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Preface

The first edition of 3D Game Engine Design appeared in print over six years
ago (September 2000). At that time, shader programming did not exist on

consumer graphics hardware. All rendering was performed using the fixed-function
pipeline, which consisted of setting render states in order to control how the geomet-
ric data was affected by the drawing pass.

The first edition contained a CDROM with the source code for Wild Magic Ver-
sion 0.1, which included 1,015 source files and 17 sample applications, for a total
of 101,293 lines of code. The distribution contained support only for computers
running the Microsoft Windows operating system; the renderer was built on top of
OpenGL; and project files were provided for Micrsoft Visual C++ 6. Over the years,
the source code evolved to Wild Magic Version 3.9, which contained additional sup-
port for Linux and Macintosh platforms, had OpenGL and Direct3D renderers, and
included some support for shader programming. However, the design of the engine
was still based on a fixed-function pipeline. The distribution also included support
for multiple versions of Microsoft’s compilers, support for other compilers on the
various platforms, and contained some tools such as importers and exporters for pro-
cessing of art assets.

This is the second edition of 3D Game Engine Design. It is much enhanced, de-
scribing the foundations for shader programming and how an engine can support it.
The second edition is about twice the size of the first. The majority of the increase is
due to a more detailed description of all aspects of the graphics system, particularly
about how shaders fit into the geometric pipeline. The material on scene graphs and
their management is also greatly expanded. The second edition has more figures and
less emphasis on the mathematical aspects of an engine.

The second edition contains a CDROM with the source code for Wild Magic
Version 4.0, which includes 1,587 source files and 105 sample applications, for a
total of 249,860 lines of code. The Windows, Linux, and Macintosh platforms are
still supported, using OpenGL renderers. The Windows platform also has a Direct3D
renderer whose performance is comparable to that of the OpenGL renderer. Multiple
versions of Microsoft’s C++ compilers are supported—versions 6, 7.0, 7.1, and 8.0
(Professional and Express Editions). The MINGW compiler and MSYS environment
are also supported on the Windows platform. The Linux platform uses the g++
compiler, and the Macintosh platform uses Apple’s Xcode tools.

The graphics system of Wild Magic Version 4.0 is fully based on shader program-
ming and relies on NVIDIA’s Cg programming language. The precompiled shader
programs were created using the arbvp1 and arbfp1 profiles for OpenGL and us-
ing the vs_2_0 and ps_2_0 profiles for Direct3D, so your graphics hardware must

xxi



xxii Preface

support these in order to run the sample applications. If your graphics hardware sup-
ports only lesser profiles such as vs_1_1 and ps_1_1, you must recompile the shader
programs with these profiles and use the outputs instead of what is shipped on the
CDROM. The distribution also contains a fully featured, shader-based software ren-
derer to illustrate all aspects of the geometric pipeline, not just the vertex and pixel
shader components.

The replacement of the fixed-function approach by a shader-based approach has
made Wild Magic Version 4 a much more powerful graphics engine for use in all
graphics applications, not just in games. Much effort went into making the engine
easier to use and to extend, and into improving the performance of the renderers. I
hope you enjoy this new manifestation of Wild Magic!

A book is never just the product of the author alone. Many people were involved
in making this book as good as it possibly can be. Thanks to the reviewers for provid-
ing valuable and insightful feedback about the first edition regarding how to improve
it for a second edition. A special thanks goes to Marc Olano (University of Maryland,
Baltimore County) for taking the time to provide me with detailed comments based
on his experience using the first edition as a textbook. Thanks to Elisabeth Beller, the
production editor and project manager for all of my Morgan Kaufmann Publisher
books, for assembling yet another fine group of people who have the superb ability
to take my unattractive book drafts and make them look really good. And, as always,
thanks to my editor Tim Cox for his patience and help in producing yet another book
for Morgan Kaufmann Publishers.



C h a p t e r 1
Introduction

I have no fault to find with those who teach geometry. That science is the only
one which has not produced sects; it is founded on analysis and on synthesis and on

the calculus; it does not occupy itself with probable truth; moreover it has the
same method in every country.

— Frederick the Great

1.1 The Evolution of Graphics Hardware
and Games

The first edition of 3D Game Engine Design was written in the late 1990s when
3dfx Voodoo cards were in style and the NVIDIA Riva TNT cards had just

arrived. The book was written based on the state of graphics at that time. Six years
have passed between that edition and this, the second edition. Graphics hardware has
changed dramatically. So have games. The hardware has extremely powerful graphics
processing units (GPUs), lots of video memory, and the option of programming it
via shader programs. (These did not exist on consumer cards when I wrote the first
edition.) Games have evolved also, having much richer (and much more) content and
using more than graphics. We now have physics engines and more recently physics
processors (PhysX from Ageia).

The Sony Playstation 2 was not quite released when I started writing the first
edition. We’ve also seen Microsoft’s Xbox arrive on the scene, as well as the Nintendo
GameCube. These days we have Microsoft’s Xbox 360 with multiple processors, and
the Sony Playstation 3 is soon to follow with the Cell architecture. Smaller game-
playing devices are available. Mobile phones with video screens are also quite popular.

With all this evolution, the first edition of the book has shown its age regarding
the discussion of real-time graphics. The time is right for the second edition, so here
it is.

1



2 Chapter 1 Introduction

1.2 The Evolution of This Book
and Its Software

In the late 1990s when I conceived the idea of writing a book on real-time graphics
as used in games, I was employed by Numerical Design, Ltd. (now Emergent Game
Technologies) designing and developing NetImmerse (now Gamebryo). At that time
the term game engine really did refer to the graphics portion of the system. Companies
considering using NetImmerse wanted the real-time graphics in order to free up the
computer processing unit (CPU) for use by other systems they themselves were used
to building: the game logic, the game artificial intelligence (AI), rudimentary collision
and physics, networking, and other components. The first edition of 3D Game Engine
Design is effectively a detailed summary of what went into building NetImmerse.

Over the years I have received some criticism for using “game engine” in the
title when the book is mainly about graphics. Since that time, the term game engine
has come to mean a collection of engines—for graphics, physics, AI, networking,
scripting, and you name it. It is not feasible to write a book in a reasonable amount
of time with sufficient depth to cover all these topics, nor do I intend to write such a
massive tome. To address the criticism about the book title, I could have changed the
title itself. However, I have chosen to keep the original title—the book is known now
by its name, for better or for worse. The second edition includes some discussion
about physics and some discussion about an application layer and how the engines
must interact, but probably this is not enough to discourage the criticism about the
title. So be it.

The first edition appeared in print in September 2000. It is now six years later and
the book remains popular in many circles. The algorithmic aspects are still relevant,
the scene graph management still applies, but the material on rendering is clearly out
of date. That material was essentially about the fixed-function pipeline view of a graph-
ics system. The evolution of graphics hardware to support a shader-based pipeline
has been rapid, now allowing us to concentrate on the special effects themselves (via
shader programming) rather than trying to figure out how to call the correct set of
state-enabling functions in the fixed-function pipeline to obtain a desired effect.

The second edition of the book now focuses on the design of the scene graph
managment system and its associated rendering layer. Most of the algorithmic con-
cepts have not changed regarding specialized scene graph classes such as the con-
troller classes, the sorting classes, or level-of-detail classes. Core classes such as the
spatial, geometry, and node classes have changed to meet the needs of a shader-based
system. The current scene graph management system is much more powerful, flexi-
ble, and efficient than its predecessors. The shader effect system is integrated with the
scene graph management so that you may do single-pass drawing, multipass drawing
with a single effect, or even drawing with multiple effects. I have paid much attention
to hiding as many details as possible from the application developer, relying on well-
designed and automated subsystems to do the work that earlier versions of my scene
graph management system forced the developer to do.



1.3 A Summary of the Chapters 3

One characteristic of my books that I believe sets them apart from other technical
books is the inclusion of large source code libraries, a lot of sample applications that
actually compile and run, and support for multiple platforms (PC, Mac, Linux/Unix,
and various compilers on each platform). What you have purchased is a book and
a software product to illustrate what is described in the book. The sample source
code that ships with many books is not carefully planned, lacks quality control, is not
multiplatform, and usually is not maintained by the book authors. I am interested in
carefully designed and planned code. I believe in quality source code. I maintain the
source code on a regular basis, so I encourage people to send email about problems
they encounter, both with the source code and in the book material. The Geometric
Tools website lists all the updates to the software, including bug fixes as well as new
features, and the site has pages for book corrections.

The first edition of this book shipped with Wild Magic version 0.1. The book had
two additional printings in its first edition, one shipping with Wild Magic version
0.2 and one shipping with Wild Magic version 0.4. The second edition ships with
Wild Magic version 4.0, which when compared to version 0.1 looks very little like
it. I believe the quality of the Wild Magic source code is a significant feature that
has attracted many users. The latest version represents a significant rewrite to the
rendering layer that has led to easier use of the engine and better performance by
the renderers. The rewrite represents three months of dedicated time, something
most authors would never consider investing time in, and it includes implementing
a shader-based software renderer just to illustrate the book concepts in detail. I hope
you enjoy using Wild Magic for your leisure projects!

1.3 A Summary of the Chapters

The book is partitioned into six parts.
Graphics. Chapter 2 discusses the details of a rendering system, including trans-

formations, camera models, culling and clipping, rasterizing, and issues regarding
software versus hardware rendering and about specific graphics application program-
mer interfaces (graphics APIs) in use these days. Chapter 3 is about rendering from
the perspective of actually writing all the subsystems for a software renderer. The
chapter includes what I consider a reasonable abstraction of the interface for a shader-
based rendering system. This interface essentially shows that the renderer spends
most of its time doing resource management. Chapter 3 also includes details about
shader programs—not about writing them but about dealing with data management
issues. Here I address such things as matching geometric vertex data to vertex pro-
gram inputs, matching vertex program outputs to pixel program inputs, and ensur-
ing that the infrastructure is set so that all resources are in the right place at the right
time, hooked up, and ready to use for real-time rendering.

Scene Graph Management . Chapter 4 is about the essentials of organizing your
data as a scene graph. This system is designed to be high level to allow ease of use
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by application programmers, to be an efficient system to feed a renderer, and to be
naturally extensible. The chapter also includes a section that talks about scene graph
compiling—converting scene graphs to more optimized forms for target platforms.
Chapters 5, 6, and 7 are about specially designed nodes and subsystems of the scene
graph management system. These include subsystems to support animation, spatial
sorting, and level of detail.

Collision Detection and Physics. Some general concepts you see in attempting to
have physical realism in a three-dimensional (3D) application are discussed in Chap-
ters 8 and 9. A generic approach to collision detection is presented, one that I have
successfully implemented in a real environment. I also discuss picking operations
and briefly talk about automatic pathfinding as a means for collision avoidance. The
chapter on physics is a brief discussion of some concepts you will see often when
working with physical simulations, but it does not include a discussion about the
black-box-style physics you see in a commercial physics engine, such as Havok. That
type of physics requires a lot more discussion than space allows in this book. Such
physics is heavily mathematical and requires attention to issues of numerical round-
off errors when using floating-point arithmetic.

Mathematical Topics. Chapters 10 through 17 include a lot of the mathematical
detail for much of the source code you will find in Wild Magic. These chapters in-
clude a discussion of standard objects encountered in geometric manipulation and
queries, including curves and surfaces covered in Chapters 11 and 12. You will also
find material on queries regarding distance, containment, and intersection. Chapter
16 presents some common numerical methods that are useful in graphics and physics
applications. The final chapter in this partition is about the topic of rotation, includ-
ing basic properties of rotation matrices and how quaternions are related to matrices.

Software Engineering . Chapter 18 is a brief summary of basic principles of object-
oriented design and programming. Various base-level support for large libraries is
important and includes topics such as run-time type information, shared objects and
reference counting, streaming of data (to/from disk, across a network), and initial-
ization and termination for disciplined object creation and destruction in an appli-
cation. Chapter 19 is about memory management. This is of particular importance
when you want to write your own memory managers in order to build a system that is
handed a fixed-side memory block and told it may only use memory from that block.
In particular, this approach is used on game consoles where each engine (graphics,
physics, sound, and so on) is given its memory “budget.” This is important for hav-
ing predictable behavior of the engines. The last thing you want to happen in your
game is one system consuming so much memory from a global heap that another
system fails because it cannot successfully allocate what it needs.

Special Effects Using Shaders. Chapter 20 shows a handful of sample shaders and
the applications that use them. This is just to give you an idea of what you can do
with shaders and how Wild Magic handles them. The appendix describes how you
can add new shader effects to Wild Magic. The process is not difficult (by design).

I believe the organization here is an improvement over that of the first edition of
the book. A number of valid criticisms of the first edition were about the amount
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of mathematics interleaved in the discussions. Sorry, but I remain a firm believer
that you need a lot of mathematics when building sophisticated graphics and physics
engines. That said, I have made an attempt to discuss first the general concepts
for graphics, factoring the finer detail into the chapters in the mathematics section
that occurs late in the book. For example, it is possible to talk about culling of
bounding volumes against frustum planes without immediately providing the details
of the algorithm for specific bounding volumes. When discussing distance-based
collision detection, it is possible to motivate the concepts without the specific distance
algorithms for pairs of objects. The mathematics is still here, but factored to the end
of the book rather than interleaved through the entire book.

Another criticism of the first edition of the book was its lack of figures. I believe
I have remedied this, adding quite a few more figures to the second edition. That
said, there may be places in the book where someone might feel the need for a figure
where I thought the concept did not require one. My apologies if this happens. Send
me feedback by email if you believe certain parts of the book can be improved by the
addition of figures.

Finally, I have included some exercises in the book. Creating a large set of well-
crafted exercises is a full-time job. In fact, I recall meeting a person who worked
for Addison-Wesley (back in the early 1980s). His full-time job was managing the
exercises for the calculus textbook by George Thomas and Ross Finney (seventh
edition at that time). As much as I would like to have included more exercises here,
my time budget for writing the book, writing the Wild Magic source code to go
with the book, and making a living doing contract programming already exceeded
24 hours per day. I hope the exercises I have included will support the use of the book
as a textbook in a graphics course. Most of them are programming exercises, requests
to modify the source code to do something different or to do something in addition
to what it does. I can imagine some of these taking quite some time to do. But I also
believe they will make students think—the point of exercises!



C h a p t e r 2
The Graphics System

This chapter provides some basic concepts that occur in a computer graphics sys-
tem. Some of these concepts are mathematical in nature. I am assuming that

you are familiar with trigonometry, vector and matrix algebra, and dot products and
cross products. A warning to those who have a significant mathematical background:
I intentionally discuss the mathematical concepts in a somewhat informal manner.
My goal is to present the relevant ideas without getting tied down in the minutiae of
stating rigorous definitions for the concepts. The first edition of this book was criti-
cized for overemphasizing the mathematical details—and rightly so. Learn computer
graphics first, and then later explore the beauty of formal mathematical exposition!

The foundations of coordinate systems (Section 2.1) and transformations (Sec-
tion 2.2) are pervasive throughout a game engine. They are found not only in the
graphics engines but in the physics engines and sound engines. Getting a model out
of a modeling package and into the game world, setting up a camera for viewing, and
displaying the model vertices and triangles is a process for which you must absolutely
understand the coordinate systems and transformations. Scene graph management
(Chapter 4) also requires a thorough understanding of these topics.

Sections 2.3 through 2.6 are the foundation for drawing 3D objects on a 2D
screen. In a programming environment using graphics APIs such as OpenGL or Di-
rect3D to access the graphics hardware, your participation in the process is typically
restricted to selecting the parameters of the camera, providing the triangle primitives
whose vertices have been assigned various attributes, and identifying objects that are
not within the viewing region so that you do not have to draw them. The low-level
processing of vertices and triangles is the responsibility of the graphics drivers. A dis-
cussion of the low-level processing is provided in this book, and a software renderer
is part of the source code so you can see an actual implementation of the ideas.

7



8 Chapter 2 The Graphics System

Section 2.7 is a discussion about issues that are relevant when designing and im-
plementing a graphics engine. The first edition of this book had a similar section, but
I have added new material, further delineating how you must think when designing
an engine or building a component to live on top of an existing graphics API. Section
2.7.2 is about the trade-offs you must consider if you want your code to be portable
(or not). As you will see, the most important trade-off is which computational unit
has the responsibility for certain operations.

Section 2.8 is about the vector and matrix conventions used by OpenGL, Di-
rect3D, and Wild Magic. In your own code you must also choose conventions. These
include how to store vectors and matrices, how they multiply together, how rotations
apply, and so on. The section also mentions a few other conventions that make the
APIs different enough that you need to pay attention to them when creating a cross-
platform graphics engine.

2.1 The Foundation

We are all familiar with the notation of tuples. The standard 3-tuple is written as
(x , y , z). The components of the 3-tuple specify the location of a point in space
relative to an origin. The components are referred to as the Cartesian coordinates of
the point. You may have seen a diagram like the one in Figure 2.1 that illustrates the
standard coordinate system.

Welcome to the book’s first rendering of a 3D scene to a 2D screen, except this
one was hand drawn! The standard coordinate system is simple enough, is it not?
Coordinate systems other than the standard one may be imposed. Given that many
people new to the field of computer graphics have some confusion about coordinate
systems, perhaps it is not that simple after all. The confusion stems from having to
work with multiple coordinate systems and knowing how they interact with each
other. I will introduce these coordinate systems throughout the chapter and discuss
their meaning. The important coordinate systems, called spaces, are Cartesian space
(everything else is built on top of this), model space (or object space), world space, view
space (or camera space or eye space), clip space (or projection space or homogeneous
space), and window space.

Figure 2.1 is quite deceptive, which also leads to some confusion. I have drawn
the figure as if the z-axis were in the upward direction. This is an unintentional con-
sequence of having to draw something to illustrate a coordinate system. As humans
who rely heavily on our vision, we have the notion of a view direction, an up direc-
tion, and a complementary right direction (sorry about that, left-handers). Just when
you have become accustomed to thinking of the positive z-direction as the up direc-
tion, a modeling package comes along and insists that the positive y-direction is the
up direction. The choice of view directions can be equally inconsistent, especially the
defaults for various graphics engines and APIs. It is important to understand the co-
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(a, b, 0)

(a, b, c)

(0, 0, 0)

(a, 0, 0)

x

y

z

Figure 2.1 The standard coordinate system in three dimensions. The point at (a , b, c) is reached
by starting at the origin (0, 0, 0), moving a units in the direction (1, 0, 0) to the point
(a , 0, 0), then moving b units in the direction (0, 1, 0) to the point (a , b, 0), and
then moving c units in the direction (0, 0, 1) to the point (a , b, c).

ordinate system conventions for all the packages you use in your game development.
Throughout the book, my discussions about coordinate systems will refer to view, up,
and right directions with coordinate names d , u, and r , respectively, rather than to
axis names such as x, y, and z.

2.1.1 Coordinate Systems

Rather than constantly writing tuples, it is convenient to have a shorter notation to
represent points and vectors. I will use boldface to do so. For example, the tuple
(x , y , z) can refer to a point named P. Although mathematicians distinguish between
a point and the coordinates of a point , I will be loose with the notation here and
simply say P = (x , y , z). The typical names I use for the direction vectors are D for
the view direction, U for the up direction, and R for the right direction. Using the
standard convention, a direction vector must have unit length. For example, (1, 0, 0)

is a direction vector, but (1, 1, 1) is not since its length is
√

3. In our agreed-upon
notation, we can now define a coordinate system and how points are represented
within a coordinate system.

A coordinate system consists of an origin point E and three independent direction
vectors, D (view direction), U (up direction), and R (right direction). You may think
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of the origin as the location of an observer who wishes to make measurements from
his own perspective. The coordinate system is written succinctly as

{E; D, U, R} (2.1)

Any point X may be represented in the coordinate system as

X = E + dD + uU + rR (2.2)

where d , u, and r are scalars that measure how far along the related direction you
must move to get to the point X. The tuple (d , u, r) lists the coordinates of X relative
to the coordinate system in Equation (2.1).

The direction vectors are nearly always chosen to be mutually perpendicular. This
is not necessary for coordinate systems. All that matters is that the directions are in-
dependent (linearly independent to those of you with some training in linear algebra).
In this book, I will assume that the directions are indeed mutually perpendicular. If
for any reason I need a coordinate system that does not have this property, I will make
it very clear to you in that discussion. The assumption that the direction vectors in
the coordinate system of Equation (2.1) are unit length and mutually perpendicular
allows us to easily solve for the coordinates

d = D . (X − E), u = U . (X − E), r = R . (X − E) (2.3)

where the bullet symbol (.) denotes the dot product of vectors. The construction of
the coefficients relies on the directions having unit length (D . D = U . U = R . R = 1)
and being mutually perpendicular (D . U = D . R = U . R = 0). In addition to being
mutually perpendicular, the direction vectors are assumed to form a right-handed
system. Specifically, I require that R = D × U, where the times symbol (×) denotes
the cross product operator. This condition quantifies the usual right-hand rule for
computing a cross product. A coordinate system may also be constructed to be a left-
handed system using the left-hand rule for computing a cross product.

But wait. What does it really mean to be right-handed or left-handed? And what
really is a cross product? The concepts have both algebraic and geometric interpreta-
tions, and I have seen many times where the two interpretations are misunderstood.
This is the topic I want to analyze next.

2.1.2 Handedness and Cross Products

To muddy the waters of coordinate system terminology, the Direct3D documentation
[Cor] has a section

DirectX Graphics | Direct3D 9 | Programming Guide | Getting Started |
Coordinate Systems and Geometry | Coordinate Systems
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This section is a one-page description of coordinate systems, but unfortunately it
is sparse on details and is not precise in its language. The documentation describes
right-handed versus left-handed coordinate systems, but assumes that the positive
y-axis is the up direction, the positive x-axis is the right direction, and the positive z-
axis points into the plane of the page for left-handed coordinates but out of the plane
of the page for right-handed coordinates. Later in the documentation you will find
this quote:

Although left-handed and right-handed coordinates are the most common sys-
tems, there is a variety of other coordinate systems used in 3D software.

Coordinate systems are either left-handed or right-handed: there are no other
choices. The remainder of the quote is

For example, it is not unusual for 3D modeling applications to use a coordinate
system in which the y-axis points toward or away from the viewer, and the z-axis
points up. In this case, right-handedness is defined as any positive axis (x, y, or z)
pointing toward the viewer. Left-handedness is defined as any positive axis (x, y,
or z) pointing away from the viewer.

The terminology here is imprecise. First, coordinate systems may be chosen for which
none of the axis direction vectors are the x-, y-, or z-axes. Second, handedness has
to do with the order in which you list your vectors and components. The way you
draw your coordinate system in a figure is intended to illustrate the handedness, not
to define the handedness.

Let us attempt to make the notions precise. The underlying structure for every-
thing we do in three dimensions is the tuple. Essentially, we all assume the existence of
Cartesian space, as described previously and illustrated in Figure 2.1. Cartesian space
is the one on which all of us base our coordinate systems. The various spaces such as
model space, world space, and view space are all built on top of Cartesian space by
specifying a coordinate system. More importantly, Cartesian space has no preferential
directions for view, up, or right . Those directions are what you specify when you impose
a coordinate system on Cartesian space for an observer to use.

I have already presented an intuitive way to specify a coordinate system in Equa-
tion (2.1). I have imposed the requirement that the coordinate system is right-
handed. But what does this really mean? The geometric interpretation is shown in
Figure 2.2 (a).

In Figure 2.2 (a), the placement of R relative to D and U follows the right-hand
rule. The algebraic interpretation is the equation R = D × U, which uses the following
definition. Given two Cartesian tuples, (x0, y0, z0) and (x1, y1, z1), the cross product
is defined by

(x0, y0, z0) × (x1, y1, z1) = (y0z1 − z0y1, z0x1 − x0z1, x0y1 − y0x1) (2.4)
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X = E + dD + uU + rR
X = E + dD + uU + rR

U U

E
E

R

R
E + dD + uU

E + dD + uU

E + dD

E + dD

D

D
P

(a) (b)

Figure 2.2 (a) A geometric illustration of the right-handed coordinate system in Equation (2.1).
(b) A geometric illustration of the left-handed coordinate system in Equation (2.5).

Both the algebraic interpretation and the geometric interpretation are founded on
the standard Cartesian coordinate system.

A point X is represented in the coordinate system of Equation (2.1) via Equa-
tion (2.2), where the components of the coordinate tuple (d , u, r) are computed by
Equation (2.3). Instead, I could have used the coordinate system

{E; R , U, D} (2.5)

with the representation of X given by

X = E + rR + uU + dD (2.6)

This coordinate system is left-handed and the coordinate tuple for X is (r , u, d).
Algebraically, Equations (2.2) and (2.6) produce the same point X. All that is different
is the bookkeeping, so to speak, which manifests itself as a geometric property as
illustrated by Figure 2.2. In the right-handed system shown in Figure 2.2 (a), D points
into the plane of the page and the last coordinate direction R points to the right. It is
the case that D × U = R; the last vector is the cross product of the first two vectors.
In the left-handed system shown in Figure 2.2 (b), R points into the plane of the page
and the last coordinate direction D points to the left. It is the case that R × U = −D;
the last vector is the negative of the cross product of the first two vectors.

Whereas Figure 2.2 illustrates the geometric difference between left-handed and
right-handed coordinate systems, the algebraic way to classify whether a coordinate
system is left-handed or right-handed is via the cross product operation. Generally, if
you have a coordinate system

{P; U0, U1, U2}
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where P is the origin and where the Ui are unit length and mutually perpendicular,
then the coordinate system is right-handed when

U0 × U1 = U2 (right-handed)

and is left-handed when

U0 × U1 = −U2 (left-handed)

Equivalently, if you write the coordinate direction vectors as the columns of a matrix,
say, Q = [U0 U1 U2], then Q is an orthogonal matrix. Right-handed systems occur
when det(Q) = 1 and left-handed systems occur when det(Q) = −1.

I have more to say about this discussion. Sometimes I read news posts where
people say that Direct3D has a “left-handed cross product.” This is imprecise ter-
minology, and I will explain why, using an example. Let A and B be vectors (not
points). The representations of the vectors relative to the coordinate system of Equa-
tion (2.1) are

A = daD + uaU + raR , B = dbD + ubU + rbR

and their cross product is

A × B = (uarb − raub)D + (radb − darb)U + (daub − uadb)R (2.7)

The representations of the vectors relative to the coordinate system of Equation (2.5)
are

A = raR + uaU + daD, B = rbR + ubU + dbD

and their cross product is

A × B = (daub − uadb)R + (radb − darb)U + (uarb − raub)D (2.8)

Regardless of which coordinate system was used, Equations (2.7) and (2.8) produce
the same vector in Cartesian space.

Now let’s work with the coordinates themselves, but with specific instances just to
simplify the discussion. Let A = D and B = U. In the coordinate system of Equation
(2.1), the coordinate tuple of A is (1, 0, 0). This says that you have 1 of D and none
of the other two vectors. The coordinate tuple of B is (0, 1, 0). This says you have 1 of
U and none of the other two vectors. According to Equation (2.4), the cross product
of these tuples is

(1, 0, 0) × (0, 1, 0) = (0, 0, 1) (2.9)

In the coordinate system of Equation (2.5), the coordinate tuple of A is (0, 0, 1) since
D is the last vector in the list of coordinate axis directions. The coordinate tuple of B
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is (0, 1, 0). According to Equation (2.4), the cross product of these tuples is

(0, 0, 1) × (0, 1, 0) = (−1, 0, 0) (2.10)

Whereas Equations (2.7) and (2.8) produce the same Cartesian tuple, Equations
(2.9) and (2.10) produce different tuples. Is this a contradiction? No. The tuples
(0, 0, 1) and (−1, 0, 0) are not for the Cartesian space; they are coordinate tuples
relative to the coordinate systems imposed on Cartesian space. The tuple (0, 0, 1)
is relative to the right-handed coordinate system of Equation (2.1), so the actual
Cartesian tuple is 0D + 0U + 1R = R; that is, A × B = D × U = R. In Figure 2.2
(a), you obtain R from D and U by using the right-hand rule. Similarly, the tuple
(−1, 0, 0) is relative to the left-handed coordinate system of Equation (2.5), so the
actual Cartesian tuple is −1R + 0U + 0D = −R; that is, A × B = D × U = −R. In
Figure 2.2 (b), you obtain −R from D and U by using the left-hand rule. Table 2.1
summarizes our findings when A = D and B = U.

If you compute cross products using coordinate tuples, as shown in Equation
(2.10) for a left-handed camera coordinate system, you have a left-handed cross
product, so to speak. But if you compute cross products using right-handed Cartesian
tuples, as shown in Equation (2.8) also for a left-handed camera coordinate system,
you wind up with a right-handed cross product, so to speak. This means you have
to be very careful when computing cross products, making certain you know which
coordinate system you are working with. The Direct3D function for computing the
cross product does not care about the coordinate system:

D3DXVECTOR A = <a tuple (x0,y0,z0)>;
D3DXVECTOR B = <a tuple (x1,y1,z1)>;
D3DXVECTOR C;
D3DXVec3Cross(&C,&A,&B); // C = (y0 z1 - z0 y1, z0 x1 - x0 z1, x0 y1 - y0 x1)

The function simply implements Equation (2.4) without regard to which coordinate
system the “tuples” A and B come from. The function knows algebra. You are the one
who imposes geometry.

Table 2.1 Summary of handedness and cross product calculations.

Equation Result Coordinate System Handedness Cross Product Applied To

(2.7) D × U = R Right-handed Cartesian tuples

(2.8) D × U = R Left-handed Cartesian tuples

(2.9) D × U = R Right-handed Coordinate tuples

(2.10) D × U = −R Left-handed Coordinate tuples
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2.1.3 Points and Vectors

You might have noticed that I have referred to points and to vectors. These two
concepts are considered distinct and are the topics of affine algebra. A point is not
a vector and a vector is not a point. To distinguish between points and vectors within
text, some authors use different fonts. For the sake of argument, let us do so and
consider three points P, Q, and R and a vector V. The following operations are
axioms associated with affine algebra, but once again to be loose with the notation, I
will just say the following:

1. The difference of the two points is a vector, V = P − Q.

2. The sum of a point and a vector is a point, Q = P + V.

3. (P − Q) + (Q − R) = (P − R). The intuition for this is to draw a triangle whose
vertices are the three points. This equation says that the sum of the directed edges
of the triangle is the zero vector.

In the third axiom, rather than appealing to the geometry of a triangle, you might
be tempted to remove the parentheses. In fact, the removal of the parentheses is a
consequence of this axiom, but you have to be careful in doing such things that, at
first glance, seem intuitive. The axioms do not allow you to add points in any manner
you like; for example, the expression P + Q is not valid. However, additional axioms
may be postulated that allow a special form of addition in expressions called affine
combinations. Specifically, the following axioms support this:

4. P = ∑n
i=1 ciPi is a point, where

∑n
i=1 ci = 1.

5. V = ∑n
i=1 diPi is a vector, where

∑n
i=1 di = 0.

With the additional axioms, an expression such as

(1/3)P + (1/3)Q + (1/3)R

is valid since the coefficients sum to one. This example produces the average of the
points. The expression

(P − Q) + (Q − R) = P − Q + Q − R

is valid. The implied coefficients of the points on the right-hand side are 1, −1, 1, and
−1 (in that order), and their sum is zero. Thus, the expression on the right-hand side
is a vector.

At the beginning of this chapter, I promised not to delve into the finer mathemat-
ical details of the topics. I have done so here, but for practical reasons. Some graphics
programmers choose to enforce the distinction between points and vectors, say, in
an object-oriented language such as C++. To hint at the topic of Section 2.2.5, a
fourth component is provided for both points and vectors. Points are represented as
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4-tuples of the form (x , y , z, 1) and vectors are represented as 4-tuples of the form
(x , y , z, 0). The five axioms for affine algebra are satisfied by these representations.

Axiom 1 is satisfied,

(x0, y0, z0, 1) − (x1, y1, z1, 1) = (x0 − x1, y0 − y1, z0 − z1, 0) (2.11)

Axiom 2 is satisfied,

(x0, y0, z0, 1) + (x1, y1, z1, 0) = (x0 + x1, y0 + y1, z0 + z1, 1) (2.12)

Axiom 3 is satisfied,

((x0, y0, z0, 1) − (x1, y1, z1, 1)) + ((x1, y1, z1, 1) − (x2, y2, z2, 1))

= (x0 − x1, y0 − y1, z0 − z1, 0) + (x1 − x2, y1 − y2, z1 − z2, 0)

= (x0 − x2, y0 − y2, z0 − z2, 0)

= ((x0, y0, z0, 1) − (x2, y2, z2, 1))

Axiom 4 is satisfied,

n∑
i=1

ci(xi , yi , zi , 1) =
(

n∑
i=1

cixi ,
n∑

i=1

ciyi ,
n∑

i=1

cizi ,
n∑

i=1

ci

)

=
(

n∑
i=1

cixi ,
n∑

i=1

ciyi ,
n∑

i=1

cizi , 1

) (2.13)

where I used the fact that the ci sum to one. Axiom 5 is satisfied,

n∑
i=1

di(xi , yi , zi , 1) =
(

n∑
i=1

dixi ,
n∑

i=1

diyi ,
n∑

i=1

dizi ,
n∑

i=1

di

)

=
(

n∑
i=1

dixi ,
n∑

i=1

diyi ,
n∑

i=1

dizi , 0

) (2.14)

where I used the fact that the di sum to zero.
Two classes are implemented, one called Point and one called Vector. The inter-

face for the Vector class has minimally the following structure:

class Vector
{
public:

// ‘this’ is vector U
Vector operator+ (Vector V) const; // U + V
Vector operator- (Vector V) const; // U - V
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Vector operator* (float c) const; // V*c
friend Vector operator* (float c, Vector V) const; // c*V

private:
float tuple[4]; // tuple[3] = 0 always

};

The interface for the Point class has minimally the following structure:

class Point
{
public:

// ‘this’ is point P
Point operator+ (Vector V); // P + V, Equation (2.12)
Point operator- (Vector V); // P - V, Equation (2.12)
Vector operator- (Point Q); // P - Q, Equation (2.11)
static Point AffineCSum (int N, float c[], Point Q[]); // Equation (2.13)
static Vector AffineDSum (int N, float d[], Point Q[]); // Equation (2.14)

private:
float tuple[4]; // tuple[3] = 1 always

};

I have shown the points and vectors stored as 4-tuples. The fourth component
should be private so that applications cannot access them and inadvertently change
them. Thus, if you were to support an operator[] member function, you would
need to trap attempts to access the fourth component (via assertions, exceptions, or
some other mechanism). It is possible to use 3-tuples, relying on the fact that the
class names themselves imply the correct fourth component. Given current CPUs
and game consoles, it is better, though, to have 16-byte (4-float) alignment of data
because the hardware expects it in order to perform well.

Two issues come to mind. First, having classes Point and Vector means main-
taining more code than having just a single class to represent points and vectors. The
amount of additional source code might not be of concern to you. Second, and per-
haps the more important issue, is that the clipping process occurs using 4-tuples of
the form (x , y , z, w), where the fourth component w is not necessarily 0 or 1. Clip-
ping involves arithmetic operations on 4-tuples, but the Point class does not support
this when it insists on w = 1. If you were to allow the fourth component to be pub-
lic and not force it to be 1, you would be violating the purist attempt to distinguish
between points and vectors. You could implement yet another class, say, HPoint, and
represent the general 4-tuples, but this means maintaining even more code. My opin-
ion is to keep it simple and just support a vector class, keeping the distinction between
points and vectors in your own mind, being consistent about it when coding, and not
maintaining additional code.
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2.2 Transformations

We want to construct functions that map points in 3D space to other points in 3D
space. The motivation was provided in the last section: taking an object built in model
space and placing it in world space. The transformations considered in this section are
the simplest ones you encounter in computer graphics.

2.2.1 Linear Transformations

The topic of linear transformations is usually covered in a course on linear algebra.
Such transformations are applied to vectors rather than points. I will not give a
detailed overview here. You can read about the topic in any standard textbook on
linear algebra.

The basic idea is to construct functions of the form Y = L(X). The input to the
function is the vector X and the output is the vector Y. The function name itself is also
typeset as a vector, namely, L, to indicate that its output is a vector. A linear function
or linear transformation is defined to have the following property:

L(cU + V) = cL(U) + L(V) (2.15)

where c is a scalar. The expression cU + V is called a linear combination of the two
vectors. In words, Equation (2.15) says that the function value of a linear combination
is the linear combination of the function values.

Example
2.1

Let X = (x0, x1, x2) and Y = (y0, y1, y2). The function Y = L(X), where L(x0, x1,
x2) = (x0 + x1, 2x0 − x2, 3x0 + x1 + 2x2), is a linear transformation. To verify this,
apply the function to the linear combination cU + V, where U = (u0, u1, u2), V =
(v0, v1, v2), and c is a scalar:

L(cU + V) = L(c(u0, u1, u2) + (v0, v1, v2))

= L(cu0 + v0, cu1 + v1, cu2 + v2)

= ((cu0 + v0) + (cu1 + v1), 2(cu0 + v0) − (cu2 + v2),

3(cu0 + v0) + (cu1 + v1) + 2(cu2 + v2))

= (c(u0 + u1) + (v0 + v1), c(2u0 − u2) + (2v0 − v2),

c(3u0 + u1 + 2u2) + (3v0 + v1 + 2v2))

= c(u0 + u1, 2u0 − u2, 3u0 + u1 + 2u2)

+ (v0 + v1, 2v0 − v2, 3v0 + v1 + 2v2)

= cL(u0, u1, u2) + L(v0, v1, v2)

= cL(U) + L(V)
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These algebraic steps verify that L(cU + V) = cL(U) + V, so the function is linear.

Example
2.2

The function L(x0, x1, x2) = x2
0 is not a linear transformation. To verify this, it is

enough to show that the function applied to one linear combination is not the lin-
ear combination of the function results. For example, let c = 2, U = (1, 0, 0), and
V = (0, 0, 0); then L(U) = L(1, 0, 0) = 1, L(V) = L(0, 0, 0) = 0, and L(cU + V) =
L(2, 0, 0) = 4. Also, 2L(U) + L(V) = 2L(1, 0, 0) + L(0, 0, 0) = 2. This specific case
does not satisfy the constraint L(cU + V) = cL(U) + L(V), so the function is not
linear.

Example
2.3

Translation of a vector is not linear. The translation function is L(x0, x1, x2) =
(x0, x1, x2) + (b0, b1, b2), where (b0, b1, b2) �= (0, 0, 0) is the vector used to translate
any point in space. If you choose c = 1, U = (1, 1, 1), and V = (0, 0, 0), then

L(U + V) = L(1, 1, 1) = (1 + b0, 1 + b1, 1 + b2)

which is different from

L(U) + L(V) = L(1, 1, 1) + L(0, 0, 0) = (1 + b0, 1 + b1, 1 + b2) + (b0, b1, b2)

= (1 + 2b0, 1 + 2b1, 1 + 2b2)

Translation is, however, an example of an affine transformation, which I discuss later
in this section.

Linear transformations are convenient to use because they have a representation
that makes them easy to implement and compute in a program. Let us write the
transformation input X and output Y as column vectors (3 × 1 vectors). A linear
transformation is necessarily of the form⎡

⎣ y0
y1
y2

⎤
⎦ =

⎡
⎣ m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦

⎡
⎣ x0

x1
x2

⎤
⎦ =

⎡
⎣ m00x0 + m01x1 + m02x2

m10x0 + m11x1 + m12x2
m20x0 + m21x1 + m22x2

⎤
⎦ (2.16)

where the coefficients mij of the 3 × 3 matrix are constants. The more compact
notation is

Y = MX (2.17)

where M is a 3 × 3 matrix. This form is suggestive of the one-dimensional case
y = mx, which is the equation of a straight line that passes through the origin. The
geometry of linear functions in higher dimensions is slightly more complicated. Once
again, I refer you to any standard textbook on linear algebra to see the details.

By using the representation Y = MX, I have already chosen a convention regard-
ing the manipulation of vectors and matrices. Vectors are columns for me, and the
application of a matrix to a vector puts the matrix on the left and the vector on the
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right. This is the mathematician in me speaking—I chose what I was raised with.
OpenGL and Direct3D choose the opposite convention, which is to represent vec-
tors as rows and to apply a matrix to a vector by putting the vector on the left and
the matrix on the right. This is the usual convention chosen by computer graphics
people. There is no right or wrong for choosing your conventions. For any choice
you make, you will find users who disagree with that choice because they have made
another choice. The fact is, you make your decisions. You live by the consequences.
What is important is to ensure that you have documented your engine and code well,
making it clear to clients exactly what your choices are. There are quite a few other
conventions you must decide on when designing a computer graphics system. A com-
parison of the conventions for transformations is provided in Section 2.8 regarding
Wild Magic, OpenGL, and Direct3D.

Exercise
2.1

Verify that the function defined by Equation (2.16) is a linear transformation.

Computer graphics has a collection of linear transformations that arise frequently
in practice. These are presented here.

Rotation

The motivation for 3D rotation comes from two dimensions, where a rotation ma-
trix is

R =
[

cos θ − sin θ

sin θ cos θ

]
= I + (sin θ)S + (1 − cos θ)S2 (2.18)

where I is the identity matrix and S is the skew-symmetric matrix, as shown:

I =
[

1 0
0 1

]
, S =

[
0 −1
1 0

]

I have chosen to factor the matrix R in terms of I , S, and θ because it is suggestive of
how to build the matrix for rotation about an arbitrary axis. For a positive angle θ ,
RV rotates the 2 × 1 vector V counterclockwise about the origin, as shown in Figure
2.3. Whether a positive angle represents a counterclockwise or a clockwise rotation is
yet another convention you must choose and make clear to your users.

In three dimensions, the matrix representing a rotation in the xy-plane is

R =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ = I + (sin θ)S + (1 − cos θ)S2 (2.19)

where
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I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , S =

⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦

Assuming a choice of coordinate axes as is shown in Figure 2.1, the direction of
rotation is counterclockwise about the z-axis when viewed by an observer who is on
the positive z-side of the xy-plane and looking at the plane with view direction in the
negative z-direction, (0, 0, −1). Think of Figure 2.3 as what such an observer sees. In
that figure, the positive z-direction is out of the page; the negative z-direction is into
the page. A 3D view is shown in Figure 2.4 (a).

y
RV

V
x

 > 0

Figure 2.3 A positive angle corresponds to a counterclockwise rotation.

z

y y y

x x x

z z

> 0

> 0 > 0

(a) (b) c)

Figure 2.4 Rotations about the coordinate axes. (a) A positive-angle rotation about the z-axis.
(b) A positive-angle rotation about the y-axis. (c) A positive-angle rotation about
the x-axis.
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Similar rotation matrices may be constructed for rotations about the other coor-
dinate axes. The matrix representing a rotation in the xz-plane is

R =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ = I + (sin θ)S + (1 − cos θ)S2 (2.20)

where

S =
⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦

Figure 2.4 (b) is a 3D view of a positive-angle rotation about the y-axis, which
is a counterclockwise rotation in the xz-plane as shown. The matrix representing a
rotation in the yz-plane is

R =
⎡
⎣ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦ = I + (sin θ)S + (1 − cos θ)S2 (2.21)

where

S =
⎡
⎣ 1 0 0

0 0 −1
0 1 0

⎤
⎦

Figure 2.4 (c) is a 3D view of a positive-angle rotation about the x-axis, which is
a counterclockwise rotation in the yz-plane as shown.

In general, the matrix representing a rotation about the axis with direction vector
(u0, u1, u2) is as shown. Define the skew-symmetric matrix

S =
⎡
⎣ 0 −u2 u1

u2 0 −u0
−u1 u0 0

⎤
⎦

then the rotation matrix is

R = I + (sin θ)S + (1 − cos θ)S2

=
⎡
⎣ γ + (1 − γ )u2

0 −u2σ + (1 − γ )u0u1 +u1σ + (1 − γ )u0u2

+u2σ + (1 − γ )u0u1 γ + (1 − γ )u2
1 −u0σ + (1 − γ )u1u2

−u1σ + (1 − γ )u0u2 +u0σ + (1 − γ )u1u2 γ + (1 − γ )u2
2

⎤
⎦(2.22)

where σ = sin θ and γ = cos θ .
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Exercise
2.2

Verify that Equation (2.22) produces the coordinate plane rotations mentioned in
Equations (2.19), (2.20), and (2.21). Also verify that the S-matrix in Equation (2.22)
produces the S-matrices for the coordinate plane rotations.

Exercise
2.3

Using algebraic methods, construct the formula of Equation (2.22).

Reflection

A plane passing through the origin is represented algebraically by the equation
N . X = 0, where N is a unit-length vector perpendicular to the plane and X is any
point on the plane. Figure 2.5 (a) provides a 3D view of the plane, a vector V, and the
reflection W of V through the plane. Figure 2.5 (b) shows a 2D side view.

The vector N⊥ is a point on the plane and is the midpoint of the line segment con-
necting V and its reflection U. The superscript symbol ⊥ denotes perpendicularity.
In this case, N⊥ is a vector perpendicular to N.

The side view gives you a good idea of how the vectors are related algebraically.
The input vector is the linear combination

V = cN + N⊥

for the scalar c. The perpendicular component N⊥ is naturally dependent on your
choice of V. In fact, the scalar is easily determined to be c = N . V, which uses the
conditions that N is unit length and that N and N⊥ are perpendicular. The reflection
vector is the linear combination

U = −cN + N⊥

The difference is that the normal component of V is negated to form the normal
component for U; this is the reflection. Subtracting the two equations and using the

N

N

N

–cN

cN

U
U

V
V

(a) (b)

N

Figure 2.5 The reflection of a vector through a plane. (a) A 3D view. (b) A 2D side view.
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formula for c leads to

U = V − 2(N . V)N =
(
I − 2NNT

)
V

where I is the 3 × 3 identity matrix and the superscript T denotes the transpose
operation. Using my conventions, N is a 3 × 1 (column) vector, which makes NT a
1× 3 (row) vector. The product NNT is a 3 × 3 matrix. Notice that NTN is the product
in the other order but is necessarily a scalar (a 1 × 1 matrix as it were).

If N = (n0, n1, n2), the reflection matrix is

R = I − NNT =
⎡
⎣ 1 − n2

0 −n0n1 −n0n2

−n0n1 1 − n2
1 −n1n2

−n0n2 −n1n2 1 − n2
2

⎤
⎦ (2.23)

Rotation and reflection matrices are said to be orthogonal matrices. An orthogonal
matrix M has the property that MMT = MTM = I , which says that the inverse
operation of M is its transpose. Apply M to a vector V to obtain U = MV. Now apply
MT to obtain MTU = MTMV = IV = V. Geometrically, if R is a rotation matrix
that rotates a vector about an axis by θ radians, RT is a rotation matrix about the
same axis that rotates a vector by −θ radians. If R is a reflection matrix through a
plane N . X = 0, then RT = R, which says that if you reflect twice, you end up where
you started.

One distinguishing algebraic characteristic between rotations and reflections is
the value of their determinants. Recall that the determinant of a 3 × 3 matrix M is

det(M) = det

⎡
⎣ m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦

= m00m11m22 + m01m12m20 + m02m10m21

− m02m11m20 − m01m10m22 − m00m12m21

(2.24)

The determinant of a rotation matrix is 1. The determinant of a reflection matrix
is −1.

Exercise
2.4

Verify that the determinant of the matrix in Equation (2.22) is 1. Verify that the
determinant of the matrix in Equation (2.23) is −1.

Scaling

Scaling is a simple transformation. You scale each component of a vector by a desired
amount: (y0, y1, y2) = (s0x0, s1x1, s2x2), where s0, s1, and s2 are the scaling factors.
The matrix that represents scaling is
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S =
⎡
⎣ s0 0 0

0 s1 0
0 0 s2

⎤
⎦ (2.25)

This is a diagonal matrix. Usually, we assume that the scaling factors are positive
numbers, but 3D modeling packages tend to allow you to set them to negative num-
bers, which can cause all sorts of problems for exporters and engines that rely on
positive scales. If the scales are all the same value, s0 = s1 = s2, the transformation is
said to be a uniform scaling ; otherwise, it is a nonuniform scaling . Nonuniform scales
can also lead to problems in the design of a graphics engine. I will get into the details
of this later in the design of a scene graph hierarchy for which each node stores rota-
tion and scaling matrices and translation vectors but also stores a composite matrix
for the entire transformation. Given a composite matrix, a frequently asked question
is how to extract the rotational component and the scaling factors. We will see that
this is an ill-posed problem; see Section 17.5.

The scaling matrix of Equation (2.25) represents scaling in the directions of the
coordinate axes. It is possible to scale in different directions. For example, if you want
to scale the vectors by s in the direction D, you need to decompose the input point X
into a D component and a remainder:

X = dD + R

where R is perpendicular to D. The decomposition is similar to what was used to
construct reflections. The component of X in the D direction is dX, where d = D . X.
The vector scaled in the D direction is

Y = sdD + R

and is illustrated in Figure 2.6.

Y

D

R

X
D

sdD

dD

Figure 2.6 Scaling of a vector X by a scaling factor s in the direction D to produce a vector Y.
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Some algebra will show that

Y =
(

sDDT + D⊥ (
D⊥)T

)
X

where D⊥ is a unit-length vector perpendicular to the unit-length vector D.
Generally, in three dimensions you can apply scaling in three noncoordinate

axis directions D, U, and R by representing the input point in this new coordinate
system as

X = dD + uU + rR

and then scaling each of the components:

Y = s0dD + s1uU + s2rR

In matrix form, this becomes

Y =
(
s0DDT + s1UUT + s2RRT

)
X (2.26)

Exercise
2.5

Construct Equation (2.26). Hint: Use the fact that d = D . X, u = U . X, and r =
R . X. Use the construction that led to Equation (2.23) to help you decide how to
rearrange the various vector terms appropriately.

A more intuitive equation for general scaling than Equation (2.26) is obtained by
using a matrix M = [D U R]. The notation means that the first column of M is the
3 × 1 vector D, the second column is the 3 × 1 vector U, and the third column is the
3 × 1 vector R. The transpose of M is also written in a concise form,

MT =
⎡
⎣ DT

UT

RT

⎤
⎦

The notation means that the first row of M is the 1 × 3 vector DT, the second row of
M is the 1 × 3 vector UT, and the third row of M is the 1 × 3 vector RT. Let S be the
diagonal matrix of Equation (2.25). The scaling matrix becomes

s0DDT + s1UUT + s2RRT = [D U R]

⎡
⎣ s0 0 0

0 s1 0
0 0 s2

⎤
⎦

⎡
⎣ DT

UT

RT

⎤
⎦ = MSMT (2.27)

Both M and MT are rotation matrices since we are assuming that our coordinate
systems have direction vectors that are mutually perpendicular and form a right-
handed system. In words, MT rotates X to the new coordinate system, S scales the
rotated vector, and M rotates the result back to the old coordinate system.
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(x0, x1)

2(x0, x1) 2(x0 + sx1, x1)

(x0 + sx1, x1)

Figure 2.7 Shearing of points (x0, x1) in the x0 direction. As the x1 value increases for points,
the amount of shearing in the x0 direction increases.

Shearing

Shearing operations are applied less often than rotations, reflections, and scalings, but
I include them here anyway since they tend to be grouped into those transformations
of interest in computer graphics. To motivate the idea, consider a shearing in two
dimensions, as illustrated in Figure 2.7.

In two dimensions, the shearing in the x0 direction has the matrix representation

S =
[

1 s

0 1

]

This maps the point (x0, x1) to (y0, y1) = (x0 + sx1, x1), as shown in Figure 2.7. If
you want to shear in the x1 direction, the matrix is similar,

S =
[

1 0
s 1

]

This maps the point (x0, x1) to (y0, y1) = (x0, x1 + sx0).
In three dimensions, shearing is applied within planes. For example, if you want

to shear within the planes parallel to the x0x1 plane, you would use the matrix

S01 =
⎡
⎣ 1 s 0

0 1 0
0 0 1

⎤
⎦ (2.28)

to shear within each plane x2 = c (constant) in the direction of x0. Notice that
(x0, x1, x2) is mapped to (x0 + sx1, x1, x2), so only the x0 value is changed by the
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shearing. If you want to shear within these planes, but in the x1 direction, you would
use the matrix

S10 =
⎡
⎣ 1 0 0

s 1 0
0 0 1

⎤
⎦ (2.29)

In the two equations, the subscripts on the matrix names refer to the indices of the
matrix entries that contain the shearing factors.

Similarly, you can shear in the planes x1 = c (constant) in the x0 direction by
using the matrix

S02 =
⎡
⎣ 1 0 s

0 1 0
0 0 1

⎤
⎦ (2.30)

or you can shear in the x2 direction by using the matrix

S20 =
⎡
⎣ 1 0 0

0 1 0
s 0 1

⎤
⎦ (2.31)

You can shear in the planes x0 = c (constant) in the x1 direction by using the matrix

S12 =
⎡
⎣ 1 0 0

0 1 s

0 0 1

⎤
⎦ (2.32)

or you can shear in the x2 direction by using the matrix

S21 =
⎡
⎣ 1 0 0

0 1 0
0 s 1

⎤
⎦ (2.33)

Shearing in an arbitrary plane containing the origin is possible. The construction
of the matrix is similar to what was done for scaling; see Equation (2.27) and the
discussion leading to it. You rotate the input point X to the coordinate system of
interest, apply one of the coordinate scaling transformations, and then rotate the
result back to the original coordinate system. The general transformation is

[ D U R ]Sij

⎡
⎣ DT

UT

RT

⎤
⎦ (2.34)

where Sij is one of the shearing matrices from Equations (2.28) through (2.33).
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2.2.2 Affine Transformations

As noted previously, translation is not a linear transformation. However, it is what
distinguishes an affine transformation from a linear one. The definition of a linear
transformation says that a transformation of a linear combination is a linear com-
bination of the transformations. In mathematical terms, if ci are scalars and Vi are
vectors for 1 ≤ i ≤ n, and if L is a linear transformation, then

L

(
n∑

i=1

ciVi

)
=

n∑
i=1

ciL(Vi)

An affine transformation must deal with the distinction between points and vec-
tors. For the moment, I will switch back to the typesetting conventions for points and
vectors. Let P and Q be points. Let Q = A(P) be a transformation that maps points to
points. The transformation is an affine transformation when it satisfies the following
conditions:

1. Consider points Pi and Qi = A(Pi) for 1 ≤ i ≤ 4. If P2 − P1 = P4 − P3, then it
must be that Q2 − Q1 = Q4 − Q3.

2. If X = P2 − P1 and Y = Q2 − Q1, then the transformation Y = L(X) must be a
linear transformation.

This is a fancy mathematical way of saying that an affine transformation is com-
posed of two parts, one part that maps a point to a point and one part that maps a
vector to a vector. Suppose that the linear transformation is written in matrix form,
Y = MX, for some matrix M . The second condition in the definition implies

P2 = P1 + X (2.35)

and

Q2 = Q1 + Y = Q1 + MX

Since Q1 is a point, we can write it as an offset from P1; namely,

Q1 = P1 + B

for some vector B. Combining the last two displayed equations, we have

Q2 = P1 + (MX + B) (2.36)

The affine transformation between points is

Q2 = A(P2)
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Figure 2.8 Rotation of a point P about a central point C to obtain a point Q.

but Equation (2.36) says that as long as we use the same origin for the coordinate
space, we may compute the transformation in vector terms:

Y = MX + B (2.37)

You should recognize this as the standard form in which you have manipulated
vectors when translations are allowed. It is important to note that the right-hand side
of Equation (2.37) consists only of vector and matrix operations. There are no “point”
operations. Perhaps this is yet another argument why your graphics engine need not
enforce a distinction between points and vectors.

Although translation is the obvious candidate to illustrate affine transformations,
another one of interest is rotation about a point that is not at the origin, as Figure 2.8
illustrates.

The origin of the coordinate system is O = (0, 0, 0). The vector from the origin to
the center of rotation is defined by C = C − O. The rotation matrix is R. The points
are P = O + X and

Q = O + Y

= C + (O − C) + Y

= C + (Y − C)

= C + R(X − C)

= O + (C − O) + R(X − C)

= O + C + R(X − C)

Removing the point notation, the vector calculations are

Y = RX + (I − R)C (2.38)

where I is the identity matrix. The translational component of this representation for
the affine transformation is (I − R)C.
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Note: For the remainder of the book, I will use the same typesetting convention
for points and vectors. When necessary, I will state explicitly whether something is a
point or a vector.

2.2.3 Projective Transformations

Yet another class of transformations involve projections. There are different types of
projections that will interest us: orthogonal, oblique, and perspective.

Orthogonal Projection onto a Line

Orthogonal projection is the simplest type of projection to analyze. Consider the goal
of projecting a point onto a line. Figure 2.9 illustrates this.

The point X is to be projected onto a line containing a point P and having unit-
length direction D. In the figure, the point Y is the projection and has the property
that the vector X − Y is perpendicular to D; that is,

0 = D . (X − Y)

Because Y is on the line, it is of the form

Y = P + dD

for some scalar d . Substituting this in the previous displayed equation, we have

0 = D . (X − P − dD)

P X

Y

D

Figure 2.9 The orthogonal projection of a point onto a line.
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which can be solved to obtain

d = D . (X − P)

The point of projection is therefore defined by

Y − P = (D . (X − P))D = DDT(X − P)

Equivalently, the projection is

Y = DDTX +
(
I − DDT

)
P (2.39)

which is of the form Y = MX + B, therefore orthogonal projection onto a line is
an affine transformation. Unlike our previous examples, this transformation is not
invertible. Each point on a line has infinitely many points that project to it (an entire
plane’s worth), so you cannot unproject a point from the line unless you have more
information. Algebraically, the noninvertibility shows up in that M = DDT is not an
invertible matrix.

Orthogonal Projection onto a Plane

Consider projecting a point X onto a plane defined by N . (Y − P) = 0, where N is
a unit-length normal vector, P is a specified point, and Y is any point on the plane.
Figure 2.10 illustrates this.

The projection point is Y. The vector X − P has a component in the plane, Y − P,
and a component on the normal line to the plane, nN, for some scalar n. Thus,

X − P = (Y − P) + nN

N

P Y

XnN

Figure 2.10 The orthogonal projection of a point onto a plane.



2.2 Transformations 33

Dotting with N, we have

N . (X − P) = n

which uses the facts that N is unit length and Y − P is perpendicular to N. We may
solve to obtain

Y − P = (X − P) − (N . (X − P))N =
(
I − NNT

)
(X − P)

Equivalently, the projection is

Y =
(
I − NNT

)
X + NNTP (2.40)

You will notice that this is of the form Y = MX + B, therefore orthogonal projection
onto a plane is also an affine transformation. Moreover, it is not invertible since
infinitely many points in space project to the same point on the plane (an entire
line’s worth), so you cannot unproject a point from the plane unless you have more
information. Algebraically, the noninvertibility shows up in that M = I − NNT is not
an invertible matrix.

Oblique Projection onto a Plane

As before, let the plane contain a point P and have a unit-length normal vector N.
The projection of a point onto a plane does not have to be in the normal direction
to the plane. This type of projection is said to be oblique to the plane. Let D be the
unit-length direction in which to project the points. This direction should not be
perpendicular to the plane; that is, N . D �= 0. Figure 2.11 illustrates this.

N

P Y

D

X

Figure 2.11 The oblique projection of a point onto a plane.
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The projection point is Y = X + dD for some scalar d . Subtracting the known
plane point, we have

Y − P = (X − P) + dD

Dotting with N, we have

0 = N . (X − P) + dN . D

which uses the fact that Y − P is perpendicular to N. We may solve for d ,

d = −N . (X − P)

N . D

The projection is defined, therefore, by

Y − P = (X − P) − N . (X − P)

N . D
D =

(
I − DNT

DTN

)
(X − P)

Equivalently, the projection is

Y =
(

I − DNT

DTN

)
X + DNT

DTN
P (2.41)

Once again, this is of the form MX + B, therefore oblique projection onto a plane is
an affine transformation. And as with the other projections, it is not invertible.

Perspective Projection onto a Plane

We now encounter a projection that is not an affine transformation, and one that
is central to rendering—the perspective projection. Points are now projected onto
a plane, but along rays with a common origin E, called the eye point . Figure 2.12
illustrates this.

The point X is projected to the point Y. The ray to use has origin E, but the
direction is determined by the vector X − E. At the moment there is no need to use a
unit-length vector for the direction. As a ray point, we have

Y = E + t (X − E)

for some scalar t > 0. Subtract the known plane point P to obtain

Y − P = (E − P) + t (X − E)

and dot with N to obtain

0 = N . (E − P) + tN . (X − E)
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N E

P Y

X

Figure 2.12 The perspective projection of a point onto a plane using an eye point E.

This uses the fact that Y − P is perpendicular to the plane normal N. Solving for t ,
we have

t = − N . (E − P)

N . (X − E)

To reaffirm the constraint that t ≥ 0, Figure 2.12 shows the vectors P − E and X − E.
Both vectors form an obtuse angle with the normal vector, so N . (P − E) < 0 and
N . (X − E) < 0, which imply t > 0.

The projection point is, therefore, defined by

Y = E − N . (E − P)

N . (X − E)
(X − E) =

(
ENT − N . (E − P)I

)
(X − E)

N . (X − E)
(2.42)

where I is the identity matrix. It is not possible to write the expression in the form
Y = MX + B, where M and B are independent of X. What prevents this is the divi-
sion by N . (X − E). You will hear reference to this division as the perspective divide.
However, Section 2.2.5 will show a unifying format for representing linear, affine, and
perspective transformations.

Exercise
2.6

The point X is “behind the eye” when the distance from X to the plane is larger than
or equal to the distance from E to the plane. In this case, prove that the ray from E to
X cannot intersect the plane.

2.2.4 Properties of Perspective Projection

Consider the coordinate system whose origin is the eye point, whose view direction
is D, whose up direction is U, and whose right direction is R = D × U. The point to
be projected has a representation in this coordinate system as

X = E + dD + uU + rR
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where d = D . (X − E), u = D . (X − E), and r = D . (X − E). The plane normal is in
the opposite direction of the view; namely, N = −D. The point on the plane closest
to the eye point is P = E + dminD for some distance dmin > 0. Substituting all this
into Equation (2.42), we have the projected point

Y = E + dmin(dD + uU + rR)

d
= E + dD + uU + rR

d/dmin

Thus, in the new coordinate system, (d , u, r) is projected to (d , u, r)/(d/dmin).
Notice that the first component is actually dmin, which is to be expected since the
projection point is on the plane d = dmin (in the new coordinate system).

Within the new coordinate system, it is relatively easy to demonstrate some prop-
erties of perspective projection. In all of the cases mentioned here, the objects are
assumed to be in front of the eye point; that is, all points on the objects are closer to
the projection plane than the eye point. Line segments must project to line segments,
or to a single point when the line segment is fully contained by a single ray emanat-
ing from E. Triangles must project to triangles, or to a line segment when the triangle
and E are coplanar. Finally, conic sections project to conic sections, with the degen-
erate case of a conic section projecting to linear components when the conic section
is coplanar with E. A consequence of verifying these properties is that we will have an
idea of how uniformly spaced points on a line segment are projected to nonuniformly
spaced points. This relationship is important in perspective projection for rendering,
in particular when depth must be computed (which is nearly always) and in interpo-
lating vertex attributes.

Lines Project to Lines

Consider a line segment with endpoints Qi = (di , ui , ri) for i = 0, 1. Using only the
two components relevant to the projection plane, let the corresponding projected
points be Pi = (ui/wi , ri/wi), with wi = di/dmin for i = 0, 1. The 3D line segment is
Q(s) = Q0 + s(Q1 − Q0) for s ∈ [0, 1]. For each s, let P(s) be the projection of Q(s).
Thus,

Q(s) = (d0 + s(d1 − d0), u0 + s(u1 − u0), r0 + s(r1 − r0))

and

P(s) =
(

u0 + s(u1 − u0)

w0 + s(w1 − w0)
,

r0 + s(r1 − r0)

w0 + s(w1 − w0)

)

=
(

u0

w0

+ w1s

w0 + (w1 − w0)s

(
u1

w1

− u0

w0

)
,

r0

w0

+ w1s

w0 + (w1 − w0)s

(
r1

w1

− r0

w0

))
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= P0 + w1s

w0 + (w1 − w0)s
(P1 − P0)

= P0 + s̄(P1 − P0)

where the last equality defines

s̄ = w1s

w0 + (w1 − w0)s
(2.43)

a quantity that is also in the interval [0, 1]. We have obtained a parametric equation
for a 2D line segment with endpoints P0 and P1, so in fact line segments are projected
to line segments, or if P0 = P1, the projected segment is a single point. The inverse
mapping from s̄ to s is actually important for perspectively correct rasterization, as
we will see later:

s = w0s̄

w1 + (w0 − w1)s̄
(2.44)

Exercise
2.7

Construct Equation (2.44) from Equation (2.43).

Equation (2.43) has more to say about perspective projection. Assuming w1 > w0,
a uniform change in s does not result in a uniform change in s̄. The graph of s̄ = F(s)

is shown in Figure 2.13.
The first derivative is F ′(s) = w0w1/[w0 + s(w1 − w0)]2 > 0, and the second

derivative is F ′′(s) = −2w0w1/[w0 + s(w1 − w0)]3 < 0. The slopes of the graph at the
endpoints are F ′(0) = w1/w0 > 1and F ′(1) = w0/w1 < 1. Since the second derivative
is always negative, the graph is concave. An intuitive interpretation is to select a
set of uniformly spaced points on the 3D line segment. The projections of these

1

0
0 1

s

s-

Figure 2.13 The relationship between s and s̄.
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points are not uniformly spaced. More specifically, the spacing between the projected
points decreases as s̄ increases from 0 to 1. The relationship between s and s̄ and
limited floating-point precision are what contribute to depth buffering artifacts, to
be discussed later.

Triangles Project to Triangles

Because line segments project to line segments, we can immediately assert that trian-
gles project to triangles, although possibly degenerating to a line segment. However,
let’s derive the parametric relationships that are analogous to those of Equations
(2.43) and (2.44) anyway.

Let Qi = (di , ui , ri) for i = 0, 1, 2 be the vertices of a triangle. The triangle is
specified parametrically as Q(s , t) = Q0 + s(Q1 − Q0) + t (Q2 − Q0) for 0 ≤ s ≤ 1,
0 ≤ t ≤ 1, and s + t ≤ 1. Let the projected points for the Qi be Pi = (ui/wi , ri/wi)

for i = 0, 1, 2, where wi = di/dmin. For each s and t , let P(s , t) be the projection
of Q(s , t). Some algebra will show the following, where � = w0 + (w1 − w0)s+
(w2 − w0)t ,

P(s , t) =
(

u0 + s(u1 − u0) + t (u2 − u0)

�
,
r0 + s(r1 − r0) + t (r2 − r0)

�

)

=
(

u0

w0

+ w1s

�

(
u1

w1

− u0

w0

)
+ w2t

�

(
u2

w2

− u0

w0

)
,

y0

w0

+ w1s

�

(
r1

w1

− r0

w0

)

+w2t

�

(
r2

w2

− r0

w0

))

= P0 + w1s

�
(P1 − P0) + w2t

�
(P2 − P0)

Define

(s̄ , t̄ ) = (w1s , w2t)

w0 + (w1 − w0)s + (w2 − w0)t
(2.45)

in which case the projected triangle is

P(s , t) = P0 + s̄(P1 − P0) + t̄ (P2 − P0)

The inverse mapping can be used by the rasterizers for perspectively correct triangle
rasterization. The inverse is

(s , t) = (w0w2s̄ , w0w1t̄ )

w1w2 + w2(w0 − w1)s̄ + w1(w0 − w2)t̄
(2.46)
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Exercise
2.8

Construct Equation (2.46) from Equation (2.45).

Conics Project to Conics

Showing that the projection of a conic section is itself a conic section requires a bit
more algebra. Let Qi = (xi , yi , zi) for i = 0, 1, 2 be points such that Q1 − Q0 and
Q2 − Q0 are unit length and orthogonal. The points in the plane containing the Qi

are represented by Q(s , t) = Q0 + s(Q1 − Q0) + t (Q2 − Q0) for any real numbers s

and t . Within that plane, a conic section is defined by

As2 + Bst + Ct2 + Ds + Et + F = 0 (2.47)

To show that the projection is also a conic, substitute the formulas in Equation (2.46)
into Equation (2.47) to obtain

Ās̄2 + B̄s̄t̄ + C̄t̄2 + D̄s̄ + Ēt̄ + F̄ = 0 (2.48)

where

Ā = w2
2

(
w2

0A + w0(w0 − w1)D + (w0 − w1)
2F

)

B̄ = w1w2

(
w2

0B + w0(w0 − w2)D + w0(w0 − w1)E + 2(w0 − w1)(w0 − w2)F
)

C̄ = w2
1

(
w2

0C + w0(w0 − w2)E + (w0 − w2)
2F

)
D̄ = w1w

2
2

(
w0D + 2(w0 − w1)F

)
Ē = w2

1w2

(
w0E + 2(w0 − w2)F

)
F̄ = w2

1w
2
2F .

A special case is D = E = F = 0, in which case the conic is centered at Q0 and has axes
Q1 − Q0 and Q2 − Q0. Consequently, Ā = w2

2w
2
0A, B̄ = w1w2w

2
0B, C̄ = w2

1w
2
0C,

and B̄2 − 4ĀC̄ = B2 − 4AC. The sign of B2 − 4AC is preserved, so ellipses are
mapped to ellipses, hyperbolas are mapped to hyperbolas, and parabolas are mapped
to parabolas.

Exercise
2.9

At the beginning of the discussion about projecting line segments, triangles, and
conic sections, the assumption was made that all points on these objects are in front
of the eye point. What can you say about the projections of the objects when some
points are behind the eye point?
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2.2.5 Homogeneous Points and Matrices

We have seen that linear transformations are of the form

Y = MX

where X is the 3 × 1 input vector, Y is the 3 × 1 output vector, and M is a 3 × 3 matrix
of constants. Affine transformations extend this to

Y = MX + B

where B is a 3 × 1 vector of constants. The perspective transformation did not fit
within this framework. Equation (2.42) is of the form

Y = M(X − E)

N . (X − E)

We can unify these into a single matrix representation by introducing the concept
of homogeneous points, which are represented as 4-tuples but written as 4 × 1 vec-
tors when used in matrix-vector operations, and homogeneous matrices, which are
represented as 4 × 4 matrices.

Using the standard naming conventions that graphics practitioners have used for
homogeneous points, the 4-tuples are of the form (x , y , z, w). I had already hinted
at using 4-tuples to distinguish between points and vectors; see Section 2.1.3. The 4-
tuple represents a point when w = 1, so (x , y , z, 1) is a point. The 4-tuple represents
a vector when w = 0, so (x , y , z, 0) is a vector. In computer graphics, though, there
is more to homogeneous points than specifying w to be zero or one.

Defining points as 4-tuples already allows us to unify linear and affine transfor-
mations into a single matrix representation. Specifically, the linear transformation is
currently of the form

⎡
⎣ y0

y1
y2

⎤
⎦ = Y = MX =

⎡
⎣ m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦

⎡
⎣ x0

x1
x2

⎤
⎦

Appending a fourth component of 1 to the vectors and increasing the size of the
matrix, adding certain entries as needed, this equation becomes

⎡
⎢⎢⎣

y0
y1
y2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m00 m01 m02 0
m10 m11 m12 0
m20 m21 m22 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0
x1
x2
1

⎤
⎥⎥⎦

A convenient block-matrix form is
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[
Y

1

]
=

[
M 0

0T 1

] [
X

1

]

The output vector has an upper block that is the 3 × 1 vector Y. The lower block is
the (1× 1) scalar 1. The input vector is structured similarly. The matrix of coefficients
has the following structure. The upper-left block is the 3 × 3 matrix M ; the upper-
right block is the 3 × 1 zero vector; the lower-left block is the 1 × 3 zero vector; and
the lower-right block is the (1 × 1) scalar 1.

Similarly, the affine transformation currently is

⎡
⎣ y0

y1
y2

⎤
⎦ = Y = MX + B =

⎡
⎣ m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦

⎡
⎣ x0

x1
x2

⎤
⎦ +

⎡
⎣ b0

b1
b2

⎤
⎦

but may be extended to use 4 × 1 points and a 4 × 4 matrix,

⎡
⎢⎢⎣

y0
y1
y2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m00 m01 m02 b0
m10 m11 m12 b1
m20 m21 m22 b2

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0
x1
x2
1

⎤
⎥⎥⎦

It also has a block-matrix form,[
Y

1

]
=

[
M B

0T 1

] [
X

1

]

The perspective transformation can almost be made to fit into this framework,
with two notable exceptions. First, the choice of w = 1 for the input is acceptable, but
the output value for w is generally nonzero and not 1. Second, we still cannot handle
the perspective divide. Despite this, consider the following block-matrix expression
that gets us closer to our goal:

[
Y

1

]
∼

[
Y′

w

]
=

[
M(X − E)

NT(X − E)

]
=

[
M −ME

NT −NTE

] [
X

1

]
(2.49)

where M = ENT − N . (E − P)I . The leftmost expression is what we want to con-
struct, where Y is the output vector defined by Equation (2.42). The remaining
portions of the expression are what we can construct using matrix operations. The
output of these operations has a 3 × 1 vector Y′, which is not the actual output we
want. The output also has a w component, which is not necessarily 1. However, if we
were to perform the perspective divide, we obtain

Y = Y′/w
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1

(x1, mx1)

(x2, 0)

(1/m, 1)

(x0, mx0)

w

x

Figure 2.14 All homogeneous points along a line of slope m, excluding the origin, are equivalent
to the homogeneous point (1/m, 1). The points with a w-component of zero are
vectors and are said to be equivalent to the point at infinity.

The division is not a matrix operation, because it involves a quantity dependent on
the input X. The use of the symbol ∼ in[

Y

1

]
∼

[
Y′

w

]

indicates that the 4-tuples are not equal but equivalent in the sense that the division
by w does produce two equal 4-tuples. This equivalence is the basis for projective
geometry.

To understand the equivalence in two dimensions, look at Figure 2.14. The figure
shows a couple of homogeneous points, (x0, mx0) and (x1, mx1), on the line of
slope m. All homogeneous points on this line, excluding the origin, are equivalent
to (1/m, 1). The homogenenous point (x2, 0) corresponds to a vector since its w-
component is zero. The division by zero cannot be performed, but the point is said
to be equivalent to the point at infinity.

Now that we have the concept of equivalence of homogeneous points, notice that
the matrix operations in the linear and affine transformations produce outputs whose
w-component is 1. If we were to divide by w anyway, we would obtain the correct re-
sults for the transformations. This allows us finally to have a unifying representation
for linear, affine, and perspective transformations—as homogeneous matrix opera-
tions. The most general form allows for inputs to have w-components that are not 1:[

Y′

w1

]
=

[
MX′ + w0B

CTX′ + dw0

]
=

[
M B

CT d

] [
X′

w0

]
(2.50)



2.3 Cameras 43

When necessary, the equivalent point is computed by doing the perspective division.
Linear transformations are characterized by B = 0, C = 0, d = 1, w0 = 1, and w1 =
0. Affine transformations are characterized by C = 0, d = 1, w0 = 1, and w1 = 0.
Perspective transformations occur when C �= 0 and, as long as w1 �= 0, you obtain
the actual 3D projection point by doing the perspective divide.

Homogeneous transformations, specifically projective ones, are a major part of
culling and clipping of triangles against the planes defining a view frustum; see Sec-
tions 2.3.5 and 2.4.3. They also occur in special effects such as planar projected shad-
ows (Section 20.11), planar reflections (Section 20.10), projected textures (Section
20.12), and shadow maps (Section 20.13).

2.3 Cameras

Only a portion of the world is displayed at any one time. This region is called the view
volume. Objects outside the view volume are not visible and therefore not drawn.
The process of determining which objects are not visible is called culling . Objects
that intersect the boundaries of the view volume are only partially visible. The visible
portion of an object is determined by intersecting it with the view volume, a process
called clipping .

The display of visible data is accomplished by projecting it onto a view plane.
In this book I consider only perspective projection, as discussed in Sections 2.2.3
through 2.2.5. Orthogonal projection may also be used for viewing. In a graphics
API, this amounts to choosing the parameters for a projection matrix.

2.3.1 The Perspective Camera Model

Our assumption is that the view volume is a bounded region in space, so the projected
data lies in a bounded region in the view plane. A rectangular region in the view plane
that contains the projected data is called a viewport . The viewport is what is drawn
on the rectangular computer screen. The standard view volume used is called the view
frustum. It is constructed by selecting an eye point and forming an infinite pyramid
with four planar sides. Each plane contains the eye point and an edge of the viewport.
The infinite pyramid is truncated by two additional planes called the near plane and
the far plane. Figure 2.15 shows a view frustum.

The perspective projection is computed by intersecting a ray with the view plane.
The ray has origin E, the eye point, and passes through the world point X. The
intersection point is Y. Equation (2.42) tells you how to construct Y from X as long
as you know the eye point and the equation of the view plane, which I mention in the
next paragraph. The combination of an eye point, a set of coordinate axes assigned to
the eye point, a view plane, a viewport, and a view frustum is called a camera model.

The camera has a coordinate system associated with it. The camera origin is the
eye point E. The camera view direction is a unit-length vector D that is perpendicular
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E

Y

X

Near

Far

Figure 2.15 An eye point E and a view frustum. The point X in the view frustum is projected to
the point Y in the viewport.

to the view plane. This direction vector is chosen to point away from the observer,
so the eye point is considered to be on the negative side of the plane. If the view
plane is at a distance dmin from the eye point, measured in the D direction, then the
view plane normal to use in Equation (2.42) is N = −D and the view plane point
to use is P = E + dminD. The camera up vector is the unit-length U vector chosen
to be parallel to two opposing edges of the viewport. The camera right vector is the
unit-length vector R chosen to be perpendicular to the camera direction and camera
up vector with R = D × U. The coordinate system {E; D, U, R} is a right-handed
system.

Figure 2.16 shows the camera model, including the camera coordinate system and
the view frustum. The six frustum planes are labeled with their names: near, far, left,
right, bottom, top. The camera location E and the camera axis directions D, U, and R
are shown. The view frustum has eight vertices. The near-plane vertices are Vt�, Vb�,
Vtr , and Vbr . Each subscript consists of two letters, the first letters of the frustum
planes that share that vertex. The far-plane vertices have the name W and use the
same subscript convention. The equations for the vertices are

Vb� = E + dminD + uminU + rminR

Vt� = E + dminD + umaxU + rminR

Vbr = E + dminD + uminU + rmaxR

Vtr = E + dminD + umaxU + rmaxR

(2.51)



2.3 Cameras 45

Wb� = E + dmax

dmin

(
dminD + uminU + rminR

)

Wt� = E + dmax

dmin

(
dminD + umaxU + rminR

)

Wbr = E + dmax

dmin

(
dminD + uminU + rmaxR

)

Wtr = E + dmax

dmin

(
dminD + umaxU + rmaxR

)
The near plane is at a distance dmin from the camera location and the far plane is at a
distance dmax. These distances are the extreme values in the D direction. The extreme
values in the U direction are umin and umax. The extreme values in the R direction are
rmin and rmax.

The equations of the six view frustum planes are provided here in the form that
is used for object culling. The near plane has inner-pointing, unit-length normal D.
A point on the plane is E + dminD. An equation of the near plane is

D . X = D . (E + dminD) = D . E + dmin (2.52)

The far plane has inner-pointing, unit-length normal −D. A point on the plane
is E + dmaxD. An equation of the far plane is

−D . X = −D . (E + dmaxD) = −(D . E + dmax) (2.53)

The left plane contains the three points E, Vt�, and Vb�. A normal vector that
points inside the frustum is

(Vb� − E) × (Vt� − E) = (dminD + uminU + rminR) × (dminD + umaxU + rminR)

= (dminD + rminR) × (umaxU) + (uminU) × (dminD + rminR)

= (dminD + rminR) × ((umax − umin)U)

= (umax − umin)(dminD × U + rminR × U)

= (umax − umin)(dminR − rminD)

An inner-pointing, unit-length normal and the left plane are

N� = dminR − rminD√
d2

min + r2
min

, N�
. (X − E) = 0 (2.54)

An inner-pointing normal to the right plane is (Vtr − E) × (Vbr − E). A similar
set of calculations as before will lead to an inner-pointing, unit-length normal and
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Figure 2.16 (a) A 3D drawing of the view frustum. The left, right, bottom, top, near, and far
planes are labeled, as are the eight vertices of the frustum. (b) A 2D drawing of the
view frustum as seen from the top side. (c) A 2D drawing of the view frustum as seen
from the right side.

the right plane:

Nr = −dminR + rmaxD√
d2

min + r2
max

, Nr
. (X − E) = 0 (2.55)
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Similarly, an inner-pointing, unit-length normal and the bottom plane are

Nb = dminU − uminD√
d2

min + u2
min

, Nb
. (X − E) = 0 (2.56)

An inner-pointing, unit-length normal and the top plane are

Nt = −dminU + umaxD√
d2

min + u2
max

, Nt
. (X − E) = 0 (2.57)

It is common when choosing a camera model to have an orthogonal view frus-
tum. The frustum is symmetric in that umin = −umax and rmin = −rmax. The four
independent frustum parameters are dmin, dmax, umax, and rmax. An alternate way to
specify the frustum is to use the field of view in the U direction and the aspect ra-
tio for the viewport. In Figure 2.16 (c), the field of view is the angle 2θu. The aspect
ratio is the width divided by height, in this case ρ = rmax/umax. The frustum is com-
pletely determined by specifying dmin, dmax, θu, and ρ. The values for umax and rmax
are determined from

umax = dmin tan(θu), rmax = ρumax (2.58)

The term orthogonal is used in this context to refer to the fact that the central axis
of the frustum is orthogonal to the near face of the frustum. It does not refer to an
orthographic projection.

Although every indication so far is that the projections of the points will be to the
entire rectangular viewport of the view frustum, there are circumstances when you
want to view a scene only in a subrectangle of the viewport. Using relative measure-
ments, the full viewport is thought of as a unit square, as shown in Figure 2.17.

The full viewport has relative coordinates between 0 and 1. A smaller viewport is
specified by choosing p�, pr , pb, and pt so that 0 ≤ p� < pr ≤ 1 and 0 ≤ pb < pt ≤
1. These relative coordinates will come into play when computing the actual pixel
locations to draw in a window. The range of d values is [dmin, dmax]. A relative depth
range is [0, 1]. The value 0 corresponds to dmin and the value 1 corresponds to dmax.
Some applications might want the depth range to be a subset [pn, pf ]⊆ [0, 1].

In summary, you specify a perspective camera model by choosing an eye point
E; a right-handed orthonormal set of coordinate axis directions D (view direction),
U (up direction), and R (right direction); the view frustum values dmin (near-plane
distance from the eye point), dmax (far-plane distance from the eye point), rmin
(minimum in right direction), rmax (maximum in right direction), umin (minimum
in up direction), and umax (maximum in up direction); the viewport values p� (left),
pr (right), pb (bottom), and pt(top); and the depth range pn (near) and pf (far).
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pt

pb

p pr

rmaxrmin

umin

umax 1

10
0

Figure 2.17 The full viewport of the view frustum is the full rectangle on the view plane. A smaller
viewport is shown.

2.3.2 Model or Object Space

Three-dimensional modeling packages have their own specified coordinate systems
for building polygonal models. I call the space in which the models are built model
space. Others sometimes call this object space. I suppose if you are used to the art
content being called models, you use model space, and if you are used to the content
being called objects, you use object space.

2.3.3 World Space

The coordinate system that is most prominent in a game is the world coordinate
system, or world space. The choice is not important from a theoretical standpoint.
From a practical standpoint, the choice might be related to constraints you place on
the artists regarding the coordinate systems they use in their modeling packages. For
example, if a modeling package has the convention that the positive y-axis is in the
upward direction, then you might very well choose the world coordinates to use the
positive y-axis for the upward direction. Most likely if you chose a world coordinate
system for your previous project, you will choose the same one for the next project.

The main problem in dealing with both a world space and a model space is
positioning, orienting, and possibly scaling the models so that they are correctly
placed in the world. For example, Figure 2.18 (a) shows a tetrahedron built in a
coordinate system provided by a modeling package.

The tetrahedron vertices in model space are P0 = (0, 0, 0), P1 = (1, 0, 0), P2 =
(0, 1, 0), and P3 = (0, 0, 1). We want each tetrahedron vertex Pi to be located in world
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P2 = (0, 1, 0)

P0

Q2

Q0

Q1

Q3P3 = (0, 0, 1)

P1 = (1, 0, 0)

U

O R

D

y

x

z

(a) Object in model space (b) Object in world space

Figure 2.18 (a) A tetrahedron built in the model coordinate system. The origin is (0, 0, 0) and the
up direction is (0, 1, 0). (b) The tetrahedron placed in the world coordinate system
whose origin is O, whose view direction is D, whose up direction is U = (0, 0, 1),
and whose right direction is R.

space at the point Qi = O + diD + uiU + riR, 0 ≤ i ≤ 3. This is accomplished by
constructing an affine transformation that maps the point P0 to the point Q0 and that
maps the vectors Pi − P0 to the vectors Qi − Q0 for 1 ≤ i ≤ 3. The transformation is

Q = Q0 + M(P − P0)

where M(Pi − P0) = Qi − Q0. In algebraic terms, we need

M [ P1 − P0 P2 − P0 P3 − P0 ]= [ Q1 − Q0 Q2 − Q0 Q3 − Q0 ]

where the two block matrices have columns using the vectors as indicated. The matrix
M is therefore

M = [ Q1 − Q0 Q2 − Q0 Q3 − Q0 ] [ P1 − P0 P2 − P0 P3 − P0 ]−1

The matrix M is said to be the model-to-world transformation for the tetrahedron,
sometimes called the model transformation and sometimes called the world transfor-
mation. Other transformations involved in converting model-space points to points
in other spaces have names that indicate the range of the transformation—the set of
outputs from the transformation. To be consistent with this terminology, I will use
the term world transformation.

Given a 3 × 3 matrix M , which represents scaling, rotation, reflection, shearing,
and other linear operations, given a 3 ×1 translation vector B, and given a 3 ×1
model-space point Xmodel, the corresponding 3 × 1 world-space point Xworld is
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generated by the homogeneous equation[
Xworld

1

]
=

[
M B

0T 1

] [
Xmodel

1

]
= Hworld

[
Xmodel

1

]
(2.59)

The matrix Hworld is the world matrix in homogeneous form. Naturally, as long as M

is invertible, we can map world-space points to model-space points by[
Xmodel

1

]
=

[
M−1 −M−1B

0T 1

] [
Xworld

1

]
= H−1

world

[
Xworld

1

]
(2.60)

where H−1
world is the inverse world matrix in homogeneous form.

In the sample applications that ship with Wild Magic, the choice of the world
space varies. Any objects that are loaded from disk are repositioned or reoriented as
needed so that they are placed correctly in the world.

2.3.4 View, Camera, or Eye Space

So far we know about model space, the space where objects are created by the artists,
and we know about world space, the space for the game environment itself. The
objects are loaded into the game, but it is necessary to associate with them their world
transformations. Model-space points are mapped to world-space points as needed.

A world-space point may also be located within the camera coordinate system.
Once it is, the point is said to be in view space or camera space or eye space (all used
by various people in the industry). The point must be represented as

Xworld = E + dD + uU + rR

where {E; D, U, R} is the coordinate system for the camera. The coefficients are

d = D . (Xworld − E), u = U . (Xworld − E), r = R . (Xworld − E)

The eye point and camera directions are chosen to be consistent with your world
coordinate system. In the beginning, there was nothing—except for Cartesian space.
Your intent is to fill Cartesian space with your beautiful creations, and then place an
observer in the world to admire them. Of course, this requires you to impose a world
coordinate system. In many cases, you will have an idea of which direction you want
to be the up direction. Two directions perpendicular to the up direction are chosen to
complete your coordinate axes. The choice of origin is made. The world coordinates
are of your choosing. How you position and orient the observer is a separate matter.
Nothing prevents you from placing the observer on the ground standing on his head!
However, the typical placement will be to have the observer’s up direction align with
the world’s up direction. What the observer sees is determined by your camera model.
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The coefficients of X in the camera coordinate system are stored in a 3 × 1 vector
and referred to as the view coordinates for the world point,

Xview =
⎡
⎣ r

u

d

⎤
⎦ =

⎡
⎣ R . (Xworld − E)

U . (Xworld − E)

D . (Xworld − E)

⎤
⎦ =

⎡
⎣ RT

UT

DT

⎤
⎦ (Xworld − E)

= [ R U D ]T (Xworld − E)

where the first equality defines Xview. Please observe that I am listing the components
in the order (r , u, d), not in the natural order (d , u, r) that is associated with the
coordinate system {E; D, U, R}! Effectively, (r , u, d) are the coordinates for the per-
muted coordinate system {E; R , U, D}, which happens to be left-handed. The Wild
Magic software renderer implements the camera model in this way so that the last
component of Xview is the view direction component. This choice was made to be
consistent with the camera model of Direct3D, which is left-handed. OpenGL’s cam-
era coordinate system is internally stored as {E; R , U, −D}, which is right-handed.
My initial attempt at dealing with this choice was to apply a sign change to the in-
ternal representation to produce D. Having a consistent ordering is particularly im-
portant in vertex shader programs that transform and manipulate points and vectors
in view space. My goal is to allow for the vertex shader programs to work with Wild
Magic’s software renderer, with the Direct3D renderer, and with the OpenGL ren-
derer. The sample application for spherical environment mapping is a prototypical
example where you manipulate view-space data.

Struggling with all the graphics APIs to make them consistent amounted to mak-
ing programmatic adjustments to information obtained by API calls. For example,
the camera coordinate system may be specified through Direct3D’s utility functions
D3DXDXMATRIXLookAt*. In OpenGL, the camera coordinate system may be specified
through the utility function gluLookAt. For projections, Direct3D has utility func-
tions D3DXMatrixPerspective* and D3DXMatrixOrtho*, whereas OpenGL has func-
tions glFrustum and glOrtho. In the end, I tired of struggling and simply set the
matrices directly—according to the coordinate system conventions I wanted, not the
ones the graphics APIs want. The renderers were greatly simplified and a lot of code
was factored into the base class for the renderers, a pleasant consequence. More de-
tails about this issue are found in Sections 2.8.3 and 2.8.4.

In homogeneous matrix form,

[
Xview

1

]
=

[
QT −QTE

0T 1

] [
Xworld

1

]
= Hview

[
Xworld

1

]
(2.61)

where Q = [R U D]is the orthogonal matrix whose columns are the specified vectors.
The homogenous matrix Hview in Equation (2.61) is referred to as the view matrix
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and maps points from world space to view space. Points may be mapped from view
space to world space using the inverse,

[
Xworld

1

]
=

[
Q E

0T 1

] [
Xview

1

]
= H−1

view

[
Xview

1

]
(2.62)

Just a reminder: Section 2.8.3 goes into great detail on the view matrix representation
for Wild Magic, OpenGL, and Direct3D. These details were essential in making a
single vertex shader program work for all the graphics APIs. You should definitely
read the details if you plan on using more than one graphics API.

2.3.5 Clip, Projection, or Homogeneous Space

We are now ready to take our points in view coordinates and project them to obtain
2D coordinates for the screen. The process is factored into a few steps. The first step
is to look more closely at the projection of Equation (2.42). We already looked at the
projection in terms of camera coordinates in Section 2.2.4. The presentation here is in
terms of homogeneous matrices so that you become comfortable with this approach
rather than always relying on manipulating one component of a vector at a time.

The eye point E was chosen to be on the side of the projection plane (view
plane) to which the normal vector N points. For our camera model, this direction
is opposite to the view direction; namely, N = −D. A point on the view plane is P =
E + dminD. Using these choices and dividing the numerator and the denominator by
−1, Equation (2.42) becomes

Y =
(

EDT + dminI
)
(X − E)

DT(X − E)

The homogeneous form of this equation, which by convention does not include
the perspective divide, and whose general form is Equation (2.49), is shown in the
following equation:

[
Y′

world

wworld

]
=

[
EDT + dminI −(EDT + dminI )E

DT −DTE

] [
Xworld

1

]

Notice that I have subscripted the various terms to make it very clear that they are
quantities in world coordinates. Since we already know how to map points from
model space to world space, and then from world space to view space, it will be
convenient to formulate the homogeneous equation so that its inputs are points in
view space and its outputs are points in homogeneous view space, so to speak. We can
convert the output from world space to view space using the view matrix of Equation
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(2.61), replace the world-space input with the inverse view matrix of Equation (2.62)
times the view-space input, and use M = EDT + dminI to obtain

[
Y′

view

wview

]
=

[
QT −QTE

0T 1

] [
Y′

world

wworld

]

=
[

QT −QTE

0T 1

] [
M −ME

DT −DTE

] [
Xworld

1

]

=
[

QT −QTE

0T 1

] [
M −ME

DT −DTE

] [
Q E

0T 1

] [
Xview

1

]

=
[

dminQ
T −dminQ

T E

DT −DTE

] [
Q E

0T 1

] [
Xview

1

]

=
[

dminI 0

DTQ 0

] [
Xview

1

]

=
[

dminXview

DTQXview

]

=

⎡
⎢⎢⎢⎢⎣

dminr

dminu

dmind

d

⎤
⎥⎥⎥⎥⎦

(2.63)

where you will recall that Xview = (r , u, d). The perspective divide produces the
actual projection,

Yproj =
Y′

view

wview

=
⎡
⎣

dminr

d
dminu

d

dmin

⎤
⎦ (2.64)

The last component of Yproj makes sense because the view plane is dmin units of
distance from the eye point and we designed the projection to be onto the view plane.

The axis of the view frustum is the ray that contains both the origin and the center
point of the viewport. This ray is parameterized by d in view coordinates as

(
(rmin + rmax)d

2dmin

,
(umin + umax)d

2dmin

, d

)
, dmin ≤ d ≤ dmax
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It is convenient to transform the (possibly) skewed view frustum into an orthogonal
frustum with viewport [−1, 1]2. We accomplish this by removing the skew, then
scaling the result:

r ′ = 2

rmax − rmin

(
dminr − rmin + rmax

2
d

)
,

u′ = 2

umax − umin

(
dminu − umin + umax

2
d

) (2.65)

To keep consistent with the primed notation r ′ and u′, define

w′ = d (2.66)

The view frustum is now delimited by |r ′| ≤ w′, |u′| ≤ w′, and dmin ≤ w′ ≤ dmax. The
projection is (r ′/w′, u′/w′), so |r ′/w′| ≤ 1 and |u′/w′| ≤ 1.

It is also convenient to transform the d-values in [dmin, dmax] so that the new
range is [0, 1]. This is somewhat tricky because the transformation should be con-
sistent with the perspective projection. The affine transformation d ′ = (d − dmin)/

(dmax − dmin) is not the correct one to use. Equation (2.43) saves the day. The d-
values in [dmin, dmax] can be written as

d = (1 − s)dmin + sdmax

for s ∈ [0, 1]. We can solve this for s = (d − dmin)/(dmax − dmin) and use Equation
(2.43) with w0 = dmin, the minimum w′-value, and w1 = dmax, the maximum w′-
value, to obtain

s̄ = w1s

w0 + (w1 − w0)s
= dmax

dmax − dmin

(
1 − dmin

d

)

Observe that s̄ ∈ [0, 1]. This value plays the role of a normalized depth in rendering.
The equation for s̄ already has the perspective division. Before division, we can define

d ′ = dmax

dmax − dmin

(
d − dmin

)
(2.67)

so that s̄ = d ′/w′.
Equations (2.65) through (2.67) may be combined into a homogeneous matrix

transformation that maps (r , u, d , 1) to (r ′, u′, d ′, w′):
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Xclip =

⎡
⎢⎢⎢⎢⎣

r ′

u′

d ′

w′

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2dmin
rmax−rmin

0 −(rmax+rmin)

rmax−rmin
0

0 2dmin
umax−umin

−(umax+umin)

umax−umin
0

0 0 dmax
dmax−dmin

−dmaxdmin
dmax−dmin

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r

u

d

1

⎤
⎥⎥⎥⎥⎦

= Hproj

[
Xview

1

]

(2.68)

This equation defines two quantities, the homogeneous projection matrix Hproj and
the homogeneous point Xclip, which is a point said to be in clip space and its compo-
nents are referred to as clip coordinates.

Clip coordinates are used both for culling back-facing triangles and for clipping
triangles against the view frustum. Although you could do these calculations in world
space or in view space, the number of calculations is fewer in clip space. Moreover,
the access to the graphics pipeline provided via vertex shaders essentially requires you
to compute points in clip coordinates, which are then returned to the graphics driver
for rasterization.

All that said, you might have looked at Equation (2.68) and concluded that it
looks neither like OpenGL’s projection matrix nor like Direct3D’s projection ma-
trix. I will explicitly compare these in Sections 2.8.3 and 2.8.4. Suffice it to say that
my OpenGL and Direct3D renderers have been implemented to use the exact same
view and projection matrices, thereby ignoring the defaults that occur when you go
through utility functions provided by the graphics APIs.

Just as I have provided the inverses for the world matrix and the view matrix, the
inverse of the projection matrix is

H−1
proj =

⎡
⎢⎢⎢⎢⎢⎣

rmax−rmin
2dmin

0 0 rmax+rmin
2dmin

0 umax−umin
2dmin

0 umax+umin
2dmin

0 0 0 1

0 0 − dmax−dmin
dmaxdmin

1
dmin

⎤
⎥⎥⎥⎥⎥⎦ (2.69)
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2.3.6 Window Space

The clip-space point (r ′, u′, d ′, w′) has the properties that |r ′| ≤ w′, |u′| ≤ w′,
0 ≤ d ′ ≤ dmax, and dmin ≤ w′ ≤ dmax. We finally perform the perspective division
to obtain

Xndc =

⎡
⎢⎢⎣

r ′′
u′′
d ′′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r ′/w′
u′/w′
d ′/w′
w′/w′

⎤
⎥⎥⎦ (2.70)

where r ′′ ∈ [−1, 1], u′′ ∈ [−1, 1], and d ′′ ∈ [0, 1]. The 3-tuples (r ′′, u′′, d ′′) are said to
be normalized device coordinates (NDCs). The term normalized was intended to refer
to the components of the 3-tuples being somehow in intervals [0, 1] or [−1, 1]. The
normalization, however, is not normal across APIs. Wild Magic and Direct3D use
d ′′ ∈ [0, 1]. OpenGL has a default projection matrix that leads to a projected value
d ′′ ∈ [−1, 1]. This is yet another API convention you need to be aware of; see Section
2.8.4 for more details. But as I have mentioned repeatedly, my implementations of
the renderers all use the same projection matrix, so in fact my OpenGL renderer has
d ′′ ∈ [0, 1].

The goal now is to map (r ′′, u′′) to a pixel of the window created by your ap-
plication. One important detail is that (r ′′, u′′) are right-handed coordinates with
respect to the viewport on the view plane. The r ′′-values increase as you move to the
right within the viewport and the u′′-values increase as you move up within the view-
port. The window pixels have coordinates (x , y) that are left-handed. The x-values
increase as you move to the right in the window and the y-values increase as you move
down the window. The conversion from (r ′′, u′′) to (x , y) requires a reflection in u′′
to switch handedness. If the window has width W pixels and height H pixels, then
0 ≤ x < W , 0 ≤ y < H , and a mapping is x = W(1 + r ′′)/2 and y = H(1 − u′′)/2.
The computations are real-valued, but in software the values are truncated to the
nearest integer and then clamped to be within the valid pixel domain to produce the
indices into video memory for the screen. This mapping takes clip-space points to
the full viewport on the view plane. As mentioned in Section 2.3.1, you might want
the drawing of objects to occur in a subrectangle of the viewport. The camera model
includes parameters p�, pr , pb, and pt with 0 ≤ p� < pr ≤ 1 and 0 ≤ pb < pt ≤ 1.
The mapping from (r ′′, u′′) ∈ [−1, 1]2 to the subrectangle is

x =
(

1 − r ′′

2

)
p�W +

(
1 + r ′′

2

)
prW = W

2

[
(pr + p�) + (pr − p�)r

′′]

y = H −
[(

1 − u′′

2

)
pbH +

(
1 + u′′

2

)
ptH

]

= H

2

[
(2 − pt − pb) + (pb − pt)u

′′]
(2.71)
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The slightly more complicated conversion for u′′ has to do with the switch from right-
handed to left-handed coordinates.

The depth values d ′′ ∈ [0, 1] can also be mapped to a depth range that is a subset
of [0, 1]. Section 2.3.1 introduced the depth range interval [pn, pf ]⊆ [0, 1]. The new
depth values for this range are

δ = (
pf − pn

)
d ′′ + pn (2.72)

Equations (2.71) and (2.72) may be combined into a single 4-tuple, which I will
call the window coordinates of the corresponding clip-space point:

[
Xwindow

1

]
=

⎡
⎢⎢⎢⎢⎣

W(pr−p�)

2 0 0 W(pr+p�)

2

0 H(pb−pt)

2 0 H(2−pt−pb)

2

0 0 pf − pn pn

0 0 0 1

⎤
⎥⎥⎥⎥⎦

[
Xndc

1

]

= Hwindow

[
Xndc

1

]
(2.73)

The CD-ROM accompanying this book contains a software renderer that imple-
ments all the transformations described in this section. The vertex shader unit takes
model-space points and produces clip-space points. The rasterizer clips the points
and generates the pixels that are covered by a triangle via interpolation. Each inter-
polated clip-space point is mapped to a window-space point to produce the pixel
location and depth. The pixel shader unit processes each such pixel.

Exercise
2.10

The window matrix of Equation (2.73) was developed using the mapping of r ′′ ∈
[−1, 1] to x ∈ [p�W , prW ] and u′′ ∈ [−1, 1] to y ∈ [pbH , ptH ], with a reflection
when computing the y-value. This choice was made to be consistent with OpenGL,
according to the documentation describing this mapping. The DirectX documen-
tation [Cor] does not mention the precise details of the mapping. When the full
viewport is used (p� = 0, pr = 1, pb = 0, pt − 1), notice that r ′′ = 1 is mapped to
x = W and u′′ = −1 is mapped to y = H , but actual pixel coordinates must sat-
isfy x ≤ W − 1 and y ≤ H − 1, so clamping will always occur at these extremes.
What differences in visual behavior would you expect if you were to use a different
mapping?

One alternative is to map r ′′ to x ∈ [p�W , prW − 1] and u′′ to y ∈ [pbH , ptH − 1],
with a reflection. What is the window matrix for this transformation?

Another alternative is to map r ′′ to x ∈ [p�(W − 1), pr(W − 1)] and u′′ to y ∈
[pb(H − 1), pt(H − 1)], with a reflection. What is the window matrix for this trans-
formation?
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Try experimenting with these in the software renderer contained on this book’s com-
panion CD-ROM. For each suggested alternative, also modify the OpenGL and Di-
rect3D rendering code (functions OnViewportChange) and see how the visual behavior
changes.

Exercise
2.11

What is the inverse matrix for the window matrix of Equation (2.73)?

2.3.7 Putting Them All Together

The application of transformations from model space to window space is referred
to as the geometric pipeline. The following diagram shows all the steps, including
references to the equations that define the transformations.

Xmodel

↓ world matrix, Hworld, Equation (2.59)

Xworld

↓ view matrix, Hview , Equation (2.61)

Xview

↓ projection matrix, Hproj, Equation (2.68)

Xclip

↓ perspective divide, Equation (2.70)

Xndc

↓ window matrix, Hwindow , Equation (2.73)

Xwindow

(2.74)

A software renderer implements the entire geometric pipeline. The companion
CD-ROM has such a renderer to illustrate the concepts discussed in this book. A
hardware-accelerated renderer implements the pipeline and allows you, through a
graphics API, to specify the matrices in the pipeline, either directly or indirectly.

Example
2.4

A triangle is created in a model space with points labeled (x , y , z). The model-
space vertices are V0 = (0, 0, 0), V1 = (1, 0, 0), and V2 = (0, 0, 1). Figure 2.19 shows
a rendering of the triangle in model space. The world space is chosen with origin
(0, 0, 0) and with an up vector in the direction of the positive z-axis. The model
triangle is to be rotated and translated so that the world-space vertices are W0 =
(1, 1, 1), W1 = (1, 2, 1), and W2 = (1, 1, 2). Figure 2.20 shows a rendering of the
triangle in world space. The world matrix is
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Hworld =

⎡
⎢⎢⎢⎢⎣

0 −1 0 1

1 0 0 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

and transforms (Vi , 1) to (Wi , 1) for all i.

V1 = (1, 0, 0)V0 = (0, 0, 0)

(0, 0, 1) = V2
z

x

y

Figure 2.19 A model triangle to be sent through the geometric pipeline.

W2 = (1, 1, 2)

W1 = (1, 2, 1)
W0  = (1, 1, 1)

x

y

z

Figure 2.20 The world triangle corresponding to the model triangle of Figure 2.19.
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The screen is chosen to have a width of 640 pixels and a height of 480 pixels. The
camera is positioned in the world with eye point at E = (5/2, 3, 7/2), with view
direction D = (−1, −1, −1)/

√
3, and up direction U = (−1, −1, 2)/

√
6. The right

direction is R = D × U = (−1, 1, 0)/
√

2. The view matrix is

Hview =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1√
2

1√
2

0 −1
2
√

2

−1√
6

−1√
6

2√
6

−3
2
√

6

−1√
3

−1√
3

−1√
3

9√
3

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

An orthogonal frustum will be used to render the triangle. The frustum near and far
parameters are chosen to be dmin = 1 and dmax = 10, respectively. The vertical field of
view is chosen to be 2θu = π/3 and the aspect ratio is ρ = 4/3 = 640/480. Equation
(2.58) is used to compute umax = dmin tan(θu) = 1/

√
3 and rmax = ρumax = 4/(3

√
3).

By symmetry, umin = −umax and rmin = −rmax. The projection matrix is

Hproj =

⎡
⎢⎢⎢⎢⎣

3
√

3
4 0 0 0

0
√

3 0 0

0 0 10
9

−10
9

0 0 1 0

⎤
⎥⎥⎥⎥⎦

We will use the full viewport, so p� = pb = 0 and pr = pt = 1. Also, we will use the
full depth range, so pn = 0 and pf = 1. The screen matrix is

Hscreen =

⎡
⎢⎢⎢⎢⎣

639
2 0 0 639

2

0 −479
2 0 479

2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

All the matrices are ready to use, so let us transform the model-space vertices and see
where they land on the screen. To make Table 2.2 typesetting friendly, I will write the
4-tuples in the form (a , b, c; d), using a semicolon to separate the last component
from the first three. Computing the screen-space coordinates, the final points (x , y)

and normalized depths δ ∈ [0, 1] are

(x0, y0; δ0) = (277.139884, 312.831599; 0.790360)

(x1, y1; δ1) = (370.332138, 386.163198; 0.726210)

(x2, y2; δ2) = (268.667861, 210.167360; 0.726210)
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Table 2.2 Results of the transformations applied during the geometric pipeline.

Space Vertex 0 Vertex 1 Vertex 2

Model (0, 0, 0; 1) (1, 0, 0; 1) (0, 0, 1; 1)

World (1, 1, 1; 1) (1, 2, 1; 1) (1, 1, 2; 1)
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)
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The x and y values are rounded to the nearest integer, so the actual pixel locations for
the projected vertices are (277, 313), (370, 386), and (269, 210). Figure 2.21 shows
the final image drawn by the Wild Magic software renderer to a 640 × 480 window.
The coordinate axes were drawn as three separate polylines. The 640 × 480 image was
reduced in size, with averaging, to a 320 × 240 image. The border around the window
and the axis labels were added via a paint program.

Naturally, the geometric pipeline is part of the rendering system. The application
code that led to Figure 2.21 created the model-space triangle, the world matrix, and a
simple scene, and it did some basic setup for rendering. The application header file is

#ifndef GEOMETRICPIPELINE_H
#define GEOMETRICPIPELINE_H

#include "Wm4WindowApplication3.h"
using namespace Wm4;

class GeometricPipeline : public WindowApplication3
{

WM4_DECLARE_INITIALIZE;
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z

x y

Figure 2.21 A software-rendered image of the triangle.

public:
GeometricPipeline ();

virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnIdle ();

protected:
void CreateScene ();

NodePtr m_spkScene;
TriMeshPtr m_spkTriangle;
PolylinePtr m_spkAxes;
Culler m_kCuller;

};

WM4_REGISTER_INITIALIZE(GeometricPipeline);

#endif

The application source code is

#include "GeometricPipeline.h"

WM4_WINDOW_APPLICATION(GeometricPipeline);
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//--------------------------------------------------------------------------
GeometricPipeline::GeometricPipeline ()

:
WindowApplication3("GeometricPipeline",0,0,640,480,ColorRGBA::WHITE)

{
}
//--------------------------------------------------------------------------
bool GeometricPipeline::OnInitialize ()
{

if (!WindowApplication3::OnInitialize())
{

return false;
}

// Create the camera model.
m_spkCamera->SetFrustum(60.0f,4.0f/3.0f,1.0f,10.0f);
Vector3f kCLoc(2.5f,3.0f,3.5f);
Vector3f kCDir(-1.0f,-1.0f,-1.0f);
kCDir.Normalize();
Vector3f kCUp(-1.0f,-1.0f,2.0f);
kCUp.Normalize();
Vector3f kCRight = kCDir.Cross(kCUp);
m_spkCamera->SetFrame(kCLoc,kCDir,kCUp,kCRight);

CreateScene();

// The initial update of objects.
m_spkScene->UpdateGS();
m_spkScene->UpdateRS();

// The initial culling of the scene.
m_kCuller.SetCamera(m_spkCamera);
m_kCuller.ComputeVisibleSet(m_spkScene);

InitializeCameraMotion(0.1f,0.01f);
InitializeObjectMotion(m_spkScene);
return true;

}
//--------------------------------------------------------------------------
void GeometricPipeline::OnTerminate ()
{

m_spkScene = 0;
m_spkTriangle = 0;
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m_spkAxes = 0;
WindowApplication3::OnTerminate();

}
//--------------------------------------------------------------------------
void GeometricPipeline::OnIdle ()
{

MeasureTime();

if (MoveCamera())
{

m_kCuller.ComputeVisibleSet(m_spkScene);
}

if (MoveObject())
{

m_spkScene->UpdateGS();
m_kCuller.ComputeVisibleSet(m_spkScene);

}

m_pkRenderer->ClearBuffers();
if (m_pkRenderer->BeginScene())
{

m_pkRenderer->DrawScene(m_kCuller.GetVisibleSet());
DrawFrameRate(8,GetHeight()-8,ColorRGBA::WHITE);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

UpdateFrameCount();
}
//--------------------------------------------------------------------------
void GeometricPipeline::CreateScene ()
{

// Create the model-space triangle.
Attributes kAttr;
kAttr.SetPChannels(3);
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(0.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);

IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
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aiIndex[0] = 0;
aiIndex[1] = 1;
aiIndex[2] = 2;

m_spkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);

// Set the world matrix.
m_spkTriangle->Local.SetTranslate(Vector3f(1.0f,1.0f,1.0f));
m_spkTriangle->Local.SetRotate(Matrix3f(Vector3f::UNIT_Z,Mathf::HALF_PI));

// Attach a material to the triangle.
MaterialState* pkMS = WM4_NEW MaterialState;
pkMS->Diffuse = ColorRGB(0.5f,0.5f,0.5f);
m_spkTriangle->AttachGlobalState(pkMS);
m_spkTriangle->AttachEffect(WM4_NEW MaterialEffect);

// Create the coordinate axes.
pkVBuffer = WM4_NEW VertexBuffer(kAttr,6);
pkVBuffer->Position3(0) = Vector3f::ZERO;
pkVBuffer->Position3(1) = 2.0f*Vector3f::UNIT_X;
pkVBuffer->Position3(2) = Vector3f::ZERO;
pkVBuffer->Position3(3) = 2.0f*Vector3f::UNIT_Y;
pkVBuffer->Position3(4) = Vector3f::ZERO;
pkVBuffer->Position3(5) = 2.0f*Vector3f::UNIT_Z;

m_spkAxes = WM4_NEW Polyline(pkVBuffer,false,false);

// Attach a material to the axes.
pkMS = WM4_NEW MaterialState;
pkMS->Diffuse = ColorRGB::BLACK;
m_spkAxes->AttachGlobalState(pkMS);
m_spkAxes->AttachEffect(WM4_NEW MaterialEffect);

m_spkScene = WM4_NEW Node;
m_spkScene->AttachChild(m_spkTriangle);
m_spkScene->AttachChild(m_spkAxes);

}
//--------------------------------------------------------------------------

In Wild Magic, the application layer is agnostic of renderer type. The code works
for the OpenGL renderer, for the Direct3D renderer, and for the Wild Magic software
renderer.
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Exercise
2.12

Repeat the calculations in Example 2.4, but using a camera positioned at E = (4, 4, 4)

and with a far-plane distance of dmax = 4. Also repeat the calculations with the origi-
nal settings, except place the camera at E = (1, −1, 3/2). How is the rendering of the
triangle in this case different from the rendering in Figure 2.21?

Exercise
2.13

Suppose you want your application to support selecting a window pixel with the
left button of the mouse. When the selected pixel is part of a rendered 3D object,
compute the world-space coordinates for the 3D object point that was rendered to the
selected pixel. Add this code to the GeometricPipeline application whose source code
was listed previously. Write text to the upper-left corner of the screen that displays
the (x , y) value you selected with the mouse and the corresponding world-space
coordinates of the object drawn to that pixel.

2.4 Culling and Clipping

Culling and clipping of objects reduces the amount of data sent to the rasterizer for
drawing. Culling refers to eliminating portions of an object, possibly the entire object,
that are not visible to the eye point. For an object represented by a triangle mesh,
the typical culling operations amount to determining which triangles are outside the
view frustum and which triangles are facing away from the eye point. Clipping refers
to computing the intersection of an object with the view frustum, and with additional
planes provided by the application such as in a portal system (see Section 6.3), so that
only the visible portion of the object is sent to the rasterizer. For an object represented
by a triangle mesh, the typical clipping operations amount to splitting triangles by the
various view frustum planes and retaining only those triangles inside the frustum.

2.4.1 Object Culling

Object culling involves deciding whether or not an object as a whole is contained in
the view frustum. If an object is not in the frustum, there is no point in consuming
CPU or GPU cycles to process the object for the rasterizer. Typically, the application
maintains a bounding volume for each object. The idea is to have an inexpensive
test for nonintersection between bounding volume and view frustum that can lead
to quick rejection of an object for further processing. If the bounding volume of an
object does intersect the view frustum, then the entire object is processed further
even if that object does not lie entirely inside the frustum. It is also possible that the
bounding volume and view frustum intersect, but the object is completely outside
the frustum.

A test to determine if the bounding volume and view frustum intersect can be an
expensive operation. Such a test is said to be an exact culling test . An inexact culling test
is designed to be faster, reporting nonintersections in most cases, but is conservative
in that it might report an intersection when there is none. The idea is that the total
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time for culling and drawing is, hopefully, less than the total time if you were to use
exact culling. Specifically, what you hope to be the common situation is

Cost(inexact_culling) < Cost(exact_culling)

Cost(inexact_drawing) > Cost(exact_drawing)

Cost(inexact_culling) + Cost(inexact_drawing) < Cost(exact_culling) +
Cost(exact_drawing)

The only way you can test this hypothesis is by experimenting within your own ap-
plications and graphics framework. If you find that over the lifetime of your appli-
cation’s execution the total time of culling and drawing is smaller when using exact
culling, then you should certainly use exact culling. Some exact culling tests are de-
scribed in Section 15.7.

The standard approach to inexact culling against the view frustum is to compare
the object’s bounding volume against the view frustum planes, one at a time. Figure
2.22 illustrates the various possibilities for culling by testing a plane at a time. The
situation shown in Figure 2.22 (a) occurs whether you use exact culling or inexact
culling of bounding volumes. The problem is simply that the bounding volume is an
approximation of the region that the object occupies; there will always be situations
when the bounding volume intersects the frustum but the object does not. The
situation shown in Figure 2.22 (c) is what makes the plane-by-plane culling inexact.
The bounding volume is not outside any frustum plane, but it is outside the entire
view frustum.

2.4.2 Back-Face Culling

Object culling is an attempt to eliminate the entire object from being processed
by the renderer. If an object is not culled based on its bounding volume, then the
renderer has the opportunity to reduce the amount of data it must draw. The next
level of culling is called back-face culling . The triangles are oriented so that their
normal vectors point outside the object whose surface they comprise. If the triangle
is oriented away from the eye point, then that triangle is not visible and need not be
drawn by the renderer. For a perspective projection, the test for a back-facing triangle
is to determine if the eye point is on the negative side of the plane of the triangle (the
triangle is a “back face” of the object to be rendered). If E is the world eye point and
if the plane of the triangle is N . X = d , then the triangle is back facing if N . E < d .
Figure 2.23 shows the front view of an object. The front-facing triangles are drawn
with solid lines. The back-facing triangles are indicated with dotted lines (although
they would not be drawn at all by the renderer).

The vertex data that is sent to the graphics driver stores only vertex positions,
not triangle normals. This means the renderer must compute the normal vector for
each triangle to use in the back-face test. Mathematically, it does not matter in which
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(b) Not culled

(a) Not culled

(c) Not culled

(d) Culled

View frustum

Figure 2.22 Attempts to cull objects, whose bounding volumes are spheres, a frustum plane at a
time. In (a), (b), and (c), the bounding volumes are not outside any of the frustum
planes, so an attempt will be made to draw those objects. In (a), the bounding
volume is not outside any of the frustum planes, so an attempt is made to draw the
object. The object is outside the frustum even though its bounding volume is not.
The renderer processes the object and determines that no part of it will be drawn on
the screen. In (b), part of the object is inside the frustum, so the renderer will draw
that portion. In (c), the object and its bounding volume are outside the frustum, but
because the bounding volume was not outside at least one of the frustum planes, the
object is sent to the renderer and it is determined that no part of it will be drawn on
the screen. In (d), the bounding volume is outside the right plane of the frustum, so
the object is outside and no attempt is made to draw it.

coordinate system you do the back-face culling. However, vertex shader programs
require you to transform the vertex positions from model-space coordinates to clip-
space coordinates for the purpose of clipping, so it is natural to do the back-face
culling in these same coordinates. The transformation of the triangle vertices from
model space to view space produces points Vi = (ri , ui , di , 1) for 0 ≤ i ≤ 2. A triangle
normal vector is

N = (
V1 − V0

) × (
V2 − V0

)
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Figure 2.23 Object with front-facing and back-facing triangles indicated.

V1

V2

P

V0

N

Figure 2.24 A triangle that is front facing to the observer. Because the camera coordinate system
is left-handed, the sign test for the dot product of vectors is the opposite of what you
are used to.

The eye point in view coordinates is P = (0, 0, 0, 1). Figure 2.24 shows the situ-
ation when the triangle is deemed visible to the observer. The vector P − V0 =
(−r0, −u0, −d0, 0) must form an acute angle with the normal vector N. The test
for the triangle to be front facing is

0 < (P − V0) . N = det

⎡
⎣ −r0 r1 − r0 r2 − r0

−u0 u1 − u0 u2 − u0
−d0 d1 − d0 d2 − d0

⎤
⎦

Define the homogeneous matrix

M =

⎡
⎢⎢⎣

r0 r1 r2 0
u0 u1 u2 0
d0 d1 d2 0
1 1 1 1

⎤
⎥⎥⎦

The first three columns of the matrix are the triangle vertices and the last column
of the matrix is the eye point, all listed in view coordinates. The determinant of the
matrix is computed as follows, using a cofactor expansion in the last column.
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det(M) = − det

⎡
⎣ r0 r1 r2

u0 u1 u2
d0 d1 d2

⎤
⎦ Cofactor expansion is by last column.

= − det

⎡
⎣ r0 r1 − r0 r2 − r0

u0 u1 − u0 u2 − u0
d0 d1 − d0 d2 − d0

⎤
⎦ Subtracting columns preserves

determinants.

= det

⎡
⎣ −r0 r1 − r0 r2 − r0

−u0 u1 − u0 u2 − u0
−d0 d1 − d0 d2 − d0

⎤
⎦ Changing column sign

reverses determinant sign.

= (P − V0) . N

Thus, the triangle is visible when det(M) > 0.
Multiplying M by the projection matrix of Equation (2.68), we have

HprojM =

⎡
⎢⎢⎢⎣

r ′
0 r ′

1 r ′
2 0

u′
0 u′

1 u′
2 0

d ′
0 d ′

1 d ′
2 − dmaxdmin

dmax−dmin

w′
0 w′

1 w′
2 0

⎤
⎥⎥⎥⎦

Using a cofactor expansion on the last column, we may compute the determinant of
this matrix:

det
(
HprojM

)
= − dmaxdmin

dmax − dmin

⎡
⎣ r ′

0 r ′
1 r ′

2

u′
0 u′

1 u′
2

w′
0 w′

1 w′
2

⎤
⎦

A front-facing triangle occurs when det(M) > 0, so equivalently it occurs when
det(HprojM) = det(Hproj) det(M) < 0. That is, the triangle is front facing when

det

⎡
⎣ r ′

0 r ′
1 r ′

2

u′
0 u′

1 u′
2

w′
0 w′

1 w′
2

⎤
⎦ > 0

This expression is what the Wild Magic software renderer implements, and is found
in the file Wm4SoftDrawElements.cpp, function SoftRenderer::DrawTriMesh.

2.4.3 Clipping to the View Frustum

Clipping is the process by which the front-facing triangles of an object in the world
are intersected with the view frustum planes. A triangle either is completely inside
the frustum (no clipping necessary), is completely outside the frustum (triangle is
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culled), or intersects at least one frustum plane (needs clipping). In the last case the
portion of the triangle that lies on the frustum side of the clipping plane must be
calculated. That portion is either a triangle itself or a quadrilateral.

Plane-at-a-Time Clipping

One possibility for a simple clipping algorithm is to clip the triangle against a frustum
plane. If the portion inside the frustum is a triangle, process that triangle against
the next frustum plane. If the portion inside the frustum is a quadrilateral, split it
into two triangles and process both against the next frustum plane. After all clipping
planes are processed, the renderer has a list of triangles that are completely inside the
view frustum. The pseudocode for this process is shown next.

set<Triangle> input, output;
input.Insert(initialTriangle);
for each frustum plane do
{

for each triangle in input do
{

set<Triangle> inside = Split(triangle,plane);
if (inside.Quantity() == 2)
{

output.Insert(inside.Element[0]);
output.Insert(inside.Element[1]);

}
else if (inside.Quantity() == 1)
{

output.Insert(inside.Element[0]);
}
else
{

// Inside is empty, triangle is culled.
}
input.Remove(triangle);

}
input = output;

}

for each triangle in output do
{

// Draw the triangle.
}
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Figure 2.25 Four configurations for triangle splitting. Only the triangles in the shaded region are
important, so the quadrilaterals outside are not split. The subscript c indicates clip
vertices.

The splitting of a triangle by a frustum plane is accomplished by computing the
intersection of the triangle edges with the plane. The three vertices of the triangle are
tested for inclusion in the frustum. If the frustum plane is N . X = d and if the vertices
of the triangle are Vi for 0 ≤ i ≤ 2, then the edge with endpoints Vi0

and Vi1
intersects

the plane if pi0
pi1

< 0, where pi = N . Vi − d for 0 ≤ i ≤ 2. This simply states that
one vertex is on the positive side of the plane and one vertex is on the negative side of
the plane. The point of intersection, called a clip vertex, is

Vclip = Vi0
+ pi0

pi0
− pi1

(
Vi1

− Vi0

)
(2.75)

Figure 2.25 illustrates the possible configurations for clipping of a triangle against
a plane. The vertices Vi0

, Vi1
, and Vi2

are assumed to be in counterclockwise order.
The pseudocode for clipping a single triangle against a plane is given next. After

splitting, the new triangles have vertices that are in counterclockwise order.

void ClipConfiguration (pi0,pi1,pi2,Vi0,Vi1,Vi2)
{

// assert: pi0*pi1 < 0
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Vc0 = Vi0+(pi0/(pi0-pi1))*(Vi1-Vi0);
if (pi0 > 0)
{

if (pi2 > 0) // Figure 2.25, top left
{

Vc1 = Vi1+(pi1/(pi1-pi2))*(Vi2-Vi1);
add triangle <Vc0,Vc1,Vi0> to triangle list;
add triangle <Vc1,Vi2,Vi0> to triangle list;

}
else // Figure 2.25, top right
{

Vc1 = Vi0+(pi0/(pi0-pi2))*(Vi2-Vi0);
add triangle <Vc0,Vc1,Vi0> to triangle list;

}
}
else
{

if (pi2 > 0) // Figure 2.25, bottom left
{

Vc1 = Vi0+(pi0/(pi0-pi2))*(Vi2-Vi0);
add triangle <Vc0,Vi1,Vi2> to triangle list;
add triangle <Vc0,Vi2,Vc1> to triangle list;

}
else // Figure 2.25, bottom right
{

Vc1 = Vi1+(pi1/(pi1-pi2))*(Vi2-Vi1);
add triangle <Vc0,Vi1,Vc1> to triangle list;

}
}

}

void ClipTriangle ()
{

remove triangle <V0,V1,V2> from triangle list;

p0 = Dot(N,V0)-d;
p1 = Dot(N,V1)-d;
p2 = Dot(N,V2)-d;

if (p0*p1 < 0)
{

// Triangle needs splitting along edge <V0,V1>.
ClipConfiguration(p0,p1,p2,V0,V1,V2);

}
else if (p0*p2 < 0)
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{
// Triangle needs splitting along edge <V0,V2>.
ClipConfiguration(p2,p0,p1,V2,V0,V1);

}
else if (p1*p2 < 0)
{

// Triangle needs splitting along edge <V1,V2>.
ClipConfiguration(p1,p2,p0,V1,V2,V0);

}
else if (p0 > 0 || p1 > 0 || p2 > 0)
{

// Triangle is completely inside frustum.
add triangle <V0,V1,V2> to triangle list;

}
}

To avoid copying vertices, the triangle representation can store pointers to vertices
in a vertex pool, adding clip vertices as needed.

Polygon-of-Intersection Clipping

The plane-at-a-time clipping algorithm keeps track of a set of triangles that must
be clipped against frustum planes. Processing only triangles leads to simple data
structures and algorithms. The drawback is that the number of triangles can be larger
than is really necessary.

An alternate method for clipping computes the convex polygon of intersection
of the triangle with the frustum. After clipping, a triangle fan is generated for the
polygon and these triangles are drawn. The number of triangles in this approach
is smaller than or equal to the number produced by the plane-at-a-time clipping
algorithm. An illustration of this is provided by the sequence of images shown in
Figures 2.26 through 2.30. For the sake of simplicity, the example is shown in two
dimensions with the frustum drawn as a rectangle. Figure 2.26 shows a triangle
intersecting a frustum. The convex polygon of intersection has seven vertices. The
triangle fan is drawn, indicating that the renderer will draw five triangles.

Let us clip the triangle against the four frustum planes one at a time. Figure 2.27
shows the triangle clipped against the bottom frustum plane. Two clip vertices are
generated. The portion of the triangle on the frustum side of the bottom plane is a
quadrilateral, so it is split into two triangles T1 and T2.

Figure 2.28 shows the triangles clipped against the top frustum plane. The triangle
T1 is clipped, generates two clip vertices, and is split into two triangles, T3 and T4. The
triangle T2 is clipped, generates two clip vertices, and is split into two triangles, T5
and T6.



T0

Figure 2.26 A triangle T0 intersecting a frustum in multiple faces. The convex polygon of
intersection has seven vertices and is represented by a triangle fan with five triangles.

T2

T1

Figure 2.27 The triangle is clipped against the bottom frustum plane.

T6
T4

T3

T5

Figure 2.28 The triangles are clipped against the top frustum plane.
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T6
T4

T8

T7

T5

Figure 2.29 The triangles are clipped against the left frustum plane.

T11
T13

T9

T8

T7

T12

T10

Figure 2.30 The triangles are clipped against the right frustum plane.

Figure 2.29 shows the triangles clipped against the left frustum plane. In this case,
only triangle T3 intersects the left frustum plane. It generates two clip vertices and the
quadrilateral inside the frustum is split into two triangles, T7 and T8.

Finally, Figure 2.30 shows the triangles clipped against the right frustum plane.
Triangle T4 is clipped and split into triangles T9 and T10. Triangle T5 is clipped and
split into triangles T11 and T12. Triangle T6 is clipped, producing a single triangle T13.
The end result is a collection of nine vertices and seven triangles in contrast to the
polygon-of-intersection clipping algorithm, which produced seven vertices and five
triangles.

At first glance, the polygon-of-intersection clipping algorithm is attractive be-
cause it tends to generate fewer triangles than the plane-at-a-time clipping algorithm.
However, the example here is slightly misleading because the triangle is very large
compared to the frustum size. In a realistic application, the observer is positioned so
that triangles are generally small compared to the frustum size, so you would expect a
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triangle to be clipped by one frustum plane (triangle intersects a face of the frustum),
by two frustum planes (triangle intersects near an edge of the frustum), or three frus-
tum planes (triangle intersects near a corner of the frustum). In these cases, either
clipping method should perform equally well.

Exercise
2.14

The Wild Magic software renderer implements the polygon-of-intersection clipping
algorithm. Modify the renderer to use the plane-at-a-time clipping algorithm. Devise
an experiment to test the performance of the two clipping algorithms and compare
the results.

2.5 Rasterizing

Rasterization is the process of taking a geometric entity in window space and selecting
those pixels to be drawn that correspond to the entity. The standard objects that
most engines rasterize are line segments and triangles, but rasterization of circles and
ellipses is also discussed here. You might have a situation where you want to rasterize
such objects to a texture and then use the texture for one of your 3D objects. The
constructions contained in this section all assume integer arithmetic since the main
goal is to rasterize as fast as possible. Floating-point arithmetic tends to be more
expensive than integer arithmetic.

Exercise
2.15

This is a large project. The Wild Magic software renderer uses floating-point arith-
metic for its rasterization; that is, the renderer is not optimized for speed (it was de-
signed to illustrate concepts). If you feel adventuresome, reimplement the rasterizing
code to use integer arithmetic. This code is found in files Wm4SoftDrawElements.cpp
and Wm4SoftEdgeBuffers.cpp.

2.5.1 Line Segments

Given two screen points (x0, y0) and (x1, y1), a line segment must be drawn that
connects them. Since the pixels form a discrete set, decisions must be made about
which pixels to draw in order to obtain the “best” line segment, which Figure 2.31
illustrates. If x1 = x0 (vertical segment) or y1 = y0 (horizontal segment), it is clear
which pixels to draw. And if |x1 − x0| = |y1 − y0|, the segment is diagonal and it is
clear which pixels to draw. But for the other cases, it is not immediately apparent
which pixels to draw.

The algorithm should depend on the magnitude of the slope. If the magnitude is
larger than 1, each row that the segment intersects should have a pixel drawn. If the
magnitude is smaller than 1, each column that the segment intersects should have a
pixel drawn. Figure 2.32 illustrates the cases. The two blocks of pixels in (a) illustrate
the possibilities for drawing pixels for a line with a slope whose magnitude is larger
than 1. The case in (a) draws one pixel per column. The case in (b) draws one pixel
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Figure 2.31 Pixels that form the best line segment between two points.

(a) (b)

Figure 2.32 Pixel selection based on slope.

per row, the correct decision. The two blocks of pixels in (b) illustrate the possibilities
for drawing pixels for a line with a slope whose magnitude is less than 1. The bottom
case draws one pixel per row. The top case draws one pixel per column, the correct
decision.

The process of pixel selection, called Bresenham’s algorithm [Bre65], uses an
integer decision variable that is updated for each increment in the appropriate input
variable. The sign of the decision variable is used to select the correct pixel to draw at
each step. Define dx = x1 − x0 and dy = y1 − y0. For the sake of argument, assume
that dx > 0 and dy �= 0. The decision variable is di, and its value is determined by
the pixel (xi , yi) that was drawn at the previous step. Figure 2.33 shows two values si
and ti, the fractional lengths of the line segment connecting two vertical pixels. The
value of si is determined by si = (y0 − yi) + (dy/dx)(xi + 1 − x0) and si + ti = 1.
The decision variable is di = dx(si − ti). From the figure it can be seen that

If di ≥ 0, then the line is closer to the pixel at (xi + 1, yi + 1), so draw that pixel.

If di < 0, then the line is closer to the pixel at (xi + 1, yi), so draw that pixel.
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yi +2

yi +1

xi +1 xi +2

yi

xi

ti

si

Figure 2.33 Deciding which line pixel to draw next.

Now consider

di+1 − di = dx(si+1 − ti+1) − dx(si − ti)

= 2dx(si+1 − si)

= 2dy(xi+1 − xi) − 2dx(yi+1 − yi).

The initial decision value is d0 = 2dy − dx. Figure 2.33 indicates that the slope has a
magnitude less than 1, so x is incremented in the drawing, xi+1 = xi + 1. The decision
equation is therefore

di+1 = di + 2dy − 2dx(yi+1 − yi)

and the rules for setting the next pixel are

If di ≥ 0, then yi+1 = yi + 1 and the next decision value is di+1 = di + 2(dy −
dx).

If di < 0, then yi+1 = yi and the next decision value is di+1 = di + 2dy.

A concise implementation is given next. The special cases of horizontal, vertical,
and diagonal lines can be factored out if desired.
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void DrawLine (int x0, int y0, int x1, int y1)
{

// starting point of line
int x = x0, y = y0;

// direction of line
int dx = x1 - x0, dy = y1 - y0;

// Increment or decrement depending on direction of line.
int sx, sy;
if (dx > 0)
{

sx = 1;
}
else if (dx < 0)
{

sx = -1;
dx = -dx;

}
else
{

sx = 0;
}

if (dy > 0)
{

sy = 1;
}
else if (dy < 0)
{

sy = -1;
dy = -dy;

}
else
{

sy = 0;
}

int ax = 2*dx, ay = 2*dy;

if (dy <= dx)
{

// single step in x-direction
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for (int decy = ay-dx; /**/; x += sx, decy += ay)
{

DrawPixel(x,y);

// Take Bresenham step.
if (x == x1)
{

break;
}
if (decy >= 0)
{

decy -= ax;
y += sy;

}
}

}
else
{

// single step in y-direction
for (int decx = ax-dy; /**/; y += sy, decx += ax)
{

DrawPixel(x,y);

// Take Bresenham step.
if (y == y1)
{

break;
}
if (decx >= 0)
{

decx -= ay;
x += sx;

}
}

}
}

In the line-drawing algorithm, the calls DrawLine(x0,y0,x1,y1) and DrawLine
(x1,y1,x0,y0) can produce different sets of drawn pixels. It is possible to avoid this
by using a variation called the midpoint line algorithm; the midpoint (xm, ym) =
((x0 + x1)/2, (y0 + y1)/2) is computed, then two line segments are drawn, Draw-
Line(xm,ym,x0,y0) and DrawLine(xm,ym, x1,y1). This is particularly useful if a line
segment is drawn twice, something that happens when rasterizing triangles that share
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an edge. If the original line drawer is used for the shared edge, but the line is drawn
the second time with the endpoints swapped, gaps (undrawn pixels) can occur be-
cause the two sets of drawn pixels cause an effect called cracking . Another way to
avoid cracking is to always draw the line starting with the vertex of the minimum
y-value. This guarantees that the shared edge is drawn in the same order each time.

2.5.2 Circles

The Bresenham line-drawing algorithm has a counterpart for drawing circles using
only integer arithmetic. Let the circle be x2 + y2 = r2, where r is a positive integer.
The algorithm will draw one-eighth of the circle for y ≥ x ≥ 0. The remaining parts
are drawn by symmetry.

Let (x0, y0) be the last drawn pixel. Let A = (x0 + 1, y0) and B = (x0 + 1, y0 − 1).
A decision must be made about which of the two points should be drawn next. Figure
2.34 illustrates the various possibilities. The selected pixel will be the one closest to the
circle measured in terms of radial distance from the origin. The squared distance will
be calculated to avoid square roots.

Define D(x , y) = x2 + y2; then D(A) = (x0 + 1)2 + y2
0 and D(B) = (x0 + 1)2 +

(y0 − 1)2. Define f (x , y) = D(x , y) − r2. If f (P) > 0, then P is outside the circle. If
f (P) < 0, then P is inside the circle. Finally, if f (P) = 0, then P is on the circle. The
rules for setting pixels are

1. If |f (A)| > |f (B)|, then B is closer to the circle, so draw that pixel.

2. If |f (A)| < |f (B)|, then A is closer to the circle, so draw that pixel.

3. If |f (A)| = |f (B)|, the pixels are equidistant from the circle, so either one can be
drawn.

The decision variable is d = f (A) + f (B). In Figure 2.34 (a), f (A) and f (B) are
both negative, so d < 0. In part (c) of the figure, f (A) and f (B) are both positive,

y0 A A A

B

(a)

B B

x0 x0 +1

y0 –1

x0 x0 +1 x0 x0 +1

(b) (c)

Figure 2.34 Deciding which circle pixel to draw next.
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so d > 0. In part (b) of the figure, f (A) is positive and f (B) is negative. If A is
closer to the circle than B, then |f (A)| < |f (B)| and so d < 0. If B is closer, then
|f (A)| > |f (B)| and d > 0. In all cases,

1. If d > 0, draw pixel B.

2. If d < 0, draw pixel A.

3. If d = 0, the pixels are equidistant from the circle, so draw pixel A.

The current decision variable is constructed based on its previous value. Let

di = (xi + 1)2 + y2
i
− r2 + (xi + 1)2 + (yi − 1)2 − r2

= 2(xi + 1)2 + y2
i
+ (yi − 1)2 − 2r2

Then

di+1 − di =
{

4xi + 6, yi+1 = yi

4xi + 6 − 4yi + 4, yi+1 = yi − 1

The circle is centered at the origin. For a circle centered elsewhere, a simple transla-
tion of each pixel will suffice before drawing. Concise code is

void DrawCircle (int xcenter, int ycenter, int radius)
{

for (int x = 0, y = radius, dec = 3-2*radius; x <= y; x++)
{

DrawPixel(xcenter+x,ycenter+y);
DrawPixel(xcenter+x,ycenter-y);
DrawPixel(xcenter-x,ycenter+y);
DrawPixel(xcenter-x,ycenter-y);
DrawPixel(xcenter+y,ycenter+x);
DrawPixel(xcenter+y,ycenter-x);
DrawPixel(xcenter-y,ycenter+x);
DrawPixel(xcenter-y,ycenter-x);

if ( dec >= 0 )
dec += -4*(y--)+4;

dec += 4*x+6;
}

}
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2.5.3 Ellipses

Rasterizing an ellipse is conceptually like rasterizing a circle, but the anisotropy of
ellipses makes an implementation more challenging. The following material discusses
how to conveniently specify the ellipse, how to draw an axis-aligned ellipse, and how
to draw general ellipses.

Specifying the Ellipse

The algorithm described here draws ellipses of any orientation on a 2D raster. The
simplest way for an application to specify the ellipse is by choosing an oriented
bounding box with center (xc , yc) and axes (xa , ya) and (xb , yb), where all compo-
nents are integers. The axes must be perpendicular, so xaxb + yayb = 0. It is assumed
that (xa , ya) is in the first quadrant (not including the y-axis), so xa > 0 and ya ≥ 0
are required. It is also required that the other axis is in the second quadrant, so xb ≤ 0
and yb > 0. There must be integers na and nb such that nb(xb , yb) = na(−ya , xa), but
the algorithm does not require knowledge of these. The ellipse axes are the box axes
and have the same orientation as the box.

All pixel computations are based on the ellipse with center (0, 0). These pixels are
translated by (xc , yc) to obtain the ones for the original ellipse. A quadratic equation
for the ellipse centered at the origin is

(xax + yay)2

(x2
a
+ y2

a
)2

+ (xbx + yby)2

(x2
b + y2

b)
2

= 1

In this form it is easy to see that (xa , ya) and (xb , yb) are on the ellipse. Multiplying
the matrices and multiplying through by denominators yields the quadratic equation

Ax2 + 2Bxy + Cy2 = D

where the integer coefficients are

A = x2
a
(x2

b
+ y2

b
)2 + x2

b
(x2

a
+ y2

a
)2

B = xaya(x
2
b
+ y2

b
)2 + xbyb(x

2
a
+ y2

a
)2

C = y2
a
(x2

b
+ y2

b
)2 + y2

b
(x2

a
+ y2

a
)2

D = (x2
a
+ y2

a
)2(x2

b
+ y2

b
)2

Since these integers can be quite large for standard-size rasters, an implementation
should use 64-bit integers.
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Axis-Aligned Ellipses

The algorithm for an axis-aligned ellipse draws the arc of the ellipse in the first
quadrant and uses reflections about the coordinate axes to draw the other arcs. The
ellipse centered at the origin is b2x2 + a2y2 = a2b2. Starting at (0, b), the arc is drawn
in clockwise order. The initial slope of the arc is 0. As long as the arc has a slope
smaller than 1 in absolute magnitude, the x-value is incremented. The corresponding
y-value is selected based on a decision variable, just as in Bresenham’s circle-drawing
algorithm. The remaining part of the arc in the first quadrant has a slope larger than
1 in absolute magnitude. That arc is drawn by starting at (a , 0) and incrementing y

at each step. The corresponding x-value is selected based on a decision variable.
While drawing the arc starting at (0, b), let (x , y) be the current pixel that has

been drawn. A decision must be made to select the next pixel (x + 1, y + δ) to be
drawn, where δ is either 0 or −1. The ellipse is defined implicitly as Q(x , y) = 0,
where Q(x , y) = b2x2 + a2y2 − a2b2. Each choice for the next pixel lies on its own
ellipse defined implicitly by Q(x , y) = λ for some constant λ that is not necessarily
zero. The idea is to choose δ so that the corresponding level curve has λ as close to
zero as possible. This is the same idea that is used for Bresenham’s circle algorithm.
For the circle algorithm, the choice is based on selecting the pixel that is closest to the
true circle. For ellipses, the choice is based on level set value and not on the distance
between two ellipses (a much harder problem).

Given the current pixel (x , y), for the next step the ellipse must do one of three
things:

1. Pass below (x + 1, y) and (x + 1, y − 1), in which case Q(x + 1, y) ≥ 0 and
Q(x + 1, y − 1) ≥ 0.

2. Pass between (x + 1, y) and (x + 1, y − 1), in which case Q(x + 1, y) ≥ 0 and
Q(x + 1, y − 1) ≤ 0.

3. Pass above (x + 1, y) and (x + 1, y − 1), in which case Q(x + 1, y) ≤ 0 and
Q(x + 1, y − 1) ≤ 0.

In the first case, the next pixel to draw is (x + 1, y). In the second case, the pixel
with Q value closest to zero is chosen. In the third case, the next pixel to draw is
Q(x + 1, y − 1). The decision in all three cases can be made by using the sign of
σ = Q(x + 1, y) + Q(x + 1, y − 1). If σ < 0, then the next pixel is (x + 1, y − 1).
If σ > 0, then the next pixel is (x + 1, y). For σ = 0, either choice is allowed, so
(x + 1, y) will be the one selected.

The decision variable σ can be updated incrementally. The initial value is σ0 =
Q(1, b) + Q(1, b − 1) = 2b2 + a2(1 − 2b). Given the current pixel (x , y) and deci-
sion variable σi, the next decision is

σi+1 =
{

Q(x + 2, y) + Q(x + 2, y − 1), σi ≥ 0
Q(x + 2, y − 1) + Q(x + 2, y − 2), σi < 0
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The choice is based on whether or not the chosen pixel after (x , y) is (x + 1, y) [when
σi > 0] or (x + 1, y − 1) [when σi ≤ 0]. Some algebra leads to

σi+1 = σi +
{

2b2(2x + 3), σi ≥ 0
2b2(2x + 3) + 4a2(1 − y), σi < 0

On this arc, x is always incremented at each step. The processing stops when the
slope becomes 1 in absolute magnitude. The slope dy/dx of the ellipse can be com-
puted implicitly from Q(x , y) = 0 as Qx + Qydy/dx = 0, where Qx and Qy are
the partial derivatives of Q with respect to x and y. Therefore, dy/dx = −Qx/Qy =
−(2b2x)/(2a2y) = −(b2x)/(a2y). The iteration on x continues as long as −(b2x)/

(a2y) ≥ −1. The termination condition of the iteration using only integer arithmetic
is b2x ≤ a2y.

The code for the iteration is

int a2 = a*a, b2 = b*b, fa2 = 4*a2;
int x, y, sigma;

for (x = 0, y = b, sigma = 2*b2+a2*(1-2*b); b2*x <= a2*y; x++)
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc+y);
DrawPixel(xc+x,yc-y);
DrawPixel(xc-x,yc-y);

if ( sigma >= 0 )
{

sigma += fa2*(1-y);
y--;

}
sigma += b2*(4*x+6);

}

The code for the other half of the arc in the first quadrant is symmetric in x and
y and in a and b:

int a2 = a*a, b2 = b*b, fb2 = 4*b2;
int x, y, sigma;

for (x = a, y = 0, sigma = 2*a2+b2*(1-2*a); a2*y <= b2*x; y++)
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc+y);
DrawPixel(xc+x,yc-y);
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DrawPixel(xc-x,yc-y);

if ( sigma >= 0 )
{

sigma += fb2*(1-x);
x--;

}
sigma += a2*(4*y+6);

}

General Ellipses

An attempt could be made to mimic the case of axis-aligned ellipses by drawing the
arc from (xb , yb) to (xa , ya) and reflecting each pixel (x , y) through the appropriate
lines. For example, given pixel u = (x , y), the pixel reflected through v = (xb , yb)

given by

(x′, y′) = u − 2

(
u . v

v . v

)
v = (x , y) − 2

(
xbx + yby

x2
b + y2

b

)
(xb , yb)

would also be drawn. The right-hand side requires a division. Moreover, even if
the division is performed (whether as float or integer), the resulting pixels are not
always contiguous and noticeable gaps occur. The general orientation of the ellipse
requires a better method for selecting the pixels. Instead, the arc is generated from
(−xa , −ya) to (xa , ya), and pixels (xc + x , yc + y) and their reflections through the
origin (xc − x , yc − y) are plotted.

The algorithm is divided into two cases:

1. Slope at (−xa , −ya) is larger than 1 in absolute magnitude. Five subarcs are
drawn.

(a) Arc from (−xa , ya) to a point (x0, y0) whose slope is infinite. For all points
between, the ellipse has a slope larger than 1 in absolute magnitude, so y is
always incremented at each step.

(b) Arc from (x0, y0) to a point (x1, y1) whose slope is 1. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(c) Arc from (x1, y1) to a point (x2, y2) whose slope is 0. For all points between,
the ellipse has a slope less than 1 in absolute magnitude, so x is always incre-
mented at each step.

(d) Arc from (x2, y2) to a point (x3, y3) whose slope is −1. For all points be-
tween, the ellipse has a slope less than 1 in absolute magnitude, so x is always
incremented at each step.
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(e) Arc from (x3, y3) to (xa , ya). For all points between, the ellipse has a slope
larger than 1 in absolute magnitude, so y is always decremented at each step.

2. Slope at (−xa , −ya) is smaller than 1 in absolute magnitude. Five subarcs are
drawn.

(a) Arc from (−xa , −ya) to a point (x0, y0) whose slope is −1. For all points
between, the ellipse has a slope less than 1 in absolute magnitude, so x is
always decremented.

(b) Arc from (x0, y0) to a point (x1, y1) whose slope is infinite. For all points
between, the ellipse has a slope larger than 1, so y is always incremented.

(c) Arc from (x1, y1) to a point (x2, y2) whose slope is 1. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(d) Arc from (x2, y2) to a point (x3, y3) whose slope is 0. For all points between,
the ellipse has a slope less than 1 in absolute magnitude, so x is always incre-
mented at each step.

(e) Arc from (x3, y3) to (xa , ya). For all points between, the ellipse has a slope
less than 1 in absolute magnitude, so x is always incremented at each step.

Each subarc is computed using a decision variable as in the case of an axis-aligned
ellipse. The decision to switch between the three subarcs is based on the slope of
the ellipse. The ellipse is implicitly defined by Q(x , y) = 0, where Q(x , y) = Ax2 +
2Bxy + Cy2 − D = 0. The derivative dy/dx = −(Ax + By)/(Bx + Cy) is obtained
by implicit differentiation. The numerator and denominator of the derivative can be
maintained incrementally. Initially, the current pixel (x , y) = (−xa , −ya) and the
numerator and denominator of the slope are dy = Axa + Bya and dx = −(Bxa +
Cya).

The decision variable σ is handled slightly differently than in the case of an axis-
aligned ellipse. In the latter case, the decision was made to use the pixel whose own
level curve is closest to the zero level curve. In the current case, a general ellipse
handled in the same way can lead to gaps at the endpoints of the arc and the reflected
arc. To avoid the gaps, the decision is made to always select the ellipse with the
smallest positive level curve value rather than the smallest magnitude level curve
value. The selected pixels are always outside the true ellipse. The decision variable
is not incrementally maintained because it is not expensive to compute, although it
is possible to maintain it so.

Each of the algorithms for the 10 subarcs are similar in structure. Case 1(a)
is described here. The initial values are x = −xa, y = −ya, dx = Bxa + Cya, and
dy = −(Axa + Bya). As y is incremented, eventually the leftmost point in the x-
direction is encountered where the slope of the ellipse is infinite. At each step the
two pixels to test are (x , y + 1) and (x − 1, y + 1). It is enough to test σ = Ax2 +
2Bx(y + 1) + C(y + 1)2 − D < 0 to see if (x , y + 1) is inside the true ellipse. If it is,
then (x − 1, y + 1) is the next pixel to draw. If σ ≥ 0, then (x , y + 1) is outside the
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true ellipse and closer to it than (x − 1, y + 1), so the next pixel is (x , y + 1). The
code is

while ( dx <= 0 ) // Loop until point with infinite slope occurs.
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc-y);
y++;
sigma = a*x*x+2*b*x*y+c*y*y-d;
if ( sigma < 0 )
{

dx -= b;
dy += a;
x--;

}
dx += c;
dy -= b;

}

The other nine cases are structured similarly.

2.5.4 Triangles

Drawing a triangle as a white object on a black background is a simple process
that determines the pixels with minimum and maximum x-values on each scan line
intersected by the triangle, then draws the pixels between. This is accomplished by
keeping two buffers for the minimum and maximum, with each buffer having a
number of elements equal to the height of the screen, and using the Bresenham line-
drawing algorithm to draw the three edges of the triangle. The line drawer updates the
buffers when necessary. It is useful to sort the vertices on y so that the line drawer can
update only one of the buffers at a time. This also helps to trap degenerate triangles
that are passed to the rasterizer; the degeneracy is caused by triangles seen nearly edge
on by the eye point, with numerical round-off errors leading to the projection being
a line segment. Pseudocode is given for a triangle with integer-valued vertices (xi , yi)

for 0 ≤ i ≤ 2 that are listed in counterclockwise order. There are 13 cases, six of the
form yi0

< yi1
< yi2

, three of the form yi0
= yi1

< yi2
, three of the form yi0

< yi1
= yi2

,
and one of the form yi0

= yi1
= yi2

. Only a couple of the cases are listed in the
pseudocode. It is assumed that there are two update routines, one that updates the
minimum buffer (UpdateMin) and one that updates the maximum buffer (UpdateMax).
The return value of false indicates a degenerate triangle, true otherwise.

// global quantities
xmin[0..H-1] = minimum x-values for scan lines 0 <= y <= H-1;
xmax[0..H-1] = maximum x-values for scan lines 0 <= y <= H-1;
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ymin = last minimum y-value for scan lines;
ymin = last maximum y-value for scan lines;
pixel[0..H-1][0..W-1] = frame buffer;

bool ComputeEdgeBuffers ()
{

//*** case: y0 < y1 < y2
dx0 = x1-x0; dy0 = y1-y0; dx1 = x2-x0; dy1 = y2-y0;
det = dx0*dy1-dx1*dy0;
// Assert: det <= 0 since vertices are counterclockwise and
// window space has left-handed coordinates.
if (det < 0)
{

UpdateMin(x0,y0,x1,y1);
UpdateMin(x1,y1,x2,y2);
UpdateMax(x0,y0,x2,y2);
return true;

}
else
{

// degenerate triangle
return false;

}

//*** case: y0 < y1 = y2
// Assert: x1 <= x2 since vertices are counterclockwise and
// window space has left-handed coordinates.
if (x1 < x2)
{

UpdateMax(x0,y0,x2,y2);
UpdateMin(x0,y0,x1,y1);
return true;

}
else
{

// degenerate triangle
return false;

}
}

Lines are always drawn starting from the vertex with the smaller y-value. This
avoids the cracking between triangles that was mentioned in Section 2.5.1. The trian-
gle rasterizer is
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void DrawWhiteTriangle ()
{

clear xmin[ymin..ymax];
clear xmax[ymin..ymax];

if (ComputeEdgeBuffers())
{

for (y = ymin; y <= ymax; y++)
{

for (x = xmin[y]; x <= xmax[y]; x++)
pixel[y][x] = WHITE;

}
}

}

The actual code in the Wild Magic software renderer is slightly more complicated.
You will find this in the file Wm4SoftDrawElements.cpp, function SoftRenderer::
RasterizeTriangle. The input triangle has vertices in clip-space coordinates, which
were computed in the vertex shader program. These coordinates are converted to
NDC values, and then the perspective divide is applied to produce window co-
ordinates. Before the ComputeEdgeBuffers function is called, a check is made to
see if the triangle is front facing. Although we already tested for this earlier in the
process—before clipping occurs—it is possible that numerical round-off errors pro-
duce clipped triangles that are back facing. If the input triangle is back facing, the
rasterizer simply returns without drawing.

If the input triangle is front facing, ComputeEdgeBuffers is called. The assignment
of the pixel color in the inner loop of the pseudocode previously mentioned is an
oversimplification. For each pixel (x , y), the rasterizer must interpolate vertex at-
tributes, this being done in clip-space coordinates, and then convert to NDC values
and project to window coordinates. At that time the pixel is “drawn” by calling the
entry function to the pixel shading system. The actual inner loop is

PerspectiveInterpolate(afXMinAttr,afXMaxAttr,iX0,iX1,m_aafScanAttr);
for (int iX = iX0 + 1; iX < iX1; iX++)
{

ClipToWindow(m_aafScanAttr[iX],fXWindow,fYWindow,fDepth,fInverseW);
ApplyPixelShader(iIndex++,fDepth,fInverseW,&m_aafScanAttr[iX][4]);

}

The variable iX0 corresponds to the pseudocode value xmin[y], and the variable iX1
corresponds to the pseudocode value xmax[y]. The arrays afXMinAttr and afXMaxAttr
store vertex attributes such as colors and texture coordinates. The first line of the
actual code interpolates all the vertex attributes at the endpoints of the scan line of
the triangle, using perspective interpolation (not linear interpolation), and the results
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are stored in the data structure m_aafScanAttr. The inner loop follows next, where the
function ClipToWindow converts clip-space coordinates to NDC values, and then to
window coordinates. The function ApplyPixelShader is the entry point to actually
drawing the pixel, but involves additional logic related to depth buffering, stencil
buffering, alpha blending, and color masking. The details on the vertex and pixel
shader systems are found in Chapter 3.

2.6 Vertex Attributes

Triangles are drawn by the renderer as colored entities, the color of each pixel de-
termined by vertex attributes assigned to the vertices of the triangle. The pixels at
nonvertex locations are computed via interpolation by the rasterizer, the final values
in total called surface attributes. In screen space the projected vertices have locations
(x , y) that are used to control the interpolation process. Each vertex is endowed with
a list of attributes depending on how the application wants the triangle to be drawn.

2.6.1 Colors

Each vertex can be assigned a vertex color C = (r , g , b, a), where r is the red channel,
g is the green channel, b is the blue channel, and a is the alpha channel (for trans-
parency effects). Channels from other color models could be used instead, especially
now that vertex shader programming is in your control. A rasterized triangle whose
vertices are assigned only colors is not that visually appealing, since interpolation of
three color values over a triangle does not produce a wide variation in color. However,
using only vertex colors may be necessary either on systems with a limited amount of
memory, which prevents having a large number of textures at hand, or on systems
with slow processors that take many cycles to combine multiple colors. Vertex colors
are typically used in conjunction with textures to add more realism to the render-
ing. Moreover, the vertex colors can be used in conjunction with lights in the scene
to generate dynamic effects, such as a flaming fireball traveling down a corridor and
lighting portions of the walls near its path. This is termed dynamic lighting and is
described in the next section.

2.6.2 Lighting and Materials

Dynamic lighting effects can be achieved by using light sources to illuminate portions
of the scene and by assigning material properties to various objects in the scene.
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Directional light Point light Spotlight

Figure 2.35 Various light sources.

Lights

The standard light sources in a real-time engine are

Directional lights. The light source is assumed to be infinitely far away so that
the directions of the light rays are all parallel. The sun is the classic example of a
directional light.

Point lights. The light source has a location in space and emits light in all direc-
tions.

Spotlights. The light source has a location in space but emits light only within a
cone.

Figure 2.35 illustrates the three possible sources. Real light sources emit light from an
area or volume source. Point light sources are a reasonable approximation in a real-
time setting but do not always produce visually correct information. For example,
shadows generated by a point source have hard edges, but shadows generated by a
real light source have soft edges.

Engines also have the concept of ambient light . This is not really a light source,
but amounts to contributions from scattered light in the surrounding environment
to the illumination of an object. Throughout the discussion here, I will refer to the
four light types: ambient, directional, point, and spot.

Light sources have various attributes in addition to position and direction. Each
light can be monochrome or can have an RGB color associated with it. Instead of a
single color for the light, multiple colors can be used to represent the contribution
to ambient, diffuse, and specular lighting. The light can also maintain an intensity
parameter that applies to the various colors, and a Boolean parameter can be used to
indicate whether the light is on or off, a quick way to enable or disable lights in the
rendering system. Other attributes assigned to lights depend on type. Point lights and
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spotlights can have their light attenuated with distance from the light source, with the
attenuation parameter usually specified as an inverse quadratic:

α =
{

I , Ambient and directional lights
I

c0+c1|V−P|+c2|V−P|2 , Point lights and spotlights (2.76)

where P is the light position and V is a point to be illuminated. The coefficients
are I for intensity, c0 for the constant term, c1 for the linear term, and c2 for the
quadratic term. The physically correct model is I = 1 and c0 = c1 = 0 and produces
the inverse square relationship that we expect. However, the c0 and c1 parameters give
an application more control over how the attenuation is to occur. Moreover, choosing
c0 > 0 guards against floating-point overflow when |V − P| is nearly zero. Usually, the
models for attenuation distance always have I = 1, but I include the coefficient I in
the Wild Magic implementation of lights to allow for an intuitive linear adjustment
of intensity. Without it, you can adjust the intensity by varying c0, but linear changes
in c0 do not equate to linear changes in intensity.

Materials

Associating a material with an object is an attempt to give the object surface charac-
teristics based on the material parameters and the light sources. The material param-
eters include emissive Memis, ambient Mambi, diffuse Mdiff , and specular Mspec color
components and include scalar parameters for shininess Mshine and alpha blending
Malpha. The emissive color represents the fact that a material itself can emit light
rather than simply reflect it. The ambient, diffuse, and specular colors are intended to
be factors that interact with the light sources. Shininess is used to control how sharp
or diffuse a specular highlight is. The alpha value is used to support transparent ma-
terials as an alternative to applying texture images with an alpha channel.

Lighting and Shading

The term lighting refers to the process of computing colors based on light sources and
materials. The term shading refers to the process of computing pixel colors after any
lighting has been calculated. The three standard shading models are flat , Gouraud,
and Phong . Flat shading uses the same color for all pixels in a rendered triangle. Thus,
a color is assigned to the entire triangle rather than separate colors assigned to the
three vertices. Gouraud shading calculates the vertex colors of the triangle based on
light sources and materials, then interpolates those colors to fill out the remaining
pixels in the triangle. Phong shading takes the three vertex normals and interpolates
them to compute a normal vector per pixel. Each pixel is then lit according to the light
sources and materials that affect the triangle. The fixed-function graphics pipeline
supports flat shading and Gouraud shading, but Phong shading is more expensive to
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compute and not directly supported on consumer machines. With a programmable
graphics pipeline, it is possible to use Phong shading with normal vector interpola-
tion accomplished through what are called normalization maps. The normal vectors
are linearly interpolated during rasterization but made unit length in a pixel shader
by a lookup into a texture specifically designed for this purpose.

In a software renderer, it is possible to interpolate normal vectors in a nonlin-
ear manner. Specifically, if the three vertex normals are plotted on a unit sphere, the
normal at any triangle interior point corresponds to a point on the unit sphere con-
tained in the spherical triangle formed by the original three normals. A discretization
of the spherical triangle is quite possible and not expensive ([And94, AJ97]), but this
would have to be part of the rasterization in the graphics system, something that is
not exposed to the developer through shader programming.

The colors at the triangle vertices are computed via a lighting model. The models
used in real-time graphics involve decomposition into ambient, diffuse, and specular
components. The model described here assumes that each light has an ambient color
Lambi, a diffuse color Ldiff , a specular color Lspec, and an intensity Lintn that is applied
equally to all three colors. Point lights and spotlights also have an attenuation value
Lattn.

The lighting contributions fall into three categories: ambient, diffuse, and spec-
ular. In the discussions here, I omit mention of the light intensity, but in the final
discussion about adding up all the contributions (the lighting equation), I incorpo-
rate this quantity.

Ambient Lighting

A light ray in the real world follows a path that has it reflecting off many surfaces and
decreasing in intensity along the way. The global effect from all the rays is termed
ambient lighting . The light model incorporates this effect by combining the light’s
ambient color with the material’s ambient color,

Cambi = Mambi ◦ Lambi (2.77)

where the operator ◦ represents componentwise multiplication. The color channels
are chosen to be values in the interval [0, 1]. If two color channels are in this interval,
the product is in the interval. If you adjust the intensity parameter to be large enough
to cause a color channel to be larger than 1, you typically will clamp the value to 1,
but effects using high dynamic range lighting do not require such clamping. A good
book on high dynamic range imaging is [RWPD05].

Diffuse Lighting

Diffuse lighting is based on Lambert’s law, which says that for a matte surface, the
intensity of the reflected light is determined by the cosine of the angle between the
outer-pointing surface normal N and the light direction vector D. Moreover, the
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intensity drops to zero when the angle between N and D is π/2 radians or smaller.
The light model incorporates diffuse lighting by

Cdiff = μMdiff ◦ Ldiff (2.78)

where

μ = max{−N . D, 0} (2.79)

is the diffuse coefficient . The light direction depends on the light type. For directional
lights, the direction D is already known. For point lights and spotlights, the direction
is D = (V − P)/|V − P|, where the light source location is P and the point V is to be
illuminated.

Specular Lighting

Diffuse lighting represents reflection of light on matte surfaces. Specular lighting
represents reflection of light on shiny surfaces. In particular, specular highlights can
show up on highly reflective surfaces. These are places where the surface normal and
light direction are parallel. The tightness of the region of brightness is something that
can be controlled by the material’s shininess parameter.

The Phong lighting equation [Pho00] is a model for computing the specular
lighting. Figure 2.36 (a) illustrates the various point and vector quantities in the
model. Let E be the eye point. Let U = (V − E)/|V − E| be the view direction for
a point V to be illuminated. Let D be the light direction, specified for directional
lights but computed to be D = (V − P)/|V − P| for point lights and spotlights. The
reflection vector of the light direction through the surface normal N is

R = D − 2(N . D)N

VE

R

N D

U

(a)

VE

NH D

U

(b)

Figure 2.36 (a) The Phong lighting model. The angle between the reflection vector R and the
surface normal N controls the attenuation. (b) The Blinn lighting model. The angle
between the half vector H and the surface normal N controls the attenuation.
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If the observer looks at V in the direction U = −R, he should see a very bright region
at the point. As the view direction varies away from −R, the region at the point should
be less bright. The specular coefficient for the attenuation is chosen to be

γ = (max{−R . U, 0})Mshine (2.80)

The clamping to zero means that an observer behind the surface will see no reflected
light. The exponent Mshine controls how small (or large) the bright region is around
V. The specular lighting is

Cspec = γ Mspec ◦ Lspec (2.81)

The Blinn lighting equation [Bli77] is a variation of the Phong lighting equation.
Figure 2.36 (b) illustrates this model. The half vector V is chosen to be

H = − D + U

|D + U|
If the observer looks at V in the direction U = −H, he should see a very bright region
at the point. As the view direction varies away from −H, the region at the point
should be less bright. The specular coefficient for the attenuation is chosen to be

γ = (max{−R . H, 0})Mshine (2.82)

The variation was designed to produce similar visual results, but at a smaller compu-
tational cost when a directional light is used and a nonlocal observer is assumed. The
latter term means that the observer is sufficiently far away from the object that the
view direction U may be chosen to be a constant direction. Thus, H is computed once
and used for diffuse lighting of all the vertices on a surface. When the view direction
varies, H must be computed per vertex.

Vertex shader programming allows you to implement whatever model you prefer.
The lighting vertex shaders in Wild Magic use the Blinn model and a local viewer, so
H is computed per vertex.

Spot Attenuation

Spotlights have a position P, a unit-length cone axis A, and an angle θ ∈ (0, π/2)
that is measured from the cone axis to the cone wall. A vertex V is illuminated by a
spotlight only when it is inside the cone of the spotlight. The light direction to the
vertex is D = (V − P)/|V − P|. Attenuation based solely on containment in the cone
is controlled by

σ =
{

1, D . A ≥ cos θ

0, otherwise
(2.83)
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With this form of attenuation, a coarsely tessellated mesh will have jagged edges
separating the lit portion of the surface from the nonlit portion, an unattractive visual
artifact. To attempt to eliminate this, you may also allow the intensity to decrease as
the angle from the cone axis increases,

σ =
{

(D . A)Lspot , D . A ≥ cos θ

0, otherwise
(2.84)

where Lspot > 0 is referred to as the spot exponent . This helps remove some of the
jaggedness, but the light intensity at the cone edge is still discontinuous. An even
more expensive form of attenuation is to have a factor that is 1 when V is on the cone
axis, but then decreases smoothly to 0 when V is on the cone wall,

σ =
{ (

D.A−cos θ
1−cos θ

)Lspot
, D . A ≥ cos θ

0, otherwise
(2.85)

The Wild Magic vertex shaders for lighting use the spot attenuation of Equation
(2.84). If you choose the spot exponent sufficiently large, the jaggedness artifacts are
no longer visible.

The Lighting Equation

The final equation for lighting a vertex with a single material and using multiple light
sources, which follows, includes the attenuation factors for distance as well as for spot
angles. The superscripts are indices for the array of active lights.

Cfinal = Memis (2.86)

+
n∑

i=1

αiσi

(
Mambi ◦ Li

ambi + μiMdiff ◦ Li
diff + γiMspec ◦ Li

spec

)

where αi is the distance attenuation for the ith light, computed using Equation (2.76);
σi is the spot attenuation, which is 1 for point or directional lights but computed for
spotlights using one of Equations (2.83), (2.84), or (2.85); μi is the diffuse coefficient,
computed using Equation (2.79); and γi is the specular coefficient, computed using
either Equation (2.80) or (2.82). The specular coefficient and spot attenuation are set
to zero whenever the diffuse coefficient is zero because the observer cannot see the lit
vertex.

The actual shader programs use a factored version of Equation (2.86) to allow
for code fragments to handle any number of lights. This reduces the number of
computations that the shader program must perform. The factored equation is
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Cfinal = Memis + Mambi ◦
n∑

i=1

αiσiL
i
ambi

+ Mdiff ◦
n∑

i=1

αiσiμiL
i
diff + Mspec ◦

n∑
i=1

αiσiγiL
i
spec

(2.87)

Note that if no lights are present and the material emits light, the final vertex color
is not black. It is also possible to include a global ambient light term Mambi ◦ Gambi,
where the global ambient color is specified by the application, but I do not include
this in Wild Magic. You simply attach an ambient light object to the root of the scene
to obtain a global ambient light.

2.6.3 Textures

Textured images, or simply textures, provide the most realism in a model and can
be used effectively to hide the model’s polygonal aspects. Although in most cases the
images are 2D, there are many special effects that use 1D and 3D images. A texture
coordinate is a 1-tuple (s) for a 1D image, a 2-tuple (s , t) for a 2D image, and a 3-tuple
(s , t , r) for a 3D image. Advanced special effects can use projected textures, in which
case the texture coordinate is a homogeneous 4-tuple (s , t , r , q). The actual values
used for looking up the color in the image are obtained by the perspective divide: s/q
for a 1D image, (s/q , t/q) for a 2D image, and (s/q , t/q , r/q) for a 3D image. The
texture coordinate can have an even more complicated representation; for example,
shadow maps use depth textures. The r-values represent distances from a light source,
and the (s/q , t/q)-values are used for a lookup into a texture representing depth
values. Some of the sample shaders discussed in Chapter 20 have the details on
how the texture coordinates are manipulated. For general notation, if u is a texture
coordinate (in whatever dimension), the texture image has a corresponding color
value C(u).

A mesh of triangles may be assigned a textured image and each vertex may be
assigned a texture coordinate. The texture coordinates at the vertices are perspectively
interpolated by the rasterizer to obtain texture coordinates at other pixels in the
triangle. Each interpolated coordinate is also used to do a color lookup in the image.
Since the components of the texture image are, in practice, integer valued, and since
the interpolation produces floating-point values that are not necessarily integers, the
lookup of the corresponding color in the texture image requires an interpretation
of the texture coordinate. This is the subject of coordinate modes, filter modes, and
mipmap modes.
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Figure 2.37 (a) The graph of the clamping function. (b) The graph of the repeat function. (c)
The graph of the mirrored-repeat function.

Coordinate Modes

The standard representation of a 2D texture image uses texture coordinates that have
components in the interval [0, 1]. The images have their own bounds per dimension,
and the lookup of the color in the image requires some type of transformation from
[0, 1] to the image bound. That said, it is not necessary that a texture coordinate have
components in [0, 1]. This allows for efficient use of textures and for interesting ef-
fects. The standard texture coordinate modes are clamping , repeating (or wrapping),
and mirrored repeating . Each of these modes is applied per component of a texture
coordinate.

A coordinate s is clamped by setting

s ′ = f (s) = min{max{0, s}, 1} (2.88)

That is, if s < 0, then s ′ = 0, or if s > 1, then s′ = 1; otherwise, s′ = s. Figure 2.37 (a)
shows a graph of the clamp function.

One special effect obtained by clamping is to place a small detail in the interior of
a triangle. For example, a triangle that represents part of a glass window can have a
texture applied to make it appear as if the window has a bullet hole in it. The texture
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image for the bullet hole can be quite small (to minimize memory usage), and the
texture coordinates for the vertices can be set to quantities well outside the range of
[0, 1]2 to control the size and placement of the bullet hole.

A coordinate s is repeated by setting

s′ = f (s) = s − �s� (2.89)

where �s� is the largest integer smaller than or equal to s. Figure 2.37 (b) shows a
graph of the repeat function. The typical special effect obtained by wrapping is to
allow a texture to repeat, thereby producing a doubly periodic effect. The texture
in this case is said to be toroidal, and great care must be taken so that the left/right
edges and top/bottom edges of the texture match (otherwise the texture boundaries
are noticeable) in the replication. For example, a brick wall can be built from a small
number of triangles with a small texture representing a few bricks.

A coordinate s is mirror repeated by setting

s ′ = f (s) =
{

s − �s�, �s� is even
1 − (s − �s�) , �s� is odd

(2.90)

Figure 2.37 (c) shows a graph of the mirrored-repeat function. Whether you use
repeat or mirror-repeat modes, the texture image values should match whenever
s = 0 and s = 1; otherwise, you have a visual anomaly called a seam. For a 2D image,
if the image values satisfy C(0, t) = C(1, t) for all t ∈ [0, 1], but C(s , 0) �= C(s , 1)
for some s ∈ [0, 1], the texture is said to be cylindrical. The idea is that if you wrap
the image and connect two opposing sides, you have a cylinder and the image varies
smoothly as you walk around the cylinder. If instead you have C(0, t) = C(1, t) for
all t ∈ [0, 1] and C(s , 0) = C(s , 1) for all s ∈ [0, 1], the texture is said to be toroidal.
The idea is that if you wrap the image and connect two opposing sides, then connect
the other two opposing sides, you have a torus and the image varies smoothly as you
walk around the torus.

Figure 2.38 shows a texture that is clamped in the horizontal direction, Figure
2.39 shows a texture that is repeated in the horizontal direction, and Figure 2.40
shows a texture that is mirror repeated in the horizontal direction. The texture image
is defined on a rectangular lattice of points, so it is not a continuous quantity. A
texture coordinate computed via interpolation is usually not a lattice point. The
method of computing a lattice point for the coordinate is called texture filtering , but
is also referred to as texture sampling . A fundamental issue in sampling is deciding
how to interpret what a texture image really is. The image consists of a discrete
collection of point samples, but the interpolation needs a continuous representation.
My illustrations here are for 1D images, but the concepts trivially extend to higher-
dimensional images.

Let the image consist of N color samples, Ci for 0 ≤ i ≤ N − 1. The standard
interpration in computer graphics is to think of the samples as the centers of a line
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Figure 2.38 A 2D texture clamped in the horizontal direction.

Figure 2.39 A 2D texture repeated in the horizontal direction.

Figure 2.40 A 2D texture mirror repeated in the horizontal direction.
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Figure 2.41 A 1D texture image. Each texel represents an interval on the real line, with each point
in that interval assigned the texure image value. The centers of the texels are the
centers of the line segments. The texture coordinates are listed above the centers.

segment (of a square in 2D and of a cube in 3D).1 Figure 2.41 illustrates this for a
1D image. The texel centers are at image indices i = −1/2, 1/2, 3/2, . . . , N − 1/2.
The sample value C0 is shown as gray. This color is assigned to all (continuous) index
values in the interval [0, 1). This interval includes the index 0 but excludes the index 1.
The sample value C1 is shown as light blue. This color is assigned to all index values
in the interval [1, 2), which includes 1 but excludes 2. The last sample value CN−1 is
shown as taupe and is assigned to all index values in the interval [N − 1, N), which
includes N − 1 but excludes N . Indices might fall outside the domain of the image,
in which case a border color can be specified as the texture color. In the figure, the
border color is shown as dark blue. If an index i has the property that i < 0 or i ≥ N ,
the border color is used as the texture image lookup value. The relationship between
the texture coordinate s and the continuous image index i is i = Ns − 1/2.

With our choice of texel centers, the continuous image index i is computed from
the texture coordinate s by the following formulas. For clamp mode, s ′ is computed
using Equation (2.88). The image index i corresponding to s is i = Ns − 1/2. The
image index i ′ corresponding to s′ is computed using

i′ =
⎧⎨
⎩

−1/2, i < −1/2
i , −1/2 ≤ i ≤ N − 1/2
N − 1/2, i > N − 1/2

(2.91)

The range of i ′ values is [−1/2, N − 1/2].
Graphics APIs have provided a couple of variations on clamp mode. The first

variation is the clamp-to-edge mode. Rather than clamp to the range [−1/2, N − 1/2],

1. This is not always the interpretation in other fields. For example, in medical image analysis, the construc-
tion of a level curve in a 2D image involves treating a pixel as a square whose corners are four image sam-
ples. The construction of a level surface in a 3D image involves treating a voxel as a cube whose corners are
eight image samples. Some computer graphics practitioners would disagree with such an interpretation.
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the values are clamped to be valid image indices, namely, [0, N − 1]. The formula for
clamping to an edge is

i ′ =
⎧⎨
⎩

0, i < 0
i , 0 ≤ i ≤ N − 1
N − 1, i > N − 1

(2.92)

This mode avoids having to use a border color because the indices are never out
of range. The second variation is the clamp-to-border mode. The range of clamped
values is [−1, N]. The formula for clamping to the border is

i ′ =
⎧⎨
⎩

−1, i < −1
i , −1 ≤ i ≤ N

N − 1, i > N

(2.93)

For repeat mode or mirrored-repeat mode, s ′ is computed using either Equation
(2.89) or (2.90). The image index i′ corresponding to s′ is computed using

i′ = Ns′ − 1/2 (2.94)

The range of the index is [−1/2, N − 1/2].
All texture coordinate modes produce the same value of i ′ for a specified s when

the image index lies in the interior of the image. The differences in sampling occur
only at the boundary. How they differ depends on the filtering mode, which is dis-
cussed next.

Filtering Modes

There are two standard ways to filter an image. The first method takes the continuous
image index i′, computed using one of Equations (2.91) through (2.94), and selects
the nearest integer index j = �i′ + 1/2�. The image value C used for the pixel color is

C = Cj (2.95)

This gives a jagged appearance, especially when the texture image is high frequency
in its data. Figure 2.42 illustrates this for a 2D texture with a checkerboard image.

The second method uses linear interpolation (1D images), bilinear interpolation
(2D images), or trilinear interpolation (3D images) as a way of smoothing the results
and avoiding the aliasing problem from selection of the nearest lattice point. Let the
1D texture have N samples. If i′ is the continuous image index computed from the
texture coordinate, then let �0 = �i′� (the floor of i′) and �1 = 	i′
 (the ceiling of i′).
The image values C�0

and C�1
are linearly interpolated to produce the pixel color

C = (1 − δ)C�0
+ δC�1

(2.96)

where δ = i′ − �0.
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Figure 2.42 A texture image with nearest-neighbor filtering.

If the continuous image indices for a 2D image are (i′, j ′) corresponding to a
texture coordinate (s , t), define �0 and �1 as for a 1D texture and define m0 = �j ′�
and m1 = 	j ′
. The image values C�0, m0

, C�1, m0
, C�0, m1

, and C�1, m1
are bilinearly

interpolated to produce the pixel color

C = (1 − δ)((1 − ε)C�0, m0
+ εC�0, m1

) + δ((1 − ε)C�1, m0
+ εC�1, m1

) (2.97)

where δ = i′ − �0 and ε = j ′ − m0.
If the continuous image indices for a 3D image are (i′, j ′, k′) corresponding to

a texture coordinate (s , t , r), define �0, �1, m0, and m1 as was done for a 2D texture
and define n0 = �k′� and n1 = 	k′
. The image values C�0, m0, n0

, C�1, m0, n0
, C�0, m1, n0

,
C�1, m1, n0

, C�0, m0, n1
, C�1, m0, n1

, C�0, m1, n1
, and C�1, m1, n1

are trilinearly interpolated to
produce the pixel color

C = (1 − δ)((1 − ε)((1 − φ)C�0, m0, n0
+ φC�0, m0, n1

)

+ ε((1 − φ)C�0, m1, n0
+ φC�0, m1, n1

))

+ δ((1 − ε)((1 − φ)C�1, m0, n0
+ φC�1, m0, n1

)

+ ε((1 − φ)C�1, m1, n0
+ φC�1, m1, n1

))

(2.98)



106 Chapter 2 The Graphics System

Figure 2.43 A texture image with bilinear filtering.

The texture image of Figure 2.42 was drawn using bilinear interpolation. The
result is shown in Figure 2.43. Notice that the jaggedness of Figure 2.43 does not
appear in the foreground of this figure, but there is jaggedness in the background
of the figure. How to deal with this is the topic of mipmapping , which I discuss later
in this section.

As promised, here is a comparison of the behavior of the texture coordinate
modes at the boundary of an image. For illustration, the comparison is shown for
a 1D image at its left boundary. The image samples are Ci for 0 ≤ i ≤ N − 1 and
the border color is B. Table 2.3 shows the behavior when nearest-neighbor filtering
is used. Recall that rounding is applied so that numbers x with x − �x� < 1/2 are
rounded to �x� and numbers x with x − �x� ≥ 1/2 are rounded to 	x
.

To remind you of interval notation, [a , b] is the set of x for which a ≤ x ≤ b.
The interval [a , b) has the constraint a ≤ x < b; the interval (a , b]has the constraint
a < x ≤ b; and the interval (a , b) has the constraint a < x < b. Notice the difference
in behavior between clamp mode and clamp-to-border mode.

The more interesting behaviors, and ones that tend to catch your attention vi-
sually when building terrains from height fields, occur when you use linear filtering
(bilinear for 2D images). Dark seams between terrain pages is an indication that you
have the wrong clamping mode for the textures assigned to the pages. Table 2.4 shows
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Table 2.3 Selected color for a continuous image index when nearest-neighbor filtering is used.

Mirrored
i Interval Clamp Clamp to Edge Clamp to Border Repeat Repeat

(−3/2, −1/2) C0 C0 B CN−1 C0

[−1/2, 0) C0 C0 C0 C0 C0

Table 2.4 Selected color for a continuous image index when linear filtering is used. The pairs
of colors are those used in the linear interpolation. The weights applied to these
depends on where in the interval i occurs.

Mirrored
i Interval Clamp Clamp to Edge Clamp to Border Repeat Repeat

(−2, −1] B, C0 C0, C0 B, B CN−2, CN−1 C1, C0

(−1, 0) B, C0 C0, C0 B, C0 CN−1, C0 C0, C0

the behavior when linear filtering is used. Notice the difference in behavior between
clamp mode and clamp-to-border mode.

