always involve a stretch of the imagination to have a multiply coiled spiral

representing a single one, or a singly coiled spiral representing a multiple

one.277 He might have felt that even though the proof did apply under such a

general perspective, the worry would still lurk that some unsuspected coil

along the way could still cut the proof’s progress. Clarifying the proof by

having, essentially, multiple cases for the multiple diagrams, certainly

removed this worry.

Second, and probably key to this, there is an obvious price to pay for a more

general statement. Had Archimedes used such language, he would have had to

give up the language of proposition 18 – he would have lost the opportunity of

dropping a bomb where, out of the growth of the deductive structure of the

treatise, suddenly a claim was made that a certain line is equal to the circum-

ference of the circle. He could still have left this as an implicit consequence –

but this would have been to give up the opportunity to highlight the rectification

of the circle. Or he could have asserted it as an explicit corollary – but since the

proof, in its generality, would make such special corollaries mathematically

otiose, such a special statement would appear much more marked and would

make the statement of the rectification less elegant – no longer a bomb dropped

but instead a laboriously contrived statement.

Why not have just proposition 18, followed by a longish statement, such as

the one at the end of proposition 20, asserting the repeatability of the proof?

There are surely drawbacks to that: the longish statement would end up very

long, and very opaque. Archimedes has a clunky structure all right, with his

repetition of the same proof thrice. But the alternative has its own clunkiness.

The main concern appears to be the epistemic one, mentioned above: how

277 It is interesting that while the text of the proofs differs only trivially, the diagrams

are as distinct as they can be. Their fundamental orientation is given by the position of

the tangent line which is (in the first case, repeated by all three propositions) variously at

the bottom (18), top (19) and left (20) of the spiral. It would be very difficult to judge,

based on these three diagrams, that they represent three special cases of the very same

proof.
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would it be obvious that the proof is repeatable, when the visual layout is so

different? Indeed, would there not be a constant, specific worry that the

particular case of a single, full rotation has a specialness that does not translate

to the other cases? Dijksterhuis, sensing this, offers a proof once and then asks

us to extend it, but the single case he takes up (1987: 268–270) is that of

proposition 20: he clearly feels that the case of a spiral drawn with less than a

rotation is more obviously “representative,” or at least more difficult (it is easy

enough to intuit that if the proof holds for less than one rotation, it will hold for

exactly one; but the opposite is slightly less clear). The need to showcase in

just the right way the special case of the rectification of the spiral is in tension

with the need to pick a representative case, easy to generalize. Faced with this

choice, Archimedes prefers to showcase the rectification of the spiral. Indeed,

this goes back all the way to the letter to Conon: for there, the claim of

propositions 18–20 was stated merely for the special case of the rectification

of the circle (indeed, the very word “spiral,” in that context, seems to be used

to refer to that drawn during the first rotation): see Archimedes’ introductory

letter, pp. 20–21 above. Deep inside the treatise, Archimedes is still bound by

his context of communication.

What Archimedes seems to resist is a mid-way position between the

explicit repetition and the implicit suggestion of repeatability. Perhaps, to

our sensibility, the most elegant way out would have been to provide a single

case (maybe proposition 18, after all, to accommodate Archimedes’ need

to showcase that particular result), followed by a more discursive meta-

deductive statement: that the proof will obtain even if the tangent touches at

any other point on the spiral drawn during any rotation, since (and here we part

from the very spirit of Archimedes’ discourse) one will always be able to find

a line according to propositions 7 or 8, and the results of propositions 14–15

will always apply to derive exactly the same impossibility.

What we find, then, is that Archimedes is reduced to a certain inelegance

because he definitely has to avoid the kind of meta-deductive statement sug-

gested above. And indeed, even in more expansively meta-theoretical works

such as The Method, within the text of the proofs themselves Archimedes never

resorts to such observations on how results can be obtained. Once again we find

that Greek mathematicians prefer example to instruction. Their works are to

some extent explanatory in the sense that, pursuing their approach step-by-step,

one becomes familiar with the mathematical possibilities and so can learn how

to proceed. Following propositions 18–20, it is indeed much easier for me to

envisage how to cast the proof for the cases Archimedes omits to prove and

instead merely suggests at the end of proposition 20 (or the second case omitted

in both of propositions 19 and 20). But these works are not explanatory in the

sense that Archimedes ever explains much in his own words. And so, some-

times, so as not to be too opaque, one has to pile up examples.

Could there have also been an advantage, a specific gain from the repeated

iteration? I have suggested as much in my comments on proposition 17, as I

pointed out that, from proposition 10 onwards, the text of On Spirals takes up

the principle of “dual – andmore.” Results always repeat each other – and then

add a bit more. This, I suggested, could somehow be metaphorically related to
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the structure of the spiral: it is a discursive spiraling structure answering the

spiraling structure of its object. This suggestion can now be given more

concrete and less metaphorical meaning.

Archimedes needs to have the repetition of propositions 18–20, I suggest,

primarily because of the intricate structure of the spiral, a single object which

appears to take many forms in its rotation. There is thus a very simple sense in

which the “dual – and more” structure of propositions 18–20 directly stems

from the “dual – and more” structure of the spiral. Propositions 18–20 follow

the coils (first outwards, 18 expanding to 19; then backwards, to less than a coil,

in 20; and then, in the unproved statement, expanding outwards yet again).

What now appears to be the case is that the “dual – and more” structure

from proposition 10 onwards was there largely in anticipation of the structure

of propositions 18–20: it provides a context against which the structure of

propositions 18–20 appears less unexpected and therefore less otiose.

And so we may begin to understand Archimedes’ overall architecture:

faced with a complex, apparently (or deceptively) variegated object; prefer-

ring example to instruction; foregrounding the rectification of the circle – and

so forced almost to the iterated, coiling structure of propositions 18–20; an

iterated, coiling structure which is then allowed to characterize the entire

sequence of propositions from the moment in which the treatise begins to take

off in earnest, in proposition 10.

Yet this was just one turn of the spiral. Let us pursue Archimedes to the

next coil.

/21 /

Taking the area contained by both the spiral drawn in the first rotation

and the first line in the start of the rotation, it is possible to circum-

scribe a plane figure around it and inscribe another, composed of

similar sectors, so that the circumscribed is greater than the inscribed

by a <magnitude> smaller than any given area.

Let there be a spiral, on which <is> the <line> ABΓΔ, drawn in the

first rotation, and let the pointΘ be the start of the spiral,ΘA<the> start

of the rotation, the <circle> ZHIA the first circle, and the diameters AH,

ZI its diameters, at right <angles> to each other. (1) So, the right angle

ever again being bisected, and the sector containing the right angle, the

remainder of the sector278 shall be smaller than the given;279(a) and let

the sector have come to be, <as> the <sector> AΘK, smaller than the

given area. (b) So, let the four right angles be divided into the angles

278 The expression “the remainder of the sector” envisages the process of bisection as

one in which we always divide a sector into two, tossing out one half and keeping the

other. “The remainder of the sector,” then, is simply the last sector obtained in the

process of continued bisection.
279 ElementsX.1. This is distinct from the lemma (“Archimedes’ Axiom”) evoked at

the end of the introductory letter.
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equal to the <angle contained> by AΘ,ΘK, (c) and let the lines making

the angles be drawn as far as the spiral. (d) So, let the point at whichΘK
cuts the spiral beΛ, (e) and let a circle be drawnwithΘ as center andΘΛ
as diameter; (2) its circumference shall fall, towards the preceding

circumference, inside the spiral, and towards the following circumfer-

ence, outside.280 (f) So, let the circumference [OM] be drawn, as far as

it <extends> to fall on ΘA, [at O], and <as far as it extends to fall> on

the <line> falling on the spiral beyond the lineΘK.281 (g) So, again, let
the point at whichΘM cuts the spiral be N, (h) and let a circle be drawn

withΘ as center and ΘN as diameter, as far as the circumference of the

circle <extends> to fall on ΘK and on the <line> falling on the spiral

beyondΘM, (h) and, similarly, let circles be drawn through all the other

<points> at which the <lines> making the equal angles cut the spiral,

withΘ <as> center,282 as far as each circumference <extends> to fall on

the preceding line and on the following; (3) so, there shall be a certain

<figure> composed of similar sectors, circumscribed around the taken

area, and another inscribed.

And it shall be proved that the circumscribed figure is greater than

the inscribed by a <magnitude> smaller than the given area. (4) For

the sector ΘΛO is equal to the <sector> ΘMΛ, (5) and the <sector>

ΘNΠ to the <sector> ΘNP, (6) and the <sector> ΘXΣ to the <sector>

ΘXT, (7) and also: each of the other sectors in the inscribed figure is

equal to the sector having a common side,283 among the sectors in the

circumscribed figure. (8) Now, it is clear that all the sectors shall be

equal to all the sectors;284 (9) therefore the inscribed figure is equal to

280 In terms of the diagram: O is inside the spiral and M – outside.
281 “The line falling on the spiral beyond the lineΘK” is the line continuing fromΘΣM

to the spiral. Archimedes has to use a periphrastic expression because he did not commit a

diagrammatic label to the point at which this line meets the spiral. Step f has a strange

redundancy, asserting the identity of the drawn circumference more directly as OM, and

less directly by referring to such periphrastic expressions; for this reason, Heiberg thought

the reference to OM might be a late explanatory scholion. This is possible, but it has to be

noted that such scholia are not very apparent in the text of SL as a whole.
282 Since Archimedes does not have a generalized way of referring to the radii of the

various circles, he uses a rare construction: circles are drawn through a point, with a center

(defined by a center and a point on the circumference, instead of by a center and a radius).
283 Having a common side: in the sense in which ΘΛO, ΘMΛ have the common side

ΘΛ. Having a common side is not only the sign allowing us to identify the pairs which

Archimedes wishes to equate, but also provides the grounds for the claim of equality: all

sectors are similar (by construction), so that, with a common side, they must also be equal.
284 This means, I think, that it is clear that the method we have identified of picking

pairs of sectors involves no double-counting, so that the two sets of sectors have an equal

number of members. It is clear thanks to the procedure implied in the order of Steps 4–6,

counter-clockwise, so that there is no movement back and forth and each sector is

counted exactly once.
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the figure in the area circumscribed around the area without the sector

ΘAK; (10) for this alone is not taken among the <sectors> in the

circumscribed figure.285 (11) Now, it is clear that the circumscribed

figure is greater than the inscribed, by the sector AKΘ, (12) which is

smaller than the given.286

/corollary/

And from this it is obvious that it is possible to draw a figure around the said

area,287 as was said, so that the circumscribed figure is greater than the area by

a <magnitude> smaller than any given area, and again: to inscribe, so that the

area, similarly, is greater than the inscribed figure by a <magnitude> smaller

than any given area.288
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Codex A had the smaller arcs

drawn as arcs (faithfully copied

by the descendants of A,

though those of codex 4 are

nearly indistinguishable from

straight lines). Codices AC do

not have Γ, which BD reinstate

(an omission which may be

authorial). H has X for A, A for

Λ. A is completely hidden in

codex C. Codex E copies here

the next diagram, and omits

entirely the present one (it

leaves a blank space where the

next diagram should go).

285 We need to recognize that the last sector area, right near the start of the spiral and

on the other side of the start of the rotation from ΘKΛ, contains a sector in the

circumscribed figure, but no sector (or, if we wish, a zero sector) in the inscribed figure.

Thus the inscribed figure as a whole has one sector fewer than the circumscribed figure

as a whole. Archimedes does not clarify this point (which, by definition, calls for

zooming in on a minuscule part of the figure and so does not lend itself to diagrammatic

treatment).
286 Step 12, elegantly, reverts to the very first construction of Step a.
287 I.e. the area contained by the spiral line and the start of the rotation.
288 Since the magnitude (circumscribed-inscribed) is smaller than the arbitrarily

given magnitude, and circumscribed>area>inscribed (this is taken to be visually intui-

tive), it follows that (circumscribed-area) and (area-inscribed) are each smaller than

(circumscribed-inscribed), hence smaller than the arbitrarily given magnitude.
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comments

The argument of this proposition – based on equal, adjacent sectors – is

aesthetically pleasing, all the sectors effortlessly sliding and clicking, as we

follow the logic of the proof, into position. The visual basis of the argument

makes it also directly compelling, even if the verification of the precise claim

remains taxing: it is easy to see how in principle the difference between the

two figures, circumscribing and circumscribed, can be recomposed into a

single sector. To ground this visual argument, we also begin a series of very

compelling diagrams, with the clock arrangement of a circle divided into

sectors serving as a scaffold for interesting smaller lines – the symmetry of the

circle balanced against the coiling asymmetry of the spiral. One wonders,

incidentally, how well the fine detail of the individual sectors was represented

in ancient papyrus; our medieval, parchment diagrams are often splendid. I

chose the figure of this proposition, from the Archimedes palimpsest, for the

cover of this volume. In codex A, it appears that the various circular arcs were

drawn as arcs; codex C turned them into straight lines, simplifying somewhat

the resolution. I am not sure which is to be preferred as authorial.

The astute reader will understand that we begin the campaign of measuring

the area intercepted by the spiral. The proposition makes no use of the

preceding results: it is a fresh start, belonging in a sense to the introductory

passage of propositions 1–11. Indeed, it is functionally like propositions 4 and

7–8, that allowed Archimedes to find a straight line squeezed, in its magni-

tude, in between two given lines (straight or curved) and then to transfer this

line into a geometrical configuration involving the spiral line and a circle. The

combination of propositions 4, 7–8 provided Archimedes with the “opening”

he needed so as to apply the method of exhaustion in the measurement of the

line intercepted by the tangent, just as the sequence of propositions 21–23

provides Archimedes with the “opening” he will soon exploit so as to apply

the method of exhaustion in the measurement of the spiral area. Why did

Archimedes position propositions 4, 7–8 in the introductory passage, but

propositions 21–23 here in the final stage of results? This may well be because

the application of propositions 21–23 is so obvious: positioning them too early

in the book would have been to give the game away, to announce in advance

just what the proof strategy is for finding the area of the spiral.

The text made a discontinuous transition. Its overall texture, however, did

not change: the path of deductive sequence breaks while the discourse keeps

its identity. The following set of three propositions will present the same

“dual – and more” structure we are now familiar with. They are redundant in

exactly the same sense in which propositions 18–20 are redundantly repeated.

The property I refer to as the “example rather than instruction” is visible

inside the proposition, as well. The basic strategy of comparing the two figures

is based on:

1. a pair-wise equation of adjacent sectors. This Archimedes does not say

directly: rather, he asserts the equation for three pairs (Steps 4–6) and only

then, in Step 7, is the procedure generalized.
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2. an equation of the number of sectors in the inscribed figure, and the

number of sectors in the circumscribed figure minus the first, greatest

sector. To see this, we need to verify that the “tail” of the inscribed figure,

but not of the circumscribed figure, vanishes at the last sector, so that the

total number of circumscribed sectors is greater by one than the total

number of inscribed sectors. This Archimedes does not do: not only does

he take the equality of the number of sectors as a given (without arguing

for the vanishing tail), he does not even mention that we need this equality

of numbers.

In the first case, we see Archimedes avoiding instruction, piling up examples

instead. As the book of Deuteronomy says (19.15): “A single witness shall not

prevail . . . only of the evidence of two witnesses, or of three witnesses, shall a

charge be sustained.” Archimedes of course could have used one example, or

even none at all, merely asserting the equality of adjacent pairs, as he does in

Step 7. In this sense he piles up examples. And he avoids instruction: he merely

hints, by the words chosen in Step 7, how we know that all such adjacent pairs

are equal, never asserting the grounds for the equality. Note that we see here the

discursive pattern of propositions 18–20, repeated precisely in a lower level of

analysis: instead of clarifying a procedure, Archimedes lets it sink in through

triple repetition.

In the second case, we see Archimedes avoiding instruction altogether,

leaving the argument opaque. There is of course nothing invalid about the

deductive structure: the construction, indeed, is elegant and precise. But preci-

sion is to be supplied by the reader and is not made part of the surface texture of

the proof.

A comparable example is the last sentence at the end of the proof –

obviously its goal: that it is possible to circumscribe and inscribe so that

the difference from the spiral area is smaller than any given magnitude.

Archimedes has a precise argument, but it is left in part to be supplied by the

reader – and the lack of explicit, second-order explanation makes it appear at

first confusing. The natural reading of the words “from this it is obvious that

it is possible . . . ” is that, following the same construction strategy, one could

also find a circumscribed figure (or an inscribed one) fulfilling the condition

that its difference from the spiral area is smaller than a given magnitude. But

this is impossible: the construction strategy cannot be extended to a different

case, where the circumscribed figure is compared directly with the spiral

area. It relies on there being two figures, circumscribed and inscribed. What

Archimedes actually means is that the construction we have been given is

already one that satisfies the condition that the circumscribed (or inscribed)

figures differ by a smaller magnitude. One wonders, indeed, if it would not

have been simpler to state this goal at the enunciation of the problem – that

is, setting the task to begin with as the finding of circumscribed and inscribed

figures differing from the spiral area by a smaller magnitude – and then

assert the last sentence not as a kind of “corollary” but as a step within the

proof itself. For, after all, what Archimedes means when he says “from this it

is obvious that it is possible . . . ” is that one can write exactly such a proof.
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So why not write it, instead of presenting it as some kind of extension of a

proof?

Throughout, Archimedes is happy to have his results derive as extensions

of something else: not argued directly, but understood on the basis of exam-

ples. And, naturally enough, yet another example of the same argument now

follows.

/22 /

Taking the area contained by the spiral drawn in the second rotation

and by the line which is the second among the <lines> at the start of

the rotation, it is possible to circumscribe around it a plane figure

composed of similar sectors and to inscribe another, so that the

circumscribed is greater than the inscribed by a <magnitude> smaller

than any given area.

Let there be a spiral, on which <is> the <line> ABΓΔE, drawn in the
second rotation, and let the point Θ be <the> start of the spiral, AΘ
<the> start of the rotation, EA the second line among the <lines> at the

start of the rotation, and let the AZH circle be second, and AH, ZI its

diameters at right <angles> to each other. (1) Now, again, with the

right angle being bisected as well as the sector containing the right

angle, the remainder shall be smaller than the given.289 (a) And let the

sector have come to be <as> the <sector>ΘKA, smaller than the given

area. (2) So, dividing the right angle into the angles equal to the

<angle> contained by the <lines> KΘA and the rest constructed

according to the same <constructions> as before, the circumscribed

figure shall be greater than the inscribed figure by a <magnitude>

smaller than the sector, ΘKA; (3) for it shall be greater by the

difference, by which the sector ΘKA exceeds the <sector> ΘEP.290

/corollary/

Now, it is clear that it is also possible that the circumscribed figure be greater

than the taken area by a <magnitude> smaller than any given area, and, again,

that the taken area be greater than the inscribed figure by a <magnitude>

smaller than any given area.

Through the same manner it is obvious: that it is possible, taking the area

contained both by the spiral, drawn in whichever rotation, and by the line in

289 Elements X.1.
290 In the case of the double rotation, the “tail” of the inscribed figure does not vanish

into nothing, but remains as a minimal figure – that ofΘEP. Thus the difference between

the sum of circumscribed sectors and the sum of inscribed figures is not the greatest

sector, but rather the difference between the greatest sector and the smallest sector.
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the start of the rotation, counted by the same number, to circumscribe a plane

figure, as has been said, so that the circumscribed figure is greater than the

taken area by a <magnitude> smaller than any given area, and again to

inscribe, so that the taken area is greater than the inscribed figure by a

<magnitude> smaller than any given area.

comments

By now, we predict an Archimedean repetition, and I will not comment on it.

This brief proposition, however, presents a number of smaller questions.

First, there is a strange expression used twice – in the enunciation and in the

“corollary” at the end – where we are asked to circumscribe a “plane” figure.

Why specify this?Whoever thought we were dealing with solids, anyway? An

intriguing possibility is that here and there we see, perhaps, some trace, in

Archimedes’ thought, of the approach taken in the alternative proof reported

by Pappus: for Archimedes must have considered the problem of the spiral,

among other things, in the context of the cone (for this, see the comments on

24 below).

Second, we see Archimedes once again extending a problem to beyond the

first rotation. This gives rise to a basic unresolved question. Is the spiral a

coiled object such that, beyond its first rotation, it begins to turn upon itself?