The Wild Magic software renderer implements texture sampling, including the
conversion of texture coordinates to image coordinates and the filtering using near-
est neighbors or linear interpolation. The file containing the conversion of texture
coordinates is Wm4SoftSampler.cpp. The files containing the sampling and filtering are
Wm4SoftSampler1.cpp, Wm4SoftSampler2.cpp, and Wm4SoftSampler3.cpp, where the fi-
nal number in the file name is the dimension of the image.

One thing you should notice in the sampling code is that I require the image
dimensions to be powers of two. For a software renderer, this is not a constraint you
really need to have, but I have made it in order to illustrate rapid lookups in an image
stored as a 1D array in memory. For a 2D image of dimensions N × M stored in row-
major order, the image value at location (x , y) is stored in linear memory at the index
i = x + Ny. Computing the index requires a multiplication, something that can be
expensive to compute in hardware (when you have a lot of multiplications). If N = 2p

for p > 0, the index calculation may be written instead as i = x + (y � p), where the
symbol � denotes the shift-left operator. Shifting the bits of y to the left by p units
is equivalent to multiplying by 2p. Shifting is less expensive to compute in hardware
than multiplication. Given the enormous number of texture image lookups during
rendering, the time savings can be significant.
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Mipmapping

Even bilinear filtering can have aliasing problems when a textured triangle is in
the distance. As the distance from the eye point increases, the perceived frequency
in the texture increases because the same range of texture coordinates is applied over
the smaller set of pixels covered by the triangle. This produces a temporal aliasing of
the textures on objects close to the far plane. A method for reducing the aliasing is
mipmapping [Wil83]. The prefix mip is an acronym for the Latin multum in parvo,
which means “many things in a small place.” The idea is that a pyramid of textures is
built from the original by downsampling via averaging or blurring.

To illustrate downsampling by averaging, consider a 1D image with N0 = 2p0

samples. A smaller image is constructed with half the samples. If C0(i) are the original
image samples for 0 ≤ i < 2p0, the downsampled image samples are C1(i) for 0 ≤ i <

2p0−1. Specifically, they are averages:

C1(i) = 0.5(C0(2i) + C0(2i + 1))

The downsampling is repeated on C1 to obtain a smaller image C2. The process con-
tinues until the final image has one sample. The number of such images is p0 +
1, including the original image. In the Wild Magic software renderer, 1D down-
sampling is computed by the function SoftSampler::RecreateMipmap1 in the file
Wm4SoftSampler.cpp. The pyramid construction is computed by the function Soft-
Sampler1::CreateMipmaps.

Now consider a 2D image of size 2p0 × 2p1. For the sake of argument, let p0 ≥ p1.
The downsampling occurs by averaging 2 × 2 blocks of pixels. Assuming p1 > 1, the
first downsampled image has size 2p0−1 × 2p1−1. Using the same notation as before,
the averaging is

C1(i , j) = 0.25(C0(2i , 2j) + C0(2i + 1, 2j) + C0(2i , 2j + 1) + C0(2i + 1, 2j + 1))

The downsampling is repeated until you reach an image size where one of the bounds
is 1. Since we have assumed p0 ≥ p1, the image you reach has size 2p0−p1 × 1. If
p0 > p1, you can use the downsampling algorithm that was applied to 1D images.
However, you still need to represent the image as a 2D image because the lookups
use 2D texture coordinates. There are p0 + 1 images in the pyramid when p0 ≥ p1.
Naturally, an implementation must deal with both cases p0 ≥ p1 and p0 < p1. In the
Wild Magic software renderer, 2D downsampling is computed by the function Soft-
Sampler::RecreateMipmap2. The pyramid construction is computed by the function
SoftSampler2::CreateMipmaps.

Finally, consider a 3D image of size 2p0 × 2p1 × 2p2. For the sake of argument,
let p0 ≥ p1 ≥ p2. The downsampling occurs by averaging 2 × 2 × 2 cubes of voxels.
Assuming p2 > 0, the first downsampled image has size 2p0−1 × 2p1−1 × 2p2−1. The
averaging is
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Figure 2.44 A one-to-one correspondence between texels of the texture image and pixels of the
display window.

C1(i , j , k) = 0.125 (C0(2i , 2j , 2k) + C0(2i + 1, 2j , 2k) + C0(2i , 2j + 1, 2k)

+ C0(2i + 1, 2j + 1, 2k + 1) + C0(2i , 2j , 2k + 1)

+ C0(2i + 1, 2j , 2k + 1) + C0(2i , 2j + 1, 2k + 1)

+ C0(2i + 1, 2j + 1, 2k + 1))

The downsampling is repeated until you reach an image of size 2p0−p2 × 2p1−p2 × 1.
If p1 > p2, you can use the downsampling algorithm that was applied to 2D images,
but representing these images as 3D (one of the bounds is always 1). If p0 > p1 = p2,
you can use the downsampling algorithm that was applied to 1D images, also repre-
senting these as 3D images. In the Wild Magic software renderer, 3D downsampling
is computed by the function SoftSampler::RecreateMipmap3. The pyramid construc-
tion is computed by the function SoftSampler3::CreateMipmaps.

Downsampling the images to form a pyramid of images is half of the mipmapping
process. The other half is to devise an algorithm for selecting which of the pyramid
images to use when applying a texture to a pixel. For motivation, suppose that you
have a texture image that is N × N and it is applied to a square mesh (two triangles)
whose rendering covers a square portion of the window. Moreover, suppose that the
covered window pixels are also of size N × N . Essentially, you have one texel of the
texture image assigned to one pixel of the window, as Figure 2.44 illustrates.

The texture coordinates shown in Figure 2.44 are computed during rasterization,
based on the texture coordinates assigned to vertices of the square, and assigned to
the pixels. Now suppose that the texture coordinates vary at twice the rate shown in
Figure 2.44, but for the same set of pixels. Figure 2.45 illustrates this.

The pixel at x = 1/2 received the same color as in the previous figure, the one
occurring at s = 1/N . However, the faster rate of change of the texture coordinate
caused the pixel at x = 3/2 to receive the color for texture coordinate s = 3/N . The
color at texture coordinate s = 2/N was completely missed by the sampling. Imagine
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Figure 2.45 The texture coordinates vary twice as fast as those of Figure 2.44.

yet a larger rate of change of the texture coordinates. Consecutive pixels are assigned
texels that are quite far apart in the texture image.

The visual effect when the texture coordinates vary at a high rate over a block
of consecutive pixels is shown in the background of Figures 2.42 and 2.43. These two
figures are different, though, in the foreground. The nearest-neighbor filtering causes
jaggedness because of the abrupt change from selecting a light blue texel for one pixel,
and then selecting a blue texel for an adjacent pixel. The bilinear filtering removes the
jaggedness, replacing an abrupt change from blue to light blue by a smooth linear
ramp.

The bilinear filtering, however, cannot correct the problem in the background.
Two adjacent pixels are assigned two nonadjacent and well-separated texels. The
weighted averaging provided by bilinear filtering applies only to the two texel col-
ors. It does not take into account any of the texel colors between those two. This is
where mipmapping and the image pyramid come into play. Each downsampled im-
age averages blocks of adjacent colors, so in a sense the lowest-resolution images in
the pyramid contain color information from the highest-resolution images. Instead
of bilinearly interpolating the original image for the distant pixels, one of the lower-
resolution images in the pyramid is selected and the bilinear interpolation applied to
it. The two texels used in the bilinear interpolation now have color information re-
lated to those texels that were skipped when only the original image was used. Figure
2.46 conveys the idea that a row of pixels close to the observer uses the original image,
but a row of pixels farther away requires the downsampled image. Returning to our
checkerboard example, the jaggedness in the background of Figure 2.43 is smoothed
out, producing the image of Figure 2.47.

I have not stated precisely all the details involved in mipmapping. The previous
example implies that I selected one of the images in the pyramid and used it. In fact,
there are a few options for sampling the pyramid to obtain a final color for a pixel:

Nearest-nearest filtering. The mipmap image nearest to the pixel is selected. In
that image, the texel nearest to the pixel is selected and assigned to the pixel.
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Figure 2.46 Two rows of pixels, the bottom row using the original image for texturing and the
top row using a downsampled image obtained by averaging.

Figure 2.47 A texture image with linear-linear mipmap filtering.

Nearest-linear filtering. The two mipmap images that bound the pixel are se-
lected. In each image, the texel nearest to the pixel is selected. The two texels are
linearly interpolated and assigned to the pixel.

Linear-nearest filtering. The mipmap image nearest to the pixel is selected. In that
image, bilinear interpolation of the texels is used to produce the pixel value.
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Linear-linear filtering. The two mipmap images that bound the pixel are selected.
In each image, bilinear interpolation of the texels is used to generate two colors.
Those colors are linearly interpolated to produce the pixel value. This is some-
times called trilinear filtering .

Note that for each filter, the first name refers to the interpolation type within an
image. The second name refers to the interpolation type across two images.

Of course, it is not yet clear what it means to select the image nearest to the pixel
or to select the two images that bound the pixel. The motivating example discussed
previously made it clear that the rate of change of the texture coordinates as you visit
adjacent pixels is the key factor here. Once we quantify such a rate of change, we may
use it for selecting the images to use in the image pyramid.

The relationship between a window point (x , y) and any vertex attribute A is
constructed as follows, and uses the material discussed in Section 2.2.4. A triangle in
world space has vertices Qi for 0 ≤ i ≤ 2. The triangle is parameterized by

Q(s , t) = Q0 + s(Q1 − Q0) + t (Q2 − Q0)

where s ≥ 0, t ≥ 0, and s + t ≤ 1. The s and t here are not to be confused with texture
coordinates. The only vertex attribute of interest here has been named A, so you can
think of A as a component of the texture coordinates. The corresponding window
points are Pi = (xi , yi). In Section 2.2.4, we saw that perspective projection produces
the representation for the projected triangle,

(x , y) = (x0, y0) + s̄(x1 − x0, y1 − y0) + t̄ (x2 − x0, y2 − y0) (2.99)

Equations (2.45) and (2.46) are the mappings between (s , t) and (s̄ , t̄ ).
Let Ai be the vertex attributes for the triangle. The attributes for the entire trian-

gle are

A = A0 + s(A1 − A0) + t (A2 − A0) (2.100)

We may solve Equation (2.99) to obtain (s̄ , t̄ ) as a function of (x , y), and then
substitute this into Equation (2.46) to obtain (s , t) as a function of (x , y). This result
is substituted into Equation (2.100) to obtain an equation of the form

A(x , y) = ax + by + c

dx + ey + f
(2.101)

This is called a fractional linear transformation, an expression that appears regularly
in projective geometry. The coefficients a through f depend on the (xi , yi) and Ai

values.
Equation (2.101) quantifies how the attribute A varies with respect to the pixel

coordinates. In particular, the rates of change are partial derivatives
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∂A

∂x
= (ae − bd)y + (af − cd)

(dx + ey + f )2
,

∂A

∂y
= (bd − ae)y + (bf − ce)

(dx + ey + f )2
(2.102)

From these rates of change, we want a summary statistic—a single number that allows
us to select the images we want to use in the mipmap image pyramid.

For a 1D image, the rate of change of the texture coordinate s may be summarized
by a statistic, but we need to normalize our comparison between texture coordinates
and image coordinates. Specifically, let u(x , y) = Ns(x , y), where the image has
N = 2n samples. Choose

d = log2

√(
∂u

∂x

)2

+
(

∂u

∂y

)2

(2.103)

The logarithm is base 2 and is applied because the downsampling creates log2(N) = n

images. If d = 0, effectively u varies at the same rate as the pixels are varying, so
you would select the original image in the pyramid. For smaller values of d , you still
choose the original image. For a value d = 1, u varies about twice as fast as the pixel
location, so you would choose the image that was downsampled from the original.
As d increases, you choose lower-resolution images in the pyramid. For the purpose
of selecting two images to bound a pixel, calculate d and choose the floor and ceiling
as the indices into the image pyramid.

For a 2D image, there are a few ways to summarize the rate of change of the tex-
ture coordinate (s , t). As in the 1D case, we need to normalize the texture coordinates
to be able to compare them to image coordinates. Define u(x , y) = 2ns(x , y) and
v(x , y) = 2mt(x , y) where the image has size 2n × 2m. The first-order partial deriva-
tives may be written as the entries of a matrix, which is called the derivative matrix,
or Jacobian matrix, of the transformation from (x , y) to (u, v),

J =
[ ∂u

∂x
∂v
∂x

∂u
∂y

∂v
∂y

]

From linear algebra, it is known that the absolute value of the determinant of J is a
measure of how the infinitesimal area at (x , y) is magnified to an infinitesimal area
at (u, v). The mipmap selection variable is set to

d = log2 | det(J )| = log2

∣∣∣∣∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

∣∣∣∣ (2.104)

and is an approximate measure of how many texels are required to cover the pixel
(x , y). If d ≤ 1, then the original image is used for texturing the pixel. As d increases,
you use lower-resolution images in the image pyramid.

As a summary statistic, d measures a change in infinitesimal area in an isotropic
manner, not caring about how the texture coordinate changes in any particular di-
rection. This can be a problem visually. Consider, for example, texture coordinates
(s , t) for which s varies at twice the rate x does but does not vary in y, and for which
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t varies at half the rate y does but does not vary in x. The Jacobian matrix is

J =
[

2 0
0 1/2

]

The selection is d = log2 | det(J )| = 0, indicating we should use the original image
for texturing. However, the jaggedness will show up in the x-direction but not the
y-direction. The effect can be very pronounced; mathematically, ∂u/∂x can be 1000
and ∂v/∂y can be 1/1000, and still d = 0.

One alternative is to use a different summary statistic. For example, you could use
the Euclidean norm of J and choose the mipmap selection

d = log2 ‖J‖ = log2

√(
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

(2.105)

This generalizes the idea from one dimension, where the length of the gradient vector
was used for the summary statistic. In the example where s varied twice the rate of x

and t varied half the rate of y, we have log2 ‖J‖ = log2

√
4.25 .= 1.04, so you would

select the first downsampled image (d = 1) and not the original image. Another
alternative is to choose the mipmap selection to be

d = log2 max

⎧⎨
⎩

√(
∂u

∂x

)2

+
(

∂v

∂x

)2

,

√(
∂u

∂y

)2

+
(

∂v

∂y

)2
⎫⎬
⎭ (2.106)

OpenGL uses this selection mechanism. Even these selections cannot handle extreme
cases when one of the texture components varies greatly and the other does not. The
problem is not so much the summary statistic as it is the downsampling by averaging.
The averaging itself is isotropic, not caring about texture image variation in some
preferred direction. The end result is that overblurring occurs in the direction of least
variation of the texture components.

An attempt to reduce the isotropic effects is to use ripmaps [MB05]. The averaging
process to obtain a sequence of blurred images is applied independently in each
dimension. The lookup process now involves two parameters, one related to the
length of the gradient of s and one related to the length of the gradient of v, and then
using the most appropriate one for the texel lookup. Yet even this can have problems
because the downsampling is still performed in the directions of the image axes.

The most common method to handle the mipmapping these days is anisotropic
filtering . The idea gets right to the heart of the matter—determining those texels
that actually should cover the image and sampling accordingly. For a 2D image with
texture coordinates (s , t), the mapping from (x , y) to the scaled coordinates (u, v)

comes from Equation (2.101), but as applied to two different attributes,

u = a0x + b0y + c0

dx + ey + f
, v = a1x + b1y + c1

dx + ey + f
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Figure 2.48 A texture image with anisotropic filtering using 16 samples per pixel lookup.

This pair of equations maps convex quadrilaterals to convex quadrilaterals, a ba-
sic property of fractional linear transformations and perspective projection. A pixel
square, therefore, maps to a convex quadrilateral in the texture image. This quadri-
lateral may be sampled multiple times and combined to produce the pixel color.
The way that graphics hardware tends to sample is by constructing a line segment
passing through the middle of the quadrilateral—in the long direction—and then
sampling along that segment. The line segment is called the line of anisotropy. The
longer the quadrilateral is in this direction compared to length in the other direc-
tion, the more samples you choose. Figure 2.48 shows the same checkerboard drawn
previously with nearest-neighbor filtering, bilinear filtering, and isotropic trilinear
filtering. The current figure uses anisotropic filtering with 16 samples chosen along
the line of anisotropy.

The large-scale blurring that occurred with trilinear filtering has been replaced
with some sharper detail, but the symmetry of the checkerboard still appears to create
problems. Using two, four, or eight samples changed where the sharpness occurred,
but the results were still not quite pleasing. Well, that’s checkerboards for you. For a
realistic environment, the anisotropic filtering works very well.

OpenGL has an extension for anisotropic filtering,

GL_EXT_texture_filter_anisotropic
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If ux, uy, vx, and vy denote the partial derivatives of the scaled coordinates u

and v, define Lx = |(ux , vx)|, Ly = |(uy , vy)|, Lmin = min{Lx , Ly}, and Lmax =
max{Lx , Ly}. The number of anisotropic samples computed is

n = min

{⌈
Lmax

Lmin

⌉
, amax

}

where the maximum anisotropic value amax is specified by calling

float max_amax;
glFloatfv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT,&max_amax);
float amax = <your desired maximum, between 1 and max_amax>;
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAX_ANISOTROPY_EXT,amax);

The mipmap selection is

d = log2

(
Lmax

n

)

where n is the number of anisotropic samples.

Exercise
2.16

The Wild Magic software renderer implements isotropic mipmapping using Equation
(2.106) for the mipmap image selection. Modify the renderer to support anisotropic
mipmapping.

Multitexture

The number of texture images associated with a triangle need not always be one.
Multiple textures, or multitextures, allow for a lot of special effects that enhance
the realism of the rendered scene. For example, multitextures can add variations in
lighting to textures on the walls in a room. This is a form of static multitexture—the
secondary texture corresponding to the lighting is combined with the primary texture
corresponding to the walls in a view-independent manner. Combining such textures
is a way to add visual variation in a scene without an exponential growth in texture
memory usage. N primary textures and M secondary textures can be combined in
NM ways, but only N + M textures are required in memory as opposed to storing
NM textures. Moreover, an artist can generate the smaller number of textures in less
time.

Here is another example: A character moves along a textured floor in a scene with
a light and casts a shadow on the floor. The shadow can be dynamically computed as a
texture and is applied to the floor triangles. This is a form of dynamic multitexture—
the secondary texture is generated on the fly. The triangles on which the shadow is
cast must be selected by the application, and the corresponding texture coordinates
must also be computed on the fly. In either case, you must decide how the textures
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are to be combined to produce a single color for each pixel. Generally, this is called
blending and is easy enough to implement with shader programming.

2.6.4 Transparency, Opacity, and Blending

Given two RGBA colors, one called the source color and one called the destination
color, the term alpha blending refers to the general process of combining the source
and destination into yet another RGBA color. The source color is (rs , gs , bs , as),
and the destination color is (rd , gd , bd , ad). The blended result is the final color
(rf , gf , bf , af ). All color channel values in this discussion are assumed to be in the
interval [0, 1]. Material colors and texture image colors both can have alpha channels.

The classical method for blending is to use the alpha channel as an opacity factor.
If the alpha value is 1, the color is completely opaque. If the alpha value is 0, the color
is completely transparent. If the alpha value is strictly between 0 and 1, the colors are
semitransparent. The formula for the blend of only the RGB channels is

(rf , gf , bf ) = (1 − as)(rs , gs , bs) + as(rd , gd , bd)

= ((1 − as)rs + asrd , (1 − as)gs + asgd , (1 − as)bs + asbd)

The algebraic operations are performed component by component. The assumption
is that you have already drawn the destination color into the frame buffer; that is,
the frame buffer becomes the destination. The next color you draw is the source. The
alpha value of the source color is used to blend the source color with the current
contents of the frame buffer.

It is also possible to draw the destination color into an offscreen buffer, blend
the source color with it, and then use the offscreen buffer for blending with the
current contents of the frame buffer. In this sense, we also want to keep track of the
alpha value in the offscreen buffer. We need a blending equation for the alpha values
themselves. Using the same operations as for the RGB channels, your choice will be

af = (1 − as)as + asad

Combining the four channels into a single equation, the classic alpha blending equa-
tion is

(rf , gf , bf , af ) = ((1 − as)rs + asrd , (1 − as)gs + asgd ,

(1 − as)bs + asbd , (1 − as)as + asad)
(2.107)

If the final colors become the destination for another blending operation, then

(rd , gd , bd , ad) = (rf , gf , bf , af )

sets the destination to the previous blending results.
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Table 2.5 Possible source blending coefficients.

Enumerated Value (σr , σg , σb , σa)

SBF_ZERO (0, 0, 0, 0)

SBF_ONE (1, 1, 1, 1)

SBF_DST_COLOR (rd , gd , bd , ad)

SBF_ONE_MINUS_DST_COLOR (1 − rd , 1 − gd , 1 − bd , 1 − ad)

SBF_SRC_ALPHA (as , as , as , as)

SBF_ONE_MINUS_SRC_ALPHA (1 − as , 1 − as , 1 − as , 1 − as)

SBF_DST_ALPHA (ad , ad , ad , ad)

SBF_ONE_MINUS_DST_ALPHA (1 − ad , 1 − ad , 1 − ad , 1 − ad)

SBF_SRC_ALPHA_SATURATE (σ , σ , σ , 1), σ = min{as , 1 − ad}
SBF_CONSTANT_COLOR (rc , gc , bc , ac)

SBF_ONE_MINUS_CONSTANT_COLOR (1 − rc , 1 − gc , 1 − bc , 1 − ac)

SBF_CONSTANT_ALPHA (ac , ac , ac , ac)

SBF_ONE_MINUS_CONSTANT_ALPHA (1 − ac , 1 − ac , 1 − ac , 1 − ac)

Graphics APIs support more general combinations of colors, whether the colors
come from vertex attributes or texture images. The general equation is

(rf , gf , bf , af ) = (σrrs + δrrd , σggs + δggd , σbbs + δbbd , σaas + δaad) (2.108)

The blending coefficients are σi and δi, where the subscripts denote the color chan-
nels they affect. The coefficients are assumed to be in the interval [0, 1]. The σi are
specified indirectly through enumerations referred to as the source blending functions.
The δi are also specified indirectly through enumerations referred to as the destina-
tion blending functions. I will use the prefix SBF for the source blending functions.
Table 2.5 lists the possibilities for the source blending coefficients. The constant color,
(rc , gc , bc , ac), is specified independently of material or texture colors. The prefix DBF
is used for the destination blending functions. Table 2.6 lists the possibilities for the
destination blending coefficients.

Table 2.5 has DST_COLOR, ONE_MINUS_DST_COLOR, and SRC_ALPHA_SATURATE, but
Table 2.6 does not. Table 2.6 has SRC_COLOR and ONE_MINUS_SRC_COLOR, but Table
2.5 does not. The classic alpha blending equation (2.107) occurs when the source
blending function is SBF_SRC_ALPHA and the destination blending function is DBF_
ONE_MINUS_SRC_ALPHA.

Here is an interesting example to compare some blending modes. Two textures
may be multiplied together. The source blending function is SBF_DST_COLOR and the
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Table 2.6 Possible destination blending coefficients.

Enumerated Value (δr , δg , δb , δa)

DBF_ZERO (0, 0, 0, 0)

DBF_ONE (1, 1, 1, 1)

DBF_SRC_COLOR (rs , gs , bs , as)

DBF_ONE_MINUS_SRC_COLOR (1 − rs , 1 − gs , 1 − bs , 1 − as)

DBF_SRC_ALPHA (as , as , as , as)

DBF_ONE_MINUS_SRC_ALPHA (1 − as , 1 − as , 1 − as , 1 − as)

DBF_DST_ALPHA (ad , ad , ad , ad)

DBF_ONE_MINUS_DST_ALPHA (1 − ad , 1 − ad , 1 − ad , 1 − ad)

DBF_CONSTANT_COLOR (rc , gc , bc , ac)

DBF_ONE_MINUS_CONSTANT_COLOR (1 − rc , 1 − gc , 1 − bc , 1 − ac)

DBF_CONSTANT_ALPHA (ac , ac , ac , ac)

DBF_ONE_MINUS_CONSTANT_ALPHA (1 − ac , 1 − ac , 1 − ac , 1 − ac)

blending function is DBF_ZERO. The blending equation is

(rf , gf , bf , af ) = (rdrs , gdgs , bdbs , adas) (2.109)

Multiplication of color channels in [0, 1] results in values in [0, 1], so no clamping
is needed. This type of blending is used for dark maps, where the source texture
represents a simulated light source. The term dark is used because the multiplication
can lower the intensity of the final color compared to the destination color. Two
textures may be added together. The source blending function is SBF_ONE and the
blending function is DBF_ONE. The blending equation is

(rf , gf , bf , af ) = (rs + rd , gs + gd , bs + bd , as + ad) (2.110)

Addition of color channels may lead to values larger than 1, so the final color channels
are clamped to the interval [0, 1]. This type of blending is used for light maps, where
the source texture also represents a simulated light source. The final colors tend to
increase in intensity and appear to be oversaturated.

An alternative to additive blending is soft addition. The formula is

(rf , gf , bf , af ) = ((1 − rd)rs , (1 − gd)gs , (1 − bd)bs , (1 − ad)as)

+ (rd , gd , bd , ad)
(2.111)
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Figure 2.49 Upper left: A primary texture is a wooden image. Upper right: A secondary texture to
blend with the primary texture. Lower left: A dark map using multiplicative blending.
Lower middle: A light map using additive blending. Lower right: A light map using
soft additive blending.

The source blend function is SBF_ONE_MINUS_DST_COLOR and the destination blend
function is DBF_ONE. This approach does not lead to oversaturation. The idea is that
you start with the destination color and add a fraction of the source color to it. If the
destination color is bright (values near 1), then the source blend coefficients are small,
so the source color will not cause the result to wash out. Similarly, if the destination
color is dark (values near 0), the destination color has little contribution to the result,
and the source blend coefficients are large, so the source color dominates and the
final result is a brightening of dark regions. Figure 2.49 shows two textures to be
blended together, and the results of multiplicative blending, additive blending, and
soft additive blending are shown.

The concept of blending also encapsulates what is referred to as alpha testing . The
idea is that an RGBA source color will only be combined with the RGBA destination
color as long as the source alpha value compares favorably with a specified reference
value. Pseudocode for alpha testing is

source = (Rs,Gs,Bs,As);
destination = (Rd,Gd,Bd,Ad);
reference = Aref;
if (ComparesFavorably(As,Aref))
{

result = BlendTogether(source,destination);
}
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The ComparesFavorably(x,y) function is a standard comparison between two num-
bers: x < y, x ≤ y, x > y, x ≥ y, x = y, or x �= y. Two additional functions are
allowed: always or never. In the former, the blending always occurs. This is the default
behavior of an alpha blending system. In the latter, blending never occurs.

In order to correctly draw a list of objects, some semitransparent (alpha values
smaller than 1), the rule is to draw your opaque objects first, and then draw your
semitransparent objects sorted from back to front in the view direction. Game pro-
grammers are always willing to take a shortcut to obtain a faster system, or to avoid
having to implement some complicated system, and hope that the consequences are
not visually distracting. In this example, the shortcut is to skip the sorting step and
use alpha testing. The list of objects is rendered twice, and on both passes, depth buff-
ering is enabled in order to correctly sort the objects (on a per-pixel basis in window
space). Also on both passes, alpha testing is enabled. On the first pass, the test func-
tion is set to allow blending for any colors with an alpha value equal to 1; that is, the
opaque objects are drawn, but the semitransparent objects are not. On the second
pass, the test function is set to allow blending for any colors with an alpha value not
equal to 1. This time the semitransparent objects are drawn, but the opaque objects
are not.

As stated, this system is not quite right (ignoring the back-to-front sorting issue).
Depth buffering is enabled, but recall that you have the capability to control whether
reading or writing occurs. The opaque objects are drawn in the first pass. The depth
buffering uses both reading and writing to guarantee that the final result is rendered
correctly. Before drawing a pixel in the frame buffer, the depth buffer is read at the
corresponding location. If the incoming depth passes the depth test, then the pixel is
drawn in the frame buffer. Consequently, the depth buffer must be written to update
the new depth for this pixel. If the incoming depth does not pass the test, the pixel is
not drawn, and the depth buffer is not updated. Semitransparent objects are drawn in
the second pass. These objects were not sorted from back to front. It is possible that
two semitransparent objects are drawn front to back; that is, the first drawn object
is closer to the observer than the second drawn object. You can see through the first
drawn object because it is semitransparent, so you expect to see the second drawn
object immediately behind it. To guarantee that this happens, you have to disable
depth buffer writes on the second pass. Consider what would happen if you did not
do this. The first object is drawn, and the depth buffer is written with the depths
corresponding to that object. When you try to draw the second object, its depths are
larger than those of the first object, so the depth test fails and the second object is not
drawn, even though it should be visible through the first. Disabling the depth buffer
writing will prevent this error. Pseudocode to implement the process is

// initialization
ObjectList objects = <objects to draw, some opaque, some transparent>;
EnableDepthRead();
SetDepthCompare(less_than_or_equal);
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EnableAlphaBlending(SBF_SRC_ALPHA,DBF_ONE_MINUS_SRC_ALPHA);
EnableAlphaTesting(1); // alpha reference = 1

// first pass
SetAlphaTestCompare(equal);
EnableDepthWrite();
Draw(objects);

// second pass
SetAlphaTestCompare(not_equal);
DisableDepthWrite();
Draw(objects);

Another application for alpha testing is for drawing objects that have textures
whose alpha values are either 0 or 1. The idea is that the texture in some sense defines
what the object is. A classic example involves applying a decal to an object. The decal
geometry is a rectangle that has a texture associated with it. The texture image has
an artistically drawn object that does not cover all the image pixels. The pixels not
covered are “see-through”; that is, if the decal is drawn on top of another object, you
see what the artist has drawn in the image, but you see the other object elsewhere.
To accomplish this, the alpha values of the image are set to 1 wherever the artist has
drawn, but to 0 everywhere else. When drawing such objects, the alpha reference
value is set to 0.5 (it just needs to be different from 0 and 1), and the test function is set
to be “greater than.” When the decal texture is drawn on the object, only the portion
with alpha values equal to 1 (greater than 0.5) is drawn. The portion with alpha values
equal to 0 (not greater than 0.5) is not drawn. Because they are not drawn, the depth
buffer is not affected, so you do not have to use the two-pass technique discussed in
the previous example.

2.6.5 Fog

The addition of fog to an image adds to the realism of the image and also helps to
hide clipping artifacts at the far plane. Without fog, as the eye point moves away from
an object, the object approaches the far plane and is noticeably clipped when the far
plane intersects it. With fog, if the fog density increases with distance from the eye
point, the effect is to provide a depth cue for objects in the distance. And if the fog
density increases to full opacity at the far plane, clipping is substantially hidden and
the objects disappear in a more natural fashion. If Cfog is the designated fog color,
Cpixel is the current pixel color, and φ ∈ [0, 1] is the fog factor and is proportional to
distance from the eye point, then the final color Cfinal is

Cfinal = (1 − φ)Cpixel + φCfog
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There are a variety of ways to generate the fog factor. The standard way, called
linear fog , is based on the z-value (or w-value) of the pixel to be fogged. Moreover,
the fog can be applied to a subset [z0, z1]⊆ [dmin, dmax] of the view frustum. The
linear fog factor is

φ =

⎧⎪⎨
⎪⎩

0, z < z0
z−z0
z1−z0

, z ∈ [z0, z1]

1, z > z1

Since the z-values or w-values are computed by the renderer for other purposes,
linear fog is relatively inexpensive to compute compared to other fog methods.

Exponential fog is obtained by allowing the fog to increase exponentially with the
z-value of the pixel to be fogged,

φ = exp(λz)

where λ > 0 is a parameter that controls the rate of increase with respect to z.
Range-based fog assigns the fog factor based on the distance r from eye point to

pixel. A subset of radial values [r0, r1] can be used, just as in linear fogging:

φ =

⎧⎪⎨
⎪⎩

0, r < r0
r−r0
r1−r0

, r ∈ [r0, r1]

1, r > r1

This type of fog is more expensive to compute than linear fog since the distance must
be calculated for each rendered pixel.

Another possibility for fog is to assign a factor per triangle vertex and let the ras-
terizer interpolate the factors over the entire triangle. This effect is used in volumetric
fog; see Section 20.14 for a sample application.

2.6.6 And Many More

With the advent of shader programming, computer graphics practitioners and re-
searchers have been quite creative in generating programs to obtain special effects.
Some of these have a geometric flavor to them in that a vertex has attributes, includ-
ing a vertex normal and two tangent vectors perpendicular to the normal and to each
other. These attributes may be interpolated by the rasterizer just like vertex colors
and texture coordinates are interpolated. In fact, vertex normals and tangents may
be stored as texture coordinates (s , t , r), even though they are not used for texture
lookups. The vertex shader might even generate such attributes just so that they are
passed back to the rasterizer, interpolated by the rasterizer, and then sent to the pixel
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shader. This shader interprets the incoming texture coordinates as normals and tan-
gents, and then uses them for per-pixel effects that take advantage of the coordinate
frame defined by the normal and tangents.

What you decide to store in vertex attributes is limitless. You will find very creative
shaders in books such as [Eng02, Eng03, Eng04, Eng06, Fer04, Pha05]. Some of the
sample applications in Chapter 20 make use of assigning data to vertex attributes (in
the color or texture channels) or generating the data itself.

2.6.7 Rasterizing Attributes

The rasterizer interpolates vertex attributes in two places when processing triangles.
The first place is in the edge buffer construction, which was discussed in Section 2.5.4.
This code has the job of interpolating the vertex attributes along edges connecting the
triangle vertices. Once the edge buffers have been initialized with these attributes, the
scan line rasterization occurs. This process itself must interpolate vertex attributes,
namely, the two sets of attributes occurring at the endpoints of the scan line that
were initialized by the edge buffer construction. The interpolation also occurs for
wireframe mode when drawing edges.

Let w0 and w1 be the clip-space w-values for the endpoints of the span of pixels
to be interpolated. Let the indices for the pixels be i0 and i1 and let i be the variable
index to vary between these. For a scan line, i is the x-index of the pixel and the span
of pixels is for a constant y. For edge buffering, i is the y-index of the pixel. Edge
buffering guarantees that the y-values increment over consecutive rows. The x-value
for each scan line is what the edge buffer computes. For edge rasterization, the index
is x or y depending on the slope of the edge—the usual decision made when applying
Bresenham’s line-drawing algorithm.

Let A0 and A1 be one channel of a vertex attribute (a color, a component of
a normal, a component of a texture coordinate) at the endpoints of the span of
pixels. An entire attribute array is processed by the interpolation. The arrays at the
endpoints include (r0, u0, d0, w0) and (r1, u1, d1, w1), where the clip-space tuples
have components r , u, and d , which are from the camera coordinate system. These
attributes are followed by vertex colors or normals or texture coordinates (if any).
Thus, the interpolator computes (r , u) positions, depth d , and w-values, but all in
clip coordinates. The linear interpolation of the attributes is

A(i) = (A1 − A0)i + (A0i1 − A1i0)

i1 − i0

(2.112)

where i0 < i < i1. The perspective interpolation is

A(i) = (A1w0 − A0w1)i + (A0w1i1 − A1w0i0)

(w0 − w1)i + (w1y1 − w0y0)
(2.113)
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You have the choice of using linear interpolation or perspective interpolation.
When the camera model uses perspective projection, it is appropriate to interpolate
according to that projection. Orthographic camera models may use linear interpo-
lation, but perspective projection produces the same results—the w-components
are always 1 and the perspective divide changes nothing. The Wild Magic soft-
ware renderer detects when the w-components are the same for the endpoints of
a span of pixels to be interpolated and switches to linear interpolation. The func-
tion that performs the interpolation is SoftRenderer::PerspectiveInterpolate and
is called during edge rasterization, SoftRenderer::RasterizeEdge, and during trian-
gle rasterization, SoftRenderer::RasterizeTriangle. All three functions are in the
file Wm4SoftDrawElements.cpp. It is also called during edge buffer construction, in
function SoftRenderer::ComputeEdgeBuffer in the file Wm4SoftEdgeBuffers.cpp.

2.7 Issues of Software, Hardware, and APIs

Although a graphics system may be designed abstractly and implemented in software,
graphics hardware can provide many services that you build on top of. When doing
so, there are issues you must think about and trade-offs to consider. I discuss some of
these briefly in this section.

2.7.1 A General Discussion

This chapter has described some relevant issues in building a renderer without re-
gard to whether the work is done by a general-purpose CPU, in part by a hardware-
accelerated graphics card, or totally by specialized graphics hardware. Independent
of software or hardware, the rendering pipeline was also described without regard to
integration with existing software that provides an application programmer interface
(API). The reality of building a real-time computer graphics engine requires an un-
derstanding of which platforms are to be supported and which other existing systems
can be used rather than implemented from scratch.

Graphics APIs such as Direct3D and OpenGL for consumer graphics accelera-
tors can be viewed as providing a boundary between the scene graph management
and the rendering system. Both are fairly high-level rendering APIs, and both at-
tempt to hide the underlying hardware to allow an application to be portable across
multiple hardware cards. Heated debates arise in the computer graphics and games
newsgroups about whether Direct3D or OpenGL is the “best” system to build on.
This is an unanswerable question—and in fact is not the question to ask. Each system
has its advantages and disadvantages. As with most of computer science, the issue is
more about understanding the trade-offs between using one system or another. In my
opinion, OpenGL is clearly superior with respect to portability simply by its design.
An application can be written to run on a high-end Silicon Graphics, Inc. (SGI) ma-
chine or on a consumer machine such as a PC or Macintosh. Direct3D was intended
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only to provide portability among cards in a PC, and now in the Xbox and Xbox
360. On the other hand, OpenGL insists on handling many details that an applica-
tion might like to control but cannot. Direct3D provides much more fine-grained
control over the rendering process. Both APIs are constantly evolving based on what
the end programmers want, but evolution takes time. Moreover, the consumer hard-
ware cards are evolving at a fast enough rate that the drivers that ship with them are
sometimes buggy but are not always corrected, because the next-generation card is
almost ready to ship. This requires patching the layer on top of the APIs with work-
arounds for specific cards. Evolution is good, but fast evolution is painful, especially
for a company producing a commercial product that runs on top of those cards and
drivers. As hardware evolves and begins doing the higher-level work that the scene
graph management system has been doing, the APIs should become easier to work
with. However, there will always be work necessary on the scene graph side to feed
data through the API. Direct3D and OpenGL are graphics systems. They are not sys-
tems to support complex animations, collision detection, physics, AI, or any of the
other systems you find in a game engine. I believe most developers have found that
you build the graphics system you need regardless of the underlying graphics API,
and then you focus on other important aspects of the game.

Another part of the evolution of graphics on a consumer machine involves the
CPUs themselves. Both Intel’s Pentium chipsets and Advanced Micro Devices, Inc.
(AMD) chipsets have evolved to include instructions to support a small amount of
parallelism (SIMD: single instruction, multiple data) and to provide for faster oper-
ations such as inverse square roots (for normalizing vectors). To make the most of
the new instructions, the registers of the CPUs must be loaded quickly. This requires
having your data packaged in a suitable format. If your data is not formatted cor-
rectly, you must repackage to feed the registers, which invariably offsets most of the
speedup for using SIMD. Again, portability among platforms becomes a significant
issue simply because of data formats. The new CPUs also tend to have data alignment
requirements that are not necessarily guaranteed by current-generation compilers,
so either a memory manager must be written to handle the alignment or the chip
companies must supply a compiler. In fact, current compilers have to catch up and
provide automatic support for the new machine instructions, so it is essential to have
additional compiler support from the chip companies. Game consoles have similar is-
sues, most wanting 16-byte alignment to support 4-tuple operations. If the compilers
do not automatically pack to 16 bytes, you must do so with your data structures.

Finally, one of the most important low-level aspects of building a renderer is
cache coherence. Experience has shown that even with the best-designed high-level
algorithms, the performance can be significantly reduced if the data is organized in
such a way as to cause many cache misses. Unless those implementing the system are
experts for the particular CPU’s instruction set, the most reliable way to determine
cache problems or floating-point unit stalls is to use performance tools. Intel provides
a profiler, called VTune, that does give a lot of information, showing if cache misses
or floating-point stalls have occurred. At a high level, a rearrangement of statements
can help eliminate some of these problems; the necessity of rearranging is the result
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of the optimizing compiler not being powerful enough to recognize the problems and
rearrange transparently. But in many cases, a low-level solution is required, namely,
writing parts of the code in assembly language. And once again portability becomes
a problem.

All of these issues must be weighed and the trade-offs made when building a
renderer. This is where the art of renderer construction really kicks in. Someone
who does not understand all the issues will be unlikely to succeed in building a good
renderer.

2.7.2 Portability versus Performance

This is a section that was not in the first edition of the book. I felt compelled to talk
a little bit about this trade-off, especially since the Wild Magic engine has received
some criticism for its choice of Vector3 and Matrix3 classes—they are not 16-byte
friendly, which is a problem on consoles.

When a game company decides it wants to produce a new game, it invariably
must decide on which platforms the game should run. Should it run universally on all
platforms, including PCs, Macintosh, Playstation 2, Xbox, and Nintendo GameCube?
What about on handheld devices? Moreover, if the next-generation consoles are to
be released soon, should you develop to run on these (using your dev kits and beta
hardware)? Supporting multiple platforms immediately drags you into the realm of
portability versus performance.

As is true for any company, everything boils down to time and resources. Any busi-
ness decision must take into account how much time it will take to build the product
you envision and whether you have the resources to build it or you need to acquire
more resources (funds, equipment, engineers, and so on).2 When it comes to a partic-
ular platform, the developer-programmers who like mucking with all the technology
invariably want to build everything themselves. Who better to squeeze every cycle out
of a system for the ultimate in performance? When you support multiple platforms,
though, is it cost-effective to write everything yourself? The executives, producers,
and other nonprogrammer types typically prefer to minimize the costs, opting in-
stead to purchase tools and license engine components. If these engine components
run on multiple platforms, then the games may be written on top of the components
to run on multiple platforms. However, such components may not be optimized for
a particular platform, whether for speed or memory usage. The trade-off you must
accept is that you give up some performance to be able to have your product run on
multiple platforms.

On the other hand, if you choose to rely on licensing someone else’s engine
components, you must deal with the baggage that comes with them. They will have
bugs, one or two that might be showstoppers for you. Hopefully, you can request

2. There is also risk assessment . When you decide to spend the time and resources developing a new product,
you must assess the risk of not reaching your goal on time or not reaching your goal at all.
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that they be fixed (in a timely manner), but regardless, this can affect the ship date
of your products. You also must rely on the stability of the licensed component and
the company producing that component. If you use a component, and the vendor
decides to ship a major rewrite/update, that can affect your schedule. If the vendor
decides to close its doors, that can really affect your schedule.

No one has ever said that running a business is a stress-free and easy thing to do!
Regarding the Wild Magic engine, I am in the same position of making trade-offs.

The engine is of good quality, and I even use the description: It is a commercial-
quality engine. However, it is not a commercial engine. The original goal for the engine
was to provide source code implementations for various components you would find
in a graphics engine, and it evolved to include some components you find in a physics
engine. All this was designed for educational purposes. It is difficult to find working
implementations of algorithms, especially ones that will not disappear after a week on
the Web or ones whose author maintains regularly or doesn’t abandon after a short
period of time.

My business is education. My books are written to provide more depth on top-
ics than you tend to find in the majority of computer graphics books. My clients are
those people who purchase technical computer graphics books. Some work on Mi-
crosoft Windows PCs, some using Direct3D and some using OpenGL. Some work
on Macintosh OS X machines using OpenGL. Some prefer a PC running a variation
of Linux with hardware-accelerated drivers provided by their favorite graphics card
manufacturer. Over the years, Wild Magic has evolved to support these platforms,
and I have exchanged some performance to obtain portability. You might discover
that some aspect of the engine could be faster if, instead of doing the computation
on the CPU, it used Direct3D or OpenGL or Intel CPU extensions or AMD CPU ex-
tensions. Generally, this is not an oversight on my part, rather a consequence of my
decision to be portable.

That said, Wild Magic 4 mainly involves a rewrite of the rendering system of
the engine. I have attempted to abstract as much as possible to provide a platform-
independent rendering API, yet one still having reasonable performance on all the
supported platforms. The evolution of programmable graphics hardware and shader
programming has made the abstraction and portability much simpler, while main-
taining good performance. The scene graph management side of Wild Magic has also
made the portability-versus-performance trade-off, but as you will see later in the
book, the idea of scene graph compilers allows you to develop scenes in a platform-
independent manner but compile them to platform-dependent data structures in an
attempt to recapture performance.

2.8 API Conventions

Every graphics API has its conventions. And in many cases the APIs never agree on the
same convention, which makes graphics programming quite annoying interesting.
This section is devoted to comparing the conventions used by Wild Magic, OpenGL,
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and Direct3D. Experimentation with the graphics APIs themselves gives you a lot
of information about what conventions they use, but I have also used the OpenGL
Red Book [SWND05] and the Direct3D documentation that ships with the freely
downloadable DirectX SDK [Cor].

2.8.1 Matrix Representation and Storage

Throughout this book I use mathematical notation to describe various concepts. This
notation is independent of graphics APIs. What you have to do as a user of a graphics
API is determine (1) how the mathematical expressions are implemented and (2) how
quantities such as vectors and matrices are represented and stored in memory.

My mathematical conventions are as follows. I write 4-tuples (v0, v1, v2, v3) as
4 × 1 vectors and homogeneous matrices as shown:

⎡
⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

⎤
⎥⎥⎦

To apply the matrix to the vector, I use

⎡
⎢⎢⎣

p0
p1
p2
p3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

m00v0 + m01v1 + m02v2 + m03v3
m10v0 + m11v1 + m12v2 + m13v3
m20v0 + m21v1 + m22v2 + m23v3
m30v0 + m31v1 + m32v2 + m33v3

⎤
⎥⎥⎦

(2.114)

If you think of the matrix-vector product operation as a “black box” whose input
is the 4-tuple (v0, v1, v2, v3) and whose output is the 4-tuple (p0, p1, p2, p3), then
all that matters is that Equation (2.114) is correctly implemented. Alternatively, the
4-tuples could be viewed as 1 × 4 vectors and homogeneous matrices as shown:

[ v0 v1 v2 v3 ] ,

⎡
⎢⎢⎣

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32
m03 m13 m23 m33

⎤
⎥⎥⎦
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To apply the matrix to the vector, you would use

[ p0 p1 p2 p3 ]= [ v0 v1 v2 v3 ]

⎡
⎢⎢⎣

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32
m03 m13 m23 m33

⎤
⎥⎥⎦ (2.115)

where pi = ∑3
j=0 mijvj for 0 ≤ i ≤ 3, just as in Equation (2.114). No matter which

way you want to think of vectors—as column vectors or as row vectors—the product
is the same 4-tuple. I will refer to the format of Equation (2.114) as having the vector
on the right . The format of Equation (2.115) has the vector on the left .

The mathematical ways of formulating the application of a matrix to a vector say
nothing about how the vectors or matrices are stored in computer memory. How
these objects are stored is up to the graphics API and to you when you have such
objects in your own source code. For example, consider 2-tuples and 2 × 2 matrices.
The vector-on-the-right notation defines the matrix-vector product as[

m00 m01
m10 m11

] [
v0
v1

]
=

[
m00v0 + m01v1
m10v0 + m11v1

]

One implementation of the Vector2 class includes

class Vector2
{
private:

float tuple[2];
public:

float& operator[] (int i) { return tuple[i]; }
};

and one implementation of the Matrix2 class includes

class Matrix2
{
private:

float m00, m01, m10, m11; // row-major order
public:

Vector2 operator* (Vector2 V) const
{

Vector2 P;
P[0] = m00*V[0] + m01*V[1];
P[1] = m10*V[0] + m11*V[2];
return P;

}
};
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Alternatively, an implementation of the Matrix2 class could be

class Matrix2
{
private:

float m00, m10, m01, m11; // column-major order
public:

Vector2 operator* (Vector2 V) const
{

Vector2 P;
P[0] = m00*V[0] + m01*V[1];
P[1] = m10*V[0] + m11*V[2];
return P;

}
};

The order of storage of the abstract, doubly indexed elements of the 2 × 2 matrix is
different between the two matrix classes, but the outputs of the matrix-vector product
are the same. In the first example, the elements of the matrix are stored in what
is called row-major order. In the second example, the elements are stored in what
is called column-major order. Yet another possibility, if you want 16-byte alignment
when working with SIMD CPUs or game consoles, is

class Vector2
{
private:

float tuple[4]; // 16-bytes, tuple[2] = 0 and tuple[3] = 0 always
public:

float& operator[] (int i) { return tuple[i]; }
float Dot (Vector2 V) const
{

// The hardware loads tuple into a 16-byte register and loads
// V.tuple into a 16-byte register and computes the dot product.
return dot_product_of_tuple_and_V_tuple;

}
};

class Matrix2
{
private:

Vector2 row0, row1;
public:

Vector2 operator* (Vector2 V) const
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{
Vector2 P; // P[2] = 0 and P[3] = 0 are set by the constructor
P[0] = row0.Dot(V);
P[1] = row1.Dot(V);
return P;

}
};

In this implementation, the classes use additional memory that is always zeroed out,
but takes advantage of hardware-assisted computations. The vectors are stored in
linear memory as

v0 v1 0 0

and the matrices are stored in linear memory as

m00 m01 0 0 m10 m11 0 0

In all three implementations, the outputs of a matrix-vector operation all represent
the same 2-tuple.

Generally, for 4-tuples and 4 × 4 matrices, the 16-byte alignment is achieved
without padding. Essentially, we have four possibilities for storing the matrices and
representing the vector-matrix product. The vector is either on the right or on the
left, and the matrix is stored either in row-major order or in column-major order.
The Vector4 class and Matrix4 classes are

class Vector4
{
private:

float tuple[4];
public:

float& operator[] (int i) { return tuple[i]; }
};

class Matrix4
{
private:

float entry[16];
public:

Vector4 operator* (Vector4 V) const
{

// What goes here? Possibilities are listed next.
}

};
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The possibilities are shown schematically with the matrix entries labeled according to
their position within linear memory:

Vector-on-right, row-major order (Wild Magic scene manager)

⎡
⎢⎢⎣

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎦

Vector-on-right, column-major order (OpenGL)

⎡
⎢⎢⎣

m0 m4 m8 m12
m1 m5 m9 m13
m2 m6 m10 m14
m3 m7 m11 m15

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎦

Vector-on-left, row-major order (Direct3D)

[ v0 v1 v2 v3 ]

⎡
⎢⎢⎣

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

⎤
⎥⎥⎦

Vector-on-left, column-major order

[ v0 v1 v2 v3 ]

⎡
⎢⎢⎣

m0 m4 m8 m12
m1 m5 m9 m13
m2 m6 m10 m14
m3 m7 m11 m15

⎤
⎥⎥⎦

Notice that the OpenGL and Direct3D products are the same when written as 4-
tuples. The OpenGL Red Book [SWND05] shows that vectors are on the right and
storage is in column-major order. However, you can also think of this as having the
vector on the left and storing the matrix in row-major order. You may as well think of
OpenGL and Direct3D using the same convention for vector-matrix multiplications
and for matrix storage. To be consistent, the Wild Magic software renderer uses the
same convention, even though the scene management system uses the vector-on-the-
right convention. This consistency means that the vertex programs may be written to
apply to all of my renderers. The matrices are passed as uniform constants in exactly
the same manner for each of my renderers.
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2.8.2 Matrix Composition

Using the Wild Magic convention for matrix-vector products, if A and B are matrices
to be applied to V, A first and B second, then the composition is P = B(AV) =
(BA)V. You start with the rightmost quantity and apply operations from right to
left. Chapter 4 discusses scene graph management. A fundamental part of this is a
hierarchy of nodes, each node having a transformation Mp that maps it to the world
coordinate system and each child node having a transformation Mc that maps it to
its parent’s coordinate system. The transformation to map the child to the world is
MpMc. When applied to a vector V in the child’s model space, the corresponding
vector in world space is MpMcV. The rule for composition is applied here. The actual
matrix-matrix products occur in the scene graph geometric update function.

OpenGL uses the same convention for composition that Wild Magic uses. The
product P = BA is computed using

float A[16] = <some 4x4 matrix>;
float B[16] = <some 4x4 matrix>;
float P[16];
glMatrixMode(GL_MODELVIEW); // Use the model-view matrix stack.
glPushMatrix(); // Save the current matrix.
glLoadMatrixf(B);
glMultMatrixf(A);
glGetFloatv(GL_MODELVIEW_MATRIX,P);
glPopMatrix(); // Restore the current matrix to its original value.

Direct3D uses the convention P = (VA)B = V(AB), where it is understood that
V is a 1 × 3 row vector. The product P = AB is computed using

D3DXMATRIX A = <some 4x4 matrix>;
D3DXMATRIX B = <some 4x4 matrix>;
D3DXMATRIX P;
D3DXMatrixMultiply(&P,&A,&B);

Since the scene graph management system and abstract renderer layer hide these
details, there is no reason to be concerned about the composition. All front-end
matrix and vector calculations use vector-on-the-right and row-major storage, and
the composition AB refers to applying the product as ABV = A(BV).

2.8.3 View Matrices

Let us now compare the view matrices of the graphics APIs. The camera eye position
is E; the camera view direction is D; the camera up direction is U; and the camera
right direction is R—all thought of as 3 × 1 column vectors. The transposes are DT,
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UT, and RT—all thought of as 1 × 3 row vectors. The vector 0 denotes the 3 × 1 zero
vector and 0T is the 1 × 3 zero vector.

The Direct3D view matrix is

Hview =
[

R U D 0

−RTE −UTE −DTE 1

]

Recall that to apply the matrix to a vector, the vector is on the left and written as a
row vector. The matrix itself is stored in row-major order. I chose {D, U, R} to be a
right-handed orthonormal set, so {R , U, D} is a left-handed orthonormal set. As the
Direct3D documentation [Cor] states, the camera coordinate system is left-handed.
I have chosen the Wild Magic view matrix to be the same matrix.

The OpenGL Red Book [SWND05] states that the default camera settings include
the eye position at the origin, the up vector in the positive y-direction (0, 1, 0), the
right vector in the positive x-direction (1, 0, 0), and the view vector in the negative
z-direction (0, 0, −1). Probably the most common way to set the view matrix to
different values is by calling gluLookAt. A call to this function generates the OpenGL
view matrix, shown in row-major order for the vector-on-the-left convention:

Hview, ogl =
[

R U −D 0

−RTE −UTE DTE 1

]

The set {R , U, −D} is right-handed, but the last vector is the negated direction of
view. I do not know why this was chosen, but perhaps it was to ensure that Q =
[R U − D] is a rotation matrix. By the way, the Q for Direct3D and Wild Magic
is a reflection matrix, but as a transformation applied to a left-handed coordinate
system, it is a rotation transformation. If you have had training in linear algebra, you
should recall that a matrix and a transformation are not the same thing. Given a
transformation, you can represent it by a matrix, but that matrix depends on the
bases chosen for the domain and range of the transformation.

In my implementations, I avoid the use of Direct3D’s utility functions
D3DXDXMATRIXLookAt* and OpenGL’s utility function gluLookAt. I use the view ma-
trix Hview for all of the renderers. The base class Renderer uses the following code to
set the view matrix:

const Vector3f& rkEye = m_pkCamera->GetLocation();
const Vector3f& rkRVector = m_pkCamera->GetRVector();
const Vector3f& rkUVector = m_pkCamera->GetUVector();
const Vector3f& rkDVector = m_pkCamera->GetDVector();

m_kViewMatrix[0][0] = rkRVector[0];
m_kViewMatrix[0][1] = rkUVector[0];
m_kViewMatrix[0][2] = rkDVector[0];
m_kViewMatrix[0][3] = 0.0f;
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m_kViewMatrix[1][0] = rkRVector[1];
m_kViewMatrix[1][1] = rkUVector[1];
m_kViewMatrix[1][2] = rkDVector[1];
m_kViewMatrix[1][3] = 0.0f;
m_kViewMatrix[2][0] = rkRVector[2];
m_kViewMatrix[2][1] = rkUVector[2];
m_kViewMatrix[2][2] = rkDVector[2];
m_kViewMatrix[2][3] = 0.0f;
m_kViewMatrix[3][0] = -rkRVector.Dot(rkEye);
m_kViewMatrix[3][1] = -rkUVector.Dot(rkEye);
m_kViewMatrix[3][2] = -rkDVector.Dot(rkEye);
m_kViewMatrix[3][3] = 1.0f;

The derived class SoftRenderer has no additional code to go with this. The derived
class Dx9Renderer follows up with

m_pqDevice->SetTransform(D3DTS_VIEW,(D3DXMATRIX*)(float*)m_kViewMatrix);

where m_pqDevice is of type IDirect3DDevice9*. The derived class OpenGLRenderer
follows up with

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf((const float*)m_kViewMatrix);

2.8.4 Projection Matrices

The Direct3D perspective projection matrix follows, written in the format for the
vector-on-the-left convention:

Hproj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2dmin
rmax−rmin

0 0 0

0 2dmin
umax−umin

0 0

−(rmax+rmin)

rmax−rmin

−(umax+umin)

umax−umin

dmax
dmax−dmin

1

0 0 −dmaxdmin
dmax−dmin

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I have chosen the Wild Magic view matrix to be the same matrix.
The OpenGL projection matrix is different, written here in row-major format for

the vector-on-the-left convention:
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Hproj, ogl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2dmin
rmax−rmin

0 0 0

0 2dmin
umax−umin

0 0

rmax+rmin
rmax−rmin

umax+umin
umax−umin

−(dmax+dmin)

dmax−dmin
−1

0 0 −2dmaxdmin
dmax−dmin

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Because of the convention used in the OpenGL view matrix, namely, Q = [R U − D],
the view coordinates are Xview = (r , u, −d). The application of the projection ma-
trix effectively undoes the sign change on the d-component (and on the D-vector).
OpenGL maps the d-components to the interval [−1, 1], explaining the slightly dif-
ferent terms in the third columns of the matrices Hproj and Hproj, ogl.

Once again in my implementations, I avoid the use of Direct3D’s utility functions
D3DXMatrixPerspective* and OpenGL’s utility function glFrustum. I use the view
matrix Hproj for all of the renderers. The base class Renderer uses the following code
to set the projection matrix:

float fRMin, fRMax, fUMin, fUMax, fDMin, fDMax;
m_pkCamera->GetFrustum(fRMin,fRMax,fUMin,fUMax,fDMin,fDMax);

float fInvRDiff = 1.0f/(fRMax - fRMin);
float fInvUDiff = 1.0f/(fUMax - fUMin);
float fInvDDiff = 1.0f/(fDMax - fDMin);

if (m_pkCamera->Perspective)
{

m_kProjectionMatrix[0][0] = 2.0f*fDMin*fInvRDiff;
m_kProjectionMatrix[0][1] = 0.0f;
m_kProjectionMatrix[0][2] = 0.0f;
m_kProjectionMatrix[0][3] = 0.0f;
m_kProjectionMatrix[1][0] = 0.0f;
m_kProjectionMatrix[1][1] = 2.0f*fDMin*fInvUDiff;
m_kProjectionMatrix[1][2] = 0.0f;
m_kProjectionMatrix[1][3] = 0.0f;
m_kProjectionMatrix[2][0] = -(fRMin + fRMax)*fInvRDiff;
m_kProjectionMatrix[2][1] = -(fUMin + fUMax)*fInvUDiff;
m_kProjectionMatrix[2][2] = fDMax*fInvDDiff;
m_kProjectionMatrix[2][3] = 1.0f;
m_kProjectionMatrix[3][0] = 0.0f;
m_kProjectionMatrix[3][1] = 0.0f;
m_kProjectionMatrix[3][2] = -fDMax*fDMin*fInvDDiff;
m_kProjectionMatrix[3][3] = 0.0f;

}
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else
{

m_kProjectionMatrix[0][0] = 2.0f*fInvRDiff;
m_kProjectionMatrix[0][1] = 0.0f;
m_kProjectionMatrix[0][2] = 0.0f;
m_kProjectionMatrix[0][3] = 0.0f;
m_kProjectionMatrix[1][0] = 0.0f;
m_kProjectionMatrix[1][1] = 2.0f*fInvUDiff;
m_kProjectionMatrix[1][2] = 0.0f;
m_kProjectionMatrix[1][3] = 0.0f;
m_kProjectionMatrix[2][0] = 0.0f;
m_kProjectionMatrix[2][1] = 0.0f;
m_kProjectionMatrix[2][2] = fInvDDiff;
m_kProjectionMatrix[2][3] = 0.0f;
m_kProjectionMatrix[3][0] = -(fRMin + fRMax)*fInvRDiff;
m_kProjectionMatrix[3][1] = -(fUMin + fUMax)*fInvUDiff;
m_kProjectionMatrix[3][2] = -fDMin*fInvDDiff;
m_kProjectionMatrix[3][3] = 1.0f;

}

The derived class SoftRenderer has no additional code to go with this. The derived
class Dx9Renderer follows up with

m_pqDevice->SetTransform(D3DTS_PROJECTION,
(D3DXMATRIX*)(float*)m_kProjectionMatrix);

where m_pqDevice is of type IDirect3DDevice9*. The derived class OpenGLRenderer
follows up with

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMultMatrixf((const float*)m_kProjectionMatrix);

The base class Renderer has a conditional statement, setting the projection matrix
to be perspective in one case but orthographic in the other. The orthographic matrix
is chosen to be the same for all the graphics APIs:

Horthoproj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
rmax−rmin

0 0 0

0 2
umax−umin

0 0

0 0 1
dmax−dmin

0

− rmax+rmin
rmax−rmin

−umax+umin
umax−umin

− dmin
dmax−dmin

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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One use for an orthographic matrix is to allow you to draw screen-space polygons.
These are 2D geometric objects that are drawn either as background polygons or as
foreground polygons. The latter case is common when you want a full-screen game
application that needs a user interface. For example, you can create menus, control
bars, sliders, edit controls, and so on, to be drawn on top of the 3D scene.

2.8.5 Window Handedness

OpenGL thinks of the window coordinates as being right-handed. The origin (0, 0)
is the lower-left corner of the window. The x-values increase as you move from left
to right. The y-values increase as you move from bottom to top. The mapping from
NDC values (r ′′, u′′) to (x , y) is shown in Equation (2.71); namely,

x =
(

1 − r ′′

2

)
p�W +

(
1 + r ′′

2

)
prW = W

2

[
(pr + p�) + (pr − p�)r

′′]

y = H −
[(

1 − u′′

2

)
pbH +

(
1 + u′′

2

)
ptH

]

= H

2

[
(2 − pt − pb) + (pb − pt)u

′′]
This transformation is computed internally in OpenGL. You set the viewport param-
eters using the OpenGL function glViewport, as shown in the function OpenGLRen-
derer::OnViewportChange:

GLint iX = (GLint)(fPortL*m_iWidth);
GLint iY = (GLint)(fPortB*m_iHeight);
GLsizei iW = (GLsizei)((fPortR - fPortL)*m_iWidth);
GLsizei iH = (GLsizei)((fPortT - fPortB)*m_iHeight);
glViewport(iX,iY,iW,iH);

On the other hand, Direct3D thinks of the window coordinates as being left-
handed. The origin (0, 0) is the upper-left corner of the window. The x-values in-
crease as you move from left to right. The y-values increase as you move from top
to bottom. The transformation from NDC to window coordinates is handled by the
renderer internally. You set the viewport parameters using the Direct3D function
SetViewport, as shown in the function Dx9Renderer::OnViewportChange:

D3DVIEWPORT9 kViewport;
kViewport.X = (DWORD)(fPortL*m_iWidth);
kViewport.Y = (DWORD)((1.0f - fPortT)*m_iHeight);
kViewport.Width = (DWORD)((fPortR - fPortL)*m_iWidth);
kViewport.Height = (DWORD)((fPortT - fPortB)*m_iHeight);
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kViewport.MinZ = 0.0f;
kViewport.MaxZ = 1.0f;
m_pqDevice->SetViewport(&kViewport);

The x- and width values are handled the same as in OpenGL, but the y- and height
values are handled differently. Well, the height value looks the same, but mathemati-
cally it is computed as shown next, leading to the same equation.

Figure 2.50 compares the representation of windows and viewports for OpenGL
and Direct3D. The port values pt and pb must be reflected to (1− pt) and (1− pb) to
make the Direct3D viewport right-handed. The NDC-to-viewport mapping for the
y-coordinate is therefore

y =
(

1 − u′′

2

) (
(1 − pb)H

) +
(

1 + u′′

2

) (
(1 − pt)H

)

= H

2

[
(2 − pt − pb) + (pb − pt)u

′′]
Notice that u′′ = 1 maps to y = (1 − pt)H and u′′ = −1 maps to y = (1 − pb)H .
Indeed, this is the same mapping as for OpenGL, which is what you should expect. An
NDC point (r ′′, u′′) means the same thing, whether in OpenGL or in Direct3D; after
all, it is a “normalized device coordinate” intended to be independent of graphics API
or physical device. This point should map to the same pixel in either graphics API.
Finally, getting back to my comment about the viewport height h, in this setting it is
computed by

h = (1 − pb)H − (1 − pt)H = (pt − pb)H

where H is the window height. The actual source code computes the rightmost
expression, but the middle expression is really what Figure 2.50 indicates.

The Wild Magic software renderer also has a function SoftRenderer::OnView-
portChange, which implements

float fHalfWidth = 0.5f*m_iWidth;
float fHalfHeight = 0.5f*m_iHeight;
m_fXCoeff0 = fHalfWidth*(fPortR + fPortL);
m_fXCoeff1 = fHalfWidth*(fPortR - fPortL);
m_fYCoeff0 = fHalfHeight*(2.0f - fPortT - fPortB);
m_fYCoeff1 = fHalfHeight*(fPortB - fPortT);

This is a direct implementation of Equation (2.71).

2.8.6 Rotations

As discussed in Section 2.8.1, my convention for matrix-vector multiplication is to
store the matrix in row-major order and to place the vector on the right (a column
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Figure 2.50 (a) OpenGL uses right-handed window coordinates. (b) Direct3D uses left-handed
window coordinates.

vector) for matrix times the vector. If R is a 3 × 3 rotation matrix and V is a 3 × 1
vector, the rotated vector is RV. However, there is an additional convention that must
be chosen regarding which direction you rotate about the axis of rotation when the
input angle is a positive number.

The convention in Wild Magic was discussed in Section 2.2.1, in the subsection
entitled “Rotation.” The direction of rotation is counterclockwise about the rotation
axis when viewed by an observer who is on the positive side of the plane perpendic-
ular to the axis, meaning on the side to which the rotation axis direction points and
looking at the plane with view direction in the negative of the rotation axis direction.

OpenGL allows you to rotate via the functions

void glRotatef (float angle, float x, float y, float z);
void glRotated (double angle, double x, double y, double z);

If you want to see the rotation matrix itself, try

Vector3f kAxis(1.0f,1.0f,1.0f);
kAxis.Normalize();
float fRadians = 0.1f;
float fDegrees = Mathf::RAD_TO_DEG*fRadians;
Matrix3f kWildMagicRotate(kAxis,fRadians);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
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glRotatef(fDegrees,kAxis.X(),kAxis.Y(),kAxis.Z());
float afOpenGLRotate[16];
glGetFloatv(GL_MODELVIEW_MATRIX,afOpenGLRotate);

The resulting rotation matrix is, of course, 4 × 4, but the upper-left 3 × 3 matrix is
the same one used by Wild Magic, as shown in Equation (2.22). For the sample code
here, the rotation matrix is

⎡
⎢⎢⎢⎢⎣

0.9966 −0.0559 0.0593 0

0.0593 0.9966 −0.0559 0

−0.0559 0.0593 0.9966 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

This is in the form in which you would multiply a vector by placing it on the right of
the matrix as a column vector.

A couple of items to be aware of. First, OpenGL’s glRotate functions expect the
angle in degrees. Wild Magic wants radians. Second, Wild Magic expects the rotation
axis vector to be unit length. You can pass a non–unit-length vector to glRotate and it
will compute the correct rotation matrix. This means OpenGL internally normalizes
the axis vector.

Direct3D allows you to rotate via the function

D3DXMATRIX* D3DXMatrixRotationAxis (
D3DXMATRIX* pOut, const D3DVECTOR3* pV, FLOAT angle);

The input angle must be in radians. The DirectX documentation [Cor] states “An-
gles are measured clockwise when looking along the rotation axis toward the origin.”
At first glance, you might think that the rotation uses the convention opposite that
of Wild Magic and OpenGL. In fact, it uses the same convention, because Direct3D
uses the vector-on-the-left convention. The following code

Vector3f kAxis(1.0f,1.0f,1.0f);
kAxis.Normalize();
float fRadians = 0.1f;
Matrix3f kWildMagicRotate(kAxis,fRadians);

D3DXMATRIX kRotation;
D3DXMatrixRotationAxis(&kRotation,(D3DXVECTOR3*)(float*)kAxis,fRadians);

produces the matrix
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⎡
⎢⎢⎢⎢⎣

0.9666 0.0593 −0.0559 0

−0.0559 0.9666 0.0593 0

0.0593 −0.0559 0.9966 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

This is the transpose of what was produced by OpenGL and Wild Magic, but these
APIs use the vector-on-the-right convention. Since Direct3D uses the vector-on-the-
left convention, in fact, the rotation applied to a vector produces the same vector in
all three APIs.

2.8.7 Fast Computations Using the Graphics API

One of the criticisms of Wild Magic has been that it does not take advantage of CPU-
specific instructions for fast vector and matrix arithmetic. For example, it neither
ships with support for Intel’s Streaming SIMD Extensions (SSE) Driver, nor with
support for AMD’s 3D Now! extensions. Neither does it ship with Multi-Media Ex-
tensions (MMX). In fact, it does not ship with any SIMD AltiVec extensions for the
PowerPC Macintosh computers. This is not an oversight on my part. The main goal
for my engine is to illustrate ideas you encounter in graphics and game program-
ming. I have called the engine a “commercial-quality engine,” a descriptor I mean
to be different from that of “commercial engine.” Portability is my major criterion
for maintaining the engine because I am interested in reaching the largest number
of readers possible, choosing not to be solely a PC engine running on Microsoft
Windows with DirectX. This alone takes a lot of time; adding in a few more hardware-
specific components will take more maintenance time than I care to give. Should I
decide to have support for every possible piece of hardware people care about, I will
make the engine commerical, which means not providing it on a CD-ROM of a book.

Despite this, you can take advantage of any hardware support for vector and
matrix computations if the graphics drivers do so.

OpenGL appears not to have in its interface the ability to explicitly multiply a
matrix times a vector, giving you access to the result. Naturally, matrices are applied
to the vectors in a vertex array for the purpose of rendering. Should you find the need
to multiply vectors, you can pack four vectors at a time into a matrix, use the matrix
stack to multiply, and then read back the results.

glMatrixMode(GL_MODELVIEW);
<apply your transformations>;

int iVQuantity = <number of vectors, assume it is a multiple of 4>;
Vector4f* akInput = <array of vectors>;
Vector4f* akOutput = <array of transformed vectors>;
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int iPackedQuantity = iVQuantity/4;
float* afPackedInput = (float*)akInput;
float* afPackedOutput = (float*)akOutput;
for (int i = 0; i < iPackedQuantity; i++)
{

glPushMatrix();
glMultMatrix3f(afPackedInput);
glGetFloatv(GL_MODELVIEW_MATRIX,afPackedOutput);
glPopMatrix();

}

Exercise
2.17

Modify the code sample to support an array of vectors for which the quantity is not
a multiple of 4. (Alternatively, you could arrange for your vector arrays to be padded
to a multiple of 4.) For the case when you do have a multiple of 4 vectors, write a
test program and calculate the time it takes to use the built-in Wild Magic matrix-
vector operations for transforming. Also calculate the time it takes OpenGL to do the
computations as shown here. If there is a significant speedup, a real application using
OpenGL would want the Transformation class of Wild Magic to be reimplemented
to use OpenGL.

Direct3D does have explicit functions to support vector and matrix operations.
The transformation of a vector by a matrix is

D3DXVECTOR4* D3DXVec4Transform (
D3DXVECTOR4* pOut, CONST D3DXVECTOR4* pV, CONST D3DXMATRIX* pM);

and the transformation of an array of vectors by a matrix is

D3DXVECTOR4* D3DXVec4TransformArray (
D3DXVECTOR4* pOut, UINT OutStride, CONST D3DXVECTOR4* pV,
UINT VStride, CONST D3DXMATRIX* pM, UINT n);

In the previous section, we had an example of a rotation about (1, 1, 1)/
√

3 by an
angle of 0.1 radians. If you add more code to that sample,

Vector3f kAxis(1.0f,1.0f,1.0f);
kAxis.Normalize();
float fRadians = 0.1f;
float fDegrees = Mathf::RAD_TO_DEG*fRadians;
Matrix3f kRot(kAxis,fRadians);

D3DXMATRIX kRotation;
D3DXMatrixRotationAxis(&kRotation,(D3DXVECTOR3*)(float*)kAxis,fRadians);
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D3DXVECTOR4 kInput, kOutput;
kInput.x = 1.0f; kInput.y = 0.0f; kInput.z = 0.0f; kInput.w = 0.0f;
D3DXVec4Transform(&kOutput,&kInput,&kRotation);

the output vector is (0.9966, 0.0593, −0.0559, 0), which is the first row of the Di-
rect3D rotation matrix as expected. A sample usage for the transformation of an
array is

D3DXVECTOR4 akInput[4], akOutput[4];
akInput[0].x = 1.0f; akInput[0].y = 0.0f;

akInput[0].z = 0.0f; akInput[0].w = 0.0f;
akInput[1].x = 0.0f; akInput[1].y = 1.0f;

akInput[1].z = 0.0f; akInput[1].w = 0.0f;
akInput[2].x = 0.0f; akInput[2].y = 0.0f;

akInput[2].z = 1.0f; akInput[2].w = 0.0f;
akInput[3].x = 0.0f; akInput[3].y = 0.0f;

akInput[3].z = 0.0f; akInput[3].w = 1.0f;
D3DXVec4TransformArray(akOutput,sizeof(D3DXVECTOR4),akInput,

sizeof(D3DXVECTOR4),&kRotation,4);

The output array has vectors equal to the four rows of the rotation matrix.

Exercise
2.18

Write a test program and calculate the time it takes to use the built-in Wild Magic
matrix-vector operations for transforming. Also calculate the time it takes Direct3D
to do the computations as shown here. If there is a significant speedup, a real ap-
plication using Direct3D would want the Transformation class of Wild Magic to be
reimplemented to use Direct3D.



C h a p t e r 3
Renderers

Now that we have seen the basics for a graphics system, let us go through the
process of drawing geometric primitives in greater detail. Many of these details

are handled for you by the drivers that ship with hardware-accelerated graphics cards.
Some feedback was solicited from reviewers of the first edition of this book in order
to identify what improvements could be made. One of the comments was to focus less
on software rendering because graphics hardware is so abundant and most developers
will not be exposed to that type of detail when using a graphics API. I have taken the
opposite stance for three reasons:

1. Someone has to write the graphics drivers; that might be you. This is not to say
that the decisions you make when designing and building drivers for hardware
are the same as those for software. On fast dedicated hardware, you tend to
choose algorithms that are “dumb and fast”; whereas, on CPUs you typically
select algorithms that are “smart” about use of the CPU resources. However, the
graphics fundamentals are the same in either case—it is just a question of what
your target hardware is (CPU or GPU).

2. Cell phone and mobile technology is ever evolving. New embedded devices might
require low-level graphics development, at least until those particular devices are
enhanced with hardware support for the graphics.

3. Working through a software renderer—and perhaps more important, writing
one—gives you a greater appreciation for what the graphics APIs are really doing
for you. As simple as it might seem, when you write a software renderer, you will
discover that there are a lot of decisions to make and a lot of details to tend to.

147
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If anything, hopefully you will get an appreciation for the level of effort a graphics
hardware company must put into writing graphics drivers. We are all guilty of cursing
about the bugs we discover in those drivers. What comes to my mind, though, is
something about “walk a mile in my shoes . . . .”

The CD-ROM contains a fully functioning software renderer that is based on
shader programs. All the sample projects allow you to compile for an OpenGL ren-
derer, a Direct3D renderer, and a software renderer. By no means is this software
renderer optimized for speed. My intent is to illustrate the ideas without complicat-
ing the code with cryptic routines whose sole intent is to squeeze out a few more
cycles. That said, feel free to start replacing a piece of the renderer at a time with op-
timized modules. For example, I do not use a Bresenham’s line-drawing algorithm
for rasterizing the wireframe of a triangle mesh or for rasterizing polylines. The code
does determine the correct direction in which to iterate (x- or y-direction), but it
uses floating-point arithmetic to evaluate the equation of the line segment connecting
points. There is no attempt to avoid the expensive conversion from a floating-point
number to an integer. This alone can lead to a significant speedup in a software
renderer. Mipmapping is computed on a per-pixel basis. Sometimes you will find
that software renderers use cheaper alternatives, such as per-scan-line or per-triangle
mipmapping, but these come at a loss of quality in the rendered scene.

The shader programs to illustrate the concepts were written using Cg from
NVIDIA. Most were compiled with Cg 1.4, but some used Cg 1.1 to circumvent some
bugs in the 1.4 version. The compiler output is text containing assembly instructions,
both for OpenGL and Direct3D. Wild Magic treats these as one of the renderer re-
sources and loads these from disk as needed. I made this choice rather than relying
on the Cg Runtime environment so that you are not forced to use a system when
you prefer something else. Had I written Wild Magic for a commercial environment,
and that environment used Cg or its equivalent, I would most definitely use whatever
came with the environment. A consequence of my choice is that you just as read-
ily write HLSL programs for Direct3D and compile them using the command-line
HLSL compiler. Naturally, my choice means that I do not use the shader run-time
environments provided by Direct3D or OpenGL 2.0. The Direct3D output files have
a compound extension, dx9.wmsp; the OpenGL output files have a compound exten-
sion, ogl.wmsp; and the software renderer output files have a compound extension,
sft.wmsp. I wrote the software shader programs myself, manually translating the Cg
programs to C++ code. Nothing prevents you, though, from writing a translator to
automatically convert to C++ or even to invent your own software graphics assembly
language and write a compiler that converts Cg programs to your assembly.

Because my intent is to illustrate and educate rather than provide you with all
the bells and whistles that a graphics system can have, the rendering libraries have
the ability neither to procedurally generate shader programs nor to stitch existing
shaders together. These are features you will find in commercial engines. The amount
of work to add these to Wild Magic is not that daunting, but will require you to
choose someone’s run-time environment in order to compile the generated/stitched
shader programs. Alternatively, you can shell out to the operating system and call
the Cg compiler or HLSL compiler to produce the text files containing the assembly
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instructions, and then rely on Wild Magic to load them from disk to memory. My
development plan is to incorporate support for generating and stitching shaders in a
later minor version of Wild Magic 4.

3.1 Software Rendering

The job of the scene graph management system is to identify the potentially visible
set of objects in each scene graph when drawing is to be performed. This process is
described in Section 4.5. Once created, an iteration is made over all the objects in this
set. The geometric primitive associated with each object is sent to the renderer for
drawing. Let’s start by considering a geometric primitive that is a single triangle. The
assumption is made that all the resources needed by the drawing operation have been
given to the renderer. The details of how this is done is the topic of Section 3.3.8. All
function references in this section are to the software renderer source code on the CD-
ROM. The class name is SoftRenderer, but I will omit this in the discussion unless I
need to make it clear whether SoftRenderer must make a computation or its base
class Renderer does a computation.

The entry point into the drawing system of the software renderer is the function
DrawElements. You can follow along if you like by writing a simple application to draw
a triangle and step through with the debugger! The entry point is quite small:

void DrawElements ()
{

ApplyVertexShader();
(this->*m_aoDrawFunction[m_pkGeometry->Type])();

}

3.1.1 Vertex Shaders

The triangle has three vertices, each with a position and optional vertex attributes.
Some of the vertex attributes need to be computed first; for example, if you are
using dynamic lighting, the vertices have been assigned vertex normals, but the vertex
colors must be computed. In fact, these colors might be blended with colors from
a texture image, in which case the vertices also have texture coordinates assigned
to them. The first step in the drawing process is to apply a vertex shader to each
vertex. This amounts to calling a vertex program whose inputs are the vertex position
and other attributes. The positions are typically passed as model-space coordinates,
but this is not necessary. Also passed to the vertex program are matrices to be used
for transforming the vertex positions, normals, and other quantities. The program
minimally computes the clip-space coordinates of the vertex positions and returns
these as outputs to be used by the clipper and rasterizer. If the model-space positions
are passed to the program, then you will also pass the matrix for transforming from
model space to clip space. The program can return additional outputs, some of
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them just as a pass-through (texture coordinates or vertex colors passed as inputs are
returned as outputs), but others are generated by the program (tangent, normal, and
bitangent for bump-mapping; texture coordinates for projected texturing).

As an example, a Cg program for vertex coloring is listed next. You can find this
on the CD-ROM together with other Cg shader programs in the directory

GeometricTools\WildMagic4\Data\ShaderPrograms\Cg

The file of interest is VertexColor3.cg. A vertex program in that file is

void VertexColor3VProgram
(

in float4 kModelPosition : POSITION,
in float3 kModelColor : COLOR,
out float4 kClipPosition : POSITION,
out float3 kVertexColor : COLOR,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the vertex color.
kVertexColor = kModelColor;

}

The program has two inputs. The first input is the vertex position in model-space
coordinates. The second input is the vertex color (red, green, blue, but no alpha). The
uniform matrix WVPMatrix is the homogeneous transformation that maps model-
space coordinates to clip-space coordinates.

The first line of code transforms the input position. The matrix itself is the con-
catenation of a few matrices found in the geometric pipeline; see Equation (2.74),
but according to the discussion about API conventions of Section 2.8, my OpenGL,
Direct3D, and software renderers all pass matrices to the vertex programs so that the
vector-on-the-left convention is used. Thus,

Hwvp = HworldHviewHproj

is the matrix representing WVPMatrix, where the three matrices on the right are stored
for the vector-on-the-left convention (the mathematically written matrices of Section
2.3.7 are all transposed). The transformation is

Xclip = XmodelHwvp

where Xmodel is the 1 × 4 vector that represents kModelPosition. The w-value for
the input point is 1. The (x , y , z)-values for the input point are the model-space
coordinates for the vertex position. The point Xclip is the 1 × 4 vector that represents



3.1 Software Rendering 151

kClipPosition. If you were to write the HLSL equivalent of this vertex program, your
line of code for transforming the input point would be the same, placing the vector
on the left and the matrix on the right in the mul operation.

The second line of code in the vertex program is a pass-through of the vertex
color. The rasterizer will interpolate both kClipPosition and kVertexColor to assign
colors to the pixels making up the triangle.

The vertex program call occurs in a shallow wrapper called ApplyVertexShader.
At the time of call, the renderer already has an array of vertices to process, and
it knows the size of each vertex. The vertex program outputs a chunk of data for
each input vertex. The size of that chunk is the same for all the vertices, but what
it contains is based on the vertex program itself. For example, if your input is a vertex
position, a vertex normal, and information for dynamic lighting (material colors,
light parameters, camera parameters, and so on), the output will be the clip-space
position and a vertex color. The input has a 3-tuple position and a 3-tuple normal;
the output has a 4-tuple position and a 4-tuple color (includes an alpha channel).
The software renderer supplies the storage for the outputs, so ApplyVertexShader
increases the size of the current output array (if necessary) to store the results passed
back from the vertex program. The actual line of code that calls the vertex program is

m_oVProgram(afRegister,afInVertex,afOutVertex);

The first parameter is an array of constants. In our previous example, this array stores
the matrix Hwvp. The second parameter is the input array of vertices (model-space
positions and attributes). The third parameter is the output array of vertices (clip-
space positions and attributes).

Once the output storage is guaranteed to be large enough, the input vertices are
iterated, each one passed to the vertex program, and the outputs stored in the output
array. The software renderer remembers how many outputs are stored. Eventually,
the clipper receives this output array and potentially generates more vertices if the
triangle must be truncated by one or more frustum planes. The clipper must know
how many vertices are currently in use and then increase the output array size as
needed during clipping. New vertices generated by clipping are appended to the
current list of output vertices.

The second function call in DrawElements amounts to selecting the correct func-
tion to continue the drawing based on the geometric type of the object (points,
polylines, triangle meshes). Since we are working with a single triangle, this function
resolves to DrawTriMesh.

3.1.2 Back-Face Culling

The first portion of DrawTriMesh is an iteration over the triangles of the mesh. The in-
dex array consists of triples of integers (each triple corresponding to a single triangle)
and the indices used for a lookup into the array of vertices.



152 Chapter 3 Renderers

In most circumstances, you want back-face culling to occur. If it is disabled, then
you proceed immediately to the clipping stage. If culling is enabled, the default is to
eliminate back-facing triangles. However, there are some special effects that require
front-facing triangles to be culled. For example, planar reflections need this because
the object has counterclockwise-ordered triangles to be back-face culled, but the
object’s reflection has, effectively, clockwise-ordered triangles. The CullState class
allows you to select how you want culling to occur, if at all.

Assuming the default is back-face culling, let the triangle vertices be (r ′
i
, u′

i
, d ′

i
,

w′
i
), 0 ≤ i ≤ 2, which are the clip-space coordinates of the transformed vertex posi-

tions. These are the values mentioned in Section 2.3.5, produced by Equations (2.65)
through (2.67). The visibility test you are most likely familiar with is in three dimen-
sions, not in 4D clip space. In three dimensions, if the vertices are Pi for 0 ≤ i ≤ 2 and
the eye position is E, the triangle is visible when the triple scalar product is positive,

δ = (E − P0) . (P1 − P0) × (P2 − P0) > 0

The cross product portion of this expression produces a normal vector to the plane
of the triangle. The eye point must be on the side of the plane to which this normal is
directed, a condition captured by δ > 0. If the triangle vertices were instead clockwise
ordered, visibility is guaranteed by δ < 0. The sign of the test is represented by the
integer m_iCullSignAdjust in the software renderer code. Its value is modified to be
consistent with the current state of the CullState object.

In view coordinates, the eye point is (r , u, d) = (0, 0, 0) since it is the origin of the
camera coordinate system. In clip space, the eye point is (0, 0, −dmaxdmin/(dmax , 0).
The visibility test is naturally three-dimensional, so it is enough to extract three
components from the clip-space coordinates to use in computing δ. In fact, these
should be the (r ′, u′, w′) components. The presence of the offset in the d ′ component
makes (r ′, u′, d ′) the wrong choice, because the difference of eye point and triangle
vertex is not quite the difference you think it is. In the software renderer source code
you see the equivalent of

E1 = (r ′
1 − r ′

0, u′
1 − u′

0, w′
1 − w′

0), E2 = (r ′
2 − r ′

0, u′
2 − u′

0, w′
2 − w′

0),

N = E1 × E2, δ1 = σ(N . (r ′
0, u′

0, w′
0))

where σ is the sign adjustment based on the cull state (and on the handedness of
the camera coordinate system). If δ1 ≤ 0, the triangle is back facing and skipped
by the drawing system (i.e., culled). The test may be summarized in the equivalent
determinant form as

δ1 = σ det

⎡
⎣ r ′
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0
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′
0))

(3.1)
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The edge differences could be used for the middle and last row, but the determinant
value remains the same.

As always, floating-point round-off errors can cause problems. In the case of
back-face culling, the floating-point computations that produce δ1 can lead to mis-
classifications. A back-facing triangle might be classified as front facing. This is not a
serious problem, because for closed surfaces, the front-facing triangles will overdraw
a back-facing triangle. The other misclassification is a problem. When a front-facing
triangle is misclassified as back facing, it is not drawn when it should be. This leads to
small holes in a rendered scene. Assuming no other triangles are drawn to the same
pixels of the missing one, you will see the background color through the holes. In
the Wild Magic software renderer, when the visibility test indicates that a triangle is
back facing, I do some additional work to check if the triangle is really a misclassi-
fied front-facing triangle. My choice is to project the vertices to window coordinates,
with truncation to integer values, and to formulate the visibility test in those coordi-
nates. However, you must make sure the vertices are all in front of the camera—this
is a matter of verifying that all the w′ components are positive. The test without the
rounding step is as follows. The projections are

(xi , yi) = (a0 + a1(r
′
i
/w′

i
), b0 + b1(u

′
i
/w′

i
)), 0 ≤ i ≤ 2

where a0, a1, b0, and b1 are constants that depend on the current window width,
height, and viewport settings. When the full viewport is in use, the constants are
a0 = W/2, a1 = W/2, b0 = H/2, and b1 = −H/2, where W is the window width and
H is the window height. The visibility test is

δ2 = σ(x2 − x0, y2 − y0) . (x1 − x0, y1 − y0)
⊥ (3.2)

where (u, v)⊥ = (v , −u). The triangle is back facing when δ2 ≤ 0. It may be shown
that the visibility tests are related by δ2 = −a1b1δ1/(w0w1w2), where δ1 is defined in
Equation (3.1). Thus, Sign(δ1) = Sign(δ2).

Exercise
3.1

For a window of width W = 640 and height H , and for σ = 1, verify that Equations
(3.1) and (3.2) produce numerically computed values of the same sign for the follow-
ing points of the form (r ′, u′, w′):

V0 = (−4.4538450, −2.6110454, +5.8253970),

V1 = (−4.1239305, −2.5799429, +5.8253970), and

V2 = (−4.1239305, −2.6758144, +6.0793653).

Project these points to window coordinates and truncate to integer values. Substitute
the integer-valued coordinates into Equation (3.2) and show that the result has the
opposite sign of that produced by using the floating-point-valued coordinates.
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Exercise
3.2

Construct a triangle for which Equation (3.1) produces a positive value and Equation
(3.2) produces a negative value when using floating-point arithmetic and when the
second equation uses the floating-point inputs, not the truncated integer inputs.
In this case, the two tests disagree about the orientation of the triangle. Similarly,
construct a triangle for which Equation (3.1) produces a negative value and Equation
(3.2) produces a positive value when using floating-point arithmetic and when the
second equation uses the floating-point inputs, not the truncated integer inputs.

3.1.3 Clipping

Once a triangle is determined to be front facing, it needs to be clipped against the
planes of the view frustum. As mentioned in Section 2.4.3, you can implement clip-
ping in a couple of ways. The first is plane-at-a-time clipping, where a list of triangles
is maintained. Initially, the list has one triangle—the one just determined to be front
facing. Each triangle is tested for intersection with a frustum plane. If it does inter-
sect, the portion on the frustum side of the plane is placed back in the list for clipping
against other frustum planes. If the portion is still a triangle, it is immediately placed
back in the list. If the portion is a quadrilateral, it is split into two triangles and these
are put back in the list.

The other clipping method was polygon-of-intersection clipping. This method
maintains a convex polygon that is initially the front-facing triangle. The polygon is
clipped against each of the six frustum planes. The final polygon is then split into
a triangle fan, each triangle sent to the rasterizer for drawing. This is the method I
choose to implement. The entry point to the clipping system is the function

void ClipPolygon (int& riQuantity, int aiIndex[SOFT_MAX_CLIP_INDICES],
int aiEdge[SOFT_MAX_CLIP_INDICES]);

On input, riQuantity is 3, which is the number of vertices of the initial polygon
(the front-facing triangle). The aiIndex array stores the indices into the vertex array
that stores the output from the vertex programs. On output, the value of riQuantity
is the number of vertices for the convex polygon that was obtained by clipping the
triangle against the frustum planes and against user-defined clipping planes. If new
vertices were generated by clipping, they are stored in the output vertex array. The
first riQuantity indices in aiIndex represent the vertices of the convex polygon. The
array aiEdge is used to store information about the edges of the convex polygon but
is used only for the purpose of wireframe drawing. When a wireframe is displayed,
you want only edges drawn from the original triangles before clipping. The clipper
generates new edges, but we do not want these to be displayed. How the information
in aiEdge supports this distinction will be made clear in a moment.

The ClipPolygon function is a shallow wrapper that iterates over the frustum
planes and calls a specialized function of the same name but with one additional
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parameter—the plane. After the frustum planes are processed, any user-defined clip-
ping planes are processed.

The specialized function is

void ClipPolygon (const Vector4f& rkPlane, int& riQuantity,
int aiIndex[SOFT_MAX_CLIP_INDICES],
int aiEdge[SOFT_MAX_CLIP_INDICES]);

Its job is to test on which side of the frustum plane the vertices lie. Notice that the
input plane is passed in as a 4-tuple, (n0, n1, n2, −d), where the plane normal is
N = (n0, n1, n2) and the plane constant is d . A clip-space vertex (r ′, u′, d ′, w′) is on
the frustum side of the plane whenever

(n0, n1, n2, −d) . (r ′, u′, d ′, w′) ≥ 0

The function computes p, the number of vertices for which the dot product is positive
(vertex is strictly inside the frustum), and n, the number of vertices for which the dot
product is negative (vertex is outside the frustum). If k is the number of polygon
vertices, then p + n ≤ k (vertices exactly on the frustum plane are not counted).

If p = 0, then the entire polygon is outside the frustum, possibly with one or more
vertices on the frustum plane itself, so the polygon is culled. The returned quantity
of vertices is zero so that the calling function knows to terminate clipping; that is,
the polygon need not be tested for intersection with any more clipping planes. If
p > 0 and n = 0, then the entire polygon is inside the frustum, possibly with one
or two vertices on the frustum plane itself, so the polygon does not need clipping.
The last case is p > 0 and n > 0, so the polygon is partially inside the frustum and
partially outside the frustum. It does require clipping and is passed to the function
ClipPolygonAgainstPlane. The code to compute the dot products also computes the
first index for which a dot product is positive. This index is used to start an iteration
over the edges of the convex polygon during the clipping phase. The first index is also
passed to ClipPolygonAgainstPlane.

Exercise
3.3

You will notice that the source code compares a dot product δ using δ > 0 and δ < 0.
That means the test for a vertex occurring on the frustum plane is the exact com-
parison δ = 0. Normally, such a comparison is not recommended for floating-point
arithmetic, because of numerical round-off errors leading to incorrect classifications.
If, instead, a small tolerance ε > 0 were used—say, δ > ε to call the dot product pos-
itive, δ < −ε to call the dot product negative, and |δ| ≤ ε to call the dot product
zero—what are the potential consequences farther down the geometric pipeline?

Figure 3.1 shows a convex polygon clipped by an edge of a rectangle that rep-
resents the view frustum. For the sake of argument, let the current polygon have k

vertices. The polygon of Figure 3.1 has a first vertex inside the frustum, Pf , where
f ≥ 0. The previous vertex is Pf −1, where the index is computed modulo k. That is,
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Pl

Pl  + 1

Pf

Pf – 1

C1

C0

Figure 3.1 A convex polygon clipped by an edge of a rectangle that represents the view frustum.

if f > 0, the previous index is f − 1. If f = 0, the index is k − 1(the same as −1mod-
ulo k). The polygon also has a last vertex inside the frustum, P�. Its successor is P�+1,
where the index is computed modulo k; if � < k − 1, then the next index is � + 1, but
if � = k − 1, then the next index is 0 (the same as k modulo k). The edge from the
vertex Pf −1 to Pf intersects the frustum plane, so a clip vertex must be generated:

C0 = Pf −1 +
(

δf −1

δf −1 − δf

)
(Pf − Pf −1)

where δi is the dot product associated with Pi relative to the current frustum plane.
The positions Pi are clip-space coordinates that were computed by the vertex pro-
gram and stored in the output array. Vertex attributes were computed or passed
through and also stored in the output array. These must be interpolated as well so
that the new clip vertex has its own attributes. The function ClipInterpolate does
this work and appends the new vertex to the output array. Notice that the interpola-
tion is linear, not perspective. The edge from P� to P�+1 intersects the frustum plane,
so another clip vertex must be generated:

C1 = P� +
(

δ�

δ� − δ�+1

)
(P�+1 − P�)

Once again, ClipInterpolate has the responsibility for interpolating the vertex posi-
tions and attributes.

The clipped convex polygon has vertices

C0, Pf , . . . , P�, C1

The edge from C1 back to C0 is the final edge of the polygon, the other edges strictly
inside the frustum. The new clip vertices are stored in the output array (by ClipIn-
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Figure 3.2 (a) A triangle clipped by one edge of a rectangle. (b) A triangle clipped by two edges
of a rectangle.

terpolate); call them Pm and Pm+1. The polygon indices, in order, are m, f , . . . , �,
m + 1. During the clipping, these indices are stored in the temporary array aiCIndex.
Once clipping is finished, aiCIndex is copied to aiIndex for use in clipping by the next
plane.

Now for an explanation about the input array aiEdge to the function ClipPolygon
and its temporary array counterpart, aiEIndex. Figure 3.2 shows two configurations
for a triangle clipped by a rectangle that represents the view frustum. Part (a) of the
figure shows a triangle clipped by one edge of the rectangle. The original vertices are
P0, P1, and P2. The edge index array is initialized with the indices 0, 1, and 2. These
are listed in the figure as e = 0, e = 1, and e = 2. When the clip vertex is computed on
the edge from P0 to P1, it is assigned the edge index from the first edge vertex. In this
case, the clip vertex is P3 and is assigned e = 0, which is the edge index for P0. The
clip vertex for the edge from P2 to P0 is P4 and is assigned e = 2, which is the edge
index for P2. The idea is simple—the clip vertex is assigned the index of the original
triangle edge on which it lives.

The clipped triangle is a quadrilateral, so it is split into two triangles, 〈P1, P2, P3〉
and 〈P2, P4, P3〉. The edges 〈P2, P3〉 and 〈P3, P4〉 were introduced by clipping, so we
do not want them to be displayed in wireframe mode. The DrawTriMesh function has
a block of code that is entered when wireframe mode is selected:

for (int j0 = iQuantity - 1, j1 = 0; j1 < iQuantity; j0 = j1++)
{

if (aiIndex[j0] < iVQuantity
|| aiIndex[j1] < iVQuantity
|| aiEdge[j0] == aiEdge[j1])
{

RasterizeEdge(aiIndex[j0],aiIndex[j1]);
}

}
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The value iVQuantity is the number of vertices in the output vertex array before
clipping of any triangles. The value iQuantity is the number of vertices of the convex
polygon, which is four in our current example. The vertex indices for the convex
polygon are stored in aiIndex, and the indices of the edges on which these vertices
live are stored in aiEdge. Edges introduced by the triangle fan are not processed in
this loop. In our example, the edge 〈P2, P3〉 was such an edge. The first two Boolean
conditions in the loop allow an edge to be drawn if one of its endpoints is an original
vertex of the triangle. In Figure 3.2 (a), the edges 〈P3, P1〉, 〈P1, P2〉, and 〈P2, P4〉
satisfy these conditions. However, the edge 〈P4, P3〉 does not.

In Figure 3.2 (b), only the edges 〈P3, P5〉 and 〈P4, P6〉 should be drawn in
wireframe. Neither edge satisfies the condition aiIndex[j0] < iVQuantity nor aiIn-
dex[j1] < iVQuantity, but they both satisfy the condition aiEdge[j0] == aiEdge[j1].

3.1.4 Rasterizing

When the triangle fan of the convex polygon is to be drawn, the block of code in
DrawTriMesh to handle this is

int iNumTriangles = iQuantity - 2;
for (int j = 1; j <= iNumTriangles; j++)
{

RasterizeTriangle(aiIndex[0],aiIndex[j],aiIndex[j+1]);
}

where iQuantity is the number of vertices in the convex polygon. The function
RasterizeTriangle has the responsibility to draw the pixels in each of the input
triangles, performing perspective interpolation as needed.

The first portion of RasterizeTriangle accesses the three clip-space coordinates
for the triangle vertices and projects them to window space via the function Clip-
ToWindow. The returned values from ClipToWindow are fX and fY, which are the
floating-point values for the pixel location; fDepth, which is the normalized depth at
the pixel (its value is in [0, 1]); and fInverseW, which is the reciprocal of the w-value
of the input clip-space coordinate. The depth and inverse w-values are not needed
initially; the floating-point window coordinates are truncated to integer values and
are used to start the edge buffer construction.

Before the edge buffer construction, a small block of code is used to trap back-
facing triangles. Recall that DrawTriMesh itself has code to detect back-facing triangles
and cull them, but that block of code uses floating-point arithmetic. Numerical
round-off errors can cause triangles that are back facing but nearly front facing (i.e.,
they are seen nearly edge-on by the camera) to be classified as front facing. These
are sent through the clipper and finally to the triangle rasterizer. A more aggressive
algorithm could be used to prevent such triangles from reaching the rasterizer, but
most likely you would need exact arithmetic to guarantee correct classification all
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the time. This is an expense that all triangles would incur, so I chose instead not
to penalize the system for all triangles when only a small number have the chance
of making their way to the clipper and rasterizer. The rasterizer test for back-facing
triangles is an exact test, so any triangles that are rasterized are guaranteed to be front
facing.

Exercise
3.4

If the back-face culling is removed from the preclipping stage and you allow the afore-
mentioned block of code to do all the back-face culling, will the rendered results be
correct? Justify your answer. You can experiment with this by modifying the software
renderer and running either the Terrain or VolumeFog samples.

3.1.5 Edge Buffers

The edge buffer algorithm is designed to identify the starting and ending x-values on
each scan line that contains pixels covered by the triangle. The basic idea is to rasterize
the edges connecting the vertices, assigning to each edge pixel the attributes that are
obtained by perspective interpolation of the vertex endpoints of the edge. Equation
(2.113) is used for the perspective interpolation.

An optimized software renderer will use Bresenham’s algorithm to generate the
pixels along an edge. The Wild Magic software renderer is not optimized, using
instead floating-point arithmetic to generate the pixels by evaluating the segment
(x0, y0) + t ((x1, y1) − (x0, y0)) connecting the edge endpoints (x0, y0) and (x1, y1)

for appropriate values of t .
Edge rasterizers need to pay attention to processing the pixels along an edge

shared by two triangles. First, Bresenham’s algorithm is not guaranteed to produce
the same set of pixels when traversing the edge in both directions. That is, if the
pixel identification starts with (x0, y0) and incrementally generates (x , y) values
until it reaches (x1, y1), you can get a different set of pixels if you start with (x1, y1)

and incrementally generate pixels until you reach (x0, y0). Figure 3.3 shows such an
example.

x + 4
y

y + 1

x + 4xx
y

y + 1

(a) (b)

Figure 3.3 Bresenham’s algorithm can generate different sets of pixels depending on the
direction of traversal. (a) The pixels are traversed from the left point (x , y + 1) to the
right point (x + 4, y). (b) The pixels are traversed from the right point (x + 4, y) to
the left point (x , y + 1).
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One line-drawing algorithm that avoids the problem of traversal direction is the
midpoint algorithm. You start with the midpoint (xm, ym) of the endpoints and apply
Bresenham’s algorithm twice, once to iterate from (xm, ym) to (x0, y0) and once to
iterate from (xm, ym) to (x1, y1). Regardless of the order in which you process the
edge endpoints, you will generate the same sets of pixels.

An alternative, and the one I have implemented, is to guarantee that you always
start the pixel iteration from the endpoint of smallest y-value to the endpoint of
largest y-value. The function ComputeEdgeBuffers arranges for this to happen by
sorting the y-values of the triangle vertices. If the three y-values are distinct, two
edges are processed to fill in one edge buffer, and the remaining edge is used to fill in
the other edge buffer. In the logic of ComputeEdgeBuffers, a function ThreeBuffers is
called to fill the edge buffers. If two y-values are equal, then only two edges need to
be processed, one for each edge buffer. A function TwoBuffers is called to fill the edge
buffers in this case.

Both ThreeBuffers and TwoBuffers make calls to the function ComputeEdgeBuffer
to fill in the appropriate buffer. This function assigns the endpoint attributes to the
edge buffer, calls the function to perspectively interpolate the attributes for the pixels
on the edge associated with the edge buffer, and then computes the x-values for
those pixels. This information is returned to the triangle rasterizer to be used for
perspective interpolation along the scan lines.

Figure 3.4 shows an example of a triangle and the edge buffers associated with
it. The minimum edge buffer (on the left) is generated by one edge of the triangle.
The maximum edge buffer (on the right) is generated by two edges of the triangle.
Both edge buffers have a minimum y-value of 0 and a maximum y-value of 12. The
minimum edge buffer has x-values 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, and 0, listed from

y = 0

y = 12

x = 0 x = 14

Figure 3.4 A triangle and its associated edge buffers. The minimum edge buffer (on the left) is
generated by one edge of the triangle. The maximum edge buffer (on the right) is
generated by two edges of the triangle.



3.1 Software Rendering 161

minimum y to maximum y. The maximum edge buffer has x-values 6, 7, 8, 9, 10,
11, 12, 13, 14, 11, 8, 5, and 2, listed from minimum y to maximum y. The additional
gray squares are those pixels that would be visited using Bresenham’s line-drawing
algorithm, but they are not part of the edge buffers. Only the pixels with extreme x-
values are part of the edge buffers. The vertices of the triangle are colored red, yellow,
and blue. The other nongray colors are obtained by interpolation of the vertex colors.

3.1.6 Scan Line Processing

Once the edge buffers are constructed for a triangle, we are ready to interpolate the
vertex attributes on each scan line intersecting the triangle. The function Rasterize-
Triangle implements the following pseudocode:

int ymin = <minimum y for edge buffers>;
int ymax = <maximum y for edge buffers>;
for (y = ymin; y <= ymax; y++)
{

int xmin = <minimum x for scan line y>;
int xmax = <maximum x for scan line y>;

draw the pixel (xmin,y);

interpolate attributes at (x,y) for xmin < x < xmax;
for (x = xmin+1; x < xmax; x++)
{

draw the pixel (x,y);
}

draw the pixel (xmax,y);
}

Figure 3.4 shows vertex colors at the edge buffer pixels, but when the vertex attributes
are computed during edge buffer construction, the pixels are not actually drawn. The
attribute information is stored in addition to the edge buffer pixel locations. The
drawing takes place in the aforementioned loops. The rasterization of the triangle
in Figure 3.4 is shown in Figure 3.5.

The scan line processing loops have a subtle problem. If two triangles share an
edge, the rasterizer will draw the shared pixels twice. Although inefficient, as long
as all objects are opaque, the rendered results will be visually correct. However, if
any form of blending is used, the results will be incorrect. Figure 3.6 illustrates the
problem when the pixel colors generated by the rasterizer are to be added into the
current frame buffer. Each pair of triangles has a shared edge. All three triangles share
a vertex. As a whole, the three triangles should be drawn as shown in part (b) of the
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y = 0

y = 12

x = 0 x = 14

Figure 3.5 The rasterized triangle of Figure 3.4.

(a) Gray scale shows the sharing (b) The desired result (c) The actual result

Figure 3.6 Three triangles that share edges. The frame buffer has all black pixels. (a) The pixel
sharing is shown in shades of gray. The light gray pixels are not shared at all, each
belonging to a single triangle. The dark gray pixels correspond to the edge shared by
two adjacent triangles. The black pixel corresponds to a vertex shared by the three
triangles. (b) The desired result is to add the triangle pixel colors into the frame
buffer for the three triangles as a whole. (c) The actual result when the shared pixels
are added multiple times to the frame buffer.

figure. However, they actually are drawn as shown in part (c) of the figure. The vertex
color of all the triangle vertices is dark blue. The nonshared pixels have their dark
blue color added to the frame buffer. The twice-shared pixels have their colors added
twice, producing pixels with a lighter blue color. The pixel shared by all triangles has
its color added three times, producing a pixel with the lightest blue color.
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Naturally, this example shows it is desirable to draw a mesh of triangles so that
pixels corresponding to shared edges and shared vertices are drawn only once. One
method for handling this is to rasterize the triangles using the top-left rule. A descrip-
tion of this in found in [Cor], but it is missing the details of a pathological case that
can arise. The floating-point window coordinates for the triangle vertices are used.
During rasterization, the pixel centers (the integer-valued window coordinates) are
analyzed for containment in the triangle. If a pixel center is strictly inside the cur-
rent triangle, then the pixel is drawn by the rasterizer. If the pixel center is outside
the current triangle, then the pixel is not drawn. If an adjacent triangle contains the
pixel center in its interior, the pixel will be drawn when that triangle is rasterized.
The difficult case is when a pixel center is on an edge of the triangle. If the edge is
shared by two triangles, a decision must be made regarding which triangle should be
responsible for drawing each of the pixels that correspond to the edge.

Let the triangle have vertices (xi , yi) for 0 ≤ i ≤ 2, which are floating-point win-
dow coordinates. A top edge of a triangle is one for which two vertices have the same
y-value and the other vertex has a y-value that is larger. For example, if y0 = y1 < y2,
the triangle has a top edge. A left edge of a triangle is one that is to the left of the tri-
angle interior in the x-direction. For example, if y0 < y1 < y2 and x1 < x0 < x2, the
edge from (x0, y0) to (x1, y1) is a left edge and the edge from (x1, y1) to (x2, y2) is a
left edge. Another example using the same y-values is x0 < x2 < x1. The edge from
(x0, y0) to (x2, y2) is a left edge.

When a pixel center lies exactly on a triangle edge, the top-left rule is used as a tie-
breaker. If the pixel center lies on the top edge of the current triangle, this triangle is
responsible for drawing the pixel. An adjacent triangle sharing the edge has a bottom
edge but ignores pixels whose centers are exactly on this edge. Similarly, if the pixel
center lies on the left edge of the current triangle, this triangle is responsible for
drawing the pixel. An adjacent triangle sharing the edge has a right edge but ignores
pixels whose centers are exactly on this edge.

Exercise
3.5

Consider two triangles whose vertices are listed here in floating-point window co-
ordinates. The origin of the window is the upper-left corner, the x-values increase
rightward, and the y-values increase downward. The first triangle has vertices (10, 1),
(5, 10), and (10, 10). The second triangle has vertices (10, 1), (10, 10), and (15, 10).
Each triangle has a bottom edge but not a top edge. The pixel center (10, 1) lies on the
edges of both triangles. The pixel center is on the left edges for both triangles. Which
triangle is assigned the responsibility for drawing the pixel? (This is the pathological
case missing in the description in [Cor].)

The Wild Magic software renderer uses a simpler mechanism for avoiding the
multiple drawing of shared pixels in a mesh of triangles. The rasterizer draws only
those pixels (x , y) for which ymin ≤ y < ymax and xmin(y) ≤ x < xmax(y), where
the x-bounds are the edge buffer values. That is, the last row and last column in
which triangle pixels occur are ignored. If an adjacent triangle shares pixels in the
last row (last column) and those pixels are not in the last row (last column) of the
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adjacent triangle, that triangle will draw the pixels. Omitting the upper bounds is
a trivial modification to the edge buffering mechanism. In exchange, the rasterizer
never draws the bottommost and rightmost nonshared pixels in a triangle mesh. The
rendered scenes still look reasonable; in fact, my experiments show me that they
actually resemble the Direct3D and OpenGL renderings more so than when using
schemes that fail to omit those pixels. The major visual problem with this approach,
though, is that for a rendering that fills the entire window, you lose the pixels on the
last row and the last column of the window—the background color appears instead.
To avoid this, I modified the edge buffers to store W + 1rows, where W is the window
width. The transformation from clip space to window space clamps x to [0, W ] and
y to [0, H ], where H is the height of the window. The last rows of the edge buffers are
computed when a scene fills the window, but pixels of the form (W , y) or (x , H) are
never sent to the pixel program, because of the restrictions imposed in the rasterizer:
x < xmax and y < ymax. The RasterizePoint and RasterizeEdge functions do not use
the edge buffering system. The window coordinates for points and edge vertices can
be out of range, so these two functions clamp x to [0, W − 1] and y to [0, H − 1].

Exercise
3.6

The function RasterizeEdges is used for wireframe mode. The source code does not
currently avoid multiple drawing of shared pixels. The potentially shared pixels are
the endpoints of the edges. Modify the source code to avoid the overdraw. You may
use the SampleGraphics/Lighting to test this. Run the sample as is. Press the A-key
to add an ambient light and press the D-key to add a directional light. Toggle to
wireframe mode by pressing the w-key. You will see that the vertices are brighter than
others because of the overdraw during addition of the two light contributions. When
you have the buffer support added to the wireframe drawing, you should no longer
see this effect.

3.1.7 Pixel Shaders

In RasterizeTriangle, when a pixel is finally determined to be drawable, a call is
made to the function ApplyPixelShader. Without concern for depth buffering, stencil
buffering, blending, or color masking, this function has the role of applying a pixel
shader for the current pixel. This amounts to calling a pixel program whose inputs
are (1) the rasterized and interpolated outputs from the vertex program and (2) any
constants that are needed to obtain a desired effect. The pixel program must return
an RGBA color value.

Previously, we saw a Cg vertex program for vertex coloring. The output of the
vertex program was just the input vertex color. A Cg pixel program that just passes
through the color is listed next. You can find this on the CD-ROM together with other
Cg shader programs in the directory

GeometricTools\WildMagic4\Data\ShaderPrograms\Cg

The file of interest is PassThrough.cg. A pixel program in that file is
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void PassThrough3PProgram
(

in float3 kInPixelColor : COLOR,
out float4 kPixelColor : COLOR)

{
kPixelColor.rgb = kInPixelColor;
kPixelColor.a = 1.0f;

}

The program has one input. This is the color produced by the rasterizer for the
current pixel and is an interpolation of the vertex colors at the triangle vertices. The
vertex program VertexColor3VProgram passed through only RGB values. The output
of the pixel program must assign an alpha value, in this case 1 to produce an opaque
color.

The software version of the pixel program returns the RGBA color as the result
of the function. The actual line of code in ApplyPixelShader that calls the pixel
program is

ColorRGBA kSrcColor = m_oPProgram(afRegister,apkSampler,afInPixel);

The first parameter is an array of constants. In our current example, there are no
constants, so the pixel program does not dereference the array pointer. The second
parameter is an array of texture samplers to be used for color lookups in texture
images. The current program does not use textures, so this array is not dereferenced.
Texture samplers are discussed later in this section. The last parameter is the array of
interpolated outputs from the vertex program, not including the clip-space position.
Each float channel of afInPixel is an interpolation of the corresponding channel of
the three vertices of the triangle.

It is possible that the color returned from the pixel program has channels outside
the interval [0, 1]. Eventually, the colors are mapped to 8-bit quantities for the frame
buffer, so they need to be clamped first. The relevant software renderer code for this
is condensed to

ColorRGBA kSrcColor = m_oPProgram(afRegister,apkSampler,afInPixel);
kSrcColor.Clamp(); // clamp to [0,1]
SetColorBuffer(iIndex,kSrcColor);

The variable iIndex is the index into the color buffer for the current pixel (x , y). If W

is the window width, the index is i = x + Wy. The color buffer elements are stored
in row-major order. The function SetColorBuffer draws the color in the frame buffer
(or render target). This operation is hidden from the user because the storage format
for the RGBA colors is platform-specific; PCs use little endian, and Macintoshes
(those before the switch to Intel CPUs) use big endian.
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As it turns out, the implementation of ApplyPixelShader is more complicated
than the few lines of code shown here. Depth buffering, blending, and stencil buffer-
ing must be incorporated into the logic of when and how to draw a pixel. In Direct3D,
the pixel pipeline involves the following ordered list of operations:

Pixel shader. The pixel program is called first, regardless of whether the result is
actually used in the display. That is, the pixel may be rejected by various tests in
the pipeline.

Occlusion queries. The occlusion queries keep track of the number of pixels that
pass z-testing. This mechanism may be used only when you draw the objects from
front to back. I do not include this feature in the software renderer.

Scissor test . The scissor test culls pixels outside a specified subrectangle of the
render target. The software renderer uses this concept for clearing buffers but
does not support the actual culling in the ApplyPixelShader function call.

Alpha test . The pixel may be rejected for further processing based on a compari-
son of its alpha value to a reference value. The AlphaState object has support for
this, but the software renderer does not yet implement it.

Stencil test . A stencil buffer may be used to support various special effects such
as projected shadows, planar reflections, shadow volumes, and compositing. The
software renderer does have support for this. A pixel may be rejected for further
processing depending on the state of the stencil buffer.

Depth test . A pixel is determined to be visible (or not) based on its depth value
relative to a value stored in a depth buffer. The comparison function is user
selectable. The depth buffer can be configured for read-only, write-only, or read-
write.

Fog effects. A fog factor may be computed to blend the pixel color (returned by the
pixel shader) and a fog color. The software renderer does not include this stage in
its pixel pipeline. It is simple enough to support fog effects within the pixel shader
itself.

Alpha blending . The pixel color returned by the pixel shader may be blended with
the current render target color at that pixel’s location. Control over the blending
factors is provided by the AlphaState object.

Dithering . This was a common method to give the impression that the device
supports more colors than physically possible, relying on the human visual system
to blend colors it sees. For example, if you juxtapose a red pixel and a blue pixel,
your eye would blend these and see a magenta pixel. Given the powerful graphics
cards we have these days, the rendering system in Wild Magic does not expose the
ability to dither, even if the hardware supports it.

Color masking . Some special effects are possible that require using only some of
the color channels of the pixel color. The channels may be masked as needed to
guarantee that only the desired channels are read and/or written.
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Display. The final pixel color is written to the render target, typically the frame
buffer, but often an offscreen chunk of memory.

As mentioned, the software renderer does not currently support all these features.
Moreover, the order of the operations is different from what Direct3D and OpenGL
support. The main reason for this is that the pixel shader is the bottleneck in a
software rendering system. Most graphics systems are fill-rate limited; it takes a lot of
time to process a large number of pixels. Rather than always calling the pixel program
at the beginning of the pipeline, the software renderer waits to see if the pixel passes
the stencil and depth tests (and the color masking test—there’s nothing to draw if all
channels are masked out). If it does, then the pixel program is called and, if enabled,
alpha blending is performed between the returned color and the corresponding color
in the render target’s color buffer. The pipeline currently is

stencil test → depth test → alpha blending → color masking → display

Exercise
3.7

In the software renderer, implement the following features: scissor test, alpha testing,
fog effects.

3.1.8 Stencil Buffering

A stencil buffer gives you the ability to store and retrieve information about pixels that
have been visited during rasterization. A pixel is rejected for further processing based
on a comparison between a reference value and the pixel’s corresponding stencil
buffer value. The first block of code in ApplyPixelShader is

if (m_auiStencilBuffer)
{

StencilState* pkStencilState = GetStencilState();
if (pkStencilState->Enabled)
{

bool bStencilPass = ApplyStencilCompare(iIndex);
if (!bStencilPass)
{

ApplyStencilOperation(iIndex,pkStencilState->OnFail);
return;

}
}

}

If a stencil buffer exists and is enabled, a comparison is made between the reference
value and stencil value by calling ApplyStencilCompare. The comparison expression
is abstractly written as

(reference AND mask) comparison_function (stencil_value AND mask);
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The comparison function is one of never, always, equal, not equal, less than, less
than or equal, greater than, or greater than or equal. If the comparison is never,
the comparison expression is false regardless of the values of any variable in the
expression. If the comparision is always, the comparison expression is always true.
The Boolean value of the expression for the other comparisons is clear. The mask value
is part of the stencil state and is a mask for reading the stencil values.

If the comparison expression is false, the stencil buffer is modified by calling
ApplyStencilOperation. The modification occurs according to the stencil operation
stored by the OnFail member. The operation is one of the following:

zero. Set the stencil buffer value to zero.

keep. Keep the current stencil buffer value; that is, the stencil buffer is unchanged.

replace. Replace the stencil buffer value by the reference value.

invert. Invert the bits of the stencil buffer value; that is, a 1-bit is changed to a
0-bit and a 0-bit is changed to a 1-bit.

increment. The stencil value is incremented by 1 as long as its current value is
smaller than the maximum stencil value.

decrement. The stencil value is decremented by 1 as long as its current value is
positive.

The modification to the stencil buffer is

oldv = stencil[i];
newv = <value computed based on the stencil operation>;
stencil[i] = (oldv AND (NOT wMask)) OR (newv AND wMask);

where wMask is part of the stencil state and is a mask for writing.
If the stencil comparison is favorable, the pixel is passed to the next stage in the

pixel pipeline. In the software renderer, this stage is the depth test, which also in-
volves a comparison called the z-test . If the pixel fails the z-test and stencil buffering is
enabled, the stencil buffer is modified by calling ApplyStencilOperation. The modifi-
cation occurs according to the stencil operation stored by the OnZFail member. If the
pixel passes the z-test, the stencil buffer modification occurs according to the stencil
operation stored by the OnZPass member.

The read and write masks, the reference value, and the stencil operations give
you a lot of power to generate interesting special effects. A couple of sample appli-
cations illustrate this. In the SampleGraphics folder, look at the PlanarShadows and
PlanarReflections samples. In particular, the functions PlanarShadows::Draw and
PlanarReflections::Draw use the stencil buffer and contain comments about how it
is used.
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3.1.9 Depth Buffering

The depth buffer supports occlusion on a per-pixel basis. The state information
is stored in the ZBufferState object. Just like stencil state, there is a comparison
function used to decide if the current pixel is rejected from further processing. The
depths are the inputs to the comparison. The standard comparison is that a pixel is
rejected when its depth is larger than that of any earlier drawn pixels at that same
pixel location. However, some special effects use other comparisons.

The block of code in ApplyPixelShader that does the depth test is

if (m_auiDepthBuffer)
{

ZBufferState* pkZBufferState = GetZBufferState();
unsigned int uiDepth =

WM4_UNIT_FLOAT_TO_UINT(fDepth,m_uiMaxDepthValue);

StencilState* pkStencilState = GetStencilState();
if (pkZBufferState->Enabled)
{

bool bZPass = ApplyZBufferCompare(iIndex,uiDepth);
if (!bZPass)
{

if (pkStencilState->Enabled)
{

ApplyStencilOperation(iIndex,pkStencilState->OnZFail);
}
return;

}
}

if (pkZBufferState->Writable)
{

m_auiDepthBuffer[iIndex] = uiDepth;
m_afDepthBuffer[iIndex] = fDepth;

}

if (pkStencilState->Enabled)
{

ApplyStencilOperation(iIndex,pkStencilState->OnZPass);
}

}

The stencil buffer handling is interleaved with this code. The depth testing logic is to
compute the integer-valued depth for the current pixel and compare it to the current
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value in the depth buffer. If the comparison is unfavorable, the pixel is rejected for
further processing (except for the modifications to the stencil buffer, if enabled). If
the comparison is favorable, the depth buffer is updated as long as it is writable. Some
special effects use the depth buffer as read-only, others use it as write-only, but the
typical use is read-and-write.

3.1.10 Alpha Blending

Once the pixel passes the stencil test (if enabled) and the depth buffer test (if enabled),
it is ready to be drawn. The pixel program is called to produce the source color for
the pixel. The current color buffer value is called the destination color. If blending is
disabled, the source color is written to the color buffer. If blending is enabled, the
source color and destination color are combined according to blending parameters
specified in the AlphaState object. These parameters control how Equation (2.108) is
interpreted. The parameters themselves are described in Tables 2.5 and 2.6.

A portion of the alpha blending code in ApplyPixelShader is

ColorRGBA kSrcColor = m_oPProgram(afRegister,apkSampler,afInPixel);
kSrcColor.Clamp();

AlphaState* pkAlphaState = GetAlphaState();
if (!pkAlphaState->BlendEnabled)
{

// No blending, so write the source color to the color buffer.
SetColorBuffer(iIndex,kSrcColor);
return;

}

// The current color buffer value.
ColorRGBA kDstColor = m_akColorBuffer[iIndex];

// The final color after blending.
ColorRGBA kFinalColor = GetBlendedColor(kSrcColor,kDstColor);
kFinalColor.Clamp();

SetColorBuffer(iIndex,kFinalColor);

When blending is disabled, the first call to SetColorBuffer writes the source color,
kSrcColor, to the color buffer for display. If blending is enabled, the destination color,
kDstColor, is read from the color buffer. The two colors are passed to GetBlended-
Color to be combined according to the state in the current AlphaState object. The
final color is returned, clamped, and written to the color buffer.
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3.1.11 Color Masking

The alpha blending code is inside a condition statement

if (m_auiColorBuffer && m_uiColorMask != 0)
{

// . . . alpha blending code . . .
}

As long as there is a color buffer and not everything is masked away, the alpha blend-
ing code is called. The color mask and the reads and writes to the color buffer are
dependent on the platform, specifically on the byte ordering used to store RGBA col-
ors. An application can set the mask via the virtual function SetColorMask. This func-
tion is implemented in the renderer for each specific platform. Writing to the color
buffer is implemented in the virtual function SetColorBuffer for each derived-class
renderer. The color blending is done using the platform-independent class ColorRGBA.
The destination color is read from an auxiliary buffer that stores the color buffers us-
ing ColorRGBA values. This avoids loss of precision when blending. The channels of
ColorRGBA are floating-point numbers in the interval [0, 1]. When a color is written
to the color buffer, the channels are converted to 8-bit quantities, which is a loss of
precision. If you were to read back the 32-bit color buffer, convert to a ColorRGBA,
and blend it with the source color, the final result would not be the same as if you had
blended the two original ColorRGBA values.

The function SetColorBuffer uses the color mask, m_uiColorMask, to correctly
access the channels of the color buffer for updating.

3.1.12 Texture Sampling

When the triangle mesh uses textures, the vertices are assigned texture coordinates.
These must be interpolated by the rasterizer and passed to the pixel program to be
used as lookups into texture images. The process of determining the color associated
with a texture coordinate is called texture sampling .

Section 2.6.3 has a fairly detailed description of how the lookups occur, including
how texture coordinates are interpreted (clamp, repeat, and so on), how images are
filtered (nearest, linear), and how mipmaps are computed and sampled (combina-
tions of nearest and linear, and anisotropic filtering).

The texture sampling system in the Wild Magic software renderer is comprised of
the classes whose abstract base class is SoftSampler. The system provides a factory for
creating a SoftSampler object from a Texture object. The system also encapsulates
mipmap creation and mipmap selection. The base class implements the function
GetImageCoordinate, whose job it is to take a channel of a texture coordinate and
modify it according to the wrap mode (clamp, clamp to edge, clamp to border,
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repeat, or mirrored repeat). The returned value is the modification. The sampling
itself depends on the type of sampler. The base class specifies the pure virtual function

virtual ColorRGBA operator() (const float* afCoord) = 0;

Each derived class implements this according to its needs. A pixel program that uses
textures receives an array of samplers. A texture coordinate is passed to a sampler
using operator() and the returned value is the color to be used by the pixel program.
For a simple base texture effect, the returned color is the pixel color.

The derived classes SoftSampler1, SoftSampler2, and SoftSampler3 implement
texture sampling for 1-, 2-, and 3-dimensional textures, respectively. The derived
class SoftSamplerCube implements sampling for a cube map, a collection of six images
that form a cube and are used for environment mapping. The derived class SoftSam-
plerProj implements sampling for a projected texture, which I require to manage a
2D image. The texture coordinate is of the form (s , t , r , q), a homogeneous point.
The actual texture coordinates for the 2D image are (s/q , t/q), where the perspective
division occurs just as for homogeneous points used for vertices of a geometric prim-
itive. If the projected texture is created as a depth texture for effects such as shadow
maps, the value r/q represents the distance from the projector source (e.g., a light to
cast a shadow) to the point on the shadow caster. This may be compared to the gray-
scale color corresponding to the depth texture sampled at (s/q , t/q) to decide if the
pixel corresponding to the point is shadowed or not.

3.1.13 Frame Buffers

The software renderer has quite a collection of buffers that are used to control the
final results of the rendering. The color buffer stores the actual pixel colors; the depth
buffer stores depth for per-pixel occlusion culling; and the stencil buffer is used for
interesting special effects. Although a class such as SoftRenderer could have data
members for each of these, the buffers are encapsulated by a class SoftFrameBuffer.
The base class is FrameBuffer, which is a class defined in the platform-independent
graphics library.

By encapsulating the buffers into a frame buffer, we may easily support the stan-
dard frame buffer corresponding to the displayable window, but we may also support
offscreen rendering . It is very convenient to render a scene to a chunk of memory that
is intended for use as a 2D texture to be applied to another object in the scene. This
operation is called render-to-texture and the offscreen frame buffer is called a render
target .

The folder SampleGraphics has a couple of sample applications that illustrate
the use of offscreen rendering. The application RenderToTexture displays a triangle
mesh in the main window but also the same mesh rendered to a texture that is used
for a screen-space polygon occurring in the lower-left corner of the window. The
application also renders the mesh to a depth texture. A pseudocolored image is built
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from the depth texture and displayed in the lower-right corner of the window. The
projector used for this is not the camera; rather, it is a source located to the right of
the triangle mesh as you are looking at it on the screen. The sample ShadowMaps is a
much more complicated use of offscreen rendering.

3.2 Hardware Rendering

Naturally, you purchased this book because of an interest in real-time graphics. As
a user of current-generation 3D graphics hardware, most of the rendering system is
hidden from you by graphics APIs such as OpenGL or Direct3D. These APIs require
you to make various function calls to configure the renderer to draw objects with all
the special effects you have in mind. It is not really necessary to know all the details of
the internal rendering system, details such as the ones I just presented in the previous
section on software rendering.

Ignoring the shader programming aspects of GPUs, the functions available to you
are labeled in total as the fixed-function pipeline. Much of the render-state manage-
ment is encapsulated by the API calls, allowing you to focus on the higher-level details
of your graphics system. In exchange, though, figuring out which functions to call
and in what order is your responsibility. The multitude of downloadable SDKs, tu-
torials, and samples, especially from graphics card manufacturers’ websites, lessens
the responsibility to some extent, but as evidenced by many of the questions posted
to game developer forums and Usenet newsgroups, the fixed-function pipeline is still
misunderstood by many newcomers to the field of graphics. Although you do not
have to know most of the internal details involved in the rendering process, studying
the implementation of a software renderer might very well give you insight as to why
you call the API functions that you do. The Wild Magic software renderer is a sim-
ple implementation. For a much richer renderer with more details than you could
ever imagine, see Brian Paul’s Mesa 3D Graphics Library [Pau06]. This is a software
implementation that is intended to be very similar to OpenGL. The source code is
regularly maintained.

With the introduction of programmable GPUs, we as graphics developers have
been given greater power to invent and display sophisticated special effects, accom-
plished via shader programming. As is always the case, with great power comes great
responsibility. The encapsulation of state management by the fixed-function pipeline
is now generally your responsibility. For example, setting up light parameters for dy-
namic lighting used to be a matter of calling a handful of graphics API functions.
Now you must pass them to shader programs and implement the lighting equations
yourself. On the other hand, you are no longer obligated to use the lighting model
that the fixed-function pipeline uses. As another example, enabling texture units for
a single-pass multitexture effect is quite generic in the fixed-function pipeline. Now
you must write shader programs for each type of single-pass multitexture effect of
interest. Because the number of possible combinations is quite large, it would be
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fruitless to manually create all these. For example, if you have four light types (am-
bient, directional, point, and spot), the number of shader programs to support any
combination of these with at most eight lights is 494.1 For a graphics system to sup-
port a very large number of effects through shader programs, it is helpful to have
automatic generation of shader programs and to have shader stitching—the abil-
ity to take preexisting shader programs, combine them into a single program, and
compile it on the fly. The alternative is to use multipass programming, but this is ex-
pensive since each additional pass requires a re-rasterization of the triangles in the
mesh.

To have good performance, the graphics system should also take advantage of
the video memory (VRAM) provided by the graphics card. Anything that can be
sent to VRAM once and cached for later use should be, whether it is vertex data or
texture images. Data that changes infrequently can be stored in accelerated graphics
port (AGP) memory to take advantage of the faster transfer from AGP memory to
VRAM as compared to the transfer from system memory to VRAM.

The rendering layer in Wild Magic version 3 and earlier was an attempt to make
the abstract renderer API look like the fixed-function pipeline. It provided some
function calls that implemented special effects such as bump-mapping, environment
mapping, and projected textures. Any time you created a new and complicated ef-
fect, particularly one that required multipass rendering, you had to modify the Ren-
derer class by adding a pure virtual function for that effect and implementing it in
the derived-class renderers for OpenGL and Direct3D. Wild Magic version 3 also
supported shader programs, but by requiring you to generate C++ classes, each en-
capsulating a pair of vertex and pixel programs. Once again, this was an attempt to
make the renderer look like it was a fixed-function pipeline. Some performance en-
hancements were added, namely, the ability to cache vertex buffers in VRAM, but the
scene graph management system and the Direct3D renderer were not structured to
be friendly to such a system. The OpenGL renderer performed well, but the Direct3D
renderer did not.

The Wild Magic version 4 rendering system is a complete rewrite of the earlier
systems. It is designed to be a resource management system for the underlying graphics
system (hardware or software). The resources include vertex buffers (storage of vertex
positions and attributes), index buffers (storage of indices for mesh topology), vertex
and pixel programs, and textures and associated texture coordinates and images. The
system also includes support for clearing various buffers (color, depth, stencil). The
renderer manages a camera, dynamic lights, transformations for objects, and global
render states such as depth buffering and alpha blending. Other functions in the
system support various items such as text rendering, font selection, user-defined clip
planes, color masking, and depth range.

1. If you have an alphabet with n distinct letters and you want to form distinct words of exactly length �, the
number of such words is Choose(n + � − 1, �) = (n + � − 1)!/(�!(n − 1)!). The number of distinct words
with length at most � is

∑�
i=1 Choose(n + i − 1, i).
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A large set of standard shader constants are supported, including various matrix
transformations, light and material parameters, camera parameters, and projector
parameters. Functions to set these are not part of the public interface, but are used in
the setup for enabling vertex and pixel programs.

The drawing system is the heart of the renderer and is the main client of the
resource handling. The next section describes the abstract rendering API for Wild
Magic 4, including the role that subsystems play in applying shader programs to
geometric primitives.

3.3 An Abstract Rendering API

This section describes the abstract base class Renderer, which acts as a resource man-
ager for drawing objects. The interface is quite large, so instead of showing a code
block of the entire class structure, I will list the interface a small portion at a time and
describe the role of each portion.

3.3.1 Construction and Destruction

The base class Renderer is abstract because its only constructor is protected and
because it specifies quite a few pure virtual functions that must be implemented
by derived classes. Function members relevant to construction, destruction, and
accessing information passed to the constructor are listed next.

Renderer (
FrameBuffer::FormatType eFormat,
FrameBuffer::DepthType eDepth,
FrameBuffer::StencilType eStencil,
FrameBuffer::BufferingType eBuffering,
FrameBuffer::MultisamplingType eMultisampling,
int iWidth, int iHeight);

virtual ~Renderer ();

FrameBuffer::FormatType GetFormatType () const;
FrameBuffer::DepthType GetDepthType () const;
FrameBuffer::StencilType GetStencilType () const;
FrameBuffer::BufferingType GetBufferingType () const;
FrameBuffer::MultisamplingType GetMultisamplingType () const;
int GetWidth () const;
int GetHeight () const;
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enum
{

OPENGL,
DIRECTX,
SOFTWARE,
MAX_RENDERER_TYPES

};
virtual int GetType () const = 0;

The constructor accepts inputs that describe what frame buffer components are
required by the application. The format is typically 32-bit RGBA or 24-bit RGB. The
depth type specifies the number of bits for the depth buffer, currently either none,
16, 24, or 32. If you plan on creating derived classes for graphics systems supporting
a different number of bits (e.g., SGI O2 machines have a 15-bit format), then you
must add new constants to the FrameBuffer::DepthType enumeration. The stencil
type specifies the number of bits for the stencil buffer, currently none or 8. The
buffering type is either single or double. For real-time applications, you want double
buffering. The multisampling type refers to the ability to generate multiple samples
per pixel during rasterization. Your options for number of samples are none, 2, or 4.
The width and height of the buffers are also specified at construction time.

Member accessors are provided for the width, height, and the frame buffer pa-
rameters. Also listed here is the function GetType, a simple form of run-time type
information (RTTI). The only derived classes currently supported by the engine
are OpenGLRenderer (enumeration OPENGL), Dx9Renderer (enumeration DIRECTX), and
SoftRenderer (enumeration SOFTWARE). The OpenGL and software renderers run on
platforms other than those with Microsoft Windows. Each platform derives classes
from these to provide for a small amount of platform-dependent behavior. For exam-
ple, the Microsoft Windows OpenGL renderer is class WglRenderer, which is derived
from OpenGLRenderer. The abstract rendering API does not need to know about this
level of derivation, only that the renderer is based on OpenGL; thus, there are no
enumerations other than those listed here.

3.3.2 Camera Management

To draw anything, the renderer needs a camera in order to define the region of space
to be rendered and to define the viewing model (perspective or orthographic). The
relevant interface for the camera is

void SetCamera (Camera* pkCamera);
Camera* GetCamera () const;
virtual void OnFrameChange ();
virtual void OnFrustumChange ();
virtual void OnViewportChange () = 0;
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The function SetCamera tells the renderer to use the specified camera for drawing.
This call establishes two-way communication between the renderer and the camera—
the renderer has a pointer to the camera and the camera in turn has a pointer to
the renderer. When the camera is moved, reoriented, or has its frustum parameters
changed, the renderer is automatically notified via the functions OnFrameChange, On-
FrustumChange, and OnViewportChange. In Wild Magic 3, the derived-class renderers
had to implement all three of these, making calls to the graphics APIs to update the
homogeneous matrices associated with the camera coordinate system, camera view-
ing model, and viewport. The observations made in Section 2.8 allow me to set the
matrices the way I want them, not the way a graphics API sets them via its conve-
nience functions, so the matrix storage and much of the matrix handling was factored
out of the derived classes and placed in the base class. The world matrix, view matrix,
and projection matrix are maintained explicitly by Renderer. The derived classes have
a small amount of work to do, namely, to tell the graphics APIs what their matrices
should be.

3.3.3 Global-State Management

The renderer maintains a list of the currently active global states for alpha blending,
culling (how to cull triangles), fog, materials, polygon offset (how to deal with depth
aliasing problems), stenciling, wireframe, and depth buffering. The accessors are

virtual void SetAlphaState (AlphaState* pkState);
virtual void SetCullState (CullState* pkState);
virtual void SetFogState (FogState* pkState);
virtual void SetMaterialState (MaterialState* pkState);
virtual void SetPolygonOffsetState (PolygonOffsetState* pkState);
virtual void SetStencilState (StencilState* pkState);
virtual void SetWireframeState (WireframeState* pkState);
virtual void SetZBufferState (ZBufferState* pkState);
AlphaState* GetAlphaState ();
CullState* GetCullState ();
FogState* GetFogState ();
MaterialState* GetMaterialState ();
PolygonOffsetState* GetPolygonOffsetState ();
StencilState* GetStencilState ();
WireframeState* GetWireframeState ();
ZBufferState* GetZBufferState ();
void SetReverseCullFace (bool bReverseCullFace);
bool GetReverseCullFace () const;

void SetGlobalState (GlobalStatePtr aspkState[]);
void RestoreGlobalState (GlobalStatePtr aspkState[]);



178 Chapter 3 Renderers

void SetLight (int i, Light* pkLight);
Light* GetLight (int i);

The Set/Get functions for the global states are straightforward, accessing an array
of pointers to the currently active states. The functions SetReverseCullFace and
GetReverseCullFace are used for special effects involving mirroring, whereby the
triangle vertex order of the mirrored image is the reverse of that for a normal image.

The functions SetGlobalState and GetGlobalState are for internal use by the
drawing system. These are used on a per-object basis when drawing. In particular,
if an object itself has global states attached to it, these override the currently active
global states during drawing, but after drawing the previous global states are restored.

The SetLight and GetLight functions are simple accessors for an array of pointers
to Light objects. These functions are also for internal use when drawing objects that
use lights in support of special effects.

3.3.4 Buffer Clearing

Before drawing a collection of objects, the various buffers making up the frame buffer
might have to be cleared. The relevant interface is listed here.

virtual void SetBackgroundColor (const ColorRGBA& rkColor);
const ColorRGBA& GetBackgroundColor () const;

virtual void ClearBackBuffer () = 0;
virtual void ClearZBuffer () = 0;
virtual void ClearStencilBuffer () = 0;
virtual void ClearBuffers () = 0;
virtual void DisplayBackBuffer () = 0;

virtual void ClearBackBuffer (int iXPos, int iYPos, int iWidth,
int iHeight) = 0;

virtual void ClearZBuffer (int iXPos, int iYPos, int iWidth,
int iHeight) = 0;

virtual void ClearStencilBuffer (int iXPos, int iYPos, int iWidth,
int iHeight) = 0;

virtual void ClearBuffers (int iXPos, int iYPos, int iWidth,
int iHeight) = 0;

Typically, all buffers are cleared. Double-buffered rendering amounts to ren-
dering the scene to a back buffer (a color buffer), followed by a swap to the front
buffer (the color buffer displayed on the screen). The swap occurs through a call to
DisplayBackBuffer. The functions named ClearBackBuffer clear the back buffer by
setting all its values to the current background color. You may set the background
color using SetBackgroundColor. The depth buffer is cleared by the functions named
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ClearZBuffer, and the stencil buffer is cleared by the functions ClearStencilBuffer.
All three buffers are cleared by the functions named ClearBuffers. The clear func-
tions in the first block are used to clear the entire buffer, but the clear functions in the
second block are used to clear a subrectangle of the buffer.

The typical order of operations is

clear all buffers;
render the scene;
display back buffer;

However, this is not required. For example, if you have a sky dome whose contents fill
the window, and then the scene objects are rendered after the sky dome is rendered,
there is no need to clear the back buffer. You might also have a level with pre-rendered
static geometry that produces both a color buffer and a depth buffer. The intent is that
these buffers are loaded from disk and written to the hardware via graphics API calls
each frame. Additional (dynamic) objects are then rendered. In this case, you would
not need to clear the back buffer or depth buffer.

Clearing of buffers and swapping the back buffer to the front buffer are all
platform- and API-specific operations, so the virtual functions are pure and derived
classes must implement them.

3.3.5 Object Drawing

The drawing of objects is supported by the following interface functions:

virtual bool BeginScene ();
virtual void EndScene ();
void DrawScene (VisibleSet& rkVisibleSet);
void Draw (Geometry* pkGeometry);
virtual void DrawElements () = 0;
void ApplyEffect (ShaderEffect* pkEffect, bool& rbPrimaryEffect);

The functions BeginScene and EndScene bound any block of code that contains draw-
ing calls. Some graphics APIs might require predraw setup and postdraw cleanup.
The main drawing routine in the sample applications is DrawScene. The input is the
set of potentially visible objects. This set is generated by the scene graph culling sys-
tem; see Section 4.5 for details. The function Draw is called indirectly by DrawScene
for each geometric primitive of the scene, but Draw is a public function that can be
used for drawing screen-space polygons; for example, GUI elements to be drawn on
top of a rendered scene. The function ApplyEffect is called only by Draw. The object
that is being drawn can have multiple special effects attached to it. The ApplyEffect
function is called for each effect. It is also called when lights are active. The function
DrawElements is implemented by each derived-class renderer. It is called once all the
resources are loaded and enabled for the geometric primitive.
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The functions Draw and ApplyEffect are discussed in greater detail in Section 3.4.
They hide a lot of the drawing subsystem, including loading and enabling resources,
constructing vertex and index buffers, validating shader programs, setting shader
constants, and setting up the texture samplers.

3.3.6 Text and 2D Drawing

Displaying text on top of a rendered scene is quite common. The renderer API has a
few basic functions to support this.

virtual int LoadFont (const char* acFace, int iSize, bool bBold,
bool bItalic) = 0;

virtual void UnloadFont (int iFontID) = 0;
virtual bool SelectFont (int iFontID) = 0;
virtual void Draw (int iX, int iY, const ColorRGBA& rkColor,

const char* acText) = 0;
virtual void Draw (const unsigned char* aucBuffer) = 0;

A minimal amount of font handling is provided. Classes WglRenderer and Dx9-
Renderer use Microsoft Windows API calls to select fonts. Class AglRenderer (Mac-
intosh) has only a default font; no support has been added yet to select other fonts.
Class GlxRenderer (Linux/Unix) uses bitmapped fonts. Interfacing with the window-
ing system is not the emphasis of this book.

The last function Draw allows you to write an already created color buffer to the
back buffer. I use this only to support 2D graphics applications. The renderers write
2D primitives to a memory buffer, which is then passed to Draw and swapped to the
front buffer. The samples contain a few 2D applications if you want to see the details.
The 2D system has only a minimum amount of support for drawing primitives
(points, line segments, circles, rectangles, text).

3.3.7 Miscellaneous

The functions listed next support miscellaneous operations of interest.

virtual void SetColorMask (bool bAllowRed, bool bAllowGreen,
bool bAllowBlue, bool bAllowAlpha);

virtual void GetColorMask (bool& rbAllowRed, bool& rbAllowGreen,
bool& rbAllowBlue, bool& rbAllowAlpha);

virtual void SetDepthRange (float fZMin, float fZMax) = 0;

virtual void EnableUserClipPlane (int i, const Plane3f& rkPlane) = 0;
virtual void DisableUserClipPlane (int i) = 0;
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virtual void SetPostWorldTransformation (const Matrix4f& rkMatrix);
virtual void RestorePostWorldTransformation ();

virtual void SetWorldTransformation ();
virtual void RestoreWorldTransformation ();

void SetProjector (Camera* pkProjector);
Camera* GetProjector ();

virtual const char* GetExtension () const = 0;
virtual char GetCommentCharacter () const = 0;

The functions SetColorMask and GetColorMask allow you to specify which color
channels are to be updated by the pixel shader; see Section 3.1.11 for details.

The function SetDepthRange allows you to modify the default depth range [0, 1]
to be something different. This is useful in some special effects; for example, the
PlanarReflections sample sets the depth range to be [1, 1] so that the depth buffer
values are set to the maximum depth when rendering the plane containing the mirror.
This allows other objects to be rendered correctly (in depth) when they are drawn on
top of (or in front of) the mirror.

The six frustum planes are used for clipping, but the user can specify additional
clipping planes. The functions EnableUserClipPlane and DisableUserClipPlane al-
low you to specify clipping planes. The input plane must be in model coordinates. It
is transformed internally to camera coordinates to support clipping in clip space. The
PlanarReflections sample also manipulates user-defined clip planes.

The model-to-clip transformation is a composition applied to a model-space
point,

XmodelHworldHviewHproj

Some special effects have a need to transform the world-space points before they are
further processed in view space or in clip space. This is accomplished by inserting an
addition transformation into the composition,

XmodelHworldHpostworldHviewHproj

The effect provides Hpostworld at the time it needs it. The functions SetPostWorld-
Transformation and RestorePostWorldTransformation are the hooks to allow you to
specify such a transformation. The PlanarReflections sample uses this mechanism
to insert a reflection matrix into the composition. The PlanarShadows sample uses
the mechanism to insert a projection matrix into the composition. This matrix is the
projection relative to the light source that generates the shadow.

The functions SetWorldTransformation and RestoreWorldTransformation are
used internally by Draw. These set the world matrix stored in Renderer. The derived
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classes also inform the graphics API about the new world matrix. The functions
SetProjector and GetProjector are used by special effects that need to inform the
renderer about a projector source, such as for projected textures, projected shadows,
and shadow maps.

The functions GetExtension and GetCommentCharacter are implemented by the
derived classes to provide information used for loading shader programs from disk
and parsing them. All shader programs have an extension of .wmsp (Wild Magic
Shader Program), but each graphics API has its own version of a program. The
OpenGL versions have the compound extension .ogl.wmsp. The GetExtension func-
tion for this renderer returns ogl. The Direct3D renderer function returns dx9 and the
software renderer returns sft. The programs are parsed to obtain information about
input variables, output variables, and shader constants, including which registers
have been assigned to them. This information occurs in comments in the program
files, each comment line starting with a specific character. This character is returned
by a call to GetCommentCharacter. The OpenGL renderer returns the character #. The
Direct3D and software renderers return the character /.

3.3.8 Resource Management

The majority of Renderer is designed and built for resource management. Minimally,
the derived-class renderers must specify the maximum number of various objects
supported by the graphics hardware. These numbers are accessible by the interface
functions

int GetMaxLights () const;
int GetMaxColors () const;
int GetMaxTCoords () const;
int GetMaxVShaderImages () const;
int GetMaxPShaderImages () const;
int GetMaxStencilIndices () const;
int GetMaxUserClipPlanes () const;

In the fixed-function pipeline, the number of lights was usually limited to eight.
However, shader programming allows you to have as many lights as you want. That
said, I implemented the renderers to limit the number of lights to eight, not that I
want to limit you to a fixed number, but I cannot imagine a situation where you need
so many dynamic lights affecting a single geometric primitive at one time.

The maximum number of colors is two for all the renderers. Vertex colors were
typically stored as a single array of RGBA colors, but the evolution of graphics hard-
ware led to APIs providing primary storage for diffuse colors and secondary storage
for specular colors. From a practical perspective, I view these as providing two sets
of vertex colors, so shader programs can be written to use the two sets. Processing
of colors by the graphics APIs has potential pitfalls to be aware of. For example, the



3.3 An Abstract Rendering API 183

Wild Magic colors are stored as ColorRGB or ColorRGBA, both having floating-point
channels with values in [0, 1]. The OpenGL and software renderers want vertex data
with color channels in [0, 1]. However, the Direct3D renderer wants the colors packed
into a 32-bit quantity, 8 bits per channel. You must watch out for side effects that the
graphics API generates when handling colors, such as internally clamping color val-
ues that are out of range. If you are using the vertex colors just for storage of noncolor
quantities, it might be better to use texture coordinates for storage instead.

The function GetMaxTCoords specifies how many sets of texture coordinates are
allowed in the vertex and pixel programs. The function GetMaxPShaderImages spec-
ifies how many texture image units a pixel program supports. Although you might
think these are the same, they need not be. For example, on an NVIDIA GeForce
6800 graphics card, the number of texture coordinate sets is eight but the number of
texture image units is 16. If you use nine or more images, you must share some of the
texture coordinate sets. The function GetMaxVShaderImages specifies how many tex-
ture image units a vertex program supports. Originally, vertex programs had no access
to texture samplers—now they do.

The function GetMaxStencilIndices tells you how many distinct stencil values
you can have. If you have an 8-bit stencil buffer, this number is 256. The function
GetMaxUserClipPlanes returns the number of user-defined clip planes that you may
enable. OpenGL reports six or more, but usually only six. This number is in addition
to the six frustum planes, so in most cases the OpenGL renderer allows 12 clipping
planes of which you can supply six.

Resource Loading and Releasing

Resources needed for rendering can exist in many places on a computer. The art
content for scenes resides on disk (hard disk, CD-ROM, DVD, and so on). It is
loaded into system memory, a relatively slow process. Eventually, some of this data
must be sent to the graphics hardware to reside in video memory (VRAM). On many
desktop computers, you have AGP memory. Transfers from AGP memory to VRAM
are faster than transfers from system memory to VRAM. Generally, static geometry
is cached in VRAM to avoid the bottleneck of constantly sending data across a bus to
the graphics hardware. Dynamic geometry that changes infrequently can be stored in
AGP memory; the idea is that you can modify the data as quickly as you can when it
is in system memory, but the transfer time from AGP memory to VRAM is shorter
than from system memory. The key to performance is to have your data in the right
form, in the right place, and at the right time when it is needed for rendering.

The resource management system of Renderer is designed to help you with this.
The relevant interface functions are

typedef void (Renderer::*ReleaseFunction)(Bindable*);
typedef void (Renderer::*ReleasePassFunction)(int,Bindable*);
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void LoadAllResources (Spatial* pkScene);
void ReleaseAllResources (Spatial* pkScene);
void LoadResources (Geometry* pkGeometry);
void ReleaseResources (Geometry* pkGeometry);
void LoadResources (ShaderEffect* pkEffect);
void ReleaseResources (ShaderEffect* pkEffect);
void LoadVProgram (VertexProgram* pkVProgram);
void ReleaseVProgram (Bindable* pkVProgram);
void LoadPProgram (PixelProgram* pkPProgram);
void ReleasePProgram (Bindable* pkPProgram);
void LoadTexture (Texture* pkTexture);
void ReleaseTexture (Bindable* pkTexture);
void LoadVBuffer (int iPass, const Attributes& rkIAttr,

VertexBuffer* pkVBuffer);
void ReleaseVBuffer (int iPass, Bindable* pkVBuffer);
void LoadIBuffer (IndexBuffer* pkIBuffer);
void ReleaseIBuffer (Bindable* pkIBuffer);

virtual void OnLoadVProgram (ResourceIdentifier*& rpkID,
VertexProgram* pkVProgram) = 0;

virtual void OnReleaseVProgram (ResourceIdentifier* pkID) = 0;
virtual void OnLoadPProgram (ResourceIdentifier*& rpkID,

PixelProgram* pkPProgram) = 0;
virtual void OnReleasePProgram (ResourceIdentifier* pkID) = 0;
virtual void OnLoadTexture (ResourceIdentifier*& rpkID,

Texture* pkTexture) = 0;
virtual void OnReleaseTexture (ResourceIdentifier* pkID) = 0;
virtual void OnLoadVBuffer (ResourceIdentifier*& rkpID,

const Attributes& rkIAttr, VertexBuffer* pkVBuffer) = 0;
virtual void OnReleaseVBuffer (ResourceIdentifier* pkID) = 0;
virtual void OnLoadIBuffer (ResourceIdentifier*& rpkID,

IndexBuffer* pkIBuffer) = 0;
virtual void OnReleaseIBuffer (ResourceIdentifier* pkID) = 0;

The important resources are vertex buffers, index buffers, vertex programs, pixel
programs, and textures. All of these are represented by classes shown here together
with their base classes:

VertexBuffer : Object, Bindable
IndexBuffer : Object, Bindable
VertexProgram : Program : Object, Bindable
PixelProgram : Program : Object, Bindable
Texture : Bindable
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The graphics APIs allow you to load a resource into VRAM for later use. Each API
provides you with a handle so that when you need the resource at a later time, you
just let the API know the handle. The form of the handle depends on the API. I have
hidden that by the class Bindable. This class also provides a two-way communication
channel between the renderer and the resource. If the resource is released by the ap-
plication, whether explicitly or because the resource is being destroyed, the renderer
must be informed that the resource is going away so that the renderer can free up any
internal data that was associated with the resource.

The Load* and Release* functions exist for each type of resource. The functions
associated with vertex buffers have an input called iPass. This refers to the index of
a pass within a multipass drawing operation. Each pass might have different vertex
attribute requirements, so the format of a vertex buffer potentially varies per pass.
This set of load and release functions is used internally by the Draw and ApplyEffect
functions.

The load and release functions for the resources are called automatically by the
drawing system; thus, a load occurs late in the drawing process. Once loaded, the
resource is never loaded again unless in the meantime you have released it. In an
application with a large amount of data to load, you most likely will see a slowdown
of the frame rate. This is undesirable, so the interface also has higher-level load and
release functions. These are designed to allow you to load and release at any time
you like. For example, you might preload an entire level of a game while the user
is watching a cut scene to keep him distracted. The interface allows you to load
the resources associated with a single effect (shader programs and textures), with a
geometry object (vertex and index buffers, resources associated with effects attached
to the object), and with an entire scene (resources associated with every geometry
object in the scene).

As an example of loading, consider the vertex program loader

void Renderer::LoadVProgram (VertexProgram* pkVProgram)
{

ResourceIdentifier* pkID = pkVProgram->GetIdentifier(this);
if (!pkID)
{

OnLoadVProgram(pkID,pkVProgram);
pkVProgram->OnLoad(this,&Renderer::ReleaseVProgram,pkID);

}
}

The first line of code involves a call to the Bindable function GetIdentifier. The
input is the renderer since a resource can be bound to multiple renderers. The return
value is a pointer to a resource identifier. The identifier is opaque—you should not
care what it is, only that the pointer is null or nonnull. If the vertex program had
been loaded earlier by the renderer, the returned pointer is nonnull and there is
no work to be done. On the first load, though, the return value is null. In this
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case, the vertex program must be loaded. Loading from disk to system memory is
independent of platform in Wild Magic, but loading from system memory to VRAM
(or AGP memory) is dependent on platform. Each derived class implements the
virtual function OnLoadVProgram to load from system memory to VRAM. The final
call is to the Bindable function OnLoad. The renderer (pointer) and identifier are
passed to the function, but so is a function pointer. This function is called whenever
the resource is about to be deleted, say, during a destructor call, to give the renderer
a chance to free any associated data with the resource.

My intent is not to focus on the details within the graphics APIs, but just to give
you an idea of how they compare, the implementations for OnLoadVProgram are listed
here (without some error-handling details). The OpenGL implementation is

void OpenGLRenderer::OnLoadVProgram (ResourceIdentifier*& rpkID,
VertexProgram* pkVProgram)

{
VProgramID* pkResource = WM4_NEW VProgramID;
rpkID = pkResource;
const char* acProgramText =

pkVProgram->GetProgramText().c_str();
int iProgramLength = (int)strlen(acProgramText);
glEnable(GL_VERTEX_PROGRAM_ARB);
glGenProgramsARB(1,&pkResource->ID);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB,pkResource->ID);
glProgramStringARB(GL_VERTEX_PROGRAM_ARB,

GL_PROGRAM_FORMAT_ASCII_ARB,iLength,acProgram);
glDisable(GL_VERTEX_PROGRAM_ARB);

}

The Direct3D implementation is

void Dx9Renderer::OnLoadVProgram (ResourceIdentifier*& rpkID,
VertexProgram* pkVProgram)

{
VProgramID* pkResource = WM4_NEW VProgramID;
rpkID = pkResource;
const char* acProgramText =

pkVProgram->GetProgramText().c_str();
int iProgramLength = (int)strlen(acProgramText);

LPD3DXBUFFER pkCompiledShader = 0;
LPD3DXBUFFER pkErrors = 0;
D3DXAssembleShader(acProgramText,iProgramLength,0,0,0,

&pkCompiledShader,&pkErrors);
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m_pqDevice->CreateVertexShader(
(DWORD*)(pkCompiledShader->GetBufferPointer()),
&pkResource->ID);

if (pkCompiledShader)
{

pkCompiledShader->Release();
}
if (pkErrors)
{

pkErrors->Release();
}

}

The software renderer implementation is

void SoftRenderer::OnLoadVProgram (ResourceIdentifier*& rpkID,
VertexProgram* pkVProgram)

{
VProgramID* pkResource = WM4_NEW VProgramID;
rpkID = pkResource;
pkResource->OAttr = pkVProgram->GetOutputAttributes();
stdext::hash_map<std::string,VProgram>::iterator pkIter =

ms_pkVPrograms->find(pkVProgram->GetName());
pkResource->ID = pkIter->second;

}

Releasing a resource is handled similarly.

void Renderer::ReleaseVProgram (Bindable* pkVProgram)
{

ResourceIdentifier* pkID = pkVProgram->GetIdentifier(this);
if (pkID)
{

OnReleaseVProgram(pkID);
pkVProgram->OnRelease(this);

}
}

If the return value from GetIdentifier is null, the resource is not currently loaded in
the graphics system, so there is nothing to release. If the return value is nonnull, the
resouce must be released, the mechanism dependent on platform. Each derived class
implements the virtual function OnReleaseVProgram. The final call is to the Bindable
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function OnRelease, which just deletes the binding between the resource and the
renderer.

The other load and release functions are similar except for the loading of vertex
buffers. That function is

void Renderer::LoadVBuffer (int iPass,
const Attributes& rkIAttr, VertexBuffer* pkVBuffer)

{
// Search for a compatible vertex buffer that was used
// during previous passes.
ResourceIdentifier* pkID;
for (int i = 0; i <= iPass; i++)
{

pkID = pkVBuffer->GetIdentifier(this,i);
if (pkID)
{

if (rkIAttr.IsSubsetOf(*(Attributes*)pkID))
{

// Found a compatible vertex buffer in video
// memory.
return;

}
}

}

// The vertex buffer is encountered the first time.
const Attributes& rkVBAttr = pkVBuffer->GetAttributes();
assert(rkIAttr.GetPChannels() == 3 &&

rkVBAttr.GetPChannels() == 3);
if (rkIAttr.HasNormal())
{

assert(rkIAttr.GetNChannels() == 3 &&
rkVBAttr.GetNChannels() == 3);

}

OnLoadVBuffer(pkID,rkIAttr,pkVBuffer);
pkVBuffer->OnLoad(this,iPass,&Renderer::ReleaseVBuffer,

pkID);
}

A multipass effect might require different vertex attributes per pass. In this case,
a single vertex buffer does not suffice. It is possible that two or more passes can
share a single vertex buffer, so the first part of the load function iterates over the
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bindings between the vertex buffer and the resources associated with the renderer.
If a compatible resource is found, that one is used as the internal vertex buffer.

Resource Enabling and Disabling

Once a resource is loaded, it needs to be enabled for use by the graphics system. The
enabling is done on each drawing pass. Once the object is drawn, the resources are
disabled. The relevant interface functions are

void EnableVProgram (VertexProgram* pkVProgram);
void DisableVProgram (VertexProgram* pkVProgram);
void EnablePProgram (PixelProgram* pkPProgram);
void DisablePProgram (PixelProgram* pkPProgram);
void EnableTexture (Texture* pkTexture);
void DisableTexture (Texture* pkTexture);
ResourceIdentifier* EnableVBuffer (int iPass,

const Attributes& rkIAttr);
void DisableVBuffer (int iPass, ResourceIdentifier* pkID);
void EnableIBuffer ();
void DisableIBuffer ();

virtual void OnEnableVProgram (ResourceIdentifier* pkID) = 0;
virtual void OnDisableVProgram (ResourceIdentifier* pkID) = 0;
virtual void OnEnablePProgram (ResourceIdentifier* pkID) = 0;
virtual void OnDisablePProgram (ResourceIdentifier* pkID) = 0;
virtual void OnEnableTexture (ResourceIdentifier* pkID) = 0;
virtual void OnDisableTexture (ResourceIdentifier* pkID) = 0;
virtual void OnEnableVBuffer (ResourceIdentifier* pkID) = 0;
virtual void OnDisableVBuffer (ResourceIdentifier* pkID) = 0;
virtual void OnEnableIBuffer (ResourceIdentifier* pkID) = 0;
virtual void OnDisableIBuffer (ResourceIdentifier* pkID) = 0;

The first block of functions consists of wrappers that load or release the resources.
For example, the function for enabling a texture has the simple form

void Renderer::EnableTexture (Texture* pkTexture)
{

LoadTexture(pkTexture);
ResourceIdentifier* pkID = pkTexture->GetIdentifier(this);
OnEnableTexture(pkID);

}

The On* virtual functions are implemented by the derived-class renderers. For exam-
ple, the function OnEnableTexture has the responsibility of informing the graphics



190 Chapter 3 Renderers

APIs about the texture state, such as filter mode, mipmap mode, wrap mode, border
color, and so on. The function OnDisableTexture does nothing in the OpenGL and
software renderers, but the Direct3D renderer disables the appropriate texture unit.

The enabling of shader programs involves an initial block of code, as shown for
textures. This block lets the graphics API know the text string representation of the
program. However, additional work must be performed to set the registers with the
actual shader constants. The interface support for this subsystem is quite extensive.

enum // ConstantType
{

CT_RENDERER,
CT_NUMERICAL,
CT_USER

};

virtual void SetVProgramConstant (int eCType,
int iBaseRegister, int iRegisterQuantity,
float* afData) = 0;

virtual void SetPProgramConstant (int eCType,
int iBaseRegister, int iRegisterQuantity,
float* afData) = 0;

enum { SC_QUANTITY = 38 };
typedef void (Renderer::*SetConstantFunction)(int,float*);
static SetConstantFunction ms_aoSCFunction[SC_QUANTITY];
void SetRendererConstant (RendererConstant::Type eRCType,

float* afData);

// The operations are
// 0 = matrix
// 1 = transpose of matrix
// 2 = inverse of matrix
// 3 = inverse transpose of matrix
void GetTransform (Matrix4f& rkMat, int iOperation,

float* afData);
void SetConstantWMatrix (int iOperation, float* afData);
void SetConstantVMatrix (int iOperation, float* afData);
void SetConstantPMatrix (int iOperation, float* afData);
void SetConstantWVMatrix (int iOperation, float* afData);
void SetConstantVPMatrix (int iOperation, float* afData);
void SetConstantWVPMatrix (int iOperation, float* afData);
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// These functions do not use the option parameter, but the
// parameter is included to allow for a class-static array
// of function pointers to handle all shader constants.
void SetConstantMaterialEmissive (int, float* afData);
void SetConstantMaterialAmbient (int, float* afData);
void SetConstantMaterialDiffuse (int, float* afData);
void SetConstantMaterialSpecular (int, float* afData);
void SetConstantFogColor (int, float* afData);
void SetConstantFogParameters (int, float* afData);
void SetConstantCameraModelPosition (int, float* afData);
void SetConstantCameraModelDirection (int, float* afData);
void SetConstantCameraModelUp (int, float* afData);
void SetConstantCameraModelRight (int, float* afData);
void SetConstantCameraWorldPosition (int, float* afData);
void SetConstantCameraWorldDirection (int, float* afData);
void SetConstantCameraWorldUp (int, float* afData);
void SetConstantCameraWorldRight (int, float* afData);
void SetConstantProjectorModelPosition (int, float* afData);
void SetConstantProjectorModelDirection (int, float* afData);
void SetConstantProjectorModelUp (int, float* afData);
void SetConstantProjectorModelRight (int, float* afData);
void SetConstantProjectorWorldPosition (int, float* afData);
void SetConstantProjectorWorldDirection (int, float* afData);
void SetConstantProjectorWorldUp (int, float* afData);
void SetConstantProjectorWorldRight (int, float* afData);
void SetConstantProjectorMatrix (int, float* afData);

// These functions set the light state. The index iLight is
// between 0 and 7 (eight lights are currently supported).
void SetConstantLightModelPosition (int iLight, float* afData);
void SetConstantLightModelDirection (int iLight, float* afData);
void SetConstantLightWorldPosition (int iLight, float* afData);
void SetConstantLightWorldDirection (int iLight, float* afData);
void SetConstantLightAmbient (int iLight, float* afData);
void SetConstantLightDiffuse (int iLight, float* afData);
void SetConstantLightSpecular (int iLight, float* afData);
void SetConstantLightSpotCutoff (int iLight, float* afData);
void SetConstantLightAttenuation (int iLight, float* afData);

Shader constants come in three flavors:

1. Renderer constants. These include matrix transformations such as the world, view,
and projection matrices. Any compositions are allowed, as well as transposes,
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inverses, and inverse transposes. These also include light and material parameters,
fog parameters, and camera and projector coordinate frame information. The 38
functions mentioned in the previous code block implement setting the registers
for these constants. The current values of the renderer constants are automatically
used.

2. Numerical constants. Direct3D requires you to set various numerical constants
used by the shader programs. OpenGL and the software renderer do not.

3. User-defined constants. When writing shader programs, you can have constants
that you will modify within your own application code. These tend to be related
to the physical model of what you are trying to draw. For example, a refraction
effect requires you to specify an index of refraction. This will be a shader constant
that is used to generate the correct visual effect.

The vertex program enabler is

void Renderer::EnableVProgram (VertexProgram* pkVProgram)
{

LoadVProgram(pkVProgram);
ResourceIdentifier* pkID = pkVProgram->GetIdentifier(this);
OnEnableVProgram(pkID);

// Process the renderer constants.
int i;
for (i = 0; i < pkVProgram->GetRCQuantity(); i++)
{

RendererConstant* pkRC = pkVProgram->GetRC(i);
SetRendererConstant(pkRC->GetType(),pkRC->GetData());
SetVProgramConstant(CT_RENDERER,pkRC->GetBaseRegister(),

pkRC->GetRegisterQuantity(),pkRC->GetData());
}

// Process the numerical constants.
for (i = 0; i < pkVProgram->GetNCQuantity(); i++)
{

NumericalConstant* pkNC = pkVProgram->GetNC(i);
SetVProgramConstant(CT_NUMERICAL,pkNC->GetRegister(),1,

pkNC->GetData());
}

// Process the user-defined constants.
for (i = 0; i < pkVProgram->GetUCQuantity(); i++)
{

UserConstant* pkUC = pkVProgram->GetUC(i);
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SetVProgramConstant(CT_USER,pkUC->GetBaseRegister(),
pkUC->GetRegisterQuantity(),pkUC->GetData());

}
}

The program is loaded to VRAM (if not already there) and enabled for use. The
remainder of the code loops over three arrays of constants, making calls to SetVPro-
gramConstant. This function is pure virtual, so each derived class implements it. Each
graphics API has functions that are called to actually set the registers associated with
the constants.

The first loop sets the renderer constants and has more work to do than the other
loops. It is necessary to determine which renderer constant needs to be set. When
the vertex program is loaded from disk, it is parsed to obtain information about the
renderer constants, including what type they are. The class that stores information
about the constants to be used by the parser is RendererConstant. The interface is
large but contains mainly enumerations for the various types (e.g., matrix, camera
parameter, light parameter). The class also stores strings that name the renderer
constants. These strings are used by the parser. As it turns out, naming conventions
are necessary for renderer constants when writing Cg or HLSL shader programs. The
static array

std::string RendererConstant::ms_kStringMap[];

stores the strings. If your shader program requires as input the matrix that maps
model-space points to clip space, the corresponding shader constant must be named
WVPMatrix. When the parser encounters this name, it will find a corresponding entry
in ms_kStringMap and assign the associated enumeration to the RendererConstant
object. This enumeration is passed to the Renderer function SetRendererConstant
via pkRC->GetType(), and the matching Renderer::SetConstant* function is looked
up and called.

Catalogs

When resources are loaded from disk to system memory to satisfy the needs of an
object, it is possible that other objects share these resources. When one of these
objects is encountered, it is an inefficient use of time to load the resource again. It is
also an inefficient use of memory because you would have two copies of the resource
in memory, which means you are not really sharing it.

To support sharing, the engine provides various catalogs of resources. The man-
aged resources are vertex programs, pixel programs, and images. The related classes
are VertexProgramCatalog, PixelProgramCatalog, and ImageCatalog, respectively.

All catalogs provide the ability to insert and remove items. Although you may
do so explicitly, the engine will automatically handle the catalog management. For
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example, if you create an Image object, you are required to provide a name for it. The
Image object is automatically inserted into the image catalog. When the Image object
is destroyed, the catalog is updated accordingly. Shader programs are handled in the
same manner.

When a resource must be loaded from system memory to VRAM (or AGP mem-
ory), the catalog is searched first. If the resource is found in the catalog, it exists in
system memory and is loaded to VRAM. If the resource is not found, an attempt is
made to load it from disk to system memory. If this is successful, then the resource is
loaded from system memory to VRAM. If the resource is not found on disk, a default
resource is used. In the case of images, the default is an awful magenta color, some-
thing that hopefully will catch your attention during development and testing. The
default vertex program only transforms the model-space position to clip space. The
default pixel program creates a magenta color.

The idea of this system is to have a memory hierarchy. The levels are disk, system
memory, and video memory. AGP memory is used at the discretion of the graphics
drivers, so you tend not to have control over this level. For drawing purposes, if a
resource is already in video memory, the renderer is good to go. If it is not in video
memory but in system memory, a load to video memory must occur first. If it is not in
system memory but on disk, a load from disk to system memory occurs, followed by
a load from system memory to video memory. Finally, if it is not on disk, a default is
used. Hopefully, this only occurs during development—a bug in your application that
needs to be fixed before shipping the final product. The load and release functions
described previously allow you to guarantee that resources are in video memory when
needed, but you can also rely on loading to occur automatically on demand.

You can have multiple catalogs for each type of resource, but only one of these
catalogs may be active at a single time. Each catalog class has a static data member that
stores a pointer to the active catalog. This was a design choice just to get some type
of catalog system working. It is possible to enhance the design by searching multiple
catalogs rather than just the active one.

3.4 The Heart of the Renderer

The driving force behind the design of the rendering system is the need for a general-
purpose and powerful drawing function for a geometric primitive. This function is
Renderer::Draw(Geometry*). It must support the following:

Allow primitives with any topology such as points, polylines, triangle meshes.

Allow for a primitive to override any currently active global render state.

Set up the transformations in the geometric pipeline regardless of whether a
perspective or orthographic projection is used.

Support dynamic lighting when lights are present in the scene. These lights are in
addition to any specifically used within a user-written shader program.
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Allow the geomtric primitive to have one or more special effects. Each effect can
implement a single-pass drawing operation or a multipass drawing operation.

Achieving these goals is the heart of the rendering system.
In version 3 and earlier of Wild Magic, geometric primitives were required to have

a single effect attached to them, each effect implementing a single-pass drawing oper-
ation. Adding a multipass effect to the engine required you to create an Effect object
and add a new pure virtual function to Renderer for that effect. Each derived-class
renderer had to implement this virtual function. Examples that shipped with the en-
gine included bump-mapping, spherical environment mapping, projected shadows,
and planar reflections. The problem with this approach is that it is quite cumber-
some to add multipass effects to the engine; that is, the engine is not easily extensible
when it comes to adding new effects to it. Moreover, the rendering system can change
frequently. It is desirable to have a core rendering system that supports multipass op-
erations and multiple effects per primitive without having to modify the renderers.

Wild Magic version 4 implements such a rendering system. Prior to version 4, an
Effect-derived class stored the function pointer to the Renderer function whose job it
was to draw the geometric primitive with that effect. The roles are reversed now. If an
Effect-derived class has special needs for multipass drawing, it implements a Draw
function that is called by the renderer. This drawing function is called by the core
rendering system and it calls Renderer functions as needed. This section provides a
detailed description of the system from a top-down approach, which motivates why
you would want each of the subsystems you encounter along the way.

3.4.1 Drawing a Scene

The top-level data structure for organizing objects to be drawn is a scene graph. For
the purposes of this section, just think of the scene graph as a tree of nodes, where
the leaf nodes represent the geometric primitives and the interior nodes represent a
grouping of primitives based on spatial proximity. More details about scene graphs
are found in Chapter 4. During program execution, scene graphs are passed to the
culling system to produce potentially visible sets of objects. Each set is passed to the
renderer for drawing. The top-level function for drawing is

void Renderer::DrawScene (VisibleSet& rkVisibleSet);

At its simplest level, the potentially visible set is a collection of geometric primitives
whose order is determined by the depth-first traversal of the scene by the culler.
DrawScene iterates over this set, calling Renderer::Draw(Geometry*) for each object.

Sophisticated effects, though, require a more complex system than just iterating
over the geometric primitives. For example, projected planar shadows have the con-
cept of a shadow caster (e.g., a biped character) and a plane to receive the shadow.
Multiple passes must be made over the relevant portions of the scene. The shadow
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Figure 3.7 A scene graph with nine geometric primitives (leaf nodes) labeled A through I . Three
interior nodes have global effects labeled X, Y , and Z. Primitives A through H are
influenced by effect X. Primitives B, C, and D are influenced by effect Y . Primitives
G and H are influenced by effect Z. Primitive I is not influenced by a global effect.

is generated from the perspective of a light projector, but the shadow caster must be
drawn from the perspective of the camera. An effect that is assigned (attached) to a
geometric primitive, which is represented as a leaf node of a scene, is thought of as a
local effect . An effect such as projected shadows is assigned (attached) to a grouped
set of primitives, which is represented as a subtree of a scene. The root node of the
subtree is what the effect is attached to. Thus, the subtree is in the scope of the effect.
This type of effect is thought of as a global effect .

The culler essentially flattens a scene graph into a list of objects to draw. When
one or more global effects are present, the list must contain additional information
to help control how the renderer draws the objects in the list. Figure 3.7 shows a scene
graph with multiple global effects. The ensuing discussion explains how the global
effects are stored in the list.

The potentially visible set computed by the culler is listed next as an array. A
subscript of 0 on a global effect indicates the start of the scope of the effect. A
subscript of 1 indicates the end of the scope. For example, objects B, C, and D are
between Y0 and Y1, so they are influenced by the global effect Y . They are also between
X0 and X1, so they are influenced as well by the global effect X. The set elements Xi,
Yi, and Zi are sentinels, not drawable objects. The sentinels are used by the renderer
to control the rendering of drawable objects.
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object X0 A Y0 B C D Y1 E F Z0 G H Z1 X1 I

DrawScene implements the traversal of the potentially visible set and passes sub-
sets of objects to the Draw functions of the global effects. The incremental steps are
listed using pseudocode.

globalEffectStack = {};
startIndexStack = {};
globalEffectStack = {X}; // found X0, push
startIndexStack = {1}; // push first index scope X
finalIndex = 1; // last index scope X
globalEffectStack = {Y,X}; // found Y0, push
startIndexStack = {3,1}; // push first index scope Y
finalIndex = 3; // last index scope Y
finalIndex = 4; // last index scope Y
finalIndex = 5; // last index scope Y
globalEffectStack = {X}; // found Y1, pop
startIndex = 3; // pop startIndexStack
startIndexStack = {1}; // ...
Y.Draw(startIndex,finalIndex); // draw objects 3 to 5
finalIndex = 7; // last index scope X
finalIndex = 8; // last index scope X
globalEffectStack = {Z,X}; // found Z0, push
startIndexStack = {10,1}; // push first index scope Z
finalIndex = 11; // last index scope Z
globalEffectStack = {X}; // found Z1, pop
startIndex = 10; // pop startIndexStack
startIndexStack = {1}; // ...
Z.Draw(startIndex,finalIndex); // draw objects 10 and 11
globalEffectStack = {}; // found X1, pop
startIndex = 1; // pop startIndexStack
startIndexStack = {}; // ...
X.Draw(startIndex,finalIndex); // draw objects 1 to 11
finalIndex = 14; // no global scope
Draw(finalIndex); // draw object 14 (local)

Exercise
3.8

Without looking at the Renderer source code, write pseudocode for the general
process of handling global effects in a scene graph.
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3.4.2 Drawing a Geometric Primitive

The Renderer::Draw(Geometry*) function is listed next. I will explain it a piece at a
time.

void Renderer::Draw (Geometry* pkGeometry)
{

m_pkGeometry = pkGeometry;

SetGlobalState(m_pkGeometry->States);
SetWorldTransformation();

EnableIBuffer();

bool bPrimaryEffect = true;
if (m_pkGeometry->LEffect)
{

ApplyEffect(m_pkGeometry->LEffect,bPrimaryEffect);
}

const int iEffectQuantity = m_pkGeometry->GetEffectQuantity();
for (int iEffect = 0; iEffect < iEffectQuantity; iEffect++)
{

ShaderEffect* pkEffect =
DynamicCast<ShaderEffect>(m_pkGeometry->GetEffect(iEffect));

ApplyEffect(pkEffect,bPrimaryEffect);
}

DisableIBuffer();

RestoreWorldTransformation();
RestoreGlobalState(m_pkGeometry->States);

m_pkGeometry = 0;
}

A member pointer, m_pkGeometry, is used to temporarily reference the geometric
primitive that is being drawn. This is simply for convenience. The functions that set
the matrix renderer constants need to access the transformations associated with the
primitive. The enabling of vertex buffers also needs to access the primitive to get its
vertex buffer.

The renderer maintains a set of the active global states (alpha blending, depth
buffering, materials, and so on). The geometric primitive might have a need to over-
ride some of these. The call to SetGlobalStates allows the override. The call to
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RestoreGlobalState restores the global state that was active before the drawing call
was initiated.

The geometric primitive stores its model-space to world-space transformation.
SetWorldTransformation passes this information to the graphics APIs so they may set
their internal matrices. RestoreWorldTransformation restores the internal matrices to
their values before the drawing call.

The topology of the geometric primitive (i.e., the index array) does not change
during a drawing call and is independent of the number of drawing passes. The index
buffer for the geometric primitive is loaded (if necessary) and enabled in the graphics
APIs via the call to EnableIBuffer. After drawing, the index buffer is disabled by the
call to DisableIBuffer.

If the geometric primitive is affected by lights in the scene, independent of the
shader effects attached to the primitive, the lighting is applied first to the primitive.
The data member LEffect is nonnull when dynamic lighting is needed. That effect
is applied to the primitive via the call to ApplyEffect. When multiple effects must
be applied to a primitive, the first effect is invariably applied so that the color buffer
values are replaced by the effect colors. However, the effects occurring after the first
one must be blended into the color buffer. The only way for an effect to know this is
to pass it a Boolean flag, bPrimaryEffect, letting it know whether or not it is the first
effect (primary effect).

The special effects directly attached to the geometric primitive are applied one
at a time. These are necessarily ShaderEffect objects, which themselves directly use
shader programs. Global effects are derived from the base class Effect. Each effect is
applied to the primitive via the call to ApplyEffect. The Boolean flag bPrimaryEffect
lets each effect know whether or not it is the first effect to be drawn.