Would the area “taken by the spiral” then involve some kind of double-

coverage, the area of the spiral taken by the first rotation counted twice

towards the area of the spiral taken by the second rotation? No: Archimedes

means the area contained by the line AE and the coil of the spiral in its second

rotation alone – the coil from E to A. This is signaled by the diagram, which

simply does not draw the inner, first rotation of the spiral. One therefore

concludes that the expression “the spiral drawn during the second rotation”

means just that – a single coil, and not the entire spiral consisting of both coils
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Division into twelve sectors is

original (against the letter of

the text, which stipulates 2n
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all following continued
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the internal circular arc passing
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through the hours 11 to 1 (that

is, passing through E: as a

consequence, P appears in

codex A as if it were on the

spiral, not on a circular arc; this

omission may be authorial but,

if so, it is a fatal slip that has to

be corrected). Heiberg adds the

first rotation of the spiral.

Codex A omitted Θ (not

reinstated by any copy);

codex C omitted P altogether,

and misplaced E to the end of

the arc passing through E and

cutting AΘ.
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(such, indeed, is the implication of the language of the setting-out of proposi-

tion 19, which distinguishes between the first rotation, ABΓΘ, and the second

rotation, ΘET). The phrase “spiral drawn during the second rotation” is

actually quite clear: it is a spiral segment, not a spiral line, extending all the

way from the start of the spiral. And yet both Heiberg and Dijksterhuis (as

well as the authors depending on them) never draw the spiral segment, always

drawing a complete spiral whenever a spiral is discussed. This is quite an

important distinction: perhaps, if we envisage the second rotation of the spiral

as an anchorless linear segment, we see it as quite radically distinct from the

centrally anchored, “semi-closed” first rotation, which in turn may explain

Archimedes’ need to repeat his proofs for the cases of the first and second

rotations, allowing the second rotation then to generalize directly to the third

and higher rotations (as, after all, visually, second and higher rotations are the

same). Note that we will have an even more “unanchored” figure in the

following proposition.

Finally, note an elegant move in Step 3, “greater by the difference, by

which . . . exceeds . . . .” This is very powerfully reminiscent of the language of

propositions 10–11 and must be here either as an unconscious reflex of

Archimedes’ anticipation of the application of the propositions or, more

interestingly and (I think) more likely, as a conscious, slightly misleading,

clue: for while we are about to consider the application of propositions 10–11

to the case of the sectors, we will do so by considering the difference not of

very separate sectors, as Archimedes does here, but by considering the

difference of adjacent sectors.

/23 /

Taking the area contained both by the spiral, which is smaller than

the <spiral> drawn in a single rotation, not having the beginning of the

spiral as an end, as well as by the lines drawn from the ends of the

spiral, it is possible to circumscribe around the area a plane figure

composed of similar sectors and to inscribe another, so that the

circumscribed figure is greater than the inscribed by a <magnitude>

smaller than any given area.

Let there be a spiral, on which <is> the <line> ABΓΔE, and its ends
A, E, and let Θ be <the> start of the spiral, and let AΘ, ΘE be joined.

(a) So, let a circle be drawn withΘ as center and ΘA as radius, (b) and

let it meet ΘE at Z. (1) So, with the angle at Θ as well as the sector,

ΘAZ, ever again being bisected, the remainder shall be smaller than

the given area.291 (c) Let the sector ΘAK be smaller than the given

<area>. (d) So, similarly to the previous <propositions> let circles be

drawn through the points, at which the spiral cuts the lines making

equal angles at Θ, (e) so that the circumference of each falls on both

291 Elements X.1.
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the preceding and the following <line>. (2) So, there shall be a certain

plane figure circumscribed around the area contained by both the

spiral ABΓΔE as well as the lines AΘ, ΘE, composed <=the plane

figure> of similar sectors, and another inscribed, and the circum-

scribed exceeds the inscribed by a <magnitude> smaller than the

given area. (3) For the sector ΘAK is smaller <=smaller than the

given area>.292

/corollary/

From this it is obvious that it is possible to circumscribe a plane figure around

the mentioned area, as has been said, so that the circumscribed figure is greater

than the area by a <magnitude> smaller than any given area.293

comments

This is a surprising move: we have expected, based on the progress of

propositions 18–20, to have the proof provided for the case of a spiral

fragment extended from the start outwards, smaller than a single rotation

(and then, presumably, extended to all non-integer rotations). It turns out that

propositions 21–23 follow a somewhat different route from that of proposi-

tions 18–20. In the sequence 21–23, we do not have a general result for non-

integer areas, but merely one type of those – the unanchored spiral fragment

contained within the first rotation. It is not self-evident, from the procedure

followed in this proposition, that other non-integer areas may be seen to fall

under the logic of this case (even though Dijksterhuis effectively assumed

that, by picking this one case to illustrate Archimedes’ approach in proposi-

tions 21–23). Indeed, from the practice of propositions 18–20, we are led to

expect that, had Archimedes wished to assert that the result is valid for any

non-integer area, he would have said so.

Z

K

A B Δ

Θ

Γ

Codex C omits E (as do codices

EG). Codex D swaps E, Z.

Heiberg has a very different

figure where the spiral is drawn

from its start.

292 Now the reader has to supply the entire argument: the circumscribed is greater

than the inscribed by the difference ΘKA-ΘEΔ (that this is true is left as a – visual? –

exercise) which in turn is of course smaller than ΘKA.
293 Heiberg supplies, following Rivault, the complementary claim for the inscribed

figure; but I find it more likely that the omission is authorial and is a mark of the radical

ellipsis Archimedes employs at this stage of the sequence of propositions 21–23.
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On the other hand, we recognize with surprise that propositions 18–20, after

all, did not cover everything. We have considered the tangent associated with

any point on the spiral, effectively considering it as the end point of an out-

wardly extended spiral line arising all the way from the start of the spiral. It was

in the nature of the object studied there that the question never arose whether or

not the spiral actually did extend all the way back to the start, and nothing so far

in the treatise ever prepared us for the notion of a spiral fragment. It was indeed

only in proposition 22 that it became clear that the second rotation of the spiral

is, in some sense, a “fragment” of a spiral (and should not be understood as the

extended combination of first and second rotations).

The treatise begins with an introduction mentioning in explicit, precise

terms the object of the spiral; followed, many propositions later, by an explicit

set of definitions (following proposition 11) setting out the spiral more

explicitly; but it remains for the further turns and coils for the treatise to

unpack, in somewhat clearer terms, just what is this object we are studying.

Now, finally, we will measure it.

/24 /

The area contained by both the spiral drawn in the first rotation, as

well as the first line among the <lines> at the start of the rotation, is a

third part of the first circle.

Let there be a spiral drawn during the first rotation, onwhich <is> the

<line>ABΓΔEΘ, and let the pointΘ be <the> start of the spiral, the line

ΘA first among the <lines> at the start of the rotation, and the circle

AKZHI, first <circle>, of which let the circle, in which is Ϙ, be a third
part. It is to be proved that the mentioned area is equal to the Ϙ circle.

(1) For if not, it is either greater or smaller. (a) Let it first be, if

possible, smaller. (2) So, it is possible to circumscribe around the area

contained by both the spiral ABΓΔEΘ and the line AΘ a plane figure

composed of similar sectors, so that the circumscribed figure is greater

than the area by a <magnitude> smaller than the difference by which

the circle Ϙ exceeds the mentioned area.294 (b) So, let it be circum-

scribed, and let the greatest of the sectors, of which the mentioned

figure is composed, be the <sector> ΘAK, and the smallest <of the

sectors>, ΘEO. (3) Now, it is clear that the circumscribed figure is

smaller than the circleϘ.295 (c) So, let the lines making right angles at

Θ be produced as far as they <extend> to fall on the circumference of

the circle. (4) So, there are certain lines – those falling on the spiral

294 Proposition 21.
295 By combinations of hypotheses in Steps a and 2. Indeed, the entire point of the

construction of proposition 21 is to be able to “squeeze” a figure which is (in this part of

the proof) greater than the spiral area, but smaller than the circle which is one-third of

the first circle.
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from Θ – exceeding each other by an equal <difference>,296 of which

ΘA is <the> greatest, while ΘE <is the> smallest, and the smallest is

equal to the difference. And there are also certain other lines, those

falling on the circumference of the circle from Θ, equal to those

<=lines falling on the spiral> in multitude, while each is equal in

magnitude to the greatest <=among the lines falling on the spiral>,

and similar sectors have been set up on all <the lines>, both on the

<lines> exceeding each other by an equal <difference> as well as on

the lines equal both to each other as well as to the greatest; (5) there-

fore the sectors on the <lines> equal to the greatest are smaller than

triple the sectors on the lines exceeding each other by an equal

<difference>; (6) for this has been proved.297 (7) But the sectors on

the <lines> equal both to each other as well as to the greatest are equal

to the circle AZHI, (8) while the sectors on the <lines> exceeding each

other by an equal <difference> are equal to the circumscribed figure;

(9) therefore the circle AZHI is smaller than triple the circumscribed

figure. (10) And <it is> three times the Ϙ circle; (11) therefore the

circle Ϙ is smaller than the circumscribed figure. (12) But it is not

<smaller>, but greater.298 (13) Therefore the area contained by both:

the spiral ABΓΔEΘ as well as AΘ is not smaller than the area Ϙ.

H

A
K

Z
B

I

E0

Δ
Θ

Γ

DG swap the position of the

two circles; B has the smaller

circle somewhat higher (B,

interestingly, only draws a

subset of the small arcs

required for the proof: hours

12/2, 1/3, 10/12, 9/11). Codices

AC did not have Θ, inserted by

D (the omission may be

authorial). C may have lost A,

and seems to have lost K, B.

The figure of C is positioned

together with the next one,

even though each part of the

proposition is counted sepa-

rately and even though a scribal

note at this position states “the

diagram follows.” (That is, the

scribe considered that this, and

not the next page, was the

appropriate position for the

first diagram of 24.) See the

next figure.

296 Proposition 12, taken for granted at this point.
297 Proposition 10, just in case you ask. One may imagine the proposition lying in

the dark for the last fourteen propositions, waiting for this moment – when the spiral

finally gets home – and then the lights turn on, confetti falls down: it’s the treatise’s

birthday.
298 Assumption of Step a.
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Nor, furthermore, greater. (d) For let it be, if possible, greater.

(14) So, if possible, it is possible to inscribe a figure inside the area

contained by the spiral ABΓΔEΘ and by the line AΘ, so that the

mentioned area is greater than the inscribed figure by a <difference>

smaller than <the difference> by which the mentioned area exceeds the

circle Ϙ.299 (e) So, let it be inscribed, and let the <sector> ΘPΞ be the

greatest among the sectors, of which the inscribed figure is composed,

and the <sector> ΘE the smallest.300 (15) Now, it is clear that the

inscribed figure is greater than the circleϘ. (f) So, let the <lines>making

the equal angles at Θ be produced so far as to fall on the circumference.

(16) Now, again, there are certain lines exceeding each other by an equal

<difference> – those falling on the spiral from Θ301 – of which ΘA is

greatest, while ΘE <is> smallest, and the smallest is equal to the

difference, and there are also other lines, those falling on the circumfer-

ence of the circle fromΘ, equal to those <=lines falling on the spiral> in

multitude, while each is equal in magnitude to the greatest <=among the

lines falling on the spiral>, and similar sectors have been drawn on all

<the lines>, both on the <lines> equal to both each other as well as to the

greatest, as well as on the <lines> exceeding each other by an equal

<difference>. (17) Therefore the sectors on the <lines> equal to the

greatest are greater than triple the sectors on the <lines> exceeding

each other by an equal <difference> without the <sector> on the greatest

<line>. (18) For this has been proved.302 (19) And the sectors on the

<lines> equal to the greatest are equal to the circle AZHI, (20) while the

<sectors> on the <lines> exceeding each other by an equal <difference>,

apart from the <sector> on the greatest, are equal to the inscribed figure;

(21) therefore the circle AZHI is greater than triple the inscribed figure.

(22) And it is triple the circleϘ; therefore the circleϘ is greater than the

inscribed figure. But it is not, but smaller; (23) therefore nor is the area,

contained by both the spiral ABΓΔEΘ as well as by the line AΘ, greater
than the circle Ϙ. (24) Therefore it is equal [to the <area> contained by

the spiral and the line AΘ].303

299 Proposition 21.
300 Heiberg emends the text to read “the sector OΘE,” following Moerbeke. In

fact, not only is the letter O missing from the text: it was also missing from the

diagrams of codices AC, reinstated by BDG (obviously, on the model of the diagram

for the first case). Clearly, Archimedes moves to a more shorthand description of the

sector.
301 Proposition 12. 302 Proposition 10.
303 Heiberg brackets the final words. Indeed, the “it” in Step 24 must pick up the

subject of Step 23 and refer to the area which is then said to be equal to the circle. The

final words, however, assume that the “it” refers to the circle. Some hasty scholiast was

nonplussed by the brief ending of this major proposition.
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comments

The proof consists of two deductive chains. Each consists of no more

than twelve Steps (2–13, 14–24), which involve hardly any geometrical

argument at all: one merely sets up the construction whereby the circum-

scribed/inscribed figure is squeezed between the spiral area and circle Ϙ,
assuming them to be unequal (Steps 2–3, 14–15), whereupon all that

needs to be done is to recall proposition 10 and show in detail how it

applies in this case – what the various abstract terms specified in propo-

sition 10 mean in the context of proposition 24 (Steps 4–9, 16–21).

Following this, all that’s left is to note that this contradicts the prelimin-

ary construction.

The double reductio structure makes the proposition, well, double,

while the construction of the figure composed of sectors, and especially

the application of proposition 10, involves complex details, so that the

proposition as a whole feels like it is of a complex structure. It is not at all:

it is nothing more than a construction followed by the direct application of

a result. Its conceptual complication resides, however, in the cleverness of

the argument of proposition 21 – and especially the opaqueness of the

argument of proposition 10 which makes its application here truly surpris-

ing and, indeed, magical: for the result follows directly once the applica-

tion has been understood, no further deductive work required – even

though the original proposition 10 appeared totally unrelated to the matter

of spirals!

Indeed, how could one even come up with this deductive route? With this

result? Not an easy question to answer in general, and perhaps not too much

weight should be accorded to any particular speculation in this regard. But

IZ B

P

A

E

Δ

Γ

H

Ξ

Θ

Codex C:

Codex C postponed, as noted

above, the diagram for the first

case, and the diagrams end

up amalgamated as in the

thumbnail, the first case

above the second. Perhaps as a

consequence, the small circles

are omitted. BG have the small

circle somewhat higher. H4

have the arc PΞ fall on the

circumference of the circle;

perhaps also in A. B has only

the arcs in the hours 1–3, 7–9,

8–10, 9–11, 10–12. E misses

the hours 8–10; G misses the

hours 12–2. C missed the letter

A and may have missed B.

Codices AC did not have Θ at

the start of the spiral (perhaps

an authorial omission) which

was inserted by BD, who also

insert an O at the intersection of

the arc passing through E and

the line AΘ. (E4, however,
position the letter E there,

perhaps also in codex A;

perhaps this is the preferred

reading.)

146 on sp irals

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


there is a legitimate historical question, analogous to that of the other main

result of On Spirals, in Proposition 18. In this case the speculation is not

entirely idle. A passage in Pappus (translated as Appendix 1 to this volume) is

relevant, as Knorr has shown, to this discussion. So it is time to bring in the

evidence for the other ancient treatment of the volume of the spiral. This will

also be an opportunity to do justice to Knorr 1978a, the most important study

dedicated to Archimedes’ On Spirals.

Pappus’ Collection IV.21–25 is a survey of the spiral. Pappus makes the

briefest of historical introductions; provides a construction of the spiral and a

set of definitions; finds the spiral area; and finally mentions a few extensions.

Everything he says raises serious problems. The brief historical introduction

consists of the claim that the result was Archimedes’ response to a study

proposed by Conon – i.e. the exact opposite of the scenario outlined by

Archimedes in his introduction. The proof differs from that of Proposition

24. The extensions are not those offered in On Spirals as it now stands.

Now, there’s one possible deflating response: that Pappus’ Collection is

very much Pappus’ original work, and so we need not perhaps be so struck by

his offering a different proof from that of 24 (and then adding to it some

different extensions); even the historical statement need not be so proble-

matic: Archimedes is clearly very respectful of Conon, and it is easy for a

reader to come away fromOn Spirals, as we know it, with a sense that Conon,

above all, was responsible for the studies put forward by Archimedes (and it is

never certain that Pappus read On Spirals as we know it, rather than in some

mediated – or superior? – form). Such appears to have been the position taken

by past scholars before Knorr, who dismissed the passage as evidence for

Archimedes himself, apparently taking it to be no more than Pappus’ own

variation on Archimedes’ original thought, as we find it in On Spirals.

This deflating response, however, goes against the simple reading of

Pappus, who introduces this survey with the emphasis that – while the study

was indeed proposed by Conon – “Archimedes proved it using an amazing

manner of approach”304 (Hultsch 1876: I, 234.2–3). We can now emphasize

ourselves – following Sefrin-Weis 2010 – that the entire goal of Pappus’

Collection IV is the survey of ever more complicated geometrical methods.

The reason Pappus chooses to discuss the spiral, at this point, is that its study

304 επιβολή; Sefrin-Weis prefers “line of attack.” I prefer to note the similarity between

epi-bole an eph-odos (ἐπιβολή, ἔϕοδος), a striking-into and a way-into, dynamic and static

ways of viewing the same thing: an Archimedean approach – ἔϕοδος, of course, being the
original title of what came to be known in the English language as The Method.

In the following discussion a certain familiarity with Archimedes’ Method is

assumed. Briefly: Archimedes sent to Eratosthenes a letter-treatise, titled ἔϕοδος (stan-
dardly translated “Method”), where many previously established results (as well as two

new ones) were shown to be true in a non-rigorous fashion (based on the summation of

infinitely many indivisibles, as well as on mechanical considerations; only in Meth.

proposition 14 are indivisibles used alone). Archimedes does not claim that such proofs

are rigorous, claiming, however, the usefulness of knowing the truth of a claim through

such procedures, as a starting-point for the finding of a valid proof.
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by Archimedes involves a remarkable approach, or methodological ingenuity.

It is thus almost certain that the basic proof-idea on display in Pappus’ proof

was one Pappus, at least, took to be by Archimedes. And, as Knorr has

observed, this proof-idea is very different from that of the extant On Spirals

(see the figure on p. 183). The circle is associated with a rectangle KΠΛN, so

that the ratio of the sector ABΓ to the sector ZBH is shown to be the same as

that of the square on KN to the square onMN – or, equally, the circle with KN

as radius to circle with MN as radius, or, equally, the cylinder with the KN-

radius circle as base to the cylinder with the MN-radius circle as base,

provided the two cylinders have the same height. So, as long as the cuts to

the circle’s circumference – as well as to the side KΠ – are in the same

proportion, we may make the ratio of sectors to sectors the same as the ratio

of cylinders to cylinders – so that the ratio of the whole circle to the whole

figure in the spiral is the same as the ratio of the whole cylinder (with the KN-

circle radius as base, and NΛ as height) to the whole figure in the cone (with

the KN-circle radius as base, and the same NΛ as height). Whereupon Pappus

comes to a stop: “but the cylinder is three times the cone; therefore the circle,

too, is three times the said figure <=the spiral area>.”

This is amazing in two ways: first, in the brilliant idea of mapping a spiral/

circle configuration into a cone/cylinder configuration; second, in the direct

transition from a result for a figure enclosed within a cone to the cone itself.

This, for once, appears like a leap based on the intuition of a limit – even

though Archimedes is, of course, in full possession of the tools of the double

reductio!

Now, we should not rush immediately to assert that Archimedes, himself,

made the transition as direct as that. First, Pappus is clearly compressing

Archimedes’ proof, and it is conceivable that he merely abbreviated (as

obvious, and yet cumbersome) the details of a double reductio (while possible,

I find this less likely: as it stands, the trick is worthy of the label “amazing” and

of its relatively late position in Pappus’ ascending order of complex proofs;

without the intuitive argument based on a limit, less so). Second, even if

Archimedes makes a leap based on the intuition of a limit, he need not

necessarily mean it as a rigorous proof. It could be offered as just that – an

intuitive, suggestive argument that makes a certain claim appear plausible. In

other words, the argument in Pappus – in many ways suggestive of the use of

indivisibles throughout The Method (and especially inMeth. 14: this compar-

ison was made already by Knorr 1996) – could have been put forward by

Archimedes in the same spirit in which the arguments of The Method have

been proposed.