3.4.3 Applying an Effect

The Renderer:ApplyEffect encapsulates most of the resource management that was
described earlier in this chapter. The source code follows. I will explain it a piece at a
time.

void Renderer::ApplyEffect (ShaderEffect* pkEffect,
bool& rbPrimaryEffect)

{
const int iPassQuantity = pkEffect->GetPassQuantity();
for (int iPass = 0; iPass < iPassQuantity; iPass++)
{

pkEffect->LoadPrograms(iPass,m_iMaxColors,
m_iMaxTCoords,m_iMaxVShaderImages,
m_iMaxPShaderImages);

pkEffect->SetGlobalState(iPass,this,rbPrimaryEffect);
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VertexProgram* pkVProgram =
pkEffect->GetVProgram(iPass);

EnableVProgram(pkVProgram);

PixelProgram* pkPProgram =
pkEffect->GetPProgram(iPass);

EnablePProgram(pkPProgram);

const int iPTQuantity =
pkEffect->GetPTextureQuantity(iPass);

int iTexture;
for (iTexture = 0; iTexture < iPTQuantity; iTexture++)
{

EnableTexture(
pkEffect->GetPTexture(iPass,iTexture));

}

const Attributes& rkIAttr =
pkVProgram->GetInputAttributes();

ResourceIdentifier* pkID = EnableVBuffer(iPass,rkIAttr);

DrawElements();

DisableVBuffer(iPass,pkID);

for (iTexture = 0; iTexture < iPTQuantity; iTexture++)
{

DisableTexture(
pkEffect->GetPTexture(iPass,iTexture));

}

DisablePProgram(pkPProgram);

DisableVProgram(pkVProgram);

pkEffect->RestoreGlobalState(iPass,this,
rbPrimaryEffect);

}

rbPrimaryEffect = false;
}

The function is designed to support multipass operations. The number of passes
is read into iPassQuantity, which is 1 for a single-pass effect. Let’s take a look at what
happens for each pass.
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The first statement in the loop has the effect of loading its shader programs for
the specified pass. The programs must be loaded first because (1) the vertex buffer
for the pass is enabled based on the program inputs and (2) the global-state setting
that occurs in the second statement might need to access the samplers related to the
program. The resource limits are passed to the LoadPrograms function because it is
written to be independent of renderer type and platform. The shader programs about
to be loaded might require more resources than the active renderer can provide. In
this case, some action is required on the effect’s part to deal with the problem. My
choice for now is just to use the default shader programs. A commercial engine should
provide some fallback mechanism to shaders that produce similar results, probably
of lesser quality, but ones that can be obtained with the renderer’s limited resources.

After the programs are loaded, the effect is given a chance to set global render
state. The most common operation is to set alpha blending functions, especially when
the effect is not the primary one. Notice that the Boolean flag bPrimaryEffect is
passed to the effect’s SetGlobalState function so that it can decide whether or not it
needs to enable alpha blending. The global state must be set before enabling programs
because the programs set sampler state for samplers about to be enabled.

Next, the vertex and pixel programs are enabled (and loaded to VRAM the first
time if necessary). Any textures associated with the effect are enabled. These can
be specific to each pass. Similarly, the vertex buffer associated with the geometric
primitive for this specific pass is enabled.

Once all the resources are loaded and enabled, we are ready to tell the graphics
APIs to draw the geometric primitive. This occurs in the DrawElements call. The
OpenGL and Direct3D implementations for DrawElements are very short, but they
hide a lot of details. These details were discussed in terms of software rendering in
Section 3.1.

After drawing, all the resources are disabled, global state is restored to its previous
state, and the effect processing is complete.

3.4.4 Loading and Parsing Shader Programs

The entry point to loading and parsing shader programs for an effect is the function
ShaderEffect::LoadPrograms that is called in the Renderer::ApplyEffect function.
The first part of the source code is

void ShaderEffect::LoadPrograms (int iPass, int iMaxColors,
int iMaxTCoords, int iMaxVShaderImages,
int iMaxPShaderImages)

{
Program* pkVProgram = m_kVShader[iPass]->GetProgram();
Program* pkPProgram = m_kPShader[iPass]->GetProgram();
assert((pkVProgram != 0) == (pkPProgram != 0));
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if (pkVProgram)
{

// The programs have already been loaded.
return;

}

VertexProgramPtr spkVProgram =
VertexProgramCatalog::GetActive()->Find(
m_kVShader[iPass]->GetShaderName());

PixelProgramPtr spkPProgram =
PixelProgramCatalog::GetActive()->Find(
m_kPShader[iPass]->GetShaderName());

<remainder of implementation>
}

The function checks to see if the shader programs have already been loaded. In
the common case they should be, since loading should occur only once, because of
either the first attempt to draw or an explicit resource load forced by the application
code.

When the programs have not been loaded, the function checks the catalogs for
the vertex and pixel programs. For example, the Find function for vertex programs is

VertexProgram* VertexProgramCatalog::Find (
const std::string& rkProgramName)

{
if (rkProgramName == ms_kNullString
|| rkProgramName == ms_kDefaultString)
{

return StaticCast<VertexProgram>(
m_spkDefaultVProgram);

}

// Attempt to find the program in the catalog.
stdext::hash_map<std::string,VertexProgram*>::iterator

pkIter = m_kEntry.find(rkProgramName);
if (pkIter != m_kEntry.end())
{

// The program exists in the catalog, so return it.
return pkIter->second;

}

// Attempt to load the program from disk.
assert(m_cCommentChar);
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VertexProgram* pkProgram = VertexProgram::Load(
rkProgramName,m_kRendererType,m_cCommentChar);

if (pkProgram)
{

// The program exists on disk. Insert it into the
// catalog.
m_kEntry.insert(

std::make_pair(rkProgramName,pkProgram));
return pkProgram;

}

// The program does not exist. Use the default program.
return StaticCast<VertexProgram>(m_spkDefaultVProgram);

}

The catalog maintains a hash map of pairs of string names and vertex programs in
order to guarantee fast lookups. As the comments indicate, if the string name specifies
a program already in the map, that program had been loaded earlier and the pointer
to it is returned by the Find function. If it does not exist in the map, it must be loaded
from disk. An attempt is made to load it. If it is loaded from disk, the program is
inserted into the hash map so it may be shared later by other effects. If it cannot be
found on disk, the default vertex program is returned.

The catalogs are designed to allow any type renderer to be used so that they
may store programs for OpenGL, Direct3D, or the software renderer. The platform-
specific information is stored in the data members m_kRendererType, which is one
of ogl, dx9, or sft. The data member m_cCommentChar is either # for OpenGL or /
for Direct3D and the software renderer. The application layer provides default cata-
logs so that you do not have to know the catalog system even exists. The catalogs are
created premain, but the renderer has not yet been created. Assignment of the catalog
data members is deferred until the renderer is created in the function WindowApplica-
tion::OnInitialize. The catalog classes provide the function SetInformation to sup-
port the deferred assignment. The inputs to this function are obtained via calls to Ren-
derer::GetExtension for m_kRendererType and to Renderer::GetCommentCharacter
for m_cCommentChar.

The function source code for the vertex program load is

VertexProgram* VertexProgram::Load (
const std::string& rkProgramName,
const std::string& rkRendererType,
char cCommentPrefix)

{
std::string kFilename = std::string("v_") +

rkProgramName + std::string(".") + rkRendererType +
std::string(".wmsp");
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VertexProgram* pkProgram = WM4_NEW VertexProgram;
bool bLoaded = Program::Load(kFilename,cCommentPrefix,

pkProgram);
if (!bLoaded)
{

WM4_DELETE pkProgram;
return 0;

}

pkProgram->SetName(rkProgramName.c_str());
VertexProgramCatalog::GetActive()->Insert(pkProgram);
return pkProgram;

}

The first line of code creates the full name for the disk file that stores the vertex
program. All such programs have the prefix v_. The pixel programs have the prefix
p_. If you create your own shader programs, you need to follow this convention for
file names.

A vertex program is created using the default constructor.2 The static member
function Program::Load fills in the data members of the vertex program by actually
loading the file and parsing it. Assuming a successful load, the vertex program is
inserted into the catalog for access by other effects sharing that program, and the
vertex program is returned to the calling function.

That brings us to the workhorse of the loading system, the function Program::
Load. The class Program is designed solely to support loading a shader program from
disk and parsing it to identify its inputs, outputs, shader constants and associated
registers, and texture samplers. The public interface for the class is

class Program : public Object, public Bindable
{

// Abstract base class.
virtual ~Program ();

// Member read-only access.
const std::string& GetProgramText () const;
const Attributes& GetInputAttributes () const;
const Attributes& GetOutputAttributes () const;

2. If you look at the source code for VertexProgram and Program, you will notice that the default constructors
are protected. From an application’s perspective, the only way to create a shader program is by loading
from disk. Eventually, I will add the subsystem for procedurally generated shader programs and for shader
stitching.
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// Access to renderer constants.
int GetRCQuantity () const;
RendererConstant* GetRC (int i);
RendererConstant* GetRC (RendererConstant::Type eType);

// Access to numerical constants.
int GetNCQuantity () const;
NumericalConstant* GetNC (int i);

// Access to user constants.
int GetUCQuantity () const;
UserConstant* GetUC (int i);
UserConstant* GetUC (const std::string& rkName);

// Access to samplers.
int GetSIQuantity () const;
SamplerInformation* GetSI (int i);
SamplerInformation* GetSI (const std::string& rkName);

}

The class is abstract, but designed to support only two derived classes: Vertex-
Program and PixelProgram. Once the protected Load function is called and the pars-
ing successful, you have access to the program text string, the input attributes, and
the output attributes. As mentioned previously, there are three types of shader con-
stants: renderer constants, numerical constants (Direct3D only), and user-defined
constants. These are all accessible through the public interface. Finally, you can access
the number of samplers required by the program (possibly none) and the informa-
tion for each sampler.

The parsing code in Program::Load is quite lengthy, so I will not go into details
here. I wrote the code manually, inferring the grammar rules for the assembly text
files by inspection. The parser is not complete. Currently, it does not support shader
programs whose inputs are arrays. The manual creation of a parser for shader pro-
grams is probably not the best approach in a production environment. Better to use
tools such as Lex, Yacc, Flex, and Bison (e.g., http://dinosaur.compilertools.net) to au-
tomatically generate the parser code from a grammar. That way you can focus on
maintaining the grammar rules as shader programs evolve or to support many types
of shader programs instead of just Cg or HLSL.

Exercise
3.9

Modify the parsing code to support shader program inputs that are arrays of values.
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Attributes

When you look at sample shader programs, regardless of which language they are
written in, you see that you must pass in various quantities such as positions, nor-
mals, colors, and texture coordinates. Wild Magic encapsulates the concept of at-
tributes in a class called, well, Attributes. This turns out to be a very convenient
class. It is used to store input and output attributes for shader programs, but it is
also used for specifying the structure of a vertex buffer that is attached to a geometric
primitive. The class also allows for comparing two sets of attributes to see if they are
equal or at least compatible (in the sense of subset inclusion).

The Attributes class allows you to set the number of channels for positions,
normals, colors, and texture coordinates. Currently, you may have positions and
normals with three or four channels. The three-channel values are the usual 3D
quantities you have in your models, (x , y , z). The four-channel values are to support
homogeneous points and vectors, (x , y , z, w). These are set via

// 3 or 4 channels, (xyz,xyzw)
void Attributes::SetPChannels (int iPChannels);
void Attributes::SetNChannels (int iNChannels);

You are allowed an arbitrary number of color attributes, even though the shader
programs currently support up to two colors. You specify each unit and the number
of channels the unit supports, which is one through four.

// 1 to 4 channels, (r,rg,rgb,rgba)
void Attributes::SetCChannels (int iUnit, int iCChannels);

Similarly, you are allowed an arbitrary number of texture coordinate attributes. You
specify each unit and the number of channels the unit supports, which is one through
four.

// 1 to 4 channels, (s,st,str,strq)
void Attributes::SetTChannels (int iUnit, int iTChannels);

The attributes are organized internally to have the ordering

position, normal, color[0], color[1],..., tcoord[0], tcoord[1],...

The organization occurs automatically, so you need not worry about calling the
Attributes functions in any particular order.
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Renderer Constants

The renderer constants were discussed previously. The class RendererConstant has
a set of enumerations that name the renderer constants that a shader program will
use. The class also has a corresponding set of string names for these constants. The
parser in Program::Load compares the names of shader constants found in the shader
program file to the string names of RendererConstant. When it finds a match, the
constant is added to an array of RendererConstant objects in the Program object. In
addition to storing the value of the constant, the parser also discovers which register
(or registers) has been assigned to the constant and stores that information. The
shader constants and registers are accessed by the renderers when enabling a shader
program and setting the registers it needs with the constant values.

Numerical Constants

The class NumericalConstant represents a numerical value that is needed in a shader
program. Only the Direct3D renderer requires you to specify explicitly the numer-
ical constants. OpenGL and the software renderer automatically process numerical
constants. The parser in Program::Load creates NumericalConstant objects, even for
OpenGL and the software renderer, and stores them in an array that the Program
object manages. The stored information includes both the constant values and the
registers assigned to them. The numerical constants are accessed by the renderers
when enabling a shader program.

User-Defined Constants

The class UserConstant represents a user-defined constant that is needed in a shader
program. Renderer constants and numerical constants are automatically assigned to
registers when a shader program is enabled; the application code has no responsibility
to make this happen. However, user-defined constants are quantities that the appli-
cation wants to modify as needed. Thus, the UserConstant class has a richer interface
than RendererConstant or NumericalConstant to allow communication between the
application and the internal storage of the user-defined constants.

The constructor for the user-defined constant requires you to supply a string
name for the constant. The string name allows an application program to query a
shader program to obtain a handle to the user-defined constant. The application may
then modify that constant as needed. The question, though, is, Where is the constant
stored?

The Shader class provides storage for the user-defined constants. This is a natural
thing to do for the following reasons. A Program object may be shared by multiple
shaders. What needs to be shared is the program text string , which is the assembly
source code for the program. Just like a C function or a C++ function, the shader
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function is “called” by the graphics system for the currently active geometric primi-
tive. The inputs to the function depend on the geometric primitive. Moreover, those
inputs include shader constants that can vary per call to the shader program. The
Program function cannot store the constants—they must be passed to the program by
a client of that program, in our case a Shader object.

Multiple instances of a Shader class may be created by the application and at-
tached to different geometric primitives. The instances share the Program object, but
each instance can have its own set of user-defined constants. Thus, the Shader class
stores the Program object and an array of floating-point values for storage associ-
ated with the user-defined constants. The class also stores arrays of Texture objects
and associated Image objects. The reason for this is the same as that for user-defined
constants. A shader program that has texture sampler inputs will use whatever tex-
tures and images are currently enabled. The textures and images vary per object, even
though the shader program does not.

Sampler Information

The texture samplers in a shader program have various information that needs to
be identified by the parser in Program::Load. First, each sampler in a program has a
name associated with it so you can use the sampler within the program. Second, it
is necessary to know what type of sampler is required. The types include samplers
for 1D, 2D, and 3D textures. A couple of types support some common effects. A
cube sampler supports cube environment maps. Essentially, this is a collection of six
2D samplers to handle the six faces of the cube map. A projector sampler supports
projected textures and shadow maps. Essentially, this is a 2D sampler, but the tex-
ture coordinates are in homogeneous points. Third, the compiled shader program
includes the texture/sampler unit that will do the actual sampling when the program
is called. The unit number must be remembered so that the graphics engine can set
up the unit accordingly when the textures are enabled during a drawing call.

The class that stores all this information is SamplerInformation. The Program class
maintains an array of these objects that are associated with the program itself.

Associating Data with the Program

Once Program::Load has loaded and parsed the program, the Program object has the
following:

A program text string containing the assembly instructions to be executed by the
graphics system.

A set of inputs stored as an Attributes object.

A set of outputs stored as an Attributes object.



3.4 The Heart of the Renderer 209

An array of RendererConstant objects, which always has at least one element—
a transformation that maps the input positions to clip space since the rasterizer
needs this information. Each object has a type identifier, data storage, and the
registers to be loaded with the data.

An array of NumericalConstant objects, which the Direct3D renderer needs (but
which OpenGL and the software renderer handle automatically).

An array of UserConstant objects. Each object has a name for ease of access by an
application, a pointer to the storage location for the data, and the registers to be
loaded with the data.

An array of SamplerInformation objects. Each object has a name for the sampler,
the type of the sampler, and the texture unit number that refers to the actual unit
that will do the sampling.

Each Program object is managed by a Shader object; specifically, a VertexProgram
object is managed by a VertexShader object and a PixelProgram object is managed by
a PixelShader object. The Shader object has the following:

A string name (mainly for lookup in the program catalogs).

A Program object.

Storage for user-defined constants that the program uses.

An array of image names. The images themselves are actually stored in an image
catalog. The names are used to look up the images in the catalog.

An array of Texture objects. These are the textures associated with the samplers
of the program.

A ShaderEffect object manages arrays of VertexShader and PixelShader objects.
Each pair of vertex and pixel shaders corresponds to a drawing pass. The ShaderEf-
fect object also manages an array of AlphaState objects, each specifying how a pass
is blended into the rendered results of previous passes.

The question now is, How do the user-defined shader constants, the textures,
and the images become associated with the shader program? This brings us full circle
to where we began—loading a shader effect during a drawing operation. Let’s sum-
marize what we have so far. A geometric primitive is to be drawn. The global state,
transformations, and index buffer have been set up. Now we apply a ShaderEffect
to the primitive via the function ApplyEffect. For each pass, the following steps are
taken.

The ShaderEffect object has a VertexShader object and a PixelShader object. The
VertexShader object has a VertexProgram object, and the PixelShader object has
a PixelProgram object. An attempt is made to load the programs via the function
ShaderEffect::Load.
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The load function fetches the programs from the program catalogs, which either
already have them stored in memory or must load them from disk.

When the programs are loaded from disk, they are parsed to identify the input
and output attributes, the renderer constants, the numerical constants, the user-
defined constants, and the texture samplers.

Then we associate actual attributes, constants, textures, and images with the pro-
grams. And finally, the last part of ShaderEffect::Load is

void ShaderEffect::LoadPrograms (int iPass, int iMaxColors,
int iMaxTCoords, int iMaxVShaderImages,
int iMaxPShaderImages)

{
<first portion of implementation>

m_kVShader[iPass]->OnLoadProgram(spkVProgram);
m_kPShader[iPass]->OnLoadProgram(spkPProgram);
OnLoadPrograms(iPass,spkVProgram,spkPProgram);

}

After the programs are loaded, each is given a chance to perform postload op-
erations via the OnLoadProgram function. This function associates the data with the
program. The source code is

void Shader::OnLoadProgram (Program* pkProgram)
{

assert(!m_spkProgram && pkProgram);
m_spkProgram = pkProgram;

// The data sources must be set for the user constants.
// Determine how many float channels are needed for the
// storage.
int iUCQuantity = m_spkProgram->GetUCQuantity();
int i, iChannels;
UserConstant* pkUC;
for (i = 0, iChannels = 0; i < iUCQuantity; i++)
{

pkUC = m_spkProgram->GetUC(i);
assert(pkUC);
iChannels += 4*pkUC->GetRegisterQuantity();

}
m_kUserData.resize(iChannels);
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// Set the data sources for the user constants.
for (i = 0, iChannels = 0; i < iUCQuantity; i++)
{

pkUC = m_spkProgram->GetUC(i);
assert(pkUC);
pkUC->SetDataSource(&m_kUserData[iChannels]);
iChannels += 4*pkUC->GetRegisterQuantity();

}

// Load the images into the textures. If the image is
// already in system memory (in the image catalog), it
// is ready to be used. If it is not in system memory,
// an attempt is made to load it from disk storage. If
// the image file does not exist on disk, a default
// magenta image is used.
int iSIQuantity = m_spkProgram->GetSIQuantity();
m_kImageNames.resize(iSIQuantity);
m_kTextures.resize(iSIQuantity);
for (i = 0; i < iSIQuantity; i++)
{

Image* pkImage = ImageCatalog::GetActive()->Find(
m_kImageNames[i]);

assert(pkImage);
m_kTextures[i].SetImage(pkImage);
m_kTextures[i].SetSamplerInformation(

m_spkProgram->GetSI(i));
}

}

The first part of the code iterates over the UserConstant objects and determines
exactly how many floating-point channels are needed to store the data for the user-
defined constants. The storage in Shader is resized to handle this amount.

The second part of the code sets the pointers in the UserConstant objects to point
to the correct locations in the array where their data is stored. When the application
needs to access this data, it must make the appropriate query using the constant’s
string name to obtain a pointer to the data’s storage location.

The third part of the code resizes the image and texture arrays to be large enough
to handle what the program requires. The texture images are loaded by querying the
active image catalog. This catalog behaves similarly to the program catalogs. If the
image is already in memory, a pointer is returned to that image. If the image is not
in memory, an attempt is made to load it from disk. If the attempt is successful, the
image is placed in a hash map to allow sharing, and the image pointer is returned. If
the image is not found on disk, the default image is returned (a magenta color). Each
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Texture object is given its texture image and corresponding sampler information. The
image and sampler information are accessed by the graphics system when the texture
is loaded/enabled for drawing.

There is also a companion function to OnLoadProgram named OnReleaseProgram.
This function simply decrements its reference to the shader program. If the shader
object is the last object to have a reference to the program, the program is automati-
cally destroyed.

The last line of code in ShaderEffect::Load is a call to a virtual function Shader-
Effect::OnLoadPrograms. This gives objects from a ShaderEffect-derived class to
perform postload operations. The most common operation is to provide local stor-
age for user-defined constants. For example, if you look at the sample application
file,

GeometricTools\WildMagic4\SampleGraphics\Iridescence\IridescenceEffect.cpp

you will see that the IridescenceEffect class has implemented this virtual func-
tion:

void IridescenceEffect::OnLoadPrograms (int, Program* pkVProgram, Program*)
{

pkVProgram->GetUC("InterpolateFactor")->SetDataSource(m_afInterpolate);
}

The first input parameter is the drawing pass index. This class implements a single-
pass effect, so the pass index is always zero. It is not needed here, so according
to the ANSI standards, the formal parameter name is omitted. The second input
parameter is the vertex program, which we access in this program. The last input
parameter is the pixel program, but we do not access it here, so the formal parameter
is omitted.

The IridescenceEffect class stores a user-defined constant named m_afInter-
polate. The constant is one of the inputs to the Cg shader program, namely, the input
InterpolateFactor:

void IridescenceVProgram
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
in float2 kInBaseTCoord : TEXCOORD0,
out float4 kClipPosition : POSITION,
out float2 kOutBaseTCoord : TEXCOORD0,
out float fOutInterpolateFactor : TEXCOORD1,
out float3 kWorldNormal : TEXCOORD2,
out float3 kEyeDirection : TEXCOORD3,
uniform float4x4 WVPMatrix,
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uniform float4x4 WMatrix,
uniform float3 CameraWorldPosition,
uniform float InterpolateFactor)

{
// . . . code goes here . . .

}

The parser in Program::Load stored the name InterpolateFactor in a UserCon-
stant object. The ShaderEffect::OnLoadProgram function provided storage for this
constant and set a pointer in the UserConstant object to point to this storage. How-
ever, the function IridescenceEffect::OnLoadPrograms overrides this. It queries for
the UserConstant object with the name InterpolateFactor, and reassigns the data
pointer to point to the local copy m_afInterpolate. Now every time your applica-
tion code needs the user-defined constant to change value, it does so by modifying
m_afInterpolate through the member accessor IridescenceEffect::SetInterpo-
late. This is more efficient than having SetInterpolate query for the user-defined
constant, access its data pointer, and assign the new value; that is, the query is an
additional cost you want to avoid.

If the query is inefficient, why provide storage for user-defined constants in
Shader in the first place? The IridescenceEffect class is created at development time,
so it is easy enough to specify the user-defined constants within the class. However,
for procedurally generated shader programs and for generic setup of effects through
ShaderEffect (no relevant derived classes for you to manipulate), you need to have
some storage automatically provided. Classes derived from ShaderEffect may be
thought of as part of a fixed-function pipeline, but it is actually possible for Wild
Magic to process all shader programming through ShaderEffect without any derived
classes.

3.4.5 Validation of Shader Programs

In the previous discussion, I talked about the first and last parts of ShaderEffect::
Load. The first part loads the shader programs and the last part associates user-defined
constants, textures, and images with the programs. I omitted discussion about the
middle part of the program. Its job is to perform validation. There are three things
you need to validate:

1. The geometric primitive’s vertex buffer data must contain the input vertex at-
tributes required by the vertex program.

2. The vertex program’s output attributes must match the pixel program’s input
attributes.

3. The resources required by the vertex and pixel programs do not exceed the limits
imposed by the renderer.
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The first validation occurs in Renderer::LoadVBuffer, a function I mentioned in
Section 3.3 without raising the issue of validation. That function has the block of code

ResourceIdentifier* pkID;
for (int i = 0; i <= iPass; i++)
{

pkID = pkVBuffer->GetIdentifier(this,i);
if (pkID)
{

if (rkIAttr.IsSubsetOf(*(Attributes*)pkID))
{

// Found a compatible vertex buffer in video memory.
return;

}
}

}

The parameter rkIAttr is the Attributes object corresponding to the input attributes
for the vertex program. The resource identifier is safely typecast to an Attributes
object. This object corresponds to the attributes for the vertex buffer associated with
the geometric primitive. The function Attributes::IsSubsetOf tests to see if the
caller, rkIAttr, has attributes that are contained by the input to the function. That
is, a check is made to see if the primitive’s vertex buffer has at least the attributes
required by the vertex program. If it does, then the vertex buffer may be used to load
vertex data to video memory. Later, in LoadVBuffer there was a line of code

OnLoadVBuffer(pkID,rkIAttr,pkVBuffer);

The derived-class renderers have implementations for this function. They make a
call to

int iChannels;
float* afCompatible;
pkVBuffer->BuildCompatibleArray(rkIAttr,false,iChannels,afCompatible);

At the time this is called, we know that the program input attributes, rkIAttr, are
a subset of the vertex buffer’s attributes. The vertex buffer is instructed to call At-
tributes::BuildCompatibleArray, which allocates an array afCompatible and fills it
with data according to the attributes in rkIAttr. The false input has to do with
how color data is packaged: Direct3D wants 8-bit color channels packed into a 32-
bit quantity. OpenGL and the software renderer store the floating-point channels (in
[0, 1]) directly. The packaged array is then handed to the graphics APIs to be up-
loaded to VRAM, returning to you a resource identifier that is used for later lookups
of this vertex buffer.
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The second and third items in the list of validations are performed by ShaderEf-
fect::Load. The second item is implemented by the code block

std::string kDefault("Default");
const Attributes& rkVOAttr =

spkVProgram->GetOutputAttributes();
const Attributes& rkPIAttr =

spkPProgram->GetInputAttributes();
if (!rkVOAttr.Matches(rkPIAttr,false,true,true,true))
{

// The output attributes of the vertex program and the
// input attributes of the pixel program are incompatible.
// Use the default shader objects.
if (spkVProgram->GetName() != kDefault)
{

m_kVShader[iPass] = WM4_NEW VertexShader(kDefault);
spkVProgram =

VertexProgramCatalog::GetActive()->Find(kDefault);
}

if (spkPProgram->GetName() != kDefault)
{

m_kPShader[iPass] = WM4_NEW PixelShader(kDefault);
spkPProgram =

PixelProgramCatalog::GetActive()->Find(kDefault);
}

}

The function Attributes::Matches compares the attributes of the vertex program
output attributes, rkVOAttr, and the pixel program input attributes, rkPIAttr. The
four Boolean inputs to this function indicate whether you should compare positions,
normals, colors, or textures. Notice that the first Boolean input is false. The vertex
program outputs clip-space coordinates for the vertex position to be used by the ras-
terizer. The pixel program has no need for this information, so the Matches function
is instructed to ignore positions. However, the pixel program does potentially care
about the normals, colors, and texture coordinates.

Mismatches between the geometric primitive’s vertex buffer and the vertex pro-
gram inputs may be handled by the graphics engine, but since the shader system of
the graphics APIs does not allow intervention in the rasterization and feeding of the
pixel programs, it is not possible programmatically to deal with mismatches between
vertex program outputs and pixel program inputs. It is possible that the graphics
drivers will deal with this. Regardless, my implementation handles a mismatch by
ignoring the loaded shader programs, instead attaching the default shader programs.
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Once you have a pair of compatible vertex and pixel programs, the final validation
step checks to make sure that enough resources exist. The code block that handles this
is

const Attributes& rkVIAttr = spkVProgram->GetInputAttributes();
if (rkVIAttr.GetMaxColors() > iMaxColors
|| rkVIAttr.GetMaxTCoords() > iMaxTCoords
|| rkVOAttr.GetMaxColors() > iMaxColors
|| rkVOAttr.GetMaxTCoords() > iMaxTCoords
|| rkPIAttr.GetMaxColors() > iMaxColors
|| rkPIAttr.GetMaxTCoords() > iMaxTCoords
|| spkVProgram->GetSIQuantity() > iMaxVShaderImages
|| spkPProgram->GetSIQuantity() > iMaxPShaderImages)
{

// The renderer cannot support the requested resources.
if (spkVProgram->GetName() != kDefault)
{

m_kVShader[iPass] = WM4_NEW VertexShader(kDefault);
spkVProgram =

VertexProgramCatalog::GetActive()->Find(kDefault);
}

if (spkPProgram->GetName() != kDefault)
{

m_kPShader[iPass] = WM4_NEW PixelShader(kDefault);
spkPProgram =

PixelProgramCatalog::GetActive()->Find(kDefault);
}

}

This is why the active renderer’s resource limits are passed to the ShaderEffect::Load
function. The program inputs, outputs, and sampler information is compared to
what the renderer can handle. If any resource exceeds the limits, the loaded shader
programs are ignored and the default shader programs are used.



C h a p t e r 4
Scene Graphs

Chapters 2 and 3 were about drawing geometric primitives to a window. This
chapter is about organizing the primitives to efficiently feed the renderer and

covers the two competing schools of thought; namely, that the organization should
be spatial, where objects are grouped together based on their spatial proximity, or
state based, where objects are grouped together based on their common render state.
I will briefly discuss both concepts here, concluding that the data structure for object
organization—called a scene graph—should support both aspects of spatial proximity
and render-state coherency.

4.1 Scene Graph Design Issues

Most applications have a large number of objects. The simplest algorithm for drawing
them is

scene = <set of objects in application>;
for each object in scene do
{

renderer.Draw(object);
}

This is a very inefficient approach. Some of the objects are visible, but many are not.
For the nonvisible objects, the renderer spends a lot of time determining that all their
triangles are outside the view frustum. The majority of time is spent on culling back-
facing triangles and clip-culling the front-facing triangles.

217
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Assuming you have the ability to test whether an object is partially or totally inside
the view frustum, a somewhat more efficient algorithm for drawing the objects is

scene = <set of objects in application>;
for each object in scene do
{

if (frustum.ContainsSomeOf(object))
{

renderer.Draw(object);
}

}

The premise is that the cost of function ContainsSomeOf(object) is much less than the
cost of renderer.Draw(object) for nonvisible objects. Even this algorithm is poten-
tially inefficient for a couple of reasons. There is no attempt to exploit either spatial
coherency or render-state coherency.

Spatial coherency. If the view frustum is much smaller than the world in which
the objects live, you might have prior knowledge of where most of the objects are
located. It is quite possible to partition the world into small cells. If you know the
current cell (or cells) that contains the view frustum, you need only iterate over
the content of that cell (or cells).

scene = <set of objects in application>;
partition = <set of cells partitioning the world>;
frustumCells = <set of cells overlapping the frustum>;
for each cell in frustumCells do
{

for each object in cell do
{

if (frustum.ContainsSomeOf(object))
{

renderer.Draw(object);
}

}
}
if frustum moves then
{

update frustumCells;
}

Such an organization helps you reduce the number of visibility tests for objects,
but you have to design and create the organizational data structures.
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Render-state coherency. Changing render state during a drawing pass can be ex-
pensive, depending on what state you are changing. A simple iteration over po-
tentially visible objects does not take this into account. If the objects were sorted
according to their render state, you could improve the efficiency by

scene = <set of objects in application>;
sortedScene = <scene objects sorted by render state>;
for each object in sortedScene do
{

if (frustum.ContainsSomeOf(object))
{

renderer.Draw(object);
}

}

Now you have the responsibility for maintaining a data structure that keeps the
objects sorted by render state (during add and remove operations).

Ideally, we should choose a data structure that supports both types of coherency.
The problem is that the goals are at odds with each other. A collection of objects
with the same render state might very well be scattered across the world. Similarly, a
collection of objects close to each other might be spatially organized in a manner that
requires constant switching of render state. There is a middle ground.

Organization by spatial proximity (geometric state) is the most natural choice
for grouping objects, especially since we rely on artists to build the objects using
3D modeling packages. The classic data structure for grouping is a tree. The leaf
nodes represent the geometric primitives and the interior nodes represent grouping
of related objects. Objects such as articulated biped characters inherently require a
tree-based data structure. The motion of the hand of a character is intimately tied
into the motion of the wrist, elbow, and shoulder. Moreover, the motion is affected
by the biped as a whole, whether moving through space (translation) or changing ori-
entation (rotation). Organization by render state is not something intuitive to many
artists. You could supply some guidelines on how to build objects to take advantage
of render-state coherency, but I imagine this would be difficult to enforce. In prac-
tice, attempts to incorporate render-state coherency are usually postprocessing steps
applied to the 3D models after the artists have done their job.

The fact that spatial coherency is more important in designing a data structure for
objects in a scene is also supported by the driving force behind real-time rendering:
The fastest way to draw a scene is to avoid drawing anything at all. If an object is
not in the view frustum, the renderer should not be given that object to draw. Sorting
everything by render state is irrelevant if you cannot quickly decide what is not visible.

I have heard the debates about which is better, organization by spatial coherency
or by render-state coherency. The correct choice is to use whichever leads to better
performance of your application. My experiences have led me to design a scene graph



220 Chapter 4 Scene Graphs

to be centered around a spatial hierarchy, each node of the hierarchy introducing
a coordinate system for the subtree whose root is that node. Each node maintains
transformations and bounding volumes, the latter used for rapid culling by the view
frustum. Minimizing the render-state changes is, of course, also desirable. My choice
is to build a set of potentially visible objects first, followed by a preprocessing step
to sort that set based on render state. This is a reasonable design as long as various
subsystems of the scene graph management are built to be as modular as possible.
Wild Magic’s scene graph management contains four such subsystems:

1. Updating geometric state. Updating the spatial information in the hierarchy when
geometric state changes, including vertex data changes, transformation changes,
and scene graph topology changes.

2. Updating render state. Updating the information supplied in the hierarchy when
the render state changes. This includes attaching and detaching of global states
and scene graph topology changes.

3. Culling pass. Determining the set of potentially visible objects in a scene after
geometric state changes.

4. Drawing pass. Drawing the set of potentially visible objects.

Wild Magic versions 1 and 2 already incorporated the updating geometric state
and render state. However, these versions had the culling pass and drawing pass com-
bined into a single pass. As a scene graph was traversed, nonvisible objects were culled
(i.e., not drawn), but each potentially visible object was drawn as it was encountered.
Such a design makes it nearly impossible to sort the objects by render state. Wild
Magic version 3 fixed this problem to some extent by deferring the drawing. As each
potentially visible object was encountered during a drawing pass, it was placed in
a set of objects to be handed to the renderer for drawing once the entire scene was
traversed. The renderer then had the option of sorting these objects by render state
(or by any other criteria) before drawing them. Two problems with this design are
that the renderer encapsulates the sorting, making it difficult to tap into the system
without constantly modifying the renderer source code, and that the semantics of
handling global effects (attached to interior nodes of the tree) are difficult to manage.

Wild Magic version 4, which is what ships with this book, includes a rewritten
rendering system. In addition to switching from a fixed-function pipeline to a shader-
based system, the culling pass and drawing pass have been separated. This allows
for a producer-consumer model, where the potentially visible sets can be generated
by one process (the producer) without regard to how the renderer (the consumer)
draws the data or even when the renderer needs the data. This is a good separation
of concerns, especially with threading in an application. The culling process can run
in a thread separate from the drawing process. This is particularly useful for special
effects such as shadow mapping, where two potentially visible sets are generated for
a single drawing pass. The first set is relative to the camera; the second set is relative
to the light source for deciding where a shadow is cast.
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Another major benefit in separating the culling and drawing is that an interme-
diate step between the two passes can involve sorting based on render state. This is
yet another modular subsystem that is orthogonal to the culling and drawing passes.
And as mentioned in Section 3.4.1, the generation of potentially visible sets by the
culling process includes sentinels for delimiting the scope of a global effect. A sorting
process applied to a potentially visible set can pay attention to the sentinels, sorting
objects only between a matching pair of sentinels.

4.1.1 The Core Classes

The classes in the scene graph management system that support a spatial tree (or
hierarchy) of objects are Spatial, Node, and Geometry. The objects are organized by
spatial relationships. Using a modeling package, an artist will create geometric data,
usually in the form of points, polylines, and triangle meshes, and assign various visual
attributes, including textures, lighting and materials, and shader effects. Additional
information is also created by the artist. For example, keyframe data may be added to
a biped structure for the purpose of animation of the character. Complicated models
such as a biped are typically implemented by the model package using a scene graph
hierarchy itself. For illustration, though, consider a simple, inanimate object such as
a model of a wooden table.

Geometry

The table consists of geometric information in the form of a collection of model ver-
tices. For convenience, suppose they are stored in an array V[i] for 0 ≤ i < n. Most
likely the table is modeled as a triangle mesh. The triangles are defined as triples of
vertices, ordered in a consistent manner that allows you to say which side of the tri-
angle is outward facing, from a display perspective, and which side is inward facing.
A classical choice for outward-facing triangles is to use counterclockwise ordering: If
an observer is viewing the plane of the triangle and that plane has a normal vector
pointing to the side of the plane on which the observer is located, the triangle ver-
tices are seen in a counterclockwise order in that plane. The triangle information is
usually stored as a collection of triples of indices into the vertex array. Thus, a triple
(i0,i1,i2) refers to a triangle whose vertices are (V[i0],V[i1],V[i2]). If dynamic
lighting of the table is desired, an artist might additionally create vertex model nor-
mals, although in many cases it is sufficient to generate the normals procedurally.
Other vertex attributes are added to the model as needed to support shader effects. Fi-
nally, the model units are possibly of a different size than the units used in the game’s
world, or the model is intended to be drawn in a different size than what the model-
ing package does. A model scale may be applied by the artist to accommodate these.
This does allow for nonuniform scaling, where each spatial dimension may be scaled
independently of the others. The region of space that the model occupies is repre-
sented by a model bound, typically a sphere or box or some other simple object, that
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encloses all the vertices. This information can always be generated procedurally and
does not require the artist’s input. The model bound is useful for identifying whether
or not the model is currently visible to an observer. All the model information created
by the artist, or procedurally generated from what the artist produces, is encapsulated
by the class Geometry.

Vertex and Index Buffers

In Wild Magic version 3, the vertex positions and normals were stored as separate
arrays in the Geometry objects. The vertex colors and texture coordinates were stored
in Effect objects to be used in various special effects, whether of the flavor of the
fixed-function pipeline or a shader program. The separation of vertex attributes is
not natural for an extensible shader-based system. In Wild Magic version 4, the vertex
positions and any attributes for a Geometry object are stored in a vertex buffer. This
is an “array of structs,” each structure containing all the information for a single
vertex, as compared to the previous version that used a “struct of arrays.” The class
representing this is called VertexBuffer. In previous versions of Wild Magic, the
index array associated with the geometric primitive (points, polyline, triangle mesh)
was also stored in the Geometry object, but now it is stored in what is called an
index buffer represented by class IndexBuffer. Both buffer classes act as containers for
data, but they also have an interface Bindable for associating the buffers (in system
memory) with their counterparts used for drawing (in video memory).

Lights and Effects

In the new design, the Geometry object contains all the information needed by the
renderer to correctly draw it. How the data is used depends on the special effects
attached to the object or on global effects attached to predecessor nodes of the hi-
erarchy. These effects include dynamic lighting, implied by Light objects attached to
predecessor nodes in the hierarchy path leading to the Geometry object. The effects
also include local effects, obtained by attaching ShaderEffect objects to the Geome-
try objects. Wild Magic version 3 and earlier only allowed one such effect per object.
Wild Magic version 4 allows multiple effects. The drawing system is designed to au-
tomatically provide multipass rendering to handle these. Geometry objects are also
affected by global effects, obtained by attaching Effect objects to predecessor nodes
of the Geometry objects.

Spatial

Suppose that the artist was responsible for creating both a table and a room in
which the table is placed. The table and room will most likely be created in separate
modeling sessions. When working with the room model, it would be convenient to
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load the already-created table model and place it in the room. The technical problem
is that the table and room were created in their own, independent coordinate systems.
To place the table, it must be translated, oriented, and possibly scaled. The resulting
local transformation is a necessary feature of the final scene for the game. I use the
adjective local to indicate that the transformation is applied to the table relative to
the coordinate system of the room. That is, the table is located in the room, and
the relationship between the room and table may be thought of as a parent-child
relationship. You start with the room (the parent) and place the table (the child) in
the room using the coordinate system of the room. The room itself may be situated
relative to another object, for example, a house requiring a local transformation of
the room into the coordinate system of the house. Assuming the coordinate system
of the house is used for the game’s world coordinate system, there is an implied world
transformation from each object’s model space to the world space. It is intuitive that
the model bound for an object in model space has a counterpart in world space, a
world bound, which is obtained by applying the world transformation to the model
bound. The local and world transformations and the world bound are encapsulated
by the class Spatial.

Node

The example of a house, room, and table has another issue that is partially related to
the local and world transformations. The objects are ordered in a natural hierarchy.
To make the example more illustrative, consider a house with two rooms, with a table
and chair in one room, and a plate, fork, and knife placed on the table. The hierarchy
for the objects is shown in Figure 4.1. Each object is represented by a node in the
hierarchy.

The objects are all created separately. The hierarchy represents parent-child rela-
tionships regarding how a child object is placed relative to its parent object. The Plate,
Knife, and Fork are assigned local transformations relative to the Table. The Table and

House

Room 1

Table

Plate Knife Fork

Chair

Room 2

Figure 4.1 A hierarchy to represent a collection of related objects.
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Chair are assigned local transformations relative to Room 1. Room 1 and Room 2 are
assigned local transformations relative to the House. Each object has world transfor-
mations to place it directly in the world. If Lobject is the local transformation that
places the object in the coordinate system of its parent and Wobject is the world trans-
formation of the object, the hierarchy implies the following matrix compositions.
The order of application to vectors (the vertices) is from right to left according to the
conventions used in Wild Magic:

WHouse = LHouse

WRoom1 = WHouse LRoom1 = LHouse LRoom1

WRoom2 = WHouse LRoom2 = LHouse LRoom2

WTable = WRoom1 LTable = LHouse LRoom1 LTable

WChair = WRoom1 LChair = LHouse LRoom1 LChair

WPlate = WTable LPlate = LHouse LRoom1 LTable LPlate

WKnife = WTable LKnife = LHouse LRoom1 LTable LKnife

WFork = WTable LFork = LHouse LRoom1 LTable LFork

The first equation says that the house is placed in the world directly. The local and
world transformations are the same. The second equation says that Room 1 is trans-
formed first into the coordinate system of the House and then is transformed to the
world by the House’s world transformation. The other equations have similar inter-
pretations. The last one says that the Fork is transformed into the coordinate system
of the Table, then transformed to the coordinate system of Room 1, then transformed
to the coordinate system of the House, then transformed to the world coordinates. A
path through the tree of parent-child relationships has a corresponding sequence of
local transformations that are composited. Although each local transformation may
be applied one at a time, it is more efficient to use the world transformation of the
parent (already calculated by the parent) and the local transformation of the child to
perform a single matrix product that is the world transformation of the child.

The grouping together of objects in a hierarchy is the role of the Node class. The
compositing of transformations is accomplished through a depth-first traversal of
the parent-child tree. Each parent node provides its world transformation to its child
nodes in order for the children to compute their world transformations, naturally a
recursive process. The transformations are propagated down the hierarchy (from root
node to leaf nodes).

Each geometric object has a model bound associated with it. A node does not
have a model bound per se, given that it only groups together objects, but it can be
assigned a world bound. The world bound indicates that portion of space containing
the collection of objects represented by the node. Keep in mind that the bound is
a coarse measurement of occupation and that not all of the space contained in the
bound is occupied by the object. A natural choice for the world bound of a node is
any bound that contains the world bounds of its children. However, it is not necessary
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that the world bound contain the child bounds. All that matters is that the objects
represented by the child nodes are contained in the world bound. Once a world
bound is assigned to a node, it is possible to define a model bound—the one obtained
by applying the inverse world transformation to the world bound. A model bound
for a node is rarely used, so the Node class does not have a data member to store this
information. If needed, it can be computed on the fly from other data.

Each time local transformations are modified at a node in the scene, the world
transformations must be recalculated by a traversal of the subtree rooted at that
node. But a change in world transformations also implies a change in the world
bounds. After the transformations are propagated down the hierarchy, new world
bounds must be recomputed at the child nodes and propagated up the hierarchy
(from leaf nodes to root node) to parent nodes so that they may also recompute their
world bounds. The model bound is transformed to the world bound by the world
transformation. The world transformation at a child node depends on its parent’s
world transformation. The composition of the transformations occurs during the
downward pass through the hierarchy. The parent’s world bound depends on the
child’s world bound. The recalculation of the world bounds occurs during the upward
pass through the hierarchy. The downward and upward passes together are referred
to as a geometric update, whose implementation details will be discussed later.

Controllers and Modifiers

The word animation tends to be used in the context of motion of characters or
objects. I use the word in a more general sense to refer to any time-varying quantity
in the scene. The engine has support for animation through controllers; the abstract
base class is Controller.

The most common controllers are transform controllers—for example, keyframe
controllers or inverse kinematic controllers. For keyframe controllers, an artist pro-
vides a set of positions and orientations for objects (i.e., for the nodes in the hierarchy
that represent the objects). A keyframe controller interpolates the keyframes to pro-
vide smooth motion over time. For inverse kinematic controllers, the positions and
orientations for objects are determined by constraints that require the object to be
in certain configurations. For example, a hand on a character must be translated and
rotated to pick up a glass. The controller selects the translations and rotations for the
hand according to where the glass is.

Vertex and normal controllers are used for morphing and mesh deformation.
Render-state controllers are used for animating just about any effect you like. For
example, a controller could be used to vary the color of a light source. A texture may
be animated by varying the texture coordinates associated with the texture and the
object to which the texture applies. This type of effect is useful for giving the effect
that a water surface is in motion.

Index controllers are less common, but are used to dynamically change the topol-
ogy of a triangle mesh or strip. For example, continuous-level-of-detail algorithms
may be implemented using controllers.
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I use the term modifier to indicate additional semantics applied to a collection of
vertices, normals, and indices. The Geometry class is a container for these items but
is itself an abstract class. The main modifier is class TriMesh, which is derived from
Geometry, and this class is used to provide indices to the base class. A similar example
is class TriStrip, where the indices are implicitly created by the class and provided
to the Geometry base class. In both cases, the derived classes may be viewed as index
modifiers of the Geometry base class.

Other geometry-based classes may also be viewed as modifiers of Geometry, in-
cluding points (class Polypoint) and polylines (class Polyline). Both classes may be
viewed as vertex modifiers. Particle systems (base class Particles) are derived from
class TriMesh. The particles are drawn as rectangular billboards (the triangle mesh
stores the rectangles as pairs of triangles) and so may be thought of as index modi-
fiers. However, the physical aspects of particles are tied into only the point locations.
In this sense, particle systems are vertex modifiers of the Geometry class.

How one adds the concept of modifiers to an engine is up for debate. The con-
troller system allows you to attach a list of controllers to an object. Each controller
manages the animation of some member (or members) of the object. As you add
new Controller-derived classes, the basic controller system need not change. This
is a good thing since you may extend the behavior of the engine without having
to rearchitect the core. Preserving old behavior when adding new features is re-
lated to the object-oriented principle called the open-closed principle. After build-
ing a system that, over time, is demonstrated to function as designed and is ro-
bust, you want it to be closed to further changes in order to protect its integrity. Yet
you also want the system to be open to extension with new features. Having a core
system such as the controllers that allows you to create new features and support
them in the (closed) core is one way in which you can have both open and closed
qualities.

The classical manner in which you obtain the open-closed principle, though, is
through class derivation. The base class represents the closed portion of the system,
whereas a derived class represents the open portion. Regarding modifiers, I decided
to use class derivation to define the semantics. Such semantics can be arbitrarily
complex—something not easily fitted by a system that allows a list of modifiers to
be attached to an object. A derived class allows you to implement whatever interface
is necessary to support the modifications. Controllers, on the other hand, have simple
semantics. Each represents management of the animation of one or more object
members, and each implements an update function that is called by the core system.
The controller, list-based system is natural for such simple objects.

4.1.2 Spatial Hierarchy Design

The main design goal for class Spatial is to represent a coordinate system in space.
Naturally, the class members should include the local and world transformations and
the world bounding volume, as discussed previously. The Geometry and Node classes
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themselves involve transformations and bounding volumes, so it is natural to derive
these from Spatial. What is not immediately clear is the choice for having both
classes Spatial and Node. In Figure 4.1, the objects Table, Plate, Knife, Fork, and Chair
are Geometry objects. They all are built from model data; they all occupy a portion of
space; and they are all transformable. The objects House, Room 1, and Room 2 are
grouping nodes. We could easily make all these Spatial objects, but not Geometry
objects. In this scenario, the Spatial class must contain information to represent the
hierarchy of objects. Specifically, each object must have a link to its parent object (if
any) and links to its child objects. The links shown in Figure 4.1 represent both the
parent and child links.

The concepts of grouping and of representing geometric data are effectively dis-
joint. If Spatial objects were allowed child objects, then by derivation so would Ge-
ometry objects. Thus, Geometry objects would have double duty, as representations of
geometric data and as nodes for grouping related objects. The interface for a Geometry
class that supports grouping as well as geometric queries will be quite complicated,
making it difficult to understand all the behavior that objects from the class can ex-
hibit. I prefer instead a separation of concerns regarding these matters. The interfaces
associated with Geometry and its derived classes should address only the semantics
related to geometric objects, their visual appearances, and physical properties. The
grouping responsibilities are delegated instead to a separate class, in this case the
class Node. The interfaces associated with Node and its derived classes address only
the semantics related to the subtrees associated with the nodes. By separating the re-
sponsibilities, it is easier for the engine designer and architect to maintain and extend
the separate types of objects (geometry types or node types).

My choice for separation of concerns leads to class Spatial storing the parent link
in the hierarchy and to class Node storing the child links in the hierarchy. Class Node
derives from Spatial, so in fact the Node objects have both parent and child links.
Class Geometry also derives from Spatial, but geometry objects can occur only as leaf
nodes in the hierarchy. This is the main consequence of the separation of concerns.
The price you pay for having the separation and a clean division of responsibilities is
that the hierarchy as shown in Figure 4.1 is not realizable in this scheme. Instead, the
hierarchy may be structured as shown in Figure 4.2.

Two grouping nodes were added. The Table Group node was added because
the Table is a geometric object and cannot be an interior node of the tree. The
utensils (Plate, Knife, Fork) were children of the Table. To preserve this structure,
the Utensil Group node was added to group the utensils together. To maintain the
transformation structure of the original hierarchy, the Table Group is assigned the
transformations the Table had, the Table is assigned the identity transformation, and
the Utensil Group is assigned the identity transformation. This guarantees that the
Utensil Group is in the same coordinate system that the Table is in. Consequently, the
utensils may be positioned and oriented using the same transformations that were
used in the hierarchy of Figure 4.1.

Alternatively, you can avoid the Utensil Group node and just make the utensils
siblings of the Table. If you do this, the coordinate system of the utensils is now that of
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House

Room 1

Table

Plate Knife Fork

Chair

Room 2

Table Group

Utensil Group

Figure 4.2 The new hierarchy corresponding to the one in Figure 4.1 when geometric objects
can be only leaf nodes. Ellipses are used to denote geometric objects. Rectangles are
used to denote grouping nodes.

the Table Group. The transformations of the utensils must be changed to ones relative
to the coordinate system of the Table Group.

The portion of the interface for class Spatial relevant to the scene hierarchy
connections is

class Spatial : public Object
{
public:

virtual ~Spatial ();
Spatial* GetParent ();

protected:
Spatial ();
Spatial* m_pkParent;

// internal use
public:

void SetParent (Spatial* pkParent);
};

The default constructor is protected, making the class an abstract base class. The
default constructor is implemented to support the streaming system. The class is
derived from the root class Object, as are nearly all the classes in the engine. All of the
root services are therefore available to Spatial, including run-time type information,
sharing, streaming, and so on.
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The parent pointer is protected, but read access is provided by the public interface
function GetParent. Write access of the parent pointer is provided by the public
interface function SetParent. That block of code is listed at the end of the class. My
intention on the organization is that the public interface intended for the application
writers is listed first in the class declaration. The public interface at the end of the class
is tagged with the comment “internal use.” The issue is that SetParent is called by the
Node class when a Spatial object is attached as the child of a node. No other class (or
application) should call SetParent. If the method were put in the protected section
to prevent unintended use, then Node cannot call the function. To circumvent this
problem, Node can be made a friend of Spatial, thus allowing it access to SetParent,
but disallowing anyone else to access it. In some circumstances, a Node-derived class
might also need access to a protected member of Spatial. In the C++ language,
friendship is not inherited, so making Node a friend of Spatial will not make the
Node-derived class a friend of Spatial. To avoid the somewhat frequent addition
of friend declarations to classes to allow restricted access to protected members, I
decided to use the system of placing the restricted access members in public scope
but tagging that block with the “internal use” comment to let programmers know
that they should not use those functions.

The portion of the interface for class Node relevant to the scene hierarchy connec-
tions is

class Node : public Spatial
{
public:

Node ();
virtual ~Node ();

int GetQuantity () const;
int AttachChild (Spatial* pkChild);
int DetachChild (Spatial* pkChild);
SpatialPtr DetachChildAt (int i);
SpatialPtr SetChild (int i, Spatial* pkChild);
SpatialPtr GetChild (int i);

protected:
std::vector<SpatialPtr> m_kChild;

};

The links to the child nodes are stored as an array of Spatial smart pointers. For
a discussion of smart pointers and reference counting, see Section 18.5. Clearly, the
pointers cannot be Node pointers, because the leaf nodes of the hierarchy are Spatial-
derived objects (such as Geometry), but not Node-derived objects. The nonnull child
pointers do not have to be contiguous in the array, so where the children are placed
is up to the programmer.
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The AttachChild function searches the pointer array for the first available empty
slot and stores the child pointer in it. If no such slot exists, the child pointer is stored at
the end of the array, dynamically resizing the array if necessary. This is an important
feature to remember. For whatever reason, if you detach a child from a slot internal
to the array and you do not want the next child to be stored in that slot, you must
use the SetChild function because it lets you specify the exact location for the new
child. The return value of AttachChild is the index into the array where the attached
child is stored. The return value of SetChild is the child that was in the ith slot of
the array before the new child was stored there. If you choose not to hang onto the
return value, it is a smart pointer, in which case the reference count on the object is
decremented. If the reference count goes to zero, the child is automatically destroyed.

Function DetachChild lets you specify the child, by pointer, to be detached. The
return value is the index of the slot that stored the child. The vacated slot has its
pointer set to NULL. Function DetachChildAt lets you specify the child, by index, to
be detached. The return value is that child. As with SetChild, if you choose not to
hang onto the return value, the reference count on the object is decremented and, if
zero, the object is destroyed.

Function GetChild simply returns a smart pointer to the current child in the spec-
ified slot. This function is what you use when you iterate over an array of children and
process them in some manner—typically something that occurs during a recursive
traversal of a scene graph.

4.1.3 Sharing of Objects

The spatial hierarchy system is a tree structure; that is, each tree node has a single
parent, except for a root node that has no parent. You may think of the spatial
hierarchy as the skeleton for the scene graph. A scene graph really is an abstract graph
because the object system supports sharing. If an object is shared by two other objects,
effectively, there are two instances of the first object. The act of sharing the objects is
called instancing . I do not allow instancing of nodes in a spatial hierarchy, and this
is enforced by allowing a Spatial object to have only a single parent link. Multiple
parents are not possible.1 One of the questions I am occasionally asked is why I made
this choice.

For the sake of argument, suppose that a hierarchy node is allowed to have mul-
tiple parents. A simple example is shown in Figure 4.3. The scene graph represents
a house with two rooms. The rooms share the same geometric model data. The two
rooms may be thought of as instances of the same model data. The implied struc-
ture is a directed acyclic graph (DAG). The House node has two directed arcs to the
Room nodes. Each Room node has a directed arc to the Room Contents leaf node.
The Room Contents are therefore shared. Reasons to share include reducing memory

1. Predecessors might be a better term to use here, but I will use the term parents and note that the links are
directed from parent to child.
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House

Room 1

Room Contents

Room 2

Figure 4.3 A scene graph corresponding to a house and two rooms. The rooms share the same
geometric model data, called Room Contents.

usage for the game application and reducing your artist’s workload in having to cre-
ate distinct models for everything you can imagine in the world. The hope is that the
user is not terribly distracted by the repetition of like objects as he navigates through
the game world.

What are some of the implications of Figure 4.3? The motivation for a spatial hi-
erarchy is to allow for positioning and orienting of objects via local transformations.
The locality is important so that generation of content can be done independently of
the final coordinate system of the world (the coordinate system of the root node of the
scene). A path through the hierarchy from root to leaf has a corresponding sequence
of local transformations whose product is the world transformation for the leaf node.
The problem in Figure 4.3 is that the leaf node may be reached via two paths through
the hierarchy. Each path corresponds to an instance of the leaf object. Realize that
the two rooms are placed in different parts of the house. The world transformations
applied to the room contents are necessarily different. If you have any plans to make
the world transformations persistent, they must be stored somewhere. In the tree-
based hierarchy, the world transformations are stored directly at the node. To store
the world transformations for the DAG of Figure 4.3, you can store them either at
each node or in a separate location that the node has pointers to. In either case, a dy-
namic system is required since the number of parents can be any number and change
at any time. World bounding volumes must also be maintained, one per instance.

Another implication is that if you want to change the data directly at the shared
node, the Room Contents in our example, it is necessary for you to be able to specify
which instance is to be affected. This alone creates a complex situation for an applica-
tion programmer to manage. You may assign a set of names to the shared object, one
name per path to the object. The path names can be arbitrarily long, making the use
of them a bit overwhelming for the application programmer. Alternatively, you can
require that a shared object not be directly accessible. The instances must be managed
only through the parent nodes. In our example, to place Room 1 in the House, you set
its local transformations accordingly. Room 2 is placed in the world with a different
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set of local transformations. The Room Contents always have the identity transfor-
mation, never to be changed. This decision has the consequence that if you only have
a single instance (most likely the common case in a scene), a parent node should be
used to indirectly access that instance. If you are not consistent in the manner of ac-
cessing the object, your engine logic must distinguish between a single instance of
an object and multiple instances of an object, then handle the situations differently.
Thus, every geometric object must be manipulated as a node-geometry pair. Worse is
that if you plan on instancing a subgraph of nodes, that subgraph must have parent
nodes through which you access the instances. Clearly, this leads to “node bloat” (for
lack of a better term), and the performance of updating such a system is not optimal
for real-time needs.

Is this speculation or experience? The latter, for sure. One of the first tasks I
was assigned when working on NetImmerse in its infancy was to support instancing
in the manner described here. Each node stored a dynamic array of parent links
and a dynamic array of child links. A corresponding dynamic array of geometric
data was also maintained that stored transformations, bounding volumes, and other
relevant information. Instances were manipulated through parent nodes, with some
access allowed to the instances themselves. On a downward traversal of the scene
by a recursive function, the parent pointer was passed to that function and used
as a lookup in the child’s parent array to determine which instance the function
was to affect. This mechanism addresses the issue discussed earlier, unique names
for the paths to the instance. Unfortunately, the system was complicated to build
and complicated to maintain (adding new recursive functions for scene traversal
was tedious), and the parent pointer lookup was a noticeable time sink, as shown
by profiling any applications built on top of the engine. To eliminate the cost of
parent pointer lookups, the node class was modified to include an array of instance
pointers, one per child of the node. Those pointers were passed through recursive
calls, thus avoiding the lookups, and used directly. Of course, this increased the per-
node memory requirements and increased the complexity of the system. In the end
we decided that supporting instancing by DAGs was not acceptable.

That said, instancing still needs to be supported in an engine. I mentioned this
earlier and mention it again: What is important regarding instancing is that (1)
you reduce memory usage, and (2) you reduce the artist’s workload. The majority
of memory consumption has to do with models with large amounts of data. For
example, a model with 10,000 vertices, multiple 32-bit texture images, each 512 ×
512, and corresponding texture coordinates consumes a lot of memory. Instancing
such a model will avoid duplication of the large data. The amount of memory that a
node or geometry object requires to support core scene graph systems is quite small
relative to the actual model data. If a subgraph of nodes is to be instanced, duplication
of the nodes requires only a small amount of additional memory. The model data
is shared, of course. Wild Magic 4 chooses to share in the manner described here.
The sharing is low level; that is, instancing of models involves geometric data. If
you want to instance an object of a Geometry-derived class, you create two unique
Geometry-derived objects, but ask them to share their vertex and index buffers. The
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Room Contents 1
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Shared Geometry Data

Room Contents 2

Figure 4.4 The scene graph of Figure 4.3, but with instancing at a low level (geometric data)
rather than at a node level.

DAG of Figure 4.3 abstractly becomes the graph shown in Figure 4.4. The work for
creating an instance is more than what a DAG-style system requires, but the run-time
performance is much improved and the system complexity is minimal.

4.2 Geometric State

Four basic objects involving geometric state are vertex buffers, index buffers, trans-
formations, and bounding volumes.

4.2.1 Vertex Buffers and Index Buffers

The vertex positions and attributes, such as normal vectors, colors, and texture co-
ordinates, are all stored together in a vertex buffer. There is a one-to-one correspon-
dence between elements of the buffer and vertices in the geometric primitive. The
topology for the adjacency information of the vertices is stored in the index buffer.
The geometric primitive represents a collection of points (the index buffer specifies
only in which order the points are drawn), a collection of line segments (i.e., a poly-
line), a triangle mesh, or various other triangle collections (triangle strips, triangle
fans, and so on). The Geometry objects just act as a container for this information
so that it is readily available for drawing by the renderer. The vertex buffer and in-
dex buffer have counterparts stored in video memory. These are used for the actual
drawing. Chapter 3 contains all the details of how this is done.
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4.2.2 Transformations

Wild Magic version 2 supported transformations involving translations T, rotations
R, and uniform scaling σ > 0. A vector X is transformed to a vector Y by

Y = R(σX) + T (4.1)

The order of application is scale first, rotation second, and translation third. However,
the order of uniform scaling and rotation is irrelevant. The inverse transformation is

X = 1

σ
RT(Y − T) (4.2)

Generally, a graphics API allows for any affine transformation, in particular
nonuniform scaling. The natural extension of Equation (4.1) to allow nonuniform
scale S = Diag(σ0, σ1, σ2), σi > 0, for all i, is

Y = RSX + T (4.3)

The order of application is scale first, rotation second, and translation third. In this
case the order of nonuniform scaling and rotation is relevant. Switching the order
produces different results since, in most cases, RS �= SR. The inverse transformation
is

X = S−1RT(Y − T) (4.4)

where S−1 = Diag(1/σ0, 1/σ1, 1/σ2). The memory requirements to support nonuni-
form scaling are modest—only two additional floating-point numbers to store.

Wild Magic version 2 disallowed nonuniform scaling because of some undesir-
able consequences. One goal was to minimize the time spent on matrix and vector
arithmetic. This was particularly important when an application had a physical simu-
lation that made heavy use of the transformation system. Using operation counts as a
measure of execution time,2 let μ represent the number of cycles for a multiplication,
let α represent the number of cycles for an addition/subtraction, and let δ represent
the number of cycles for a division. On an Intel Pentium class processor, μ and α are
equal, both three cycles. The value δ is 39 cycles. Both Equations (4.1) and (4.3) use
12μ + 9α cycles to transform a single vector. Equation (4.2) uses 12μ + 9α + δ cy-
cles. The only difference between the inverse transform and the forward transform is
the division required to compute the reciprocal of scale. The reciprocal is computed
first, and then the three components of the vector are multiplied. Equation (4.4) uses

2. A warning about operation counting: Current-day processors have other issues now that can make opera-
tion counting an inaccurate measure of performance. You need to pay attention to memory fetches, cache
misses, branch penalties, and other architectural aspects.
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9μ + 9α + 3δ cycles. Unlike the uniform scale inversion, the reciprocals are not com-
puted first. The three vector components are divided directly by the nonuniform
scales, leading to three fewer multiplications, but two more divisions. This is still a
significant increase in cost because of the occurrence of the additional divisions. The
three divisions in (x/σ0, y/σ1, z/σ2) = (x′, y′, z′) may be avoided by instead com-
puting a = σ0σ1, p = aσ2, r = 1/p, q = rσ2, x′ = qσ1x, y′ = qσ0y, and z′ = raz.
The three divisions cost 3δ cycles, but the alternative costs 9μ + δ cycles. If the CPU
supports a faster but lower-precision division, the increase is not as much of a fac-
tor, but you pay in terms of accuracy of the final result. With the advent of specialized
hardware such as extended instructions for CPUs, game console hardware, and vector
units in general, the performance for nonuniform scaling is not really a concern.

A second issue that is mathematical and one that hardware cannot eliminate is
the requirement to factor transformations to maintain the ability to store at each
node the scales, the rotation matrix, and the translation vector. To be precise, if you
have a path of nodes in a hierarchy and corresponding local transformations, the
world transformation is a composition of the local ones. Let the local transformations
be represented as homogeneous matrices in block-matrix form. The transformation
Y = RSX + T is represented by[

Y

1

] [
RS T

0T 1

] [
X

1

]

The composition of two local transformations Y = R1S1X + T1 and Z = R2S2Y +
T2 is represented by a homogeneous block matrix that is a product of the two homo-
geneous block matrices representing the individual transformations:[

R2S2 T2

0T 1

] [
R1S1 T1

0T 1

]
=

[
R2S2R1S1 R2S2T1 + T2

0T 1

]
=

[
M T

0T 1

]

where M = R2S2R1S1 and T = R2S2T1 + T2. A standard question that is asked some-
what regularly in the Usenet computer graphics newsgroups is how to factor

M = RS

where R is a rotation and S is a diagonal nonuniform scaling matrix. The idea is to
have a transformation class that always stores R, S, and T as individual components,
thus allowing direct evaluation of Equations (4.3) and (4.4). Much to the posters’
dismay, the unwanted answer is that you cannot always factor M in this way. In fact,
it is not always possible to factor D1R1 into R2D2, where D1 and D2 are diagonal
matrices and R1 and R2 are rotation matrices.

The best you can do is factor M using polar decomposition or singular value
decomposition ([Hec94, Section III.4]). The polar decomposition is

M = UA
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where U is an orthogonal matrix and A is a symmetric matrix, but not necessarily
diagonal. The singular value decomposition is closely related:

M = V DW T

where V and W are orthogonal matrices and D is a diagonal matrix. The two fac-
torizations are related by appealing to the eigendecomposition of a symmetric ma-
trix, A = WDWT, where W is orthogonal and D is diagonal. The columns of W

are linearly independent eigenvectors of A, and the diagonal elements of D are the
eigenvalues (ordered to correspond to the columns of W ). It follows that V = UW .
Implementing either factorization is challenging because the required mathematical
machinery is more than what you might expect.

Had I chosen to support nonuniform scaling in Wild Magic and wanted a con-
sistent representation of local and world transformations, the factorization issue pre-
vents me from storing a transformation as a triple (R , S , T), where R is a rotation, S
is a diagonal matrix of scales, and T is a translation. One way out of the dilemma is
to use a triple for local transformations, but a pair (M , T) for world transformations.
The 3 × 3 matrix M is the composition of rotations and nonuniform scales through
a path in the hierarchy. The memory usage for a world transformation is smaller than
for a local one, but only one floating-point number less. The cost for a forward trans-
formation Y = MX + T is 9μ + 9α, cheaper than for a local transformation. Less
memory usage, faster transformation, but the cost is that you have no scaling or rota-
tional information for the world transformation unless you factor into polar form or
use the singular value decomposition. Both factorizations are very expensive to com-
pute. The inverse tranformation X = M−1(Y − T) operation count is slightly more
complicated to determine. Using a cofactor expansion to compute the inverse matrix

M−1 = 1

det(M)
Madj

where det(M) is the determinant of M and Madj is the adjoint matrix—the trans-
pose of the matrix of cofactors of M . The adjoint has nine entries, each requiring
2μ + α cycles to compute. The determinant is computed from a row of cofactors, us-
ing three more multiplications and two more additions, for a total of 3μ + 2α cycles.
The reciprocal of the determinant uses δ cycles. Computing the inverse transforma-
tion as

X = 1

det(M)

(
Madj(Y − T)

)

requires 33μ + 20α + δ cycles. This is a very significant increase in cost compared to
the 19μ + 9α + δ cycles used for computing X = S−1RT(Y − T).

To avoid the increase in cost for matrix inversion, you could alternatively choose
a consistent representation where the transformations are stored as 4-tuples of the
form (L, S , R , T), where L and R are rotation matrices, S is a diagonal matrix
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of scales, and T is a translation. Once a world transformation is computed as a
composition of local transformations to obtain M and T, you have to factor M =
LDR using the singular value decomposition—yet another expensive proposition.

Given the discussion of nonuniform scaling and the performance issues arising
from factorization and/or maintaining a consistent representation for transforma-
tions, in Wild Magic version 2, I decided to constrain the transformations to use only
uniform scaling. I have relaxed the constraint slightly in Wild Magic version 3. The
Spatial class stores three scale factors, but only the leaf nodes may set these to be
nonuniform. But doesn’t this introduce all the problems that I just mentioned? Along
a path of n nodes, the last node being a geometry leaf node, the world transformation
is a composition of n − 1 local transformations that have only uniform scale σi, i ≥ 2,
and a final local transformation that has nonuniform scales S1:[

Rnσn Tn

0T 1

]
. . .

[
R2σ2 T2

0T 1

] [
R1S1 T1

0T 1

]

=
[

R′σ ′ T′

0T 1

] [
R1S1 T1

0T 1

]

=
[

(R′R1)(σ
′S1) R′σ ′T1 + T′

0T 1

]

=
[

R′′S′′ T′′

0T 1

]

Because of the commutativity of uniform scale and rotation, the product of the first
n − 1 matrices leads to another matrix of the same form, as shown. The product
with the last matrix groups together the rotations and groups together the scales.
The final form of the composition is one that does not require a general matrix
inverse calculation. I consider the decision to support nonuniform scales only in
the Geometry class an acceptable compromise between having only uniform scales or
having nonuniform scales available at all nodes.

The class that encapsulates the transformations containing translations, rota-
tions, and nonuniform scales is Transformation. The default constructor, destructor,
and data members are shown next in a partial listing of the class:

class Transformation
{
public:

Transformation ();
~Transformation ();

static const Transformation IDENTITY;
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private:
Matrix3f m_kMatrix;
Vector3f m_kTranslate;
Vector3f m_kScale;
bool m_bIsIdentity, m_bIsRSMatrix, m_bIsUniformScale;

};

In a moment I will discuss the public interface to the data members. The matrix
represents a rotation or a general transformation. The three scale factors are stored
as a 3-tuple, but they could just as easily have been stored as three separate floating-
point numbers. The class has three additional data members, all Boolean variables.
These are considered hints to allow for more efficient composition of transforma-
tions. The m_bIsIdentity hint is set to true when the transformation is the identity.
The m_bIsRSMatrix is set to true when m_kMatrix is a rotation matrix and m_kScale
contains nonuniform scales. The m_bIsUniformScale hint is set to true when the
components of m_kScale have a common value. The default constructor creates the
identity transformation, where the rotation is the 3 × 3 identity matrix, the trans-
lation is the 3 × 1 zero vector, and the three scales are all one. The m_bIsIdentity,
m_bIsRSMatrix, and m_bIsUniformScale hints are all set to true. For an application’s
convenience, the static class member IDENTITY stores the identity transformation.

Part of the public interface to access the members is

class Transformation
{
public:

void SetRotate (const Matrix3f& rkRotate);
const Matrix3f& GetRotate () const;
void SetMatrix (const Matrix3f& rkMatrix);
const Matrix3f& GetMatrix () const;
void SetTranslate (const Vector3f& rkTranslate);
const Vector3f& GetTranslate () const;
void SetScale (const Vector3f& rkScale);
const Vector3f& GetScale () const;
void SetUniformScale (float fScale);
float GetUniformScale () const;

};

The Set functions have side effects in that each function sets the m_bIsIdentity hint
to false. The hint is set, even if the final transformation is the identity. For example,
calling SetTranslate with the zero vector as input will set the hint to false. I made
this choice to avoid having to check if the transformation is really the identity after
each component is set. The expected case is that the use of Set functions is to make
the transformation something other than the identity. Even if we were to test for
the identity transformation, the test is problematic when floating-point arithmetic
is used. An exact comparison of floating-point values is not robust when some of
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the values were computed in expressions, the end results of which were produced
after a small amount of floating-point round-off error. The SetScale function also
has the side effect of setting the m_bIsUniformScale hint to false. As before, the hint
is set even if the input scale vector corresponds to uniform scaling. The SetRotate
function sets the m_bIsRSMatrix hint to true. If the hint is false when GetRotate is
called, an assertion is triggered. The SetMatrix function sets the m_bIsRSMatrix and
m_bIsUniformScale hints to false. The Get functions have no side effects and return
the requested components. These functions are const, so the components are read-
only.

A public accessor function is provided for the convenience of determining the
maximum scale associated with a transformation:

class Transformation
{
public:

float GetNorm () const;
};

If the matrix is of the form M = RS, where R is a rotation and S is a diagonal matrix
representing the scales, then GetNorm returns max{|σ0|, |σ1|, |σ2|}. If M is a general
matrix, then GetNorm returns the largest sum of absolute values of row entries. That
is, if M = [mrc] for 0 ≤ r ≤ 2 and 0 ≤ c ≤ 2, then GetNorm returns

max{|m00| + |m01| + |m02|, |m10| + |m11| + |m12|, |m20| + |m21| + |m22|}
Given two matrices R and S, a matrix norm ‖ . ‖ generally satisfies the inequality

‖RS‖ ≤ ‖R‖‖S‖, but equality does not have to happen. Thus, it is not necessarily
the case that ‖RS‖ is equal to ‖S‖, so multiplying R and S first before computing
the norm is not guaranteed to give you the same number as the largest magnitude
scale. However, the engine uses the matrix norm only to transform a bounding sphere
to obtain another bounding sphere. A nonuniform scaling of a sphere produces an
ellipsoid, but the engine has no capability to use ellipsoids as bounding volumes. I
use the norm as a uniform scale factor to transform the sphere’s radius.

Other convenience functions include the ability to tell a transformation to make
itself the identiy transformation or to make its scales all one:

class Transformation
{
public:

void MakeIdentity ();
void MakeUnitScale ();
bool IsIdentity () const;
bool IsRSMatrix () const;
bool IsUniformScale () const;

};
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The last three functions just return the current values of the hints.
The basic algebraic operations for transformations include application of a trans-

formation to points, application of an inverse transformation to points, and compo-
sition of two transformations. The member functions are

class Transformation
{
public:

Vector3f ApplyForward (const Vector3f& rkInput) const;
void ApplyForward (int iQuantity, const Vector3f* akInput,

Vector3f* akOutput) const;

Vector3f ApplyInverse (const Vector3f& rkInput) const;
void ApplyInverse (int iQuantity, const Vector3f* akInput,

Vector3f* akOutput) const;

void Product (const Transformation& rkA,
const Transformation& rkB,);

void Inverse (Transformation& rkInverse);
};

The first ApplyForward and ApplyInverse functions apply to single vectors. The sec-
ond pair of these functions applies to arrays of vectors. If the transformation is
Y = RSX + T where R is a rotation matrix, S is a diagonal scale matrix, and T is a
translation, function ApplyForward computes Y from the input vector(s) X. Function
ApplyInverse computes X = S−1RT(Y − T) from the input vector(s) Y.

The composition of two transformations is performed by the member function
Product. The name refers to a product of matrices when the transformations are
viewed as 4 × 4 homogeneous matrices. For example,

Transformation kA = <some transformation>;
Transformation kB = <some transformation>;
Transformation kC;

// compute C = A*B
kC.Product(kA,kB);

// compute C = B*A, generally not the same as A*B
kC.Product(kB,kA);

We will also need to apply inverse transformations to vectors. Notice that earlier
I used both the term points and the term vectors. The two are abstractly different, as
discussed in the study of affine algebra. A point P is transformed as

P′ = RSP + T
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whereas a vector V is transformed as

V′ = RSV

You can think of the latter equation as the difference of the equations for two trans-
formed points P and Q:

V = P − Q

P′ = RSP + T

Q′ = RSQ + T

V′ = P′ − Q′ = (RSP + T) − (RSQ + T) = RS(P − Q) = RSV

In terms of homogeneous vectors, the point P and vector V are represented by[
P

1

]
and

[
V

0

]

The corresponding homogeneous transformations are[
RS T

0T 1

] [
P

1

]
=

[
RSP + T

1

]
=

[
P′

1

]
and

[
RS T

0T 1

] [
V

0

]
=

[
RSV

0

]
=

[
V′

0

]

The inverse transformation of a vector V′ is

V = S−1RTV′

The member function that supports this operation is

class Transformation
{
public:

Vector3f InvertVector (const Vector3f& rkInput) const;
};

Finally, the inverse of the transformation is computed by

void Inverse (Transformation& rkInverse);

The translation, rotation, and scale components are computed. If Y = RSX + T, the
inverse is X = S−1RT(Y − T). The inverse transformation has scale S−1, rotation RT,
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and translation −S−1RTT, all stored by rkInverse. If you were to use rkInverse to
transform a point Y, the result would be

X = RTS−1Y − S−1RTT

which is not correct. The storage that rkInverse provides is for convenience only.
Call the Inverse function, access the individual components of rkInverse, and then
discard rkInverse.

The transformation of a plane from model space to world space is also sometimes
necessary. Let the model-space plane be

N0
. X = c0

where N0 is a unit-length normal vector, c0 is a constant, and X is any point on
the plane and is specified in model-space coordinates. The inverse transformation
of the point is X = S−1RT(Y − T), where Y is the point in world-space coordinates.
Substituting this in the plane equation leads to

N1
. Y = c1, N1 = RS−1N0

|RS−1N0|
, c1 = c0

|RS−1N0|
+ N1

. T

The member function that supports this operation is

class Transformation
{
public:

Plane3f ApplyForward (const Plane3f& rkInput) const;
};

The input plane has normal N0 and constant c0. The output plane has normal N1 and
constant c1.

In all the transformation code, I take advantage of the m_bIsIdentity and
m_bIsUniformScale hints. Two prototypical cases are the implementation of Apply-
Forward that maps Y = RSX + T and the implementation of ApplyInverse that maps
X = S−1RT(Y − T). The forward transformation implementation is

Vector3f Transformation::ApplyForward (
const Vector3f& rkInput) const

{
if (m_bIsIdentity)
{

// Y = X
return rkInput;

}
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if (m_bIsRSMatrix)
{

// Y = R*S*X + T
Vector3f kOutput(

m_kScale.X()*rkInput.X(),
m_kScale.Y()*rkInput.Y(),
m_kScale.Z()*rkInput.Z());

kOutput = m_kMatrix*kOutput + m_kTranslate;
return kOutput;

}

// Y = M*X + T
Vector3f kOutput = m_kMatrix*rkInput + m_kTranslate;
return kOutput;

}

If the transformation is the identity, then Y = X and the output vector is simply the
input vector. A generic implementation might do all the matrix and vector operations
anyway, not noticing that the transformation is the identity. The hint flag helps avoid
those unnecessary calculations. If the transformation is not the identity, it does not
matter whether the scale is uniform or nonuniform since three multiplications by a
scale parameter occur in either case.

The inverse transformation implementation is

Vector3f Transformation::ApplyInverse (
const Vector3f& rkInput) const

{
if (m_bIsIdentity)
{

// X = Y
return rkInput;

}

Vector3f kOutput = rkInput - m_kTranslate;
if (m_bIsRSMatrix)
{

// X = S^{-1}*R^t*(Y - T)
kOutput = kOutput*m_kMatrix;
if (m_bIsUniformScale)
{

kOutput /= GetUniformScale();
}
else
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{
float fSXY = m_kScale.X()*m_kScale.Y();
float fSXZ = m_kScale.X()*m_kScale.Z();
float fSYZ = m_kScale.Y()*m_kScale.Z();
float fInvDet = 1.0f/(fSXY*m_kScale.Z());
kOutput.X() *= fInvDet*fSYZ;
kOutput.Y() *= fInvDet*fSXZ;
kOutput.Z() *= fInvDet*fSXY;

}
}
else
{

// X = M^{-1}*(Y - T)
kOutput = m_kMatrix.Inverse()*kOutput;

}

return kOutput;
}

If the transformation is the identity, then X = Y and there is no reason to waste cycles
by applying the transformation components. Unlike ApplyForward, if the transforma-
tion is not the identity, then there is a difference in performance between uniform and
nonuniform scaling.

For uniform scale, RT(Y − T) has all three components divided by scale. The Ma-
trix3 class has an operator function such that a product of a vector (the left operand
V) and a matrix (the right operand M) corresponds to MTV. The previously dis-
played code block uses this function. The Vector3 class supports division of a vector
by a scalar. Internally, the reciprocal of the divisor is computed and multiplies the
three vector components. This avoids the division occurring three times, replacing
the operation instead with a single division and three multiplications.

For nonuniform scale, I use the trick described earlier for avoiding three divi-
sions. The displayed code replaces the three divisions by ten multiplications and one
division. For an Intel Pentium that uses 3 cycles per multiplication and 39 cycles per
division, the three divisions would cost 78 cycles, but the ten multiplications and one
division cost 69 cycles.

4.2.3 Bounding Volumes

The term bounding volume is quite generic and refers to any object that contains
some other object. The simplest bounding volumes that game programmers use
tend to be spheres or axis-aligned bounding boxes. Slightly more complicated is an
oriented bounding box. Yet more complicated is the convex hull of the contained
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object, a convex polyhedron. In all cases, the bounding volumes are convex. To be yet
more complicated, a bounding volume might be constructed as a union of (convex)
bounding volumes.

Culling

One of the major uses for bounding volumes in an engine is for the purpose of
culling objects. If an object is completely outside the view frustum, there is no reason
to tell the renderer to try to draw it, because if the renderer made the attempt, it
would find that all triangles in the meshes that represent the object are outside the
view frustum. Such a determination does take some time—better to avoid wasting
cycles on this, if possible. The scene graph management system could itself determine
if the mesh triangles are outside the view frustum, testing them one at a time for
intersection with, or containment by, the view frustum, but this gains us nothing. In
fact, this is potentially slower when the renderer has a specialized GPU to make the
determination, but the scene graph system must rely on a general CPU.

A less aggressive approach is to use a convex bounding volume as an approxima-
tion to the region of space that the object occupies. If the bounding volume is outside
the view frustum, then so is the object and we need not ask the renderer to draw
it. The intersection/containment test between bounding volume and view frustum
is hopefully a lot less expensive to compute than the intersection/containment tests
for all the triangles of the object. If the bounding volume is a sphere, the test for the
sphere being outside the view frustum is equivalent to computing the distance from
the sphere center to the view frustum and showing that it is larger than the radius of
the sphere.

Computing the distance from a point to a view frustum is more complicated than
most game programmers care to deal with—hence the replacement of that test with
an inexact query that is simpler to implement. Specifically, the sphere is tested against
each of the six frustum planes. The frustum plane normals are designed to point into
the view frustum; that is, the frustum is on the “positive side” of all the planes. If the
sphere is outside any of these planes, say, on the “negative side” of a plane, then the
sphere is outside the entire frustum and the object is not visible and therefore not
sent to the renderer for drawing (i.e., it is culled). I call this plane-at-a-time culling .
The geometry query I refer to as the which-side-of-plane query. There are situations
when the sphere is not outside one of the planes but is outside the view frustum; that
is why earlier I used the adjective “inexact.” Figure 2.22 shows the situation in two
dimensions.

The sphere in the upper right of the image is not outside any of the frustum planes
but is outside the view frustum. The plane-at-a-time culling system determines that
the sphere is not outside any plane, and the object associated with the bounding
volume is sent to the renderer for drawing. The same idea works for convex bounding
volumes other than spheres. Pseudocode for the general inexact culling is
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bool IsCulled (ViewFrustum frustum, BoundingVolume bound)
{

for each plane of frustum do
{

if bound is on the negative side of plane then
return true;

}
return false;

}

Hopefully, the occurrence of false positives (bound outside frustum, but not outside
all frustum planes) is infrequent.

Even though plane-at-a-time culling is inexact, it may be used to improve effi-
ciency in visibility determination in a scene graph. Consider the scene graph of Figure
4.2, where each node in the tree has a bounding volume associated with it. Suppose
that, when testing the bounding volume of the Table Group against the view frus-
tum, you find that the bounding volume is on the positive side of one of the view
frustum planes. The collective object represented by Table Group is necessarily on
the positive side of that plane. Moreover, the objects represented by the children of
Table Group must also be on the positive side of the plane. We may take advantage
of this knowledge and pass enough information to the children (during a traversal
of the tree for drawing purposes) to let the culling system know not to test the child
bounding volumes against that same plane. In our example, the Table and Utensil
Group nodes do not have to compare their bounding volumes to that plane of the
frustum. The information to be stored is as simple as a bit array, each bit correspond-
ing to a plane. In my implementation, discussed in more detail later in this chapter,
the bits are set to 1 if the plane should be compared with the bounding volumes, and
0 otherwise.

An argument I read about somewhat regularly in some Usenet newsgroups is
that complicated bounding volumes should be avoided because the which-side-of-
plane query for the bounding volume is expensive. The recommendation is to use
something as simple as a sphere because the query is very inexpensive to compute
compared to, say, an oriented bounding box. Yes, a true statement, but it is taken
out of context of the bigger picture. There is a balance between the complexity of the
bounding volume type and the cost of the which-side-of-plane query. As a rule of
thumb, the more complex the bounding volume of the object, the better fitting it is
to the object, but the query is more expensive to compute. Also as a rule of thumb,
the better fitting the bounding volume, the more likely it is to be culled compared to
a worse-fitting bounding volume. Figure 4.5 shows a typical scenario.

Even though the cost for the which-side-of-plane query is more expensive for the
box than for the sphere, the combined cost of the query for the sphere and the attempt
to draw the object, only to find out it is not visible, is larger than the cost of the query
for the box. The latter object has no rendering cost because it was culled.
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(a) (b)

Figure 4.5 A situation where a better-fitting bounding volume leads to culling, but a worse-
fitting one does not. (a) The bounding sphere is not tight enough to induce culling.
(b) The bounding box is tight enough to induce culling.

On the other hand, if most of the objects are typically inside the frustum, in which
case you get the combined cost of the query and drawing, the sphere bounding vol-
umes look more attractive. Whether or not the better-fitting and more expensive
bounding volumes are beneficial depends on your specific 3D environment. To be
completely certain of which way to go, allow for different bounding volume types
and profile your applications for each type to see if there is any savings in time for the
better-fitting volumes. The default bounding volume type in Wild Magic is a bound-
ing sphere; however, the system is designed to allow you to easily swap in another
type without having to change engine or application code. This is accomplished by
providing an abstract interface (base class) for bounding volumes. I discuss this a bit
later in the section.

Collision Determination

Another major use for bounding volumes is 3D picking . A picking ray in world
coordinates is selected by some mechanism. A list of objects that are intersected by the
ray can be assembled. As a coarse-level test, if the ray does not intersect the bounding
volume of an object, then it does not intersect the object.

The bounding volumes also support collision determination. More precisely, they
may be used to determine if two objects are not intersecting , much in the same way
they are used to determine if an object is not visible. Collision detection for two
arbitrary triangle meshes is an expensive endeavor. We use a bounding volume as
an approximation to the region of space that the object occupies. If the bounding
volumes of two objects do not intersect, then the objects do not intersect. The hope is
that the test for intersection of two bounding volumes is much less expensive than the
test for intersection of two triangle meshes. Well, it is, unless the objects themselves
are single triangles!

The discussion of how to proceed with picking after you find out that the ray
intersects a bounding volume or how to proceed with collision detection after you
find out that the bounding volumes intersect is deferred to Section 8.4.
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The Abstract Bounding Volume Interface

My main goal in having an abstract interface was not to force the engine users to
use my default bounding spheres. I also wanted to make sure that it was very easy to
make the change, one that did not require changes to the core engine components
or the applications themselves. The abstraction forces you to think about the various
geometric queries in object-independent ways. Although abstract interfaces tend not
to have data associated with them, experience led me to conclude that a minimal
amount of information is needed. At the lowest level, you need to know where a
bounding volume is located and what its size is. The two data members that represent
these values are a center point and a radius. These values already define a sphere,
so you may think of the base class as a representation of a bounding sphere for the
bounding volume. The values for an oriented bounding box are naturally the box
center and the maximum distance from the center to a vertex. The values for a convex
polyhedron may be selected as the average of the vertices and the maximum distance
from that average to any vertex. Other types of bounding volumes can define center
and radius similarly.

The abstract class is BoundingVolume and has the following initial skeleton:

class BoundingVolume : public Object
public:
{

virtual ~BoundingVolume ();

virtual void SetCenter (const Vector3f& rkCenter) = 0;
virtual void SetRadius (float fRadius) = 0;
virtual Vector3f GetCenter () const = 0;
virtual float GetRadius () const = 0;

static BoundingVolume* Create ();

protected:
BoundingVolume ();

};

The constructor is protected and the Set and Get accessors are pure virtual functions,
so the class is abstract. The static member function Create is used as a factory to pro-
duce objects without having to know what specific type (or types) exist in the engine.
A derived class has the responsibility for implementing this function, and only one
derived class may do so. In the engine, the Create call occurs during construction
of a Spatial object (the world bounding volume) and a Geometry object (the model
bounding volume). A couple of additional calls occur in Geometry-derived classes,
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but only because the construction of the model bounding volume is deferred until
the actual model data is known by those classes.

Even though only a single derived class implements Create, you may have mul-
tiple BoundingVolume-derived classes in the engine. Those not implementing Create
must be constructed explicitly. Only the core engine components for geometric up-
dates must be ignorant of the type of bounding volume.

Switching to a new BoundingVolume type for the core engine is quite easy. All you
need to do is comment out the implementation of BoundingVolume::Create in the
default bounding volume class, SphereBV, and implement it in your own derived class.
The SphereBV class is

BoundingVolume* BoundingVolume::Create ()
{

return new SphereBV;
}

If you were to switch to BoxBV, the oriented bounding box volumes, then in
Wm4BoxBV.cpp you would place

BoundingVolume* BoundingVolume::Create ()
{

return new BoxBV;
}

The remaining interface for BoundingVolume is shown next. All member functions
are pure virtual, so the derived classes must implement these.

class BoundingVolume : public Object
public:
{

virtual void ComputeFromData (
const Vector3fArray* pkVertices) = 0;

virtual void TransformBy (const Transformation& rkTransform,
BoundingVolume* pkResult) = 0;

virtual int WhichSide (const Plane3f& rkPlane) const = 0;

virtual bool TestIntersection (const Vector3f& rkOrigin,
const Vector3f& rkDirection) const = 0;

virtual bool TestIntersection (
const BoundingVolume* pkInput) const = 0;
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virtual void CopyFrom (const BoundingVolume* pkInput) = 0;
virtual void GrowToContain (const BoundingVolume* pkInput) = 0;
virtual bool Contains (const Vector3f& rkPoint) const = 0;

};

The bounding volume depends, of course, on the vertex data that defines the object.
The ComputeFromData method provides the construction of the bounding volume
from the vertices.

The transformation of a model-space bounding volume to one in world space is
supported by the method TransformBy. The first input is the model-to-world trans-
formation, and the second input is the world-space bounding volume. That volume
is computed by the method and is valid on return from the function. The Geometry
class makes use of this function.

The method WhichSide supports the which-side-of-plane query that was dis-
cussed for culling of nonvisible objects. The Plane3 class stores unit-length normal
vectors, so the BoundingVolume-derived classes may take advantage of that fact to im-
plement the query. If the bounding volume is fully on the positive side of the plane
(the side to which the normal points), the function returns +1. If it is fully on the
negative side, the function returns −1. If it straddles the plane, the function returns 0.

The first TestIntersection method supports 3D picking. The input is the origin
and direction vector for a ray that is in the same coordinate system as the bounding
volume. The direction vector must be unit length. The return value is true if and
only if the ray intersects the bounding volume. The second TestIntersection method
supports collision determination. The input bounding volume must be the same type
as the calling object, but the engine does not check this constraint, so you must. The
bounding volumes are assumed to be stationary. The return value of the function is
true if and only if the two bounding volumes are intersecting.

The member functions CopyFrom and GrowToContain support the upward pass
through the scene graph that computes the bounding volume of a parent node from
the bounding volumes of the child nodes. In Wild Magic, the parent bounding vol-
ume is constructed to contain all the child bounding volumes. The default bounding
volume is a sphere, so the parent bounding volume is a sphere that contains all the
spheres of the children. The function CopyFrom makes the calling object a copy of the
input bounding volume. The function GrowToContain constructs the bounding vol-
ume of the calling bounding volume and the input bounding volume. For a node
with multiple children, CopyFrom makes a copy of the first child, and GrowToContain
creates a bounding volume that contains that copy and the bounding volume of the
second child. The resulting bounding volume is grown further to contain each of
the remaining children. The member function Contains is a simple test of whether
the input point is inside the bounding volume.

A brief warning about having a bounding volume stored in Spatial through an
abstract base class (smart) pointer: Nothing prevents you from setting the bound-
ing volume of one object to be a sphere and another to be a box. However, the
BoundingVolume member functions that take a BoundingVolume object as input are
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designed to manipulate the input as if it were the same type as the calling object.
Mixing bounding volume types is therefore an error, and the engine has no pre-
vention mechanism for this. It is possible to extend the bounding volume system to
handle mixed types. Each bounding volume pair requires you to implement a test-
intersection query function. The semantics of the CopyFrom function must change.
How do you copy a bounding sphere to an oriented bounding box? The semantics of
GrowToContain must also change. If you have a sphere and a box, should the contain-
ing volume be a sphere or a box? I chose to limit the complexity of Wild Magic by
disallowing mixing of bounding volume types.

Another warning is that the merging of bounding volumes two at a time is a
greedy algorithm. The final bounding volume is not usually optimal, leading to less
precise culling. A joint merge of bounding volumes will usually produce a better
fit, but the run-time cost of a joint merge is typically more than that for a greedy
algorithm. This is a trade-off you will need to consider when designing a hierarchical
culling system.

4.2.4 Geometric Types

The basic geometric types supported in the engine are collections of points, col-
lections of line segments, triangle meshes, and particles. Various classes in the core
engine implement these types. During the drawing pass through the scene graph, the
renderer is provided with such objects and must draw them as their types dictate.
Most graphics APIs require the type of object to be specified, usually via a set of enu-
merated values. To facilitate this, the Geometry class has enumerations for the basic
types, as shown in the following code snippet:

class Geometry : public Spatial
{

// internal use
public:

enum GeometryType
{

GT_POLYPOINT,
GT_POLYLINE_SEGMENTS,
GT_POLYLINE_OPEN,
GT_POLYLINE_CLOSED,
GT_TRIMESH,
GT_MAX_QUANTITY

};

GeometryType Type;
};
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The type itself is stored in the data member Type. It is in public scope because there
are no side effects in reading or writing it. However, the block is marked for internal
use by the engine. There is no need for an application writer to manipulate the type.

The value GT_POLYPOINT indicates that the object is a collection of points. The
value GT_TRIMESH indicates that the object is a triangle mesh. The three values with
POLYLINE as part of their names are used for collections of line segments. GT_
POLYLINE_SEGMENTS is for a set of line segments with no connections between them.
GT_POLYLINE_OPEN is for a polyline, a set of line segments where each segment end-
point is shared by at most two lines. The initial and final segments each have an
endpoint that is not shared by any other line segment; thus, the polyline is said to be
open. Another term for an open polyline is a line strip. If the two endpoints are actu-
ally the same point, then the polyline forms a loop and is said to be closed. Another
term for a closed polyline is a line loop.

If you were to modify the engine to support other types that are native to the
graphics APIs, you could add enumerated types to the list. You should add these after
GT_TRIMESH, but before GT_MAX_QUANTITY, in order to preserve the numeric values of
the current types.

Points

A collection of points is represented by the class Polypoint, which is derived from
Geometry. The interface is very simple.

class Polypoint : public Geometry
{
public:

Polypoint (VertexBuffer* pkVBuffer);
virtual ~Polypoint ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

protected:
Polypoint ();

int m_iActiveQuantity;
};

The points are provided to the constructor. From the application’s perspective,
the set of points is unordered. However, for the graphics APIs that use vertex arrays,
I have chosen to assign indices to the points. The vertices and indices are both used
for drawing. The public constructor is
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Polypoint::Polypoint (VertexBuffer* pkVBuffer)
:
Geometry(pkVBuffer,0)

{
Type = GT_POLYPOINT;

int iVQuantity = VBuffer->GetVertexQuantity();
m_iActiveQuantity = iVQuantity;

IBuffer = WM4_NEW IndexBuffer(iVQuantity);
int* aiIndex = IBuffer->GetData();
for (int i = 0; i < iVQuantity; i++)
{

aiIndex[i] = i;
}

}

The assigned indices are the natural ones.
The use of an index array has a pleasant consequence. Normally, all of the points

would be drawn by the renderer. In some applications you might want to have storage
for a large collection of points, but have only a subset active at one time. The class has
a data member, m_iActiveQuantity, that indicates how many are active. The active
quantity may be zero but cannot be larger than the total quantity of points. The active
set is contiguous in the array, starting at index zero, but if need be, an application can
move the points from one vertex array location to another.

The active quantity data member is not in the public interface. The function
SetActiveQuantity has the side effect of validating the requested quantity. If the input
quantity is invalid, the active quantity is set to the total quantity of points.

The index buffer IBuffer is a data member in the base class Geometry. Its type
is IndexBuffer. This array is used by the renderer for drawing purposes. Part of that
process involves querying the array for the number of elements. The index buffer class
has a member function, GetIndexQuantity, that returns the total number of elements
in the array. However, we want it to report the active quantity when the object to
be drawn is of type Polypoint. To support this, the shared array class has a member
function SetIndexQuantity that changes the internally stored total quantity to the
requested quantity. The requested quantity must be no larger than the original total
quantity. If it is not, no reallocation occurs in the shared array, and any attempt to
write elements outside the original array is an access violation.

Rather than adding a new data member to IndexBuffer to store an active quantity,
allowing the total quantity to be stored at the same time, I made the decision that
the caller of SetIndexQuantity must remember the original total quantity, in case
the original value must be restored through another call to SetIndexQuantity. My
decision is based on the observation that calls to SetIndexQuantity will be infrequent,
so I wanted to minimize the memory usage for the data members of IndexBuffer.
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As in all Object-derived classes, a default constructor is provided for the purpose
of streaming. The constructor is protected to prevent the application from creating
default objects whose data members have not been initialized with real data.

Line Segments

A collection of line segments is represented by the class Polyline, which is derived
from Geometry. The interface is

class Polyline : public Geometry
{
public:

Polyline (VertexBuffer* pkVBuffer, bool bClosed,
bool bContiguous);

virtual ~Polyline ();

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;
void SetClosed (bool bClosed);
bool GetClosed () const;
void SetContiguous (bool bContiguous);
bool GetContiguous () const;

protected:
Polyline ();
void SetGeometryType ();

int m_iActiveQuantity;
bool m_bClosed, m_bContiguous;

};

The endpoints of the line segments are provided to the constructor. The three
possible interpretations for the vertices are disjoint segments, open polyline, or closed
polyline. The input parameters bClosed and bContiguous determine which interpre-
tation is used. The inputs are stored as class members m_bClosed and m_bContiguous.
The actual interpretation is implemented in SetGeometryType:

void Polyline::SetGeometryType ()
{

if (m_bContiguous)
{

if (m_bClosed)
{
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if (Type != GT_POLYLINE_CLOSED)
{

// Increase the index quantity to account
// for closing the polyline.
IBuffer->SetIndexQuantity(

IBuffer->GetIndexQuantity()+1);
IBuffer->ReleaseAll();

}
Type = GT_POLYLINE_CLOSED;

}
else
{

if (Type == GT_POLYLINE_CLOSED)
{

// Decrease the index quantity to account
// for closing the polyline.
IBuffer->SetIndexQuantity(

IBuffer->GetIndexQuantity()-1);
IBuffer->ReleaseAll();

}
Type = GT_POLYLINE_OPEN;

}
}
else
{

if (Type == GT_POLYLINE_CLOSED)
{

// Decrease the index quantity to account
// for closing the polyline.
IBuffer->SetIndexQuantity(

IBuffer->GetIndexQuantity()-1);
IBuffer->ReleaseAll();

}
Type = GT_POLYLINE_SEGMENTS;

}
}

To be a polyline where endpoints are shared, the contiguous flag must be set to true.
The closed flag has the obvious interpretation.

Let the points be Pi for 0 ≤ i < n. If the contiguous flag is false, the object is
a collection of disjoint segments. For a properly formed collection, the quantity of
vertices n should be even. The n/2 segments are

〈P0, P1〉, 〈P2, P3〉, . . . , 〈Pn−2, Pn−1〉
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If the contiguous flag is true and the closed flag is false, the points represent an open
polyline with n − 1 segments:

〈P0, P1〉, 〈P1, P2〉, . . . , 〈Pn−2, Pn−1〉

The endpoint P0 of the initial segment and the endpoint Pn−1 of the final segment
are not shared by any other segments. If instead the closed flag is true, the points
represent a closed polyline with n segments:

〈P0, P1〉, 〈P1, P2〉, . . . , 〈Pn−2, Pn−1〉, 〈Pn−1, P0〉

Each point is shared by exactly two segments. Although you might imagine that a
closed polyline in the plane is a single loop that is topologically equivalent to a circle,
you can obtain more complicated topologies by duplicating points. For example,
you can generate a bowtie (two closed loops) in the z = 0 plane with P0 = (0, 0, 0),
P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 0), P4 = (0, −1, 0), and P5 = (−1, 0, 0). The
contiguous and closed flags are both set to true.

The class has the ability to select an active quantity of endpoints that is smaller or
equal to the total number, and the mechanism is exactly the one used in Polypoint.
If your Polyline object represents a collection of disjoint segments, you should also
make sure the active quantity is an even number.

Triangle Meshes

The simplest representation for a collection of triangles is as a list of m triples of 3m
vertices:

〈V0, V1, V2〉, 〈V3, V4, V5〉, . . . , 〈V3m−3, V3m−2, V3m−1〉

The vertices of each triangle are listed in counterclockwise order; that is, the triangle
is in a plane with a specified normal vector. An observer on the side of the plane to
which the normal is directed sees the vertices of the triangle in a counterclockwise
order on that plane. A collection like this is sometimes called a triangle soup (or more
generally, a polygon soup). Graphics APIs do support rendering where the triangles
are provided this way, but most geometric models built from triangles are not built
as a triangle soup. Vertices in the model tend to be part of more than one triangle.
Moreover, if the triangle soup is sent to the renderer, each vertex must be transformed
from model space to world space, including running them through the clipping and
lighting portions of the system. If a point occurs multiple times in the list of vertices,
each one processed by the renderer, we are wasting a lot of cycles.

A more efficient representation for a collection of triangles is to have an array of
unique vertices and represent the triangles as a collection of triples of indices into the
vertex array. This is called a triangle mesh. If Vi for 0 ≤ i < n is the array of vertices,
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an index array Ij for 0 ≤ j < 3m represents the triangles

〈VI0
, VI1

, VI2
〉, 〈VI3

, VI4
, VI5

〉, . . . , 〈VI3m−3
, VI3m−2

, VI3m−1
〉

The goal, of course, is that n is a lot smaller than 3m because of the avoidance
of duplicate vertices in the vertex array. Fewer vertices must be processed by the
renderer, leading to faster drawing.

The class that represents triangle meshes is TriMesh. A portion of the interface is

class TriMesh : public Geometry
{
public:

TriMesh (VertexBuffer* pkVBuffer, IndexBuffer* pkIBuffer);
virtual ~TriMesh ();

int GetTriangleQuantity () const;
void GenerateNormals ();

protected:
TriMesh ();
virtual void UpdateModelNormals ();

};

I have omitted the interface that supports the picking system and will discuss that in
Section 8.4.

The constructor requires you to provide the vertex and index buffers for the
triangle mesh. The quantity of elements in the index buffer should be a multiple
of three. The member function GetTriangleQuantity returns the quantity of indices
divided by three.

If vertex normals are provided by the input vertex buffer, they will be used as
needed during rendering. If they are not provided and you want to add them, you can
do so by a call to GenerateNormals. This will re-create the vertex buffer with additional
storage for the normals. The actual construction of the vertex normals is done in the
method UpdateModelNormals. The method is protected, so you cannot call it directly.
It is called indirectly through the public update function Geometry::UpdateMS. Mul-
tiple algorithms exist for the construction of vertex normals. The one I implemented
is as follows. Let T1 through Tm be those triangles that share vertex V. Let N1 through
Nm be normal vectors to the triangles, but not necessarily unit-length ones. For a tri-
angle T with vertices V0, V1, and V2, the normal I use is N = (V1 − V0) × (V2 − V0).
The vertex normal is a unit-length vector,

N =
∑m

i=1 Ni∣∣∑m
i=1 Ni

∣∣
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The length |Ni| is twice the area of the triangle to which it is normal. Therefore, large
triangles will have a greater effect on the vertex normal than small triangles. I consider
this a more reasonable algorithm than one that computes the vertex normal as an
average of unit-length normals for the sharing triangles, where all triangles have the
same influence on the outcome regardless of their areas.

Particles

A particle is considered to be a geometric primitive with a location in space and a
size. The size attribute distinguishes particles from points. A collection of particles is
referred to as a particle system. Particle systems are quite useful, for interesting visual
displays as well as for physical simulations. In this section I will discuss the geometric
aspects of particles and the class Particles that represents them.

The portion of the class interface for Particles that is relevant to data manage-
ment is

class Particles : public TriMesh
{
public:

Particles (const Attributes& rkAttr,
Vector3fArray* pkLocations, FloatArray* pkSizes);

virtual ~Particles ();

Vector3fArrayPtr Locations;
FloatArrayPtr Sizes;
float SizeAdjust;

void SetActiveQuantity (int iActiveQuantity);
int GetActiveQuantity () const;

protected:
Particles ();
void GenerateParticles (const Camera* pkCamera);

int m_iActiveQuantity;
};

The first observation is that the class is derived from TriMesh. The particles are drawn
as billboard squares (see Section 7.1) that always face the observer. Each square is built
of two triangles, and all the triangles are stored in the base class as a triangle mesh.
The triangle mesh has four times the number of vertices as it does particle locations,
which is why the locations are stored as a separate array.
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The constructor accepts inputs for the particle’s vertex attributes, locations, and
sizes. The vertex buffer is created to store four times the number of locations.

The data members Locations, Sizes, and SizeAdjust are in public scope because
no side effects must occur when they are read or written. The locations and sizes are
as described previously. The data member SizeAdjust is used to uniformly scale the
particle sizes, if so desired. The adjustment is a multiplier of the sizes stored in the
member array Sizes, not a replacement for those values. The initial value for the size
adjustment is 1.

The class has the ability to select an active quantity of endpoints that is smaller or
equal to the total number. The mechanism is exactly the one used in Polypoint.

4.3 Render State

I use the term render state to refer to all the information that is associated with the
geometric data for the purpose of drawing the objects. Three main categories of
render state are global state, lights, and effects.

4.3.1 Global State

Global state refers to information that is essentially independent of any information
the objects might provide. The states I have included in the engine are alpha blending,
triangle culling, material, polygon offset, stenciling, wireframe, and depth buffering.
For example, depth buffering does not care how many vertices or triangles an object
has. A material has attributes that are applied to the vertices of an object, regardless
of how many vertices it has. Alpha blending is used for combining pixel colors at
the color buffer level. A global state, when attached to an interior node in a scene
hierarchy, affects all leaf nodes in the subtree rooted at the node. This property is
why I used the adjective global.

The base class is GlobalState and has the following interface:

class GlobalState : public Object
{
public:

virtual ~GlobalState ();

enum StateType
{

ALPHA,
CULL,
MATERIAL,
POLYGONOFFSET,
STENCIL,
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WIREFRAME,
ZBUFFER,
MAX_STATE_TYPE

};

virtual StateType GetStateType () const = 0;

// default states
static Pointer<GlobalState> Default[MAX_STATE_TYPE];

protected:
GlobalState ();

};

The base class is abstract since the constructor is protected (and since there is a pure
virtual function declared). To support fast access of global states in arrays of smart
pointers GlobalStatePtr, I chose to avoid using the Object run-time type informa-
tion (RTTI) system. The enumerated type of GlobalState provides an alternate RTTI
system. Each derived class returns its enumerated value through an implementation
of GetStateType. Each derived class is also responsible for creating a default state,
stored in the static array GlobalState::Default[]. Currently, the enumerated val-
ues are a list of all the global states I support. If you were to add another one, you
would derive a class MyNewGlobalState from GlobalState. But you also have to add
another enumerated value MYNEWGLOBALSTATE to the base class. This violates the open-
closed principle of object-oriented programming, but the changes to GlobalState are
so simple and so infrequent that I felt justified in the violation. None of the classes in
Wild Magic version 4 ever write an array of global state pointers to disk, so adding a
new state does not invalidate all of the scenes you had streamed before the change.

The global states are stored in class Spatial. A portion of the interface relative to
global state storing and member accessing is

class Spatial : public Object
{
public:

int GetGlobalStateQuantity () const;
GlobalState* GetGlobalState (int i) const;
GlobalState* GetGlobalState (GlobalState::StateType eType) const;
void AttachGlobalState (GlobalState* pkState);
void DetachGlobalState (GlobalState::StateType eType);
void DetachAllGlobalStates ();

protected:
std::vector<GlobalStatePtr> m_kGlobalStates;

};
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The states are stored in an array of smart pointers. A typical scene will have only
a small number of nodes with global states attached, since these states are designed
to override the default ones. The names of the member functions make it clear how
to use the functions. The eType input is intended to be one of the GlobalState
enumerated values. For example, the code

MaterialState* pkMS = <some material state>;
Spatial* pkSpatial = <some Spatial-derived object>;
pkSpatial->AttachGlobalState(pkMS);
pkSpatial->DetachGlobalState(GlobalState::MATERIAL);

attaches a material state to an object, then removes it from the object.
The class Geometry also has storage for global states, but the storage is for all global

states encountered along the path in the scene hierarchy from the root node to the
geometry leaf node. The storage is assembled during a render-state update, a topic
discussed later in this section. The portion of the interface of Geometry relevant to
storage is

class Geometry : public Spatial
{
// internal use
public:

GlobalStatePtr States[GlobalState::MAX_STATE_TYPE];
};

The array of states is in public scope but is tagged for internal use only. An application
should not manipulate the array or its members.

These classes derived from GlobalState have a few things in common. First, they
must all implement the virtual function GetStateType. Second, they must all cre-
ate default objects, something that is done at program initialization. At program
termination, the classes should all destroy their default objects. The initialization-
termination system discussed in Section 18.8 is used to perform these actions. You
will see that each derived class uses the macros defined in Wm4Main.mcr and imple-
ments void Initialize() and void Terminate(). All the derived classes have a default
constructor that is used to create the default objects.

The influence of the global states on rendering was discussed in Sections 2.6
and 3.1.

4.3.2 Lights

Drawing objects using only textures results in renderings that lack the realism we are
used to in the real world. Much of the richness our own visual systems provide is due
to lighting . A graphics system must support the concept of lights and of materials that
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the lights affect. The lighting models supported by standard graphics APIs are a sim-
ple approximation to true lighting but are designed so that the lighting calculations
can be performed quickly. More realistic lighting is found in systems that are almost
never real time. The physical model aspects of lights and materials were discussed in
detail in Section 2.6.2. The discussion in this section is about the design choices for
representing lights.

The types of lights and their attributes are sufficiently numerous that many en-
gines provide multiple classes. Usually an engine will provide an abstract base class
for lights, and then derived classes such as an ambient light class, a directional light
class, a point light class, and a spotlight class. I did so in Wild Magic version 2, but
decided that the way the renderer accessed the information for a light was more com-
plicated than it needed to be. Also in Wild Magic version 2, the Light class was derived
from Object. A number of users were critical of this choice and insisted that Light
be derived from Spatial. By doing so, a light automatically has a location (the local
translation) and an orientation (the local rotation). One of the orientation vectors
can assume the role of the direction for a directional light.

In Wild Magic version 2, I had chosen not to derive Light from Spatial because
ambient lights have no location or direction and directional lights have no location.
In this sense they are not very spatial! The consequence, though, was that I had to add
a class, LightNode, that was derived from Node and that had a Light data member. This
allowed point lights and spotlights to change location and directional lights to change
orientation, and then have the geometric update system automatically process them.
Even these classes presented some problems to users. One problem had to do with
importing LightWave objects into the engine, because LightWave uses left-handed
coordinates for everything. The design of LightNode (and CameraNode) prevented a
correct import of lights (and cameras) when they were to be attached as nodes in a
scene.

In the end, I decided to satisfy the users and designed Wild Magic version 3 to
create a single class called Light that is derived from Spatial. Not all data members
made sense for each light type. When you manipulated a directional light, setting
the location had no effect. By deriving from Spatial, some subsystems were available
to Light that are irrelevant. For example, attaching to a light a global state such as
a depth buffer had no meaning, but the engine semantics allowed the attachment.
In fact, you could even attach lights to lights. You could attach a light as a leaf
node in the scene hierarchy. For example, you might have a representation of a
headlight in an automobile. A node is built with two children: One child is the
Geometry object that represents the headlight’s model data, and the other child is a
Light to represent the light source for the headlight. The geometric data is intended
to be drawn to visualize the headlight, but the light object itself is not renderable.
The virtual functions for global-state updates and for drawing were stubbed out in
the Wild Magic version 2 Light class, so that incorrect use of the lights would not be
a problem.

These design choices appear to have caused just as much grumbling about the
consequences, with one poster to a game developer forum calling the design “ugly.”
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For the umpteenth time, I have reversed my design decisions, but this time is for
good. Here is my explanation, for better or worse. The Light class is no longer derived
from Spatial; the Camera class similarly is no longer derived from Spatial. And I
revived the classes LightNode and CameraNode, but I believe I have made sufficient
changes to Light and Camera to avoid the importing problems caused by modeling
packages with fully left-handed coordinate systems.

If the Light class were to have no data, or just ambient color and intensity, you
could use a standard class hierarchy:

class Light
[ambient, intensity]

class AmbientLight : public Light
[no additional data]

class DirectionalLight : public Light
[direction, diffuse, specular]

class PointLight : public Light
[position, diffuse, specular, attenuation]

class SpotLight : public PointLight
[cone axis, cone angle, spot exponent]

The renderer holds onto lights via the base class Light. The consequences of a
standard class hierarchy are that the renderer must use dynamic casting to de-
termine the type of light in order to set shader program constants in the Ren-
derer::SetConstantLightFOOBAR calls. This is an expense I wish to avoid. An al-
ternative is to allow Light to store all the data in public scope, but to derive the
specific light classes using a protected Light base class. Thus, Renderer has access to
all the data it needs without having to dynamically cast, and the derived-class objects
have functions to access only the data relevant to them. Unfortunately, you run into
problems with access rights to Object items such as incrementing and decrementing
reference counts for smart pointers. In the end, I chose to make the Light class a
generic class that stores everything needed by the various light types. I find this a rea-
sonable trade-off, allowing the rapid setting of shader constants to be the important
issue.

The Light Class

The Light class has a quite complicated interface. I will look at portions of it at a time.
The class supports the standard light types: ambient, directional, point, and spot.
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class Light : public Object
{
public:

enum LightType
{

LT_AMBIENT,
LT_DIRECTIONAL,
LT_POINT,
LT_SPOT,
LT_QUANTITY

};

Light (LightType eType = LT_AMBIENT);
virtual ~Light ();

LightType Type; // default: LT_AMBIENT

ColorRGB Ambient; // default: ColorRGB(0,0,0)
ColorRGB Diffuse; // default: ColorRGB(0,0,0)
ColorRGB Specular; // default: ColorRGB(0,0,0)

float Constant; // default: 1
float Linear; // default: 0
float Quadratic; // default: 0
float Intensity; // default: 1

float Angle; // default: pi
float CosAngle; // default: -1
float SinAngle; // default: 0
float Exponent; // default: 1
void SetAngle (float fAngle);

Vector3f Position, DVector, UVector, RVector;
void SetDirection (const Vector3f& rkDirection,

bool bUnitLength = true);

bool IsValidFrame () const;
};

When you create a light, you specify the type you want. Each light has ambient,
diffuse, and specular colors. The data members Constant, Linear, Quadratic, and
Intensity are used for attenuation as described in Section 2.6.2.

Spotlights require you to specify an angle from the spotlight axis. This angle
is represented by the member Angle. For the convenience and efficiency of shader
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programs that use spotlights, you also specify the sine and cosine of the angle. This
avoids the vertex program from having to compute it for each vertex. The member
Exponent is the spotlight exponent; see Section 2.6.2.

The coordinate frame for a light is specified by Position, the light position;
DVector, the light direction; UVector, an up vector; and RVector, a right vector per-
pendicular to the other two vectors. The three vectors must form a right-handed or-
thonormal set. These quantities are what were automatically provided in Wild Magic
version 3 by the Spatial base class. As mentioned previously, not all light types re-
quire all the coordinate frame information. In fact, the current light types supported
by the engine use only position and direction vectors, but it is conceivable that you
might add a light type that does need an up and a right vector (e.g., a fluorescent light
in the shape of a cylinder). The SetDirection function automatically computes an up
and right vector. These are actually used by the LightNode class.

The function IsValidFrame is for debugging purposes. It checks to see if the
coordinate frame vectors really do form a right-handed orthonormal set.

Support for Lights in Spatial and Geometry Classes

The Spatial class stores an array of lights. If a light is added to this array, and the
object really is of type Node, then my design choice is that the light illuminates all leaf
geometry in the subtree rooted at the node. The portion of the interface for Spatial
relevant to adding and removing lights from the list is

class Spatial : public Object
{
public:

int GetLightQuantity () const;
Light* GetLight (int i) const;
void AttachLight (Light* pkLight);
void DetachLight (Light* pkLight);
void DetachAllLights ();

protected:
std::vector<ObjectPtr> m_kLights;

};

The use of ObjectPtr instead of LightPtr resolves a circular header dependency
between Spatial and Light.

Function AttachLight checks to see if the input light is already in the array. If so,
no action is taken. If not, the light is added to the array. The function GetLightQuan-
tity just returns the number of lights in the array. The function GetLight returns the
ith light in the array. The function DetachLight searches the array for the input light,
removing it if it exists.
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In Wild Magic version 3, the Geometry class stored an array of Light objects.
These lights were those occurring along a path from the root of the scene to the
leaf geometry object. The lights were passed to the renderer so that lighting could be
enabled and light parameters set, but this was all relative to having a fixed-function
pipeline. Wild Magic version 4 is a shader-based engine, so now lighting is handled
by shaders. Rather than requiring users to add lighting support to each and every
shader written, the lights affecting the Geometry object are used by a local effect
attached to the object, namely, a LightingEffect object. When such an effect exists,
the Renderer::Draw function will rasterize the geometric primitive first using lighting,
and then blend in any remaining effects attached to the object. This does amount
to a multipass operation, so if you want only single-pass drawing, you must either
stitch the lighting shaders to your own or provide shaders that can handle lighting in
addition to whatever effects you had previously.

The render-state update, discussed later in this section, shows how the lights are
propagated to the leaf nodes and combined into a lighting effect.

4.3.3 Effects

In Wild Magic version 3, I added a new class called Effect, which stored vertex
colors, textures, and texture coordinates. The object also had a Renderer function
pointer for that function responsible for drawing an object to which the Effect
was attached. One problem with this approach was that the vertex attributes (colors
and texture coordinates) were stored separately from other vertex attributes for a
geometric primitive. As much as I wanted to believe this allowed better sharing of
data, it turned out to be a poor choice. The renderer had to look in multiple places to
assemble all the data to render a single geometric primitive. Now the vertex buffers
in Wild Magic version 4 encapsulate all vertex attributes for a geometric primitive.

Another problem prior to version 4 was that multipass special effects required
you to create an Effect-derived class, create a corresponding function and add a pure
virtual function to the Renderer interface, and then implement that function in each
Renderer-derived class. The potential for frequent modifications to the core engine
was quite large. In Wild Magic 4, the roles have been reversed. The Effect class is a
simple abstract base class with a single virtual function:

virtual void Draw (Renderer* pkRenderer,
Spatial* pkGlobalObject, int iVisibleQuantity,
VisibleObject* akVisible);

Local effects that only need standard vertex attributes and textures never need this
function. The class ShaderEffect is derived from Effect and is used to represent local
effects. However, global effects such as projected shadows and planar reflections are
represented by classes derived from Effect. These classes override the Draw function
and make calls to the Renderer to achieve the desired effects. The Renderer class is
powerful enough to supply the needs of any such global effect, so the Renderer code
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does not need to change when you add new effects. Thus, the core engine is isolated
from the addition of new effects. This is yet another manifestation of the open-closed
principle of object-oriented programming. The core engine is closed to changes, thus
protecting its integrity, but it is open to changes in that its interface supports the
needs of any new features added to the special effects system.

The Spatial class has an interface to support attaching and detaching Effect ob-
jects. If the Effect is attached to a Geometry object, the effect is considered to be a
local effect. Otherwise, the Effect is attached to a Node object and the effect is con-
sidered to be a global effect. Effects such as projected textures have both flavors. They
can be attached as global effects, but they have no need to override the Effect::Draw
function. The default Draw just iterates over the affected objects as shown:

void Effect::Draw (Renderer* pkRenderer,
Spatial* pkGlobalObject, int iVisibleQuantity,
VisibleObject* akVisible)

{
// The default drawing function for global effects.
// Essentially, this is a local effect applied to
// all the visible leaf geometry.
VisibleObject* pkCurrent = akVisible;
for (int i = 0; i < iVisibleQuantity; i++, pkCurrent++)
{

Geometry* pkGeometry = (Geometry*)pkCurrent->Object;
pkGeometry->AttachEffect(this);
pkRenderer->Draw(pkGeometry);
pkGeometry->DetachEffect(this);

}
}

The inputs to this function are automatically handled by the renderer layer. Your
application has no responsibility for making this happen.

The effects interface for Spatial is

class Spatial : public Object
{
public:

int GetEffectQuantity () const;
Effect* GetEffect (int i) const;
void AttachEffect (Effect* pkEffect);
void DetachEffect (Effect* pkEffect);
void DetachAllEffects ();

protected:
std::vector<EffectPtr> m_kEffects;

};
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The interface is identical in structure to the one for attaching and detaching lights.
One important note: Wild Magic version 3 allowed only a single Effect per Spatial
object. This made it very difficult to obtain multipass drawing, requiring you to write
your own renderer functions to support this. Wild Magic version 4 allows you to
attach more than one Effect. The Renderer::Draw function automatically takes care
of the multipass drawing—you are responsible only for specifying how the passes are
blended together. See Section 3.4 for the details.

4.4 The Update Pass

This section describes the two types of updates for a scene graph. The geometric-
state update must occur when you change vertex positional or normal data, trans-
formation values, or the topology of the scene graph (attach or detach subtrees). The
render-state update must occur when you attach or detach global render states, lights,
or effects, or when the topology of the scene graph changes.

4.4.1 Geometric-State Updates

Recall that the scene graph management core classes are Spatial, Geometry, and
Node. The Spatial class encapsulates the local and world transformations, the world
bounding volume, and the parent pointer in support of the scene hierarchy. The
Geometry class encapsulates the model data and the model bounding sphere and may
exist only as leaf nodes in the scene hierarchy. The Node class encapsulates grouping
and has a list of child pointers. All three classes participate in the geometric update
of a scene hierarchy—the process of propagating transformations from parents to
children (the downward pass), and then merging bounding volumes from children
to parents (the upward pass).

The data members of the Spatial interface relevant to geometric updates are
shown in the following partial interface listing:

class Spatial : public Object
{
public:

Transformation Local;
Transformation World;
bool WorldIsCurrent;

BoundingVolumePtr WorldBound;
bool WorldBoundIsCurrent;

};
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The data members are in public scope. This is a deviation from my choices for
Wild Magic version 2, where the data members were protected or private and ex-
posed only through public accessor functions, most of them implemented as inline
functions. My choice for later versions was to reduce the verbosity, so to speak, of
the class interface. In earlier versions, you would have a protected or private data
member, one or more accessors, and inline implementations of those accessors. For
example,

// in OldSpatial.h
class OldSpatial : public Object
{
public:

Transformation& Local (); // read-write access
const Transformation& GetLocal () const; // read-only access
void SetLocal (const Transform& rkLocal); // write-only access

protected:
Transformation m_kLocal;

};

// in OldSpatial.inl
Transformation& OldSpatial::Local ()

{ return m_kLocal; }
const Transformation& OldSpatial::GetLocal () const

{ return m_kLocal; }
void OldSpatial::SetLocal (const Transformation& rkLocal)

{ m_kLocal = rkLocal; }

The object-oriented premise of such an interface is to allow the underlying imple-
mentation of the class to change without forcing clients of the class to have to change
their code. This is an example of modular continuity; see [Mey88, Section 2.1.4],
specifically the following paragraph:

A design method satisfies Modular Continuity if a small change in a problem
specification results in a change of just one module, or few modules, in the system
obtained from the specification through the method. Such changes should not
affect the architecture of the system, that is to say the relations between modules.

The interface for OldSpatial is a conservative way to achieve modular continuity.
The experiences of two versions of Wild Magic led me to conclude that exposing some
data members in the public interface is acceptable as long as the subsystem involving
those data members is stable; that is, the subsystem will not change as the engine
evolves. This is a less conservative way to achieve modular continuity because it relies
on you not to change the subsystem.

By exposing data members in the public interface, you have another issue of
concern. The function interfaces to data members, as shown in OldSpatial, can hide
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side effects. For example, the function SetLocal has the responsibility of setting the
m_kLocal data member of the class. But it could also perform operations on other data
members or call other member functions, thus causing changes to state elsewhere in
the system. If set/get function calls require side effects, it is not recommended that
you expose the data member in the public interface. For if you were to do so, the
engine user would have the responsibility for doing whatever is necessary to make
those side effects occur.

In the case of the Spatial class, the Local data member is in public scope. Setting
or getting the value has no side effects. The new interface is

// in Spatial.h
class Spatial : public Object
{
public:

Transformation Local; // read-write access
};

and is clearly much reduced from that of OldSpatial. Observe that the prefix conven-
tion for variables is now used only for protected or private members. The convention
for public data members is not to use prefixes and to capitalize the first letter of the
name, just like function names are handled.

In class Spatial the world transformation is also in public scope. Recalling the
previous discussion about transformations, the world transformations are composi-
tions of local transformations. In this sense, a world transformation is computed as
a (deferred) side effect of setting local transformations. I just mentioned that expos-
ing data members in the public interface is not a good idea when side effects must
occur, so why already violate that design goal? The problem has to do with the com-
plexity of the controller system. Some controllers might naturally be constructed to
directly set the world transformations. Indeed, the engine has a skin-and-bones con-
troller that computes the world transformation for a triangle mesh. In a sense, the
controller bypasses the standard mechanism that computes world transformations
from local ones. The data members World and WorldIsCurrent are intended for read
access by application writers but may be used for write access by controllers. If a con-
troller sets the World member directly, it should also set the WorldIsCurrent flag to
let the geometric update system know that the world transformation for this node
should not be computed as a composition of its parent’s world transformation and
its local transformation.

Similar arguments apply to the data members WorldBound and WorldBoundIsCur-
rent. In some situations you have a node (and subtree) whose behavior is known
to you (by design) and whose world bounding volume may be assigned directly.
For example, the node might be a room in a building that never moves. The child
nodes correspond to objects in the room; those objects can move within the room, so
their world bounding volumes change. However, the room’s world bounding volume
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need not change. You may set the room’s world bounding volume, but the geomet-
ric update system should be told not to recalculate that bounding volume from the
child bounding volumes. The flag WorldBoundIsCurrent should be set to true in this
situation.

The member functions of Spatial relevant to geometric updates are shown in the
following partial interface listing:

class Spatial : public Object
{
public:

void UpdateGS (double dAppTime = -Mathd::MAX_REAL,
bool bInitiator = true);

void UpdateBS ();

protected:
virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound () = 0;
void PropagateBoundToRoot ();

};

The public functions UpdateGS (update geometric state) and UpdateBS (update bound
state) are the entry points to the geometric update system. The function UpdateGS is
for both propagation of transformations from parents to children and propagation of
world bounding volumes from children to parents. The dAppTime (application time)
is passed so that any animated quantities needing the current time to update their
state have access to it. The Boolean parameter will be explained later. The function
UpdateBS is for propagation only of world bounding volumes. The protected function
UpdateWorldData supports the propagation of transformations in the downward pass.
It is virtual to allow derived classes to update any additional world data that is affected
by the change in world transformations. The protected functions UpdateWorldBound
and PropagateToRoot support the calculation of world bounding volumes in the
upward pass. The UpdateWorldBound function is pure virtual to require Geometry and
Node to implement it as needed.

The portion of the Geometry interface relevant to geometric updates is

class Geometry : public Spatial
{
public:

BoundingVolumePtr ModelBound;
VertexBufferPtr VBuffer;
IndexBufferPtr IBuffer;

void UpdateMS (bool bUpdateNormals = true);
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protected:
virtual void UpdateModelBound ();
virtual void UpdateModelNormals ();
virtual void UpdateWorldBound ();

};

As with the Spatial class, the data members are in public scope because there are no
immediate side effects from reading or writing them. But there are side effects that
the programmer must ensure, namely, the geometric update itself.

The function UpdateMS (update model state) is the entry point into the update
of the model bound and model normals. The function should be called whenever
you change the model vertices. All that UpdateMS does is call the protected functions
UpdateModelBound and UpdateModelNormals. The function UpdateModelBound com-
putes a model bounding volume from the collection of vertices. This is accomplished
by a call to the BoundingVolume function ComputeFromData. I made the model bound
update a virtual function just in case a derived class needs to compute the bound dif-
ferently. For example, a derived class might have prior knowledge about the model
bound and not even have to process the vertices.

The function UpdateModelNormals has an empty body in Geometry since the ge-
ometry class is just a container for vertices and normals. Derived classes need to
implement UpdateModelNormals for their specific data representations. Not all derived
classes have normals (for example, Polypoint and Polyline), so I decided to let them
use the empty base class function rather than making the base function pure virtual
and then requiring derived classes to implement it with empty functions.

The function UpdateWorldBound is an implementation of the pure virtual function
in Spatial. All that it does is compute the world bounding volume from the model
bounding volume by applying the current world transformation.

The member functions of Node relevant to geometric updates are shown in the
following partial interface listing:

class Node : public Spatial
{
protected:

virtual void UpdateWorldData (double dAppTime);
virtual void UpdateWorldBound ();

};

The function UpdateWorldData is an implementation of the virtual function in the
Spatial base class. It has the responsibility to propagate the geometric update to its
children. The function UpdateWorldBound is an implementation of the pure virtual
function in the Spatial base class. Whereas the Geometry class implements this to
calculate a single world bounding volume for its data, the Node class implements this
to compute a world bounding volume that contains the world bounding volume of
all its children.
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Figure 4.6 A geometric update of a simple scene graph. The shaded gray node, N1, is the one at
which the UpdateGS call initiates.

Figure 4.6 illustrates the behavior of the update. The symbols are N for Node, S

for Spatial, and G for Geometry. The rectangular boxes represent the nodes in the
scene hierarchy. The occurrence of both an N and an S at a node stresses the fact that
the Node is derived from Spatial, so both classes’ public and protected interfaces are
available to Node. A similar statement is made for Geometry and Spatial.

If the model bounding volumes or the model normals for a Geometry object are
not current, that object must call Geometry::UpdateMS() to make them current. In
most cases, the model data is current, for example, in rigid triangle meshes; you will
not call UpdateMS often for such objects. The other extreme is something like a morph
controller that changes the vertex data frequently, and the UpdateMS call occurs after
each change.

Assuming the model data is current at all leaf nodes, the shaded gray box in the
figure indicates that node N1 is the one initiating a geometric update because its local
transformation was changed (translation, rotation, and/or uniform scale). Its world
transformation must be recomputed from its parent’s (N0) world transformation and
its newly changed local transformation. The new world transformation is passed to
its two children, G3 and N4, so that they also may recompute their world transfor-
mations. The world bounding volume for G3 must be recomputed from its model
bounding volume. The process is repeated at node N4. Its world transformation
is recomputed from the world transformation of N1 and its local transformation.
The new world transformation is passed to its two children, G5 and G6, so that they
may recompute their world transformations. Those leaf nodes also recompute their
world bounding volumes from their new world transformations and their current
model bounding volumes. On return to the parent N4, that node must recompute
its world bounding volume to contain the new world bounding volumes of its chil-
dren. On return to the node N1, that node must recompute its world bounding vol-
ume to contain the new world bounding volumes for G3 and N4. You might think the
geometric update terminates at this time, but not yet. The change in world bound-
ing volume at N1 can cause the world bounding volume of its parent, N0, to be out
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of date. N0 must be told to update itself. Generally, the change in world bounding
volume at the initiator of the update must propagate all the way to the root of the
scene hierarchy. Now the geometric update is complete. The sequence of operations
is listed as pseudocode in the following pseudocode block. The indentation denotes
the level of the recursive call of UpdateGS.

double dAppTime = <current application time>;
N1.UpdateGS(appTime,true);

N1.World = compose(N0.World,N1.Local);
G3.UpdateGS(appTime,false);

G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);

N4.UpdateGS(appTime,false);
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS(appTime,false);

G5.World = Compose(N4.World,G5.Local);
G5.WorldBound = Transform(G5.World,G5.ModelBound);

G6.UpdateGS(appTime,false);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);

N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

The Boolean parameter bInitiator in the function UpdateGS is quite important.
In the example, the UpdateGS call initiated at N1. A depth-first traversal of the subtree
rooted at N4 is performed, and the transformations are propagated downward. Once
you reach a leaf node, the new world bounding volume is propagated upward. When
the last child of N1 has been visited, we found we needed to propagate its world
bounding volume to its predecessors all the way to the root of the scene, in the
example to N0. The propagation of a world bounding volume from G5 to N4 is
slightly different than the propagation of a world bounding volume from N1 to
N0. The depth-first traversal at N1 guarantees that the world bounding volumes
are processed on the upward return. You certainly would not want each node to
propagate its world bounding volume all the way to the root whenever that node is
visited in the traversal, because only the initiator has that responsibility. If you were to
have missed that subtlety and not had a Boolean parameter, the previous pseudocode
would become

double dAppTime = <current application time>;
N1.UpdateGS(appTime);

N1.World = compose(N0.World,N1.Local);
G3.UpdateGS(appTime);
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G3.World = Compose(N1.World,G3.Local);
G3.WorldBound = Transform(G3.World,G3.ModelBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N4.UpdateGS(appTime);
N4.World = Compose(N1.World,N4.Local);
G5.UpdateGS(appTime);

G5.World = Compose(N4.World,G5.Local);
G5.WorldBound = Transform(G5.World,G5.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

G6.UpdateGS(appTime);
G6.World = Compose(N4.World,G6.Local);
G6.WorldBound = Transform(G6.World,G6.ModelBound);
N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N4.WorldBound = BoundContaining(G5.WorldBound,G6.WorldBound);
N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

N1.WorldBound = BoundContaining(G3.WorldBound,N4.WorldBound);
N0.WorldBound = BoundContaining(N1.WorldBound,N2.WorldBound);

Clearly, this is an inefficient chunk of code. The Boolean parameter is used to prevent
subtree nodes from propagating the world bounding volumes to the root.

The actual update code is shown next because I want to make a few comments
about it. The entry point for the geometric update is

void Spatial::UpdateGS (double dAppTime, bool bInitiator)
{

UpdateWorldData(dAppTime);
UpdateWorldBound();
if (bInitiator)
{

PropagateBoundToRoot();
}

}

If the object is a Node object, the function UpdateWorldData propagates the transfor-
mations in the downward pass. If the object is a Geometry object, the function is not
implemented in that class, and the Spatial version is used. The two different func-
tions are
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void Node::UpdateWorldData (double dAppTime)
{

Spatial::UpdateWorldData(dAppTime);

for (int i = 0; i < (nit)m_kChild.size(); i++)
{

Spatial* pkChild = m_kChild[i];
if (pkChild)
{

pkChild->UpdateGS(dAppTime,false);
}

}
}

void Spatial::UpdateWorldData (double dAppTime)
{

UpdateControllers(dAppTime);

// NOTE: Updates on controllers for global state and lights
// go here. To be discussed later.

if (!WorldIsCurrent)
{

if (m_pkParent)
{

Transformation::Product(m_pkParent->World,Local,World);
}
else
{

World = Local;
}

}
}

The Spatial version of the function has the responsibility for computing the
composition of the parent’s world transformation and the object’s local transforma-
tion, producing the object’s world transformation. At the root of the scene
(m_pkParent is NULL), the local and world transformations are the same. If a controller
is used to compute the world transformation, then the Boolean flag WorldIsCurrent
is true and the composition block is skipped. The Node version of the function allows
the base class to compute the world transformation, and then it propagates the call
(recursively) to its children. Observe that the bInitiator flag is set to false for the
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child calls to prevent them from propagating the world bounding volumes to the root
node.

The controller updates might or might not affect the transformation system. For
example, the point, particles, and morph controllers all modify the model-space ver-
tices (and possibly the model-space normals). Each of these call UpdateMS to guaran-
tee the model bounding volume is current. Fortunately, this step occurs before our
UpdateGS gets to the stage of updating world bounding volumes. Keyframe and in-
verse kinematics controllers modify local transformations, but they do not set the
WorldIsCurrent flag to true because the world transformations must still be updated.
The skin controllers modify the world transformations directly and do set the World-
IsCurrent flag to true.

In UpdateGS, on return from UpdateWorldData the world bounding volume is up-
dated by UpdateWorldBound. If the object is a Node object, a bound of bounds is com-
puted. If the object is a Geometry object, the newly computed world transformation
is used to transform the model bounding volume to the world bounding volume.

void Node::UpdateWorldBound ()
{

if (!WorldBoundIsCurrent)
{

bool bFoundFirstBound = false;
for (int i = 0; i < (int)m_kChild.size(); i++)
{

Spatial* pkChild = m_kChild[i];
if (pkChild)
{

if (bFoundFirstBound)
{

// Merge current world bound with child
// world bound.
WorldBound->GrowToContain(pkChild->WorldBound);

}
else
{

// Set world bound to first nonnull child
// world bound.
bFoundFirstBound = true;
WorldBound->CopyFrom(pkChild->WorldBound);

}
}

}
}

}



278 Chapter 4 Scene Graphs

void Geometry::UpdateWorldBound ()
{

ModelBound->TransformBy(World,WorldBound);
}

If the application has explicitly set the world bounding volume for the node,
it should have also set WorldBoundIsCurrent to false, in which case Node::Update-
WorldBound has no work to do. However, if the node must update its world bounding
volume, it does so by processing its child bounding volumes one at a time. The
bounding volume of the first (nonnull) child is copied. If a second (nonnull) child
exists, the current world bounding volume is modified to contain itself and the
bound of the child. The growing algorithm continues until all children have been
visited.

For bounding spheres, the iterative growing algorithm amounts to computing the
smallest volume of two spheres, the current one and that of the next child. This is
a greedy algorithm and does not generally produce the smallest volume bounding
sphere that contains all the child bounding spheres. The algorithm to compute the
smallest volume sphere containing a set of spheres is a very complicated beast [FG03].
The computation time is not amenable to real-time graphics, so instead we use a less
exact bound, but one that can be computed quickly.

Exercise
4.1

Generating a bounding sphere incrementally as described here can lead to a final
bounding sphere that is much larger than need be. Design a different algorithm that
builds the final bounding sphere by considering all the input spheres at one time but
that does not attempt to produce the minimum-volume bounding sphere.

The last stage of UpdateGS is to propagate the world bounding volume from the
initiator to the root. The function that does this is PropagateBoundToRoot. This, too,
is a recursive function, just through a linear list of nodes:

void Spatial::PropagateBoundToRoot ()
{

if (m_pkParent)
{

m_pkParent->UpdateWorldBound();
m_pkParent->PropagateBoundToRoot();

}
}

As mentioned previously, if a local transformation has not changed at a node,
but some geometric operations cause the world bounding volume to change, there is
no reason to waste time propagating transformations in a downward traversal of the
tree. Instead, just call UpdateBS to propagate the world bounding volume to the root:
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Table 4.1 Updates that must occur when geometric quantities change.

Changing Quantity Required Updates Top-Level Function to Call

Model data Model bound, model normals
(if any)

Geometry::UpdateMS

Model bound World bound Spatial::UpdateGS or Spatial::UpdateBS

World bound Parent world bound (if any) Spatial::UpdateGS or Spatial::UpdateBS

Local transformation World transformation, child
transformations

Spatial::UpdateGS

World transformation World bound Spatial::UpdateGS

void Spatial::UpdateBS ()
{

UpdateWorldBound();
PropagateBoundToRoot();

}

Table 4.1 is a summary of the updates that must occur when various geometric
quantities change in the system. All of the updates may be viewed as side effects to
changes in the geometric state of the system. None of the side effects occur auto-
matically, because I want application writers to use as much of their knowledge as
possible about their environments and not force an inefficient update mechanism to
occur behind the scenes.

For example, Figure 4.7 shows a scene hierarchy that needs updating. The light
gray shaded nodes in the scene have had their local transformations changed. You
could blindly call

a.UpdateGS(appTime,true);
b.UpdateGS(appTime,true);
c.UpdateGS(appTime,true);
d.UpdateGS(appTime,true);

to perform the updates, but this is not efficient. All that is needed is

a.UpdateGS(appTime,true);
b.UpdateGS(appTime,true);

Nodes c and d are updated as a side effect of the update at node a. In general, the min-
imum number of UpdateGS calls needed is the number of nodes requiring an update
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a

b

c d

Figure 4.7 A scene hierarchy that needs updating. The shaded gray nodes have had their local
transformations changed.

that have no predecessors that also require an update. Node a requires an update but
has no out-of-date predecessors. Node c requires an update, but it has a predecessor,
node a, that does. Although it is possible to construct an automated system to deter-
mine the minimum number of UpdateGS calls, that system will consume too many
cycles. I believe it is better to let the application writers take advantage of knowledge
they have about what is out of date and specifically call UpdateGS themselves.

4.4.2 Render-State Updates

The core classes Spatial, Geometry, and Node all have some form of support for
storing render state and making sure that the renderer has the complete state for
each object it draws. The class Geometry has the storage capabilities for the render
state that affects it. My decision to do this in Wild Magic version 3 was to provide a
single object type (Geometry) to the renderer. Wild Magic version 2 had an abstract
rendering that required the object to be passed as the specific types they were, but the
interface was cumbersome. The redesign for version 3 made the rendering interface
much more streamlined. The process of assembling the information in the Geometry
object is referred to as updating the render state.

The portions of the interfaces for classes Spatial, Node, and Geometry that are
relevant to updating the render state are

class Spatial : public Object
{
public:

virtual void UpdateRS (
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std::vector<GlobalState*>* akGStack = 0,
std::vector<Light*>* pkLStack = 0);

protected:
void PropagateStateFromRoot (

std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack);

void PushState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack);

void PopState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack);

virtual void UpdateState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack) = 0;

};

class Node : public Object
{
protected:

virtual void UpdateState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack);

};

class Geometry : public Object
{
protected:

virtual void UpdateState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack);

};

The entry point into the system is method UpdateRS (update render state). The
input parameters are containers to assemble the global state and lights during a
depth-first traversal of the scene hierarchy. The parameters have default values. The
caller of UpdateRS should not set these but should just call object.UpdateRS(). The
containers are allocated and managed internally by the update system. The containers
are treated as if they were stacks.
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Figure 4.8 A common situation for updating render state.

The protected member functions are helper functions for the depth-first traversal.
The function PushState pushes any global state and lights that the Spatial object
has attached to it onto stacks. The function PopState pops those stacks. The intent
is that the stacks are used by all the nodes in the scene hierarchy as they are visited.
Function Node::UpdateState has the responsibility for propagating the update in a
recursive traversal of the scene hierarchy. Function Geometry::UpdateState is called
at leaf nodes of the hierarchy. It has the reponsibility for copying the contents of the
global-state stack into its appropriate data members, but it assembles the lights into a
LightEffect object to be used by the renderer as the first pass of a multipass drawing
operation. The stacks store smart pointers to global states and lights, so the copy is
really a smart pointer copy and the objects are shared.

The render state at a leaf node represents all the global states and lights that occur
on the path from the root node to the leaf node. However, the UpdateRS call need only
be called at a node whose subtree needs a render-state update. Figure 4.8 illustrates a
common situation.

The z-buffer state is already attached to node N0, and the light is already attached
to node N4. A material state is attached to node N1. The render-state update is initi-
ated at N1. The result of the depth-first traversal of the subtree at N1 is the following:
G3 has links to the z-buffer and material states; G5 has links to the z-buffer state, the
material state, and the light; and G6 has links to the z-buffer state, the material state,
and the light. The z-buffer state is, however, not in the subtree of N1, so we in fact
have to start collecting the states from the root node and along paths that lead to the
leaf nodes that are in the subtree of N1. The function PropagateStateFromRoot has
the responsibility of starting the render state update at N1 by first traversing to the
root N0, collecting the render state of the path from N0 to N1, and then passing this
state to the leaf nodes of the subtree at N1, together with any additional render state
that is in that subtree. Pseudocode for the sequence of operations is listed next. The
indentation denotes the level of the calling stack.
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N1.UpdateRS();
N1: create global state stack GS; // GS = {}
N1: create light stack LS; // LS = {}
N1.PropagateStateFromRoot(GS,LS);

N0.PropagateStateFromRoot(GS,LS);
N0.PushState(GS,LS); // GS = {zbuffer}, LS = {}

N1.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}

N1.UpdateState(GS,LS);
G3.UpdateRS(GS,LS);

G3.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {}

G3.UpdateState(GS,LS); // share: zbuffer,material
G3.PopState(GS,LS);

N4.UpdateRS(GS,LS);
N4.PushState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
N4.UpdateState(GS,LS);

G5.UpdateRS(GS,LS);
G5.PushState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
G5.UpdateStore(GS,LS); // share: zbuffer,material,

// light
G5.PopState(GS,LS); // GS = {zbuffer,material},

// LS = {light}
G6.UpdateRS(GS,LS);

G6.PushState(GS,LS); // GS = {zbuffer,material},
// LS = {light}

G6.UpdateStore(GS,LS); // share: zbuffer,material,
// light

G6.PopState(GS,LS); // GS = {zbuffer,material},
// LS = {light}

N4.PopState(GS,LS); // GS = {zbuffer,material},
// LS = {}

N1: destroy global state stack GS; // GS = {}
N1: destroy light stack LS; // LS = {}

The pseudocode indicates the global-state stack is initially empty. In Wild Magic
version 3, the stacks were actually not empty but initialized with the default render
states. This is not necessary. In Wild Magic version 4, the stacks are initially empty.
When the renderer finally receives a stack of render states, it uses whatever does exist
to override the default states. Thus, the behavior is identical to that of Wild Magic
version 3, but without having to push and pop the default states.
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Nothing prevents you from having multiple states of the same type in a single
path from root node to leaf node. For example, the root node can have a z-buffer
state that enables depth buffering, but a subtree of objects at node N that can be
correctly drawn without depth buffering enabled can also have a z-buffer state that
disables depth buffering.

At first glance you might be tempted not to have PropagateStateFromRoot in the
update system. Consider the current example. Before the material state was attached
to node N1, and assuming the scene hierarchy was current regarding render state, G3
should have in its local storage the z-buffer. G5 and G6 should each have local storage
containing the z-buffer and light. When you attach the material to node N1 and call
UpdateRS, whose implementation does only the depth-first traversal, it appears that
the correct states will occur at the geometry leaf nodes. In my implementation this
is not the case. The global-state stacks are empty initially. The z-buffer stack will be
empty when the traversal reaches the leaf nodes. The current z-buffer pointer in the
Geometry::UpdateState global-state array is overwritten with a null pointer, in which
case the z-buffer state of N0 will be ignored, thus changing the behavior at the leaf
nodes.

Now you might consider changing the render-state update semantics so that the
global-state stack is initially empty, accumulate only the render states visited in the
depth-first traversal, and then have Geometry::UpdateState copy only those pointers
into its local storage. To throw a wrench into the works, suppose that the subtree at
N4 is detached from the scene and a new subtree added as the second child of N1.
The leaf nodes of the new subtree are unaware of the render state that N1 and its
predecessors have. A call to the depth-first-only UpdateRS at N1 will propagate the
render states from N1 downward, but now the z-buffer state of N0 is missing from
the leaf nodes. To remedy this problem, you should have called UpdateRS at the root
node N0. The leaf nodes will get all the render state they deserve, but unfortunately
other subtrees of the scene hierarchy are updated even though they have current
render-state information. My decision to include PropagateStateFromRoot is based
on having as efficient a render-state update as possible. In a situation such as the
current example, the application writer does not have to call UpdateRS at N0 when
all that has changed is a subtree modification at N4. In my update system, after the
subtree is replaced by a new one, you only need to call UpdateRS at N4.

The previous discussion does point out that there are various circumstances when
you have to call UpdateRS. Clearly, if you attach a new global state or light to a node,
you should call UpdateRS to propagate that information to the leaf nodes. Similarly, if
you detach a global state or light from a node, the leaf nodes still have smart pointers
to those. You must call UpdateRS to eliminate those smart pointers, replacing the
global-state pointers with ones to the default global states. The light pointers are just
removed from the storage. A change in the topology of the scene, such as attaching
new children or replacing children at a node N , also requires you to call UpdateRS.
This is the only way to inform the leaf nodes of the new subtree about their render
state.
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If you change the data members in a global-state object or in a light object, you do
not have to call UpdateRS. The local storage of smart pointers in Geometry to the global
states and lights guarantees that you are sharing those objects. The changes to the data
members are immediately known to the Geometry object, so when the renderer goes
to draw the object, it has access to the new values of the data members.

To finish up, here is a brief discussion of the implementations of the render-state
update functions. The entry point is

void Spatial::UpdateRS (std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
bool bInitiator = (akGStack == 0);

if (bInitiator)
{

// The order of preference is
// (1) Default global states are used.
// (2) Geometry can override them, but if global
// state FOOBAR has not been pushed to the
// Geometry leaf node, then the current FOOBAR
// remains in effect (rather than the default
// FOOBAR being used).
// (3) Effects can override default or Geometry
// render states.
akGStack = WM4_NEW std::vector<GlobalState*>[

GlobalState::MAX_STATE_TYPE];
for (int i = 0; i < GlobalState::MAX_STATE_TYPE; i++)
{

akGStack[i].push_back(0);
}

// Stack has no lights initially.
pkLStack = WM4_NEW std::vector<Light*>;

// Traverse to root and push states from root to this
// node.
PropagateStateFromRoot(akGStack,pkLStack);

}
else
{

// Push states at this node.
PushState(akGStack,pkLStack);

}
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// Propagate the new state to the subtree rooted here.
UpdateState(akGStack,pkLStack);

if (bInitiator)
{

WM4_DELETE[] akGStack;
WM4_DELETE pkLStack;

}
else
{

// Pop states at this node.
PopState(akGStack,pkLStack);

}
}

The initiator of the update calls UpdateRS() with no parameters. The default
parameters are null pointers. This lets the function determine that the initiator is
the one who is responsible for allocating and deallocating the stacks. Notice that the
global-state “stack” is really an array of stacks, one stack per global-state type. The
initiator is also responsible for calling PropagateStateFromRoot. The UpdateState call
propagates the update to child nodes for a Node object but copies the smart pointers
in the stacks to local storage for a Geometry object. For the noninitiators, the sequence
of calls is effectively

PushState(akGStack,pkLStack);
UpdateState(akGStack,pkLStack);
PopState(akGStack,pkLStack);

In words: push my state onto the stacks, propagate it to my children, and then pop
my state from the stacks.

The propagation of state from the root is

void Spatial::PropagateStateFromRoot (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
// Traverse to root to allow downward state propagation.
if (m_pkParent)
{

m_pkParent->PropagateStateFromRoot(akGStack,pkLStack);
}

// Push states onto current render-state stack.
PushState(akGStack,pkLStack);

}
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This is a recursive call that traverses a linear list of nodes. The traversal takes you up
the tree to the root, and then you push the states of the nodes as you return to the
initiator.

The pushing and popping of state is straightforward:

void Spatial::PushState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
int i;
for (i = 0; i < (int)m_kGlobalStates.size(); i++)
{

int eType = m_kGlobalStates[i]->GetStateType();
akGStack[eType].push_back(m_kGlobalStates[i]);

}

for (i = 0; i < (int)m_kLights.size(); i++)
{

Light* pkLight = StaticCast<Light>(m_kLights[i]);
pkLStack->push_back(pkLight);

}
}

void Spatial::PopState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
int i;
for (i = 0; i < (int)m_kGlobalStates.size(); i++)
{

int eType = m_kGlobalStates[i]->GetStateType();
akGStack[eType].pop_back();

}

for (i = 0; i < (int)m_kLights.size(); i++)
{

pkLStack->pop_back();
}

}

The code iterates over an array of global states attached to the object and pushes them
on the stack (pops them from the stack) corresponding to the type of the state. The
code also iterates over an array of lights attached to the object and pushes them on
the stack (pops them from the stack).
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The propagation of the update down the tree is

void Node::UpdateState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
for (int i = 0; i < (int)m_kChild.size(); i++)
{

Spatial* pkChild = m_kChild[i];
if (pkChild)
{

pkChild->UpdateRS(akGStack,pkLStack);
}

}
}

This, too, is a straightforward operation. Just as with the geometric update functions
UpdateGS and UpdateWorldData, the pair UpdateRS and UpdateState form a recursive
chain (A calls B, B calls A, etc.).

Finally, the copy of smart pointers from the stacks to local storage is

void Geometry::UpdateState (
std::vector<GlobalState*>* akGStack,
std::vector<Light*>* pkLStack)

{
// Update global state.
int i;
for (i = 0; i < GlobalState::MAX_STATE_TYPE; i++)
{

GlobalState* pkGState = 0;
pkGState = akGStack[i].back();
States[i] = pkGState;

}

// Update lights.
int iLQuantity = (int)pkLStack->size();
if (iLQuantity > 0)
{

if (LEffect)
{

LEffect->DetachAllLights();
}
else
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{
LEffect = WM4_NEW LightingEffect;

}

for (i = 0; i < iLQuantity; i++)
{

LEffect->AttachLight((*pkLStack)[i]);
}

LEffect->Configure();
}
else
{

LEffect = 0;
}

}

No surprises here, either. The Geometry class has an array of smart pointers to Global-
State for global-state storage. In Wild Magic version 3, a list of lights was maintained
to be passed to the renderer for setting up the dynamic lighting in the fixed-function
pipeline. In Wild Magic version 4, a LightingEffect object is maintained to be passed
to the renderer for the shader pipeline. This effect is applied first to the geometric
primitive before any other attached effects.

4.5 The Culling Pass

Starting with version 4, the culling of objects in scene graphs is a new system in
Wild Magic. In previous versions, the culling and drawing were done on the same
pass: The scene tree was traversed. Entire subtrees were culled when their bounding
volumes were outside the frustum. If the traversal eventually reached a potentially
visible Geometry object at a leaf node, that object was drawn immediately in the Wild
Magic version 2 engine. This was also the case for the Wild Magic version 3 engine
unless you activated the deferred drawing scene.

Culling in Wild Magic 4 is done in a pass separate from drawing. Three new
classes have been introduced: Culler, VisibleObject, and VisibleSet. The class Vis-
ibleObject is a simple structure:

class VisibleObject
{
public:

Spatial* Object;
Effect* GlobalEffect;

};
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And the class VisibleSet is a container for objects of type VisibleObject:

class VisibleSet
{
public:

VisibleSet (int iMaxQuantity = 0, int iGrowBy = 0);
virtual ~VisibleSet ();

int GetQuantity () const;
VisibleObject* GetVisible ();
VisibleObject& GetVisible (int i);

void Insert (Spatial* pkObject,
Effect* pkGlobalEffect);

void Clear ();
void Resize (int iMaxQuantity, int iGrowBy);

private:
enum
{

VS_DEFAULT_MAX_QUANTITY = 32,
VS_DEFAULT_GROWBY = 32,

};

int m_iMaxQuantity, m_iGrowBy, m_iQuantity;
VisibleObject* m_akVisible;

};

As a scene graph is traversed for the purpose of culling, each potentially visible
Geometry object is inserted into a VisibleSet object. By potentially visible, I mean
that the bounding volume of the object overlaps the view frustum. It is possible that
the object itself is not visible, but all we can conclude from the overlap is that the
object might be visible. The corresponding VisibleObject has its Spatial pointer set
to the Geometry pointer and the Effect pointer is set to null. However, if a potentially
visible Node object with a global effect attached is encountered, the corresponding
VisibleObject has its Spatial pointer set to the Node pointer and the Effect pointer is
set to that of the global effect. This type of VisibleObject is a sentinel that marks the
beginning of the scope of the global effect. All potentially visible objects in the subtree
rooted at the Node are influenced by the global effect. Once the culling traversal
returns from processing the subtree, another sentinel is added to the visible set,
marking the end of the scope of the global effect. This system was described in Section
3.4.1.
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The Culler class is designed to manage the culling of a scene and storing of the
potentially visible objects in a VisibleSet. If you have looked at Wild Magic version 3,
much of the work for culling was done by the Camera class. That subsystem has been
factored out into the Culler class, which has quite a large interface. I will describe it
in small pieces.

The constructor, destructor, and a couple of data members and accessors are

class Culler
{
public:

Culler (int iMaxQuantity = 0, int iGrowBy = 0,
const Camera* pkCamera = 0);

virtual ~Culler ();

void SetCamera (const Camera* pkCamera);
const Camera* GetCamera () const;
void SetFrustum (const float* afFrustum);
const float* GetFrustum () const;
virtual void Insert (Spatial* pkObject,

Effect* pkGlobalEffect);

protected:
const Camera* m_pkCamera;
float m_afFrustum[Camera::VF_QUANTITY];

};

The first two input parameters are used to create the set of potentially visible objects.
The third parameter is a camera from whose perspective the objects are potentially
visible. Although normally this is a camera relative to the observer, it can also be a
projector for a light source for which you want to know about objects that will cast
shadows. This parameter is assigned to the data member m_pkCamera. If the camera is
not passed to the constructor, you should set it using SetCamera before attempting a
culling operation; see the discussion in Section 4.5.1 about ComputeVisibleSet. The
camera information might be needed during the culling pass, hence the storage of a
pointer to it. A copy of the view frustum for the input camera is maintained. This
allows various subsystems to change the frustum parameters during culling (e.g.,
the portal system) without affecting the camera, whose initial state is needed by the
renderer.

The Culler maintains culling planes in world coordinates. These planes include
the six view frustum planes. Additional planes may be set by the user, similar to user-
defined clipping planes but for the purpose of culling. These are pushed and popped
as needed. It is not possible to pop the view frustum planes—they will always be used
for culling.
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class Culler
{

enum { VS_MAX_PLANE_QUANTITY = 32 };
int GetPlaneQuantity () const;
const Plane3f* GetPlanes () const;
void SetPlaneState (unsigned int uiPlaneState);
unsigned int GetPlaneState () const;
void PushPlane (const Plane3f& rkPlane);
void PopPlane ();

bool IsVisible (const BoundingVolume* pkWound);
bool IsVisible (int iVertexQuantity, const Vector3f* akVertex,

bool bIgnoreNearPlane);
int WhichSide (const Plane3f& rkPlane) const;

protected:
int m_iPlaneQuantity;
Plane3f m_akPlane[VS_MAX_PLANE_QUANTITY];
unsigned int m_uiPlaneState;

};

The member m_uiPlaneState represents bit flags to store whether or not a plane is
active in the culling system. A bit of 1 means the plane is active; otherwise the plane
is inactive. An active plane is compared to bounding volumes, whereas an inactive
plane is not. This supports an efficient culling of a hierarchy. For example, if a node’s
bounding volume is inside the left plane of the view frustum, then the left plane
is set to inactive because the children of the node are automatically inside the left
plane.

The member function IsVisible (const BoundingVolume*) compares the object’s
world bounding volume to the culling planes. This function is called only by Spatial
during a traversal of the scene, which is discussed later in this section. The other
member function IsVisible is used by the portal system in Portal::GetVisibleSet;
see Section 6.3 for details.

The member function WhichSide is used in BspNode::GetVisibleSet. It deter-
mines if the view frustum is fully on one side of a plane. The “positive side” of the
plane is the half space to which the plane normal points. The “negative side” is the
other half space. The function returns +1 if the view frustum is fully on the positive
side of the plane, −1 if the view frustum is fully on the negative side of the plane, or 0
if the view frustum straddles the plane. The input plane is in world coordinates and
the world camera coordinate system is used for the test.

The remainder of the Culler interface has to do with the potentially visible set
itself.
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class Culler
{
public:

VisibleSet& GetVisibleSet ();
void ComputeVisibleSet (Spatial* pkScene);

protected:
VisibleSet m_kVisible;

};

The potentially visible set is the member m_kVisible and an accessor to it is Get-
VisibleSet. The main entry point into the culling of a scene graph is the function
ComputeVisibleSet, discussed next.

4.5.1 Hierarchical Culling

The Spatial and Culler classes must interact during a culling pass. The relevant
interface in the Spatial class is

class Spatial : public Object
{
public:

enum CullingMode
{

CULL_DYNAMIC,
CULL_ALWAYS,
CULL_NEVER

};

CullingMode Culling;

void OnGetVisibleSet (Culler& rkCuller, bool bNoCull);
virtual void GetVisibleSet (Culler& rkCuller, bool bNoCull) = 0;

};

Wild Magic version 3 had a Boolean flag, ForceCull. By setting this to true, you
forced the subtree rooted at the node to be culled. This is a useful mechanism when
you have prior knowledge that the objects in the subtree are not visible. In particular,
you could precompute visibility for a game level by partitioning the world into cells.
Each cell maintains a list of potentially visible objects. When the camera enters that
cell, you can force-cull all objects known not to be visible from that cell.

It turns out that a three-way flag is more useful. Wild Magic version 4 adds
this via the enumeration CullingMode. The enumeration CULL_ALWAYS corresponds
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to setting ForceCull to true in Wild Magic version 2, and CULL_DYNAMIC corresponds
to ForceCull being false in that version. However, there are times when it is useful
not to cull an object when it is not visible to the camera. For example, this is used
in the SampleGraphics/PlanarReflections sample application. A skinned biped has
reflections on two planes—the floor and a wall. If the skinned biped is no longer
visible to the camera, its reflection might still be visible. To avoid the reflection
instantaneously disappearing when the skinned biped moves just outside the view
frustum, you can set the culling mode to CULL_NEVER. If a node is tagged this way, all
objects in its subtree inherit the attribute. This is accomplished by passing a Boolean
flag (set to true) to the recursive chain of culling operations listed in the interface for
Spatial, namely, OnGetVisibleSet and GetVisibleSet.

The entry point to culling is via the Culler function

void Culler::ComputeVisibleSet (Spatial* pkScene)
{

SetFrustum(m_pkCamera->GetFrustum());
m_kVisible.Clear();
pkScene->OnGetVisibleSet(*this,false);

}

A copy of the camera’s frustum is made via SetFrustum. Moreover, the view frustum
planes are computed in world coordinates. This requires querying the camera for its
current world coordinate system (eye point, direction vector, up vector, and right
vector). The current potentially visible set is cleared; that is, it contains no elements.
The final function call tells the scene to traverse itself, using the Culler to perform
the culling tests and to store the potentially visible objects in the scene.

The called Spatial function is

void Spatial::OnGetVisibleSet (Culler& rkCuller, bool bNoCull)
{

if (Culling == CULL_ALWAYS)
{

return;
}

if (Culling == CULL_NEVER)
{

bNoCull = true;
}

unsigned int uiSavePlaneState = rkCuller.GetPlaneState();
if (bNoCull || rkCuller.IsVisible(WorldBound))
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{
GetVisibleSet(rkCuller,bNoCull);

}
rkCuller.SetPlaneState(uiSavePlaneState);

}

The logic is straightforward. If the object requests that you cull it, the function simply
returns—no internal nodes or geometry objects are inserted into the potentially
visible set. If the object wants never to be culled, the bNoCull flag is set to true and
passed to the recursive call GetVisibleSet. This will guarantee that all leaf geometry
and all nodes with global effects will be added to the potentially visible set.

The uiSavePlaneState bit flag stores the current state of which planes are active
and inactive. As mentioned previously, if a node’s bounding volume is inside the
left plane of the frustum, then all its child objects are inside the left plane. The left
plane may be disabled when traversing the node’s children, thus saving cycles by
avoiding the bounding volume versus plane tests. When the traveral returns from the
node’s children, the previous state of the active/inactive planes must be restored (via
SetPlaneState).

If the Spatial object is also a Geometry object, the function GetVisibleSet is

void Geometry::GetVisibleSet (Culler& rkCuller, bool)
{

rkCuller.Insert(this,0);
}

The object is inserted into the culler’s potentially visible set. Since this is a leaf node,
the Effect pointer is not needed, so NULL is passed. If the Spatial object is also a Node
object (an interior node of the tree), the function GetVisibleSet is

void Node::GetVisibleSet (Culler& rkCuller, bool bNoCull)
{

if (m_kEffects.size() > 0)
{

// This is a global effect. Place a ’begin’ sentinel
// in the visible set to indicate the effect is
// active.
rkCuller.Insert(this,m_kEffects[0]);

}

// All Geometry objects in the subtree are added to the
// visible set. If a global effect is active, the
// Geometry objects in the subtree will be drawn using it.
for (int i = 0; i < (int)m_kChild.size(); i++)
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{
Spatial* pkChild = m_kChild[i];
if (pkChild)
{

pkChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}

if (m_kEffects.size() > 0)
{

// Place an ’end’ sentinel in the visible set to
// indicate that the global effect is inactive.
rkCuller.Insert(0,0);

}
}

As mentioned in Section 3.4.1, the sentinels are used to guide the renderer in making
certain that the global effects are correctly applied to the Geometry bound by the
sentinels.

Various Spatial-derived classes override GetVisibleSet in order to correctly
process the object and child objects (if any). These include switch nodes (Switch-
Node), discrete-level-of-detail nodes (DlodNode), continuous-level-of-detail meshes
(ClodMesh) and terrains (ClodTerrain), particle systems (Particles), and the classes
associated with the portal visibility system (BspNode, ConvexRegion, and ConvexRe-
gionManager). The Portal class has a similarly named function, but it is not derived
from Spatial. The function is used, though, for culling.

After ComputeVisibleSet is called on a scene, the nonempty potentially visible set
may then be passed to Renderer::DrawScene for drawing.

4.5.2 Sorted Culling

The culling described in the previous section involves a depth-first traversal of the
scene graph. Because the culling pass is separate from the drawing pass, you can
process the potentially visible set any way you like before sending it on to the renderer
for drawing. In particular, you can sort based on render state. The only warning is
that your sorter must pay attention to the sentinels inserted when global effects were
encountered. Specifically, if a Geometry object is contained by a begin-end pair of
sentinels, and if your sorter causes this object to be moved outside that pair, the result
will be incorrect rendering.

Another way to sort is during the culling itself. The virtual function GetVisible-
Set may be overridden to obtain any desired semantics you want. The case of interest
in Wild Magic is the portal system. When a scene graph contains a subgraph corre-
sponding to a group of rooms connected by portals, the culling and drawing passes
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cease to use depth-first search for the traversal. The traversal path is based on the
visibility graph implied by the room-portal graph. One of the performance issues in
a portal system is overdraw of the contents of a room because multiple portals lead
into the room and the camera/observer can see through both portals from a single
location. To avoid this, a class derived from Culler may be used for the portal system.
It accumulates the potentially visible objects during the traversal of the room-portal
graph but maintains a set of unique objects; that is, an object is never added twice to
the set.

4.6 The Drawing Pass

The input to a culling pass is a scene graph. The output is a potentially visible set of
objects. This set is passed to the renderer for drawing. The common structure of code
in the applications has the abstraction

// *** application initialization code ***

// creation of objects
create Culler m_kCuller;
create Camera m_spkCamera;
create scene m_spkScene;

// initial update of objects
m_spkScene->UpdateGS();
m_spkScene->UpdateRS();

// initial culling of scene
m_kCuller.SetCamera(m_spkCamera);
m_kCuller.ComputeVisibleSet(m_spkScene);

// *** in the idle loop ***
if (MoveCamera())
{

m_kCuller.ComputeVisibleSet(m_spkScene);
}

if (MoveObject())
{

m_spkScene->UpdateGS();
m_kCuller.ComputeVisibleSet(m_spkScene);

}
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m_pkRenderer->ClearBuffers();
if (m_pkRenderer->BeginScene())
{

m_pkRenderer->DrawScene(m_kCuller.GetVisibleSet());
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

In the initialization code, the culler, camera, and scene are created and initialized
for first use. In the idle loop, anytime the camera has moved or the scene has moved
(i.e., objects in it were transformed), the potentially visible set can change. After
computing the set for the current camera and scene, the renderer is ready to draw
the objects in the set. This occurs in the DrawScene call. The actual work done by the
renderer was discussed in Section 3.4. The discussion in this section is about how you
manipulate the Geometry and Node objects to obtain the desired special effects.

In the following material, all Cg shader program files are located in the directory

GeometricTools/WildMagic4/Data/ShaderPrograms/Cg

and the compiled shader programs are in the directory

GeometricTools/WildMagic4/Data/Wmsp

The compound extensions on the compiled programs make it clear which renderers
they belong to. All the files are ASCII text, so you can browse them with your favorite
text browser.

4.6.1 Single-Pass Drawing

The simplest and most efficient shader effects use single-pass drawing. The Shader-
Effect class allows you to create an effect with a specified number of passes, in this
case one. Alpha blending parameters are set by you only if you plan on blending the
rendered results with the current contents of the color buffer (in the frame buffer or
in an offscreen buffer).

An example of a single-pass effect is TextureEffect, a class derived from Shader-
Effect. The constructor for this class calls the base-class constructor, setting the num-
ber of passes to one.

TextureEffect::TextureEffect (const std::string& rkBaseName)
:
ShaderEffect(1)

{
m_kVShader[0] = WM4_NEW VertexShader("Texture");
m_kPShader[0] = WM4_NEW PixelShader("Texture");
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m_kPShader[0]->SetTextureQuantity(1);
m_kPShader[0]->SetImageName(0,rkBaseName);

}

A vertex and a pixel shader are created, both based on the Cg code in the file Tex-
ture.cg.

A sample block of application code for creating a scene containing a single trian-
gle is

// The root node of the scene. NOTE: An application can draw
// multiple scenes during a single iteration through the idle
// loop. It is not necessary that everything in the world be
// placed in one scene graph.
m_spkScene = WM4_NEW Node;

// Create a single triangle whose vertices have positions and
// 2D texture coordinates (in unit 0).
Attributes kAttr;
kAttr.SetPChannels(3);
kAttr.SetTChannels(0,2);
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(0.0f,1.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);
pkVBuffer->TCoord2(0,0) = Vector2f(0.0f,0.0f);
pkVBuffer->TCoord2(0,1) = Vector2f(1.0f,0.0f);
pkVBuffer->TCoord2(0,2) = Vector2f(0.0f,1.0f);
IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
aiIndex[0] = 0; aiIndex[1] = 1; aiIndex[2] = 2;
TriMesh* pkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);
m_spkScene->AttachChild(pkTriangle);

// Create a single-pass texture effect.
Effect* pkEffect = WM4_NEW TextureEffect("MyImage");

// Attach the effect to the geometric primitive.
pkTriangle->AttachEffect(pkEffect);

After the scene graph is processed by the culler and the triangle is visible, the po-
tentially visible set is passed to the renderer for drawing. Because TextureEffect is a
single-pass effect and pkTriangle has only one effect attached to it with no dynamic
lights, the drawing of the triangle requires only one pass.
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To make it clear that multitexture and multipass are different concepts, drawing
with multiple textures can be done in a single pass. The class MultitextureEffect is
an example that allows multiple textures. This class is incomplete in that it cannot
handle all possible combinations of textures and blending effects. This is one of those
cases where there are a lot of possibilities that you would want to generate using
shader stitching. The class was built to illustrate single-pass multitexturing; it handles
three different combinations of two textures, each managing a 2D image.

The Cg vertex program that passes through two sets of 2D texture coordinates
is T0d2T1d2PassThroughVProgram.cg. The letter T stands for “texture.” The letter d
stands for “dimension.” Both d letters are followed by the number of dimensions for
the texture image, in this case two for both textures.

The Cg pixel programs are T0s1d0T1s1d1.cg, T0s1d0T1s2d0.cg, and T0s1d0T1s3d1
.cg. The naming conventions are the following. The letter T stands for “texture.” The
letter s stands for “source-” blending function. The number immediately after the s
is the integer assigned to the enumeration of AlphaState::SrcBlendMode. In the three
sample programs, a value 1 means source-blending function AlphaState::SBF_ONE, a
value 2 means source-blending function AlphaState::SBF_DST_COLOR, and a value 3
means source-blending function AlphaState::SBF_ONE_MINUS_DST_COLOR. The letter
d stands for “destination-” blending function. The number immediately after the d is
the integer assigned to the enumeration of AlphaState::DstBlendMode. In the three
sample programs, a value 0 means destination-blending function AlphaState::DBF_
ZERO and a value 1 means destination-blending function AlphaState::DBF_ONE. The
prefix T0s1d0 is always the same for the pixel programs. This is just to remind you that
you may think of the first texture as being in “replace mode,” where the color buffer
is overwritten with the first texture’s colors. The next block of T, s, d values specifies
how the second texture is blended with the first. Keep in mind, though, that this is all
happening in one pass; that is, the first and second textures are combined by the pixel
program and then written to the color buffer. In summary, the blending is

T0s1d0T1s1d1: C0 + C1 // hard additive, clamped to [0,1]
T0s1d0T1s2d0: C0 * C1 // multiplicative
T0s1d0T1s3d1: (1-C0)*C1 + C0 // soft additive

where C0 is a color from texture T0 and C1 is a color from texture T1.
The application code block that created a TextureEffect object can be modified

for multitexturing:

// The root node of the scene.
m_spkScene = WM4_NEW Node;

// Create a single triangle whose vertices have positions and
// two sets of 2D texture coordinates.
Attributes kAttr;
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kAttr.SetPChannels(3);
kAttr.SetTChannels(0,2); // unit 0
kAttr.SetTChannels(1,2); // unit 1
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(0.0f,1.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);
pkVBuffer->TCoord2(0,0) = Vector2f(0.0f,0.0f);
pkVBuffer->TCoord2(0,1) = Vector2f(1.0f,0.0f);
pkVBuffer->TCoord2(0,2) = Vector2f(0.0f,1.0f);
pkVBuffer->TCoord2(1,0) = Vector2f(0.5f,0.5f);
pkVBuffer->TCoord2(1,1) = Vector2f(1.0f,0.5f);
pkVBuffer->TCoord2(1,2) = Vector2f(0.5f,1.0f);
IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
aiIndex[0] = 0; aiIndex[1] = 1; aiIndex[2] = 2;
TriMesh* pkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);
m_spkScene->AttachChild(pkTriangle);

// Create a single-pass multitexture effect.
Effect* pkEffect = WM4_NEW MultitextureEffect(2);
pkEffect->SetImageName(0,"MyImage0");
pkEffect->SetImageName(1,"MyImage1");
pkTriangle->AttachEffect(pkEffect);

// Access the alpha blending state to select the shader
// for blending the two textures.
AlphaState* pkAState = pkEffect->GetBlending(1);

// For hard additive C0+C1:
pkAState->SrcBlend = AlphaState::SBF_ONE;
pkAState->DstBlend = AlphaState::DBF_ONE;
pkEffect->Configure();

// Or for multiplicative C0*C1:
pkAState->SrcBlend = AlphaState::SBF_DST_COLOR;
pkAState->DstBlend = AlphaState::DBF_ZERO;
pkEffect->Configure();

// Or for soft additive C0*C1:
pkAState->SrcBlend = AlphaState::SBF_ONE_MINUS_DST_COLOR;
pkAState->DstBlend = AlphaState::DBF_ONE;
pkEffect->Configure();
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The Configure function call is what MultitextureEffect uses to determine which
vertex and pixel shaders to use. The shader programs must already exist.

Exercise
4.2

Create more Cg programs to be used by the MultitextureEffect class for blending
two textures. Create at least one program that uses three textures. Modify the Sam-
pleGraphics/Multitextures sample application to test your programs.

Exercise
4.3

Modify MultitextureEffect::Configure to stitch together separate shader programs.
The alpha-state parsing code will not change, but instead of creating a file name, you
should load the separate Cg programs, create a new Cg program combining them,
save it to disk, shell out to the command line, and run NVIDIA’s Cg compiler to
create the assembly text programs. The name of the combined file can be structured
similarly to the current system. Better yet, include the Cg Runtime environment
in your application. After creating the combined Cg program, compile it using Cg
Runtime (i.e., do not shell out to the command line) and insert the compiled result
directly into the shader catalogs, thus bypassing the performance hit by shelling out
to disk.

4.6.2 Single-Effect, Multipass Drawing

The ShaderEffect class supports multipass drawing. The first pass draws the geomet-
ric primitive into the color buffer. Additional passes are blended into the color buffer
according to the alpha blending state maintained by the effect object. This allows you
to quickly obtain a lot of interesting effects. The drawback is that each additional
pass requires the graphics system to re-rasterize the primitive, which can be quite
expensive.

A multipass drawing operation can occur even if your geometric primitive has a
single-pass effect attached to it. The dynamic lighting system automatically creates
a LightingEffect object when lights affecting the geometric primitive are present in
the scene. The LightingEffect class itself is designed to support a single-pass drawing
with multiple lights as well as multipass drawing, but the current implementation
allows only multipass. This class has a Configure function that parses the lights
managed by the LightingEffect and determines which shader programs to use. This
mechanism is similar to the one used in the class MultitextureEffect.

A sample code block for an application is shown next.

// The root node of the scene.
m_spkScene = WM4_NEW Node;

// Create a single triangle whose vertices have positions and
// normals (for dynamic lighting).
Attributes kAttr;
kAttr.SetPChannels(3);
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kAttr.SetNChannels(3);
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(0.0f,1.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);
pkVBuffer->Normal3(0) = Vector3f(0.577f,0.577f,0.577f);
pkVBuffer->Normal3(1) = pkVBuffer->Normal3(0)
pkVBuffer->Normal3(2) = pkVBuffer->Normal3(0)
IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
aiIndex[0] = 0; aiIndex[1] = 1; aiIndex[2] = 2;
TriMesh* pkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);
m_spkScene->AttachChild(pkTriangle);

// Create an ambient light.
Light* pkALight = WM4_NEW Light(Light::LT_AMBIENT);
<set various light parameters>;

// Create a directional light.
Light* pkDLight = WM4_NEW Light(Light::LT_DIRECTIONAL);
<set various light parameters>;

pkTriangle->AttachLight(pkALight);
pkTriangle->AttachLight(pkDLight);

// This call will cause the Geometry portion of pkTriangle to
// create a LightingEffect object and attach the two lights
// to it.
pkTriangle->UpdateRS();

The UpdateRS call will cause the Geometry base class to create a LightingEffect ob-
ject and attach the two lights to it. It also calls LightingEffect::Configure, which
generates the shader file names from the light types. The ambient light causes the con-
figuration to generate the name v_L1a.ext.wmsp, where ext is one of dx9, ogl, or sft.
The directional light causes the configuration to generate the name v_L1d.ext.wmsp
with the same choices for ext. The Renderer::Draw function, when applied to the ge-
ometric primitive, will initiate a multipass drawing operation. The ambient lighting
is applied first, the directional lighting second.

The vertex shader programs for lighting are in the file Lighting.cg. This file
contains helper functions for each of the light types (ambient, directional, point,
spot). They were also constructed to allow you to easily build shaders that handle
multiple lights. One such function is already in Lighting.cg and handles an ambient
and a directional light.
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Exercise
4.4

Create more Cg programs to be used by the LightingEffect class for single-pass light-
ing. Modify the SampleGraphics/Lighting sample application to test your programs.

Exercise
4.5

Modify LightingEffect::Configure to stitch together separate shader programs. The
alpha-state parsing code will not change, but instead of creating a file name, you
should load the separate Cg programs, create a new Cg program combining them,
save it to disk, shell out to the command line, and run NVIDIA’s Cg compiler to
create the assembly text programs. The name of the combined file can be structured
similarly to the current system. Better yet, include the Cg Runtime environment
in your application. After creating the combined Cg program, compile it using Cg
Runtime (i.e., do not shell out to the command line) and insert the compiled result
directly into the shader catalogs, thus bypassing the performance hit by shelling out
to disk.

4.6.3 Multiple-Effect Drawing

The Wild Magic scene graph system allows you to render as many effects as you like
for a geometric primitive. You create a geometric primitive, create multiple effects,
and attach them all to the primitive. For example, the single-pass multitexture effect
can be performed as a multipass operation with two texture effects (not that you
would want to do this due to the lower performance).

// The root node of the scene.
m_spkScene = WM4_NEW Node;

// Create a single triangle whose vertices have positions and
// 2D texture coordinates.
Attributes kAttr;
kAttr.SetPChannels(3);
kAttr.SetTChannels(0,2); // unit 0
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(0.0f,1.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);
pkVBuffer->TCoord2(0,0) = Vector2f(0.0f,0.0f);
pkVBuffer->TCoord2(0,1) = Vector2f(1.0f,0.0f);
pkVBuffer->TCoord2(0,2) = Vector2f(0.0f,1.0f);
IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
aiIndex[0] = 0; aiIndex[1] = 1; aiIndex[2] = 2;
TriMesh* pkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);
m_spkScene->AttachChild(pkTriangle);
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Effect* pkEffect = WM4_NEW TextureEffect("MyImage0");
pkTriangle->AttachEffect(pkEffect);
pkEffect = WM4_NEW TextureEffect("MyImage1");
pkTriangle->AttachEffect(pkEffect);

// Access the alpha blending state to select the shader
// for blending the two textures.
AlphaState* pkAState = pkEffect->GetBlending(0);

// For hard additive C0+C1:
pkAState->SrcBlend = AlphaState::SBF_ONE;
pkAState->DstBlend = AlphaState::DBF_ONE;

// Or for multiplicative C0*C1:
pkAState->SrcBlend = AlphaState::SBF_DST_COLOR;
pkAState->DstBlend = AlphaState::DBF_ZERO;

// Or for soft additive C0*C1:
pkAState->SrcBlend = AlphaState::SBF_ONE_MINUS_DST_COLOR;
pkAState->DstBlend = AlphaState::DBF_ONE;

The texture effect using MyImage0 will be drawn first. The texture effect using MyImage1
is drawn second and blended with the first according to your choice of alpha blending
state. The multipass rasterizes the triangle twice, so it is less efficient than the single-
pass multitexture that rasterizes once.

4.7 Scene Graph Compilers

As I mentioned in Section 4.1, a choice must be made whether to organize objects
by spatial coherency or by render-state coherency. I presented the reasons why I
believe the spatial organization is the main criterion and why render-state sorting is
easily applied after a culling pass. Regardless, I have seen some heated debates on the
game developer forums and in newsgroups where the premise is that organization
by render state is better. Adding weight to this, I have also heard postmortems for a
couple of commercial games. The use of scene graphs was criticized for performance
reasons (among others). The term scene graph was used as if it had a single agreed-
upon definition or mechanism. I will even venture to say that the term was used in a
mystical sense, that somehow this single mechanism was supposed to be the end-all
solution to graphics development in games, yet this mechanism did not live up to its
expectations.
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To paraphrase a statement made by one of the designers for Java3D regarding a
scene graph: It’s just a data structure. As with any data structure in computer science,
it is important to know how to use that structure, but it is equally as important to
know what the data structure was designed for and when not to use it , at least in the
form that it was built.

When I worked at Numerical Design, Ltd. (now part of Emergent Game Tech-
nologies) developing NetImmerse (now Gamebryo) in the late 1990s, one of the first
games to ship using that engine was Prince of Persia 3D from Red Orb Entertainment.
Given the limited power of graphics hardware at that time (the game ran on 3dfx
Voodoo cards), the Red Orb developers and artists did an excellent job getting this
game to run with what they had. The process was nontrivial because they licensed the
binaries for a 3D character training and animation tool. This tool insisted on man-
aging all the transformations in the characters, but so did NetImmerse’s scene graph
management system. Red Orb did manage to get access to the animation tool source
code and was able to remove the redundancy, and the game ran at real-time rates.
What surprised many of us, though, was that the game was actually shipped using
NetImmerse scene graphs, stored as files with the extension .nif.

I also recall responding to a post to the Usenet newsgroup, comp.graphics
.algorithms, where the original poster wanted to know what the NIF file format
was.3 This was for the popular game Morrowind (one of the Elder Scrolls games) from
Bethesda Softworks, LLC. Apparently, NIF files were also shipped with this game. I
find this surprising as well.

When designing the scene graph data structure in NetImmerse, the main goal
was to mimic the organization provided by the data structures in the 3D Studio Max
modeling package. Realizing that game developers would build their data sets and
characters in such a package, we would have to export that data to a similar format to
preserve things such as spatial locality. More important at the time, we had to preserve
the animation information in articulated characters. The NIF files were not really a
new “file format”; rather, they represented the current state of the scene graph data
structures (nodes, geometric primitives, lights, cameras, etc.). We exported from 3D
Studio Max to NIF files and then loaded the NIF files for development and testing.
It was not our intent that games would actually ship with these. The data structures
were intended for development, not for deployment.

A modeling package allows you to create and modify 3D objects any way an artist
desires. During this process, you will find that an artist might place an object at one
location in the modeling package’s scene graph organization, but then later move it
somewhere else in the scene. Adding and removing nodes in the scene is a relatively
trivial operation for the artist. It is very easy to attach and detach parts of a scene,

3. I found the post by an advanced search on Google groups. The author name is “Dave Eberly”; the subject
line is “NetImmerse File Format”; the original poster is “C. Smith”; and the date of the post is Monday,
March 29, 2004, 4:20 p.m.
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a very dynamic and flexible system for artists to use. Flexibility does not come for
free. As with most things in computer science, you have trade-offs to consider. To
remain flexible, the nodes and other objects in a scene are dynamically allocated and
deallocated as needed. The final scene graph is invariably a collection of memory
blocks scattered about the heap. When you process such a scene graph in the game
application, you have memory fragmentation and you lose cache coherence because
of the large jumps in memory needed to traverse from one node to another. The scene
graph is convenient for development, but it is not necessarily ready for a graphics
system (or a physics system or a 3D audio system).

The missing step here is a system that takes scene graphs created during devel-
opment, either by exporting from a modeling package or created procedurally, and
processes those scenes according to criteria for optimization. The output of such a
system can be objects that have no aspect of scene graph management. More impor-
tant, the output should be tailored for the target platform, whether that be a PC, a
game console, or even an embedded device such as a mobile phone with video ca-
pabilities. The list of optimizations can be quite enormous and specific to your own
application’s needs. I like to think of the tools in the system in terms of compilers, each
compiler having a scene graph input and producing an optimized output.

4.7.1 A Scene Graph as an Expression

The developmental view of a scene graph is that it is a dynamic data structure. In
compiler terms, you may also think of it abstractly as an expression. Sometimes the
scene graph is static, but in many cases it is dynamic. Some examples are presented
here to illustrate how to think of the scene graph as an expression and how to write a
compiler to convert it to something optimized.

Example
4.1

Consider a complicated level of a game that has lots of static geometric objects.
During development, you allow the artists the flexibility to create, modify, and move
these objects around the environment. All the objects are stored in one or more
(dynamic) scene graphs. When it comes time to load these scene graphs and display
them, the graphics engine wants to know what is potentially visible and what is not.
The hierarchical culling of a scene graph allows you to construct the potentially visible
set for each frame of drawing. Suppose that your level is indoors and you know
the game character is in a certain room of the level. During development you can
precompute the visibility, determining the largest set of potentially visible objects that
the game character can see from that room. The static scene graphs for the level may
be preprocessed to produce a collection of geometric primitives that are loaded from
disk, and then the graphics engine just draws them without any culling tests. In this
example, the scene graphs representing the static geometry are expressions that are
run through a compiler that produces a collection of geometric primitives.
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Figure 4.9 A rendering of the skinned biped object from the skinned biped sample application.

Example
4.2

Another common example of a scene graph that is convenient for modeling and
development, but should probably be optimized, is an articulated biped character.
The sample application SampleGraphics/SkinnedBiped loads the components of the
scene graph and assembles them into a single scene graph. The rendered object is
shown in Figure 4.9.

The scene graph structure is summarized next. Each line of text corresponds to a node
in the scene graph. The indentation denotes parent-child relationships.

Node<"Biped">
Node<"Pelvis">

Node<"Spine">
Node<"Spine1">

Node<"Spine2">
Node<"Spine3">

Node<"Neck">
Node<"Head">
Node<"L Clavicle">

Node<"L UpperArm">
Node<"L Forearm">

Node<"L Hand">
TriMesh<"L Arm">

TriMesh<"Hair">
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Node<"R Clavicle">
Node<"R UpperArm">

Node<"R Forearm">
Node<"R Hand">

TriMesh<"R Arm">
TriMesh<"Face">

Node<"L Thigh">
Node<"L Calf">

Node<"L Foot">
Node<"L Toe">

TriMesh<"L Shoe">
TriMesh<"L Leg">
TriMesh<"L Ankle">

Node<"R Thigh">
Node<"R Calf">

Node<"R Foot">
Node<"R Toe">

TriMesh<"R Shoe">
TriMesh<"R Leg">
TriMesh<"R Ankle">

TriMesh<"Shirt">
TriMesh<"Pants">

Most of the Node objects have keyframe controllers attached. The TriMesh objects have
skin controllers attached. They also have materials attached to produce the colors you
see in Figure 4.9. The TriMesh objects also have normal vectors for dynamic lighting.
The scene is rendered using a directional light.

The biped has a lot of nodes in the scene, all occurring because this is the way the
modeling package represented the character during its construction. The nodes are
all dynamically allocated when the Wild Magic scene graph file is loaded from disk.
If the topology of this scene will not change during the application run time, then
it is possible to store the scene in a single block of contiguous memory, hopefully
avoiding cache misses due to jumping around in memory when the scene graph is
used. By storing the biped in a contiguous block of memory, the deletion of the biped
will lead to at most one hole in the heap, thereby reducing the potential memory
fragmentation that the scene graph will cause when it is deleted.

For a single-processor machine running a single thread, the simplest compaction
scheme will store the relevant node information in an array of NodeInformation
objects. The order of the elements can be the one implied by a depth-first traversal of
the scene. For the most part, the important node information consists of the local and
world transformation storage and the keyframe controller data. The triangle mesh
vertex and index buffers can also be stored in an array. Since we do not even want
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to dynamically allocate the MaterialState objects used for coloring the meshes, the
material information would be stored with the meshes.

Also notice that if you have no plans ever to modify the vertex or index buffers for the
meshes, you could provide two storage locations per mesh for pointers, one pointer to
a vertex buffer and one pointer to an index buffer. At file load time, you dynamically
allocate the vertex and index buffers in system memory, request that these resources
be loaded to VRAM, and then deallocate the vertex and index buffers that are in
system memory. The handles to the buffers that the graphics system gives you can
be stored in those storage locations that used to contain the system-memory buffer
pointers. These handles are used later to let the graphics system know which buffers
to use when drawing the biped.

If your application is running in a multithreaded environment or on a machine with
multiple processors, you could organize subtrees of the scene graph into a few blocks
for the purpose of transformation (during an UpdateGS call). For example, you can
store transformations in three separate blocks, one for the “Spine” subtree, one for
the “L Thigh” subtree, and one for the “R Thigh” subtree. The transformations in
the three blocks may be updated by three separate threads dedicated to computing
transformations, thus allowing you to do the geometric updates in parallel.

From the perspective of the library classes, you will implement a new class called
SkinnedBiped to store and represent the contiguous block of memory. A compiler
is written that will take as input a skinned biped scene graph of the form shown and
produce a SkinnedBiped object as output.

Example
4.3

Game development and programming is typically done on one platform, such as a
PC, but the testing is done on each target platform, such as a PC, Macintosh, or one
or more game consoles. What runs well on a PC might not necessarily run well on
another platform. Moreover, the data storage requirements might vary. For example,
the Intel-based machines use little endian byte order, but PowerPC-based machines
use big endian byte order. If your scene graph management system stores everything
in little endian order, and if you ship files containing this data for a real application, a
big endian system must swap the byte order when loading the data. It is better to ship
data sets that are optimized for the target platform. You may very well build a scene
graph compiler to assist in saving files to disk. Its job would be to swap byte order
when storing the data to disk to be used by a big endian machine but to do nothing
when storing the data to disk to be used by a little endian machine.

The storage of image data has similar issues, even on a single platform. If the graphics
system expects image data in a specific format and your run-time system loads data
in a different format and has to convert it to what the graphics system wants, you
probably want to reconsider factoring the conversion code out of your run-time
system. Any time any data has to be repackaged in the actual application, there
is a good chance you can improve performance by doing the repackaging during
development (or even during installation, if need be, when you know the system the
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application will run on). Ideally, the run-time environment for the application should
contain as little “development support code” as possible.

Example
4.4

The culling of objects in a scene graph may itself be considered a scene graph com-
piler. The input to Culler::ComputeVisibleSet is a scene graph. The output is a
potentially visible set. For a game environment where the camera remains fixed for
multiple frames, it is beneficial to cull once for those multiple frames rather than
culling per frame. For cell-based visibility, it is even possible that ComputeVisibleSet
is only ever used during development to create the potentially visible sets per cell. The
actual application would then load per cell the list of objects that should be sent to
the renderer without the application ever culling once.

4.7.2 Semantics of Compilation

In the examples considered so far, you have metaknowledge of the scene graphs that
need to be optimized. Unless you have added explicit information into the scene
graph classes, a compiler has no knowledge that a particular scene graph represents
static geometry. The compiler to convert a skinned biped scene graph to a Skinned-
Biped object could attempt to validate its input by checking the topology of the scene,
but if your tool chain is set up so that you only ever feed skinned biped objects to this
compiler, there is no need to validate.

More complicated examples, though, require you to assist the compiler to achieve
the semantics you want the scene graph to have. The analogy of syntax is knowing how
to traverse a scene and manipulate its parts. Semantics tell you how to interpret what
the scene means. The simplest way to provide semantics is to use node tags. Each node
in the scene graph is tagged with information designed to be read by the compiler; the
tag tells the compiler how to handle that node.

Tagging can be quite simple. For example, some modeling packages export a
viewable skeleton for a biped in addition to the meshes that form the biped’s skin.
This skeleton is for the artist’s convenience and is not relevant to how you intend
on using the biped in an application. The final exported data set should not have
that skeleton, but a generic exporter will notice that the skeleton is just as valid an
object to export as any other. The way around this is to have the artist insert textual
information into an object’s name string (a feature provided by nearly all modeling
packages) indicating that the object should be skipped when exporting. The exporter
(the compiler as it were) parses the scene graph, reading name strings and responding
accordingly.

By the same token, tagging systems can be much more complicated.

Example
4.5

Visibility determination for an indoor level may be automated by using rooms and
portals between rooms. The level itself may be represented by a scene graph (or a
subtree of a scene graph). Each level consists of a collection of rooms. Each opening
between adjacent rooms is a portal through which you can see the adjacent room
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from the one you are currently in. The drawing pass will not proceed according to
a depth-first traversal of the scene graph representing the level. Instead, the traversal
path depends on the room-portal graph and where the camera is currently located.

Given a level, it is a very difficult problem to automatically compute the room-portal
graph. It is better to have the artists structure the level within the modeling package
to conform to certain requirements. For example, if the root of the scene graph
represents the level, you might require that all the rooms be children of the root.
Each room has geometric components that define the floor, ceiling, and walls. Each
room also has contents (chairs, tables, light fixtures, and so on) that are not part
of the geometry that defines the room boundaries. Doorways and windows between
adjacent rooms are what define the room-portal graph.

If the level is correctly structured, the artist can add node tags with information
that is used by a semiautomatic portalizing tool. The root node is tagged as the level
itself. Each child is tagged as a room. The floor, ceiling, and wall geometry are tagged
with information indicating that the portalizing tool should use these to define the
region of space containing a room. The bounding region information is used to
determine which room currently contains the camera so that a drawing pass may
be properly initiated. The doorway and window geometry must also be tagged as
portals, including information about the two rooms sharing that portal. An exporter
can then convert the modeling package’s scene graph to your engine’s scene graph
representation. The portalizing tool processes this scene and replaces the nodes with
the appropriate objects in your class hierarchy.

For example, the top-level node for a room-portal scene is of type ConvexRegionMan-
ager. If the exporter converted the modeling package scene to something that has a
Node for the root and is tagged as “Dungeon Level” (for example), the portalizing
tool will replace that Node by a ConvexRegionManager object. The Node objects tagged
as rooms are replaced by ConvexRegion objects. The tagged room geometry (walls,
floors, ceilings) in the scene may be collected into a single set of points, and a con-
vex hull is computed to be used as the bounding region for the room. Finally, each
doorway or window tagged as a portal has information about the two rooms sharing
them. This is used to create Portal objects in the scene. Thinking of the portalizer as
a scene graph compiler, the input is a scene graph without portal-system objects, but
with various tagged objects. The output is a scene graph with portal-system objects
and with the tagged objects removed (including their tags).

Example
4.6

An example similar to the portalizer tools is a compiler that also processes the scene
graph output by an exporter. Support for automatic pathfinding can be added to a
scene. Just as in a portal system, the environment consists of a collection of rooms in-
terconnected by doorways. Each room is bounded by walls, a floor, and a ceiling. The
rooms also contain obstacles around which a game character must navigate. Rather
than rely on a generic collision detection system to assist in navigation, you can create
blueprints of the rooms, which may then be used by an automatic pathfinding system.
The level, rooms, and obstacles need tagging. The tagged (vertical) walls are projected
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onto ground level to form a bounding polygon for the room. The tagged obstacles are
also projected to form bounding polygons for the obstacles. The blueprint consists of
polygons for rooms and obstacles, with gaps in the room polygons to indicate door-
ways between rooms. An abstract graph may be built from the blueprints and used
for visibility purposes. One point in the blueprint is reachable from another point if
there is a path connecting the two that does not pass through any obstacle or room
wall. In a polygonal environment, these paths are polylines whose vertices are poly-
gon vertices. I cover this system in detail in Section 8.5. However, it is up to you to
write the compiler to postprocess an exported scene.

These examples should make it clear that it is not feasible to think of a scene graph
compiler as a black box that can process any scene you throw at it. Your tool chest will
have quite a collection of compilers, all designed to meet your specific needs.



C h a p t e r 5
Controller-Based
Animation

I use a very general definition for the word animation, using it to describe the
process of controlling any time-varying quantity in a scene graph. The classic

setting is character animation, where an articulated object has joints that change
position and orientation over time. The quantities to be controlled are the local
transformations at the joints. Two standard approaches to animating a character are
discussed next.

This chapter covers some basic animation controllers. Section 5.1 is about key-
frame animation. When implemented for 3D characters, an artist is required to build
a character in various poses; each pose is called a keyframe. Each keyframe changes
the local positions and local orientations of the nodes in the hierarchy. When it comes
time to animate the character, the poses at the times between keyframes are computed
using interpolation. A flexible method for interpolating the local translations uses
Kochanek-Bartels splines, discussed in detail in Section 11.7. The interpolation of
local rotations is more complex, but the concept of splines still applies. The idea is
to represent the rotations as quaternions and then interpolate the quaternions. The
smooth interpolation of quaternions is a somewhat technical concept. Details may be
found in Section 17.2.

One potential problem with keyframe animation is that the local transformations
at the nodes are interpolated in a relatively independent way. Interpolation at one
node is performed independently from interpolation at another node, which can
lead to artifacts, such as the stretching of character components that normally are
considered to be rigid. For example, the local translations of a shoulder node and
elbow node are interpolated independently, but the length of the arm from shoulder

315



316 Chapter 5 Controller-Based Animation

to elbow should be constant. The interpolations do not guarantee that this constraint
will be satisfied.

The game content can have a large quantity of keyframes, which requires a lot of
memory to store. Reductions in memory usage are possible via keyframe compression.
This is the topic of Section 5.2.

Keyframe animation uses data that is precomputed by an artist. If the animation
must occur dynamically in unexpected ways, an alternative method is to use inverse
kinematics. Constraints are placed at the various nodes—constraints such as fixed
lengths between nodes or rotations restricted to planes and/or with restricted ranges
of angles. The only interpolation that needs to occur is at those nodes with any
degree of freedom. For example, an elbow node and wrist node have a fixed length
between them, and both nodes have rotations restricted to planes with a fixed range
of angles. A hand node is attached to the wrist and has three degrees of freedom (the
components of local translation). The hand can be moved to some location in space;
the wrist and elbow must follow accordingly, but with the mentioned constraints.
Section 5.3 is about inverse kinematics.

Animating the nodes corresponding to the joints of a character is one thing, get-
ting the surface of the character to move properly with the joints is another. Section
5.4 talks about skinning—establishing a set of bones connecting the joints and as-
signing the vertices of the mesh representing skin, clothing, and other quantities to
various bones for weighting purposes. As the bones move, the vertices will change
according to their weights.

Section 5.5 is about time-varying vertices of a mesh, or vertex morphing . As the
vertices move about, the mesh morphs into various forms. There are a few ways
to control the vertices. In Wild Magic, I have a class called MorphController that
manages a collection of poses and morphs from one pose to the next. It is also possible
to have a morphing controller for which each vertex has its own morphing function.

The final topic is Section 5.6 on point systems and particle systems. Points are
displayed as single pixels on the screen, but particles have size and are typically
represented as billboarded screen polygons. Both systems have a physics aspect to
them—controlling the position (points and particles) and the orientation (particles)
over time due to forces and torques applied to them.

Now a brief mention of what this chapter is not about. Nothing is discussed in
this chapter about how to actually build physically realistic animations. That topic
is quite complex and could fill a large book by itself. Regarding particle physics, a
few companies have ventured into producing physics engines to provide for realistic
motions and realistic interactions between objects in the world. Although correct
physics is a very important topic, this chapter describes only how to process the
animation data that was already constructed by an artist through a modeling package,
by motion capture, or by other procedural means.

Support for controllers in Wild Magic are provided by the base class Controller,
which has data members for specifying the time range over which the animation
occurs. It also has members for specifying how the times are to be interpreted; the
units of time may vary based on the modeling package used to generate the controlled
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data. The animation time may be clamped, repeated, or cycled (mirror-repeated),
modes that are analogous to those found in texture coordinate modes. The Object
class provides the ability to attach controllers to objects and detach controllers from
objects. The Controller class has a virtual function that supports dynamic updates
during the program execution. The updating essentially uses the input time and
allows the controller to interpolate data or perform whatever action is necessary
to modify its state so that it represents what is expected at the input time. Each
Controller-derived class overrides the virtual update function as needed.

5.1 Keyframe Animation

The standard implementation of keyframe animation involves interpolating posi-
tions, orientations, and scales as separate channels. This requires the nodes in a hierar-
chy to store the channels separately. If you were to design a transformation hierarchy
that stores general matrices at the nodes, and if you wanted to interpolate a pair of
matrices to produce visually intuitive results, you would have to factor the matrices
into positions, orientations, and scales. This problem is ill-posed; see Section 17.5.

5.1.1 Interpolation of Position

In Wild Magic, the KeyframeController class stores the positions, orientations, and
scales separately. A sequence of keyframe positions is (ti , Pi) for 0 ≤ i < n. The
times are assumed to be ordered, t0 < t1 < . . . < tn−1, but not necessarily uniformly
spaced. If the query time is t ∈ [t0, tn−1], you must first locate the pair of keys whose
times bound the query time; that is, search for the index i for which ti ≤ t < ti+1. A
normalized time is computed,

u = t − ti

ti+1 − ti
(5.1)

and the position keys are interpolated by

P = (1 − u)Pi + uPi+1 (5.2)

Knowing that the interpolation is going to happen at real-time rates, a linear
search for the index i can require enough time that it is noticeable when you profile.
You may take advantage of time coherency. If ilast is the index computed on the last
query for interpolation, rather than starting the linear search at index 0, start it at
ilast. A general linear search over n items is of order O(n). If you start the search at
the last index, you expect an O(1) search. In most cases, ilast will be the index used
for the current search, but sometimes will be ilast + 1. If your keyframe animations
will include the cycle mode (mirrored-repeat mode), then you would search indices
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smaller than ilast when the cycle mode is in the reversed direction of time. Still the
expected search is order O(1).

5.1.2 Interpolation of Orientation

A sequence of keyframe orientations is (ti , qi) for 0 ≤ i < n, where qi is a unit
quaternion that represents a rotation. The times are assumed to be ordered, t0 < t1 <
. . . < tn−1, but not necessarily uniformly spaced. Although I have used the same n for
the number of keys, a keyframe controller may have different numbers of keyframes
for positions, orientations, and scales. The KeyframeController class allows this, and
it allows you to specify a common set of times if that is what your animation uses.

The normalized time is computed using Equation (5.1). The orientation keys are
interpolated using the slerp function for quaternions,

q = slerp(t ; qiqi+1) = qi sin((1 − t)θi) + qi+1 sin(tθi)

sin θi

(5.3)

where θi is the angle between qi and qi+1. Treating the quaternions as 4-tuples, the dot
product is qi

. qi+1 = cos θi. See Section 17.2 for details on quaternions. This section
also discusses the relationship between quaternions and rotations. It is possible to do
the keyframe interpolation using rotation matrices, but at a cost of many more CPU
cycles.

One problem with quaternions is that a single rotation/orientation is represented
by two quaternions, q and −q. This can cause visual anomalies to occur when inter-
polating during keyframe animations. In fact, it has happened for me when exporting
quaternions from 3dsmax. The problem is that you want to interpolate two consec-
utive quaternions as long as the angle between them is acute. If you have a sequence
qi for 0 ≤ i < n, you should preprocess them to guarantee the acute-angle condition.
That is,

for (i = 1; i < n; i++)
{

float dot = Dot(q[i-1],q[i]);
if (dot < 0) // The angle is obtuse.
{

q[i] = -q[i];
}

}

5.1.3 Interpolation of Scale

A sequence of scales is (ti , σi) for 0 ≤ i < n, where I assume σi > 0. As before, the
number of scales is not required to be the number of positions or the number of
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orientations. Moreover, it is not necessary to have all three types of keyframes. You
can mix and match as needed.

The interpolations for positions and orientations were chosen in a “natural”
manner. The natural manner for scales is geometric rather than algebraic:

σ = σ 1−u
i σ u

i+1 (5.4)

for normalized time u ∈ [0, 1]. The interpolation is actually linear in the logarithm of
scale:

log(σ ) = (1 − u) log(σi) + u log(σi+1)

However, artists tend not to choose large scales, instead using them to tweak the way
models appear. In this case, a linear interpolation of scale works fine and is what I
implemented in Wild Magic:

σ = (1 − u)σi + uσi+1 (5.5)

Nonuniform scaling has been the curse of computer graphics and 3D models. I
made the assumption that the scales are positive, but artists do tend to use negative
scales to obtain reflections of objects. This is a curse, because if you have a triangle
mesh with counterclockwise-ordered triangles when viewed from outside the mesh,
and if you apply a transformation with a negative scaling factor, the reflected mesh
has its triangle ordering reversed. You could detect this and attach a culling-state
object to the mesh, asking for front-facing triangles to be culled, but I personally find
it to be a pain having to deal with the reflections and negative scales.

Another problem with nonuniform scaling has to do with wanting to “bake” a
parent’s world transformation into a child’s keyframe data. For example, suppose a
child has a pair of keyframe positions P0 and P1. The interpolation produces the time-
varying translation

T0(t) = (1 − t)P0 + tP1

for t ∈ [0, 1]. Suppose X is a point in the child’s coordinate system, and suppose
Y = R1S1X + T1 is the transformation to world space, where R1 is the parent’s world
rotation, S1 is the parent’s world (nonuniform) scales, and T1 is the parent’s world
translation. Applying this during keyframe animation, we have

Y(t) = R1S1T0(t) + T1 = R1S1

(
(1 − t)P0 + tP1

)+ T1

= (1 − t)(R1S1P0 + T1) + t (R1S1P1 + T1)

The parent’s world transformation is baked into the child’s position keyframes to ob-
tain P′

i
= R1S1Pi + T1. The baking might allow you to remove the parent node from

the hierarchy if it has no other responsibilites than providing a world transformation
for its children.
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A slight extension of this construction shows that rotations and translations can
be baked into the child’s keyframes. The translational component is the same as
was shown previously. If the orientation keyframes are the quaternions q0 and q1,
then q(t) is defined by Equation (5.3). If α1 is the quaternion corresponding to the
parent’s world transformation, then the matrix component after application of the
world transformation is

α1q(t) = α1
qi sin((1 − t)θi) + qi+1 sin(tθi)

sin θi

= (αqi) sin((1 − t)θi) + (αqi+1) sin(tθi)

sin θi

Using the algebraic properties of quaternions, the angle between αqi and αqi+1 is θ .
Think of α as rotating qi and qi+1 on the unit 4D hypersphere—the rotation preserves
angles. Thus, the baked keyframes are q ′

i
= αqi.

When you throw in nonuniform scaling, the baking does not work. It all comes
down to the problem that you cannot generally take a product S0R0 of a nonuniform
scale matrix S0 and a rotation matrix R0 and refactor it as S0R0 = R1S1, where R1
is a rotation and S1 is a nonuniform (diagonal) scale matrix. The best you can do is
obtain a symmetric matrix S1; see Section 17.5 for details.

5.2 Keyframe Compression

Modeling packages that support animation make it difficult to extract the internal
continuous representation of keyframe interpolation, but they make it relatively easy
to sample the continuous representation to produce the keyframe data. What many
developers have found is that avoiding the quirks of the modeling package export
SDKs is preferred. Instead they choose to sample the animations at a constant frame
rate (30 or 60 samples per second) and use the data as is, or when memory is scarce
(such as on game consoles), reduce the number of keyframes through algorithmic
means.

A simple method to reduce the memory usage is to store the samples using a
16-bit representation of the 32-bit floating-point values, which is a form of lossy
data compression. For positional and scale data, the floating-point channels are not
restricted to a particular interval. The first step is to compute the extreme values for a
channel and then map the 32-bit floating-point values to 16-bit unsigned integers.
Specifically, let the minimum of the channel be m0 and let the maximum of the
channel be m1. The transformation of the floating-point value f ∈ [m0, m1] to a 16-
bit unsigned integer i is

i =
⌊

65,535

(
f − m0

m1 − m0

)⌋
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where �x� is the floor function, which computes the largest integer smaller or equal
to x. The transformed values are stored in memory as the keyframes. During the pro-
gram execution, the 16-bit unsigned integers are transformed to 32-bit floating-point
numbers and then interpolated as discussed in Section 5.1. The reverse transforma-
tion is

f = m0 + (m1 − m0)i

65,535

Naturally, the divisions should be avoided by precomputing some values. For exam-
ple, you would precompute c = (m1 − m0)/65,535 as a floating-point number so that
the interpolator may compute f = m0 + ci. The typical space-time trade-off is made
here. You reduce your memory usage but pay the price by using extra time (uncom-
pressing) to do the interpolation. For game consoles, memory is small and computing
power is large, so the trade-off is a good one.

A more sophisticated method for reducing memory usage is to fit the samples
with a B-spline curve. The goal is to construct a curve that is a good fit to the
(unknown) internal representation that the modeling package uses, but the curve
should have many fewer control points than the number of samples to which the
curve is fit. The animation occurs by evaluating the B-spline curve at selected times.
Regarding a good fit to an unknown internal representation, the artists have the final
say. They should look at the animation based on the B-spline evaluation, visually
compare it to what they see in the modeling package, and give a thumbs-up (or
thumbs-down as the case may be). An algorithm for fitting samples with a B-spline
curve is discussed here. This approach has been known to the CAD commmunity for
quite some time.

5.2.1 Fitting Points with a B-Spline Curve

A set of keyframe samples is {(tk , Pk)}mk=0, where the tk are the sample times and Pk

are the sample data. The sample times must be increasing: t0 < t1 < . . . < tm. The
points can be in any dimension. For our needs, they are positions (3D) or unit-length
quaternions (4D). In the latter case, the fitted curve is not guaranteed to be on the
unit hypersphere in 4D, but each curve evaluation is normalized to produce a unit-
length result. The normalization may be implemented using a fast inverse square root
algorithm.

A fitted B-spline curve uses the normalized time u ∈ [0, 1]of Equation (5.1). The
mapping from tk to uk is an off-line process and the mapping from uk to tk during run
time is of negligible cost. A B-spline curve is defined for a collection of n + 1 control
points {Qi}ni=0 by

X(u) =
n∑

i=0

Ni , d(u)Qi (5.6)
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The degree of the curve is d and must satisfy 1 ≤ d ≤ n. The functions Ni , d(u) are
the B-spline basis functions, which are defined recursively and require selection of a
sequence of scalars ui for 0 ≤ i ≤ n + d + 1. The sequence is nondecreasing; that is,
ui ≤ ui+1. Each ui is referred to as a knot and the total sequence as a knot vector. The
basis function that starts the recursive definition is

Ni , 0(u) =
{

1, ui ≤ u < ui+1
0, otherwise

(5.7)

for 0 ≤ i ≤ n + d . The recursion itself is

Ni , j (u) = u − ui

ui+j − ui

Ni , j−1(u) + ui+j+1 − u

ui+j+1 − ui+1

Ni+1, j−1(u) (5.8)

for 1 ≤ j ≤ d and 0 ≤ i ≤ n + d − j . The support of a function is the smallest closed
interval on which the function has at least one nonzero value. The support of Ni , 0(u)

is clearly [ui , ui+1]. In general, the support of Ni , j (u) is [ui , ui+j+1]. This fact means
that locally the curve is influenced by only a small number of control points, a
property called local control.

The main classification of the knot vector is that it is either open or periodic.
If open, the knots are either uniform or nonuniform. Periodic knot vectors have
uniformly spaced knots. The use of the term open is perhaps a misnomer since you
can construct a closed B-spline curve from an open knot vector. The standard way
to construct a closed curve uses periodic knot vectors. For the fitting of keyframe
samples, we will restrict our attention to open and uniform knot vectors:

ui =

⎧⎪⎨
⎪⎩

0, 0 ≤ i ≤ d

i−d
n+1−d

, d + 1 ≤ i ≤ n

1, n + 1 ≤ i ≤ n + d + 1

(5.9)

The uniformity is important in guaranteeing a robust curve fit.
We consider the control points Qi unknown quantities to be determined later.

The control points are considered to be column vectors, and the collection of control
points may be arranged into a single column vector

Q̂ =

⎡
⎢⎢⎣

Q0
Q1
...

Qn

⎤
⎥⎥⎦ (5.10)

Similarly, the samples Pk are considered to be column vectors, and the collection is
written as a single column vector
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P̂ =

⎡
⎢⎢⎣

P0
P1
...

Pm

⎤
⎥⎥⎦ (5.11)

For a specifed set of control points, the least-squares error function between the
B-spline curve and sample points is the scalar-valued function

E(Q̂) = 1

2

m∑
k=0

∣∣∣∣∣∣
n∑

j=0

Nj , d(uk)Qj − Pk

∣∣∣∣∣∣
2

(5.12)

The quantity
∑n

j=0 Nj , d(uk)Qj is the point on the B-spline curve at the scaled sam-
ple time uk. The term within the summation on the right-hand side of Equation
(5.12) measures the squared distance between the sample point and its correspond-
ing curve point. The error function measures the total accumulation of squared dis-
tances. The hope is that we may choose the control points to make this error as small
as possible. Although zero error would be great to achieve, this can happen only if the
samples were chosen from a B-spline curve itself, which is not likely, but nevertheless
we want to minimize the error.

The minimization is a calculus problem. The function E is quadratic in the
components of Q̂, so it must have a global minimum that occurs when its gradient
vector (the vector of first-order partial derivatives) is zero. The analogy you are most
likely familiar with is a parabola that opens upward. The vertex of the parabola occurs
where the first derivative is zero. The first-order partial derivatives are written in
terms of the control points Qi rather than in terms of the components of the control
points. This allows us to manipulate vector-valued equations in a manner that is more
conducive to solving the problem symbolically. The derivatives are

∂E

∂Qi

=
m∑

k=0

⎛
⎝ n∑

j=0

Nj , d(uk)Qj − Pk

⎞
⎠Ni , d(uk)

=
m∑

k=0

n∑
j=0

Ni , d(uk)Nj , d(uk)Qj −
m∑

k=0

Ni , d(uk)Pk

=
m∑

k=0

n∑
j=0

akiakjQj −
m∑

k=0

akiPk

(5.13)

where arc = Nc , d(ur), and for 0 ≤ i ≤ n. Setting the partial derivatives equal to the
zero vector leads to the system of equations

0 =
m∑

k=0

n∑
j=0

aikajkQj −
m∑

k=0

aikPk = ATAQ̂ − ATP̂ (5.14)
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where A = [arc] is a matrix with n + 1 rows and m + 1 columns. The matrix AT is
the transpose of A. This system of equations is in a familiar form of a least-squares
problem. Recall that such problems arise when wanting to solve Ax = b. If the system
does not have a solution, the next best thing is to construct x so that |Ax − b| is as
small as possible. The minimization leads to the normal system ATAx = ATb.

The matrix ATA is symmetric, a property that is desirable in the numerical
solution of systems. Moreover, the matrix A is banded, which is a generalization of
tridiagonal. A banded matrix has a diagonal with (potentially) nonzero entries. It has
a contiguous set of upper bands and a contiguous set of lower bands, each band with
(potentially) nonzero entries. All other entries in the matrix are zero. In our case
the number of upper bands and the number of lower bands are the same, namely,
d + 1. The bandedness is a consequence of the local control for B-spline curves (the
supports of the B-spline basis functions are bounded intervals).

You might try inverting the coefficient matrix directly to solve Equation (5.14).
That is, the equation ATAQ̂ = ATP̂ implies

Q̂ =
(
ATA

)−1
ATP̂

The problem, though, is that the matrix inversion is ill-conditioned when the de-
terminant of ATA is nearly zero. The ill-conditioning causes Gaussian elimination to
have problems, even with full pivoting. As it turns out, the ill-conditioning is not typ-
ically an issue as long as you choose a B-spline curve with uniform knots. Indeed, this
is the reason I mentioned earlier that we will constrain ourselves to uniform knots.
Regardless, a different approach to solving the linear system is called for, both to min-
imize the effects of ill-conditioning and to take advantage of the bandedness of the
matrix. Recall that Gaussian elimination to solve a linear system with an n × n ma-
trix is an O(n3) algorithm. The solution to a linear system with a tridiagonal matrix
is O(n); the same is true for a banded matrix with a small number of bands relative
to the size of the matrix.

The numerical method of choice for symmetric, banded matrix systems is the
Cholesky decomposition. The book [GL93] has an excellent discussion of the topic.
The algorithm starts with a symmetric matrix and factors it into a lower-triangular
matrix times the transpose of that lower-triangular matrix. In our case, the Cholesky
decomposition is

ATA = GGT

where G is lower triangular and GT is upper triangular. The linear system is then
GGTQ̂ = ATP̂ . A numerically stable LU solver may be used first to invert G, then to
invert GT. The choice of uniform knots leads to good stability, but it is necessary
to make certain that the number of control points is smaller than the number of
samples by a half. This is essentially a Nyquist frequency argument. If you have as
many control points as samples, the B-spline curve can have large oscillations. This
is not an issue for us, because our goal is to choose a small number of control points
relative to the number of samples in order to reduce our memory requirements.
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5.2.2 Evaluation of a B-Spline Curve

The B-spline curve control points are computed off-line, so the efficiency of the
evaluation of Equation (5.6) is not of concern for the construction. However, the B-
spline curve must be evaluated frequently during the program’s execution, so it is
important to minimize the amount of computation time for each evaluation.

The straightforward method for evaluation of X(u) in Equation (5.6) is to com-
pute all of Ni , d(u) for 0 ≤ i ≤ n using the recursive formulas from Equations (5.7)
and (5.8). The pseudocode to compute the basis function values follows. The number
n, degree d, and control points Q[i] are assumed to be globally accessible.

float N (int i, int j, float u)
{

if (j > 0)
{

c0 = (u - GetKnot(i))/(GetKnot(i+j) - GetKnot(i));
c1 = (GetKnot(i+j+1) - u)/(GetKnot(i+j+1) - GetKnot(i+1));
return c0 * N(i,j-1,u) + c1 * N(i+1,j-1,u);

}
else // j == 0
{

return (GetKnot(i) <= u && u < GetKnot(i+1) ? 1 : 0);
}

}

Point X (float u)
{

Point result = ZERO;
for (i = 0; i <= n; i++)
{

result += N(i,d,u) * Q[i];
}
return result;

}

The knot lookup is

float GetKnot (int i)
{

if (i <= d) return 0;
if (i >= n+1) return 0;
return (i-d)/(n+1-d);

}
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Table 5.1 Recursive dependencies for B-spline basis functions for n = 5 and d = 3.

N0, 3 N1, 3 N2, 3 N3, 3 N4, 3 N5, 3

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 2 N1, 2 N2, 2 N3, 2 N4, 2 N5, 2 N6, 2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 1 N1, 1 N2, 1 N3, 1 N4, 1 N5, 1 N6, 1 N7, 1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 0 N1, 0 N2, 0 N3, 0 N4, 0 N5, 0 N6, 0 N7, 0 N8, 0

Knots 0 0 0 [0 1
3

2
3 1) 1 1 1

This is an inefficient algorithm because local control implies that only a small
number of the basis function values are nonzero and many of the basis functions
are evaluated twice. For example, the value N0, d(u) requires computing N0, d−1(u)

and N1, d−1(u). The value N1, d(u) also requires computing N1, d−1(u), as well as
N2, d−1(u). The recursive dependencies are illustrated in Table 5.1 for n = 5 and d = 3.

The rows of knot vectors open with brackets and close with parentheses. These
indicate that an evaluation for a specified u ∈ [0, 1) requires searching for the bound-
ing interval [ui , ui+1) containing u. Only those knots in the bracketed portion need
to be searched. The search returns the index of the left endpoint i, where d ≤ i ≤ n.
For an open knot vector, the knots corresponding to other indices are included for
padding.

To avoid the redundant calculations, you might think to evaluate the table from
the bottom up rather than from the top down. In the previous example you would
compute Ni , 0(u) for 0 ≤ i ≤ 8 and save these for later access. You would then com-
pute Ni , 1(u) for 0 ≤ i ≤ 7 and look up the values Nj , 0(u) as needed. The next step
is to compute Ni , 2(u) for 0 ≤ i ≤ 6, looking up the values Nj , 1(u) as needed. Fi-
nally, the values Ni , 3(u) are computed for 0 ≤ i ≤ 5, looking up the values Nj , 2(u)

as needed. This is a reasonable modification but still not as efficient as it could be.
For a single value of u, only one of Ni , 0(u) is 1; the others are all zero. In the previous
example suppose that u ∈ [u4, u5) so that N4, 0(u) is 1 and all other Ni , 0(u) are 0. The
only nonzero entries from Table 5.1 are shown as boxed quantities in Table 5.2.

The boxed entries cover a triangular portion of the table. The values on the left
diagonal edge and on the right vertical edge are computed first since each value
effectively depends only on one previous value, the other value already known to be
zero. If Ni , 0(u) = 1, the left diagonal edge is generated by

Ni−j , j (u) = ui+1 − u

ui+1 − ui−j+1

Ni−j+1, j−1(u) (5.15)
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Table 5.2 Nonzero (boxed) values from Table 5.1 for N4, 0(t) = 1.

N0, 3 N1, 3 N2, 3 N3, 3 N4, 3 N5, 3

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 2 N1, 2 N2, 2 N3, 2 N4, 2 N5, 2 N6, 2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 1 N1, 1 N2, 1 N3, 1 N4, 1 N5, 1 N6, 1 N7, 1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 0 N1, 0 N2, 0 N3, 0 N4, 0 N5, 0 N6, 0 N7, 0 N8, 0

and the right vertical edge is generated by

Ni , j (u) = u − ui

ui+j − ui

Ni , j−1(u) (5.16)

both evaluated for 1 ≤ j ≤ d . The interior values are computed using the recursive
formula, Equation (5.8). The pseudocode for computing the curve point is

Point X (float u)
{

float basis[d+1][n+d+1]; // basis[j][i] = N(i,j)

// Get indices of the potentially nonzero basis functions.
int imin, imax;
GetIndices(u,imin,imax);

// Evaluate left diagonal and right vertical edges.
for (j = 1; j <= d; j++)
{

c0 = (u - GetKnot(i))/(GetKnot(i+j) - GetKnot(i));
c1 = (GetKnot(i+1) - u)/(GetKnot(i+1) - GetKnot(i-j+1));
basis[j][i] = c0 * basis[j-1][i];
basis[j][i-j] = c1 * basis[j-1][i-j+1];

}

// Evaluate interior.
for (j = 2; j <= d; j++)
{

for (k = i - j + 1; k < i; k++)
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{
c0 = (u - GetKnot(k)) / (GetKnot(k+j) - GetKnot(k));
c1 = (GetKnot(k+j+1) - u)/(GetKnot(k+j+1) - GetKnot(k+1));
basis[j][k] = c0 * basis[j-1][k] + c1 * basis[j-1][k+1];

}

Point result = ZERO;
for (j = imin; j <= imax; j++)
{

result += basis[d][j] * Q[j];
}
return result;

}

The function GetMinIndex computes index i from the input parameter u. If the
input is outside the interval [0, 1], it is clamped to this interval. The pseudocode is

void GetIndices (float& u, int& imin, int& imax) const
{

if (u <= 0)
{

u = 0;
imin = 0;

}

if (u >= 1)
{

u = 1;
imin = n-d;

}

imin = floor((n + 1 - d) * u);
imax = imin + d;

}

The pseudocode for Point X (float u) is efficient in time, but not space. The
pseudocode relies on the existence of a large two-dimensional array called basis in
which all the values from Table 5.2 may be stored. However, as Table 5.2 indicates,
only a small number of storage units are required. In the example, the degree is
d = 3 and ten storage units are required. The last part of Point X (float u) uses local
control to restrict the basis function evaluation to those that are nonzero. It also uses
only the d + 1 basis function values from the top row of the table. With some careful
programming, we only need storage for those d + 1 values. The relevant entries in
the rows of the table below the top row may be computed and temporarily stored.
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The order of evaluation is to start with the bottom row (only one entry is nonzero),
and then evaluate the entries in the next row up, doing so from left to right. In the
example, the computations are as follows. The storage is an array v of d + 1 = 4
elements.

// N(4,0)
v[3] = 1;

//-------

// N(3,1)
v[2] = ((knot[5] - u)/(knot[5] - knot[4]))*v[3];

// N(4,1)
v[3] = ((u - knot[4])/(knot[5] - knot[4]))*v[3];

//-------

// N(2,2)
v[1] = ((knot[5] - u)/(knot[5] - knot[3]))*v[2];

// N(3,2)
v[2] = ((u - knot[3])/(knot[5] - knot[3]))*v[2] +

((knot[6] - u)/(knot[6] - knot[4]))*v[3];

// N(4,2)
v[3] = ((u - knot[4])/(knot[6] - knot[4]))*v[3];

//-------

// N(1,3)
v[0] = ((knot[5] - u)/(knot[5] - knot[2]))*v[1];

// N(2,3)
v[1] = ((u - knot[2])/(knot[5] - knot[2]))*v[1] +

((knot[6] - u)/(knot[6] - knot[3]))*v[2];

// N(3,3)
v[2] = ((u - knot[3])/(knot[6] - knot[3]))*v[2] +

((knot[7] - u)/(knot[7] - knot[4]))*v[3];

// N(4,3)
v[3] = ((u - knot[4])/(knot[7] - knot[4]))*v[3];



330 Chapter 5 Controller-Based Animation

Taking advantage of a few patterns in these equations, the general code is

Point X (float u)
{

int imin, imax;
GetIndices(u,imin,imax);

v[d] = 1;
for (int r = d - 1; r >= 0; r--)
{

int i0 = imax + 1, i1 = r + imax + 1 - d;
float knot0 = GetKnot(i0), knot1 = GetKnot(i1);
float invdenom = 1/(knot0 - knot1);
float coeff1 = (knot0 - u)*invdenom, coeff0;
v[r] = coeff1*v[r+1];

for (int c = r + 1; c < d; c++)
{

coeff0 = (t - knot1)*invdenom;
v[c] *= coeff0;

knot0 = GetKnot(++i0);
knot1 = GetKnot(++i1);
invdenom = 1/(knot0 - knot1);
coeff1 = (knot0 - u) * invdenom;
v[c] += coeff1*v[c+1];

}

coeff0 = (u - knot1)*invdenom;
v[d] *= coeff0;

}

Point result = ZERO;
for (int i = 0, j = imin; i <= d; i++)
{

result += v[i] * Q[j];
}
return result;

}

First, we can inline the GetIndices function call since the curve evaluation func-
tion is the only place it is used. Second, we can eliminate the GetKnot function calls
by computing the knots once, thus avoiding repeated calls to compute the same knot.
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Each knot involves a division, and the coefficients of the v array elements themselves
involve divisions. We can reduce the number of divisions by multiplying the coef-
ficients by n + 1 − d . Specifically, we can make adjustments like the following. Let
q = n + 1 for the sake of the discussion; the actual source code uses the same naming
convention.

q = n + 1;
qmd = q - d;
u’ = qmd * u;
knot’[i] = qmd * knot[i]; // 0 <= i < 2*d
(u - knot[i])/(knot[j] - knot[i]) = (u’ - knot’[i])/(knot’[j] - knot’[i]);
(knot[j] - u)/(knot[j] - knot[i]) = (knot’[j] - u’)/(knot’[j] - knot’[i]);

The number of distinct knots is 2d , which can be deduced from the fact that the
minimum knot index generated by Equation (5.15) is i − d + 1 and the maximum
knot index generated by Equation (5.16) is i + d . The number of indices is (i + d) −
(i − d + 1) + 1 = 2d . The curve evaluation becomes

Point X (float u)
{

// q = n + 1
float qmd = q - d, uprime;
float uprime;
int imin, imax;
if (u <= 0)
{

uprime = 0;
imin = 0;
imax = d;

}
else if (u >= 1)
{

uprime = qmd;
imax = q - 1;
imin = imax - DEGREE;

}
else
{

uprime = qmd*u;
imin = floor(uprime);
imax = imin + d;

}
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float knotprime[2*d];
for (int i0 = 0, i1 = imax+1-d; i0 < 2*d; i0++, i1++)
{

if (i1 <= d)
{

knotprime[i0] = 0;
}
else if (i1 >= q)
{

knotprime[i0] = qmd;
}
else
{

knotprime[i0] = i1 - d;
}

}

v[d] = 1;
for (int r = d - 1; r >= 0; r--)
{

int i0 = d, i1 = r;
float knot0 = knotprime[i0], knot1 = knotprime[i1];
float invdenom = 1/(knot0 - knot1);
float coeff1 = (knot0 - u)*invdenom, coeff0;
v[r] = coeff1*v[r+1];

for (int c = r+1; c < d; c++)
{

coeff0 = (u - knot1)*invdenom;
v[c] *= coeff0;

knot0 = knotprime[++i0];
knot1 = knotprime[++i1];
invdenom = 1/(knot0 - knot1);
coeff1 = (knot0 - u) * invdenom;
v[c] += coeff1*v[c+1];

}

coeff0 = (u - knot1)*invdenom;
v[d] *= coeff0;

}

Point result = ZERO;
for (int i = 0, j = imin; i <= d; i++)
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{
result += v[i] * Q[j];

}
return result;

}

The source code that implements all this is part of the LibFoundation project.
In particular, the relevant files are in the Curves folder and have the file names
Wm4BSplineFitBasis and Wm4BSplineFit. The B-spline basis function evaluation is
encapsulated by the BSplineFitBasis class and depends only on the number of con-
trol points and the degree. This allows you to share the evaluators among multiple
keyframe sequences. The class BSplineFit encapsulates the construction of the con-
trol points from the keyframe samples.

5.2.3 Optimized Evaluation for Degree 3

Cubic B-spline curves are commonly used because they have sufficient smoothness
to generate smooth keyframe animations, yet they have low degree, which means you
do not spend a lot of cycles for the evaluation. You may very well use the methods
described previously to evaluate the curves using a BSplineFitBasis object, but this
object does not take advantage of the fact that you are using a fixed degree 3.

The optimizations involve rapid calculation of the knotprime values that occur in
the previously mentioned pseudocode, and they vary with q = 4, q = 5, q = 6, and
q ≥ 7. In the following: ki refers to the knotprime[i] value; u is used for the scaled
time (the actual time multiplied by q − 3); and vi refers to the storage array in the
basis function evaluator class. The array values are computed in the following order:

r = 3 : v3 = 1

r = 2 : v2 = k3 − u

k3 − k2

v3, v3 = u − k2

k3 − k2

v3

r = 1 : v1 = k3 − u

k3 − k1

v2, v2 = u − k1

k3 − k1

v2 + k4 − u

k4 − k2

v3, v3 = u − k2

k4 − k2

v3

r = 0 : v0 = k3 − u

k3 − k0

v1, v1 = u − k0

k3 − k0

v1 + k4 − u

k4 − k1

v2,

v2 = u − k1

k4 − k1

v2 + k5 − u

k5 − k2

v3, v3 = u − k2

k5 − k2

v3

Consider the case q = 4. The indices for the curve evaluation are always imin = 0
and imax = 3. The knot values are necessarily

k0 = 0, k1 = 0, k2 = 0, k3 = 1, k4 = 1, k5 = 1
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The v values are computed as

r = 3 : v3 = 1

r = 2 : v2 = (1 − u)v3, v3 = uv3

r = 1 : v1 = (1 − u)v2, v2 = uv2 + (1 − u)v3, v3 = uv3

r = 0 : v0 = (1 − u)v1, v1 = uv1 + (1 − u)v2, v2 = uv2 + (1 − u)v3, v3 = uv3

Replacing each row into the one following it, and factoring out common expressions,

// q = 4
one_m_u = 1 - u;
u_sqr = u * u;
one_m_usqr = one_m_u * one_m_u;
v[0] = one_m_u * one_m_usqr;
v[1] = 3 * u * one_m_usqr;
v[2] = 3 * u_sqr * one_m_u;
v[3] = u * u_sqr;

Consider the case q = 5. The maximum index for the curve evaluation is imax ∈
{3, 4} and imin = imax − 3. The knot values are

k0 = 0, k1 = 0, k2 = i − 3, k3 = i − 2, k4 = 2, k5 = 2

for i ∈ {3, 4}. For i = 3, the v values are computed as

r = 3 : v3 = 1

r = 2 : v2 = (1 − u)v3, v3 = uv3

r = 1 : v1 = (1 − u)v2, v2 = uv2 + (2 − u)v3, v3 = (u/2)v3

r = 0 : v0 = (1 − u)v1, v1 = uv1 + ((2 − u)/2)v2,

v2 = (u/2)v2 + ((2 − u)/2)v3, v3 = (u/2)v3

Replacing each row into the one following it, and factoring out common expressions,

// q = 5, i = 3
one_m_u = 1 - u;
two_m_u = 2 - u;
half_u = 0.5 * u;
one_m_usqr = one_m_u * one_m_u;
expr = 0.5 * (u * one_m_u + two_m_u * half_u);
halfu_sqr = half_u * half_u;
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v[0] = one_m_u * one_m_usqr;
v[1] = u * one_m_usqr + two_m_u * expr;
v[2] = u * expr + two_m_u * halfu_sqr;
v[3] = u * halfu_sqr;

For i = 4, the v values are computed as

r = 3 : v3 = 1

r = 2 : v2 = k3 − u

k3 − k2

v3, v3 = u − k2

k3 − k2

v3

r = 1 : v1 = k3 − u

k3 − k1

v2, v2 = u − k1

k3 − k1

v2 + k4 − u

k4 − k2

v3, v3 = u − k2

k4 − k2

v3

r = 0 : v0 = k3 − u

k3 − k0

v1, v1 = u − k0

k3 − k0

v1 + k4 − u

k4 − k1

v2,

v2 = u − k1

k4 − k1

v2 + k5 − u

k5 − k2

v3, v3 = u − k2

k5 − k2

v3

Replacing each row into the one following it, and factoring out common expressions,

// q = 5, i = 4
u_m_one = u - 1;
two_m_u = 2 - u;
half_u = 0.5 * u;
umone_sqr = u_m_one * u_m_one;
one_m_halfu = 1 - half_u;
onemhalfu_sqr = one_m_halfu * one_m_halfu;
expr = one_m_halfu * (half_u + u_m_one);
v[0] = two_m_u * onemhalfu_sqr;
v[1] = u * onemhalfu_sqr + two_m_u * expr;
v[2] = u * expr + two_m_u * umone_sqr;
v[3] = u_m_one * umone_sqr;

Consider the case q = 6. The maximum index for the curve evaluation is imax ∈
{3, 4, 5} and imin = imax − 3. The knot values are

k0 = 0, k1 =
{

0, 3 ≤ i ≤ 4
1, i = 5

}
, k2 = i − 3, k3 = i − 2,

k4 =
{

2, i = 3
3, 4 ≤ i ≤ 5

}
, k5 = 3

For i = 3, the v values are computed as
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r = 3 : v3 = 1

r = 2 : v2 = (1 − u)v3, v3 = uv3

r = 1 : v1 = (1 − u)v2, v2 = (u − 1)v2 + (2 − u)v3, v3 = (u/2)v3

r = 0 : v0 = (1 − u)v1, v1 = uv1 + ((2 − u)/2)v2,

v2 = (u/2)v2 + ((3 − u)/3)v3, v3 = (u/3)v3

Replacing each row into the one following it, and factoring out common expressions,

// q = 6, i = 3
one_m_u = 1 - u;
two_m_u = 2 - u;
three_m_u = 3 - u;
half_u = 0.5 * u;
onemu_sqr = one_m_u * one_m_u;
expr0 = 0.5 * (u * one_m_u + two_m_u * half_u);
expr1 = u * half_u / 3;
v[0] = one_m_u * onemu_sqr;
v[1] = u * onemu_sqr + two_m_u * expr0;
v[2] = u * expr0 + three_m_u * expr1;
v[3] = u * expr1;

For i = 4, the v values are computed as

r = 3 : v3 = 1

r = 2 : v2 = (2 − u)v3, v3 = (u − 1)v3

r = 1 : v1 = ((2 − u)/2)v2, v2 = (u/2)v2 + ((3 − u)/2)v3, v3 = ((u − 1)/2)v3

r = 0 : v0 = ((2 − u)/2)v1, v1 = (u/2)v1 + ((3 − u)/3)v2,

v2 = (u/3)v2 + ((3 − u)/2)v3, v3 = ((u − 1)/2)v3

Replacing each row into the one following it, and factoring out common expressions,

// q = 6, i = 4
u_m_one = u - 1;
two_m_u = 2 - u;
three_m_u = 3 - u;
half_u = 0.5 * u;
one_m_halfu = 1 - half_u;
half_umone = 0.5 * u_m_one;
onemhalfu_sqr = one_m_halfu * one_m_halfu;
expr = (u * one_m_halfu + three_m_u * half_umone) / 3;
halfumone_sqr = half_umone * half_umone;
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v[0] = two_m_u * onemhalfu_sqr;
v[1] = u * onemhalfu_sqr + three_m_u * expr;
v[2] = u * expr + three_m_u * halfumone_sqr;
v[3] = u_m_one * halfumone_sqrs;

For i = 5, the v values are computed as

r = 3 : v3 = 1

r = 2 : v2 = (3 − u)v3, v3 = (u − 2)v3

r = 1 : v1 = ((3 − u)/2)v2, v2 = ((u − 1)/2)v2 + (3 − u)v3, v3 = (u − 2)v3

r = 0 : v0 = ((3 − u)/3)v1, v1 = (u/3)v1 + ((3 − u)/2)v2,

v2 = ((u − 1)/2)v2 + (3 − u)v3, v3 = (u − 2)v3

Replacing each row into the one following it, and factoring out common expressions,

// q = 6, i = 5
u_m_one = u - 1;
u_m_two = u - 2;
three_m_u = 3 - u;
half_three_m_u = 0.5 * three_m_u;
umtwo_sqr = u_m_two * u_m_two;
expr0 = three_m_u * half_three_m_u / 3;
expr1 = 0.5 * (u_m_one * half_three_m_u + three_m_u * u_m_two);
v[0] = three_m_u * expr0;
v[1] = u * expr0 + three_m_u * expr1;
v[2] = u_m_one * expr1 + three_m_u * umtwo_sqr;
v[3] = u_m_two * umtwo_sqr;

Finally, consider the case q ≥ 7. This is the expected case—the animation se-
quences have a lot of data. Two of the knot values are k2 = i − 3 and k3 = i − 2, where
imin ≤ i ≤ imax. The difference in consecutive knots is either 0 or 1. The formal defi-
nitions are listed next, where q = n + 1 ≥ 7 = 2d + 1.

k0 =
{

0, 3 ≤ i ≤ 5
i − 5, 6 ≤ i ≤ q − 1

}
, k1 =

{
0, 3 ≤ i ≤ 4

i − 4, i = 5 ≤ i ≤ q − 1

}
,

k2 = { i − 3, 3 ≤ i ≤ q − 1 } , k3 = { i − 2, 3 ≤ i ≤ q − 1 } ,

k4 =
{

i − 1, i = 3 ≤ i ≤ q − 3
q − 3, q − 2 ≤ i ≤ q − 1

}
, k5 =

{
i , i = 3 ≤ i ≤ q − 4

q − 3, q − 3 ≤ i ≤ q − 1

}

The algorithm requires computing the reciprocals of k3 − k2, k3 − k1, k4 − k2, k3 − k0,
k4 − k1, and k5 − k2. It also requires computing u − k0, u − k1, u − k2, k3 − u, k4 − u,



338 Chapter 5 Controller-Based Animation

and k5 − u. The general formulas for the v array values apply and use the previously
mentioned 12 precomputed numbers. Replacing each row into the one following it,
and factoring out common expressions,

oneThird = 1.0 / 3.0;
qm2 = qm3 + 1;
qm1 = qm2 + 1;

g0 = (i > 5 ? i-5 : 0.0);
g1 = (i > 4 ? i-4 : 0.0);
g2 = i-3;
g3 = i-2;
g4 = (i < qm2 ? i-1 : qm3);
g5 = (i < qm3 ? i : qm3);

inv_g3_m_g1 = (i == 3 ? 1.0 : 0.5);
inv_g4_m_g2 = (i == qm1 ? 1.0 : 0.5);
inv_g3_m_g0 = (i == 3 ? 1.0 : (i == 4 ? 0.5 : oneThird));
inv_g4_m_g1 = (i == 3 || i == qm1 ? 0.5 : oneThird);
inv_g5_m_g2 = (i == qm1 ? 1.0 : (i == qm2 ? 0.5 : oneThird));

u_m_g0 = u - g0;
u_m_g1 = u - g1;
u_m_g2 = u - g2;
g3_m_u = g3 - u;
g4_m_u = g4 - u;
g5_m_u = g5 - u;

expr0 = g3_m_u * inv_g3_m_g1;
expr1 = u_m_g2 * inv_g4_m_g2;
expr2 = inv_g3_m_g0 * g3_m_u * expr0;
expr3 = inv_g4_m_g1 * (u_m_g1 * expr0 + g4_m_u * expr1);
expr4 = inv_g5_m_g2 * u_m_g2 * expr1;

v[0] = g3_m_u * expr2;
v[1] = u_m_g0 * expr2 + g4_m_u * expr3;
v[2] = u_m_g1 * expr3 + g5_m_u * expr4;
v[3] = u_m_g2 * expr4;

Profiling of the generic code versus the optimized code on my computers showed
about a 20% speedup for the B-spline evaluations.

Exercise
5.1

Repeat the construction of this section for B-spline curves of degree 2. The idea is to
produce an optimized evaluation of such B-spline curves. Compare execution times
between the optimized version and the generic version to see what the speedup is.
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Figure 5.1 A general linearly linked manipulator.

5.3 Inverse Kinematics

Kinematics is the study of motion without consideration of mass or forces. We will
illustrate the ideas first in two dimensions. Given a planar polyline consisting of a
sequence of line segments (or bones, so to speak), with each segment starting at
Pi, having unit-length direction Ui, and length Li for 0 ≤ i < n, and with the last
segment terminating at Pn, the forward kinematics problem is to compute Pn in terms
of the known direction vectors and lengths. The structure is called a manipulator, and
the final point is called an end effector. Figure 5.1 illustrates the general setting.

The final point of each segment is related to its starting point by Pi+1 = Pi + LiUi

for 0 ≤ i < n. Summing over all i and canceling the common terms leads to the end
effector formula

Pn = P0 +
n−1∑
i=0

LiUi

Each direction vector can be viewed as an incremental rotation of the previous
direction,

Ui =
⎛
⎝cos

⎛
⎝ i∑

j=0

θj

⎞
⎠ , sin

⎛
⎝ i∑

j=0

θj

⎞
⎠
⎞
⎠

The angles θj are called the joint angles of the manipulator. Using notation θθθ =
(θ0, . . . , θn−1), the end effector can be written as a function:

Pn(θθθ) = P0 +
n−1∑
i=0

Li

⎛
⎝cos

⎛
⎝ i∑

j=0

θj

⎞
⎠ , sin

⎛
⎝ i∑

j=0

θj

⎞
⎠
⎞
⎠ (5.17)

The inverse kinematics problem is to select the position G for the end effector
and determine joint angles θθθ so that Pn(θθθ) = G. The point G is called the goal and
might not always be attainable. This is definitely the case when the distance of the
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goal to the initial point of the manipulator is larger than the sum of the lengths of the
segments. Even if the goal is attainable, there may be multiple solutions. Thus, the
inverse problem is generally ill-posed.

Obtaining a closed-form representation of the joint angles in terms of G, P0, and
the Li is a hard problem. To show the complexity, consider the case of two segments.
The equation to be inverted is G = P0 + L0U0 + L1U1, where U0 = (cos θ0, sin θ0)

and U1 = (cos(θ0 + θ1), sin(θ0 + θ1)). Define (a , b)⊥ = (−b, a). Using the double-
angle identities from trigonometry, U1 = (cos θ1)U0 + (sin θ1)U⊥

0 . The equation to
be solved is therefore

G = P0 + (L0 + L1 cos θ1)U0 + (L1 sin θ1)U⊥
0 = P0 + R0V1

where R0 = [U0 | U⊥
0 ] is a rotation matrix and V1 = (L0 + L1 cos θ1, L1 sin θ1).

Note that G − P0 = R0V1, so the difference between the goal and the initial point
is just a rotation of V1. Since rotation preserves length,

|G − P0|2 = |V1|2 = L2
0 + L2

1 + 2L0L1 cos θ1

in which case

cos θ1 = |G − P0|2 − L2
0 − L2

1

2L0L1

There are two possible choices for the sine, sin θ1 = ±√1 − cos2 θ1. The other angle
is determined by

|V1|2 cos θ0 = V1
. R0V1 = V1

. (G − P0)

and

|V1|2 sin θ0 = V⊥
1

. R0V1 = V⊥
1

. (G − P0)

As long as |G − P0| < L0 + L1 there are two solutions, as indicated by the sign choice
for sin θ1. This is clear geometrically since one manipulator configuration is obtained
from the other by reflection through the line containing the initial point and goal.

The inverse kinematics problem can be complicated even more by allowing quite
a few variations. The preceding example was two-dimensional. The real problems are
three-dimensional. Each joint has six degrees of freedom, three for position and three
for orientation. The degrees of freedom can be additionally constrained within their
parameter space. The typical constraints are to restrict rotation about a single axis, in
which case the joint is called a revolute joint , and/or to restrict translation along the
direction of the previous segment, in which case the joint is called a prismatic joint .
Moreover, within the restrictions the parameters might themselves be constrained.
At a revolute joint, the angle of rotation might be limited to a subset of [0, 2π].
At a prismatic joint, the translation might be constrained to be a small interval
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[−ε , ε]. Finally, manipulators can be trees of segments rather than lists of segments.
The leaves of the trees represent the end effectors, so there are multiple goals that
can be specified. Some attempt must be made to simultaneously satisfy the goals,
or at least to get close to the goals. Yet another variation is to specify goals that
are lines or planes. The end effector is considered to be in its best position when
the distance from the end effector to the goal is minimized. At any rate, closed-
form solutions are usually not possible—or even desirable—because they involve
evaluation of trigonometric functions. Numerical methods are a better choice for
attempting to find solutions.

One of the best discussions for inverse kinematics is [Wel93]. A well-written
summary of the topic is [Lan98].

5.3.1 Numerical Solution by Jacobian Methods

Consider a manipulator that is a polyline with a single end effector. Let the end
effector be written as P = F(θθθ), a function of the joint angles θθθ . The derivative of the
end effector position with respect to each joint parameter θi can be used to determine
an incremental step in joint space that will (hopefully) move the end effector closer to
the goal. If the position of the end effector is thought of as moving, hence a function
of time t , the derivatives are

dP

dt
= DF

dθθθ

dt

where DF is the Jacobian of F, the matrix of first-order partial derivatives,

DF =
[

∂Fi

∂θj

]

where Fi is the ith component of F and θj is the j th component of θθθ . The time-
derivative equation relates the end effector velocity to the joint velocities.

If G is the goal and if dP/dt is replaced by G − P = G − F(θθθ) as an approxima-
tion, then the numerical method is to use G − F(θθθ) = DF(θθθ)dθθθ/dt to update θθθ from
its current value. The Jacobian matrix is (usually) not square, so its inverse is not
defined. However, given a nonsquare matrix M , its pseudoinverse is defined to be
M+ = MT(MMT)−1, where M+M = I , the identity matrix. Applying the pseudoin-
verse of the Jacobian yields

dθθθ

dt
= DF+(θθθ)(G − F(θθθ))

Given a current value of θθθ , this equation allows an update by using a forward differ-
ence operator to approximate the time derivative of the joint angles. The scheme is
applied iteratively until some stopping criterion is met.



342 Chapter 5 Controller-Based Animation

This approach is not always the best one since computing the pseudoinverse is
expensive (a square matrix inverse is required). Moreover, sometimes the Jacobian
is singular on its domain or is ill-conditioned, so numerical problems arise in the
inversion. A different approach is to avoid the inversion and apply the transpose of
the Jacobian to obtain

τττ = DFT dP

dt
=
(
DFTDF

)
dθθθ

dt

The value τττ measures the amount of torque at the joints induced by a force dP/dt .
If the torque is computed for the current joint angles using G − F(θθθ) instead of
dP/dt , the unknown vector is x = dθθθ/dt . The displayed equation is of the form
Ax = b and might not always have a solution. However, minimization methods
can be applied to e(x) = |Ax − b|2 to obtain a solution x. Again using a forward
difference approximation, this allows an update of the current joint angles. For more
on Jacobian methods, see [SS87, DSS88, NN90].

5.3.2 Numerical Solution by Nonlinear Optimization

This is a general approach that can take advantage of already existing algorithms for
optimization. The idea is to minimize the squared error E(θθθ) = |G − F(θθθ)|2 with
respect to θθθ . While the goal indicator here is a point, the same type of error function
applies for goals that are lines or planes. Secondary goals are easily incorporated into
the error function. The results using general optimization are generally good, but the
algorithm tends to be expensive. For more on nonlinear optimization methods, see
[PZB90, ZB94].

5.3.3 Numerical Solution by Cyclic Coordinate Descent

The cyclic coordinate descent approach was introduced in [WC91]. The idea is concep-
tually simple, and the algorithm is fast. The joints of the manipulator are optimized
one at a time, and several passes are made over the manipulator to (hopefully) ar-
rive at the global minimum of |P − F(θθθ)|. As with most minimization schemes, local
minima can attract the iterates. In terms of manipulators, this can happen if the poly-
line has a kink in it that cannot be undone by successive iterations. For the purpose
of animation, secondary goals or restrictions on joint angles can be added to avoid
such behavior.

List Manipulator with One End Effector

Consider a list manipulator with initial point I and lengths Li for 0 ≤ i < n. The
update at a single joint is discussed for goals that are points, lines, or planes. The
joint can be revolute or prismatic.
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Rotate to Point

Let the goal be G. If the rotation is unconstrained, then the end effector position E is
chosen so that it lies on the line containing I and G. The position is E = I + t (G − I),
where t = (G − I) . (E − I)/|G − I|2.

If the rotation is constrained to the plane N . (X − I) = 0, where N is unit length,
then the end effector position is chosen so that it lies on the line containing I and the
projection of G onto the plane. The previous case applies using the projection. The
projection is H = G − [N . (G − I)]N.

Rotate to Line

Let the goal be G(s) = G0 + sG1 for s ∈ R and where |G1| = 1. If the rotation is
unconstrained, there are two cases to consider. The closest point on the line to I is

J = G0 − [G1
. (G0 − I)]G1

and the distance from I to the line is D = |J − I|. If D ≥ |E − I|, then the end effector
is chosen so that it lies on the line containing I and J. The position is E = I + t (J − I),
where t = (J − I) . (E − J)/|J − I|2. If D < |E − I|, then there are two solutions that
lie on the line itself, J ± RG1. The quantity R is determined from the Pythago-
rean theorem applied to the right triangle containing vertices I and J and having
hypotenuse |E − I|. Thus, R2 = |E − I|2 − |J − I|2. In an iterative scheme, the end
effector will be updated to the nearest of the two points.

If the rotation is constrained to the plane N . (X − I) = 0, where N is unit length,
then the line is projected onto that plane and the previous case applies using the
projected line. The projected line is H0 + sH1, where H0 = G0 − [N . (G0 − I)]N and
H1 = G1 − (N . G1)N.

Rotate to Plane

Let the goal be M . X = c, where M is unit length. If the rotation is unconstrained,
then there are two cases to consider. The closest point on the plane to I is

J = I − (M . I − c)M

and the distance from I to the plane is D = |J − I| = |M . I − c|. If D ≥ |E − I|, then
the end effector is chosen so that it lies on the line containing I and J. The position
is E = I + t (J − I), where t = (J − I) . (E − J)/|J − I|2. If D < |E − I|, then there are
infinitely many solutions that lie on a circle in the goal plane that is centered at J
and has radius R. The radius is determined in a way similar to when the goal is a line,
R2 = |E − I|2 − |J − I|2. In an iterative scheme, the end effector will be updated to the
nearest of the circle points. Finding the nearest point on a circle in three dimensions
is discussed in Section 14.13.4.
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Let the rotation be constrained to the plane N . (X − I) = 0, where N is unit
length. If N and M are parallel, then the circle of possible end effector positions is
parallel to the goal plane, in which case no motion is necessary. If the two plane
normals are not parallel, then the circle of positions is F(θ) = I + (cos θ)(E − I) +
(sin θ)N × (E − I), where E is the current end effector position. The signed distance
from any circle point to the plane is

s(θ) = M . F(θ) − c = (M . I − c) + μ0 cos θ + μ1 sin θ

where μ0 = M . (E − I) and μ1 = M . N × (E − I). In the case under consideration,
the circle is not parallel to the plane, so μ2

0 + μ2
1 = |M − (M . N)N|2 �= 0. The range

of s(θ) is [smin, smax], where

smin = M . I − c −
√

μ2
0 + μ2

1

and

smax = M . I − c +
√

μ2
0 + μ2

1

If 0 ∈ [smin, smax], then the circle intersects the goal plane for two values of θ . De-
fine λ = c − M . I, x0 = cos θ , x1 = sin θ , and set s(θ) = 0 to obtain μ0x

2
0 + μ2

1x
2
1 = λ

and x2
0 + x2

1 = 1. These form a polynomial system—one linear and one quadratic
equation—that can be solved by resultants (see Section 16.1.2). The resultant is
r(x0) = (μ2

0 + μ2
1)x

2
0 − 2λμ0x0 + λ2 − μ2

1 = 0. The solutions are

cos θ =
λμ0 ± μ1

√
μ2

0 + μ2
1 − λ2

μ2
0 + μ2

1

If 0 �∈ [smin, smax], then observe

μ0 cos θ + μ1 sin θ =
√

μ2
0 + μ2

1 cos(θ − φ)

where tan φ = μ1/μ0. If smin > 0, then the closest point occurs when θ − φ = π . If
smax < 0, then the closest point occurs when θ − φ = 0.

Slide to Point

Sliding refers to the linear motion of an endpoint of a segment in the manipula-
tor. If I is the initial point of a segment and the direction of the segment is the
unit-length vector U, unconstrained motion allows the final point to be F = I + tU
for t ∈ [0, ∞). Constrained motion requires t ∈ [tmin, tmax], where the interval is
application-specific. The path traveled by the end effector position relative to the slid-
ing motion is E + tU for t in the appropriate interval.

Let the goal be G. The projection onto the ray containing E with direction U is
H = E + T U, where T = U . (G − E). If the sliding is unconstrained, then the end
effector position E is updated to F = E + max{0, T }U. If the sliding is constrained,
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then the end effector position is updated to F = E + clamp{T , tmin, tmax}, where

clamp{T , tmin, tmax} =
⎧⎨
⎩

tmax , T > tmax
T , T ∈ [tmin, tmax]
tmin, T < tmin

Slide to Line

Let the goal be G(s) = G0 + sG1 for s ∈ R and where |G1| = 1. If the goal line is
parallel to the direction of sliding, U × G1 = 0, then no updating of E is necessary.
Otherwise, the lines are not parallel and the closest point on the ray containing E with
direction U is H = E + T U, where T ≥ 0 (see Section 14.1.2). The update of E in the
previous subsection on sliding to a point can now be applied using H.

Slide to Plane

Let the goal be M . X = c, where M is unit length. If the goal plane is parallel to the
direction of sliding, M . U = 0, then no updating of E is necessary. Otherwise, let H
on the ray containing E with direction U be the closest point to the plane. The update
of E is the same as for that shown in sliding to a point.

List Manipulator with Multiple End Effectors

Consider the example of a two-segment manipulator whose initial point corresponds
to a shoulder, whose midpoint corresponds to an elbow, and whose final point cor-
responds to a hand. If a point goal is specified for the hand end effector, it is possible
that obtaining the goal requires bending the elbow joint in an unnatural way. The
algorithm for rotation to a point described earlier could be modified to include a re-
striction on the angles for the elbow to prevent the unnatural bending. Alternatively,
the elbow itself can be tagged as an end effector, and a secondary goal can be specified
that affects the elbow location.

Let S be the shoulder location, E be the elbow location, and H be the hand loca-
tion. Let GH be the goal for the hand and let GE be the goal for the elbow. Consider
adjusting the joint angles at the shoulder. If only the hand goal is required, the rotate-
to-point algorithm minimized the distance from H to GH . To handle multiple end
effectors, the minimization algorithm applies to a weighted sum of squared distances,
D = wH |H − GH |2 + wE|E − GE|2, where the weights are application-specific. The
number of independent parameters for D depends on whether or not the shoulder
joint is unconstrained.

To illustrate how the minimization applies, consider a constrained rotation with
the plane N . (X − S) = 0. The circle spanned by H is

h(θ) = S + (cos θ)(H − S) + (sin θ)N × (H − S)
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and the circle spanned by E is

e(θ) = S + (cos θ)(E − S) + (sin θ)N × (E − S)

The weighted distance as a function of the single joint angle is

D(θ) = wH |h(θ) − GH |2 + wE|e(θ) − GE|2

The minimum occurs when the derivative is zero,

D′(θ) = wH(h(θ) − GH) . h′(θ) + wE(e(θ) − GE) . e′(θ) = 0

If x0 = cos θ and x1 = sin θ , the equation D′(θ) = 0 is clearly a quadratic polyno-
mial in x0 and x1. Moreover, x2

0 + x2
1 = 1, another quadratic polynomial. The com-

mon solutions can be obtained by computing the resultant polynomial (see Section
16.1.2) in x0, a quartic polynomial. This can be solved by using closed-form equations
or by using iterative polynomial root finders. Similar algorithms can be developed for
line or plane goals and for sliding joints.

Tree Manipulator

The situation can be even more complicated. The manipulator can be a tree of line
segments. The leaf nodes are typically end effectors, with each leaf having a primary
goal. Interior nodes can also be tagged as end effectors with secondary goals. The
method of solution is similar to that of list manipulators with multiple end effectors.

Other Variations

Manipulator joints can have their parameters restricted (limited rotation or sliding).
The algorithms mentioned earlier must be modified to support this. A joint can be
set up to be springlike so that it tends to move toward a specified resting point. A joint
can be damped to resist motion, either in a constant fashion or in a limiting fashion
where the damping increases with the number of iterations of the joint optimizers.

The implementation must also decide on the order of processing joints. A general
implementation will allow the application to select the order. For a list, the two basic
orderings are initial joint to final joint or final joint to initial joint. For a tree, the basic
orderings are depth-first traversal, breadth-first traversal, or iteration over the leaves
and a traversal from each leaf to the root.

Finally, it is possible to specify that a joint cannot change. The initial point of the
manipulator always has this property. If an interior joint of a list is tacked down, then
the two sublists are in effect separate manipulators, but the first one that connects the
two tacked-down joints does not change. Thus, the interior joint acts as the initial
point for a smaller manipulator.



5.4 Skinning 347

5.4 Skinning

Skin-and-bones animation, or simply skinning , is the process of attaching a de-
formable mesh to a skeletal structure in order to smoothly deform the mesh as the
bones move. The skeleton is represented by a hierarchy of bones, each bone positioned
in the world by a translation and orientation. The skin is represented by a triangle
mesh for which each vertex is assigned to one or more bones and is a weighted av-
erage of the world positions of the bones that influence it. As the bones move, the
vertex positions are updated to provide a smooth animation. Figure 5.2 shows a sim-
ple configuration of two bones and five vertices.

The intuition of Figure 5.2 should be clear: Each vertex is constructed based on
information relative to the bones that affect it. To be more precise, associate with bone
Bi the uniform scale si, the translation vector Ti, and the rotation matrix Ri. Let the
vertex Vj be influenced by nj bones whose indices are k1 through knj

. The vertex has
two quantities associated with bone Bki

: an offset from the bone, denoted ���jki
and

measured in the model space of the bone, and a weight of influence, denoted wjki
.

The world-space contribution by Bki
to the vertex offset is

ski
Rki

���jki
+ Tki

This quantity is the transformation of the offset from the bone’s model space to
world space. The world-space location of the vertex is the weighted sum of all such
contributions,

Vj =
nj∑
i=1

wjki

(
ski

Rki
���jki

+ Tki

)
(5.18)

Skinning is supported in current graphics hardware. The SkinController in Wild
Magic is implemented originally to use the CPU to do all the algebraic calculations.
However, there is a sample application on the CD-ROM to show how to do skinning
on the GPU. A class can be created to encapsulate the hardware skinning, but it
should be based on the Effect class because it has a shader program to feed to the
renderer. The Effect class itself can have a Controller object attached to it whose job
it is to update the bone matrices.

The relationship between the bones and the vertices can be thought of as a matrix
of weights and offsets whose rows correspond to the vertices and whose columns
correspond to the bones. For example, given three vertices and four bones, then the
array shown in Table 5.3 illustrates a possible relationship. An entry of ∅ indicates
that the bone does not influence the vertex. In this case the implied weight is 0.
The indexing in the matrix is the same one referenced in Equation (5.18). The skin
vertices are
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V0 = w00

(
s0R0���00 + T0

)+ w02

(
s2R2���02 + T2

)+ w03

(
s3R3���03 + T3

)
V1 = w11

(
s1R1���11 + T1

)+ w13

(
s3R3���13 + T3

)
V2 = w20

(
s2R2���20 + T2

)+ w23

(
s3R3���23 + T3

)
The assumption is that the world transformations of the bones are current. The

bones affecting a skin are normally stored in a subtree of the scene hierarchy. This is
particularly true when the skin is for a biped model, and the hierarchy represents the
biped anatomy. In the depth-first traversal from an UpdateGS call, the bones must be
visited first before their associated skin is visited.

The skin vertices are constructed in the world coordinates of the bone tree. Any
nonidentity local or world transformations stored at the node to which the skin is
attached will cause it to be transformed out of that coordinate system—an error.
The Spatial class of Wild Magic provides the ability to prevent such updates of a

B1
V1(1.0 of B1 , 0.0 of B2)

B2

V2(0.75 of B1 , 0.25 of B2)
V3(0.5 of B1 , 0.5 of B2)

V4(0.25 of B1 , 0.75 of B2)
V5(0.0 of B1 , 1.0 of B2)

Figure 5.2 A skin-and-bones system consisting of two bones that influence five vertices. The
vertex closest to the joint formed by the two bones is equally influenced by the bones.
For each vertex farther from the joint, one bone influences it more than the other
bone.

Table 5.3 Sample matrix of weights and offsets for skinning.

B0 B1 B2 B3

V0 w00, ���00 ∅ w02, ���02 w03, ���03

V1 ∅ w11, ���11 ∅ w13, ���13

V2 w20, ���20 ∅ ∅ w23, ���23
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controller by querying the controller if it wants (or does not want) its transformations
updated outside the controller.

One final word. Modeling packages have the concept of the binding pose for a
skinned biped character. The bone transformations, weights, and skin vertex infor-
mation must be initialized from the binding pose. This step is done in the exporters
that convert the modeling package data to Wild Magic format; it is not done in the
skin controller class.

5.5 Vertex Morphing

The definitions of morphing are many. Most of them have the flavor of modifying
one object in some well-defined manner to look like another object. The version of
morphing that I have implemented as a controller involves a sequence of geometric
objects, called targets, all having the same number of vertices and mesh topology.
Given a vertex on one object, there are corresponding vertices on all the other objects.
A weighted average of each collection of corresponding vertices is computed; the
result is an object that is a weighted combination of the targets. Think of the weights
as an array of numbers summing to 1. The array of weights is applied to all sets of
corresponding vertices. A set of weight arrays is provided for the morphing, and each
set is assigned a time. These act as keyframes: An artist has provided the weights
to be used on the objects at a small number of snapshots in time, and a morphing
controller does the in-betweening by interpolating the weight arrays and applying
the resulting weight array to the set of targets to produce the in-between object.

The Wild Magic class MorphController implements this concept. It is provided
with the number of vertices in a target, the number of targets, and the number of
keys for the weight arrays. Suppose there are V vertices, T targets, and K keys. A
weight array has elements wi for 0 ≤ i ≤ T − 1 with wi ≥ 0 and

∑T −1
i=0 wi = 1. If Xi

are the set of corresponding vertices to be weighted, with Xi from target i, then the
output vertex is

X =
T −1∑
i=0

wiXi

Observing that wT −1 = 1 −∑T −2
i=0 wi, the expression is rewritten as

X = X0 +
T −1∑
i=1

wi(Xi − X0)

If the differences Xi − X0 are precomputed, then the new expression requires three
less multiplications than the old one. The storage requirements are also slightly less:
one floating-point value per array of weights since we do not need to store w0. For a
large amount of morphing data and a lot of keys, this small difference can add up to
a large one, both in memory and speed.



350 Chapter 5 Controller-Based Animation

An artist can generate all T targets, but an exporter from the modeling package
or an importer can be written to precompute the vector differences. The MorphCon-
troller class does assume the precomputing has happened. It is given an array of
T vertex arrays; each vertex array is the geometric data of the target and has V ver-
tices. The zeroth vertex array stores the original target. The vertices are the X0 in the
weighted-average equation. The remaining vertex arrays store the vector differences
Xi − X0.

The morph controller also is given an array of K weight arrays. Each array repre-
sents weights w1 through wT −1, so each array stores T − 1 floating-point values. The
weights w0 are not stored. The keyframe times are stored in an array of K floating-
point values.

The controller update function takes the input application time and must look
up the pair of consecutive keys that bound that time. The process is identical to the
one used in keyframe controllers. Time coherency allows an O(1) lookup by saving
the index of the first key of the bounding pair found in the last update call and then
using it as the starting point for a linear search in the current update call. If t0 and
t1 are the keyframe times and t is the control time, the normalized time used for the
interpolation is u = (t − t0)/(t1 − t0).

5.6 Particle Systems

Simple interfaces are provided for controlling a collection of points (PointCon-
troller) or particles (ParticleController). The set of points is referred to as a
system. That system, when viewed as a single entity, moves according to its linear
velocity and rotates according to its angular velocity. In physics simulations where
the points represent a rigid body, the origin of the system is chosen to be the center
of mass of the points, and the coordinate axes are chosen to be the principal direc-
tions of the inertia tensor. The controller interface lets you set the linear velocity as
a linear speed, SystemLinearSpeed, and the unit-length direction, SystemLinearAxis.
The angular velocity is set by choosing the angular speed, SystemAngularSpeed, and
the unit-length rotation axis, SystemAngularAxis.

In a nonrigid system, each point can have its own linear and angular velocity.
These are set by the member functions that expose the arrays of quantities, PointLin-
earSpeed, PointLinearAxis, PointAngularSpeed, and PointAngularAxis. The arrays
have the same number of elements as the number of points or particles that are man-
aged by the controller.

The important functions to override in a derived class are UpdateSystemMotion
and UpdatePointMotion. The Update function of PointController computes the con-
trol time from the application time and then calls the two motion updates with the
control time. PointController provides implementations, but they may be overrid-
den. The system motion update changes the local translation by computing how far
the system has moved in the direction of linear velocity and adding it to the current
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local translation. Similarly, the local rotation is updated by multiplying it by the incre-
mental rotation implied by the angular speed and angular axis. The local translation
of each point is updated using the distance traveled by the point in the direction of
its linear velocity. The point does not have a size, so how do you interpret angular ve-
locity? The point could be a summary statistic of an object that does have size. Each
point may have a normal vector assigned to it. If normal vectors are attached to the
points, those vectors are rotated by the new local rotation matrix.

The base-level support for points and particles is minimal. The number of physics
effects you can apply to particle systems is as unlimited as the number of graphics
effects you can apply to meshes via shader programming. Each effect has its own
special set of requirements. Chapter 9 has some examples, and the CD-ROM has quite
a few sample applications to illustrate. A detailed discussion of physics itself and the
application to real-time games is a large topic. For example, see [Ebe03].



C h a p t e r 6
Spatial Sorting

The classic reason for geometric sorting is for correct drawing of objects, both
opaque and semitransparent. The opaque objects should be sorted from front

to back, based on an observer’s location, and the semitransparent objects should be
sorted from back to front. The sorted opaque objects are drawn first, and the sorted
semitransparent objects are drawn second.

Geometric sorting is not the only important reason for reorganizing your objects.
In many situations, changes in the render state can cause the renderer to slow down.
The most obvious case is when you have a limited amount of VRAM and more
textures than can fit in it. Suppose you have a sequence of six objects to draw, S1
through S6, and each object has one of three texture images assigned to it. Let I1, I2,
and I3 be those images; assume they are of the same size and that VRAM is limited in
that it can only store two of these at a time. Suppose the order of objects in the scene
leads to the images being presented to the renderer in the order I1, I2, I3, I1, I2, I3.
To draw S1, I1 is loaded to VRAM and the object is drawn. Image I2 is then loaded to
VRAM and S2 is drawn. To draw S3, image I3 must be loaded to VRAM. There is no
room for it, so one of the images must be discarded from VRAM. Assuming a least
frequently used algorithm, I1 is discarded. At that point I3 is loaded, in which case
VRAM stores I2 and I3, and S3 is drawn. S4 requires I1 to be loaded to VRAM. That
image was just discarded, so it needs to be loaded again. Since I2 is the least frequently
used, it is discarded and I1 is loaded. Now VRAM stores I3 and I1. S4 may be drawn. S5
requires I2 to be in VRAM. Once again we have the undesirable situation of having
to reload an image that was just discarded. When all six objects have been drawn,
VRAM has performed four discard operations. Since sending large textures across
the memory bus to the graphics card is expensive, the discards can really reduce the
frame rate.

353
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If we were instead to sort the objects by the images that they use, we would have
S1, S4, S2, S5, S3, and S6. Image I1 is loaded to VRAM, and S1 is drawn. We can
immediately draw S4 since it also uses I1 and that image is already in VRAM. Image
I2 is loaded to VRAM, and both S2 and S5 are drawn. In order to handle the last two
objects, VRAM must discard I1, load I3, and then draw S3 and S6. In this drawing
pass, only one discard has occurred. Clearly, the sorting by texture image buys you
something in this example.

In general, if your profiling indicates that a frequent change in a specific render
state is a bottleneck, sorting the objects by that render state should be beneficial. You
set the render state once and draw all the objects.

The five sections in this chapter are about geometric sorting. The first topic is
sorting of spatial regions using binary space partitioning trees (BSP trees). The BSP
trees are not used for partitioning triangle meshes. The second topic is sorting the
children at a node. Since a drawing pass uses a depth-first traversal, the order of
the children is important. The third topic is portals, an automatic method to cull
nonvisible geometric objects. The fourth topic is user-defined maps. Essentially, the
game designers and developers partition the world, saving the information for use
by the game application. The fifth topic is a simple mechanism to support culling of
occluded objects.

6.1 Binary Space Partitioning Trees

A popular sorting method is binary space partitioning, in which n-dimensional space
is recursively partitioned into convex subsets by hyperplanes. For n = 2, the parti-
tioning structure is a line; for n = 3, the partitioning structure is a plane. A binary
space partitioning tree, or BSP tree, is the data structure used to represent the parti-
tioning. For n = 3, the root node represents all of space and contains the partitioning
plane that divides space into two subsets. The first child (front child, left child) rep-
resents the subset corresponding to that portion of space on the positive side of the
plane. That is, if the partitioning plane is N . X − d = 0, then the left child represents
those points for which N . X − d > 0. If the partitioning plane is generated by a face
of an object, and if the eye point is on the positive side of the plane, then the face is
visible and is called front facing.

The second child (back child, right child) represents the subset corresponding
to the negative side of the plane. Either of the subsets can be further subdivided
by other planes, in which case those nodes store the partitioning plane and their
children represent yet smaller convex subsets of space. The leaf nodes represent the
final convex sets in the partition. These sets can be bounded or unbounded. Figure 6.1
illustrates a BSP tree in two dimensions. The square is intended to represent all of
the xy-plane. The interior nodes of the tree indicate which planes they represent,
and the leaf nodes indicate which convex regions of space they represent. The first
formal papers on this topic were [FKN79, FKN80]. The BSP FAQ [Wad] provides a



6.1 Binary Space Partitioning Trees 355

P0
P0

P1
P1

P2 P2

P3

P3

C0

C0

C2 C2

C1

C1

C4 C4

C3

C3

+
+

+

+

+
+

–
–

––

–

–

+

+

–

–

Figure 6.1 BSP tree of the xy-plane.

good summary of the topic and has links to websites containing other information or
source code.

6.1.1 BSP Tree Construction

Although a BSP tree is a partitioning of space, it may also be used to partition objects
in space. If an object is on the positive side of a partition plane, then that object is
associated with the front child of the node representing the plane. Similarly, if an
object is on the negative side of the plane, it is associated with the back child. The
difficulty in classification occurs when the object straddles the plane. In this case
the object can be split into two sub-objects, each associated with a child node. If the
objects are polytopes, then the sub-objects are also polytopes that share a common
face on the partition plane. An implementation of BSP trees that treats the objects in
the world as a polygon soup may store the common face with the node of the partition
plane. Because of the potential to do a lot of splitting, this saves memory since the
common face data is stored once and shared by the polytopes. The pseudocode for
construction follows. A precondition is that the initial polygon list is not empty.

void ConstructTree (BspTree tree, PolygonList list)
{

PolygonList posList, negList;
EdgeList sharedList;

tree.plane = SelectPartitionPlane(list); // Dot(N,X)-c = 0
for (each polygon in list) do
{

type = Classify(polygon,tree.plane);
if (type == POSITIVE) then
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{
// Dot(N,X)-c >= 0 for all vertices with at least
// one positive.
posList.Add(polygon);

}
else if (type == NEGATIVE) then
{

// Dot(N,X)-c <= 0 for all vertices with at least
// one negative.
negList.Add(polygon);

}
else if (type == TRANSVERSE) then
{

// Dot(N,X)-c is positive for at least one vertex
// and negative for at least one vertex.
Polygon posPoly, negPoly;
Edge sharedEdge;
Split(polygon,tree.plane,posPoly,negPoly,

sharedEdge);
posList.Add(posPoly);
negList.Add(negPoly);
sharedList.Add(sharedEdge);

}
else // type == COINCIDENT
{

// Dot(N,X)-c = 0 for all vertices.
tree.coincident.Add(polygon);

}
}

if (sharedList is not empty)
{

// Find all disjoint polygons in the intersection of
// partition plane with polygon list.
PolygonList component;
ComputeConnectedComponents(sharedList,component);
tree.coincident.Append(component);

}

if (posList is not empty)
{

tree.positive = new BspTree;
ConstructTree(tree.positive,posList);

}
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if (negList is not empty)
{

tree.negative = new BspTree;
ConstructTree(tree.negative,negList);

}
}

The function SelectPartitionPlane chooses a partition plane based on what the
application wants. The input is the polygon list because typically a plane containing
one of the polygons is used, but it is possible to select other planes based on the list
data.

The function Split for triangle lists uses the clipping algorithm mentioned in
Section 3.1.3. More generally, the loop over the polygon list represents the general
Boolean operation of splitting a polygonal object by a plane. This allows a BSP tree to
be used for computational solid geometry operations. The pseudocode is structured
to indicate that the positive and negative polygons in a split share vertices. The shared
edges are processed later to compute the polygons of intersection in the partition
plane. For many applications, having access to these polygons is not necessary, so
the shared edge code can be safely removed.

Finally, note that the recursive call of ConstructTree terminates when the corre-
sponding tree node contains only coincident polygons. Other criteria for stopping
can be used, such as termination (1) when the number of polygons in a positive or
negative list is smaller than an application-specified threshold or (2) when the tree
reaches a maximum depth.

6.1.2 BSP Tree Usage

I mainly use BSP trees to partition the world as a coarse-level sorting, not to partition
the data in the world. The basic premise is illustrated in Figure 6.2. A line partitions

Figure 6.2 An illustration of BSP tree sorting in two dimensions.
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the plane into two half planes. The half plane to the side that the line normal points
to is gray. The other half plane is white. The view frustum overlaps both half planes.
The eye point is in the white half plane. The region that the view frustum encloses is
the only relevant region for drawing purposes. If you draw a ray from the eye point to
any point inside the gray subregion of the frustum (a line of sight, so to speak), that
ray will intersect any objects in the white subregion before it intersects any objects
in the gray subregion. Consequently, no object in the gray subregion can occlude an
object in the white subregion. If the objects in the gray subregion are drawn so that
the depth buffer is correctly written with depth information, you can draw the objects
in the white subregion with depth buffering set to write-only. It is not necessary to
read the depth buffer for comparisons, because you already know the objects in the
white subregion occlude anything in the gray subregion.

A frequent use of BSP trees is where the separating planes are actual geometry in a
level, most notably walls, floors, and ceilings. If a wall plane splits space into two half
spaces, and if one half space is behind the wall and never visible to the observer, then
you need not even draw the region behind the wall. In Wild Magic, disabling drawing
a half space is accomplished by setting the Spatial::Culling flag to Spatial::CULL_
ALWAYS.

The classical BSP node in a scene graph has a separating plane and two children.
One child corresponds to the half space on one side of the plane; the other child
corresponds to the other half space. The child subtrees represent those portions of
the scene in their respective half spaces. My BSP node stores three children: two to
represent the portions of the scene in the half spaces, and the third to represent any
geometry associated with the separating plane. For example, in a level with walls, the
wall geometry will be part of the scene represented by the third child. The class is
BspNode and its interface is

class BspNode : public Node
{
public:

BspNode ();
BspNode (const Plane3f& rkModelPlane);
virtual ~BspNode ();

SpatialPtr AttachPositiveChild (Spatial* pkChild);
SpatialPtr AttachCoplanarChild (Spatial* pkChild);
SpatialPtr AttachNegativeChild (Spatial* pkChild);
SpatialPtr DetachPositiveChild ();
SpatialPtr DetachCoplanarChild ();
SpatialPtr DetachNegativeChild ();
SpatialPtr GetPositiveChild ();
SpatialPtr GetCoplanarChild ();
SpatialPtr GetNegativeChild ();
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Plane3f& ModelPlane ();
const Plane3f& GetModelPlane () const;
const Plane3f& GetWorldPlane () const;

Spatial* GetContainingNode (const Vector3f& rkPoint);

protected:
virtual void UpdateWorldData (double dAppTime);
virtual void GetVisibleSet (Culler& rkCuller, bool bNoCull);

Plane3f m_kModelPlane;
Plane3f m_kWorldPlane;

};

The class is derived from Node. The BspNode constructors must create the base
class objects. They do so by requesting three children, but set the growth factor to
zero; that is, the number of children is fixed at three. The child at index 0 is associated
with the positive side of the separating plane; that is, the half space to which the
plane normal points. The child at index 2 is associated with the negative side of the
separating plane. The child at index 1 is where additional geometry may be attached,
such as the triangles that are coplanar with the separating plane. Rather than require
you to remember the indexing scheme, the Attach*, Detach*, and Get* member
functions are used to manipulate the children.

The separating plane is specified in model-space coordinates for the node. The
model-to-world transformations are used to transform that plane into one in world
coordinates. This is done automatically by the geometric-state update system via a
call to UpdateGS, through the virtual function UpdateWorldData:

void BspNode::UpdateWorldData (double dAppTime)
{

Node::UpdateWorldData(dAppTime);
m_kWorldPlane = World.ApplyForward(m_kModelPlane);

}

The base class UpdateWorldData is called first in order to guarantee that the model-
to-world transformation for BspNode is up to date.

The Transformation class has a member function for transforming a plane in
model space to one in world space, namely, ApplyForward. Let X be a point in model
space and Y = RSX + T be the corresponding point in world space, where S is
the diagonal matrix of world scales, R is the world rotation, and T is the world
translation. Let the model-space plane be N0

. X = c0, where N0 is a unit-length
normal vector. The inverse transformation is X = S−1RT(Y − T). Replacing this in



360 Chapter 6 Spatial Sorting

the plane equation and applying some algebra leads to a world plane N1
. Y = c1,

where

N1 = RS−1N0 and c1 = c0 + N1
. T

If the scale matrix S is not the identity matrix, then N1 is not unit length. In this case
it must be normalized and the constant adjusted:

N′
1 = N1

|N1|
and c′

1 = c1

|N1|
resulting in the world plane N′

1
. Y = c′

1.
The virtual function GetVisibleSet is implemented in BspNode. It is designed to

compute potentially visible objects according to the description I provided previously
in association with Figure 6.2. The source code is

void BspNode::GetVisibleSet (Culler& rkCuller, bool bNoCull)
{

if (m_kEffects.size() > 0)
{

// This is a global effect. Place a ’begin’ marker
// in the visible set to indicate the effect is active.
rkCuller.GetVisibleSet().Insert(this,m_kEffects[0]);

}

// Get visible Geometry in back-to-front order. If a
// global effect is active, the Geometry objects in the
// subtree will be drawn using it.
SpatialPtr spkPChild = GetPositiveChild();
SpatialPtr spkCChild = GetCoplanarChild();
SpatialPtr spkNChild = GetNegativeChild();

const Camera* pkCamera = rkCuller.GetCamera();
int iLocSide = m_kWorldPlane.WhichSide(

pkCamera->GetLocation());
int iFruSide = rkCuller.WhichSide(m_kWorldPlane);

if (iLocSide > 0)
{

// Camera origin on positive side of plane.

if (iFruSide <= 0)
{

// The frustum is on the negative side of the
// plane or straddles the plane. In either case,
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// the negative child is potentially visible.
if (spkNChild)
{

spkNChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}

if (iFruSide == 0)
{

// The frustum straddles the plane. The coplanar
// child is potentially visible.
if (spkCChild)
{

spkCChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}

if (iFruSide >= 0)
{

// The frustum is on the positive side of the plane
// or straddles the plane. In either case, the
// positive child is potentially visible.
if (spkPChild)
{

spkPChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}
}
else if (iLocSide < 0)
{

// Camera origin on negative side of plane.

if (iFruSide >= 0)
{

// The frustum is on the positive side of the plane
// or straddles the plane. In either case, the
// positive child is potentially visible.
if (spkPChild)
{

spkPChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}

if (iFruSide == 0)
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{
// The frustum straddles the plane. The coplanar
// child is potentially visible.
if (spkCChild)
{

spkCChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}

if (iFruSide <= 0)
{

// The frustum is on the negative side of the plane
// or straddles the plane. In either case, the
// negative child is potentially visible.
if (spkNChild)
{

spkNChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}
}
else
{

// Camera origin on plane itself. Both sides of the
// plane are potentially visible as well as the plane
// itself. Select the first-to-be-drawn half space to
// be the one to which the camera direction points.
float fNdD = m_kWorldPlane.Normal.Dot(

pkCamera->GetDVector());
if (fNdD >= 0.0f)
{

if (spkPChild)
{

spkPChild->OnGetVisibleSet(rkCuller,bNoCull);
}

if (spkCChild)
{

spkCChild->OnGetVisibleSet(rkCuller,bNoCull);
}

if (spkNChild)
{

spkNChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}
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else
{

if (spkNChild)
{

spkNChild->OnGetVisibleSet(rkCuller,bNoCull);
}

if (spkCChild)
{

spkCChild->OnGetVisibleSet(rkCuller,bNoCull);
}

if (spkPChild)
{

spkPChild->OnGetVisibleSet(rkCuller,bNoCull);
}

}
}

if (m_kEffects.size() > 0)
{

// Place an ’end’ marker in the visible set to
// indicate that the global effect is inactive.
rkCuller.GetVisibleSet().Insert(0,0);

}
}

The three children must be drawn in back-to-front order. It is possible that any of
the three children have empty subtrees, so the smart pointers for those children must
be tested to see if they are not null before using them.

The first step, of course, is to determine on which side of the separating plane the
eye point is located. This is the role of the code

const Camera* pkCamera = rkCuller.GetCamera();
int iLocSide = m_kWorldPlane.WhichSide(

pkCamera->GetLocation());
int iFruSide = rkCuller.WhichSide(m_kWorldPlane);

As Figure 6.2 indicates, we also need to know how the view frustum is positioned
relative to the separating plane. The Plane class has a member function WhichSide
that determines whether the input point is on the positive side of the plane (return
value is positive), on the negative side of the plane (return value is negative), or on the
plane (return value is zero). The Culler class has a member function WhichSide that
tests the eight vertices of the view frustum to see on which side of the plane they lie.
If all eight lie on the positive side of the plane, the return value is positive. If all eight
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lie on the negative side of the plane, the return value is negative. Otherwise, some of
the eight lie on the positive side and some lie on the negative side, and the function
returns zero.

Consider the block of code for when the eye point is on the negative side of the
plane. This is the configuration in Figure 6.2. If the view frustum is on the positive
side of the plane or straddles the plane, the gray subregion must be drawn first. This
is the positive child of the BSP node. As you can see in the code, that child is drawn
first. If the frustum is fully on the positive side, then the separating plane does not
cut through it, so any geometry associated with that plane need not be drawn. If
the separating plane does intersect the frustum, then you should draw the geometry
for the plane (if any). The code block that compares iFruSide to zero handles this.
Naturally, when the frustum straddles the plane, you also need to draw the negative
child. That is the last code block in the clause that handles the eye point on the
negative side of the plane.

What to do when the eye point is exactly on the separating plane appears to be a
technical complication. For an environment where you have walls as the separating
planes, you would actually prevent this case, either by some prior knowledge about
the structure of the environment and the eye point location or by a collision detection
system. As it turns out, there is nothing to worry about here. Any ray emanating
from the eye point through the frustum is either fully on one side of the plane,
fully on the other side, or in the plane itself. In my code, though, I choose to order
the drawing of the children based on the half space that contains the camera view
direction.

In the code block for when the eye point is on the negative side of the plane, the
view frustum straddles the plane, and the BSP node has three children, all the children
will be drawn. In the example of an environment where the plane of a wall is used as
the separating plane, the child corresponding to the nonvisible half space does not
need to be drawn. You, the application writer, must arrange to set the Culling flag
to CULL_ALWAYS for that child so that the drawing pass is not propagated down the
corresponding subtree. That said, it is possible that the camera moves along the wall
to a doorway that does let you see into the space behind the wall. In this case you need
to structure your application logic to set the Culling flag according to the current
location of the eye point. This is the stuff of occlusion culling in a game, essentially
keeping a map of the world that helps you identify which objects are, or are not,
visible from a given region in the world.

The leaf nodes of a BSP tree implicitly represent a region of space that is convex.
The region is potentially unbounded. Many times it is useful to know which of these
convex regions a point is in. The function

Spatial* GetContainingNode (const Vector3f& rkPoint);

is the query that locates that region. The return value is not necessarily of type
BspNode. The leaf nodes of the BSP tree can be any Spatial-derived type you prefer.



6.2 Node-Based Sorting 365

6.2 Node-Based Sorting

One of the simplest, coarse-level sorting methods to be applied in a scene hierarchy
is to sort the children of a node. How they are sorted depends on what your environ-
ment is and how the camera is positioned and oriented relative to the children of the
node.

To demonstrate, consider the example of a node that has six TriMesh objects that
are the faces of a cube. The faces are textured and semitransparent, so you can see the
back faces of the cube through the front faces. The global state is set as indicated:

Back-face culling is disabled. Because each face is semitransparent, you must be
able to see it when positioned on either side of the face.

Depth buffering is enabled for writing, but not reading. The faces will be depth
sorted based on the location of the eye point, and then drawn in the correct order.
Reading the depth buffer to determine if a pixel should be drawn is not necessary.
For the cube only, it is not necessary to write to the depth buffer. If other objects
are drawn in the same scene using depth buffering with reading enabled, you need
to make certain that the depths are correct. That is why writing is enabled.

Alpha blending is enabled at the node since the face textures have alpha values to
obtain the semitransparency.

The cube is constructed in its model space to have its center at the origin (0, 0, 0).
The faces perpendicular to the x-axis are positioned at x = 1 and x = −1. The faces
perpendicular to the y-axis are positioned at y = 1 and y = −1. The faces perpen-
dicular to the z-axis are positioned at z = 1 and z = −1. The camera is inverse trans-
formed from the world into the model space of the cube. The back faces and front
faces are determined solely by analyzing the components of the camera view direc-
tion in the cube’s model space. Let that direction be D = (d0, d1, d2). Suppose that
the eye point is at (2, 0, 0) and you are looking directly at the face at x = 1. The view
direction is (−1, 0, 0). The x = 1 face is front facing. Its outer normal is (1, 0, 0).
The angle between the view direction and the outer normal is greater than 90 de-
grees, so the cosine of the angle is negative. The dot product of the view direction
and outer normal is the cosine of the angle. In the current example, the dot prod-
uct is (−1, 0, 0) . (1, 0, 0) = −1 < 0. The x = −1 face is back facing. Its outer normal
is (−1, 0, 0). The cosine of the angle between the view direction and the outer nor-
mal is (−1, 0, 0) . (−1, 0, 0) = 1 > 0. Similar arguments apply to the other faces. The
classification for back faces is summarized by

d0 > 0: Face x = 1 is back facing.

d0 < 0: Face x = −1 is back facing.

d1 > 0: Face y = 1 is back facing.
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Figure 6.3 A cube with transparent faces. The faces are sorted so that the drawing order produces
the correct rendering.

d1 < 0: Face y = −1 is back facing.

d2 > 0: Face z = 1 is back facing.

d2 < 0: Face z = −1 is back facing.

A sorting algorithm for the faces will inverse-transform the camera’s world view
direction to the model space of the cube; the resulting direction is (d0, d1, d2). The
signs of the di are tested to determine the cube faces that are back facing. The six
children of the node are reordered so that the back faces occur first and the front
faces occur second. A sample application, SampleGraphics/SortFaces, implements
the algorithm described here. A screen shot is shown in Figure 6.3.

6.3 Portals

The portal system is designed for indoor environments where you have lots of regions
separated by opaque geometry. The system is a form of occlusion culling and attempts
to draw only what is visible to the observer. The regions form an abstract graph.
Each region is a node of the graph. Two regions are adjacent in the graph if they are
adjacent geometrically. A portal is a doorway that allows you to look from one region
into another region adjacent to it. The portals are the arcs for the abstract graph.
From a visibility perspective, a portal is bidirectional. If you are in one region and
can see through a doorway into an adjacent room, then an observer in the adjacent
region should be able to look through the same doorway into the original region.
However, you can obtain more interesting effects in your environment by making
portals unidirectional. The idea is one of teleportation. Imagine a region that exists
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in one “universe” and allows you to look through a portal into another “universe.”
Once you step through the portal, you turn around and look back. The portal is not
there! I am certain you have seen this effect in at least one science-fiction movie. The
Wild Magic engine implements portals to be unidirectional.

The portal system is also a form of sorting in the following sense. The drawing
pass starts in one region. The standard depth-first traversal of the subscene rooted at
the region node is bypassed. Instead, the drawing call is propagated to regions that
are adjacent to the current one and that are visible through portals. Effectively, the
regions are sorted based on visibility. Suppose you have three regions (A, B, and C)
arranged along a linear path, each having portals into the adjacent regions. If you are
in region A and can see through a portal to B, and you can additionally see through
a portal in B to the region C, then C is the farthest region you can see from your
current position. Region C should be drawn first, followed by region B, and then
your own region A. The drawing pass must be careful to prevent cycles in the graph.
The system does have Boolean flags to tag regions whenever they have been visited.
These flags prevent multiple attempts to draw the regions.

The Wild Magic portal system uses a BSP tree to decompose the indoor envi-
ronment. The leaf nodes of the BSP tree are convex regions in space. The class Con-
vexRegion is derived from Node and is used to represent the leaf nodes. Any geometric
representation for the region, including walls, floors, ceilings, furniture, or whatever,
may be added as children of the convex region node. The root of the BSP tree is a
special node that helps determine in which leaf region the eye point is. Another class
is designed to support this, namely, ConvexRegionManager. It is derived from BspNode.
The middle child of such a node is used to store the representation for the outside
of the encapsulated region, just in case you should choose to let the player exit your
indoor environment. Finally, the class Portal encapsulates the geometry of the portal
and its behavior. The abstract graph of regions is a collection of ConvexRegion objects
and Portal objects. Both types of objects have connections that support the graph
arcs.

Figure 6.4 illustrates the basic graph connections between regions and portals.
The outgoing portals for the convex region in the figure can, of course, be the incom-
ing portals to another convex region, hence the abstract directed graph. Figure 6.5

Incoming Portal Portal

Portal Portal Portal

Convex region

Outgoing

Figure 6.4 A ConvexRegion node. The portals with arrows to the node are the incoming portals
to the region. The arrows from the node to the other portals are outgoing portals.
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Figure 6.5 A configuration of three regions, nine portals, and an outside area. (a) The geometric
layout for the regions and portals. (b) The directed graph associated with it.

shows a specific configuration of regions and portals, including the directed graph
associated with it.

The portal P0 is from the outside to inside the collection of regions. The portal
is displayed as if the door were closed. Once a player-character stands in front of the
door, a mouse click can open it. The character steps through, and the door closes
behind him (never to open again). The other doorways each have two unidirectional
portals, so no teleportation occurs in this configuration.

The occlusion culling comes into play as follows. Figure 6.6 shows two regions
with a portal from one region to the other. Using the standard drawing with a frus-
tum, the renderer will draw everything in the gray region shown in part (a) of the
figure, including the object shown as a small, black dot. That object is not visible to
the observer, but the renderer did not know this until too late, that is, when the depth
buffer comparisons showed that the wall is closer to the eye point and occludes the
object.

In previous versions of Wild Magic, I required that the portal polygons be convex.
The planes formed by the eye point and the edges of the polygon formed a convex
solid. Objects in the adjacent room that are outside this solid are not visible, hence
they are culled. This is an aggressive form of culling where you hope to reduce the
drawing time by culling objects in exchange for more time doing test-intersection
queries between bounding volumes and planes. The hope is that the net time is
shorter than if you did not do portal culling. The problem is that the more edges
the portals have, the more planes you have to test against. Given the speed of current
graphics hardware, a less aggressive form of culling is better to use. Rather than add a
culling plane per edge of the portal, you should always use a fixed number of culling
planes. The view frustum itself has six planes: near, far, left, right, bottom, and top.
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Figure 6.6 Two regions with a portal from one to the other. (a) The gray region depicts the view
frustum. (b) The trimmed version of the view frustum using planes formed by the
eye point and edges of the portal polygon.

The reduced frustum used to draw the adjacent room will also have six planes: the
near and far planes from the original frustum but four planes replacing the left, right,
bottom, and top original frustum planes. The idea is to create a bounding rectangle
that contains the portal and use its edges to build the other four planes. This allows
the original portal polygon to be any simple polygon of arbitrary complexity. And it
guarantees a fixed amount of time spent on test-intersection queries between frustum
planes and bounding volumes.

The smaller frustum used for the adjacent region is shown as light gray in Figure
6.6. Keep in mind that the smaller frustum is used only for culling. The regular view
frustum is still used for drawing, so the renderer may attempt to draw portions of
the walls in the adjacent region, even though they are partially occluded. The idea is
to eliminate occluded objects from the drawing pass. You could design the camera
system to tell the graphics system to use the additional culling planes for clipping,
but that has the potential to take away resources from other objects. The current
consumer graphics hardware is powerful enough that you might as well just let it
go ahead and clip.

At the top level of the system, we have class ConvexRegionManager. Its interface is

class ConvexRegionManager : public BspNode
{
public:

ConvexRegionManager ();

SpatialPtr AttachOutside (Spatial* pkOutside);
SpatialPtr DetachOutside ();
SpatialPtr GetOutside ();
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ConvexRegion* GetContainingRegion (const Vector3f& rkPoint);

protected:
virtual void Draw (Renderer& rkRenderer, bool bNoCull = false);

};

A convex region manager is a BSP tree whose leaf nodes are the ConvexRegion objects.
A subscene representing the outside of the environment, if any, can be attached or
detached via the member functions AttachOutside and DetachOutside. The outside
scene can be as complex as you like, especially so if you plan on an application that
has both an outdoor and an indoor environment.

The main role of ConvexRegionManager is to locate the convex region that contains
the eye point. The function GetContainingRegion supports this query. If the function
returns NULL, the eye point is not in any of the convex regions and, for all practical
purposes, is outside. The GetVisibleSet function used for culling is fairly simple:

void ConvexRegionManager::GetVisibleSet (Culler& rkCuller, bool bNoCull)
{

ConvexRegion* pkRegion = GetContainingRegion(
rkCuller.GetCamera()->GetLocation());

if (pkRegion)
{

// Accumulate visible objects starting in the region
// containing the camera.
pkRegion->GetVisibleSet(rkCuller,bNoCull);

}
else
{

// The camera is outside the set of regions.
// Accumulate visible objects for the outside scene
// (if it exists).
if (GetOutside())
{

GetOutside()->GetVisibleSet(rkCuller,bNoCull);
}

}
}

A situation you must guard against in your application is the one where the eye
point is outside, but the near plane of the view frustum straddles a separating wall
between inside and outside. The convex region manager determines that the eye point
is outside, so the region traversal for culling is never initiated. The outside is drawn,



6.3 Portals 371

but not correctly because the view frustum contains part of the inside environment
that never gets drawn.

The only reason I have ConvexRegionManager in the engine is to provide an auto-
matic method for locating the convex region containing the eye point. The contain-
ment query is called in each drawing pass, even if the eye point has not moved. Since
the object is a BSP tree, presumably with a small height, the cost of the query should
not be an issue. However, if you were to keep track of the eye point and containing
room through other means, say, by a map you have of the indoor environment, there
is no need for the BSP tree. The graph of ConvexRegion and Portal objects works just
fine without the manager.

The interfaces for the ConvexRegion and Portal classes are

class ConvexRegion : public Node
{
public:

ConvexRegion (int iPQuantity, Portal** apkPortal);
virtual ~ConvexRegion ();
int GetPortalQuantity () const;
Portal* GetPortal (int i) const;

protected:
ConvexRegion ();
virtual void UpdateWorldData (double dAppTime);
int m_iPQuantity;
Portal** m_apkPortal;
bool m_bVisited;

// internal use
public:

virtual void GetVisibleSet (Culler& rkCuller, bool bNoCull);
};

class Portal : public Object
{
public:

Portal (int iVQuantity, Vector3f* akModelVertex,
ConvexRegion* pkAdjacentRegion, bool bOpen);

virtual ~Portal ();
ConvexRegion*& AdjacentRegion ();
bool& Open ();

protected:
Portal ();
friend class ConvexRegion;
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void UpdateWorldData (const Transformation& rkWorld);
void GetVisibleSet (Culler& rkCuller, bool bNoCull);

int m_iVQuantity;
Vector3f* m_akModelVertex;
Vector3f* m_akWorldVertex;
Vector3f m_akModelBRect[4];
Vector3f m_akWorldBQuad[4];
ConvexRegion* m_pkAdjacentRegion;
bool m_bOpen;

};

The ConvexRegion constructor is passed an array of outgoing portals associated
with the convex region. The class will use the array pointer directly and will delete
the array during destruction. Because the class takes over ownership of the portal
array, the portals cannot be shared between convex regions.

The Portal constructor is passed an array of vertices that represent the portal
geometry, a pointer to the adjacent region (so this portal is incoming for that region),
and a Boolean flag indicating whether the portal is initially open or closed. The
model-space vertices must be counterclockwise ordered when looking through the
portal to the adjacent region, and they must be in the model-space coordinates for
the region that contains the portal. A bounding rectangle is computed for the model-
space vertices. A world-space bounding quadrilateral is computed from the model-
space rectangle during an UpdateWorldData call.

ConvexRegion overrides the UpdateWorldData virtual function in order to update
the geometric state in its subtree in the normal manner in which an UpdateGS pro-
cesses the subtree. The outgoing portals themselves might need updating. Since Por-
tal is not derived from Spatial, these objects are not visited by the UpdateGS pass.
The convex region must initiate the update of the portals. The source code is

void ConvexRegion::UpdateWorldData (double dAppTime)
{

// Update the region walls and contained objects.
Node::UpdateWorldData(dAppTime);

// Update the portal geometry.
for (int i = 0; i < m_iPQuantity; i++)
{

m_apkPortal[i]->UpdateWorldData(World);
}

}

The portal objects must update their own data, and do so with a single batch
update:
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void Portal::UpdateWorldData (const Transformation& rkWorld)
{

rkWorld.ApplyForward(m_iVQuantity,m_akModelVertex,
m_akWorldVertex);

}

The culling function in both classes is an implementation of the traversal of a
directed graph. Because the graph most likely has cycles, the code needs to maintain
Boolean flags indicating whether or not a region has already been visited to prevent
an infinite loop. The ConvexRegion class has a data member, m_bVisited, for this
purpose. The drawing routine for a convex region is

void ConvexRegion::GetVisibleSet (Culler& rkCuller,
bool bNoCull)

{
if (!m_bVisited)
{

m_bVisited = true;

// Add anything visible through open portals.
for (int i = 0; i < m_iPQuantity; i++)
{

m_apkPortal[i]->GetVisibleSet(rkCuller,bNoCull);
}

// Add the region walls and contained objects.
Node::GetVisibleSet(rkCuller,bNoCull);

m_bVisited = false;
}

}

The convex region manager starts the culling pass in the region containing the
eye point. On entry to the culling function for this region, the visitation flag is false.
The flag is then set to true to indicate that the region has been visited. The outgoing
portals associated with the region are asked to propagate the culling to their adjacent
regions. During the propagation, if the current region is revisited, its visitation flag
will prevent another recursive call (and avoid the infinite loop). In Figure 6.5, if the
eye point is in region R0, a cycle is formed by following portal P1 into R1, and then
immediately returning to R0 through portal P2. A larger cycle occurs, this one by
following P1 into R1, P6 into R2, and then P8 into R0. Once the graph of regions
has been traversed, the recursive call comes back to the original region and the
Node::GetVisibleSet call is made. This call is what tests visibility in the interior of
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the region and all its contents. The visitation flag is reset to false to allow the next
culling call to the portal system.

You might have noticed that this process has the potential for being very slow. I
mentioned that the graph of regions is entirely traversed. In a large indoor environ-
ment, there could be a substantial number of regions, most of them not visible. If
the portal system visits all the nonvisible regions and attempts to draw them anyway,
what is the point? Not to worry. As described earlier, the portals are used to generate
additional culling planes for the camera to use. The planes are used to cull objects
not visible to the observer, including portals themselves! Return once again to Figure
6.5. Suppose the observer is in region R0 and standing directly in front of the door-
way marked portal P1. The observer then looks straight ahead into region R1 through
that portal. The portal planes generated by the observer’s eye point and the edges of
the portal polygon form a narrow frustum into region R1. The portal marked P6 is
not visible to the observer. The portal drawing system will make sure that the region
traversal does not continue through P6. In this manner, a carefully designed environ-
ment will have only a few potentially visible regions along a line of sight, so only a
few regions will be processed by the renderer.

The portal culling code is listed next but with pseudocode for the saving (push)
and restoring (pop) of culling planes.

void Portal::GetVisibleSet (Culler& rkCuller, bool bNoCull)
{

// Only visit adjacent region if portal is open.
if (!m_bOpen)
{

return;
}

// Only traverse through visible portals.
if (!rkCuller.IsVisible(m_iVQuantity,m_akWorldVertex,true))
{

return;
}

// Set rkCuller left, right, top, bottom planes from
// portal’s world bounding quadrilateral.
<code goes here>;

// Visit the adjacent region and any nonculled objects in it.
m_pkAdjacentRegion->GetVisibleSet(rkCuller,bNoCull);

// Restore the left, right, top, bottom planes that
// were in effect before this GetVisibleSet was called.
<code goes here>;

}
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I mentioned that the Portal constructor takes a Boolean input that indicates
whether or not the portal is “open.” The intent is that if you can see through the por-
tal, it is open. If not, it is closed. In a typical game, a character arrives at a closed door,
preventing him from entering a region. A magical click of the mouse button causes
the door to pop open, and the character steps into the region. The open flag is used
to support this and controls whether or not a portal propagates the GetVisibleSet call
to the adjacent region. The first step that the Portal::GetVisibleSet function takes
is to check that Boolean flag.

The second step in the drawing is to check if this portal is visible to the observer.
If it is, the reduced frustum is computed using the current eye point and the planes
implied by the world bounding quadrilateral for the portal. The adjacent region
is then told to build its potentially visible set. Thus, ConvexRegion::GetVisibleSet
and Portal::GetVisibleSet form a recursive chain of functions. Once the region
is drawn, the frustum that was active before the current call to GetVisibleSet is
restored.

If the portal is culled, then the GetVisibleSet call is not propagated. In my pre-
vious example using Figure 6.5, an observer in region R0 standing in front of portal
P1 will cause the region traversal to start in R0. When portal P1 has its GetVisibleSet
function called, the portal is open and the portal itself is visible to the camera, so the
reduced frustum is formed and the adjacent region must be processed. A traversal
over its outgoing portals is made, and the portals are told to propagate the GetVisi-
bleSet call. We will find in Portal::GetVisibleSet for P6 that this portal is not visible
to the observer; the planes for P1 are on the camera’s stack, but the planes for P6 are
not. The GetVisibleSet call is not propagated to R1 (through that path).

6.4 User-Defined Maps

The user-defined map is the data structure that stores the cells. Each cell is analyzed
to determine the set of objects that are potentially visible and the set of objects that
are not visible. I have alluded to such a data structure a few times thus far. The idea is
to partition the world into cells.

The user-defined map is loaded by the application, and the location of the cam-
era is tracked relative to the map. Every time the camera leaves one cell and enters
another, the Spatial::Culling flags for the objects in the previous cell are all set to
CULL_ALWAYS. The objects in the potentially visible set for the new cell have their flags
set to CULL_DYNAMIC (or CULL_NEVER if you prefer to save time and not cull), and the
objects that are known not to be visible have their flags set to CULL_ALWAYS.

6.5 Occlusion Culling

Depth buffering is effectively an occlusion culling system, but it is performed on a
per-pixel basis—an image-space algorithm. The portal system is a system that provides
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some automatic culling of occluded objects. This is an object-space algorithm. The
walls of rooms are the occluders for an object unless the object is visible (or partially
visible) through a portal.

It is possible to attempt culling in a manner that is somewhat the opposite of
portals. A portal polygon potentially allows you to see an object that is not occluded
by walls. The portion of the wall that remains after you cut out a portal polygon is
considered a blocker. Generally, a polygon can be a blocker in the sense that if you
form a convex polyhedron with a vertex at the eye point and with triangular faces
formed by the eye point and the edges of the polygon, any object inside the convex
polyhedron is not visible to the observer.

It is possible to design game levels so that certain static geometry can be used as
blockers in order to cull objects. For example, imagine an indoor environment that
represents an ancient temple. Each room in the temple has thick vertical columns
from floor to ceiling. From the observer’s perspective, a column looks like a rectan-
gular polygon on the screen. Any object hidden by that rectangle may be culled. It is
possible to dynamically construct the culling planes given the camera’s current posi-
tion and the columns’ current positions. The Culler class may be modified to attempt
culling based on this information.

General systems for dynamic occlusion culling are difficult to make fast enough
for real-time applications. One system that appeared to be reasonable was SurRender
Umbra, a product that was released by Hybrid Holdings of Finland in the early 2000s.
You can still find references to it online; see, for example, [AM01].

For practical purposes, use of blocker polygons is probably the quickest way to
obtain some additional culling. As is often the case, the increased speed and memory
capabilities of current graphics hardware outweighs the need for CPU-intensive ag-
gressive culling. Thus, it is usually faster to have a simple culling system and to draw
some objects even if they are not visible, rather than spending a lot of CPU time trying
to aggressively cull objects.



C h a p t e r 7
Level of Detail

The rendering of a detailed and complex model that consists of thousands of
triangles looks quite good when the model is near the eye point. The time it

takes to render the large number of triangles is well worth the gain in visual quality.
However, when the same model is far from the eye point, the detail provided by
thousands of triangles is not that noticeable, because the screen-space coverage of
the rendered model might be only a handful of pixels. In this situation, the trade-
off in time versus visual quality is not worth it. If the final rendering covers only a
handful of pixels, the number of triangles processed should be proportional. This
chapter introduces the concept of geometric level of detail (LOD). The amount of work
done by the renderer per model per pixel should be as independent of the number of
triangles that make up the model as possible.

Although rendering time and potential loss of visual quality factor into decisions
about level of detail, geometric level of detail can also be important for nonvisual as-
pects of the game engine, most notably in collision detection. A character in the game
might consist of some 10,000 triangles so that the rendered version is visually appeal-
ing. If that character is to interact with his environment for purposes of collision, it
would be quite expensive to process most (or all) of the 10,000 triangles in an inter-
section test with a wall of a room. An alternative is to provide one or more coarse
resolution representations of the character to be used by the collision system. The
idea is that the coarse-level representation allows for sufficient accuracy and speed
in the collision system but is not detailed enough for visual purposes. The automatic
generation of levels of detail in many of the current algorithms allows us to create the
coarse resolution representations for collision detection purposes.

This chapter is by no means a detailed description of all the various ideas and
algorithms developed over the past few years. It is intended to give you a flavor of

377
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the concepts that any game program must handle when incorporating level of detail.
The simplest form of level of detail involves 2D representations of 3D objects, called
sprites or billboards, and is discussed in Section 7.1. Switching between models of
varying degrees of resolution, a process called discrete level of detail, is a step up in
quality from 2D representations. The switching is usually associated with distance
from eye point to object. Section 7.2 covers the basic concepts for this topic. A form
of geometric control for visual quality called continuous level of detail is discussed in
Section 7.3, with a brief discussion of how it applies to models and to terrain. Section
7.4 is about infinite level of detail, which is essentially what you have for surface-based
models. As long as you have the cycles to burn, you can tessellate a surface to whatever
level of detail you like and feed the triangles to the rendering system. The topic of
geometric level of detail is quite broad. A good book covering many algorithms and
issues is [LRC+03].

Based on what I’ve gleaned from some of the game developer forums, continu-
ous level of detail—in particular for terrains—has lost some of its popularity. The
video memory capacity of consumer graphics cards and of game consoles has grown
enough and the GPUs have sufficient rendering throughput for you to process de-
tailed models and terrain at their original high resolution. However, the concepts are
still important for very large terrains and for automatic generation of low-resolution
models for the purpose of collision detection.

7.1 Sprites and Billboards

The simplest form of level of detail uses sprites, sometimes called impostors. These
are pre-rendered images of 3D objects. The idea is that the time it takes to draw the
image as a texture is much shorter than the time required to render the object. In
a 3D environment, sprites are useful for software rendering simply because of the
reduction in the time to draw. However, sprites are usually easy to spot in a rendering
if they represent objects that are close to the eye point or if the eye point moves. The
image gives the impression that the object is not changing correctly with eye point
location or orientation. The visual anomaly due to closeness to eye point is softened
if sprites are only used for distant objects, for example, trees drawn in the distance.

The visual anomaly associated with a moving eye point can be rectified in two
ways. The first way is to have a set of pre-rendered images of the object calculated
from a set of predefined eye points and orientations. During application execution, a
function is used to select the appropriate image to draw based on the current location
of the eye point. The second way is to allow a single pre-rendered image to change
orientation depending on eye point location and orientation. In this setting the sprite
is called a billboard.

Billboards can change orientation based on a few schemes. All calculations are
assumed to be in the model space of the billboard. During application execution, the
eye point and orientation vectors are transformed from world space to the model
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space of the billboard, and the billboard’s new alignment is calculated. The basic
billboard consists of a rectangle (two triangles) and a textured image. A coordinate
system is assigned to the billboard: its origin is the center point of the rectangle; the
edge directions are two coordinate axes; and the normal to the plane of the rectangle
is the third coordinate axis. A billboard can be screen aligned. The billboard is first
rotated so that its normal vector is aligned with the view direction. Within this new
plane, the billboard is rotated so that its model-space up vector is aligned with the
view up vector. Screen alignment is good for displaying particles in a particle system
and for isotropic textures such as smoke clouds. If the texture is anisotropic (e.g., a
tree texture), then screen alignment does not make sense in the case when the viewer
rotates about the current view direction. The tree should remain upright even though
the viewer is tilting his or her head. For these types of billboards, axial alignment is
used. The billboard is allowed to rotate only about its model-space up vector. For a
given eye point, the billboard is rotated so that its normal vector is aligned with the
vector from the eye point to its projection onto the up axis of the billboard.

Note that the alignment of a billboard relative to an eye point requires identifying
a coordinate frame for the billboard and changing that frame with respect to the eye
point’s coordinate frame. The idea of alignment can therefore be extended to a fully
3D object as long as a coordinate frame is assigned to that object. In this sense, a
billboard class can be defined for a special type of node in a scene graph, and the
children of that node can be arbitrary objects, not just flat polygons and images.

7.2 Discrete Level of Detail

A simple LOD algorithm is to construct a sequence of models whose triangle count
diminishes over the sequence. The sequence is assigned a center point that is used as a
representation of the centers for all the models. The model with the largest number of
triangles is drawn when the LOD center for that model is close to the camera. As the
center point moves farther away from the camera, and at some preselected distance,
the current model is replaced by the next model in the sequence. To support this
“switch,” the hierarchical scene graph has a node type designated as a switch node.
This node type provides an interface that allows the application to select which child
of the node should be processed in any recursive traversals of the scene graph. Only
one child may be active at a time. The scene graph can then support specialized switch
nodes, one of those being an LOD node. The children of an LOD node are the models
in the sequence. The node itself maintains the center point. During a rendering pass
when the LOD node is visited, its pre-render function computes the distance from
the center point to the eye point and sets the appropriate active child to propagate
the rendering call.

The word discrete refers to the fact that the number of models is a small finite
number. The advantage of discrete level of detail is the simplicity of the implemen-
tation. The disadvantage is that an artist must build all those models. Moreover,
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whenever a switch occurs during rendering, it is usually noticeable and not very
natural—the popping effect. One approach that has been taken to reduce the popping
is to morph between two consecutive models in the LOD sequence. This requires es-
tablishing a correspondence between the vertices of the models and is problematic
when the number of vertices is different between the two. The morphing is imple-
mented as convex combinations of paired vertices, with the weighting factors depen-
dent on the switching distances for the models. That is, if d1 is the distance at which
model 1 switches to model 2, and if d2 is the distance at which model 2 switches to
model 3, while the LOD center is a distance d ∈ [d1, d2]from the eye point, the weight
(d − d1)/(d2 − d1) is applied to vertices in model 1 and the weight (d2 − d)/(d2 − d1)

is applied to vertices in model 2. The results might be acceptable, but the price to be
paid for each frame makes for an expensive interpolation. However, the results might
not be visually appealing, since the morphing is not based on preserving geometric
information about the models. The quality of the end result depends a lot on the
quality and differences in the original models.

7.3 Continuous Level of Detail

An alternative to discrete level of detail is continuous level of detail (CLOD). One ma-
jor category of CLOD algorithms includes progressive meshes that simplify already
existing triangle meshes [Hop96a, Hop96b, GH97, GH98, CVM+96, COM98, LE97,
LT98]. Some of the later papers realized the importance of also simplifying the surface
attributes (e.g., vertex colors and texture coordinates) in a visually appealing way. The
basic concept is one of triangle reduction. The Garland-Heckbert algorithm [GH97]
is particularly well suited for a game engine and is discussed in this section. This
algorithm effectively builds a large sequence of models from the highest-resolution
model, so in a sense it is like discrete LOD, but it does not require an artist to build
the additional models. The change in the number of triangles between consecutive
models is a small number, so popping is not as noticeable, particularly when a screen-
space error metric is used to control the triangle changes rather than the distance of
the model center from the eye point.

7.3.1 Simplification Using Quadric Error Metrics

The Garland-Heckbert algorithm [GH97] creates a sequence of incremental changes
to the triangle mesh of the original model by contracting pairs of vertices in a way that
attempts to preserve geometric information about the model rather than topological
information. Other researchers have used methods that typically require manifold
topology and do not necessarily handle shape in a reasonable way. Vertex decimation
involves removing a vertex and all triangles sharing it, then retriangulating the hole
that was produced by removal [SZL92]. Vertex clustering involves placing the mesh
in a bounding box, partitioning that box into a lattice of small boxes, collapsing all
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Figure 7.1 A sequence of three edge collapses in a triangle mesh.

vertices in each small box into a single vertex, and removing and adjusting the tri-
angles of the original mesh accordingly [RB93]. Iterative edge contraction involves
replacing an edge and its two vertices by a single vertex, removing the triangles shar-
ing that edge, and adjusting the connectivity information for the triangles adjacent
to the ones removed [Hop96a].

The Garland-Heckbert algorithm is based on iterative vertex contraction and
is not restricted to a manifold topology. Moreover, two disjoint components of a
triangle mesh might very well be joined by this algorithm, so mesh topology is not
necessarily preserved. This is not a drawback to the algorithm, because a mesh that
appears as two distinct objects while close to the eye point might look like a single
object while in the distance. Merging of components by the simplification algorithm
supports this. The basic contraction involves a vertex pair (V1, V2) that is replaced
by a single vertex V. The original vertices are in a sense moved to the new vertex, V1
becomes V, and V2 is removed. The edges that shared V2 are now connected to V,
and any edges or faces that become degenerate are removed. Figure 7.1 illustrates the
contraction of three pairs of vertices (three edges). In fact, the contraction process can
be applied to an entire set of vertices {Vi}mi=1 → V if desired. Simplification amounts
to taking the original mesh M0 and creating a sequence of n vertex contractions to
produce a sequence of meshes M0, M1, . . . , Mn.

The algorithm requires identification of those vertices in the original mesh that
can be contracted. A pair (V1, V2) is said to be a valid pair for contraction if the
two points are endpoints of the same edge or if |V1 − V2| < τ for some threshold
parameter τ > 0 specified by the application. If τ = 0, then the vertex contraction
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is really an edge contraction. Positive thresholds allow nonconnected vertices to be
paired.

The algorithm also requires taking the set of valid pairs and associating with each
pair a metric that is used to prioritize the pairs. The smaller the metric, the more
likely the pair should be contracted. This is accomplished by associating with each
vertex V = (X , 1), treated as a homogeneous vector, a symmetric 4 × 4 matrix Q(V),
and choosing the metric to be the quadratic form

E(X) = VTQV =
[

XT 1
] [

A B

BT c

] [
X

1

]
= XTAX + 2BTX + c

where A is a 3 × 3 symmetric matrix, B is a 3 × 1 vector, and c is a scalar. Note
that E(X) = d for a constant d defines a quadric surface. A specific matrix Q is
constructed in the next section, but for the purpose of simplification it could be one
of many choices.

Given a valid pair (V1, V2), there are two things to do. The first thing to do
is to compute the target V of the contraction. While simple choices are V1 or V2
(replacement) or (V1 + V2)/2 (averaging), a better choice is to choose V so that E(X)

is minimized. This occurs when ∇E(X) = 0, which leads to solving AX = −B. If A

is invertible, then the solution X is used to generate the contracted vertex V = (X , 1).
However, if A is not invertible, then the minimization problem is restricted to the
line segment X(t) = X0 + t (X1 − X0) for t ∈ [0, 1]. The function to minimize is
the quadratic in one variable, φ(t) = E(X(t)). The minimum occurs either where
φ′(t) = 0 with t ∈ [0, 1] or at an endpoint t = 0 or t = 1. The second thing to do is
associate a metric with V. A simple choice is Q = Q1 + Q2, where Qi is the metric
for Vi, i = 1, 2.

The Algorithm

A model is represented using a vertex-edge-face table to store the connectivity infor-
mation. Each vertex keeps track of a list of other vertices to which it is adjacent. The
algorithm is as follows:

1. Compute Q for all vertices.

2. Compute all valid pairs based on a selected τ ≥ 0.

3. Compute V for each pair (V1, V2), Q = Q1 + Q2, and VTQV.

4. Place all pairs in a heap whose first element is that pair with minimum VTQV for
the vertex V that is contracted from the pair.

5. The first pair in the list is contracted to form the new mesh and is removed from
the heap. The valid pairs affected by the removal have their metrics recalculated.
The pair with the minimum error term is moved to the front of the heap, and this
step is repeated until the heap is empty.
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A couple of potential problems need to be dealt with. The first problem is that
the algorithm does not handle open boundaries in any special way. For some mod-
els (such as terrain) it might be important to tack down the boundary edges of the
mesh. One way to do this is to generate a plane through each boundary edge that is
perpendicular to the triangle containing that edge. The quadric matrix is calculated,
weighted by a large penalty factor, and added into the quadric matrices for the end-
points of the edge. It is still possible for boundary edge vertices to move, but it is
highly unlikely. Another way is never to allow a boundary edge vertex to be moved
or replaced in the simplification. The implementation on the CD-ROM locates the
boundary edges and assigns infinite weights to them, so the boundary edges can never
be removed by an edge collapse.

The second problem is that pair contractions might not preserve the orientation
of the faces near the contraction, so a folding over of the mesh occurs. A method to
prevent this is to compare the normal vector of each neighboring face before and after
the contraction. If the normal vector changes too much, the contraction is disallowed.

Construction of the Error Metric

A heuristic is chosen for the quadric error metric. Each vertex in the mesh is in the
intersection of the planes containing the triangles that share that point. If a plane is
represented as PTV = 0, where V = (X , 1) and P = (N, d) with |N| = 1, define S(V)

to be the set of vectors P representing the planes containing the triangles that share
V. The error of V with respect to S(V) is the sum of squared distances from V to its
planes:

E(V) =
∑

P∈S(V)

(PTV)2 = VT

⎛
⎝ ∑

P∈S(V)

PPT

⎞
⎠ V = VTQ(V)V

where the last equality defines Q(V) for a given vertex. The matrix PPT is called a
fundamental error quadric and, when applied to any point W, measures the squared
distance from that point to the plane.

The initial vertices have matrix Q(V) �= 0, but the initial error estimates are
VTQ(V)V = 0. On the first iteration of the algorithm, the sum of two quadric error
matrices will generate another nonzero quadric error matrix whose quadratic form
usually has a positive minimum.

Topological Considerations

An example that illustrates how a mesh can fold over, independently of the geom-
etry of the mesh, is shown in Figure 7.2. In part (a) of the figure, the triangles are
counterclockwise ordered as 〈0, 4, 3〉, 〈4, 1, 2〉, and 〈4, 2, 3〉. The collapse of vertex
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Figure 7.2 An edge collapse resulting in the mesh folding over on itself: (a) no folding and (b)
folding.

4 to vertex 0 leads to deletion of 〈0, 4, 3〉, modification of 〈4, 1, 2〉 to 〈0, 1, 2〉, and
modification of 〈4, 2, 3〉 to 〈0, 2, 3〉. Both modified triangles are visible in the figure
as counterclockwise.

In part (b) of the figure, the modified triangle 〈0, 2, 3〉 is counterclockwise. This
is by design; collapses always preserve this. But the triangle appears to be clockwise
in the figure: upside down, it folded over. We can avoid the problem by doing a look-
ahead on the collapse. If any potentially modified triangle causes a folding, we assign
an infinite weight to the offending edge to prevent that edge from collapsing.

Another issue when collapsing edges in an open mesh is that the mesh can shrink.
To avoid shrinking, we can also assign infinite weights to boundary edges of the
original mesh. And, finally, if we want to preserve the mesh topology, we can assign
infinite weights to edges with three or more shared triangles.

Simplification at Run Time

A class ClodMesh can be derived from Spatial and added to the collection of
geometric-type leaf nodes that can be placed in a scene graph and rendered. A
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ClodMesh object represents the mesh sequence M0 through Mn, where M0 is highest
resolution. The original mesh is assumed to have manifold topology and the simpli-
fication is assumed to do edge contractions. While neither of these is a requirement
of the algorithm as published, they do make the implementation a bit more manage-
able. A consequence of the two assumptions is that two consecutive meshes in the
simplification differ by one or two triangles. Moreover, the sequence is assumed to
be precomputed, thereby gaining execution speed at the cost of memory usage.

An automated selection can be made at each frame to display mesh Mi for some
appropriate index i by using the pre-rendering virtual function. Although there are
many possibilities for selection, a simple one uses screen-space coverage by the world
bounding volume containing mesh M0. If A is the screen-space area covered by the
bounding volume and if τ is an application-specified number of triangles per pixel,
then the number of requested triangles in the mesh to be drawn is Aτ . This number
is clamped to [T0, Tn], where Ti is the number of triangles in mesh Mi. The index j

is chosen so that Tj = 
Aτ�, and the mesh Mj is identified as the one to be drawn in
the rendering virtual function.

Selecting Surface Attributes

If the original mesh has surface attributes at the vertices such as normal vectors,
texture coordinates, and colors, then new surface attributes must be selected for a
contracted vertex. For a single edge contraction, it is reasonable to select texture coor-
dinates and colors based on the values at the vertices of the two triangles sharing that
edge. If the two triangles are not coplanar, then the four vertices form a tetrahedron.
A simple scheme to compute a new scalar value based on four old ones is to compute
the barycentric coordinates of the new vertex with respect to the tetrahedron and use
them in a weighted average of the scalar values. Some care must be taken if the new
vertex is not inside the tetrahedron so that at least one of the barycentric coordinates
is outside the interval [0, 1]. To remedy this, any negative barycentric coordinates are
clamped to 0 and the coordinates are rescaled to sum to 1. The resulting coordinates
are used to compute a convex combination of the four scalar values. Normal vectors
may be recomputed at vertices for which the shared triangle set has changed.

7.3.2 Reordering of Vertices and Indices

The decimation scheme here produces a sequence of meshes, the first mesh the
original data and each additional mesh a lower-resolution version of the previous
one. The vertices and indices of the original mesh can be reordered so that all meshes
use the vertex buffer and index buffer of the original mesh. Each mesh stores the
number of vertices and number of indices for the subsets of the buffers it needs.

Think about why this works by considering a single edge collapse. If the collapse
causes vertices Vi1

through Vin
to be removed from the mesh, you can move these
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vertices to the end of the original vertex buffer. Essentially, this is a permutation of
the vertex indices. Moving the vertices causes the indices in the index buffer to be
invalid, but you can apply the permutation to reassign the indices and obtain a valid
index array. The collapse also causes triangles Tj1

through Tjm
to be removed from

the mesh. You can move the indices to the end of the original index buffer. Since it
really does not matter in which order you draw the triangles, this rearrangement is
okay to do.

On the next edge collapse, the vertices that are removed by the collapse are moved
to the vertex buffer location just before those vertices that were moved because of the
previous collapse. The same idea applies to the indices.

By reordering the vertices and indices, you may transfer the vertex buffer and
index buffer of the original mesh to video memory once. Drawing of lower-resolution
meshes amounts to telling the graphics system to enable these buffers, but also telling
it the different vertex and index quantities to use. Without the reordering, you would
have to send vertex and index buffers across the bus on each frame, which is slow.

7.3.3 Terrain

In the first edition of the book, I had described in detail a continuous-level-of-
detail algorithm for height fields [LKR+96]. We had implemented this in NetImmerse
with modifications to improve the performance. Later, another paper appeared with
an algorithm that became more popular—the ROAM algorithm [DWS+97], but
I had no time to investigate this when finishing up the first edition. The goal of
both CLOD algorithms is to reduce the number of triangles that the renderer must
draw. In exchange for fewer triangles, you spend CPU cycles trying to decide which
triangles to feed to the renderer. There is a fine balance in performance here. Spend
too much time on the decision process? You slow down the application and starve
the renderer. Spend too little time on the decision process, perhaps with a more
conservative estimate, and you slow down the renderer because it has to process
too many triangles. Moreover, visual quality is important in that you do not want
triangles to pop in and out of view as the camera moves. This argues for more
CPU time because you need to use screen-space metrics to decide on the number
of triangles.

The CLOD terrain algorithms were important because, at the time, the amount
of memory on hardware-accelerated cards was sufficiently small that you had to send
terrain data over the bus to video memory on each frame. Reducing the triangle
count meant reducing the bus traffic. Current-generation graphics hardware has
much more video memory. My experience lately has been to use just regular terrain
pages without any CLOD algorithm applied to them. The pages are all loaded in video
memory once. As the camera moves, eventually you reach a point where you need
to load new pages for terrain about ready to be encountered, and you can discard
current pages that are no longer visible. It is quite simple to manage terrain pages,
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loading and discarding using simple heuristics based on camera position, orientation,
and speed.

Programmable graphics hardware is powerful enough now that other algorithms
are appearing in the literature, using the GPUs to handle continuous level of detail.
A popular algorithm uses geometry clipmaps as presented in the paper [LH04] and
appearing in a chapter of the book [Pha05]. Other CLOD algorithms are referenced
at the Virtual Terrain Project website [Pro06].

7.4 Infinite Level of Detail

Another major category of CLOD algorithms includes the dynamic tessellation of
surfaces that are defined functionally. Because there is no theoretical bound on the
number or size of triangles that can be created in the tessellation, this type of algo-
rithm provides an infinite level of detail. Of course, there is a practical bound based
on the number of triangles an engine can process to maintain a high frame rate and
the amount of memory available. The benefit, though, is compactness of representa-
tion of the model. See Section 12.7 for a discussion of dynamic tessellation.



C h a p t e r 8
Collision Detection

Collision detection is a very broad topic, relevant to computer games and to
other applications such as navigation and robotics. The classic example for

collision detection in a third-person perspective, indoor game is having the main
character move around in a set of rooms that contain obstacles. The character is con-
trolled by an input device, typically a joystick, keyboard, or mouse, and must not be
allowed to walk through the walls or obstacles. Moreover, if the character walks into
a wall, he might be allowed to slide along the wall in a direction that is oblique to
the one implied by the event from the input device. A standard technique for pre-
venting the character from walking through a wall is to enclose the character with a
tight-fitting bounding volume and test whether it intersects the plane of the wall. The
collision detection system must provide support for this test even when the character
(and its bounding volume) is moving. Preventing the character from walking through
an obstacle is as simple as enclosing the obstacle with its own bounding volume and
testing for intersection between the character and obstacle bounding volumes. Other
typical situations in a game that require collision detection are keeping vehicles mov-
ing over a terrain without dropping through it, monitoring racing cars on a track
and detecting when two cars hit or when a car hits a wall, determining when a pro-
jectile hits an intended target, bouncing objects off other objects, providing feedback
about character control when two characters are fighting, and determining if an ob-
ject can pass through an opening, such as when a character attempts to walk through
a doorway that may or may not be tall enough.

The nature of collision detection algorithms depends on the types of objects
involved and what information is needed by the caller of a collision detection query. I
choose to categorize collision detection algorithms according to the following broad
categories:

389
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1. Stationary objects. Both objects are not moving.

(a) Test-intersection queries. Determine if the two objects are intersecting. The
algorithms need only determine if the objects are intersecting, not what the
set of intersection is.

(b) Find-intersection queries. Determine the intersection set of the objects. This
set is the empty set when the objects are not intersecting.

2. Moving objects. One or both objects are moving. If both are moving, you may
subtract the velocity of the first from the velocity of the second and handle
the problem as if one object were stationary and the other were moving. In-
variably, the application will limit the time interval over which the intersection
query applies, say, [0, tmax] for some user-specified tmax > 0. If the objects inter-
sect during that time interval, they will intersect at a first time tfirst ∈ [0, tmax],
called the contact time. The set of intersection at the first time is called the con-
tact set .

(a) Test-intersection queries. Determine if the two objects will intersect during the
time interval. The algorithms need only determine if the objects will intersect.
The contact time might not be needed by the application. Since it is a natural
consequence of the intersection algorithm, it is usually returned to the caller
anyway. The query does not involve computing the contact set.

(b) Find-intersection queries. Determine the contact time and contact set of the
objects. This set is the empty set when the objects do not intersect during the
time interval.

As you can see, even a general categorization leads to a lot of possibilities that a
collision detection system must handle.

At the lowest level you must decide whether to use a distance-based method or
an intersection-based method. A distance-based method is usually implemented by
choosing a parametric representation of the objects. A quadratic function of the pa-
rameters is constructed and represents the squared distance between pairs of points,
one point per object. A constrained minimization is applied to the quadratic function
to find the pair of closest points. An intersection-based method is also usually imple-
mented by choosing parametric representations for the two objects, equating them,
and then solving for those parameters. Distance algorithms for commonly encoun-
tered objects are discussed in Chapter 14. Intersection algorithms for these objects
are discussed in Chapter 15.

Intersection-based methods are generally simpler to design and implement than
distance-based methods because they use only basic algebra. The distance-based ap-
proach is quite a bit more complicated and uses calculus. Why would you ever con-
sider using the distance-based approach? For a pair of objects such as a line and a
plane? Never. However, as the complexity of the object representations increases, the
algebraic details for equating parametric representations and solving become greater
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and more tedious to implement. Naturally, those same representations are used in the
distance-based methods, but iterative algorithms may be used to compute the closest
pair of points rather than exact algorithms to produce closed-form equations for the
parameters corresponding to the closest pair of points.

Consider the case of moving objects for which you want to know the first time
of contact. The design and implementation of intersection-based algorithms can be
difficult, depending on the type of objects. Moreover, you might try a bisection algo-
rithm on the time interval of interest, [0, tmax]. If the objects are not intersecting at
time 0, but they are intersecting at time tmax, you may test for an intersection at time
tmax/2. If the objects are intersecting at this time, you repeat the test at time tmax/4.
If the objects are not intersecting at this time, you repeat the test at time 3tmax/4.
The subdivision of the time interval is repeated until you reach a maximum number
of subdivisions (provided by the application) or until the width of the current time
subinterval is small enough (threshold provided by the application). The fact that the
subdivision is guided solely by the Boolean results at the time interval endpoints (in-
tersecting or not intersecting) does not help you formulate a smarter search for the
first contact time. A distance-based algorithm, on the other hand, gives you an idea
of how close you are at any specified time, and this information supports a smarter
search.

Even an iterative algorithm based on distance can be complicated to formu-
late and implement because of the complicated nature of the distance functions
themselves. As it turns out, there is a good compromise that has the flavor of both
intersection- and distance-based methods. The idea is to use a pseudodistance func-
tion for the two objects. This function is positive when the objects are separated,
negative when the objects are overlapping, and zero when the objects are just touch-
ing. Moreover, the magnitude of the function is approximately proportional to the
actual distance between the objects when separated and to the size of the common
region when overlapping. Pseudodistance functions are generally easier to formu-
late and evaluate than distance functions. Some of these are based on measuring the
separation or overlap of objects. A popular method for such measurements is the
method of separating axes, the topic of Section 8.1. Section 8.2 shows how to design a
pseudodistance-based iterative method for determining the first time of contact be-
tween two objects. The system is general, requiring you minimally to implement a
pseudodistance function for each pair of object types of interest. The system is also
extensible, allowing you to override many of the generic functions when you want to
take advantage of the special structure of your objects. Section 8.3 covers the details
of building the general system.

Intersection and distance algorithms for general objects can be extremely compli-
cated. For that reason, practitioners restrict their attention to what are called convex
objects. If S is a set of points representing the object, the set is said to be convex when-
ever the line segment connecting two points X and Y is contained in the set, no matter
which two points you choose. That is, if X ∈ S and Y ∈ S, then (1 − t)X + tY ∈ S for
all t ∈ [0, 1]. Figure 8.1 shows two planar objects, one convex and one not convex.
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(a) (b)

Figure 8.1 (a) A convex object. No matter which two points you choose in the set, the line
segment connecting them is in the set. (b) A nonconvex object. A pair of points in
the set is shown for which the line segment connecting the points is not fully in the
set.

For objects that are not convex, a typical approach to computing intersection or
distance is to decompose the object into a union of convex sub-objects (not necessar-
ily disjoint) and apply the intersection-based and/or distance-based queries to pairs
of convex sub-objects, with one sub-object from each object in the intersection query.

Implementing a robust collision detection system is a difficult and elusive task,
as many game programmers have found. The algorithms for dynamic (moving) ob-
jects tend to be somewhat more difficult to implement than for static (nonmoving)
objects, particularly because of the implied increase in dimension (four dimensions,
three in space and one in time). A very good book, which is entirely on real-time colli-
sion detection and covers many topics, is [Eri04]. A more specialized book is [vdB03],
which describes a system that computes distance between convex polyhedra using the
GJK algorithm [GJK88, GF90, Cam97, vdB99].

A couple of topics that are collision related are covered in the final two sections of
the chapter. These are not usually considered part of a collision detection system that
you would find in a physics engine. Section 8.4 is on the topic of picking . If you want
to use the mouse to click on an object and interact with it, you can do so by construct-
ing a linear component in world coordinates that corresponds to the selected pixel,
and then applying an intersection query between that linear component and objects
in the scene. Line-object intersection queries may also be used for collision avoidance.
In order to move the camera and not walk through walls or other objects, you can
generate a small number of lines in various directions, test if any of these intersect
objects within a small distance from the camera, and then allow the camera to move
if there will be no intersections. A more complicated system for collision avoidance
uses preprocessed information about your environment. This information is used for
pathfinding , the process of selecting a starting point and an ending point, and then
determining an unobstructed path between the two. This is the topic of Section 8.5.
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Figure 8.2 Nonintersecting convex objects and a separating line for them. The algebraic

condition for separation is λ(0)
max(D) < λ

(1)
min(D) as indicated in Equation (8.1).

8.1 The Method of Separating Axes

A test for nonintersection of two convex objects is simply stated: If there exists a
line for which the intervals of projection of the two objects onto that line do not
intersect, then the objects do not intersect. Such a line is called a separating line or,
more commonly, a separating axis. Figure 8.2 illustrates.

The translation of a separating line is also a separating line, so it is sufficient to
consider lines that contain the origin. Given a line containing the origin O and with
unit-length direction D, the projection of a convex set C onto the line is the interval

I = [λmin(D), λmax(D)]= [min{D . (X − O) : X ∈ C}, max{D . (X − O) : X ∈ C}]
where possibly λmin(D) = −∞ or λmax(D) = +∞, these cases arising when the con-
vex set is unbounded. Two convex sets C0 and C1 are separated if there exists a direc-
tion D such that the projection intervals I0 and I1 do not intersect. Specifically, they
do not intersect when

λ
(0)
min(D) > λ(1)

max(D) or λ(0)
max(D) < λ

(1)
min(D) (8.1)

The superscript corresponds to the index of the convex set. Although the compar-
isons are made where D is unit length, the comparison results are invariant to changes
in length of the vector. This follows from λmin(tD) = tλmin(D) and λmax(tD) =
tλmax(D) for t > 0. The Boolean value of the pair of comparisons is also invariant
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when D is replaced by the opposite direction −D. This follows from λmin(−D) =
−λmax(D) and λmax(−D) = −λmin(D). When D is not unit length, the intervals ob-
tained for the separating line tests are not the projections of the object onto the line;
rather, they are scaled versions of the projection intervals. We make no distinction
between the scaled projection and regular projection. We will also use the terminol-
ogy that the direction vector for a separating line is called a separating direction, a
direction that is not necessarily unit length.

Please note that in two dimensions, the terminology of a separating line or axis
is potentially confusing. The separating line separates the projections of the objects
on that line. The separating line does not partition the plane into two regions, each
containing an object. In three dimensions, the terminology should not be confusing
since a plane would need to be specified to partition space into two regions, each
containing an object. No real sense can be made for partitioning space by a line.

8.1.1 Extrema of Convex Polygons or Convex Polyhedra

Since the method of separating axes involves testing for separation of projection
intervals, we need to know how to compute these intervals in the first place. The
projection interval of a convex polygon or convex polyhedra may be computed by
projecting all the vertices of the object and selecting the extreme values. A simple
algorithm for computing an extreme vertex for a convex polygon or polyhedron
with vertices Pi for 0 ≤ i < n in the direction D is to locate the vertex Pj for which
D . Pj = max0≤i<n{D . Pi}. This is clearly an O(n) algorithm. The question is, Can
we find an algorithm that is asymptotically more efficient, say, O(log n)? An O(log n)

algorithm will outperform an O(n) algorithm in the limit as n approaches infinity,
but it is possible that an O(n) algorithm outperforms an O(log n) algorithm for
small- or medium-sized n. In practice, it is important to have some measurements
of the constant in the asymptotic order. Moreover, given implementations of the
competing O(n) and O(log n) algorithms, it is worthwhile to determine the break-
even value of n—the value at which the O(log n) algorithm outperforms the O(n)

algorithm.
An extremal query for a convex polygon can be performed in O(log n) with no

preprocessing of the polygon other than guaranteeing that its vertices are ordered.
The algorithm is effectively a bisection of the dot products D . Pi. This method does
not have a counterpart for convex polyhedra. As it turns out, an extremal query al-
gorithm of O(log n) does exist for convex polyhedra, but it requires a data structure
that takes O(n) time to build. For applications that have repetitive queries, the pre-
processing time is not important. The idea for the data structure is due to [DK90] and
[Kir83], and it is referred to as the Dobkin-Kirkpatrick hierarchy. The algorithm itself,
both the construction of the data structure and the extremal query, are discussed in
detail in a well-written chapter in [O’R98]. The construction relies on finding max-
imum independent sets in graphs, a problem known to be NP-complete. However,
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[EM85, Ede87] provide an approximation that gives sufficiently large independent
sets that lead to an O(n) construction while maintaining O(log n) for the query.

The construction is quite elegant and the details provided in [O’R98] are enough
to get you started on implementing the algorithm. Even so, the algorithm is intri-
cate, requires some high-powered machinery to implement, including convex hull
construction, and makes an implementation a formidable challenge. In this section, I
provide an alternative to the Dobkin-Kirkpatrick hierarchy. It is based on construct-
ing a BSP tree for the spherical dual of a convex polyhedron. The BSP tree construc-
tion is O(n) and the extremal query is O(log n) as long as you have a reasonably
balanced tree. A heuristic for creating balanced trees is provided here. The implemen-
tation of the query is trivial and requires only a few lines of code. The construction of
the tree is more complicated and assumes that a specific graph data structure exists
for representing adjacency information for the vertices, edges, and triangles of the
convex polyhedron.

Extremal Query for a Convex Polygon

Consider a convex polygon with counterclockwise-ordered vertices Pi for 0 ≤ i < n.
The edge directions are Ei = Pi+1 − Pi, where it is assumed we are using modu-
lar arithmetic on the indices for wraparound, Pn = P0 and P−1 = Pn−1. Outward-
pointing, unit-length normals Ni may be constructed for the edges. The normal
vectors may be drawn as points on a unit circle. The arcs connecting the points cor-
respond to the edges of the polygon. This view of the circle is called the polar dual of
the polygon. Figure 8.3 illustrates for a six-sided polygon.

If D = Ni, then all points on the edge Ei are extremal. If D is strictly between N0
and N1, then P1 is the unique extremal point in that direction. Similar arguments
apply for D strictly between any pair of consecutive normals. The normal points on
the circle decompose the circle into arcs, each arc corresponding to an extremal vertex
of the polygon. An endpoint of an arc corresponds to an entire edge being extremal.
The testing of D to determine the full set of extremal points is listed below, where
(x , y)⊥ = (y , −x):

Vertex Pi is optimal when Ni−1
. D⊥ > 0 (D is left of Ni−1) and Ni

. D⊥ < 0 (D is
right of Ni).

Edge Ei is optimal when Ni−1
. D⊥ = 0 and Ni

. D⊥ < 0.

The indexing is computed in the modular sense, where Nn = N0 and N−1 = Nn−1.
Assuming we will be projecting the extremal set onto the query axis, we can collapse
the two tests into a single test and just use one vertex of an extremal edge as the to-
be-projected point:

Vertex Pi is optimal when Ni−1
. D⊥ ≥ 0 and Ni

. D⊥ < 0.
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Figure 8.3 (a) A convex polygon. (b) A unit circle whose vertices correspond to normal
directions of the polygon and whose arcs connecting the vertices correspond to
vertices of the polygon (the polar dual of the polygon).

Generally there are n arcs for an n-sided polygon. We could search the arcs one
at a time and test if D is on that arc, but then we are back to an O(n) search. Instead,
we can create a BSP tree for the polar dual that supports an O(log n) search. A
simple illustration using the polygon of Figure 8.3 suffices. Figure 8.4 illustrates the
construction of the BSP tree. Given a direction vector D, suppose the sign tests take
you down the path from N3 to N5 to N4 and then to P5. This indicates that D is left of
N3, right of N5, and left of N4. This places D on the arc from N4 to N5, in which case
P5 is the extremal vertex in the specified direction.

Extremal Query for a Convex Polyhedron

A convex polyhedron has vertices Pi for 0 ≤ i < n and a set of edges and a set of
faces with outer-pointing normals Nj . The set of extremal points for a specified
direction is either a polyhedron vertex, edge, or face. To illustrate, Figure 8.5 shows a
tetrahedron and a unit sphere with vertices that correspond to the face normals of the
tetrahedron, whose great circle arcs connecting the vertices correspond to the edges
of the tetrahedron, and whose spherical polygons correspond to the vertices of the
tetrahedron. This view of the sphere is called the spherical dual of the polyhedron.

The tetrahedron has vertices P0 = (0, 0, 0), P1 = (1, 0, 0), P2 = (0, 1, 0), and P3 =
(0, 0, 1). The face normals are N0 = (1, 1, 1)/

√
3, N1 = (−1, 0, 0), N2 = (0, −1, 0),

and N3 = (0, 0, −1). The sphere is partitioned into four spherical triangles. The
interior of the spherical triangle with 〈N0, N1, N2〉 corresponds to those directions
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Figure 8.4 A BSP tree constructed by recursive subdivision of the unit disk. The left child of node
Nj is marked with a + to indicate Nj

. D⊥ ≥ 0. All normal vectors of the nodes in the

left subtree are left of Nj . The right child is marked with a − to indicate Nj
. D⊥ < 0.

All normal vectors of the nodes in the right subtree are right of Nj . Each node Nj

represents the normal for which j is the median value of the indices represented by
all nodes in the subtree rooted at Nj .
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Figure 8.5 (a) A tetrahedron. (b) A unit sphere whose vertices correspond to normal directions
of the tetrahedron, whose great circle arcs connecting the vertices correspond to
edges of the tetrahedron, and whose spherical polygons correspond to vertices of the
tetrahedron (the spherical dual of the tetrahedron).
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for which P3 is the unique extreme point. Observe that the three normals forming
the spherical triangle are the normals for the faces that share vertex P3.

Generally, the normal and edge directions of a polytope lead to a partitioning of
the sphere into spherical convex polygons. The interior of a single spherical convex
polygon corresponds to the set of directions for which a vertex of the polytope is the
unique extreme point. The number of edges of the spherical convex polygon is the
number of polytope faces sharing that vertex. Just as for convex polygons in 2D, we
can construct a BSP tree of the spherical polygons and use it for fast determination of
extreme vertices. The method used for 2D extends to 3D with each node of the BSP
tree representing a hemisphere determined by Ni × Nj

. D ≥ 0, where Ni and Nj are
unit-length normal vectors for two adjacent triangles.

The vector Hij = Ni × Nj is perpendicular to the plane containing the two nor-
mals. The hemispheres corresponding to this vector are Hij

. D ≥ 0 and Hij
. D < 0.

The tetrahedron of Figure 8.5 has six such vectors, listed as {H12, H13, H23, H01, H02,
H03}. Please note that the subscripts correspond to normal vector indices, not to ver-
tex indices. Each arc of the sphere connecting two normal vectors corresponds to
an edge of the tetrahedron; let’s label the arcs Aij . The root node of the tree claims
arc A12 for splitting. The condition N1 × N2

. D ≥ 0 splits the sphere into two hemi-
spheres. Figure 8.6 shows those hemispheres with viewing direction (0, 0, −1).

N1 N1

N0

N3N2 N2

A (12) (13) (23) (01) (02) (03)
S (012:3) (013:2) (023:1) (123:0)

Initial sphere N1 × N2 • D ≥ 0

A (13) (23) (03)
S (013:2) (023:1) (123:0)

A (01) (02) (03)
S (012:3) (013:2) (023:1)

F T

Figure 8.6 The root of the BSP tree and the two hemispheres obtained by splitting. Both children
are displayed with a viewing direction (0, 0, −1). The right child is the top of the
sphere viewed from the outside and the left child is the bottom of the sphere viewed
from the inside.
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Figure 8.7 The BSP trees for the children of the root. The algebraic test is listed next to each
root. The links to the children are labeled with T when the the test is true or labeled
with F when the test is false.

The set of arcs and the set of spherical polygons bounded by the arcs are the inputs
to the BSP tree construction. These sets are shown at the top of the figure. An arc is
specified by Aij and connects Ni and Nj . A spherical polygon is Si1, . . . , in:� and has
vertices Ni1

through Nin
. The vertex P� of the original polyhedron is the extreme

vertex corresponding to the spherical polygon. In our example the spherical polygons
all have three vertices. Figure 8.7 shows the BSP trees for the children of the root.

During BSP tree construction, the root node claims the first arc A12 and uses
the vector H = N1 × N2 for testing other vectors corresponding to arcs Aij . Let di =
H . Ni and dj = H . Nj . If di ≥ 0 and dj ≥ 0, then the arc is completely on one side
of the hemisphere implied by E. Aij is placed in a set that will be used to generate the
BSP tree for the right child of the root. If di ≤ 0 and dj ≤ 0, then the arc is completely
on the other side of the hemisphere and is placed in a set that will be used to generate
the BSP tree for the left child of the root. If didj < 0, then the arc is partially in each
hemisphere and is added to both sets. This is exactly the algorithm we used in 2D.

In 3D we have some additional work in that the spherical faces must be processed
by the tree to propagate to the leaf nodes the indices of the extreme vertices repre-
sented by those nodes. In fact, the processing is similar to that for arcs. Let Si , j , k:� be
a face to be processed at the root node. Let di = E . Ni, dj = E . Nj , and dk = E . Nk.
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If di ≥ 0 and dj ≥ 0 and dk ≥ 0, then the spherical face is completely on one side of
the hemisphere implied by E. Si , j , k:� is placed in a set that will be used to generate
the BSP tree for the right child of the root. If di ≤ 0, dj ≤ 0, and dk ≤ 0, then the
face is completely on the other side of the hemisphere and is placed in a set that will
be used to generate the BSP tree for the right child of the root. Otherwise, the arc is
partially in each hemisphere and is added to both sets. In general for a spherical face
with n vertices, the face is used for construction of the right child if all dot products
are nonnegative, for construction of the left child if all dot products are nonpositive,
or for construction of both children if some dot products are positive and some are
negative.

A query for a specified direction D is structured the same as for convex polygons.
The signs of the dot products of D with the H vectors in the BSP tree are computed,
and the appropriate path is taken through the tree. A balanced tree will have depth
O(log n) for a polyhedron of n vertices, so the query takes logarithmic time. How-
ever, there is a technical problem. The spherical arcs as described so far might not lead
to a balanced tree. Consider a polyhedron formed by an (n − 2)-sided convex poly-
gon in the xy-plane with vertices Pi = (xi , yi , 0) for 1≤ i ≤ n − 2 and by two vertices
P0 = (0, 0, z0), with z0 < 0, and Pn−1 = (0, 0, zn−1), with zn−1 > 0. Figure 8.8 shows
such a polyhedron.

(a) (b)

Figure 8.8 (a) A convex polyhedron for which the point-in-spherical-polygon test, using only
the original arcs, is O(n). (The figure shows n = 8, but imagine a very large n.)
(b) The inscribed convex polyhedron whose edges generate the arcs of the spherical
convex polygons.
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The spherical dual has two spherical convex polygons, each with n − 2 arcs and
n − 2 spherical convex polygons, each with 4 arcs. If D is contained by one of the
(n − 2)-sided spherical polygons, the determination of this using only the given arcs
requires n − 2 point-on-which-side-of-arc queries. This is an O(n) algorithm.

Obtaining O(log n) Queries

The pathological problem mentioned previously is avoided by appealing to an
O(log n) query for point-in-convex-polygon determination. In fact, this problem
uses what you may think of as the Dobkin-Kirkpatrick hierarchy restricted to two di-
mensions. However, it is phrased in terms of a binary search using binary separating
lines. Consider the convex polygon of Figure 8.9.

If we use only the polygon edges for containment testing, we would need six tests,
each showing that the query point is to the left of the edges. Instead, we use bisectors.
The first bisector is segment 〈P0, P3〉 and is drawn in taupe in the figure. The query
point Q is either to the left of the bisector, where (P3 − P0) . (Q − P0)

⊥. ≥ 0, or to
the right of the bisector, where (P3 − P0) . (Q − P0)

⊥. < 0. The original polygon has
six edges. The polygon to the left of the bisector has four edges, and the containment
test is applied to that left polygon. The bisector edge has already been tested, so only
the three remaining edges need to be tested for the containment.
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Figure 8.9 A convex polygon with bisectors used for an O(log n) point-in-polygon query. The
polygon is partitioned into four triangles labeled T0 through T3.
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The next bisector to be used is one of the segments drawn in dark blue, either
〈P3, P5〉 or 〈P0, P2〉. Naturally, the choice depends on which side of the bisector
〈P0, P3〉 the query point Q occurs. If Q is to the left of 〈P0, P3〉 and to the left of
〈P3, P5〉, then the only subpolygon that might contain Q is a triangle. The remaining
edge to test is 〈P5, P0〉. If, instead, Q is to the right of 〈P3, P5〉, then Q is potentially in
triangle T3. There are two remaining edges to test, so we can consider this yet another
bisection step.

The binary tree in Figure 8.9(b) shows the query tree implied by the bisectors
and polygon edges. A tree link marked with a + indicates “to the left of” and a link
marked with a − indicates “to the right of.” The query point is tested against each
edge, leading to a path from the root of the tree to a leaf node. The leaves are labeled
with the region defined by the path. Four of the leaf nodes represent the triangles
that make up the convex polygon. Six of the leaf nodes represent the exterior of the
polygon; that is, a query point can be “outside” one of the six edges of the polygon.

The choice of the bisectors is based on selecting the medians of the ranges of
indices for the subpolygon of interest. This leads to a balanced tree, so a polygon of
n edges. The point-in-polygon query requires computing vector differences and dot
products for a linear path of nodes through the tree. Such a path has O(log n) nodes.

The same idea may be applied to determining whether a unit-length vector D is
contained in a spherical convex polygon on the unit sphere. In the 2D problem, the
dot product whose sign determines which side of the bisector the point is on was of
the form

d = (Pi − Pj ) . (Q − Pj )
⊥

We cared about d ≥ 0 or d < 0. In the 3D problem, we use the normal vectors as the
vertices and the direction vector as the query point. The dot product of interest is

d = Ni × Nj
. D

Imagine walking along the spherical arc from Nj to Ni. The vector Ni × Nj points
to your left as you walk along the arc. The spherical point D is to your left whenever
d ≥ 0 and is to your right whenever d < 0.

What this means is that the BSP tree we build for the spherical dual must use
the bisectors of the spherical polygons as well as the arcs that are their boundary
edges. Moreover, we do not have just one spherical polygon to test, we have n such
polygons—one for each of the n vertices of the original convex polyhedron. Given the
collection of all bisector arcs and boundary edge arcs, we can build the BSP tree one
arc at a time. Each arc is tested at a node of the BSP tree to see on which side of the
node arc it lies. If fully on the left side, we send the arc to the left subtree of the node
for further classification. If fully on the right side, we send the arc to the right subtree.
When the arc arrives at a leaf node, it is similarly tested for sidedness and stored as
the appropriate child of the leaf node (which now becomes an interior node). If an
arc straddles the great circle containing the node arc—one arc endpoint is to the left
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of the node arc and one arc endpoint is to the right of the node arc—we send the arc
to both subtrees of the node. That is, no actual splitting of the arc is performed. This
avoids expensive arc-arc intersection finding.

The order of the arcs is important in determining the structure of the BSP tree.
We do want a balanced tree. A heuristic to obtain a balanced tree is to sort the arcs.
The bisector arcs occur first, the boundary edge arcs last. The first bisector arc of an
n-sided spherical polygon splits the polygon into two subpolygons, each with half
the number of boundary edge arcs. If we were to do a point-in-spherical-polygon
query using such a bisector edge first, we will eliminate half of that spherical polygon’s
bisectors and half of its boundary arcs from further processing. This suggests that we
order the bisector arcs based on how many other arcs they reject during a sidedness
test. In the implementation, I maintain an ordered set of arcs, using a separation
measure. The first bisector arc for an n-sided spherical polygon has a separation of
n/2, measuring how many boundary arcs of that polygon separate the endpoints. A
boundary arc itself has a separation measure of 1. The BSP tree is built using the arcs
in decreasing order of separation. My numerical experiments showed that indeed the
BSP trees are balanced.

An Implementation and Timing

The Foundation library files Wm4ExtremalQuery3.h and Wm4ExtremalQuery4.cpp are
the base class for extremal queries for convex polyhedra. The straightforward O(n)

method for computing the extreme points just involves projecting the vertices onto
the specified direction vector and computing the extreme projection values. This al-
gorithm is implemented in Wm4ExtremalQuery3PRJ.h and Wm4ExtremalQuery4PRJ.cpp.

The files Wm4ExtremalQuery3BSP.h and Wm4ExtremalQuery3BSP.cpp implement the
BSP tree algorithm described in this document. The identification of adjacent poly-
hedron normal vectors Ni and Nj requires building a vertex-edge-face data structure.
The class implemented in Wm4BasicMesh.h and Wm4BasicMesh.cpp suffices, but the
edges adjacent to a vertex are not required for the extremal queries. You could modify
BasicMesh to eliminate this adjacency information.

Table 8.1 shows the results of the experiment to compare the BSP tree approach
to a simple project-all-vertices approach. The column with header n is the number
of vertices of the convex polyhedron. Each polyhedron was used in 107 extremal
queries. The execution times are listed in the second and third columns, and are in
seconds. The target machine was an AMD Athlon XP 2800+ (2.08GHz). The next-
to-last column is the BSP time divided by log n. This ratio is expected to be a constant
for large n; that is, we expect the query to be O(log n). The last column is the project-
all-vertices time divided by n, since we expect this algorithm to be O(n).

Of interest is the break-even n. It is somewhere between 32 and 64. If the con-
vex polyhedra in your applications have a small number of vertices, the project-
all-vertices approach is clearly the choice. For a larger number of vertices, the BSP
approach wins.
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Table 8.1 A comparison of times between projecting all vertices to compute a projection
interval and using a BSP tree for the query.

n BSP Time tb Project-All Time tp tb/ log n tp/n

4 2.141 0.812 1.0705 0.2030

8 3.922 1.547 1.3073 0.1933

16 5.422 2.563 1.3555 0.1601

32 5.937 4.328 1.1874 0.1352

64 6.922 7.765 1.1536 0.1213

128 7.922 14.391 1.1317 0.1124

256 9.281 27.359 1.1601 0.1068

512 10.250 53.859 1.1388 0.1051

1024 11.532 104.125 1.1532 0.1016

2048 12.797 210.765 1.1633 0.1029

A sample application to illustrate the queries is in the SampleMiscellaneous
folder, project ExtremalQuery. A convex polyhedron is displayed using an orthogonal
camera. You may rotate it with the mouse. The extreme vertices in the x-direction
are drawn as small spheres. The orthogonal camera is used to make it clear that the
points are extreme.

8.1.2 Stationary Objects

The method of separating axes for stationary objects determines whether or not two
objects intersect, a test-intersection query. We will analyze the method for convex
polygons in 2D to motivate the ideas, then extend the method to convex polyhedra
in 3D. The previous discussion showed us how to compute the projection intervals.
Now we need to know which axes to project onto.

Convex Polygons

The following notation is used throughout this section. Let Cj for j = 0, 1 be the
convex polygons with vertices P(j)

i for 0 ≤ i < Nj that are counterclockwise ordered.
The edges of the polygons have direction vectors E(j)

i = P(j)

i+1 − P(j)

i for 0 ≤ i < Nj

and where modular indexing is used to handle wraparound (index N is the same
as index 0; index −1 is the same as index N − 1). Outward normal vectors to the
edges are N(j)

i . No assumption is made about the length of the normal vectors; an
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implementation may choose the length as needed. Regardless of length, the condition
of outward pointing means (

N(j)

i

)⊥
. E(j)

i > 0

where (x , y)⊥ = (−y , x). All the pseudocode relating to convex polygons will use the
class shown:

class ConvexPolygon
{
public:

// N, number of vertices
int GetN();

// V[i], counterclockwise ordered
Point GetVertex (int i);

// E[i] = V[i + 1] - V[i]
Vector GetEdge (int i);

// N[i], N[i].x * E[i].y - N[i].y * E[i].x > 0
Vector GetNormal (int i);

};

All functions are assumed to handle the wraparound. For example, if the input
value is N , the number of vertices, then GetVertex returns P0 and GetEdge returns
P1 − P0. If the input value is −1, then GetVertex returns PN−1 and GetEdge returns
P0 − PN−1. Only the relevant interface is supplied for clarity of presentation. The
implementation details will vary with the needs of an application.