Such was not Knorr’s view: he took the argument reported by Pappus to be

a treatise offered by Archimedes on a par with the extant On Spirals. Indeed,

he took it to be Archimedes’ first published version ofOn Spirals. I must say I

am quite confident Knorr was wrong about that. The crux of the matter comes

in Knorr 1978a: 67–68, where Knorr mentions in passing that “it appears from

our discussion of Pappus’ theorems that this list [what we call The Big Letter

to Conon] announced not new discoveries, but new proofs – at least as far as

SL, 24 was concerned.” Knorr is correct about this implication of his
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interpretation – which should be seen as a reductio ad absurdum. For the

introduction to On Spirals makes clear that The Big Letter was intended as a

major challenge, inviting responses that carried meaning because they carried

danger: they could in principle have exposed their proponents as well as

Archimedes himself. And so it contained a set of claims whose proofs are

awaited by Dositheus (and surely others represented by him); as well as false

theorems. All of this would immediately evaporate if the promise were merely

that of an alternative proof to a known, already proven result. Why the

anticipation? Whence the danger? How would Archimedes now prove that

this, and not that, was his intended alternative proof? The challenge of finding

an alternative proof is weak to the point of being meaningless; whereas that of

finding a proof to an unproved result is obviously powerful and rich in

agonistic potential. Which is pretty much what Archimedes says in his

introduction in very clear Greek: “those theorems, about which you keep . . .

asking that I write down the proofs” – which plainly means, the results, whose

proofs are not yet written down.

Knorr’s article begins with a comparison to The Method and returns to it

repeatedly, insisting on the idea that Archimedes’ ideas emerged in a more

heuristic fashion than that displayed inmost of his preserved writings. And yet

Knorr never for a minute considered the possibility that the context of the

publication of the alternative On Spiral Lines proof was indeed that of The

Method: a retrospective claim that a certain approach leads to faith in a

particular result whose rigorous proof was already published. I do not see

how Knorr could rule this out.

Why did Knorr wish to rule that out? Because he was committed to his

own version of the dynamics of Archimedes and his audience – where an

impetuous Archimedes, ever set on his heuristic, original approaches, is

stifled by the Alexandria Thought Police that demand he conform to estab-

lished procedure. The first, heuristic version of On Spiral Lines was a fail-

ure; Archimedes went on to publish another, corrected version. Once again, I

find this account wildly at variance with the self-assured figure of the author

speaking haughtily about the failure of his entire audience to come up with

any response. Archimedes was no recanting Galileo – in part, because

Alexandria had no inquisition with which to threaten him. Greek indivi-

duals, and Greek society as a whole, had no place for recantation. So that,

had anyone disapproved of Archimedes, he surely would have thundered

down with a vigorous response – and, as surely, would have won the day.

Knorr’s image is noble, and worthy of Knorr’s own nobility. But it is also

entirely of Knorr’s own making.

And yet Knorr was right about the crucial thing: Pappus’ evidence most

probably represents another, lost work on spiral lines by Archimedes (almost

certainly, then, published later than the treatise we are now reading). And so it

seems reasonable to look in it for clues to Archimedes’ thinking about the

Spiral. Indeed, it is conceivable that Pappus’ evidence derives from a source

directly comparable to The Method, where Archimedes explicitly states that

he has discovered the result of On Spirals 24 through just this route. A caveat

is required: even if Archimedes explicitly said that he had discovered the
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result in that way, this does not prove he actually did. But it is worth

contemplating the implied path of discovery.

So let us go back to the fundamental assumption: that the spiral is invented

in order to achieve a quadrature of the circle. If so, two questions becomemost

natural: the relation between the spiral line and the circle’s circumference

(thinking along those lines, and considering the figure dynamically, gives rise,

as we saw above, to the suspicion that proposition 18 is true); and the relation

between the spiral area and that of the circle enclosing it. And so we con-

template a circle and a spiral, and it is perfectly natural to consider an arbitrary

sector. While it is still impossible to compare the circle’s sector to that of the

spiral area it encloses, it is a very simple idea (and the one most entrenched in

Archimedes’ practice, certainly inherited from Eudoxus himself) to compare

the circle’s sector with a smaller sector directly circumscribing or inscribed in

the spiral. That the circle sector is to the sector associated with the spiral as the

squares on the intercepted radii are is now obvious.

At some point, one’s mind might wonder what would happen when more

sectors are brought into play; and it is clear that, as more sectors are brought

in, the ratio is always that of the square on the radius of the circle to the square

on the radius intercepted by the spiral. The first term is a constant; the second

slides, squared, along a continuous progression.

My main observation now is that the mind contemplating this fact is

extremely well trained in the problem of the ratio of the cylinder to the

cone. Twice in his introductions (to On the Sphere and the Cylinder I and to

The Method) Archimedes singled out this result – Elements XII.10 – as

Eudoxus’ crowning achievement. Arguably, Archimedes’ major geometrical

project was the extension of Eudoxus’ result on the ratio of the cylinder to the

cone, to other curvilinear figures. And if so, it would not be at all unlikely that

at some stage, as he pondered the pattern of variation in the ratios of circle

sectors to sectors associated with the spiral enclosed by the circle, that he

would also notice that this is reminiscent of the ratios of cylinder cuts to cuts

associated with the cylinder enclosed by the cone.

I add the following in passing. Elements XII.10 considers the cone as the

limit, so to speak, of a pyramid with a many-sided polygonal base. This is

indeed the most direct way of measuring the cone and was most probably

Eudoxus’. However, there is some evidence that early Greek thinkers could

also consider the cone as the limit, so to speak, of a series of narrowing

cylinders. This comes from Plutarch’s polemic with Stoicism, in the course of

which he criticizes Chrysippus’ resolution of a dilemma suggested by

Democritus (Comm. Not. 1079e, revising Cherniss’ Loeb translation):

Look at the way in which he [Chrysippus] attacked Democritus who had raised – in a

concrete305 and vivid fashion – this difficulty: if a cone is cut by a plane parallel to the

305 ϕυσικῶς, i.e. the opposite of λογικῶς, “a purely verbal/abstract squibble.”

Plutarch’s overarching theme is that the Stoa claims to be close to intuitive principles

but is in fact involved with ad hoc unnatural principles, so in this context the emphasis is

on Democritus’ more down-to-earth approach (compared with Chrysippus’ own retort).
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base, how should we conceive of the arising surfaces of the segments – equal or

unequal? For if they are equal the cone is then uneven, possessing notches and rough

points; but if they are unequal, the segments are equal and the cone would appear to have

the property of a cylinder, composed of equal, and not of unequal circles.306

Now, in the introduction to TheMethod, Archimedes himself provides our –

unique – evidence that Democritus made a contribution to the study of the ratio

of a cone to a cylinder: the latter is praised for having first made the claim that

the ratio is a third, even ifwithout stating a proof (which Eudoxuswas the first to

publish; thus, says Archimedes, we see that the mere making of a claim can

provide a real contribution to mathematical study). Now, it is not certain that

Democritus made the observation concerning the ratios of the cone and the

cylinder in the same context in which he offered the dilemma quoted by

Plutarch. But this hypothesis is likely enough.307 And if so, we find that the

Democritean observations concerning the cone – surely prominent in

Archimedes’ mathematical thinking – would involve the contemplation of the

cone as a series of stacked cylinders – which is, needless to add, the way the

conoid is envisaged in On Conoids and Spheroids, already worked out in some

sense, at the time The Big Letter was sent out . . .

In short, the image of the cone as related to a series of stacked cylinders

would be prominent in Archimedes’ mind, so that there is a good likelihood

that, having considered the ratios of sectors of the circle to their related spiral

sector, Archimedes would come to the observation that the two relations are

identical: sectors of circles to related sectors defined by spiral; segments of

cylinder to related segments defined by cone. At which point one is already in

possession of the proof-idea reported by Pappus and is no longer in doubt

concerning the measurement of the spiral area.

I note that Pappus’ sketch does not provide any particular way of cutting

the circle (hence, the cylinder): any two cuts would suffice to suggest that the

same result could be obtained for any number of cuts and so to suggest that the

circle is to the spiral as the cylinder to the cone. Sefrin-Weis’ notes as follows

(2010: 122 n.1): “The ratio for the division is not specified. Most likely, it is

1:2n,” and I suppose this is the standard reading of this proof. This indeed

makes sense, if the goal is some kind of a formal proof, where one could use a

306 Chrysippus’ response seems to comes close to postulating a tertium between

equality and inequality: everything here, from Democritus’ original paradox through

Chrysippus’ response, tantalizingly suggests a sophisticated reflection upon the problem

of the infinitesimal – all mediated through a single, oblique passage in Plutarch. See

Sedley 2008: 323–325 for a recent discussion of the problem in Democritus, with

references in n. 49.
307 If pressed to offer my own guess, I would imagine Democritus making a series of

observations concerning the shape a cone would take under strict mathematical ato-

mism: its edges would become uneven, and its base would become not a circle, but a

large polygon. If so, it becomes natural to say that the cone is in fact indistinguishable

from a pyramid (in turn indistinguishable from a stacked series of polygonal prisms) –

which could possibly be all Eudoxus needed to motivate his proof, as recounted by

Archimedes.
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specific division algorithm – say, continuous bisection – to show that the

composition of slices may approximate the figures to a difference smaller than

any given magnitude. And it is in fact possible to turn Pappus’ approach into a

valid proof. All one would need is such a division algorithm, such a proof of

approximation, and then a double reductio showing that the ratio of the circle

to the spiral area is the same as the ratio of the cylinder to the cone (for if not,

it is either smaller or greater; and either way one gets an absurdity once the

circumscribed/inscribed figure is “squeezed” in). Such was Archimedean

standard practice, and Archimedes would have immediately realized that

a proof such as that reported by Pappus could easily be made rigorous in

such a way.

This opens a number of questions. First of all, once again, could Pappus’

report actually be a compressed account of such a formal proof? As I pointed

out above, this cannot be entirely ruled out, but it is at least unlikely.308

Second, why did Archimedes not present the proof in such a rigorous

fashion? This, first of all, is yet another argument – if one were required –

against Knorr’s thesis, according to which the proof reported by Pappus was

published prior to the extant On Spirals. For had Archimedes possessed the

proof-idea reported by Pappus, it would have been trivial for him to transform

it into the Eudoxean, rigorous form. However, if the proof was actually

published in a Method-like context, of Archimedes claiming to have found

the result in such a manner, then it makes perfect sense for him to present this

as a mere sketch. Indeed, what this is most reminiscent of is not the detailed

theorems of TheMethod, but rather the meta-theoretical passage following the

second theorem: having discovered that the sphere is four times the cone on its

great circle then, following on the idea that a circle is equal to a triangle whose

base is the circumference, its height the radius – which in turn suggests that a

sphere is equal to a cone whose base is its, the sphere’s, circumference, and its

height the sphere’s radius – so that one now suspects that the surface of the

sphere is four times its great circle . . . So the circle being like a triangle (which

308 The main observation is that, the proof being made rigorous, it would no longer

be “amazing.” Knorr suggests that even without the use of an argument based on limits,

the very analogy of areas and solids would also have been deeply problematic from a

formal point of view – so much so that this, indeed, would have been the reason why the

proof of the extantOn Spiral Lineswas offered in the first place (Knorr 1978b: 56: “in a

plane investigation . . . the use of solids is viewed as inappropriate”). This claim hangs

by the thinnest of threads. All we have to rely upon are Pappus’ own classifications of

types of problem which do mention the terms “solid” and “plane” but in a completely

different sense. Even aside from my own hypothesis (Netz 1998a, 2004a) that such

classifications represent the interests of late ancient mathematicians and so need not

necessarily reflect an ancient practice, Knorr’s interpretation lands him in considerable

difficulties: he needs to assume that Pappus does not understand his own classification,

and, above all, he needs to assume a mathematical context where a proportion involving

planes on the one side, solids on the other, is illegitimate, while a neusis is not! (Both at

Knorr 1978a: 65.) Such proportions are common and unproblematic in Greek mathe-

matics and are of course taken for granted inMeth. proposition 15, the valid proof of The

Method!
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is proved) should be like a sphere being like a cone – not yet a proof but

already grounds for suspecting that a certain result is true which in turn is

enough for looking for a proof.309

Finally, why would Archimedes not present the rigorous transformation of

the proof in Pappus in the extant On Spirals? Assuming that this was, indeed,

his original line of thought (and it certainly could have been that), why has he

not just stopped there? Why remove the auxiliary solid construction and bring

in, instead, the much more cumbersome proposition 10?

Now, the main thing to emphasize is that, at this point, it should not be hard

for Archimedes to stumble upon proposition 10. Although Archimedes’

original line of thought – just as the sketch reported by Pappus – need not

have involved the division algorithm by continuous bisection, it would still be

very natural for Archimedes to consider just such an arrangement, and at this

point it would be natural to ask if there are other cases where the very same

relation holds (maybe the spiral could be connected to yet another configura-

tion?). What are such cases? Well, one would then characterize them as cases

where areas or volumes behave as squares on lines arranged in an arithmetic

progression. Wait a minute: so any series of squares on an arithmetic progres-

sion has the property that the sum is bounded by the third of the same number

of squares on the greatest one – and so one is already in possession of

proposition 10. No need to look for further geometrical configuration – the

relation for lines and squares, as such, is good enough. And so we see that

finding proposition 10 is easy, once one notices the possible decomposition of

cones and cylinders into equal segments. For such a decomposition is a

concrete case of proposition 10 which proves, in its very structure, that

proposition 10 must be true. Beneath its hideous abstract appearance, propo-

sition 10 has a heart of cone.

Still, why would Archimedes not wish to present his proof directly in terms

of the cone and the cylinder? At this point we are left with nothing other than

speculation. But let us consider the alternatives side by side. On the one hand,

the “Pappus-derived” rigorous line of proof: showing the algorithm for cir-

cumscribing and inscribing both spiral and cone via sectors and cylinders –

and showing that this algorithm may yield differences smaller than any given

magnitudes; showing the proportion of cylinder and circle, composite-cylin-

ders figure and composite-sectors figure; and then deriving the claim that the

circle is to the spiral area as cylinder to cone. Difficult, cumbersome and, all

along – from the first moment one breathes the words “cone” and “cylinder” –

as obvious as daylight. On the other hand, consider the rapid magic of

proposition 24 as one discovers, with a gasp of delight, just how proposition

10 applies to the matter of the spiral. Speculation, no doubt: but I would

suggest that the difference between the “Pappus-derived” rigorous proof and

309 If this is correct, one consequence is that the passage in Pappus loses some of its

edge: it is no longer an example of an Archimedean proof based on the intuition of a

limit, but rather an Archimedean admission that he could rely on the intuition of a limit

as a suggestive stepping-stone on the way to what he himself would consider a valid

proof.
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the one in our extant On Spirals has most do to with the different conceptual

distances between tool and result. The tool of the cone and cylinder is quite

close to the result of spiral and circle (which is why it could have served, in the

first place, as a natural process of discovery leading to just this result!). The

tool of proposition 10 is, conceptually, very distinct from that of proposition

24 – and the intervention of proposition 18, in the middle, serves to widen that

gap and make the application least obvious. More precisely, then: proposition

10 is a deliberate way of hiding the cone – its abstract mask.

Idle speculation? Perhaps. So let us concentrate on the claims that do not

depend on such interpretations of Archimedes’ rhetorical practices and are

instead simple historical observations. The proof reported by Pappus is either

by Archimedes or it isn’t; I think it is much likelier to be by Archimedes (in

this I follow Knorr against all previous scholars, who tended to see in it no

more than a variation invented by Pappus himself: while the question is

debatable, it is not in my view in serious doubt). It was published either before

or later than the extant On Spirals; I think it is much likelier to have been

published later (in this I differ fromKnorr; once again, I believe my position is

not in serious doubt and that Knorr’s view is, in this regard, manifestly

wrong). And so I conclude with the strong conviction that, at some point

after his publication of the extant On Spirals, Archimedes went on to publish

the proof reported by Pappus.

This, I repeat, is historical fact, debatable, but as solid as such a fact can be.

And so we end up with a picture of the growth of Archimedes which is the

exact opposite of that provided by Knorr. Instead of the impetuous youth

tamed by Alexandrian pedantry, we find an author offering first a bold,

improbable result, and returning later to double the stakes and make it even

bolder. Archimedes was never tamed.

/25 /

The area contained by both the spiral which is drawn in the second

rotation, as well as the second line among the <lines> at the start of the

rotation, has that ratio to the second circle which 7 has to 12; which is

the same <ratio> as <the ratio> which <the areas> taken together, both

the <rectangle> contained by the radius of the 2nd circle and by the

radius of the 1st circle, as well as the third part of the square on the

difference by which the radius of the 2nd circle exceeds the radius of

the first circle, have to the square on the radius of the 2nd circle.310

310 The radii of the circles associated with the spiral’s rotation form an arithmetical

progression whose difference is equal to the first term. In this case let us take as numerical

examples the values first circle’s radius=3, second circle’s radius=6. The ratio turns out

to be (6*3)+(32/3):62, or obviously 7:12. A more geometrical approach would be to take

the square on AE as basic – call it the small square. The rectangle contained byAΘ,ΘE is

clearly twice the small square (since AE=EΘ); the square on AΘ – call it the big square –

is clearly four times the small square. So we are looking at the ratio of twice the small
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Let there be a spiral, on which <is> the <line> ABΓΔE, drawn in the
second rotation, and let the pointΘ be <the> start of the spiral, the line

ΘE, first <among the lines> at the start of the rotation and the <line>

AE, second <among the lines> at the start of the rotation, and let the

circle AZHI be the second, and the diameters AH, IZ, at right

<angles> to each other. It is to be proved that the area contained by

both the spiral ABΓΔE as well as the line AE has to the circle AZHI

the ratio which 7 has to 12.

(a) Let there be a certain circle, Ϙ, <and let> the radius of the circle

Ϙ be equal in square to both the <rectangle> contained by AΘ, ΘE, as
well as the third part of the square on AE. (1) So, the circle Ϙ shall

have to the <circle> AZHI as seven to twelve,311 (2) since its radius,

too, has to the radius of the circle AZHI, that ratio in square.312 Now,

the circle Ϙ shall be proved to be equal to area contained313 by both

the spiral ABΓΔE as well as the line AE.314

(3) For if not, it is either greater or smaller. (b) So, let it first be, if

possible, greater. (4) So, it is possible to circumscribe, around the

area,315 a plane figure composed of similar sectors, so that the circum-

scribed figure is greater than the figure by a <difference> smaller than

the <magnitude> by which the circle Ϙ exceeds the area.316 (c) Let it

be circumscribed, and let the greatest <of the sectors> of which the

circumscribed figure is composed be the sector ΘAK, and <the>

smallest, the <sector>ΘOΔ. (5) Now, it is clear that the circumscribed

figure is smaller than the circle Ϙ.317

square plus a third of the small square, to four times the small square, or 2:4 or 7:12. This

then appears as a trivial reformulation, and the reader may well wonder, at this point, why

Archimedes chose just this and not themany others he could have come upwith. He could,

after all, have equally said, “which is the same as the ratio of the Gates of Thebes to the

Labors of Heracles.” More in the comments.
311 Greek mathematical language has two main expressions for proportion, one with

the verb “to be” and the other with the verb “to have”: “A is to B as C to D,” “A has to B

the ratio which C <has> to D.” The infelicity in my translation – an expression

beginning with “have,” ending with “is” – is in the original.
312 Elements XII.2 – though obviously in such a context just taken for granted. The

remarkable thing is that Archimedes points this out – that circles are to each other as the

squares on their radii – but does not indicate the calculation whereby 7:12 follows from

the geometrical construction.
313 Archimedes is momentarily infected by the language of rectangles and uses for

this area the participle form used for contained rectangles (περιεχόμενον, instead of

περιλαϕθέν).
314 The circle Ϙ is introduced, in this proposition, later than the definition of goal,

and so it has to be mentioned again within a secondary definition of goal.
315 “The area,” in this proposition, means “the area contained between the spiral and

the line.”
316 Proposition 22 Corollary. 317 Follows directly from Step 4.
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(d)318 Let the lines making equal angles atΘ be produced so far as to

<extend> to fall on the circumference of the second circle. (6) So, there

are certain lines exceeding each other by an equal <difference>319 –

those falling on the spiral fromΘ – ofwhichΘA is <the> greatest, while

ΘE <is the> smallest, and other lines, those falling from Θ on the

circumference of the circle AZHI, smaller than these <=lines falling

on the spiral> in multitude by one, while each is equal in magnitude

both to each other as well as to the greatest <=among the lines falling on

the spiral>, and similar sectors have been drawn on the lines equal to the

greatest <line>, and on the <lines> exceeding each other by an equal

<difference>, but it has not been drawn on the smallest <line>.