For a pair of convex polygons, only a finite set S of direction vectors needs to
be considered for separation tests. That set contains only the normal vectors to the
edges of the polygons. Figure 8.10 (a) shows two nonintersecting polygons that are
separated along a direction determined by the normal to an edge of one polygon.
Figure 8.10 (b) shows two polygons that intersect; there are no separating directions.

The intuition for why only edge normals must be tested is based on having two
convex polygons just touching with no interpenetration. Figure 8.11 shows the three
possible configurations: edge-edge contact, vertex-edge contact, and vertex-vertex
contact. The lines between the polygons are perpendicular to the separation lines
that would occur for one object translated away from the other by an infinitesimal
distance. The vertex-vertex edge case has a low probability of occurrence. The col-
lision system should report this as a vertex-face collision to be consistent with our
classification of contact points (vertex-face or edge-edge with appropriately assigned
normal vectors).

A naive implementation of the method of separating axes selects a potential sep-
arating direction D, computes the intervals of projection by projecting the vertices of
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Figure 8.10 (a) Nonintersecting convex polygons. (b) Intersecting convex polygons.

(a) (b) (c)

Figure 8.11 (a) Edge-edge contact. (b) Vertex-edge contact. (c) Vertex-vertex contact.

both polygons onto that line, then tests if the intervals are separated. This requires
computing Ni projections for polygon Ci and keeping track of the minimum and
maximum projection values for each polygon. In the worst case that the polygons in-
tersect, N0 directions are tested from C0, each requiring N0 + N1 projections, and N1
directions are tested from C1, each requiring N0 + N1 projections. The total number
of projections is (N0 + N1)

2.
A smarter algorithm avoids projecting all the vertices for the polygons by only

testing for separation using the maximum of the interval for the first polygon and the
minimum of the interval for the second polygon. If D is an outward-pointing normal
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Figure 8.12 Two polygons separated by an edge-normal direction of the first polygon.

for the edge P(0)
i+1 − P(0)

i of C0, then the projection of the C0 onto the separating line

P(0)
i + tD is [−μ, 0], where μ > 0. If the projection of C1 onto this line is [ρ0, ρ1], then

the reduced separation test is ρ0 > 0. Figure 8.12 illustrates two separated polygons
using this scheme.

The value μ is irrelevant since we only need to compare ρ0 to 0. Consequently,
there is no need to project the vertices of C0 to calculate μ. Moreover, the vertices
of C1 are projected one at a time until either the projected value is negative, in which
case D is no longer considered for separation, or until all projected values are positive,
in which case D is a separating direction.

The pseudocode for the algorithm is

bool TestIntersection (ConvexPolygon C0, ConvexPolygon C1)
{

// Test edges of C0 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C0 is [m,0] where m <= 0. Try only to determine if C1
// is on the ‘positive’ side of the line.
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

P = C0.GetVertex(i1);
D = C0.GetNormal(i0);
if (WhichSide(C1,P,D) > 0)
{

// C1 is entirely on the ‘positive’ side of line P+t*D
return false;

}
}
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// Test edges of C1 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C1 is [m,0] where m <= 0. Try only to determine if C0
// is on the ‘positive’ side of the line.
for (i0 = C1.GetN() - 1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

P = C1.GetVertex(i1);
D = C1.GetNormal(i0);
if (WhichSide(C0,P,D) > 0)
{

// C0 is entirely on the ‘positive’ side of line P+t*D
return false;

}
}

return true;
}

int WhichSide (ConvexPolygon C, Point P, Vector D)
{

// C vertices are projected onto line P+t*D. Return value
// is +1 if all t > 0, -1 if all t < 0, or 0 if the line
// splits the polygon.

posCount = 0;
negCount = 0;
zeroCount = 0;
for (i = 0; i < C.GetN(); i++)
{

t = Dot(D,C.GetVertex(i) - P);
if (t > 0)
{

posCount++;
}
else if (t < 0)
{

negCount++;
}
else
{

zeroCount++;
}

if ((posCount > 0 and negCount > 0) or zeroCount > 0)
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{
return 0;

}
}
return posCount ? 1 : -1;

}

In the worst case, the polygons do intersect. We have processed N0 edge normals of
C0, each requiring N1 projections for C1, and N1 edge normals of C1, each requiring
N0 projections for C0. The total number of projections is 2N0N1, still a quadratic
quantity but considerably smaller than (N0 + N1)

2.
We can do even better in an asymptotic sense as the number of vertices becomes

large, using the extremal query for convex polygons mentioned in Section 8.1.1. For
a polygon of N0 vertices, the bisection is of order O(log N0), so the total algorithm
is O(max{N0 log N1, N1 log N0}). However, in practice the values of N0 and N1 are
sufficiently small that the asymptotic performance is not relevant.

Convex Polyhedra

The following notation is used throughout this section. Let Cj for j = 0, 1 be the
convex polyhedra with vertices P(j)

i for 0 ≤ i < Nj , edges with directions E(j)

i for
0 ≤ i < Mj , and faces that are planar convex polygons whose vertices are ordered
counterclockwise as you view the face from outside the polyhedron. The outward
normal vectors for the faces are N(j)

i for 0 ≤ i < Lj . All the pseudocode relating to
convex polyhedra will use the class shown next.

class ConvexPolyhedron
{
public:

int GetVCount (); // number of vertices
int GetECount (); // number of edges
int GetFCount (); // number of faces
Point GetVertex (int i);
Vector GetEdge (int i);
Vector GetNormal (int i);

};

Only the relevant interface is supplied for clarity of presentation. The implementation
details will vary with the needs of an application.

The ideas of separation of convex polygons extend to convex polyhedra. For a
pair of convex polyhedra, only a finite set of direction vectors needs to be considered
for separating tests. The intuition is similar to that of convex polygons. If the two
polyhedra are just touching with no interpenetration, the contact is one of face-face,
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Figure 8.13 Two views of two cubes that are not separated by any face normal but are separated
by a cross product of two edges, one from each cube.

face-edge, face-vertex, edge-edge, edge-vertex, or vertex-vertex. The set of potential
separating directions that capture these types of contact includes the normal vectors
to the faces of the polyhedra and vectors generated by a cross product of two edges,
one from each polyhedron. The necessity of testing more than just the face normals
is shown by Figure 8.13.

The first cube in the figure (dark gray) has unit-length face normals U0 =
(1, 0, 0), U1 = (0, 1, 0), and U2 = (0, 0, 1). The second cube (light gray) has unit-
length face normals V0 = (1, −1, 0)/

√
2, V1 = (1, 1, −√

2)/2, and V2 = (1, 1,
√

2)/2.
The other vector shown is D = (1, 1, 0)/

√
2. Figure 8.13 (a) shows a view of the two

cubes when looking in the direction −U2. Figure 8.13 (b) shows a view when look-
ing along the direction U2 × D. In view (a), neither U0, U1, nor V0 are separating
directions. In view (b), neither U2, V1, nor V2 are separating directions. No face
axis separates the two cubes, yet they are not intersecting. A separating direction is
D = U2 × V0, a cross product of edges from the cubes.

The pseudocode for using the method of separating axes to test for intersection
of two polyhedra, similar to the naive implementation in 2D, is

bool TestIntersection (ConvexPolyhedron C0,
ConvexPolyhedron C1)

{
// Test faces of C0 for separation.
for (i = 0; i < C0.GetFCount(); i++)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
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if (max1 < min0 || max0 < min1)
{

return false;
}

}

// Test faces of C1 for separation.
for (j = 0; j < C1.GetFCount(); j++)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
if (max1 < min0 || max0 < min1)
{

return false;
}

}

// Test cross products of pairs of edges.
for (i = 0; i < C0.GetECount(); i++)
{

for (j = 0; j < C1.GetECount(); j++)
{

D = Cross(C0.GetEdge(i),C1.Edge(j));
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
if (max1 < min0 || max0 < min1)
{

return false;
}

}
}

return true;
}

void ComputeInterval (ConvexPolyhedron C, Vector D,
double& min, double& max)

{
min = Dot(D,C.GetVertex(0));
max = min;
for (i = 1; i < C.GetVCount(); i++)
{

value = Dot(D,C.GetVertex(i));
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if (value < min)
{

min = value;
}
else
{

max = value;
}

}
}

The function ComputeInterval is O(N) for a polyhedron of N vertices. A quick
glance at the code shows that you need L0(N0 + N1) + L1(N0 + N1) + M0M1(N0 +
N1) = (L0 + L1 + M0M1)(N0 + N1) units of time to execute the test (cubic order).
Since all pairs of edges are tested in the worst case, the time is at least quadratic.
This function can also be implemented to use the asymptotically faster extremal
query using BSP trees; see Section 8.1.1. As mentioned in that section, though, the
performance is better only for a sufficiently large number of polyhedron vertices. You
can always add a conditional statement to ComputeInterval that switches between
projecting all vertices and projecting using the extremal query based on the number
of vertices.

8.1.3 Objects Moving with Constant Linear Velocity

The method of separating axes is used to test for intersection of two stationary convex
polyhedra. The set of potential separating axes consists of the face normals for the
polyhedra and cross products of edges, each product using an edge from each of
the participating polyhedra. As described earlier, a collision detection system can
be implemented using a bisection technique. At the first time step, no polyhedra
are intersecting. For the next time step, the physical simulation decides how each
polyhedron should move based on constraints (using a differential equation solver for
the equations of motion). All the polyhedra are moved to their desired locations. Each
pair of convex polyhedra are tested for intersection using the method of separating
axes. If any pair reports interpenetration, then the system is restarted at the first time
step, but with a time increment that is half of what was tried the first time.

The strategy is not bad when only a small number of polyhedra are in the system
and when the frequency of contact (or close contact) is small. However, for large
numbers of polyhedra in close proximity, a lot of time can be spent in restarting the
system. A quick hack to reduce the time is to restart the system only for those pairs
that report an interpenetration. When the bisection is completed, all the objects have
been moved to a new state with no interpenetrations, but the time step is (potentially)
different for the objects, an implied change in the speeds of some of the objects. For
a system that runs on the order of 30 frames per second or larger, this is not usually a
noticeable problem.
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An alternative to the bisection approach is to attempt to predict the time of col-
lision between two polyhedra. For a small change in time, an assumption we can
make is that the polyhedra are moving with constant linear velocity and zero an-
gular velocity. Whether or not the assumption is reasonable will depend on your
application. The method of separating axes can be extended to handle polyhedra
moving with constant linear velocity and to report the first time of contact be-
tween a pair. The algorithm is attributed to Ron Levine in a post to the SourceForge
game developer algorithms mailing list [Lev00]. As we did for stationary objects, let
us first look at the problem for convex polygons to illustrate the ideas for convex
polyhedra.

Separation of Convex Polygons

If C0 and C1 are convex polygons with linear velocities V0 and V1, it can be deter-
mined via projections if the polygons will intersect for some time T ≥ 0. If they do
intersect, the first time of contact can be computed. It is enough to work with a sta-
tionary polygon C0 and a moving polygon C1 with velocity V since you can always
use V = V1 − V0 to perform the calculations as if C0 were not moving.

If C0 and C1 are initially intersecting, then the first time of contact is T = 0.
Otherwise, the convex polygons are initially disjoint. The projection of C1 onto a line
with direction D not perpendicular to V is itself moving. The speed of the projection
along the line is σ = (V . D)/|D|2. If the projection interval of C1 moves away from
the projection interval of C0, then the two polygons will never intersect. The cases
when intersection might happen are those when the projection intervals for C1 move
toward those of C0.

The intuition for how to predict an intersection is much like that for selecting the
potential separating directions in the first place. If the two convex polygons intersect
at a first time Tfirst > 0, then their projections are not separated along any line at that
time. An instant before first contact, the polygons are separated. Consequently, there
must be at least one separating direction for the polygons at time Tfirst − ε for small
ε > 0. Similarly, if the two convex polygons intersect at a last time Tlast > 0, then
their projections are also not separated at that time along any line, but an instant
after last contact, the polygons are separated. And again, there must be at least one
separating direction for the polygons at time Tlast + ε for small ε > 0. Both Tfirst and
Tlast can be tracked as each potential separating axis is processed. After all directions
are processed, if Tfirst ≤ Tlast, then the two polygons do intersect with first contact
time Tfirst. It is also possible that Tfirst > Tlast, in which case the two polygons cannot
intersect.

Pseudocode for testing for intersection of two moving convex polygons is given
next. The time interval over which the event is of interest is [0, Tmax]. If knowing
an intersection at any future time is desired, then set Tmax = ∞. Otherwise, Tmax is
finite. The function is implemented to indicate there is no intersection on [0, Tmax],
even though there might be an intersection at some time T > Tmax.
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bool TestIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, double tmax, double& tfirst,
double& tlast)

{
// Process as if C0 is stationary, C1 is moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Test edges of C0 for separation.
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

D = C0.GetNormal(i0);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,

tfirst,tlast))
{

return false;
}

}

// Test edges of C1 for separation.
for (i0 = C1.N - 1, i1 = 0; i1 < C1.N; i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,

tfirst,tlast))
{

return false;
}

}
return true;

}

bool NoIntersect (double tmax, double speed, double min0,
double max0, double min1, double max1, double& tfirst,
double& tlast)

{
if (max1 < min0)
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{
// Interval(C1) is initially on ’left’ of interval(C0).

if (speed <= 0) // intervals moving apart
{

return true;
}

t = (min0 - max1)/speed;
if (t > tfirst)
{

tfirst = t;
}
if (tfirst > tmax)
{

return true;
}

t = (max0 - min1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (max0 < min1)
{

// Interval(C1) is initially on ’right’ of interval(C0).

if (speed >= 0) // intervals moving apart
{

return true;
}

t = (max0 - min1)/speed;
if (t > tfirst)
{

tfirst = t;
}
if (tfirst > tmax)
{
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return true;
}

t = (min0 - max1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else
{

// Interval(C0) and interval(C1) overlap.

if (speed > 0)
{

t = (max0 - min1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (speed < 0)
{

t = (min0 - max1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
}
return false;

}
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Figure 8.14 (a) Edge-edge intersection predicted. (b) Vertex-vertex intersection predicted. (c) No
intersection predicted.

The function ComputeInterval(C,D,min,max) computes the projection interval
[min, max] of a convex polygon C onto the line of direction D using the fast extremal
queries described earlier that use an approach based on BSP trees. The pseudocode
as written projects the convex polygons onto the line tD. In an implementation, you
most likely will want to avoid floating-point problems in the projection values when
the vertices have large components. An additional parameter to ComputeInterval
should be a point approximately near one (or both) polygons, something as simple
as choosing a vertex P of a polygon. The projection is onto P + tD instead.

The following example illustrates these ideas. The first box is the unit cube 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1 and is stationary. The second box is initially 0 ≤ x ≤ 1 and
1 + δ ≤ y ≤ 2 + δ for some δ > 0. Let its velocity be (1, −1). Whether or not the
second box intersects the first box depends on the value of δ. The only potential
separating axes are (1, 0) and (0, 1). Figure 8.14 shows the initial configuration for
three values of δ, one where there is an edge-edge intersection, one where there is a
vertex-vertex intersection, and one where there is no intersection.

The black box is stationary. The gray box is moving. The black vector indicates the
direction of motion. The dotted boxes indicate where the moving box first touches
the stationary box. In Figure 8.14 (c), the dotted line indicates that the moving box
will miss the stationary box. For D = (1, 0), the pseudocode produces min0 = 0, max0
= 1, min1 = 0, max1 = 1, and speed = 1. The projected intervals are initially overlap-
ping. Since the speed is positive, T = (max0 - min1)/speed = 1 < TLast = INFINITY and
TLast is updated to 1. For D = (0, 1), the pseudocode produces min0 = 0, max0 = 1,
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min1 = 1 + delta, max1 = 2 + delta, and speed = -1. The moving projected interval is
initially on the right of the stationary projected interval. Since the speed is negative,
T = (max0 - min1)/speed = delta > TFirst = 0 and TFirst is updated to delta. The
next block of code sets T = (min0 - max1)/speed = 2 + delta. The value TLast is not
updated since 2 + δ < 1 cannot happen for δ > 0. On exit from the loop over poten-
tial separating directions, Tfirst = δ and Tlast = 1. The objects intersect if and only if
Tfirst ≤ Tlast, or δ ≤ 1. This condition is consistent with the images in Figure 8.14. Fig-
ure 8.14 (a) has δ < 1 and Figure 8.14 (b) has δ = 1, intersections occurring in both
cases. Figure 8.14 (c) has δ > 1 and no intersection occurs.

Contact Set for Convex Polygons

Although we are interested in nonpenetration intersections for moving objects, I
mention the stationary case just for completeness. The find-intersection query for
two stationary convex polygons is a special example of Boolean operations on poly-
gons. If the polygons have N0 and N1 vertices, there is an intersection algorithm of
order O(N0 + N1) for computing the intersection [O’R98]. A less efficient algorithm
is to clip the edges of each polygon against the other polygon. The order of this algo-
rithm is O(NM). Of course, the asymptotic analysis applies to large N and M , so the
latter algorithm is potentially a good choice for triangles and rectangles.

Given two moving convex objects C0 and C1, initially not intersecting and with
velocities V0 and V1, we showed earlier how to compute the first time of contact T , if
it exists. Assuming it does, the sets C0 + T V0 = {X + T V0 : X ∈ C0} and C1 + T V1 =
{X + T V1 : X ∈ C1} are just touching with no interpenetration. See Figure 8.11 for the
various configurations.

The TestIntersection function can be modified to keep track of which vertices
or edges are projected to the endpoints of the projection interval. At the first time of
contact, this information is used to determine how the two objects are oriented with
respect to each other. If the contact is vertex-edge or vertex-vertex, then the contact
set is a single point, a vertex. If the contact is edge-edge, the contact set is a line
segment that contains at least one vertex. Each endpoint of the projection interval
is generated by either a vertex (unique extreme) or an edge (nonunique extreme). A
class to store all the relevant projection information is

class ProjInfo
{
public:

double min, max; // projection interval [min,max]
int index[2];
bool isUnique[2];

};

The zero-indexed entries of the array correspond to the minimum of the interval.
If the minimum is obtained from the unique extreme vertex Vi, then index[0] stores i
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and isUnique[0] is true. If the minimum is obtained from an edge Ej , then index[0]
stores j and isUnique[0] stores false. The same conventions apply for the one-
indexed entries corresponding to the maximum of the interval.

To support calculation of the contact set and the new configuration structure, we
need to modify the extremal query, call it GetExtremeIndex. For stationary objects, we
just need to know the index of the vertex that projects to the extreme interval value.
For moving objects, we also need it to tell us whether exactly one vertex projects to
the extreme or an entire edge projects to the extreme. The signature for the query is

int GetExtremeIndex (ConvexPolyhedron C, Vector D, bool& isUnique);

The return value is the index for an extreme vertex. The return value of isUnique is
true if a single vertex projects to the extreme, but false when an entire edge projects
to the extreme.

Of course, in an implementation using floating-point numbers, the test on the
dot product d would use some application-specified value ε > 0 and replace d > 0 by
d > ε and d < 0 by d < −ε. Function ComputeInterval must be modified to provide
more information than just the projection interval.

void ComputeInterval (ConvexPolyhedron C, Vector D,
ProjInfo& info)

{
info.index[0] = GetExtremeIndex(C,-D,info.isUnique[0]);
info.min = Dot(D,C.GetVertex(info.index[0]));
info.index[1] = GetExtremeIndex(C,+D,info.isUnique[1]);
info.max = Dot(D,C.GetVertex(info.index[1]));

}

The NoIntersect function accepted as input the projection intervals for the two
polygons. Now those intervals are stored in the ProjInfo objects, so NoIntersect
must be modified to reflect this. In the event that there will be an intersection between
the moving polygons, it is necessary that the projection information be saved for
later use in determining the contact set. As a result, NoIntersect must keep track
of the ProjInfo objects corresponding to the current first time of contact. Finally,
the contact set calculation will require knowledge of the order of the projection
intervals. NoIntersect will set a flag side with value +1 if the intervals intersect at
the maximum of the C0 interval and the minimum of the C1 interval, or with value
−1 if the intervals intersect at the minimum of the C0 interval and the maximum of
the C1 interval. The modified pseudocode is

bool NoIntersect (double tmax, double speed, ProjInfo info0,
ProjInfo info1, ProjInfo& curr0, ProjInfo& curr1,
int& side, double& tfirst, double& tlast)

{
if (info1.max < info0.min)
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{
if (speed <= 0)
{

return true;
}

t = (info0.min - info1.max)/speed;
if (t > tfirst)
{

tfirst = t;
side = -1;
curr0 = info0;
curr1 = info1;

}
if (tfirst > tmax)
{

return true;
}

t = (info0.max - info1.min)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (info0.max < info1.min)
{

if (speed >= 0)
{

return true;
}
t = (info0.max - info1.min)/speed;
if (t > tfirst)
{

tfirst = t;
side = +1;
curr0 = info0;
curr1 = info1;

}
if (tfirst > tmax)
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{
return true;

}

t = (info0.min - info1.max)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else
{ if (speed > 0)

{
t = (info0.max - info1.min)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (speed < 0)
{

t = (info0.min - info1.max)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
}
return false;

}
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With the indicated modifications, TestIntersection has the equivalent form-
ulation

bool TestIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, double tmax, double& tfirst,
double& tlast)

{
ProjInfo info0, info1, curr0, curr1;
// Process as if C0 were stationary and C1 were moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Process edges of C0.
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

D = C0.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// Process edges of C1.
for (i0 = C1.GetN() - 1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

return true;
}
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Figure 8.15 Edge-edge contact for two moving triangles.

The FindIntersection pseudocode has exactly the same implementation as Test-
Intersection, but with one additional block of code that is reached after the two
loops if there will be an intersection. When the polygons will intersect at time T , they
are effectively moved with their respective velocities and the contact set is calculated.

Let Q(j)

i = P(j)

i + T V(j) represent the polygon vertices after motion. In the case of

edge-edge contact, for the sake of argument, suppose that the contact edges are E(0)
0

and E(1)
0 . Figure 8.15 illustrates the configurations for two triangles.

Because of the counterclockwise ordering of the polygons, observe that the two
edge directions are parallel, but in opposite directions. The edge of the first polygon

is parameterized as Q(0)
0 + sE(0)

0 for s ∈ [0, 1]. The edge of the second polygon has the
same parametric form, but with s ∈ [s0, s1], where

s0 =
E(0)

0
.
(

Q(1)
1 − Q(0)

0

)
|E0|2

and s1 =
E(0)

0
.
(

Q(1)
0 − Q(0)

0

)
|E0|2

.

The overlap of the two edges occurs for s̄ ∈ I = [0, 1]∩ [s0, s1] �= ∅. The correspond-

ing points in the contact set are P(0)
0 + T W(0) + s̄E(0)

0 for s̄ ∈ I .
In the event the two polygons are initially overlapping, the contact set is more

expensive to construct. This set can be constructed by standard methods involving
Boolean operations on polygons.

The pseudocode is shown next. The intersection is a convex polygon and is re-
turned in the last two arguments of the function. If the intersection set is nonempty,
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the return value of the function is true. The set must itself be convex. The number
of vertices in the set is stored in quantity and the vertices, in counterclockwise order,
are stored in the array I[]. If the return value is false, the last two arguments of the
function are invalid and should not be used.

bool FindIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector W1, double tmax, double& tfirst,
double& tlast, int& quantity, Point I[])

{
ProjInfo info0, info1, curr0, curr1;
// Process as if C0 were stationary and C1 were moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Process edges of C0.
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

D = C0.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// Process edges of C1.
for (i0 = C1.GetN() - 1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// Compute the contact set.
GetIntersection(C0,V0,C1,V1,curr0,curr1,side,tfirst,
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quantity,I);
return true;

}

The intersection calculator pseudocode is shown next. Observe how the pro-
jection types are used to determine if the contact is vertex–vertex, edge-vertex, or
edge-edge.

void GetIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, ProjInfo info0,
ProjInfo info1, int side, double tfirst,
int& quantity, Point I[])

{
if (side == 1) // C0-max meets C1-min.
{

if (info0.isUnique[1])
{

// vertex-vertex or vertex-edge intersection
quantity = 1;
I[0] = C0.GetVertex(info0.index[1]) + tfirst * V0;

}
else if (info1.isUnique[0])
{

// vertex-vertex or edge-vertex intersection
quantity = 1;
I[0] = C1.GetVertex(info1.index[0]) + tfirst * V1;

}
else
{

// edge-edge intersection
P = C0.GetVertex(info0.index[1]) + tfirst * V0;
E = C0.GetEdge(info0.index[1]);
Q0 = C1.GetVertex(info1.index[0]);
Q1 = C1.GetVertex(info1.index[0] + 1);
s0 = Dot(E,Q1-P) / Dot(E,E);
s1 = Dot(E,Q0-P) / Dot(E,E);
FindIntervalIntersection(0,1,s0,s1,quantity,

interval);
for (i = 0; i < quantity; i++)
{

I[i] = P + interval[i] * E;
}

}
}
else if (side == -1) // C1-max meets C0-min.
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{
if (info1.isUnique[1])
{

// vertex-vertex or vertex-edge intersection
quantity = 1;
I[0] = C1.GetVertex(info1.index[1]) + tfirst * V1;

}
else if (info0.isUnique[0])
{

// vertex-vertex or edge-vertex intersection
quantity = 1;
I[0] = C0.GetVertex(info0.index[0]) + tfirst * V0;

}
else
{

// edge-edge intersection
P = C1.GetVertex(info1.index[1]) + tfirst * V1;
E = C1.GetEdge(info1.index[1]);
Q0 = C0.GetVertex(info0.index[0]);
Q1 = C0.GetVertex(info0.index[0] + 1);
s0 = Dot(E,Q1-P) / Dot(E,E);
s1 = Dot(E,Q0-P) / Dot(E,E);
FindIntervalIntersection(0,1,s0,s1,quantity,

interval);
for (i = 0; i < quantity; i++)
{

I[i] = P + interval[i] * E;
}

}
}
else // Polygons were initially intersecting.
{

ConvexPolygon C0Moved = C0 + tfirst * V0;
ConvexPolygon C1Moved = C1 + tfirst * V1;
FindPolygonIntersection(C0Moved,C1Moved,quantity,I);

}
}

The final case is the point at which the two polygons were initially overlapping so
that the first time of contact is T = 0. FindPolygonIntersection is a general routine
for computing the intersection of two polygons. In our collision detection system
with the nonpenetration constraint, we should not need to worry about the last case,
although you might want to trap the condition for debugging purposes.
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Separation of Convex Polyhedra

The structure of the algorithm for convex polyhedra moving with constant linear
velocity is similar to the one for convex polygons, except for the set of potential
separating axes that must be tested. The pseudocode is

bool TestIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, double tmax,
double& tfirst, double& tlast)

{
// Process as if C0 were stationary and C1 were moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Test faces of C0 for separation.
for (i = 0; i < C0.GetFCount(); i++)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,

tfirst,tlast))
{

return false;
}

}

// Test faces of C1 for separation.
for (j = 0; j < C1.GetFCount(); j++)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,

tfirst,tlast))
{

return false;
}

}

// Test cross products of pairs of edges.
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for (i = 0; i < C0.GetECount(); i++)
{

for (j = 0; j < C1.GetECount(); j++)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,

tfirst,tlast))
{

return false;
}

}
}

return true;
}

The function NoIntersect is exactly the one used in the 2D problem.

Contact Set for Convex Polyhedra

The find-intersection query for two stationary convex polyhedra is a special example
of Boolean operations on polyhedra. Since we are assuming nonpenetration in our
collision system, we do not need to implement this.

Given two moving convex objects C0 and C1, initially not intersecting, with
velocities V0 and V1, if T > 0 is the first time of contact, the sets C0 + T VW0 =
{X + T V0 : X ∈ C0} and C1 + T V1 = {X + T V1 : X ∈ C1} are just touching with no
interpenetration. As indicated earlier for convex polyhedra, the contact is one of face-
face, face-edge, face-vertex, edge-edge, edge-vertex, or vertex–vertex. The analysis is
slightly more complicated than that of the 2D setting, but the ideas are the same—the
relative orientation of the convex polyhedra to each other must be known to properly
compute the contact set.

The TestIntersection function can be modified to keep track of which vertices,
edges, or faces are projected to the endpoints of the projection interval. At the first
time of contact, this information is used to determine how the two objects are ori-
ented with respect to each other. If the contact is vertex-vertex, vertex-edge, or vertex-
face, then the contact point is a single point, a vertex. If the contact is edge-edge, the
contact is typically a single point but can be an entire line segment. If the contact is
edge-face, the contact set is a line segment. Finally, if the contact is face-face, the in-
tersection set is a convex polygon. This is the most complicated scenario and requires
a 2D convex polygon intersector. Each endpoint of the projection interval is either
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generated by a vertex, an edge, or a face. Similar to the implementation for the 2D
problem, a projection information class can be defined.

class ProjInfo
{
public:

double min, max; // projection interval [min,max]
int index[2];
enum Type { V, E, F };
Type type[2];

};

The zero-indexed values correspond to the minimum of the interval, the one-indexed
values to the maximum. If the extreme point is exactly a vertex, the type is set to V. If
the extreme points are exactly an edge, the type is set to E. If the extreme points are
exactly a face, the type is set to F.

Just as for convex polygons, the extremal query must be modified to support
calculation of the contact set via ProjInfo. In particular, we need to know the enu-
merated type to assign based on the extremal set.

int GetExtremeIndex (ConvexPolyhedron C, Vector D,
ProjInfo::Type& type);

An implementation will need another interface function for ConvexPolyhedron that
can determine the face bounded by the input edges.

class ConvexPolyhedron
{
public:

// other members...

int GetFaceFromEdges (array<int> edges);
};

Alternatively, you could build more information into the BSP tree nodes so that this
information is immediately available. Function ComputeInterval must be modified
to provide more information than just the projection interval.

void ComputeInterval (ConvexPolyhedron C, Vector D,
ProjInfo& info)

{
info.index[0] = GetExtremeIndex(C,-D,info.type[0]);
info.min = Dot(D,C.GetVertex(info.index[0]));
info.index[1] = GetExtremeIndex(C,+D,info.type[1]);
info.max = Dot(D,C.GetVertex(info.index[1]));

}
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The NoIntersect function that was modified in two dimensions to accept Proj-
Info objects instead of projection intervals is used exactly as is for the 3D problem, so
I do not restate that code here. With all modifications to this point, TestIntersection
is rewritten as

bool TestIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, double tmax,
double& tfirst, double& tlast)

{
ProjInfo info0, info1, curr0, curr1;
// Process as if C0 were stationary and C1 were moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Test faces of C0 for separation.
for (i = 0; i < C0.GetFCount(); i++)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,

side,tfirst,tlast))
{

return false;
}

}

// Test faces of C1 for separation.
for (j = 0; j < C1.GetFCount(); j++)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,

side,tfirst,tlast))
{

return false;
}

}

// Test cross products of pairs of edges.



8.1 The Method of Separating Axes 431

for (i = 0; i < C0.GetECount(); i++)
{

for (j = 0; j < C1.GetECount(); j++)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,

curr1,side,tfirst,tlast))
{

return false;
}

}
}

return true;
}

The FindIntersection pseudocode has exactly the same implementation as Test-
Intersection, but with one additional block of code that is reached after all the loops
if there will be an intersection. When the polyhedra intersect at time T , they are
effectively moved with their respective velocities and the contact set is calculated. The
pseudocode follows. The intersection is a convex polyhedron and is returned in the
last argument of the function, but keep in mind that for nonpenetration, we should
have only a convex polygon in 3D. If the intersection set is nonempty, the return value
is true. Otherwise, the original moving convex polyhedra do not intersect and the
function returns false.

bool FindIntersection (ConvexPolyhedron C0, Vector W0,
ConvexPolyhedron C1, Point W1, double tmax,
double& tfirst, double& tlast, ConvexPolyhedron& I)

{
ProjInfo info0, info1, curr0, curr1;
// Process as if C0 were stationary and C1 were moving.
V = V1 - V0;
tfirst = 0;
tlast = INFINITY;

// Test faces of C0 for separation.
for (i = 0; i < C0.GetFCount(); i++)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,info0);
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ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,

side,tfirst,tlast))
{

return false;
}

}

// Test faces of C1 for separation.
for (j = 0; j < C1.GetFCount(); j++)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,

side,tfirst,tlast))
{

return false;
}

}

// Test cross products of pairs of edges.
for (i = 0; i < C0.GetECount(); i++)
{

for (j = 0; j < C1.GetECount(); j++)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,

curr1,side,tfirst,tlast))
{

return false;
}

}
}

// Compute the contact set.
GetIntersection(C0,V0,C1,V1,curr0,curr1,side,tfirst,I);
return true;

}
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The intersection calculator pseudocode follows.

void GetIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, ProjInfo info0,
ProjInfo info1, int side, double tfirst,
ConvexPolyhedron& I)

{
if (side == 1) // C0-max meets C1-min.
{

if (info0.type[1] == ProjInfo::V)
{

// vertex-{vertex/edge/face} intersection
I.InsertFeature(C0.GetVertex(info0.index[1]) +

tfirst * V0);
}
else if (info1.type[0] == ProjInfo::V)
{

// {vertex/edge/face}-vertex intersection
I.InsertFeature(C1.GetVertex(info1.index[0]) +

tfirst * V1);
}
else if (info0.type[1] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[1]) +
tfirst * V0;

if (info1.type[0] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[0]) +
tfirst * V1;

I.InsertFeature(IntersectSegmentSegment(E0,E1));
}
else
{

Polygon F1 = C1.GetFPolygon(info1.index[0]) +
tfirst * V1;

I.InsertFeature(IntersectSegmentPolygon(E0,F1));
}

}
else if (info1.type[0] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[0]) +
tfirst * V1;

if (info0.type[1] == ProjInfo::E)
{
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Segment E0 = C0.GetESegment(info0.index[1]) +
tfirst * V0;

I.InsertFeature(IntersectSegmentSegment(E1,E0));
}
else
{

Polygon F0 = C0.GetFPolygon(info0.index[1]) +
tfirst * V0;

I.InsertFeature(IntersectSegmentPolygon(E1,F0));
}

}
else // info0.type[1], info1.type[0] both ProjInfo::F
{

// face-face intersection
Polygon F0 = C0.GetFPolygon(info0.index[1]) +

tfirst * V0;
Polygon F1 = C1.GetFPolygon(info1.index[0]) +

tfirst * V1;
I.InsertFeature(IntersectPolygonPolygon(F0,F1));

}
}
else if (side == -1) // C1-max meets C0-min.
{

if (info1.type[1] == ProjInfo::V)
{

// vertex-{vertex/edge/face} intersection
I.InsertFeature(C1.GetVertex(info1.index[1]) +

tfirst * V1);
}
else if (info0.type[0] == ProjInfo::V)
{

// {vertex/edge/face}-vertex intersection
I.InsertFeature(C0.GetVertex(info0.index[0]) +

tfirst * V0);
}
else if (info1.type[1] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[1]) +
tfirst * V1;

if (info0.type[0] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[0]) +
tfirst * V0;
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I.InsertFeature(IntersectSegmentSegment(E1,E0));
}
else
{

Polygon F0 = C0.GetFPolygon(info0.index[0]) +
tfirst * V0;

I.InsertFeature(IntersectSegmentPolygon(E1,F0));
}

}
else if (info0.type[0] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[0]) +
tfirst * V0;

if (info1.type[1] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[1]) +
tfirst * V1;

I.InsertFeature(IntersectSegmentSegment(E0,E1));
}
else
{

Polygon F1 = C1.GetFPolygon(info1.index[1]) +
tfirst * V1;

I.InsertFeature(IntersectSegmentPolygon(E0,F1));
}

}
else // info1.type[1], info0.type[0] both ProjInfo::F
{

// face-face intersection
Polygon F0 = C0.GetFPolygon(info0.index[0]) +

tfirst * V0;
Polygon F1 = C1.GetFPolygon(info1.index[1]) +

tfirst * V1;
I.InsertFeature(Intersection(F0,F1));

}
}
else // Polyhedra were initially intersecting.
{

ConvexPolyhedron M0 = C0 + tfirst * V0;
ConvexPolyhedron M1 = C1 + tfirst * V1;
I = IntersectionPolyhedronPolyhedron(M0,M1);

}
}



436 Chapter 8 Collision Detection

The type Segment refers to a line segment and the type Polygon refers to a convex
polygon in 3D. The various functions Intersect<Type1><Type2> are almost generic
intersection calculators. I say “almost” meaning that you know the two objects must
intersect since the separating axis results say so. Given that they intersect, you can
optimize generic intersection calculators to obtain your results. The possible out-
puts from the intersection calculators are points, line segments, or convex polygons,
referred to collectively as “features.” The class ConvexPolyhedron must support con-
struction by allowing the user to insert any of these features. I simply used the name
InsertFeature to cover all the cases (overloading of the function name, so to speak).
The function GetESegment returns some representation of a line segment, for exam-
ple, a pair of points. The calculation S + t * V (where S is a Segment, V is a vector, and t
is a floating-point number) requires the vector class to support a scalar-times-vector
operation. Moreover, the expression requires addition to be defined for a Segment
object and a Vector object. Similarly, GetFPolygon returns some representation of
the convex polygon face, for example, an ordered array of points. The calculation
F + t * V requires addition to be defined for a Polygon object and a Vector object.

As you can see, this is the workhorse of the collision system, the geometric details
of calculating intersections of line segments and convex polygons. You should expect
that this is a likely candidate for the bottleneck in your collision system. For this rea-
son you will see simplified systems such as [Bar01] where the contact set is reduced to
a container of points. The preceding intersection calculator can be greatly optimized
for such a system.

8.1.4 Oriented Bounding Boxes

So far we have discussed collision detection for convex polyhedra in general terms.
A very common polyhedron used in applications is an oriented bounding box, the
acronym OBB used for short. The term box is enough to describe the shape, but the
modifier bounding applies when the box contains a more complex object and is used
as a coarse measure of that portion of space the object occupies. The modifier oriented
refers to the fact that the box axes are not necessarily aligned with the standard
coordinate axes. Bounding boxes (and volumes) are typically used to minimize the
work of the collision detection system by not processing pairs of objects, if you can
cheaply determine that they will not intersect. A descriptive name for this process is
collision culling , suggestive of the culling that a graphics engine does in order not to
draw objects if you can cheaply determine that they are not visible.

An OBB is defined by a center point C that acts as the origin for a coordinate
system whose orthonormal axis directions are Ui for i = 0, 1, 2. The directions are
normal vectors to the faces of the OBB. The half-widths or extents of the box along
the coordinate axes are ei > 0 for i = 0, 1, 2. Figure 8.16 shows an OBB and the
intersection of the coordinate axes with three faces of the box. The eight vertices of
the OBB are of the form

P = C + σ0e0U0 + σ1e1U1 + σ2e2U2
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U2
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U0

C
C + e1U1

C + e0U0

C + e2U2

Figure 8.16 An OBB with center point C, coordinate axis directions U0, U1, and U2, and extents
e0, e1, and e2 along the coordinate axes. The object bounded by the box is outlined in
gray.

where |σi| = 1 for i = 0, 1, 2; that is, we have eight choices for the signs σi.
Our interest is restricted to testing when two OBBs intersect, whether stationary

or moving. As a convex polyhedron, an OBB has six faces and 12 edges. If we just
blindly applied the test-intersection query for a pair of convex polyhedra, the number
of potential separating axis tests is 156: six face normals for the first OBB, six face
normals for the second OBB, and 144 = 12 ∗ 12 edge-edge pairs. In the worst case
we would try all 156 axes only to find that the OBBs are intersecting. That is quite a
large number of tests for such simple-looking objects! The nature of an OBB, though,
is that the symmetry allows us to reduce the number of tests. You probably already
observed that we have three pairs of parallel faces, so we only need to consider three
face normals for an OBB for the purpose of separation. Similarly, only three edge
directions are unique and happen to be those of the face normals. Thus, for a pair of
OBBS we have only 15 potential separating axis tests: three face normals for the first
OBB, three face normals for the second OBB, and 9 = 3 ∗ 3 edge-edge pairs.
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Figure 8.17 The projection intervals of two OBBs onto a line P + tD. (a) The intervals are
disjoint, so the OBBs are separated. (b) The intervals overlap, so the line is not a
separating axis.

We still have to project an OBB onto a potential separating axis Q + tD. Although
the fast extremal query for general convex polyhedra may be applied, the symmetry
of the OBB allows us to quickly determine the interval of projection. Since a vertex
must be an extreme point, it suffices to try to find a vertex P that maximizes the dot
product

D . (P − Q) = D . (C − Q) + e0σ0D . U0 + e1σ1D . U1 + e2σ2D . U2

The sign σ0 is either 1 or −1. To make the term σ0D . U0 as large as possible, we
want σ0 = 1 when D . U0 > 0 and σ0 = −1 when D . U0 < 0. If D . U0 = 0, it does not
matter what the choice is for σ0. The resulting quantity can be written as the single
term |D . U0|. The same argument applies to the other terms, so

max D . (P − Q) = D . (C − Q) + e0|D . U0| + e1|D . U1| + e2|D . U2|

Similarly, the minimum is

min D . (P − Q) = D . (C − Q) − e0|D . U0| − e1|D . U1| − e2|D . U2|

Therefore, the projection interval is [γ − r , γ + r], where γ = D . (C − Q) and
r = ∑2

i=0 ei|D . Ui|.
Given two oriented bounding boxes, one with center C0, axes Ai, and extents ai,

and one with center C1, axes Bi, and extents bi, let the projection intervals onto a line
Q + tD be [γ0 − r0, γ0 + r0] and [γ1 − r1, γ1 + r1]. Figure 8.17 shows two cases, one
with separated intervals and one with overlapping intervals.
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The algebraic condition that describes the separated intervals in Figure 8.17 (a)
is |γ1 − γ0| > r0 + r1. In words, this says that the distance between the centers of the
projected intervals is larger than the sum of the radii of the intervals. The intervals in
the bottom image of the figure overlap, so |γ1 − γ0| < r0 + r1. If the intervals are just
touching, |γ1 − γ0| = r0 + r1. This last case is important when dealing with moving
OBBs.

Define r = |γ1 − γ0|. A closer look at the algebraic condition for separation of the
projected intervals shows that

r = |γ1 − γ0| = |D . (C1 − Q) − D . (C0 − Q)| = |D . (C1 − C0)|
This means we need to specify only the direction D and not worry about providing a
point Q on the line. Also,

r0 =
2∑

i=0

ai|D . Ai|, r1 =
2∑

i=0

bi|D . Bi|

The condition for separation of the projection intervals is r > r0 + r1 and is formally
expanded as

|D . ���| = r > r0 + r1 =
2∑

i=0

ai|D . Ai| +
2∑

i=0

bi|D . Bi| (8.2)

where ��� = C1 − C0. We have been thinking of D as a unit-length direction vector.
The face normals are already unit-length potential separating directions. A potential
separating direction D = Ai × Bj obtained as a cross product of edges, one edge
from each of the OBBs, is not necessarily unit length. We should then use D/|D|
in Equation (8.2) instead of D. Notice, though, that the truth of the inequality is
unchanged whether we use the vector or the normalized vector, since we can multiply
through by |D|. Consequently, we do not need to worry about normalizing the cross
product.

A further optimization can be made. The formal sum for r0 is a single term only
when D is a face normal of the first OBB. For example, if D = A0, then r0 = a0.
The formal sum for r1 is also a single term only when D is a face normal of the
second OBB. The summation term of r0 involves dot products Ai

. Bj when using
face normals of the second OBB for potential separating directions. The summation
term of r1 involves the same dot products when face normals of the first OBB are used
for potential separating directions. When D = Aj × Bk, the summation term of r0 is

D . Ai = Aj × Bk
. Ai = Ai

. Aj × Bk = Ai × Aj
. Bk = A�

. Bk

where {i , j , �} = {0, 1, 2}. For example, if i = 2 and j = 0, then � = 1. Similarly, the
summation term of r1 is

D . Bi = Aj × Bk
. Bi = Aj

. Bk × Bi = Aj
. B�
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Table 8.2 Potential separating directions for OBBs and values for r0, r1, and r .

D r0 r1 r

A0 a0 b0|c00| + b1|c01| + b2|c02| |α0|
A1 a1 b0|c10| + b1|c11| + b2|c12| |α1|
A2 a2 b0|c20| + b1|c21| + b2|c22| |α2|
B0 a0|c00| + a1|c10| + a2|c20| b0 |β0|
B1 a0|c01| + a1|c11| + a2|c21| b1 |β1|
B2 a0|c02| + a1|c12| + a2|c22| b2 |β2|
A0 × B0 a1|c20| + a2|c10| b1|c02| + b2|c01| |c10α2 − c20α1|
A0 × B1 a1|c21| + a2|c11| b0|c02| + b2|c00| |c11α2 − c21α1|
A0 × B2 a1|c22| + a2|c12| b0|c01| + b1|c00| |c12α2 − c22α1|
A1 × B0 a0|c20| + a2|c00| b1|c12| + b2|c11| |c20α0 − c00α2|
A1 × B1 a0|c21| + a2|c01| b0|c12| + b2|c10| |c21α0 − c01α2|
A1 × B2 a0|c22| + a2|c02| b0|c11| + b1|c10| |c22α0 − c02α2|
A2 × B0 a0|c10| + a1|c00| b1|c22| + b2|c21| |c00α1 − c10α0|
A2 × B1 a0|c11| + a1|c01| b0|c22| + b2|c20| |c01α1 − c11α0|
A2 × B2 a0|c12| + a1|c02| b0|c21| + b1|c20| |c02α1 − c12α0|

where again {i , j , �} = {0, 1, 2}. Therefore, all the separating axis tests require com-
puting the quantities cij = Ai

. Bj and do not need cross product operations. A con-
venient summary of the axes and quantities required by r > r0 + r1 is listed in Table
8.2. The table uses αi = ��� . Ai and βi = ��� . Bi. A term of the form c10α2 − c20α1
occurs as a result of ��� = α0A0 + α1A1 + α2A2, and

A0 × B0
. ��� = α0(A0 × B0

. A0) + α1(A0 × B0
. A1) + α2(A0 × B0

. A2)

= α0(0) − α1A2 × B0 + α2A1
. B0

= c10α2 − c20α1

Pseudocode follows. The code is organized to compute quantities only when
needed. The code also detects when two face normals Ai and Bj are nearly parallel.
Theoretically, if a parallel pair exists, it is sufficient to test only the face normals of the
two OBBs for separation. Numerically, though, two nearly parallel faces can lead to all
face normal tests reporting no separation along those directions. The cross product
directions are tested next, but Ai × Bj is nearly the zero vector and can cause the
system to report that the OBBs are not intersecting when in fact they are.
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bool TestIntersection (OBB box0, OBB box1)
{

// OBB: center C; axes U[0], U[1], U[2];
// extents e[0], e[1], e[2]

// values that are computed only when needed
double c[3][3]; // c[i][j] = Dot(box0.U[i],box1.U[j])
double absC[3][3]; // |c[i][j]|
double d[3]; // Dot(box1.C-box0.C,box0.U[i])

// interval radii and distance between centers
double r0, r1, r;
int i;

// cutoff for cosine of angles between box axes
const double cutoff = 0.999999;
bool existsParallelPair = false;

// Compute difference of box centers.
Vector diff = box1.C - box0.C;

// axis C0 + t * A0
for (i = 0; i < 3; i++)
{

c[0][i] = Dot(box0.U[0],box1.U[i]);
absC[0][i] = |c[0][i]|;
if (absC[0][i] > cutoff)
{

existsParallelPair = true;
}

}
d[0] = Dot(diff,box0.U[0]);
r = |d[0]|;
r0 = box0.e[0];
r1 = box1.e[0] * absC[0][0] + box1.e[1] * absC[0][1] +

box1.e[2] * absC[0][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A1
for (i = 0; i < 3; i++)
{
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c[1][i] = Dot(box0.U[1],box1.U[i]);
absC[1][i] = |c[1][i]|;
if (absC[1][i] > cutoff)
{

existsParallelPair = true;
}

}
d[1] = Dot(diff,box0.U[1]);
r = |d[1]|;
r0 = box0.e[1];
r1 = box1.e[0] * absC[1][0] + box1.e[1] * absC[1][1] +

box1.e[2] * absC[1][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A2
for (i = 0; i < 3; i++)
{

c[2][i] = Dot(box0.U[2],box1.U[i]);
absC[2][i] = |c[2][i]|;
if (absC[2][i] > cutoff)
{

existsParallelPair = true;
}

}
d[2] = Dot(diff,box0.U[2]);
r = |d[2]|;
r0 = box0.e[2];
r1 = box1.e[0] * absC[2][0] + box1.e[1] * absC[2][1] +

box1.e[2] * absC[2][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * B0
r = |Dot(diff,box1.U[0])|;
r0 = box0.e[0] * absC[0][0] + box0.e[1] * absC[1][0] +

box0.e[2] * absC[2][0];
r1 = box1.e[0];
if (r > r0 + r1)
{
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return false;
}

// axis C0 + t * B1
r = |Dot(diff,box1.U[1])|;
r0 = box0.e[0] * absC[0][1] + box0.e[1] * absC[1][1] +

box0.e[2] * absC[2][1];
r1 = box1.e[1];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * B2
r = |Dot(diff,box1.U[2])|;
r0 = box0.e[0] * absC[0][2] + box0.e[1] * absC[1][2] +

box0.e[2] * absC[2][2];
r1 = box1.e[2];
if (r > r0 + r1)
{

return false;
}

if (existsParallelPair)
{

// A pair of box axes was (effectively) parallel, thus
// boxes must intersect.
return true;

}

// axis C0 + t * A0 x B0
r = |d[2] * c[1][0] - d[1] * c[2][0]|;
r0 = box0.e[1] * absC[2][0] + box0.e[2] * absC[1][0];
r1 = box1.e[1] * absC[0][2] + box1.e[2] * absC[0][1];
if (r > r0 + r1)
{

return false;
}

// Similar blocks of code go here for the remaining
// axes C0 + t * A[i] x B[j].

return true;
}
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8.2 Finding Collisions between
Moving Objects

This section describes the mathematics for determining the first time of contact be-
tween two convex objects, each moving with a constant linear velocity. Although the
paths of motion for the objects are usually not linear—the objects can have nonzero
angular velocity—the paths may be decomposed into approximating subpaths. On
each subpath the object is assumed to have constant linear velocity and zero angular
velocity. The subpaths are a natural outcome of solving the differential equations of
motion for the objects.

8.2.1 Pseudodistance

The algorithm presented here is general in that it requires only a pseudodistance func-
tion to be implemented for each pair of desired object types and only for the case
of stationary objects. A pseudodistance function between two objects has the prop-
erty that it is positive when the objects are separated, negative when the objects are
overlapping, and zero when the objects are just touching. In the overlapping case, the
volume of intersection is positive. In the just-touching case, the volume of intersec-
tion is zero. Such a function is usually something much easier to formulate than a
true (signed) distance function for stationary objects or for any type of measurement
between moving objects.

To illustrate in one dimension, consider two intervals [p0, p1] and [q0, q1]. The
intervals are separated when p1 < q0 or when q1 < p0. The intervals are just touching
when p1 = q0 or when q1 = p0. Otherwise, the intervals are overlapping; for example,
this is the case when p0 < q0 < p1 < q1. The length of intersection is p1 − q0. In the
just-touching case, the length of intersection is zero since the intersection set is a
single point. A pseudodistance function may be defined based on the separation axis
tests. The two intervals are separated whenever the distance between their centers is
larger than the sum of their radii. If the distance is equal to the sum of their radii, the
intervals are just touching. If the distance is smaller, then the intervals overlap. The
centers (midpoints) of the intervals are (p0 + p1)/2 and (q0 + q1)/2. The radii (half-
widths) of the intervals are (p1 − p0)/2 and (q1 − q0)/2. Figure 8.18 shows a typical
scenario of separation.

The separation test is

∣∣∣∣p0 + p1

2
− q0 + q1

2

∣∣∣∣ >
p1 − p0

2
+ q1 − q0

2

The difference of the two sides of the inequality makes for a reasonable pseudodis-
tance function. However, we will remove the absolute value by squaring both sides
first and subtract to produce the pseudodistance function
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Figure 8.18 Two separated intervals.
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Figure 8.19 Three different interval configurations. (a) The intervals are separated. (b) The
intervals are touching at a single point. (c) The intervals are overlapping.

F([p0, p1], [q0, q1]) =
(

p0 + p1

2
− q0 + q1

2

)2

−
(

p1 − p0

2
+ q1 − q0

2

)2

= (p0 − q1)(p1 − q0)

The squaring is representative of the 3D setting where we avoid square root calcula-
tions. Notice that the pseudodistance is independent of the order of the intervals:

F([q0, q1], [p0, p1]) = (q0 − p1)(q1 − p0) = (p0 − q1)(p1 − q0)

= F([p0, p1], [q0, q1])

Figure 8.19 shows three different interval configurations; Figure 8.19 (a) shows sep-
arated intervals (F > 0); Figure 8.19 (b) shows just-touching intervals (F = 0); and
Figure 8.19 (c) shows overlapping intervals (F < 0).
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8.2.2 Contact between Moving Intervals

The pseudodistance function F may be used to determine whether two stationary
intervals are separated, just touching, or overlapping. But what if the intervals are
moving with constant speeds? Let the interval [p0, p1]move with velocity u (a signed
scalar; speed is |u|) and let the interval [q0, q1] move with velocity v (a signed scalar;
speed is |v|). The problem is to compute the first contact time, tfirst ≥ 0, and the first
contact point , cfirst, between the moving intervals. The subscripts first are indicative
of computing the first such time and point. However, the intervals can pass through
each other, leading to a last contact time, tlast, and a last contact point , clast. Although
you would think the last time and point are irrelevant in the intersection query, it
turns out that they are relevant for 3D queries involving the method of separating
axes.

The moving intervals are [p0 + tu, p1 + tu] and [q0 + tv , q1 + tv]. The pseudo-
distance function may be used to determine the contact time; that is,

G(t) = F([p0 + tu, p1 + tu], [q0 + tv , q1 + tv])

= [(p0 + tu) − (q1 + tv)][(p1 + tu) − (q0 + tv)]

= (u − v)2t2 + 2(u − v)[(p0 + p1)/2 − (q1 + q0)/2]t + (p0 − q1)(p1 − q0)

= a2t
2 + 2a1t + a0

which is a quadratic function of time when the relative velocity (u − v) is not zero.
Notice that a0 is the pseudodistance between the intervals at time zero. The value
a1 is the relative velocity of the intervals multiplied by the signed distance between
interval centers. The value a2 ≥ 0. When a2 > 0, the graph of G(t) is a parabola that
opens upward. The determination of the contact time T ≥ 0 amounts to computing
the roots of G(t), but we do so by appealing to the structure of the graph of G(t).

Intervals Initially Separated

The common scenario is that the two intervals are initially separated, in which case
G(0) > 0. Figure 8.20 shows four possible cases for the graph of G. Figure 8.20 (a)
shows the case of a1 ≥ 0. The graph does not reach the t-axis. In fact, G′(t) = 2(a2t +
a1) ≥ 0 for t ≥ 0, so the function is increasing for all time t ≥ 0. The coefficient is

a1 = (u − v)

(
p0 + p1

2
− q0 + q1

2

)

For this to be nonnegative, the signs of (u − v) and ((p0 + p1)/2 − (q1 + q0)/2) must
be equal. To see what this means physically, assume that [p0, p1] is to the right of
[q0, q1] initially. The signed difference of centers is ((p0 + p1)/2 − (q1 + q0)/2) > 0.
If (u − v) > 0, then the intervals are moving apart and can never intersect. The graph
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a1 < 0, G(–a2/a1) > 0
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Figure 8.20 The four possible graphs of G when the intervals are initially separated.

of G in Figure 8.20 (a) confirms this. Similarly, if [p0, p1] is to the left of [q0, q1]
initially, then the signed difference of centers is ((p0 + p1)/2 − (q1 + q0)/2) < 0. If
(u − v) < 0, then the intervals are moving apart and can never intersect.

It turns out that the graphs shown in Figure 8.20 (b) and (c) cannot occur!
Define r = u − v, δ = ((p0 + p1)/2 − (q1 + q0)/2), and ρ = (p0 − q1)(p1 − q0). The
quadratic equation has roots

t =
−a1 ±

√
a2

1 − a0a2

a2

= −δ ± √
δ2 − ρ

r

The discriminant is

δ2 − ρ = 1

4

(
(p1 − p0)

2 + (q1 − q0)
2
)

> 0

Positivity of the discriminant is guaranteed when the intervals are not degenerate;
that is, when p1 > p0 and q1 > q0. This means that the quadratic equation always has
two distinct real-valued roots whenever a1 < 0. Physically, this makes sense. When
a1 < 0, the intervals are moving toward each other with constant speed. They must
eventually intersect for the first time, overlap for some time while they pass through
each other, intersect for the last time, and then remain separated for all times after the
last contact. The graph shown in Figure 8.20 (d) is the only other possibility. In 2D
and 3D, all four graphs shown in Figure 8.20 are possible for the convex objects we
deal with. In 1D, though, the confinement to a line makes it difficult for one interval
to skirt around the other without contact!

Using the quadratic formula in this case is apparently overkill. Just from the
perspective of the two intervals moving together, the first and last contact times are
solutions to linear equations. When [p0, p1] is to the right of [q0, q1] initially, and
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if the intervals are moving toward each other, the first time of contact occurs when
p0 + tu = q1 + tv, so

tfirst = q1 − p0

u − v
, cfirst = p0 + tfirstu

When [p0, p1] is to the left of [q0, q1] initially, and if the intervals are moving toward
each other, the first time of contact occurs when p1 + tu = q0 + tv, so

tfirst = q0 − p1

u − v
, cfirst = p0 + tfirstu

The reason for introducing the quadratic approach is that generally the 3D cases
are not linear, and the pseudodistance functions are not trivial. In the next section we
will see how to compute the roots of G(t) using numerical methods.

Intervals Initially Overlapping

It is possible that the intervals [p0, p1] and [q0, q1] are initially just touching or
overlapping. In this case you may as well report that tfirst = 0. The problem is deciding
how to report the contact set, which might consist of a full interval of points itself.
This is a judgment call to be made in the design of any collision detection system.
Computing the full contact set can require more cycles than an application is willing
to commit to. The alternative is to report one point that is in the contact set. You
could choose an endpoint of one of the intervals, or perhaps the midpoint of the
contact set.

8.2.3 Computing the First Time of Contact

Consider the graph of G(t) in Figure 8.20 (d). Starting at time t = 0, we would like
to search through future times to locate the first contact time tfirst. Newton’s method
may be used to do this. Figure 8.21 shows the geometric setup. Given the current root
estimate tk, the next estimate is computed as the intersection of the tangent line to the
graph at (tk , G(tk)) with the t-axis. The slope of the graph is G′(tk) and the tangent
line is G − G(tk) = G′(tk)(t − tk). Setting G = 0, the intersection is determined by
0 − G(tk) = G′(tk)(tk+1 − tk). Thus,

tk+1 = tk − G(tk)

G′(tk)
, t0 = 0

From the figure, notice that G′(tk) < 0 and G(tk) > 0, which implies tk+1 > tk. This is
true no matter how many iterations you have computed. Consequently, the sequence
{tk}∞k=0 is increasing. From the geometry, the iterates are always to the left of the root
tfirst, which means the iterates are bounded. From calculus, any increasing bounded
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Figure 8.21 Newton’s method to locate the first root of G(t).

sequence must converge to a limit. In our case, that limit is the root. From a numerical
perspective, what is important is how many iterations must be computed to obtain
a root estimate tk that is acceptable for the application. Collision detection needs to
be fast, so the fewer the iterates the better. Collision detection needs to be accurate,
which might require more iterates. A reasonable system needs to balance speed with
accuracy, so the decision of when to stop iterating is important. Ideally, we would
like |tk − tfirst| to be very small and we would like |G(tk)| to be very small. Before we
investigate this further, let’s revisit the comment “From the geometry . . . .”

The graph of G(t) for the 1D problem of moving interval intersection is a parab-
ola that opens upward. No matter which tangent line you look at, the graph is always
above the line. A general class of functions having this property are convex functions.
Such a function G(t) has the property that

G((1 − s)t0 + st1) ≤ (1 − s)G(t0) + sG(t1), s ∈ [0, 1]

What this says geometrically is that the line segment connecting the graph points
(t0, G(t0)) and (t1, G(t1)) is always above the graph of the function. Convex functions
are ideal for root finding because the Newton iterates, when starting to the left of the
first root, are increasing and guaranteed to converge to the root. Numerical analysis
texts discuss this property, but only locally. That is, as long as G′′(r) < 0 at a root r

and as long as your iterates start near the root, you are guaranteed convergence. The
nice thing about convex functions is that you do not have to start near the root .

The predictive collision detection that I am postulating here assumes that the ob-
jects are moving with constant linear velocity. Moreover, all the objects of interest
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are convex sets. These facts guarantee that you can always build a time-varying pseu-
dodistance function that is a convex function. Consequently, the methods described
in this document allow you to build a predictive collision detection algorithm for any
pair of convex objects. All you need to provide are the pseudodistance functions for
the stationary objects.

The pseudocode for the algorithm is listed next. Some testing occurs initially
in order to quickly exit the function when there will be no intersection. The code
assumes the existence of a pseudodistance function and its derivative for the pair
of object types. The code also maintains an enumeration for the type of contact
(overlapping, just touching, separated).

// time-varying pseudodistance G(t)
float G (Object obj0, Point vel0, Object obj1, Point vel1,

float t)
{

// Let obj0 and obj1 denote sets of points. The
// "moved sets" are
// obj0 + t * vel0 = {x + t * vel0 : x is a point in obj0}
// obj1 + t * vel1 = {x + t * vel1 : x is a point in obj1}
// Compute the pseudodistance for the stationary objects.
return Pseudodistance(obj0+t*vel0,obj1+t*v1);

}

// derivative G’(t)
float GDer (Object obj0, Point vel0, Object obj1, Point vel1,

float t)
{

// Compute the derivative of the G(obj0,vel0,obj1,vel1,t)
// function.
return the derivative;

}

ContactType Find (Object obj0, Point vel0, Object obj1,
Point vel1, float tmax, float& contactTime)

{
float t0 = 0;
float g0 = G(obj0,vel0,obj1,vel1,t0);

if (g0 < 0)
{

// Objects are overlapping.
contactTime = 0;
return OVERLAPPING;

}
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if (g0 == 0)
{

// Objects are just touching.
contactTime = 0;
return TOUCHING;

}

// The objects are initially separated.
if (vel0 == vel1)
{

// Relative velocity is zero; separated objects remain
// separated.
contactTime = -INFINITY;
return SEPARATED;

}

float gder0 = GDer(obj0,vel0,obj1,vel1,t0);
if (gder0 >= 0)
{

// Objects are moving apart.
contactTime = -INFINITY;
return SEPARATED;

}

float g1 = G(obj0,vel0,obj1,vel1,tmax);
if (g1 > 0)
{

// Objects are separated at the maximum time.
float gder1 = GDer(obj0,vel0,obj1,vel1,tmax);
if (gder1 < 0)
{

// The objects are moving toward each other but
// do not intersect during the time interval
// [0,tmax]. If there is a first time of contact,
// it must be that tmax < tfirst.
contactTime = INFINITY;
return SEPARATED;

}
}

// We know [G(0) > 0 and G’(0) < 0] and [G(tmax) <= 0 or
// [G(tmax) > 0 and G’(tmax) >= 0]]. These conditions
// guarantee that the convex function G(t) has a root on
// the time interval [0,tmax].
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do forever
{

t0 -= g0/gder0;
g0 = G(obj0,vel0,obj1,vel1,t0);
if (convergence criterion satisfied)
{

contactTime = t0;
return TOUCHING;

}
}

}

Understanding the pseudocode for Find is a matter of interpreting each code
block relative to the graph of the convex function shown in Figure 8.21. The practical
issues that must be dealt with are listed next.

1. Naturally, floating-point arithmetic causes us to pay attention to the comparisons
of the floating-point values to zero. Small threshold values must be chosen to
account for round-off errors.

2. The do forever loop is potentially infinite. In practice, the number of iterations
is clamped to a maximum. If the convergence criterion is not satisfied for the
maximum number of iterations, the loop terminates and you have to decide
what response to give in the query. Because of the structure of the pseudocode,
the response should be that a collision has occurred. The most common reason
for failing to meet the convergence criterion is that the function values G(t) are
nearly zero near the root, but not close enough to zero to satisfy the convergence
criterion, and the derivative values G′(t) are very large near the root. The ratio
G(t)/G′(t) is very small, so the update on t is relatively insignificant and might
not help to reduce G(t) to be small enough to satisfy the convergence criterion.

3. The Find function should be given a chance to compute a contact point (or the
full contact set, if desired). Whenever the function returns OVERLAPPING or JUST_
TOUCHING, another function can be called to allow contact set computation.

4. It might not be possible to easily formulate a computable expression for the
derivative of the pseudodistance function. Instead, a finite difference method can
be chosen to estimate the derivative. The result will be that Newton’s method
is replaced by the Secant method. In theory, Newton’s method is quadratically
convergent (order 2) and the Secant method has an order of convergence equal to
the golden ratio (1 + √

5)/2 .= 1.618. Should you choose to use finite differences,
another parameter introduced into the system is the time step for the approxi-
mation.
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8.2.4 Estimating the First Derivative

There are many ways to estimate a derivative using finite differences. The most com-
mon low-order approximations are the forward difference,

G(t) = G(t + h) − G(t)

h
+ O(h)

the backward difference,

G(t) = G(t) − G(t − h)

h
+ O(h)

and the centered difference,

G(t) = G(t + h) − G(t − h)

h
+ O(h2)

The application to the problem at hand should balance speed with accuracy. Given a
t value and an already computed G(t), a centered difference requires two more func-
tion evaluations for the specified step size h > 0. Rather than pay for two evaluations
for O(h2) error, we will choose one of the other estimates for a cost of one evaluation,
but only O(h) error.

Figure 8.22 shows the iterations based on backward and forward differences and
on the actual tangent line. The graph of G(t) is drawn in black. The current iter-
ate is t0. The next iterate from the tangent line (Newton’s method) is tn1 . The tan-
gent line is drawn in red. The backward difference uses the secant line connecting
(t0 − h, G(t0 − h)) and (t0, G(t0)), drawn in blue. The intersection of this line with
the t-axis produces the next iterate tb1 . The forward difference uses the secant line
connecting (t0, G(t0)) and (t0 + h, G(t0 + h)), drawn in taupe. The intersection of

this line with the t-axis produces the next iterate t
f

1 .
The convexity of G(t) guarantees that

t0 − h < t0 < tb1 ≤ tn1 ≤ t
f

1 ≤ tfirst

The backward difference scheme generally is more conservative about the next iterate
than Newton’s method, but we are guaranteed that the iterates are monotonically
increasing, just like the Newton iterates. Figure 8.22 shows the best behavior for the
forward difference scheme—it produces an iterate larger than the Newton iterate, but
smaller than the first time of contact. However, other situations can occur that require
a forward difference approach to do more work to converge to the root.

Figure 8.23 shows various possibilities for the next iterate produced by the for-
ward difference scheme. The distinctions between the cases and potential actions
taken are listed next.



454 Chapter 8 Collision Detection

t0 – h

tfirst

t0 t1 t1 t0 + h t1
b n f

Figure 8.22 Choices of next iterate based on backward differences, forward differences, and the
tangent line.

(a) This is the best of all possibilities. The iterate satisfies t1 < tfirst and is a better
estimate of the root than what Newton’s method produced. Notice that G(t1) > 0
and G′(t1) < 0.

(b) The iterate exceeded the first time of contact but not the last time of contact,
so tfirst < t1 < tlast. Notice that G(t0 + h) < 0 and G(t1) < 0. Bisection is applied
while the iterates produce negative G values. Once a positive value is reached, an-
other forward difference step is applied. This is a hybrid scheme that is applied
until the convergence criteria are met. Alternatively, if a negative G value is se-
lected, the time step h for the forward difference may be reduced in size in an
attempt to produce a next iterate for which G is positive.

(c) The iterate exceeded the last time of contact, so tlast < t1 and G(t1) > 0. Also in
this case, the slope of the secant line is negative. Bisection may also be applied
here, but always to find the first time of contact. That is, if you have two iterates
tk and tk+1 for which G(tk) > 0 and G(tk+1) < 0, the bisection is applied on that
interval. But if G(tk) < 0 and G(tk+1) > 0, you do not apply the bisection since
you have bounded the last time of contact.

(d) The iterate slope of the secant line connecting (t0, G(t0)) and (t0 + h, G(t0 + h))

is positive. The intersection of this line with the t-axis produces the next iterate



8.3 A Dynamic Collision Detection System 455
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Figure 8.23 Choices of next iterate based on forward differences.

that is smaller than the previous one: t1 < t0. A smaller step size h should be
chosen.

Trapping all the possible cases and handling them correctly will, in the worst case,
lead to a bisection approach whose order of convergence is not quadratic. It is better
to use the backward difference approach. The code simplicity is also attractive with
this approach.

8.3 A Dynamic Collision Detection System

Using an object-oriented design, the discussion of the last section allows us to create
an abstract base class that represents the mechanism for computing the first contact
time of two moving convex objects. Specific pairs of object types are handled by
classes derived from the abstract base class.

8.3.1 The Abstract Base Class

The abstract base class has the following interface.

class Colliders
{
public:

Colliders ();
virtual ~Colliders ();

void SetDerivativeTimeStep (float fTimeStep);
float GetDerivativeTimeStep () const;
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void SetPseudodistanceThreshold (float fThreshold);
float GetPseudodistanceThreshold () const;
void SetMaxIterations (int iMaxIterations);
int GetMaxIterations () const;

enum CollisionType
{

UNKNOWN,
SEPARATED,
TOUCHING,
OVERLAPPING

};

virtual CollisionType Test (
float fMaxTime,
const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1,
float& rfContactTime);

virtual CollisionType Find (
float fMaxTime,
const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1,
float& rfContactTime);

protected:
virtual float Pseudodistance (

float fTime,
const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1) const = 0;

virtual void ComputeContactInformation (
CollisionType eCollisionType,
float fTime,
const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1) const;

virtual float PseudodistanceDerivative (
float fT0, float fF0,
const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1) const;

virtual CollisionType FastNoIntersection (
float fMaxTime,
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const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1,
float& rfF0, float& rfFDer0) const;

float m_fDerivativeTimeStep;
float m_fInvDerivativeTimeStep;
float m_fPseudodistanceThreshold;
int m_iMaxIterations;

};

This is an abstract base class that implements the numerical root finder discussed
in the previous section. The member m_fDerivativeTimeStep is the value h used in
the backward difference estimate of the derivative. The member m_fPseudodistance-
Threshold is used to determine when G(t) is sufficiently close to zero (the conver-
gence criterion). The member m_iMaxIterations is the maximum number of New-
ton’s iterations that the solver will use.

The test-intersection and find-intersection queries are the class member func-
tions Test and Find, respectively. The time interval for the intersection query is
[0, tmax]. The input parameter fMaxTime is the value tmax. The two vector inputs are
the constant linear velocities of the object during the specified time interval. The con-
tact time is returned via the last parameter. The return value of the function indicates
what will happen during the specified time interval. The output contact time is valid
whenever the function’s return value is TOUCHING. If this time is tfirst, you are guaran-
teed that 0 ≤ tfirst ≤ tmax. If the objects are initially overlapping, the function returns
OVERLAPPING and a contact time of zero. If the function returns SEPARATED, the two
objects will not collide during the specified time interval, in which case the contact
time is invalid (actually set to −∞). The base class Test function just calls the Find
function. The Test and Find functions are virtual. The intent is that if your specific
pair of object types lends itself to faster intersection queries, taking advantage of the
special structure of the objects, then you can override the root-finding system.

Each derived class represents a pair of object types. The class must implement the
Pseudodistance function for the two object types. The base class function Compute-
ContactInformation does nothing, but is called by the Find function. Your derived
classes can compute the contact set (and contact normals) if so desired. Since the
structure of these sets is specific to the object types, the derived classes must also
provide accessors to these sets.

The function FastNoIntersection encapsulates the first portion of the root-
finding system; namely, it checks to see if initially the objects are overlapping, just
touching, separated and stationary relative to each other, or separated and moving
away from each other. This function is also virtual. The intent is that if your specific
pair of object types lends itself to faster no-intersection queries (“quick outs”), taking
advantage of the special structure of the objects, then you can override the base class
system. The base class implementation is
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Colliders::CollisionType Colliders::FastNoIntersection (
float fMaxTime, const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1, float& rfF0,
float& rfFDer0) const

{
// Analyze the initial configuration of the objects.
rfF0 = Pseudodistance(0.0f,rkVelocity0,rkVelocity1);

if (rfF0 <= -m_fPseudodistanceThreshold)
{

// Objects are (significantly) overlapping.
ComputeContactInformation(OVERLAPPING,0.0f,

rkVelocity0,rkVelocity1);
return OVERLAPPING;

}

if (rfF0 <= m_fPseudodistanceThreshold)
{

// Objects are (nearly) in tangential contact.
ComputeContactInformation(TOUCHING,0.0f,

rkVelocity0,rkVelocity1);
return TOUCHING;

}

// The objects are not currently in contact or
// overlapping. If the relative velocity between them is
// zero, they cannot intersect at a later time.
if (rkVelocity0 == rkVelocity1)
{

return SEPARATED;
}

// Compute or estimate the derivative F’(0).
rfFDer0 = PseudodistanceDerivative(0.0f,rfF0,

rkVelocity0,rkVelocity1);
if (rfFDer0 >= 0.0f)
{

// The objects are moving apart.
return SEPARATED;

}

// Check if the objects are not intersecting, yet still
// moving toward each other at maximum time. If this
// is the case, the objects do not intersect on the
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// specified time interval.
float fF1 = Pseudodistance(fMaxTime,rkVelocity0,

rkVelocity1);
if (fF1 > 0.0f)
{

// Compute or estimate the derivative F’(tmax).
float fFDer1 = PseudodistanceDerivative(

fMaxTime,fF1,rkVelocity0,rkVelocity1);
if (fFDer1 < 0.0f)
{

// The objects are moving toward each other and
// do not intersect during the specified time
// interval.
return SEPARATED;

}
}

return UNKNOWN;
}

The base class function Find is the following.

Colliders::CollisionType Colliders::Find (float fMaxTime,
const Vector3f& rkVelocity0, const Vector3f& rkVelocity1,
float& rfContactTime)

{
float fF0, fFDer0;
CollisionType eCollisionType = FastNoIntersection(

fMaxTime,rkVelocity0,rkVelocity1,fF0,fFDer0);
if (eCollisionType != UNKNOWN)
{

return eCollisionType;
}

// Use Newton’s method for root finding when the derivative
// is calculated but Secant method when the derivative
// is estimated.
float fT0 = 0.0f;
for (int i = 1; i <= m_iMaxIterations; i++)
{

float fT0 -= fF0/fFDer0;

// In theory, the iterates are smaller than the first
// time of contact and the contact time is shorter
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// than the maximum time, so this conditional block
// will not be entered. However, there is a small
// chance you can enter the block because of numerical
// round-off errors when the contact time and maximum
// time are nearly the same. Entering the block
// effectively means the iterates have converged.
if (fT0 > fMaxTime)
{

// The objects do not intersect during the
// specified time interval.
rfContactTime = fMaxTime;
ComputeContactInformation(TOUCHING,rfContactTime,

rkVelocity0,rkVelocity1);
return TOUCHING;

}

fF0 = Pseudodistance(fT0,rkVelocity0,rkVelocity1);
if (fF0 <= m_fPseudodistanceThreshold)
{

rfContactTime = fT0;
ComputeContactInformation(TOUCHING,rfContactTime,

rkVelocity0,rkVelocity1);
return TOUCHING;

}

fFDer0 = PseudodistanceDerivative(fT0,fF0,
rkVelocity0,rkVelocity1);

if (fFDer0 >= 0.0f)
{

// The objects are moving apart.
rfContactTime = -Mathf::MAX_REAL;
return SEPARATED;

}
}

// Newton’s method failed to converge, but we already
// tested earlier if the objects were moving apart or
// not intersecting during the specified time interval.
// To reach here, the number of iterations was not large
// enough for the desired pseudodistance threshold. Most
// likely, this occurs when the relative speed is very
// large and the time step for the derivative estimation
// needs to be smaller.
rfContactTime = fT0;
ComputeContactInformation(TOUCHING,rfContactTime,
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rkVelocity0,rkVelocity1);
return TOUCHING;

}

The base class implementation for estimating the pseudodistance derivative is

float Colliders::PseudodistanceDerivative (float fT0,
float fF0, const Vector3f& rkVelocity0,
const Vector3f& rkVelocity1) const

{
float fT1 = fT0 - m_fDerivativeTimeStep;
float fF1 = Pseudodistance(fT1,rkVelocity0,rkVelocity1);
float fFDer0 = (fF0 - fF1) * m_fInvDerivativeTimeStep;
return fFDer0;

}

This code uses a backward difference for the estimation.

8.3.2 Pseudodistances for Specific Pairs of Object Types

A compendium of pseudodistance functions is presented here for use in classes de-
rived from Colliders.

Sphere-Swept Volumes

The simplest object types to work with are spheres. If the spheres have centers Ci and
radii ri for i = 0, 1, they are separated when |C1 − C0| > r0 + r1, just touching when
|C1 − C0| = r0 + r1, and overlapping when |C1 − C0| < r0 + r1. This suggests using
the pseudodistance function

|C1 − C0| − (r0 + r1)

However, we can avoid the square root calculation in computing the length of the
difference of centers, and we can provide some normalization based on size. This
normalization is important in choosing the threshold for comparing G(t) to zero.
My preference is to use

float Pseudodistance (Sphere sphere0, Sphere sphere1)
{

Vector3 diff = sphere1.C - sphere0.C;
float sd = diff.SquaredLength();
float rsum = sphere0.r + sphere1.r;
return sd/(rsum*rsum) - 1;

}
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Separation or overlap is a simple matter for a sphere and a capsule. The distance
between the sphere center and capsule segment is compared to the sum of the radii
of the objects. The three cases are similar to what we saw for the sphere-sphere case.
A pseudodistance function is

float Pseudodistance (Sphere sphere, Capsule capsule)
{

float sd = SquaredDistance(sphere.C,capsule.segment);
float rsum = sphere.r + capsule.r;
return sd/(rsum*rsum) - 1;

}

The point-segment, squared-distance function is discussed in Section 14.1.3.
A sphere and lozenge are handled similarly to a sphere and capsule. The distance

between the sphere center and lozenge rectangle is compared to the sum of the radii
of the objects. The three cases are similar to what we saw for the sphere-sphere case.
A pseudodistance function is

float Pseudodistance (Sphere sphere, Lozenge lozenge)
{

float sd = SquaredDistance(sphere.C,lozenge.rectangle);
float rsum = sphere.r + lozenge.r;
return sd/(rsum*rsum) - 1;

}

The point-rectangle, squared-distance function is discussed in Section 14.5.
The distance between the capsule segments is compared to the sum of the radii of

the objects. A pseudodistance function is

float Pseudodistance (Capsule capsule0, Capsule capsule1)
{

float sd = SquaredDistance(capsule0.segment,
capsule1.segment);

float rsum = capsule0.r + capsule1.r;
return sd/(rsum*rsum) - 1;

}

The segment-segment, squared-distance function is discussed in Section 14.2.6.
The distance between a capsule segment and a lozenge rectangle is compared to

the sum of the radii of the objects. A pseudodistance function is

float Pseudodistance (Capsule capsule, Lozenge lozenge)
{

float sd = SquaredDistance(capsule.segment,
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lozenge.rectangle);
float rsum = capsule.r + lozenge.r;
return sd/(rsum*rsum) - 1;

}

The segment-rectangle, squared-distance function is discussed in Section 14.6.3.
Finally, two lozenges are handled by the following pseudodistance function. The

distance between the lozenge rectangles is compared to the sum of the radii of the
objects.

float Pseudodistance (Lozenge lozenge0, Lozenge lozenge1)
{

float sd = SquaredDistance(lozenge0.rectangle,
lozenge1.rectangle);

float rsum = lozenge0.r + lozenge1.r;
return sd/(rsum*rsum) - 1;

}

The rectangle-rectangle, squared-distance function is discussed in Section 14.7.
As you can see from these simple examples, sphere-swept volumes nicely support

the concept of pseudodistance.

Sphere and Box

The natural choice for pseudodistance between a box and a sphere is to compute the
distance from the sphere center to the box and subtract the radius. This quantity is
positive when the objects are separated, zero if they are just touching, and negative
when they are overlapping. To avoid the square root calculation in the distance from
point to box, squared distance is used instead. So we can look at the squared distance
from box to sphere center minus the squared sphere radius. This measurement is an
absolute one in the sense that it varies with the scale of the objects. To obtain scale
independence, a relative measurement should be used. The pseudodistance function
for a box and capsule is

float Pseudodistance (Sphere sphere, Box box)
{

float sd = SquaredDistance(sphere.C,box);
return sd/(sphere.r*sphere.r) - 1;

}

The point-box, squared-distance function is discussed in Section 14.8.
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Capsule and Box

The natural choice for pseudodistance between a box and a capsule is to compute the
distance from the capsule segment to the box and subtract the radius. This quantity
is positive when the objects are separated, zero if they are just touching, and negative
when they are overlapping. The pseudocode is

float Pseudodistance (Capsule capsule, Box box)
{

float sd = SquaredDistance(capsule.segment,box);
return sd/(capsule.r*capsule.r) - 1;

}

The segment-box, squared-distance function is discussed in Section 14.9.3.

Sphere and Triangle

The natural choice for pseudodistance between a sphere and a triangle is to compute
the distance from the sphere center to the triangle and subtract the radius. This
quantity is positive when the objects are separated, zero if they are just touching, and
negative when they are overlapping.

float Pseudodistance (Sphere sphere, Triangle triangle)
{

float sd = SquaredDistance(sphere.C,triangle);
return sd/(sphere.r*sphere.r) - 1;

}

The point-triangle, squared-distance function is discussed in Section 14.3.

Capsule and Triangle

The natural choice for pseudodistance between a capsule and a triangle is to compute
the distance from the capsule segment to the triangle and subtract the radius. This
quantity is positive when the objects are separated, zero if they are just touching, and
negative when they are overlapping.

float Pseudodistance (Capsule capsule, Triangle triangle)
{

float sd = SquaredDistance(capsule.segment,triangle);
return sd/(capsule.r*capsule.r) - 1;

}

The segment-triangle, squared-distance function is discussed in Section 14.4.3.
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Convex Polygons and Convex Polyhedra

We have already seen that the method of separating axes may be used to compute
the first time of contact between convex polygons or convex polyhedra moving with
constant linear velocities. Alternatively, we may use the collision detection system de-
scribed here using pseudodistances between stationary polygons or polyhedra. Recall
that two objects are separated if the projections of the objects onto one of N differ-
ent axes are separated. If all the projections on the N axes overlap, then the objects
overlap. The number N depends on whether the objects are polygons or polyhedra
and depends on the number of edges of the polygons and the number of faces of the
polyhedra.

We may use the computations from the separation tests to build a pseudodistance
function. When all axes report overlap, choose the pseudodistance to be the negative
of the length of the largest overlapping interval (selected from N overlapping inter-
vals). When one axis reports no overlap, the objects are separated. A test-intersection
query is happy with this information and reports immediately that there is separa-
tion. The find-intersection query using pseudodistance needs to do more work. The
projections are still processed for N axes. The pseudodistance is chosen to be the
(positive) length of the smallest overlapping interval. If you do not process all axes,
there is the potential for the pseudodistance to be a discontinuous function, which
might affect the Newton’s iterations. By choosing the smallest length, you necessar-
ily will trap the case of just-touching objects—the smallest length is zero because the
projection intervals are just touching.

8.3.3 Collision Culling with Axis-Aligned Bounding Boxes

Detecting contact between nearby objects is sometimes referred to as the narrow
phase of collision detection. The broad phase is designed to eliminate pairs of objects
that are simply not in the proximity of each other. A particularly effective system uses
axis-aligned bounding boxes (AABBs) for the convex polyhedra bounding volumes.
If the AABBs of the objects do not intersect, then there is no need to perform the
more expensive intersection query for the convex polyhedra bounding volumes. The
collision culling system described here uses both spatial and temporal coherence.

Each time step that the convex polyhedra move, their AABBs move. First, we need
to update the AABB to make sure it contains the polyhedron. The polyhedron could
have rotated in addition to being translated, so it is not enough just to translate the
AABB. An iteration over the vertices of the newly moved polyhedron may be used
to compute the extremes along each coordinate axis, but if we have added the fast
extremal query support to the convex polyhedra discussed earlier, we can use six
queries to compute the AABB. It is also possible to use an AABB that is guaranteed to
contain any rotated version of the polyhedron, in which case we need only translate
the AABB when the polyhedron translates and/or rotates. This option avoids all the
extremal queries in exchange for a looser-fitting bounding box.
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Second, once the AABBs are updated for all the polyhedra, we expect that the in-
tersection status of pairs of polyhedra/AABBs has changed—old intersections might
no longer exist, new intersections might now occur. Spatial and temporal coherence
will be used to make sure the update of status is efficient.

Intersecting Intervals

The idea of determining intersection between AABBs is based on sorting and update
of intervals on the real line, a 1D problem that we will analyze first. The method we
describe here is mentioned in [Bar01]. A more general discussion of intersections
of rectangles in any dimension is provided in [PS85]. Consider a collection of n

intervals Ii = [bi , ei]for 1≤ i ≤ n. The problem is to efficiently determine all pairs of
intersecting intervals. The condition for a single pair Ii and Ij to intersect is bj ≤ ei

and bi ≤ ej . The naive algorithm for the full set of intervals just compares all possible
pairs, an O(n2) algorithm.

A more efficient approach uses a sweep algorithm, a concept that has been used
successfully in many computational geometry algorithms. First, the interval end-
points are sorted into ascending order. An iteration is made over the sorted list (the
sweep) and a set of active intervals is maintained, initially empty. When a beginning
value bi is encountered, all active intervals are reported as intersecting with interval
Ii, and Ii is added to the set of active intervals. When an ending value ei is encoun-
tered, interval Ii is removed from the set of active intervals. The sorting phase is
O(n log n). The sweep phase is O(n) to iterate over the sorted list, clearly asymptot-
ically faster than O(n log n). The intersecting reporting phase is O(m) to report the
m intersecting intervals. The total order is written as O(n log n + m). The worst-case
behavior is when all intervals overlap, in which case m = O(n2), but for our applica-
tions we expect m to be relatively small. Figure 8.24 illustrates the sweep phase of the
algorithm.

The sorted interval endpoints are shown on the horizontal axis of the figure.
The set of active intervals is initially empty, A = ∅. The first five sweep steps are
enumerated as follows:

1. b3 encountered. No intersections reported since A is empty. Update A = {I3}.
2. b1 encountered. Intersection I3 ∩ I1 is reported. Update A = {I3, I1}.
3. b2 encountered. Intersections I3 ∩ I2 and I1 ∩ I2 reported. Update A = {I3, I1, I2}.
4. e3 encountered. Update A = {I1, I2}.
5. e1 encountered. Update A = {I2}.

The remaining steps are easily stated and are left as an exercise.
A warning is in order here: The sorting of the interval endpoints must be handled

carefully when equality occurs. For example, suppose that two intervals [bi , ei] and
[bj , ej] intersect in a single point, ei = bj . If the sorting algorithm lists ei before
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Figure 8.24 The sweep phase of the algorithm.

bj , then when ei is encountered in the sweep, we remove Ii from the set of active
intervals. Next, bj is encountered and intersections of Ij with the active intervals
are reported. The interval Ii was removed from the active set on the previous step,
so Ij ∩ Ii is not reported. In the sort, suppose instead that bj is listed before ei by
the sorting algorithm. Since bi was encountered earlier in the sweep, the set of active
intervals contains Ii. When bj is encountered, Ij ∩ Ii is reported as an intersection.
Clearly, the order of equal values in the sort is important. Our application will require
that we report just-touching intersections, so the interval endpoints cannot be sorted
just as a set of floating-point numbers. Tags need to be associated with each endpoint
indicating whether it is a beginning point or an ending point. The sorting must take
the tag into account to make sure that equal endpoint values are sorted, so that values
with a “begin” tag occur before values with an “end” tag. The tags are not a burden
since, in fact, we need them anyway to decide during the sweep what type of endpoint
we have encountered. Pseudocode for the sort and sweep is

struct EndPoint
{

enum Type { BEGIN = 0, END = 1 };
Type type;
double value;
int interval; // index of interval containing endpoint

// EndPoint E1, E2;
// E1 < E2 when
// E1.value < E2.value, or
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// E1.value == E2.value AND E1.type < E2.type
}

struct Interval
{

EndPoint P[2];
};

void SortAndSweep (int n, Interval I[])
{

// Use O(n log n) sort.
array<EndPoint> L = Sort(n,I);

// active set of intervals (stored by index in array)
set<int> A = empty;

// (i,j) in S means I[i] and I[j] overlap.
set<int,int> S = empty;

for (i = 0; i < L.size(); i++)
{

if ( L[i].type == EndPoint::BEGIN )
{

for (each j in A) do
S.Insert(j,L[i].interval);

A.Insert(L[i].interval);
}
else // L[i].type == EndPoint::END
{

A.Remove(I[L[i].interval]);
}

}
}

Once the sort and sweep has occurred, the intervals are allowed to move about,
thus invalidating the order of the endpoints in the sorted list. We can re-sort the
values and apply another sweep, an O(n log n + m) process. However, we can do
better than that. The sort itself may be viewed as a way to know the spatial coherence
of the intervals. If the intervals move only a small distance, we expect that not many of
the endpoints will swap order with their neighbors. The modified list is nearly sorted,
so we should re-sort using an algorithm that is fast for nearly sorted inputs. Taking
advantage of the small number of swaps is our way of using temporal coherence to
reduce our workload. The insertion sort is a fast algorithm for sorting nearly sorted
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lists. For general input it is O(n2), but for nearly sorted data it is O(n + e), where
e is the number of exchanges used by the algorithm. Pseudocode for the insertion
sort is

// input: A[0] through A[n-1]
// output: array sorted in-place
void InsertionSort (int n, type A[])
{

for (j = 1; j < n; j++)
{

key = A[j];
i = j - 1;
while ( i >= 0 and A[i] > key )
{

Swap(A[i],A[i+1]);
i--;

}
A[i+1] = key;

}
}

The situation so far is that we have applied the sort-and-sweep algorithm to
our collection of intervals, a once-only step that requires O(n log n + m) time. The
output is a set S of pairs (i , j) that correspond to overlapping intervals, Ii ∩ Ij . Some
intervals are now moved, and the list of endpoints is re-sorted in O(n + e) time. The
set S might have changed. Two overlapping intervals might not overlap now. Two
nonoverlapping intervals might now overlap. To update S we can simply apply the
sweep algorithm from scratch, an O(n + m) algorithm, and build S anew. Better,
though, is to mix the update with the insertion sort. An exchange of two “begin”
points with two “end” points does not change the intersection status of the intervals.
If a pair of “begin” and “end” points is swapped, then we have either gained a pair
of overlapping intervals or lost a pair. By temporal coherence, we expect the number
of changes in status to be small. If c is the number of changes of overlapping status,
we know that c ≤ e, where e is the number of exchanges in the insertion sort. The
value e is expected to be much smaller than m, the number of currently overlapping
intervals. Thus, we would like to avoid the full sweep that takes O(n + m) time and
update during the insertion sort that takes shorter time O(n + e).

Figure 8.25 illustrates the update phase of the algorithm applied to the intervals
shown in Figure 8.24. At the initial time, the sorted endpoints are {b3, b1, b2, e3, e1,
b5, b4, e5, e2, e4}. The pairs of indices for the overlapping intervals are S = {(1, 2),
(1, 3), (2, 3), (2, 4), (2, 5), (4, 5)}. Now I1 moves to the right and I5 moves to the
left. The new endpoints are denoted b̄1, ē1, b̄5, and ē5. The list of endpoints that was
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Figure 8.25 The update phase of the algorithm when intervals have moved.

sorted but now has had values changed is {b3, b̄1, b2, e3, ē1, b̄5, b4, e5, e2, e4}. The
insertion sort is applied to this set of values. The steps follow.

1. Initialize the sorted list to be L = {b3}.
2. Insert b̄1, L = {b3, b̄1}.
3. Insert b2, L = {b3, b̄1, b2}.

(a) Exchange b̄1 and b2, L = {b3, b2, b̄1}. No change to S.

4. Insert e3, L = {b3, b2, b̄1, e3}.
5. Insert ē1, L = {b3, b2, b̄1, e3, ē1}.
6. Insert b̄5, L = {b3, b2, b̄1, e3, ē1, b̄5}.

(a) Exchange ē1 and b̄5, L = {b3, b2, b̄1, e3, b̄5, ē1}. This exchange causes I1 and I5
to overlap, so insert (1, 5) into the set: S = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4),
(2, 5), (4, 5)}.

7. Insert b4, L = {b3, b2, b̄1, e3, b̄5, ē1, b4}.
8. Insert ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, b4, ē5}.

(a) Exchange b4 and ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4}. This exchange causes
I4 and I5 to no longer overlap, so remove (4, 5) from the set: S = {(1, 2),
(1, 3), (1, 5), (2, 3), (2, 4), (2, 5)}.

9. Insert e2, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2}.
10. Insert e4, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2, e4}.
11. The new list is sorted and the set of overlaps is current.
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Figure 8.26 Axis-aligned rectangles overlap when both their x-intervals and y-intervals overlap.

Intersecting Rectangles

The algorithm for computing all pairs of intersecting axis-aligned rectangles is a
simple extension of the algorithm for intervals. An axis-aligned rectangle is of the
form [xmin, xmax]× [ymin, ymax]. Two such rectangles intersect if there is overlap be-
tween both their x-intervals and their y-intervals, as shown in Figure 8.26. The rect-
angles are [x0, x1]× [y0, y1] and [x2, x3]× [y2, y3]. The rectangles overlap because
[x0, x1]∩ [x2, x3] �= ∅ and [y0, y1]∩ [y2, y3] �= ∅.

In the 2D setting we maintain two sorted lists, one for the endpoints of the x-
intervals and one for the endpoints of the y-intervals. The initial step of the algorithm
sorts the two lists. The sweep portion is only slightly more complicated than for one
dimension. The condition for overlap is that the x-intervals and y-intervals overlap.
If we were to sweep the sorted x-list first and determine that two x-intervals overlap,
that is not sufficient to say that the rectangles of those x-intervals overlap. We could
devise some fancy scheme to sweep both x- and y-lists at the same time, but it is
simpler just to do a little extra work. If two x-intervals overlap, we will test for overlap
of the corresponding rectangles in both dimensions and update the set of overlapping
rectangles as needed.

Once we have the sorted lists and a set of overlapping rectangles, we will move the
rectangles and must update the lists and set. The process will use an insertion sort to
take advantage of spatial and temporal coherence. The x-list is processed first. If an
exchange occurs so that two previously overlapping intervals no longer overlap, the
corresponding rectangles no longer overlap so we can remove that pair from the set
of overlaps. If an exchange occurs so that two previously nonoverlapping intervals
now overlap, the corresponding rectangles may or may not overlap. Just as we did for
the initialization phase, we will simply test the corresponding rectangles for overlap
in both dimensions and adjust the set of overlaps accordingly.
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Intersecting Boxes

You should see clearly that the algorithm for axis-aligned rectangles in two dimen-
sions extends easily to axis-aligned boxes in three dimensions. The collision system
itself has the following outline:

1. Generate AABBs for the convex polyhedra of the system using the fast extremal
query support built into the polyhedra.

2. Using the sort-and-sweep method, compute the set S of all pairs of intersecting
AABBs.

3. Determine which AABBs intersect using the fast insertion sort update.

4. For each pair of intersecting AABBs, determine if the contained convex polyhedra
intersect. For those pairs that do, compute the contact information.

5. The contact information is passed to the collision response system to be used
to modify the behavior of the objects in a physically realistic manner. Typically,
this amounts to changing the path of motion, adjusting the linear and angular
velocities, and transferring momentum and energy, and is done via differential
equation solvers for the equations of motion.

6. Recompute the AABBs using the fast extremal query support.

7. Repeat step 3.

8.4 Object Picking

A classical application for line-object intersection is picking—selecting an object
drawn on the screen by clicking a pixel in that object using the mouse. Figure 8.27
illustrates a pick ray associated with a screen pixel, where the screen is associated with
the near plane of a view frustum. The eye point E, in world coordinates, is used for
the origin of the pick ray. We need to compute a unit-length direction W, in world
coordinates. The pick ray is then E + tW for t ≥ 0.

8.4.1 Constructing a Pick Ray

The screen has a width of W pixels and a height of H pixels, and the screen coordi-
nates are left-handed (x to the right, y down). The selected point (x , y) is in screen
coordinates, where 0 ≤ x ≤ W − 1 and 0 ≤ y ≤ H − 1. This point must be converted
to world coordinates for points on the near plane. Specifically, we need a correspond-
ing point Q = E + nD + xvR + yvU, where rmin ≤ xv ≤ rmax and umin ≤ yv ≤ umax,
and where n is the distance from the eye point to the near plane. This is a matter of
some simple algebra:
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Figure 8.27 (a) A view frustum with a point selected on the near plane. The pick ray has an
origin that is the eye point E, in world coordinates, and a direction that is from
the eye point to the selected point. (b) The viewport on the near plane with screen
coordinates (x , y) listed for the selected point.

(xp , yp) =
(

x

W − 1
, 1 − y

H − 1

)

(xv , yv) = ((1 − xp)rmin + xprmax , (1 − yp)umin + ypumax)

The first equation lists the normalized viewport coordinates, (xp , yp), that live in the
set [0, 1]2. Observe that the left-handed screen coordinates are converted to right-
handed normalized viewport coordinates by reflecting the y-value. The pick ray
direction is

W = Q − E

|Q − E| = nD + xvR + yvU

n2 + x2
v
+ y2

v

The pick ray may now be used for intersection testing with objects in the world to
identify which one has been selected.

The construction is accurate as long as the entire viewport is used for drawing the
scene. The Camera class, however, allows you to select a subrectangle on the screen in
which the scene is drawn, via member function SetViewport. Let xpmin, xpmax, ypmin,
and ypmax be the viewport settings in the camera class. The default minimum values
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Figure 8.28 The viewport on the near plane with screen coordinates (x , y) listed for the selected
point. The viewport is not the entire screen.

are 0, and the default maximum values are 1. If they are changed from the defaults, the
pick ray construction must be modified. Figure 8.28 shows the screen with a viewport
that is not the size of the screen.

The new construction for (xv , yv) is

(xp , yp) =
(

x

W − 1
, 1 − y

H − 1

)

(xw , yw) =
(

xp − xpmin

xpmax − xpmin

,
yp − ypmin

ypmax − ypmin

)

(xv , yv) = ((1 − xw)rmin + xwrmax , (1 − yw)umin + ywumax)

The conversion is as if the smaller viewport really did fill the entire screen. This makes
sense in that the world coordinate pick ray should be the same for a scene regardless of
whether you draw the scene in the full screen or in a subrectangle of the screen. The
implementation for constructing the pick ray is the function Camera::GetPickRay,
found in Wm4Camera.cpp on the CD-ROM. The Camera class does not store the width
and height of the screen, so those values must be passed to the function. The reason
not to store them is that the screen dimensions are allowed to change, for example,
via resizing of the application window, but the camera model is not dependent on
those changes. The Renderer class does store the screen dimensions.
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8.4.2 Scene Graph Support

Now that we know how to construct a pick ray, we actually have to do the intersection
testing with the scene. Wild Magic supports this in a hierarchical manner, using the
bounding volumes attached to the nodes in a scene hierarchy. Starting with the root
node, a test-intersection query is made between the pick ray and the world bounding
volume of the node. If the ray does not intersect the bounding volume, then it cannot
intersect the scene contained in the bounding volume—no intersection occurs. If
the pick ray does intersect the world bounding volume, then the test-intersection
query is propagated to all the children of the node (in the usual depth-first manner).
The propagation continues recursively along a path to a leaf node as long as the ray
and bounding volumes along that path intersect. If the ray and leaf-node bounding
volume intersect, then a find-intersection query between the ray and whatever the
leaf node represents must be made. The query depends on the actual class type of the
leaf; the information reported by the query is also dependent on the class type.

The subsystem for hierarchical picking is contained in class Spatial. The relevant
interface is

class Spatial
{
public:

class PickRecord
{
public:

virtual ~PickRecord ();

Pointer<Spatial> IObject; // intersected leaf object
float T; // pick ray parameter (t >= 0)

protected:
PickRecord (Spatial* pkIObject, float fT);

};

typedef TArray<PickRecord*> PickArray;

virtual void DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults);

static PickRecord* GetClosest (PickArray& rkResults);
};

The nested class PickRecord represents the minimal amount of information that
a find-intersection query computes, the parameter t for which the pick ray P + tD
intersects an object. Each Spatial-derived class derives its own pick record class from
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PickRecord and adds whatever information it wants to return from a successful find-
intersection query, instigated by a call to DoPick. The ray parameter can be used to
sort the intersection points after a call to DoPick.

Notice that the PickRecord does not have the capability for run-time type in-
formation (RTTI). However, RTTI is obtained by using the Object-based RTTI for
the PickRecord data member IObject. Once that member’s type is known, the Pick-
Record can be cast to the appropriate PickRecord-derived class.

A find-intersection query can produce a lot of intersection results. Thus, a con-
tainer class for pick records is needed to store the results. I have chosen a dynamic
array, named PickArray, that stores an array of pointers to PickRecord objects. The
entry point to the query is the function DoPick. The inputs are the origin and direc-
tion for the pick ray, in world coordinates, and an array to store the pick records.
On return, the caller is responsible for iterating over the array and deleting all the
PickRecord objects.

In most cases, the picked object is the one closest to the origin of the ray. The
function GetClosest implements a simple search of the array for the pick record with
the minimum t-value.

The Node class is responsible for the test-intersection query between the pick ray
and world bounding volume and for propagating the call to its children if necessary.
The DoPick function is

void Node::DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults)

{
if (WorldBound->TestIntersection(rkOrigin,rkDirection))
{

for (int i = 0; i < m_kChild.GetQuantity(); i++)
{

Spatial* pkChild = m_kChild[i];
if (pkChild)
{

pkChild->DoPick(rkOrigin,rkDirection,
rkResults);

}
}

}
}

The implementation is straightforward. The BoundingVolume class has support for
the test-intersection query with a ray. If the ray intersects the bounding volume, an
iteration is made over the children and the call is propagated. The SwitchNode class
has a similar implementation, but it only propagates the call to the active child.

The most relevant behavior of DoPick is in the class TriMesh, which represents a
mesh of triangles. The class introduces its own PickRecord type:
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class TriMesh
{
public:

class PickRecord : public Geometry::PickRecord
{
public:

PickRecord (TriMesh* pkIObject, float fT,
int iTriangle, float fBary0, float fBary1,
float fBary2);

// index of the triangle intersected by the ray
int Triangle;

// barycentric coordinates of point of intersection
// If b0, b1, and b2 are the values, then all are
// in [0,1] and b0 + b1 + b2 = 1.
float Bary0, Bary1, Bary2;

};
};

The pick record stores the index of any triangle intersected by the ray. It stores
the barycentric coordinates of the intersection point with respect to the triangle. This
allows the application to compute interpolated vertex attributes as well as the actual
point of intersection. The base class for the pick record is Geometry::PickRecord,
but in fact Geometry has no such definition. The compiler resorts to checking farther
down the line and finds Spatial::PickRecord as the base class.

The implementation of DoPick is

void TriMesh::DoPick (const Vector3f& rkOrigin,
const Vector3f& rkDirection, PickArray& rkResults)

{
if (WorldBound->TestIntersection(rkOrigin,rkDirection))
{

// Convert the ray to model-space coordinates.
Ray3f kRay(World.ApplyInverse(rkOrigin),

World.InvertVector(rkDirection));

// Compute intersections with the model-space triangles.
const Vector3f* akVertex = Vertices->GetData();
int iTQuantity = Indices->GetQuantity()/3;
const int* piConnect = Indices->GetData();
for (int i = 0; i < iTQuantity; i++)
{

int iV0 = *piConnect++;
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int iV1 = *piConnect++;
int iV2 = *piConnect++;

Triangle3f kTriangle(akVertex[iV0],akVertex[iV1],
akVertex[iV2]);

IntrRay3Triangle3f kIntr(kRay,kTriangle);
if (kIntr.Find())
{

rkResults.Append(new PickRecord(this,
kIntr.GetRayT(),i,kIntr.GetTriB0(),
kIntr.GetTriB1(),kIntr.GetTriB2()));

}
}

}
}

A test-intersection query is made between the pick ray and the world bounding
volume. If the ray intersects the bounding volume, a switch is made to a find-
intersection query to determine which triangles are intersected by the ray, and
where. The triangle vertex data is in model coordinates, whereas the pick ray is
in world coordinates. We certainly could transform each model triangle to world
space and call the find-intersection query, but that involves potentially a large num-
ber of vertex transformations—an expense you do not want to incur. Instead, the
pick ray is inverse-transformed to the model space of the triangle mesh, and the
find-intersection queries are executed. This is a much cheaper alternative! For each
triangle, a ray-triangle, find-intersection query is made. If an intersection occurs, a
pick record is created and inserted into the array of pick records.

One potential inefficiency is that the triangles are processed in a linear traversal. If
the mesh has a very large number of triangles and the ray intersects only a very small
number, a lot of computational time will be spent finding out that many triangles are
not intersected by the ray. This is a fundamental problem in ray-tracing applications.
One of the solutions is to use a hierarchical bounding volume tree that fits the triangle
mesh. The idea is to localize in the mesh where intersections might occur by culling
out large portions of the bounding volume tree, using fast rejection algorithms for
ray-object pairs. Well, this is exactly what we have done at a coarse level, where the
nodes of the tree are the Node objects in the scene. I have not provided a fine-level
decomposition at the triangle mesh level for the purposes of picking , but it certainly
can be added if needed. For example, you could implement an OBB tree to help
localize the calculations [GLM96].

A couple of the sample applications use picking. The application

GeometricTools/WildMagic4/SampleGraphics/Castle
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allows you to pick objects in the scene. If you pick using the left mouse button, the
name of the selected geometry object is displayed in the lower-right portion of the
screen. If you pick using the right mouse button, the selected geometry object is
displayed as a wireframe object. This allows you to see what is behind the scenes (pun
intended).

Another application using picking is

GeometricTools/WildMagic4/SampleGraphics/MorphControllers

This application displays a morphing face in the lower portion of the screen. A
reduced viewport is used for the display. The upper portion of the screen displays the
five targets of the morph controller. Each target is displayed in its own small viewport.
The picking system reports which target you have selected, or if you selected the
morphing face, or if nothing has been selected. The application illustrates that the
pick ray must be chosen using the camera’s viewport settings and cannot always
assume the viewport is the entire screen.

8.4.3 Staying on Top of Things

Given a 3D environment in which characters can roam around, an important feature
is to make certain that the characters stay on the ground and not fall through! If
the ground is a single plane, you may use this knowledge to keep the camera (the
character’s eye point, so to speak) at a fixed height about the plane. However, if the
ground is terrain, or a set of steps or floors in an indoor level, or a ramp, or any
other nonplanar geometry, the manual management of the camera’s height above the
current ground location becomes more burdensome than you might like.

The picking system can help you by eliminating a lot of the management. The
idea is to call the picking system each time the camera moves. The pick ray has
origin E (the camera eye point) and direction −U (the downward direction) for the
environment. Do not use the camera’s up vector for U. If you were to pitch forward
to look at the ground, the up vector rotates with you. The environment up vector is
always fixed. The smallest t-value from the picking tells you the distance from the eye
point to the closest object below you. You can then update the height of the camera
using the t-value to make certain you stay at a fixed height.

The application

GeometricTools/WildMagic4/SampleGraphics/Castle

implements such a system. The relevant application function is

void Castle::AdjustVerticalDistance ()
{

// Retain vertical distance above "ground."
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Spatial::PickArray kResults;
m_spkScene->DoPick(m_spkCamera->GetLocation(),

Vector3f(0.0f,0.0f,-1.0f), kResults);

if (kResults.GetQuantity() > 0)
{

Spatial::PickRecord* pkRecord =
Spatial::GetClosest(kResults);

assert( pkRecord );
TriMesh* pkMesh = DynamicCast<TriMesh>(

pkRecord->IObject);
TriMesh::PickRecord* pkTMRecord =

(TriMesh::PickRecord*)pkRecord;

Vector3f kV0, kV1, kV2;
pkMesh->GetWorldTriangle(pkTMRecord->Triangle,

kV0,kV1,kV2);
Vector3f kClosest =

pkTMRecord->Bary0*kV0 +
pkTMRecord->Bary1*kV1 +
pkTMRecord->Bary2*kV2;

kClosest.Z() += m_fVerticalDistance;
m_spkCamera->SetLocation(kClosest);

for (int i = 0; i < kResults.GetQuantity(); i++)
{

delete kResults[i];
}

}
}

void Castle::MoveForward ()
{

Application::MoveForward();
AdjustVerticalDistance();

}

The MoveForward function is called when the up arrow is pressed. The base class
MoveForward translates the camera’s eye point by a small amount in the direction of
view. The AdjustVerticalDistance adjusts that translation in the environment up
direction to maintain a constant height above the ground or other objects. As you
wander around the castle environment, you will notice that you always stay on top of
things, including the ground, stairs, and ramps.
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8.4.4 Staying Out of Things

We have seen how to stay on top of things by using the picking system. In the same 3D
environment, it is also important not to let the characters walk through walls or other
objects. Collision avoidance, as it is called, is a broad topic. Typically, the avoidance is
based on a test-intersection query of the bounding volume of the character against the
various objects in the environment. This is complicated to get right, and potentially
expensive if the object-object intersection algorithm is complicated.

An alternative that is not exact, but just a heuristic, is to cast a small number
of pick rays from the eye point out into the scene. Consider this a form of probing
(sometimes called stabbing , in the occlusion culling literature) to see what objects
might be in the way. The more dense the set of rays, the less likely you will accidentally
allow the character to pass through an object. However, the more dense the set, the
more expensive the picking computations become. The balance between number of
pick rays and speed of the testing will, of course, depend on your environments.

The application

GeometricTools/WildMagic4/SampleGraphics/Castle

supports collision avoidance via picking in addition to maintaining a constant height
above the ground.

8.5 Pathfinding to Avoid Collisions

Pathfinding is the process of determining a navigable path from a source location to a
destination location. Various obstacles may occur along the way that must be avoided.
General 3D pathfinding is difficult to implement and is CPU-intensive. A reduction
in dimension is useful to improve performance by eliminating some of the com-
putation burden. A pathfinding system may be built essentially for 2D (horizontal)
motion, but allows movement vertically when necessary and when allowed. Much of
the data needed to support pathfinding is constructed off-line, again reducing the
computational burden during run time of the application. However, the off-line con-
struction requires extracting information from the scene to allow the construction of
data structures for the pathfinding. The simplest way to put this information into the
3D environment in the first place is to have an artist tag geometric quantities of inter-
est in a scene build using his favorite 3D modeling package, export the scene to your
own scene graph data structures, and then apply a postprocessing tool to generate the
pathfinding data structures from the tags.

The essence of pathfinding is visibility and reachability. The destination is said
to be reachable from the source if there is an unobstructed path connecting the
two points. Such a path might exist even if the destination is not visible from the
source. However, the path connecting the two points will consist of subpaths, with the
endpoints of each subpath visible to each other. The essence of path construction will,
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therefore, involve visibility graphs, a standard concept in computational geometry.
Much of the material here should remind you of the discussion for a room-portal
system since it also has a lot to do with visibility graphs.

8.5.1 Environments, Levels, and Rooms

A scene graph is built to represent the 3D environment , which consists of a collection
of levels. The typical scenario is an environment consisting of an outside region con-
taining buildings, greenery, walkways, and other objects you normally find outside.
The buildings consist of sets of levels, each level a collection of rooms interconnected
by doorways, halls, or similar items. The levels themselves are interconnected by stair-
ways, elevators, ramps, or similar items. The outside region is itself considered to be
a level and may be thought of as partitioned into rooms, but only for the purposes
of meeting some geometric constraints to make the pathfinding tractable. As a level,
the outside is connected to buildings via doorways or other means of entering and
exiting the building.

World Coordinate System

An environment has a world coordinate system consisting of an origin C and three
direction vectors D, U, and R; see Section 2.1.1. The up vector U provides the
direction in which height is measured. The other two vectors are used for ground
measurements. Any world point X may be represented in the world coordinate system
as

X = C + g0R + g1D + hU

The first two coefficients are the ground coordinates, (g0, g1), and the last component
is the height coordinate, h. All pathfinding computations are based on the world
coordinate system and take advantage of the decomposition into ground coordinates
and the height coordinate, a “2D plus 1D” decomposition.

Room-Doorway Multigraphs

The concepts of environment and level are fairly simple, both acting as grouping
terms. An environment is a group of levels; a level is a group of rooms. The relation-
ships between these entities are graph theoretic. The rooms in a level are connected by
doorways, just like we had for a room-portal environment. At first glance you might
be tempted to represent the rooms and doorways as an undirected graph, where the
rooms are the graph nodes and the doorways are the graph arcs, but in fact the repre-
sentation must be a multigraph. In a graph, two nodes may be connected by a single
arc. In a level, two adjacent rooms may have multiple doorways between them; thus,
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a graph is not sufficient for the representation and a multigraph is necessary. A room-
portal system has the same requirement for visibility determination; see Section 6.3
for details.

Level-Connector Multigraphs

As mentioned previously, the levels are interconnected by stairways, elevators, ramps,
or similar items. These objects connecting the levels are generally referred to as con-
nectors, and the relationship between levels and connectors may be represented by a
multigraph, just as rooms and doorways are. Multigraphs are necessary because two
levels of a building may be connected by two or more stairways.

The Structure of Rooms

Each room represents a bounded region of space. When viewed from above, or equiv-
alently when projected onto the ground plane, the room’s projection is assumed to be
bounded by a polygon. Many of the geometric queries needed to establish a navigable
path between locations can be quite complicated if the bounding polygon is simple,
but not convex. To simplify the implementation, maintain reasonable performance,
and avoid the standard problems with floating-point, round-off errors in computa-
tional geometry, the assumption is made that the bounding polygon for the room’s
projection is convex. This does not preclude nonconvex regions that represent what
you want to call a room, but like the room-portal system, you can partition the non-
convex region into convex ones, thus representing the true room as a union of convex
rooms. The boundary polygon for each room may be constructed off-line by using the
node tagging system that was described in Section 4.7.

The walls that define a room are assumed to be vertical. This assumption sup-
ports the construction of the boundary polygon for the room’s projection. Although
a reasonable assumption for many scenes, sometimes you might want walls that are
not vertical or planar. This is possible through node tagging in the artwork. The
“walls” used to define the room boundary need not be displayable geometry; that
is, an artist can tag them to be removed after exporting or to be ignored by the ren-
derer by setting the Spatial::Culling flags to Spatial::CULL_ALWAYS. The actual wall
geometry must then be handled differently—as obstacles, a concept to be discussed
later.

To complete the bounding geometry for a room, we also need a floor and a ceiling .
These are triangle meshes that represent height fields. The meshes do not have to be
coplanar triangles. This is particularly important for the outside region, which has no
ceiling but has a floor that is most likely terrain. It is important, though, that these
meshes represent height fields. This assumption, together with the convex boundary
polygon assumption, supports fast point-in-room queries.
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Figure 8.29 A typical blueprint of a room.

Each room has obstacles around which a game character must navigate. These
are typically chairs, tables, desks, and so on. Given the fixed vertical direction, the
room may be represented by a blueprint , which is the 2D layout of the room when
viewed from the vertical direction. Figure 8.29 illustrates a typical blueprint. The
doorways are cutouts of the walls and the obstacles are shaded in gray with black
outlines. The arrangement of the table and chairs shows that the projections of the
obstacles onto the horizontal are not necessarily separated. In Figure 8.29, the table
is circular. Modeling packages produce triangle meshes, so in practice the table shape
is polygonal.

The navigation problem is abstracted to finding a planar polyline path from a
starting point to an ending point, where the polyline does not cut through polygonal
obstacles. Generally, there are infinitely many paths, one of which is the shortest path.
Figure 8.30 illustrates some paths. The taupe path is the shortest path connecting the
starting and ending points. For polygonal obstacles, this path must contain edges of
the polygonal obstacles and of segments connecting the starting and ending points to
polygon vertices.

The pathfinding illustrated here is for a game character represented as a single
point located at the camera eye point. A complication is that if the eye point is allowed
to be close to the sides of obstacles (or walls), the geometry can intersect the near
plane of the view frustum, thereby allowing the observer to see inside the obstacle. To
avoid this problem, the game character may be thought of as a circular disk within
the blueprint; for example, the disk can be the projection of a bounding cylinder or
capsule for the character. Unobstructed navigation through the room requires a path
for the disk center to traverse without the disk intersecting the polygonal obstacles.
An equivalent formulation shrinks the disk to a point and grows the obstacles by the
radius of the sphere. The point must follow a path through the modified environment
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Figure 8.30 Movement paths between two points in a room. The black dots indicate the starting
and ending points. The light blue and dark blue paths are randomly selected. The
taupe path is the shortest path.
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Figure 8.31 The starting and ending points both have disks indicating the size of the game
character. The couch is enlarged by the radius of the disk. The shortest path hugs
the boundary of the enlarged couch.

without passing through the enlarged obstacles, as illustrated in Figure 8.31. The
appropriate choice for radius depends on the camera view frustum parameters.

The enlarged polygonal objects have boundaries that consist of line segments
and circular arcs. The pathfinding algorithm becomes much more complicated for
such objects compared to polygonal ones. It is not necessary to be precise and use
a disk to represent the game character. Instead, we may use a regular polygon of
appropriate size. The enlarged polygonal objects are then also polygonal objects,
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so the pathfinding algorithm remains fairly simple. But even this can be tedious to
implement. If the near-plane problem does show up for some objects, an alternative
is to have the artist generate nondisplayable geometry to be used for creating the
obstacle, but that geometry amounts to a bounding volume for the actual object
and the bounding volume is larger than need be. The path will hug the polygon of
projection of the bounding volume, but not touch the actual obstacle projection.

Obstacles in a room are optional objects. Whether an object is an obstacle is the
choice of the artist. Rooms may have other objects that are not tagged as obstacles, in
which case the pathfinding system will ignore them when building blueprints. For
example, if a room has a chandelier that is tall enough not to obstruct the game
character’s path, there is no reason to make it an obstacle.

Optionally, each room also has obstacles called transporters. These are objects
that house the connections between levels, to be discussed later. For example, the
transporter might be the geometry for an elevator shaft or a stairwell.

8.5.2 Moving between Rooms

Constructing the visibility graph for the entire indoor-outdoor environment can
be very expensive. Partitioning of the levels into rooms, each room having its own
visibility graph, makes the problem less computationally expensive. To assist with the
pathfinding between rooms, each doorway has an associated waypoint . If the starting
point is in one room and the ending point is in an adjacent room, the pathfinder will
construct two subpaths, one from the starting point to the waypoint of the doorway
connecting the two rooms and one from the waypoint to the ending point. Figure
8.32 illustrates this. The construction of the subpath in Room A is based only on the
visibility graph for Room A. Similarly, the subpath in Room B is based only on the
visibility graph for Room B. The introduction of waypoints may be viewed as a graph
decomposition, each subgraph small enough to allow fast pathfinding within it.

If a doorway between two rooms is very wide, a path connecting the rooms will go
through the waypoint, even if the starting and ending points are close to each other
through the doorway. Figure 8.33 illustrates this. The wide doorway is represented
as two smaller doorways, one drawn in light blue and one drawn in taupe. Each of
the smaller doorways has a waypoint. The gray path from start to end is the one that
would have been taken with a single doorway and waypoint. The dark blue path from
start to end is the one taken with the two waypoints. The introduction of invisible
doorways and more waypoints is also a useful technique for partitioning the abstract
rooms of the outside level.

8.5.3 Moving between Levels

The previous discussion was in the context of pathfinding within a room and between
rooms on the same level. The buildings may consist of multiple levels, and the game
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Doorway

Start

End

Waypoint

Room A Room B

Figure 8.32 A path between adjacent rooms consists of two subpaths meeting at the waypoint of
the doorway connecting the two rooms.

Doorway

Doorway
Start End

Room A Room B

Figure 8.33 A path connecting two points, which is required to go through a single waypoint for
a wide doorway, is drawn in gray. A shorter path connecting the two points is shown
based on the doorway being represented as multiple doorways, each with its own
waypoint.

character will be allowed to move from one level to another within a building. The
geometric objects over which the game character may travel are called level connectors,
for example, stairs, ramps, and elevators. To keep the pathfinding from becoming
overly complex, you might want to impose the constraint that no obstacles occur
on level connectors, but it is possible to design the pathfinding system to handle
obstacles within connectors. Assuming you have chosen not to have obstacles inside
the level connectors, the paths for the level connectors may be constructed as a
preprocessing step. In gaming terminology, the game character is said to move on rails
when traveling through the connector. Observe the similarity between a waypoint
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between two rooms and a rail betweem two levels. Both support the decomposition
of the total visibility graph for the environment into disjoint subgraphs.

If the game character is on one level and the user selects a connector to traverse
to another level, the pathfinding can move the game character first to a transporter
housing the connector and then along the rail to the other level. For example, a
transporter would represent an elevator shaft. The transporter can have one or more
hatches that represent the entrance into the transporter. An automated pathfinding
system can generate a path from the game character (the source) to one of the hatches
(the destination). A subpath from the hatch to the start of the rail can be generated
and appended to the current path, and then the rail itself is appended to the path.
The game character may then be moved along this compound path to arrive at its
desired destination. One problem, though. Once the game character arrives at a hatch
point via an automatically generated path, he or she is ready to enter the transporter
and follow the rail to a connecting level. The problem, though, is that there may be
multiple levels. For example, if a game character arrives at a hatch that is an entrance
to a stairwell in a building, he or she has multiple levels in the building to travel
to. Thus, a transporter must represent multiple connections between levels. The
pathfinding system needs to have support for queries about which levels are available
to proceed to. The application can present the possibilities to the user, perhaps using
a GUI component such as a pop-up menu. The user selects one of the possibilities
and the pathfinding system appends the corresponding subpaths to the current path
of the game character.

8.5.4 Moving through the Outdoor Environment

The outdoor environment may be thought of as a single level with a single room.
As such, it may contain obstacles such as bushes, trees, benches, and grass patches
with keep-off-the-grass signs. The buildings themselves may be considered obstacles,
but with doorways (and waypoints) connecting the indoors and outdoors. If the
outdoor environment is large enough, you may want to consider using waypoints
to decompose it into smaller pieces to keep the visibility graph updates inexpensive.
The node tagging system and a postprocessing tool can be used to support this. If the
outdoor level is to be connected to a building level, the entranceway connecting inside
and outside would be represented as a level connector, and the entranceway itself is a
transporter object. The rail is a line segment passing through the entranceway.

8.5.5 Blueprints

Automatic pathfinding through a general 3D environment is an expensive propo-
sition, typically relying on collision detection to prevent the game character from
walking through obstacles or walls. Generating such paths without regard to mesh
geometry, topology, or the organization of objects in the environment places a lot of
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burden on the programmer to get a general system to work. I consider this an in-
tractable approach. It is better to make some simplifying assumptions and to place
some of the burden on the artists to structure the scenes and tag them with informa-
tion to support an automatic pathfinding system.

As described in this section, the pathfinding is reduced to a 2D problem. Imagine
a level of interconnected rooms, all with vertical walls. The projection of the walls
leads to 2D polygons for the room boundaries. The obstacles in the room also project
to 2D polygons. The result of the projection is what I call a blueprint , similar to
the blueprints that you see for architecting a building. See Figure 8.29 for a typical
blueprint for a single room with some obstacles.

Pathfinding in 2D is a lot simpler to implement than in 3D. In 2D, the environ-
ment consists of a collection of polygons, a source point (the game character’s current
location), and a destination point (the game character’s desired location). This topic
has been studied extensively in the field of computational geometry and amounts to
constructing a visibility graph of the polygon vertices, source point, and destination
point.

Keep in mind that the actual scene is still 3D, so the blueprints for a level must be
generated somehow. A scene graph must be created by the artist and its nodes tagged
subject to various constraints. Room walls, obstacles, transporters, and other objects
of interest must be created and tagged in order to facilitate blueprint construction.

8.5.6 Visibility Graphs

The heart of the pathfinding system is the concept of visibility graphs. Given a source
point, a destination point, and a set of polygon obstacles, the goal is to compute
the shortest path from the source to the destination, all the while avoiding passing
through the obstacles. See Figure 8.30 for the typical scenario. The shortest path must
be a polyline whose endpoints are the source and destination and whose interior
points are polygon vertices.

Static Visibility

The vertices of the polygon obstacles are the graph vertices for what is called the static
visibility graph. The modifier static refers to the fact that the polygons never move
during the pathfinding. Thus, the portion of the total visibility graph corresponding
to the polygon vertices can be precomputed and used at run time.

Figure 8.34 shows two triangle obstacles. The graph vertices are {Vi}5
i=0. The

graph edges are abstractly represented by a 6 × 6 adjacency matrix. The matrix is
symmetric because the edges are undirected. The matrix entry mij is set to 1 if Vi and
Vj can see each other; that is, their view of each other is unobstructed by a triangle
edge. Otherwise, the entry is set to 0. By convention, a vertex cannot see itself, so the
diagonal of the adjacency matrix has all zeros. Also by convention, two consecutive
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V1
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Figure 8.34 Two triangle obstacles. The static visibility graph has six vertices and 12 undirected
edges out of 15 possible undirected edges.

Table 8.3 The adjacency matrix for the visibility graph of Figure 8.34.

V0 V1 V2 V3 V4 V5

V0 0 1 1 1 1 1

V1 1 0 1 0 1 1

V2 1 1 0 0 1 0

V3 1 0 0 0 1 1

V4 1 1 1 1 0 1

V5 1 1 0 1 1 0

polygon vertices can see each other. The adjacency matrix for the visibility graph of
the triangles in Figure 8.34 is shown in Table 8.3.

The pseudocode for computing the static visibility graph is

VisibilityGraph G;
G.Vertices = <set of polygon vertices>;
for each P in G.Vertices do
{

for each Q in G.Vertices do
{

bool isGraphEdge = true;
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for each polygon edge E do
{

if E occludes P from seeing Q then
{

isGraphEdge = false;
break;

}
}
if (isGraphEdge)
{

G.Edges.Insert(P,Q);
}

}
}

For example, in Figure 8.34, the triangle edge 〈V4, V5〉 occludes the view of V2 from
V3, so the visibility graph edges do not include 〈V2, V3〉. The adjacency matrix entry
m23 is therefore 0.

Dynamic Visibility

The source point is the location of the game character. The destination point is
selected by some means. The shortest path connecting the source and destination is
a polyline whose endpoints are the source and destination and whose interior points
are polygon vertices. The source and destination points will change frequently, thus
affecting what is visible to them. The static visibility graph must be updated to include
the source and destination. The resulting graph is called the dynamic visibility graph.
In the actual application, the dynamic visibility graph is computed temporarily by
inserting visibility edges related to the source and destination, but once the shortest
path query is executed, those edges are removed and the static visibility graph is
restored.

Figure 8.35 shows the triangle obstacles of Figure 8.34, a source point, and a
destination point. The shortest path between them is also shown. The adjacency
matrix representation of the graph edges is expanded to accommodate the source
and destination, so it is now an 8 × 8 matrix. The source point is denoted S and
the destination point is denoted D. Table 8.4 shows the expanded adjacency matrix
representation.

The shortest path is the sequence of points {S, V5, V1, D}. In this example, the
source cannot see the destination. In a situation where it can see the destination, then
the shortest path is just the line segment connecting the source and destination.

In theory, the adjacency matrix representation for the visibility graph is intuitive,
but in practice the storage requirements are excessive. An implementation should use
dynamically resizable containers. I tend to use an std::vector data structure to store
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Figure 8.35 Triangle obstacles, source and destination points, and the shortest path connecting
those points.

Table 8.4 The expanded adjacency matrix for the graph of Figure 8.35.

V0 V1 V2 V3 V4 V5 S D

V0 0 1 1 1 1 1 1 0

V1 1 0 1 0 1 1 0 1

V2 1 1 0 0 1 0 0 1

V3 1 0 0 0 1 1 1 0

V4 1 1 1 1 0 1 0 1

V5 1 1 0 1 1 0 1 0

S 1 0 0 1 0 1 0 0

D 0 1 1 0 1 0 0 0

the graph vertices. My choice of container for the graph edges depends on how large
the graphs will be in my applications.

Dijkstra’s Algorithm

At the core of the graph data structure is the support for computing the shortest paths
from a single source vertex to all the other graph vertices. The standard algorithm for
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doing this is Dijkstra’s algorithm, which is essentially a relaxation scheme to compute
the minimum weight paths in a directed graph. The details are provided in the book
[CLR90].

Each vertex has associated with it two values: an estimate of the distance from
the source to that vertex, and a predecessor in the current path from the source to
the vertex that estimates the shortest path. All vertices are stored in an array, so
the predecessor is stored as an index into that array. Initially, all estimates are set to
infinity, except for the source vertex whose estimate is set to zero, and the predecessors
are set to −1 (invalid index). Each edge has associated with it the length of the
segment connecting the two vertices that make up the edge.

The vertex with the minimum estimate is removed from the array; call it V[min].
There is a candidate shortest path from source S to V[min] with path length given by
V[min].estimate. The path is

S, . . . , V[V[min].predecessor], V[min]

The vertices adjacent to V[min] are processed. Each adjacent vertex V[adj] also has a
candidate shortest path,

S, . . . , V[V[adj].predecessor], V[adj]

with a path length V[adj].estimate. If the predecessor for V[adj] is not V[min], it is
possible that the following path is a shorter route from S to V[adj]:

S, . . . , V[min], V[adj]

If it is, the predecessor for V[adj] is updated to V[min]. The update will occur only
when

V[min].estimate + E[min][adj].length< V[adj].estimate

and, in this case, the adjacent vertex’s estimate is set to the new smaller estimate (the
left-hand side of the inequality).

The selection of the minimum-estimate vertex is the main bottleneck in the
algorithm. If the number of graph vertices is relatively small, a linear search for the
vertex with the minimum estimate is a reasonable choice. If the number of graph
vertices is large, the linear search should be replaced with a priority queue, which
greatly reduces the cost for the search.

The previous discussion was about computing the shortest paths from a single
source to all other vertices. The pathfinding system needs access to all the shortest
paths between vertices. Dijkstra’s algorithm is executed for each graph vertex and the
results are stored in an n × n array, where n is the number of vertices. Each entry of
the array stores the distance from one vertex to the other and stores the predecessor
for that path. If later your data sets lead to very large values of n, and if physical
memory is not large enough to store these arrays, either they must be stored on
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Figure 8.36 An obstacle projection consisting of three triangles. The envelope is marked in blue
and is selected to be the 2D obstacle polygon for blueprints. The inner polygon
marked in yellow is not necessary for the pathfinding, but is considered to be part of
the silhouette.

disk (bottleneck in disk I/O operations) or they must be computed only as needed
(bottleneck in CPU computation). Preferably in this situation, the obstacle polygons
should be reduced in size by not requiring an exact fit of the projected obstacle data.
For example, you could use oriented bounding boxes or discrete oriented polytopes
as proxies for the obstacle envelope. This will keep n to a reasonable size (per room).

8.5.7 Envelope Construction

The 2D obstacle polygons in the blueprints are constructed by projecting the 3D
obstacles in the scene onto the ground plane and locating the outer edges of the
projection. I call this set of edges the envelope of the projection; it is a subset of
the boundary of the silhouette of the projection. The silhouette includes additional
polygons that are nested inside the envelope. Figure 8.36 illustrates the projection
of an object consisting of three triangles. The outer blue polygon in the figure is
what must be constructed from the projected triangles. This will involve computing
intersections of pairs of triangle edges and selecting subedges that make up the outer
polygon. This is nearly a union operation on polygons. A full union operation will
compute the silhouette.

Projection Graph

The edges of all the triangles of the 3D obstacle are projected onto the ground plane.
The 2D vertices and edges form an abstract undirected graph, the vertices being the
graph nodes and the edges being the graph arcs. The outer polygon, though, involves
subedges whose endpoints are either the original vertices or points of intersection
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Figure 8.37 Three distinct configurations for the intersection of two edges.

between edges. Thus, it is necessary to compute all edge-edge intersections and intro-
duce new vertices and new edges into the graph, the final result called the projection
graph.

Given graph vertices U0, U1, V0, and V1 and graph edges 〈U0, U1〉 and 〈V0, V1〉,
if the two edges intersect at P, then the graph must be updated to incorporate this
information. The update depends on how the edges intersect. Figure 8.37 illustrates
the three distinct configurations.

In Figure 8.37 (a), the point P is inserted as a new vertex in the graph. The edges
〈U0, U1〉 and 〈V0, V1〉 are removed from the graph. Four new edges are inserted in the
graph, namely, 〈U0, P〉, 〈U1, P〉, 〈V0, P〉, and 〈V1, P〉. In Figure 8.37 (b), the intersec-
tion point happens to already be a graph vertex, so no new vertices must be inserted
in the graph. The edge 〈U0, U1〉 is removed and two new edges are inserted, namely,
〈U0, V1〉 and 〈U1, V1〉. Finally, Figure 8.37 (c) shows two graph edges intersecting at
a graph vertex, so the graph does not need to be updated. This case is expected fre-
quently in the construction because two edges sharing a vertex in the 3D obstacle will
project to two edges sharing a vertex in the ground plane. However, it is possible that
the configuration of Figure 8.37 (c) occurs from two nonadjacent edges in the 3D ob-
stacle. This happens when two distinct vertices in the 3D obstacle project to the same
point on the ground plane.

Rational Arithmetic for Edge Intersections

Theoretically, the projection graph construction is a straightforward use of graph
data structures, with the various insertions and removals as indicated in the previous
paragraph. In practice, though, a few problems must be handled. As is well known
in computational geometry, round-off errors in floating-point arithmetic can wreak
havoc with theoretical algorithms that are guaranteed to work when the arithmetic
is exact. It is essential for the pathfinding system that the envelope be a correctly
formed simple polygon. Round-off errors can lead to failure to find an intersection
when there is one and to finding an intersection when there is not one. The side
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effects usually manifest themselves in generating incorrect topology for the vertex-
edge mesh represented by the graph, which makes it difficult to construct special
sequences of edges in the graph. In fact, to avoid this, the envelope construction is
performed using exact rational arithmetic. The 2D projected vertices have floating-
point components, each component exactly representable as a rational number. The
intersections of edge pairs are computed using rational arithmetic.

The rational arithmetic implementation is in the Foundation library directory
named RationalArithmetic. The implementation details are not presented here but
are based on Donald Knuth’s discussion of exact arithmetic in [Knu73, Chapter 4].
The implementation assumes a fixed-size integer (for numerator and for denomi-
nator), which in itself must be understood when using the classes. Generally, as the
number of arithmetic operations increases when manipulating rational numbers, the
storage requirements increase. An arbitrary-precision arithmetic library will provide
dynamic reallocation, but a fixed-precision library will not and can only report when
there is overflow.

The all-pairs, edge-edge intersection tests have been structured to avoid over-
flow. To motivate what is done, consider the intersection of two edges 〈U0, U1〉 and
〈V0, V1〉. The line segments are parameterized by U0 + s(U1 − U0) for 0 ≤ s ≤ 1 and
V0 + t (V1 − V0) for 0 ≤ t ≤ 1. A point of intersection is computed by equating these:

U0 + s(U1 − U0) = V0 + t (V1 − V0)

solving for s and t , and verifying the parameters are in the interval [0, 1]. The solu-
tion is

s = (V0 − U0) . (V1 − V0)
⊥

(U1 − U0) . (V1 − V0)
⊥ , t = (V0 − U0) . (U1 − U0)

⊥

(U1 − U0) . (V1 − V0)
⊥

where (x , y)⊥ = (y , −x). The numerator involves differences of vectors. The sub-
traction of two components is a rational expression of the form a/b − c/d = (ad −
bc)/(bd), where a, b, c, and d are n-byte integers. The product of two n-byte integers
requires 2n bytes of storage. The sum or difference of two n-byte integers requires,
in worst case, n + 1 bytes—the extra byte to handle a 1-bit overflow. In total, the
result requires 2n + 1 bytes in worst case. The dot product operation is of the form
ab + cd , where a, b, c, and d are rational numbers, each using integers of size 2n + 1.
The result requires 8n + 5 bytes in worst case. The products a ∗ b and c ∗ d dou-
ble the 2n + 1 requirement. The sum of these two rational numbers induces more
multiplications, doubling the requirement again, and one additional byte is needed
to handle overflow in the sum in the numerator. The numbers s and t are ratios of
rational numbers, each requiring at most 8n + 5 bytes, which includes yet another
multiplication. The maximum storage requirement is now 16n + 10. The point of
intersection itself has rational expressions of the form (a/b) + (e/f ) ∗ (c/d), where
a, b, c, and d are n-byte integers and s = e/f is a rational number where e and f are
16n + 10–byte integers. The result requires 18n + 11 bytes in worst case.
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The TInteger and TRational classes have a template parameter, N. A TInteger
object has a fixed size of 4N bytes. The maximum floating-point number is essentially
2128, which requires a 16-byte numerator, so n = 16 and 18n + 11 = 299. However,
the likelihood that the artist generated models having extremely large floating-point
values is small, so in practice the 18n + 11 is too large. For typical artist-generated
models, n = 64 is a reasonable choice. The larger n is, the longer the arithmetic
operations take. To reduce the computation time, keep n relatively small. In the event
overflow occurs for a data set, this will be trapped when running in Debug mode. At
that time you can increase the size of n.

The problem with rational number size is potentially compounded if an edge is
intersected by multiple edges. In the previous example, if P is the intersection of edges
〈U0, U1〉 and 〈V0, V1〉, and the point lies in the interior of the first edge, you could
insert the subedges 〈U0, P〉 and 〈P, U1〉 into the graph and test them for intersections
with other edges. Using rational arithmetic, the storage requirements increase to
compute P. If you were then to use P in computing an intersection of another edge
with 〈U0, P〉, this intersection point requires yet even more memory than P. To avoid
this situation, all edge-edge intersection tests are executed using the initial edges in
the graph. This guarantees a bounded amount of memory for the intersection points.

At the highest level of abstraction, each edge is tested for intersection against
the other edges, and a sorted list of parameter values for the intersection points
is maintained. Once all the edges are processed, the original projection graph is
destroyed, a new one created, and all the vertices and subedges implied by the sorted
lists of parameter values are inserted into the new graph. It is this new graph that is
processed to find the outer edges forming the obstacle envelope.

Sort-and-Sweep for Fast Intersections

A double loop for testing all pairs of edges is straightforward to implement, but very
inefficient and costly in execution time. This approach has no localization to it; that
is, edges are tested for intersection regardless of how close or how far apart they are.
The approach has asymptotic order O(n2) for n edges.

A better approach is to use spatial coherence to help reduce the number of pairs of
edges to test for intersection. A simple and effective one is based on a sort-and-sweep
algorithm. The idea is to project the axis-aligned bounding boxes (AABBs) onto the
x-axis, obtaining a collection of intervals. The interval endpoints are sorted, all the
time maintaining the information about which points start the intervals and which
points end the intervals. The sweep phase is to traverse the sorted intervals. For each
pair of overlapping intervals, the AABBs are tested for overlap in the y-direction. If
there is overlap, the two corresponding edges are tested for intersection. If there is no
overlap, the edges cannot intersect and there is no reason to test them for intersection.
The detailed description is given in Section 8.3.3, which is based on material from
[Bar01], but the algorithm originated in general dimensions in [PS85].
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V0

Figure 8.38 The projection graph for the three triangles of Figure 8.36. The 19 vertices are drawn
in blue, except for the starting vertex of the outer boundary traversal, which is drawn
in red. The vertices are interconnected by 29 edges drawn in black. The current
direction is drawn in taupe.

Locating the Outer Edges

Once all edge-edge intersections are located and the new projection graph built, we
are ready to traverse the graph to locate the outer edges that make up the envelope. To
illustrate, the projection graph of the three triangles in Figure 8.36 is shown in Figure
8.38. The idea is to start at a vertex on the outer boundary and follow edges while
remaining on the outer boundary. A simple choice for the starting vertex is the one
with minimum x-value. If there are multiple points attaining the minimum, then
choose the vertex with the minimum y-value of all these. The red vertex in Figure
8.38 is the starting vertex for the traversal.

The taupe arrow in Figure 8.38 indicates the current direction of traversal from
the previous vertex on the outer edge. Initially, there is no previous vertex, but the
direction is selected as if there were one with minimum x-value but larger y-value.

Figure 8.39 shows the first step of the algorithm. The current vertex is labeled
V0. It has two edges sharing it, the adjacent vertices labeled A0 and A1. The outer
edge starting at V0 is chosen to be the edge that has no other edges between it and the
current traversal direction. The edge 〈V0, A0〉 is eliminated as a candidate because the
edge 〈V0, A1〉 is between it and the current direction (in taupe). The edge 〈V0, A1〉 is
the chosen outer edge because no other edge sharing V0 is between this edge and the
current direction vector. Figure 8.39 shows the selected outer edge in red.

The concept of one vector “between” two other vectors needs to be quantified
mathematically for computing. Figure 8.40 shows the two configurations to handle.
Think of the test for betweenness in terms of the cross product of the vectors as if
they were in 3D with z-components of zero, and apply the right-hand rule. Define
the 2D vectors D0 = A0 − V, D1 = A1 − V, and D = P − V. Define the 3D vectors
E0 = (D0, 0), E1 = (D1, 0), and E = (D, 0); that is, the vectors have zero for their
z-components.
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Figure 8.39 The current vertex is V0 and has two adjacent vertices A0 and A1.

A1
P

(a) (b)

P
VV

A1

A0

A0

Figure 8.40 (a) The vertex V is a convex vertex relative to the other vertices A0 and A1. (b) The
vertex V is a reflex vertex relative to the other vertices. In both cases, a vector P − V
between vectors A0 − V and A1 − V is shown in blue.

In the case where V is convex with respect to its neighbors, D is between D0 and
D1 when the cross products E × E1 and E0 × E both have positive z-components.
That is, if you put your right hand in the direction E with your thumb up (out of the
plane of the page), and rotate your fingers toward your palm (rotating about your
thumb), you should reach E1. Similarly, if you put your right hand in the direction E0
and rotate your fingers toward your palm, you should reach E. Note that

E × E1 =
(

0, 0, D . D⊥
1

)
, E0 × E =

(
0, 0, D0

. D⊥)

The test for strict betweenness is therefore

D0
. D⊥ > 0 and D . D⊥

1 > 0 (8.3)
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Figure 8.41 (a) The current vertex is convex with respect to the previous vertex and the next
vertex. (b) The current vertex is reflex with respect to the previous vertex and the next
vertex. The gray regions are part of the projection obstacle whose outer boundary is
sought.

In the case where V is reflex with respect to its neighbors, D is between D0 and D1
(in that order) when it is not between D1 and D0 (in that order). This is the negation
of the test in Equation (8.3) with the roles of D0 and D1 swapped, and with the strict
containment condition, namely,

D1
. D⊥ < 0 or D . D⊥

0 < 0 (8.4)

The betweenness measurements show up when visiting all the adjacent vertices
of the current vertex Vcurr. The previous vertex found on the outer edge is denoted
Vprev. When the current vertex is the initial vertex V0 of minimum x-value, the cur-
rent direction Dcurr = (0, −1) and implies a previous vertex of Vprev = V0 − Dcurr.
The next vertex, denoted Vnext, is the adjacent vertex that is the candidate for the
next vertex on the outer edge. Figure 8.41 illustrates the configuration for a convex
and a reflex current vertex.

When a current vertex is selected, its adjacent vertices are searched to determine
which will be the next vertex on the outer edge. One of the adjacent vertices will be
the previous vertex, which is rejected as the candidate for the next vertex. Clearly, this
is necessary to avoid backtracking on an edge. The projection of vertical faces of an
obstacle can also produce adjacent vertices that are in the direction opposite that of
the current directions. These also are rejected as candidates for the next vertex, again
to avoid backtracking. The first found adjacent vertex that is not the previous vertex
and is not in the direction opposite the current direction is chosen as Vnext. Figure
8.41 illustrates the situation when the next vertex has been chosen.

The current vertex has other adjacent vertices to be tested if they should become
the next vertex. In the convex case, Figure 8.41 (a) shows three adjacent vertices,
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A0, A1, and A2, of Vcurr to be processed. The adjacent vertex A0 is rejected because
the edge to it is inside the current region around which we are building the outer
boundary. Both A1 and A2 are candidates for the next vertex because the edges to
them are outside the current region. If A1 is visited first, Vnext is set to that vertex.
When A2 is visited, it will become yet the next vertex. If A2 is visited first, it will
become the next vertex. Then A1 is visited, but it will be inside the current region
and is therefore rejected. In either case, the vector D = Ai − Vcurr for i = 1 or i = 2 is
between the vectors Vprev − Vcurr = −Dcurr and Vnext − Vcurr = Dnext, in that order.
The algebraic test for this is an application of Equation (8.4)—the current vertex is
reflex relative to the outside region:

Dnext
. D⊥ < 0 or D .

(−Dcurr

)⊥
< 0

or equivalently,

Dcurr
. D⊥ < 0 or Dnext

. D⊥ < 0

In the reflex case, Figure 8.41 (b) shows two adjacent vertices, A0 and A1, of Vcurr
to be processed. The adjacent vertex A0 is rejected because the edge to it is inside
the current region around which we are building the outer boundary. The adjacent
vertex A1 becomes the next vertex because the edge to it is outside the current region.
The vector D = Ai − Vcurr is between −Dcurr and Dnext. The algebraic test for this is
an application of Equation (8.3)—the current vertex is convex relative to the outside
region:

−Dcurr
. D⊥ > 0 and D . D⊥

next > 0

or equivalently,

Dcurr
. D⊥ < 0 and Dnext

. D⊥ < 0

The processing of the outer edges and the vertices on them continues until the
starting vertex is reached.

Performance Testing

I tested the algorithm on a large data set to see how the exact rational arithmetic
performs. Figure 8.42 shows a rendered 3D face with 1330 vertices and 2576 triangles.
Figure 8.43 shows the projections and envelopes for two different orientations of the
face. The program was run on two different machines. The results are listed in Table
8.5. The times for the orientation in Figure 8.43 (a) are significantly shorter than
those for Figure 8.43 (b) because image (a) is essentially the graph of a function (a
height field, as it were). No pair of edges intersects at interior points, so the only exact
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Figure 8.42 A 3D face with 1330 vertices and 2576 triangles.

(a) (b)

Figure 8.43 The projections and envelopes of the face of Figure 8.42. The face appears stretched
because the 2D display application did not adjust for the aspect ratio of the original
data when displayed in 3D.

arithmetic costs are in the location of the outer edge. The orientation of image (b) is
such that quite a few pairs of edges intersect at interior points.

The envelope extraction was implemented without any assumptions on the ob-
stacle other than that the projection is a connected region on the ground plane. Ob-
stacles with multiple connected components can be split by the artist into multiple
obstacles, each producing a single connected component on the ground plane.
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Table 8.5 Run times for the envelope construction, measured in seconds.

Orientation Configuration Intel Pentium 3 (1GHz) AMD Athlon XP
2800+ (2.08GHz)

Figure 8.43 (a) Debug 40.178 19.594

Figure 8.43 (a) Release 13.219 5.609

Figure 8.43 (b) Debug 252.383 117.344

Figure 8.43 (b) Release 63.541 26.907

If you are willing to require the artists to create the obstacles as manifold meshes,
the run time for the extraction can be significantly reduced. A manifold mesh is an
orientable mesh for which each edge is shared by at most two triangles. In this case,
the only edges that need to be projected and processed are those edges shared by a
single triangle (the mesh “boundary” edges) and those edges shared by two triangles,
one triangle with a nonnegative normal vector component in the direction of the
world up vector and one triangle with a nonpositive normal vector in the direction
of the world up vector. If N0 and N1 are the outer-pointing triangle normals, and if U
is the world up vector, the common edge is projected and processed when U . N0 ≥ 0
and U . N1 ≤ 0. These edges are referred to as contour edges, a subset of which are the
silhouette edges (and the envelope edges are a subset of the silhouette edges).

8.5.8 Basic Data Structures

The basic data structures that make up an environment are implemented by the
classes Environment, Level, Room, Boundary, HeightField, Doorway, Obstacle, Trans-
porter, and Connector. The objects themselves are dynamically allocated and inter-
connected via pointer references, forming a union of graphs and multigraphs. Any
graph of dynamic objects that contains cycles requires some notion of ownership for
the purpose of deleting the objects. Figure 8.44 illustrates the class interrelationships.

The black arrows indicate that an object of the class at the beginning of the arrow
references an object of the class at the end of the arrow. The object for the class at
the beginning is responsible for deleting the objects it references. The blue arrows
indicate that an object of the class at the beginning of the arrow references an object
of the class at the end of the arrow. However, the object of the class at the beginning
is only sharing the other object and has no responsibility, so delete it. The named
rectangles in Figure 8.44 and the black arrows imply a minimum spanning tree for
the graph of actual objects, which is a directed acyclic graph.

The implementation details are tedious, but tractable. I leave these details up to
you.
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Figure 8.44 The interrelationship of classes for the basic data structures in the pathfinding system.

8.5.9 Efficient Calculation of the Visibility Graph

For a single room in the environment, the static visibility graph vertices consist of
the waypoints of the doorways, the vertices of the obstacle polygons, and the vertices
of the transporter polygons. An edge in the visibility graph is a pair of vertices for
which the line segment connecting them does not intersect any polygon edge at an
interior point of the polygon edge. That is, the line of sight from one vertex to the
other is unobstructed by a polygon edge. The pseudocode for the naive approach to
computing graph edges is

VisibilityGraph G;
G.Vertices = {waypoints, obstacle vertices, transporter vertices};
for each P in G.Vertices do
{

for each Q in G.Vertices do
{

bool isGraphEdge = true;
for each obstacle or transporter polygon edge E do
{

if segment (P,Q) intersects E at an interior point then
{

isGraphEdge = false;
break;

}
}
if (isGraphEdge)
{

G.Edges.Insert(P,Q);
}

}
}
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Test vertices
in this wedge Test vertices

in this wedge

Vn Vp

VpVn

V

V

Figure 8.45 Graph vertices visible to V must lie in the wedge defined by V and its two neighbors.

For n graph vertices, this is an order O(n3) algorithm. The asymptotic order can
be reduced, but the complexity of the algorithms increases greatly. The possibilities
include the use of arrangements, which is an O(n2) algorithm, or the use of an
output-sensitive method, which is O(n log n + m), where m is the number of graph
edges. Both are referenced in the book [O’R98, Section 8.2.2] with only a single
paragraph of discussion.

For a moderate size n, the naive algorithm is still worthwhile, but we can reduce
some of the computation time by taking advantage of the polygons themselves. A
polygon vertex V does not have to be compared to all other graph vertices. It suffices
to compare it against those graph vertices lying in a wedge (or cone) determined by
V and its two immediate neighbors, Vp and Vn. Figure 8.45 illustrates.

The Wedge class is a simple implementation for storing the triple of vertices and
managing the point-in-wedge tests. The pseudocode for the graph construction is
now

VisibilityGraph G;
G.Vertices = {waypoints, obstacle vertices, transporter vertices};
Wedges wedge = {compute wedges for each point in G.Vertices};
for each P in G.Vertices do
{

for each Q in G.Vertices and in wedge[P] do
{

bool isGraphEdge = true;
for each obstacle or transporter polygon edge E do
{

if segment (P,Q) intersects E at an interior point then
{

isGraphEdge = false;
break;

}
}
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if (isGraphEdge)
{

G.Edges.Insert(P,Q);
}

}
}



C h a p t e r 9
Physics

One of the most popular components in a game these days is the physics engine.
This component encapsulates both collision detection and collision response.

I talked about the details of a dynamic collision detection system in Chapter 8, but I
have not talked much at all about collision response—the mechanism by which you
translate, rotate, and possibly deform objects immediately after they have collided
with other objects.

Physics itself is a very large topic, and the theory and implementation of physics
is nontrivial. My goal in this book is to cover a wide range of topics regarding en-
gines, so this chapter provides only a brief overview of some methods that are useful
when incorporating physics into an application. These methods are not too difficult
to implement. A full “black box” computational physics system that can handle arbi-
trary rigid bodies is a commercial venture these days. Iterative methods are employed
for solving constrained optimizations that are inherent in rigid body physics. The
mathematics behind these is quite advanced. For many more details, search online
for recent research papers, and read my book [Ebe03].

The equations of motion for a physical simulation can always be written as a
system of nonlinear equations of the form

dX

dt
= F(t , X), t ≥ 0, X(0) = X0 (9.1)

The vector X represents the physical states of the simulation, typically including
position, linear velocity, orientation, and angular velocity. The system is an initial-
value problem since the state vector is specified at the initial time t ≥ 0.

507
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The differential equations are almost never solvable in closed form, so numerical
methods must be used for approximating the solution. The simplest method is Euler’s
method. The idea is to replace the first derivative of Equation (9.1) by a forward
difference approximation:

X(t + h) − X(t)

h
= F(t , X(t))

The value h > 0 is the step size of the solver. Generally, the smaller the value of h, the
less error you make in the approximation. This is solved for the term involving t + h:

X(t + h) = X(t) + hF(t , X(t)) (9.2)

At time step t , if the state X(t) is known, then Euler’s method gives you an approxi-
mation of the state at time t + h, namely, X(t + h).

Euler’s method is the prototype for a numerical solver for ordinary differential
equations. The function F is a given. Knowing the input time t , a step size h, and an
input state X(t), the method produces an output time t + h and a corresponding state
X(t + h). The general concept is encapsulated by the abstract base class, OdeSolver,
in the source code on the CD-ROM. Better methods than Euler’s method are used
in physics engines, especially when you need numerical stability. The most common
of these methods is discussed briefly in Section 16.7. Much more detail on these
methods and others is found in [Ebe03] or in standard textbooks on numerical
methods (e.g., [BF01]).

9.1 Particle Systems

The engine supports physical simulation of particle systems. The n particles are point
sources with positions Xi, masses mi, and velocities Vi, for 0 ≤ i < n. Forces Fi =
miAi are applied to the particles, where Ai is the acceleration of the particle. The
simulation is modeled using Newton’s equations of motion:

Ẍi = Fi(t , Xi , Ẍi)/mi , 0 ≤ i < n

This is a second-order system of ordinary differential equations and is converted to a
system of first-order equations:[

Ẋi

V̇i

]
=

[
Vi

Fi(t , Xi , Vi)/mi

]
(9.3)

The system is solved using the Runge-Kutta fourth-order method.
The class that encapsulates the particle system is ParticleSystem. Its interface

is listed next. The template parameters include Real for the floating-point type and
TVector, which is either Vector2 or Vector3 to support 2D or 3D systems.
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template <class Real, class TVector>
class ParticleSystem
{
public:

ParticleSystem (int iNumParticles, Real fStep);
virtual ~ParticleSystem ();

int GetNumParticles () const;
void SetMass (int i, Real fMass);
Real GetMass (int i) const;
TVector* Positions () const;
TVector& Position (int i);
TVector* Velocities () const;
TVector& Velocity (int i);
void SetStep (Real fStep);
Real GetStep () const;

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity) = 0;

virtual void Update (Real fTime);

protected:
int m_iNumParticles;
Real* m_afMass;
Real* m_afInvMass;
TVector* m_akPosition;
TVector* m_akVelocity;
Real m_fStep, m_fHalfStep, m_fSixthStep;

// temporary storage for solver
typedef TVector* TVectorPtr;
TVectorPtr m_akPTmp, m_akDPTmp1, m_akDPTmp2;
TVectorPtr m_akDPTmp3, m_akDPTmp4;
TVectorPtr m_akVTmp, m_akDVTmp1, m_akDVTmp2;
TVectorPtr m_akDVTmp3, m_akDVTmp4;

};

Many of the class member functions are accessors. The simulation is supported by
the virtual functions Acceleration and Update. The right-hand side of Equation (9.3)
has the force divided by mass, which is the acceleration of the particle. The member
function Acceleration is what a derived class implements to represent Fi/mi for each
particle. The acceleration depends on the time t , the current particle position Xi, and
the current particle velocity Vi.
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The update function is the call into the Runge-Kutta solver. A particle is immov-
able if it has infinite mass. Equivalently, the inverse of the mass is zero. Only particles
with finite mass are affected by the applied forces. You might compare the Runge-
Kutta solver in ParticleSystem to the generic one in class OdeRungeKutta4. The par-
ticle system solver iterates over the particles, applying the Runge-Kutta algorithm to
each one, but ignoring those particles with infinite mass. Notice that each step in-
volves updating two arrays named m_akDPTmp* and m_akDVTmp*. The first type of array
corresponds to Ẋi = Vi in Equation (9.3), and the second type of array corresponds
to V̇i = Fi(t , Xi , Vi)/mi in Equation (9.3).

You may derive classes from ParticleSystem to build your own customized par-
ticle systems. The next section describes a few such classes that represent mass-spring
systems.

9.2 Mass-Spring Systems

A popular choice for modeling deformable bodies is mass-spring systems, which I
discussed in detail in [Ebe03]. This section contains a brief summary of the ideas, of
which two are important for implementation purposes. First, the springs connecting
the masses are modeled using Hooke’s law and lead to the equations of motion. I solve
these numerically using Runge-Kutta fourth-order methods. Second, the topology of
the connections of the masses by springs must be handled by an implementation.
Curve masses are modeled as a 1D array of particles (e.g., hair or rope), surface
masses as 2D arrays (e.g., cloth or water surface), and volume masses as 3D arrays
(e.g., gelatinous blob or viscous material).

9.2.1 Curve Masses

A curve mass is represented as a polyline of vertices, open with two endpoints or
closed with no endpoints. Each vertex of the polyline represents a mass. Each edge
represents a spring connecting the two masses at the endpoints of the edge. Figure
9.1 shows two such configurations.

The equations of motion for an open linear chain are as follows. The masses mi

are located at positions Xi for 1≤ i ≤ p. The system has p − 1 springs connecting the
masses; spring i connects mi and mi+1. At an interior point i, two spring forces are
applied, one from the spring shared with point i − 1 and one from the spring shared
with point i + 1. The spring connecting masses mi and mi+1 has spring constant ci

and rest length Li. The differential equation for particle i is

miẍi = ci−1

(|xi−1 − xi| − Li−1

) xi−1 − xi

|xi−1 − xi|
+ ci

(|xi+1 − xi| − Li

) xi+1 − xi

|xi+1 − xi|
+ Fi

(9.4)
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Figure 9.1 Two curve mass objects represented as mass-spring systems.

where Fi represents other forces acting on particle i, such as gravitational or wind
forces. With the proper definitions at the two boundary particles of c0, cp, L0, Lp,
X0, and Xp+1, Equation (9.4) also handles fixed boundary points and closed loops.

The class that implements a deformable curve mass is MassSpringCurve and is
derived from ParticleSystem. The interface is

template <class Real, class TVector>
class MassSpringCurve : public ParticleSystem<Real,TVector>
{
public:

MassSpringCurve (int iNumParticles, Real fStep);
virtual ~MassSpringCurve ();

int GetNumSprings () const;
Real& Constant (int i); // spring constant
Real& Length (int i); // spring resting length

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int m_iNumSprings;
Real* m_afConstant;
Real* m_afLength;

};
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The number of particles in the mass-spring system is passed to the constructor. The
second parameter, fStep, is the step size used in the Runge-Kutta numerical solver.
After construction, you must set the spring constants and spring resting lengths via
the appropriate member functions.

The Acceleration function is an override of the base class virtual function and is
what is called by the Runge-Kutta numerical solver. This function handles the internal
forces that the springs exert on the masses. The implementation is

template <class Real, class TVector>
TVector MassSpringCurve<Real,TVector>::Acceleration (int i, Real fTime,

const TVector* akPosition, const TVector* akVelocity)
{

TVector kAcceleration = ExternalAcceleration(i,fTime,
akPosition,akVelocity);

TVector kDiff, kForce;
Real fRatio;

if ( i > 0 )
{

int iM1 = i-1;
kDiff = akPosition[iM1] - akPosition[i];
fRatio = m_afLength[iM1]/kDiff.Length();
kForce = m_afConstant[iM1]*(((Real)1.0)-fRatio)*kDiff;
kAcceleration += m_afInvMass[i]*kForce;

}

int iP1 = i+1;
if ( iP1 < m_iNumParticles )
{

kDiff = akPosition[iP1] - akPosition[i];
fRatio = m_afLength[i]/kDiff.Length();
kForce = m_afConstant[i]*(((Real)1.0)-fRatio)*kDiff;
kAcceleration += m_afInvMass[i]*kForce;

}

return kAcceleration;
}

This is a straightforward implementation of the right-hand side of Equation (9.4).
The endpoints of the curve of masses are handled separately since each has only one
spring attached to it.
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Figure 9.2 A surface mass represented as a mass-spring system with the masses organized as a
2D array.

We must also allow for external forces such as gravity, wind, and friction. The
function ExternalAcceleration supports these. Just as in the ParticleSystem class,
the function represents the acceleration Fi/mi for a force Fi exerted on the particle
i. Derived classes override this function, but the default implementation is for a zero
external force.

The sample application on the CD-ROM that illustrates the use of MassSpring-
Curve is

GeometricTools/WildMagic4/SamplePhysics/Rope

The application models a rope as a deformable curve mass.

9.2.2 Surface Masses

A surface mass is represented as a collection of particles arranged as a 2D array. An
interior particle has four neighbors, as shown in Figure 9.2. The masses are mi0, i1 and
are located at Xi0, i1 for 0 ≤ i0 < n0 and 0 ≤ i1 < n1. The spring to the right of a particle
has spring constant c

(0)
i0, i1

and resting length L
(0)
i0, i1

. The spring below a particle has

spring constant c
(1)
i0, i1

and resting length L
(1)
i0, i1

. The understanding is that the spring
constants and resting lengths are zero if the particle has no such spring in the specified
direction.

The equation of motion for particle (i0, i1) has four force terms due to Hooke’s
law, one for each neighboring particle:
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mi0, i1Ẍi0, i1 = ci0−1, i1

(
|Xi0−1, i1 − Xi0, i1| − Li0−1, i1

) Xi0−1, i1 − Xi0, i1

|Xi0−1, i1 − Xi0, i1|

+ ci0+1, i1

(
|Xi0+1, i1 − Xi0, i1| − Li0+1, i1

) Xi0+1, i1 − Xi0, i1

|Xi0+1, i1 − Xi0, i1|

+ ci0, i1−1

(
|Xi0, i1−1 − Xi0, i1| − Li0, i1−1

) Xi0, i1−1 − Xi0, i1

|Xi0, i1−1 − Xi0, i1|

+ ci0, i1+1

(
|Xi0, i1+1 − Xi0, i1| − Li0, i1+1

) Xi0, i1+1 − Xi0, i1

|Xi0, i1+1 − Xi0, i1|
+ Fi0, i1

(9.5)

As in the case of linear chains, with the proper definition of the spring constants
and resting lengths at the boundary points of the mesh, Equation (9.5) applies to
the boundary points as well as to the interior points.

The class that implements a deformable surface mass is MassSpringSurface and
is derived from ParticleSystem. The interface is

template <class Real, class TVector>
class MassSpringSurface : public ParticleSystem<Real,TVector>
{
public:

MassSpringSurface (int iRows, int iCols, Real fStep);
virtual ~MassSpringSurface ();

int GetRows () const;
int GetCols () const;
void SetMass (int iRow, int iCol, Real fMass);
Real GetMass (int iRow, int iCol) const;
TVector** Positions2D () const;
TVector& Position (int iRow, int iCol);
TVector** Velocities2D () const;
TVector& Velocity (int iRow, int iCol);

Real& ConstantR (int iRow, int iCol); // spring to (r+1,c)
Real& LengthR (int iRow, int iCol); // spring to (r+1,c)
Real& ConstantC (int iRow, int iCol); // spring to (r,c+1)
Real& LengthC (int iRow, int iCol); // spring to (r,c+1)

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);
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virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int GetIndex (int iRow, int iCol) const;
void GetCoordinates (int i, int& riRow, int& riCol) const;

int m_iRows; // R
int m_iCols; // C
TVector** m_aakPosition; // R-by-C
TVector** m_aakVelocity; // R-by-C

int m_iRowsM1; // R-1
int m_iColsM1; // C-1
Real** m_aafConstantR; // (R-1)-by-C
Real** m_aafLengthR; // (R-1)-by-C
Real** m_aafConstantC; // R-by-(C-1)
Real** m_aafLengthC; // R-by-(C-1)

};

This class represents an R × C array of masses lying on a surface and connected
by an array of springs. The masses are indexed by mr , c for 0 ≤ r < R and 0 ≤ c < C

and are stored in row-major order. The other arrays are also stored in linear memory
in row-major order. The mass at interior position Xr , c is connected by springs to the
masses at positions Xr−1, c, Xr+1, c, Xr , c−1, and Xr , c+1. Boundary masses have springs
connecting them to the obvious neighbors: an “edge” mass has three neighbors and
a “corner” mass has two neighbors.

The base class has support for accessing the masses, positions, and velocities
stored in a linear array. Rather than force you to use the 1D index i for the 2D pair
(r , c), I have provided member functions for accessing the masses, positions, and
velocities using the (r , c) pair. To avoid name conflict, Positions is used to access the
1D array of particles. In the derived class, Positions2D is the accessor for the same
array, but as a 2D array. Simultaneous representations of the arrays require the class to
use System::Allocate and System::Deallocate for dynamic creation and destruction
of the array. The protected functions GetIndex and GetCoordinates implement the
mapping between 1D and 2D indices.

The spring constants and spring resting lengths must be set after a class object is
constructed. The interior mass at (r , c) has springs to the left, right, bottom, and top.
Edge masses have only three neighbors, and corner masses have only two neighbors.
The mass at (r , c) provides access to the springs connecting to locations (r , c + 1)
and (r + 1, c). Edge and corner masses provide access to only a subset of these. The
caller is responsible for ensuring the validity of the (r , c) inputs.

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in class MassSpringCurve.
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Figure 9.3 A volume mass represented as a mass-spring system with the masses organized as a
3D array. Only the masses and springs on the three visible faces are shown. The other
connections are shown, but without their springs.

The sample application on the CD-ROM that illustrates the use of MassSpring-
Surface is

GeometricTools/WildMagic4/SamplePhysics/Cloth

The application models a cloth as a deformable surface mass.

9.2.3 Volume Masses

A volume mass is represented as a collection of particles arranged as a 3D array. An
interior particle has eight neighbors, as shown in Figure 9.3. The masses are mi0, i1, i2
and are located at Xi0, i1, i2 for 0 ≤ ij < nj , j = 0, 1, 2. In the direction of positive

increase of index ij , the spring has a spring constant c
(j)

i0, i1, i2
and resting length L

(j)

i0, i1, i2
for j = 0, 1, 2. The understanding is that the spring constants and resting lengths are
zero if the particle has no such spring in the specified direction.

The equation of motion for particle (i0, i1, i2) has eight force terms due to
Hooke’s law, one for each neighboring particle:
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mi0, i1, i2Ẍi0, i1, i2 =

+ ci0−1, i1, i2

(
|Xi0−1, i1, i2 − Xi0, i1, i2| − Li0−1, i1, i2

) Xi0−1, i1, i2 − Xi0, i1, i2

|Xi0−1, i1, i2 − Xi0, i1, i2|

+ ci0+1, i1, i2

(
|Xi0+1, i1, i2 − Xi0, i1, i2| − Li0+1, i1, i2

) Xi0+1, i1, i2 − Xi0, i1, i2

|Xi0+1, i1, i2 − Xi0, i1, i2|

+ ci0, i1−1, i2

(
|Xi0, i1−1, i2 − Xi0, i1, i2| − Li0, i1−1, i2

) Xi0, i1−1, i2 − Xi0, i1, i2

|Xi0, i1−1, i2 − Xi0, i1, i2|

+ ci0, i1+1, i2

(
|Xi0, i1+1, i2 − Xi0, i1, i2| − Li0, i1+1, i2

) Xi0, i1+1, i2 − Xi0, i1, i2

|Xi0, i1+1, i2 − Xi0, i1, i2|

+ ci0, i1, i2−1

(
|Xi0, i1, i2−1 − Xi0, i1, i2| − Li0, i1, i2−1

) Xi0, i1, i2−1 − Xi0, i1, i2

|Xi0, i1, i2−1 − Xi0, i1, i2|

+ ci0, i1, i2+1

(
|Xi0, i1, i2+1 − Xi0, i1, i2| − Li0, i1, i2+1

) Xi0, i1, i2+1 − Xi0, i1, i2

|Xi0, i1, i2+1 − Xi0, i1, i2|
+ Fi0, i1, i2

(9.6)

With the proper definition of the spring constants and resting lengths at the boundary
points of the mesh, Equation (9.6) applies to the boundary points as well as to the
interior points.

The class that implements a deformable volume mass is MassSpringVolume and is
derived from ParticleSystem. The interface is

template <class Real, class TVector>
class MassSpringVolume : public ParticleSystem<Real,TVector>
{
public:

MassSpringVolume (int iSlices, int iRows, int iCols, Real fStep);
virtual ~MassSpringVolume ();

int GetSlices () const;
int GetRows () const;
int GetCols () const;
void SetMass (int iSlice, int iRow, int iCol, Real fMass);
Real GetMass (int iSlice, int iRow, int iCol) const;
TVector*** Positions3D () const;
TVector& Position (int iSlice, int iRow, int iCol);
TVector*** Velocities3D () const;
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TVector& Velocity (int iSlice, int iRow, int iCol);

Real& ConstantS (int iS, int iR, int iC); // to (s+1,r,c)
Real& LengthS (int iS, int iR, int iC); // to (s+1,r,c)
Real& ConstantR (int iS, int iR, int iC); // to (s,r+1,c)
Real& LengthR (int iS, int iR, int iC); // to (s,r+1,c)
Real& ConstantC (int iS, int iR, int iC); // to (s,r,c+1)
Real& LengthC (int iS, int iR, int iC); // to (s,r,c+1)

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
int GetIndex (int iSlice, int iRow, int iCol) const;
void GetCoordinates (int i, int& riSlice, int& riRow,

int& riCol) const;

int m_iSlices; // S
int m_iRows; // R
int m_iCols; // C
int m_iSliceQuantity; // R*C
TVector*** m_aaakPosition; // S-by-R-by-C
TVector*** m_aaakVelocity; // S-by-R-by-C

int m_iSlicesM1; // S-1
int m_iRowsM1; // R-1
int m_iColsM1; // C-1
Real*** m_aaafConstantS; // (S-1)-by-R-by-C
Real*** m_aaafLengthS; // (S-1)-by-R-by-C
Real*** m_aaafConstantR; // S-by-(R-1)-by-C
Real*** m_aaafLengthR; // S-by-(R-1)-by-C
Real*** m_aaafConstantC; // S-by-R-by-(C-1)
Real*** m_aaafLengthC; // S-by-R-by-(C-1)

};

This class represents an S × R × C array of masses lying in a volume and con-
nected by an array of springs. The masses are indexed by m(s , r , c) for 0 ≤ s < S,
0 ≤ r < R, and 0 ≤ c < C and are stored in lexicographical order. That is, the index
for the 1D array of memory is i = c + C(r + Rs). The other arrays are also stored in
linear memory in lexicographical order. The mass at interior position Xs , r , c is con-
nected by springs to the masses at positions Xs−1, r , c, Xs+1, r , c, Xs , r−1, c, Xs , r+1, c,
Xs , r , c−1, and Xs , r , c+1. Boundary masses have springs connecting them to the obvi-
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ous neighbors: a “face” mass has five neighbors; an “edge” mass has four neighbors;
and a “corner” mass has three neighbors.

The base class has support for accessing the masses, positions, and velocities
stored in a linear array. Rather than force you to use the 1D index i for the 3D triple
(s , r , c), I have provided member functions for accessing the masses, positions, and
velocities using the (s , r , c) triple. To avoid name conflict, Positions is used to access
the 1D array of particles. In the derived class, Positions3D is the accessor for the same
array, but as a 3D array. Simultaneous representations of the arrays require the class to
use System::Allocate and System::Deallocate for dynamic creation and destruction
of the array. The protected functions GetIndex and GetCoordinates implement the
mapping between 1D and 3D indices.

The spring constants and spring resting lengths must be set after a class object
is constructed. The interior mass at (s , r , c) has springs attaching it to six neigh-
bors. Face masses have only five neighbors; edge masses have only four neighbors;
and corner masses have only three neighbors. The mass at (s , r , c) provides access
to the springs connecting to locations (s + 1, r , c), (s , r + 1, c), and (s , r , c + 1).
Face, edge, and corner masses provide access to only a subset of these. The caller is
responsible for ensuring the validity of the (s , r , c) inputs.

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in classes MassSpringCurve and MassSpringSurface.

The sample application on the CD-ROM that illustrates the use of MassSpring-
Volume is

GeometricTools/WildMagic4/SamplePhysics/GelatinCube

The application models a gelatinous cube as a deformable volume mass.

9.2.4 Arbitrary Configurations

In general you can set up an arbitrary configuration for a mass-spring system of p

particles with masses mi and location xi. Each spring added to the system connects
two masses, say, mi and mj . The spring constant is cij > 0, and the resting length is
Lij .

Let Ai denote the set of indices j such that mj is connected to mi by a spring—the
set of adjacent indices, so to speak. The equation of motion for particle i is

miẌi =
∑
j∈Ai

cij

(|Xj − Xi| − Lij

) Xj − Xi

|Xj − Xi|
+ Fi (9.7)

The technical difficulty in building a differential equation solver for an arbitrary
graph is encapsulated solely by a vertex-edge table that stores the graph. Whenever
the numerical solver must process particle i via Equation (9.7), it must be able to
iterate over the adjacent indices to evaluate the Hooke’s law terms.
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The class that implements a mass-spring system with an arbitrary configuration
of masses and springs is MassSpringArbitrary and is derived from ParticleSystem.
The interface is

template <class Real, class TVector>
class MassSpringArbitrary : public ParticleSystem<Real,TVector>
{
public:

MassSpringArbitrary (int iNumParticles, int iNumSprings,
Real fStep);

virtual ~MassSpringArbitrary ();

int GetNumSprings () const;
void SetSpring (int iSpring, int iParticle0, int iParticle1,

Real fConstant, Real fLength);
void GetSpring (int iSpring, int& riParticle0,

int& riParticle1, Real& rfConstant, Real& rfLength) const;

Real& Constant (int iSpring);
Real& Length (int iSpring);

virtual TVector Acceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

virtual TVector ExternalAcceleration (int i, Real fTime,
const TVector* akPosition, const TVector* akVelocity);

protected:
class Spring
{
public:

int Particle0, Particle1;
Real Constant, Length;

};

int m_iNumSprings;
Spring* m_akSpring;

// Each particle has an associated array of spring indices for those
// springs adjacent to the particle. The set elements are spring
// indices, not indices of adjacent particles.
TSet<int>* m_akAdjacent;

};
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The constructor requires you to specify the number of particles and the number
of springs in the system. The parameter fStep is the step size used in the Runge-Kutta
numerical solver. After construction, you must call SetSpring for each spring that
you want in the system. If spring i connects particles p1 and p2, the order of the
parameters in the function call is irrelevant. It is possible to have two springs that
connect the same pair of particles, but I suggest using at most one spring per pair.

The array member, m_akAdjacent, is an array of sets of integers. The set
m_akAdjacent[i] represents Ai and contains those integers j for which a spring
connects particle i to particle j .

The virtual functions Acceleration and ExternalAcceleration are similar to the
ones in classes MassSpringCurve, MassSpringSurface, and MassSpringVolume.

The sample application on the CD-ROM that illustrates the use of MassSpringAr-
bitrary is

GeometricTools/WildMagic4/SamplePhysics/GelatinBlob

The application models a gelatinous blob as a deformable volume mass. The blob has
the topology of an icosahedron.

9.3 Deformable Bodies

There are many ways to model deformable bodies in a physics simulation. A model
that is designed to conform to the physical principles of deformation will most likely
be expensive to compute in a real-time application. Instead, you should consider less
expensive alternatives. I will mention a few possibilities here.

The SurfaceMesh class supports dynamic updating of the mesh vertices, which
makes it a good candidate for representing a deformable body. You must provide
the physics simulation that modifies the mesh vertices during run time. A pitfall of
simulations is allowing arbitrary motion of vertices, which leads to self-intersections
of the mesh. A collision detection system can help you determine—and prevent—
self-intersections, but by doing so, you add an additional layer of expense to the
computations. Once physics hardware becomes available on consumer machines, the
expense will be negligible.

The MorphController class similarly allows you to dynamically deform a mesh.
Whereas the deformations of SurfaceMesh-derived objects are controlled by chang-
ing the surface parameters of the derived class, the deformations of objects with a
MorphController attached are controlled by a set of keyframes. The keyframes them-
selves may be dynamically modified.

Yet more classes in the engine that support deformable objects are PointCon-
troller and ParticleController. Their interfaces allow you to specify the positions
and velocities whenever you choose. A physical simulation will set these quantities
accordingly.
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The possibilities are endless. The IKController and SkinController classes may
also be used for deformation. Animation via controllers directly supports the concept
of deformation: It is just a matter of animating the data that directly, or indirectly,
affects the vertices of a mesh. The popular rag doll physics is an excellent example of
how to blend together deformable objects and collision detection and response.

9.4 Rigid Bodies

The last topic of the chapter is rigid bodies. Creating a general physics engine that
handles interacting bodies is quite difficult. However, an engine will contain the foun-
dations for computing unconstrained motion using Newton’s equations of motion.
The collision detection system computes the physical constraints that occur during
run time. A careful separation of the collision detection subsystem and the collision
response subsystem is called for. The two subsystems must interact, but the separa-
tion allows you to more easily diagnose problems and identify which subsystem is
causing problems when your simulation shows that some objects are not conforming
to the physical principles you had in mind.

A particle can be thought of as a rigid body without size or orientation; it has a
position, velocity, and applied forces. Many objects in a physical simulation, though,
are not particles, yet have size and orientation. The standard representation for a rigid
body in a real-time application is a polyhedron. A coordinate system is chosen for the
body for the purposes of positioning and orienting the object in space. For physical
and mathematical reasons, the center of mass is chosen to be the body origin, and
the body coordinate axes are chosen to be the principal directions of inertia. The
direction vectors turn out to be eigenvectors of the inertia tensor for the body. The
choice of coordinate system allows us to decompose the motion calculations into
translation of the center of mass (position, linear velocity, and linear acceleration)
and rotation of the body (orientation, angular velocity, and angular acceleration).
Yet another simplifying assumption is that the mass of the rigid body is uniformly
distributed within the body.

Here is a very brief summary of the material in [Ebe03] regarding unconstrained
motion of a rigid body. Let X(t) and V(t) denote the position and velocity, re-
spectively, of the center of mass of the rigid body. The linear momentum of the
body is

P(t) = mV(t) (9.8)

Newton’s second law of motion states that the rate of change of linear momentum is
equal to the applied force,

Ṗ(t) = F(t) (9.9)
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where m is the mass of the body and F(t) is the applied force on the object. The
equations of motion pertaining to position and linear momentum are

Ẋ = m−1P, Ṗ = F (9.10)

Similar equations of motion can be derived for the orientation matrix R(t) of the
body. In the coordinate system of the rigid body, let b denote the time-independent
position of a point relative to the origin (the center of mass). The world coordinate
of the point is

Y(t) = X(t) + R(t)b

The inertia tensor in body coordinates is the 3 × 3 symmetric matrix,

Jbody =
∫

B

(
|b|2I − bbT

)
dm (9.11)

where B is the set of points making up the body, I is the identity matrix, and dm

is the infinitesimal measure of mass in the body. For a body of constant density δ,
dm = δ dV , where dV is the infinitesimal measure of volume in the body. As we will
see later in this section, the integration in Equation (9.11) can be computed exactly
for a constant-density, rigid body that is represented by a polyhedron. The resulting
formula is an algebraic expression that is easily computed.

The inertia tensor in world coordinates is

J (t) =
∫

B

(
|r|2I − rrT

)
dm = R(t)JbodyR(t)T (9.12)

where r(t) = Y(t) − X(t) = R(t)b. The inertia tensor is sometimes referred to as the
mass matrix.

The rate of change of the orientation matrix, R(t), is related to the angular
velocity vector, W(t) = (w0, w1, w2), by

Ṙ(t) = Skew(W(t))R(t) (9.13)

where S = Skew(W) is the skew-symmetric matrix whose entries are S00 = S11 =
S22 = 0, S01 = −w2, S10 = w2, S02 = w1, S20 = −w1, S12 = −w0, and S21 = w0.