(7) Therefore the sectors on the <lines> equal to the greatest have to

the sectors on the <lines> exceeding each other by an equal <difference>,

apart from the <sector> on the smallest <line>, a smaller ratio than the

square on the greatest <line>,ΘA, to the <areas> taken together: both the
<rectangle> contained by AΘ, ΘE as well as the third part of the square

on EA; (8) for this has been proved.320 (9) But the sectors on the <lines>

equal both to each other as well as to the greatest are equal to the circle

AZHI, while the sectors on the lines exceeding one another by an equal

<difference> apart from the <sector> on the smallest <line> are equal to

the circumscribed figure;321 (10) therefore the circle has to the circum-

scribed figure a smaller ratio than the square on AΘ to the <areas> taken

together: both the <rectangle> contained by AΘ, ΘE as well as the third

part of the square on AE.322 (11) But that ratio which the square on ΘA
has to the <rectangle> contained by ΘA, ΘE and the third part of

the square on AE, the circle AZHI has to the circle Ϙ.323 (12) Now

then, the circle AZHI has a smaller ratio to the circumscribed figure than

318 The original Greek has an asyndeton. Remarkably, the same happens in Step g in the

second part of the proposition (though not in Steps c, f of the preceding proposition) –which

is why Heiberg offered no emendation. One must conclude that this is intended as the

beginning of a new paragraph: Steps 1–5 set up the first arm of the reductio; the second arm

of the reductio begins afresh with Step d.
319 Proposition 12, taken for granted at this point.
320 Proposition 11 Cor. This is where proposition 25 differs from the previous

proposition 24: relying on proposition 11 instead of 10.
321 Original case arrangement was “to the sectors . . . is equal the circle,” which I

inverted for reasons of English style (I preferred not to invert the word order, as the logical

flow depends on the re-identification of the sectors as the circle and not vice versa).
322 Step 10 uses Step 9 to substitute one term in Step 7 (“circle” instead of “sectors on

equal lines”), and then relies on Elements V.8 to replace another term with another

greater than it (“circumscribed figure” instead of “sectors on unequal lines”; that the

circumscribed figure is greater than the sectors on the unequal lines is taken for granted

visually).
323 ΘA is the radius of the circle AZHI, and then one needs to apply Step a, as well as

Elements XII.2.
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to the circleϘ.324 (13) Thus the circleϘ is smaller than the circumscribed

figure.325 (14) But it is not <smaller>, but greater.326 (15) Therefore the

circle Ϙ is not greater than the area contained by both the spiral ABΓΔE
as well as the line AZ.

Nor, furthermore, smaller. (e) For let it be, if possible, smaller. (16)

Now, again, it is possible to inscribe inside the area contained by both

the spiral and the line AE a plane figure composed of similar sectors, so

that the area contained by both the spiral ABΓΔE and the line AE is

greater than the inscribed figure by a <difference> smaller than the

<magnitude> by which the same area exceeds the circle Ϙ.327 (f) Now,
let it be inscribed, and, among the sectors of which the inscribed figure

is composed, let the sector ΘKP be <the> greatest, and the <sector>

ΘEO <the> smallest; (17) now, it is clear that the inscribed figure is

greater than the circle Ϙ.328

(g) Let the <lines> making equal angles at Θ be produced so far as

<to extend> to fall on the circumference of the circle. (18) Now,

again, there are certain lines exceeding each other by an equal

<difference>329 – those falling on the spiral from Θ – of which ΘA
is <the> greatest, while ΘE <is the> smallest, and other lines, those

H

Z I

E
O

A

K

B

Δ

Γ

Θ

Heiberg has an 8-division

and draws a complete

spiral (he also adds a

mysterious label Λ on the

intersection of the spiral

and the line ΘI). BG have

the smaller circle higher

(B also has it to the left).

Θ was omitted by A,

reinstated by BD, and

possibly had Ξ instead of

Z, corrected by BDGH. G

omits A. C omits the

smaller circle as well

as the labels OEBΓ;
apparently also the

label K.

324 Step 10 is (circle AZHI):(circumscribed figure)<(square ΘA):(combination of

areas).

Step 11 is (square ΘA):(combination of areas)=(circle AZHI):(circle Ϙ).
So Step 12 easily derives (circle AZHI):(circumscribed figure)<(circle AZHI):

(circle Ϙ).
325 Elements V.10. 326 Step 5. 327 Proposition 22 Cor.
328 Follows directly from Step 16.
329 Proposition 12, taken for granted at this point.
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falling from Θ on the circumference of the circle, smaller than these

<=the lines falling on the spiral> in multitude by one, while each is

equal in magnitude both to each other as well as to the greatest

<=among the lines falling on the spiral>, and similar sectors are

drawn on the <lines> exceeding each other and on the <lines> equal

to the <greatest>. (19) Therefore the sectors on the <lines> equal to

the greatest have to the sectors on the <lines> exceeding each other by

an equal <difference>, apart from the <sector> on the greatest <line>,

a greater ratio than the square on ΘA to the <areas> taken together:

both the <rectangle> contained by AΘ, ΘE as well as the third part of

the square on EA.330 (20) But the sectors on the <lines> exceeding

each other by an equal <difference>, apart from the <sector> on the

greatest <line>, are equal to the figure inscribed in the area, (21) while

the other <sectors = those on the lines equal to the greatest> are

<equal> to the circle.331 (22) Now then, the circle AZHI has a greater

ratio to the inscribed figure than the square on ΘA to the <rectangle>

contained by ΘA, ΘE and the third part of the square on AE,332

(23) that is, the circle AZHI to the circle Ϙ.333 (24) Therefore the

circle Ϙ is greater than inscribed figure;334 (25) which indeed is

impossible; (26) for it was smaller.335 (27) Therefore the circle Ϙ is

not smaller, either, than <the> figure contained by both the spiral

ABΓΔE, as well as the line AE. Thus <it is> equal.

/corollary/

Through the same manner it shall also be proved that the area contained by

both the spiral drawn in whichever rotation, as well as the line counted by the

same number as the rotations, has to the circle counted by the same number as

the rotations a ratio which both, taken together: the <rectangle> contained

by the radius of the circle <counted> by the same number, and by the radius of

the <circle> counted by the <number> of rotations smaller by one, as well as

the one-third of the square on the difference, by which the radius of the greater

circle of those mentioned exceeds the radius of the smaller circle of those

mentioned, have to the square on the radius of the greater circle of those

mentioned.

330 The Step referring to the result of proposition 11 (such as Step 8 above) is now

omitted: the result is now routinized. A lovely detail is added by the reliance of the two

parts of this proof on two separate clauses of the same corollary to proposition 11.
331 In both of Steps 20–21 I rearrange the cases, as in Step 9 above.
332 This restates Step 19 based on the re-identifications of Steps 20–21, in the manner

of Step 12 above.
333 This is the claim of Step 11 above. 334 Elements V.10. 335 Step 17.
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comments

The proposition, once again, is no more than a construction together with a

direct application of two ideas: the identification of a difference between two

series (proposition 22); the summation of such a series (proposition 11). It

brings no new difficulties of mathematical understanding. However, together

with its corollary, it brings up in a new way the question of generality, and the

manner in which a particular claim is meant to support a general conclusion.

I will explain: Greek mathematics always operates via particular speci-

mens (in some sense) displayed as diagrammatic objects. The proof is general

because the operations upon the particular specimens are seen to be repeatable

for any case in which the particular specimen would correspond to the general

formula for which the general claim is made. Generalization depends on the

clarity of the relation between general formula and particular specimen. This

is all spectacularly eroded in this proposition.

First, Archimedes commits a sleight of hand that undermines our sense of

what the general formula is even supposed to be. The enunciation makes not

one claim, but two: that the spiral area studied would have to the circle the

ratio of 7:12; and that this ratio is the same as the ratio of certain radius

constructions. So what does the proposition even claim? That Spiral:

Circle::7:12, or that Spiral:Circle::(a certain radius construction):(another

radius construction)? The definition of goal asserts:

It is to be proved that the area contained by both: the spiral ABΓΔE as well as the line

AE, has to the circle AZHI the ratio which 7 has to 12.

This seems to establish that the claim is Spiral:Circle::7:12 and that 7:12::

(a certain radius construction):(another radius construction) is a mere “extra”

thrown into the enunciation without any motivation. Indeed, the equivalence

is never accounted for in the course of the proof, and the reader has to verify it

for himself (as I provide in n. 310 above) already in the course of the

H

Z

O

K

B

E
P

A

Θ

Γ

Heiberg: an 8-division a

complete spiral (I now

recant the complete spiral

drawn in Netz et al. 2011:

179: C seems to have the

same topology here as A).

Heiberg also inserts a

letter Δ where the

continuation of the line

ZBΘ cuts the spiral again,

and a second Z (!) where it

cuts the circle again. EO

was drawn as a straight

line by codex A, turned

into an arc by codices BD

(codex C is impossible to

read here). Codex C may

have missed the letter B.

Codex A had Ξ for Z,

corrected by BDG. Codex

4 positions the letter Γ at

the hour 5, instead of 6.
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enunciation. Thus the enunciation serves – a remarkable exception! – already

as the site of a demonstrative claim.336

The next stage of the argument complicates the picture further. An addi-

tional circle Ϙ is constructed in Step a, so that its radius stands to that of the

second circle in the ratio described in the ratio of the constructions of radii in

the enunciation. It is then asserted in Steps 1–2 (once again, no argument

beingmade for the validity of the equivalence other than a general reference to

the relationship between squares and circles from Elements XII.2) that the

circle Ϙ would also stand in the ratio 7:12 to the second circle. The definition

of goal is then reformulated to refer to the specific circle Ϙ. The confusion

resides in the failure to articulate which property of the circle Ϙ would be

relevant to the proof. Is the proof valid as long as it relies upon the circle Ϙ
being at the ratio 7:12 to the second circle? Or is the proof valid as long as it

relies upon that circle’s radius standing in a particular ratio? The enunciation

suggests the former (it claims directly the result 7:12, bringing in the ratio of

radii as an afterthought). The construction suggests the latter (the circle is

primarily constructed in terms of the ratio of radii, which is equated as an

afterthought with the ratio 7:12).

The question is moot within the terms of the second spiral alone. So far,

the proposition merely toyed with the practice of obfuscating one’s goals

and thus obscuring the grounds for generality. There is confusion aplenty,

but no logical difficulty. This changes as we move into the corollary –

which is obviously, in some sense, the entire point of the proposition. For

now we are told that “it shall be proved” “in the same manner” that the

same result holds for further rotations. And at this point we need to under-

stand just what “the same result” is – just what was the result obtained in

this proof?

Clearly the generalization has nothing to do with 7:12, and no numerical

terms are mentioned explicitly at all. So one is to generalize the construction

of radii which, however (and now the problem explodes), was never set out in

generalizable terms.

The enunciation (as well as Step a, in the particular terms of the diagram)

set up the construction in the following terms:

<the ratio> which <the areas> taken together, both: the <rectangle> contained by the

radius of the 2nd circle and by the radius of the 1st circle, as well as the third part of the

square on the difference by which the radius of the 2nd circle exceeds the radius of the

first circle, have to the square on the radius of the 2nd circle.

336 Even this (elementary) claim is not entirely transparent, however, as the relation

is verified through transferring the square on the difference between AE, EΘ to the

square on EΘ. Why does the proposition not refer directly to the square on EΘ, then?

Because it relies in general on this square for the difference, which only in this particular

happy case allows the easy reformulation of the ratio. The difference between the two

adjacent lines (the value AΘ-EΘ) just so happens, in this case, to be the same as the

smallest line (EΘ): the same will not be true for further rotations, and it will no longer be

so easy to resolve the ratio into numerical terms.
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As we wish to generalize this from “second rotation” to “nth rotation,” we

assume that any mention of “second” should be translated into “nth.” This

should give us:

<the ratio> which <the areas> taken together, both: the <rectangle> contained by the

radius of the nth circle and by the radius of the 1st circle, as well as the third part of

the square on the difference by which the radius of the nth circle exceeds the radius of

the first circle, have to the square on the radius of the nth circle.

The corollary, however, stipulates a different ratio (using the same “nth”

terminology):

<the ratio> which <the areas> taken together, both: the <rectangle> contained by the

radius of the nth circle and by the radius of the n-1th circle, as well as the third part of

the square on the difference by which the radius of the nth circle exceeds the radius of

the first circle, have to the square on the radius of the nth circle.

In other words, we never had a meta-enunciation anticipating the general-

ization to any rotation: at this logical level, the proof works as a direct

transition from a particular case to its general statement in a formula, and

clearly a particular case can be seen to fall under various, different formulae,

so that it cannot justify, in and of itself, any particular transition to

generalization.

In this case a genuine ambiguity is at stake: the formula under which EΘ is

supposed to fall. Does it function as the radius of the first circle, or does it

function as the radius of one-before-second circle? Archimedes, if anything,

tends to lead us in the wrong direction here, since in his enunciation he refers

to “1st circle,” not to “the circle counted by the number smaller by one than

the 2nd” – as well he should, however, seeing that the enunciation does not

serve as a specimen of the meta-generalization into the case of any rotation,

but rather as the general formula for the specific case of the second circle!

The only way, indeed, to derive the meta-formula would be to look at the

application of the construction of Step a – the way in which the construction of

the circle justifies the steps of the proof.

Here it is clear, indeed, that being at the ratio 7:12 is a consequence of, and

not an underlying reason for, the validity of the argument. The numerical ratio

never plays a role in the proof. However, the construction of radii comes in

twice, in both parts of the exhaustion argument, the derivation from Step 6 to 7

and the derivation from Step 18 to 19. Those derivations claim that since the

series of sectors in the circumscribed or inscribed figure are on sides in an

arithmetical progression, it follows that the ratio of “all the sectors on the line

equal to the greatest” (=the outer circle, AZHI) to the “sectors on the sides

exceeding each other by an equal difference” (circumscribed or inscribed

figure) is greater or smaller than the ratio defined by the construction of radii –

all according to the terms of proposition 11.

And so we need to find whatΘE – the smallest of the lines – means in terms

of proposition 11. Does it mean what is here “the radius of the circle n−1”? Or
does it mean what is here “the radius of the smallest circle”?

This in fact does not emerge directly from proposition 11 itself, whose

terms, of course, do not refer to any particular circles. Proposition 11 is stated
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in the general terms of progressions. So this makes our work harder. But there

is worse than this, since, in fact, proposition 11 is not merely highly

general: it is also obfuscating in exactly the same manner of proposition

25. It stated, as we recall, a more general claim about any arithmetical

progression which was then spelled out in terms that seemed to refer to a

particular arithmetical progression whose first term was equal to the dif-

ference of the progression.

It is this very first term which translates, in proposition 25, into the radius

ΘE. And so, as we seek guidance, from proposition 11, as to the identity of the

crucial radius, we find an ambiguous answer – indeed, the casual reader is

likely to assume (for reasons which were set out in my comments on proposi-

tion 11) that the proof there was indeed meant to hold for the case where the

smallest term is equal to the difference, and so we need to assume here thatΘE

is equal to the “difference.”

Both proposition 11 and proposition 25 (referring to the labels of the

original figures on pp. 88, 157) suggest two different ways of being interpreted

as a generalization, both based on two different interpretations one may assign

to the same term.

In proposition 11, the two interpretations arise from the two separate

functions of the line ΞN: it can serve just as the smallest term in a (general-

ized) arithmetical progression ΞN, ΛM, IK, etc.; or it can serve as the

difference between the terms in this progression (equal to ϘM, ϠK, etc.).

In proposition 25, the two interpretations arise from the two separate

functions of the line ΘE. It can serve either as the radius of the first circle,

or as the radius of the circle-short-by-one of the second circle.

We face the fantastic spectacle of the equivocation of the generalization in

the corollary of proposition 25, seeking resolution in the equivocation of the

proof of proposition 11 – and following upon the equivocation of the terms of

the enunciation of proposition 25.

The constraint on our interpretation is that proposition 11 is to apply in

proposition 25 – which settles both questions simultaneously. For proposition

11 can make no sense in proposition 25 if it is meant to apply for the smallest

term which is also equal to the difference (this would have been the side of the

smallest sector – which, in this case, is no longer part of the circumscribed or

inscribed figures, for, as we move beyond the first circle, our sectors begin “in

the middle” of the series, and the arithmetical progression no longer sets out

from the smallest member equal to the difference). Thus ΘE stands for the

term in which an arithmetical progression begins whose final term is ΘA.

Clearly, in general this would be the radius of the “n−1” circle. This is how we

can discover what ultimately is themanner of this proof through which we can

go on proving “in the same manner.”

I do not see that past readers of Archimedes were much perturbed by all of

this. Dijksterhuis notes that (1987: 277) “in order to elucidate Archimedes’

result we give the discussion – which is indirectly synthetical in his treatise – in

the analytical form,” and on the next page hemerely adds, “To the . . . sectors of

circles applies the proposition [spir. 11] provided it is freed of the restrictive

condition that the common difference . . . should be equal to the least term.”
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This would suggest that the difficulty of the proposition is an inevitable result of

its synthetic form, and that the application of proposition 11 is a mere detail,

perhaps an authorial oversight.

But I find it hard to believe that the presentation of proposition 11 is an

authorial oversight. Archimedes was certainly not so naive as to miss the

difficulty – and, once noticed, it could have been easily fixed by the mere

addition of a single label to the diagram.Whatever is going on in proposition 11,

it is intentional.

And the same must be true for proposition 25 as well. In fact, the difficulty

has little to do with synthesis vs. analysis (Dijksterhuis’ presentation is not so

much “analytical,” in fact, as it is discursive). It arises primarily from the

reference to the circle, in the enunciation, as “first,” rather than as “smaller by

one than the second” or, more deeply, from the very treatment of the particular

proof of the case of the second rotation as if it provided in and of itself the

formula for the generalization into the case of any rotation. What is at stake,

logically, is not the Greek practice of presenting results in a synthetic manner,

but rather the Greek practice of letting generalization arise from following the

manner in which a general formula is manipulated in a particular case – which

makes it very hard to construct generalizations of generalizations. The only safe

way to avoid this difficulty, in fact, would have been to take the statement of the

corollary as the enunciation of the proof, and then take the second rotation as an

arbitrarily selected rotation to which the proof applies as well as to any other.

Now, it is reasonable to suggest that at least one reason Archimedes did not

make the claim of the corollary in the enunciation of proposition 25 was that

he did not want to get rid of the ratio 7:12. For, after all, having stated the

general claim for any rotation, it would have been a redundant detail to add

that the value turns out to be a particular numerical ratio in the case of the

second rotation. This accounts, in a stroke, for both of our problems: why

Archimedes sets out a dual enunciation; and why it is so difficult to wring out

of the proposition its correct generalization. The root cause is Archimedes’

desire to highlight the detail of one particular configuration among the many

to which the proof applies: this, then, would be exactly analogous to

Archimedes’ choice to highlight the particular result of proposition 18 –

with its own concomitant failure of generality, based on the desire to highlight

a simple numerical ratio.

In short, the goal around which this proposition is structured is the elegance

of the ratio of 7 to 12. It is indeed a striking ratio, bringing together two highly

resonant numbers. I was only half-facetious when suggesting, in a footnote,

that Archimedes could equally have called it, as far as the reader was

concerned, “the ratio of the Gates of Thebes to the Labors of Heracles.” The

number “appears” meaningful. Indeed, one is most closely reminded of The

Sand-Reckoner, where the discussion ends up with the value – the number that

exceeds the number of sand (Heiberg 1913: II, 258.4–5):

A’ myriads of the seventh numbers

A long calculation involving the earth, the sun, the entire cosmos and a

complicated system of numbers ends up with a minimally elegant expression
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around the number “7.” Something not dissimilar happens here, as the com-

plexities of the diagram, the construction of radii – as well as the barely legible

proposition 11! – now combine in this neat pattern with its ratio of 7 to 12.

If there is one principle underlying our difficulties with both propositions

11 and 25 it is that the elegance of the outcome seems to come at a premium.

And if a consequence of such elegance of the outcome is a certain mystifica-

tion concerning the process, then this is by no means a hindrance but is, rather,

embraced by Archimedes as a feature of his style. I was struck, in this case, by

the coincidence of the mystification at the heart of proposition 25 with that at

the heart of proposition 11. It could well be just a coincidence; but we should

not rule out the possibility that this is an intentional pattern, Archimedes

seeking out, explicitly, the elegant structure of a double mystification.

/26 /

The area contained both by the spiral, which is smaller than the

<spiral> drawn in one rotation, not having the start of the spiral as

its end, as well as by the lines drawn from its ends to the start of the

spiral, has to the sector – having the radius equal to the greater of the

lines drawn from the ends to the start of the spiral, and the circumfer-

ence which is between the mentioned lines on the same side as the

spiral – that ratio which <the areas> taken together, both the <rectan-

gle> contained by the lines drawn from the ends to the start of the

spiral, as well as the third part of the square on the difference, by

which the greater of the mentioned lines exceeds the smaller, have to

the square on the greater of the lines joined from the ends to the start of

the spiral.

Let there be a spiral, on which <is> the <line> ABΓΔE, smaller than

the <spiral> drawn in one rotation, and let its ends be A, E, and let

<the> start of the spiral be the point Θ, and let a circle be drawn with

center Θ and radius ΘA, and let ΘE fall on its <=the circle’s>

circumference at Z. It is to be proved that the area contained by both

the spiral ABΓΔE and the lines AΘ, ΘE has to the sector AΘZ that

ratio which <the areas> taken together, both the <rectangle> con-

tained by AΘ,ΘE, as well as the third part of the <square> on EZ, have

to the square on ΘA.
(a) So, let there be a circle, in which <are> ϘX, having the radius

equal in square to both the <rectangle> contained by AΘ, ΘE as well

as the third part of the <square> on EZ, (b) and <let there be> at its

center an angle equal to the <angle> atΘ.337 (1) So, the sector ϘX has

337 Ameaningless direction in and of itself, meant to be explicated by common sense

as well as by the diagram: the angle in the auxiliary circle is equal to the angle AΘE

containing the spiral area under consideration.
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to the sector ΘAZ the same ratio which the <rectangle> contained by

AΘ, ΘE and the third part of the square on EZ have to the square on

ΘA; (2) for the radii have to each other the same ratio in square.338 So,

the sector ϘX shall be proved to be equal to the area contained by

both: the spiral ABΓΔE, as well as the lines AΘ, ΘE.
(3) For if not, it is either greater or smaller. (c) Let it first be, if

possible, greater. (4) Now, it is possible to circumscribe a plane figure

around the mentioned area <=sector of the spiral> composed of

similar sectors, so that the circumscribed figure is greater than the

said area by a <magnitude> smaller than as much as the sector ϘX
exceeds the said area.339 (d) So, let it be circumscribed, and let <the>

greatest of the sectors of which the circumscribed figure is composed

be the sectorΘAK, and <the> smallest, the <sector>ΘOΔ. (5) Now, it
is clear that the circumscribed figure is smaller than the sector ϘX.340

(e) So let the lines making equal angles atΘ be drawn through so far as

<to extend> to fall on the circumference of the sector ΘAZ. (6) So,
there are certain straight <lines>341 exceeding each other by an equal

<difference>342 – those falling on the spiral from Θ – of which ΘA is

<the> greatest, while ΘE <is the> smallest, and there are also other

lines, those falling from Θ on the circumference of the sector AΘZ,
smaller than these <=lines falling on the spiral> in multitude by one,

while each is equal in magnitude both to each other as well as to the

greatest <=among the lines falling on the spiral>, and similar sectors

have been drawn both: on all the lines equal both to each other and to

the greatest <line>; as well as on the <lines> exceeding each other by

an equal <difference>; but on ΘE <a sector> is not drawn. (7) Now,

the sectors on the <lines> equal both: to each other as well as to the

greatest <line> have to the sectors on the <lines> exceeding each other

by an equal <difference>, apart from the <sector> on the smallest

<line>, a smaller ratio than the square on ΘA, to the <areas> taken

together: both the <rectangle> contained by AΘ, ΘE as well as the

third part of the square on EZ.343 (8) But the sectors on the <lines>

equal both to each other and to the greatest <line> are equal to the

338 Step 2 restates Step a and recalls Elements XII.2. The extra requirement that

sectors are to each other as their angles is not explicitly recalled, perhaps because it is

not indeed in Euclid: this, once again, belongs to the field of extensions of proportion

theory to sectors of circles, which this book often requires and always takes for granted.
339 Proposition 23 Cor. 340 A restatement of Step 4.
341 I usually do not distinguish εu̓θεῖαι (“straight”) from γραμμαί (“lines”) when both

are used in themeaning “straight lines,” either noun or adjective implied; I translate here

εu̓θεῖαι by “straight <lines>” to signal the surprising transition (this phrase so far always
used γραμμαί, starting at proposition 10 itself).

342 Proposition 12, taken for granted at this point. 343 Proposition 11 Cor.
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sector ΘAZ, (9) while the <sectors> on the <lines> exceeding each

other are equal to the circumscribed <figure>.344 (10) Now then, the

sector ΘAZ has to the circumscribed figure a smaller ratio than the

square on ΘA to the <areas> taken together, both the <rectangle

contained> by ΘA, ΘE as well as the third part of the <square> on

ZE. (11) But the ratio which the <square> onΘA has to the mentioned

<areas> is that ratio which the sector ΘAZ has to the sector ϘX;345

(12) so that the sector ϘX is smaller than the circumscribed figure.346

(13) But it is not <smaller>, but greater.347 (14) Therefore the sector

ϘX shall not be greater than the area contained by both the spiral

ABΓΔE and the lines AΘ, ΘE.

Nor, furthermore, smaller. (f) For let it be smaller, and let the rest

be constructed the same. (15) So, again, it is possible to inscribe inside

the area a plane figure composed of similar sectors, so that the men-

tioned area is greater than the inscribed by a <magnitude> smaller

than as much as the same area exceeds the sectorϘX.348 (g) Now, let it
be inscribed, and let <the> greatest of the sectors of which the

inscribed figure is composed be the sector ΘBΓ, and <the> smallest,

the <sector> OΘE. (16) Now, it is clear that the inscribed figure is

greater than the sector ϘX.349 (17) Now, again, there are certain lines

X

Z
OE

K A

B

Δ

Θ

Γ

Heiberg

344 In both of Steps 8–9, the original case arrangement was “to the sectors . . . is

equal . . . .”
345 Recalling Step 1. Step 10 is: (sector ΘAZ):(circumscribed figure)<(square):

(areas). Step 11 is (square):(areas)::(sectorΘAZ):(sector ϘX). The two taken together

imply: (sector ΘAZ):(circumscribed figure)<(sectorΘAZ):(sector ϘX). The following

Step 12 relies on this implicit result.
346 This is based on the implicit result obtained in the preceding footnote, and then

Elements V.10.
347 Step 5. 348 Proposition 23 Cor. 349 Restating Step 15.

Beginning with this figure,

those for codex C have not

been drawn in (although space

has been prepared for them).

Heiberg’s diagram is radically

different, as in the thumbnail.
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exceeding each other by an equal <difference>350 – those falling on

the spiral from Θ – of which ΘA is <the> greatest, while ΘE <is the>

smallest, and there are also other lines, those falling from Θ on the

circumference of the sector ΘAZ, apart from ΘA, smaller than the

lines exceeding each other by an equal <difference> in multitude by

one, while each is equal in magnitude both to each other as well as to

the greatest <=among the lines falling on the spiral>, and similar

sectors are drawn on each <line>, but <a sector> is not drawn on the

greatest of the <lines> exceeding each other by an equal <difference>.

(18) Now, the sectors on the <lines> equal both to each other and to

the greatest <line> have to the sectors on the <lines> exceeding each

other by an equal <difference>, apart from the <sector> on the great-

est <line>, a greater ratio than the square on ΘA to the <rectangle

contained> by AΘ, ΘE and the third part of the square on EZ; (19) so

that the sectorΘAZ, too, has to the inscribed figure a greater ratio than
to the sector ϘX.351 (20) Thus the sector ϘX is greater than the

inscribed figure.352 (21) But it is not <greater>, but smaller.353

(22) Therefore the sector ϘX is not smaller, either, than the area

contained by both the spiral ABΓΔE as well as the lines AΘ, ΘE.
(23) Therefore <it is> equal.

A

Z

O

B

Θ

Γ

X

E

Heiberg

350 Proposition 12, taken for granted at this point.
351 The transition from Step 11 to 12 above was elliptic; now the entire passage

homologous with Steps 8 to 11 above is elided. The line of thought is by now indeed

familiar. If Step 18 is A:B::X:Δ, then we have the following manipulations: (A) the

sectors on the equal lines are the same as the sector of the circle; (B) the sectors on

the unequal lines are the same as the inscribed figure; (C:D) the complex ratio of areas is

the same as the ratio of the sector of the circle to the area of the spiral.We now substitute

all the terms of Step 18 to derive Step 19.
352 Elements V. 10. 353 Step 16.

Codices BDG do not

extend the arc from the

“nine o’clock” position to

the “half past ten” position

all the way, leaving only

its segment from the

“quarter to ten” position to

the “half past ten” posi-

tion. Heiberg has a very

different diagram, as in the

thumbnail.
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comments

First, a note on the use of labels in the diagrams. The use of the terms “ϘX” is
at first glance surprising: we would have thought that the reason there are two

labels and not one, in this case, is because we label separately the sector

required for the proof as well as its complementary. Instead, the sector under

study is (implicitly) understood to be ϘX as a whole. Thus the two labels are

there to bind a single sector. From the diagram, it appears thatϘ is understood

to stand at the center, while X stands at an arbitrary point on the sector’s

circumference: the function of the letter X, then, is to pick out the correct

sector by picking out the correct circumference via an arbitrary point estab-

lished upon it. This is a trivial detail, but it suggests an interpretation for the

use of auxiliary circles in the preceding propositions as well: was the label Ϙ
perhaps always understood to refer to the center of the auxiliary circle, and

only by extension to the circle as a whole? If so, the expression “the circle in

whichϘ is” referred to a concrete geometrical relation (the circle in which the

center pointϘ is) and not to a more abstract, purely “quantitative” object such

as “the circle designated byϘ.” So even the detached, “abstract” objects of the
diagram are considered in terms of a geometrical configuration.

Now, as for the contents of this proposition: as is by now familiar, it is not at

all clear why proposition 26 requires more explicit statement than the preceding

corollary. After all, it would be technically true to state that “Through the same

manner it shall also be proved that [the partial spiral area is to the circular sector

surrounding it in the same ratio defined by radii].” The proof flows from exactly

the same observation as those of propositions 24–25: that equiangular lines

extended from the center to the spiral define an arithmetic progression, which

entails the application of proposition 11 (or, in the special case where the series

begins at a line equal to the difference, i.e. right from the start of the spiral, it

entails the application of proposition 10), and nothing in the application of

proposition 11 is affected if we choose a progression that goes through an entire

“circuit” of the circle, or through just a segment of that circuit (Dijksterhuis

1987: 280, on proposition 26: “The argument of proposition 25 can be used

unchanged”).

Just how obvious is that to the reader? For most readers – including of

course me – this is not obvious at all. The proof is sufficiently difficult for the

reader to suspend judgement and just give Archimedes the benefit of the doubt

that the bookkeeping was done properly. And, once reading is based on such

suspension of judgement, the reader can no longer tell whether the same

bookkeeping would hold in some other related configuration: for, you see,

the reader no longer has access to the bookkeeping.

This, then, is a good moment to review the bookkeeping of propositions

10–11, 24–26. Bear with me.

Let us first transform the terms of propositions 10–11 into the geometric

configurations of a series of circular sectors. Obviously, the series of squares on

lines equal to the greatest becomes, simply, the circle (or any sector thereof).

The “squares on the lines exceeding each other” have a meaning when we

begin at the very start of the spiral different from that when we start elsewhere.
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At the very start of the spiral, the squares on the lines exceeding each other

becomes the figure composed of sectors circumscribing the spiral area (quite

obviously); while squares on the lines exceeding each other without the

greatest becomes the figure composed of sectors inscribed in the spiral area.

This is because the circumscribed and the inscribed figure differ by a sector

equal to the greatest sector.

When we begin at a point other than the start of the spiral, the difference

between the circumscribed and inscribed becomes more complicated: the

circumscribed is greater, in that it has the greatest sector, but it is smaller, in

that it does not have the smallest sector. Thus the circumscribed figure is the

“squares on the lines exceeding each other, greatest included, smallest

excluded,” while the inscribed figure is the “squares on the lines exceeding

each other, greatest excluded, smallest included.” Either way, we exclude one

term in the sequence so that the number of terms in the sequence of “squares

on the lines exceeding each other” is, in this case, smaller by one than the total

number of terms in the entire series from smallest to greatest. To rebalance

the bookkeeping, then, the number of terms in the sequence of “squares on the

lines equal to the greatest” is made, in this case, to be smaller by one than the

number of terms in the entire series from smallest to greatest.

At this point, it is easy to translate proposition 10 corollary into the terms of

geometrical configuration: that the circle is less than three times the circum-

scribing figure, but more than three times the inscribed figure.

Proposition 11 translates in a somewhat more complicated way. Broadly,

we see a similar result: the circle is less than [a certain ratio] to the circum-

scribing figure, but more than the same ratio to the inscribed figure. To

establish the correct bookkeeping, though, we make the number of terms

equal to each other, smaller by one than the number of terms in the series

from smallest to greatest. This is achieved by having the series from smallest

to greatest contain the sectors in question “from both ends” – in the case of

proposition 25, the series has nine terms from ΘA to ΘE, as against the eight

lines in the series of terms equal to the greatest ΘA; in the case of proposition

26, the series has five lines from ΘA toΘE, as against the four from ΘA to the

extension of ΘΔ which are the terms equal to the greatest ΘA.

We can now indeed verify that the “squares on the lines exceeding each

other, greatest included, smallest excluded” correspond, indeed, to the cir-

cumscribed figure; “squares on the lines exceeding each other, greatest

excluded, smallest included” correspond, indeed, to the inscribed figure. If

there is any reason to distinguish between propositions 25 and 26, it is that the

relation between the two series becomes apparent somewhat more obviously

in proposition 25: the series of terms from smallest to greatest counts “the

same line” twice over – asΘA and as its smaller segmentΘE. The series taken

“from both ends” coils, in this case, upon itself. The same series in proposition

26 does not yet coil upon itself, and so we simply compare the four sectors to

the five lines surrounding them from both sides. Perhaps Archimedes thought

this difference is what merited a separate treatment (indeed, the same differ-

ence does not recur in the corollary to proposition 25, which provides exactly

the same series: it is difficult to generalize from proposition 25 to its corollary
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for the different reasons explained in the preceding comments – that

Archimedes never explained what general formula derives the particular

ratio of proposition 25 so that formally it resists generalization).

/27 /

Of the areas contained by both the spirals and the lines in the rotation,

the 3rd is twice the 2nd, the 4th <is> three times, the 5th <is> four

times, and always: the following <area is>, according to the numbers

in sequence, a multiple of the second area; while the 1st area is a sixth

part of the second.

Let there be the spiral set forth, drawn in the first rotation as well as

the second and however many following <rotations>, and let the point

Θ be <the> start of the spiral, and the line ΘE, the start of the rotation,
and among the areas: let the <area>K be the 1st, the <area>Λ – the 2nd,

the <area>M – the 3rd, the <area> N – the 4th, the <area> Ξ – the 5th. It

is to be proved that the area K is a sixth part of the following <area>,

while the <area> M is twice the <area> Λ, the <area> N is 3-times the

<area> Λ, and always: the following <area> of those in sequence is a

multiple of the <area> Λ, according to the numbers in sequence.

First now, that the <area> K is a sixth part of the <area> Λ shall be

proved like this. (1) Since it has been proved that the area KΛ354 has

that ratio to the second circle which 7 has to 12,355 (2) while the

second circle <has> to the first circle as 12 to 3 ((3) for it is clear),356

(4) and the first circle has to the area K, as 3 to 1,357 (5) therefore the

area K is a 1/6th <part> of the <area> Λ.358 (6) And again, it has been
proved that the area KΛM, too, has that ratio to the third circle which

<the areas> taken together, both the <rectangle contained> by ΓΘB
and the third part of the square on ΓB, to the square on ΓΘ,359 (7) while
the third circle has to the second circle <the ratio> which the square on

ΓΘ has to the <square> on ΘB,360 (8) and the second circle has to the
area KΛ <the ratio> which the square on BΘ has to the <areas> taken

together, both the <rectangle contained> by BΘ, ΘA as well as the

354 Understood to mean the areas K and Λ taken together. 355 Proposition 25.
356 Elements XII.2. The explicit statement that this is clear refers to the observation

that the first and second lines together are double the first line.
357 Proposition 24.
358 K and Λ together are as 7 to 12; K alone is as 1 to 12; so Λ alone is as 6 to 12 and K

is to Λ as 1 to 6.
359 Proposition 25 Cor.
360 Elements XII.2. Implied result of Steps 6–7: (area KΛM):(second circle)::(rect.