The angular momentum, L(t), and angular velocity, W(t), are related by

L(t) = J (t)W(t) (9.14)

where J (t) is the inertia tensor defined by Equation (9.12). Notice the similarity of
Equation (9.14) to Equation (9.8). The linear momentum is defined as mass times
linear velocity, and the angular momentum is defined as mass matrix times angular
velocity.
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The equivalent of Newton’s second law of motion, which relates linear accel-
eration and force, is the following, which states that the rate of change of angular
momentum is equal to the applied torque:

L̇(t) = τττ(t) (9.15)

where τττ(t) is the torque applied to the rigid body.
The equations of motion pertaining to orientation and angular momentum are

Ṙ = Skew(W)R , L̇ = τττ (9.16)

The angular velocity is dependent on other known quantities, namely,

W(t) = J−1L = RJ−1
bodyR

T L (9.17)

Equations (9.10), (9.16), and (9.17) can be combined into a single system of
differential equations that model the unconstrained motion of the rigid body. The
state vector is S = (X , P, R , L), and the system of equations is

dS

dt
= d

dt

⎡
⎢⎢⎣

X
R

P
L

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ẋ
Ṙ

Ṗ
L̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m−1P
Skew(RJ−1

bodyR
TL)R

F
τττ

⎤
⎥⎥⎦ = G(t , S) (9.18)

This system is first-order, so it may be solved numerically using your favorite differ-
ential equation solver. My choice is the Runge-Kutta fourth-order method. The input
parameters are the mass m and body inertia tensor Jbody, both constants during the
physical simulation. The force F and torque τττ are vector-valued functions that your
application must present to the simulator. The initial state, S(0), is also specified by
your application. Once all these quantities are known, the numerical solver is ready
to be iterated.

Although Equation (9.18) is ready to solve numerically, most practitioners choose
to use quaternions to represent the orientation matrices. If R(t) is the orientation
matrix, a corresponding quaternion is denoted q(t). The equivalent of Equation
(9.13) for quaternions is

q̇(t) = ω(t)q(t)/2 (9.19)

where ω = W0i + W1j + W2k is the quaternion representation of the angular velocity
W = (W0, W1, W2). The system of equations that I really implement is

⎡
⎢⎢⎣

Ẋ
q̇

Ṗ
L̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m−1P
ωq/2

F
τττ

⎤
⎥⎥⎦ (9.20)
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After each iteration of the numerical solver, the application must transform the
rigid body to its new world coordinates. The use of quaternions will require us to con-
vert between quaternions and rotation matrices. The classes Matrix3 and Quaternion
support these conversions.

9.4.1 The Rigid Body Class

The class that encapsulates a rigid body is RigidBody and has the interface

template <class Real>
class RigidBody
{
public:

RigidBody ();
virtual ~RigidBody ();

// Set/Get position.
Vector3<Real>& Position ();

// Set rigid body state.
void SetMass (float fMass);
void SetBodyInertia (const Matrix3<Real>& rkInertia);
void SetPosition (const Vector3<Real>& rkPos);
void SetQOrientation (const Quaternion<Real>& rkQOrient);
void SetLinearMomentum (const Vector3<Real>& rkLinMom);
void SetAngularMomentum (const Vector3<Real>& rkAngMom);
void SetROrientation (const Matrix3<Real>& rkROrient);
void SetLinearVelocity (const Vector3<Real>& rkLinVel);
void SetAngularVelocity (const Vector3<Real>& rkAngVel);

// Get rigid body state.
Real GetMass () const;
Real GetInverseMass () const;
const Matrix3<Real>& GetBodyInertia () const;
const Matrix3<Real>& GetBodyInverseInertia () const;
Matrix3<Real> GetWorldInertia () const;
Matrix3<Real> GetWorldInverseInertia () const;
const Vector3<Real>& GetPosition () const;
const Quaternion<Real>& GetQOrientation () const;
const Vector3<Real>& GetLinearMomentum () const;
const Vector3<Real>& GetAngularMomentum () const;
const Matrix3<Real>& GetROrientation () const;
const Vector3<Real>& GetLinearVelocity () const;
const Vector3<Real>& GetAngularVelocity () const;
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// Force/Torque function format.
typedef Vector3<Real> (*Function)
(

Real, // time of application
Real, // mass
const Vector3<Real>&, // position
const Quaternion<Real>&, // orientation
const Vector3<Real>&, // linear momentum
const Vector3<Real>&, // angular momentum
const Matrix3<Real>&, // orientation
const Vector3<Real>&, // linear velocity
const Vector3<Real>& // angular velocity

);

// force and torque functions
Function Force;
Function Torque;

// Runge-Kutta fourth-order differential equation solver
void Update (Real fT, Real fDT);

protected:
// constant quantities (matrices in body coordinates)
Real m_fMass, m_fInvMass;
Matrix3<Real> m_kInertia, m_kInvInertia;

// state variables
Vector3<Real> m_kPos; // position
Quaternion<Real> m_kQOrient; // orientation
Vector3<Real> m_kLinMom; // linear momentum
Vector3<Real> m_kAngMom; // angular momentum

// derived state variables
Matrix3<Real> m_kROrient; // orientation matrix
Vector3<Real> m_kLinVel; // linear velocity
Vector3<Real> m_kAngVel; // angular velocity

};

The constructor creates an uninitialized rigid body. The rigid body state must be
initialized using the Set functions before starting the physical simulation. The Get
functions allow you access to the current state of the rigid body.

The constant quantities for the rigid body are the mass and inertia tensor in body
coordinates. Because the differential equation solver must divide by mass and use the
inverse of the inertia tensor, these are computed once and stored. If you want a rigid
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body to be immovable, set its inverse mass to zero and its inverse inertia tensor to the
zero matrix. In effect, the body mass is infinite, and the body is too heavy to rotate.

The state variable in Equation (9.20) includes position, orientation (represented
as a quaternion), linear momentum, and angular momentum. These values are stored
by the class. The other quantities of interest are derived from the state variables:
the orientation matrix (derived from the quaternion orientation), the linear velocity
(derived from the linear momentum and mass), and the angular velocity (derived
from the angular momentum, the inertia tensor, and the orientation matrix). The
derived variables are guaranteed to be synchronized with the state variables.

The class defines a function type, called RigidBody::Function. The force F and
torque τττ in Equation (9.20) possibly depend on many variables, including the current
time and state of the system. If you think of the equations of motion as Ṡ = G(t , S),
then the function type RigidBody::Function represents the function on the right-
hand side, G(t , S). The class has two data members that are in public scope, Force
and Torque, which are set by your application.

The member function Update is a single iteration of the Runge-Kutta fourth-order
solver. Its structure is similar to the previous implementations we have seen for the
Runge-Kutta solvers. The exception is that after each of the four steps in the solver,
the derived variables must be computed. The orientation matrix is computed from
the orientation quaternion, the linear velocity is computed from the linear momen-
tum and inverse mass, and the angular velocity is computed from the orientation
matrix, the inverse inertia tensor, and the angular momentum.

Two applications illustrating the use of RigidBody are on the CD-ROM:

MagicSoftware/WildMagic4/Test/TestBouncingBalls
MagicSoftware/WildMagic4/Test/TestBouncingTetrahedra

The first application is fairly simple from the point of view of collision detection—
it is easy to compute the contact time and contact point between two spheres. The
second application is more complicated: it sets up the collision detection as a linear
complementarity problem (LCP) and uses a numerical solver for the LCP. LCPs and
their numerical solution are a complicated topic that I will not discuss here. See
[Ebe03] for details and references to the literature.

9.4.2 Computing the Inertia Tensor

The RigidBody class requires you to initialize the body by specifying its mass and
body inertia tensor. Generally, the inertia tensor is a complicated, mathematical beast.
For constant-density bodies that are represented by polyhedra, the tensor can be
computed in closed form. An efficient algorithm is in [Ebe03]. The paper [Mir96]
is what practitioners had been using for the equations but is less efficient regarding
the calculations, and the equations are more detailed and tedious to implement. The
algorithm in [Ebe03] requires triangle faces for the polyhedra. A small extension of
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the algorithm was made in [Kal] that allows simple polygon faces, but no details are
presented here since the author of the paper and the company he works for chose to
file a patent application.

The essence of the algorithm is that the entries of the inertia tensor are triple
integrals evaluated over the region of space occupied by the body. Each integral has
an integrand that is a quadratic polynomial. The divergence theorem from calculus
allows you to convert the volume integrals to surface integrals. Because the object
is a polyhedron, the surface integrals are reduced to a sum of integrals over the
polyhedron faces. Each of these integrals is easily computed in closed form.

A single function is provided for computing the mass, center of mass, and the
inertia tensor for a rigid body with constant density and represented by a polyhedron:

template <class Real>
void ComputeMassProperties (const Vector3<Real>* akVertex,

int iTQuantity, const int* aiIndex, bool bBodyCoords,
Real& rfMass, Vector3<Real>& rkCenter,
Matrix3<Real>& rkInertia);

The polyhedron must be represented by a closed triangle mesh. Each edge of the mesh
is shared by exactly two triangles. The first parameter of the function is the array of
vertices for the mesh. The second parameter is the number of triangles in the mesh.
The third parameter is the index array, which has 3T indices for T triangles. Each
triple of indices represents a triangle in the mesh, and the indices are for lookups in
the vertex array.

The parameter bBodyCoords is set to true when you want the inertia tensor in
body coordinates. For the purpose of the class RigidBody, this is what you want. If
you want the inertia tensor in world coordinates, set the Boolean parameter to false.

The last three parameters (the mass of the body, the center of mass, and the inertia
tensor) are the output of the function.
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Standard Objects

The objects described here are common in 3D applications. It is useful to
know how you can represent the objects to manipulate them in an engine or

application.

10.1 Linear Components

Points and vectors, two terms that are not identical in meaning (see Section 2.1.3),
are simple enough to represent and manipulate in a computer program. Objects
that are just as familiar to you are linear components, a general term that refers to
lines, rays, and line segments. I will use the term segment rather than carrying around
the modifier “line.” Linear components are useful in picking operations for object
selection. They are also useful for stabbing operations, where you cast a few rays from
the observer to see what objects are close (or far) to get an idea if the observer can
move in some direction without colliding with something.

A line is defined parametrically by X(t) = P + tD, where P is a point called the
origin of the line, D is a vector called the direction of the line, and t is any real number.
My convention is that a direction vector always has unit length. Sometimes you will
see the interval notation used, t ∈ (−∞, ∞), where the interval shown is the set of
all real numbers.

A ray is defined parametrically by X(t) = P + tD, but the restriction on the
parameter is t ≥ 0, sometimes written using interval notation as t ∈ [0, ∞).

A segment is typically defined by two endpoints P0 and P1. A parametric represen-
tation is X(t) = (1− t)P0 + tP1 for t ∈ [0, 1]. Equivalently, X(t) = P0 + t (P1 − P) for
t ∈ [0, 1]. A vector in the direction of the segment is E = P1 − P0, but it is not usually
unit length. The unit-length vector is D = E/|E|.

529
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An alternate representation is one that is consistent with the line and ray represen-
tations. Let C be the center (midpoint) of the segment and let D be a direction vector
for the segment (there are two). Let the segment have radius (half-length, extent) r .
The segment is defined parametrically by X(t) = P + tD for |t | ≤ r .

Why would you choose one representation over the other? Consider the following
argument. When attempting to determine the intersection of a line segment and a
planar object such as a plane, triangle, or rectangle, you need to determine if the line
segment is not parallel to the plane of the object. If it is not, there is a possibility that
the segment and object intersect, but of course more work must be done to compute
an intersection point. The work depends on the type of object you are dealing with. If
the segment is parallel to the plane of the object, it is either separated from the plane
or in the plane itself. In the latter case, there is a chance that the segment intersects the
object, but now the problem is one that is really two-dimensional. Any intersection
algorithm for segments must, therefore, classify whether the segment and plane are
nonparallel, parallel and separated, or parallel and coplanar.

The classification involves testing if the segment direction D and the unit-length
plane normal N are perpendicular. You compute d = N . D. If d �= 0, the segment
is not parallel to the plane. If d = 0, the segment is parallel, in which case you need
only test if a segment endpoint is on the plane (coplanar objects) or off the plane
(separated objects).

Mathematically, the classification is straightforward to do. Numerically, though,
you can run into problems. First, let us look more closely at the parallel case when we
need to know if d is zero. This pseudocode is a disaster waiting to happen:

float d = Dot(plane.N,segment.D);
if (d != 0.0f)
{

// segment not parallel to plane
}
else
{

// segment parallel to plane
}

The theoretical value of d is what you want to be zero, but numerical round-off errors
in computing d have really given you a floating-point number d ′, which hopefully
is nearly zero. For randomly generated segment directions and plane normals, the
probability that you will reach the code block for the parallel case is effectively zero.
Instead, your pseudocode should be

const float epsilon = <a small positive error tolerance>;
float d = Dot(plane.N,segment.D);
if (fabs(d) > epsilon)
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{
// segment not parallel to plane

}
else
{

// segment parallel (or nearly parallel) to plane
}

Look at this in terms of angle θ between N and D. We know that cos θ = N . D. When
d = 0, the angle is θ = π/2. The code says that the segment is parallel to the plane
when

| cos θ | ≤ ε

for a small positive threshold ε. This is equivalent to

|θ − π/2| ≤ φ

where φ > 0 is chosen such that cos(π/2 − φ) = ε. For example, if ε = 1e-06, then
φ .= 1e-06 radians. This is reasonable. For this error tolerance, theoretically nonpar-
allel segments and planes will be classified as parallel only when the angle between the
segment direction and the plane normal is no more than 1e-06 different from π/2.

Now suppose you used the difference of endpoints, E, instead of a unit-length
direction D. The dot product is now d = N . E and you still compare d to zero. For
the segment and plane to be parallel, you need d = 0. Using the pseudocode with an
error tolerance:

const float epsilon = <a small positive error tolerance>;
Vector E = segment.P1 - segment.P0;
float d = Dot(plane.N,E);
if (fabs(d) > epsilon)
{

// segment not parallel to plane
}
else
{

// segment parallel (or nearly parallel) to plane
}

The numerical classification to be parallel is not the same as before. What we really
have here is

|d| = |E|| cos θ | ≤ ε
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where |E| is the length of E. To make a comparison with the previous example,
suppose ε = 1e-06. Two problems can occur in the current example. First, suppose
that the endpoints are very close together, say, separated by a distance of 1e-06. The
test on the absolute dot product becomes

| cos θ | ≤ 1

because |E| and ε are the same value and can be canceled in the expression. The angle
condition is satisfied for all angles! No matter how the segment is oriented in space, it
will be classified as parallel to the plane. Second, suppose that the endpoints are very
far apart, say, separated by a distance of 1e+06. The test on the absolute dot product
becomes

| cos θ | ≤ 1e-12

For 32-bit, floating-point numbers, quantities such as 1e-12 are in the noise range.
The probability of satisfying the condition is effectively zero, in which case no matter
how the segment is oriented in space, it will never be classified as parallel to the plane.

I once always used the two-point representation for line segments. After con-
stantly dealing with the floating-point problems, I switched to the center-direction-
radius representation. The outcome has been good, but users of my code base
sometimes miss the fact that I have a representation different from what they were
expecting.

Ah, well, floating-point arithmetic is the curse of computational geometry.

10.2 Planar Components

A plane in 3D space may be represented in a few ways. The first representation is to use
three noncollinear points P0, P1, and P2. This representation is not that convenient
for graphics systems. Instead, let P be a point on the plane, call it the plane origin,
and let N be a unit-length normal to the plane. A point X on the plane satisfies the
condition N . (X − P) = 0. All this says is that the vector X − P is perpendicular to
the normal. Alternatively, you may write N . X = d , where d is referred to as a plane
constant . No mention is made in the formula about a point on the plane, but if you
need one, you can use P = dN. In fact, P is the point on the plane that is closest to the
origin of the space containing the plane. The distance from the plane to the origin is
|d|.

Sometimes you need a coordinate system that includes the plane origin P and the
plane normal N. You may choose two vectors U and V so that {U, V , N} is a right-
handed orthonormal set (see Section 2.1.1). Any point X in space is written in this
coordinate system as

X = P + y0U + y1V + y2N = P + RY (10.1)
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where R is the rotation matrix whose columns are U, V, and N (in that order) and
Y = (y0, y1, y2) but is thought of as a column vector for the purpose of multiplication
with R. One robust algorithm for choosing U and V is

Vector3 N = <unit-length plane normal>;
Vector3 U, V;
float invLength;
if (|N.x| >= |N.y|)
{

// N.x or N.z is the largest-magnitude component; swap them.
invLength = 1/sqrt(N.x*N.x + N.z*N.z);
U.x = -N.z*invLength;
U.y = 0;
U.z = +N.x*invLength;

// V = Cross(N,U)
V.x = N.y*U.z;
V.y = N.z*U.x - N.x*U.z;
V.z = -N.y*U.x;

}
else
{

// N.y or N.z is the largest-magnitude component; swap them.
invLength = 1/sqrt(N.y*N.y + N.z*N.z);
U.x = 0;
U.y = +N.z*invLength;
U.z = -N.y*invLength;

// V = Cross(N,U)
V.x = N.y*U.z - N.z*U.y;
V.y = -N.x*U.z;
V.z = N.x*U.y;

}

By planar component , I mean any 2D object living in a 3D space. Naturally, there
are more planar components than you can count, but the two of interest here are
triangles and rectangles.

A triangle consists of three noncollinear points (vertices) Pi for 0 ≤ i ≤ 2. The
plane that contains the triangle may be chosen so that P0 is the plane origin and the
plane normal is

N = (P1 − P0) × (P2 − P0)

|(P1 − P0) × (P2 − P0)|
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Any point on the triangle may be represented in plane coordinates using Equation
(10.1). More common, though, is to write the points using barycentric coordinates:

X = b0P0 + b1P1 + b2P2

where bi ∈ [0, 1] for all i and b0 + b1 + b2 = 1. For any point in the plane of the
triangle, the same representation works but the bi may be any real numbers. Given
X, you may solve for the barycentric coordinates:

X − P0 = (b0 − 1)P0 + b1P1 + b2P2 = b1(P1 − P0) + b2(P2 − P0)

Applying various dot products, you may set up the linear system of equations[
(P1 − P0) . (P1 − P0) (P1 − P0) . (P2 − P0)

(P2 − P0) . (P1 − P0) (P2 − P0) . (P2 − P0)

] [
b1
b2

]
=

[
(P1 − P0) . (X − P0)

(P2 − P0) . (X − P0)

]

Solve for b1 and b2, and then compute b0 = 1 − b1 − b2.
A rectangle is most conveniently defined using the equivalent of the center-

direction-radius representation for segments. Let C be the center of the rectangle.
Let D0 and D1 be perpendicular direction vectors that are parallel to the sides of the
rectangle. Let r0 and r1 be the extents (half-lengths of the sides) of the rectangle. Any
point X on the rectangle is of the form

X = C + y0D0 + y1D1

where |y0| ≤ r0 and |y1| ≤ r1. This representation is least susceptible to numerical
round-off errors when testing for parallelism of objects in an intersection query.
The plane containing the rectangle has a plane origin C and a planar normal
N = D0 × D1.

Exercise
10.1

We have seen center-direction-extent representations for segments and rectangles.
Formulate a center-direction-extent representation for a triangle.

For other planar components, if you have a 2D representation that imposes con-
straints on the 2-tuples (y0, y1), you automaticallly have a 3D representation of the
object via Equation (10.1), where y2 = N . (X − P).

10.3 Boxes

The simplest box is an axis-aligned box, usually called an axis-aligned bounding box
(AABB) because of its frequent use as a bounding volume. An AABB is defined by
two extreme points, Pmin = (xmin, ymin, zmin) and Pmax = (xmax , ymax , zmax). The
box and its interior consists of points (x , y , z) for which xmin ≤ x ≤ xmax, ymin ≤
y ≤ ymax, and zmin ≤ z ≤ zmax.
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An oriented box or oriented bounding box (OBB) is defined by a center C, three
orthonormal axes Di that form a right-handed set (mutually perpendicular, D2 =
D0 × D1), and three extents ri > 0 for 0 ≤ i ≤ 2. Any point X in the box is of the
form

X = C + y0D0 + y1D1 + y2D2

where |y0| ≤ r0, |y1| ≤ r1, and |y2| ≤ r2. An AABB is a special case of an OBB when
D0 = (1, 0, 0), D1 = (0, 1, 0), and D2 = (0, 0, 1). If C = (c0, c1, c2), then the extreme
points are Pmin = (c0 − r0, c1 − r1, c2 − r2) and Pmax = (c0 + r0, c1 + r1, c2 + r2).

10.4 Quadrics

The objects discussed here are examples of quadric surfaces, all defined implicitly by
a quadratic equation Q(X) = 0.

10.4.1 Spheres

A sphere is defined by the set of all points X equidistant from a center point C with
distance r > 0 (the radius). The quadratic equation defining the set is |X − C|2 = r2.
If X = (x0, x1, x2) and C = (c0, c1, c2), then the quadratic equation is

(x0 − c0)
2 + (x1 − c1)

2 + (x2 − c2)
2 = r2

10.4.2 Ellipsoids

An ellipsoid in standard axis-aligned form has its center at the origin (0, 0, 0) and
its axes aligned with the Cartesian coordinate axes. The half-lengths of the ellipsoid
are a0 in the direction (1, 0, 0), a1 in the direction (0, 1, 0), and a2 in the direction
(0, 0, 1). If X = (x0, x1, x2) is a point on the ellipsoid, then

(
x0

a0

)2

+
(

x1

a1

)2

+
(

x2

a2

)2

= 1

The representation for an ellipsoid similar to the center-direction-extent for an
oriented box is as follows. Given a center point C and orthonormal axis directions Ui

for 0 ≤ i ≤ 2, the ellipsoid is represented by

(X − C)TRDRT(X − C) = 1

where R = [U0 U1 U2] is a rotation matrix whose columns are the specified direction
vectors, D = Diag{1/a2

0 , 1/a2
1 , 1/a2

2} has positive diagonal entries that are the squared
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half-lengths, and X is any point on the ellipsoid. This representation is obtained by
thinking of the point representation

X = C + y0U0 + y1U1 + y2U2

where yi = Ui
. (X − C). Think of (y0, y1, y2) as a point on an ellipsoid in standard

form:

1 =
(

y0

a0

)2

+
(

y1

a1

)2

+
(

y2

a2

)2

=
(

U0
. (X − C)

a0

)2

+
(

U1
. (X − C)

a1

)2

+
(

U2
. (X − C)

a2

)2

= (X − C)TU0UT
0 (X − C)

a2
0

+ (X − C)TU1UT
1 (X − C)

a2
1

+ (X − C)TU2UT
2 (X − C)

a2
2

= (X − C)T

(
U0UT

0

a2
0

+ U1UT
0

a2
1

+ U2UT
0

a2
2

)
(X − C)

= (X − C)T [ U0 U1 U2 ]

⎡
⎣ 1/a2

0 0 0
0 1/a2

1 0
0 0 1/a2

2

⎤
⎦

⎡
⎣ UT

0
UT

1
UT

2

⎤
⎦ (X − C)

= (X − C)TRDRT(X − C)

The most general form for the ellipsoid is XTAX + BTX + c = 0, where A is a
positive definite matrix. The fancy term positive definite means that A is a symmetric
matrix that can be factored into A = RDRT, where R is a rotation matrix and D is a
diagonal matrix whose diagonal entries are positive. It is possible to algebraically ma-
nipulate the quadratic equation, analogous to completing the square for a quadratic
polynomial of one variable, and obtain the equation

(X − C)TM(X − C) = 1

The center is C = −A−1B/2, and the matrix M is

M = A

BTA−1B/4 − c

The matrix M can itself be factored into M = RDRT using an eigendecomposition;
see Section 16.2.
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10.4.3 Cylinders

An infinite cylinder is the set of all points a distance r from a line P + tD, where D is
unit length and where t is any real number. You may construct the cylinder points X
by selecting two vectors U and V so that the set {D, U, V} is an orthonormal set. The
parametric representation is

X(t , θ) = P + tD + r((cos θ)U + (sin θ)V)

for θ ∈ [0, 2π). Notice that |(cos θ)U + (sin θ)V| = 1 for all θ , so the representation
says to start at the line point P + tD, and then walk radially outward by r units in any
direction specified by θ .

To obtain an implicit representation as a quadratic equation, observe that U .

(X − P) = r cos θ and V . ((X − P) = r sin θ . Thus,

r2 = (r cos θ)2 + (r sin θ)2

= (U . (X − P))2 + (V . (X − P))2

= (X − P)T(UUT + VVT(X − P)

= (X − P)T(I − DDT)(X − P)

where I is the identity matrix. I have used the fact that for an orthonormal set of
vectors, I = DDT + UUT + VVT. In summary, the cylinder is an implicit surface
defined by

(X − P)T(I − DDT)(X − P) = r2

This equation is independent of how you chose U and V, which in hindsight should
be apparent because of the symmetry of the cylinder.

Exercise
10.2

If {D, U, V} is an orthonormal set of vectors, prove that I = DDT + UUT + VVT.
Hint: Write a point X as a combination of the orthonormal vectors and factor the
equation.

A finite cylinder is a truncated infinite cylinder, where |t | ≤ h/2 for a specified
height h. We will refer to finite cylinders simply as “cylinders.” If we need to talk about
infinite cylinders, we will refer to them explicitly as “infinite cylinders.”

10.4.4 Cones

A single-sided cone is usually defined as follows. Let the cone axis be a ray P + tD for
t ≥ 0. The cone vertex is the point P. The cone wall is the set of points at an angle θ
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from the cone axis. If X is on the cone wall, then

D .
(

X − P

|X − P|
)

= cos θ

Normally we work with cones whose angle is acute, namely, θ ∈ (0, π/2. A quadratic
equation may be constructed for which the cone is defined implicitly. Multiplying the
previously displayed equation by |X − P| yields

D . (X − P|) = (cos θ)|X − P|
Now square the equation and use the fact that for any vector, |V|2 = V . V,

(X − P)TDD(X − P) = (D . (X − P|))2 = (cos θ)2(X − P) . (X − P)

Subtract the right-hand-side term from the equation and factor to obtain

(X − P)T(DDT − (cos θ)2I )(X − P) = 0

where I is the identity matrix.
The process of squaring introduces additional solutions. In fact, the quadratic

equation defines a double-sided cone. The portion on the original single-sided cone
is obtained by the additional constraint D . (X − P) ≥ 0 (choose only those points
forming an acute angle with D).

Just as an infinite cylinder may be truncated to a finite one, an infinite single-side
cone may be truncated by a plane perpendicular to the cone axis. Sometimes this is
called a capped cone.

Exercise
10.3

Prove that any point on the cone is of the parametric form

X(t , φ) = P + tD + (t tan θ)(cos φU + sin φV)

where {D, U, V} is an orthonormal set. The parameters are constrained to t ≥ 0 and
φ ∈ [0, 2π).

10.5 Sphere-Swept Volumes

Sphere-swept volumes have become popular because they sometimes lead to simpler
intersection tests than those for other bounding volumes. The idea of a sphere-swept
volume is that you construct a volume by placing the center C of a sphere of a radius
r at each and every point of a set called a medial set . Any point contained in any of
these spheres is part of the volume. The formulation of the volume as a set is actually
based on distance. If V is a sphere-swept volume for a sphere of radius r , and if M is
the medial set, then X ∈ V as long as there is a point P ∈ M for which |X − P| ≤ r .
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Figure 10.1 Left: A lozenge whose medial set is a rectangle of width 2 and height 4 and whose
radius is 0.5. Middle: A sphere of radius 2. Right: A capsule whose medial set is a
segment of length 2 and whose radius is 1.

10.5.1 Capsules

A capsule is a sphere-swept volume where M is a segment. That is, the capsule is the
set of all points that are at most a distance r from the line segment.

10.5.2 Lozenges

A lozenge is a sphere-swept volume where M is a rectangle. That is, the lozenge is the
set of all points that are at most a distance r from the rectangle. Figure 10.1 shows a
sphere, a capsule, and a lozenge. Naturally, you can define other types of sphere-swept
volumes. For example, a torus is a sphere-swept volume whose medial set is a circle.
An oriented box with its corner regions replaced by octants of a sphere is a sphere-
swept volume whose medial set is a smaller oriented box. And a tube surface is the
boundary of a sphere-swept volume whose medial set is any curve of your choosing.
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Curves

At first glance, curves do not appear to be a central topic in building a game en-
gine. Many game engines concentrate on taking polygonal models and process-

ing them for display by the renderer. If objects must change position or orientation
during game play, the standard approach has been just to move the objects in a simple
fashion, using translation by constant vector offset and rotation by a constant angle—
something that requires only vector and matrix algebra (i.e., linear algebra, emphasis
on line). But curves are actually quite useful when you think about it. For example,
if a flight simulator wishes to support realistic flight dynamics, such as the correct
banking of a plane as it makes a tight turn, curves can be of assistance. The bank
angle is related to how much bending there is in the curve that represents the flight
path, requiring the concept of curvature of a curve. Moreover, if the plane is required
to travel at a constant speed along the curved path, the calculations involve knowing
something about arc length and the concept of reparameterization by arc length.

Another popular example is in the construction of a game that requires tunnels.
Many developers are interested in specifying the central curve of a tunnel and the
width of the tunnel along that curve. From this information the tunnel walls can be
built as a polygon mesh. An understanding of the theory of curves is essential in this
construction.

Finally, curved surfaces have become quite popular, if not essential, for building
content in a game that is more realistic-looking than the standard polygonal content.
The content is typically dynamically tessellated during game play. An understand-
ing of the theory of curves will be quite useful because the same ideas extend to
surfaces—the ideas in tessellating curves apply equally well to tessellating surfaces.
Understanding curves is a prerequisite to understanding surfaces.

541
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The topic of curves is quite extensive, and only a brief summary is given in this
chapter. The basic concepts that are covered in Sections 11.1 and 11.2 are arc length,
reparameterization by arc length, curvature, torsion, tangents, normals, and binor-
mals. Special classes of curves are considered in Sections 11.3 through 11.7: Bézier
curves; natural, clamped, and closed cubic splines; B-spline curves; nonuniform
rational B-spline (NURBS) curves; and tension-continuity-bias splines. Topics dis-
cussed here that are less frequently found in the standard references are subdivision of
a curve by various methods (by uniform sampling in curve parameter, by arc length,
by midpoint distance) and fast recursive subdivision for cubic curves, all considered
in Section 11.8. I use the term parametric subdivision to distinguish this topic from
subdivison curves or subdivision surfaces. Finally, orientation of moving objects along
a curved path is discussed in Section 11.9. This is useful for applications such as flight
simulators, where the orientation of the airplanes must be physically realistic.

11.1 Definitions

A parametric curve is a function X : [tmin, tmax]⊂ R → R
n. The curve endpoints

are X(tmin) and X(tmax). Tangent vectors to the curve are X′(t), the derivative with
respect to t . The forward (backward) direction of traversal is that direction implied
by increasing (decreasing) t . The speed of traversal is |X′(t)|. A curve X(s) is said to be
parameterized by arc length s if T(s) = X′(s) is unit length. The relationship between
s and t is

s(t) =
∫ t

tmin

|X′(τ )| dτ

The length of the curve is L = s(tmax).
A planar curve X(t) = (x0(t), x1(t)) has associated with it an orthonormal coor-

dinate frame given by the tangent vector T(s) and a normal vector N(s). The frame
relationships are

T′(s) = κ(s)N(s)

N′(s) = −κ(s)T(s)

The quantity κ(s) is called curvature. A curve is uniquely determined (modulo rigid
motions) by specifying a curvature function.

If T(s) = (cos θ(s), sin θ(s)), then the normal can be chosen as N(s) = (− sin θ

(s), cos θ(s)). In this case, κ = dθ/ds. In terms of the t-components of the curve,
curvature is

κ = x′
0x

′′
1 − x′′

0 x′
1(

(x′
0)

2 + (x′
1)

2
)3/2
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A space curve X(t) = (x0(t), x1(t), x2(t)) has associated with it an orthonormal
coordinate frame called the Frenet frame, given by the tangent vector T(s), a normal
vector N(s), and a binormal vector B(s). The frame relationships are called the
Frenet-Serret equations:

T′(s) = κ(s)N(s)

N′(s) = −κ(s)T(s) + τ(s)B(s)

B′(s) = −τ(s)N(s)

The quantity κ(s) is the curvature and the quantity τ(s) is called torsion. A curve is
uniquely determined (modulo rigid motions) by specifying both a curvature func-
tion and a torsion function.

In terms of the t-components of the curve, curvature is

κ = |X′ × X′′|
|X′|3

The torsion is

τ = X′ . (X′′ × X′′′)
|X′ × X′′|2 .

The curve normal is

N = (X′ . X′)X′′ − (X′ . X′′)X′

|X′||X′ × X′′|
Observe that the normal vector is not defined when the denominator is zero. This
occurs when the speed is zero, |X′| = 0, or when the velocity and acceleration are
parallel, X′ × X′′ = 0.

11.2 Reparameterization by Arc Length

Given a curve X(t) for t ∈ [tmin, tmax], it may be desirable to evaluate curve quan-
tities (position, coordinate frame, curvature, torsion) by specifying an arc length
s ∈ [0, L], where L is the total length of the curve. The algorithm requires computing
t ∈ [tmin, tmax] that corresponds to the specified s. This is accomplished by a nu-
merical inversion of the integral equation relating s to t . Define Speed(t) = |X′(t)|
and Length(t) = ∫ t

tmin
|X′(τ )| dτ . The problem is now to solve Length(t) − s = 0

for the specifed s, a root-finding task. From the definition of arc length, the root
must be unique. An application of Newton’s method will suffice (see Section 16.5.1).
Evaluation of Length(t) does require numerical integration. Romberg integration or
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Gaussian quadrature works fine in this setting (see Section 16.6). The pseudocode for
the algorithm is

Input: tmin, tmax, L, s in [0,L]
Output: t in [tmin,tmax] corresponding to s

// Choose an initial guess based on relative location of s in [0,L].
ratio = s/L;
t = (1-ratio)*tmin + ratio*tmax;

// Compute Newton iterates to search for the root.
for (i = 0; i < IMAX; i++)
{

diff = Length(t) - s;
if (|diff| < EPSILON)
{

return t;
}
t -= diff/Speed(t);

}

// Newton’s method failed to converge. Return your best guess.
return t;

An application must choose the maximum number of iterations IMAX and a tolerance
EPSILON for how close to zero the root is. These will depend on which functions you
decide to use to search for roots.

Two frequently asked questions on the Usenet and game developer news forums
are

1. How do I select points on a curve that are equally spaced along the curve?

2. How do I move a camera with constant speed along a curved path?

The answer to both questions is use reparameterization by arc length. The first ques-
tion essentially asks how to compute the points on a curve given a uniformly spaced
set of arc lengths. The second question is really the same one, but in disguise. If you
have a set of points equally spaced by arc length, you can move the camera from
one point to the next on each frame, leading to a smooth motion with constant
speed.
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11.3 Bézier Curves

Bézier curves are popular with game programmers for their mathematical simplicity
and ease of use.

11.3.1 Definitions

Given an ordered list of three-dimensional control points Pi for 0 ≤ i ≤ n, the Bézier
curve for the points is

X(t) =
n∑

i=0

Bn, i(t)Pi

for t ∈ [0, 1] and where the coefficients of the control points are the Bernstein poly-
nomials

Bn, i(t) = C(n; i)t i(1 − t)n−i (11.1)

with combinatorial values C(n; i) = n!/(i!(n − i)!). The barycentric form of the
curve is

X(u, v) =
∑

i+j=n

C(n; i , j)uivjQi , j

where u ∈ [0, 1], v ∈ [0, 1], u + v = 1, i ≥ 0, j ≥ 0, and Qi , j = Pi. The formula
appears to be bivariate, but the condition v = 1 − u shows that it is in fact univariate.
The derivative of a Bézier curve is

X′(t) = n

n−1∑
i=0

Bn−1, i(t)(Pi+1 − Pi)

11.3.2 Evaluation

In evaluating a Bézier curve, a decision must be made about whether speed or ac-
curacy is more important. For real-time applications, speed is usually the important
criterion. Inaccuracies in the computed positions are not noticeable in the sampled
curve.

Using the Bernstein form of a Bézier curve, the Bernstein polynomials are evalu-
ated first. The polynomials are computed for the selected t and for all values 0 ≤ i ≤ n.
The control points are then multiplied by the coefficients and summed. Assuming a
fixed degree n and assuming that the combinatorial values C(n; i) are precomputed,
the number of multiplications required to compute each polynomial coefficient is
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n. For small degree n, the number of multiplications can be reduced by computing
intermediate products of powers of t and 1 − t , but this optimization is not con-
sidered at the moment in the operation count. Multiplying a polynomial coefficient
times control point requires three multiplications. Given n + 1 terms, the number of
required multiplications is (n + 1)(n + 3). There are n + 1 3D terms to sum for a to-
tal of 3n additions. The total operation count for a single Bézier curve evaluation is
n2 + 7n + 3 operations.

Using the barycentric form of a Bézier curve, evaluation is possible by using the
de Casteljau algorithm (a good reference on the topic is [Far90]). Define Q0

i , j = Qi , j

to be the original control points. The algorithm is

Qr
i , j (u, v) = uQr−1

i+1, j + vQr−1
i , j+1

for 1 ≤ r ≤ n and i + j = n − r . For each r there are six multiplications and three
additions on the right-hand side of the equation. The number of terms to compute
for each r is n − r . Total operation count for a single evaluation is 9n(n − 1)/2
operations. This is quadratic order, just as for the Bernstein evaluation, but the
constant is 9 rather than 1. However, the de Casteljau algorithm is numerically stable,
whereas the Bernstein form is not, particularly for large n. The amount of numerical
error in the Bernstein form is visually insignificant for rendering purposes for small
degree n ≤ 4. The savings in time is clearly worth using the Bernstein form.

11.3.3 Degree Elevation

A Bézier curve with n + 1 control points is a polynomial of degree n. An equivalent
Bézier curve with n + 2 control points, and that is a polynomial of degree n + 1,
can be constructed. The process, called degree elevation, is useful in smoothly piecing
together Bézier curves. The degree-elevated Bézier curve is obtained by multiplying
the Bernstein form of the curve by 1 = (t + (1− t)). The multiplication by 1 does not
intrinsically change the curve, but the polynomial coefficients are changed because of
the multiplication by (t + (1 − t)). The degree-elevated curve is

x(t) =
n+1∑
i=0

Bn+1, i(t)

[(
1 − i

n + 1

)
pi + i

n + 1
pi−1

]

11.3.4 Degree Reduction

If the original Bézier curve is quadratic, the degree-elevated curve is cubic, showing
that there are some cubic curves that can be represented by quadratic curves. How-
ever, not all cubic curves are representable by quadratic curves. For example, a cubic
curve that is S-shaped cannot be represented by a quadratic curve. It may be desirable
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to reduce the degree on a Bézier curve so that the curve evaluations are less expensive
to compute. Although it is not always possible to get an exact degree-reduced repre-
sentation, it is possible to build one that approximately fits the curve. A least-squares
fit can be used to obtain the degree-reduced curve. If the original curve has a lot of
variation, the least-squares fit may not be as good a fit as is desired. For example, if
the original curve is cubic and has control points (−2, 0, 0), (−1, 1, 0), (1, −1, 0),
and (2, 0, 0), the curve is S-shaped. The least-squares fit will produce a quadratic
curve with control points (−2, 0, 0), (0, 0, 0), and (2, 0, 0). This curve is a straight
line segment.

Let the original curve be

X(t) =
n∑

i=0

Bn, i(t)Pi

and let the degree-reduced curve be

y(t) =
m∑

i=0

Bm, i(t)Qi

where m < n. The end control points are required to be the same, Q0 = P0 and
Qm = Pn. The remaining control points Qi, 1 ≤ i ≤ m − 1, are chosen to minimize
the integral of the squared differences of the two curves,

E(Q1, . . . , Qm−1) =
∫ 1

0
|X(t) − Y(t)|2 dt

The values of the interior control points are determined by setting all the partial
derivatives of E to zero, ∂E/∂Qj = 0 for 1 ≤ j ≤ m − 1. This leads to the m − 1
equations in the m − 1 unknown control points:

m∑
i=0

(2m + 1)C(m; i)

C(2m; i + j)
Qi =

n∑
i=0

(m + n + 1)C(n; i)

C(m + n; i + j)
Pi

The system always has a solution.
The equations can be solved symbolically for some cases of interest. For n = 3 and

m = 2, the solution is

Q0 = P0

Q1 = 1

4

(−P0 + 3P1 + 3P2 − P3

)
Q2 = P3
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For n = 4 and m = 3, the solution is

Q0 = P0

Q1 = 1

42

(−11P0 + 44P1 + 18P2 − 12P3 + 3P4

)

Q2 = 1

42

(
3P0 − 12P1 + 18P2 + 44P3 − 11P4

)
Q3 = P4

For n = 4 and m = 2, the solution is

Q0 = P0

Q1 = 1

28

(−11P0 + 16P1 + 18P2 + 16P3 − 11P4

)
Q2 = P4

11.4 Natural, Clamped, and Closed
Cubic Splines

These curve types have the property of exact interpolation—the curves pass through
all of the sample points. The motivation is based on interpolation of a univariate
function. A good discussion of the topic for natural and clamped splines is [BF01].
The closed-spline algorithm is not mentioned in [BF01], but can be developed in a
similar manner as the natural and clamped versions. A brief discussion is given here.

A list of points (ti , fi) for 0 ≤ i ≤ n is specified. On each interval [ti , ti+1] with
0 ≤ i ≤ n − 1, a cubic function Si(t) = ai + bi(t − ti) + ci(t − ti)

2 + di(t − ti)
3 is

required so that the following conditions are met. The first set of conditions are for
exact interpolation:

Si(ti) = fi , 0 ≤ i ≤ n − 1, Sn−1(tn) = fn (11.2)

for a total of n + 1 constraints. The second set requires that the polynomial values at
the interior control points must match:

Si+1(ti+1) = Si(ti+1), 0 ≤ i ≤ n − 2 (11.3)

for a total of n − 1 constraints. The third set of conditions requires that the first
derivatives at the interior control points must match:

S ′
i+1(ti+1) = S′

i
(ti+1), 0 ≤ i ≤ n − 2 (11.4)
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for a total of n − 1 constraints. The fourth set of conditions requires that the second
derivatives at the interior control points must match:

S′′
i+1(ti+1) = S′′

i
(ti+1), 0 ≤ i ≤ n − 2 (11.5)

for a total of n − 1 constraints. All conditions together yield 4n − 2 constraints. The
unknown quantities are the coefficients ai, bi, ci, and di for 0 ≤ i ≤ n − 1. The
number of unknowns is 4n. Two additional constraints must be posed in hopes of
obtaining a linear system of 4n equations in 4n unknowns. The three cases considered
here are the following:

Natural splines: S′′
0 (t0) = 0 and S′′

n−1(tn) = 0.

Clamped splines: S′
0(t0) and S′

n−1(tn) are specified by the application.

Closed splines: S0(t0) = Sn−1(tn), S′
0(t0) = S′

n−1(tn), and S′′
0 (t0) = S′′

n−1(tn), in
which case it is necessary that f0 = fn. Although these appear to be a set of
three additional constraints, not two, the requirement that the input data satisfy
f0 = fn automatically guarantees that S0(t0) = Sn−1(tn) whenever the original
exact interpolation constraints are satisfied.

Define hi = ti+1 − ti for 0 ≤ i ≤ n − 1. Equation (11.2) implies

ai = fi , 0 ≤ i ≤ n − 1,

an−1 + bn−1hn−1 + cn−1h
2
n−1 + dn−1h

3
n−1 = fn

(11.6)

Equation (11.3) implies

ai+1 = ai + bihi + cih
2
i
+ dih

3
i
, 0 ≤ i ≤ n − 2 (11.7)

Equation (11.4) implies

bi+1 = bi + 2cihi + 3dih
2
i
, 0 ≤ i ≤ n − 2, (11.8)

And Equation (11.5) implies

ci+1 = ci + 3dihi , 0 ≤ i ≤ n − 2 (11.9)

Equation (11.9) can be solved for di:

di = ci+1 − ci

3hi

, 0 ≤ i ≤ n − 1 (11.10)

Replacing Equation (11.10) in Equation (11.7) and solving for bi yields

bi = ai+1 − ai

hi

− (2ci + ci+1)hi

3
, 0 ≤ i ≤ n − 2 (11.11)
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Replacing Equation (11.11) in Equation (11.8) yields

hi−1ci−1 + 2(hi + hi−1)ci + hici+1 = 3(ai+1 − ai)

hi

− 3(ai − ai−1)

hi−1

, 1 ≤ i ≤ n − 1

(11.12)

11.4.1 Natural Splines

Define cn = S′′
n−1(tn)/2. The boundary condition S′′

0 (t0) = 0 yields

c0 = 0 (11.13)

The other condition S′′
n−1(tn) = 0 yields

cn = 0 (11.14)

Equations (11.12), (11.13), and (11.14) form a tridiagonal system of linear equations
that can be solved by standard methods in O(n) time.

11.4.2 Clamped Splines

Let the boundary conditions be S′
0(t0) = f ′

0 and Sn−1(tn) = f ′
n
, where f ′

0 and f ′
n

are
specified by the application. These lead to two equations,

2h0c0 + h0c1 = 3(a1 − a0)

h0

− 3f ′
0 (11.15)

and

hn−1cn−1 + 2hn−1cn = 3f ′
n
− 3(an − an−1)

hn−1

(11.16)

where we define an = fn = Sn−1(tn). Equations (11.12), (11.15), and (11.16) form
a tridiagonal system of linear equations that can be solved by standard methods in
O(n) time.

11.4.3 Closed Splines

It is necessary that fn = f0 to obtain a well-posed system of equations defining the
polynomial coefficients. In this case a0 = an, where we define an = fn = Sn−1(tn).
The boundary condition S′′

0 (t0) = S′′
n−1(tn) and defined value cn = S′′

n−1(tn)/2 imply
a constraint,

c0 = cn (11.17)
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The boundary condition S′
0(t0) = S′

n−1(tn) implies

b0 = bn−1 + 2cn−1hn−1 + 3dn−1h
2
n−1

We also know that

b0 = a1 − a0

h0

− (2c0 + c1)h0

3

bn−1 = an − an−1

hn−1

− (2cn−1 + cn)hn−1

3

dn−1 = cn − cn−1

3hn−1

Substituting these quantities in the last constraint yields

hn−1cn−1 + 2(hn−1 + h0)c0 + h0c1 = 3

(
a1 − a0

h0

− a0 − an−1

hn−1

)
(11.18)

Equations (11.12), (11.17), and (11.18) form a linear system of equations. It is not
tridiagonal, but the cyclical nature of the matrix allows you to solve the system in
O(n) time.

The natural-, clamped-, and closed-spline interpolations were defined for fitting
a sequence of scalar values, but they can be simply extended to curves by fitting each
coordinate component of the curve separately.

11.5 B-Spline Curves

The splines of the previous section are exact interpolating and require solving systems
of equations whose size is the number of control points. If one of the control points is
changed, the system of equations must be solved again and the entire curve is affected
by the change. This might be an expensive operation in an interactive application
or when the number of control points is very large. An alternative is to obtain local
control in exchange for a nonexact interpolation. In this setting, changing a control
point affects the curve only locally and any recalculations for the curve are minimal.

The control points for a B-spline curve are Bi, 0 ≤ i ≤ n. The construction is
dimensionless, so the control points can be in whatever dimension interests you. The
degree d of the curve must be selected so that 1 ≤ d ≤ n. The curve itself is defined
by

X(u) =
n∑

i=0

Ni , d(u)Bi (11.19)
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where the functions Ni , d(u) are called the B-spline basis functions. These functions
are defined recursively and require selection of a sequence of scalars ui for 0 ≤ i ≤
n + d + 1. The sequence must be nondecreasing, that is, ui ≤ ui+1. Each ui is referred
to as a knot , the total sequence a knot vector. The basis function that starts the
recursive definition is

Ni , 0(u) =
{

1, ui ≤ u < ui+1
0, otherwise

(11.20)

for 0 ≤ i ≤ n + d . The recursion itself is

Ni , j (u) = u − ui

ui+j − ui

Ni , j−1(u) + ui+j+1 − u

ui+j+1 − ui+1

Ni+1, j−1(u) (11.21)

for 1 ≤ j ≤ d and 0 ≤ i ≤ n + d − j . The support of a function is the smallest closed
interval on which the function has at least one nonzero value. The support of Ni , 0(u)

is clearly [ui , ui+1]. In general, the support of Ni , j (u) is [ui , ui+j+1]. We will use
this information later to show how X(u) for a specific value of u depends only on a
small number of control points, the indices of those points related to the choice of u.
This property is called local control and will be important when you want to deform
a portion of a curve (or surface) by varying only those control points affecting that
portion.

The knots can be within any domain, but I will choose them to be in [0, 1] to
provide a standardized interface for B-spline and NURBS curves and surfaces.

11.5.1 Types of Knot Vectors

The main classification of the knot vector is that it is either open or periodic. If open,
the knots are either uniform or nonuniform. Periodic knot vectors have uniformly
spaced knots. The use of the term open is perhaps a misnomer since you can construct
a closed B-spline curve from an open knot vector. The standard way to construct a
closed curve uses periodic knot vectors. An open, uniform knot vector is defined by

ui =

⎧⎪⎨
⎪⎩

0, 0 ≤ i ≤ d
i−d

n+1−d
, d + 1 ≤ i ≤ n

1, n + 1 ≤ i ≤ n + d + 1

An open, nonuniform knot vector is in the same format except that the values ui

for d + 1 ≤ i ≤ n are user defined. These must be selected to maintain monotonicity
0 ≤ ud+1 ≤ . . . ≤ un+1 ≤ 1. A periodic knot vector is defined by

ui = i − d

n + 1 − d
, 0 ≤ i ≤ n + d + 1
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Some of the knots are outside the domain [0, 1], but this occurs to force the curve to
have period 1. When evaluating X(u), any input value of u outside [0, 1] is reduced
to this interval by periodicity before evaluation of the curve point.

11.5.2 Evaluation

The straightforward method for evaluation of X(u) is to compute all of Ni , d(u)

for 0 ≤ i ≤ n using the recursive formulas from Equations (11.20) and (11.21). The
pseudocode to compute the basis function values is shown next. The value n, degree
d, knots u[k], and control points B[k] are assumed to be globally accessible.

float N (int i, int j, float u)
{

if (j > 0)
{

c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + j + 1] - u) / (u[i + j + 1] - u[i + 1]);
return c0 * N(i,j - 1,u) + c1 * N(i + 1,j - 1,u);

}
else // j == 0
{

return (u[i] <= u && u < u[i + 1] ? 1 : 0);
}

}

Point X (float u)
{

Point result = ZERO;
for (i = 0; i <= n; i++)
{

result += N(i,d,u) * B[i];
}
return result;

}

This is an inefficient algorithm because many of the basis functions are evaluated
twice. For example, the value N0, d(u) requires computing N0, d−1(u) and N1, d−1(u).
The value N1, d(u) also requires computing N1, d−1(u) as well as N2, d−1(u). The
recursive dependencies are illustrated in Table 11.1 for n = 4 and d = 2. The various
types of knot vectors are shown below the table of basis function values.

The rows of knot vectors open with brackets and close with parentheses. These in-
dicate that an evaluation for a specified u ∈ [0, 1) requires searching for the bounding
interval [ui , ui+1) containing u. Only those knots in the bracketed portion need to be
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Table 11.1 Recursive dependencies for B-spline basis functions for n = 4 and d = 2.

N0, 2 N1, 2 N2, 2 N3, 2 N4, 2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 1 N1, 1 N2, 1 N3, 1 N4, 1 N5, 1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 0 N1, 0 N2, 0 N3, 0 N4, 0 N5, 0 N6, 0

Open Uniform 0 0 [0 1
3

2
3 1) 1 1

Open Nonuniform 0 0 [0 u3 u4 1) 1 1

Periodic − 2
3 − 1

3 [0 1
3

2
3 1) 4

3
5
3

searched. The search returns the index of the left endpoint i, where d ≤ i ≤ n. For an
open knot vector, the knots corresponding to other indices are included for padding.
For a periodic knot vector, the knots corresponding to other indices are included to
force the periodicity.

To avoid the redundant calculations, you might think to evaluate the table from
the bottom up rather than from the top down. In our example you would compute
Ni , 0(u) for 0 ≤ i ≤ 6 and save these for later access. You would then compute Ni , 1(u)

for 0 ≤ i ≤ 5 and look up the values Nj , 0(u) as needed. Finally, you would compute
Ni , 2(u) for 0 ≤ i ≤ 4. The pseudocode follows.

Point X (float u)
{

float basis[d + 1][n + d + 1]; // basis[j][i] = N(i,j)

for (i = 0; i <= n + d; i++)
{

if (u[i] <= u && u < u[i + 1])
{

basis[0][i] = 1;
}
else
{

basis[0][i] = 0;
}

}

for (j = 1; j <= d; j++)
{

for (i = 0; i <= n + d - j; i++)
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Table 11.2 Nonzero (boxed) values from Table 11.1 for N3, 0(u) = 1.

N0, 2 N1, 2 N2, 2 N3, 2 N4, 2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 1 N1, 1 N2, 1 N3, 1 N4, 1 N5, 1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0, 0 N1, 0 N2, 0 N3, 0 N4, 0 N5, 0 N6, 0

{
c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + j + 1] - u)/(u[i + j + 1] - u[i + 1]);
basis[i][j] = c0 * basis[j - 1][i] + c1 * basis[j - 1][i + 1];

}
}

Point result = ZERO;
for (i = 0; i <= n; i++)
{

result += basis[d][i] * B[i];
}
return result;

}

This is a reasonable modification but still not as efficient as it could be. For a single
value of u, only one of Ni , 0(u) is 1; the others are all 0. In our example, suppose that
u ∈ [u3, u4) so that N3, 0(u) is 1 and all other Ni , 0(u) are 0. The only nonzero entries
from Table 11.1 are shown as boxed quantities in Table 11.2.

The boxed entries cover a triangular portion of the table. The values on the left
diagonal edge and on the right vertical edge are computed first since each value
effectively depends only on one previous value, the other value already known to be
0. If Ni , 0(u) = 1, the left diagonal edge is generated by

Ni−j , j (u) = ui+1 − u

ui+1 − ui−j+1

Ni−j+1, j−1(u)

and the right vertical edge is generated by

Ni , j (u) = u − ui

ui+j − ui

Ni , j−1(u)

both evaluated for 1 ≤ j ≤ d . The interior values are computed using the recursive
formula, Equation (11.21). The pseudocode for computing the curve point follows.
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Point X (float u)
{

float basis[d + 1][n + d + 1]; // basis[j][i] = N(i,j)

// Get i for which u[i] <= u < u[i + 1].
i = GetKey(u);

// Evaluate left diagonal and right vertical edges.
for (j = 1; j <= d; j++)
{

c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + 1] - u) / (u[i + 1] - u[i - j + 1]);
basis[j][i] = c0 * basis[j-1][i];
basis[j][i - j] = c1 * basis[j - 1][i - j + 1];

}

// Evaluate interior.
for (j = 2; j <= d; j++)
{

for (k = i - j + 1; k < i; k++)
{

c0 = (u - u[k]) / (u[k + j] - u[k]);
c1 = (u[k + j + 1] - u) / (u[k + j + 1] - u[k + 1]);
basis[j][k] = c0 * basis[j - 1][k] * fInvD0 +

c1 * basis[j - 1][k + 1];
}

Point result = ZERO;
for (j = i - d; j <= i; j++)
{

result += basis[d][j] * B[j];
}
return result;

}

The only remaining issue is how to compute index i from the input parameter u.
For optimal efficiency, the computation should take into account whether the knot
vector is open or periodic, and if open, whether the knots are uniformly or nonuni-
formly spaced. The pseudocode follows. Observe that the choice is made to clamp u

to [0, 1] when the spline is open and to wrap u to [0, 1] when the spline is periodic.

int GetKey (float& u) const
{

if (knot vector is open) // Open splines clamp to [0,1].
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{
if (u <= 0) { u = 0; return d; }
if (u >= 1) { u = 1; return n; }

}
else // Periodic splines wrap to [0,1].
{

if (u < 0 || u > 1) u -= floor(u);
}

int i;
if (knots are uniformly spaced)
{

i = d + floor((n + 1 - d) * u);
}
else // Knots are nonuniformly spaced.
{

for (i = d + 1; i <= n + 1; i++) { if ( u < u[i] ) break; }
i--;

}
return i;

}

In all cases the search for the bounding interval [ui , ui+1] of u produces an index i,
for which d ≤ i ≤ n, according to the discussion immediately following Table 11.1.

The basis function data and operations can be encapsulated into a class Basis-
Function so that a B-spline curve class has a basis function object for the parameter
u. For the purpose of curve evaluation, only two public interface functions must exist
for a BasisFunction class. One function computes the basis function values at u and
returns the index i of the nonzero basis value Ni , 0(u); call it int Compute(float u).
The function returns the index i. The GetKey function described earlier becomes a
nonpublic helper function for Compute. Another function is an accessor to the values
Ni , d(u); call it float Basis(int i). The BasisFunction class stores the degree d inter-
nally, so only i needs to be passed. The curve evaluator does not need access to basis
function values Ni , j (u) for j < d . The B-spline curve itself can be encapsulated in a
class BSplineCurve. This class manages the control points B[], knows the degree d of
the curve, and has a BasisFunction member called Nu. The curve evaluator becomes
a member function of BSplineCurve and is

Point BSplineCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
for (int j = i - d; j <= i; j++)
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{
result += Nu.Basis(j) * B[j];

}
return result;

}

11.5.3 Local Control

Our goal is to dynamically modify the control points of the B-spline curve in order to
deform only a portion of that curve. If we were to change exactly one control point Bj

in Equation (11.19), what part of the curve is affected? The modified Bj is blended
into the curve equation via the basis function Nj , d(u). The curve associated with
those parameters u for which this function is not zero is affected by the change. The
set of such u is exactly what we called the support of the function, in this case the
interval [uj , uj+d+1]. The property such that changing a control point affects only a
small portion of the curve is referred to as local control.

The practical application of local control is that in drawing the curve, you create
a polyline approximation by selecting samples ūk ∈ [0, 1] for 0 ≤ k < m, with ūk <

ūk+1 for all k. The curve points are Pk = X(ūk). The polyline consists of the line
segments 〈Pk , Pk+1〉 for 0 ≤ k < m − 1. If we were to change control point Bj , only
some of the line segments would need to be recomputed. Specifically, define kmin and
kmax to be the extreme indices for which ūk ∈ [uj , uj+d+1]. The polyline points Pk

for kmin ≤ k ≤ kmax are the only ones to be recomputed.

11.5.4 Closed Curves

In order to obtain closed curves, additional control points must be included by the
curve designer or automatically generated by the B-spline curve implementation. If
the latter, and the implementation allows the user to dynamically modify control
points, the additional control points must be modified accordingly.

Closing a B-spline curve with an open knot vector is simple. If the curve has
control points Bi for 0 ≤ i ≤ n, the first control point must be duplicated, Bn+1 = B0.
An additional knot must also be added. The extra knot is automatically calculated
for uniformly spaced knots, but the curve designer must specify the extra knot for
nonuniformly spaced knots.

Closing a B-spline curve with a periodic knot vector requires the first d control
points to be duplicated, Bn+i = Bi for 0 ≤ i < d . Since a periodic knot vector has
uniformly spaced knots, the d additional knots are automatically calculated.
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(d) Open, nonuniform, not closed

(e) Periodic, not closed (f) Periodic, closed

(b) Open, uniform, not closed(a) Open, uniform, closed

(c) Open, nonuniform, closed

Figure 11.1 Six pairs of B-spline curves of various types. The right image of each pair shows the
deformed curve by modifying one control point.

Example
11.1

Figure 11.1 shows six pairs of B-spline curves, pairs (a) through (f). The left image
in each pair is generated from the eight ordered control points (0, 0), (1, 0), (2, 0),
(2, 1), (2, 2), (1, 2), (0, 2), and (0, 1). The right image uses the same control points
except that (2, 2) is replaced by (2.75, 2.75). Also, the light gray portions of the curves
in the right images are those points that were affected by modifying the control point
(2, 2) to (2.75, 2.75). In order to avoid confusion between the two uses of the term
open, a curve is labeled as either closed or not closed.

Table 11.3 shows the knot vectors and the parameter intervals affected by modifying
the control point (2, 2). The nonuniform knot vectors were just chosen arbitrarily.
The other knot vectors were automatically generated.
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Table 11.3 Knot vectors and parameter intervals affected by modifying the control point.

Open, Uniform, Not Closed
{

0, 0, 0, 1
6 , 2

6 , 3
6 , 4

6 , 5
6 , 1, 1, 1

} [
2
6 , 5

6

]
Open, Nonuniform, Not Closed {0, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 1, 1, 1} [0.2, 0.8]

Periodic, Not Closed
{
− 2

6 , − 1
6 , 0, 1

6 , 2
6 , 3

6 , 4
6 , 5

6 , 1, 7
6 , 8

6

} [
2
6 , 5

6

]
Open, Uniform, Closed

{
0, 0, 0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 , 1, 1, 1

} [
2
7 , 5

7

]
Open, Nonuniform, Closed {0, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 0.9, 1, 1, 1} [0.2, 0.8]

Periodic, Closed
{
− 2

8 , − 1
8 , 0, 1

8 , 2
8 , 3

8 , 4
8 , 5

8 , 6
8 , 7

8 , 1, 9
8 , 10

8

} [
2
8 , 5

8

]

11.6 NURBS Curves

NURBS is an acronym for nonuniform rational B-spline. B-spline curves are piece-
wise polynomial functions. The concept of NURBS provides a level of generality
by allowing the curves to be piecewise rational polynomial functions; that is, the
curve components are ratios of polynomial functions. The mathematics of NURBS
is quite deep and is described concisely in [Far99]. Not to deemphasize the theoreti-
cal foundations, but for our purposes the use of NURBS is for the greater flexibility
in constructing shapes than that provided by B-splines.

The control points for a NURBS curve are Bi for 0 ≤ i ≤ n, just as in the case
of B-spline curves. However, control weights are also provided, wi for 0 ≤ i ≤ n.
The construction is dimensionless; the control points can be m-tuples. The idea for
defining NURBS is quite simple. The (m + 1)-tuples (wiBi , wi) are used to create a
B-spline curve (Y(u), w(u)). These tuples are treated as homogeneous coordinates.
To project back to m-dimensional space, you divide by the last component: X(u) =
Y(u)/w(u). The degree d of the curve is selected so that 1≤ d ≤ n. The NURBS curve
is defined by

X(u) =
∑n

i=0 Ni , d(u)wiBi∑n
i=0 Ni , d(u)wi

(11.22)

where Ni , d(u) are the B-spline basis functions discussed earlier.

Example
11.2

The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 2D. A quadrant of a circle cannot be represented using polynomial
curves, but it can be represented as a NURBS curve of degree 2. The curve is x2 +
y2 = 1, x ≥ 0, y ≥ 0. The general parameterization is
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(x(u), y(u)) = w0(1 − u)2(1, 0) + w12u(1 − u)(1, 1) + w2u
2(0, 1)

w0(1 − u)2 + w12u(1 − u) + w2u
2

for u ∈ [0, 1]. The requirement that x2 + y2 = 1 leads to the weights constraint 2w2
1 =

w0w2. The choice of weights w0 = 1, w1 = 1, and w2 = 2 leads to a well-known
parameterization:

(x(u), y(u)) = (1 − u2, 2u)

1 + u2

If you were to tessellate the curve with an odd number of uniform samples of u, say,
ui = i/(2n) for 0 ≤ i ≤ 2n, then the resulting polyline is not symmetric about the
midpoint u = 1/2. To obtain a symmetric tessellation, you need to choose w0 = w2.
The weight constraint then implies w0 = w1

√
2. The parameterization is then

(x(u), y(u)) = (
√

2(1 − u)2 + 2u(1 − u), 2u(1 − u) + √
2u2)√

2(1 − u)2 + 2u(1 − u) + √
2u2

In either case we have a ratio of quadratic polynomials.

An algebraic construction of the same type, but quite a bit more tedious to solve,
produces a ratio of quartic polynomials. The control points and control weights
are required to be symmetric to obtain a tessellation that is symmetric about its
midpoint. The middle weight is chosen as w2 = 4 as shown:

(x(u), y(u)) = a0(1, 0) + a1(x1, y1) + a2(x2, x2) + a3(y1, x1) + a4(0, 1)

(1 − u)4w0 + 4(1 − u)3uw1 + 24(1 − u)2u2 + 4(1 − u)u3w1 + u4w0

where a0 = (1 − u)4w0, a1 = 4(1 − u)3uw1, a2 = 24(1 − u)2u2, and a3 = 4(1 − u)

u3w1, a4 = u4w0. The parameters are x1 = 1, y1 = (
√

3 − 1)/
√

3, x2 = (
√

3 + 1)/
(2

√
3), w0 = 4

√
3 (

√
3 − 1), and w1 = 3/

√
2.

We already have all the machinery in place to deal with the basis functions. The
NURBS curve can be encapsulated in a class NURBSCurve that manages the control
points B[], the control weights W[], and the degree d, and has a BasisFunction mem-
ber Nu. The curve evaluator is

Point NURBSCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
float totalW = 0;
for (int j = i - d; j <= i; j++)
{

float tmp = Nu.Basis(j) * W[j];
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result += tmp * B[j];
totalW += tmp;

}
result /= totalW;
return result;

}

For much more detail on B-spline and NURBS curves, see [Far90, Far99, CRE01,
Rog01].

11.7 Tension-Continuity-Bias Splines

Given an ordered list of points {Pi}ni=0, the tension-continuity-bias (Kochonek-
Bartel) splines provide a cubic interpolation between each pair Pi and Pi+1 with
varying properties specified at the endpoints [KB86]. These properties are tension τ ,
which controls how sharply the curve bends at a control point; continuity γ , which
provides a smooth visual variation in the continuity at a control point (γ = 0 yields
derivative continuity, but γ �= 0 gives discontinuities); and bias β, which controls the
direction of the path at a control point by taking a weighted combination of one-sided
derivatives at that control point.

Using a Hermite interpolation basis H0(t) = 2t3 − 3t2 + 1, H1(t) = −2t3 + 3t2,
H2(t) = t3 − 2t2 + t , and H3(t) = t3 − t2, a parametric cubic curve passing through
points pi and Pi+1 with tangent vectors Ti and Ti+1, respectively, is

Xi(t) = H0(t)Pi + H1(t)Pi+1 + H2(t)Ti + H3(t)Ti+1 (11.23)

where 0 ≤ t ≤ 1. Catmull-Rom interpolation is a special case where Ti = (Pi+1 −
pi−1)/2, a centered finite difference.

Equation (11.23) may be modified to allow specification of an outgoing tangent
T0

i
at t = 0 and an incoming tangent T1

i+1 at t = 1:

xi(t) = H0(t)Pi + H1(t)Pi+1 + H2(t)T0
i
+ H3(t)T1

i+1 (11.24)

Tension τ ∈ [−1, 1] can be introduced by using

T0
i
= T1

i
= (1 − τ)

2

(
(Pi+1 − Pi) + (Pi − Pi−1)

)
The Catmull-Rom spline occurs when τ = 0. For τ near 1, the curve is tightened at
the control point; τ near −1 produces slack at the control point. Varying τ changes
the length of the tangent at the control point; a smaller tangent leads to a tightening,
and a larger tangent leads to a slackening.
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Continuity γ ∈ [−1, 1] can be introduced by using

T0
i
=

(
1 − γ

2
(Pi+1 − Pi) + 1 + γ

2
(Pi − Pi−1)

)

and

T1
i
=

(
1 + γ

2
(Pi+1 − Pi) + 1 − γ

2
(Pi − Pi−1)

)

When γ = 0, the curve has a continuous tangent vector at the control point. As |γ |
increases, the resulting curve has a corner at the control point, the direction of the
corner depending on the sign of γ .

Bias β ∈ [−1, 1] can be introduced by using

T0
n
= T1

n
=

(
1 − β

2
(Pn+1 − Pn) + 1 + β

2
(Pn − Pn−1)

)

When β = 0, the left and right one-sided tangents are equally weighted, producing
the Catmull-Rom spline. For β near −1, the outgoing tangent dominates the di-
rection of the path of the curve through the control point—an effect referred to as
undershooting . For β near 1, the incoming tangent dominates—an effect referred to
as overshooting .

The three effects may be combined into a single set of equations

T0
i
= (1 − τ)(1 − γ )(1 − β)

2
(Pi+1 − Pi) + (1 − τ)(1 + γ )(1 + β)

2
(Pi − Pi−1)

(11.25)

and

T1
i
= (1 − τ)(1 + γ )(1 − β)

2
(Pi+1 − Pi) + (1 − τ)(1 − γ )(1 + β)

2
(Pi − Pi−1)

(11.26)

These formulas assume a uniform spacing in time of the position samples. An ad-
justment can be made for nonuniform spacing. For Equation (11.25) the multiplier
is 2�i/(�i−1 + �i), and for Equation (11.26) the multiplier is 2�i−1/(�i−1 + �i),
where �i = si+1 − si and si is the sample time for position Pi.

Figures 11.2 through 11.8 show a curve with six control points and various
choices for tension, continuity, and bias at one of the control points.
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Figure 11.2 Parameters τ = 0, γ = 0, β = 0.

Figure 11.3 Parameters τ = 1, γ = 0, β = 0.

Figure 11.4 Parameters τ = 0, γ = 1, β = 0.
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Figure 11.5 Parameters τ = 0, γ = 0, β = 1.

Figure 11.6 Parameters τ = −1, γ = 0, β = 0.

Figure 11.7 Parameters τ = 0, γ = −1, β = 0.
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Figure 11.8 Parameters τ = 0, γ = 0, β = −1.

11.8 Parametric Subdivision

For drawing purposes, it is sometimes necessary to produce a piecewise linear ap-
proximation to a curve with n + 1 curve points that will be the line segment end-
points. If ti are the selected curve parameters for 0 ≤ i ≤ n, then the set of points
Xi = X(ti) for 0 ≤ i ≤ n is referred to as a subdivision of the curve. Three methods
are discussed.

11.8.1 Subdivision by Uniform Sampling

The simplest way to subdivide is to uniformly sample [tmin, tmax] as ti = tmin +
(tmax − tmin)i/n for 0 ≤ i ≤ n. Although easy to compute, the resulting polyline is
not always a good approximation because places of large variation in the curve might
be skipped. Figure 11.9 illustrates a uniform subdivision.

11.8.2 Subdivision by Arc Length

This subdivision scheme selects a set of points that are equidistant from each other
(measured with respect to arc length). Given si = Li/n, where L is the total curve
length and 0 ≤ i ≤ n, the algorithm for reparameterization by arc length can be
applied to produce the corresponding ti value. The subdivision points X(ti) are then
calculated. This method has the same problem as uniform sampling, namely, large
variations of the curve over a small arc length may not be captured unless n is quite
large. Figure 11.10 illustrates a subdivision by arc length.
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Figure 11.9 Uniform subdivision of a curve.

Figure 11.10 Subdivision of a curve by arc length.

11.8.3 Subdivision by Midpoint Distance

This scheme produces a nonuniform sampling by recursively bisecting the parame-
ter space. The bisection is actually performed, and the resulting curve point corre-
sponding to the midpoint parameter is analyzed. If A and B are the endpoints of the
segment and if C is the computed point in the bisection step, then the distance D0
from C to the segment is computed. If D1 = |B − A|, then C is added to the tessella-
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tion if D0/D1 > ε for an application-specified maximum relative error of ε > 0. The
pseudocode is given next. Rather than maintaining a doubly linked list to handle the
insertion of points on subdivision, the code maintains a singly linked list of ordered
points.

Input: Curve x(t) with t in [tmin,tmax]
m, the maximum level of subdivision
epsilon, the maximum relative error
subdivision {}, an empty list

Output: n >= 1 and subdivision {p[0],...,p[n]}

bool Bisect (int level, float t0, Point x0, float t1, Point x1)
{

if (level > 0)
{

tm = (t0 + t1)/2;
xm = x(tm);
d0 = length of segment <x0,x1>
d1 = distance from xm to segment <x0,x1>;

if (d1/d0 > epsilon)
{

Bisect(level - 1,t0,x0,tm,xm);
Bisect(level - 1,tm,xm,t1,x1);
return;

}
}

add x1 to end of list;
}

Initial call:
subdivision = { x(tmin) };
Bisect(m,tmin,x(tmin),tmax,x(tmax));

Figure 11.11 illustrates a subdivision using this method.

11.8.4 Fast Subdivision for Cubic Curves

Cubic polynomial curves can be subdivided by using a heuristic of flatness to stop the
subdivisions. The method described in this section uses the magnitude of the second-
derivative vector of the curve multiplied by the length of a subinterval as an estimate
of how flat (or curved) the curve is on that subinterval. If the magnitude is smaller
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Figure 11.11 Subdivision of a curve by midpoint distance.

than the application-specified tolerance, the subdivision step is not executed. The
classic case where the heuristic fails is an S-shaped curve whose point of inflection is
the midpoint of the given interval. The second derivative is zero at the midpoint, so
the subdivision step is not executed. However, the curve can have significant variation
from the line segment connecting the endpoints of the interval. It is simple enough
to trap this case and subdivide once to get past the inflection.

The subdivision method is naturally recursive. We take advantage of this fact and
use a central differencing scheme to compute the curve points [WW92].

Let the cubic curve be X(t) = ∑3
i=0 Cit

i for t ∈ [tmin, tmax]. Using a Taylor series
to represent the curve, the following equations can be derived:

X(t ± δ) = X(t) ± δX′(t) + 1

2
δ2X′′(t) ± 1

6
δ3X′′′(t)

There are no additional terms in the Taylor series since the curve is a cubic polyno-
mial. Taking the average of the two equations and solving for X(t) yields

X(t) = 1

2

(
X(t + δ) + X(t − δ) − δ2X′′(t)

)
(11.27)

Expanding the second-derivative term as a Taylor series, we obtain

X′′(t ± δ) = X′′(t) ± δX′′(t)

Adding these and solving for X′′(t) yields

X′′(t) = 1

2

(
X′′(t + δ) + X′′(t − δ)

)
(11.28)
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Equation (11.28) allows us to compute the second derivative of the curve at the
midpoint t of the interval [t − δ , t + δ]. This can be substituted in Equation (11.27)
to compute the curve at the midpoint.

The pseudocode for the recursive subdivision is

Input: Cubic curve x(t) with t in [tmin,tmax]
epsilon, the maximum relative error (units of squared length)
subdivision {}, an empty list

Output: n >= 1 and subdivision {p[0],...,p[n]}

void Subdivide (float t0, float t1, Point x0, Point x1, Point sd0, Point sd1)
{

// x0 and x1 are endpoints.
// sd0 and sd1 are second derivatives at the endpoints.

sdmid = 0.5 * (sd0 + sd1);
d = t1 - t0;
dsqr = d * d;
nonlinearity = dsqr * sdmid;
if (SquaredLength(nonlinearity) > epsilon)
{

tmid = 0.5 * (t0 + t1);
xmid = 0.5 * (x0 + x1 - nonlinearity);
insert xmid in subdivision between x0 and x1;
Subdivide(t0,tmid,x0,xmid,sd0,sdmid);
Subdivide(tmid,t1,xmid,x1,sdmid,sd1);

}
}

Initial call:
x0 = x(tmin);
x1 = x(tmax);
sd0 = x"(tmin);
sd1 = x"(tmax);
subdivision = { x0, x1 };
Subdivide(tmin,tmax,x0,x1,sd0,sd1);

11.9 Orientation of Objects on Curved Paths

Specifying a path of motion for an object, including the orientation of the object at
each point along the path, is called path controlling . For example, if a model airplane
is given a path to follow, the orientation of the model airplane along the path should
be representative of the real thing. If the path takes the airplane to the right, the plane
should change orientation and bank to the right.
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Let the specified path of the object be a curve X(t) for some domain of t values.
The orientation can be specified as a rotation matrix R(t), where the columns of R

are the coordinate axes at each point on the path. The columns are ordered in the
following sense. The first column represents a direction vector, but is not required by
the theory to be the tangent to the curve. The second column is an up vector, and the
third column is a right vector. There are many ways to specify orientation, but the two
most common are to use either the Frenet frame of the curve or a coordinate system
with a fixed up vector where the upward direction is specific to an application.

11.9.1 Orientation Using the Frenet Frame

This method requires that X(t) be twice differentiable so that the normal vector is
well defined. Recall from the curve definitions that the Frenet frame consists of a
tangent vector T(t), a normal vector N(t), and a binormal vector B(t) = T × N.
The tangent vector is a unit-length vector with direction X′(t). The normal vector
represents a force parallel to the acceleration of the object. The orientation matrix is
R(t) = [T(t) N(t) B(t)].

The drawback to using a Frenet frame occurs when you pass through a point of
inflection. The normal vector is discontinuous in time, and the frame can flip on you.

11.9.2 Orientation Using a Fixed Up-Vector

This method requires that X(t) be once differentiable so that the tangent vector is well
defined. An application must specify a vector U that points in the upward direction.
The tangent vector is T(t), the unit-length vector with direction X′(t):

T(t) = X′(t)
|X′(t)|

The first column of R(t) is chosen to be T. The third column of R(t), B(t), is
computed as the unit-length cross product between T and U:

B(t) = T(t) × U

|T(t) × U|
The second column of R(t), N(t), is chosen as

N(t) = B(t) × T(t)

The only item of concern in using this method for orientation is that T(t) should
never be parallel to U, otherwise B(t) = 0 and the coordinate system cannot be
constructed. For numerical reasons, it is better to constrain the curve so that the angle
between T and U is larger than a predefined positive minimum angle.
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Surfaces

When I wrote the first edition of this book, I predicted that the powerful pro-
cessors and the limited memory on the game consoles would steer developers

and artists toward using control-point surfaces. The premise was that only a small
number of control points need to be stored in memory, but the processor can tessel-
late rapidly to any reasonable level of subdivision. It appears that my prediction was
premature. Game artists appear to remain comfortable with polygonal models, and
each generation of console tends to have a lot more memory than the previous, so
the urgency is lacking to produce high-resolution tessellations from a small amount
of data.

That said, surfaces are still a reasonable way of generating smooth and complex
shapes, even if the end result is a polygonal tessellation that is created from the surface
and exported from the modeling package as a triangle mesh. This section covers the
basic definitions for surfaces, as well as examples of a few special types of surfaces.

12.1 Introduction

A parametric surface patch is a function X : [umin, umax]× [vmin, vmax]⊂ R
2 → R

3.
The surface boundary curves are X(umin, v), x(umax , v), X(u, vmin), and X(u, vmax).
Tangent vectors to the surface are the partial derivatives Xu = ∂X/∂u and Xv =
∂X/∂v. A normal vector at each point on the surface is the cross product of the partial
derivatives, N = Xu × Xv. If unit-length normals are required, the cross product can
be normalized. The patch is actually called a rectangle patch because the domain is a
rectangular set in the parameter space. The standard domain for rectangle patches is

573
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[0, 1]2. Another common type of patch is a triangle patch, where the domain is a tri-
angular set. The standard domain for a triangle patch is u ≥ 0, v ≥ 0, and u + v ≤ 1.
Generally, the parametric domain can be a set D ⊆ R

2.
An implicit surface is defined by level sets F(X) = c for a function F : R

3 → R.
A normal vector at each point is the gradient, N = ∇F . If unit-length normals are
required, the gradient can be normalized. Two linearly independent tangent vectors
U and V can be constructed from N. A reasonable algorithm for constructing the
tangents is

Vector3 N = (x,y,z); // unit-length normal
Vector3 U, V; // unit-length tangents
if (|x| >= |y| and |x| >= |z|)
{

U = (y,-x,0)/sqrt(x * x + y * y);
}
else
{

U = (0,y,-z)/sqrt(y * y + z * z);
}
V = Cross(N,U);

The typical implicit surfaces you encounter are quadric surfaces, where F(x , y , z) is
a quadratic function of its inputs.

A surface that is the graph of a function f can be described either parametri-
cally as (x , y , f (x , y)) or implicitly as F(x , y , z) = z − f (x , y) = 0. In the first
case, two tangents are U = (1, 0, ∂f/∂x) and V = (0, 1, ∂f/∂y), and a normal is the
cross product N = (−∂f/∂x , −∂f/∂y , 1) = (−∇f , 1). In the second case, note that
∇F = N.

12.2 Bézier Rectangle Patches

Bézier rectangle patches are popular with game programmers for their mathematical
simplicity and ease of use.

12.2.1 Definitions

Given a rectangular lattice of 3D control points Pi0, i1 for 0 ≤ i0 ≤ n0 and 0 ≤ i1 ≤ n1,
the Bézier rectangle patch for the points is

X(s , t) =
n0∑

i0=0

n1∑
i1=0

Bn0, i0(s)Bn1, i1(t) Pi0, i1
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for (s , t) ∈ [0, 1]2 and where the coefficients are products of the Bernstein polynomi-
als defined in Equation (11.1). The first-order partial derivatives of the patch are

Xs(s , t) = n0

n0−1∑
i0=0

n1∑
i1=0

Bn0−1, i0(s)Bn1, i1(t)
(

Pi0+1, i1 − Pi0, i1

)

and

Xt (s , t) = n1

n0∑
i0=0

n1−1∑
i1=0

Bn0, i0(s)Bn1−1, i1(t)
(

Pi0, i1+1 − Pi0, i1

)

12.2.2 Evaluation

As for Bézier curves, the same trade-off of speed versus accuracy must be made
for Bézier rectangles. The choice here is for speed. Each Bernstein polynomial is
computed, and then the product of the polynomials for each term is computed.
There are n0 + 1 evaluations of Bn0, i0(s), n1 + 1 evaluations of Bn1, i1(t), and n0n1
multiplications for pairs of the evaluated polynomials.

The de Casteljau algorithm repeatedly computes convex combinations and is
generally more stable, but it uses more floating-point operations. For example, let’s
compare it to the Bernstein form of evaluation for bilinear interpolation, the case
where n0 = 1 and n1 = 1. The Bernstein form for evaluation is

(1 − s)(1 − t)P0, 0 + (1 − s)tP0, 1 + s(1 − t)P1, 0 + stP1, 1

and requires two subtractions, nine additions, and 16 multiplications. The de Castel-
jau form for evaluation is

(1 − s)
(
(1 − t)P0, 0 + tp0, 1

) + s
(
(1 − t)P1, 0 + tP1, 1

)
and requires two subtractions, nine additions, and 18 multiplications.

12.2.3 Degree Elevation

A Bézier rectangle patch of degree (n0, n1) can be written as a patch of degree (n0 +
1, n1). The process is similar to that of a Bézier curve where the equation is multiplied
by 1 = (1 − s) + s and formally expanded. The degree-elevated patch is

X(s , t) =
n0+1∑
i0=0

n1∑
i1=0

Bn0+1, i0(s)Bn1, i1(t)

[(
1 − i0

n0 + 1

)
Pi0, i1 + i0

n0 + 1
Pi0−1, i1

]
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The patch can be similarly degree elevated to one of degree (n0, n1 + 1):

X(s , t) =
n0∑

i0=0

n1+1∑
i1=0

Bn0, i0(s)Bn1+1, i1(t)

[(
1 − i1

n1 + 1

)
Pi0, i1 + i1

n1 + 1
Pi0, i1−1

]

The patch can be degree elevated in both components to one of degree
(n0 + 1, n1 + 1):

X(s , t) =
n0+1∑
i0=0

n1+1∑
i1=0

Bn0, i0(s)Bn1, i1(t) Qi0, i1

where

Qi0, i1 = [
1 − i0

n0+1
i0

n0+1

] [
pi0, i1 pi0, i1−1

pi0−1, i1 pi0−1, i1−1

] [
1 − i1

n1+1
i1

n1+1

]

The right-hand side is evaluated symbolically as a product of the three matrices.

12.2.4 Degree Reduction

A Bézier rectangle patch can be reduced in degree with similar constraints as in the
Bézier curve case. The reduced patch in almost all cases is an approximation to the
original patch. A least-squares fit is used to obtain the reduced patch.

Let the original surface be

X(s , t) =
n0∑

i0=0

n1∑
i1=0

Bn0, i0(s)Bn1, i1(t) Pi0, i1

and let the degree-reduced surface be

Y(s , t) =
m0∑

i0=0

m1∑
i1=0

Bm0, i0(s)Bm1, i1(t) Qi0, i1

where m0 ≤ n0 and m1 ≤ n1. For degree reduction of Bézier curves, we imposed
the constraint that the end points of the two curves be the same. The extension to
rectangle patches is to require that the four corner points match between the two
patches. Although it is possible to apply a least-squares fit to construct the remaining
control points, a better approach looks ahead to the situations where two patches
have a common boundary curve. The reduction scheme when applied to the two
adjacent patches should guarantee that the patches match on the common reduced
boundary curve. The algorithm for a single patch should therefore degree-reduce
the four boundary curves first, then compute the remaining interior control points
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using the least-squares fit. The to-be-determined interior points are Qi0, i1 for 1≤ i0 ≤
m0 − 1 and 1 ≤ i1 ≤ m1 − 1. These are chosen to minimize the integral of the squared
differences of the two surfaces:

E(Q1, 1, . . . , Qm0−1, m1−1) =
∫ 1

0

∫ 1

0
|X(s , t) − Y(s , t)| ds dt

The values of the interior control points are determined by setting all the partial
derivatives of E to zero, ∂E/∂Qi0, i1 = 0 for 1≤ i0 ≤ m0 − 1 and 1≤ i1 ≤ m1 − 1. This
leads to (m0 − 1)(m1 − 1) equations in the same number of unknown control points:

m0∑
i0=0

m1∑
i1=0

(2m0 + 1)(2m1 + 1)C(m0; i0)C(m1; i1)

C(2m0; i0 + j0)C(2m1; i1 + j1)
Qi0, i1

=
n0∑

i0=0

n1∑
i1=0

(n0 + m0 + 1)(n1 + m1 + 1)C(n0; i0)C(n1; i1)

C(n0 + m0; i0 + j0)C(n1 + m1; i1 + j1)
Pi0, i1

The system always has a solution.
For example, solving the equations symbolically for degree reduction of a bicubic

patch to a biquadratic patch, n0 = n1 = 3 and m0 = m1 = 2:

Q0, 0 = P0, 0

Q0, 2 = P0, 3

Q2, 0 = P3, 0

Q2, 2 = P3, 3

Q0, 1 = 1

4

(−P0, 0 + 3P0, 1 + 3P0, 2 − P0, 3

)

Q1, 0 = 1

4

(−P0, 0 + 3P1, 0 + 3P2, 0 − P3, 0

)

Q1, 2 = 1

4

(−P0, 3 + 3P1, 3 + 3P2, 3 − P3, 3

)

Q2, 1 = 1

4

(−P3, 0 + 3P3, 1 + 3P3, 2 − P3, 3

)

Q1, 1 = 1

16

(
P0, 0 − 3P0, 1 − 3P0, 2 + P0, 3 − 3P1, 0 + 9P1, 1 + 9P1, 2 − 3P1, 3

− 3P2, 0 + 9P2, 1 + 9P2, 2 − 3P2, 3 + P3, 0 − 3P3, 1 − 3P3, 2 + P3, 3

)
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Figure 12.1 Polynomial coefficients for n = 2.

12.3 Bézier Triangle Patches

Bézier triangle patches are slightly more complicated to use than Bézier rectangle
patches, but they are useful for creating models of arbitrary complexity.

12.3.1 Definitions

Given a triangle lattice of 3D control points Pi0, i1, i2 for i0 ≥ 0, i1 ≥ 0, i2 ≥ 0, and
i0 + i1 + i2 = n, the Bézier triangle patch for the points is

X(u, v , w) =
∑
|I |=n

Bn, I (u, v , w) PI

where I = (i0, i1, i2), |I | = i0 + i1 + i2, u ≥ 0, v ≥ 0, w ≥ 0, and u + v + w = 1. The
summation involves (n + 1)(n + 2)/2 terms. The Bernstein polynomial coefficients
are

Bn, I (u, v , w) = C(n; i0, i1, i2)u
i0vi1wi2 = n!

i0!i1!i2!
ui0vi1wi2

The first-order partial derivatives Xu and Xv can be computed with respect to u or
v, where w = 1 − u − v. While the symbolic formula can be computed from the
equation for X(u, v , w), it is simpler to visualize the coefficients for X, Xu, and Xv

as triangles of terms. The multi-index I = (i0, i1, i2) varies as follows. The index i0
increases from left to right, the index i1 varies from bottom to top, and the index
i2 = n − i0 − i1. Figures 12.1, 12.2, and 12.3 show the coefficient triangles for the
cases n = 2, n = 3, and n = 4, respectively.

12.3.2 Evaluation

Evaluation of x or its derivatives is a matter of computing the coefficients, illustrated
in Figures 12.1 through 12.3, multiplying them times the control points, and sum-
ming. In an implementation, the triangle coefficients are stored in a 1D array. The
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Figure 12.2 Polynomial coefficients for n = 3.
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Figure 12.3 Polynomial coefficients for n = 4.
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rows of the coefficient tables are stored bottom first (n + 1 items, scanned left to
right) through top last (1 item). The coefficients themselves are computed to min-
imize arithmetic operations by saving intermediate products and sums.

12.3.3 Degree Elevation

A Bézier triangle patch of degree n can be written as a patch of degree n + 1. The idea
is to formally multiply the original patch by 1 = u + v + w so that the surface does
not change, but the degree does. The degree-elevated patch is defined by

X(u, v , w) = (u + v + w)
∑
|I |=n

Bn, I (u, v , w) pI =
∑

|I |=n+1

Bn+1, I (u, v , w) QI

where the degree-elevated control points are

QI = 1

n + 1

(
i0Pi0−1, i1, i2 + i1Pi0, i1−1, i2 + i2Pi0, i1, i2−1

)

12.3.4 Degree Reduction

A Bézier triangle patch can be reduced in degree with the same constraints as for
Bézier curves. The reduced patch in almost all cases is an approximation to the
original patch. A least-squares fit can be used to obtain the reduction.

Let the original surface be X(u, v , w) = ∑
|I |=n Bn, I (u, v , w) PI , and let the

degree-reduced surface be Y(u, v , w) = ∑
|I |=m Bm, I (u, v , w) QI , where m < n. For

Bézier curves, we imposed the constraint that the endpoints of the two curves must
match. The extension to triangle patches is to require that the three corner points
match between the two patches. Just as with rectangle patches, the boundary curves of
the patch are reduced separately, and the interior points of the patch are determined
from a surface least-squares fit. This guarantees that applying a reduction in degree
across multiple patches with shared boundaries will maintain continuity across those
boundaries. The interior points are chosen to minimize the integral of the squared
differences of the two patches:

E(.) =
∫ 1

0

∫ 1−v

0
|X(u, v , 1 − u − v) − Y(u, v , 1 − u − v)|2 du dv

The arguments for E(.) are the interior control points for the approximating patch.
The values of the interior control points are determined by setting all the partial

derivatives of E to zero, ∂E/∂QJ for those indices J = (j0, j1, j2) with j0j1j2 �= 0.
This leads to the equation ∑

|I |=m

aJI QI =
∑
|I |=n

bJI PI
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where

aJI = C(m; J )C(m; I )

(2m + 2)(2m + 1)C(2m; I + J )

and

bJI = C(m; J )C(n; I )

(n + m + 2)(n + m + 1)C(n + m; I + J )

The system always has a solution.
The equations can be solved symbolically for some cases of interest. For n = 4 and

m = 3, the solution is

Q300 = P400

Q030 = P040

Q003 = P004

Q012 = 1

42

(−11P004 + 44P013 + 18P022 − 12P031 + 3P040

)

Q021 = 1

42

(
3P004 − 12P013 + 18P022 + 44P031 − 11P040

)

Q102 = 1

42

(−11P004 + 44P103 + 18P202 − 12P301 + 3P400

)

Q201 = 1

42

(
3P004 − 12P103 + 18P202 + 44P301 − 11vecp400

)

Q210 = 1

42

(−11P400 + 44P310 + 18P220 − 12P130 + 3P040

)

Q120 = 1

42

(
3P400 − 12P310 + 18P220 + 44P130 − 11P040

)

Q111 = 1

2520

(
5(P004 + P040 + P400) + 8(P103 + P301 + P013 + P310 + P031 + P130)

+ 9(P202 + P022 + P220) + 12(P112 + P211 + P121)
)

− 2

560

(
Q300 + Q030 + Q003

) − 3

560

(
Q012 + Q021 + Q102 + Q201 + Q120 + Q210

)

For n = 4 and m = 2, the solution is
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Q200 = P400

Q020 = P040

Q002 = P004

Q101 = 1

28

(−11P004 + 16P103 + 18P202 + 16P301 − 11P400

)

Q011 = 1

28

(−11P004 + 16P013 + 18P022 + 16P031 − 11P040

)

Q110 = 1

28

(−11P400 + 16P310 + 18P220 + 16P130 − 11P040

)
For n = 3 and m = 2, the solution is

Q200 = P300

Q020 = P030

Q002 = P003

Q101 = 1

4

(−P003 + 3P102 + 3P201 − P300

)

Q011 = 1

4

(−P003 + 3P012 + 3P021 − P030

)

Q110 = 1

4

(−P030 + 3P210 + 3P120 − P030

)

12.4 B-Spline Rectangle Patches

The simplest extension of the concept of B-spline curves to surfaces is to blend a
rectangular array of control points Pi0, i1 for 0 ≤ i0 ≤ n0 and 0 ≤ i1 ≤ n1. The blending
occurs separately in each dimension, leading to a rectangle surface patch. The degree
must be specified for each dimension, d0 and d1, with 1 ≤ di ≤ ni. The surface patch
is defined by

X(u, v) =
n0∑

i0=0

n1∑
i1=0

Ni0, d0
(u)Ni1, d1

(v)Pi0, i1 (12.1)

We already have the mechanism in place for computing the basis functions, namely,
from B-spline curves. The B-spline surface is encapsulated in a class BSplineSurface
and manages the control points P[][], the degrees d0 and d1, and has BasisFunction
objects Nu and Nv. The surface evaluation is
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Point BSplineSurface::X (float u, float v)
{

int i0 = Nu.Compute(u), i1 = Nv.Compute(v);
Point result = ZERO;
for (int j0 = i0 - d0; j0 <= i0; j0++)
{

for (int j1 = i1 - d1; j1 <= i1; j1++)
result += Nu.Basis(j0) * Nv.Basis(j1) * P[j0][j1];

}
return result;

}

12.5 NURBS Rectangle Patches

B-spline surface patches are piecewise polynomial functions of two variables. NURBS
surface patches are piecewise rational polynomial functions of two variables. Just as
for curves, the construction involves fitting homogeneous points in one higher di-
mension with a B-spline surface (Y(u, v), w(u, v)), then projecting back to your ap-
plication space by dividing by the w(u, v) term: X(u, v) = Y(u, v)/w(u, v). NURBS
surfaces have greater flexibility than B-spline surfaces.

A NURBS rectangle surface patch is built from control points Pi0, i1 and weights
wi0, i1 for 0 ≤ i0 ≤ n0 and 0 ≤ i1 ≤ n1. The degrees di are user selected with 1≤ di ≤ ni.
The surface patch is defined by

X(u, v) =
∑n0

i0=0

∑n1
i1=0 Ni0, d0

(u)Ni1, d1
(v)wi0, i1Pi0, i1∑n0

i0=0

∑n1
i1=0 Ni0, d0

(u)Ni1, d1
(v)wi0, i1

(12.2)

The B-spline construction in one higher dimension uses the homogeneous control
points (wi0, i1Pi0, i1, wi0, i1).

We can encapsulate NURBS rectangle patches into a class NURBSSurface and give it
two BasisFunction members, just like you can do for BSplineSurface. The class man-
ages the control points P[][] and the control weights W[][]. The surface evaluation
is

Point NURBSSurface::X (float u, float v)
{

int i0 = Nu.Compute(u), i1 = Nv.Compute(v);
Point result = ZERO;
float totalW = 0;
for (int j0 = i0 - d0; j0 <= i0; j0++)
{

for (int j1 = i1 - d1; j1 <= i1; j1++)
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{
float tmp = Nu.Basis(j0) * Nv.Basis(j1) * W[j0][j1];
result += tmp * P[j0][j1];
totalW += tmp;

}
}
result /= totalW;
return result;

}

12.6 Surfaces Built from Curves

In order to avoid the complexity of dealing with a naturally defined surface patch
such as a B-spline or a NURBS rectangle patch, sometimes it is convenient to build a
surface from curves. The idea is that the curves are easier to work with and potentially
lead to less expensive dynamic updates of the surface. A few types of surfaces built
from curves are described here. In all cases the parameter space is (u, v) ∈ [0, 1].

12.6.1 Cylinder Surfaces

Surface patches might provide more curvature variation than is needed for a par-
ticular model. For example, a curved archway is curved in one dimension and flat
in another. A single curve may be built to represent the curved dimension, then ex-
truded linearly for the flat dimension. The surface obtained by this operation is said
to be a cylinder surface. Figure 12.4 illustrates the process.

(a) (b)

Figure 12.4 A cylinder surface (b) obtained by extruding the curve (a) in a direction oblique to
the plane of the curve.
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Figure 12.5 A generalized cylinder surface obtained by linearly interpolating pairs of points on
two curves.

If Y(u) is a parameterization of the curve for u ∈ [0, 1], and if D is the desired
amount of linear translation of the curve, the cylinder surface is parameterized by

X(u, v) = Y(u) + vD

for v ∈ [0, 1]. First–order partial derivatives are ∂X/∂u = Y′(u) and ∂X/∂v = D.
Normal vectors to the surface are the cross product of the derivatives,

N(u) = Y′(u) × D

|Y′(u) × D|
Notice that the normal does not depend on v.

12.6.2 Generalized Cylinder Surfaces

Some applications might require that a starting and ending curve be specified and an
interpolation applied between them to generate a surface. This is called a generalized
cylinder surface. Figure 12.5 illustrates.

If Y0(u) and Y1(u) are the starting and ending curves, u ∈ [0, 1], the generalized
cylinder surface is parameterized by

X(u, v) = (1 − v)Y0(u) + vY1(u)

for v ∈ [0, 1]. The first-order derivatives are ∂X/∂u = (1 − v)Y′
0(u) + vY′

1(u) and
∂X/∂v = Y1(u) − Y0(u). Normal vectors to the surface are

N(u, v) = ((1 − v)Y′
0(u) + vY′

1(u)) × (Y1(u) − Y0(u))

|((1 − v)Y′
0(u) + vY′

1(u)) × (Y1(u) − Y0(u))|
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z

y

x

Figure 12.6 A surface of revolution.

12.6.3 Revolution Surfaces

A revolution surface is obtained by revolving a curve about a line that does not
intersect the curve. To simplify the discussion, suppose that the line is the z-axis and
the curve is (x(u), z(u)) in the xz-plane. The parameter u ∈ [0, 1]and x(u) > 0. The
intersection of the surface and a plane of constant z, given by z(u) for a specified u,
is a circle whose radius is x(u), as shown by Figure 12.6.

The surface is parameterized as

X(u, v) = (x(u) cos(2πv), x(u) sin(2πv), z(u))

for (u, v) ∈ [0, 1]2.

12.6.4 Tube Surfaces

A surface in the shape of a tube can be generated by specifying the central curve of
the tube, say, C(v) for v ∈ [0, 1], and by specifying a closed planar curve Y(u) =
(y1(u), y2(u)) to represent the boundary of a cross section of the surface. The cross
section for a given v is within a plane whose coordinate system has origin C(v) and
one unit-length coordinate direction T(v) = C′(v)/|C′(v)|, a tangent to the central
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curve. The other two unit-length coordinate directions are chosen as desired; call
them N(v) and B(v). The three vectors form a right-handed orthonormal set. The
names are suggestive of using the Frenet frame for the curve, where N is the curve
normal and B = T × N is the curve binormal. However, other choices are always
possible. The tube surface is constructed as

X(u, v) = C(v) + y1(u)N(v) + y2B(v)

for (u, v) ∈ [0, 1]2. The classical tube surface is one whose cross sections are circular,
Y(u) = r(cos u, sin u), for a positive radius r . More generally, the radius can be
allowed to vary with v. For example, a surface of revolution is a tube surface whose
central curve is a line segment and whose radius varies based on the curve that was
revolved about the line segment.

12.7 Parametric Subdivision

Subdivision is an important process for converting surface patches to a set of trian-
gles that the game engine can use. This section describes subdivision algorithms for
rectangle patches, triangle patches, cylinder patches, and spheres or ellipsoids. Two
variations of subdivision are considered—uniform and nonuniform subdivision.

12.7.1 Subdivision of Rectangle Patches

The ideas of subdivision are best illustrated when the surface patch is a rectangle
patch, whether the subdivision is uniform or nonuniform.

Uniform Subdivision

A rectangle patch can be subdivided by uniformly tessellating the parameter space to
a specified level L ≥ 0. Figure 12.7 illustrates the subdivisions for L = 0 and L = 1.
The vertices occur at (si , tj ), where si = i/2L for 0 ≤ i ≤ 2L and tj = j/2L for 0 ≤
j ≤ 2L. The number of vertices in the tessellation is V = (2L + 1)2, and the number
of triangles is T = 2 . 4L.

The obvious way to compute the vertices is iteration of a double loop:

L = levels of subdivision;
P = pow(2,L); // maximum index per row or column
M = pow(2,L) + 1; // number of vertices per row or column
vertex[M][M] = array of vertices;
for (i = 0; i < M; i++)
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L = 0 L = 1

Figure 12.7 Subdivisions of parameter space for a rectangle patch.

{
s = i/P;
for (j = 0; j < M; j++)
{

t = j/P;
vertex[i][j] = X(s,t); // evaluation of patch

}
}

However, this does not minimize the number of floating-point operations for Bézier
rectangle patches of odd degree. Let’s consider an example for bicubic patches. Ig-
noring loop overhead and the divisions for computing s and t (these can be replaced
by incrementing by a precomputed delta), the floating-point operations occur in the
evaluation of the Bézier patch X(s , t). Define

qi =
3∑

j=0

B3, j (t)Pi , j = R(i)
0 + tR(i)

1 + t2R(i)
2 + t3R(i)

3

= R(i)
0 + t (R(i)

1 + t (R(i)
2 + tR(i)

3 ))

for 0 ≤ i ≤ 3. The R(i)
j are precomputed. Evaluation of this vector-valued polynomial

requires nine multiplications and nine additions. Doing so for each i requires 72
operations. The next evaluation is for

X(s , t) =
3∑

i=0

B3, i(s)Qi = C0 + sC1 + s2C2 + s3C3 = C0 + s(C1 + s(C2 + sC3))

This requires an additional 18 operations. The total operation count is 90V =
90(2L + 1)2.
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A recursive subdivision using central differences may be used just as was done
for Bézier cubic curves. Tensor notation is used to simplify the expressions. Rather
than explicitly writing summation signs, if an expression contains a repeated index,
the assumption is that the index is summed over the appropriate range of values.
For example, if A = [Aij] is an n × n matrix and X = [xj] is an n × 1 vector, then

the expression AX is written as
∑n−1

j=0 Aijxj in the standard notation, but as Aijxj

using the summation convention. The index j is repeated, so an implied summation
occurs over j . The second part of tensor notation specifies derivatives using indices.
If X(P) is an n × 1 vector-valued function of the m × 1 vector P, then the derivative
of the ith component of X with respect to the j th component of P is denoted xi , j .
In tensor notation, indices before the subscripted comma refer to components and
indices after the comma refer to derivatives. Second derivatives have two indices after
the comma, third derivatives have three, and so on.

For a polynomial curve of degree at most three, the identities equivalent to Equa-
tion (11.27) for surfaces are

X(s , t) = 1

2

(
X(s + δ , t) + X(s − δ , t) − δ2Xss(s , t)

)

X(s , t) = 1

2

(
X(s , t + δ) + X(s , t − δ) − δ2Xt t (s , t)

) (12.3)

Similarly, the identities equivalent to Equation (11.28) for surfaces are

Xss(s , t) = 1

2

(
Xss(s + δ , t) + Xss(s − δ , t)

)

Xt t (s , t) = 1

2

(
Xt t (s , t + δ) + Xt t (s , t − δ)

) (12.4)

Now we will describe the algorithm for the block with parameter values s ∈
[s0, s1] and t ∈ [t0, t1]. Define sm = (s0 + s1)/2, tm = (t0 + t1)/2, and d = sm − s0 =
tm − t0. At each of the four corner points, it is assumed that the following quantities
are precomputed: X, Xss, Xt t , and Xsstt . The subscripts indicate partial derivatives
with respect to the listed variables. The formulas shown below are valid because of
Equations (12.3) and (12.4).

For midpoints (sm, •), where • is either t0 or t1:

Xss(sm, •) = 0.5
(

Xss(s0, •) + Xss(s1, •)
)

Xsstt (sm, •) = 0.5
(

Xsstt (s0, •) + Xsstt (s1, •)
)

Xt t (sm, •) = 0.5
(

Xt t (s0, •) + Xt t (s1, •) − d2Xsstt (sm, •)
)

X(sm, •) = 0.5
(

X(s0, •) + X(s1, •) − d2Xss(sm, •)
)
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For midpoints (•, tm), where • is either s0 or s1:

Xt t (•, tm) = 0.5
(

Xt t (•, t0) + Xt t (•, t1)
)

Xsstt (•, tm) = 0.5
(

Xsstt (•, t0) + Xsstt (•, t1)
)

Xss(•, tm) = 0.5
(

Xss(•, t0) + Xss(•, t1) − d2Xsstt (•, tm)
)

X(•, tm) = 0.5
(

X(•, t0) + X(•, t1) − d2Xt t (•, tm)
)

At the center point (sm, tm):

Xss(sm, tm) = 0.5
(

Xss(s0, tm) + Xss(s1, tm)
)

Xt t (sm, tm) = 0.5
(

Xt t (sm, t0) + Xt t (sm, t1)
)

Xsstt (sm, tm) = 0.5
(

Xsstt (s0, tm) + Xsstt (s1, tm)
)

X(sm, tm) = 0.5
(

X(s0, tm) + X(s1, tm) − d2Xss(sm, tm)
)

If L full subdivisions are performed, then M
 = 2
(2
−1 + 1) new midpoints and
C
 = 4
−1 new centers are generated at subdivision 
. The total number of midpoints
is

M =
L∑


=1

2
(2
−1 + 1) = 2

3
(4L − 1) + 2(2L − 1)

and the total number of center points is

C =
L∑


=1

4
−1 = 1

3
(4L − 1)

For L subdivisions, the total number of vertices is (2L + 1)2. The four initial corners
and the additional midpoints and centers yields

4 + 2

3
(4L − 1) + 2(2L − 1) + 1

3
(4L − 1) = 4 + 4L − 1 + 2(2L − 1)

= 4L + 2 . 2L + 1 = (2L + 1)2

a verification that the counts on the midpoints and centers are correct.
Calculation of d2 requires one subtraction and one multiplication per level and

is not counted in the operation count, because the number is insignificant compared
to the number of subdivision vertices. Calculation of X, Xss, Xt t , and Xsstt at each
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midpoint takes four additions, two subtractions, and six multiplications per vector
component. Add these and multiply by 3 (for the three components) to obtain 36
operations per midpoint. The center calculations take four additions, one subtrac-
tion, and five multiplications per vector component, times three components, yields
30 operations per center. The total operation count for the full subdivision is

36

(
2

3
(4L − 1) + 2(2L − 1)

)
+ 30

(
1

3
(4L − 1)

)
= 34(4L − 1) + 72(2L − 1)

The high-order term in the loop iteration algorithm is 90 . 4L. For the recursive
subdivision, it is 34 . 4L. Therefore, the recursive algorithm is about 2.64 times faster.

The pseudocode for the algorithm follows.

void Subdivide (s0, s1, t0, t1, x[2][2], xss[2][2], xtt[2][2], xsstt[2][2])
{

// Parameter block is [s0,s1]x[t0,t1].
// x[i][j] = x(si,tj)
// xss[i][j] = x_{ss}(si,tj)
// xtt[i][j] = x_{tt}(si,tj)
// xsstt[i][j] = x_{sstt}(si,tj)

d = s1 - s0; // = t1 - t0 since blocks are square
dsqr = d * d;

xss_m0 = 0.5 * (xss[0][0] + xss[1][0]);
xss_m1 = 0.5 * (xss[0][1] + xss[1][1]);
xsstt_m0 = 0.5 * (xsstt[0][0] + xsstt[1][0]);
xsstt_m1 = 0.5 * (xsstt[0][1] + xsstt[1][1]);
xtt_m0 = 0.5 * (xtt[0][0] + xtt[1][0] - dsqr * xsstt_m0);
xtt_m1 = 0.5 * (xtt[0][1] + xtt[1][1] - dsqr * xsstt_m1);
x_m0 = 0.5 * (x[0][0] + x[1][0] - dsqr * xss_m0);
x_m1 = 0.5 * (x[0][1] + x[1][1] - dsqr * xss_m1);
insert x_m0 and x_m1 in subdivision;

xtt_0m = 0.5 * (xtt[0][0] + xtt[0][1]);
xtt_1m = 0.5 * (xtt[1][0] + xtt[1][1]);
xsstt_0m = 0.5 * (xsstt[0][0] + xsstt[0][1]);
xsstt_1m = 0.5 * (xsstt[1][0] + xsstt[1][1]);
xss_0m = 0.5 * (xss4[0][0] + xss[0][1] - dsqr * xsstt_0m);
xss_1m = 0.5 * (xss[1][0] + xss[1][1] - dsqr * xsstt_1m);
x_0m = 0.5 * (x[0][0] + x[0][1] - dsqr * xtt_0m);
x_1m = 0.5 * (x[1][0] + x[1][1] - dsqr * xtt_1m);
insert x_0m and x_1m in subdivision;
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xss_mm = 0.5 * (xss_0m + xss_1m);
xtt_mm = 0.5 * (xtt_m0 + xtt_m1);
xsstt_mm = 0.5 * (xsstt_0m + xsstt_1m);
x_mm = 0.5 * (x_0m + x1m-dsqr * xss_mm);
insert x_mm in subdivision;

sm = 0.5 * (s0 + s1);
tm = 0.5 * (t0 + t1);

// subblock [s0,sm]x[t0,tm]
y[0][0] = x[0][0];
y[1][0] = x_m0;
y[0][1] = x_0m;
y[1][1] = x_mm;
yss[0][0] = xss[0][0];
yss[1][0] = xss_m0;
yss[0][1] = xss_0m;
yss[1][1] = xss_mm;
ytt[0][0] = xtt[0][0];
ytt[1][0] = xtt_m0;
ytt[0][1] = xtt_0m;
ytt[1][1] = xtt_mm;
yss[0][0] = xss[0][0];
yss[1][0] = xss_m0;
yss[0][1] = xss_0m;
yss[1][1] = xss_m;
ysstt[0][0] = xsstt[0][0];
ysstt[1][0] = xsstt_m0;
ysstt[0][1] = xsstt_0m;
ysstt[1][1] = xsstt_mm;
Subdivide(s0,sm,t0,tm,y,yss,ytt,ysstt);

// subblock [s0,sm]x[tm,t1]
y[0][0] = x_0m;
y[1][0] = x_mm;
y[0][1] = x[0][1];
y[1][1] = x_m1;
yss[0][0] = xss_0m;
yss[1][0] = xss_mm;
yss[0][1] = xss[0][1];
yss[1][1] = xss_m1;
ytt[0][0] = xtt_0m;
ytt[1][0] = xtt_mm;
ytt[0][1] = xtt[0][1];
ytt[1][1] = xtt_m1;
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ysstt[0][0] = xsstt_0m;
ysstt[1][0] = xsstt_mm;
ysstt[0][1] = xsstt[0][1];
ysstt[1][1] = xsstt_m1;
Subdivide(s0,sm,tm,t1,y,yss,ytt,ysstt);

// subblock [sm,s1]x[t0,tm]
y[0][0] = x_m0;
y[1][0] = x[1][0];
y[0][1] = x_mm;
y[1][1] = x_1m;
yss[0][0] = xss_m0;
yss[1][0] = xss[1][0];
yss[0][1] = xss_mm;
yss[1][1] = xss_1m;
ytt[0][0] = xtt_m0;
ytt[1][0] = xtt[1][0];
ytt[0][1] = xtt_mm;
ytt[1][1] = xtt_1m;
ysstt[0][0] = xsstt_m0;
ysstt[1][0] = xsstt[1][0];
ysstt[0][1] = xsstt_mm;
ysstt[1][1] = xsstt_1m;
Subdivide(sm,s1,t0,tm,y,yss,ytt,ysstt);

// subblock [sm,s1]x[tm,t1]
y[0][0] = x_mm;
y[1][0] = x_1m;
y[0][1] = x_m1;
y[1][1] = x[1][1];
yss[0][0] = xss_mm;
yss[1][0] = xss_1m;
yss[0][1] = xss_m1;
yss[1][1] = xss[1][1];
ytt[0][0] = xtt_mm;
ytt[1][0] = xtt_1m;
ytt[0][1] = xtt_m1;
ytt[1][1] = xtt[1][1];
ysstt[0][0] = xsstt_mm;
ysstt[1][0] = xsstt_1m;
ysstt[0][1] = xsstt_m1;
ysstt[1][1] = xsstt[1][1];
Subdivide(sm,s1,tm,t1,y,yss,ytt,ysstt);

}
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Warning: The code does not show how to memoize the various quantities so that
terms are not computed multiple times. If the initial block is subdivided into four
subblocks, the code as shown will twice compute the quantities at the midpoint of the
shared edge {sm} × [t0, tm], once for subblock [s0, sm]× [t0, tm]and once for subblock
[sm, s1]× [t0, tm]. One possibility for avoiding the repetitive calculations is to assign
responsibility for the various midpoint quantities to specific subblocks and to pass
an additional parameter to Subdivide that indicates which of the four subblocks is
being recursed on. Block [s0, sm]× [t0, tm] is responsible for four midpoints, blocks
[s0, sm]× [tm, t1]and [sm, s1]× [t0, tm]are each responsible for three midpoints, and
block [sm, s1]× [tm, t1] is responsible for two midpoints.

Nonuniform Subdivision

The recursive uniform subdivision ignores two important aspects of rendering sur-
faces. The first aspect is that the patch may be relatively flat in some subblocks. There
is no point in further subdividing those subblocks, because no additional variation
is to be found in the surface. The second aspect is that the surface might be far away
from the eye point. A fixed level of subdivision could produce a suitable number of
triangles to accurately represent the surface when near the eye point, but the same
level might produce a large number of small triangles that are expensive to render yet
do not contribute much to the perceived shape of the patch. A smarter subdivision
scheme will handle both aspects appropriately.

The recursive subdivision can be modified to terminate at a block if the measured
variation within the block is insignificant. This modification is done much in the
same way as the recursive algorithm for curves. If any of the second derivatives at the
four midpoints of a block’s edges is significantly large, then the block is subdivided. If
the second derivatives at the four midpoints are all significantly small, then the block
is not subdivided. For recursive uniform subdivision, the algorithm essentially builds
a complete quadtree of the specified level. The modified recursive algorithm builds a
partial quadtree.

The term in Equation (12.3) that measures variation from the line segment con-
necting the endpoints of the interval is xi , jk(P)δjδk, with the factor of one-half
omitted. According to the summation convention, there is a double summation over
indices j and k. The remaining index i is a free index, so this quantity is a vector; call
it V. For a midpoint calculation on a horizontal edge [s0, s1], let � = s1 − s0; then
δδδ = �(1, 0) and V = �2Xss((s0 + s1)/2, t). For a midpoint calculation on a vertical
edge [t0, t1], let � = t1 − t0; then δδδ = �(0, 1) and V = �2Xt t (s , (t0 + t1)/2).

The pseudocode for the unconstrained recursion can be modified to add the tests
on the size of V.

void Subdivide (s0, s1, t0, t1, x[2][2], xss[2][2], xtt[2][2], xsstt[2][2])
{

// Parameter block is [s0,s1]x[t0,t1].



12.7 Parametric Subdivision 595

// x[i][j] = x(si,tj)
// xss[i][j] = x_{ss}(si,tj)
// xtt[i][j] = x_{tt}(si,tj)
// xsstt[i][j] = x_{sstt}(si,tj)

d = s1 - s0; // = t1 - t0 since blocks are square
dsqr = d * d;

xss_m0 = 0.5 * (xss[0][0] + xss[1][0]);
xss_m1 = 0.5 * (xss[0][1] + xss[1][1]);
xtt_0m = 0.5 * (xtt[0][0] + xtt[0][1]);
xtt_1m = 0.5 * (xtt[1][0] + xtt[1][1]);

vm0 = dsqr * xss_m0;
vm1 = dsqr * xss_m1;
v0m = dsqr * xtt_0m;
v1m = dsqr * xtt_1m;

if ( SquaredLength(vm0) > epsilon or
SquaredLength(vm1) > epsilon or
SquaredLength(v0m) > epsilon or
SquaredLength(v1m) > epsilon )

{
// Subdivide the block.

xsstt_m0 = 0.5 * (xsstt[0][0] + xsstt[1][0]);
xsstt_m1 = 0.5 * (xsstt[0][1] + xsstt[1][1]);
xtt_m0 = 0.5 * (xtt[0][0] + xtt[1][0] - dsqr * xsstt_m0);
xtt_m1 = 0.5 * (xtt[0][1] + xtt[1][1] - dsqr * xsstt_m1);
x_m0 = 0.5 * (x[0][0] + x[1][0] - dsqr * xss_m0);
x_m1 = 0.5 * (x[0][1] + x[1][1] - dsqr * xss_m1);
insert x_m0 and x_m1 in subdivision;

xsstt_0m = 0.5 * (xsstt[0][0] + xsstt[0][1]);
xsstt_1m = 0.5 * (xsstt[1][0] + xsstt[1][1]);
xss_0m = 0.5 * (xss[0][0] + xss[0][1] - dsqr * xsstt_0m);
xss_1m = 0.5 * (xss[1][0] + xss[1][1] - dsqr * xsstt_1m);
x_0m = 0.5 * (x[0][0] + x[0][1] - dsqr * xtt_0m);
x_1m = 0.5 * (x[1][0] + x[1][1] - dsqr * xtt_1m);
insert x_0m and x_1m in subdivision;

xss_mm = 0.5 * (xss_0m + xss_1m);
xtt_mm = 0.5 * (xtt_m0 + xtt_m1);
xsstt_mm = 0.5 * (xsstt_0m + xsstt_1m);
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x_mm = 0.5 * (x_0m + x1m-dsqr * xss_mm);
insert x_mm in subdivision;

sm = 0.5 * (s0 + s1);
tm = 0.5 * (t0 + t1);

// The pseudocode from the unconstrained algorithm for the
// four subblocks goes here....

}
}

This pseudocode has the same warning as for the unconstrained case. The vari-
ous midpoint quantities could be computed twice. Note that assigning responsibil-
ity for computing the various midpoint quantities to specific subblocks does not
work in this case. The problem is that one subblock decides not to recurse on its
children, thereby not calculating some of the midpoint quantities (the ones that oc-
cur in the “subdivide the block” chunk of code), but a neighboring subblock relies
on these values being computed. A modification that takes care of this is to pro-
vide a set of Boolean flags indicating which of the midpoint quantities still requires
computation. By using these, we effectively have a classic table of memoized val-
ues. Another possibility is to allow the multiple computations to occur. The worst
case is that all midpoints are calculated twice. The number of midpoints to com-
pute at level 
 is M
 = 4
. The total number of midpoints for L levels of subdi-
vision is M = ∑L


=1 M
 = 4(4L − 1)/3. The total number of center points is C =
(4L − 1)/3. The total operation count (see the formula for the unconstrained case) is
36M + 30C = 58(4L − 1). The high-order term for the loop iteration algorithm was
90 . 4L, for the unconstrained algorithm was 34 . 4L, and for the current algorithm is
58 . 4L. The approximate speedup over the loop iteration is 1.55—still faster, but not
as fast as the algorithm that avoids the repetitious calculations.

Adjustments for the Camera Model

The nonuniform subdivision tests the lengths of the nonlinear terms V to decide
whether or not to subdivide. For a surface with a lot of variation in it, the subdi-
visions will occur. In the presence of a camera model and perspective projection, the
subdivision is acceptable when the surface is near the eye point. However, if the sur-
face is far away from the eye point, the subdivision may not add much to the visual
quality of the rendered surface because each already existent triangle maps only to a
handful of pixels on the screen.

One heuristic for the subdivision step is provided in [Sha99]. The idea is to get
an estimate of the length (in pixels) of the projection of V into screen space. [Sha99]
estimates a slice, perpendicular to the camera direction, in the view frustum in which
V lives, computes the width (in pixels) of that slice, then computes the ratio of the
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length of V to the slice width and compares that ratio to a tolerance. If smaller, the
subdivision step is performed.

Another possibility is to compute the midpoint M of the line segment connecting
the two known endpoints and compute the length of the projected line segment (in
pixels) from M to M − V/2, the last point being the actual midpoint if the edge were
to be subdivided. If that distance is larger than an application-specified number of
pixels, then the subdivision is performed.

Cracking

The story is not yet finished. Nonuniform subdivision allows for neighboring blocks
to be subdivided to different resolutions, which creates cracking in the final mesh.
Figure 12.8 shows two adjacent blocks in a subdivision that has cracking. The crack
occurs at the T-junction marked with a solid dot. The left block wants to be subdi-
vided, but the right block does not. It appears as if one of two choices can be made,
and the consequences of either are undesirable. The first choice is to subdivide those
blocks that want to be subdivided and force adjacent blocks to follow suit. Applied
recursively in the quadtree, this will force a uniform tessellation to the level of the
most detailed block. The second choice is to disallow subdivision of blocks that have
an adjacent block that does not want to subdivide. This will also force a uniform tes-
sellation, but to the level of the least detailed block. The problem here is subdivision
performed strictly as a quadtree process. To accommodate adjacent blocks that do
not jointly subdivide (in the quadtree sense), we need to allow for a form of par-
tial subdivision. Even with a suitable definition for partial subdivision, the same two
choices remain about whether to force the least detailed block to partially subdivide
or to prevent the most detailed block from partially subdividing.

An approach that prevents the quadtree subdivision of a more detailed block is
mentioned in [Sha99]. That article illustrates how to resolve the cracking shown in
Figure 12.8. The idea is to collapse the midpoint vertex to a corner vertex, as shown in
Figure 12.9. The general algorithm can be stated as follows. For each block, if all of the
edges are at the same level of detail, then no collapsing is required. Otherwise, collapse

Figure 12.8 Subdivision that contains cracking.
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Figure 12.9 Subdivision that has no cracking.

Figure 12.10 Subdivision that contains more complicated cracking.

the midpoints to the corners at those edges. Recurse on the four subblocks. The
nonuniform subdivision requires two passes: one to generate the vertices of the final
mesh and one to fix the cracking. While the second pass may not be that expensive, it
must handle the type of subdivision shown in Figure 12.10.

Now let us consider a single-pass algorithm that prevents the quadtree subdivi-
sion of a more detailed block. The main idea is to do a depth-first traversal of the
quadtree, but to use topological information about neighboring blocks to decide if
the traversal can continue at the current block. Since neighboring blocks might not
have been visited yet, the topological information is obtained by allowing a block to
compute quantities that the neighbor would have computed if it had been visited first
in the traversal. To avoid recalculating that information, a temporary buffer is used
to store computed vertices. The buffer is shared by all patches in the system, so the
per-object memory costs are avoided. Consider first the block corresponding to the
root of the quadtree. If all four edges want to subdivide, then the block is subdivided
into four subblocks and the subdivision process is applied to those subblocks.

Suppose that the right edge of the root block does not want to be subdivided.
The partial subdivision is illustrated in Figure 12.11. The upper-right and lower-right
subblocks are no longer considered for subdivision as the tessellation of that part of
the parameter space is already determined to be the three triangles that are shown
in the figure. The partial subdivision allows the upper-left and lower-left subblocks
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Figure 12.11 Partial subdivision with three subdividing edges.

Figure 12.12 Partial subdivision illustrating the parent’s topological constraint.

to continue subdividing, but with constraints. The right edges of those subblocks
cannot subdivide because of the final tessellation in the two neighboring subblocks.
At best, the topology of the partial subdivision for either subblock can look only
like that of the parent block. Figure 12.12 illustrates this for the upper-left subblock.
The topological constraints for the subdivision of the child blocks are actually quite
natural. The right half of the original block is relatively flat since the right edge did
not want to subdivide. The left half of the original block is less flat and wants to
subdivide to show off its detail. The constraints lead to a tessellation that conforms to
the demands of both halves with a gradual increase in tessellation from right to left.

Suppose that both the right and bottom edges of the root block do not want
to be subdivided. The partial subdivision is illustrated in Figure 12.13. The upper-
right, lower-right, and lower-left subblocks are no longer considered for subdivision.
The tessellation for that part of the parameter space is determined to be the four
triangles shown in the figure. The partial subdivision allows the upper-left subblock
to continue subdividing, but again with constraints. The right and bottom edges
cannot be subdivided, just as the parent’s edges cannot be subdivided. At best, the
topology of the partial subdivision can look only like that of the parent block. Figure
12.14 illustrates this for the subblock. The constraint allows a gradual increase in
detail from lower right to upper left.
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Figure 12.13 Partial subdivision with two adjacent subdividing edges.

Figure 12.14 Partial subdivision illustrating the parent’s topological constraint.

Figure 12.15 Partial subdivision with two opposing subdividing edges.

Suppose that both the top and bottom edges of the root block do not want to
be subdivided. None of the subblocks are considered for subdivision. However, the
left and right triangles in the partial subdivision can be split in half. Figure 12.15
illustrates the partial subdivision with the two additional triangle splits. The surface
appears to have saddlelike behavior in the block. No further subdivision is necessary
to explore this feature.
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Figure 12.16 Partial subdivision with one subdividing edge.

C

A

D

B

Figure 12.17 Subdivision based on calculating information in an adjacent block.

Finally, suppose that only the top edge wants to be subdivided. None of the
subblocks are considered for subdivision and the top triangle can be split in half.
Figure 12.16 illustrates the subdivision with the additional triangle split.

Figure 12.17 illustrates how a block can subdivide by calculating information
in an adjacent block. The left block L is visited first in the quadtree traversal. If L

determines that its right edge can be subdivided, then point A is computed. Block R

shares that edge and would have agreed to split and compute A also. Because A occurs
in the subdivision, point B must occur in the subdivision of R, so L computes it for
R. The children of block L are traversed next. The upper-right child might want to
subdivide its right edge and compute point C, but this split is allowed by block R

only if point D occurs in the subdivision of R. Since R has not yet been visited in
the traversal, L can go ahead and determine if the top edge of R can be split. If so,
D is computed and the recursion on the upper-right child of L is allowed. A shared
array of subdivision points is used by all patches for temporary storage, and a shared
array of Boolean flags is used to indicate whether or not a subdivision point has been
computed. Before subdivision of a patch, the Boolean array has all its entries set to
false.
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L = 0 L = 1

Figure 12.18 Subdivisions of parameter space for a triangle patch.

12.7.2 Subdivision of Triangle Patches

Triangle patches are more difficult to subdivide than rectangle patches because of the
more complicated indexing. However, the concepts are still the same at a high level.

Uniform Subdivision

A triangle patch can be subdivided by uniformly tessellating the parameter space
to a specified level L ≥ 0. Figure 12.18 illustrates the subdivisions for L = 0 and
L = 1. For general level L > 0, the number of vertices in the tessellation is V =
(2L + 1)(2L−1 + 1), and the number of triangles is T = 4L. The vertices are packed
in a 1D array, the bottom row first (containing 2L + 1 vertices) through the top row
last (containing 1 vertex). The mapping from the integer lattice point (x , y), where x

and y are nonnegative integers with x + y ≤ 2L, to a 1D array index i is

i = x + y(2L+1 + 3 − y)

2

The straightforward way to compute the vertices is iteration of a double loop. The
vertices are stored in a 1D array as mentioned previously. The following pseudocode
also shows how to generate an array of indices that represents the triangle connectiv-
ity. Each group of three indices corresponds to those vertices that make up a triangle
in the tessellation.

N = pow(2,L);

// Compute the vertices.
k = 0;
for (y = 0; y <= N; y++)
{

v = y/N;
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for (x = 0; x + y <= N; x++)
{

u = x/N;
vertex[k++] = X(u,v); // evaluation of triangle patch

}
}

// Compute the triangle connectivity.
t = 0;
ystart = 0;
for (y = 0; y < N; y++)
{

k0 = ystart;
k1 = k0 + 1;
ystart = (y + 1) * (2 * (N + 1) - y)/2;
k2 = ystart;
for (x = 0; x + y < N; x++)
{

connectivity[t++] = k0;
connectivity[t++] = k1;
connectivity[t++] = k2;

if ( x + y + 1 < N )
{

connectivity[t++] = k1;
connectivity[t++] = k2 + 1;
connectivity[t++] = k2;

}

k0++;
k1++;
k2++;

}
}

Nonuniform Subdivision

Like the algorithm of Lindstrom et al. (1996), the following algorithm is based on the
ideas in [LKR+96]; it uses the equivalent of a symmetric triangulation for quadtree
blocks and has a vertex dependency structure.

Consider a single triangle whose vertices are labeled as top T , left L, and right
R. If the angle at T is a right angle, the edge from L to R is called the hypotenuse of
the triangle. Taking liberty with the terminology, even if the angle at T is not a right
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Figure 12.19 Subdivision of a triangle and the corresponding binary tree.

angle, the edge opposite that vertex will be called the hypotenuse. The subdivision
algorithm involves deciding if the hypotenuse of a triangle can be subdivided based
on the same heuristic as is used for rectangle patch subdivision. If so, the triangle
is split into two triangles. The midpoint of the original hypotenuse becomes the
top vertex for the two new triangles. The left and right vertices are labeled so that
T , L, and R occur in counterclockwise order. The subdivision process is applied
to each of the two new subtriangles. For an unconstrained subdivision of a single
triangle, the result is a complete binary tree whose leaf nodes represent the final
triangles in the subdivision. Figure 12.19 illustrates the subdivision step applied three
times.

The labeling of the subdivided triangles is important in the remainder of this
section. The triangle for the root node of the tree is labeled A0. If Ai is the current
triangle to be subdivided and has top vertex T , left vertex L, and right vertex R, and
if M is the midpoint of the hypotenuse, then the two children of Ai are A2i+1 and
A2i+2. The top, left, and right vertices of A2i+1 are M , T , and L, respectively. The
top, left, and right vertices of A2i+2 are M , R, and T . The level in the tree at which Ai

occurs is � = �log2(i + 1)�, where �x� is the floor function that computes the largest
integer smaller or equal to x.

The subdivision is more complicated for a triangle mesh. Two adjacent triangles
are said to be H-adjacent if they share the same hypotenuse. If one of the triangles
wants to subdivide its hypotenuse, the other one must also. For a single triangle, this
leads to a vertex dependency structure based on the following relationships:
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Ai

Bj

A2i+1

B2j+2 B2j+1

A2i+2

A4i+4

B4j+5 B4j+4

A4i+5

A4i+3

B4j+6 B4j+3

A4i+6

Figure 12.20 H-adjacency for triangles A and B.

If Ai and Ai+1 are siblings, then A2i+1 and A2i+4 are H-adjacent.

If Ai and Aj are H-adjacent, then A4i+4 and A4j+5 are H-adjacent. By symmetry,
A4i+5 and A4j+4 are also H-adjacent.

For two triangles A0 and B0 that are H-adjacent, the last relationship is also valid.
If Ai and Bj are H-adjacent, then A4i+4 and B4j+5 are H-adjacent and A4i+5 and
B4j+4 are H-adjacent. Figure 12.20 illustrates the relationships.

The relationships between two triangles that are adjacent on an edge that is not
the hypotenuse affects the indexing in the H-adjacency. If A0 has vertices T , L0, and
R0, and if C0 is a triangle that has top vertex T , left vertex L1, and right vertex L0, then
A0 and C0 are not H-adjacent. If M0 is the midpoint of the edge from L1 to L0, then
C2 has top, left, and right vertices M0, L0, and T , respectively. If M1 is the midpoint
of the edge from L0 to R0, then A1 has top, left, and right vertices M1, T , and L0,
respectively. It is the case that A1 and C2 are H-adjacent. Generally, if A2i+1 and C2j+2
are H-adjacent, then so are A8i+9 and C8j+12 and A8i+8 and C8j+13. Figure 12.21
illustrates the relationships. The same constructions apply for an adjacent triangle
D0 whose top, left, and right vertices are T , R0, and R1, respectively. The triangles
A2 and D1 are H-adjacent. Generally, if A2i+2 and D2j+1 are H-adjacent, then so are
A8i+13 and D8j+8 and A8i+12 and D8j+9. Figure 12.22 illustrates the relationships.
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A2i+1 A2i+2

A8i+8

A8i+9

C2j+1

C8j+13

C8j+12C2j+2

Figure 12.21 H-adjacency for triangles A and C.

A2i+1 A2i+2

D8j+8

D8j+9

D2j+2

A8i+13

A8i+12

D2j+1

Figure 12.22 H-adjacency for triangles A and D.

For a single triangle to be subdivided, given a maximum level L for subdivision,
the storage requirements for vertices are easily computed. Figure 12.23 illustrates the
pattern for subdivision for levels 0 ≤ L ≤ 4. The number of vertices for maximum
subdivision at level L is

V =
⎧⎨
⎩

∑2L/2+1
k=1 k , L even∑2(L−1)/2+1
k=1 (2k − 1), L odd

=
{ (

2L/2 + 1
) (

2L/2−1 + 1
)

, L even(
2(L−1)/2 + 1

)2
, L odd

The number of triangles for maximum subdivision at level L is T = 2L. Vertex storage
is as a regular triangular array with row-major indexing, hypotenuse row first through
top vertex last. Indexing will depend on the parity of L.

The storage for the worst case can be allocated for a single triangle. Each subdi-
vided triangle uses the same storage and, once subdivided, the renderer must draw
the triangles to free the storage for the next triangle to use. This approach leads to
some redundant calculations of vertices, those that lie on shared edges of the original
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L = 0

L = 3 L = 4

L = 1 L = 2

Figure 12.23 Pattern for subdivision of a triangle.

mesh triangles. If size of storage is not an issue, then vertex storage can be allocated
per triangle, and the vertex dependencies for H-adjacent triangles can be used in sup-
port for calculating each subdivision vertex exactly once. If size of storage is an issue,
but speed of vertex calculations is not, then each leaf triangle in the binary tree can
be drawn when visited, with effectively no storage requirements. The binary tree is
virtually traversed simply by the recursive function calls:

void Subdivide (Point T, Point L, Point R)
{

M = R - L;
compute second-derivative vector D;
if ( D is sufficiently large )
{

Subdivide(M,T,L);
Subdivide(M,R,T);

}
else
{

DrawTriangle(T,L,R);
}

}

Finally, given a triangle mesh, it is necessary to select those edges that will be
hypotenuses. It appears that this should always be possible with the mesh, but a
guaranteed way of doing this that does not require a preprocessing pass is to subdivide
each triangle into three triangles by adding the centroid and edges connecting the
centroid to the original vertices. In this way all the edges of the original mesh are
the hypotenuses of the tripled mesh. Moreover, if a rectangle mesh is processed in the
same way by adding the centroids and connecting to the four corners, the resulting
triangle mesh can be subdivided with the algorithm mentioned in this section. This
subdivision is the symmetric triangulation discussed in [LKR+96] for terrains.



C h a p t e r13
Containment
Methods

The following three queries are common in a 3D computer graphics application,
mainly in working with bounding volumes for objects, whether for culling or

for collision detection.

Determine if a point is contained in a bounding volume.

Compute a bounding volume of a set of points.

Compute a bounding volume that contains a set of bounding volumes (merge
bounding volumes).

This section presents some algorithms for each type of bounding volume of interest.

13.1 Spheres

The queries are organized with the point-in-sphere query first, the computation of
bounding volumes second, and the merging of bounding volumes third.

13.1.1 Point in Sphere

The point-in-sphere query is simple enough. If the sphere has center C and radius r ,
and if the point is P, then the point is inside the sphere (boundary included) when

|P − C| ≤ r

609
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The squared length and the squared radius may be compared instead if you want to
avoid the somewhat expensive square root operation that occurs in a length compu-
tation.

13.1.2 Sphere Containing Points

Three algorithms are presented for computing a bounding sphere for a set of points.

Sphere Containing Axis-Aligned Box of Points

A simple approach is to compute the minimum-volume, axis-aligned bounding box
of the points, then select the smallest enclosing sphere of the box with the sphere
centered at the box center. The algorithm is shown next, where points P[i] are
indexed by 0 (the x-component), 1 (the y-component), or 2 (the z-component).

Vector3 min = P[0], max = min;
for (i = 1; i < n; i++)
{

for (j = 0; j < 3; j++)
{

if (P[i][j] < min[j] )
{

min[j] = P[i][j];
}
else if (P[i][j] > max[j])
{

max[j] = P[i][j];
}

}
}
Sphere3 sphere;
sphere.center = (min + max)/2;
Vector3 diagonal = (max - min)/2;
sphere.radius = diagonal.Length();

An advantage of this algorithm is the speed with which it is executed. The drawback
to this algorithm is that the bounding sphere is not as good a fit as it could be.

Sphere Centered at Average of Points

An alternative that takes longer to compute but provides a somewhat better fit is to
select the sphere center to be the average of the points and the sphere radius to be the
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smallest value for which the sphere of the given center and that radius encloses the
points. The algorithm is

Vector3 sum = P[0];
for (i = 1; i < n; i++)
{

sum += P[i];
}

Sphere3 sphere;
sphere.center = sum/n;

float radiusSqr = 0;
for (i = 0; i <= n; i++)
{

Vector3 diff = P[i] - sphere.center;
float temp = diff.SquaredLength();
if (temp > radiusSqr)
{

radiusSqr = temp;
}

}

sphere.radius = sqrt(radiusSqr);

Minimum-Volume Sphere

Computing the minimum-volume sphere that encloses the points requires a more
complicated algorithm based on work by [Wel91]. The algorithm uses a randomized
linear algorithm, so the execution time is expected to be linear in the number of input
points. The worst case is polynomial in the number of inputs, but the input data is
randomly permuted so that the probability of the worst case occurring is negligible.

The pseudocode for the algorithm given next computes the minimum-volume
sphere containing n points P [0] through P [n − 1]. The idea is to maintain a set of
supporting points for the sphere while processing the input-point set one point at
a time. The supporting points lie on the sphere and no other points are necessary
to form the sphere. A sphere is supported by two points, by three points, or by four
points. Such a sphere is itself the minimum-volume sphere containing the supporting
points.

Sphere3 ComputeMinimumSphere (int n, Vector3 P[])
{



612 Chapter 13 Containment Methods

// Local storage for the points. Use pointers if your
// programming language supports them.
array<Vector3> Q = P;

// Randomly permute the points. The function
// randomInteger(m) is a hypothetical function that
// generates a random integer between 0 and m. Use
// your own favorite random number generator.
for (i = n - 1; i > 0; i--)
{

j = randomInteger(i);
if (j != i) { swap(Q[i],Q[j]); }

}

Sphere3 minSphere = ExactSphere1(Q[0]);
set<Vector3> support = { Q[0] };
i = 1;
while (i < n)
{

if (Q[i] not in support)
{

if (Q[i] not in minSphere)
{

// Update the support set and return the
// bounding sphere for it.
minimal = Update(i,Q,support);

// Need to restart the algorithm when the
// support changes.
i = 0;
continue;

}
}
i++;

}
}

The function ExactSphere1 produces a sphere whose center is the input point and
whose radius is 0. The function Update is the heart of the algorithm. If the support
set has k points, where 2 ≤ k ≤ 4, and Q[i] is outside the bounding sphere of the
support set, then Update has the responsibility to look at all possible combinations
of Q[i] with the current points in the support set and select the combination that
produces the minimum-volume bounding sphere.

Part of the update involves computing the minimum-volume spheres that contain
exactly two points, exactly three points, or exactly four points. The term contain
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(a) Three supporting points (b) Two supporting points

Figure 13.1 (a) The minimum-area circle containing three points and all points are on the circle
itself. (b) The minimum-area circle containing three points but only two points are
on the circle.

means that the points must be on the sphere boundary, not the interior. The function
ExactSphere2(S0,S1) computes the minimum-volume sphere containing the inputs.
Necessarily, S0 and S1 are the endpoints of a diameter of the sphere, so the sphere
center is

C = (S0 + S1)/2

and the sphere radius is

r = |S1 − S0|/2

The reason I called the function ExactSphere2 and not MinimumSphere2 will be-
come apparent in the discussion of how to handle a set of three points. If you were to
implement a function MinimumSphere3(S0,S1,S2) to compute the minimum-volume
sphere that contains the input points, you would have to deal with degeneracies. For
example, if the input points are all the same point, then the output should be the same
as for ExactSphere1. Unless you have preprocessed your original points to remove
duplicates, you must guard against the case when the input points to MinimumSphere3
are the same. Also, if the three input points are collinear, then only two of them af-
fect the bounding sphere; these are the endpoints of the line segment containing all
three points. In this case, you would want the output to be the same as that for Ex-
actSphere2.

Now suppose the three inputs are noncollinear. The minimum-volume sphere
does not necessarily have all three points on its boundary! Figure 13.1 illustrates this.
The points are coplanar, so the circles of intersection of the spheres and the plane are
shown.

The circle of Figure 13.1 (a) is generated by simple algebraic means. Let the points
be S0, S1, and S2. The center of the circle containing these points has a center written
in barycentric coordinates as

C = b0S0 + b1S1 + b2S2



614 Chapter 13 Containment Methods

where bi ∈ [0, 1] and b0 + b1 + b2 = 1. The center is equidistant from the three
points, so

|C − S0| = |C − S1| = |C − S2| = r2

where r is the (as of yet unknown) radius of the circle. From these conditions, we
have

C − S0 = b0E0 + b1E1 − E0

C − S1 = b0E0 + b1E1 − E1

C − S2 = b0E0 + b1E1

where E0 = S0 − S2 and E1 = S1 − S2. These lead to

r2 = |b0E0 + b1E1|2 − 2E0
. (b0E0 + b1E1) + |E0|2

r2 = |b0E0 + b1E1|2 − 2E1
. (b0E0 + b1E1) + |E1|2

r2 = |b0E0 + b1E1|2

Subtracting the last equation from the first two and writing the equations as a linear
system: [

E0
. E0 E0

. E1
E1

. E0 E1
. E1

] [
b0
b1

]
= 1

2

[
E0

. E0
E1

. E1

]

The system is solved for b0 and b1, and then b2 = 1 − b0 − b1. One of the equations
for r2 may be evaluated to produce the radius r .

If you were to compute the circle that passes through all three points that are
shown in Figure 13.1 (b), it would have a different center than the minimum-area
circle, and its radius would be larger than that of the minimum-area circle. You would
also then compute the circles supported by the three combinations of pairs of points.
If any such circle contained the third point, it would be a candidate for the minimum-
area circle. Thus, you have to compute at most four circles, each containing the input
points, and the function should output that circle of minimum area. Rather than
implement MinimumSphere3 to do this work, the logic already exists in the update of
the support set to compare all possible combinations of two, three, and four points.
Specifically, it will compute spheres supported by two points, so there is no need for
MinimumSphere3 to test pairs of points. It is sufficient to have functions ExactSphere1,
ExactSphere2, ExactSphere3, and ExactSphere4. Any input points to these that are
degenerate (three collinear points, four coplanar points or collinear points) will be
handled elsewhere in the program logic.

As explained previously, the function ExactSphere3 computes the circle passing
through three noncollinear points. The function ExactSphere4 computes the sphere
passing through four noncoplanar points. You should recognize this as the problem
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of computing a circumscribed sphere for a tetrahedron. Let Si be the input points
for 0 ≤ i ≤ 3. The center of the sphere containing these points has a center written in
barycentric coordinates as

C = b0S0 + b1S1 + b2S2 + b3S3

where bi ∈ [0, 1] and b0 + b1 + b2 + b3 = 1. The center is equidistant from the three
points, so

|C − S0| = |C − S1| = |C − S2| = |C − S3| = r2

where r is the (as yet unknown) radius of the sphere. From these conditions, we have

C − S0 = b0E0 + b1E1 + b2E2 − E0

C − S1 = b0E0 + b1E1 + b2E2 − E1

C − S2 = b0E0 + b1E1 + b2E2 − E2

C − S3 = b0E0 + b1E1 + b2E2

where Ei = Si − S3 for 0 ≤ i ≤ 2. These lead to

r2 = |b0E0 + b1E1 + b2E2|2 − 2E0
. (b0E0 + b1E1 + b2E2) + |E0|2

r2 = |b0E0 + b1E1 + b2E2|2 − 2E1
. (b0E0 + b1E1 + b2E2) + |E1|2

r2 = |b0E0 + b1E1 + b2E2|2 − 2E2
. (b0E0 + b1E1 + b2E2) + |E2|2

r2 = |b0E0 + b1E1 + b2E2|2

Subtracting the last equation from the first three and writing the equations as a linear
system:

⎡
⎣ E0

. E0 E0
. E1 E0

. E2
E1

. E0 E1
. E1 E1

. E2
E2

. E0 E2
. E1 E2

. E2

⎤
⎦

⎡
⎣ b0

b1
b2

⎤
⎦ = 1

2

⎡
⎣ E0

. E0
E1

. E1
E2

. E2

⎤
⎦

The system is solved for b0, b1, and b2, and then b3 = 1 − b0 − b1 − b2. One of the
equations for r2 may be evaluated to produce the radius r .

An obvious question about the original pseudocode is, How often does the al-
gorithm restart itself by setting i = 0? You might think restarts are frequent, but as
shown in [Wel91], they do not occur often when the input points are randomly per-
muted. Intuitively, once the bounding sphere of the support set is sufficiently large,
most of the points must lie in this sphere, so you rarely restart.
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13.1.3 Merging Spheres

The algorithm described here computes the smallest sphere containing two spheres.
Let the spheres Si be |X − Ci|2 = r2

i
for i = 0, 1. Define L = |C1 − C0| and unit-

length vector U = (C1 − C0)/L. The problem can be reduced to one dimension by
projecting the spheres onto the line C0 + tU. The projected intervals in terms of
parameter t are [−r0, r0] for S0 and [L − r1, L + r1] for S1.

If [−r0, r0]⊆ [L − r1, L + r1], then S0 ⊆ S1 and the two spheres merge into S1.
The test for this case is r0 ≤ L + r1 and L − r1 ≤ −r0. A single test covers both
conditions, r1 − r0 ≥ L. To avoid the square root in computing L, compare instead
r1 ≥ r0 and (r1 − r0)

2 ≥ L2.
If [L − r1, L + r1]⊆ [−r0, r0], then S1 ⊆ S0 and the two spheres merge into S0.

The test for this case is L + r1 ≤ r0 and −r0 ≤ L − r1. A single test covers both
conditions, r1 − r0 ≤ −L. Again to avoid the square root, compare instead r1 ≤ r0
and (r1 − r0)

2 ≥ L2.
Otherwise, the intervals either have partial overlap or are disjoint. The interval

containing the two projected intervals is [−r0, L + r1]. The corresponding merged
sphere whose projection is the containing interval has radius

r = L + r1 + r0

2

The center t-value is (L + r1 − r0)/2 and corresponds to the point

C = C0 + L + r1 − r0

2
U = C0 + L + r1 − r0

2L

(
C1 − C0

)
The pseudocode is

Input: Sphere(C0,r0) and Sphere(C1,r1)
centerDiff = C1 - C0;
radiusDiff = r1 - r0;
radiusDiffSqr = radiusDiff * radiusDiff;
Lsqr = centerDiff.SquaredLength();
if (radiusDiffSqr >= LSqr)
{

if (radiusDiff >= 0.0f)
{

return Sphere(C1,r1);
}
else
{

return Sphere(C0,r0);
}

}
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else
{

L = sqrt(Lsqr);
t = (L + r1 - r0)/(2 * L);
return Sphere(C0 + t * centerDiff,(L + r1 + r0)/2);

}

For three or more bounding spheres, you can merge the first two spheres into
a single sphere, merge the third sphere into this one, and so on for each additional
sphere. The implementation is simple enough, but even with three spheres, the re-
sulting sphere is not guaranteed to be the minimum-volume sphere containing the
input spheres. Constructing the minimum-volume sphere is nontrivial [FG03] and
not something you want to do dynamically at program execution time, because of
the computational expense. An alternative is to choose the final bounding sphere so
that its center is the average of the input sphere centers and its radius is large enough
to contain the input spheres. If there are n spheres with centers Ci and radii ri for
0 ≤ i < n, then the final sphere has center

C = 1

n

n−1∑
i=0

Ci

and radius

r = max
0≤i<n

{|Ci − C| + ri
}

13.2 Boxes

The queries are organized with the point-in-box query first, the computation of
bounding volumes second, and the merging of bounding volumes third.

13.2.1 Point in Box

For an axis-aligned box with extreme points Pmin = (x0, y0, z0) and Pmax = (x1,
y1, z1), a point P = (x , y , z) is inside (or on) the box when x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,
and z0 ≤ z ≤ z1.

For an oriented box with center C, axis directions Di, and extents ei for 0 ≤ i ≤ 2,
a point P is inside (or on) the box when

|Di
. (P − C)| ≤ ei

for 0 ≤ i ≤ 2. The term inside the absolute value signs is the component of the point
relative to the axis Di of the coordinate system defined by the box parameters.



618 Chapter 13 Containment Methods

13.2.2 Box Containing Points

It is clear how to construct an axis-aligned bounding box that contains a set of n

points P[0] through P[n-1]:

Vector3 min = P[0], max = min;
for (i = 1; i < n; i++)
{

for (j = 0; j < 3; j++)
{

if (P[i][j] < min[j] )
{

min[j] = P[i][j];
}
else if (P[i][j] > max[j])
{

max[j] = P[i][j];
}

}
}

Five algorithms are presented for computing an oriented bounding box for a set
of points. The first algorithm fits an unordered set of points, using the eigenvectors of
the covariance matrix as the box axis directions. The second algorithm assumes that
the points are vertices of a triangle mesh and that the edges have mass and constant
density. The third algorithm also assumes a triangle mesh, but now the triangles have
mass and are all constant density. The fourth algorithm assumes a triangle mesh that
forms a simple polyhedron (not necessarily convex), and treats the object as a solid
mass of constant density. The fifth algorithm shows how to compute the minimum-
volume OBB that contains the points.

Fitting Points Using the Mean and Covariance

The goal is to construct an OBB to contain a set of n points, Pi, for 0 ≤ i < n. The
center of the OBB is chosen to be the mean (average) of the points,

C = 1

n

n−1∑
j=0

Pj

The axes of the box are selected as unit-length eigenvectors of the covariance matrix

M = 1

n

n−1∑
j=0

(Pj − C)(Pj − C)T
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If Ui are unit-length eigenvectors, the extents ei along those axes are computed from
the extreme values of the projections of the points onto those axes:

ai = min
0≤j<n

{
Ui

. (Vj − C)
}

, bi = max
0≤j<n

{
Ui

. (Vj − C)
}

, ei = max{|ai|, |bi|}

This box does not necessarily have the smallest volume of all boxes with the same axis
directions. For a tighter fit, adjust the center of the box and choose the extents, as
shown, to be

C′ = C + 1

2

2∑
i=0

(ai + bi)Ui , ei = (bi − ai)/2

The pseudocode is

Box3 box; // center, axis[3], extent[3]

// Compute mean of points.
Vector3 sum = P[0];
for (i = 1; i < n; i++)
{

sum += P[i];
}
box.center = sum/n;

// Compute covariances of points.
Matrix3 mat = 0;
for (i = 0; i < n; i++)
{

Vector3 diff = P[i] - box.center; // D is n-by-1.
mat += Tensor(diff,diff); // D*Transpose(D)

}
Matrix3 covariance = mat/n;

// Eigenvectors for covariance matrix are the box axes.
ExtractEigenvectors(covariance,box.axis);

// Compute the extremes of the projection of the points
// onto the box axes.
Vector3 diff = P[0] - box.center;
Vector3 min, max;
for (j = 0; j < 3; j++)
{

min[j] = Dot(box.axis[j],diff);
max[j] = min[j];

}
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for (i = 1; i < n; i++)
{

diff = P[i] - box.center;
for (j = 0; j < 3; j++)
{

float tmp = Dot(box.axis[j],diff);
if (tmp < min[j])
{

min[j] = tmp;
}
else if (tmp > max[j])
{

max[j] = tmp;
}

}
}

// Adjust the box center to be the average of the extremes.
// Also compute the extents.
for (j = 0; j < 3; j++)
{

box.center += 0.5 * (min[j] + max[j]) * box.axis[j];
box.extent[j] = 0.5 * (max[j] - min[j]);

}

For a vector W, Tensor(W , W) is the matrix WWT. The code does require an eigen-
solver for a 3 × 3 matrix; see Section 16.2.

What I have shown here is the historical approach to computing an OBB that
contains the points. Using the mean point C and covariance matrix M are how a
statistician would view this problem. A physicist, on the other hand, would want to
treat the points as point masses (all points having the same mass) and use the prin-
cipal directions of inertia for the directions of the box axes [Ebe03]. These directions
are the eigenvectors of the inertia tensor (mass matrix) J relative to the center of mass
C. It turns out that the covariance matrix and inertia tensor are related by

J = �2I − nM

where

�2 =
n−1∑
i=0

|Xi − C|2

and I is the identity matrix. An eigendecomposition for the covariance is M =
RDRT, where R is a rotation matrix whose columns are eigenvectors of M and where
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D is a diagonal matrix whose diagonal entries are eigenvalues of M . Observe that

J = �2RRT − nRDRT = R(�2I − nD)RT

The matrix �2I − nD is diagonal, so the rotation matrix R also diagonalizes J .
That means the eigenspaces for J are the same as those for M , in which case the
eigenvectors of the covariance matrix are the principal directions of inertia. It does
not matter if you use M or J for the OBB construction!

Fitting Based on Mesh Edges

Assuming the points are vertices of a triangle mesh, the edges of that mesh may be
treated as masses of constant density 1. The idea of using edges instead of just vertices
is to help avoid skewing of the distribution by localized clusters of points. Points far
apart, but connected by an edge, contribute more significantly to the distribution
because of the mass of the edge connecting them.

Suppose there are k edges in the mesh. If the ith edge has vertices Pi , 0 and Pi , 1,
then the edge and its interior are represented by

Xi(s) = Pi , 0 + s(Pi , 1 − Pi , 0)

where s ∈ [0, 1]. The mass of the edge is formulated generally as an integral. The mass
differential is dm = Lids, where

Li = |Pi , 1 − Pi , 0|
is the length of the edge. I am assuming a constant density of 1. If instead it were a
constant δ, then dm = δLids. The mass of the edge is

mi =
∫ 1

0
Li ds = Li

The center of mass of the edge is also formulated generally as an integral

Ci =
∫ 1

0 Xi(s)Li ds

mi

= Pi , 0 + Pi , 1

2

Observe that the center of mass of the edge is the midpoint of the edge (when you
have constant density).

The total mass of all the edges is

m =
k∑

i=1

mi =
k∑

i=1

Li
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and the center of mass of all the edges is

C =
∑k

i=1

∫ 1
0 Xi(s)Li ds∑k

i=1

∫ 1
0 Li ds

=
k∑

i=1

Li

m
Ci =

k∑
i=1

wiCi

where wi = Li/m and where
∑k

i=1 wi = 1. Thus, the center of mass for all edges is a
weighted average of the centers of mass for the individual edges.

A scaled covariance matrix for the edge masses is

M =
∑k

i=1

∫ 1
0 (Xi(s) − C)(Xi(s) − C)TLi ds∑k

i=1

∫ 1
0 Li ds

= 1

6

k∑
i=1

Li

m

(
[ Di , 0 Di , 1 ]

[
2 1
1 2

]
[ Di , 0 Di , 1 ]T

)

where Di , j = Pi , j − C and is treated as a column vector for the purpose of the matrix
multiplications in the expression. The scaling of the covariance matrix makes the
measurement dimensionless, which helps with the robustness of the floating-point
calculations, and it allows you to reuse the weights wi = Li/m. The eigenvectors of
M are used as the directions of the box axes and the center of mass C is adjusted to
C′, as was the case when fitting a collection of point masses.

Fitting Based on Mesh Faces

The idea of treating edges in a triangle mesh as having mass may be extended to
treating the triangles themselves as having mass.

Suppose there are k triangles in the mesh. If the ith triangle has vertices Pi , j for
0 ≤ j ≤ 2, then the triangle and its interior are represented by

Xi(s , t) = Pi , 0 + s(Pi , 1 − Pi , 0) + t (Pi , 2 − Pi , 0)

where s ≥ 0, t ≥ 0, and s + t ≤ 1. The mass of the triangle is formulated generally as
an integral. The mass differential is dm = Ai ds dt , where

Ai = |(Pi , 1 − Pi , 0) × (Pi , 2 − Pi , 0)|
is the area of the parallelogram related to the two edges of the triangle. The mass of
the triangle is

mi =
∫ 1

0

∫ 1−t

0
Ai ds dt = Ai

2

The center of mass is also formulated generally as an integral
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Ci =
∫ 1

0

∫ 1−t

0 Xi(s , t)Ai ds dt

mi

= Pi , 0 + Pi , 1 + Pi , 2

3

which is the average of the vertices. This point is also called the centroid of the
triangle.

The total mass of all the triangles is

m =
k∑

i=1

mi = 1

2

k∑
i=1

Ai

and the center of mass of all the triangles is

C =
∑k

i=1

∫ 1
0

∫ 1−t

0 Xi(s , t)Ai ds dt∑k
i=1

∫ 1
0

∫ 1−t

0 Ai ds dt
=

k∑
i=1

Ai

2m
Ci =

k∑
i=1

wiCi

where wi = Ai/(2m) and where
∑k

i=1 wi = 1. Thus, the center of mass for all trian-
gles is a weighted average of the centers of mass for the individual triangles.

A scaled covariance matrix for the triangle masses is

M =
∑k

i=1

∫ 1
0

∫ 1−t

0 (Xi(s , t) − C)(Xi(s , t) − C)TAi ds dt∑k
i=1

∫ 1
0

∫ 1−t

0 Ai ds dt

= 1

24

k∑
i=1

Ai

2m

⎛
⎝[ Di , 0 Di , 1 Di , 2 ]

⎡
⎣ 2 1 1

1 2 1
1 1 2

⎤
⎦ [ Di , 0 Di , 1 Di , 2 ]T

⎞
⎠

where Di , j = Pi , j − C and is treated as a column vector for the purpose of the matrix
multiplications in the expression. The scaling of the covariance matrix makes the
measurement dimensionless, which helps with the robustness of the floating-point
calculations, and it allows you to reuse the weights wi = Ai/(2m). The eigenvectors
of M are used as the directions of the box axes and the center of mass C is adjusted to
C′, as was the case when fitting a collection of point masses.

Fitting Based on a Mesh Solid

We have fitted a mesh as point masses, edge masses, and face masses. The next step
is to fit a mesh as a solid, assuming that the mesh forms a simple polyhedron. The
center of mass is C and the inertia tensor is J . The eigenvectors of J are used as the
directions of the box axes, and the box center is the adjusted point C′ that we saw in
the discussion for fitting point masses.

A fast computation of C and J was first shown in [Mir96] and uses the Divergence
theorem and Green’s theorem from calculus. The expressions in that paper have
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hidden subexpressions that can be factored out, as was shown in [Ebe03], and leads
to even faster computation but requires that the mesh faces be triangles. Using basic
mathematics, an extension was made by [Kal] to handle polygon faces, but I will
not discuss this algorithm here.1 The implementation of the algorithm in [Ebe03]
is found in the files named Wm4PolyhedralMassProperties. Mirtich’s implementation
of the algorithm in [Mir96] is available online. It is simple enough to set up an
experiment to compare the execution times.

Minimum-Volume Box

Naturally, a good candidate for the best-fitting bounding box of a set of points is the
OBB of minimum volume of all those OBBs that contain the points. The construc-
tion of such a box is an extension of a similar idea in two dimensions: Compute the
minimum-area oriented rectangle that contains a set of points. In the 2D problem,
observe that any rectangle containing the points necessarily contains the convex hull
of the points. In fact, if any points touch the rectangle, they must be vertices of the
convex hull. It is sufficient then to compute the convex hull, which is a convex poly-
gon, and solve the problem of computing the minimum-area oriented rectangle that
contains a convex polygon. This problem was solved in [Tou84], and the approach is
referred to as the method of rotating calipers.

The result is that at least one edge of the minimum-area rectangle must be coin-
cident with an edge of the polygon. A simple algorithm to compute the rectangle is to
iterate over the edges of the polygon. For each edge, compute the bounding rectan-
gle with the orientation implied by that edge. Of all such rectangles, choose the one
with smallest area. For n vertices, this approach is O(n2) since for each of n edges,
you must project n vertices onto an axis in the edge direction and onto an axis per-
pendicular to the edge direction. The method of rotating calipers, though, shows that
you can compute the rectangle in O(n) time. You start with one edge of the polygon
and compute the bounding rectangle with the implied orientation. You then rotate
the rectangle to the orientation implied by the next edge, but instead of projecting all
vertices, you can keep track of the extreme vertices for each orientation and update
them as you rotate for each edge. The updates are done in O(1) time for each of n

edges, so the final time is O(n).
In three dimensions, it is also sufficient to construct a bounding box for the

convex hull of the input points, which is a convex polyhedron. The paper [O’R85]
shows that the minimum-volume OBB for a convex polyhedron must (1) have a
face that is coincident with a face of the polyhedron or (2) be supported by three
mutually perpendicular edges of the polyhedron. For a polyhedron of n vertices, this

1. The author has chosen to apply for a patent on his algorithm. The trend for obtaining patents on software
and mathematical algorithms is quite disturbing, especially when the innovation is minor, and even
more so when anyone with undergraduate training in mathematics can discover the same results through
deductive logic.
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can be done in O(n3) time. The construction has two phases. First, you iterate over
the faces of the polyhedron. For each face, project the polyhedron onto the plane of
that face. The projection is a convex polygon. The projection of a tight-fitting OBB
with a face coincident to the polyhedron face is a tight-fitting oriented rectangle for
the convex polygon. This is now the 2D problem of computing the minimum-area
rectangle that contains a convex polygon. Use the method of rotating calipers, which
determines the orientation of the OBB about the normal to the projection plane. The
third dimension of the box is determined by the projection of the convex polyhedron
onto the normal line for the face. For each of the O(n) faces, you need O(n) time to
compute the smallest OBB with the orientation implied by the face for a total time of
O(n2). The second phase is to iterate over all triples of the O(n) edges. Each iteration
tests if the three edges are mutually perpendicular. If they are, their directions are
used as box-axis directions. The smallest OBB with this orientation is computed. This
phase takes O(n3) time. The OBB with smallest volume is chosen from all those boxes
computed in the two phases.

If the bounding boxes are to be used for culling purposes, and if the objects
change dynamically (vertex morphing) or if a parent’s bounding box changes dy-
namically to fit its childrens’ bounding boxes, the minimum-volume box algorithm
is most likely too computationally intensive for real-time applications. Generally, a
lesser fit is used in order to dynamically update faster, a trade-off of accuracy for
speed.

13.2.3 Merging Boxes

If two oriented boxes were built to contain two separate sets of data points, it is
possible to build a single oriented bounding box that contains the union of the sets.
That box might not contain the two original oriented boxes, but this is not a problem
for culling purposes. All that matters is that the box containing the union of sets is a
bounding box. What can be a problem is the time it takes to build the single oriented
box.

An alternate approach is to construct an oriented box from only the original boxes
that, in addition, contains the original boxes. This can be done by interpolation of the
box centers and axes, followed by growing the box to contain the originals. The axes
of a box may be stored as the columns of a rotation matrix. This matrix can then
be represented by a quaternion. Let the two quaternions for the boxes be q0 and q1
with q0

. q1 ≥ 0. The dot product is computed treating the quaternions as 4-tuples. An
orientation for the box that bounds the two boxes is chosen to be the one associated
with the quaternion q = (q0 + q1)/|q0 + q1|. The absolute value signs indicate length
of a 4-tuple. A rotation matrix is computed from q and the columns are used as the
directions of the final box axes. Given this orientation, the eight vertices from the two
original boxes are projected onto the axes. The box center has components chosen to
be the midpoints of the intervals of projection. The pseudocode is
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// Box has center, axis[3], extent[3].
Input: Box box0, Box box1
Output: Box box

// Initial center C to use for the projections. This
// will be updated later to C’ based on the intervals
// of projection.
box.center = (box0.center + box1.center)/2;

// Compute axes.
Quaternion q0 = ConvertAxesToQuaternion(box0.axis);
Quaternion q1 = ConvertAxesToQuaternion(box1.axis);
if (Dot(q0,q1) < 0)
{

q1 = -q1;
}
Quaternion q = q0 + q1;
q /= Length(q);
box.axis = ConvertQuaternionToAxes(q);

// Compute projections.
Vector3 min(0,0,0), max = min, diff;
for each vertex V of box0 and box1 do
{

diff = V - box.center;
for (j = 0; j < 3; j++)
{

if (diff[j] < min[j])
{

min[j] = diff[j];
}
else if (diff[j] > max[j])
{

max[j] = diff[j];
}

}
}

// Adjust center and compute extents.
for (j = 0; j < 3; j++)
{

box.center += 0.5 * (min[j] + max[j]) * box.axis[j];
box.extent[j] = 0.5 * (max[j] - min[j]);

}
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The function ConvertAxesToQuaternion stores the axes as columns of a rotation ma-
trix, then uses the algorithm to convert a rotation matrix to a quaternion. The func-
tion ConvertQuaternionToAxes converts the quaternion to a rotation matrix, then
extracts the axes as columns of the matrix.

The merging of multiple boxes two at a time suffers from the same problem we
saw for bounding spheres. The final box becomes much larger than what it needs
to be. Alternatively, you can use the ideas for merging two boxes to merge n boxes.
Let qi for 0 ≤ i < n be quaternions that represent the orientations of the boxes.
Change a quaternion’s sign, when necessary, to guarantee that the w-component is
nonnegative. This arranges for all the quaternions to be on one hemisphere of the
unit hypersphere in four dimensions. Compute the normalized average:2

q =
∑n−1

i=0 qi

| ∑n−1
i=0 qi|

Start with a center point that is the average of the input box center points. Compute
the final box axes from this quaternion; project all the box vertices onto the axes
(containing the current center point); and update the center point and compute the
extents as was shown in the pseudocode.

13.3 Capsules

The queries are organized with the point-in-capsule query first, the computation of
bounding volumes second, and the merging of bounding volumes third.

13.3.1 Point in Capsule

Given a capsule whose medial set M is a line segment and whose radius is r > 0, a
point P is contained in the capsule when

Distance(P, M) ≤ r

The distance between a point and a line segment is discussed in Section 14.1.3.

2. Even though all the quaternions are in the same hemisphere, it is still possible for the average to be zero.
You must guard against this. A better approach, but one requiring more computational time, is to compute
the minimal cone containing the quaternions and use its axis as the quaternion for the final box. The cone
construction is related to computing the minimum-volume sphere containing a collection of points.
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13.3.2 Capsule Containing Points

Two algorithms are presented here for computing a bounding capsule for a set of
points.

Least-Squares Fit

Fit the points by a line using the least-squares algorithm described in Section 16.3.2.
Let the line be A + tW, where W is unit length and A is the average of the points. This
line will contain the capsule line segment. Compute r to be the maximum distance
from the data points to the line. Select unit vectors U and V so that the matrix
R = [U V W], whose columns are the specified vectors, is a rotation matrix. The
points can be represented as Xi = A + RYi, where Yi = (ui , vi , wi), but treated as
a column vector for the purpose of multiplication by R. In the (u, v , w) coordinate
system, the capsule axis is contained by the line t (0, 0, 1). We need to compute the
largest ξ0 so that all points lie above the hemisphere u2 + v2 + (w − ξ0)

2 = r2 with
w ≤ ξ0. The value is computed as

ξ0 = min
i

{wi +
√

r2 − (u2
i + v2

i )}

where 0 ≤ i ≤ n. Similarly, there is a smallest value ξ1 so that all points lie below the
hemisphere u2 + v2 + (w − ξ1)

2 = r2 with w ≥ ξ1. The value is computed as

ξ1 = max
i

{wi −
√

r2 − (u2
i + v2

i )}

The endpoints of the capsule line segment are Pj = A + ξjW for j = 0, 1. If,
instead, the data points are fit by a least-squares plane W . (X − A) = 0, the result
is the same, since the unit-length plane normal W is exactly the line direction.

Minimum of Minimum-Area Projected Circles

For each unit-length direction W such that W . (0, 0, 1) ≥ 0, select unit-length vec-
tors U and V so that the matrix R = [U V W], whose columns are the specified
vectors, is a rotation matrix. The points can be represented as Xi = A + RYi, where
Yi = (ui , vi , wi), but treated as a column vector for the purpose of multiplication by
R. The projections of the points onto the plane W . X = 0 are (ui , vi). The minimum-
area circle containing these points can be computed; say, the radius is r = r(W)

and the center is C = C(W), the notation indicating that the radius and center are
functions of W. Compute the vector W′ that minimizes r(W). The capsule radius
is r(W′), and let wmin and wmax be the extreme values for the wi. The capsule line
segment has endpoints P0 = C(W′) + wminW′ and P0 = C(W′) + wmaxW′.
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13.3.3 Merging Capsules

If one capsule contains the other, just use the containing capsule. To determine if
this is the case, it is simple to formulate a test to see if a sphere of radius rs and
center C is contained in a capsule with medial segment M and radius rc. Let d be
the distance from C to M (distance from point to segment). The sphere is inside the
capsule as long as d + rs ≤ rc. If C is a point on M , then d = 0 and rs ≤ rc is an
obvious condition for the sphere being inside the capsule. If C is not on M , let K be
the closest point on the segment to C. The extreme point of the sphere relative to
the segment is C + rs(C − K)/|C − K| and is a distance d + rs from M . To test if
one capsule is contained by another, it is sufficient to test if the two end spheres of
the one capsule are contained in the other capsule. Because the capsules are convex,
the containment of the end spheres guarantees that the remainder of the capsule is
contained.

When one capsule does not contain the other, let the capsules have radii ri > 0,
and let their segments have centers Ci, directions Di, and extents ei for i = 0, 1. If
D0

. D1 < 0, replace D1 by −D1. The segment endpoints are Ci ± eiDi.
The line L containing the final capsule segment is chosen to have origin C =

(C0 + C1)/2, which is the average of the centers of the capsules. This point, however,
will not be the final capsule segment’s midpoint. The direction vector of the line is
obtained by averaging the unit direction vectors of the input capsules, D = (D0 +
D1)/|D0 + D1|. The final capsule radius r must be chosen sufficiently large so that
the final capsule contains the original capsules. It is enough to consider the spherical
ends of the original capsules. The endpoints of the capsule segments are Pij = Ci +
(2j − 1)eiDi for i = 0, 1 and j = 0, 1. The final radius is

r = max
i , j

{Distance(Pij , L) + ri}

Observe that r ≥ ri for i = 0, 1. Figure 13.2 illustrates these quantities. The goal now
is to choose the endpoints E0 and E1 of the final capsule segment. These are of the
form Ei = C + tiD and must be chosen so that the final capsule contains the input
capsules. From the illustration, it should be clear that the distance from E0 to a
capsule segment endpoint plus the capsule radius must be smaller or equal to the
final capsule radius. That is,

|E0 − (C0 − e0D0)| + r0 ≤ r and |E0 − (C1 − e1D1)| + r1 ≤ r

Define ���i = C − (Ci − eiDi). Solve the equalities, which when squared are quadratic
equations:

t2 + 2(D . ���i)t + |���i|2 − (r − ri)
2 = 0
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Figure 13.2 Merging two capsules.

Compute the roots of the two equations and choose t0 to be the smallest of them.
Similarly,

|E1 − (C0 + e0D0)| + r0 ≤ r and |E1 − (C1 + e1D1)| + r1 ≤ r

Define δδδi = C − (Ci + eiDi). Solve the equalities, which when squared are quadratic
equations:

t2 + 2(D . δδδi)t + |δδδi|2 − (r − ri)
2 = 0

Compute the roots of the two equations and choose t1 to be the largest of them.
Once E0 and E1 have been computed, choose the final capsule segment center to be
C′ = (E0 + E1)/2.

13.4 Lozenges

The queries are organized with the point-in-lozenge query first, the computation of
bounding volumes second, and the merging of bounding volumes third.
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13.4.1 Point in Lozenge

Given a lozenge whose medial set M is a rectangle and whose radius is r > 0, a point
P is contained in the capsule when

Distance(P, M) ≤ r

The distance between a point and a rectangle is discussed in Section 14.5.

13.4.2 Lozenge Containing Points

Two algorithms are presented here for computing a bounding lozenge for a set of
points.

Fitting Points Using the Mean and Covariance

Compute the mean A of the points and compute the covariance matrix, just as in
the algorithm for fitting with an oriented box. Let unit-length eigenvectors of the
matrix be U, V, and W. Assume these are labeled so that U corresponds to the
largest eigenvalue and W corresponds to the smallest eigenvalue. The data points are
represented as Xi = A + uiUi + viVi + wiWi. Let wmin and wmax be the extreme
values for the wi. The data points are bounded by the two planes W . (X − A) = wmin
and W . (X − A) = wmax. Set the lozenge radius to r = (wmax − wmin)/2 and adjust
the mean to A ← A + ((wmax + wmin)/2)W.

Analogous to the fitting of data by a 3D capsule, construct a 2D capsule contain-
ing the pairs (wi , vi). We need to compute the largest β0 so that all points lie above
the hemicircle w2 + (v − β0)

2 = r2 with v ≤ β0. The value is computed as

β0 = min
i

{
vi +

√
r2 − w2

i

}

where 0 ≤ i ≤ n. Similarly, there is a smallest value β1 so that all points lie below the
hemicircle w2 + (v − β1)

2 = r2 with v ≥ β1. The value is computed as

β1 = max
i

{
vi −

√
r2 − w2

i

}

The endpoints of the projected capsule line segment determine an edge of the
lozenge, E1 = (β1 − β0)V.

Repeat this process for the pairs (ui , wi) to obtain values

α0 = min
i

{
ui +

√
r2 − w2

i

}
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and

α1 = max
i

{
ui −

√
r2 − w2

i

}

Although it appears that the other lozenge edge should be E0 = (α1 − α0)U, it might
not be. The hemicylinder ends that are attached by the preceding process form
mitered corners that enclose more space than the quarter spheres. It is possible
for some data points to be inside the hemicylinder overlap, but outside the quarter
sphere. The candidate edge E0 may need to be increased to enclose the outliers.

Let K0 = A + α0U + β0V be one of the corner points of the current lozenge
rectangle. Suppose that P = A + αpU + βpV + γpW is a point outside the quarter
sphere centered at K. For this to be true, |P − K0| > r . The corner must be adjusted
to K1 = A + α′

1U + β ′
1V so that |P − K1| = r . There are two degrees of freedom for

the adjustment. One degree is eliminated by requiring (α′
1, β ′

1) = t (α0, β0) + (1 −
t)(αp , βp). Replacing in the previous distance equation yields a quadratic in t that
can be solved for

t = r2 − γ 2
p

(αp − α0)
2 + (βp − β0)

2

The adjustment on the corner point does not affect previous containment relation-
ships. Thus, the list of input points can be iterated and the corners adjusted as needed.

After the adjustment, the lozenge rectangle parameters are [α0, α′
1]× [β0, β ′

1].
The lozenge origin is chosen to be A + α0U + β0V, and the lozenge edges are E0 =
(α1 − α0)U and E1 = (β ′

1 − β0)V.

Minimization Method

The construction of a lozenge in the previous paragraphs used eigenvectors from
the covariance matrix. The same construction can be applied for any choice of or-
thonormal vectors that form a right-handed system. The corresponding rotation
matrices whose columns are the selected vectors form a three-parameter family (the
unit quaternions form a three-dimensional manifold in 4-space). Let the parameters
be labeled as the 3-tuple ρρρ. The volume for a given set of parameters, ν(ρρρ), can be
computed by adding the volumes of the pieces forming the lozenge: the rectangular
box, the four hemicylinder sides, and the four quarter-sphere corners. A minimiza-
tion algorithm can be applied to ν to obtain parameters ρρρ′ so that ν(ρρρ′) is a global
minimum.
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13.4.3 Merging Lozenges

Two lozenges may be merged into a single lozenge that contains them with the fol-
lowing algorithm. This is the direct extension of the algorithm presented for merging
two capsules. In the discussion, the index i is 0 or 1 and refers to a particular lozenge.
The lozenges have radii ri > 0. Each lozenge rectangle defines a coordinate system.
The center Ci is the origin; the rectangle axis directions Di0 and Di1 are two of the
coordinate axis directions; and the unit-length normal to the plane of the rectangle,
Ni = Di0 × Di1, is the third coordinate axis direction. The extents are ei0.

The plane M containing the final lozenge rectangle is chosen to have the origin
C = (C0 + C1)/2. The plane normal and plane basis vectors are chosen using quater-
nion averaging, just like we did for OBBs. Let qi be a quaternion corresponding to
the rotation matrix Ri = [Di0 Di1 Ni]. If q0

. q1 < 0, replace q1 by −q1. Compute
q = (q0 + q1)/|q0 + q1| and generate a rotation R = [D0 D1 N] from it. The last col-
umn N is used as the final plane’s normal and the first two columns are used as the
final plane’s basis vectors.

Just as we saw with capsules, the radius of the final lozenge must be large enough
so that the spheres occurring at the eight lozenge corners fit within the final lozenge.
The sphere centers are

Pijk = Ci + (2j − 1)ei0Di0 + (2k − 1)ei1Di1

where all three indices have values 0 or 1(a total of eight possibilities). The final radius
may be chosen as

r = max
i , j , k

{Distance(Pijk , M) + ri}

where M is the plane of the final rectangle.
In the merging of capsules, the final step was to place hemispherical caps along

the line containing the final capsule segment. These caps were chosen to be as close
together as possible. The situation with lozenges is slightly more complicated. You
now need to place one pair of half-capsule caps along the D0 axis and one pair along
the D1 axis. In addition to the placement of the half-capsules, you also have control
over the lengths of their segments. To place the first pair, use infinite half-cylinders
instead, placing them as close together as possible while ensuring that the lozenge
corner spheres are contained between them. Their placement determines the segment
length for the half-capsules you place in the other direction.

Exercise
13.1

I have not provided the mathematical details for the last paragraph of the section,
leaving it as an exercise for you to figure out these details and implement the algo-
rithm.



634 Chapter 13 Containment Methods

13.5 Cylinders

The queries are organized with the point-in-cylinder query first, the computation of
bounding volumes second, and the merging of bounding volumes third. These are all
for finite cylinders.

13.5.1 Point in Cylinder

Let the cylinder axis be C + tD, where C is the center of the cylinder, D is a direction
vector, and |t | ≤ h/2. The cylinder height is h and the cylinder radius is R. The query
point is P. Its component in the direction of the cylinder axis is T = D . (P − C). If
|T | > h/2, then P is outside the cylinder. If |T | ≤ h/2, it is not yet known whether P is
inside or outside. To be inside, if L is the cylinder axis, we need Distance(P, L) ≤ r .
To compute the distance to L, project out the direction component, Q = P − T D.
The inside condition is then |Q| ≤ r .

13.5.2 Cylinder Containing Points

Two algorithms are presented here for computing a bounding cylinder for a set of
points. Fit the points by a line using the least-squares algorithm described in Section
16.3.2. Let the line be A + tW, where W is unit length and A is the average of the
data points. Select unit vectors U and V so that the matrix R = [U V W] is a rotation
matrix. The points can be represented as Xi = A + RYi, where Yi = (ui , vi , wi), but
thought of as a column vector for the purpose of multiplication by R.

Least-Squares Line Contains Axis

The cylinder radius is

r = max
i

{√
u2

i + v2
i

}

The cylinder height is h = wmax − wmin, where wmin and wmax are the extreme
values of the wi. To conform to the finite cylinder definition, the line must have its
translation vector adjusted. The new translation is

A′ = A + wmin + wmax

2
W

The line is A′ + tW and the cylinder is constrained by |t | ≤ h/2.
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13.5.3 Least-Squares Line Moved to Minimum-Area Center

The minimum-area circle containing the (ui , vi) values is computed and has center
(u′, v′) and radius r . The least-squares line is shifted to contain the circle center:

A′ = A + u′U + v′V

The cylinder radius is r and the algorithm in the last subsection is applied to compute
h. That algorithm also shifts the line in the direction of W to A′′ + tW, where

A′′ = A′ + wmin + wmax

2
W

13.5.4 Merging Cylinders

Let the cylinders have centers Ci, directions Di, radii ri, and heights hi. The line
containing the axis of the final cylinder is chosen just like we did for merging capsules.
The line origin is the average of cylinder centers, C = (C0 + C1)/2. The line direction
is the average direction, D = (D0 + D1)/|D0 + D1|. As before, D1 is chosen so that
D0

. D1 ≥ 0.
The idea now is to project the input cylinders onto the line C + tD, each pro-

jection producing an interval. The smallest interval containing the two projected
intervals is used to define the final cylinder. Figure 13.3 illustrates. The projection
intervals onto the line tD have endpoints

D . (Ci − C) ± h|D . Di|/2 + ri

√
1 − (D . Di)

2

The smallest interval covering these is determined by the minimum and maximum
of the four endpoints of the projection intervals. This determines the height h of the
final cylinder and the final center C′, which is midway between the extremes.