(ΓΘB) + 1
3sq.(ΓB)):(sq.(ΘB)) (we basically just have to “cut out the middleman,” the

third circle on one side of the sequence of ratios, the square on ΓΘ on the other side: this

follows Elements V.22).
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third part of the square on AB.361 (9) Therefore the <area> KΛM, too,

has to the <area> KΛ a ratio which the <rectangle contained> by ΓΘ,
ΘB and the third part of the <square> on ΓB has to the <rectangle

contained> by BΘ, ΘA and the third part of the <square> on AB.362

(10) But these have to each other a ratio which 19 <has> to 7.363 (11)

Thus the area KΛM, too, has to the area ΛK that ratio which 19 <has>

to 7. (12) Now, the <area> M itself has to the <area> KΛ a ratio which

12 <has> to 7,364 (13) while the <area> KΛ has to the <area> Λ a ratio

which 7 has to 6.365 (14) Now, it is clear that the <area>M is twice the

<area> Λ.366

And it shall be proved that the following have the ratio of the

numbers in sequence. (15) For the <area> KΛMNΞ has to the circle,

whose radius is ΘE, that ratio which <the areas> taken together, both

the <rectangle contained> by EΘ, ΘΔ as well as the third part of the

square on ΔE, have to the square on ΘE,367 (16) while the circle,

whose radius is ΘE, has to the circle, whose radius is ΘΔ, that ratio
which the square onΘE has to the square onΘΔ,368 (17) and the circle,
whose radius is ΘΔ, has to the area KΛMN that ratio which the square

on ΘΔ has to the <areas> taken together, both the <rectangle con-

tained> by ΘΔ, ΘΓ as well as the third part of the square on ΔΓ;369

(18) therefore the <area> KΛMNΞ, too, has to the <area> KΛMN a

ratio which the <rectangle contained> by ΘE, ΘΔ and the third part of

the <square> on ΔE have to the <rectangle contained> by ΔΘ, ΘΓ and
the third part of the <square> on ΔΓ.370 (19) Dividedly,371 the area Ξ,
too, has to the <area> KΛMN a ratio which the difference between the

two: the <rectangle contained> by EΘ,ΘΔ together with the third part

of the <square> on EΔ; and the <rectangle contained> by ΔΘ, ΘΓ

361 Proposition 25. Combining this with the previous implied result we gain the result

of Step 9, through a similar application of Elements V.22 (which we may also imagine

applied just once, on the combination of Steps 6–8 taken together).
362 Step 9 was lost (a homoioteleuton, if we adopt, following Heiberg, Commandino’s

emendation) by the time the scholia were inserted. See scholia (Appendix 2).
363 If we scale each line segment such as ΘA to be a unit, we derive ΓΘ*ΘB=6 unit

squares, ΘB*ΘA=2 unit squares, and the third of the squares (equal to each other) each

being, obviously, a third of a unit square, so that the ratio becomes 6-and-a-third to 2-

and-a-third or indeed 19 to 7. Archimedes specifies none of this and does not even

elaborate, anywhere, on the equality of all those “thirds of a square.”
364 A restatement of Step 11: Elements V.17.
365 Step 6 restated, this time through Elements V.18.
366 Steps 12–13 together with Elements V.22 yield M:Λ::12:6.
367 Proposition 25 Cor. 368 Elements XII.2. 369 Proposition 25 Cor.
370 Once again Elements V.22 is applied to Steps 15–17 (as it was before with the

derivation of Step 9 from Steps 6–8: this time I did not provide the interim conclusions,

which are essentially redundant).
371 Asyndeton in the original; perhaps just a scribal omission.
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together with the third part of the <square> on ΓΔ, has to <the areas>,
both the <rectangle contained> by ΔΘ, ΘΓ as well as the third part of

the <square> on ΔΓ.372 (20) But the <areas> taken together exceed the

<areas> taken together373 <by the magnitude> bywhich the <rectangle

contained> by EΘΔ, too, <exceeds> the <rectangle contained> by

ΔΘΓ,374 (21) and it exceeds <=the rectangle mentioned above> by the

<rectangle contained> by ΔΘ, ΓE;375 (22) therefore the <area> Ξ has to

the <area> KΛMN a ratio which the <rectangle> contained by ΘΔ, ΓE
<has> to the <rectangle contained> by ΔΘ, ΘΓ and the third part of the
square on ΓΔ.376 (23) Through the same <arguments> the <area> N,

too, shall be proved to have to the area KΛM that ratio which the

<rectangle> contained by ΘΓ, BΔ has to the <areas> taken together,

both the <rectangle contained> by ΓΘB and the third part of the square

on ΓB; (24) therefore the <area> N has to the area KΛMN that ratio

which the <rectangle contained> by ΘΓ, BΔ <has> to the <rectangle

contained> by ΘΓ, BΔ and the <rectangle contained> by ΘΓ, ΘB and

the third part of the <square> on ΓB377 [(25) and inversely];378 (26) but

these <=the terms in the final consequent of the proportion above> are

equal to both the <rectangle contained> by ΔΘ,ΘΓ and the third part of
the square on ΓΔ.379 (27) Now, since the area Ξ has to the <area>

KΛMN that ratio which the <rectangle contained> byΘΔ, ΓE has to the

372 ElementsV.17. The “dividedly” operation takes A+B:B::C+D:D and turns it into

A:B::C:D. In this case A+B is the area KΛMNΞ, B is the area KΛMN; C+D is (rect.(EΘ,

ΘΔ) + 1
3sq.(EΔ)), while D is (rect.(ΔΘ, ΘΓ) + 1

3sq.(ΔΓ). C, in this case, turns out to be a

contrived subtracted object, the difference between C+D and D.
373 “Exceed,” in the original Greek, is the verb from the noun form “difference.” We

refer to the “C” as described in the previous footnote or to “the difference between the

two: the <rectangle contained> by EΘ, ΘΔ together with the third part of the <square>

on EΔ; and the <rectangle contained> by ΔΘ, ΘΓ together with the third part of the

<square> on ΓΔ” from the previous Step, which is here simplified.
374 It is now finally conceded – if implicitly – that all the “thirds of the square” will be

thirds of equal squares, so that both can be commonly removed.
375 The claim is that rect.(ΘΔ, ΘE)-rect.(ΔΘ, ΘΓ)=rect.(ΔΘ, ΓE) which follows

directly from Elements II.1, as ΓE is the difference between ΘE and ΘΓ (we do need

to reshuffle the terms mentioned in Step 20, though, to see that).
376 Restating Step 19 via Steps 20–21. 377 Elements V.18.
378 This draws the conclusion that the ratio in Step 24, A:B::C:D is also valid as B:A::

D:C (Elements V.7 Cor.). Heiberg brackets it, although this result would indeed be

picked up by Step 27 below. I assume he did so because he considered that it interfered

with the understanding of the immediately following pronoun “these,” but it appears to

me the pronoun remains perfectly transparent even with those two words inserted.

Heiberg is right, however, that even though the hand of the scholiast has not been

heavy on this treatise as a whole, the extant scholia to this proposition (see Appendix 2)

are suggestive of this kind of intervention.
379 Once again Elements II.1: rect.(ΘΓ, BΔ)+rect.(ΘΓ, ΘB)=rect.(ΘΓ, ΔΘ), as

BΔ + ΘB=ΔΘ.
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<areas> taken together, both the <rectangle contained> by ΔΘΓ and

the third part of the rectangle on ΓΔ,380 while the <area> KΛMN has to

the <area> N <the ratio> which the <areas> taken together, both the

<rectangle contained> by ΔΘΓ and the third part of the square on ΓΔ,
<have> to the <rectangle contained> by ΘΓ, ΔB,381 (28) therefore the
<area> Ξ has to the <area> N the same ratio which the <rectangle

contained> by ΘΔ, ΓE <has> to the <rectangle contained> by ΘΓ,
BΔ.382 (29) But the <rectangle contained> by ΘΔ, ΓE has to the

<rectangle contained> by ΘΓ, ΔB the same ratio which ΘΔ has to ΘΓ
(30) since ΓE, BΔ are equal.383 (31) Now, it is clear that the <area> Ξ,
too, has to the <area> N that ratio which ΘΔ has to ΘΓ.384

(32) Similarly the <area> N, too, shall be proved to have to the <area> M

that ratio which ΘΓ <has> to ΘB, (33) and the <area> M to the <area> Λ <the

ratio> which BΘ <has> to AΘ; (34) but the lines [EΘ],385 ΔΘ, ΓΘ, BΘ, AΘ

have the ratio of the numbers in sequence.

Ξ

N

M

K

B

A

E

Δ

Λ

Γ

Θ

In the manner of

propositions 10–11, the

diagram contains numbers

related to a scholion

which is an obvious later

commentary; also,

redundant straight lines,

obviously related to the

inserted numerals. (See

Appendix 2.)

380 Recalling Step 22. 381 Restating Step 24 via Steps 25–26.
382 In a magic trick, Elements V.22 is applied, and the unwieldy combinations of

areas disappear, leaving us with an area to an area as a rectangle to a rectangle.
383 The equality of the line segments is once again acknowledged; in this case we

consider two instances of a double line segment. And then apply Elements VI.1.
384 Steps 28–29.
385 Heiberg brackets “EΘ” because it is not included among the terms referred to in

Steps 31–33; however, the purpose of Steps 32–33 is not to add in twomore terms to the

single term of Step 31 but rather to imply, through two examples, how the result of Step

31 is universally generalized, and the reference to the “extra” term EΘ points directly to

that generalization. What Steps 31–34 taken together claim, then, is that each area is to

its internally contiguous area as the number, smaller by one in its position in the

sequence of numbers, to a number smaller by one than that: the third area is twice the

second, the fourth is three times the third, etc. See the comments for the practice of

generalization in this proposition.
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comments

The problem of generalization becomes internal to this proposition which

collapses, into a single claim, the many-layered structure of previous clusters

of propositions. Archimedes makes two separate claims: that the first area is

one-sixth the second; and that all further n areas are to the n+1 area in the ratio

n−1:n (the second is to the third in the ratio 1:2, etc.). It is not surprising that

Archimedes chooses to treat the first, particular result, separately: it arises

from the general treatment only as a special, limiting case, and even then it

results not from the line of argument as a whole but rather from an interim

conclusion reached in Step 22.386 For this reason Archimedes does not derive

the limiting case from an application of Steps 15–22, but rather calculates it

directly in Steps 1–5. What is surprising is that Archimedes proves the result

twice for the simplest non-limiting case, namely the one where the ratio of the

areas is 1:2. This result, proved in Steps 6–14, could in principle have been

seen directly as a particular case from Steps 15–34. Thus Archimedes offers

three separate proofs for a theorem that bifurcates naturally into two cases,

first for the first (indeed, limiting) case, then again for the second (entirely

typical) case, and only then generalizing the result. This is the usual structure

of two-and-more we have seen so often.

The redundancy does serve the exposition: the three proofs are indepen-

dent of each other, but they gradually build up the requisite conceptual

apparatus. The first proof, in Steps 1–5, brings in the elementary idea of

combining the results from propositions 24–25 – for the ratio of a spiral

area and a circle – together with the result of Elements XII.2 that circles are

to each other as the squares on their diameters. The second proof, in Steps 6–14,

takes this up and brings in the further idea of taking three ratios in a row and

nesting themwithin each other: an area to a circle, a circle to a circle, a circle to

an area – so that one finally finds the ratio of an area to an area. The third proof,

in Steps 15–34, begins (in Steps 15–18) with an exact repetition of the previous

proof-idea, to which several new refinements are added. A relatively minor

detail is that the ratio of combined shells is transformed into the ratio of

individual shells (Steps 19–22). A deeper idea introduced in Step 23 is to nest

together two sets of results: not only the ratio of shell n+1 to shells n and lower,

but also shell n to shells n−1 and lower. This allows us immediately to compare

how two shells, n+1 and n, stand in a ratio to the same set of shells n and lower,

from which one finds the ratio of the shells n+1 and n (Steps 24–34). Both the

second and third proofs take up the previous proof-ideas and elaborate on them

386 If we generalize the argument of Steps 15 onwards to hold across any arbitrary

area, then the claim of Step 22 is that “shell” area n is to the set of all areas up to and

including area n−1 as rect.(n−1, 2):rect.(n−1, n−2) + 1
3. In the case of the innermost

comparison – the second shell Λ to the innermost K – (n−2) is zero, while n−1 is 1: we

therefore derive directly 2:13, or the ratio of 1 to 6. The continuation of the argument from

Step 23 onwards crucially depends on the non-zero value of n-2 and so does not apply to

this limiting case.
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based on the idea of nesting together several ratios which may then be

simplified.

The structure is engaging and perhaps also helps in the understanding of

the proof: certainly one follows the claim of Steps 15–18 more easily,

following the simple setting-out of the same argument in Steps 6–9. What is

clear is that the structure also enacts the “spiralling-out” it sets out to study.

Once again, one wonders if the structure of “two-and-more” may not be a

deliberate aesthetic choice, fitting to the object chosen for study.

The price paid for this redundant fragmentation of the proof is a certain loss

in the clarity of the generalization. Obviously, the proposition offers a redun-

dant proof of a particular case. It also fails – once again, in a manner

reminiscent of previous sequences – to make its generality explicit.

The spiral is not said to be produced “arbitrarily,” to a certain or to a chance

rotation. Instead, Archimedes draws a big enough spiral, namely one of five

rotations (once again, the same five used to escape the danger of small

numbers). However, this is not large enough: the first special case compares

the first and second rotations; the second compares the second and the third;

and while the general proof begins with the totally unrelated (and therefore

apparently “floating in space” and so “arbitrary”) case of the fifth and the

fourth rotations; it also brings in the extra nested case of the fourth and the

third rotations – hitting right up against the special second case. The reader

may well wonder, until the end of the proof, if the purpose is not to build the

chain of proportions down to the third shell (discussed in Steps 6–14) and so

construct some kind of inductive ladder leading up from it to the fourth and

fifth shells, so that the claim of Steps 15–34 might end up, still, to be about a

particular result which only then could be generalized. It is only right at the

end of the proof that it becomes possible to argue that nothing hinges on the

particular location of the shells chosen for the third part of the proof and that

Steps 15–34 are already, directly, the general proof (which would then make

the second case, of Steps 6–14, redundant). But since it was not apparent to the

reader, while reading the proof, that Steps 15–34 serve such a general func-

tion, there was no prompt to the reader to exercise his or her caution in

verifying that the arguments made are indeed generally repeatable. The over-

all structure of the proof tends to obscure the arguments required for sustain-

ing its general validity.

/28 /

If two points should be taken on the spiral drawn in whichever rotation –

not the end points387 – and lines should be joined from the points taken

to the start of the spiral, and circles should be drawn, with the start of

the spiral as center, and the <lines joined> from the points to the start

of the spiral as radii, the area contained by both the greater of the

circumferences between the lines, and the spiral between the same

387 That is, the two points taken are not on the start of the rotation.
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lines, as well as the produced line,388 has that ratio to the area taken by

both the smaller circumference and the same spiral,389 as well as the

<line> joining their ends,390 which the radius of the smaller circle

together with two third parts of the difference by which the radius of

the greater circle exceeds the radius of the smaller circle <has> to the

radius of the smaller circle with one third part of the same difference.

Let there be a spiral, on which the <line> ABΓΔ,391 drawn in a

single rotation, and let two points be taken upon it, A, Γ, so that the

point Θ is <the> start of the spiral, and let <lines> be joined from A, Γ
toΘ, and withΘ as center, andΘA,ΘΓ as radii, let circles be drawn. It
is to be proved that the area Ξ has to the <area> Π the same ratio which

both AΘ and two third parts of HA, taken together, have to both AΘ
and one third part of HA, taken together.

(1) For the area NΠ has been proved to have to the sector HΓΘ that

ratio which both the <rectangle contained> by HΘ, AΘ and the third

part of the square on HΘ have to the square on HΘ;392 (2) therefore the
<area> Ξ itself has to the <area> NΠ that ratio which the <rectangle

contained> by ΘAH, together with two third parts of the square on

HA, has to the <areas> taken together, both the <rectangle contained>

by AΘH and the third part of the <square> on HA.393 (3) And since the

area NΠ has to the sector NΠΞ that ratio which both, taken together,

388 “Produced” is used here in the same sense as “joined,” referring to the relevant

“joined” line among the two lines joined earlier.
389 Meaning in this case the very same segment of a spiral line.
390 This now refers to the line joining the ends of the smaller circumference and the

spiral segment; which happens to be a segment of the other “joined” line of the original

construction.
391 The diagram has the letters AΓE (corrected by B, perhaps Coner’s hand, and by

Heiberg). The simplest way to account for the discrepancy would be to assume that the

original text had the line ABΓΔE, E dropped from the text and B, Δ dropped from the

diagram. Since we are reduced now to a single Byzantine source, since the reading as it

stands remains mathematically possible – and since this is a recurrent feature of some of

the diagrams – I do not attempt an emendation.
392 Proposition 26.
393 Step 1 is: NΠ:sector::rect.(HΘA) + 1

3sq.(HA):sq.(HA), or (Elements V.7 Cor.)

sector:NΠ:: sq.(HA):(rect.(HΘA) + 1
3sq.(HΘ)). But the difference between the

sector and NΠ is the Ξ; hence Ξ:NΠ should be in the same ratio as sq.(HΘ)-(rect.

(HΘA) + 1
3sq.(HA)) is to (rect.(HΘA) + 1

3sq.(HA)) (Elements V.17). We are looking at

sq.(HΘ)-(rect.(HΘA) + 1
3sq.(HA)).

By the kind of reasoning that goes into Elements II.4, sq.(HΘ) may be decom-

posed most naturally into sq.(HA)+rect.(HΘA)+rect.(ΘAH).

It follows immediately that sq.(HΘ)-(rect.(HΘA) + 1
3sq.(HA)) is

sq:ðHAÞ þ rect:ðHΘAÞ þ rect:ðΘAHÞ � ðrect:ðHΘAÞ þ 1
3 sq:ðHAÞ; or

2
3sq.(HA)+rect.(ΘAH), hence Step 2. There is quite a lot packed in here, though all of a

very elementary nature.
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the <rectangle contained> by ΘA, ΘH and the third part of the

<square> on HA have to the square on ΘH,394 (4) while the sector

NΠΞ has to the sector N that ratio which the <square> onΘH <has> to

the square on ΘA,395 (5) the area NΠ, too, shall have to the <area> N

the same ratio which both, taken together, the <rectangle contained>

by ΘA, ΘH and the third part of the <square> on HA <have> to the

<square> onΘA;396 (6) therefore the <area> NΠ has to the <area> Π a

ratio which both, taken together, the <rectangle contained> by HΘA
and the third part of the <square> on HA <have> to both, taken

together, the <rectangle contained> by HA, ΘA and the third part of

the square on HA.397 (7) Now, since the area Ξ has to the <area> NΠ
that ratio which both, taken together, the <rectangle contained> by

ΘAH and two third parts of the square on HA have to the <areas>

taken together, both the <rectangle contained> by HΘA and the third

part of the <square> on HA,398 (8) while the area NΠ has to the <area>

Π that ratio which the <areas>, taken together, both the <rectangle

contained> by HΘA as well as the third part of the square on HA,

<have> to both, taken together, the <rectangle contained> by HAΘ
and the third part of the square on HA,399 (9) <therefore> the <area>

Ξ, too, shall have to the <area> Π that ratio which both, taken together,

the <rectangle contained> byΘAH and two third parts of the <square>

on HA have to both, taken together, the <rectangle contained> by

ΘAH and the third part of the <square> on HA.400 (10) But the

<areas> taken together, both the <rectangle contained> by ΘAH and

two third parts of the <square> on HA, have to both, taken together,

the <rectangle contained> by ΘAH and the third part of the square on

HA that ratio, which both, taken together, ΘA and two third parts of

HA have to both, taken together, ΘA and the third part of HA;401 (11)

now, it is clear that the area Ξ, too, has to the area Π that ratio which

both, taken together, ΘA and two third parts of HA <have> to both,

taken together, ΘA and the third part of HA.

394 This only slightly reformulates the claim of Step 1.
395 An extension of Elements XII.2. 396 Elements V.22.
397 Step 5 is NΠ:N::(rect.(ΘA,ΘH)+13sq.(HA)):sq.(ΘA). Π, obviously, is the differ-

ence between NΠ and N, so from Elements V.19 Cor. we know that:

NΠ : Π :: ðrect:ðΘA;ΘHÞ þ 1
3 sq:ðHAÞÞ : ðrect:ðΘA;ΘHÞ þ 1

3 sq:ðHAÞÞ � sq:ðΘAÞ:
However, as noted already through the reasoning of n. 393 above, rect.(ΘA, ΘH)-sq.

(ΘA) is rect.(ΘA, AH). Hence the result of Step 6.
398 Step 2 recalled. 399 Step 6 recalled. 400 Elements V.22.
401 Elements VI.1: all the terms in the first proportion are parallelograms (rectangles

or squares) one of whose sides is under the height HA.

/28/ 177

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:08:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.002
https:/www.cambridge.org/core


comments

The two final propositions involve areas marked directly by letter labels

(instead of being marked through the lines of their perimeter, in turn marked

through points on vertices or along a periphery). Such “quantitative” label-

ing of areas is common – and is indeed employed in this treatise as well – for

isolated areas (such as the “quantitative” area Ϙ in propositions 24–5) or

lines (as in proposition 10). The rule is that when such objects become

immersed in a larger setting, labels are attached to marked points (as, in a

qualified way, in proposition 26; and to lines in proposition 11). Here,

however, the use of direct labeling of areas is maintained even within a

rich configuration. This is somewhat less marked in proposition 27, where

the two labeling systems run alongside each other – a series of areas

corresponding to a series of line segments. It is quite striking here in

proposition 28, where the two systems cross each other so that sector HΘΓ

of Step 1 becomes sector NΠΞ from Step 3 onwards (enharmonic notation, if

you will). Whether intended as a marked variation or not, the labeling is in

fact mathematically motivated and suggests the special kind of mathema-

tical work being accomplished. Consider, first, proposition 27. There, the

areas are marked directly by letters, and this allows us to combine them

transparently: KΛMNΞ minus Ξ is KΛMN (whereas, had the spiral shells

been labeled via their perimeters, one would have to struggle to identify

which is the sum of which). While standing in a particular geometrical

configuration, the shells are characterized mathematically via their quanti-

tative, not spatial properties. The same remains true here in proposition 28 –

a large part of the work is purely quantitative – but some geometrical

A

N

E

H Θ

Ξ

Π

Γ

Codex B Heiberg

See n. 391 for the revisions

by B and Heiberg, whose

diagrams are completely

different (see thumbnails: B,

followed by Heiberg, also has

Δ instead of E, and B inserted

between A and Γ). The
diagrams contain scholiastic

numerals: see Appendix 2.

Codex D has the line ΘH tilted

upwards.
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configuration is brought back into play, with the resulting duality of label-

ing. What we see, then, is the tendency of On Spirals to reduce its geome-

trical terms into quantitative terms, ensuing from the reduction of

geometrical areas to the underlying sums of squares provided in propositions

10–11. The treatise concludes on an ambiguous note, suggesting that the

more abstract interlude of propositions 10–11 may not have been an extra-

neous aside after all: abstract relations have been used to discover geome-

trical relations, but, in the process, geometrical objects have become

somewhat more abstract.

We note the dependency of proposition 28 for its overall “spirit” on the

preceding proposition. And, indeed, while proposition 28 does not depend

deductively on 27, it carries forward its main proof-idea of the nesting of

ratios, some spiral-to-circle, some circle-to-circle – together with the elemen-

tary process of “peeling” away terms in proportions via the proportion theory

operation “dividedly.” Steps 1–2 involve such a “peeling” exercise; Steps 3–5

nest together ratios of spiral-to-circle and circle-to-circle, “peeled” to obtain

Step 6; Steps 2, 6 are then recalled at a markedly close distance as Steps 7, 8,

nested together to obtain Step 9 – which requires a very simple manipulation

so as to obtain the required result (this final manipulation and is analogous to

the final steps of the preceding proposition). Indeed the proposition does little

else but repeat this basic proof-idea. On the one hand, the – considerable –

computation involved in verifying the “peeling” and “nesting” operations is

all delegated to the back, as it were, or served as a challenge to the reader: my

notes 393 and 397 explicate in detail complicated claims that Archimedes

glosses over. On the other hand, the working of this proof-idea is presented in

an extremely explicit way, which involves that strange repetition of claims in

close proximity. This is done solely so that the nesting relation between Steps

2, 6 would be mademore evident. This is the usual trend away from an explicit

setting-out of proofs, leaving just the broad outlines of a proof. This – even

though this result (as well as 24, 18 and 27) was originally offered in the Letter

to Conon and so was marked, even in the introduction to this treatise, as being

among the key goals!

The treatise thus ends on the note of a sketch – and it ends abruptly. Just as

we have come to expect the standard move of “two-and-more,” the two final

propositions enact a bit less than two. They are “a proposition – and a hasty

extension.” This is in part because the previous proposition compresses two

separate results into one (about the ratio of the two innermost shells; as well

as about all ratios); and in part because this proposition missed out on an

obvious opportunity for a corollary. Proposition 28 asserts that its result

holds for “whichever” rotation. In fact the proof obtains only for the first

rotation. This is seen in the figure but extends to the underlying logic,

since Step 1 flows from proposition 26, which is explicitly proved only for

the case of the first rotation. Archimedes missed out on a corollary back in

proposition 26, asserting that the result would hold even for further rota-

tions; and then, as a consequence, he misses out on the same corollary here.

But this is worse than just an observation omitted. Since the corollary to

proposition 26 is absent, the general claim of proposition 28 is apparently
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false402 – unless, that is, we are invited to re-insert the missing corollary to

proposition 26 as part of our reading of Step 1 of proposition 28. But how are

we to know, as we read proposition 28, that such an extension is required?

Would it not appear instead possible to read Step 1 for what it literally claims

(and what it appears to demand in the diagram), as a claim about the first

rotation alone, expecting the generalization to the case of further rotations to

emerge later in the proof?

Recall proposition 11. Read in its place, there was nothing suggesting it

referred to anything other than case where the smallest term is equal to the

difference; it is only through its application to proposition 25 that one may

have gathered that it is to be taken – against its literal reading, as well as its

diagram – as referring to the general case of a progression whose smallest term

need not be equal to its difference. So here: proposition 26, read in context,

makes merely a claim for the first rotation, and it is only as one reads

proposition 28 that it becomes clear that one needs to consider, in one’s

mind, the extension to potential further rotations. The theme of a precarious

generalization – of a proof-method just barely being adequate to its result, the

very gap no more than half-evident – is sounded again. Here, however, at this

abrupt ending of an abruptly elided proposition, it acquires the added sig-

nificance of a resolution avoided.

At the end of Nabokov’s The Gift, the lover-protagonists accompany the

girl’s family to the train station and finally have the apartment left all alone

just for them. We follow them home and realize, through tiny clues left by the

author, that the door is in fact locked, and they have forgotten to take the keys

with them. The consummation hangs precariously beyond the limits of the

book. So, too, with On Spirals.

402 For this reason, Heiberg even wished to consider the emendation of the enuncia-

tion of proposition 28 from “whichever” to “first”!
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APPENDIX 1
PAPPUS ’ COLLECTION

IV.21–251

The study of the spiral drawn in the plane was proposed by the geometer

Conon of Samos, but it was Archimedes who proved it using a certain amazing

approach.2

The line’s manner of origin is such: let there be a circle whose center is Β,

its radius ΑΒ. Let the line ΑΒ be moved in such a way so that Β remains in

place, while Α is carried uniformly along the circumference of the circle, and

simultaneously with it <=with ΑΒ> let a certain point, setting out from Β, be

1 Book IV as a whole is translated with commentary by Sefrin-Weis (2010). As she

points out, the book appears to be a study in methods, growing in complexity from the

elementary plane geometry using strict Euclidean techniques, to reach ultimately

problems that involve curves that cannot be produced unless mechanically.

Archimedes – as usual – is the key author, and the major transition is from his study

of the Arbelos, IV.14–20 (very striking results based on elementary techniques) to this

study of the Spiral, IV.21–25. The book ends at IV.53–54 with Pappus’ explicit

construction of the neuses required by the extant On Spiral Lines, so that this

Archimedean field is marked as focal to the book as a whole. I translate the passage

IV.21–25 for the possibility that it may include a reflection of another lost work by

Archimedes touching on the spiral: see the comments on proposition 24.
2 This seems flatly to contradict the introduction to the extant On Spiral Lines, where

Archimedes appears to credit himself as initiating the study, Conon being nomore than a –

highly worthy – passive recipient. But in fact Archimedes takes credit in the extant On

Spiral Lines for this alone: the first to claim to have a proof of SL 24, 18, 27, 28. It would,

still, be strange to imagine Conon proposing a study of the spiral without making some

concrete claims about it, and then it would be even stranger if such claims did not coincide

with the four mentioned by Archimedes (Knorr suggested the obvious lacuna: the use of

the spiral for angle trisection – but why would anyone capable of doing that fail to notice

the results related to the squaring of the circle, a central problem for sure, to which the

spiral is so obviously related?). Perhaps the likeliest account is that Archimedes claimed

that it was Conon who suggested to him the study in private. Needless to say, other

accounts are possible as well: Pappus or his intermediaries may have failed to understand

the original source.
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carried uniformly along it <=along ΑΒ> towards Α, and let both the point Β

pass through ΒΑ, and the point Α <pass through> the circumference of the

circle in an equal time; so, the point moved along ΒΑ shall draw during the

rotation a line such as is ΒΕΖΑ, and the point Β shall be its start, while the line

ΒΑ shall be the start of the rotation, and the line itself is called spiral. And its

primary property is this: indeed, whichever line be drawn through towards it,

such as ΒΖ, and is produced, it is: as the whole circumference of the circle to

the circumference ΑΔΓ, so the line ΑΒ to ΒΖ. And this is most easy to grasp

from the manner of origin: for <in the time> in which the point Α passes

through the whole circumference of the circle, in that <time> Β, too, <passes

through> ΒΑ; while <in the time> in which Α <passes through> the circum-

ference ΑΔΓ, in that <time> Β, too, <passes through> ΒΖ. (And the motions

are of equal speeds each with itself, so that it is also proportional.)3 And this

too is obvious: that whichever lines may be drawn through from Β towards the

line, containing equal angles, they exceed each other by an equal

<difference>.

And the figure contained by both: the spiral, as well as the line in the start of

the rotation, is proved to be a third part of the circle containing it. (a) For let

there be whichever circle, (b) and the line mentioned above <i.e. a spiral>,

(c) and let a right-angled parallelogram be set out, <namely> ΚΝΛΠ, (d) and

let the circumference ΑΓ be taken, a certain part of the circumference of the

circle, (e) and the line ΚΡ, the same part of ΚΠ, ((f) and let both ΓΒ as well as

ΚΛ be joined), (g) and ΡΤ parallel to ΚΝ, (h) and ΩΜ <parallel> to ΚΠ, (i) and

the circumference ΖΗ around Β as center. (1) Now, since it is: as the line ΑΒ to

ΑΗ, that is ΒΓ to ΓΖ4 (2) the whole circumference of the circle to ΓΑ ((3) for this

is the primary property of the spiral).5 (4) But as the circumference of the circle

to ΓΑ, ΠΚ to ΚΡ, (5) while as ΠΚ to ΚΡ, ΛΚ to ΚΩ,6 (5) that is ΡΤ to ΡΩ,7 (7)

Z

B

E

A

Γ

Δ

There is extant only one

independent manuscript for

Pappus, Vat. Gr. 218, and the

diagrams reproduced here are

derived from it.

3 The idea is that of SL 2: in motions, each of which is of uniform speed, the lengths

traversed during equal times are proportional.
4 Equality of radii in circles. 5 Here transformed via Elements V.17.
6 Elements VI.4. 7 Ibid.
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therefore also as ΒΓ to ΒΖ, ΤΡ to ΡΩ, (8) therefore convertedely, as well, as the

square, too, on ΒΓ, to the <square> on ΒΖ, so the <square> on ΡΤ to

the <square> on ΤΩ.8 (9) But as the <square> on ΒΓ to the <square> on ΒΖ,

so the sector ΑΒΓ to the sector ΖΒΗ,9 (10) while as the <square> on ΡΤ to the

<square> on ΤΩ, so the cylinder on the parallelogram ΚΤ around the axisΝΤ to

the cylinder on the parallelogram ΜΤ around the same axis,10 (11) therefore,

also, as the sector ΓΒΑ to the sector ΖΒΗ, so the cylinder on the parallelogram

ΚΤ around the axis ΝΤ to the cylinder on the parallelogram ΜΤ around the

same axis. (12) And similarly, if we set ΓΔ equal to ΓΑ, and ΡΧ equal to ΚΡ,

and construct the same things, it shall be: as the sector ΔΒΓ to the <sector>

ΕΘΒ, so the cylinder on the parallelogram ΡΦ around the axis ΤΦ to the

cylinder on the parallelogram ΞΦ around the same axis. (13) Proceeding11

along the same manner we will prove that as the whole circle to all the

figures inscribed within the spiral, so the cylinder around the axis ΝΛ to all

the figures from <the> cylinders inscribed within the cone on the triangle

ΚΝΛ around the axis ΛΝ; (14) fromwhich it is obvious that as the circle to the

figure between spiral and the line ΑΒ, so the cylinder to the cone; (15) but the

cylinder is three times the cone; (16) therefore the circle, too, is three times

the said figure.

H

A

Z

E B
Δ

Ξ

Ω

Π

O

P XK

M

TN Φ Λ

Γ

Θ

8 Elements V.19, VI.22. 9 An extension of Elements XII.2.
10 Elements XII.2, 11. The expression “cylinder on parallelogram” is confusing; the

Greek particle απο translated here as “on” really has the function of “the cylinder whose

construction has its starting-point with the parallelogram” (such, indeed, is the meaning

of “on” in the expression “the square on the line”). The sense here is probably the

cylinder whose base is the circle whose radius is one side of the parallelogram (in this

case, a rectangle), and whose height is the other side of the parallelogram. Perhaps

“around the axis ΝΤ” means not so much the measure of the height of the axis, as the

direction of the rotation: it is meant to spell out which of the sides of the rectangle is

taken as the base for rotation and which for the height.
11 “proceeding” – in the original Greek, the participle ἔϕοδεúσαντες, derived from the

noun ἔϕοδος, “approach” – the original title of Archimedes’Method.

pappus collect ion iv . 2 1–25 183

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.003
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:09:57, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.003
https:/www.cambridge.org/core


In the samemanner wewill prove also that if a certain line is drawn through

inside the spiral, such as ΒΖ, and a circle is drawn through Ζ around the center

Β, the figure contained by both: the spiral ΖΕΒ as well as the line ΖΒ is a third

part of the figure contained by both: the circumference ΖΗΘ as well as the

lines ΖΒΘ. As for that, the proof is somewhat the same; in what follows we

will prove a theorem, holding for the same line, which is worthy of study.12

For let there be both: the circle mentioned above (in the generation <of the

spiral>) as well as the spiral itself, ΑΖΕΒ. I say that whichever line is drawn

through, such as ΒΖ, it is: as the figure contained by the whole spiral and by the

line ΑΒ to the <figure> contained by the spiral ΖΕΒ and the line ΒΖ, so the cube

on ΑΒ to the cube on ΖΒ.

(a) For let a circle, <namely> the <circle> ΖΗΘ be drawn through Ζ around

Β as center. (1) Now, since it is: as the figure contained by the line ΑΖΕΒ and

by the line ΑΒ is to the figure contained by the line ΖΕΒ and by the line ΖΒ, so

the circle ΑΓΔ to the figure contained by the circumference ΖΗΘ and by the

lines ΖΒΘ, (2) for each was proved a third part of each,13 (3) while the circle

ΑΓΔ has to the area taken by the lines ΖΒΘ and by the circumference ΖΗΘ the

ratio composed of both: the <ratio> which the circle ΑΓΔ has to the circle

ΖΗΘ, as well as the <ratio> which the circle ΖΗΘ has to the area taken by the

lines ΖΒΘ and by the circumference ΖΗΘ, (4) but as the circle ΑΓΔ to the circle

Θ

H

A

BE

Z

The label Ε is omitted by

the manuscript.

12 The “theorem” is in Greek θεώρημα, the same as the “study” originally said to be

proposed by Conon. The juxtaposition could be intentional, in which case it reads most

naturally as an opposition: this was proposed by Conon, that is alsoworthy of investiga-

tion, despite its going beyond the original scope of study. Perhaps such was the

transition within Archimedes’ original treatise; I think it could also mark a transition

to observations taken from sources other than Pappus’ Archimedean source, perhaps

even a transition to Pappus’ own original contribution. In other words, even if it is

reasonable to assume that the original proof-idea connecting spirals to cones is from a

lost treatise by Archimedes, the same no longer holds for what follows.
13 In the preceding proof with its extension to segments of rotations.
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ΖΗΘ, so the <square> on ΑΒ to the <square> on ΒΖ, (5) while as the circle

ΖΗΘ to the said area, its whole circumference to the <circumference> ΖΗΘ,

(6) that is the circumference of the circle ΑΓΔ to the <circumference> ΓΔΑ, (7)

that is, because of the property of the line, (8) the line ΑΒ to the <line> ΒΖ, (9)

therefore also: the figure between the spiral and the line ΑΒ has to the <figure>

between the spiral and ΒΖ a ratio which is the one composed of both: the

<ratio> of the <square> on ΑΒ to the <square> on ΖΒ, as well as the <ratio> of

ΑΒ to ΒΖ. (10) And this ratio is the same as the <ratio> of the cube on ΖΒ to the

cube on ΒΖ.

So, from this it is obvious that if – the spiral and the circle around it being

assumed – ΑΒ is produced to Δ and ΓΖ, ΕΚ are drawn at right angles to it, of as

much as the area between the straight <line> ΒΛΕ and the line ΒΕ is one, of that

much the area between the lineΝΜΕ and the straight <lines>ΝΒΕ is seven, the

area between the line ΖΘΝ and the straight <lines> ΖΒΝ 19, and the area

between the line ΑΞΖ and the straight <lines> ΑΒΖ 37 – for these are clear

from both: the preceding theorem – as well as <the fact> that of as much as ΑΒ

is 4, ΖΒ is three, ΒΝ two, and ΒΕ one – for this too is clear both from the

property of the line as well as from the circumferences ΑΓ, ΓΔ, ΔΚ, ΚΑ being

equal.14

Δ

Θ

Γ
A

B

H

E

Z

14 This strikes one as an effort to emulate the striking numerical results of SL 27; the

results, however, are fairly unexciting, and they are obtained in a rather pedestrian way.

This adds a little to the probability that this passage is from later, post-Archimedean

efforts, perhaps by Pappus himself.
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N

K
Z

X

M

A

B

E

Δ

Γ

Θ

Λ

Θ, Χ omitted by the

manuscript.

186 appendix 1

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.003
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:09:57, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.003
https:/www.cambridge.org/core


APPENDIX 2
SCHOLIA TO ON SPIRALS1

/proposition 3/

For this has been proved in the 1st theorem ofOn the Sphere and the Cylinder.

1 There is a continuum between a commentary written as an independent piece of

scholarship, to the notes jotted down by a teacher (or a student). Bear in mind that even

the most sophisticated of the commentaries from late antiquity are products of the teaching

environment. In the case of Archimedes, we may see Eutocius moving from the school-

masterly set of notes for SC I to the more ambitious scholarship of SC II. The scholiastic

material present in the manuscript tradition to On Spiral Lines clearly falls at the very

schoolmasterly end and represents no more than an attempt to engage students, whose

background is in Euclid’s Elements as well as school calculation, with this text. The scholia

consist of: (i) a handful of tiny marginalia (propositions 3, 8, 16), (ii) numerals inserted into

the figures of 10, 27, 28, (iii) a more extended treatment of proposition 10 based on the

inserted numerals and (iv) amore extended treatment of proposition 27, largely independent

of the inserted numerals. It is quite possible that the teacher responsible for this material had

more to say orally (or perhaps we have lost some text) concerning at least propositions 27,

28 with their strange numerals. Most of the treatment of proposition 10 was taken by codex

A out of the marginalia and constituted a separate, tiny “commentary” treatise with the title

“scholion to the 10th theorem,” positioned right at the end of the book. (That is, an appendix

in the manner of the one you are now perusing.) The rest of the material is either inserted

into the diagramor into themargin, and even the scholion to proposition 10 could have been

originally placed in the margins (to which it is located by codex E). Codex C does not carry

the diagrams for 27, 28 at all, but in proposition 10 – where its diagram is barely legible – it

seems to carry a (badly executed?) copy of the same inserted numerals. Since the texts of

codices A and C are closely interwoven, it seems likely that their common source is

proximate enough, and the simplest assumption is that codex C had some such thing as

the same scholia in its source and then made a conscious choice not to copy the scholiastic

material, misunderstanding the inserted numerals as authorial to the diagram (it is almost

certain that codexC did not copy Eutocius, either). The overall lessonwemay draw from all

of this is that Archimedes’ On Spiral Lines was subsumed, at least once – likely in late

ancient or in early Byzantine times – into a fairly elementary educational context.
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/proposition 8, step 2/

(1) For ΚΓ has to ΓΛ a greater ratio than to ΞΓ, (2) and through this ΞΓ is

greater than ΓΛ.2

/proposition 8, step 6/

(1) For the <rectangle contained> by ΙΚ, ΝΙ is equal to the <rectangle

contained> by ΞΙ, ΙΛ; (2) for two lines cut each other in a circle;3 (3) while

the <rectangle contained> by ΚΙ, ΓΛ <is equal> to the <rectangle contained>

by ΚΕ, ΙΛ; (4) for ΙΚΛ is a triangle, (5) and ΕΓ has been drawn parallel to one

<side>; (6) therefore it is proportionally: as ΙΚ to ΚΕ, ΙΛ to ΛΓ,4 (7) and through

this the <rectangle contained> by the extremes is equal to the <rectangle

contained> by the means.5

/proposition 10/

(The following three notes are marginalia to the figure:)

The <squares> on the <lines> equal to ΙΑ, together with the <square> on Α,

comes to be 2304.6

The <rectangle contained> by Θ and by all the <lines> exceeding each

other by an equal <difference> comes to be 144.7

The <squares> on all the <lines> exceeding each other by an equal

<difference> comes to be 816.8

/scholion to proposition 10/

In order that the theorem would be made clear by numbers, too, agreeing with

its text, let the same be assumed, and let the numbers be drawn in a figure, as

has been assumed, together with their multiplications. Now, it is possible to

find, doing the additions, that the <squares> on the <lines> exceeding each

other by an equal <difference> together with the <squares> on Ι, Κ, Λ,Μ,Ν,Ξ,
Ο and the <square> on Α <are> 1632, while the <squares> on the <lines>

2 Elements V.8. 3 Elements III.35. 4 Elements VI.2. 5 Elements VI.16.
6 This will be: (8*256)+256=2304. 7 This will be: 2*(2+4+ . . . +16)=144.
8 This seems to be the point of the inserted numerals. 22+42+ . . . +162=816.