The radius of the final cylinder needs to be computed. Cylinder points are param-
eterized by

Xi(t , θ) = Ci + tDi + ri((cos θ)Ui + (sin θ)Vi)

where {Di , Ui , Vi} is an orthonormal set of vectors. Using C as the origin of a plane
with normal D, the projections of the cylinder points onto the plane are

Yi(t , θ) =
(
I − DDT

)
(Xi(t , θ) − C)

=
(
I − DDT

)
(Ci − C) + t

(
I − DDT

)
D0 + r((cos θ)U′

i
+ (sin θ)V′

i
)

where U′
i
= (I − DDT)Ui and V′

i
= (I − DDT)Vi. As θ varies, the length of (cos θ)

U′
i
+ (sin θ)V′

i
varies. In fact, the points span an ellipse. The vertices of the ellipse
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Figure 13.3 Merging of two cylinders.

have the largest magnitude of all such vectors. That magnitude is the maximum of
|U′

i
| and |V′

i
|. Let Wi = Ui if |U′

i
| is the maximum; otherwise, set Wi = Vi. Conse-

quently, the candidates for the projected cylinder points that are farthest from the
origin are

(
I − DDT

) (
(Ci − C) ± h

2
D0 ± rWi

)

Compute these and choose the final cylinder radius r to be the maximum length.

13.6 Ellipsoids

The queries are organized with the point-in-ellipsoid query first, the computation of
bounding volumes second, and the merging of bounding volumes third.

13.6.1 Point in Ellipsoid

For an ellipsoid in standard form, (x/a)2 + (y/b)2 + (z/c)2 = 1, a point (x0, y0, z0)

is inside (or on) the ellipsoid whenever (x0/a)2 + (y0/b)2 + (z0/c)2 ≤ 1. For an
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ellipsoid in the form (X − C)TM(X − C) = 1, where C is the ellipsoid center and
M = RDRT with R a rotation matrix and D a diagonal matrix with positive diagonal
entries, a point P is inside (or on) the ellipsoid whenever

(P − C)TM(P − C) ≤ 1

13.6.2 Ellipsoid Containing Points

Two algorithms are presented here for computing a bounding ellipsoid for a set of
points. A third algorithm is mentioned, but it is not really one you can use in a real-
time situation.

Axis-Aligned Ellipsoid

Given a set of points, a simple way to bound them with an ellipsoid is to first generate
the axis-aligned box containing the points and establish the ratios of axis half-lengths.
Let Pmin and Pmax be the extreme points for the AABB. The center of the ellipsoid
is C = (Pmax + Pmin)/2. The half-lengths are components of λ(Pmax − Pmin)/2 =
λ(δ0, δ1, δ2), where λ > 0 is to be determined. Let D = Diag{1/(λδ0)

2, 1/(λδ1)
2,

1/(λδ2)
2}. The bounding ellipsoid is (X − C)TM(X − C) = 1, where M = D/ maxi

{(Pi − C)TD(Pi − C)}.

Fitting Points with a Gaussian Distribution

This method is similar to the one used for fitting points with an oriented box. The
mean of the points is used for the center of the ellipsoid, and the eigenvectors of
the covariance matrix are used for the axes. The eigenvalues are used in the same
way as the vector (δ0, δ1, δ2) in the fit with an axis-aligned ellipsoid. The ellipsoid is
(X − C)TM(X − C) = 1, where M = (RTDR)/ maxi{(Pi − C)TRTDR(Pi − C)}.

Minimum-Volume Ellipsoid

While the theory of such a fit has been worked out using randomized linear tech-
niques [Wel91], an implementation is extremely difficult because it requires special-
case handlers for computing bounding ellipsoids for sets with up to nine points (the
minimum-volume sphere algorithm requires special-case handlers with up to four
points). An alternative is to use a constrained numerical minimization, something
that is challenging but not impossible to implement. In either case, rapidly comput-
ing minimum-volume ellipsoids is not possible at the moment for real-time appli-
cations.
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13.6.3 Merging Ellipsoids

Computing a bounding ellipsoid for two other ellipsoids is done in a way similar to
that of oriented boxes. The ellipsoid centers are averaged, the quaternions represent-
ing the ellipsoid axes are averaged, and then the average is normalized. The original
ellipsoids are projected onto the newly constructed axes. On each axis, the smallest
interval of the form [−σ , σ ] is computed to contain the intervals of projection. The
σ values determine the axis half-lengths for the final ellipsoid.



C h a p t e r14
Distance Methods

In all but the last section of this chapter, I present a few algorithms for computing
distances between points, linear components (lines, rays, segments), triangles,

rectangles, and boxes. Linear components are parameterized by P + tD, where D
is a unit-length vector. The parameter is constrained to t ∈ (−∞, ∞) for a line, to
t ∈ [0, ∞) for a ray, and to t ∈ [−e, e] for a segment. The algorithms are set up to
compute squared distance to avoid a potentially expensive square root function call,
but if the cost is not of concern to you, your implementation can very well compute
distance itself.

To encapsulate the heart of the algorithms, the line-object squared-distance func-
tion also returns the parameters for the linear component and for the object. The
idea is that the ray-object and segment-object squared-distance functions first call
the line-object squared-distance function but then use additional logic to adjust the
result based on clamping the parameters to the appropriate intervals. If numerical
problems ever occur in a distance query, you need only deal with it (and fix it) in the
line-object distance implementations.

The last section of the chapter covers a few miscellaneous algorithms that some-
times arise in computer graphics applications.

14.1 Point to Linear Component

The following construction applies in any dimension, not just in three dimensions.
Let the query point be Q. The projection onto the line, or onto the line containing
the ray or segment, is K = P + t̄D, where t̄ = D . (Q − P).

639
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14.1.1 Point to Line

The squared distance from Q to the line is

d2 = |Q − K|2

= |Q − (P + t̄D)|2

= |Q − P|2 − t̄2

= |Q − P|2 − (D . (Q − P))2

= (Q − P)T(I − DDT)(Q − P)

= (Q − P)T(I − DDT)T(I − DDT)(Q − P)

= |(I − DD)(Q − P)|2

(14.1)

where I is the identity matrix. The last few expressions in the equation indicate that a
projection is involved; the matrix I − DDT represents a projection that removes the
D component from vectors, the resulting vectors being perpendicular to D.

The pseudocode for the algorithm is

float SquaredDistance (Vector3 Q, Line line, float& tClosest)
{

Vector3 diff = Q - line.P;
tClosest = Dot(line.D,diff);
diff -= tClosest * line.D;
return diff.SquaredLength();

}

14.1.2 Point to Ray

When the linear component is a ray, if t̄ < 0, the closest point on the ray to Q is P.
For t̄ ≥ 0, the projection P + t̄Q is the closest point. The squared distance from Q to
the ray is

d2 =
{ |Q − P|2, t̄ < 0

|Q − (P + t̄D)|2, t̄ ≥ 0
(14.2)

The pseudocode for the algorithm is

float SquaredDistance (Vector3 Q, Ray ray, float& tClosest)
{

Line line = <convert ray to line>;
float sqrDistance = SquaredDistance(Q,line,tClosest);
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if (tClosest < 0)
{

tClosest = 0;
Vector3 diff = Q - ray.P;
sqrDistance = diff.SquaredLength();

}
return sqrDistance;

}

14.1.3 Point to Segment

When the linear component is a segment represented by the center-direction-extent
form, if t̄ > e, then the closest point on the segment to Q is P + eD. If t̄ < −e, then
the closest point on the segment to Q is P − eD. The squared distance from Q to the
line segment is

d2 =
⎧⎨
⎩

|Q − (P − eD)|2, t̄ < −e

|Q − (P + t̄D)|2, |t̄ | ≤ e

|Q − (P + eD)|2, t̄ > e

(14.3)

The pseudocode for the algorithm is

float SquaredDistance (Vector3 Q, Segment segment, float& tClosest)
{

Line line = <convert segment to line>;
float sqrDistance = SquaredDistance(Q,line,tClosest);
Vector3 diff;
if (tClosest < -segment.e)
{

tClosest = -segment.e;
diff = Q - (segment.P - segment.e * segment.D);
sqrDistance = diff.SquaredLength();

}
else if (tClosest > segment.e)
{

tClosest = segment.e;
diff = Q - (segment.P + segment.e * segment.D);
sqrDistance = diff.SquaredLength();

}
return sqrDistance;

}
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14.2 Linear Component to Linear Component

This section describes squared-distance algorithms for pairs of linear components.

14.2.1 Line to Line

Two lines are X0(s) = P0 + sD0 and X1(t) = P1 + tD1. The squared distance between
any two points on the line is the quadratic function

Q(s , t) = |X0(s) − X1(t)|2 = s2 + 2a01st + t2 + 2b0s + 2b1t + c

where a01 = −D0
. D1, b0 = D0

. (P0 − P1), b1 = −D1
. (P0 − P1), and c = |P0 − P1|2.

The squared distance between the lines is the minimum squared distance between
pairs of points. These points occur at the (s , t) value that minimizes Q(s , t). From
calculus, the minimum must occur when the gradient of Q is the zero vector. The
gradient is

∇Q(s , t) = 2(s + a01t + b0, a01s + t + b1)

Setting this equal to the zero vector produces two equations in the two unknowns s

and t : [
1 a01

a01 1

] [
s

t

]
=

[ −b0
−b1

]

The determinant of the coefficient matrix is

δ = 1 − a2
01 = |D0 × D1|2 ≥ 0

The matrix is invertible when δ > 0. Geometrically, the lines are not parallel and the
pair of closest points is unique. Algebraically, we have

[
s

t

]
=

[
1 a01

a01 1

]−1 [ −b0
−b1

]
= 1

δ

[
1 −a01

−a01 1

] [ −b0
−b1

]
=

[
a01b1 − b0
a01b0 − b1

]

If δ = 0, the matrix is not invertible. Geometrically, the lines are parallel, so there are
infinitely many pairs of closest points. Algebraically, we have only one independent
equation say, s + a01t = −b0. Any pair of closest points may be used to compute the
distance, so it is sufficient to choose s = −b0 and t = 0.

The pseudocode for the algorithm is

float SquaredDistance (Line line0, Line line1, float& l0Closest,
float& l1Closest)

{
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const float epsilon = <small threshold such as 1e-06>;
float sqrDistance;

Vector3 diff = line0.P - line1.P;
float a01 = -Dot(line0.D,line1.D);
float b0 = Dot(line0.D,diff);
float c = diff.SquaredLength();
float det = 1 - a01 * a01;
Real fB1, fS0, fS1, fSqrDist;

if (|det| >= epsilon)
{

// Lines are not parallel.
float b1 = -Dot(line1.D,diff);
float invDet = 1/det;
l0Closest = (a01 * b1 - b0) * invDet;
l1Closest = (a01 * b0 - b1) * invDet;
sqrDistance = l0Closest * (l0Closest + a01 * l1Closest + 2 * b0)

+ l1Closest * (a01 * l0Closest + l1Closest + 2 * b1) + c;
}
else
{

// Lines are parallel; select any closest pair of points.
l0Closest = -b0;
l1Closest = 0;
sqrDistance = b0 * l0Closest + c;

}

return |sqrDistance|;
}

The absolute value call when testing the determinant is used to guard against
floating-point round-off errors when the determinant is nearly zero. These round-
off errors can lead to a small negative result for the determinant, even though it
is theoretically nonnegative. The same problems can occur when computing the
squared distance by evaluating the quadratic function, so absolute values are used
to guard against this.

14.2.2 Line to Ray

Using the encapsulation idea mentioned in the introduction, the line-ray squared-
distance calculator uses the line-line squared-distance calculator and then clamps the
ray parameter to [0, ∞). The pseudocode is
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float SquaredDistance (Line line, Ray ray, float& lClosest,
float& rClosest)

{
Line rline = <convert ray to line>;
float sqrDistance = SquaredDistance(line,rline,lClosest,rClosest);
if (rClosest < 0)
{

rClosest = 0;
sqrDistance = SquaredDistance(ray.P,line,lClosest);

}
return sqrDistance;

}

14.2.3 Line to Segment

Using the encapsulation idea mentioned in the introduction, the line-segment
squared-distance calculator uses the line-line squared-distance calculator and then
clamps the segment parameter to [−e, e]. The pseudocode is

float SquaredDistance (Line line, Segment segment, float& lClosest,
float& sClosest)

{
Line sline = <convert segment to line>;
float sqrDistance = SquaredDistance(line,sline,lClosest,sClosest);
Vector3 end;
if (sClosest < -segment.e)
{

sClosest = -segment.e;
end = segment.P - segment.e * segment.D;
sqrDistance = SquaredDistance(end,line,lClosest);

}
else if (sClosest > segment.e)
{

sClosest = segment.e;
end = segment.P + segment.e * segment.D;
sqrDistance = SquaredDistance(end,line,lClosest);

}
return sqrDistance;

}
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14.2.4 Ray to Ray

Using the encapsulation idea mentioned in the introduction, the ray-ray squared-
distance calculator uses the line-ray squared-distance calculators and then clamps
parameters as needed. The pseudocode is

float SquaredDistance (Ray ray0, Ray ray1, float& r0Closest,
float& r1Closest)

{
Line line = <convert ray0 to line>;
float sqrDistance = SquaredDistance(line,ray1,r0Closest,r1Closest);
if (r0Closest < 0)
{

r0Closest = 0;
sqrDistance = SquaredDistance(ray0.P,ray1,r1Closest);

}
return sqrDistance;

}

14.2.5 Ray to Segment

Using the encapsulation idea mentioned in the introduction, the ray-segment
squared-distance calculator uses the line-ray squared-distance calculators and then
clamps parameters as needed. The pseudocode is

float SquaredDistance (Ray ray, Segment segment, float& rClosest,
float& sClosest)

{
Line line = <convert ray to line>;
float sqrDistance = SquaredDistance(line,segment,rClosest,sClosest);
if (rClosest < 0)
{

rClosest = 0;
sqrDistance = SquaredDistance(ray.P,segment,sClosest);

}
return sqrDistance;

}

14.2.6 Segment to Segment

Using the encapsulation idea mentioned in the introduction, the segment-segment
squared-distance calculator uses the line-segment squared-distance calculators and
then clamps parameters as needed. The pseudocode is
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float SquaredDistance (Segment segment0, Segment segment1,
float& s0Closest, float& s1Closest)

{
Line line = <convert segment0 to line>;
float sqrDistance = SquaredDistance(line,segment1,s0Closest,s1Closest);
Vector3 end;
if (s0Closest < -segment0.e)
{

s0Closest = -segment0.e;
end = segment0.P - segment0.e * segment0.D;
sqrDistance = SquaredDistance(end,segment1,s1Closest);

}
else if (s0Closest > segment0.e)
{

s0Closest = segment0.e;
end = segment0.P + segment0.e * segment0.D;
sqrDistance = SquaredDistance(end,segment1,s1Closest);

}
return sqrDistance;

}

14.3 Point to Triangle

The problem is to compute the minimum distance between a point P and a triangle
T(s , t) = B + sE0 + tE1 for (s , t) ∈ D = {(s , t) : s ∈ [0, 1], t ∈ [0, 1], s + t ≤ 1}. The
minimum distance is computed by locating the values (s̄ , t̄ ) ∈ D corresponding to
the point on the triangle closest to P. The squared-distance function for any point on
the triangle to P is Q(s , t) = |T(s , t) − P|2 for (s , t) ∈ D. The function is quadratic
in s and t :

Q(s , t) = a00s
2 + 2a01st + a11t

2 + 2b0s + 2b1t + c

where aij = Ei
. Ej , bi = Ei

. (B − P), and c = |B − P|2. Quadratics are classified by
the sign of a00a11 − a2

01:

a00a11 − a2
01 = (E0

. E0)(E1
. E1) − (E0

. E1)
2 = |E0 × E1|2 > 0

The positivity is based on the assumption that the two edges E0 and E1 of the triangle
are linearly independent, so their cross product is a nonzero vector. The positivity
guarantees that the graph of Q is a paraboloid, and in fact it opens upward since
Q ≥ 0. A paraboloid always has a unique minimum. The goal is to minimize Q(s , t)

over D. Since Q is a continuously differentiable function, the minimum occurs either
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Figure 14.1 Partitioning of the st-plane by triangle domain D.

at an interior point of D where the gradient of Q is the zero vector or at a point on
the boundary of D.

The gradient is

∇Q(s , t) = 2(a00s + a01t + b0, a01s + a11t + b1)

and is zero when

s̄ = a01b1 − a11b0

a00a11 − a2
01

, t̄ = a01b0 − a00b1

a00a11 − a2
01

If (s̄ , t̄ ) ∈ D, then the minimum of Q is found. Otherwise, the minimum must
occur on the boundary of the triangle. To find the correct boundary, consider Figure
14.1, which shows a partitioning of the plane implied by the set D. The central
triangle labeled region 0 is the domain of Q, (s , t) ∈ D. If (s̄ , t̄ ) is in region 0, then
the point on the triangle closest to P is interior to the triangle.

Suppose (s̄ , t̄ ) is in region 1. The level curves of Q are those curves in the st-
plane for which Q is a constant. Since the graph of Q is a paraboloid, the level
curves are ellipses. At the point where ∇Q = (0, 0), the level curve degenerates to
a single point (s̄ , t̄ ). The global minimum of Q occurs there; call it Vmin. As the
level values V increase from Vmin, the corresponding ellipses are increasingly farther
away from (s̄ , t̄ ). There is a smallest level value V0 for which the corresponding ellipse
(implicitly defined by Q = V0) just touches the triangle domain edge s + t = 1 at a
value s = s0 ∈ [0, 1], t0 = 1 − s0. For level values V < V0, the corresponding ellipses
do not intersect D. For level values V > V0, portions of D lie inside the corresponding
ellipses. In particular, any points of intersection of such an ellipse with the edge
must have a level value V > V0. Therefore, Q(s , 1 − s) > Q(s0, t0) for s ∈ [0, 1] and
s �= s0. The point (s0, t0) provides the minimum squared distance between P and
the triangle. The triangle point is an edge point. Figure 14.2 illustrates the idea by
showing various level curves.

An alternate way of visualizing where the minimum distance point occurs on
the boundary is to intersect the graph of Q with the plane s + t = 1. The curve of
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∇Q = 0
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Q = V < V0

Q = V0

Q = V > V0

Figure 14.2 Various level curves Q(s , t) = V .

intersection is a parabola and is the graph of F(s) = Q(s , 1 − s) for s ∈ [0, 1]. Now
the problem has been reduced by one dimension to minimizing a function F(s) for
s ∈ [0, 1]. The minimum of F(s) occurs either at an interior point of [0, 1], in which
case F ′(s) = 0 at that point, or at an endpoint s = 0 or s = 1. Figure 14.2 shows the
case when the minimum occurs at an interior point of the edge. At that point the
ellipse is tangent to the line s + t = 1. In the endpoint cases, the ellipse may just touch
one of the vertices of D, but not necessarily tangentially.

To distinguish between the interior point and endpoint cases, the same partition-
ing idea applies in the 1D case. The interval [0, 1] partitions the real line into three
intervals, s < 0, s ∈ [0, 1], and s > 1. Let F ′(ŝ) = 0. If ŝ < 0, then F(s) is an increas-
ing function for s ∈ [0, 1]. The minimum restricted to [0, 1] must occur at s = 0, in
which case Q attains its minimum at (s , t) = (0, 1). If ŝ > 1, then F(s) is a decreas-
ing function for s ∈ [0, 1]. The minimum for F occurs at s = 1 and the minimum for
Q occurs at (s , t) = (1, 0). Otherwise, ŝ ∈ [0, 1], F attains its minimum at ŝ, and Q

attains its minimum at (s , t) = (ŝ , 1 − ŝ).
The occurrence of (s̄ , t̄ ) in region 3 or 5 is handled in the same way as when the

global minimum is in region 0. If (s̄ , t̄ ) is in region 3, then the minimum occurs at
(0, t0) for some t0 ∈ [0, 1]. If (s̄ , t̄ ) is in region 5, then the minimum occurs at (s0, 0)
for some s0 ∈ [0, 1]. Determining if the first contact point is at an interior or endpoint
of the appropriate interval is handled the same as discussed earlier.

If (s̄ , t̄ ) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s + t = 1 or edge s = 0. Because the global
minimum occurs in region 2, the negative of the gradient at the corner (0, 1) cannot
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point inside D. If ∇Q = (Qs , Qt), where Qs and Qt are the partial derivatives of Q,
it must be that (0, −1) . ∇Q(0, 1) and (1, −1) . ∇Q(0, 1) cannot both be negative.
The two vectors (0, −1) and (1, −1) are directions for the edges s = 0 and s + t = 1,
respectively. The choice of edge s + t = 1 or s = 0 can be made based on the signs
of (0, −1) . ∇Q(0, 1) and (1, −1) . ∇Q(0, 1). The same type of argument applies in
region 6. In region 4, the two quantities whose signs determine which edge contains
the minimum are (1, 0) . ∇Q(0, 0) and (0, 1) . ∇(0, 0).

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed, and in some
cases no division is needed. Define δ = a00a11 − a2

01. In the theoretical development,
s̄ = (a01b1 − a11b0)/δ and t̄ = (a01b0 − a00b1)/δ were computed so that ∇Q(s̄ , t̄ ) =
(0, 0). The location of the global minimum is then tested to see if it is in the triangle
domain D. If so, then the information to compute the minimum distance is known.
If not, then the boundary of D must be tested. To defer the division by δ, the code
instead computes s̄ = a01b1 − a11b0 and t̄ = a01b0 − a00b1 and tests for containment
in a scaled domain, s ∈ [0, δ], t ∈ [0, δ], and s + t ≤ δ. If in that set, the divisions are
performed. If not, the boundary of the unit square is tested. The general outline of
the conditions for determining which region contains (s̄ , t̄ ) is

det = a00 * a11 - a01 * a01;
s = a01 * b1 - a11 * b0;
t = a01 * b0 - a00 * b1;
if (s + t <= det)
{

if (s < 0) { if (t < 0) { region 4 } else { region 3 } }
else if (t < 0) { region 5 }
else { region 0 }

}
else
{

if (s < 0) { region 2 }
else if (t < 0) { region 6 }
else { region 1 }

}

The block of code for handling region 0 is

invDet = 1/det;
s *= invDet;
t *= invDet;

and requires a single division.
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The block of code for region 1 is

// F(s) = Q(s,1 - s)
// = (a00 - 2 * a01 + a11) * s^2 - 2 * (a11 - a01 + b1 - b0) * s
// + (a11 + 2 * b1 + c)
// F′(s)/2 = (a00 - 2 * a01 + a11) * s + (a01 - a11 + b0 - b1)
// F′(s) = 0 when s = (a11 + b1 - a01 - b0)/(a00 - 2 * a01 + a11)
// a00 - 2 * a01 + a11 = |E0 - E1|^2 > 0, so only the sign of
// a11 - a01 + b1 - b0 need be considered.

numer = a11 - a01 + b1 - b0;
if (numer <= 0)
{

s = 0;
}
else
{

denom = a00 - 2 * a01 + a11; // positive quantity
s = (numer >= denom ? 1 : numer/denom);

}
t = 1 - s;

The block of code for region 3 is given next. The block of code for region 5 is
similar.

// F(t) = Q(0,t) = a11 * t^2 + b1 * t + f
// F’(t)/2 = a11 * t + b1
// F’(t) = 0 when t = -b1/a11
s = 0;
t = (b1 >= 0 ? 0 : (-b1 >= a11 ? 1 : -b11/a11));

The block of code for region 2 follows. The blocks of code for regions 4 and 6 are
similar.

// Grad(Q) = 2 * (a00 * s + a01 * t + b0,a01 * s + a11 * t + b1)
// Grad(Q)(0,1) = (a01 + b0,a11 + b1)
// Dot((0,-1),Grad(Q)(0,1)) = -(a11 + b1)
// Dot((1,-1),Grad(Q)(0,1)) = (a01 + b0) - (a11 + b1)
// min on edge s + t = 1 if Dot((1,-1) * Grad(Q)(0,1)) > 0
// min on edge s = 0, otherwise

tmp0 = a01 + b0;
tmp1 = a11 + b1;
if (tmp1 > tmp0) // minimum on edge s + t = 1
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{
numer = tmp1 - tmp0;
denom = a00 - 2 * a01 + a11;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;

}
else // minimum on edge s = 0
{

s = 0;
t = (tmp1 <= 0 ? 1 : (b1 >= 0 ? 0 : -b1/a11));

}

14.4 Linear Component to Triangle

The problem is to compute the minimum distance between a linear component
P + tD and a triangle with vertices Q0, Q1, and Q2. Although it is possible to use
the method of constrained quadratic minimization, I will discuss something concep-
tually simpler.

14.4.1 Line to Triangle

There are quite a few approaches you can use to compute the distance between a
line and a triangle. All of them must distinguish between the cases of a parallel or
nonparallel line and triangle. Let E0 = Q1 − Q0 and E1 = Q2 − Q0. A unit-length
normal vector for the plane of the triangle is

N = E0 × E1

|E0 × E1|
If N . D = 0, the line and the triangle are parallel. When using floating-point arith-
metic, you will want to threshold the value, say, |N . D| ≤ ε for a small tolerance ε.

If the line and triangle are not parallel, the intersection point of the line and the
plane of the triangle is a solution to

P + tD = Q0 + b1E1 + b2E2

Define b0 = 1− b1 − b2. The bi are barycentric coordinates for the intersection point.
If the bi ∈ [0, 1], then the intersection point must be inside the triangle, and the
distance from the line to the triangle is zero. If any of the bi is not in [0, 1], then a
closest triangle point to the line is on an edge of the triangle. It is sufficient to compute
the distance between the line and each edge of the triangle, selecting the minimum of
the three values to be the distance between the line and the triangle.
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The barycentric coordinates may be computed as follows. Let U and V be vectors
so that U, V, and D are mutually perpendicular. Mathematically, it is not necessary
for these two vectors to be unit length, but for numerical robustness you might
construct them to be unit length. Moreover, if you plan on a lot of line-triangle
distance queries with the same line, you can compute the two vectors once and store
them for use by the queries. Subtracting Q0 from both sides of the equation defining
the intersection,

b1E1 + b2E2 = (P − Q0) + tD

Dot the equation with U and with V to obtain two linear equations in the two
unknowns b1 and b2. The solution is

[
b1
b2

]
=

[
U . E0 U . E1
V . E0 V . E1

]−1 [
U . (P − Q0)

V . (P − Q0)

]
, b0 = 1 − b1 − b2

Also dot the equation with N and solve for

t = −N . (P − Q0)

N . D

To avoid the division, dot the equation with D and solve for

t = b1D . E0 + b2D . E1 − D . (P − Q0)

The pseudocode for the algorithm is listed next. I assume that the vectors U and V
have already been computed and are stored with the Line data structure. The function
returns the squared distance to avoid the square root calculation. It also returns the
t-value for the point on the line and the barycentric coordinates bi for the point on
the triangle, both points contributing to the distance calculation.

float SquaredDistance (Line line, Triangle triangle,
float& tClosest, float bClosest[3])

{
const float epsilon = <small tolerance, say, 1e-06>;
Vector3 E0 = triangle.Q[1] - triangle.Q[0];
Vector3 E1 = triangle.Q[2] - triangle.Q[0];
Vector3 N = UnitCross(E0,E1); // normalized cross product
float NdD = Dot(N,line.D);
if (|NdD| > epsilon)
{

// The line and triangle are not parallel. Compute
// the intersection point.
Vector3 PmQ0 = line.P - triangle.Q[0];
float UdE0 = Dot(line.U,E0);
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float UdE1 = Dot(line.U,E1);
float UdPmQ0 = Dot(line.U,PmQ0);
float VdE0 = Dot(line.V,E0);
float VdE1 = Dot(line.V,E1);
float VdPmQ0 = Dot(line.V,PmQ0);
float invDet = 1/(UdE0 * VdE1 - UdE1 * VdE0);
float b1 = (VdE1 * UdPmQ0 - UdE1 * VdPmQ0) * invDet;
float b2 = (UdE0 * VdPmQ0 - VdE0 * UdPmQ0) * invDet;
float b0 = 1 - b1 - b2;
if (b0 >= 0 && b1 >= 0 && b2 >= 0)
{

// The intersection point is inside the triangle.
tClosest = -Dot(N,PmQ0)/NdD;
bClosest[0] = b0;
bClosest[1] = b1;
bClosest[2] = b2;
return 0;

}
}

// The line and triangle are not parallel and the line
// does not intersect the triangle. Or the line and
// triangle are parallel.
float sqrDistance = infinity;
Segment seg;
for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
{

seg.P = (triangle.Q[i0] + triangle.Q[i1])/2;
seg.D = (triangle.Q[i1] - triangle.Q[i0])/2;
seg.e = Normalize(seg.D)/2;
float tmpLT, tmpST;
float tmpSD = SquaredDistance(line,seg,tmpLT,tmpST);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
tClosest = tmpLT;
bClosest[i0] = (1 - tmpST/seg.e)/2;
bClosest[i1] = 1 - bClosest[i0];
bClosest[3 - i0 - i1] = 0;

}
}
return sqrDistance;

}
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The Normalize function normalizes its input to unit length and returns the length of
the input before normalization.

Just as U and V may be precomputed and stored with the line’s data structure, if
the line will be used in multiple distance queries, you may precompute the vectors E0,
E1, and N and store them with the triangle’s data structure if the triangle will be used
in multiple distance queries.

14.4.2 Ray to Triangle

This algorithm may be computed from scratch in a manner similar to that for line-
triangle distance, but instead I make use of the line-triangle distance function. The
line containing the ray is used in the line-triangle distance function call. One of the
return values is t , the parameter corresponding to the line point closest to the triangle.
If t ≥ 0, then this point is on the ray and it is, of course, the closest ray point to the
triangle. However, if t < 0, then it must be the case that the ray origin is closest to the
triangle, and thus you must call a function to compute the distance between a point
and a triangle. The pseudocode is

float SquaredDistance (Ray ray, Triangle triangle,
float& tClosest, float bClosest[3])

{
Line line = <convert ray to line>;
float sqrDistance = SquaredDistance(line,triangle,tClosest,bClosest);
if (tClosest < 0)
{

sqrDistance = SquaredDistance(ray.P,triangle,bClosest);
tClosest = 0;

}
return sqrDistance;

}

An advantage to sharing the line-triangle code in this manner is that if any numer-
ical issues arise due to round-off errors or due to the choice of the epsilon threshold,
they are all confined to a single function. This minimizes your maintenance of the
source code—you do not have to fix the numerical problems in multiple functions.
Another advantage of the encapsulation is that any performance improvements you
can make to the line-triangle function will automatically lead to performance im-
provements in the ray-triangle function.

14.4.3 Segment to Triangle

The segment-triangle distance function also makes use of the line-triangle distance
function, just as the ray-triangle distance function did. The pseudocode is
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float SquaredDistance (Segment segment, Triangle triangle,
float& tClosest, float bClosest[3])

{
Line line = <convert segment to line>;
float sqrDistance = SquaredDistance(line,triangle,tClosest,bClosest);
if (tClosest < segment.t0)
{

sqrDistance = SquaredDistance(segment.end0,triangle,bClosest);
tClosest = t0;

}
else if (tClosest > segment.t1)
{

sqrDistance = SquaredDistance(segment.end1,triangle,bClosest);
tClosest = t1;

}
return sqrDistance;

}

This implementation has the same advantages as mentioned for the ray-triangle
distance code.

14.5 Point to Rectangle

The distance algorithm for point to rectangle is nearly the same as the distance
algorithm for point to triangle. The rectangle is parameterized by X(s , t) = C +
sD0 + tD1 for |s| ≤ e0 and |t | ≤ e1. The squared-distance function is the quadratic
function

Q(s , t) = |X(s , t) − P|2 = s2 + t2 + 2b0s + 2b1t + c

where bi = Di
. (C − P) and c = |C − P|2. The parameter plane is partitioned into

nine regions by the lines s = −e0, s = e0, t = −e1, and t = e1. This partition is shown
in Figure 14.3.

There is, however, one main difference. If the triangle’s gradient of Q is zero in
regions 2, 4, or 6 of Figure 14.1, then the minimum of Q can occur on one of two
edges. For rectangles, this is not the case. If the rectangle’s gradient of Q is zero in
region 2, then the minimum must occur at the vertex. The same argument is made
for regions 4, 6, and 8. Because the edges of the rectangle meet at a right angle, the
level sets of the squared-distance function are in fact circles, not ellipses as was the
case for the triangle’s Q. The closest point on the rectangle to the specified point P
is obtained by projecting P onto the plane of the rectangle; call this point P0. If P0 is
inside the rectangle, then it is the closest point. If it is in regions 1, 3, 5, or 7, then
the closest point is obtained by projecting P onto the rectangle edge for that region.
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Figure 14.3 Partitioning of the st-plane by the rectangle domain.

Otherwise, P0 is in one of regions 2, 4, 6, or 8, and the closest point is the rectangle
vertex of that region.

The projection of P onto the plane of the rectangle is P0 = P + sD0 + tD1, where
s = D0

. (P − C) and t = D1
. (P − C). Determination of the region containing the

projection and the closest point to the projection requires a simple analysis of s and
t . The pseudocode is

float SquaredDistance (Vector3 P, Rectangle rectangle,
float rClosest[2])

{
Vector3 diff = rectangle.C - P;
float b0 = Dot(rectangle.D0,diff);
float b1 = Dot(rectangle.D1,diff);
float s = -b0, t = -b1;

sqrDistance = diff.SquaredLength();

if (s < -rectangle.e0)
{

s = -rectangle.e0;
}
else if (s > rectangle.e0)
{

s = rectangle.e0;
}
sqrDistance += s * (s + 2 * b0);

if (t < -rectangle.e1)
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{
t = -rectangle.e1;

}
else if (t > rectangle.e1)
{

t = rectangle.e1;
}
sqrDistance += t * (t + 2 * b1);

rClosest[0] = s;
rClosest[1] = t;
return sqrDistance;

}

14.6 Linear Component to Rectangle

The computation of distance from a linear component to a rectangle is very similar
to that of distance from a linear component to a triangle.

14.6.1 Line to Rectangle

An implementation must distinguish between the cases of parallel or nonparallel line
and rectangle. Let the rectangle have center C, directions D0 and D1, and extents e0
and e1. A unit-length normal vector for the plane of the rectangle is N = D0 × D1. Let
the line be P + tD. If N . D = 0, the line and the rectangle are parallel. When using
floating-point arithmetic, you will want to threshold the value, say, |N . D| ≤ ε for a
small tolerance ε.

If the line and rectangle are not parallel, the intersection point of the line and the
plane of the rectangle is a solution to

P + tD = C + s0D0 + s1D1

If |s0| ≤ e0 and |s1| ≤ e1, then the intersection point must be inside the rectangle, and
the distance from the line to the rectangle is zero. If the intersection point is outside
the rectangle, it is sufficient to compute the distance between the line and each edge
of the rectangle, selecting the minimum of the four values to be the distance between
the line and the rectangle.

Let U and V be vectors so that U, V, and D are mutually perpendicular. Subtract-
ing C from both sides of the equation defining the intersection:

s0D0 + s1D1 = (P − C) + tD
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Dot the equation with U and with V to obtain two linear equations in the two
unknowns s0 and s1. The solution is

[
s0
s1

]
=

[
U . D0 U . D1
V . D0 V . D1

]−1 [
U . (P − C)

V . (P − C)

]

Also dot the equation with N and solve for

t = −N . (P − C)

N . D

To avoid the division, dot the equation with D and solve for

t = s0D . D0 + s1D . D1 − D . (P − C)

The pseudocode for the algorithm is listed next, returning the squared distance,
the t value for the closest line point, and the s0 and s1 values for the closest rectangle
point.

float SquaredDistance (Line line, Rectangle rectangle,
float& tClosest, float sClosest[2])

{
const float epsilon = <small tolerance, say, 1e-06>;
Vector3 N = Cross(rectangle.D[0],rectangle.D[1]);
float NdD = Dot(N,line.D);
if (|NdD| > epsilon)
{

// The line and rectangle are not parallel. Compute
// the intersection point.
Vector3 PmC = line.P - rectangle.C;
float UdD0 = Dot(line.U,rectangle.D[0]);
float UdD1 = Dot(line.U,rectangle.D[1]);
float UdPmC = Dot(line.U,PmC);
float VdE0 = Dot(line.V,rectangle.D[0]);
float VdE1 = Dot(line.V,rectangle.D[1]);
float VdPmC = Dot(line.V,PmC);
float invDet = 1/(UdD0 * VdD1 - UdD1 * VdD0);
float s0 = (VdD1 * UdPmC - UdD1 * VdPmC) * invDet;
float s1 = (UdD0 * VdPmC - VdD0 * UdPmC) * invDet;
if (|s0| <= rectangle.e[0] && |s1| <= rectangle.e[1])
{

// The intersection point is inside the rectangle.
tClosest = -Dot(N,PmC)/NdD;
sClosest[0] = s0;
sClosest[1] = s1;
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return 0;
}

}

// The line and rectangle are not parallel and the line
// does not intersect the rectangle. Or the line and
// triangle are rectangle. The order of visitation is
// left edge, right edge, bottom edge, top edge.
float sqrDistance = infinity;
Segment seg;
for (i1 = 0; i1 < 2; i1++)
{

for (i0 = 0; i0 < 2; i0++)
{

seg.P = rectangle.C +
(2 * i0 - 1) * rectangle.e[i1] * rectangle.D[i1];

seg.D = rectangle.D[1-i1];
seg.e = rectangle.e[1-i1];
float tmpLT, tmpST;
float tmpSD = SquaredDistance(line,seg,tmpLT,tmpST);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
tClosest = tmpT;
float sb1 = -tmpST/seg.e;
sClosest[0] = rectangle.e[0] * ((1 - i1) * (2 * i0 - 1)

+ i1 * sb1);
sClosest[1] = rectangle.e[1] * ((1 - i0) * (2 * i1 - 1)

+ i0 * sb1);
}

}
}
return sqrDistance;

}

Just as U and V may be precomputed and stored with the line’s data structure if
the line will be used in multiple distance queries, you may precompute the normal
vector N and store it with the rectangle’s data structure if the rectangle will be used
in multiple distance queries.

14.6.2 Ray to Rectangle

This algorithm reuses the line-rectangle distance function. The line containing the
ray is used in the line-rectangle distance function call. One of the return values is t ,
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the parameter corresponding to the line point closest to the rectangle. If t ≥ 0, then
this point is on the ray and it is the closest ray point to the rectangle. However, if t < 0,
then it must be the case that the ray origin is closest to the rectangle, in which case
you must call a function to compute the distance between a point and a rectangle.
The pseudocode is

float SquaredDistance (Ray ray, Rectangle rectangle,
float& tClosest, float sClosest[2])

{
Line line = <convert ray to line>;
float sqrDistance = SquaredDistance(line,rectangle,tClosest,sClosest);
if (tClosest < 0)
{

sqrDistance = SquaredDistance(ray.P,rectangle,sClosest);
tClosest = 0;

}
return sqrDistance;

}

An advantage to sharing the line-rectangle code in this manner is that if any nu-
merical issues arise due to round-off errors or due to the choice of the epsilon thresh-
old, they are all confined to a single function. This minimizes your maintenance of
the source code—you do not have to fix the numerical problems in multiple func-
tions. Another advantage of the encapsulation is that any performance improvements
you can make to the line-rectangle function will automatically lead to performance
improvements in the ray-rectangle function.

14.6.3 Segment to Rectangle

The segment-rectangle distance function also makes use of the line-rectangle distance
function, just as the ray-rectangle distance function did. The line containing the
segment is used in the line-rectiangle distance function call. To allow for your favorite
choice of segment representation, suppose that the segment is P + tD with t ∈ [t0, t1].
The return value t from the line-rectangle function call is compared to the segment
t-interval. If t ∈ [t0, t1], then the point is on the segment and it is the closest segment
point to the rectangle. However, if t �∈ [t0, t1], then it must be the case that one of the
segment endpoints is closest to the rectangle, and thus you must call a function to
compute the distance between a point and a rectangle. The pseudocode is

float SquaredDistance (Segment segment, Rectangle rectangle,
float& tClosest, float sClosest[2])

{
Line line = <convert segment to line>;
float sqrDistance = SquaredDistance(line,rectangle,tClosest,sClosest);
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if (tClosest < segment.t0)
{

sqrDistance = SquaredDistance(segment.end0,rectangle,sClosest);
tClosest = t0;

}
else if (tClosest > segment.t1)
{

sqrDistance = SquaredDistance(segment.end1,rectangle,sClosest);
tClosest = t1;

}
}

This implementation has the same advantages as mentioned for the ray-rectangle
distance code.

14.7 Triangle or Rectangle to Triangle or
Rectangle

Although it is possible to solve the constrained quadratic minimization for two ob-
jects, each of which is a triangle or a rectangle, an implementation is very tedious
because the quadratic function depends on four parameters, two per object. The do-
main of the function is the 4D space. This space is partitioned into 49 regions by two
triangles, 63 regions by a triangle and a rectangle, and 81 regions by two rectangles.
The number of conditional blocks in an implementation is equal to the number of
regions in the partition.

A simpler implementation is based on the observation that one of the two closest
points on two objects can be chosen to be an edge point. The algorithm to compute
the distance between objects computes the distances between the edges of one object
to the other object, and vice versa. The minimum of these distances is the object-
object distance. The pseudocode for triangle-triangle distance is listed next.

float SquaredDistance (Triangle tri0, Triangle tri1,
float bClosest0[3], float bClosest1[3])

{
// Compare edges of triangle0 to the interior of triangle1.
float sqrDistance = infinity;
float tmpSD, tmpT, tmpB[3];
Segment seg;
int i0, i1;
for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
{

seg.P = (tri0.P[i0] + tri0.P[i1])/2;
seg.D = tri0.P[i1] - tri0.P[i0];
seg.e = Normalize(seg.D)/2;
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tmpSD = SquaredDistance(seg,tri1,tmpT,tmpB);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
bClosest0[i0] = (1 - tmpT/seg.e)/2;
bClosest0[i1] = 1 - bClosest0[i0];
bClosest0[3 - i0 - i1] = 0;
bClosest1[0] = tmpB[0];
bClosest1[1] = tmpB[1];
bClosest1[2] = tmpB[2];

}
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}

// Compare edges of triangle1 to the interior of triangle0.
for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
{

seg.P = (tri1.P[i0] + tri1.P[i1])/2;
seg.D = tri1.P[i1] - tri1.P[i0];
seg.e = Normalize(seg.D)/2;
tmpSD = SquaredDistance(seg,tri0,tmpT,tmpB);
if (tmpSD < fSqrDist)
{

fSqrDist = fSqrDistTmp;
bClosest1[i0] = (1 - tmpT/seg.e)/2;
bClosest1[i1] = 1 - bClosest1[i0];
bClosest1[3 - i0 - i1] = 0;
bClosest0[0] = tmpB[0];
bClosest0[1] = tmpB[1];
bClosest0[2] = tmpB[2];

}
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}

return sqrDistance;
}

The Normalize function makes the vector unit length and returns the length of the
original vector.
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The triangle-rectangle and rectangle-rectangle squared-distance functions are
similarly implemented. The array of closest values for the rectangle are computed
using the same expressions shown in the line-rectangle pseudocode.

14.8 Point to Oriented Box

The squared-distance algorithm treats the box as a solid. Any point inside the box
has distance zero from the box. Let the box have center C, orthonormal axes Ui,
and extents ei for 0 ≤ i ≤ 2. Let the point be written as P = C + s0U0 + s1U1 + s2U2.
Solving for the coefficients yields si = Ui

. (P − C) for all i. Depending on the values
of (s0, s1, s2) relative to the parameter domain [−e0, e0]× [−e1, e1]× [−e2, e2], the
closest point is either P itself, a face point, an edge point, or a vertex. The pseudocode
is

float SquaredDistance (Vector3 P, Box box, float bClosest[3])
{

Vector3 diff = P - box.C;
float sqrDistance = 0, delta;
for (i = 0; i < 3; i++)
{

bClosest[i] = Dot(box.axis[i],diff);
if (bClosest[i] < -box.e[i])
{

delta = bClosest[i] + box.e[i];
sqrDistance += delta * delta;
bClosest[i] = -box.e[i];

}
else if (bClosest[i] > box.e[i])
{

delta = bClosest[i] - box.e[i];
sqrDistance += delta * delta;
bClosest[i] = box.e[i];

}
}
return sqrDistance;

}

14.9 Linear Component to Oriented Box

The distance algorithm may be set up as a constrained quadratic minimization. The
line has one parameter and the box has three parameters, so the squared-distance
function has four parameters.
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14.9.1 Line to Oriented Box

A simple method for computing the distance between a line and an oriented box is to
iterate over the six faces of the box and compute the distance from the line to those
faces. If the line intersects a face, the distance is zero. The pseudocode is

float SquaredDistance (Line line, Box box, float& lClosest,
float bClosest[3])

{
float sqrDistance = infinity;
float tmpSD, tmpLC, tmpFC[2];
Rectangle face;

// Process the box face at -e0.
face.C = box.C - box.e[0] * box.axis[0];
face.axis[0] = box.axis[1];
face.axis[1] = box.axis[2];
face.e[0] = box.e[1];
face.e[1] = box.e[2];
tmpSD = SquaredDistance(line,face,tmpLC,tmpFC);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
lClosest = tmpLC;
bClosest[0] = -box.e[0];
bClosest[1] = tmpFC[0];
bClosest[2] = tmpFC[1];
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}

// Process the box face at +e0.
// Process the box face at -e1.
// Process the box face at +e1.
// Process the box face at -e2.
// Process the box face at +e2.

return sqrDistance;
}

Exercise
14.1

Implement the five unfinished cases in the pseudocode for computing the squared
distance between a line and an oriented box.
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Figure 14.4 Projections of the oriented box onto a plane perpendicular to E. (a) E = (∗, 0, 0)
has two zeros. (b) E = (0, ∗, ∗) has one zero. (c) E has no zeros. In all cases, the line
projects to a point.

The iteration over the faces is relatively inefficient, doing more work than is
necessary to find a closest point. An alternative is provided here, but involves a more
sophisticated implementation.

The line is parameterized by P + tD for any real number t . The box is parameter-
ized by C + s0D0 + s1D1 + s2D2 for |si| ≤ ei for all i. The line is first transformed to
the coordinate system of the box, say, Q + tE, where

Q = (D0
. (P − C), D1

. (P − C), D2
. (P − C)), E = (D0

. D, D1
. D, D2

. D)

The vector E is necessarily unit length. Three cases are of interest based on the number
of zero components of E. Figure 14.4 shows projections of the oriented box onto a
plane perpendicular to E.

In Figure 14.4 (a), the oriented box projects to a rectangle. The plane of the
projection is spanned by D1 and D2. The other vector D0 is either out of, or into,
the plane of the page. The projected box has one visible face. In Figure 14.4 (b), the
oriented box also projects to a rectangle, but it has two visible faces. The vector D0
is either to the right or to the left on the page. In Figure 14.4 (c), the oriented box
projects to a hexagon with three pairs of parallel edges. Three faces are visible. In
all cases, the projections imply a partitioning of the plane into regions, which are
called Voronoi regions. Each region has a feature of the box to which the region points
are closest. The features are classified as the interior of the projection, an edge of
the projection, or a vertex of the projection. In (a), (b), and (c) of the figure, three
projected lines are shown.

A line that projects to a point QI is an interior point. The line intersects the
oriented box, so the distance is zero. The implementation includes a point-in-convex-
polygon query to determine if the projected line is of this type.

A line that projects to a point QE is closest to an edge of the projection. The
projection point is outside the polygon. The implementation determines this with its
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point-in-convex-polygon query. Additional logic is included to select which edge QE

is closest to. The final step is to compute the (squared) distance from the line to that
edge. Previously in this chapter we have covered the topic of line-segment distance
calculations.

A line that projects to a point QC is closest to a corner of the projection. The
projection point is outside the polygon. The implementation determines this with its
point-in-convex-polygon query. Additional logic is included to select which corner
QC is closest to. The final step is to compute the (squared) distance from the line to
that corner. Previously in this chapter we have covered the topic of point-line distance
calculations.

Although the illustrations in Figure 14.4 make it appear as if the implementation
should be simple, the details are substantial. The CD-ROM does have an implemen-
tation of this algorithm, but the code is long enough that I do not want to waste pages
with a printout.

14.9.2 Ray to Oriented Box

Once again we rely on reusing code so that numerical problems are restricted to
small pieces of code and to minimize the amount of code maintenance. The line-
box squared-distance function is called and the return line parameter is clamped to
[0, ∞). The pseudocode for the ray-box squared-distance function is

float SquaredDistance (Ray ray, Box box, float& rClosest,
float bClosest[3])

{
Line line = <convert ray to line>;
float sqrDistance = SquaredDistance(line,box,rClosest,bClosest);
if (rClosest < 0)
{

rClosest = 0;
sqrDistance = SquaredDistance(ray.P,box,bClosest);

}
return sqrDistance;

}

14.9.3 Segment to Oriented Box

And yet again we rely on reusing code so that numerical problems are restricted to
small pieces of code and to minimize the amount of code maintenance. The line-
box squared-distance function is called and the return line parameter is clamped to
[−e, e]. The pseudocode for the segment-box squared-distance function is
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float SquaredDistance (Segment segment, Box box, float& sClosest,
float bClosest[3])

{
Line line = <convert segment to line>;
float sqrDistance = SquaredDistance(line,box,sClosest,bClosest);
Vector3 end;
if (sClosest < -segment.e)
{

sClosest = -segment.e;
end = segment.P - segment.e * segment.D;
sqrDistance = SquaredDistance(end,box,bClosest);

}
else if (sClosest > segment.e)
{

sClosest = segment.e;
end = segment.P + segment.e * segment.D;
sqrDistance = SquaredDistance(end,box,bClosest);

}
return sqrDistance;

}

14.10 Triangle to Oriented Box

As a constrained quadratic minimization, the squared-distance function has five pa-
rameters, two for the triangle and three for the box. The number of cases involved in
the partitioning 5D space by the domains of the triangle parameters and box parame-
ters is enormous. A simpler approach is to compute distances from the triangle to the
box faces, choosing the smallest distance as the triangle-box distance. However, it is
possible that this distance is positive, but the triangle is contained in the box. To trap
this case, we check if any vertex is inside the box. If it is, then the distance is zero. Now
it is possible that all vertices are outside the box, but a portion of the triangle is inside
the box. The distance is zero in this case, but the triangle-face tests will determine
this. The pseudocode is

float SquaredDistance (Triangle triangle, Box box,
float tClosest[2], float bClosest[3])

{
for (i = 0; i < 3; i++)
{

if (PointInBox(triangle.P[i]))
{

tClosest[0] = i * (2 - i);
tClosest[1] = i * (i - 1)/2;
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Vector3f diff = triangle.P[i] - box.C;
for (j = 0; j < 3; j++)
{

bClosest[j] = Dot(box.axis[j],diff);
}
return 0;

}
}

float sqrDistance = infinity;
float tmpSD, tmpTC[2], tmpFC[2];
Rectangle face;

// Process the box face at -e0.
face.C = box.C - box.e[0] * box.axis[0];
face.axis[0] = box.axis[1];
face.axis[1] = box.axis[2];
face.e[0] = box.e[1];
face.e[1] = box.e[2];
tmpSD = SquaredDistance(triangle,face,tmpTC,tmpFC);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
tClosest[0] = tmpTC[0];
tClosest[1] = tmpTC[1];
bClosest[0] = -box.e[0];
bClosest[1] = tmpFC[0];
bClosest[2] = tmpFC[1];
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}

// Process the box face at +e0.
// Process the box face at -e1.
// Process the box face at +e1.
// Process the box face at -e2.
// Process the box face at +e2.

return sqrDistance;
}

Exercise
14.2

Implement the five unfinished cases in the pseudocode for computing the squared
distance between a triangle and an oriented box.
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14.11 Rectangle to Oriented Box

The algorithm for computing the squared distance between a rectangle and an ori-
ented box may be chosen similarly to that for a triangle and an oriented box. The
pseudocode is

float SquaredDistance (Rectangle rectangle, Box box,
float rClosest[2], float bClosest[3])

{
for (i1 = 0; i1 < 2; i1++)
{

float param1 = (2 * i1 - 1) * rectangle.e[1];
Vector3 delta1 = param1 * rectangle.axis[1];
for (i0 = 0; i0 < 2; i0++)
{

float param0 = (2 * i0 - 1) * rectangle.e[0];
Vector3 delta0 = param0 * rectangle.axis[0];
Vector3 corner = rectangle.C + delta0 + delta1;
if (PointInBox(corner))
{

tClosest[0] = param0;
tClosest[1] = param1;
Vector3f diff = corner - box.C;
for (j = 0; j < 3; j++)
{

bClosest[j] = Dot(box.axis[j],diff);
}
return 0;

}
}

}

float sqrDistance = infinity;
float tmpSD, tmpRC[2], tmpFC[2];
Rectangle face;

// Process the box face at -e0.
face.C = box.C - box.e[0] * box.axis[0];
face.axis[0] = box.axis[1];
face.axis[1] = box.axis[2];
face.e[0] = box.e[1];
face.e[1] = box.e[2];
tmpSD = SquaredDistance(rectangle,face,tmpRC,tmpFC);
if (tmpSD < sqrDistance)
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{
sqrDistance = tmpSD;
tClosest[0] = tmpRC[0];
tClosest[1] = tmpRC[1];
bClosest[0] = -box.e[0];
bClosest[1] = tmpFC[0];
bClosest[2] = tmpFC[1];
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}

// Process the box face at +e0.
// Process the box face at -e1.
// Process the box face at +e1.
// Process the box face at -e2.
// Process the box face at +e2.

return sqrDistance;
}

Exercise
14.3

Implement the five unfinished cases in the pseudocode for computing the squared
distance between a rectangle and an oriented box.

14.12 Oriented Box to Oriented Box

Quite a few options exist for computing the distance between two oriented boxes.
The trade-off is mainly performance versus ease of implementation. The simplest al-
gorithm to implement makes use of the rectangle-box distance queries. If any vertex
of one box is contained in the other box, the distance between boxes is zero; other-
wise, compute the distance from the six faces of one box to the other box and select
the minimum value (which is zero if the boxes overlap). The pseudocode is

float SquaredDistance (Box box0, Box box1, float b0Closest[3],
float b1Closest[3])

{
for each vertex P of box0 do
{

if PointInBox(P,box1)
{

set b0Closest values;
set b1Closest values;
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return 0;
}

}

float sqrDistance = infinity;
float tmpSD, tmpRC[2], tmpBC[3];
Rectangle face;
for each face of box0 do
{

float tmpSD = SquaredDistance(face,box1,tmpRC,tmpBC);
if (tmpSD < sqrDistance)
{

sqrDistance = tmpSD;
set b0Closest from tmpRC values and a box0 extent;
set b1Closest to tmpBC1 values;
if (sqrDistance is effectively zero)
{

return sqrDistance;
}

}
}
return sqrDistance;

}

The point-in-box queries are relatively inexpensive, but the rectangle-box queries
are not. Also, the point-in-box queries are not an exact test for overlap. If all the
vertices of box0 are outside box1, it is possible that the two boxes overlap. To improve
the performance, the point-in-box queries may be replaced by a query that uses
the method of separating axes. See Section 8.1 for a discussion of this method. The
separation query is easy enough to implement, but the complication is that the format
of the SquaredDistance functions requires you to compute the box coordinates for
a closest point. The method of separating axes does not immediately reveal such a
point. The point-in-box queries are replaced by the pseudocode

float SquaredDistance (Box box0, Box box1, float b0Closest[3],
float b1Closest[3])

{
if Separated(box0,box1) then // easy to implement
{

set b0Closest values; // hard to implement
set b1Closest values; // hard to implement
return 0;

}
// ... remainder of previous pseudocode ...

}
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Now if your applications do not need to know the values b0Closest and b1Closest,
then the variation provided here should perform better on average than the previous
pseudocode.

Yet another possibility, one that has very good performance but only in exchange
for an implementation that is tedious to create and difficult to make robust, is the
GJK algorithm [GJK88, GF90, Cam97, vdB99]. The details are significant and not
something I want to focus on in this book. A book that does cover all the details and
has a source code implementation is [vdB03]. The algorithm is also covered in some
detail in [Eri04], which also has the best coverage of collision detection algorithms of
any book I have read.

14.13 Miscellaneous

A library of distance calculation methods can be arbitrarily complex. There are many
other cases that can arise in an application. These cases might require distance cal-
culations not specifically derived here: parallelogram to point, segment, rectangle,
or parallelogram; and parallelepiped to point, segment, rectangle, parallelogram, or
parallelepiped. Many of these may be directly implemented using the ideas discussed
in this chapter. Other cases might involve distance from point to quadric surface;
from point to circle (in 3D) or disk; from point to cylinder; from line segment to
these same quadratic-style objects; ad infinitum. At any rate, such a library is never
complete and will continually evolve.

14.13.1 Point to Ellipse

We only need to solve this problem when the ellipse is axis aligned. Oriented ellipses
can be rotated and translated to an axis-aligned ellipse centered at the origin and the
distance can be measured in that system. The basic idea can be found in an article by
John Hart (on computing distance, but between point and ellipsoid) in [Hec94].

Let (u, v) be the point in question. Let the ellipse be (x/a)2 + (y/b)2 = 1. The
closest point (x , y) on the ellipse to (u, v) must occur so that (x − u, y − v) is
normal to the ellipse. Since an ellipse normal is ∇((x/a)2 + (y/b)2) = (x/a2, y/b2),
the orthogonality condition implies that u − x = tx/a2 and v − y = ty/b2 for some
t . Solving yields x = a2u/(t + a2) and y = b2v/(t + b2). Replacing in the ellipse
equation yields

(
au

t + a2

)2

+
(

bv

t + b2

)2

= 1

Multiplying through by the denominators yields the quartic polynomial

F(t) = (t + a2)2(t + b2)2 − a2u2(t + b2)2 − b2v2(t + a2)2 = 0
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The largest root t̄ of the polynomial corresponds to the closest point on the ellipse.
A closed-form solution for the roots of a quartic polynomial exists and can be

used to compute the largest root. This root also can be found by a Newton’s iteration
scheme. If (u, v) is inside the ellipse, then t0 = 0 is a good initial guess for the
iteration. If (u, v) is outside the ellipse, then t0 = max{a , b}√u2 + v2 is a good initial
guess. The iteration itself is

ti+1 = ti − F(ti)/F
′(ti), i ≥ 0

Some numerical issues need to be addressed. For (u, v) near the coordinate axes,
the algorithm is ill-conditioned because of the divisions of values near zero in the
equations relating (x , y) to (u, v). Those cases need to be handled separately. Also,
if a and b are large, then F(ti) can be quite large. In these cases consider uniformly
scaling the data to O(1) as floating-point numbers first, computing the distance, then
rescaling to get the distance in the original coordinates.

14.13.2 Point to Ellipsoid

The method of measuring distance is a straightforward generalization of that for an
ellipse. Let (u, v , w) be the point in question. Let the ellipse be (x/a)2 + (y/b)2 +
(z/c)2 = 1. The closest point (x , y , z) on the ellipsoid to (u, v , w) must occur so
that (x − u, y − v , z − w) is normal to the ellipsoid. Since an ellipsoid normal is
∇((x/a)2 + (y/b)2 + (z/c)2) = (x/a2, y/b2, z/c2), the orthogonality condition im-
plies that u − x = tx/a2, v − y = ty/b2, and w − z = tz/c2 for some t . Solving yields
x = a2u/(t + a2), y = b2v/(t + b2), and z = c2w/(t + c2). Replacing in the ellipsoid
equation yields

(
au

t + a2

)2

+
(

bv

t + b2

)2

+
(

cw

t + c2

)2

= 1

Multiplying through by the denominators yields the sixth-degree polynomial

F(t) = (t + a2)2(t + b2)2(t + c2)2 − a2u2(t + b2)2(t + c2)2

− b2v2(t + a2)2(t + c2)2 − c2w2(t + a2)2(t + b2)2 = 0

The largest root t̄ of the polynomial corresponds to the closest point on the ellipse.
The largest root can be found by a Newton’s iteration scheme. If (u, v , w) is

inside the ellipse, then t0 = 0 is a good initial guess for the iteration. If (u, v , w) is
outside the ellipse, then t0 = max{a , b, c}√u2 + v2 + w2 is a good initial guess. The
iteration method is the same as before, ti+1 = ti − F(ti)/F

′(ti) for i ≥ 0. The same
numerical issues that occur in the ellipse problem need to be addressed for ellipsoids.
For (u, v , w) near the coordinate planes, the algorithm is ill-conditioned because
of the divisions of values near zero in the equations relating (x , y , z) to (u, v , w).
These cases can be handled separately. Also, if a, b, and c are large, F(ti) can be
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quite large. In these cases consider uniformly scaling the data to O(1) as floating-
point numbers first, computing the distance, then rescaling to get the distance in the
original coordinates.

14.13.3 Point to Quadratic Curve or to Quadric Surface

This subsection describes an algorithm for computing the distance from a point in 2D
to a general quadratic curve defined implicitly by a second-degree quadratic equation
in two variables, or from a point in 3D to a general quadric surface defined implicitly
by a second-degree quadratic equation in three variables. I will use the term object to
refer to either a curve (in 2D) or a surface (in 3D).

The general quadratic equation is

Q(X) = XTAX + bTX + c = 0

where A is a symmetric N × N matrix (N = 2 or N = 3, not necessarily invertible,
for example, in the case of a cylinder or paraboloid), b is an N × 1 vector, and c is a
scalar. The parameter is X, an N × 1 vector. Given the surface Q(X) = 0 and a point
Y, find the distance from Y to the object and compute a closest point X.

Geometrically, the closest point X on the object to Y must satisfy the condition
that Y − X is normal to the object. Since the gradient ∇Q(X) is normal to the object,
the algebraic condition for the closest point is

Y − X = t∇Q(X) = t (2AX + b)

for some scalar t . Therefore,

X = (I + 2tA)−1(Y − tb)

where I is the identity matrix. You could replace this equation for X into the general
quadratic equation to obtain a polynomial in t of at most sixth degree.

Instead of immediately replacing X in the quadratic equation, the problem can be
reduced to something simpler to code. Factor A using an eigendecomposition to ob-
tain A = RDRT, where R is an orthonormal matrix whose columns are eigenvectors
of A and where D is a diagonal matrix whose diagonal entries are the eigenvalues of
A. Then

X = (I + 2tA)−1(Y − tb)

= (RRT + 2tRDRT)−1(Y − tb)

= [R(I + 2tD)RT]−1(Y − tb)

= R(I + 2tD)−1RT(Y − tb)

= R(I + 2tD)−1(ααα − tβββ)
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where the last equation defines ααα and βββ. Replacing in the quadratic equation and
simplifying yields

0 = (ααα − tβββ)T(I + 2tD)−1D(I + 2tD)−1(ααα − tβββ) + βββT(I + 2tD)−1(ααα − tβββ) + c

The inverse diagonal matrix is

(I + 2tD)−1 = Diag{1/(1 + 2td0), 1/(1 + 2td1)}
for 2D or

(I + 2tD)−1 = Diag{1/(1 + 2td0), 1/(1 + 2td1), 1/(1 + 2td2)}
for 3D. Multiplying through by ((1 + 2td0)(1 + 2td1))

2 in 2D leads to a polynomial
of at most fourth degree. Multiplying through by ((1 + 2td0)(1 + 2td1)(1 + 2td2))

2

in 3D leads to a polynomial equation of at most sixth degree.
The roots of the polynomial are computed and X = (I + 2tA)−1(Y − tb) is com-

puted for each root t . The distances between X and Y are computed and the mini-
mum distance is selected from them.

14.13.4 Point to Circle in 3D

A circle in 3D is represented by a center C, a radius R, and a plane containing the
circle, N . (X − C) = 0, where N is a unit-length normal to the plane. If U and V are
also unit-length vectors so that U, V, and N form a right-handed, orthonormal set,
then the circle is parameterized as

X = C + R(cos(θ)U + sin(θ)V) = C + RW(θ)

for angles θ ∈ [0, 2π). The last equation defines the vector W(θ). Note that |X − C| =
R, so the X-values are all equidistant from C. Moreover, N . (X − C) = 0 since U and
V are perpendicular to N, so the X-values lie in the plane.

For each angle θ ∈ [0, 2π), the squared distance from a specified point P to the
corresponding circle point is

F(θ) = |C + RW(θ) − P|2 = R2 + |C − P|2 + 2R(C − P) . W

The problem is to minimize F(θ) by finding θ0 such that F(θ0) ≤ F(θ) for all θ ∈
[0, 2π). Since F is a periodic and differentiable function, the minimum must occur
when F ′(θ) = 0. Also, note that (C − P) . W should be negative and as large in
magnitude as possible to reduce the right-hand side in the definition of F . The
derivative is

F ′(θ) = 2R(C − P) . W′(θ)
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where W . W′ = 0 since W . W = 1 for all θ . The vector W′ is unit length since
W′′ = −W and 0 = W . W′ implies

0 = W . W′′ + W′ . W′ = −1 + W′ . W′

Finally, W′ is perpendicular to N since N . W = 0 implies 0 = N . W′. All conditions
imply that W is parallel to the projection of P − C onto the plane and points in the
same direction.

Let Q be the projection of P onto the plane. Then

Q − C = P − C − (N . (P − C)) N

The vector W(θ) must be the normalized projection (Q − C)/|Q − C|. The closest
point on the circle to P is

X = C + R
Q − C

|Q − C|
assuming that Q �= C. The distance from point to circle is then |P − X|.

If the projection of P is exactly the circle center C, then all points on the circle are
equidistant from C. The distance from point to circle is the length of the hypotenuse
of any right triangle whose vertices are C, P, and any circle point. The lengths of the
adjacent and opposite triangle sides are R and |P − C|, so the distance from point to
circle is

√
R2 + |P − C|2.

14.13.5 Circle to Circle in 3D

The previous subsection described the formulation for a circle in three dimensions.
Using this formulation, let the two circles be C0 + R0W0(θ) for θ ∈ [0, 2π) and
C1 + R1W1(φ) for φ ∈ [0, 2π). The squared distance between any two points on the
circles is

F(θ , φ) = |C1 − C0 + R1W1 − R0W0|2

= |D|2 + R2
0 + R2

1 + 2R1D . W1 − 2R0R1W0
. W1 − 2R0D . W0

where D = C1 − C0. Since F is doubly periodic and continuously differentiable, its
global minimum must occur when ∇F = (0, 0). The partial derivatives are

∂F

∂θ
= −2R0D . W′

0 − 2R0R1W′
0

. W1

and

∂F

∂φ
= 2R1D . W′

1 − 2R0R1W0
. W′

1
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Define c0 = cos(θ), s0 = sin(θ), c1 = cos(φ), and s1 = sin(φ). Then W0 = c0U0 +
s0V0, W1 = c1U1 + s1V1, W′

0 = −s0U0 + c0V0, and W′
1 = −s1U1 + c1V1. Setting the

partial derivatives equal to zero leads to

0 = s0(a0 + a1c1 + a2s1) + c0(a3 + a4c1 + a5s1)

0 = s1(b0 + b1c0 + b2s0) + c1(b3 + b4c0 + b5s0)

where

a0 = −D . U0 b0 = −D . U1

a1 = −R1U0
. U1 b1 = R0U0

. U1

a2 = −R1U0
. V1 b2 = R0U1

. V0

a3 = D . V0 b3 = D . V1

a4 = R1U1
. V0 b4 = −R0U0

. V1

a5 = R1V0
. V1 b5 = −R0V0

. V1

In matrix form,

[
m00 m01
m10 m11

] [
s0
c0

]
=

[
a0 + a1c1 + a2s1 a3 + a4c1 + a5s1

b2s1 + b5c1 b1s1 + b4c1

] [
s0
c0

]

=
[

0
−(b0s1 + b3c1)

]
=

[
0
λ

]

Let M denote the 2 × 2 matrix on the left-hand side of the equation. Multiplying
by the adjoint of M yields

det(M)

[
s0
c0

]
=

[
m11 −m01

−m10 m00

] [
0
λ

]
=

[ −m01λ

m00λ

]
(14.4)

Summing the squares of the vector components and using s2
0 + c2

0 = 1 yields

(
m00m11 − m01m10

)2 = λ2
(
m2

00 + m2
01

)

The preceding equation can be reduced to a polynomial of degree 8 whose roots
c1 ∈ [−1, 1] are the candidates to provide the global minimum of F . Formally com-
puting the determinant and using s2

1 = 1 − c2
1 leads to

m00m11 − m01m10 = p0(c1) + s1p1(c1)
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where p0(z) = ∑2
i=0 p0iz

i and p1(z) = ∑1
i=0 p1iz. The coefficients are

p00 = a2b1 − a5b2

p01 = a0b4 − a3b5

p02 = a5b2 − a2b1 + a1b4 − a4b5

p10 = a0b1 − a3b2

p11 = a1b1 − a5b5 + a2b4 − a4b2

Similarly,

m2
00 + m2

01 = q0(c1) + s1q1(c1)

where q0(z) = ∑2
i=0 q0iz

i and q1(z) = ∑1
i=0 q1iz. The coefficients are

q00 = a2
0 + a2

2 + a2
3 + a2

5

q01 = 2(a0a1 + a3a4)

q02 = a2
1 − a2

2 + a2
4 − a2

5

q10 = 2(a0a2 + a3a5)

q11 = 2(a1a2 + a4a5)

Finally,

λ2 = r0(c1) + s1r1(c1)

where r0(z) = ∑2
i=0 r0iz

i and r1(z) = ∑1
i=0 r1iz. The coefficients are

r00 = b2
0

r01 = 0

r02 = b2
3 − b2

0

r10 = 0

r11 = 2b0b3

Combining these yields

0 =
[
(p2

0 − r0q0) + (1 − c2
1)(p

2
1 − r1q1)

]
+ s1

[
2p0p1 − r0q1 − r1q0

]
= g0(c1) + s1g1(c1) (14.5)
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where g0(z) = ∑4
i=0 g0iz

i and g1(z) = ∑3
i=0 g1iz

i. The coefficients are

g00 = p2
00 + p2

10 − q00r00

g01 = 2(p00p01 + p10p11) − q01r00 − q10r11

g02 = p2
01 + 2p00p02 + p2

11 − p2
10 − q02r00 − q00r02 − q11r11

g03 = 2(p01p02 − p10p11) − q01r02 + q10r11

g04 = p2
02 − p2

11 − q02r02 + q11r11

g10 = 2p00p10 − q10r00

g11 = 2(p01p10 + p00p11) − q11r00 − q00r11

g12 = 2(p02p10 + p01p11) − q10r02 − q01r11

g13 = 2p02p11 − q11r02 − q02r11

The s1 term can be eliminated by solving g0 = −s1g1 and squaring to obtain

0 = g2
0 − (1 − c2

1)g
2
1 = h(c1)

where h(z) = ∑8
i=0 hiz

i. The coefficients are

h0 = g2
00 − g2

10

h1 = 2(g00g01 − g10g11)

h2 = g2
01 + g2

10 − g2
11 + 2(g00g02 − g10g12)

h3 = 2(g01g02 + g00g03 + g10g11 − g11g12 − g10g13)

h4 = g2
02 + g2

11 − g2
12 + 2(g01g03 + g00g04 + g10g12 − g11g13)

h5 = 2(g02g03 + g01g04 + g11g12 + g10g13 − g12g13)

h6 = g2
03 + g2

12 − g2
13 + 2(g02g04 + g11g13)

h7 = 2(g03g04 + g12g13)

h8 = g2
04 + g2

13

To find the minimum squared distance, all the real-valued roots of h(c1) = 0 are

computed. For each c1, compute s1 = ±
√

1 − c2
1 and choose either (or both) of these

that satisfies Equation (14.5). For each pair (c1, s1), solve for (c0, s0) in Equation
(14.4). The main numerical issue to deal with is how close to zero is det(M).



C h a p t e r15
Intersection
Methods

The distance methods of Chapter 14 may be used to detect intersections of ob-
jects. Of course, a distance of zero means the objects are intersecting. The dis-

tance functions compute a pair of closest points, but if two objects are overlapping,
the number of intersection points may be infinite. This chapter presents some com-
monly used intersection methods that are not based on distance. The first part is
dedicated to line-object intersections and the last part is dedicated to object-object
intersections. In all cases, objects are treated as solids. A planar component such as a
triangle or rectangle and a spatial component such as a sphere or box are defined to
be the set of boundary and interior points.

An intersection query is classified as a test-intersection query or a find-intersection
query. The test-intersection query cares only if the two objects intersect, not where.
The find-intersection query does involve computing the set of intersection (or a sub-
set of intersection, if this suffices for an application). In many cases, a test-intersection
query is less expensive to compute than a find-intersection query.

15.1 Linear Components and Convex Objects

The test-intersection and find-intersection queries for linear components and ob-
jects are all structured to return a Boolean value that is true if and only if there is
an intersection. The find-intersection query returns additional information about
the intersection set. Generally, this set can be arbitrarily complicated, but we restrict

681
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our attention to convex objects that are bounded; see the introduction to Chapter
8 and Figure 8.1. The convexity and boundedness of the object guarantee that the
intersection set of a line and the object is either the empty set, a single point, or a
line segment. We may use this fact to compute ray-object and segment-object inter-
sections by first computing the t-values for the line-object intersections, and then
refining them based on the t-interval constraints for the ray or segment. The find-
intersection queries involving linear components, say, P + tD, and convex objects
may therefore be structured to return an array of q values for t , where 0 ≤ q ≤ 2. If
q = 0, the intersection set is empty and the t array has no valid entries. If q = 1, the
set of intersection is a single point and the t array has the valid entry t[0]. If q = 2,
the set of intersection is a line segment and the t array has two valid entries t[0] and
t[1]. It is guaranteed that t[0]< t[1].

Abstractly, let the find-intersection queries have the prototypes

bool Find (Line line, Object object, int& quantity, float tvalue[2]);
bool Find (Ray ray, Object object, int& quantity, float tvalue[2]);
bool Find (Segment segment, Object object, int& quantity, float tvalue[2]);

All the mathematical analysis goes into the implementation for the line-object query.
The ray-object query is implemented as

bool Find (Ray ray, Object object, int& quantity, float tvalue[2])
{

Line line = <convert ray to line>;
Find(line,object,quantity,tvalue);

if (quantity == 2)
{

// Intersect the line-object interval [t0,t1] with [0,infinity).
if (tvalue[1] < 0)
{

quantity = 0;
}
else if (tvalue[1] > 0)
{

quantity = 2;
if (tvalue[0] < 0)
{

tvalue[0] = 0;
}

}
else
{

quantity = 1;
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tvalue[0] = 0;
}

}
else if (quantity == 1)
{

// Intersect the line-object parameter t0 with [0,infinity).
if (tvalue[0] < 0)
{

quantity = 0;
}

}

return quantity > 0;
}

The segment-object query is implemented as

bool Find (Segment segment, Object object, int& quantity, float tvalue[2])
{

Line line = <convert segment to line>;
Find(line,object,quantity,tvalue));

if (quantity == 2)
{

// Intersect the line-object interval [t0,t1] with [-e,e].
if (tvalue[0] > segment.e || tvalue[1] < -segment.e)
{

quantity = 0;
}
else if (tvalue[1] > -segment.e)
{

if (tvalue[0] < segment.e)
{

if (tvalue[0] < -segment.e)
{

tvalue[0] = -segment.e;
}

if (tvalue[1] > segment.e)
{

tvalue[1] = segment.e;
}

if (tvalue[0] < tvalue[1])
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{
quantity = 2;

}
else
{

quantity = 1;
}

}
else // tvalue[0] == segment.e
{

quantity = 1;
}

}
else // tvalue[1] == -segment.e
{

quantity = 1;
tvalue[0] = tvalue[1];

}
}
else if (quantity == 1)
{

// Intersect the line-object parameter t0 with [-e,e].
if (fabs(tvalue[0]) > segment.e)
{

quantity = 0;
}

}

return quantity > 0;
}

The next sections describe the various line-object intersection algorithms for the
purposes of the find-intersection queries. However, the test-intersection queries in
many cases can take advantage of the special nature of the linear component and
object, so these are also discussed.

15.2 Linear Component and Planar Component

The general strategy for computing intersections between a linear component and a
planar object is

Compute the intersection point (if any) of the linear component and plane.

Test if the intersection point is inside the object. This is a 2D problem.



15.2 Linear Component and Planar Component 685

For triangles or rectangles, the distance methods discussed in Sections 14.4 and
14.6 had subproblems that amounted to computing the intersection points with
the plane. These are essentially the idea of [Möl97]. The pseudocode needs only
slight modification. Moreover, it is usually the case that triangle or rectangle pa-
rameters are not needed at the point of intersection. For example, the line-triangle
find-intersection query is

bool Find (Line line, Triangle triangle, int& quantity, float tvalue[2])
{

const float epsilon = <small tolerance, say, 1e-06>;
Vector3 E0 = triangle.Q[1] - triangle.Q[0];
Vector3 E1 = triangle.Q[2] - triangle.Q[0];
Vector3 N = UnitCross(E0,E1); // normalized cross product
float NdD = Dot(N,line.D);
if (|NdD| > epsilon)
{

// The line and triangle are not parallel. Compute
// the intersection point.
Vector3 PmQ0 = line.P - triangle.Q[0];
float UdE0 = Dot(line.U,E0);
float UdE1 = Dot(line.U,E1);
float UdPmQ0 = Dot(line.U,PmQ0);
float VdE0 = Dot(line.V,E0);
float VdE1 = Dot(line.V,E1);
float VdPmQ0 = Dot(line.V,PmQ0);
float invDet = 1/(UdE0 * VdE1 - UdE1 * VdE0);
float b1 = (VdE1 * UdPmQ0 - UdE1 * VdPmQ0) * invDet;
float b2 = (UdE0 * VdPmQ0 - VdE0 * UdPmQ0) * invDet;
float b0 = 1 - b1 - b2;
if (b0 >= 0 && b1 >= 0 && b2 >= 0)
{

// The intersection point is inside the triangle.
tvalue[0] = -Dot(N,PmQ0)/NdD;
return true;

}
}

// What to do here?
return false;

}

If the line and triangle are parallel, the pseudocode reports that there is no inter-
section. This is correct when the line and triangle are not coplanar. However, it they
are coplanar, it is possible that the two objects intersect. In many 3D applications,
skipping the coplanar case is usually a safe thing to do. For example, if you were in
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the midst of a picking operation, grazing pick-rays are not of much interest. You tend
to pick an object by clicking on a pixel well inside the object. Another example is
firing a laser gun at an opponent’s character. Who is to say that a grazing laser strike
really hit the character? Simply require that the character must be struck firmly inside
his boundaries. That said, if you want to handle the grazing contact, then

Exercise
15.1

Modify the line-triangle intersection code to handle the case when the line and trian-
gle are coplanar.

Similar pseudocode may be extracted from the distance functions in Sections
14.4 and 14.6 for ray-triangle, segment-triangle, line-rectangle, ray-rectangle, and
segment-rectangle. You can also just rely on the generic code mentioned previously
that allows you to put the core of the algorithms in the line-object code, and then
handle ray-object and segment-object by clamping the line parameter appropriately.

15.3 Linear Component and Oriented Box

Let the oriented box have center C, orthonormal axis directions Ui, and extents ei for
0 ≤ i ≤ 2. The linear component is P + tD.

15.3.1 Test-Intersection Query

The test-intersection queries use the method of separating axes; see Section 8.1. This
method is based on Minkowski differences of sets; in our current case these are linear
components and an oriented box.

Lines and OBBs

The application of the method of separating axes to a line and an OBB is described
here. The Minkowski difference of the OBB and the line is an infinite convex poly-
hedron obtained by extruding the OBB along the line and placing it appropriately in
space. Figure 15.1 illustrates this process in two dimensions. Four of the OBB edges
are perpendicular to the plane of the page. Two of those edges are highlighted with
points and labeled as E0 and E1. The edge E0 is extruded along the line direction D.
The resulting face, labeled F0, is an infinite planar strip with a normal vector U0 × D,
where U0 is the unit-length normal of the face of the OBB that is coplanar with the
page. The edge E1 is extruded along the line direction to produce face F1. Because
edges E0 and E1 are parallel, face F1 also has a normal vector U0. The maximum
number of faces that the infinite polyhedron can have is six (project the OBB onto a
plane with normal D and obtain a hexagon), one for each of the independent OBB
edge directions. These directions are the same as the OBB face normal directions,
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E0

E1

F1

F0

D

Figure 15.1 An OBB and a line. The OBB is extruded along the line in the direction D. The
illustration is based on the OBB having its center at the origin. If the center were not
at the origin, the extruded object would be translated from its current location.

so the six faces are partitioned into three pairs of parallel faces with normal vectors
Ui × D.

Now that we have the potential separating axis directions, the separation tests are

|U0
. D × 


| > e1|D . U2| + e2|D . U1|

|U1
. D × 


| > e0|D . U2| + e2|D . U0|

|U2
. D × 


| > e0|D . U1| + e1|D . U0|

where 


 = P − C. The term Ui
. D × 


 is used instead of the mathematically equiv-

alent Ui × D . 


 in order for the implementation to compute D × 


 once, leading
to a reduced operation count for all three separation tests. The implementation of
IntrLine3Box3::Test using this method is straightforward:

bool Test (Line line, Box box)
{

float AWdU[3], AWxDdU[3], rhs;

Vector3 diff = line.P - box.C;
Vector3 WxD = Cross(line.D,diff);

AWdU[1] = |Dot(line.D,box.U[1])|;
AWdU[2] = |Dot(line.D,box.U[2])|;
AWxDdU[0] = |Dot(WxD,box.U[0])|;
rhs = box.e[1] * AWdU[2] + box.e[2] * AWdU[1];
if (AWxDdU[0] > rhs)
{

return false;
}
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AWdU[0] = |Dot(line.D,box.U[0])|;
AWxDdU[1] = |Dot(WxD,box.U[1])|;
rhs = box.e[0] * AWdU[2] + box.e[2] * AWdU[0];
if (AWxDdU[1] > rhs)
{

return false;
}

AWxDdU[2] = |Dot(WxD,box.U[2])|;
rhs = box.e[0] * AWdU[1] + box.e[1] * AWdU[0];
if (AWxDdU[2] > rhs)
{

return false;
}

return true;
}

Rays and OBBs

The infinite convex polyhedron that corresponds to the Minkowski difference of a
line and an OBB becomes a semi-infinite object in the case of a ray and an OBB.
Figure 15.2 illustrates in two dimensions. The semi-infinite convex polyhedron has
the same three pairs of parallel faces as for the line, but the polyhedron has the OBB
as an end cap. The OBB contributes three additional faces and corresponding normal
vectors. Thus, we have six potential separating axes. The separation tests are

|U0
. D × 


| > e1|D . U2| + e2|D . U1|

|U1
. D × 


| > e0|D . U2| + e2|D . U0|

|U2
. D × 


| > e0|D . U1| + e1|D . U0|

|U0
. 


| > e0, (U0

. 


)(U0
. D) ≥ 0

|U1
. 


| > e1, (U1

. 


)(U1
. D) ≥ 0

|U2
. 


| > e2, (U2

. 


)(U2
. D) ≥ 0

The first three are the same as for a line. The last three use the OBB face normals for
the separation tests. To illustrate these tests, see Figure 15.3.

The projected OBB is the finite interval [−ei , ei]. The projected ray is a semi-
infinite interval on the t-axis. The origin is 


 . Ui, and the direction (a signed scalar)
is D . Ui. The top portion of the figure shows a positive signed direction and an origin
that satisfies 


 . Ui > ei. The finite interval and the semi-infinite interval are disjoint,
in which case the original OBB and ray are separated. If instead the projected ray
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E0

E1

D
F1

F2
F3

F0

Figure 15.2 An OBB and a ray. The OBB is extruded along the ray in the direction D. The faces
F0 and F1 are generated by OBB edges and D. The faces F2 and F3 are contributed
from the OBB.

[ ]
0–ei ei

[
  • Ui + tD • Ui

[ ] ]
0–ei ei   • Ui + tD • Ui

Figure 15.3 Projections of an OBB and a ray onto the line with direction Ui (a normal to an
OBB face). The OBB center C is subtracted from the OBB as well as the ray origin
P. The translated OBB projects to the interval [−ei , ei], where ei is the OBB extent
associated with Ui. The translated ray is 


 + tD, where 


 = P − C, and projects to
Ui

. 


 + tUi
. D.

direction is negative, D . Ui < 0, the semi-infinite interval overlaps the finite interval.
The original OBB and ray are not separated by the axis with direction Ui. Two similar
configurations exist when 


 . Ui < −ei. The condition |Ui

. 


| > ei says that the
projected ray origin is farther away from zero than the projected box extents. The
condition (Ui

. 


)(Ui
. D) > 0 guarantees that the projected ray points away from

the projected OBB.
The implementation of the test-intersection query is

bool Test (Ray ray, Box box)
{

float WdU[3], AWdU[3], DdU[3], ADdU[3], AWxDdU[3], rhs;

Vector3 diff = ray.P - box.C;
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WdU[0] = Dot(ray.D,box.U[0]);
AWdU[0] = |WdU[0]|;
DdU[0] = Dot(diff,box.U[0]);
ADdU[0] = |DdU[0]|;
if (ADdU[0] > box.e[0] and DdU[0] * WdU[0] >= 0)
{

return false;
}

WdU[1] = Dot(ray.D,box.U[1]);
AWdU[1] = |WdU[1]|;
DdU[1] = Dot(diff,box.U[1]);
ADdU[1] = |DdU[1]|;
if (ADdU[1] > box.e[1] and DdU[1] * WdU[1] >= 0)
{

return false;
}

WdU[2] = Dot(ray.D,box.U[2]);
AWdU[2] = |WdU[2]|;
DdU[2] = Dot(diff,box.U[2]);
ADdU[2] = |DdU[2]|;
if (ADdU[2] > box.e[2] and DdU[2] * WdU[2] >= 0)
{

return false;
}

Vector3 WxD = Cross(ray.D,diff);

AWxDdU[0] = |Dot(WxD,box.U[0])|;
rhs = box.e[1] * AWdU[2] + box.e[2] * AWdU[1];
if (AWxDdU[0] > rhs)
{

return false;
}

AWxDdU[1] = |Dot(WxD,box.U[1])|;
rhs = box.e[0] * AWdU[2] + box.e[2] * AWdU[0];
if (AWxDdU[1] > rhs)
{

return false;
}

AWxDdU[2] = |Dot(WxD,box.U[2])|;
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rhs = box.e[0] * AWdU[1] + box.e[1] * AWdU[0];
if (AWxDdU[2] > rhs)
{

return false;
}

return true;
}

Segments and OBBs

The semi-infinite convex polyhedron that corresponds to the Minkowski difference of
a ray and an OBB becomes a finite object in the case of a segment and an OBB. Figure
15.4 illustrates in two dimensions. The infinite convex polyhedron has the same three
pairs of parallel faces as for the ray and line, but the polyhedron has the OBB as an
end cap on both ends of the segment. The OBB contributes three additional faces and
corresponding normal vectors, a total of six potential separating axes. The separation
tests are

|U0
. D × 


| > e1|D . U2| + e2|D . U1|

|U1
. D × 


| > e0|D . U2| + e2|D . U0|

|U2
. D × 


| > e0|D . U1| + e1|D . U0|

|U0
. 


| > e0 + e|U0

. D|
|U1

. 


| > e1 + e|U1
. D|

|U2
. 


| > e2 + e|U1

. D|
where e is the extent of the segment. Figure 15.5 shows a typical separation of the
projections on some separating axis. The intervals are separated when W . 


−
e|W . D| > r or when W . 


 + e|W . D| < −r . These may be combined into a
joint statement: |W . 


| > r + e|W . D|. The implementation of the test-intersection
query is

bool Test (Segment segment, Box box)
{

float AWdU[3], ADdU[3], AWxDdU[3], rhs;

Vector3 diff = segment.P - box.C;

AWdU[0] = |Dot(segment.D,box.U[0])|;
ADdU[0] = |Dot(diff,box.U[0])|;
rhs = box.e[0] + segment.e * AWdU[0];
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E0

E1

D
F1

F5

F4

F2
F3

F0

Figure 15.4 An OBB and a segment. The OBB is extruded along the segment in the direction
D. The faces F0 and F1 are generated by OBB edges and D. The faces F2 and F3 are
contributed from the OBB at one endpoint; the faces F4 and F5 are contributed from
the OBB at the other endpoint.

[ ]]
0

–r r
[

   • W – e|D • W|   • W + e|D • W|

  • W

Figure 15.5 Projections of an OBB and a segment onto a line with direction W. The OBB center
C is subtracted from the OBB as well as the segment origin P. The translated OBB
projects to an interval [−r , r]. The translated segment is 


 + tD, where 


 = P − C,
and projects to W . 


 + tW . D.

if (ADdU[0] > rhs)
{

return false;
}

AWdU[1] = |Dot(segment.D,box.U[1])|;
ADdU[1] = |Dot(diff,box.U[1])|;
rhs = box.e[1] + segment.e * AWdU[1];
if (ADdU[1] > rhs)
{

return false;
}

AWdU[2] = |Dot(segment.D,box.U[2])|;
ADdU[2] = |Dot(diff,box.U[2])|;
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rhs = box.e[2] + segment.e * AWdU[2];
if (ADdU[2] > rhs)
{

return false;
}

Vector3 WxD = Cross(segment.D,diff);

AWxDdU[0] = |Dot(WxD,box.U[0])|;
rhs = box.e[1] * AWdU[2] + box.e[2] * AWdU[1];
if (AWxDdU[0] > rhs)
{

return false;
}

AWxDdU[1] = |Dot(WxD,box.U[1])|;
rhs = box.e[0] * AWdU[2] + box.e[2] * AWdU[0];
if (AWxDdU[1] > rhs)
{

return false;
}

AWxDdU[2] = |Dot(WxD,box.U[2])|;
rhs = box.e[0] * AWdU[1] + box.e[1] * AWdU[0];
if (AWxDdU[2] > rhs)
{

return false;
}

return true;
}

15.3.2 Find-Intersection Query

The line-box find-intersection query is based on Liang-Barsky clipping [LB84,
FvDFH90] of parametric lines against the box faces one at a time. The idea is to
start with a t interval [t0, t1] representing the current linear component. Initially, the
interval is infinite: t0 = −∞ and t1 = ∞. The line is converted to the box coordi-
nate system. The line origin P is mapped to P′ = (xp , yp , zp) in the box coordinate
system via

P = C + xpU0 + ypU1 + zpU2



694 Chapter 15 Intersection Methods

x = –e0

t1

t0

t

t0

t1

x = –e0

t1

t0

t t0

t1

x = –e0

t1t0

t

t0

t1

x = e0

t1

t0

t

t0

t1

x = e0

t1

t0

t t0

t1

x = e0

t1t0

t

t0

t1

Figure 15.6 Line clipping against the x-faces of the box.

Thus, xp = U0
. (P − C), yp = u1

. (P − C), and zp = u2
. (P − C). The line direction

D is mapped to D′ = (xd , yd , zd) in the box coordinate system via

D = xdU0 + ydU1 + zdU2

Thus, xd = U0
. D, yp = U1

. D, and zd = U2
. D. In the box coordinate system, the

box is naturally axis aligned. If (x , y , z) is a box point, then |x| ≤ e0, |y| ≤ e1, and
|z| ≤ e2.

Figure 15.6 illustrates the clipping of the line (xp , yp , zp) + t (xd , yd , zd) against
the x-faces of the box. The top three images in the figure show clipping against the
face x = −e0, and the bottom three images show clipping against the face x = e0.
The clipping algorithm depends on the orientation of the line’s direction vector
relative to the x-axis. For a plane x = a, the intersection point of the line and plane
is determined by

xp + txd = a

We need to solve for t . The three cases are xd > 0, xd < 0, and xd = 0.
Consider xd > 0. In Figure 15.6, the linear components of interest are those with

the arrow showing the components pointing generally in the positive x-direction.
The t-value for the intersection is t = (−e0 − xp)/xd . The decision on clipping is
illustrated in the pseudocode:
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if (t > t1) then
cull the linear component; // Figure 15.6 (a)

else if (t > t0) then
t0 = t; // Figure 15.6 (b)

else
do nothing; // Figure 15.6 (c)

If xd < 0, the relevant linear components in Figure 15.6 are those with the arrow
showing the components pointing generally in the negative x-direction. The pseu-
docode is

if (t < t0) then
cull the linear component; // Figure 15.6 (a)

else if (t < t1) then
t1 = t; // Figure 15.6 (b)

else
do nothing; // Figure 15.6 (c)

Finally, if xd = 0, the linear component is parallel to the x-faces. The component is
either outside the box, in which case it is culled, or inside or on the box, in which case
no clipping against the x-faces needs to be performed. The pseudocode is

n = -e0 - xp;
if (n > 0) then

cull the linear component;
else

do nothing;

A similar construction applies for the face x = e0, except that the sense of direc-
tion is reversed. The bottom three images of Figure 15.6 apply here. The equation
to solve is xp + txd = e0. If xd �= 0, the solution is t = (e0 − xp)/td . If xd > 0, the
pseudocode is

if (t < t0) then
cull the linear component; // Figure 15.6 (f)

else if (t < t1) then
t1 = t; // Figure 15.6 (e)

else
do nothing; // Figure 15.6 (d)

If xd < 0, the pseudocode is
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if (t > t1) then
cull the linear component; // Figure 15.6 (f)

else if (t > t0) then
t0 = t; // Figure 15.6 (e)

else
do nothing; // Figure 15.6 (d)

If xd = 0, the linear component is parallel to the x-faces. The component is either
outside the box, in which case it is culled, or inside or on the box, in which case no
clipping against the x-faces needs to be performed. The pseudocode is

n = e0 - xp;
if (n < 0) then

cull the linear component;
else

do nothing;

A goal of the construction is to keep the clipping code to a minimum. With this in
mind, notice that the clipping code for the case x = e0 and xd > 0 is the same as that
for the case x = −e0 and xd < 0. The clipping code for the case x = e0 and xd < 0
is the same as that for the case x = −e0 and xd > 0. The cases when xd = 0 differ
only by the test of n—in one case tested for positivity, in the other for negativity.
We may consolidate the six code blocks into three by processing the x = e0 cases
using −xd and −n = xp − e0. The following pseudocode shows the consolidated
code. One optimization occurs: a division is performed to compute t only if the linear
component is not culled.

bool Clip(float denom, float numer, float& t0, float& t1)
{

if (denom > 0)
{

if (numer > denom * t1)
return false;

if (numer > denom * t0)
t0 = numer / denom;

return true;
}

if (denom < 0)
{

if (numer > denom * t0)
return false;
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if (numer > denom * t1)
t1 = numer / denom;

return true;
}

return numer <= 0;
}

The return value is false if the current linear component is culled; otherwise, the
return value is true, indicating that the linear component was clipped or just kept
as is.

The clipping against all the faces is encapsulated by the line-box find-intersection
query function.

bool Find (Line line, Box box, int& quantity, float tvalue[2])
{

// Convert line to box coordinates.
Point delta = line.P - box.C;
Point P, D;
for (i = 0; i < 3; i++)
{

P[i] = Dot(delta,box.U[i]);
D[i] = Dot(line.D,box.U[i]);

}

float t0 = -infinity, t1 = +infinity;
bool notCulled =

Clip(+D.x, -P.x - box.e[0], t0, t1) &&
Clip(-D.x, +P.x - box.e[0], t0, t1) &&
Clip(+D.y, -P.y - box.e[1], t0, t1) &&
Clip(-D.y, +P.y - box.e[1], t0, t1) &&
Clip(+D.z, -P.z - box.e[2], t0, t1) &&
Clip(-D.z, +P.z - box.e[2], t0, t1);

if (notCulled)
{

if (t1 > t0)
{

quantity = 2;
tvalue[0] = t0;
tvalue[1] = t1;

}
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else
{

quantity = 1;
tvalue[0] = t0;

}
}
else
{

quantity = 0;
}

return quantity > 0;
}

15.4 Linear Component and Sphere

Both the test-intersection and find-intersection queries are discussed here.

15.4.1 Line and Sphere

Consider the general case of intersection between a line and a sphere. A sphere with
center C and radius r is specified by |X − C|2 − r2 = 0. Replacing X by P + tD leads
to the quadratic equation

0 = |tD + P − C|2 − r2 = t2 + 2tD . (P − C) + |P − C|2 − r2 = t2 + 2a1t + a0 = q(t)

The quadratic formula may be used to solve the equation formally:

t = −a1 ±
√

a2
1 − a0

Let 
 = a2
1 − a0, called the discriminant of the quadratic equation. The classification

of intersection is


 < 0. The roots are complex-valued, so the line does not intersect the sphere.


 = 0. The equation has a repeated real-valued root, so the line intersects the
sphere in a single point. Necessarily the line is tangent to the sphere.


 > 0. The equation has two distinct real-valued roots, so the line intersects the
sphere in two points. The intersections are transverse in the sense that the line
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passes from outside to inside the sphere and inside to outside the sphere at the
two points.

Regarding the test-intersection query, we could just directly apply the quadratic
formula and classify the roots to determine the intersection of linear components and
spheres, but some additional analysis allows us to avoid the expensive square root
calculation in that formula.

The sign of a0 = |P − C|2 − r2 determines whether or not P is inside the sphere
(a0 < 0), on the sphere (a0 = 0), or outside the sphere (a0 > 0). This allows a quick
out in the test-intersection query: If a0 ≤ 0, then the line intersects the sphere because
P is inside or on the sphere.

bool Test (Line line, Sphere sphere)
{

Point delta = line.P - sphere.C;
float a0 = Dot(delta, delta) - sphere.r * sphere.r;
if (a0 <= 0)
{

// line.P is inside or on the sphere.
return true;

}
// Else: line.P is outside the sphere.

float a1 = Dot(line.D, delta);
float discr = a1 * a1 - a0;
return discr >= 0;

}

The find-intersection query is a straightforward implementation of the construc-
tion of the quadratic roots.

bool Find (Line line, Sphere sphere, int& quantity, float tvalue[2])
{

Point delta = line.P - sphere.C;
float a0 = Dot(delta, delta) - sphere.r * sphere.r;
float a1 = Dot(line.D, delta);
float discr = a1 * a1 - a0;

if (discr < 0)
{

// two complex-valued roots, no intersections
quantity = 0;

}
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else if (discr >= epsilon)
{

// two distinct real-valued roots, two intersections
float root = sqrt(discr);
tvalue[0] = -a1 - root;
tvalue[1] = -a1 + root;
quantity = 2;

}
else // discr is effectively zero.
{

// one repeated real-valued root, one intersection
tvalue[0] = -a1;
quantity = 1;

}
return quantity > 0;

}
}

15.4.2 Ray and Sphere

The test-intersection query for a ray versus a sphere is similar to the test-intersection
query for a line versus a sphere, except that there is an additional quick out. If the ray
origin is inside the sphere (a0 ≤ 0), then the ray intersects the sphere. Otherwise, the
ray origin is outside the sphere. It is possible that as you move along the ray, you are
moving away from the sphere, in which case there is no intersection when t ≥ 0. This
geometric condition is equivalent to the squared distance q(t) increasing for all t ≥ 0.
To be increasing, the derivative q ′(t) = 2(t + a1) must satisfy q ′(t) ≥ 0. It is sufficient
for a1 ≥ 0 to guarantee that this happens. The condition a1 ≥ 0 is therefore a quick
out for a no-intersection result.

bool Test (Ray ray, Sphere sphere)
{

Point delta = ray.P - sphere.C;
float a0 = Dot(delta, delta) - sphere.r * sphere.r;
if (a0 <= 0)
{

// ray.P is inside or on the sphere.
return true;

}
// Else: ray.P is outside the sphere.

float a1 = Dot(ray.D, delta);
if (a1 >= 0)
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{
// Ray is directed away from the sphere.
return false;

}

float discr = a1 * a1 - a0;
return discr >= 0;

}

15.4.3 Segment and Sphere

The test-intersection query for a segment versus sphere is slightly more complicated
algebraically than that of ray or line versus sphere, but the end result requires only a
minimum of calculation time. If a0 ≤ 0, then the segment center P is inside the sphere
and we have an intersection. Otherwise, P is outside the sphere. If � = a2

1 − a0 < 0,
the line containing the segment does not intersect the sphere, so neither does the
segment. If both of these tests do not provide a quick out, we have q(0) = a0 > 0,
and q(t) has at least one real-valued root. If q(e) ≤ 0 or q(−e) ≤ 0, then q(t) has a
root on the interval [−e, e], and the segment intersects the sphere. Otherwise, one of
the four configurations must occur as shown in Figure 15.7.

–e e
t

q

–a1 ≤ e

–a1

–e e
t

q

–a1 > e

–a1

–e e
t

q

–a1 ≥ –e

–a1

–e e
t

q

–a1 < –e

–a1

Figure 15.7 The four configurations for the graph of q(t).
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Notice that a1 = q ′(0), which is the slope of the graph of q(t) at t = 0. The
minimum point of the graph occurs when q ′(t) = 2(t + a1) = 0, namely, at the time
T = −a1. The top two configurations occur when T = −a1 > 0, the bottom two when
T = −a1 < 0. The test for intersection may be structured as

if (a1 < 0)
{

// Evaluate q(e).
qp = segment.e * segment.e + 2 * a1 * segment.e + a0;

// q(e) <= 0 or T <= e
if (qp <= 0 || -a1 <= segment.e)

return true;
}
else
{

// evaluate q(-e)
qm = segment.e * segment.e - 2 * a1 * segment.e + a0;

// q(-e) <= 0 or T >= -e
if (qm <= 0 || -a1 >= -segment.e)

return true;
}
return false;

However, these may be combined into a smaller number of lines of code. The full
test-intersection query is

bool Test (Segment segment, Sphere sphere)
{

Point delta = segment.P - sphere.C;
float a0 = Dot(delta, delta) - sphere.r * sphere.r;
if (a0 <= 0)
{

// P is inside or on the sphere.
return true;

}
// Else: P is outside the sphere.

float a1 = Dot(segment.D, delta);
float discr = a1 * a1 - a0;
if (discr < 0)
{

// two complex-valued roots, no intersections
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return false;
}

float absA1 = fabs(a1);
float qval = segment.e * (segment.e - 2 * absA1) + a0;
return qval <= 0 || absA1 <= segment.e;

}

15.5 Line and Sphere-Swept Volume

The only sphere-swept volumes of interest here are capsules and lozenges. The test-
intersection queries are trivial, but the find-intersection queries involve tedious de-
tails when implementing them.

15.5.1 Line and Capsule

The line has the representation P + tD. The capsule segment has center C, unit-
length direction W, and extent e. Let the capsule radius be r . A coordinate system may
be associated with the capsule. The origin of the system is C and one axis has direction
W. Choose two more axis direction vectors U and V so that the set {U, V , D} is
a right-handed orthonormal set. That is, the vectors are unit length and mutually
orthogonal, and W = U × V. Any point P is written in this coordinate system as

P = C + xU + yV + zW

Within this coordinate system, the capsule has a cylinder wall defined by x2 + y2 = r2

with |z| ≤ e. It also has two hemispherical caps, the top cap defined by x2 + y2+
(z − e)2 = r2 for z ≥ e and the bottom cap defined by x2 + y2 + (z + e)2 = r2 for
z ≤ −e.

The line-capsule test-intersection query is conceptually easy. The line intersects
the capsule whenever the distance between the line and the capsule segment is smaller
or equal to the capsule radius. For computational efficiency in avoiding square roots,
the squared distance and the squared radius are compared.

bool Test (Line line, Capsule capsule)
{

float sqrDistance = SqrDistance(line,capsule.segment);
float sqrRadius = capsule.r * capsule.r;
return sqrDistance <= sqrRadius;

}

See Section 14.2.3 for the details about the line-segment squared-distance calculator.
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The ray-capsule test-intersection query is similar to the line-capsule query. The
ray and capsule intersect if and only if the distance between the ray and the capsule
segment is less than or equal to the capsule radius. For computational efficiency in
avoiding square roots, the squared distance and the squared radius are compared.

bool Test (Ray ray, Capsule capsule)
{

float sqrDistance = SqrDistance(ray,capsule.segment);
float sqrRadius = capsule.r * capsule.r;
return sqrDistance <= sqrRadius;

}

The segment-capsule test-intersection query is also similar to the line-capsule
query. The segment and capsule intersect if and only if the distance between the
segment and the capsule segment is less than or equal to the capsule radius. For com-
putational efficiency in avoiding square roots, the squared distance and the squared
radius are compared.

bool Test (Segment segment, Capsule capsule)
{

float sqrDistance = SqrDistance(segment,capsule.segment);
float sqrRadius = capsule.r * capsule.r;
return sqrDistance <= sqrRadius;

}

The line-capsule find-intersection query is somewhat lengthy to describe. At a
high level, the line origin and direction are converted to the coordinate system of the
capsule. If the line is parallel (or nearly parallel) to the capsule axis, the intersections
of the line with the capsule, if any, must occur on the hemispherical caps. If the line is
not parallel to the capsule axis, intersections are computed with the infinite cylinder.
If such a point of intersection is within the range |z| ≤ e, the point is on the capsule’s
cylinder wall. If we find two such points, the intersection query is finished. If not, an
attempt is made to compute the intersection of the line with each of the hemispherical
caps. At any time in the construction, if we have two intersection points, the query
terminates.

The line origin P is mapped to P′ = (xp , yp , zp) in the capsule coordinate system
via

P = C + xpU + ypV + zpW

where xp = U . (P − C), yp = V . (P − C), and zp = W . (P − C). The line direction
D is mapped to D′ = (xd , yd , zd) in the capsule coordinate system via

D = xdU + ydV + zdW

where xd = U . D, yp = V . D, and zd = W . D.
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Line Parallel to Capsule Axis

The line is parallel to the capsule axis when |zd| = 1. For numerical robustness,
choose a small threshold ε > 0 and decide that the parallel case occurs when |zd| ≥
1− ε. The line intersects the capsule when it is contained by the infinite solid cylinder
bounding the capsule. This cylinder is x2 + y2 ≤ r2. An intersection occurs, therefore,
when x2

p
+ y2

p
≤ r2. In the event this condition is satisfied, the two points of intersec-

tion are on the hemispherical caps. The intersection with the top hemispherical cap
is (xp , yp , z1), where x2

p
+ y2

p
+ (z1 − e)2 = r2 with z1 ≥ e. The solution is

z1 = e +
√

r2 − x2
p

− y2
p

The intersection with the bottom hemispherical cap is (xp , yp , z0), where x2
p

+ y2
p

+
(z0 + e)2 = r2 with z0 ≤ −e. The solution is

z0 = −e −
√

r2 − x2
p

− y2
p

The find-intersection query needs to compute the t-values corresponding to the
line. In the capsule coordinate system, the line is parameterized by (xp , yp , zp) +
t (0, 0, ±1). If zd = 1, then the intersection with the bottom hemispherical cap
satisfies

(xp , yp , zp) + t0(0, 0, 1) = (xp , yp , z0) → t0 = z0 − zp

= −zp −
(
e +

√
r2 − x2

p
− y2

p

)

The intersection with the top hemispherical cap satisfies

(xp , yp , zp) + t1(0, 0, 1) = (xp , yp , z1) → t1 = z1 − zp

= −zp +
(
e +

√
r2 − x2

p
− y2

p

)

The t-values are chosen so that t0 < t1. If zd = −1, the intersection with the top
hemispherical cap satisfies

(xp , yp , zp) + t0(0, 0, −1) = (xp , yp , z1) → t0 = zp − z1

= zp −
(
e +

√
r2 − x2

p
− y2

p

)
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The intersection with the bottom hemispherical cap satisfies

(xp , yp , zp) + t1(0, 0, −1) = (xp , yp , z0) → t1 = zp − z0

= zp +
(
e +

√
r2 − x2

p
− y2

p

)
The t-values are chosen so that t0 < t1.

Line Not Parallel to Capsule Axis

The parametric line in capsule coordinates is (xp , yp , zp) + t (xd , yd , zd). The inter-
section of this line with the infinite cylinder amounts to solving a quadratic equation
x2 + y2 = r2 with x = xp + txd and y = yp + tyd . The equation is

a2t
2 + 2a1t + a0 = (x2

d
+ y2

d
)t2 + 2(xpxd + ypyd)t + (x2

p
+ y2

p
− r2) = 0

We know that a2 > 0 since the line is not parallel to the capsule axis. For if it were the
case that a2 = 0, then xd = yd = 0 and |zd| = 1, a contradiction to the nonparallelism.
From a numerical perspective, if a2 is nearly zero, that can cause robustness problems
in the root finding. We had tested parallelism by |zd| ≥ 1 − ε for a small ε > 0. In the
nonparallel case, we know |zd| < ε, in which case

a2 = x2
d

+ y2
d

= 1 − z2
d

> 1 − (1 − ε)2 = ε(2 − ε) .= 2ε

As long as the root finder is not susceptible to problems with a leading coefficient on
the order of 2ε, the intersection algorithm should behave correctly.

The implementation uses the quadratic equation for root finding:

t =
−a1 ±

√
a2

1 − a0a2

a2

Define � = a2
1 − a0a2. If � < 0, the line does not intersect the infinite cylinder, and

consequently it cannot intersect the capsule’s cylinder wall or hemispherical caps. If
� ≥ 0, the line intersects the infinite cylinder in one or two points. However, these
points need to be checked such that their z-values satisfy |z| ≤ e. If T is a root of the
quadratic equation, then the z-value for the intersection point is z = zp + T zd . If
|zp + T zd| ≤ e, then T is included in the array of parameter values to be returned to
the caller. If � > 0 and there are two points of intersection satisfying this condition,
there is no need to compare the line against the hemispherical caps.

If we have not yet found two intersection points at this time, we need to test for
line-hemisphere intersection. The bottom hemisphere is x2 + y2 + (z + e)2 − r2 = 0
for z <= −e. Substituting the parametric line equation into this equation:
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0 = (xp + txd)
2 + (yp + tyd)

2 + (zp + e + tzd)
2 − r2

= t2 + 2(xpxd + ypyd + (zp + e)zd)t + (x2
p

+ y2
p

+ (zp + e)2 − r2)

= t2 + 2a1t + a0

The quadratic equation is applied to compute the roots:

t = −a1 ±
√

a2
1 − a0.

If T is a root, the corresponding hemisphere z-value is z = zp + T zd . If z ≤ −e, then
T is stored in the array of t-values to be returned to the caller.

If two intersection points are still not found at this time, we test for intersection
with the top hemisphere. The equation for the hemisphere is x2 + y2 + (z − e)2 −
r2 = 0 for z ≥ e. Substituting the parametric line equation into this equation:

0 = (xp + txd)
2 + (yp + tyd)

2 + (zp − e + tzd)
2 − r2

= t2 + 2(xpxd + ypyd + (zp − e)zd)t + (x2
p

+ y2
p

+ (zp − e)2 − r2)

= t2 + 2a1t + a0

The quadratic equation is applied to compute the roots:

t = −a1 ±
√

a2
1 − a0.

If T is a root, the corresponding hemisphere z-value is z = zp + T zd . If z ≥ e, then
T is stored in the array of t-values to be returned to the caller.

If there are two t-values ready to be returned to the caller, they should be sorted as
t[0]< t[1]. The order of checking intersections with the infinite cylinder, the bottom
hemisphere, and the top hemisphere does not guarantee that the t-values will be
sorted.

An implementation of this algorithm is lengthy, but is provided on the CD-ROM
for the book.

Exercise
15.2

A small improvement can be made to the algorithm. The selection of which hemi-
sphere to test should be made by looking at the z-values of the intersection of the line
with the infinite cylinder. For example, if such a z-value satisfies z > e, and if the line
does intersect a capsule hemisphere, it must do so on the top hemisphere. If the other
z-value also satisfies z > e, then there is no need to test the bottom hemisphere. But if
the other z-value satisfies z < −e, then you must test the bottom hemisphere. Modify
the line-capsule intersection code to use this improvement.
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15.5.2 Line and Lozenge

The lozenge’s rectangle has center point C, unit-length directions D0 and D1 that
are perpendicular, and extents e0 and e1. The lozenge radius is r . A third vector is
N = D0 × D1 and is used with the center and directions to form a coordinate system
for the lozenge. Any point Q may be written as

Q = C + xD0 + yD1 + zN

Within this coordinate system, the lozenge is bounded by two planes, four truncated
half-cylinders, and four quarter-spheres. The plane equations are z = ±r . The cylin-
der equations are

(x − e0)
2 + z2 = r2, x ≥ e0, |z| ≤ r

(x + e0)
2 + z2 = r2, x ≤ −e0, |z| ≤ r

(y − e1)
2 + z2 = r2, y ≥ e1, |z| ≤ r

(y + e1)
2 + z2 = r2, y ≤ −e1, |z| ≤ r

The sphere equations are

(x − e0)
2 + (y − e1)

2 + z2 = r2, x ≥ e0, y ≥ e1

(x + e0)
2 + (y − e1)

2 + z2 = r2, x ≤ −e0, y ≥ e1

(x − e0)
2 + (y + e1)

2 + z2 = r2, x ≥ e0, y ≤ −e1

(x + e0)
2 + (y + e1)

2 + z2 = r2, x ≤ −e0, y ≤ −e1

The line is P + tD. It is converted to lozenge coordinates P′ = (xp , yp , zp) and D′ =
(xd , yd , zd), just as we did for capsules. If the line P′ + tD′ intersects the lozenge,
it does so either on the two planes, the four truncated half-cylinders, or the four
quarter-spheres. An implementation is similar to that for a line and capsule, but it
is a tedious exercise.

Exercise
15.3

Implement the find-intersection query for a line and a lozenge.

The test-intersection queries for linear components versus a lozenge are trivial,
just as they were for capsules.

bool Test (Line line, Lozenge lozenge)
{

float sqrDistance = SqrDistance(line,lozenge.rectangle);
float sqrRadius = lozenge.r * lozenge.r;
return sqrDistance <= sqrRadius;

}
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bool Test (Ray ray, Lozenge lozenge)
{

float sqrDistance = SqrDistance(ray,lozenge.rectangle);
float sqrRadius = lozenge.r * lozenge.r;
return sqrDistance <= sqrRadius;

}

bool Test (Segment segment, Lozenge lozenge)
{

float sqrDistance = SqrDistance(segment,lozenge.rectangle);
float sqrRadius = lozenge.r * lozenge.r;
return sqrDistance <= sqrRadius;

}

15.6 Line and Quadric Surface

Generally, a quadric surface is implicitly defined by a quadratic equation XTAX +
BTX + c = 0. If the line is X(t) = P + tD, substituting it into the quadratic equation
of three variables produces an equation in the parameter t :

0 = k2t
2 + 2k1t + k0 =

(
DTAD

)
t2 + DT (2AP + B) +

(
PTAP + BTP + c

)

The coefficient k2 may or may not be zero, depending on the type of surface the
original equation defines.

15.6.1 Line and Ellipsoid

When the original quadratic equation represents an ellipsoid, it is guaranteed that
k2 �= 0, so the t-equation is quadratic itself. The find-intersection query is similar to
that of a line-sphere query. If the ellipsoid is in standard form,

(X − C)TM(X − C) = 1

the quadratic equation in t is

(
DTMD

)
t2 + 2

(
DTM(P − C)

)
t +

(
(P − C)TM(P − C) − 1

)
= 0

It is simple enough to solve for t using the quadratic formula. If there are no real-
valued roots, the line does not intersect the ellipsoid. If there is a single real-valued
root, the line is tangent to the ellipsoid (a single point of intersection). If there are
two distinct real-valued roots, the line intersects the ellipsoid in two points.
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15.6.2 Line and Cylinder

The cylinders here are assumed to be finite with center C, axis direction W, height h

(extent h/2), and radius r . The line-cylinder find-intersection query has a similar
structure to the line-capsule find-intersection query. For capsules, the algorithm
required computing intersections of the line with hemispheres. For cylinders, that
part of the algorithm is replaced by computing intersections of lines with the planar
disks that cap the ends of the cylinder. The hemispheres were defined by x2 + y2 +
(z ± e)2 = r2. Substituting in the line equation led to a quadratic equation in the
line parameter t . The planar disks are z = ±r with x2 + y2 ≤ r2, so you need only
compute the intersection of the line with the z-planes and test that those points are
inside the disks.

If your cylinder is infinite and you care only about the test-intersection query,
let the line be represented in cylinder coordinates by P′ = (xp , yp , zp) and D′ =
(xd , yd , zd). The line does not intersect the cylinder x2 + y2 ≤ r2 when the distance
from (xp , yp) to (0, 0) is larger than r .

15.6.3 Line and Cone

In Section 10.4.4, we saw that the double-sided cone is defined by the quadratic
equation

(X − C)T(AAT − (cos θ)2I )(X − C) = 0

where the cone vertex is C, the cone axis has direction A, and the cone angle is θ

(measured from the cone axis). Substituting the line equation P + tD into the cone
equation produces a quadratic function of t that may be solved in the same manner
as the ones for spheres and ellipsoids.

For a single-sided cone, if T is a root of the quadratic function in t , you must
verify that the corresponding point is on your half of the double-sided cone, δ =
A . (T D + P − C) ≥ 0. If the cone is also truncated by the plane A . (X − C) = h,
where h > 0 is the truncated cone height, then you must additionally verify that
δ ≤ h. Moreover, you must check for an intersection of the line with the truncating
plane.

15.7 Culling Objects by Planes

One of the performance gains when drawing a scene graph is to eliminate subtrees
of the scene that are outside the view frustum. This process is called object culling;
see Section 2.4. Each node of the subtree has a bounding volume that is compared to
each of the six frustum planes. If the bounding volume is outside any of these planes,
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it is outside the frustum and, therefore, not visible. In this case, the subtree rooted at
the node does not need to be traversed during the drawing pass.

Object culling may be viewed as a test-intersection query, with the minor mod-
ification that if the bounding volume does not intersect a culling plane, we want to
know which side of the plane it is on. This section discusses algorithms for culling
of planar components and various bounding volumes. All such components and
bounding volumes are assumed to be convex.

In all cases, the strategy is simply to project the objects onto a normal line to the
plane and determine if the projection set intersects the plane, lies completely on one
side of the plane, or lies completely on the other side of the plane. The plane equation
used in all sections is N . X = d , where N is unit length and d is the plane constant.
For culling purposes, the frustum is on the positive side of the plane, which is the side
to which N points. The normal line for the projection is tN, so the plane itself projects
to t = d . Since the objects to be projected are convex, the projection must be a single
interval [t0, t1]. The object is culled whenever t1 < d . It suffices now to compute the
projection interval for each object of interest.

15.7.1 Oriented Boxes

Let the oriented box have center C, orthonormal axis directions Ui, and extents ei

for 0 ≤ i ≤ 2. The box is culled if all its vertices are outside the plane. The obvious
algorithm of testing if all eight vertices are on the negative side of the plane requires
eight comparisons of the form N . P < d . The vertices are written in box coordinates
as

P = C ± e0U0 ± σ1e1U1 ± e2U2

The projections are

N . P = N . C ± e0N . U0 ± e1N . U1 ± e2N . U2 (15.1)

The four dot products are computed once, each dot product using three multiplica-
tions and two additions. Each test requires an additional three multiplications and
four additions. The eight tests therefore require 76 operations. The projection inter-
val is computed by selecting the minimum and maximum values for N . P.

A faster algorithm is to determine the extreme points for the box in the direction
of N. Geometrically, the extreme points are corners if N is not parallel to any box
axis; an entire edge when N is perpendicular to one axis but not to the other two
axes; or an entire face when N is parallel to a box axis. In all cases, (at least) two
vertices are extreme. Algebraically, the idea is to analyze the expression for N . P.
To make N . P as large as possible, in Equation (15.1) choose the signs on each of
the three terms to make xiN . Ui as large as possible. It is not actually necessary to
write code to do this. What matters to us is the largest value, which must be the
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absolute values of the terms. The same is true for the smallest value. The interval
of projection is

[N . C − r , N . C + r], r = e0|N . U0| + e1|N . U1| + e2|N . U2|
Computing r requires four dot products, three multiplications, and three additions
for a total operation count of 26, clearly less expensive than projecting all the vertices
and selecting the extreme values. The pseudocode is

bool Culled (Box box, Plane plane)
{

r = box.e[0] * |Dot(plane.N,box.U[0])| +
box.e[1] * |Dot(plane.N,box.U[1])| +
box.e[2] * |Dot(plane.N,box.U[2])|;

return Dot(plane.N,box.C) + r < plane.d;
}

15.7.2 Spheres

Let the sphere have center C and radius r . The extreme points of the sphere in the
normal direction are C ± rN. The projection of the sphere onto a normal line is

[N . C − r , N . C + r]

The pseudocode is

bool Culled (Sphere sphere, Plane plane)
{

return Dot(plane.N,sphere.C) + sphere.r < plane.d;
}

15.7.3 Capsules

Let the capsule segment have center C, direction D, and extent e. Let the capsule
radius be r . Since the capsule is a convex object, the minimum and maximum pro-
jected values are determined by the projections of the spheres at the endpoints of
the segment. Each sphere has two extreme points in the normal direction, all four
represented by

C ± eD ± rN

The projection interval is

[N . C − e|N . D| − r , N . C + e|N . D| + r]



15.7 Culling Objects by Planes 713

The pseudocode is

bool Culled (Capsule capsule, Plane plane)
{

float r = capsule.r + capsule.e * |Dot(plane.N,capsule.D)|;
return Dot(plane.N,capsule.C) + r < plane.d;

}

15.7.4 Lozenges

Let the lozenge rectangle have center C, directions D0 and D1, and extents e0 and e1.
Let the lozenge radius be r . Since the lozenge is a convex object, the minimum and
maximum projected values are determined by the projections of the spheres at the
corners of the rectangle. Each sphere has two extreme points in the normal direction,
all eight represented by

C ± e0D0 ± e1D1 ± rN

The projection interval is

[N . C − e0|N . D0| − e1|N . D1| − r , N . C + e0|N . D0| + e1|N . D1| + r]

The pseudocode is

bool Culled (Lozenge lozenge, Plane plane)
{

float r = lozenge.r +
lozenge.e[0] * |Dot(plane.N,lozenge.D[0])| +
lozenge.e[1] * |Dot(plane.N,lozenge.D[1])|;

return Dot(plane.N,lozenge.C) + r < plane.d;
}

15.7.5 Ellipsoids

An ellipsoid is represented by the quadratic equation

Q(X) = (X − C)TM(X − C) = 1

where C is the center of the ellipsoid, M is a positive definite matrix, and X is any
point on the ellipsoid. Figure 15.8 shows the projected interval for an ellipsoid but
translated by subtracting the plane constant.

The projection interval is

[N . C − r , N . C + r]
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N

C

0

Frustum side

C + sN

N•C – d – r N•C – d + rN•C – d

Figure 15.8 Projection of ellipsoid and frustum plane, no-cull case.

The construction of r is as follows. The points X that project to the endpoints of the
interval must occur where the normals to the ellipsoid are parallel to N. The gradient
of Q(X) is a normal direction for the point, ∇Q = 2M(X − C). Thus, X must be a
solution to M(X − C) = λN for some scalar λ. Inverting M and multiplying yields
X − C = λM−1N. Replacing this in the quadratic equation yields

1 = λ2(M−1N)TM(M−1N) = λ2NTM−1N

Finally,

r = N . (X − C) = λNTM−1N

so r = √
NTM−1N. The pseudocode is

bool Culled (Ellipsoid ellipsoid, Plane plane)
{

float NdCmD = Dot(plane.N,ellipsoid.C) - plane.d;
if (NdCmD < 0)
{

float rSqr = Dot(plane.N,ellipsoid.Minverse * plane.N);
return NdCmD * NdCmD >= rSqr;

}
return false;

}
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The pseudocode is structured to compute r2 to avoid the square root calculation and
to avoid computing r2 at all if the center of the ellipsoid is on the frustum side of the
plane. The inverse of M is assumed to have been precomputed for use in such queries.

15.7.6 Cylinders

The finite cylinder has center C, axis direction D, height h, and radius ρ. Points in
the cylinder are parameterized by

X(t , θ) = C + tD + ρ((cos θ)U + (sin θ)V)

for |t | ≤ h/2 and θ ∈ [0, 2π), and where {U, V , D} is an orthonormal set. The pro-
jections onto the normal line are

N . X(t , θ) = N . C + tN . D + ρ((cos θ)N . U + (sin θ)N . V)

The projection interval is

[N . C − r , N . C + r]

where

r = (h/2)|N . D| + ρ
√

(N . U)2 + (N . V)2 = (h/2)|N . D| + ρ
√

1 − (N . D)2

The square root term appears because the choice for (cos θ , sin θ) to maximize the
dot product

(cos θ , sin θ) . (N . U, N . V)

is a unit-length vector in the direction of the other vector:

(cos θ , sin θ) = (N . U, N . V)

|(N . U, N . V)| =√
(N . U, N . V)

I have also used the identity (N . U)2 + (N . V)2 + (N . D)2 = 1 since N is unit length
in any orthonormal coordinate system. The pseudocode for the culling is

bool Culled (Cylinder cylinder, Plane plane)
{

float NdD = Dot(plane.N,cylinder.D);
float r = 0.5 * h * |NdD| + cylinder.r * sqrt(1 - NdD * NdD);
return Dot(plane.N,cylinder.C) + r < plane.d;

}
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(a) C extreme (b) C not extreme

N • C N • C + r N • K – s N • K + sN • K
N

N⊥

C C

D
D

K

Figure 15.9 (a) The cone vertex (C) is an extreme point in the normal direction. (b) The cone
vertex is not an extreme point in the normal direction.

15.7.7 Cones

The truncated cone has vertex C, axis direction D, angle θ , and height h. The trun-
cating plane is D . (X − C) = h. The radius of the end disk on the truncation plane
is ρ = h tan θ . The cone points are parameterized by

X(t , φ) = P + tD + (t tan θ)(cos φU + sin φV)

for 0 ≤ t ≤ h and φ ∈ [0, 2π), and where {U, V , D} is an orthonormal set. The
projections onto the normal line are

N . X(t , φ) = N . C + tN . D + (t tan θ)((cos φ)N . U + (sin φ)N . V)

The extreme values are slightly more complicated to extract. They depend on
whether the cone vertex projects to one of the extrema. Figure 15.9 illustrates the
possibilities. The extreme points of the cone depend on the angle that D forms with
the unit-length vector N⊥, which is a vector perpendicular to N and has the property
D . N⊥ ≥ 0. In fact, some vector algebra shows that

D . N⊥ =
√

1 − (N . D)2

The intersection of the cone axis and the cone disk cap is the point K = C + hD. The
scalar values in the figure are

s = (h tan θ)
√

1 − (N . D)2, r = h|N . D| + s
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The projection interval I is

I =
⎧⎨
⎩

[N . C − r , N . C] , D . N⊥ < cos θ , D . N < 0
[N . C, N . C + r] , D . N⊥ < cos θ , D . N > 0
[N . K − s , N . K + s] , D . N⊥ ≥ cos θ

The pseudocode for culling is

bool Culled (Cone cone, Plane plane)
{

float NdC = Dot(plane.N,cone.C);
float NdD = Dot(plane.N,cone.D);
if (root >= cone.cosTheta && NdD < 0)
{

return NdC < plane.D;
}
float root = sqrt(1 - NdD * NdD);
float r = h * NdD + cone.h * cone.tanTheta * root;
return NdC + r < plane.d;

}

Exercise
15.4

Prove that

D . N⊥ =
√

1 − (N . D)2

Hint: Project out the N component from D and normalize the result to obtain N⊥.

15.7.8 Convex Polygons or Convex Polyhedra

The projection interval for these objects may be computed by projecting the vertices
and selecting the extreme values. The projection interval is[

min
i

N . Pi , max
i

N . Pi

]
The object is culled whenever

max
i

N . Pi < d

where d is the plane constant. If the convex polyhedron has a sufficiently large num-
ber of vertices, then the BSP-tree-based extremal query discussed in Section 8.1.1 may
be used to compute the projection interval.
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Numerical Methods

This chapter describes various numerical methods that are generally useful in
computer graphics. Many of these are specifically useful in real-time game

engines.

16.1 Systems of Equations

The two types of systems that arise often in graphics applications are linear systems
and polynomial systems. Linear systems are written in the form AX = b for n × n

matrix A and n × 1 vectors X and b. Both A and b are known. The unknowns are the
components of X. Polynomial systems are written in the form pi(X) = 0 for 0 ≤ i < n

for n × 1 vector X and where pi is a polynomial function.

16.1.1 Linear Systems

The standard approach to solving linear systems is Gaussian elimination with some
type of pivoting. Standard numerical methods textbooks cover this topic in detail
[BF01]. Numerical Recipes in C [PFTV88] also has good coverage. For more advanced
topics on matrix systems, see [GL93].

For a 3 × 3 system, one symbolic method that is typically taught for solving
the system uses the method of cofactors to invert A. If A is invertible, then A−1 =
AAdj/ det(A), where AAdj is the adjoint matrix, the transpose of the matrix of cofac-
tors for A. The solution to the system is

719
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⎡
⎣ x0

x1
x2

⎤
⎦= 1

det(A)

⎡
⎣ a11a22 − a12a21 a02a21 − a01a22 a01a12 − a02a11

a12a20 − a10a22 a00a22 − a02a20 a02a10 − a00a12
a10a21 − a11a20 a01a20 − a00a21 a00a11 − a01a10

⎤
⎦
⎡
⎣ b0

b1
b2

⎤
⎦

where

det(A) = a00(a11a22 − a12a21) + a01(a12a20 − a10a22) + a02(a10a21 − a11a20)

For n × n systems, the method of cofactors to invert A is O(n!). Gaussian elimi-
nation is O(n3), so it is not difficult to see that Gaussian elimination is faster as n gets
large. Moreover, the numerical stability of elimination algorithms is greatly desired.
However, for n = 3, the asymptotic analysis is not particularly relevant. On most plat-
forms, inversion of a 3 × 3 matrix is faster using cofactors than Gaussian elimination
because a generic Gaussian elimination package requires some overhead, in particu-
lar loop iterations, which costs cycles. The speedup by using cofactors can be quite
significant.

16.1.2 Polynomial Systems

Consider first the example of determining where two circles intersect in the plane.
The equations for the circles are (x − x0)

2 + (y − y0)
2 = r2

0 and (x − x1)
2 + (y −

y1)
2 = r2

1 . The intersections (if any) are those (x , y) that solve both equations simul-
taneously. From the geometry there is either no solution (circles are disjoint), one
solution (circles are tangent to each other), two solutions (circles interpenetrate),
or infinitely many solutions (the circles are identical). If the circles are concentric,
x0 = x1 and y0 = y1, then there is no intersection when r0 �= r1 or infinitely many in-
tersections when r0 = r1. Otherwise, suppose that either x0 �= x1 or y0 �= y1. The two
quadratic equations can be solved by eliminating one of the variables. The second
equation is subtracted from the first to obtain the linear equation

2(x1 − x0)x + x2
0 − x2

1 + 2(y1 − y0)y + y2
0 − y2

1 = r2
0 − r2

1

If |y1 − y0| ≥ |x1 − x0|, solve for

y − y0 = r2
0 − r2

1 + (x1 − x0)
2 + (y0 − y1)

2 − 2(x1 − x0)(x − x0)

2(y1 − y0)
= a(x − x0) + b

2(y0 − y1)

Replace this in the first equation to obtain

(4(y1 − y0)
2 + a2)(x − x0)

2 + 2ab(x − x0) + b2 − 4(y1 − y0)
2r2

0 = 0

This is a quadratic equation in the single variable x and can be solved accordingly
for up to two real-valued solutions. For each solution, the corresponding value of y is
computed. The final pairs (x , y) must be tested for validity since extraneous solutions
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might have been generated because of handling both signs on the square root in the
quadratic formula.

The general problem of solving two quadratic equations in two unknowns is pre-
sented here. Given P0(x , y) = a0x

2 + b0xy + c0y
2 + d0x + e0y + f0 and P1(x , y) =

a1x
2 + b1xy + c1y

2 + d1x + e1y + f1, find all solutions to P0(x , y) = 0 and
P1(x , y) = 0. The solutions to P0(x , y) = 0 and P1(x , y) = 0 are found by elimi-
nation.

The two polynomials f (x) = α0 + α1x + α2x
2 and g(x) = β0 + β1x + β2x

2 have
a common root if and only if the Bézout determinant is zero:

(α2β1 − α1β2)(α1β0 − α0β1) − (α2β0 − α0β2)
2 = 0

and in which case the common root is

x̄ = (α2β0 − α0β2)/(α1β2 − α2β1)

The common root to f (x) = 0 and g(x) = 0 is obtained from the linear equation
β2f (x) − α2g(x) = 0. If the coefficient of x is zero, then f and g either have no
common root or are the same polynomial (modulo a constant multiplier). Replacing
the common root into f (x) = 0 yields the Bézout determinant.

The simultaneous quadratic equations are Pi(x , y) = (ai)x
2 + (biy + di)x +

(ciy
2 + eiy + fi) for i = 0, 1. The Bézout determinant is a quartic polynomial

R(y) = u0 + u1y + u2y
2 + u3y

3 + u4y
4

where

u0 = v2v10 − v2
4

u1 = v0v10 + v2(v7 + v9) − 2v3v4

u2 = v0(v7 + v9) + v2(v6 − v8) − v2
3 − 2v1v4

u3 = v0(v6 − v8) + v2v5 − 2v1v3

u4 = v0v5 − v2
1

with

v0 = a0b1 − a1b0 v4 = a0f1 − a1f0 v8 = c0d1 − c1d0

v1 = a0c1 − a1c0 v5 = b0c1 − b1c0 v9 = d0e1 − d1e0

v2 = a0d1 − a1d0 v6 = b0e1 − b1e0 v10 = d0f1 − d1f0

v3 = a0e1 − a1e0 v7 = b0f1 − b1f0

For each root ȳ to R(ȳ) = 0, solve P0(x , ȳ) = 0 for up to two values x̄. Eliminate any
extraneous solution (x̄ , ȳ) by verifying that Pi(x̄ , ȳ) = 0 for i = 0, 1.
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[WG95a] and [WG95b] discuss in detail the general handling of polynomial sys-
tems using elimination and resultants. For three or more variables, the constructions
can be quite complex.

16.2 Eigensystems

Given an n × n matrix A, an eigensystem is of the form AX = λX or (A − λI)X = 0.
It is required that there be solutions X �= 0. For this to happen, the matrix
A − λI must be noninvertible. This is the case when det(A − λI) = 0, a polyno-
mial in λ of degree n called the characteristic polynomial for A. For each root λ, the
matrix A − λI is computed, and the system (A − λI)X = 0 is solved for nonzero
solutions. Although standard linear algebra textbooks show numerous examples for
doing this symbolically, most applications require a robust numerical method for do-
ing so. In particular, if n ≥ 5, there are no closed formulas for roots to polynomials,
so numerical methods must be applied. A good reference on solving eigensystems
is [PFTV88]. An excellent reference for numerical methods relating to matrices is
[GL93]. An excellent reference for matrix analysis is [HJ85].

Most of the applications in graphics that require eigensystems have symmetric
matrices. The numerical methods are quite good for these since a full basis of eigen-
vectors is guaranteed. The standard approach is to apply orthogonal transformations,
called Householder transformations, to reduce A to a tridiagonal matrix. The QR

algorithm is applied iteratively to reduce the tridiagonal matrix to a diagonal one.
[PFTV88] and [GL93] advise using a QL algorithm with implicit shifting to be as
robust as possible.

For n = 3, the problem can be solved by simply computing the roots of
det(A − λI) = 0. Often the numerical issues can be avoided since the end result
is some visual presentation of data where the numerical error is not as important
as for applications that require high precision, but generally you want to avoid the
closed-form equations for roots because of their known nonrobustness problems.

16.2.1 Extrema of Quadratic Forms

Let A be an n × n symmetric matrix. The function Q : R
n → R defined by Q(V) =

VTAV for |V| = 1 is called a quadratic form. Since Q is defined on the unit sphere
in R

n, a compact set, and since Q is continuous, it must have a maximum and a
minimum on this set.

Let V =∑n
i=1 ciVi, where AVi = λiVi, λ1 ≤ . . . ≤ λn, and

∑n
i=1 c2

i
= 1. That is,

the λi are the eigenvalues of A, and the Vi are corresponding eigenvectors. Expanding
the quadratic yields

Q(V) =
(

n∑
i=1

ciV
T
i

)
A

⎛
⎝ n∑

j=1

cjVj

⎞
⎠=

n∑
i=1

n∑
j=1

cicjVT
i
AVj =

n∑
k=1

λkc
2
k
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The rightmost summation is a convex combination of the eigenvalues of A, so its
maximum is λn and occurs when cn = 1 and all other ci = 0. The point at which the
maximum is attained is Vn. Similarly, the minimum is λ1 and occurs when c1 = 1 and
all other ci = 0. The point at which the minimum is attained is V1.

16.2.2 Extrema of Constrained Quadratic Forms

In some applications it is desirable to find the extrema of a quadratic form defined
on the unit hypersphere Sn−1, but restricted to the intersection of this hypersphere
with a hyperplane N . x = 0 for some special normal vector N. Let A be an n × n

symmetric matrix. Let N ∈ R
n be a unit-length vector. Let {N}⊥ denote the orthogo-

nal complement of N; this is the largest-dimension vector space whose vectors are all
perpendicular to N. Define Q : {N}⊥ → R by Q(V) = VTAV, where |V| = 1. Now Q

is defined on the unit sphere in the (n − 1)-dimensional space {N}⊥, so it must have
a maximum and a minimum.

Let V1 through Vn−1 be an orthonormal basis for {N}⊥. Let V =∑n−1
i=1 ciVi,

where
∑n

i=1 c2
i
= 1. Let AVi =∑n−1

j=1 αjiVj + αniN, where αji = VT
j
AVi for 1 ≤ i ≤

n − 1 and 1 ≤ j ≤ n − 1, and where αni = NTAVi for 1 ≤ i ≤ n − 1. Expanding the
quadratic form yields

Q(V) =
(

n−1∑
i=1

ciV
T
i

)
A

⎛
⎝n−1∑

j=1

cjVj

⎞
⎠=

n−1∑
i=1

n−1∑
j=1

cicjαij = CTĀC = P(C)

where quadratic form P : Rn−1 → R satisfies the conditions for the maximization in
the last section. Thus, max Q(V) = max P(C), which occurs for C and λ such that
ĀC = λC and λ is the maximum eigenvalue of Ā. The following calculations lead to
a matrix formulation for determining the maximum value:

n−1∑
j=1

αijcj = λci

n−1∑
j=1

cjVi = λciVi

n−1∑
i=1

n−1∑
j=1

αijcjVi = λ

n−1∑
i=1

ciVi

∑
j=1

(
n−1∑
i=1

αijVi

)
cj = λV
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n−1∑
j=1

(
AVj − αnjN

)
cj = λV

A

⎛
⎝n−1∑

j=1

cjvj

⎞
⎠−

⎛
⎝n−1∑

j=1

αnjcj

⎞
⎠ N = λV

AV −
(

NTAV
)

N = λv

(I − NNT)AV = λV

Therefore, max Q(V) = λn−1 = Q(Vn−1), where λn−1 is the maximum eigenvalue
corresponding to the eigenvector Vn−1 of (I − NNT)A. Note that n − 1 of the eigen-
vectors are in {N}⊥. The remaining eigenvector is Vn = AAdjN, where AAAdj =
(det A)I and λn = 0.

16.3 Least-Squares Fitting

Least-squares fitting is the process of selecting a parameterized equation that repre-
sents a discrete set of points in a continuous manner. The parameters are estimated by
minimizing a nonnegative function of the parameters. This section discusses fitting
by lines, planes, quadratic curves, and quadric surfaces.

16.3.1 Linear Fitting of Points ( xxx , fff ( xxx ))

This is the usual introduction to least-squares fit by a line when the data represents
measurements where the y-component is assumed to be functionally dependent on
the x-component. Given a set of samples {(xi , yi)}mi=1, determine A and B so that
the line y = Ax + B best fits the samples, in the sense that the sum of the squared
errors between the yi and the line values Axi + B is minimized. Note that the error
is measured only in the y-direction.

Define E(A, B) =∑m
i=1[(Axi + B) − yi]

2. This function is nonnegative, and its
graph is a paraboloid whose vertex occurs when the gradient satisfies ∇E = (0, 0).
This leads to a system of two linear equations in A and B that can be easily solved:

(0, 0) = ∇E = 2
m∑

i=1

[(Axi + B) − yi](xi , 1)

and so [∑m
i=1 x2

i

∑m
i=1 xi∑m

i=1 xi

∑m
i=1 1

] [
A

B

]
=
[∑m

i=1 xiyi∑m
i=1 yi

]

The solution provides the least-squares solution y = Ax + B.
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16.3.2 Linear Fitting of Points Using Orthogonal Regression

It is also possible to fit a line using least-squares where the errors are measured
orthogonally to the proposed line rather than measured vertically. The following
argument holds for sample points and lines in n dimensions. Let the line be L(t) =
tD + A, where D is unit length. Define Xi to be the sample points; then

Xi = A + diD + piD
⊥
i

where di = D . (Xi − A) and D⊥
i

is some unit-length vector perpendicular to D with
appropriate coefficient pi. Define Yi = Xi − A. The vector from Xi to its projection
onto the line is

Yi − diD = piD
⊥
i

The squared length of this vector is p2
i
= (Yi − diD)2. The error function for the least-

squares minimization is E(A , D) =∑m
i=1 p2

i
. Two alternative forms for this function

are

E(A , D) =
m∑

i=1

(
YT

i
RN

[
I − DDT

]
Yi

)

and

E(A , D) = DT

(
m∑

i=1

[
(Yi

. Yi)I − YiY
T
i

])
D = DTM(A)D

Using the first form of E in the previous equation, take the derivative with respect
to A to get

∂E

∂A
= −2

[
I − DDT

] m∑
i=1

Yi

This partial derivative is zero whenever
∑m

i=1 Yi = 0, in which case A = (1/m)∑m
i=1 Xi, the average of the sample points.
Given A, the matrix M(A) is determined in the second form of the error function.

The quantity DTM(A)D is a quadratic form whose minimum is the smallest eigen-
value of M(A). This can be found by standard eigensystem solvers. A corresponding
unit-length eigenvector D completes our construction of the least-squares line.

For n = 2, if A = (a , b), then matrix M(A) is given by

M(A) =
(

m∑
i=1

(xi − a)2 +
n∑

i=1

(yi − b)2

) [
1 0
0 1

]
−
[∑m

i=1(xi − a)2 ∑m
i=1(xi − a)(yi − b)∑m

i=1(xi − a)(yi − b)
∑m

i=1(yi − b)2

]
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For n = 3, if A = (a , b, c), then matrix M(A) is given by

M(A) = δ

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

−
⎡
⎢⎣
∑m

i=1(xi − a)2 ∑m
i=1(xi − a)(yi − b)

∑m
i=1(xi − a)(zi − c)∑m

i=1(xi − a)(yi − b)
∑m

i=1(yi − b)2 ∑m
i=1(yi − b)(zi − c)∑m

i=1(xi − a)(zi − c)
∑m

i=1(yi − b)(zi − c)
∑m

i=1(zi − c)2

⎤
⎥⎦

where

δ =
m∑

i=1

(xi − a)2 +
m∑

i=1

(yi − b)2 +
m∑

i=1

(zi − c)2

16.3.3 Planar Fitting of Points ( xxx , yyy , fff ( xxx , yyy ))

Here we assume that the z-component of the data is functionally dependent on the
x- and y-components. Given a set of samples {(xi , yi , zi)}mi=1, determine A, B, and C

so that the plane z = Ax + By + C best fits the samples in the sense that the sum of
the squared errors between the zi and the plane values Axi + Byi + C is minimized.
Note that the error is measured only in the z-direction.

Define E(A, B , C) =∑m
i=1[(Axi + Byi + C) − zi]

2. This function is nonneg-
ative, and its graph is a hyperparaboloid whose vertex occurs when the gradient
satisfies ∇E = (0, 0, 0). This leads to a system of three linear equations in A, B, and
C that can be easily solved:

(0, 0, 0) = ∇E = 2
m∑

i=1

[(Axi + Byi + C) − zi](xi , yi , 1)

and so ⎡
⎢⎣
∑m

i=1 x2
i

∑m
i=1 xiyi

∑m
i=1 xi∑m

i=1 xiyi

∑m
i=1 y2

i

∑m
i=1 yi∑m

i=1 xi

∑m
i=1 yi

∑m
i=1 1

⎤
⎥⎦
⎡
⎣ A

B

C

⎤
⎦=

⎡
⎣
∑m

i=1 xizi∑m
i=1 yizi∑m
i=1 zi

⎤
⎦

The solution provides the least-squares solution z = Ax + By + C.

16.3.4 Planar Fitting of Points Using Orthogonal Regression

It is also possible to fit a plane using least-squares where the errors are measured
orthogonally to the proposed plane rather than measured vertically. The following
argument holds for sample points and, actually, for hyperplanes in n dimensions.
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Let the hyperplane be N . (X − A) = 0, where N is a unit-length normal to the
hyperplane and A is a point on the hyperplane. Define Xi to be the sample points;
then

Xi = A + λiN + piN
⊥
i

where λi = N . (Xi − A) and N⊥
i

is some unit-length vector perpendicular to N with
appropriate coefficient pi. Define Yi = Xi − A. The vector from Xi to its projection
onto the hyperplane is λiN. The squared length of this vector is λ2

i
= (N . Yi)

2. The
error function for the least-squares minimization is E(A , N) =∑m

i=1 λ2
i
. Two alter-

native forms for this function are

E(A , N) =
m∑

i=1

(
YT

i

[
NNT

]
Yi

)

and

E(A , N) = NT

(
m∑

i=1

YiY
T
i

)
N = NTM(A)N

Using the first form of E in the previous equation, take the derivative with respect to
A to get

∂E

∂A
= −2

[
NNT

] m∑
i=1

Yi

This partial derivative is zero whenever
∑m

i=1 Yi = 0, in which case A = (1/m)∑m
i=1 Xi (the average of the sample points).
Given A, the matrix M(A) is determined in the second form of the error func-

tion. The quantity NTM(A)N is a quadratic form whose minimum is the smallest
eigenvalue of M(A). This can be found by standard eigensystem solvers. A corre-
sponding unit-length eigenvector N completes our construction of the least-squares
hyperplane.

For n = 3, if A = (a , b, c), then matrix M(A) is given by

M(A) =
⎡
⎢⎣
∑m

i=1(xi − a)2 ∑m
i=1(xi − a)(yi − b)

∑m
i=1(xi − a)(zi − c)∑m

i=1(xi − a)(yi − b)
∑m

i=1(yi − b)2 ∑m
i=1(yi − b)(zi − c)∑m

i=1(xi − a)(zi − c)
∑m

i=1(yi − b)(zi − c)
∑m

i=1(zi − c)2

⎤
⎥⎦

16.3.5 Fitting a Circle to 2D Points

Given a set of points {(xi , yi)}mi=1, m ≥ 3, fit them with a circle (x − a)2 + (y −
b)2 = r2, where (a , b) is the circle center and r is the circle radius. An assumption



728 Chapter 16 Numerical Methods

of this algorithm is that not all the points are collinear. The error function to be
minimized is

E(a , b, r) =
m∑

i=1

(Li − r)2

where Li =√
(xi − a)2 + (yi − b)2. Take the partial derivative with respect to r to

obtain

∂E

∂r
= −2

m∑
i=1

(Li − r)

Setting equal to zero yields

r = 1

m

∑
i=1

Li

Take the partial derivative with respect to a to obtain

∂E

∂a
= 2

m∑
i=1

(Li − r)
∂Li

∂a
= −2

m∑
i=1

(
(xi − a) + r

∂Li

∂a

)

and take the partial derivative with respect to b to obtain

∂E

∂b
= 2

m∑
i=1

(Li − r)
∂Li

∂b
= −2

m∑
i=1

(
(yi − b) + r

∂Li

∂b

)

Setting these two derivatives equal to zero yields

a = 1

m

m∑
i=1

xi + r
1

m

m∑
i=1

∂Li

∂a

and

b = 1

m

m∑
i=1

yi + r
1

m

m∑
i=1

∂Li

∂b

Replacing r by its equivalent from ∂E/∂r = 0 and using ∂Li/∂a = (a − xi)/Li and
∂Li/∂b = (b − yi)/Li leads to two nonlinear equations in a and b:

a = x̄ + L̄L̄a =: F(a , b)

b = ȳ + L̄L̄b =: G(a , b)
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where

x̄ = 1

m

m∑
i=1

xi , ȳ = 1

m

m∑
i=1

yi ,

L̄ = 1

m

m∑
i=1

Li , L̄a = 1

m

m∑
i=1

a − xi

Li

, L̄b = 1

m

m∑
i=1

b − yi

Li

Fixed-point iteration can be applied to solving these equations: a0 = x̄, b0 = ȳ, and
ai+1 = F(ai , bi) and bi+1 = G(ai , bi) for i ≥ 0.

16.3.6 Fitting a Sphere to 3D Points

Given a set of points {(xi , yi , zi)}mi=1, m ≥ 4, fit them with a sphere (x − a)2+
(y − b)2 + (z − c)2 = r2, where (a , b, c) is the sphere center and r is the sphere
radius. An assumption of this algorithm is that not all the points are coplanar. The
error function to be minimized is

E(a , b, c, r) =
m∑

i=1

(Li − r)2

where Li =√
(xi − a)2 + (yi − b)2 + (zi − c). Take the partial derivative with re-

spect to r to obtain

∂E

∂r
= −2

m∑
i=1

(Li − r)

Setting equal to zero yields

r = 1

m

∑
i=1

Li

Take the partial derivative with respect to a to obtain

∂E

∂a
= 2

m∑
i=1

(Li − r)
∂Li

∂a
= −2

m∑
i=1

(
(xi − a) + r

∂Li

∂a

)

take the partial derivative with respect to b to obtain

∂E

∂b
= 2

m∑
i=1

(Li − r)
∂Li

∂b
= −2

m∑
i=1

(
(yi − b) + r

∂Li

∂b

)



730 Chapter 16 Numerical Methods

and take the partial derivative with respect to c to obtain

∂E

∂c
= 2

m∑
i=1

(Li − r)
∂Li

∂c
= −2

m∑
i=1

(
(zi − c) + r

∂Li

∂c

)

Setting these three derivatives equal to zero yields

a = 1

m

m∑
i=1

xi + r
1

m

m∑
i=1

∂Li

∂a

and

b = 1

m

m∑
i=1

yi + r
1

m

m∑
i=1

∂Li

∂b

and

c = 1

m

m∑
i=1

zi + r
1

m

m∑
i=1

∂Li

∂c

Replacing r by its equivalent from ∂E/∂r = 0 and using ∂Li/∂a = (a − xi)/Li,
∂Li/∂b = (b − yi)/Li, and ∂Li/∂c = (c − zi)/Li leads to three nonlinear equations
in a, b, and c:

a = x̄ + L̄L̄a =: F(a , b, c)

b = ȳ + L̄L̄b =: G(a , b, c)

c = z̄ + L̄L̄c =: H(a , b, c)

where

x̄ = 1

m

m∑
i=1

xi

ȳ = 1

m

m∑
i=1

yi

z̄ = 1

m

m∑
i=1

zi

L̄ = 1

m

m∑
i=1

Li
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L̄a = 1

m

m∑
i=1

a − xi

Li

L̄b = 1

m

m∑
i=1

b − yi

Li

L̄c = 1

m

m∑
i=1

c − zi

Li

Fixed-point iteration can be applied to solving these equations: a0 = x̄, b0 = ȳ, c0 = z̄,
and ai+1 = F(ai , bi , ci), bi+1 = G(ai , bi , ci), and ci+1 = H(ai , bi , ci) for i ≥ 0.

16.3.7 Fitting a Quadratic Curve to 2D Points

Given a set of points {(xi , yi)}ni=0, a quadratic curve of the form Q(x , y) = c0 +
c1x + c2y + c3x

2 + c4y
2 + c5xy = 0 is sought to fit the points. Given values ci that

provide the fit, any scalar multiple provides the same fit. To eliminate this degree of
freedom, require that C = (c0, . . . , c5) have unit length. Define the vector variable
V = (1, x , y , x2, y2, xy). The quadratic equation is restated as Q(V) = C . V = 0 and
is a linear equation in the space of V. Define Vi = (1, xi , yi , x2

i
, y2

i
, xiyi) for the ith

data point. While generally Q(Vi) is not zero, the idea is to minimize the sum of
squares

E(C) =
(

n∑
i=0

C . Vi

)2

= CTMC

where M =∑n
i=0 ViV

T
i

and subject to the constraint |C| = 1. Now the problem is
in the standard format for minimizing a quadratic form (see Section 16.2.1). The
minimum value is the smallest eigenvalue of M , and C is a corresponding unit-length
eigenvector. The minimum itself can be used as a measure of how good the fit is (0
means the fit is exact).

If there is reason to believe the input points are nearly circular, a minor mod-
ification can be used in the construction. The circle is of the form Q(x , y) =
c0 + c1x + c2y + c3(x

2 + y2) = 0. The same construction can be applied where
V = (1, x , y , x2 + y2) and E(C) = CTMC subject to |C| = 1.

16.3.8 Fitting a Quadric Surface to 3D Points

Given a set of points {(xi , yi , zi)}ni=0, a quadric surface of the form Q(x , y , z) =
c0 + c1x + c2y + c3z + c4x

2 + c5y
2 + c6z

2 + c7xy + c8xz + c9yz = 0 is sought to fit
the points. Just like in the previous section, C = (ci) is required to be unit length and
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V = (1, x , y , z, x2, y2, z2, xy , xz, yz). The quadratic form to minimize is E(C) =
CTMC, where M =∑2

i=0 ViV
T
i

. The minimum value is the smallest eigenvalue of M ,
and C is a corresponding unit-length eigenvector. The minimum itself can be used as
a measure of how good the fit is (0 means the fit is exact).

If there is reason to believe the input points are nearly spherical, a minor mod-
ification can be used in the construction. The sphere is of the form Q(x , y , z) =
c0 + c1x + c2y + c3z + c4(x

2 + y2 + z2) = 0. The same construction can be applied
where V = (1, x , y , z, x2 + y2 + z2) and E(C) = CTMC subject to |C| = 1.

16.4 Minimization

The generic problem is to find a global minimum for a function f : D ⊂ R
n →

R. The function is constrained to be at least continuous, and D is assumed to be
a compact set. If the function is continuously differentiable, this fact can help in
locating a minimum, but there are methods that do not require derivatives in finding
one.

16.4.1 Methods in One Dimension

Consider f : [tmin, tmax]→ R. If f is differentiable, then the global minimum must
occur either at a point where f ′ = 0 or at one of the endpoints. The squared-distance
function is quadratic and is defined on a compact interval. The minimum of that
function occurs at an interior point of the interval, in which case the closest point is
interior to the line segment or at an endpoint. Solving the problem f ′(t) = 0 may be
complicated in itself. This root-finding problem is described in Section 16.5.1.

Brent’s Method

Continuous functions that are not necessarily differentiable must attain a minimum
on a compact interval. A method to find the minimum that does not require deriva-
tives or determining where the derivative is zero when the function is differentiable is
very desirable. One such method, Brent’s method, uses inverse parabolic interpolation
in an iterative fashion.

The idea is to bracket the minimum by three points (t0, f (t0)), (tm, f (tm)), and
(t1, f (t1)) for tmin ≤ t0 < tm < t1 ≤ tmax, where f (tm) < f (t0) and f (tm) < f (t1).
This means the function must decrease for some values of t ∈ [t0, tm] and must
increase for some values of t ∈ [tm, t1], which guarantees that f has a local minimum
somewhere in [t0, t1]. Brent’s method attempts to narrow in on the local minimum,
much like the bisection method narrows in on the root of a function (see Section
16.5).
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The following is a variation of the description of Brent’s method by [PFTV88].
The three bracketing points are fit with a parabola, p(t). The vertex of the parabola
is guaranteed to lie within (t0, t1). Let f0 = f (t0), fm = f (tm), and f1 = f (t1). The
vertex of the parabola occurs at tv ∈ (t0, t1) and can be shown to be

tv = tm − 1

2

(t1 − t0)
2(f0 − fm) − (t0 − tm)2(f1 − fm)

(t1 − tm)(f0 − fm) − (t0 − tm)(f1 − fm)

The function is evaluated there, fv = f (tv). If tv < tm, then the new bracket is (t0, f0),
(tv , fv), and (tm, fm). If tv > tm, then the new bracket is (tm, fm), (tv , fv), and
(t1, f1). If tv = tm, the bracket cannot be updated in a simple way. Moreover, it is
not sufficient to terminate the iteration here, because it is simple to construct an
example where the three samples form an isosceles triangle whose vertex on the axis
of symmetry is the parabola vertex, but the global minimum is far away from that
vertex. One simple heuristic is to use the midpoint of one of the half-intervals, say,
tb = (t0 + tm)/2, evaluate fb = f (tb), and compare to fm. If fb > fm, then the new
bracket is (tb , fb), (tm, fm), and (t1, f1). If fb < fm, then the new bracket is (t0, f0),
(tb , fb), and (tm, fm). If fb = fm, the other half-interval can be bisected and the
same tests repeated. If that also produces the pathological equality case, try a random
sample from [t0, t1]. Once the new bracket is known, the method can be repeated until
some stopping criterion is met.

Brent’s method can also be modified to support derivative information [PFTV88].

16.4.2 Methods in Many Dimensions

Consider f : D ⊂ R
n → R, where D is a compact set. Typically in graphics applica-

tions, D is a polyhedron or even a Cartesian product of intervals. If f is differentiable,
then the global minimum must occur either at a point where ∇f = 0 or on the
boundary of D. In the latter case, if D is a polyhedron, then the restriction of f

to each face of D produces the same type of minimization problem, but in one less
dimension. Solving ∇f = 0 is a root-finding problem and itself may be a difficult
problem to solve.

Steepest Descent Search

Steepest descent search is a simple approach to searching for a minimum of a dif-
ferentiable function. From calculus it is known that the direction in which f has its
greatest rate of decrease is −∇f . Given an initial guess X for the minimum point, the
function φ(t) = f (X − t∇f (X)) is minimized using a 1D algorithm. If t ′ is the pa-
rameter at which the minimum occurs, then X ← X − t ′∇f (X), and the algorithm
is repeated until a stopping condition is met. The condition is typically a measure of
how different the last starting position is from the newly computed position.
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The problem with this method is that it can be very slow. The pathological case
is the minimization of a paraboloid f (x , y) = (x/a)2 + y2, where a is a very large
number. The level sets are ellipses that are very elongated in the x-direction. For
points not on the x-axis, the negative of the gradient vector tends to be nearly parallel
to the y-axis. The search path will zig-zag back and forth across the x-axis, taking its
time getting to the origin, where the global minimum occurs. A better approach is not
to use the gradient vector, but to use the conjugate direction. For the paraboloid, no
matter where the initial guess is, only two iterations using conjugate directions will
always end up at the origin. These directions in a sense encode shape information
about the level curves of the function.

Conjugate Gradient Search

This method attempts to choose a better set of directions than steepest descent for
a minimization search. Only a brief summary is given here (for more details, see
[PFTV88]). Two sequences of directions are built, a sequence of gradient directions
gi and a sequence of conjugate directions hi. The 1D minimizations are along lines
corresponding to the conjugate directions. The following pseudocode uses the Polak
and Ribiere formulation as mentioned in [PFTV88]. The function to be minimized
is E(X). The function MinimizeOn minimizes the function along the line using a 1D
minimizer. It returns the location x of the minimum and the function value fval at
that minimum.

x = initial guess;
g = -gradient(E)(x);
h = g;
while (not done)
{

line.origin = x;
line.direction = h;
MinimizeOn(line,x,fval);
if (stopping condition met)
{

return <x,fval>;
}

gNext = -gradient(E)(x);
c = Dot(gNext-g,gNext)/Dot(g,g);
g = gNext;
h = g + c * h;

}
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The stopping condition can be based on consecutive values of fval and/or on
consecutive values of x. The condition in [PFTV88] is based on consecutive function
values, f0 and f1, and a small tolerance value τ > 0,

2|f1 − f0| ≤ τ(|f0| + |f1| + ε)

for a small value ε > 0 that supports the case when the function minimum is zero.

Powell’s Direction Set Method

If f is continuous but not differentiable, then it attains a minimum on D. The
search for the minimum simply cannot use derivative information. A method to find
a minimum that does not require derivatives is Powell’s direction set method. This
method solves minimization problems along linear paths in the domain. The current
candidate for the point at which the minimum occurs is updated to the minimum
point on the current line under consideration. The next line is chosen to contain the
current point and has a direction selected from a maintained set of direction vectors.
Once all the directions have been processed, a new set of directions is computed.
This is typically all but one of the previous set, but with the first direction removed
and a new direction set to the current position minus the old position before the
line minimizations were processed. The minimizations along the lines use something
such as Brent’s method since f restricted to the line is a 1D function. The fact that
D is compact guarantees that the intersection of a line with D is a compact set.
Moreover, if D is convex (and in most applications it is), then the intersection is a
connected interval so that Brent’s method can be applied to that interval (rather than
applying it to each connected component of the intersection of a line with D). The
pseudocode for Powell’s method is

// F(x) is the function to be minimized.
n = dimension of domain;
directionSet = {d[0],..., d[n - 1]}; // usually the standard axis

// directions
x = xInitial = initial guess for minimum point;
while (not done)
{

for (i = 0; i < n; i++)
{

line.origin = x;
line.direction = d[i];
MinimizeOn(line,x,fval);

}

conjugateDirection = x - xInitial;
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if (Length(conjugateDirection) is small)
{

return <x,fval>; // minimum found
}

for (i = 0; i <= n - 2; i++)
{

d[i] = d[i + 1];
}
d[n - 1] = conjugateDirection;

\}

The function MinimizeOn is the same one mentioned in the previous section on the
conjugate gradient search.

16.5 Root Finding

Given a continuous function F : D ⊂ R
n → R

n, the problem is to find an X (or find
a set of points) for which F(X) = 0.

16.5.1 Methods in One Dimension

Given a continuous function f : [a , b]→ R, the first question is whether or not
f (r) = 0 for some r ∈ [a , b]. If f (a)f (b) < 0, then there is at least one root. How-
ever, there may be multiple roots. If a root r is computed, other analyses are required
to locate other roots. For example, if f is a polynomial and r is a root, the func-
tion can be factored as f (t) = (t − r)pg(t), where p ≥ 1 and g is a polynomial with
degree(g) = degree(f ) − p. The root-finding process is now continued with func-
tion g on [a , b].

If f (a)f (b) > 0, there is no guarantee that f has a root on [a , b]. For problems of
this type, a root-bounding preprocessing step can be used. The interval is partitioned
into ti = a + i(b − a)/n for 0 ≤ i ≤ n. If f (ti)f (ti+1) < 0 for some i, then that
subinterval is bisected to locate a root. A reasonable choice of n will be related to
what information the application knows about its function f .

Finally, it might be necessary to find roots of f : R → R, where the domain of
f is not a bounded interval. In this case, roots of f can be sought in the interval
[−1, 1]. For |t | ≥ 1, the function g(t) = f (1/t) is defined for t ∈ [−1, 1]. Roots for g

are sought on [−1, 1]. If g(r) = 0, then f (1/r) = 0.
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Bisection

Bisection is the process of finding a root to a continuous function f : [a , b]→ R by
bracketing a root with an interval, then successively bisecting the interval to narrow in
on the root. Suppose that initially f (a)f (b) < 0. Since f is continuous, there must
be a root r ∈ (a , b). The midpoint of the interval is m = (a + b)/2. The function
value f (m) is computed and compared to the function values at the endpoints. If
f (a)f (m) < 0, then the subinterval (a , m) brackets a root and the bisection process
is repeated on that subinterval. If f (m)f (b) < 0, the subinterval (m, b) brackets a
root and the bisection process is repeated instead on that subinterval. If f (m) = 0
or is zero within a specified tolerance, the process terminates. A stopping condition
might also be based on the length of the current subinterval—that is, if the length
becomes small enough, terminate the algorithm. If a root exists on [a , b], bisection is
guaranteed to find it. However, the rate of convergence is slow.

Newton’s Method

Given a differentiable function f : R → R, an initial guess is chosen about where f

is zero, (x0, f (x0)). The tangent line to the graph at this point is used to update the
estimate to a (hopefully) better one. The tangent line is y − f (x0) = f ′(x0)(x − x0)

and intersects the x-axis at (0, x1), so −f (x0) = f ′(x0)(x1 − x0). Assuming f ′(x0) �=
0, solving for x1 yields

x1 = x0 − f (x0)

f ′(x0)

The next point in the iteration is (x1, f (x1)) and the process is repeated until a
stopping condition is met, typically one based on closeness of the function value to
zero. Unlike bisection, the iterations are not guaranteed to converge, but if there is
convergence, it is at a faster rate. Success depends a lot on the initial guess for x0.

Polynomial Roots

A polynomial of degree n is f (t) =∑n
i=0 ait

n, where an �= 0. While standard root
finders may be applied to polynomials, a better approach takes advantage of the
nature of such functions. For 2 ≤ n ≤ 4, there are closed-form equations for the
roots of the polynomial. Direct application of the formulas is possible, but numer-
ical problems tend to occur, particularly when the polynomial has a root of mul-
tiplicity larger than 1. For example, the roots of a quadratic f (t) = at2 + bt + c

are t = (−b ± √
b2 − 4ac)/(2a). If b2 − 4ac = 0, the quadratic has a double root

t = −b/(2a). However, numerical round-off errors might cause b2 − 4ac = −ε < 0
for very small ε. Another condition that leads to numerical problems is if a is nearly
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zero. If so, it is possible to solve g(t) = t2f (1/t) = ct2 + bt + a = 0 and get t =
(−b ± √

b2 − 4ac)/(2c). But the problem still exists if c is also nearly zero. Similar
problems occur with the formulas for cubic and quartic polynomials.

An approach based on iteration schemes is to attempt to bracket the roots in a
way that each bracketing interval contains exactly one root. For each such interval,
bisection can be applied to find the root. A hybrid scheme is also possible that mixes
bisection steps with Newton steps; the bisection step is used only when the Newton
step generates an iterate outside the current bracketing interval. The hope is that the
Newton iterates converge quickly to the root, but if they appear not to, bisection
attempts to generate better initial guesses for the Newton iteration.

Bounding Roots by Derivative Sequences

A simple approach to the bracketing problem is to partition R into intervals, with
the polynomial f (t) monotone on each interval. If it can be determined where the
derivative of the polynomial is zero, this set provides the partition. If di and di+1
are consecutive values for which f ′(di) = f ′(di+1) = 0, then either f ′(t) > 0 on
(di , di+1) or f ′(t) < 0 on (di , di+1). In either case, f can have at most one root on the
interval. The existence of this root is guaranteed by the condition f (di)f (di+1) < 0
or f (di) = 0 or f (di+1) = 0.

Solving f ′(t) = 0 requires the same techniques as solving f (t) = 0. The difference
is that degree(f ′) = degree(f ) − 1. A recursive implementation is warranted for
this problem; the base case is the constant polynomial that is either never zero or
identically zero on the real line.

If f ′(t) �= 0 for t ∈ (−∞, d0), it is possible that f has a root on the semi-infinite
interval (−∞, d0]. Bisection does not help locate a root, because the interval is un-
bounded. However, it is possible to determine the largest bounded interval that con-
tains the roots of a polynomial. The construction relies on the concepts of spectral
radius and norm of a matrix [HJ85]. Given a square matrix A, the spectral radius,
denoted ρ(A), is the maximum of the absolute values of the eigenvalues for the ma-
trix. A matrix norm of A, denoted ‖A‖, is a scalar-valued function that must satisfy
the five conditions: ‖A‖ ≥ 0, ‖A‖ = 0 if and only if A = 0, ‖cA‖ = |c|‖A‖ for any
scalar c, ‖A + B‖ ≤ ‖A‖ + ‖B‖, and ‖AB‖ ≤ ‖A‖‖B||. The relationship between
the spectral radius and any matrix norm is ρ(A) ≤ ‖A‖. Given f (t) =∑n

i=0 ait
i,

where an = 1, the companion matrix is

A =

⎡
⎢⎢⎢⎢⎣

−an−1 −an−2
. . . −a1 −a0

1 0 . . . 0 0
0 1 . . . 0 0...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦

The characteristic polynomial is f (t) = det(A − tI ), so the roots of f are the
eigenvalues of A. The spectral norm therefore provides a bound for the roots. Since
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there are lots of matrix norms to choose from, there are many possible bounds. One
such bound is Cauchy’s bound,

|t | ≤ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|} = 1 + max{|a0|, . . . , |an−1|}
Another bound that can be obtained is the Carmichael and Mason bound,

|t | ≤
√√√√1 +

n−1∑
i=0

|ai|2

If a0 �= 0, then f (0) �= 0, so the roots of f are bounded away from zero. It is possible
to construct lower bounds by using g(t) = [tnf (1/t)]/a0. The roots of g(t) are the
reciprocal roots of f (t). Cauchy’s bound applied to g(t), then taking reciprocals, is

|t | ≥ |a0|
1 + max{1, |a1|, . . . , |an−1|}

The Carmichael and Mason bound is

|t | ≥ |a0|√
1 +∑n−1

i=0 |ai|2

These bounds are used in the recursive call to determine where f (t) is monotone.
The polynomial can be factored f (t) = tpg(t), where p ≥ 0 and g is a polynomial for
which g(0) �= 0. If p = 0, then f = g, and f is processed for 0 < a ≤ |t | ≤ b, where
a and b are bounds computed from the previously mentioned inequalities. If p > 0,
then g is processed on the intervals obtained by using the bounds from the same
inequalities.

Bounding Roots by Sturm Sequences

Consider a polynomial f (t) defined on interval [a , b]. A Sturm sequence for f is
a set of polynomials fi(t), 0 ≤ i ≤ m, such that degree(fi+1) > degree(fi) and the
number of distinct real roots for f in [a , b] is N = s(a) − s(b), where s(a) is the
number of sign changes of f0(a), . . . , fm(a) and s(b) is the number of sign changes
of f1(b), . . . , fm(b). The total number of real-valued roots of f on R is s(−∞) −
s(∞). It is not always the case that m = degree(f ).

The classic Sturm sequence is f0(t) = f (t), f1(t) = f ′(t), and fi(t) =
−remainder(fi−2/fi−1) for i ≥ 2. The polynomials are generated by this method
until the remainder term is a constant. An instructive example from the article by
D. G. Hook and P. R. McAree in [Gla90] is f (t) = t3 + 3t2 − 1. The Sturm sequence
is f0(t) = t3 + 3t2 − 1, f1(t) = 3t2 + 6t , f2(t) = 2t + 1, and f3 = 9/4. Table 16.1
lists the signs of the Sturm polynomials for various t-values. Letting N(a , b) de-
note the number of real-valued roots on the interval (a , b), the table shows that
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Table 16.1 Signs of the Sturm polynomials for t3 + 3t2 − 1 at various t-values.

t Sign f0(t) Sign f1(t) Sign f2(t) Sign f3(t) Sign Changes

−∞ − + − + 3

−3 − + − + 3

−2 + 0 − + 2

−1 + − − + 2

0 − 0 + + 1

+1 + + + + 0

+∞ + + + + 0

Table 16.2 Signs of the Sturm polynomials for (t − 1)3 at various t-values.

t Sign f0(t) Sign f1(t) Sign f2(t) Sign Changes

−∞ − + 0 1

0 − + 0 1

+∞ + + 0 0

N(−∞, −3) = 0, N(−3, −2) = 1, N(−2, −1) = 0, N(−1, 0) = 1, N(0, 1) = 1, and
N(1, ∞) = 0. Moreover, the number of negative real roots is N(−∞, 0) = 2, the
number of positive real roots is N(0, ∞) = 1, and the total number of real roots is
N(−∞, ∞) = 3.

The next example shows that the number of polynomials in the Sturm sequence
is not necessarily degree(f ) + 1. The function f (t) = (t − 1)3 has a Sturm sequence
f0(t) = (t − 1)3, f1(t) = 3(t − 1)2, and f2(t) ≡ 0 since f1 exactly divides f0 with no
remainder. Table 16.2 lists sign changes for f at various t-values. The total number
of real roots is N(−∞, ∞) = 1.

16.5.2 Methods in Many Dimensions

Root finding in many dimensions is a more difficult problem than it is in one dimen-
sion. Two simple algorithms are summarized here: bisection and Newton’s method.
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Bisection

The bisection method for one dimension can be extended to multiple dimensions. Let
(f , g) : [a , b]× [c, d]→ R

2. The problem is to find a point (x , y) ∈ [a , b]× [c, d]
for which (f (x , y), g(x , y)) = (0, 0). A quadtree decomposition of [a , b]× [c, d]
can be used for the root search. Starting with the initial rectangle, f and g are
evaluated at the four vertices:

If either f or g has the same sign at the four vertices, the algorithm stops process-
ing that region.

If both f and g have a sign change at the vertices, they are evaluated at the center
point of the region. If the values at the center are close enough to zero, that point
is returned as a root and the search is terminated in that region.

If the center value is not close enough to zero, the region is subdivided into
four subregions by using the original four vertices, the midpoints of the four
edges, and the center point. The algorithm is recursively applied to those four
subregions.

It is possible that when a region is not processed further because f or g has the
same sign at all four vertices, the region really does contain a root. The issue is the
same as for one dimension—the initial rectangle needs to be partitioned to locate
subrectangles on which a root is bound. The bisection method can be applied to each
subrectangle that contains at least one root.

For three dimensions, an octree decomposition is applied in a similar way. For n

dimensions, a 2n-tree decomposition is used.

Newton’s Method

Given differentiable F : R
n → R

n, the equation F(X) = 0 can be solved by the ex-
tension of Newton’s method in one dimension. The iteration scheme that directly
generalizes the method is to select an initial guess (X0, F(X0)) and generate the next
iterate by

X1 = X0 − (DF(X0))
−1F(X0)

The quantity DF(X) is the matrix of partial derivatives of F, called the Jacobian
matrix, and has entries ∂Fi/∂xj , where Fi is the ith component of F and xj is the
j th component of X. Each iterate requires a matrix inversion. Although the obvious
extension, it is not always the best to use. There are variations on the method that
work much better in practice, some of which use splitting methods that avoid having
to invert a matrix and usually have better convergence behavior.
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16.6 Integration

Two standard methods are presented here for numerical integration, Romberg inte-
gration and Gaussian quadrature [BF01]. Either one is useful for graphics applica-
tions, for example, in computing the inverse arc length integral when reparameteriz-
ing by arc length.

16.6.1 Romberg Integration

Romberg integration is an excellent choice for numerical integration that is based on
extrapolation methods and the trapezoid rule.

Richardson Extrapolation

The Richardson extrapolation method is very powerful. The key idea is to get high-
order accuracy by using low-order formulas. Not only is it used in Romberg integra-
tion, but it is also used in the adaptive Runge-Kutta differential equation solvers.

Let Q be an unknown quantity approximated by A(h) with approximation error
of order O(h2). That is,

Q = A(h) + C1h
2 + O(h4) = A(h) + O(h2) (16.1)

for some constant C1. This formula can be used to produce a (possibly) more accurate
approximation. Replacing h by h/2 in the formula yields

Q = A

(
h

2

)
+ C1

4
h2 + O(h4) (16.2)

Taking 4 times Equation (16.2) and subtracting Equation (16.1), then dividing by 3
yields

Q =
4A

(
h
2

)
− A(h)

3
+ O(h4) (16.3)

The goal is for the O(h4) terms in Equations (16.1) and (16.3) to be about the same
size. If so, Equation (16.3) is more accurate since it does not have the h2 term in it.

Define A1(h) = A(h) and A2(h) = (4A1(h/2) − A1(h))/3. Other approximations
can be written in an extrapolation table:
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A1(h)

A1

(
h

2

)
A2(h)

A1

(
h

4

)
A2

(
h

2

)

A1

(
h

8

)
A2

(
h

4

)
...

...

A1

(
h

2n

)
A2

(
h

2n−1

)

The approximation A1(h/2k) is of order O(h2), and the approximation A2(h/2k) is
of order O(h4).

If the original approximation is written as

Q = A(h) + C1h
2 + C2h

4 + O(h6)

then the extrapolation table has an additional column:

A1(h)

A1

(
h

2

)
A2(h)

A1

(
h

4

)
A2

(
h

2

)
A3(h)

A1

(
h

8

)
A2

(
h

4

)
A3

(
h

2

)
...

...
...

A1

(
h

2n

)
A2

(
h

2n−1

)
A3

(
h

2n−2

)

where

A3(h) =
16A2

(
h
2

)
− A2(h)

15

The approximation A3(h/2k) is of order O(h6).



744 Chapter 16 Numerical Methods

In general, the extrapolation table is an n × m lower triangular matrix T = [Trc],
where

Trc = Ac

(
h

2r−1

)

and

Ac(h) =
4c−1Ac−1

(
h
2

)
− Ac−1(h)

4c−1 − 1

Trapezoid Rule

An approximation for
∫ b

a
f (x) dx can be computed by first approximating f (x) by

the linear function

L(x) = x − b

a − b
f (a) + x − a

b − a
f (b)

and using h[f (b) + f (a)]/2 = ∫ b

a
L(x) dx .= ∫ b

a
f (x) dx. Some calculus shows that

∫ b

a

f (x) dx = f (b) + f (a)

2
h + O(h3)

When f (x) > 0, the approximation is the area of a trapezoid with vertices at (a , 0),
(a , f (a)), (b, 0), and (b, f (b)).

The integration interval [a , b] can be divided into N subintervals over which the
integration can be composited. Define h = (b − a)/N and xj = a + jh for 0 ≤ j ≤
N . It can be shown that

∫ b

a

f (x) dx = h

2

⎡
⎣f (a) + 2

N−1∑
j=1

f (xj) + f (b)

⎤
⎦+ O(h2)

Note that the order of the approximation decreases by a power of one.

The Integration Method

Romberg integration uses the trapezoid rule to obtain preliminary approximations
to the integral followed by Richardson extrapolation to obtain improvements.

Define hk = (b − a)/2k−1 for k ≥ 1. The trapezoidal approximations correspond-
ing to the interval partitions are
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Tk , 1 = hk

2

⎡
⎣f (a) + 2

⎛
⎝2k−1−1∑

j=1

f (a + jhk)

⎞
⎠+ f (b)

⎤
⎦

and so ∫ b

a

f (x) dx = Tk , 1 + O(h2
k
)

for all k ≥ 1. The following recursion formula can be shown to hold:

2Tk , 1 = Tk−1, 1 + hk−1

2k−2∑
j=1

f (a + (j − 0.5)hk−1) (16.4)

for k ≥ 2.
Richardson extrapolation can be applied; that is, generate the table

Ti , j = 4j−1Ti , j−1 − Ti−1, j−1

4j−1 − 1

for 2 ≤ j ≤ i. It can be shown that

lim
k→∞ Tk , 1 =

∫ b

a

f (x) dx if and only if lim
k→∞ Tk , k =

∫ b

a

f (x) dx

The second limit typically converges much faster than the first. The idea now is to
choose a value n and use Tn, n as an approximation to the integral. The code is

float RombergIntegral (float a, float b, float (*F)(float))
{

const int order = 5;

float rom[2][order];
float h = b - a;

// Initialize T_{1,1} entry.
rom[0][0] = h * (F(a) + F(b))/2;

for (int i = 2, ipower = 1; i <= order; i++, ipower *= 2, h /= 2)
{

// Calculate summation in recursion formula for T_{k,1}.
float sum = 0;
for (int j = 1; j <= ipower; j++)

sum += F(a + h * (j - 0.5));
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// trapezoidal approximations
rom[1][0] = (rom[0][0] + h * sum)/2;

// Richardson extrapolation
for (int k = 1, kpower = 4; k < i; k++, kpower *= 4)

rom[1][k] = (kpower * rom[1][k - 1] - rom[0][k - 1])/(kpower - 1);

// Save extrapolated values for next pass.
for (j = 0; j < i; j++)

rom[0][j] = rom[1][j];
}

return rom[0][order - 1];
}

The value order is arbitrarily chosen to be 5. Increasing the order will generally give
better estimates, but at increased execution time. The values of Ti , j are stored in
rom[2][order]. Note that not all the values must be saved to build the next ones (so
the first dimension of rom does not have to be order). This follows from the recursion
given in Equation (16.4).

16.6.2 Gaussian Quadrature

Gaussian quadrature approximates a definite integral,

∫ b

a

f (x) dx .=
n∑

i=1

cif (xi)

for some choice of constants ci and values xi ∈ [a , b]regardless of what f is. If a = −1
and b = 1, the optimal choices for ci and xi are related to the Legendre polynomial of
degree n. The xi are the roots of that polynomial on (−1, 1), and the ci are given by

ci =
∫ 1

−1

n∏
j=1, j �=i

x − xj

xi − xj

dx

The original problem can be transformed so that the quadrature formula applies. Let
t = (2x − a − b)/(b − a), then

∫ b

a

f (x) dx =
∫ 1

−1
f

(
(b − a)t + b + a

2

)
b − a

2
dt = b − a

2

∫ 1

−1
g(t) dt
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The implementation of Gaussian quadrature amounts to selecting n, storing
the tabulated values for ci and xi statically, and simply evaluating ((b − a)/2)∑n

i=1 cig(ti).