I K M N Ξ OΛ

B Γ
E Z H Θ

Δ
A

(SQ.)
256

16 14 12 10 8 6 4 2

(SQ.)
196 (SQ.)

144
(SQ.)
100 (SQ.)

64 (SQ.)
36 (SQ.)

16
(SQ.)
4

The reading of the inserted

numerals is almost

impossible for codex C, and

what little is seen gives

grave grounds for suspicion

that while the series from

16 down was correctly

copied, the squares were

mangled and perhaps

misunderstood completely.

It also appears almost

certain that the marginalia

to the diagram, extant in

codex A, are not in codex C.
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exceeding each other by an equal <difference are> 816 (indeed, that which is

said is clear).9 It remains needed to display that twice the <rectangle con-

tained> by all the <lines> together with the <squares> on Ι, Κ, Λ, Μ, Ν, Ξ
together with the <rectangle contained> byΘ and by all the <lines> exceeding

each other by an equal <difference> is equal to the <squares> on all the

<lines> exceeding each other by an equal <difference>. And this is right

there, of itself, with the numbers assumed, but Archimedes, wanting to show

this geometrically, transforms the idea and says:10 “since two <rectangles>,

the <rectangles> contained by Β, Ι are equal to two <rectangles>, the <rec-

tangles> contained by Β, Θ” and so on. These are obvious once you write

down the areas <=rectangles>, and it is clear that the numbers, too, shall turn

out <the same>. For as in the case of twice the <rectangle contained> by Β, Ι: Β

is 14 while Ι is 2. So that <twice> the <rectangle contained> by them comes to

be 56. (And it is: B is 14; therefore the double is 28; <multiplied> by 2 –

through Ι being equal toΘ – comes to be 56.) So, similarly, four times Γ comes

to be 48, six times Δ comes to be 60, eight times Ε comes to be 64, etc., per

assumptions; so that the <result> on all – twice and four times and six times

and the rest in the diagram – comes to be 336.11

Then again:12 “Now, all the <twice rectangles> taken together, adding

on the <rectangle> contained by both: Θ, and the <line> equal to all the

<lines> Α, Β, Γ, Δ, Ε, Ζ, Η, Θ shall be equal to the <rectangle> contained

by both: Θ, and the <line> equal to all: Α, as well as three times Β” and so

on. For since saying twice the <rectangle contained> by Β and four times

by Γ and so on he brings in with them the <rectangle contained> both by

Θ, as well as by the <line> equal to all the <lines> exceeding each other

by an equal <difference>, it is no different from that, to the double of Β, he

brings in yet another, so that it comes to be three times, and to four times

of Γ, he brings in yet a fifth, and so on similarly;13 now it comes to be, as

has been said: that twice of Β and four times of Γ and so on of the

remainder – 336. And Θ is 2. So clearly the <rectangle contained> by

<the two terms> – 672. And the <line> equal to all the <lines> exceeding

each other by an equal <difference> comes to be 72 which, <multiplied>

by 2 comes to be 144. Together with 672 it comes to be 816. And the three

times Β comes to be 42, and so on, per assumptions; now, the <line>

composed of Α as well as three times Β as well as five times . . . and so on,

is 40814 <multiplied> by two, comes to be 816, which is also the

<squares> on Α, Β, Γ, Δ, Ε, Ζ, Η, Θ.

9 This follows from the (geometrically inspired) understanding that the series from Ι

to Ο is the same as the series from Β to Θ; so 816*2=1632.
10 Step 6. 11 28+48+60+64+60+48+28. 12 Step 12.
13 This comment, per se, is not numerical: the scholion momentarily has the feel of

fully-fledged “commentary.”
14 16+(3*14)+(5*12)+(7*10)+(9*8)+(11*6)+(13*4)+(15*2).
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The 3

<times>

Β

The 5

<times>

Γ

The 7

<times>

Δ

The 9

<times>

Ε

The 11

<times>

Ζ

The 13

<times>

Η

The 15

<times>

Θ

(units) 42 (units) 60 (units) 70 (units) 72 (units) 66 (units) 52 (units) 30

Together, the <line> composed of all <lines>, three times as well as five times

and the rest, (units) 408, <multiplied> by two comes to be 816.

/proposition 16, step 13/

In 14.

/proposition 27, step 2/

That the 2nd spiral has to the 2nd circle a ratio which 7 <has> to 12 has been

proved above and no less shall be learned now through numbers, so that what

follows, too, shall be made easy to follow. For since the 2nd spiral was proved

to have to the second circle a ratio which, taken together, both: the <rectangle

contained> by ΒΘ, ΘΑ as well as the third part of the <square> on ΑΒ <have>

to the <square> onΘΒ, let us assume ΑΘ to be 16 units, as clearly ΒΘ comes to

be 32 (units). Now, the <rectangle contained> by ΒΘ,ΘΑ comes to be 512, and

the third of the <square> on ΒΑ – 85⅓ (units);17 together they come to be

597⅓. And the <square> on ΒΘ – 1024 (units); and 597⅓ has to 1024 a ratio,

which seven has to 12.18

And the <square> on the radius of the 2nd circle is 1024 (units), while the

<square> on the radius of the 1st circle is 256 (units); and they have a ratio to

each other, which 12 <has> to 3. So, the remainder is clear; for it results in the

“through the equality”19 and the “dividedly.”20

/proposition 27, step 8/

It is clear that one must supply in thought; and through the inequality, the

<rectangle contained> by ΓΘ, ΘΒ together with the ⅓ part of the <square> on

ΓΒ, has to the <rectangle contained> by ΒΘ,ΘΑ together with the⅓ part of the

<square> on ΒΑ a ratio, which the areas ΚΛΜ <have> to the <areas> ΚΛ.21

And these, he says, the <rectangle contained> by ΓΘ, ΘΒ together with the ⅓

part of the <square> on ΓΒ, has to the <rectangle contained> by ΒΘ, ΘΑ

together with the ⅓ part of the <square> on ΒΑ a ratio, which 19 <has> to 7.

17 The scholiast did not bother to cook his example . . .
18 So that the numerical example is, in fact, not easy to follow at all.
19 Elements V.22. 20 Elements V.17. 21 Elements V.22.
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For the <rectangle contained> by ΓΘ, ΘΒ is 1536 (units),22 while the ⅓ of the

<square> on ΒΓ <is> 85⅓ (units), since the <square> on <ΒΓ>,23 as well, <is>

256. Together: 1621⅓. And the <rectangle contained> by ΒΘ, ΘΑ together

with the ⅓ part of the <square> on ΒΑ <is> 597⅓, which have to each other a

ratio which 19 <has> to 7.

/proposition 27, steps 15–18/

/proposition 27, step 24/

Clearly, also compoundedly.24

K Λ M N Ξ K Λ M N
Through

the equality

Through
the equality

E

E
E ΓΔ

Δ
ΘΘ

Θ

Θ

Θ
Θ

Δ
Δ

A charming visualization of

the course of argument in

Steps 15–18: the ratio of the

spiral areas ΚΛΜΝΞ to

ΚΛΜΝ is decomposed so that it

may be recomposed “through

the equality” in terms spiral-

to-circle to circle-to-spiral (top

figure) or ratios of a certain

construction square-to-square

to a certain construction

(bottom figure), hence

spiral-to-spiral as

construction-to-construction.

22 The scholiast still operates with the preceding set of numerals, hence now he

multiplies 32 by 48.
23 The scholiast’s authorial omission. 24 Elements V.18.
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/proposition 27, figure25/

/proposition 28, figure26/

A

N

(Units)
6

(Units)
4

(Units)
4

(Units)
6

E

H Θ

Ξ
Π

Γ

N

M

K44

2860

62

64

E

B

A
Θ

Λ

Γ

Ξ

Δ

Codices BD have

the straight lines

continuous through

the central area.

25 The purpose of this figure is to verify the length of the spiral line at various positions,

assuming it progresses by two units for each half quadrant of a rotation (this is reminiscent of

the use of the series of even numbers in the numerals inserted into proposition 10). This

would indeed end up with the values 16, 32 and 48 at the end of the first, second and third

lines, as demanded by the scholia – numbers that, however, are not inserted into the diagram,

while, at the same time, the actual numbers inserted are not used by the scholiast.
26 The figure is made to consider the case where ΑΘ is 6 units to ΑΗ is 4; one wonders

whether the opposite was not meant, so that the ratio of the two areas then becomes 10:8.

Once again, the scholiast operates with even numbers only.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781139019279.004
Downloaded from https:/www.cambridge.org/core. University of Florida, on 11 Jun 2017 at 11:10:06, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781139019279.004
https:/www.cambridge.org/core


GLOSSARY

Added to Itself (heauta suntithemena) In proposition 4, Archimedes

envisages lines being “added to themselves.” Just adding a line to itself

once would result in double the line, but this expression does not specify

howmany times the addition is to take place, hence the result is simply a line

that is some arbitrarymultiple of the original line.Why doesArchimedes not

specify it in this way? Because he is thinking not in terms of abstract

multiplication, but of concrete geometrical operations, the line “being

added to itself” actually meaning taking a copy of the original line,

positioning it next to one end of the line, and in this way obtaining a line

double the original one (in length, as we would say).

Assigned (tachthen) In the introduction, Archimedes refers to a ratio being

“assigned,” in the context of a geometrical task such as dividing the sphere

into two segments so that they have the “ratio assigned.” We can say, for

instance, the assigned ratio might be 2:1, in which case the task becomes to

divide the sphere into two segments, one of which is twice the other (in

volume, as we would say). But this would be imprecise, as in fact a task

that involves an “assigned” ratio does not really call for a specification of

what this assigned ratio is. Rather, the mathematician’s job is to find a

general algorithm with the aid of which it would be possible, no matter

which twomagnitudes are proposed, such as A, B, to divide the sphere into

two segments such that one stands to the other in the ratio A:B.

Compose (suntithemi) The verb suntithemi literally means “to put

together,” and it can simply mean “to add” (this is the translation I use in

expressions such as “added to itself,” heauta suntithemena – see the

Glossary above). It has a wide range of meanings (including that of

“synthesis”). In this book, it is used in two main ways. First, a

magnitude may be composed of another when it is, effectively, its

multiple (a line 4 meters long may be composed of a meter-long line –

by the shorter line being added four times; but the same 4-meter-long line

cannot be composed in the same way from a 1.10-meter-long line).
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Second, a magnitude may be said to be composed of its constituents (the

line ABCD is composed of three lines: AB, BC and CD).

Diameter (diametros) While Archimedes usually refers to the diameter of a

circle in an obvious way, he also refers in the introduction to the diameter

of the sphere, perhaps a slightly less familiar usage for a modern reader; it

means, of course, precisely the same as the diameter of the circle (a straight

line whose ends are on the surface of the sphere, passing through the

sphere’s center).

End (peras) This word for “end” or “limit” can have a range of meanings in

Greek, but here it has one usage only: referring to one of the two points that

are at the limits of a line segment (note that the Greek word for “line”

usually means, effectively, what we call a “line segment,” so that a Greek

line does have two ends).

Equal inMagnitude (isos megethei) Usually, when a Greekmathematician

says that a geometrical object is equal to another, this means in our terms:

for lines, that they are equal in length; for plane figures, that they are equal

in area; and for solid figures, that they are equal in volume. This is

“equality in magnitude,” and usually it is not even spelled out that this is

the intended meaning of equality. In some contexts, however (especially

when there is a need to distinguish between equality in magnitude and an

equality in multitude, for which see below), then it would be explicitly said

that objects are equal “in magnitude” – meaning the same, effectively, as

“equal.”

Equal in Multitude (isoi plēthei) When two collections of objects are

considered, say a collection of lines a1, a2, a3 and b1, b2, b3, we may

compare the lines as magnitudes, but we may also compare the collections

in terms of the number of objects they contain.When they contain the same

number of objects, they are said to be “equal in multitude”: there are

exactly three a’s in the example above, and three b’s. The distinction

between “equality in magnitude” and “equality in multitude” is

important, in this treatise, in propositions 10–11.

Excess, exceeds (huperocha, huperechei) Starting at the statements in the

introduction, of the results obtained in the treatise, and then through

various geometrical contexts, Archimedes returns to this expression,

which is a geometrical expression of what we would think of as

subtraction. When line l1 exceeds another line l2, for instance, by a

certain difference D, we may say, in our own terms, that l1-l2=D. The

Greek term implies (as usual) a more concrete understanding, where the

difference is the actual going-over by which the first line is longer than the

second.

Fall (piptō ) The verb is used in a fairly non-technical sense, effectively “to

be in,” for instance in proposition 6, where a line “falls” outside a certain

configuration. Quite often, it has a more technical sense. When lines are

drawn from the center of the circle to the circumference, they are said to

“fall” on that circumference, and the same meaning is here extended to the

spiral, from proposition 12 onwards: lines extended from the start of the

spiral, “falling” on the spiral line itself.
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Given (dotheis) A Greek mathematical problem (such as those mentioned

in Archimedes’ introduction) has the form that a certain geometrical object

is “given.” The assignment is to find or to produce another geometrical

object, somehow determined by that “given.” (So, for instance, a sphere is

given – and the assignment is to find an area equal to its surface.) Notice

that the task is general, so that the assignment is to find a universal

algorithm with which, no matter what the “given” might be, the task will

be effected.

Greatest Circle (megistos kuklos) In the introduction, when referring to the

results ofOn the Sphere and the Cylinder, Archimedes uses the expression

“Greatest Circle” (specifically, “of the circles in the sphere”), a formulaic

expression which nevertheless is quite transparent: there can be many

circles drawn on the surface of the sphere, and the greatest of them are

like the equator on the globe (“are like” – because there are in fact

infinitely many such “greatest circles” on any sphere, depending on

where you wish to put your “equator”). This is to be distinguished from

the many circles being “greater” than others mentioned in this treatise

which are no more than ordinary circles drawn on a plane.

Half-as-much-again (hamiolos) In many languages there are adjectives

that can mean integer ratios, such as “double,” “triple” etc. Greek has a

word for the ratio we would express as 1.5:1 or 3:2, for which a

cumbersome English expression can be found in “half-as-much-again.”

Usually this enters mathematical discourse through the straightforward

expression that one thing stands to another in this precise numerical ratio.

A very complicated special use is found in the introduction, where

Archimedes recalls results having to do with a “half-as-much-again

ratio,” which in context meant a ratio being raised to the power 1.5, as

we would put it; or the square root of the cube. (See the Glossary for

“duplicate ratio.”)

Join (epizeuchthō ) When lines are drawn between two points, this is often

referred to as the lines “being joined” from one point to the other; or one

can refer to the line “joined” between two points (meaning, effectively,

that these two points are its end).

Lemma (lēmma) Today, mathematicians most frequently use the word

“lemma” to refer to some auxiliary argument required for the sake of a

more central theorem. As is often the case with such second-order terms,

the term is not entirely regimented in Greek mathematics, but it seems to

have a meaning closer to our “axiom,” and it is perhaps in this sense that it

is evoked in the introduction (to refer to what we would call, indeed,

“Archimedes’ Axiom”).

Magnitude (megethos) The word “magnitude” does not occur, in this

treatise, outside of the fixed expression “equal in magnitude.” I do

supply it within pointed brackets in many places, and so an explanation

is called for. By a “magnitude” is meant either a line, a plane or a solid. The

term is typically evoked when such objects are considered purely

quantitatively (that is, independently from their spatial configuration),

and I supply it, for instance, when it is stated that a solid is greater than
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another by a given “magnitude” (however, note that one could equally

supply “solid”).

Perpendicular (kathetos) The adjectival usage of “perpendicular” is

straightforward (when it is stated that a line is perpendicular to a plane,

for instance, this means, well, that the angle between them is right). What

is slightly confusing is that “perpendicular” can function effectively as a

noun. When a line is constructed as “perpendicular, from a point X, on a

line AB,” this means that it is the line drawn passing through the point X,

so that it is in right angles to the line AB; and within the argument (as, for

instance, in proposition 6), that line might be referred to as “the

perpendicular,” without mentioning what it is perpendicular to.

Ratio duplicate (diplasios logos) The ratio of 16 to 9 is duplicate the ratio

of 4 to 3. That is:

When a1:a2 is duplicate b1:b2

Then we can say in our own terms:

ðb1 : b2Þ2 = ða1 : a2Þ
However, the intuition behind the Greek term “duplicate ratio” is more

straightforward. If you take the ratio 4:3, and then apply it again, you get

the duplicate of the ratio: so, you get 16:9, duplicate 4:3.

Ratio greater (meizōn logos) The idea of a ratio being greater or smaller

than another is very clear to us, since we can transform ratios into real

numbers (thus the ratio of the diagonal to the side in the square is √2, while
the ratio of the circumference to the diameter in the circle is π, and we

know precisely what is meant by π>√2). For the Greeks, the idea is more

mediated (ratios are greater than others dependent on certain conditions:

for instance, when the consequents are the same, but the antecedent is

greater). The meaning, however, is essentially the same as that intended by

our comparison of the size of real numbers.

Rectangle Contained (orthogōnion periechomenon) The expression

“rectangle contained” is in fact only rarely encountered: almost always,

one of the terms is elided – or both are. The full phrase “the rectangle

contained by the lines AB, BC” refers, in the strict sense, to a rectangle

whose two sides AB, BC are orthogonal at the point B. The interesting

complication for this expression is that onemay use this when the two lines

are not in fact orthogonal at that point, or even in such expressions as “the

rectangle contained by the lines AB, CD” where the two lines are not

contiguous at all (so for instance, “the rectangle contained by ΚΙ, ΓΛ” in

proposition 8, Step 6). In such cases the expression refers to what a virtual

rectangle would be like, if the lines were formed to enclose a rectangle. In

practice, this is as close as standard Greek mathematical speech gets to the

idea of the multiplication of two line segments.

Segment (tmama) A segment is, generally speaking, a division of a

magnitude (line, plane or solid) into units that belong to the same
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magnitude. The segments of a line are lines; the segments of a plane are

planes; the segments of solids – solids.

Similar (homoios) “Similarity” is defined in Greek mathematics as a matter

of equality of angles and/or proportionality of sides (thus Elements VI def.

1; Archimedes’ Planes in Equilibrium I def. 5). That said, its intuitive

meaning, which can be easily extended to curvilinear figures (as is required

by the introduction to this book), is of identity of shape: two figures are

“similar” when their only difference is that of scale.

Square on . . . (tetragōnon apo) A square is on a line in the sense that it

could be set up on it (the original expression, in fact, is “from” the line,

which I change into “on” so as to make the expression somewhat less

puzzling). Effectively, we do not really envisage the square being set up

and consider something equivalent to the purely quantitative object of the

area equal to a square on just that line, or even, if we wish to be

anachronistic about, something like the line “squared.”

Theorem (theōrēma) When Archimedes refers at the beginning of the book

to “theorems,” his meaning is hard to pin down (as is generally the case for

second-order terminology in Greek mathematics). It cannot be the same as

“theorem” in themodern sense of a fairly significant “proposition,” or even

in the (widespread but not universal) ancient sense of a “theorem” as

opposed to a “problem.” Rather, it may be closer to the literal meaning

of the word in Greek: an object of contemplation; something to ponder. It

is a claim put forward for discussion.

Touch (epipsauō) The modern word “tangent” is from a Latin root, and it

literally means “the thing that touches”: it is a participle form of the verb

“to touch.” In Greek as in Latin, the verb “to touch” has acquired the

technical mathematical meaning of “to be a tangent.” This is used very

often in this treatise, from proposition 5 onwards. In an expression “the

line touches the spiral at the point P,” the point P is, obviously, the point of

tangency.

Verge (neuō) In the group of propositions 5–9 one is sometimes asked to

produce a line, that is, a line segment, so that it is “verging towards a point”

P. The strict meaning of that is that the line is positioned in such a way that,

if it were extended, it would pass through the point P (that is, the line

segment is positioned somewhere on a line passing through P). What

makes this construction unique is that the process envisaged seems to be

that of taking a line segment, fixed in length, and trying to position it within

certain limits so that it “verges towards the point P,” by trial and error, as it

were.
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