16.7 Differential Equations

Differential equations are used to model physical systems that depend on rates of
change of various quantities in the system. Ordinary differential equations have a
single independent variable, usually time. Partial differential equations have multiple
independent variables, usually including time and spatial variables. This section gives
a brief overview of each type of equation.

16.7.1 Ordinary Differential Equations

A first-order system of ordinary differential equations is of the form

dX(t)

dt
= F(t , X(t))

where F : R × R
n → R. The system is said to be autonomous if F does not depend ex-

plicitly on t , F = F(X). An initial value problem supplies an initial condition X(t0) =
X0 and time interval t ≥ t0. Under reasonable conditions on F, the initial value prob-
lem has a unique solution for some range of t-values near the initial time t0. The
system of equations is explicit in that the first-derivative term occurs explicitly in the
equation (the left-hand side). An implicit equation is of the form G(t , X , X′) = 0.

A second-order system of ordinary differential equations is of the form

d2X(t)

dt2
= F(t , X(t), dX(t)/dt)

An initial value problem supplies the initial conditions X(t0) = X0 and dX(t0)/dt =
D0 and a time interval t ≥ t0. A two-point boundary value problem supplies an initial
condition and final condition, X(t0) = X0 and X(t1) = X1 for t ∈ [t0, t1]. The system
of equations is explicit in that the second-derivative term occurs explicitly in the
equation. An implicit equation is of the form G(t , X , X′, X′′) = 0. It is possible to
reduce a second-order system to a first-order system that has more variables. Setting
Y = X′, the explicit system with n equations (the number of components of X) is
converted to a system with 2n equations, the number of components of the vector
Z = (X , Y):

dZ

dt
= d(X , Y)

dt
=
(

dX

dt
,
dY

dt

)
= (Y , F(t , X , Y)) = G(t , Z)
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The solution Z(t) has 2n components, but only the first n matter for the original
problem. The last n just list the derivatives of the first n.

Second-order equations arise in physics problems, a topic that has gained a lot of
popularity in games. Realistic collision response requires solving second-order, initial
value differential equations, so it is necessary to understand what these equations
are and how to solve them. The rest of this section presents a few standard methods
for solving initial value systems. A problem such as minimum weight pathfinding—
for example, the shortest distance between two points on a surface—requires solving
second-order, boundary value differential equations. This is a more difficult problem
to solve and requires either shooting methods or relaxation methods, which are not
discussed here (see [BF01]).

Euler’s Method

The easiest differential equation solver is Euler’s method. The initial value is (t0, X0).
Successive approximations (ti , Xi) for i > 0 are generated by using a first-order for-
ward difference to approximate the first derivative:

Xi+1 = Xi + hF(ti , Xi)

ti+1 = ti + h

where h > 0 is a sufficiently small step size.

Midpoint Method

The midpoint method is a second-order Runge-Kutta algorithm. The initial value is
(t0, X0). Successive approximations (ti , Xi) for i > 0 are generated by

A1 = F(ti , Xi)

A2 = F(ti + h/2, Xi + hA1/2)

Xi+1 = Xi + hA2

ti+1 = ti + h

Runge-Kutta Fourth-Order Method

The Runge-Kutta fourth-order method has good accuracy. The initial value is
(t0, X0). Successive approximations (ti , Xi) for i > 0 are generated by
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A1 = F(ti , Xi)

A2 = F(ti + h/2, Xi + hA1/2)

A3 = F(ti + h/2, Xi + hA2/2)

A4 = F(ti + h, Xi + hA3)

Xi+1 = Xi + h

6
(A1 + 2A2 + 2A3 + A4)

ti+1 = ti + h

Runge-Kutta with Adaptive Step

For some data sets, it is possible to dynamically adjust the step size h to reduce the
total number of steps to get to a desired final time. The following algorithm is fifth
order and adjusts the step size accordingly.

1. Take two half-steps:

A1 = F(ti , Xi)

A2 = F(ti + h/4, Xi + hA1/4)

A3 = F(ti + h/4, Xi + hA2/4)

A4 = F(ti + h/2, Xi + hA3/2)

Xinter = Xi + h

12
(A1 + 2A2 + 2A3 + A4)

and

B1 = F(ti + h/2, Xinter)

B2 = F(ti + 3h/4, Xinter + hB1/4)

B3 = F(ti + 3h/4, Xinter + hB2/4)

B4 = F(ti + h, Xinter + hB3/2)

Xhalf = Xinter + h

12
(B1 + 2B2 + 2B3 + B4)
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2. Take a full step:

C1 = F(ti , Xn)

C2 = F(ti + h/2, Xi + hC1/2)

C3 = F(ti + h/2, Xi + hC2/2)

C4 = F(ti + h, Xi + hC3)

Xfull = Xi + h

6
(C1 + 2C2 + 2C3 + C4)

3. Compute the fractional error term �, where ε > 0 is a constant specified by the
user:

� = 1

ε
max

i

∣∣∣∣ (Xhalf )i − (Xfull)i

hFi(tn, xn) + ε0

∣∣∣∣
where ε0 is a very small positive number that protects against the case Fi(tn,
xn) = 0, in which case � becomes a very large positive number. The choice of
ε is crucial. Its value can be selected by experimentation in a specific application.

4. If � ≤ 1, then the iteration is successful. The step size h is used and the next
iterates are

Xi+1 = Xhalf + 1

15

(
Xhalf − Xfull

)
ti+1 = ti + h

The successful iteration suggests trying a larger step size for the next iteration. The
step size is adjusted as follows. Let S < 1 be a number close to 1 (typical S = 0.9).
If � > (S/4)5, then a conservative increase is made: h ← Sh�−1/5. If � ≤ (S/4)5,
a more aggressive increase is made: h ← 4h.

5. If � > 1, then the iteration fails. The step size must be reduced and the iteration is
repeated starting with the initial iterate xn. The adjustment is h ← Sh�−1/4. Re-
peat step 1 with this new step size. A check must be made for the low-probability
case where h → 0.

16.7.2 Partial Differential Equations

Ordinary differential equations involve specifying changes to a function of one in-
dependent variable, X(t). Partial differential equations are a natural extension to
handle functions of many independent variables. Although this topic is immense, it
is relevant to games because second-order, linear partial differential equations arise



16.7 Differential Equations 751

naturally in modeling physical phenomena. On a hardware platform with a lot of
processing power, it is possible to procedurally morph geometric data based on the
relevant physics. For example, the flapping of a flag in the wind can be modeled as a
wavelike behavior. A partial differential equation can be used to model the motion,
and a numerical solution can be computed at run time.

The second-order partial differential equations are characterized as parabolic, hy-
perbolic, or elliptic. Let x ∈ R, t ≥ 0, and u = u(x , t) ∈ R in the following examples.

Parabolic: Heat Transfer, Population Dynamics

Diffusion of heat u(x , t) in a rod of length L and with heat source f (x) is modeled by

ut(x , t) = uxx(x , t) + f (x), x ∈ (0, L), t > 0 (from conservation laws)

u(x , 0) = g(x), x ∈ [0, L] (initial heat distribution)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0 (temperature at boundaries)

or

ux(0, t) = ux(L, t) = 0, t ≥ 0 (insulated boundaries)

Numerical solution for the case of no heat source, f = 0, and insulated bound-
aries uses finite differences to approximate the partial derivatives. Select m + 1 spa-
tial locations uniformly sampled as xi = i�x for 0 ≤ i ≤ m with �x = L/m. Select
temporal samples as tj = j�t for j ≥ 0 with �t > 0. The estimates of tempera-

ture are u
(j)

i
.= u(xi , tj ) for 0 ≤ i ≤ m and j ≥ 0. The sampled initial temperature

is gi = g(xi) for 0 ≤ i ≤ m. Approximate the time derivative by a forward difference:

ut(x , t) .= u(x , t + �t) − u(x , t)

�t

and approximate the spatial derivatives by central differences:

uxx(x , t) .= u(x + �x , t) − 2u(x , t) + u(x − �x , t)

(�x)2

Replace these in the heat equation to obtain

u
(j+1)
i − u

(j)

i

�t
= u

(j)

i+1 − 2u(j)

i + u
(j)

i−1

(�x)2

The boundary conditions are u
(j)

0 = u(j)
m

= 0 for j ≥ 0. The numerical algorithm is
implemented as
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u
(0)
i = gi , 0 ≤ i ≤ m

u
(j)

0 = u(j)
m

= 0, j ≥ 0

u
(j+1)
i = u

(j)

i + �t

(�x)2

(
u

(j)

i+1 − 2u(j)

i + u
(j)

i−1

)
, 1 ≤ i ≤ m − 1, j ≥ 0

For this to be numerically stable, �t < (�x)2/2 is required. An alternative scheme is
the Crank-Nicholson method:

u
(j+1)
i = u

(j)

i + �t

(�x)2

⎛
⎝u

(j)

i+1 − 2u(j)

i + u
(j)

i−1

2
+ u

(j+1)
i+1 − 2u(j+1)

i + u
(j+1)
i−1

2

⎞
⎠

This method is stable for all �t > 0 but is harder to solve since u
(j+1)
i is implicitly

defined.

Hyperbolic: Wave and Shock Phenomena

Displacement u(x , t) of an elastic string is modeled by

utt(x , t) = uxx(x , t), x ∈ (0, L), t > 0 (from conservation laws)

u(x , 0) = f (x), ut(x , 0) = g(x), x ∈ [0, L] (initial displacement and speed)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0 (location of string ends)

Numerical solution for the case of clamped ends, a = 0 and b = 0, uses finite
differences to approximate the partial derivatives. Centralized differences are used for
both the time and spatial derivatives:

u
(0)
i = fi , 0 ≤ i ≤ m

u
(1)
i = u

(0)
i + (�t)gi , 0 ≤ i ≤ m

u
(j)

0 = u(j)
m

= 0, j ≥ 0

u
(j+1)
i − 2u(j)

i + u
(j−1)
i

(�t)2
= u

(j)

i+1 − 2u(j)

i + u
(j)

i−1

(�x)2
, 1 ≤ i ≤ m − 1, j ≥ 1

The method is stable when �t < �h. If the right-hand side is modified as in the
Crank-Nicholson method for the heat equation, then the method is stable for all
�t > 0.
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Elliptic: Steady-State Heat Flow, Potential Theory

Steady-state distribution of heat u(x) in a bar of length L with heat source f (x) is
modeled by

uxx(x) = −f (x), x ∈ (0, L) (t → ∞ in the heat equation)

u(0) = A, u(L) = B , (boundary conditions)

The numerical method for the constant temperature boundary, A = B = 0, is

u0 = 0, um = 0

ui+1 − 2ui + ui−1

(�x)2
= −fi , 1 ≤ i ≤ m − 1

Define the (m − 1) × 1 vectors u = [ui], where 1 ≤ i ≤ m − 1 and b = [−(�x)2fi].
This vector is the unknown in a linear system Au = b, where A is tridiagonal with
main diagonal −2 and sub- and superdiagonals 1. Such systems are solved robustly
in O(m) time.

Extension to Higher Dimensions

Consider u(x , y , t) for 2D problems. The heat equation is ut = uxx + uyy; the wave
equation is utt = uxx + uyy; and the potential equation is uxx + uyy = f (x , y). If the
domain for (x , y) is a rectangle, then finite difference methods such as the ones used
in the 1D problems extend fairly easily. If the domain is not rectangular, then finite
elements must be used—approximating the boundary of the domain by a polygon,
then decomposing the polygon into triangles. A good method for the decomposition
is by Narkhede and Manocha [Pae95].

For example, consider uxx + uyy = 0, where domain R is not rectangular. Let
u(x , y) be specified on the boundary of R. Decompose region R into triangles. On
each triangle approximate the true solution u(x , y) by a linear function v(x , y) that
interpolates the triangle vertices. If the vertices are Pi = (xi , yi , vi) for 0 ≤ i ≤ 2 and
where the vi estimate u(xi , yi), then a triangle normal is N = (P1 − P0) × (P2 − P0),
and v(x , y) is the linear function determined by N . ((x , y , v(x , y)) − V0) = 0. The
boundary vi are known, but the interior vi must be determined.

Solving the potential equation on R is equivalent to finding a function u that
minimizes the integral

I =
∫ ∫

R

u2
x

+ u2
y

dx dy

subject to the boundary conditions. Define Ĩ to be the approximate integral where
u(x , y) is replaced by v(x , y). For triangle T , let the linear approximation for u
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on that triangle be denoted vT (x , y) = αT x + βT y + γT ; then the approximating
integral to I is

Ĩ =
∑
T

(
α2

T
+ β2

T

)
Area(T )

Since αT and βT are linear functions of the interior values vi, Ĩ is quadratic in
vi. Minimizing a quadratic function can be done by solving a linear system (set
derivatives equal to zero) or by the conjugate gradient method (equivalent to solving
the linear system, but uses root-finding techniques).

16.8 Fast Function Evaluation

A handful of functions that are typically expensive to compute occur frequently in
computer graphics and games applications: computing the length of a vector (re-
quires a square root); resizing a vector to be unit length (requires a reciprocal square
root); computing angles from spatial information (requires inverse tangent or an-
other inverse trigonometric function); and computing sine or cosine. Even division
by a floating-point number is somewhat expensive compared to additions and mul-
tiplications. Current-generation CPUs have added fast hardware support for many
of these operations, most notably inverse square root and fast (but less accurate)
division.

The algorithms described in this section are designed for fast evaluation of vari-
ous functions. Some of these algorithms can be implemented in hardware, but they
can be implemented easily in software and might provide an alternative to the op-
erations provided by a floating-point coprocessor whose function calls still take a
significant number of cycles.

A wonderful source for tricks and techniques for mathematical functions is the
[AS65]. In particular, there are lots of formulas for approximating functions by poly-
nomials of small degree. The formulas are always accompanied by a domain on which
the approximation is intended and a global error estimate for that domain.

16.8.1 Square Root and Inverse Square Root

Many of the fast square root methods provide a low-accuracy result, but for many
graphics applications, this is an acceptable trade-off. [Gla90] has a number of articles
on these methods.

A method by Paul Lalonde and Robert Dawson represents a nonnegative,
floating-point number as x = n . 22p, where p is an integer and m ∈ [1, 4) is the man-
tissa. Thus,

√
x = √

m . 22p = √
m . 2p, where

√
m ∈ [1, 2). Using an n-bit mantissa,

a table of values for
√

m can be computed and stored for lookup. The pseudo-
code is
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float SquareRoot (float x)
{

SplitFloat(x,p,m); // p = power, m = mantissa
p = p/2;
m = Lookup[m];
return MakeFloat(p,m);

}

Steve Hill in [Arv91] provides code to implement this using IEEE double-precision,
floating-point numbers. At the expense of one division, this routine can be used to
compute the inverse square root of y by 1/

√
y = √

1/y = √
x, where x = 1/y.

[Pae95] has an algorithm by Ken Turkowski that uses Newton’s method for com-
puting the inverse square root. Only a few iterations are used, and an initial point
is provided by table lookup just as in the method for square root calculation. If
y = 1/

√
x, then 1/y2 − x = 0. Define f (y) = 1/y2 − x for the selected x. A positive

root ȳ to f (y) = 0 will be the inverse square root of x. The equation can be solved by
Newton iteration. An initial guess y0 > 0 is selected. The iterates are generated by

yi+1 = yi − f (yi)

f ′(yi)
= yi(3 − xy2

i
)

2

The initial guess is chosen just as for the square root algorithm mentioned earlier.
The mantissa is used to index into a table of inverse square root quantities. The value
looked up is polished further by the iteration just mentioned. The smaller the lookup
table, the larger the number of iterations to get to the desired accuracy. Once the
inverse square root r = 1/

√
x is computed, the square root may be obtained by an

extra multiplication,
√

x = xr .
Bit hacks may be used by interpreting a 32-bit floating-point number as a 32-

bit integer, or a 64-bit floating-point number as a 64-bit integer, and then applying
a single Newton iteration as described earlier. The origin of this bit hack (for 32-
bit numbers) is attributed to Gary Tivoli, but it was unclear how a certain magic
number was selected. A detailed description of the selection (for both 32-bit and
64-bit numbers) is provided in the online document [Lom03]. Implementations for
32-bit and 64-bit numbers is included in the source code on the CD-ROM.

16.8.2 Sine, Cosine, and Tangent

Because sine and cosine are bounded functions with not much variation, the simplest
method for fast evaluation of sine and cosine is to use range reduction followed by a
table lookup. Both tables store values in the range [0, π/2].

Polynomial approximations can also be used [AS65]. Approximations to sine on
the interval [0, π/2] are

sin(x) =
2∑

i=0

aix
2i+1 + ε(x)
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where a0 = 1, a1 = −1.6605e − 01, a2 = 7.61e − 03, and |ε(x)| ≤ 1.6415e − 04; and

sin(x) =
5∑

i=0

aix
2i+1 + ε(x)

where a0 = 1, a1 = −1.666666664e − 01, a2 = 8.3333315e − 03, a3 = −1.984090e −
04, a4 = 2.7526e − 06, a5 = −2.39e − 08, and |ε(x)| ≤ 2.3279e − 09.

Approximations to cosine on the interval [0, π/2] are

cos(x) =
2∑

i=0

aix
2i + ε(x)

where a0 = 1, a1 = −4.9670e − 01, a2 = 3.705e − 02, and |ε(x)| ≤ 1.188e − 03; and

cos(x) =
5∑

i=0

aix
2i + ε(x)

where a0 = 1, a1 = −4.999999963e − 01, a2 = 4.16666418e − 02, a3 = −1.3888397e

−03, a4 = 2.47609e − 05, a5 = −2.605e − 07, and |ε(x) ≤ 2.3082e − 09.
Approximations to tangent on the interval [0, π/4] are

tan(x) =
2∑

i=0

aix
2i+1 + ε(x)

where a0 = 1, a1 = 3.1755e − 01, a2 = 2.0330e − 01, and |ε(x) ≤ 8.0613e − 04; and

tan(x) =
6∑

i=0

aix
2i+1 + ε(x)

where a0 = 1, a1 = 3.333314036e − 01, a2 = 1.333923995e − 01, a3 = 5.33740603e −
02, a4 = 2.45650893e − 02, a5 = 2.9005250e − 03, a6 = 9.5168091e − 03, and |ε(x)|
≤ 1.8897e − 08.

16.8.3 Inverse Tangent

A family of polynomials that approximate the inverse tangent function can be built
using a least-squares algorithm based on integrals (as compared to the summations
that occur in Section 16.3). The approximations are computed to tan−1(z) for z ∈
[−1, 1]. For z > 1, the trigonometric identity tan−1(z) = π/2 − tan−1(1/z) reduces
the problem to evaluating the inverse tangent for u = 1/z ∈ (−1, 1). Similarly, for
z < −1, tan−1(z) = −π/2 − tan−1(1/z).

The function tan−1(z) is an odd function on [−1, 1]. An approximating poly-
nomial p(z) = ∑n

i=0 aiz
2i+1 is desired; this is also an odd function. Ideally, n can be
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chosen to be a small number so that only a few polynomial terms have to be computed
using additions and multiplications. The size of n, of course, will depend on how
much error an application can tolerate. The idea is to select the coefficients a = [ai]
to minimize the squared integral error:

E(a) =
∫ 1

−1
[p(z; a) − tan−1(z)]2 dz

The minimum must occur when ∇E = 0. The ith derivative is

∂E

∂ai

=
∫ 1

−1
2z2i+1[p(z; a − tan−1(z)]dz

= 2

∫ 1

−1
z2i+1p(z; a) dz − 2

∫ 2

−1
z2i+1 tan−1(z) dz

= 4
n∑

j=0

aj

2i + 2j + 3
− 2

i + 1

⎛
⎝π

4
(1 + (−1)i) −

i∑
j=0

(−1)j

2i + 1 − 2j

⎞
⎠

The n + 1 equations obtained from ∇E = 0 provide a linear system in the n + 1 un-
knowns, the components of a. This system can be solved by standard solvers. It is
also possible to obtain global error bounds from the theory of Taylor series (estimat-
ing error when a series is truncated). The coefficients and global error bounds are
summarized for 2 ≤ n ≤ 5 in Table 16.3.

Table 16.3 Coefficients for polynomial approximations to tan−1(z).

n Coefficients Maximum Error

2 a0 = +0.995987 a1 = −0.292298 a2 = +0.0830353 1.32603e − 03

3 a0 = +0.999337 a1 = −0.322456 a2 = +0.149384 2.05811e − 04

a3 = −0.0410731

4 a0 = +1.000000 a1 = −0.332244 a2 = +0.187557 6.53509e − 05

a3 = −0.0956074 a4 = +0.0257527

5 a0 = +1.000700 a1 = −0.347418 a2 = +0.278742 1.95831e − 04

a3 = −0.317300 a4 = +0.259954 a5 = −0.0894795



C h a p t e r17
Rotations

Rotation of vectors is a common operation in computer graphics. Most pro-
grammers are comfortable with rotation matrices. A few are uncomfortable

with the quaternions, an alternate representation for rotation matrices, because of
their inherent mathematical nature. This chapter summarizes both topics, but in the
end the emphasis is on the comparison of rotation matrices and quaternions regard-
ing memory usage and computational speed.

17.1 Rotation Matrices

A 2D rotation of the vector (x , y) to the vector (x′, y′) by an angle θ is represented
by the matrix [

x′
y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
= R2

[
x

y

]
(17.1)

where the last equality defines the rotation matrix R2. The rotation direction is coun-
terclockwise in the xy-plane when θ > 0. We saw such a rotation in Figure 2.3.

Using the rotation matrix in Equation (17.1) as motivation, a 3D rotation of the
vector (x , y , z) to the vector (x′, y′, z′) by an angle θ about the z-axis is represented
by the matrix ⎡

⎣ x ′
y′
z′

⎤
⎦ =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ x

y

z

⎤
⎦ = R3

⎡
⎣ x

y

z

⎤
⎦ (17.2)

759
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where the last equality defines the rotation matrix R3. The idea is to rotate the 2D
component of the vectors in the xy-plane using the rotation matrix of Equation
(17.1).

17.1.1 Axis/Angle to Matrix

We may use the matrix of Equation (17.2) to create a matrix representing a general ro-
tation. Let the rotation axis have direction W, a unit-length vector. Let θ be the angle
of rotation. Choose any pair of unit-length vectors U and V so that the set {U, V , W}
is a right-handed orthonormal set. That is, the vectors are mutually perpendicular
and W = U × W. A vector P will be rotated to a vector Q. We may represent P as

P = xU + yV + zW

where x = U . P, y = V . P, and z = W . P. Similarly, we may represent Q as

Q = x ′U + y′V + z′W

where x′ = U . Q, y′ = V . Q, and z′ = W . Q. The matrix of Equation (17.2) is
applied to (x , y , z) to obtain (x′, y′, z′). Since only the x- and y-components change,
the rotation is necessarily about the W-axis.

Here are some algebraic computations to start the process of constructing the
rotation matrix R for which Q = RP. Starting with Equation (17.2), replace x, y,
z, x ′, y′, and z′ with the dot products mentioned previously:⎡

⎣ U . Q
V . Q
W . Q

⎤
⎦ =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ U . P

V . P
W . P

⎤
⎦

This equation factors to⎡
⎣ UT

VT

WT

⎤
⎦ Q =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ UT

VT

WT

⎤
⎦ P

The matrix involving the transposes of U, V, and W is itself a rotation matrix.
Applying its transpose to both sides of the equation, we have

Q = [ U V W ]

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ UT

VT

WT

⎤
⎦ P

The rotation matrix R is the product of the three matrices in front of P:
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R = [ U V W ]

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ UT

VT

WT

⎤
⎦

= [ U V W ]

⎡
⎣ (cos θ)UT − (sin θ)VT

(sin θ)UT + (cos θ)VT

WT

⎤
⎦

= U
(
(cos θ)UT − (sin θ)VT

)
+ V

(
(sin θ)UT + (cos θ)VT

)
+ WWT

= (cos θ)
(

UUT + VVT
)

+ (sin θ)
(

VUT − UVT
)

+ WWT

(17.3)

The rotation matrix should depend only on the rotation axis direction W and
the rotation angle θ . Eliminating the dependency on choice of U and V requires the
following identities. First,

P = xU + yV + zW

= (U . P)U + (V . P)V + (W . P)W

= UUTP + VVTP + WWTP

=
(

UUT + VVT + WWT
)

P

This is true no matter what choice for P, which implies the matrix identity

UUT + VVT + WWT = I (17.4)

where I is the identity matrix. Second, let W = (w0, w1, w2) and define the skew-
symmetric matrix

S =
⎡
⎣ 0 −w2 w1

w2 0 −w0
−w1 w0 0

⎤
⎦ (17.5)

then

SP = W × P

= W × (xU + yV + zW)

= xV − yU

= (U . P)V − (V . P)U

=
(

VUT − UVT
)

P
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This is true no matter what choice for P, which implies the matrix identity

VUT − UVT = S (17.6)

Third,

S2P = W × (W × P)

= W × (xV − yU)

= −(xU + yV)

= −((U . P)U + (V . P)V)

= −
(

UUT + VVT
)

P

This is true no matter what choice for P, which implies the matrix identity

UUT + VVT = −S2 (17.7)

Replacing Equations (17.4), (17.6), and (17.7) into Equation (17.3) produces

R = (cos θ)
(

UUT + VVT
)

+ (sin θ)
(

VUT − UVT
)

+ WWT

= (cos θ)(−S2) + (sin θ)(S) + (I + S2)

= I + (sin θ)S + (1 − cos θ)S2

(17.8)

When applied to the vector P,

RP = P + (sin θ)W × P + (1 − cos θ)W × (W × P) (17.9)

17.1.2 Matrix to Axis/Angle

Given a rotation matrix R, sometimes you might want to know the axis of rotation
and a rotation angle. The answer is not unique. If an axis direction is W and the
rotation angle is θ , then another axis direction is −W and the corresponding rotation
angle is −θ . Also, θ + 2πk is a rotation angle for any integer k. Despite this, it is
always possible to extract some axis direction and some rotation angle.

The trace of a matrix is defined to be the sum of its diagonal terms. Some algebra
applied to the matrix in Equation (17.8) will show that cos θ = (Trace(R) − 1)/2, in
which case

θ = cos−1 ((Trace(R) − 1)/2) ∈ [0, π]

Also, it is easily shown that

R − RT = (2 sin θ)S
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If θ = 0, then R = RT and any unit-length direction vector for the axis is valid
since there is no rotation. If θ ∈ (0, π), an axis may be extracted from the equation
R − RT = (2 sin θ)S. Let S = [sij], where s00 = s11 = s22 = 0, s10 = −s01, s20 = −s02,
and s21 = −s12; then

W = (s21, s02, s10)

|(s21, s02, s10)|
= (r21 − r12, r02 − r20, r10 − r01)

|(r21 − r12, r02 − r20, r10 − r01)|
If θ = π , then R = RT but this time the angle is not zero, so there is a rotation. In this
case, notice that

R = I + 2S2 =
⎡
⎣ 1 − 2(w2

1 + w2
2) 2w0w1 2w0w2

2w0w1 1 − 2(w2
0 + w2

2) 2w1w2

2w0w2 2w1w2 1 − 2(w2
0 + w2

1)

⎤
⎦

where W = (w0, w1, w2). The idea is to extract the maximum component of the
axis from the diagonal entries of the rotation matrix. If r00 is maximum, then w0
must be the largest component in magnitude. Compute 4w2

0 = r00 − r11 − r22 +
1 and select w0 = √

r00 − r11 − r22 + 1/2. Consequently, w1 = r01/(2w0) and w2 =
r02/(2w0). If r11 is maximum, then compute 4w2

1 = r11 − r00 − r22 + 1 and select
w1 = √

r11 − r00 − r22 + 1/2. Consequently, w0 = r01/(2w1) and w2 = r12/(2w1). Fi-
nally, if r22 is maximum, then compute 4w2

2 = r22 − r00 − r11 + 1 and select w2 =√
r22 − r00 − r11 + 1/2. Consequently, w0 = r02/(2w2) and w1 = r12/(2w2).

17.1.3 Interpolation

The absence of a meaningful interpolation formula that directly applies to rotation
matrices is used as an argument for the superiority of quaternions over rotation ma-
trices. However, the spherical linear interpolation (or slerp) that applies to quaternions
has an equivalent formulation for rotation matrices. If P and Q are rotation matrices,
then the slerp of the matrices is

slerp(t ; P , Q) = P(P TQ)t

where t ∈ [0, 1]. The technical problem is to define what is meant by Rt for a rotation
R and real-valued t . If the rotation has axis direction W and angle θ , then Rt has
the same rotation axis direction, but the angle of rotation is tθ . The procedure for
computing the slerp of the rotation matrices is as follows

1. Compute R = P TQ.

2. Extract an axis W and an angle θ from R.

3. Compute Rt by converting the axis-angle pair W and tθ to a rotation matrix.

4. Compute the result slerp(t ; P , Q) = PRt .
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17.2 Quaternions

If you have already explored the concept of quaternions, you will have discovered a
number of ways to motivate how they are defined. Our interest, of course, is how
they are related to rotations. Some of the definitions for quaternions do not make
it immediately clear what this relationship is. This section motivates quaternions by
looking at 2D rotations but in the space of 4-tuples (x , y , z, w).

Equation (17.2) is a natural extension of the concept of rotation in the 2D xy-
plane, defined in Equation (17.1), to the concept of rotation in the xy-plane that lives
in a 3D space. The extension to a rotation in the xy-plane that lives in a 4D space is
shown in the following equation:⎡

⎢⎢⎣
x ′
y′
z′
w′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦ = R4

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦ (17.10)

where the last equality defines the rotation matrix R4.
Equation (17.3) showed us how to use the xy-rotation matrix R3 to build a gen-

eral 3D rotation matrix, but we had to rely on constructing the identities in Equations
(17.4), (17.6), and (17.7) to obtain a matrix that depended only on the rotation angle
θ and the rotation axis direction W. The last two identities are inherently 3D because
of the use of the cross product operator that is defined for 3D vectors. We can attempt
to construct a matrix as shown in Equation (17.3), but first we need to represent the
vectors in homogeneous coordinates by setting the w-components to zero. We also
need a fourth vector that is perpendicular to the three already given and for which
the four vectors form an orthonormal set. Specifically, define

Û =
[

U

0

]
, V̂ =

[
V

0

]
, Ŵ =

[
W

0

]
, L̂ =

[
0

1

]

The general rotation matrix involving these is

R = [ Û V̂ Ŵ L̂ ]

⎡
⎢⎢⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦

= (cos θ)
(

ÛÛT + V̂V̂T
)

+ (sin θ)
(

V̂ÛT − ÛV̂T
)

+ ŴŴT + L̂L̂T

(17.11)

The construction that led to Equation (17.4) applies equally as well in four di-
mensions, producing the identity

I4 = ÛÛT + V̂V̂T + ŴŴT + L̂L̂T (17.12)
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where I4 is the 4 × 4 identity matrix. The extension of Equation (17.6) to four di-
mensions is

V̂ÛT − ÛV̂T =
[

V̂

0

] [
ÛT 0

]
−

[
Û

0

] [
V̂T 0

]

=
[

VUT − UVT 0

0T 0

]

=
[

S 0

0T 0

]
(17.13)

where S is the 3 × 3 skew-symmetric matrix defined in Equation (17.5). The exten-
sion of Equation (17.7) to four dimensions is

ÛÛT + V̂V̂T =
[

Û

0

] [
ÛT 0

]
−

[
V̂

0

] [
V̂T 0

]

=
[

UUT + VVT 0

0T 0

]

=
[ −S2 0

0T 0

]
(17.14)

Replacing Equations (17.12), (17.13), and (17.14) into Equation (17.11) leads to

R = (cos θ)
(

ÛÛT + V̂V̂T
)

+ (sin θ)
(

V̂ÛT − ÛV̂T
)

+ ŴŴT + L̂L̂T

= (cos θ)

[ −S2 0

0T 0

]
+ (sin θ)

[
S 0

0T 0

]
+

[
I3 + S2 0

0T 0

]

=
[

I3 + (sin θ)S + (1 − cos θ)S2 0

0T 1

]

=
[

R3 0

0T 1

]

(17.15)

where I3 is the 3 × 3 identity matrix.
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Equation (17.15) is no surprise and is, in fact, disappointing. Embedding the
3D rotation into a 4D space appears to have given us no new insight into rotations.
However, there is a clever way of handling rotations so that we can obtain information
from the 4D approach.

17.2.1 The Linear Algebraic View of Quaternions

Equation (17.10) represents a rotation in the (x , y)-components of the 4-tuple
(x , y , z, w) and the (z, w)-components are unchanged. It is possible to rotate twice
using half the rotation angle per application. In block-matrix form,

R4 =
[

H2 Z2

ZT
2 I2

] [
H2 Z2

ZT
2 I2

]
=

[
R2 Z2

ZT
2 I2

]

where Z2 is the 2 × 2 zero matrix, I2 is the 2 × 2 identity matrix, and

H2 =
[

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

Each half-angle rotation applies to the (x , y)-components, but the (z, w)-
components never change. The observation that allows us to gain some insight in
the 4D approach is that we need not use I2 in the lower-right corner of the matrices.
The first I2 may be replaced by an invertible matrix M and the second I2 may be
replaced by the inverse M−1. Thus, the (z, w)-components change to (z′, w′) by the
first matrix but then (z′, w′) changes back to (z, w) by the second matrix. In fact, we
will use H2 and its inverse for the (z, w)-components:

R4 =
[

H2 Z2

ZT
2 H2

] [
H2 Z2

ZT
2 H T

2

]
= Q4Q4 (17.16)

where the last equality defines the matrix Q4 and Q4, themselves rotations in four
dimensions. Figure 17.1 illustrates the application of the two half-angle rotations.

In summary, the half-angle rotation H2 is applied twice to (x , y) to obtain the
full-angle rotation in the xy-plane. The inverse half-angle rotation H T

2 is applied to
(z, w), a rotation within the zw-plane; however, that rotation is undone by H in the
second operation, the end result being that (z, w) is unchanged by the composition.

Now we may attempt to construct a general rotation, using the ideas that went
into Equation (17.11) but applied to each of the half-angle rotation matrices Q4 and
Q4. The resulting matrices are named Q and Q.
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Figure 17.1 A 3D rotation about the z-axis that is represented as the product of two 4D rotations.

Q = [ Û V̂ Ŵ L̂ ]

⎡
⎢⎢⎣

cos(θ/2) − sin(θ/2) 0 0
sin(θ/2) cos(θ/2) 0 0

0 0 cos(θ/2) sin(θ/2)
0 0 − sin(θ/2) cos(θ/2)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦

= (cos(θ/2))
(

ÛÛT + V̂V̂T + ŴŴT + L̂L̂T
)

+ (sin(θ/2))
(

V̂ÛT − ÛV̂T + ŴL̂T − L̂ŴT
)

(17.17)

We already have in place the identities of Equations (17.12) and (17.13). Another
identity is

ŴL̂T − L̂ŴT =
[

Z3 W
−W 0

]
(17.18)
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where Z3 is the 3 × 3 zero matrix. Substituting these identities into Equation (17.17)
produces

Q =
[

cos(θ/2)I3 + sin(θ/2)S sin(θ/2)W

− sin(θ/2)WT cos(θ/2)

]
(17.19)

where I3 is the 3 × 3 identity matrix and S is the skew-symmetric matrix of Equation
(17.5). Observe that Equation (17.19) depends only on the rotation angle θ and the
rotation axis direction W; the matrix S depends only on the components of W. A
similar construction leads to

Q =
[

cos(θ/2)I3 + sin(θ/2)S − sin(θ/2)W

sin(θ/2)WT cos(θ/2)

]
(17.20)

We may combine all the calculations here to produce the 4 × 4 matrix that corre-
sponds to the general rotation whose 3 × 3 matrix is R of Equation (17.3).

R = [ Û V̂ Ŵ L̂ ]Q4Q4

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦

= [ Û V̂ Ŵ L̂ ]Q4I4Q4

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦

= [ Û V̂ Ŵ L̂ ]Q4

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦ [ Û V̂ Ŵ L̂ ]Q4

⎡
⎢⎢⎣

ÛT

V̂T

ŴT

L̂T

⎤
⎥⎥⎦

= QQ

=
[

cos(θ/2)I3 + sin(θ/2)S − sin(θ/2)W

sin(θ/2)WT cos(θ/2)

] [
cos(θ/2)I3 + sin(θ/2)S sin(θ/2)W

− sin(θ/2)WT cos(θ/2)

]

=
[

I3 + (sin θ)S + (1 − cos θ)S2 0

0T 1

]

(17.21)

The matrix Q in Equation (17.19) may be expanded to produce the following,
where W = (w0, w1, w2), σ = sin(θ/2), and γ = cos(θ/2):
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Q =

⎡
⎢⎢⎣

γ −σw2 σw1 σw0
σw2 γ −σw0 σw1

−σw1 σw0 γ σw2
−σw0 −σw1 −σw2 γ

⎤
⎥⎥⎦ (17.22)

Although Q has 16 entries, only four of them are unique—the last column values.
Moreover, Q of Equation (17.20) uses these same four values:

Q =

⎡
⎢⎢⎣

γ −σw2 σw1 −σw0
σw2 γ −σw0 −σw1

−σw1 σw0 γ −σw2
σw0 σw1 σw2 γ

⎤
⎥⎥⎦ (17.23)

17.2.2 Rotation of a Vector

The rotation of a vector (x , y , z) using the 4D representation of Equation (17.21) is
accomplished by appending a zero component to the vector:⎡

⎢⎢⎣
x ′
y′
z′
0

⎤
⎥⎥⎦ R

⎡
⎢⎢⎣

x

y

z

0

⎤
⎥⎥⎦ = QQ

⎡
⎢⎢⎣

x

y

z

0

⎤
⎥⎥⎦ (17.24)

An implementation will take advantage of the fact that the input vector has a
zero component, in which case it is not necessary to multiply matrix entries by that
component. The product of Q and the input generally has four nonzero components,
but since you know the output has a last component of zero, you need not multiply
the last row of Q with the intermediate vector obtained after multiplication by Q.
This saves some calculation time. If you are using hardware support for matrix-vector
multiplication, then this is a moot point.

17.2.3 Product of Rotations

Consider two 3D rotations represented by 4D matrices, say, R0 = Q0Q0 and R1 =
Q1Q1. The product is

R1R0 = (Q1Q1)(Q0Q0) = Q1(Q1Q0)Q0

= Q1(Q0Q1)Q0 = (Q1Q0)(Q1Q0) (17.25)

The calculations involve associativity of matrix multiplication except for one calcula-
tion where the order of two matrices is reversed. Generally, matrix multiplication is
not commutative. However, it is true for the calculation used here.

Exercise
17.1

Verify that Q1Q0 − Q0Q1 = 0. Use Equations (17.19) and (17.20) to set up the block-
matrix equation. Expand the left-hand side using matrix and vector arithmetic and
show that all the block terms are zero.
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The four distinct entries in Qi are all you need to know about the rotation
matrix Ri for i = 0, 1. Since R1R0 is a rotation matrix, it may also be represented
by R1R0 = QQ for some matrix Q with four distinct entries. Equation (17.25) says
that Q = Q1Q0. For the purpose of composition of rotations, it is enough to store
the four distinct entries for each matrix, compute Q1Q0, and extract its four distinct
entries.

17.2.4 The Classical View of Quaternions

Although the standard way quaternions are introduced is by simply defining them
as symbolic quantities and defining their algebraic properties, I will use the discus-
sion from the previous section to introduce quaternions. I find the linear algebraic
approach quite intuitive.

We found that a 3D rotation about an axis with direction W by an angle θ may
be represented as a 4D rotation matrix

R = QQ

where Q and Q are matrices defined by Equations (17.22) and (17.23). We also
found that applying the rotation to a vector written in homogeneous coordinates
V = [x y z 0]T is accomplished by

RV = QQV

Given two rotations represented as R0 = Q0Q0 and R1 = Q1Q1, the composition is

R0R1 = (Q0Q1)(Q0Q1)

It is necessary, therefore, to keep track only of the Q parts of the rotations, using them
for multiplication of vectors or for composition of matrices.

Let us examine Q in more detail. Equation (17.22) may be expanded as shown.

Q = γ

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ + σw0

⎡
⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎦

+ σw1

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ + σw2

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

= cos(θ/2)1 + sin(θ/2)
(
w0i + w1j + w2k

)

(17.26)
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Table 17.1 Products of the four matrices {1, i, j, k}. If A is a matrix from a row of the table and
if B is a matrix from a column of the table, the table entry in that row and column is
AB.

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

where the last equality defines the four 4 × 4 matrices 1, i, j, and k. A boldface font
is used here for the matrices, so be careful not to confuse the matrix 1 with the scalar
1. Equation (17.26) is a compact representation of a rotation, involving only the
rotation angle θ and the components of the rotation axis direction W = (w0, w1, w2).

If you have seen quaternions before, Equation (17.26) should look familiar. A
(unit-length) quaternion is normally written in the classical form as

q = cos(θ/2) + sin(θ/2)(w0i + w1j + w2k) = cos(θ/2) + sin(θ/2)ŵ (17.27)

where the last equality defines ŵ. Its relationship to 3D rotation is exactly what has
been discussed in the previous material. You will also have seen definitions for mul-
tiplication of quaternions. The i-, j -, and k-terms appear to be similar to the imagi-
nary part of a complex-valued number, but with a richer structure. The products are
i2 = −1, j 2 = −1, k2 = −1, ij = k, ji = −k, ki = j , ik = −j , jk = i, and kj = −i.
If you instead consider the matrix representation of Equation (17.26) and think of
1, i, j, and k as the matrix representations of 1, i, j , and k, respectively, then the
matrix products produce the same results. Table 17.1 lists the products of the four
matrices.

The matrix Q has a representation similar to that of Q, namely,

Q = cos(θ/2)1 − sin(θ/2)
(
w0i + w1j + w2k

)
(17.28)

The quaternion representation is

q̄ = cos(θ/2) − sin(θ/2)(w0i + w1j + w2k) = cos(θ/2) − sin(θ/2)ŵ (17.29)

and is said to be the conjugate of q.
The rotation of a vector using the 4D matrix approach is U = QQV, where as

4-tuples, U = (u0, u1, u2, 0) and V = (v0, v1, v2, 0). Let q be the quaternion repre-
sented by Q and let q̄ be the quaternion represented by Q. Let v̂ = v0i + v1j + v2k
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be a quaternion representing V. The rotated vector is produced by the quaternion
product

û = qv̂q̄ (17.30)

where û = u0i + u1j + u2k.
In terms of 4D matrices, the composition of rotation matrices R0 = Q0Q0 and

R1 = Q1Q1 was shown to be R0R1 = (Q0Q1)(Q0Q1), so it is sufficient to compute
the four unique entries in Q0Q1. If σi = sin(θi/2), γi = cos(θi/2), and Wi is the axis
direction with corresponding skew-symmetric matrices Si for i = 0, 1, then a direct
computation of the product is

Q0Q1 =
[

γ0I + σ0S0 σ0W0

−σ0WT
0 γ0

] [
γ1I + σ1S1 σ1W1

−σ1WT
1 γ1

]

=
[

(γ0I + σ0S0)(γ1I + σ1S1) − σ0σ1W0WT
1 σ0γ1W0 + σ1γ0W1 + σ0σ1S0W1

−σ0γ1WT
0 − σ1γ0WT

1 − σ0σ1WT
0 S1 γ0γ1 − σ0σ1WT

0 W1

]

The rightmost column lists the unique entries of the product. In terms of quaternions
q0 and q1 represented by Q0 and Q1,

q0q1 = (γ0γ1 − σ0σ1ŵ0
. ŵ1) + σ0γ1ŵ0 + σ1γ0ŵ1 + σ0σ1ŵ0 × ŵ1 (17.31)

where ŵ0 and ŵ1 are quaternions representing W0 and W1, each having only i-,
j -, and k-components but a zero component for the 1-term. We know that S0W1 =
W0 × W1, so ŵ0 × ŵ1 is the quaternion that represents the cross product of vectors.

17.2.5 Axis/Angle to Quaternion

If W = (w0, w1, w2) is the direction of the rotation axis and if θ is the rotation angle,
then a corresponding quaternion is

q = cos(θ/2) + sin(θ/2)(w0i + w1j + w2k)

The unit quaternions provide a double covering of the rotations. If q represents the
rotation, then so does

−q = − cos(θ/2) − sin(θ/2)(w0i + w1j + w2k)

= cos((θ + 2π)/2) + sin((θ + 2π)/2)(w0i + w1j + w2k)

As you can see, q represents rotation about the axis by angle θ and −q represents
rotation about the axis by angle θ + 2π , but these are the same rotation when applied
to vectors.
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17.2.6 Quaternion to Axis/Angle

Let q = w + xi + yj + zk be a unit quaternion. If |w| = 1, then the angle is θ = 0
and any unit-length direction vector for the axis will do since there is no rotation. If
|w| 
= 1, the angle is obtained as θ = 2 cos−1(w) and the axis direction is computed
as W = (x , y , z)/

√
1 − w2.

17.2.7 Matrix to Quaternion

The 3D rotation matrix is R and the corresponding quaternion is q = w + xi +
yj + zk. Previously, it was mentioned that cos θ = (Trace(R) − 1)/2. Using the
identity 2 cos2(θ/2) = 1 + cos θ yields w2 = cos2(θ/2) = (Trace(R) + 1)/4 or |w| =√

Trace(R) + 1/2. If Trace(R) > 0, then |w| > 1/2, so without loss of generality,
choose w to be the positive square root, w = √

Trace(R) + 1/2. The identity R −
RT = (2 sin θ)S also yielded (r12 − r21, r20 − r02, r01 − r10) = 2 sin θ(w0, w1, w2).
Finally, it is easily shown that 2xw = w0 sin θ , 2yw = w1 sin θ , and 2zw = w2 sin θ .
Combining these leads to x = (r12 − r21)/(4w), y = (r20 − r02)/(4w), and z = (r01 −
r10)/(4w).

If Trace(R) ≤ 0, then |w| ≤ 1/2. The idea is to first extract the largest one of x, y,
or z from the diagonal terms of the rotation R in Equation (17.8). If r00 is the maxi-
mum diagonal term, then x is larger in magnitude than y or z. Some algebra shows
that 4x2 = r00 − r11 − r22 + 1 from which is chosen x = √

r00 − r11 − r22 + 1/2.
Consequently, w = (r12 − r21)/(4x), y = (r01 + r10)/(4x), and z = (r02 + r20)/(4x).
If r11 is the maximum diagonal term, then compute 4y2 = r11 − r00 − r22 + 1 and
choose y = √

r11 − r00 − r22 + 1/2. Consequently, w = (r20 − r02)/(4y), x = (r01 +
r10)/(4y), and z = (r12 + r21)/(4y). Finally, if r22 is the maximum diagonal term,
then compute 4z2 = r22 − r00 − r11 + 1and choose z = √

r22 − r00 − r11 + 1/2. Con-
sequently, w = (r01 − r10)/(4z), x = (r02 + r20)/(4z), and y = (r12 + r21)/(4z).

17.2.8 Quaternion to Matrix

The quaternion is q = w + xi + yj + zk and the 3D rotation matrix is R. Using
the identities 2 sin2(θ/2) = 1 − cos(θ) and sin(θ) = 2 sin(θ/2) cos(θ/2), it is eas-
ily shown that 2wx = (sin θ)w0, 2wy = (sin θ)w1, 2wz = (sin θ)w2, 2x2 = (1 −
cos θ)w2

0, 2xy = (1 − cos θ)w0w1, 2xz = (1 − cos θ)w0w2, 2y2 = (1 − cos θ)w2
1,

2yz = (1 − cos θ)w1w2, and 2z2 = (1 − cos θ)w2
2. The right-hand sides of all these

equations are terms in the expression R = I + (sin θ)S + (1 − cos θ)S2. Replacing
them yields

R =
⎡
⎣ 1 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2

⎤
⎦
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17.2.9 Interpolation

Quaternions are quite amenable to interpolation. Once again, the standard operation
that is used is spherical linear interpolation (slerp). Given quaternions p and q with
acute angle θ between them, slerp is defined as

slerp(t ; p , q) = p(p∗q)t

for t ∈ [0, 1]. Note that slerp(0; p , q) = p and slerp(1; p , q) = q. It is not immedi-
ately clear how to compute slerp in the form specified by the definition. An equivalent
definition is

slerp(t ; p , q) = sin((1 − t)θ)p + sin(tθ)q

sin(θ)

If p and q are thought of as points on a unit circle, this formula is a parameterization
of the shortest arc between them. If a particle travels on that curve according to the
parameterization, it does so with constant speed. Thus, any uniform sampling of t in
[0, 1] produces equally spaced points on the arc.

We assume that only p, q, and t are specified. Moreover, since q and −q represent
the same rotation, you can replace q by −q, if necessary, to guarantee that the angle
between p and q treated as 4-tuples is acute. That is, p . q ≥ 0. As 4-tuples, p and q

are unit length. The dot product is therefore p . q = cos(θ).

17.3 Euler Angles

Rotations about the coordinate axes are easy to define and work with. Rotation about
the x-axis by angle θ is

Rx(θ) =
⎡
⎣ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦

where θ > 0 indicates a counterclockwise rotation in the plane x = 0. The observer
is assumed to be positioned on the side of the plane with x > 0 and looking at the
origin. Rotation about the y-axis by angle θ is

Ry(θ) =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦

where θ > 0 indicates a counterclockwise rotation in the plane y = 0. The observer
is assumed to be positioned on the side of the plane with y > 0 and looking at the
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origin. Rotation about the z-axis by angle θ is

Rz(θ) =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

where θ > 0 indicates a counterclockwise rotation in the plane z = 0. The observer is
assumed to be positioned on the side of the plane with z > 0 and looking at the origin.
Rotation by an angle θ about an arbitrary axis containing the origin and having unit-
length direction W = (w0, w1, w2) is given by

RW(θ) = I + (sin θ)S + (1 − cos θ)S2

where I is the identity matrix,

S =
⎡
⎣ 0 −w2 w1

w2 0 −w0
−w1 w0 0

⎤
⎦

and θ > 0 indicates a counterclockwise rotation in the plane through the origin and
perpendicular to W. The observer is assumed to be positioned on the side of the plane
to which W points and is looking at the origin.

A common problem is to want a factorization of a rotation matrix R as a product
of rotations about the coordinate axes. The form of the factorization depends on the
needs of the application and what ordering is specified. For example, you might want
to factor the rotation as

R = Rx(θx)Ry(θy)Rz(θz)

for some angles θx, θy, and θz, which are called Euler angles. The ordering is xyz.
Five other possibilities are xzy, yxz, yzx, zxy, and zyx. Also, it is not required that
there be a rotation about each of the coordinate axes; factorizations such as xyx are
allowed:

R = Rx(φx)Ry(θy)Rx(θx)

All the possibilities so far involve specifying rotations about the original coordinate
axes. It is possible to use rotations about the rotated axes. For example,

R = RU0
(θ0)RU1

(θ1)RU2
(θ2)

where U2 is the last column of the identity matrix; U1 is the middle column of the
matrix RU2

(θ2); and U0 is the first column of the matrix RU1
(θ1)RU2

(θ2).
In all cases, you can formulate an algorithm for the factorization. To illustrate,

consider R = Rx(θx)Ry(θy)Rz(θz). Setting R = [rij] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2,
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formally multiplying Rx(θx)Ry(θy)Rz(θz), and equating yields

⎡
⎣ r00 r01 r02

r10 r11 r12
r20 r21 r22

⎤
⎦ =

⎡
⎣ cycz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx
−cxczsy + sxsz czsx + cxsysz cxcy

⎤
⎦

where ca = cos(θa) and sa = sin(θa) for a equal to x, y, or z. From this we have
sy = r02, so θy = sin−1(r02).

If θy ∈ (−π/2, π/2), then cy 
= 0 and cy(sx , cx) = (−r12, r22), in which case
θx = atan2(−r12, r22). Similarly, cy(sz , cz) = (−r01, r00), in which case θz = atan2
(−r01, r00).

If θy = π/2, then sy = 1 and cy = 0. In this case,

[
r10 r11
r20 r21

]
=

[
czsx + cxsz cxcz − sxsz

−cxcz + sxsz czsx + cxsz

]
=

[
sin(θz + θx) cos(θz + θx)

− cos(θz + θx) sin(θz + θx)

]
.

Therefore, θz + θx = atan2(r10, r11). There is one degree of freedom, so the factoriza-
tion is not unique. One choice is θz = 0 and θx = atan2(r10, r11).

If θy = −π/2, then sy = −1 and cy = 0. In this case,

[
r10 r11
r20 r21

]
=

[ −czsx + cxsz cxcz + sxsz
cxcz + sxsz czsx − cxsz

]
=

[
sin(θz − θx) cos(θz − θx)

cos(θz − θx) − sin(θz − θx)

]
.

Therefore, θz − θx = atan2(r10, r11). There is one degree of freedom, so the factoriza-
tion is not unique. One choice is θz = 0 and θx = − atan2(r10, r11).

Pseudocode for the factorization is

thetaY = asin(r02);
if (thetaY < PI/2)
{

if (thetaY > -PI/2)
{

thetaX = atan2(-r12,r22);
thetaZ = atan2(-r01,r00);

}
else
{

// not a unique solution
thetaX = -atan2(r10,r11);
thetaZ = 0;

}
}
else
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{
// not a unique solution
thetaX = atan2(r10,r11);
thetaZ = 0;

}

The other combinations such as xzy and xyx may be factored similarly.

17.4 Performance Issues

A question asked quite often is, What is the best representation to use for rotations:
matrices, quaternions, or axis/angle pairs? As with most computer science topics,
there is no answer to this question, only trade-offs to consider. You might consider
operation counting as a first-order measure of performance, counting multiplica-
tions, additions and subtractions, divisions, and function evaluations (such as sqrt
or cos). With current CPU technology, operation counting alone is not a sufficient
measure of performance. Memory access patterns can lead to good cache coherence
or to cache misses. Branch penalties for conditional statements can be quite expen-
sive. Any amount of parallelism, small or large, can affect the final comparisons of
algorithms. Your best bet for comparison is to implement the competing algorithms
and time them with reasonable data.

Regarding memory usage, quaternions require four floating-point values but ro-
tation matrices require nine floating-point values—or 16 values if you require 16-
byte alignment on consoles or CPUs with SIMD support. If you have a lot of trans-
formation data and memory is a scarce resource, then the memory usage alone argues
for using quaternions.

Regarding performance, your experiments should take into account the times for
operations such as matrix-vector products, matrix-matrix products, and conversion
between representations. Also, one key argument used for choosing quaternions over
rotation matrices is that quaternions naturally support spherical linear interpolation.
As I showed previously, spherical linear interpolation may also be applied to rota-
tion matrices. I used to argue that slerp for quaterions is much faster than slerp for
rotation matrices. My conclusion was based on operation counting. I have implemen-
tations for slerp in both the Matrix3 and Quaternion classes. Recently, I timed the two
on an Intel Pentium D (dual core), 3.2-GHz processor (using only one core). Surpris-
ingly, at least to me, is that the rotation slerp performed better at a speedup of 1.2.
This was measured with a Release build using Microsoft Visual Studio .NET 2005.1 I
imagine it is possible to inline all the code for the algorithms and change the results,

1. Just for kicks, I ran the Debug build and saw that the quaternion slerp performed better than rotation slerp
with a speedup of 2.3.
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but the point is that the best way to compare performance is to profile on your target
platforms rather than rely on an on-the-napkin calculation.

17.5 The Curse of Nonuniform Scaling

In any system that uses transformations involving translation, rotation, and scaling,
including composition of all of these, it is a natural expectation that you can factor
a composition of transformations into its primitive components of translation, rota-
tion, and scale. How to do this is a frequently asked question in Usenet groups and in
game developer forums.

The mathematical setup is as follows. Suppose you store your transformations so
that they apply to vectors as follows:

Y = RSX + T

where X is the 3 × 1 input vector; Y is the 3 × 1 output vector; R is a 3 × 3 rotation
matrix; S is a scaling matrix (a diagonal matrix whose diagonal entries are positive);
and T is a 3 × 1 translation vector.

Now suppose you have a composition of two such transformations. The first
transformation is

Y = R0S0X + T0

and the second transformation is

Z = R1S1Y + T1

The composition is

Z = R1S1(R0S0X + T0) + T1 = (R1S1R0S0)X + (R1S1T0 + T1) = MX + T

where the last equality defines the matrix

M = R1S1R0S0

and the vector

T = R1S1T0 + T1

The translational component is immediately available in the composition. The hope
is to factor

M = RS
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where R is a rotation matrix and S is a scaling matrix, diagonal and with positive
diagonal entries. The technical problem, and one many programmers do not expect,
is that it is not always possible to factor M in this manner.

Example
17.1

Consider the attempt to factor the following matrix:

M =
[

1 1
0 1

]
= RS =

[
cos θ − sin θ

sin θ cos θ

] [
d0 0
0 d1

]
=

[
d0 cos θ −d1 sin θ

d0 sin θ d1 cos θ

]

where d0 > 0 and d1 > 0. Equating the off-diagonal terms, we have 0 = d0 sin θ and
1 = −d1 sin θ . Since d0 > 0, the first equation forces sin θ = 0. The second equation
does not allow sin θ = 0. Even if you allowed d0 = 0, the equation d0 cos θ = 1 is not
possible. Therefore, it is not possible to factor M into a rotation matrix times a scale
matrix.

Think about it geometrically. The matrix M is a shear matrix. The y-values are
unchanged by the transformation, but the x-values are sheared to x + y. Imagine a
square with vertices (0, 0), (1, 0), (1, 1), and (0, 1). The shearing causes the square to
become a parallelogram with vertices (0, 0), (1, 0), (2, 1), and (1, 1). A factorization
M = RS is an attempt to represent the shearing as a scaling along the x- and y-
axes followed by a rotation. The scaling causes the square to become a rectangle with
vertices (0, 0), (d0, 0), (d0, d1), and (0, d1). No amount of rotation will make this look
like the parallelogram produced by M .

The inability to factor M into a rotation matrix times a scaling matrix has thrown
a damper on many developers’ transformation systems—where they were hoping
to store {R , S , T} for the world transformations at each node in a hierarchy of
nodes. The best you can do regarding factorization is polar decomposition or singular
value decomposition, both topics briefly discussed here. I also mention a factorization
method called Gram-Schmidt orthonormalization, which is a common method used
to renormalize the columns of a composition of rotation matrices. The numerical
round-off errors in the composition can eventually lead to a matrix that is sufficiently
different from a rotation matrix that it needs such an adjustment.

17.5.1 Gram-Schmidt Orthonormalization

Given three linearly independent vectors V0, V1, and V2, it is possible to construct an
orthonormal set of vectors from them, {U0, U1, U2}, using the process called Gram-
Schmidt orthonormalization. In fact, the method applies to a collection of n linearly
independent vectors in an n-dimensional space, but for the purposes of this book,
the illustration in three dimensions will suffice.
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The first vector in the orthonormal set is chosen to be the normalized vector for
V0, namely,

U0 = V0

|V0|

The second vector is obtained from V1 by projecting out the U0 component, thus
producing a vector perpendicular to U0,

U1 = V1 − (U0
. V1)U0

|V1 − (U0
. V1)U0|

The third vector is obtained from V2 by projecting out the U0 and the U1 components,
thus producing a vector perpendicular to both of them,

U2 = V2 − (U0
. V2)U0 − (U1

. V2)U1

|V2 − (U0
. V2)U0 − (U1

. V2)U1|

Alternatively, you can compute U2 = U0 × U1 and save cycles by not having to nor-
malize as the other equation has you do.

Gram-Schmidt orthonormalization is equivalent to the QR decomposition for
a matrix, where Q is orthogonal and R (the “right” matrix) is upper triangular. Let
M = [V0 V1 V2] be the matrix whose columns are the vectors we started with. Let
Q = [U0 U1 U2]. By the construction, Q is necessarily orthogonal. The QR factor-
ization is written as

[ V0 V1 V2 ] = [ U0 U1 U2 ]

⎡
⎣ r00 r01 r02

0 r11 r12
0 0 r22

⎤
⎦

= [ r00U0 r01U0 + r11U1 r02U0 + r12U1 + r22U2 ]

From the actual construction of the orthonormal vectors, you can see that r00 = |V0|,
r01 = U0

. V1, r11 = |V1 − (U0
. V1)U0|, r02 = U0

. V2, r12 = U1
. V2, and r22 = |V2 −

(U0
. V2)U0 − (U1

. V2)U1|.
The fact that the input vectors are linearly independent guarantees that all of

r00, r11, and r22 are positive. The QR factorization may be modified by factoring
out the diagonal entries of R to produce M = QDU , where Q is orthogonal, D is
a diagonal matrix with positive diagonal entries, and U is an upper-triangular matrix
whose diagonal entries are all 1. The matrix U represents shearing, so QDU is a
decomposition of M where shearing is applied first, scaling second, and rotation
third.
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17.5.2 Eigendecomposition

If M is a symmetric matrix, then it is always possible to factor M into M = RDRT,
where R is an orthogonal matrix and D is a diagonal matrix. This is referred to as an
eigendecomposition of M . The idea is that a nonzero vector V is an eigenvector of M

with corresponding eigenvalue λ whenever MV = λV. The eigenvector is special in
that all that M does is change the length of the vector (with a direction flip when
λ < 0). Symmetric matrices of size n are known to have n linearly independent
eigenvectors Vi with corresponding eigenvalues λi (not necessarily distinct values).
The equations MVi = λiVi, 0 ≤ i < n, are summarized in block form as

MR = M [ V0
. . . Vn−1 ]= [ λ0V . . . λn−1Vn−1 ]= RD

where R is the matrix whose columns are the eigenvectors and D is the diagonal
matrix whose diagonal entries are the eigenvalues. The matrix M is then M = RDRT.

Numerical methods for obtaining the eigendecomposition of a symmetric matrix
are found in [PFTV88, GL93]. They are iterative in nature and, in fact, use the ideas
of the QR algorithm for each iteration. For numerical robustness, the algorithms
actually use a QL algorithm (where L is a lower-triangular matrix) as well as some-
thing called implicit shifting. The discussion in [GL93] is quite good regarding these
matters.

17.5.3 Polar Decomposition

The polar decomposition of a (square) matrix is M = QS, where Q is an orthogonal
matrix and S is a symmetric matrix. Essentially, this is the best you can do when you
want to factor M into “rotation” and “scale.” The matrix S represents the scaling, not
in the standard coordinate system but rather in a rotated one. Since S is symmetric, it
has an eigendecomposition S = RDRT. Thus, M = (QR)DRT. Assuming that you
have decomposed the matrix so that Q and R are rotations, the decomposition says
to rotate by RT, scale in this new coordinate system by D, rotate back to the original
system, and then rotate by Q.

This topic is covered in mathematical detail in the book [HJ85]. A practical
discussion by Ken Shoemake is found in [Hec94, Section III.4].

17.5.4 Singular Value Decomposition

The most general decomposition related to obtaining rotation and scaling informa-
tion is the singular value decomposition (SVD). The (square) matrix is factored into
M = LSR, where L and R are orthogonal matrices and S is a diagonal matrix whose
diagonal entries are nonnegative. The diagonal values are referred to as the singular
values of M .
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The books [HJ85] and [GL93] both have very good discussions on these topics,
as does the article [Hec94, Section III.4]. The SVD uses an iterative approach, just
as eigendecomposition and polar decomposition do. The SVD has a flavor all its
own, but you can use eigendecompositions if you do not want to roll your own SVD.
Specifically, notice that

MMT = LSRRTSTLT = LS2LT

The right-hand side of this equation is an eigendecomposition of MTM , where the
columns of L are the eigenvectors for MMT and the diagonal entries in S2 are the
corresponding eigenvalues. Similarly,

MTM = RTSTLTLSR = RTS2R = QS2QT

where Q = RT. The columns of Q are the eigenvectors of MTM and the diagonal
entries in S2 are the corresponding eigenvalues.



C h a p t e r18
Object-Oriented
Infrastructure

A game engine is a large and complicated software system. The principles of object-
oriented software engineering and large library design apply just as they would to
any other large system. This chapter presents a review of some basic issues of object-
oriented infrastructure. In addition, specific issues related directly to implementation
of object-oriented support in the game engine are also addressed, including naming
conventions and namespaces, run-time type information, single and multiple inher-
itance, templates (parameterized data types), shared objects and reference counting,
streaming, and start-up and shutdown mechanisms. The final section is about a
generic structure for an application layer in order to support the various components
of a game engine with as much decoupling as possible.

18.1 Object-Oriented Software Construction

A good reference on object-oriented software engineering is [Mey88]. Extensive in-
depth coverage of abstract data types including stacks, lists, strings, queues, maps,
sets, trees, and graphs can be found in [Boo87]. Recent books have appeared address-
ing the issues of software development in the games industry. The one most directly
related to the games industry is [RM03]. However, the principles of software engi-
neering and object-oriented design apply equally as well to games as they do to any
other area, so help yourself and browse some books on software engineering at your
favorite library.

783
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18.1.1 Software Quality

The goal of software engineering is to help produce quality software, from the point
of view both of the end users and of the software writers. The desired qualities in
software fall into two categories:

1. External: Software is fast, reliable, and easy to use. The end users care about these
qualities. End users also include team members who will use the code, so ease of
use is important.

2. Internal: Software is readable, modular, and structured. The programmers care
about these qualities.

The external qualities are the more important since the goal of software con-
struction is building what a client wants. However, the internal qualities are key to
attaining the external qualities. Object-oriented design is intended to deal with the
internal, but the end result should satisfy the following external qualities:

Correctness: the ability of software to exactly perform tasks, as defined by the
requirements and specification.

Robustness: the ability of software to function even in abnormal conditions.

Extendability: the ease with which software may be adapted to changes of speci-
fications.

Reusability: the ability of software to be reused, in whole or in part, from new
applications.

Compatibility: the ease with which software products may be combined with
others.

Efficiency: the good use of hardware resources such as processor, memory, and
storage, both in space and time.

Portability: the ease with which software may be transferred to various hardware
and software platforms.

Verifiability: the ease of preparing test data and procedures for detecting and
locating failures of the software.

Integrity: the ability of software systems to protect their various components
against unauthorized access and modification, whether or not the access or mod-
ification is intentional.

Ease of use: the ease of learning how to use software, including executing the
programs, preparing input data, interpreting output data, and recovering from
exceptions.

Software maintenance is the process of modifying already existing code either to
correct deficiencies, enhance efficiency, or extend the code to handle new or modi-
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fied specifications. The following is a representative breakdown of maintenance time
[Mey88]:

Changes in user requirements (41.8%). Inevitable, but the large percentage is
typically due to a lack of extendability.

Changes in data formats (17.4%). Also inevitable since initial design may have
lacked insight into how data might evolve.

Emergency fixes (12.4%).

Routine debugging (9.0%). For example, fixes need to be made, but the software
can still run without them.

Hardware changes (6.2%). Also inevitable, but isolation of hardware-dependent
code can minimize these changes by encapsulation of the dependent code into
device drivers.

Documentation (5.5%). All of us are taught to do this as code is developed, but
the reality is that the client always wants the code yesterday.

Efficiency improvements (4.0%).

My experiences in development of systems and rewriting other companies’ sys-
tems generally agree with this list. For games and game engine development, the
changes in data format tend to happen infrequently, but when they do, you have a
lot of changes to make (converters from one format to another).

18.1.2 Modularity

Modules are autonomous, coherent, robust, and organized packages. Not that this
really defines what a module is, but all of us have an idea of what a module should
be. The following five criteria should help in deciding what it means for a software
construction method to be modular.

1. Decomposability. The design method helps decompose a problem into several
subproblems whose solution may be pursued separately.

– Example: Top-down design.

– Counterexample: Initialization modules.

2. Composability. The design method supports production of software elements
that may be freely combined to produce new systems.

– Example: Math libraries.

– Counterexample: Combined GUI and database libraries.

3. Understandability. The design method helps produce modules that can be sepa-
rately understood by a human reader or can be understood together with a few
other modules.
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– Example: A math library with exported functions clearly specified and for
which no other libraries are required for linking.

– Counterexample: Sequentially dependent modules; module A depends on
module B, module B depends on module C, and so on.

4. Continuity. A small change in the problem specification results in a change of just
one (or a few) modules. Changes should not affect the architecture of the system.

– Examples: Symbolic constants (do not hard-code numbers), the Principle of
Uniform Reference (services of a module should be available through a uni-
form notation; in C++ this becomes a design question about public versus
private members).

– Counterexample: Failing to hide the data representation from the user when
that representation may change later.

5. Protection. The design method yields an architecture in which the effect of ab-
normal conditions at run time in a module remains confined to that module (or
a few modules).

– Example: Validation of input and output at their sources. This is the notion of
preconditions and postconditions in abstract data types.

– Counterexample: Undisciplined exceptions. An exception is a signal that is
raised by one code block and handled in another, possibly remote part of the
system. This separates algorithms for normal cases from error processing in
abnormal cases, but the mechanism violates the criterion of confining the ab-
normal conditions to the module. This also violates the continuity criterion.

The five criteria lead to five principles that should be followed to ensure modu-
larity. The criteria that lead to each principle are listed in parentheses.

1. Linguistic modular units. Modules must correspond to syntactic units in the
language used (decomposability, composability, protection).

2. Few interfaces. Every module should communicate with as few others as possible
(continuity, protection).

3. Small interfaces. If two modules must communicate, they should exchange as lit-
tle information as possible. This is termed weak coupling (continuity, protection).

4. Explicit interfaces. Whenever two modules communicate, this must be obvious
from the text of the modules. This is termed direct coupling (decomposability,
composability, continuity, understandability).

5. Information hiding. All information about the module should be private unless
it is declared public (continuity, not necessarily protection).

The principle of information hiding is sometimes debated as an evil that is not
necessary. I have heard this from a few commercial game developers. The issue at
hand is that during development certain information might be hidden from you that,
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if visible, would make debugging a lot easier and faster. The presumed solution is to
make everything public to the developers. I strongly disagree with this stance. Many
view each game as throwaway code. With the increasing complexity of games and the
enormous amount of source code that goes into them, companies need to reuse code
and to ensure that the code, when originally written, is of good quality. If debugging
a module is difficult, I would question the quality of the module and require that it
be improved rather than expose every variable possible.

The Open-Closed Principle

This is one final requirement for a good modular decomposition. It states that a
module must be both open and closed.

Open module: The module is still available for extension. For example, it is still
possible to add fields to data structures or to add new functions that operate on
the structures.

Closed module: The module is available for use by other modules. This assumes
that the module has a well-defined, stable interface, with the emphasis being on
“stable.” For example, such a module would be compiled into a library.

At first glance, being both open and closed appears to be contradictory. If the
public interface to a module remains constant, but the internal implementations are
changed, the module may be considered open and closed (it has been modified,
but dependent code does not need to be changed or recompiled). However, most
modifications of modules are to add new functionality. The concept of inheritance
allows for open-closed modules. A base class is closed in itself, but a derived class can
add new members and functionality. In this sense the base class plus derived class
represent the openness.

18.1.3 Reusability

Reusability is a basic issue in software engineering. Why spend time designing and
coding an algorithm when it probably already exists elsewhere? But this question
does not have a simple answer. It is easy to find already written code for searching
and sorting lists, handling stacks, and other basic data structure manipulations (STL
is now the prime example). However, other factors may compound the issue. Some
companies provide libraries that have capabilities you need, but to use the libraries
you need to purchase a license and possibly pay royalties. If the acquired components
have bugs in them, you must rely on the provider to fix them, and that will probably
not occur in the time frame in which you need the repairs.
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At least in your local environment, you can attempt to maximize reuse of your
own components. Here are some issues for module structures that must be resolved
to yield reusable components:

Variation in types. The module should be applicable to structures of different
types. Templates or parameterized data types can help here.

Variation in data structures and algorithms. The actions performed during an
algorithm might depend on the underlying structure of the data. The module
should allow for handling variations of the underlying structures. Overloading
can help here.

Related routines. The module must have access to routines for manipulating the
underlying data structure.

Representation independence. The module should allow a user to specify an oper-
ation without knowing how it is implemented or what underlying data structures
have been used. For example,

x_is_in_table_t = search(x,t);

is a call to search for item x in a table t and return the (Boolean) result. If many
types of tables are to be searched (lists, trees, files, etc.), it is desirable not to have
massive control structures such as

if ( t is of type A )
apply search algorithm A

else if ( t is of type B )
apply search algorithm B

else if ...

whether it be in the module code or in the client code. Overloading and polymor-
phism can help here.

Commonality within subgroups. Extract commonality, extract commonality, ex-
tract commonality! Avoid the repetition of similar blocks of code because if a
change is required in one block, it is probably also required in the other similar
blocks, which will require a lot of time spent on maintenance. Build an abstract
interface that doesn’t expose the underlying data structures.

18.1.4 Functions and Data

Which comes first, functions or data? The key element in answering this question is
the problem of extendability and, in particular, the principle of continuity. During the
full life cycle, functions tend to change quite a bit since requirements on the system
also tend to change regularly. However, the data on which the functions operate tends
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to be persistent and change very little. The object-oriented approach is to concentrate
on building modules based on objects.

A classical design method is the top-down functional approach—specifying the
system’s abstract function, then applying stepwise refinement to smaller, more man-
ageable functions. The approach is logical and well organized, and encourages orderly
development. The drawbacks are as follows:

The method ignores the evolutionary nature of software systems. The problem
is continuity. The top-down approach yields short-term convenience, but as the
system changes, there will be constant redesigning, with a large potential for long-
term disaster.

The notion of a system being characterized by one function is questionable. An
operating system is the classic case of a system not characterized by a single
“main” function. Real systems have no top.

The method does not promote reusability. The designers tend to decompose the
functions based on current specifications. The subroutines are reflections of the
initial design. As the system evolves, the subroutines may no longer be relevant to
the new requirements.

18.1.5 Object Orientation

Object-oriented design leads to software architectures based on the objects every
system or subsystem manipulates rather than “the function” it is meant to ensure.
Issues are

How to find the objects. A well-organized software system may be viewed as an
operational model of some aspect of the world. The software objects will simply
reflect the real-world objects.

How to describe the objects. The standard approach to describing objects is
through abstract data types. Specification for an abstract data type involves types
(type becomes a parameter of the abstraction), functions (what operations are
applied), preconditions (these must be satisfied before operations are applied),
postconditions (these must be satisfied after operations are applied), and axioms
(how compositions of the functions behave).

Object-oriented design is also the construction of software systems as structured
collections of abstract data type implementations. Issues are

Object-based modular structure. Systems are modularized on the basis of their
data structures.

Data abstraction. Objects should be described as implementations of abstract
data types.
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Automatic memory management. Unused objects should be deallocated by the
underlying language system, without programmer intervention.

Classes. Every nonsimple type is a module, and every high-level module is a type.
This is implemented as the one-class-per-module paradigm.

Inheritance. A class may be defined as an extension or restriction of another.

Polymorphism and dynamic binding. Program entities should be permitted to
refer to objects of more than one class, and operations should be permitted to
have different realizations in different classes.

Multiple and repeated inheritance. It should be possible to declare a class as heir
to more than one class, and more than once to the same class.

Whether or not a language can support all the various features mentioned in
this section is questionable. Certainly, SmallTalk and Ada make claims that they are
fully featured. However, fully featured languages come at a price in performance.
The object-oriented code that accompanies this book is written in C++. While not
a “pure” object-oriented language, C++ supports the paradigm fairly well, yet allows
flexibility in dealing with situations where performance is important. One of the
common fallacies about C++ is that its performance is unacceptable compared to that
of C. Keep in mind that a compiler is a large software system itself and is susceptible,
just as any other large system, to being poorly implemented. Current-generation C++
compilers produce code that is quite compact and fast. For a reference book on
C++, see [Str00]. For an extensive set of examples illustrating the features and use
of C++, see [LLM05].

18.2 Style, Naming Conventions,
and Namespaces

One of the software engineering goals mentioned previously is that code should be
readable. In an environment with many programmers developing small pieces of a
system, each programmer tends to have his or her own style, including choice of
identifier names, use of white space, alignment and indentation of code, placement
of matching braces, and internal comments. If a team of programmers develops
code that will be read both internally (by other team members) and externally (by
paying clients), ideally the code should have as consistent a style as possible purely
from the point of view of readability. Inconsistent style distracts from the client’s
main purpose—to understand and use the code for his or her own applications.
A management-imposed style certainly is a possibility, but beware of the potential
religious wars. Many of today’s C++ programmers learned C first and learned their
programming style at that time. Although a lot of the conventions in that language
are not consistent with an object-oriented philosophy, the programmers are set in
their ways and will still use what they originally learned.
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Naming conventions are particularly important so that a reader of the code knows
what to expect across multiple files that were written by multiple programmers. One
of the most useful naming conventions used in the code on the CD-ROM that ac-
companies this book allows the reader to distinguish between class members, local
variables, and global variables, including whether they are nonstatic or static. This
makes it easy to determine where to look for definitions of variables and to under-
stand their scope.1 Moreover, the identifier names have type information encoded in
them. The embedded information is not as verbose as Microsoft’s Hungarian nota-
tion, but it is sufficient for purposes of readability and understandability of the code.

Because a game engine, like any other large library, will most likely be integrated
with software libraries produced by other teams, whether internal or external, there
is the possibility of clashes of class names and other global symbols. Chances are that
you have named your matrix class Matrix and so has someone else who has produced
header files and libraries for your use. Normally, someone has to make a name change
to avoid the clash. C++ provides the concept of namespace to support avoiding the
clashes, but a method that is popular among many library producers is to use a
prefix on class names and global symbols in hopes that the prefix is unique among
all packages that will be integrated into the final product. The namespace construct
implicitly mangles the class names, whereas the manual selection of a prefix makes
the mangling explicit.

The conventions used for the accompanying code are as follows. In the first
edition of the book, which shipped with Wild Magic Version 0.1, I used the explicit
scoping by the Mgc prefix. Since then I have abandoned that verbosity and switched to
using namespaces. This book ships with Wild Magic 4.0, in which I use the namespace
Wm4. Version 3 of Wild Magic used Wm3. The different namespaces actually had a
pleasant, practical side effect. I had to convert data files from the formats used in Wild
Magic 3 to the formats used in Wild Magic 4. Having distinct namespaces allowed
me to build reformatting applications that linked in both versions of the library.
Although you might think this obvious, when working on NetImmerse many years
ago, we had the problem of data file conversion every time we shipped a new version,
but we used explicit scoping (with the prefix Ni) in both the old and new versions.
Format conversion was generally a nightmare.

Regarding identifiers in the source code, function names are capitalized; if mul-
tiple words make up the name, each distinct word is capitalized. For example, given
a class that represents a string, a class member function to access the length of the
string would be named GetLength. Identifier names are capitalized in the same way
that function names are, but with prefixes. Nonstatic class data members are prefixed
with m_, and static class data members are prefixed with ms_. The m refers to “mem-
ber” and the s indicates “static.” A static local variable is prefixed with s_. A global

1. The evolution of source code browsers and databases in development tools makes finding the definitions
of variables quite easy. However, not everyone will have such tools, so I doubt if I will change my naming
conventions anytime soon!
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Table 18.1 Encoding for the various types to be used in identifier names.

Type Encoding Type Encoding

char c unsigned char uc

short s unsigned short us

int i unsigned int ui

long l unsigned long ul

float f double d

pointer p smart pointer sp

reference r array a

enumerated type e class variable k

template t function pointer o

void v handle h

interface (DX9) q

variable is prefixed with g_, and a static global variable is prefixed with gs_. The type
of the variable is encoded and is a prefix to the identifier name, but follows the un-
derscore (if any) for member or global variables. Table 18.1 lists the various encoding
rules.

To avoid excessively long names, loop counters are also allowed to use j , k, and
other one-letter names. For Wild Magic 4.1, I plan on replacing loop counters with
type ctri_t for a signed integer counter, and with type ctru_t for an unsigned integer
count. These will be defined differently depending on the natural word size for a
platform (32-bit systems or 64-bit systems).

Also, I now allow some data members to be in public scope if there are no side
effects needed when in the “set” or “get” semantics. These members have variable
names that follow the rules for function identifiers. If the data member is a constant
or a static constant, the name has all letters capitalized.

Identifier names do not use underscores, except for the prefixes as described
earlier. Class constants are capitalized and may include underscores for readability.
Combinations of the encodings are also allowed; for example,

unsigned int* auiArray = new unsigned int[16];
void ReallocArray (int iQuantity, unsigned int*& rauiArray)
{

delete[] rauiArray;
rauiArray = new unsigned int[iQuantity];

}
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short sValue;
short& rsValue = sValue;
short* psValue = &sValue;

class SomeClass
{
public:

SomeClass ();
SomeClass (const SomeClass& rkObject);

protected:
enum { NOTHING, SOMETHING, SOMETHING_ELSE };
int m_eSomeFlag;

};

The rules of style in the code are not listed here and can be inferred from reading
any of the source files.

18.3 Run-Time Type Information

Polymorphism provides abstraction of functionality. A polymorphic function call
can be made regardless of the true type of the calling object. But there are times when
you need to know the type of the polymorphic object, or you need to determine if the
object’s type is derived from a specified type—for example, to safely typecast a base
class pointer to a derived-class pointer, a process called dynamic typecasting . Run-
time type information (RTTI) provides a way to determine this information while the
program is executing.

18.3.1 Single-Inheritance Systems

A single-inheritance, object-oriented system consists of a collection of directed trees
where the vertices represent classes and the edges represent inheritance. Suppose
vertex V0 represents class C0 and vertex V1 represents class C1. If C1 inherits from C0,
then the directed edge from V1 to V0 represents the inheritance relationship between
C1 and C0. The directed edges indicate an is-a relationship. Figure 18.1 shows a simple
single-inheritance hierarchy.

The root of the tree is Polygon. Rectangle is a Polygon, and Square is a
Rectangle. Moreover, Square is a Polygon indirectly. Triangle is a Polygon;
EquilateralTriangle is a Triangle; and RightTriangle is a Triangle. However,
Square is not a Triangle, and RightTriangle is not an EquilateralTriangle.

An RTTI system is a realization of the directed trees. The basic RTTI data type
stores any class-specific information that an application might require at run time.
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RIGHTTRIANGLE

TRIANGLE
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RECTANGLE

SQUARE

Figure 18.1 Single-inheritance hierarchy.

It also stores a link to the base class (if any) to allow an application to determine
if a class is inherited from another class. The simplest representation stores no class
information and only the link to the base class. However, it is useful to store a string
encoding the name of the class. In particular, the string will be used in the streaming
system that is described later. The string may also be useful for debugging purposes
in quickly identifying the class type.

class Rtti
{
public:

Rtti (const char* acName, const Rtti* pkBaseType)
{

m_acName = acName;
m_pkBaseType = pkBaseType;

}

const char* GetName () const
{

return m_acName;
}

bool IsExactly (const Rtti& rkType) const
{

return &rkType == this;
}

bool IsDerived (const Rtti& rkType) const
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{
const Rtti* pkSearch = this;
while (pkSearch)
{

if (pkSearch == &rkType)
{

return true;
}
pkSearch = pkSearch->m_pkBaseType;

}
return false;

}

private:
const char* m_acName;
const Rtti* m_pkBaseType;

};

The root class Object in an inheritance tree must contain basic support for the
RTTI system. Minimally, the class is structured as

class Object
{
public:

static const Rtti TYPE;

virtual const Rtti& GetType () const
{

return TYPE;
}

bool IsExactly (const Rtti& rkType) const
{

return GetType().IsExactly(rkType);
}

bool IsDerived (const Rtti& rkType) const
{

return GetType().IsDerived(rkType);
}

bool IsExactlyTypeOf (const Object* pkObj) const
{

return pkObj && GetType().IsExactly(pkObj->GetType());
}
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bool IsDerivedTypeOf (const Object* pkObj) const
{

return pkObj && GetType().IsDerived(pkObj->GetType());
}

};

In addition to the RTTI support, my implementation of an object system has
template functions for static typecasting and dynamic typecasting. These are

template <class T>
T* StaticCast (Object* pkObj)
{

return (T*)pkObj;
}

template <class T>
const T* StaticCast (const Object* pkObj)
{

return (const T*)pkObj;
}

template <class T>
T* DynamicCast (Object* pkObj)
{

return pkObj && pkObj->IsDerived(T::TYPE) ? (T*)pkObj : 0;
}

template <class T>
const T* DynamicCast (const Object* pkObj)
{

return pkObj && pkObj->IsDerived(T::TYPE) ? (const T*)pkObj : 0;
}

Each derived class in the inheritance tree has a static type object TYPE and must
minimally be structured as

class DerivedClass : public BaseClass
{
public:

static const Rtti TYPE;
virtual const Rtti& GetType () const { return TYPE; }

};
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Root class

Class AB

Class BClass A

Figure 18.2 Multiple-inheritance hierarchy. Class AB inherits from both class A and class B and
indirectly inherits from the root class.

where BaseClass is, or is derived from, Object. Note that the unique identification is
possible since the static TYPE members all have distinct addresses in memory at run
time. The source file for the derived class must contain

const Rtti DerivedClass::TYPE("Wm4.DerivedClass",&BaseClass::TYPE);

In my implementation, I include the namespace as a prefix to the class name. This
allows the RTTI system to work with applications built from multiple libraries, each
using its own namespace but relying on the RTTI system in mine.

18.3.2 Multiple-Inheritance Systems

A multiple-inheritance, object-oriented system consists of a collection of directed
acyclic graphs where the vertices represent classes and the edges represent inheritance.
Suppose vertices Vi represent classes Ci for i = 0, 1, 2. If C2 inherits from both C0
and C1, then V2 has directed edges to both V0 and V1 that represent the multiple
inheritance. Figure 18.2 shows a multiple-inheritance hierarchy.

An RTTI system in the context of multiple inheritance is a realization of the
directed acyclic graphs. While the RTTI data type for a singly inherited system has a
single link to a base class, the RTTI data type for a multiply inherited system requires
a list of links to the base classes (if any). The simplest representation stores no class
information and only the links to the base classes. To support a to-be-determined
number of base classes, the C-style ellipses are used in the constructor, thus requiring
standard argument support. For most compilers, including cstdarg gives access to
the macros for parameter parsing.
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class Rtti
{
public:

Rtti (const char* acName, int iNumBaseClasses,...)
{

m_acName = acName;
if (iNumBaseClasses == 0)
{

m_iNumBaseClasses = 0;
m_apkBaseType = 0;

}
else
{

m_iNumBaseClasses = iNumBaseClasses;
m_apkBaseType = new Rtti*[iNumBaseClasses];
va_list list;
va_start(list,iNumBaseClasses);
for (int i = 0; i < iNumBaseClasses; i++)
{

m_apkBaseType[i] = va_arg(list, const Rtti*);
}
va_end(list);

}
}

~Rtti ()
{

delete[] m_apkBaseType;
}

bool IsDerived (const Rtti& rkType) const
{

if (&rkType == this)
{

return true;
}
for (int i = 0; i < m_iNumBaseClasses; i++)
{

if (m_apkBaseType[i]->IsDerived(rkType))
{

return true;
}

}
return false;

}
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// ... other public functions ...

private:
const char* m_acName;
unsigned int m_uiNumBaseClasses;
Rtti** m_apkBaseType;

};

The root class in a single-inheritance tree provides the member functions for
searching the directed tree to determine if one class is the same or derived from
another class. A technical problem with a multiple-inheritance directed graph is that
there may be more than one vertex with no edges; that is, the hierarchy may have
multiple root classes. To avoid this situation, always provide a single root class whose
sole job is to provide an interface for any systems used by the entire inheritance graph.
The root class in the multiple-inheritance graph is structured exactly as in the single-
inheritance tree.

The derived classes still provide the same static RTTI member and a virtual func-
tion to access its address. For example, consider

class DerivedClass : public BaseClass0, public BaseClass1
{
public:

static const Rtti TYPE;
virtual const Rtti& GetType () const { return TYPE; }

};

where both BaseClass0 and BaseClass1 are either Object or derived from Object. The
source file for this derived class must contain

const Rtti Derived::TYPE("Wm4.DerivedClass",2,
&BaseClass0::TYPE,&BaseClass1::TYPE);

18.3.3 Macro Support

Macros can be used to simplify use by an application and to hide the verbosity of
the code. I do not create a lot of macros—only enough to get the job done for my
object system. These are found in the graphics library, the ObjectSystem folder, files
Wm4Main.mcr, Wm4NameID.mcr, Wm4Rtti.mcr, and Wm4Stream.mcr. The Main macros are
for premain initialization and postmain termination of objects. The NameID macros
are for providing unique names and identifiers for objects in the system. The Rtti
macros are for the run-time type information system. The Stream macros are for the
streaming system for loading objects from files on disk and saving objects to files on
disk.
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18.4 Templates

Templates, sometimes called parameterized data types, are used to share code among
classes that all require the same structure. The classic example is a stack of objects.
The operations for a bounded stack are Push, Pop, IsEmpty, IsFull, and GetTop (read
top element without popping the stack). The operations are independent of the type
of object stored on the stack. A stack could be implemented for both int and float,
each using array storage for the stack elements. The only difference between the two
implementations is that the integer stack code uses an array of int and the float stack
code uses an array of float. A template can be used instead so that the compiler
generates object code for each type requested by an application.

template <class T> class Stack
{
public:

Stack (int iStackSize)
{

m_iStackSize = iStackSize;
m_iTop = -1;
m_atStack = new T[iStackSize];

}

~Stack () { delete[] m_atStack; }

bool Push (const T& rkElement)
{

if (m_iTop < m_iStackSize)
{

m_atStack[++m_iTop] = rkElement;
return true;

}
return false;

}

bool Pop (T& rkElement)
{

if (m_iTop >= 0)
{

rkElement = m_atStack[m_iTop--];
return true;

}
return false;

}
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bool GetTop (T& rkElement) const
{

if (m_iTop >= 0)
{

rkElement = m_atStack[m_iTop];
return true;

}
return false;

}

bool IsEmpty () const { return m_iTop == -1; }
bool IsFull () const { return m_iTop == m_iStackSize-1; }

protected:
int m_iStackSize;
int m_iTop;
T* m_atStack;

};

Macros could be used to generate code for different types, but the macros are
not typesafe and are susceptible to side effects. Although it is possible to implement
the stack code for both int and float, this poses a problem for code maintenance.
If one file changes, the other must be changed accordingly. The maintenance issue is
magnified even more so when there is a large number of types sharing the same code.
Templates provide a way of localizing those changes to a single file.

Templates are a good choice for container classes for various data structures such
as stacks, arrays, lists, and so on. The Standard Template Library is now a part
of C++ and may be used by the game engine. One problem to be aware of when
dealing with a container of objects (in this case, objects of type Object) is that certain
side effects of the class are necessary, especially in construction and destruction. If
a standard template library container class has a need to resize itself, it might do
so by creating an array of the new size, placing a memory copy of the old array
into the new array, and then deleting the old array. This scheme has the implicit
assumption that the underlying data is native. If the data consists of class objects
where the constructor allocates memory and the destructor deallocates memory,
the memory copy causes memory leaks and misses side effects that occur because
of object construction or destruction. This will definitely be the case for shared
objects and reference counting, the topic of the next section. If the Standard Template
Library does not support side effects, the game engine code will need to implement
its own template container classes. The STL mainly supports side effects, but for even
more complicated interactions between objects and the template library, see the ever
popular Boost library [Lib].
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18.5 Shared Objects and Reference Counting

Sharing of objects is natural in a game engine. Models that contain a lot of data might
be shared to minimize memory use. Renderer state can also be shared, particularly
when textures are shared among objects. It is unlikely that a game engine can be im-
plemented in a way to manually manage shared objects without losing some along
the way (object leaking) or destroying some while still in use by other objects (pre-
mature destruction). Therefore, a more automated system is required to assist in the
bookkeeping of sharing. A popular system is to add a reference counter to the root
class object. Each time an object is shared (referenced) by another object, the refer-
ence counter is incremented. Each time an object is finished sharing with another, the
reference counter is decremented. Once the reference counter decreases to zero, the
object is no longer referenced within the system, and it is deleted.

The details of reference counting can be exposed so that the application is respon-
sible for adjusting the reference counter, but this mechanism places great faith in the
programmer to properly manage the objects. Another possibility is to implement a
smart pointer system that adjusts the reference counter internally while still allowing
the application to intervene in cases that require special handling. Thus, the burden
of proper management of shared objects is mostly taken from the programmer. The
Java programming language incorporates this system. The Boost libraries [Lib] also
provide support for smart pointers of various flavors.

In addition to run-time type information, the root class Object now includes the
following code to support reference counting:

public:
void IncrementReferences ()
{

m_iReferences++;
}

void DecrementReferences ()
{

if (--m_iReferences == 0)
{

delete this;
}

}

int GetReferences () const
{

return m_iReferences;
}
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static stdext::hash_map<unsigned int,Object*>* InUse;
static void PrintInUse (const char* acFilename,

const char* acMessage);
private:

int m_iReferences;

The static hash map keeps track of objects currently in the system. The hash map is
initially empty at program execution time. At program termination, if the hash map
is not empty, the contents may be printed to a file using the PrintInUset function.
This is useful for tracking object leaks and for letting the application writer know
that he did not release all the objects he should have.

The smart pointer system is built on top of this system and uses templates:

template <class T> class Pointer
{
public:

// construction and destruction
Pointer (T* pkObject = 0)
{

m_pkObject = pkObject;
if (m_pkObject)
{

m_pkObject->IncrementReferences();
}

}

Pointer (const Pointer& rkPointer)
{

m_pkObject = rkPointer.m_pkObject;
if (m_pkObject)
{

m_pkObject->IncrementReferences();
}

}

~Pointer ()
{

if (m_pkObject)
{

m_pkObject->DecrementReferences();
}

}

// implicit conversions
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operator T* () const { return m_pkObject; }
T& operator* () const { return *m_pkObject; }
T* operator-> () const { return m_pkObject; }

// assignment
Pointer& operator= (T* pkObject)
{

if (m_pkObject != pkObject)
{

if (pkObject)
{

pkObject->IncrementReferences();
}

if (m_pkObject)
{

m_pkObject->DecrementReferences();
}

m_pkObject = pkObject;
}
return *this;

}

Pointer& operator= (const Pointer& rkReference)
{

if (m_pkObject != rkPointer.m_pkObject)
{

if (rkPointer.m_pkObject)
{

rkPointer.m_pkObject->IncrementReferences();
}

if (m_pkObject)
{

m_pkObject->DecrementReferences();
}

m_pkObject = rkPointer.m_pkObject;
}
return *this;

}

// comparisons
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bool operator== (T* pkObject) const
{

return m_pkObject == pkObject;
}

bool operator!= (T* pkObject) const
{

return m_pkObject != pkObject;
}

bool operator== (const Pointer& rkReference) const
{

return m_pkObject == rkPointer.m_pkObject;
}

bool operator!= (const Pointer& rkReference) const
{

return m_pkObject != rkPointer.m_pkObject;
}

protected:
// the shared object
T* m_pkObject;

};

The assignment operator must compare the pointer values first before adjusting
reference counting to guard against assignments of the type

Pointer<Object> spkPointer = new Object;
spkPointer = spkPointer;

Although you might not have such lines of code in your program, indirectly you may
have a situation where an assignment occurs from an object to itself.

The constructor for Object sets the references to zero. The constructor for Pointer
increments the references to one. If the initial comparison were not present in the as-
signment operator, the call to DecrementReferences would decrement the references
to zero, then destroy the object. Consequently, the pointer rkPointer.m_pkObject
points to a memory block no longer owned by the application, and the pointer
m_pkObject, the target of the assignment, will point to the same invalid block. The
call to IncrementReferences will write to the invalid block—an error. Although such
a statement is unlikely in a program, the situation might arise unexpectedly due to
pointer aliasing.

The Object base class defines a smart pointer type, and each derived class does
the same.
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typedef Pointer<Object> ObjectPtr;
typedef Pointer<DerivedClass> DerivedClassPtr;

This is for convenience in programming.
There might be a need to typecast a smart pointer to a pointer or smart pointer.

For example, class Node, the internal node representation for scene graphs, is derived
from Spatial, the leaf node representation for scene graphs. Polymorphism allows
the assignment

Node* pkNode = <some node in scene graph>;
Spatial* pkObject = pkNode;

Abstractly, a smart pointer of type NodePtr is derived from SpatialPtr, but the lan-
guage does not support such mirroring of class derivation trees. The use of implicit
operator conversions in the smart pointer class guarantees a side effect that makes it
appear as if the derivation really does occur. For example,

// This code is valid.
NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkObject = spkNode;

// This code is not valid when class A is not derived from
// class B.
APtr spkAObject = new A;
BPtr spkBObject = spkAObject;

The implicit conversions also support comparison of smart pointers to null, just like
regular pointers:

NodePtr spkNode = <some node in scene graph>;
SpatialPtr spkChild = spkNode->GetChildAt(2);
if (spkChild)
{

<do something with spkChild>;
}

A simple example illustrating the use and cleanup of smart pointers follows. The
class Node stores an array of smart pointers for its children.

NodePtr spkNode = <some node in scene graph>;
Node* pkNode = new Node; // pkNode references = 0
NodePtr spkChild = pkNode; // pkNode references = 1
spkNode->AttachChild(spkChild); // pkNode references = 2
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spkNode->DetachChild(spkChild); // pkNode references = 1
spkChild = 0; // pkNode references = 0,

// destroy it

This illustrates how to properly terminate use of a smart pointer. In this code the call
delete spkChild would work just fine. However, if the object that spkChild points to
has a positive reference count, explicitly calling the destructor forces the deletion, and
the other objects that were pointing to the same object now have dangling pointers.
If instead the smart pointer is assigned 0, the reference count is decremented and the
object pointed to is not destroyed if there are other objects referencing it. Thus, code
like the following is safe:

NodePtr spkNode = <some node in scene graph>;
Node* pkNode = new Node; // pkNode references = 0
NodePtr spkChild = pkNode; // pkNode references = 1
spkNode->AttachChild(spkChild); // pkNode references = 2
spkChild = 0; // pkNode references = 1,

// no destruction

Also note that if the assignment of 0 to the smart pointer is omitted in this code, the
destructor for the smart pointer is called and the reference count for pkNode still is
decremented to one.

Some other guidelines that must be adhered to when using smart pointers follow.
Smart pointers apply only to dynamically allocated objects, not to objects on the
stack. For example,

void MyFunction ()
{

Node kNode; // kNode references = 0
NodePtr spkNode = &kNode; // kNode references = 1
spkNode = 0; // kNode references = 0,

// kNode is deleted
}

is doomed to failure. Since kNode is on the stack, the deletion implied in the last
statement will attempt to deallocate stack memory, which is an error.

Using smart pointers as function parameters or returning them as the result of a
function call also has its pitfalls. The following example illustrates the dangers:

void MyFunction (NodePtr spkNode)
{

<do nothing>;
}
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Node* pkNode = new Node;
MyFunction(pkNode);
// pkNode now points to invalid memory

On allocation pkNode has zero references. The call to MyFunction creates an instance
of a NodePtr on the stack via the copy constructor for that class. That call increments
the reference count of pkNode to one. On return from the function, the instance of
NodePtr is destroyed and, in the process, pkNode has zero references and it too is
destroyed. However, the following code is safe:

Node* pkNode = new Node; // pkNode references = 0
NodePtr spkNode = pkNode; // pkNode references = 1;
MyFunction(spkNode); // pkNode references increase to 2,

// then decrease to 1
// pkNode references = 1 at this point

A related problem is

NodePtr MyFunction ()
{

Node* pkReturnNode = new Node; // references = 0;
return pkReturnNode;

}

Node* pkNode = MyFunction();
// pkNode now points to invalid memory

A temporary instance of a NodePtr is implicitly generated by the compiler for the
return value of the function. The copy constructor is called to generate that instance,
so the reference count of pkNode is one. The temporary instance is no longer needed
and is implicitly destroyed and, in the process, pkNode has zero references and it too
is destroyed. The following code is safe:

NodePtr spkNode = MyFunction();
// spkNode.m_pkObject has one reference

The temporary instance increases the reference count of pkReturnNode to one. The
copy constructor is used to create spkNode, so the reference count increases to two.
The temporary instance is destroyed, and the reference count decreases to one.

18.6 Streaming

Persistence of storage is a requirement for a game engine. Game content is typically
generated by a modeling tool and must be exported to a format that the game applica-
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tion can import. The game application itself might have a need to save its data so that
it can be reloaded at a later time. Streaming of data refers to the process of mapping
data between two media, typically disk storage and memory. In this section, we will
discuss transfers between disk and memory, but the ideas directly apply to transfers
between memory blocks (which supports transfers across a network).

A scene graph is considered to be an abstract directed graph of objects (of base
type Object). The nodes of the graph are the objects, and the arcs of the graph
are pointers between objects. Each object has nonobject members, in particular any
members of a native data type (integer, float, string, etc.). The abstract graph must be
saved to disk so that it can be re-created later. This means that both the graph nodes
and graph arcs must be saved in some reasonable form. Moreover, each graph node
should be saved exactly once. The process of saving a scene graph to disk is therefore
equivalent to creating a list of the unique objects in the graph, saving them to disk,
and in the process saving any connections between them. If the graph has multiple
connected components, then each component must be traversed and saved. Support
for saving multiple abstract objects is easy to implement. The class Stream provides
the ability to assemble a list of top-level objects to save. Typically, these are the roots of
scene graphs, but they can be other objects whose state needs to be saved. To support
loading the file and obtaining the same list of top-level objects, an identifying piece
of information must be written to disk before each abstract graph corresponding to
a top-level object. A simple choice is to write a string to disk.

18.6.1 The Stream API

The class that exists to manage the streaming process is Stream. The relevant public
portion of the interface is

class Stream
{
public:

// construction and destruction
Stream ();
~Stream ();

// the objects to process, each object representing an entry
// into a connected component of the abstract graph
bool Insert (Object* pkObject);
bool Remove (Object* pkObject);
void RemoveAll ();
int GetObjectCount ();
Object* GetObjectAt (int i) const;
bool IsTopLevel (Object* pkObject);
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// Memory loads and saves. Stream does not assume
// responsibility for the char arrays. The application must
// manage the input acBuffer for the call to Load and delete
// the output racBuffer for the call to Save.
bool Load (char* acBuffer, int iSize);
bool Save (char*& racBuffer, int& riSize);

// File loads and saves.
bool Load (const char* acFilename);
bool Save (const char* acFilename);

// Support for disk usage.
int GetDiskUsed () const;

};

A Stream object manages a list of top-level objects. Objects are inserted into
the list by Insert and removed from the list by Remove or RemoveAll. The function
GetObjectCount returns the number of objects in the top-level list. The function Get-
ObjectAt(int) returns the ith object in the list. The function IsTopLevel is mainly
used internally by Stream, but may be called by an application as a check for existence
of an object in the top-level list.

Streaming to and from disk is supported by the load/save functions that take a
file name (character string) as input. The other load/save functions are for streaming
to and from a memory block. The return value is true if and only if the function call
was successful.

The function call GetDiskUsed computes how much disk space the top-level ob-
jects will use, not counting the file header that is used in the Wild Magic scene file
format. This function is also used internally by the file Save function to allocate a
memory block of the appropriate size, stream the top-level objects to that block, and
then write the block with a single call to a low-level file writing function. The intent is
to avoid expensive disk operations that might occur if writes are made on a member-
by-member basis for each object. Every class derived from Object must implement
GetDiskUsed.

The typical usage for disk streaming is shown in the next code block:

// Save a list of objects.
Stream kOutStream;
kOutStream.Insert(pkObject1);
:
kOutStream.Insert(pkObjectN);
kOutStream.Save("myfile.wmof");

// Load a list of objects.
Stream kInStream;
bool bLoaded = kInStream.Load("myfile.wmof");
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if (bLoaded)
{

for (int i = 0; i < kInStream.GetObjectCount(); i++)
{

ObjectPtr spkObject = kInStream.GetObjectAt(i);
// Use prior knowledge of the file contents and statically
// cast the objects for further use by the application.
// ...or...
// Get the run-time type information and process the
// objects accordingly.

}
}

A pseudocode example of how the memory streaming might be used in a net-
working application follows:

// Server code:
Stream kOutStream;
// ...insert objects into kOutStream...
int iSize;
char* acBuffer;
kOutStream.Save(acBuffer,iSize);
create begin_stream packet [send iSize];
send packet;
while (not done sending bytes from acBuffer)
{

create a packet of bytes from acBuffer;
send packet;

}
create end_stream packet;
send packet;
delete[] acBuffer;

// Client code (in idle loop):
if (received begin_stream packet)
{

int iSize;
get iSize from packet;
char* acBuffer = new char[iSize];
while (not end_stream packet)
{

get packet;
extract bytes into acBuffer;

}
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Stream kInStream;
kInStream.Load(acBuffer,iSize);
delete[] acBuffer;
// ...get objects from kInStream and process...

}

18.6.2 The Object API

The class Object has the following API to support streaming:

typedef Object* (*FactoryFunction)(Stream&);

class Object
{
public:

static stdext::hash_map<std::string,FactoryFunction>* ms_pkFactory;
static bool RegisterFactory ();
static void InitializeFactory ();
static void TerminateFactory ();
static Object* Factory (Stream& rkStream);
virtual void Load (Stream& rkStream, Stream::Link* pkLink);
virtual void Link (Stream& rkStream, Stream::Link* pkLink);
virtual bool Register (Stream& rkStream) const;
virtual void Save (Stream& rkStream) const;
virtual int GetDiskUsed (const StreamVersion& rkVersion) const;

}

The factory hash map stores class-static functions that are used to load an object
from disk. The key of the hash item is the RTTI string. The value is the factory
function for the class. For example, class Object has the factory function Object*
Factory (Stream&). The factory hash table must be created and the factory functions
must be added to it during the initialization phase of the application (see Section
18.8). The functions RegisterFactory and InitializeFactory are built to do this.
On termination of the application, the factory hash map must be destroyed. The
function TerminateFactory does this. The functions Register, Save, and GetDiskUsed
are used for saving objects. The functions Factory, Load, and Link are used for loading
objects. Each derived class has the same API minus the static hash table and the
TerminateFactory function. The streaming functions are described in detail here.

Saving a Scene Graph

To save a scene graph, a unique list of objects must be created first. This list is built by
a depth-first traversal of the scene. Each Object that is visited is told to register itself
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if it has not already done so. The virtual function that supports this is Register. The
base class registration function is

bool Object::Register (Stream& rkStream) const
{

Object* pkThis = (Object*)this; // conceptual constness
if (rkStream.InsertInMap(pkThis,0))
{

// used to ensure the objects are saved in the order
// corresponding to a depth-first traversal of the scene
rkStream.InsertInOrdered(pkThis);

for (int i = 0; i < (int)m_kControllers.size(); i++)
{

if (m_kControllers[i])
{

m_kControllers[i]->Register(rkStream);
}

}

return true;
}

return false;
}

The stream maintains a hash map of registered objects. The base class Object
implements this function to ask the stream if the object has been registered. If so,
the function returns false. If not, the stream adds the object to the hash map, and
the object tells the stream to register its only Object* members, a list of Controller
objects. The function then returns true. Each derived class implements this function.
The base class function is called. If the registration is successful, this object is visited
for the first time, and it tells each Object* member to register itself. The generic
structure is

bool DerivedClass::Register (Stream& rkStream) const
{

if (!BaseClass::Register(rkStream))
{

return false;
}
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for each Object-type member do
{

if (member)
{

member->Register(rkStream);
}

}

return true;
}

After the registration phase, the stream has a list of unique Objects. An iteration
is made through the list, and each object is told to save itself. The base class virtual
function that supports this is

void Object::Save (Stream& rkStream) const
{

WM4_BEGIN_DEBUG_STREAM_SAVE;

// RTTI name for factory lookup on Load
rkStream.Write(std::string(GetType().GetName()));

// address of object for unique ID on Load/Link
rkStream.Write((Object*)this);

// name of object
rkStream.Write(m_kName);

// link data
int iQuantity = (int)m_kControllers.size();
rkStream.Write(iQuantity);
for (int i = 0; i < iQuantity; i++)
{

rkStream.Write(m_kControllers[i]);
}

WM4_END_DEBUG_STREAM_SAVE(Object);
}

The RTTI name is a string specific to the class. The string for class Object is
“Wm4.Object”; however, Object is an abstract base class, so you will not see this name
in a scene file. The class Spatial is also abstract and has the name “Wm4.Spatial”;
however, objects of class Node can be instantiated so you will see “Wm4.Node” in
the scene files. The RTTI name is used by the stream loader to locate the correct
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factory function to create an object of that class. The address of the object is written to
disk to be used as a unique identifier when loading. That address will not be a valid
memory address when loading, so the stream loader has to resolve these addresses
with a linking phase. Each object may have a character string name. Such strings are
written to disk by saving the length of the string first, followed by the characters of the
string. The null terminator is not written. The controller pointers are also memory
addresses that are written to disk for unique identification of the objects. When the
controllers themselves are written to disk, those same addresses are the ones that
occur immediately after the RTTI names are written.

Each derived class implements Save. The base class Save is called first. Non-Object
data is written to disk first, followed by any Object* addresses.

void DerivedClass::Save (Stream& rkStream) const
{

WM4_BEGIN_DEBUG_STREAM_SAVE;

BaseClass::Save(rkStream);
write non-object data; // "native" data
write Object* pointers; // "link" data

WM4_END_DEBUG_STREAM_SAVE(DerivedClass);
}

Not all native data needs to be saved. Some data members are derivable from
other data and are reproduced once the data is fully loaded from disk. Some data
members are set by other run-time processes and need not be saved. For example,
Spatial has an Object* member, the pointer to a parent node. When the scene graph
is reconstructed during stream loading, that parent pointer is initialized when the
spatial object is attached to a parent by a call to an appropriate Node member function.
Therefore, the parent pointer is not saved to disk. Some native data may be aggregate
data in the form of a class—for example, the class Vector3. Various template func-
tions are provided in the streaming source files to save such classes based on memory
size. The implication is that any such class cannot have virtual functions. Otherwise,
the memory size includes the size of the nonstatic class members as well as the size of
the implicit virtual function table pointer.

Although a single scene graph is typically written to disk, the stream object allows
multiple objects to be written. For example, you might save a scene graph, a set of
camera objects, and a set of light objects. The root node of the scene is what you
tell the stream object to save. This node is an example of a top-level object . Other
objects that are contained in the scene graph are automatically saved, but they are not
top-level objects. When you load a scene file that contains multiple top-level objects,
you need a way of loading the scene and recapturing these objects. Before a top-level
object is saved to disk, the string “Top Level” is written first. This allows the loader to
easily identify top-level objects.
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A brief explanation is in order for the couple of code samples shown. You saw the
macros WM4_BEGIN_DEBUG_STREAM_SAVE and WM4_END_DEBUG_STREAM_SAVE(classname).
I introduced these to help debug the streaming code for new classes that are added to
Wild Magic. Each Object-derived class implements a function called GetDiskUsed.
The function returns the number of bytes that the object will require for storage on
disk. The Stream class saves a scene graph to a memory block first, then writes the
memory block to disk. In order to have a large enough memory block, the Stream
queries all the unique objects to be streamed by calling GetDiskUsed per object. The
sum of the numbers is exactly the number of bytes required for the disk operation.
During the streaming to the memory block, Stream maintains an index to the location
in the memory block where the next write should occur. The “begin” macro saves the
index before any writes occur, and the “end” macro saves the index after all writes
occur. The difference should be exactly the amount reported by GetDiskUsed for that
object. If the difference is in error, an assertion is fired. The problem is either that
you are incorrectly saving the object to disk or that GetDiskUsed itself is incorrectly
implemented. The firing of the assertion has been enough for me to track down which
of the two is the problem.

Loading a Scene Graph

Loading is a more complicated process than saving. Since the pointer values on
disk are invalid, each object must be created in memory first, and then filled in
with data loaded from disk. Links between objects such as parent-child relationships
must be established later. Despite the invalidity of the disk pointer values, they do
store information about the abstract graph that is being loaded. The address of each
object in memory is associated with a disk pointer value, so the same hash table
that was used for storing the unique objects for saving can be reused for tracking
the correspondence between the disk pointer values, called link IDs, and the actual
memory address of the object. Once all objects are in memory and the hash table is
complete with the correspondences, the table is iterated as if it were a list, and the link
IDs in each object are replaced by the actual memory addresses. This is exactly the
concept of resolving addresses that a linker uses when combining object files created
by a compiler.

An object is loaded as follows. The stream object knows that the first thing to
expect is either the string “Top Level” or an RTTI string. If “Top Level” is read, the
loaded object is stored in a set of top-level objects for the application to access. If an
RTTI string is read, the stream knows that it needs to create an object of that type
from the file data that follows the RTTI string. The RTTI string is used as a key in
a hash map that was created premain at program initialization. The value of a hash
map entry is a static class function called Factory. This function starts the loading
process by creating an object of the desired type, and then filling in its member values
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by reading the appropriate data from the file. The factory function for instantiable
classes is structured as

classname* classname::Factory (Stream& rkStream)
{

classname* pkObject = new classname;
Stream::Link* pkLink = new Stream::Link(pkObject);
pkObject->Load(rkStream,pkLink);
return pkObject;

}

The scene file contains a list of unique objects, each storing a unique identifier
called a link ID. This identifier was the address of the object when it was saved to
disk. Any Object* members in an object are themselves old addresses, but are now
link IDs that refer to objects that are in the scene file. When loading an object, all link
IDs must be stored persistently so that they may be resolved later in a linking phase.
The second line of the Factory function creates an object to store these links. The link
object itself is stored as the value in a hash map entry whose key is the input object to
the constructor. The call to Load allows the object to read its native data and Object*
links from disk. The link object is passed down from derived classes to base classes to
allow each base class to add any links it loads.

The Load function for the base class Object does the work of telling the stream to
add the link-object pair to the stream’s hash map. After that, the object’s native data
and links are loaded. The function is

void Object::Load (Stream& rkStream, Stream::Link* pkLink)
{

WM4_BEGIN_DEBUG_STREAM_LOAD;

// Get old address of object; save it for linking phase.
Object* pkLinkID;
rkStream.Read(pkLinkID);
rkStream.InsertInMap(pkLinkID,pkLink);

// name of object
rkStream.Read(m_kName);

// link data
int iQuantity;
rkStream.Read(iQuantity);
m_kControllers.resize(iQuantity);
for (int i = 0; i < iQuantity; i++)
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{
Object* pkObject;
rkStream.Read(pkObject);
pkLink->Add(pkObject);

}

WM4_END_DEBUG_STREAM_LOAD(Object);
}

Notice how the function loads the controller pointers. At the time the object was
saved to disk, this value was the memory address for the controller. Now at load time
it can only be used as a unique identifier. That value is stored in the link object for
the linking phase that occurs after loading.

Derived classes implement the Load function by calling the base class Load first,
and then reading native data followed by link data. This is done in the same order
that Save processed the data.

void DerivedClass::Load (Stream& rkStream, Stream::Link* pkLink)
{

WM4_BEGIN_DEBUG_STREAM_LOAD;

BaseClass::Load(rkStream,pkLink);
read non-object data; // "native" data
read Object* pointers; // "link" data
add Object* pointers to pkLink; // for later linking phase

WM4_END_DEBUG_STREAM_LOAD(DerivedClass);
}

Once all objects are loaded from disk, the linking phase is initiated. An iteration
is made over the list of loaded objects and the link function is called for each object.
The base class linking function is

void Object::Link (Stream& rkStream, Stream::Link* pkLink)
{

for (int i = 0; i < (int)m_kControllers.size(); i++)
{

Object* pkLinkID = pkLink->GetLinkID();
m_kControllers[i] = (Controller*)rkStream.GetFromMap(pkLinkID);

}
}

The generic structure of the linking function is
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void classname::Link (Stream& rkStream, Stream::Link* pkLink)
{

Object* pkLinkID;

// link member 1
pkLinkID = GetLinkID();
m_spkObjectMember1 =

(ObjectMember1Class*)rkStream.GetFromMap(pkLinkID);

// ... other object member linking ...

// link member N
pkLinkID = GetLinkID();
m_spkObjectMemberN =

(ObjectMemberNClass*)rkStream.GetFromMap(pkLinkID);

// Postlink semantics, if any, go here.
}

The function GetLinkID accesses a link ID and internally increments a counter so that
the next call accesses the next link ID. The objects must be linked in the order in which
they were saved to disk (which is the same order that they were loaded from disk).

Again, a brief explanation is in order for the couple of code samples shown.
You saw the macros WM4_BEGIN_DEBUG_STREAM_LOAD and WM4_END_DEBUG_STREAM_
LOAD(classname). These are analogous to the macros used for saving a scene. They
allow you to track down any implementation errors in streaming when adding new
classes to Wild Magic. The Stream class loads a scene graph to a memory block first,
and then writes the memory block to a scene in memory. In order to have a large
enough memory block, the Stream queries all the unique objects to be streamed by
calling GetDiskUsed per object. The sum of the numbers is exactly the number of
bytes required for the disk operation. During the streaming to the memory block,
Stream maintains an index to the location in the memory block where the next read
should occur. The “begin” macro saves the index before any reads occur, and the
“end” macro saves the index after all reads occur. The difference should be exactly
the amount reported by GetDiskUsed for that object. If the difference is in error, an
assertion is fired. The problem is either that you are incorrectly loading the object
from disk or that GetDiskUsed itself is incorrectly implemented.

18.7 Names and Unique Identifiers

Searching for specific objects at run time is useful. The graphics engine supports
searching based on a character-string name and on a unique integer-valued identifier.
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18.7.1 Name String

An application might require finding objects in the system during run time. To fa-
cilitate this, each object has a character string member. The string can be something
as simple as a human-readable name, but it could also contain additional informa-
tion that is useful to the application. For example, the root node of a model of a table
could be assigned the name string “Table 17” to identify that the model is in fact a
table, with the number indicating that other tables (or types of tables) exist in the
scene. It might be important for the application to know what room contains the
table. The name string can contain such information, for example, “Table 17 : Room
23.”

To support name strings, the Object class provides the following API:

public:
void SetName (const std::string& rkName);
const std::string& GetName () const;
static unsigned int GetNextID ();
virtual Object* GetObjectByName (const std::string& rkName);
virtual void GetAllObjectsByName (const std::string& rkName,

std::vector<Object*>& rkObjects);
private:

std::string m_kName;

The member functions SetName and GetName are standard accessors to the name
string. The member function GetObjectByName is a search facility that returns a
pointer to an object with the specified name. If the caller object has the specified
name, the object just returns a pointer to itself. If it does not have the input name, a
search is applied to member objects. The method of search depends on the Object-
derived class itself. Class Object compares the input name to the name of the object
itself. If found, the object pointer is returned. If not, a search is made over all the
controllers attached to the object and, if found, the controller pointer is returned.
Otherwise, a null pointer is returned, indicating that an object with the specified
name was not found in the current object. A derived-class implementation must call
the base class function before checking its own object members.

The name string is not necessarily unique. If two objects have the same name,
GetObjectByName will find one of them and return a pointer to it. The other object is
not found. The other name string member function handles multiple occurrences of
a name string. A call to GetAllObjectsByName will search for all objects with the input
name. The method of search depends on the Object-derived class itself.

18.7.2 Unique Identification

Although names are readable and of use to a human, another form of identification
may be used to track objects in the system. At first glance you might choose to use
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the memory address of the object as a unique identifier since, at a single instant in
time, the address is unique. Over time, however, you can run into problems with
this scheme. If the memory address of an object is stored by the application to be
processed at a later time, it is possible that the object is deleted at some intermediate
time. At deletion time the application then has a dangling pointer since the object
no longer exists. Worse, other memory allocations can occur with the chance that an
entirely new object has the same memory address as the old one that is now defunct.
The application no longer has a dangling pointer, but that pointer does not point to
the object that the application thinks it is. The likelihood of such an occurrence is
higher than you think, especially when the memory manager is asked to allocate and
deallocate a collection of homogeneous objects that are all the same size in memory.

To avoid such problems, each object stores a unique identifier. Wild Magic cur-
rently uses a 32-bit unsigned integer. The Object class has a static unsigned integer
member that stores the next available identifier. Each time an object is created, the
current static member value is assigned to the nonstatic object member; the static
member is then incremented. Hopefully, 32 bits is large enough to provide unique
identifiers for all objects over the lifetime of the application. If you have an appli-
cation that requires more than 232 objects, you can either allow the wraparound that
will occur when incrementing the static member, or implement a “counter” class that
allows for more bits and provides the simple services of storing a static “next avail-
able” counter and incrementing a counter.

To support unique identifiers, the Object class provides the following API:

public:
unsigned int GetID () const;
static unsigned int GetNextID ();
virtual Object* GetObjectByID (unsigned int uiID);

private:
unsigned int m_uiID;
static unsigned int ms_uiNextID;

The static member is initialized (premain) to zero. Each constructor for the class has
the line of code

m_uiID = ms_uiNextID++;

This is a simple system that is not designed to reuse an old identifier when an object
is deleted. A more sophisticated system could allow reuse, but I believe the additional
run-time costs are not warranted.

The member function GetObjectByID is similar in structure to the function Get-
ObjectByName, except that identifiers are compared rather than name strings. Since
the identifiers are unique, there is no need for a function GetAllObjectsByID. As with
the other search functions, the method of search in an Object-derived class is specific
to that class.
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18.8 Initialization and Termination

A class in the object system might declare one or more static members. These mem-
bers are initialized in the source file for the class. If a static member is itself a class
object, the initialization is in the form of a constructor call. This call occurs before
the application’s main function starts (premain). The destructor is called after the
application’s main function terminates (postmain). The C++ compiler automatically
generates the code for these function calls.

18.8.1 Potential Problems

The premain and postmain mechanism has a few potential pitfalls. One problem is
that the order in which the function calls occur is unpredictable and is dependent on
the compiler. Obtaining a specific order requires some additional coding to force it
to occur. Without the forced ordering, one premain initialization might try to use a
static object that has not yet been initialized. For example,

// contents of Matrix2.h
class Matrix2
{
public:

Matrix2 (float fE00, float fE01, float fE10, float fE11);
Matrix2 operator* (float fScalar);
static Matrix2 IDENTITY;

protected:
float m_aafE[2][2];

};

// contents of Matrix2.cpp
Matrix2 Matrix2::IDENTITY(1.0f,0.0f,0.0f,1.0f);
Matrix2::Matrix2 (float fE00, float fE01, float fE10, float fE11)
{

m_aafE[0][0] = fE00; m_aafE[0][1] = fE01;
m_aafE[1][0] = fE10; m_aafE[1][1] = fE11;

}
// ... other member functions here ...

// contents of MyClass.h
class MyClass
{
public:

static Matrix2 TWICE_IDENTITY;
};
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// contents of MyClass.cpp
Matrix2 Matrix2::TWICE_IDENTITY = Matrix2::IDENTITY*2.0f;

If the static matrix of MyClass is initialized first, the static matrix of Matrix2 has all
zero entries, since the storage is reserved already by the compiler but is set to zero
values as is all static data.

Problems can occur with file-static data. If a file-static pointer is required to
allocate memory, this occurs before the main application is launched. However, since
such an initialization is C-style and not part of class semantics, code is not generated
to deallocate the memory. For example,

int* g_aiData = new int[17];
int main ()
{

memset(g_aiData,0,17*sizeof(int));
return 0;

}

The global variable g_aiData is allocated premain, but no deallocation occurs,
thus creating a memory leak. One mechanism to handle this is the atexit function
provided by C or C++ run-time libraries. The input to atexit is a function that
takes no parameters and returns void. The functions are executed before the main
application exits, but before any global static data is processed postmain. There is an
order in this scheme, which is LIFO (last in, first out). The previous block of code can
be modified to use this:

int* g_aiData = new int[17];
void DeleteData () { delete[] g_aiData; }
int main ()
{

atexit(DeleteData);
memset(g_aiData,0,17*sizeof(int));
return 0;

}

Of course in this example the global array is allocated in the same file that has
main, so a delete statement may instead be used before the return from the function.
However, if the global array occurs in a different file, then some function in that
file has the responsibility for calling atexit with the appropriate deletion function
as input. That function will be called before main returns.

Another problem with file-static data may occur, but it depends on the compiler
you use. In order to initialize some part of the system, it might be desirable to force
a C-style function to be called premain. The following code in a source file has that
effect:
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bool g_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// Do the initialization.
return true;

}

The initialization function is static because its only purpose is to force something
to happen specifically to items in that file. The fact that g_bInitialized is global
requires the compiler to make the symbol externally accessible by adding the appro-
priate label to the compiled code in the object file. The compiler should then add the
call of the initialization function to its list of such functions to be called premain.

A drawback with this mechanism is that, in fact, the variable g_bInitialized is
externally accessible. As such, you might have name clashes with symbols in other
files. One solution is to create a name for the dummy variable that has a large prob-
ability of not clashing with other names. Another solution is to make the dummy
variable file-static:

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// Do the initialization.
return true;

}

The problem, though, is that an optimizing compiler or a smart linker might try
to be too smart. Noticing that gs_bInitialized is never referenced anywhere else
in the file, and noticing that it is in fact static, the compiler or linker might very
well discard the symbol and never add the initialization function to its list of pre-
main initializers to call. Yes, this has happened in my experience, and it is a difficult
problem to diagnose. A compiler might provide a macro that lets you prevent the
static variable from being discarded, but then again it might not. A more robust
solution to prevent the discard is

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

// Do the initialization.
gs_bInitialized = true;
return gs_bInitialized;

}

Hopefully, the compiler or linker will not try to be really smart and simply notice that
the static variable is used somewhere in the file and not discard it. If for some strange
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reason the compiler or linker does figure this one out and discards the variable, a
more sophisticated body can be used.

To handle order dependencies in the generic solution for classes, discussed in the
next section, it is necessary to guard against multiple initializations. The following
will do this:

static bool gs_bInitialized = SomeInitialization();
static bool SomeInitialization ()
{

if ( !gs_bInitialized )
{

// Do the initialization.
gs_bInitialized = true;

}
return gs_bInitialized;

}

The C++ language guarantees that the static data gs_bInitialized is zero (false)
before any dynamic initialization occurs (the call to SomeInitialization), so this
code will work as planned to initialize once and only once.

18.8.2 A Generic Solution for Classes

Here is a system that allows a form of premain initialization and postmain termina-
tion that takes care of order dependencies. The idea is to register a set of initialization
functions and a set of termination functions, all registered premain using the file-
static mechanism discussed previously. The initialization and termination functions
themselves are called in the main application and make calls to functions that an ap-
plication is required to implement.

The class Main provides the ability to add initialization and termination functions.
The class has a member function that executes all the initializers and a member
function that executes all the terminators. The initializers and terminators, if any, are
called only once. The class structure is

class Main
{
public:

typedef void (*Initializer)(void);
typedef std::vector<Initializer> InitializerArray;
static void AddInitializer (Initializer oInitialize);
static void Initialize ();
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typedef void (*Terminator)(void);
typedef std::vector<Terminator> TerminatorArray;
static void AddTerminator (Terminator oTerminate);
static void Terminate ();

private:
static InitializerArray* ms_pkInitializers;
static TerminatorArray* ms_pkTerminators;
static int ms_iStartObjects;
static int ms_iFinalObjects;

};

The arrays of function pointers are initialized to NULL. The static data members
ms_iStartObjects and ms_iFinalObjects are used to trap object leaks in the program
execution. The function to add an initializer is

void Main::AddInitializer (Initializer oInitialize)
{

if (!ms_pkInitializers)
{

ms_pkInitializers = new InitializerArray;
}
ms_pkInitializers->push_back(oInitialize);

}

The initializer array is allocated only if there is at least one initializer. Once all ini-
tializers are added to the array, the function Initialize is called. Its implementation
is shown in the following. Notice the code blocks that are used for detecting object
leaks.

void Main::Initialize ()
{

bool bCountIsCorrect = true;

// Objects should not be created premain.
if (Object::InUse)
{

bCountIsCorrect = false;
Object::PrintInUse("AppLog.txt",

"Objects were created before premain initialization");
}
assert(bCountIsCorrect);
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if (ms_pkInitializers)
{

for (int i = 0; i < (int)ms_pkInitializers->size(); i++)
{

(*ms_pkInitializers)[i]();
}

}

delete ms_pkInitializers;
ms_pkInitializers = 0;

// number of objects created during initialization
if (Object::InUse)
{

ms_iStartObjects = (int)Object::InUse->size();
}
else
{

ms_iStartObjects = 0;
}

}

The first time the function is called, the initializers are executed. Afterward, the
array of functions is deallocated so that no work must be done in a postmain fashion
to free up the memory used by the array. The termination system is identical in
structure:

void Main::AddTerminator (Terminator oTerminate)
{

if (!ms_pkTerminators)
{

ms_pkTerminators = new TerminatorArray;
}
ms_pkTerminators->push_back(oTerminate);

}

void Main::Terminate ()
{

bool bCountIsCorrect = true;

// All objects created during the application should be
// deleted by now.
if (Object::InUse)
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{
ms_iFinalObjects = (int)Object::InUse->size();

}
else
{

ms_iFinalObjects = 0;
}

if (ms_iStartObjects != ms_iFinalObjects)
{

bCountIsCorrect = false;
Object::PrintInUse("AppLog.txt",

"Not all objects were deleted before postmain termination");
}

if (ms_pkTerminators)
{

for (int i = 0; i < (int)ms_pkTerminators->size(); i++)
{

(*ms_pkTerminators)[i]();
}

}

delete ms_pkTerminators;
ms_pkTerminators = 0;

if (bCountIsCorrect)
{

// Objects should not be deleted postmain.
if (Object::InUse)
{

ms_iFinalObjects = (int)Object::InUse->size();
}
else
{

ms_iFinalObjects = 0;
}

if (ms_iFinalObjects != 0)
{

bCountIsCorrect = false;
Object::PrintInUse("AppLog.txt",

"Objects were deleted after postmain termination");
}

}
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assert(bCountIsCorrect);

// Now that the object leak detection system has completed its tasks,
// delete the hash table to free up memory so that the debug memory
// system will not flag it as a leak.
WM4_DELETE Object::InUse;
Object::InUse = 0;

}

Once again I have added code blocks to detect object leaks. If you reach one of the
assert statements, you can ignore it and continue the program execution. This will
result in an ASCII file written to disk that contains a list of the objects that should
have been deleted, but were not. The list includes the unique identifiers stored in the
Object class and the object types. This allows you to set break points in the next run
to determine why the objects were not deleted. You will find in most cases that the
application termination function did not set various smart pointers to null.

For a 2D or 3D graphics application, the Application interface described in
Section 18.9 makes use of the initialization and termination scheme described here.
The application library effectively provides the following code block:

int main (int iQuantity, char** apcArgument)
{

Main::Initialize();
int iExitCode = Application::Run(iQuantity,apcArgument);
Main::Terminate();
return iExitCode;

}

The details of how you hook your application into Application::Run will be dis-
cussed in Section 18.9.

Each class requiring initialization services must contain the following in the class
definition in the header file:

class MyClass
{
public:

static bool RegisterInitialize ();
static void Initialize ();

private:
static bool ms_bInitializeRegistered;

};
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The source file contains

bool MyClass::ms_bInitializeRegistered = false;
bool MyClass::RegisterInitialize ()
{

if (!ms_bInitializeRegistered)
{

Main::AddInitializer(classname::Initialize);
ms_bInitializeRegistered = true;

}
return ms_bInitializeRegistered;

}

void MyClass::Initialize () { <initializations go here> }

The registration uses the file-static, premain initialization scheme discussed previ-
ously. Similar constructs are used if the class requires termination services.

I have provided macros for the previously mentioned code blocks:

WM4_DECLARE_INITIALIZE
WM4_IMPLEMENT_INITIALIZE(classname)

The macros are defined in Wm4Main.mcr. They may be used if no order dependencies
exist for the initialization. If there are dependencies, here is an example of how to
handle them. Suppose that Class A initializes some static data and Class B needs that
data in order to initialize its own static data. The initializer for A must be called before
the initializer for B. The registration function for B is

bool B::RegisterInitialize ()
{

if (!ms_bInitializeRegistered)
{

A::RegisterInitialize();
Main::AddInitializer(B::Initialize);
ms_bInitializeRegistered = true;

}
return ms_bInitializeRegistered;

}

This guarantees that the initializer for A occurs in the array of functions before the
initializer for B. Since the array of functions is executed in the order stored, the correct
order of initialization is obtained.
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18.9 An Application Layer

At its highest level, a software program needs an application framework in which
to run. For a graphics application, we minimally need to create a window and a
renderer to draw to it. Game applications as well as some other applications will need
input from devices attached to the system. These devices can include a keyboard, a
mouse, a gamepad, and/or a joystick. An application must be prepared to handle
events generated by these devices. The application might also be networked. Finally,
sound is an important part of games. The application can use 2D sound capabilities
to play music and special sound effects, but it also might use 3D sound capabilities,
taking advantage of 3D sound hardware.

How you structure your application framework depends heavily on what your
goals are. If your game will run full-screen on a PC or will run on dedicated hardware
such as a game console, you probably will implement an application layer that has
support only for what you need.

The Wild Magic application layer is designed to be general purpose and portable.
My main goal is for people to purchase my books and run the source code and sample
applications on any desktop machine of their choosing, including Microsoft Win-
dows PCs, Macintoshes, and Linux-based PCs. My application layer encapsulates
basic functions needed by all platforms and exposes them through an abstract API
that is independent of platform. On the back end, I have rudimentary implemen-
tations per platform to provide the basic functions. The set of features I support is
by no means complete. No doubt you will roll your own layer, so think of mine for
what it is—portable and intended to be used in a development environment, not for
deployment.

In this section I will describe some of the basic features of my application layer,
but most of the concepts apply in one form or another for anyone else’s layer. My
application subsystem has the following features:

The initialization and termination of objects via registered functions. This mech-
anism was described in detail in Section 18.8.

A console application layer for those applications requiring neither a window nor
a renderer. For example, the ScenePrinter tool is an application on the CD-ROM
that traverses a scene graph and creates an ASCII file of information about it.

A window application layer that supports both 2D and 3D applications. Derived
classes are provided for the 2D and 3D window applications. The 2D layer has
only a renderer for drawing to a bitmap that is later sent to the graphics card to
be used as the entire screen. The 3D layer has a camera, as well as a renderer, and
is the basis for nearly all the sample applications that are on the CD-ROM.

An application library that supports both console and windowed applications, so
you need only link in one library for any application, regardless of its type.
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The application types in Wild Magic version 4 are ConsoleApplication, Win-
dowApplication2, and WindowApplication3. Your application will be a class derived
from one of these.

18.9.1 Processing Command-Line Parameters

The standard entry point into an application is the function

int main (int iQuantity, char** apcArgument)
{

// iQuantity >= 1 is always true.
// apcArgument[0] is the name of the executing module.

// ... Process command-line arguments here ...

return 0;
}

The first parameter is the number of strings that occur in the second parameter, an
array of pointers to character strings. The input parameters are optional, so it is okay
to call main() or main(int). The compiler will correctly parse the statement in all
cases. The function actually has a third optional parameter, which is used for passing
the environment variables, but I do not deal with those in Wild Magic. Clearly,
anyone writing an application that accepts inputs to main must be prepared to parse
the array of strings.

The age-old approach to processing command-line parameters is represented
by Henry Spencer’s getopt routines [Spe06]. The getopt routines are limited in that
the option names have to be a single letter. Also, the main routine must contain a
loop and a switch statement (of options), which repeatedly fetches an argument and
decides which option it is and which action to take. I wrote my own command-line
parser, which allows option names of length greater than 1, and which allows you
to get an argument anywhere in the main routine. This tends to keep the parameter
processing and actions together in a related block of code.

The class is Command and has the following interface:

class Command
{
public:

Command (int iQuantity, char** apcArgument);
Command (char* acCmdline);
~Command ();

int ExcessArguments ();
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Command& Min (double dValue);
Command& Max (double dValue);
Command& Inf (double dValue);
Command& Sup (double dValue);

int Boolean (char* acName); // returns existence of option
int Boolean (char* acName, bool& rbValue);
int Integer (char* acName, int& riValue);
int Float (char* acName, float& rfValue);
int Double (char* acName, double& rdValue);
int String (char* acName, char*& racValue);
int Filename (char*& racName);

const char* GetLastError ();

protected:
// constructor support
void Initialize ();

// command-line information
int m_iQuantity; // number of arguments
char** m_apcArgument; // argument list (array)
char* m_acCmdline; // argument list (single)
bool* m_abUsed; // arguments already processed

// parameters for bounds checking
double m_dSmall; // bound for argument (min or inf)
double m_dLarge; // bound for argument (max or sup)
bool m_bMinSet; // if true, compare: small <= arg
bool m_bMaxSet; // if true, compare: arg <= large
bool m_bInfSet; // if true, compare: small < arg
bool m_bSupSet; // if true, compare: arg < large

// last error strings
const char* m_acLastError;
static char ms_acOptionNotFound[];
static char ms_acArgumentRequired[];
static char ms_acArgumentOutOfRange[];
static char ms_acFilenameNotFound[];

};

The constructor Command(int,char**) takes as input the arguments to routine
main. In a Microsoft Windows application, the constructor Command(char*) takes as
input the command-line string to WinMain. I have designed the Wild Magic version
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4 application layer to use only main, so you have no need for the second form of the
constructor.

After all arguments are processed, the method ExcessArguments may be called
to check for extraneous information on the command line that does not match what
was expected by the program. If extra or unknown arguments appear, then the return
value is the index within the command-line string of the first such argument.

When parsing options whose arguments are numerical values, it is possible that
upper and lower bounds are required on the input. The bounds for input X are set
via calls to Min (min ≤ X), Max (X ≤ max), Inf (inf < X), or Sup (X < sup). These
methods return *this so that a Command object can set bounds and acquire input
within the same statement. Some examples are shown later in this section.

The supported option types are Booleans (the option takes no arguments), inte-
gers, reals, strings, or file names. Each type has an associated method whose first char*
parameter is the option name and whose second parameter will be the option argu-
ment, if present. The exceptions are the first Boolean method (an option with no
argument) and file names (an argument with no option). The return value of each
method is the index within the command-line string, or zero if the option did not
occur on the command line.

The function GetLastError returns information about problems with reading
command-line parameters. The errors are “option not found,” “option requires an
argument,” “argument out of range,” and “file name not found.” The user has the
responsibility for calling GetLastError.

A simple example of command-line parsing is the following. Suppose that you
have a program for integrating a function f (x) whose domain is the half-open in-
terval [a , b). The function will be specified as a string, and the endpoints of the
interval will be specified as real numbers. Let’s assume that we want 0 ≤ a < b < 1.
Your program will use samples of the function to produce an approximate value for
the integral, so you also want to input the number of partition points as an integer.
Finally, your program will write information about the integration to a file.

#include "Wm4Command.h"
using namespace Wm4;

// usage:
// "integrate [options] outputfile" with options listed below:
// " -a (float) : left endpoint (a >= 0, default=0.0)"
// " -b (float) : right endpoint (a < b < 1, default=0.5)"
// " -num (int) : number of partitions (default=1)"
// " -func (string): expression for f(x)"
// " -debug : debug information (default=none)"
// " outputfile : name of file for output information"

int main (int iQuantity, char** apcArgument)
{
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Command kCmd(iQuantity,apcArgument);

// Get left endpoint (0 <= a is required).
double dA = 0.0f;
kCmd.Min(0.0).Double("a",dA);
if ( kCmd.GetLastError() )
{

cout << "0 <= a required" << endl;
return 1;

}

// Get right endpoint (a < b < 1 is required).
double dB = 0.5;
kCmd.Inf(dA).Sup(1.0).Double("b",dB);
if ( kCmd.GetLastError() )
{

cout << "a < b < 1 required" << endl;
return 2;

}

// Get number of partition points (1 or larger).
int iPoints = 1;
kCmd.Min(1).Integer("num",iPoints);
if ( kCmd.GetLastError() )
{

cout << "num parameter must be 1 or larger" << endl;
return 3;

}

// Get function expression (must be supplied).
char acFunction[128];
if ( !kCmd.String("func",acFunction) )
{

cout << "function must be specified" << endl;
return 4;

}

// Get output file name.
char acOutfile[128];
if ( !kCmd.Filename(acOutfile) )
{

cout << "output file must be specified" << endl;
return 5;

}
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// Want debug information?
bool bDebug = false;
kCmd.Boolean("debug",bDebug);

// Check for extraneous or unknown options.
if ( kCmd.ExcessArguments() )
{

cout << "command line has excess arguments" << endl;
return 6;

}

// Your program code goes here.
return 0;

}

18.9.2 The Application Class

The base class of the entire application library is quite simple. It is called Application
and has the following interface:

class Application
{

WM4_DECLARE_TERMINATE;

public:
virtual ~Application ();

static Application* TheApplication;
static Command* TheCommand;

typedef int (*EntryPoint)(int, char**);
static EntryPoint Run;

void SetExtraData (int iIndex, int iSize,
const void* pvData);

void GetExtraData (int iIndex, int iSize,
void* pvData) const;

bool LaunchFileDialog () const;

protected:
Application ();

enum { APP_EXTRA_DATA_QUANTITY = 128 };
char m_acExtraData[APP_EXTRA_DATA_QUANTITY];
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bool m_bLaunchFileDialog;
};

WM4_REGISTER_TERMINATE(Application);

The class is abstract since its only constructor is protected. This class contains
the minimum support for all the application types: console, 2D windowed, and 3D
windowed. The engine is designed to handle a single application; that is, the existence
of multiple instances of the same application is unknown to the engine. Because only
a single instance of an application is assumed, a pointer to the unique application
object is stored in the base class and is named TheApplication. The event handlers
of the windowed applications are C-style functions that are not member functions in
the Application class hierarchy. The handlers must be able to pass along events to the
application object. They do so through TheApplication pointer. The base class also
stores a unique object for the command-line parameters. The uniqueness is clear: You
cannot pass two command lines to the same executable module.

The entry point to the application is through the static data member Run. The int
parameter is the number of command-line arguments. The char** parameter is the
array of argument strings. The final derived classes (your applications) must set this
function pointer to an appropriately designed function. The mechanism is described
later in this section. A function pointer is used rather than a member function to
allow all application types to coexist in the library. If a member function were to be
used instead, each application type would have to implement that function, leading
to multiply defined functions in the library—an error that the linker will report to
you.

In Section 18.8, I mentioned a small code block for the main function. The actual
source code is in the file Wm4Application.cpp. Since main is what the compiler expects
as the entry point, the function cannot be a class member. The code is

int main (int iQuantity, char* apcArgument[])
{

// Sorry! If you want to use the path to the Wild Magic 4
// folder for the purpose of searching for data files, you
// will need to create the WM4_PATH environment variable.
// The sample Wild Magic applications rely on
// System::WM4_PATH to find scene graph object files
// (.wmof), image files (.wmif), and shader program files
// (.wmsp).
assert(System::WM4_PATH != std::string(""));

Main::Initialize();

int iExitCode = 0;
if (Application::Run)
{
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// Always check the current working directory.
System::InsertDirectory(".");

// the path to scene graph files
std::string kDir;
kDir = System::WM4_PATH + std::string("/Data/Wmof");
System::InsertDirectory(kDir.c_str());

// the path to image files
kDir = System::WM4_PATH + std::string("/Data/Wmif");
System::InsertDirectory(kDir.c_str());

// the path to shader program files
kDir = System::WM4_PATH + std::string("/Data/Wmsp");
System::InsertDirectory(kDir.c_str());

Application::TheCommand = WM4_NEW Command(iQuantity,
apcArgument);

iExitCode = Application::Run(iQuantity,apcArgument);
WM4_DELETE Application::TheCommand;
Application::TheCommand = 0;

System::RemoveAllDirectories();
}
else
{

iExitCode = INT_MAX;
}

Main::Terminate();

WM4_DELETE Application::TheApplication;
Application::TheApplication = 0;

#ifdef WM4_MEMORY_MANAGER
#ifdef _DEBUG

Memory::GenerateReport("MemoryReportDebug.txt");
#else

Memory::GenerateReport("MemoryReportRelease.txt");
#endif
#endif

return iExitCode;
}
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Wild Magic version 4 now supports the concept of a user-defined “path,” a list of
directories to search for data files. This system requires you to create an environment
variable through whatever mechanism your operating system requires. The variable
must be named WM4_PATH and it must be set to the directory where Wild Magic version
4 was installed. For example, if you installed the CD-ROM contents to

X:/GeometricTools/WildMagic4

then you should set WM4_PATH to this directory. During premain initialization, I read
this environment variable and use it for the purpose of creating other directories that
are part of the distribution. The first line of main is an assertion that tests whether you
have set the environment variable.

As discussed previously, all registered initialization functions are executed be-
fore the application is run. The application itself is created during the initialization
phase—more on this a little bit later. If the application Run function pointer has not
been set, the application cannot run. This error will occur if you forget to use the
initialization system properly when creating your application classes.

Assuming the application’s Run function is set, the command-line object is created
for use by the application, and then the Run function is executed. On completion,
the command-line object is destroyed. All registered termination functions are then
executed. The goal is to trap object leaks that the application might have.

The deletion of the application object is delayed until the very end of the main
function, which forces you to correctly clean up any objects in your application when
a termination callback is executed. I made this choice so that the graphics system has
a chance to release any resources that are associated with the application: textures,
shader programs, cached arrays, and anything else you might have cached in VRAM
on the graphics card. If you have not freed all your objects, Main::Terminate will
complain loudly that you forgot to clean up!

18.9.3 The ConsoleApplication Class

Console applications do not require a window for displaying results. In a straight-
forward C or C++ program, you would implement such an application using main
directly. My application layer supports console applications, but they require more
setup than just implementing a single function—a natural consequence of the design
of main in the Application class.

The ConsoleApplication class has the interface

class ConsoleApplication : public Application
{
public:

ConsoleApplication ();
virtual ~ConsoleApplication ();
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virtual int Main (int iQuantity, char** apcArgument) = 0;

protected:
static int Run (int iQuantity, char** apcArgument);

};

The class is abstract because of the presence of the pure virtual function Main. This is
not to be confused with the class Main. I choose to use the name because, effectively,
the function is the entry point into an application that resembles the standard appli-
cation entry point int main(int,char**). Your applications must implement Main.

The Run function is

int ConsoleApplication::Run (int iQuantity, char** apcArgument)
{

ConsoleApplication* pkTheApp =
(ConsoleApplication*)TheApplication;

return pkTheApp->Main(iQuantity,apcArgument);
}

A console application will set the function pointer Application::Run to its own Run
function pointer. When Application::Run is executed by the main function in class
Application, the ConsoleApplication::Run will be executed. All that it does is pass
on the command-line parameters to the derived class’s implementation of Main. This
is technically not required since Application::TheCommand was already constructed in
main, and the derived class has access to it. However, I did not want to force you to use
the command-line object; you can parse the parameters yourself, if you so choose.

The final piece of the puzzle is to derive a class from ConsoleApplication and
hook up the Run function by using the initialization mechanism. An additional macro
is provided, in the file Wm4Application.mcr, to implement the initialization and create
the application object, both without having to type in the code yourself. The macro
is WM4_CONSOLE_APPLICATION and is defined by

#define WM4_CONSOLE_APPLICATION(classname) \
WM4_IMPLEMENT_INITIALIZE(classname); \
\
void classname::Initialize () \
{ \

Application::Run = &ConsoleApplication::Run; \
TheApplication = new classname; \

}

The initialization function sets the Application::Run function pointer so, indeed,
your application will be run when you click the “go” button. The second line of code
in the initialization function acts as a factory to create an object from your specific
application class.
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The following example illustrates what you must do for a hypothetical class My-
ConsoleApplication:

// in MyConsoleApplication.h

#include "Wm4ConsoleApplication.h"
using namespace Wm4;

class MyConsoleApplication : public ConsoleApplication
{

WM4_DECLARE_INITIALIZE;
public:

MyConsoleApplication ();
virtual ~MyConsoleApplication ();
virtual int Main (int iQuantity, char** apcArgument);

protected:
// ... Whatever else you need goes here ...

};

WM4_REGISTER_INITIALIZE(MyConsoleApplication);

The declaration macro for initialization is used to indicate your intention to have an
Initialize function called by Main::Initialize. The registration macro generates
the code to force the registration of Initialize with class Main.

The source file has

// in MyConsoleApplication.cpp

#include "MyConsoleApplication.h"
using namespace Wm4;

WM4_CONSOLE_APPLICATION(MyConsoleApplication);

int MyConsoleApplication::Main (int iQuantity, char** apcArgument)
{

// ... Do your thing here ...
return 0;

}

The order of events is as follows:

1. The MyConsoleApplication::Initialize function is registered premain; that is,
before int main(int,char**) executes.

2. int main(int,char**) is executed.

3. Main::Initialize is called.
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4. MyConsoleApplication::Initialize is called. The function pointer ConsoleAp-
plication::Run is assigned to Application::Run. A MyConsoleApplication ob-
ject is dynamically created, and its pointer is assigned to Application::The-
Application.

5. Application::TheCommand is dynamically created, using the int and char** pa-
rameters that were passed to int main(int,char**).

6. The function that Application::Run points to is executed. In this case, it is
ConsoleApplication::Run, which in turn calls the function MyConsoleApplica-
tion::Main for your application object.

For the most part, all these details are hidden from you. All you should care about
are creating the skeleton class, as shown, and implementing the Main function for
your particular needs.

18.9.4 The WindowApplication Class

The mechanism for working with windowed applications is similar to that for console
applications. The base class for such applications is WindowApplication and is the
common framework that occurs in 2D and 3D applications. The portion of the
interface similar to the console interface is

class WindowApplication : public Application
{
public:

WindowApplication (const char* acWindowTitle, int iXPosition,
int iYPosition, int iWidth, int iHeight,
const ColorRGB& rkBackgroundColor);

virtual ~WindowApplication ();

virtual int Main (int iQuantity, char** apcArgument);

protected:
static int Run (int iQuantity, char** apcArgument);

};

The Run function is

int WindowApplication::Run (int iQuantity, char** apcArgument)
{

WindowApplication* pkTheApp = (WindowApplication*)TheApplication;
return pkTheApp->Main(iQuantity,apcArgument);

}
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and has exactly the same purpose as that of ConsoleApplication::Run.
The mechanism to hook up your application to be run is supported by the macro

#define WM4_WINDOW_APPLICATION(classname) \
WM4_IMPLEMENT_INITIALIZE(classname); \
\
void classname::Initialize () \
{ \

Application::Run = &WindowApplication::Run; \
TheApplication = new classname; \

}

The macro is structured exactly the same as the WM4_CONSOLE_APPLICATION macro.
Unlike the console applications, an additional layer occurs between your application
and the WindowApplication class. The derived class WindowApplication2 supports 2D
applications; the derived class WindowApplication3 supports 3D applications.

An example to illustrate setting up a 3D application uses a hypothetical class
MyWindowApplication:

// in MyWindowApplication.h

#include "Wm4WindowApplication3.h"
using namespace Wm4;

class MyWindowApplication : public WindowApplication3
{

WM4_DECLARE_INITIALIZE;
public:

MyWindowApplication ();
virtual ~MyWindowApplication ();

// ... Other interface functions go here ...
protected:

// ... Whatever else you need goes here ...
};

WM4_REGISTER_INITIALIZE(MyWindowApplication);

The source file has

// in MyWindowApplication.cpp

#include "MyWindowApplication.h"
using namespace Wm4;
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WM4_WINDOW_APPLICATION(MyWindowApplication);

MyWindowApplication::MyWindowApplication ()
:
WindowApplication3("MyWindowApplication",0,0,640,480,

ColorRGBA::WHITE)
{

// ... Initializations go here ...
}

// ... Your class implementation goes here ...

The WindowApplication::Main is implemented by WindowApplication, in com-
parison to ConsoleApplication::Main, which required the override to occur in the
final application class. The implementations of WindowApplication::Main are
platform-specific because the windowing systems and event handling are platform-
specific. More about this later.

Construction

The WindowApplication class and its derivations all have a constructor of the form

class WindowApplication : public Application
{
public:

WindowApplication (const char* acWindowTitle, int iXPosition,
int iYPosition, int iWidth, int iHeight,
const ColorRGBA& rkBackgroundColor);

};

The window title is intended to be displayed on the title bar of the window. The
position parameters are the location on the screen of the upper-left corner of the
window; the width and height are the size of the window; and the input color is used
for clearing the background by setting all pixels to that color. The final application
class always declares the default constructor whose implementation calls the base
class constructor with the appropriate parameters.

A portion of the WindowApplication is devoted to the access of the members set
by the constructor:

class WindowApplication : public Application
{
public:

const char* GetWindowTitle () const;
int GetXPosition () const;
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int GetYPosition () const;
int GetWidth () const;
int GetHeight () const;
void SetRenderer (Renderer* pkRenderer);
void SetWindowID (int iWindowID);
int GetWindowID () const;

protected:
const char* m_acWindowTitle;
int m_iXPosition, m_iYPosition, m_iWidth, m_iHeight;
ColorRGBA m_kBackgroundColor;
int m_iWindowID;
Renderer* m_pkRenderer;

};

The Get routines have the obvious behavior. A typical windowing system will as-
sign a unique identifier (a window handle) to each window it creates. During the
window creation, that identifier must be stored by the window for identification pur-
poses throughout the program run time. The data member m_iWindowID stores that
value and is assigned by a call to SetWindowID. The renderer creation is dependent
on the operating system, the windowing system, and the graphics API (OpenGL,
Direct3D, or the software renderer). The platform-specific source code will create
a renderer, and then pass it to the WindowApplication object by calling the func-
tion SetRenderer. Notice that the renderer is stored polymorphically through the
abstract base class Renderer—a requirement for the WindowApplication interface to
be platform-independent.

Event Handling

All windowing systems have mechanisms for handling events such as key presses,
mouse clicks and motion, and repositioning and resizing of windows. They also have
mechanisms for repainting the screen when necessary and for idle-time processing
when the event queue is empty. The class WindowApplication has a collection of event
callbacks—functions that are called by the platform-specific implementations of the
event handlers and dispatchers. These callbacks are

class WindowApplication : public Application
{
public:

virtual bool OnPrecreate ();
virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnMove (int iX, int iY);
virtual void OnResize (int iWidth, int iHeight);
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virtual void OnDisplay ();
virtual void OnIdle ();
virtual bool OnKeyDown (unsigned char ucKey, int iX, int iY);
virtual bool OnKeyUp (unsigned char ucKey, int iX, int iY);
virtual bool OnSpecialKeyDown (int iKey, int iX, int iY);
virtual bool OnSpecialKeyUp (int iKey, int iX, int iY);
virtual bool OnMouseClick (int iButton, int iState, int iX,

int iY, unsigned int uiModifiers);
virtual bool OnMotion (int iButton, int iX, int iY);
virtual bool OnPassiveMotion (int iX, int iY);

void RequestTermination ();
};

The typical structure of the main function in a windowing system is the following
pseudocode:

int WindowApplication::Main (...)
{

(1) Do work if necessary before window creation;
(2) Create the window;
(3) Create the renderer;
(4) Initialize the application;
(5) Display the window;
do_forever
{

if ( message pending )
{

(6) If message is to quit, break out of loop;
(7) Dispatch the message;

}
else
{

(8) Do idle processing;
}

}
(9) Terminate the application;

}

Naturally, this function runs forever until a message is sent for the application
to quit. The event callbacks are executed directly, or indirectly, during this function
call. The callback OnPrecreate is called during stage (1). The window creation (2)
is specific to the windowing system used by the operating system. The renderer
creation (3) is specific to the graphics API. Stage (4) is managed by the callback
OnInitialize. The window display (5) is part of the windowing API and is not part
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of my application library. The message pump is the do_forever loop. If the quit
message is received, the loop is exited and the application terminates. The application
is given a chance to clean up at stage (9) via the callback OnTerminate. The decision
for an application to terminate can be implicit in the architecture (for example, when
a user clicks on the window “close” button) or explicit (for example, when a user
presses a specified key). In my applications, the default key is ESC. The function
RequestTermination is called within my application library code and generates a
quit message. The implementation is platform-specific. For example, the Microsoft
Windows API function PostMessage is called to post a WM_DESTROY message to the
message queue.

Stage (7) is where the events are dispatched to an event handler. In my applica-
tion architecture, the handler accesses the application object through the Applica-
tion::TheApplication pointer, determines the type of the event that has occurred,
and then tells the application object to execute its corresponding callback. Window
translation generates an event that causes OnMove to be called. Window resizing gen-
erates an event that causes OnResize to be called. If a window is partially covered or
minimized, and then uncovered or maximized, the window must be repainted (in
part or in full). This type of event causes OnDisplay to be called.

Key presses are events that cause the functions OnKeyDown, OnKeyUp, OnSpecialKey-
Down, and OnSpecialKeyUp to be called. The special keys are the arrow keys; the insert,
delete, home, end, page up, and page down keys; and the function keys, F1 through
F12. The callback OnSpecialKeyDown is executed when one of these keys is pressed.
The callback OnSpecialKeyUp is executed when the key is released. The remaining keys
on the keyboard are handled similarly by OnKeyDown and OnKeyUp.

The key identifiers tend to be constants provided by the platform’s windowing
system, and their values are not consistent across platforms—another source of non-
portability. WindowApplication has a collection of const data members that are as-
signed the key identifiers in each platform-dependent implementation. These data
members provide a consistent naming convention for your applications so that they
may remain portable. For example, a few of these data members are

class WindowApplication : public Application
{
public:

// keyboard identifiers
static const int KEY_ESCAPE;
static const int KEY_LEFT_ARROW;
// ... other const data members ...

// keyboard modifiers
static const int KEY_SHIFT;
static const int KEY_CONTROL;
// ... other const data members ...

};
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Mouse events include pressing a mouse button and moving the mouse, which
generates calls to OnMouseClick, OnMotion, and OnPassiveMotion. If your develop-
ment platform is Microsoft Windows or X-Windows, you might have been tempted
to have more mouse callbacks such as OnLeftMouseDown and OnMiddleMouseUp, which
is reasonable for hardware and operating systems that support multiple-button mice.
However, a Macintosh mouse has only a single button, so I refrained from having
anything other than OnMouseClick. I do pass in the button type (iButton), a but-
ton state (iState), and button modifiers (uiModifiers). The platform-independent
names I use for these are

class WindowApplication : public Application
{
public:

// mouse buttons
static const int MOUSE_LEFT_BUTTON;
static const int MOUSE_MIDDLE_BUTTON;
static const int MOUSE_RIGHT_BUTTON;

// mouse state
static const int MOUSE_UP;
static const int MOUSE_DOWN;

// mouse modifiers
static const int MOD_LBUTTON;
static const int MOD_MBUTTON;
static const int MOD_RBUTTON;

};

So in fact, you can write application code that works fine under Microsoft Windows
and X-Windows, but not on the Macintosh. My advice is to use only the left mouse
button MOUSE_LEFT_BUTTON for applications you intend to be portable. Alternatively,
you can rewrite the Macintosh application code in a manner that maps combinations
of the mouse button and modifiers to simulate a three-button mouse.

Mouse motion is handled in one of two ways. For mouse dragging, the idea is
to detect that the mouse is moving while one of the mouse buttons is pressed. The
callback that is executed in this situation is OnMotion. For processing mouse motion
when no mouse buttons are pressed, the callback OnPassiveMotion is executed.

The OnPrecreate and OnInitialization callbacks return a Boolean value. In nor-
mal situations, the returned value is true, indicating that the calls were successful and
the application may continue. If an abnormal condition occurs, the returned value
is false. The application terminates early on such a condition. For example, if your
OnInitialize function attempts to load a scene graph file, but fails to find that file, the
function returns false and the application should terminate. Naturally, you should
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structure your applications to be successful. But if an abnormal condition occurs, exit
gracefully!

The key and mouse callbacks also return Boolean values. If the value is true, the
callback has processed the event itself. For example, if your application implements
OnKeyDown to process the X-key, and the X-key is actually pressed, your callback will
detect that key and do something, after which it returns true. If the callback does
not do anything when Y is pressed, and the callback receives the Y-key and ignores
it, the return value is false. This mechanism gives a final application the ability to
determine if my base class key handlers processed the keys, and then choose to ignore
that key itself. That said, nothing forces you to call the base class functions. The value
you return is ignored by the platform-specific event handlers.

The idle processing is handled by the callback OnIdle. The 3D applications make
extensive use of this callback in order to achieve real-time frame rates. You might be
tempted to use a system timer to control the frame rate. The problem, though, is that
many system timers have a limited resolution. For example, the WM_TIMER event in
the Microsoft Windows environment occurs at an approximate rate of 18 times per
second. Clearly, this will not support real-time applications.

Finally, a few interface functions in WindowApplication support font handling.
Recall that the Renderer class can be told to use fonts other than the default ones
used by the graphics API. If your application will overlay the rendered scene with
text, you most likely will need to know font metrics in order to properly position the
text. Simple metrics are provided by

class WindowApplication : public Application
{
public:

int GetStringWidth (const char* acText) const;
int GetCharacterWidth (const char cCharacter) const;
int GetFontHeight () const;

};

The implementations are dependent on the windowing system, so they occur in the
source files containing the platform-specific code.

18.9.5 The WindowApplication3 Class

The class that supports the 3D applications is WindowApplication3 and is derived
from WindowApplication. Its interface is a bit lengthy:

class WindowApplication3 : public WindowApplication
{
public:

WindowApplication3 (const char* acWindowTitle, int iXPosition,
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int iYPosition, int iXSize, int iYSize,
const ColorRGBA& rkBackgroundColor);

virtual ~WindowApplication3 ();

virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnDisplay ();
virtual bool OnKeyDown (unsigned char ucKey, int iX, int iY);
virtual bool OnSpecialKeyDown (int iKey, int iX, int iY);
virtual bool OnSpecialKeyUp (int iKey, int iX, int iY);
virtual bool OnMouseClick (int iButton, int iState, int iX, int iY,

unsigned int uiModifiers);
virtual bool OnMotion (int iButton, int iX, int iY);

protected:
// camera motion
void InitializeCameraMotion (float fTrnSpeed, float fRotSpeed,

float fTrnSpeedFactor = 2.0f, float fRotSpeedFactor = 2.0f);
virtual bool MoveCamera ();
virtual void MoveForward ();
virtual void MoveBackward ();
virtual void MoveUp ();
virtual void MoveDown ();
virtual void TurnLeft ();
virtual void TurnRight ();
virtual void LookUp ();
virtual void LookDown ();
CameraPtr m_spkCamera;
Vector3f m_akWorldAxis[3];
float m_fTrnSpeed, m_fTrnSpeedFactor;
float m_fRotSpeed, m_fRotSpeedFactor;
bool m_bUArrowPressed, m_bDArrowPressed, m_bLArrowPressed;
bool m_bRArrowPressed, m_bPgUpPressed, m_bPgDnPressed;
bool m_bHomePressed, m_bEndPressed, m_bCameraMoveable;

// object motion
void InitializeObjectMotion (Spatial* pkMotionObject);
bool MoveObject ();
void RotateTrackBall (float fX0, float fY0, float fX1,

float fY1);
SpatialPtr m_spkMotionObject;
int m_iDoRoll, m_iDoYaw, m_iDoPitch;
float m_fXTrack0, m_fYTrack0, m_fXTrack1, m_fYTrack1;
Matrix3f m_kSaveRotate;
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bool m_bUseTrackBall, m_bTrackBallDown;
bool m_bObjectMoveable;

// performance measurements
void ResetTime ();
void MeasureTime ();
void UpdateFrameCount ();
void DrawFrameRate (int iX, int iY, const ColorRGBA& rkColor);
double m_dLastTime, m_dAccumulatedTime, m_dFrameRate;
int m_iFrameCount, m_iTimer, m_iMaxTimer;

};

Most of the event callbacks are stubbed out in the base class WindowApplication
to do nothing. The event callbacks in the derived class that have some work to do are
listed in the public section of the interface.

The protected section of the interface is decomposed into three subsections. The
first subsection contains the declaration of the camera, m_spkCamera, to be used by the
renderer. Naturally, you can create your own cameras, but the one provided by this
class is the one that gets hooked up to various events in order to translate and rotate
the camera. The remaining data members in the subsection are all related to handling
camera motion. The camera can be moved via the arrow keys and other special keys.

The second subsection is related to object motion; the object is specified by your
application—typically the entire scene graph. Only rotations are supported by the
application library. Objects can be rotated in two ways. First, you can rotate the object
using the function keys F1 through F6. Second, the class has a virtual trackball that
surrounds the scene. Dragging the mouse with the left button depressed allows you
to rotate the trackball.

The third subsection is for performance measurements—specifically for measur-
ing the frame rate of your application.

The following sections discuss each of these topics.

Camera Motion

Given a camera with eye point E, view direction D, up direction U, and right direc-
tion R, all in world coordinates, the tendency is to update the position of the eye point
and the orientation of the camera relative to the camera coordinate frame itself . The
operations are summarized here. The new coordinate frame quantities are denoted
with prime symbols: E′, D′, U′, and R′.

Let s > 0 be the speed of translation. The translation in the view direction causes
only the eye point location to change:

E′ = E ± sD
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The translation in the up direction is

E′ = E ± sU

and the translation in the right direction is

E′ = E ± sR

Let θ > 0 be an angle of rotation. The corresponding rotations are counterclock-
wise in the plane perpendicular to the rotation axis, looking down the axis at the
plane; the direction you look in is the negative of the axis direction. The eye point is
never changed by the rotations. The rotation about the view direction preserves that
direction itself, but changes the other two:[

U′
R′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
U
R

]
(18.1)

In the implementation, after the rotation you need to assign the results back to the
storage of the vectors; that is, U ← U′ and R ← R′. The rotation about the up vector
is [

R′
D′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
R
D

]
(18.2)

and the rotation about the right vector is[
D′
U′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
D
U

]
(18.3)

As I mentioned, the tendency is for you to want to update the camera frame in
this manner. The problem in an application, though, is that you usually have a world
coordinate system that has a preferred up direction that remains fixed throughout
the application’s lifetime. The up vector for the camera changes on a roll about the
view direction and on a pitch about the right vector. After a roll, a translation in
the camera up direction is not a translation in the world up direction. After a pitch,
a translation in the camera view direction is not a translation perpendicular to the
world up direction. Consider the situation where the camera represents the viewing
system of a character player. If the character walks along a horizontal floor and his
view direction is parallel to the floor, any translation of his eye point should keep
him on that floor. Now imagine that the character looks down at the floor. His view
direction is no longer parallel to the floor. If you were to translate the eye point in
the view direction, the character would walk toward the floor (and directly through
it). The preferable option would be to have the character walk parallel to the floor,
even though he is looking down. This requires using the world coordinate frame for
the incremental translations and rotations and applying the transformations to the
camera frame.
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The array m_akWorldAxis stores the world coordinate frame for the purposes
of camera motion. The translation speed is m_fTrnSpeed, and the rotation speed is
m_fRotSpeed. The other two float data members in the camera motion section,
m_fTrnSpeedFactor and m_fRotSpeedFactor, are multiplicative (or division) factors
for adjusting the current speeds. The member function InitializeCameraMotion ini-
tializes the speeds and factors. It also uses the camera’s local coordinate axes at the time
of the call to initialize m_akWorldAxis. The camera local axes are presumably set in the
application’s OnInitialize call to place the camera in the world coordinate frame of
the scene graph. The entry 0 of the world axis array may be thought of as the view
direction in the world. The entry 1 is thought of as the up vector, and the entry 2
is thought of as the right vector. The Boolean member m_bCameraMoveable indicates
whether or not the camera is set up for motion. By default, the value is false. The
value is set to true when InitializeCameraMotion is called.

The member functions MoveForward and MoveBackward translate the camera frame
in the world view direction:

void WindowApplication3::MoveForward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc += m_fTrnSpeed*m_akWorldAxis[0];
m_spkCamera->SetLocation(kLoc);

}

void WindowApplication3::MoveBackward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc -= m_fTrnSpeed*m_akWorldAxis[0];
m_spkCamera->SetLocation(kLoc);

}

The translation keeps the camera parallel to the plane perpendicular to the world
up vector, even if the observer is looking down at that plane. Similarly, the member
functions MoveUp and MoveDown translate the camera frame in the world up direction:

void WindowApplication3::MoveUp ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
kLoc += m_fTrnSpeed*m_akWorldAxis[1];
m_spkCamera->SetLocation(kLoc);

}

void WindowApplication3::MoveBackward ()
{

Vector3f kLoc = m_spkCamera->GetLocation();
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kLoc -= m_fTrnSpeed*m_akWorldAxis[1];
m_spkCamera->SetLocation(kLoc);

}

Note that in the four functions the translations change neither the camera axis
directions nor the world axis directions. I do not provide implementations for trans-
lating left or right.

The member functions TurnLeft and TurnRight are rotations about the world up
vector:

void WindowApplication3::TurnLeft ()
{

Matrix3f kIncr(m_akWorldAxis[1],m_fRotSpeed);
m_akWorldAxis[0] = kIncr*m_akWorldAxis[0];
m_akWorldAxis[2] = kIncr*m_akWorldAxis[2];

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

void WindowApplication3::TurnRight ()
{

Matrix3f kIncr(m_akWorldAxis[1],-m_fRotSpeed);
m_akWorldAxis[0] = kIncr*m_akWorldAxis[0];
m_akWorldAxis[2] = kIncr*m_akWorldAxis[2];

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

The first blocks of code in the functions perform the rotations in Equation (18.2),
but applied to the world axis vectors. You might think that only the camera view
direction and right vectors need to be updated, but that is only the case when the
camera up vector is in the same direction as the world up vector. If the observer is
looking down at the floor, a rotation about the world up vector will change all the
camera axis directions. Thus, the second blocks of code in the functions apply the
rotation to all the camera axis directions.

The member functions LookUp and LookDown are pitch rotations about the world’s
right vector:
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void WindowApplication3::LookUp ()
{

Matrix3f kIncr(m_akWorldAxis[2],-m_fRotSpeed);

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

void WindowApplication3::LookDown ()
{

Matrix3f kIncr(m_akWorldAxis[2],m_fRotSpeed);

Vector3f kDVector = kIncr*m_spkCamera->GetDVector();
Vector3f kUVector = kIncr*m_spkCamera->GetUVector();
Vector3f kRVector = kIncr*m_spkCamera->GetRVector();
m_spkCamera->SetAxes(kDVector,kUVector,kRVector);

}

Notice that the incremental rotations are calculated about the world’s right vector.
The other two world axis directions must not change! The incremental rotation is
designed to rotate only the camera coordinate frame.

I do not provide implementations for roll rotations about the world direction
vector.

The member function MoveCamera ties the camera motion functions to key press
events:

bool WindowApplication3::MoveCamera ()
{

if ( !m_bCameraMoveable ) return false;
bool bMoved = false;
if ( m_bUArrowPressed ) { MoveForward(); bMoved = true; }
if ( m_bDArrowPressed ) { MoveBackward(); bMoved = true; }
if ( m_bHomePressed ) { MoveUp(); bMoved = true; }
if ( m_bEndPressed ) { MoveDown(); bMoved = true; }
if ( m_bLArrowPressed ) { TurnLeft(); bMoved = true; }
if ( m_bRArrowPressed ) { TurnRight(); bMoved = true; }
if ( m_bPgUpPressed ) { LookUp(); bMoved = true; }
if ( m_bPgDnPressed ) { LookDown(); bMoved = true; }
return bMoved;

}
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The up and down arrow keys control forward and backward translation. The home
and end keys control up and down translation. The left and right arrow keys control
rotation about the up vector. The page up and page down keys control rotation about
the right vector.

You will notice the use of the remaining eight Boolean data members: m_bUArrow-
Pressed, m_bDArrowPressed, m_bLArrowPressed, m_bRArrowPressed, m_bPgUpPressed,
m_bPgDnPressed, m_bHomePressed, and m_bEndPressed. These exist solely to avoid a
classic problem in a real-time application when the operating system and event sys-
tem are inherently not real time: The keyboard events are not processed in real time. If
you implement OnSpecialKeyDown to include calls to the actual transformation func-
tion such as MoveForward, you will find that the camera motion is not smooth and
appears to occur in spurts. The problem is the speed at which the windowing system
processes the events and dispatches them to the event handler. The workaround is to
use the OnSpecialKeyDown and OnSpecialKeyUp only to detect the state of the special
keys: down or up, pressed or not pressed. The function call MoveCamera is made in-
side the idle loop. When the up arrow key is pressed, the variable m_bUArrowPressed
is set to true. As long as the key is pressed, that variable is constantly set to true at
the frequency the events are processed. However, from the idle loop’s perspective, the
value is a constant true. The MoveForward function is called at the frequency the idle
loop is called at—a rate that is much larger than that of the event system. The result
is that the camera motion is smooth. When the up arrow key is released, the variable
m_bUArrowPressed is set to false, and the calls to MoveCamera in the idle loop no longer
translate the camera.

The translation and rotation speeds are adjustable at run time. My default imple-
mentation of OnKeyDown is

bool WindowApplication3::OnKeyDown (unsigned char ucKey,
int iX, int iY)

{
if (WindowApplication::OnKeyDown(ucKey,iX,iY))
{

return true;
}

// standard keys
switch ( ucKey )
{
case ’t’: // slower camera translation

if (m_bCameraMoveable)
{

m_fTrnSpeed /= m_fTrnSpeedFactor;
}
return true;

case ’T’: // faster camera translation
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if (m_bCameraMoveable)
{

m_fTrnSpeed *= m_fTrnSpeedFactor;
}
return true;

case ’r’: // slower camera rotation
if (m_bCameraMoveable)
{

m_fRotSpeed /= m_fRotSpeedFactor;
}
return true;

case ’R’: // faster camera rotation
if (m_bCameraMoveable)
{

m_fRotSpeed *= m_fRotSpeedFactor;
}
return true;

case ’?’: // reset the timer
ResetTime();
return true;

};

return false;
}

The call to WindowApplication::OnKeyDown is to detect if the ESC key has been
pressed, in which case the application will terminate. The camera translation speeds
are controlled by keys t and T; the camera rotation speeds are controlled by keys r
and R.

Object Motion

An object in the scene can be rotated using keyboard or mouse events. Usually, the
object is the entire scene. To allow object motion, call the function InitializeOb-
jectMotion and pass the object itself. The data member m_spkMotionObject points
to that object. The Boolean data member m_bObjectMoveable, whose default value is
false, is set to true by the function call.

We must decide first what the semantics of the rotation are. If the object has
a parent (i.e., it is not the root of the scene), then the coordinate system of the
object is that of its parent. The columns of the parent’s world rotation matrix are the
coordinate axis directions. To be consistent with the choice made for classes Camera
and Light, whenever a rotation matrix represents coordinate axes, column 0 is the
direction vector, column 1 is the up vector, and column 2 is the right vector. Roll is
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rotation about the direction vector, yaw is rotation about the up vector, and pitch is
rotation about the right vector. Let Q be the rotation matrix about one of these axes
by a predetermined angle. If R is the object’s local rotation matrix, then the update
of the local rotation matrix is R ← QR. If the object is the root of the scene, the
world rotation matrix is the identity matrix. Column 0 is (1, 0, 0) and is the direction
vector, column 2 is (0, 1, 0) and is the up vector, and column 2 is (0, 0, 1) and is the
right vector. The incremental rotation matrix Q is computed using these axes and the
predetermined angle.

To rotate the object via keyboard events, a mechanism similar to camera motion is
used. The data members m_iDoRoll, m_iDoYaw, and m_iDoPitch are state variables that
keep track of the pressed states of various keys. Roll is controlled by the F1 and F2
keys. If neither key is pressed, the default state for m_iDoRoll is zero. If F1 is pressed,
m_iDoRoll is set to −1. If F2 is pressed, m_iDoRoll is set to +1. The signed values
indicate the direction of rotation about the axis of rotation: −1 for clockwise rotation,
0 for no rotation, and +1 for counterclockwise rotation. Similarly, yaw is controlled
by the F3 key (m_iDoYaw is set to −1) and the F4 key (m_iDoYaw is set to +1), and pitch
is controlled by the F5 key (m_iDoPitch is set to −1) and the F6 key (m_iDoPitch is set
to +1). The state of the keys is detected in OnSpecialKeyDown and OnSpecialKeyUp, just
as was the case for camera motion via arrow keys and other special keys. The state-
tracking mechanism guarantees that the rotations occur in the idle loop and are not
limited by the slower event handler.

The function MoveObject, called in the OnIdle callback, is used to update the
local rotation of the object whenever one of the six function keys is pressed. Its
implementation is

bool WindowApplication3::MoveObject ()
{

if (!m_bCameraMoveable || !m_spkMotionObject)
{

return false;
}

Spatial* pkParent = m_spkMotionObject->GetParent();
Vector3f kAxis;
Matrix3f kRot, kIncr;

if (m_iDoRoll)
{

kRot = m_spkMotionObject->Local.GetRotate();
fAngle = m_iDoRoll*m_fRotSpeed;
if (pkParent)
{

kAxis = pkParent->World.GetRotate().GetColumn(0);
}
else
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{
kAxis = Vector3f::UNIT_X;

}
kIncr.FromAxisAngle(kAxis,fAngle);
m_spkMotionObject->Local.SetRotate(kIncr*kRot);
return true;

}

// ... Similar blocks for yaw and pitch go here ...

return false;
}

The rotation axis is computed according to my earlier description. The rotation angle
is either plus or minus the rotation speed parameter; the choice of sign depends on
which function key was pressed.

The WindowApplication3::OnKeyDown implementation allows you to adjust the
object rotation speed when the function keys are pressed. This is accomplished by
the r key (decrease the rotation speed) and the R key (increase the rotation speed).

The application class has some data members and functions to support rotating
an object by the mouse. The rotation is accomplished via a virtual trackball that
is manipulated by the callbacks OnMouseClick and OnMotion. In order to rotate, the
virtual trackball must be enabled (m_bUseTrackBall is set to true), there must be
a motion object (m_spkMotionObject is not null), and the left mouse button must
generate the events (input iButton must be MOUSE_LEFT_BUTTON).

The virtual trackball is assumed to be a sphere in the world whose projection
onto the screen is a circle. The circle center is (W/2, H/2), where W is the width of
the screen and H is the height of the screen. The circle radius is r = min{W/2, H/2}.
Figure 18.3 shows a typical projection.

The trackball uses a right-handed, normalized coordinate system whose origin is
the center of the circle and whose axis directions are parallel to the screen coordinate
axes: x right and y up. Scaling occurs so that in this coordinate system the square is
defined by |x| ≤ 1 and |y| ≤ 1. The circle itself is defined by x2 + y2 = 1. The starting
point of a mouse drag operation is shown in Figure 18.3 and is labeled (x0, y0). The
ending point of the mouse drag is denoted (x′

1, y′
1). Any point that is outside the circle

is projected onto the circle. The actual ending point used by the trackball is labeled
(x1, y1) in the figure.

Imagine the starting and ending points being located on the sphere itself. Since
the circle is x2 + y2 = 1, the sphere is x2 + y2 + z2 = 1. The z-axis is defined to be
into the screen, so the hemisphere on which you select points satisfies z ≤ 0. The
(x , y , z) coordinate system is shown in Figure 18.3. The points (xi , yi) are mapped
to the sphere points

Vi = (xi , yi , −
√

1 − x2
i − y2

i )
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Figure 18.3 The projection of a virtual trackball onto the screen. The circle of projection is
positioned at the center of the screen. The bounding square of the circle is shown.

The rotation of the trackball implied by the mouse drag has a rotation axis that is
perpendicular to the plane containing the sphere center and the two sphere points.
The rotation needs to be computed in world coordinates, so be aware that the cross
product V0 × V1 is in the normalized coordinate system, not in the world. A vector
(xi , yi , zi) in the normalized coordinate system corresponds to the world vector

Wi = xiR + yiU + ziD

where R, U, and D are the camera’s right, up, and direction vectors, respectively, in
world coordinates. The cross product of the two vectors is

W0 × W1 = (x0R + y0U + z0D) × (x1R + y1U + z1D)

= (y1z0 − y0z1)R + (x0z1 − x1z0)U + (x1y0 − x0y1)D

The world coordinates (y1z0 − y0z1, x0z1 − x1z0, x1y0 − x0y1) are not generated
by (x0, y0, z0) × (x1, y1, z1). They are generated by (z0, y0, x0) × (z1, y1, x1). This has
to do with the camera axis ordering (D, U, R), which corresponds to a tuple (z, y , x).

The rotation axis in world coordinates is W0 × W1. The angle of rotation is the
angle between the two vectors, θ = cos−1(W0

. W1). The member function Rotate-
TrackBall computes the axis, angle, and the corresponding rotation matrix; call it Q.
If the object is the root of the scene, the local rotation matrix R is updated just as we
did for the keyboard-driven rotation: R ← QR.

If the object has a parent, the update is more complicated. The object has a model-
to-world transformation that positions and orients the object in the world. If X is a
model-space point, the corresponding world-space point is

Y = RwSX + Tw
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where Rw is the world rotation, S is the diagonal scaling matrix, and Tw is the world
translation. In all my sample applications, I arrange for the object’s world translation
to be the origin so that the rotation is about the origin. The process of doing so is
sometimes referred to as a center-and-fit operation. After this operation, the world
translation is Tw = 0, so

Y = RwSX

The world rotation is constructed from the object’s parent’s world rotation and
from its local rotation. The relationship is

Rw = RpR�

where Rp is the parent’s world rotation and R� is the object’s local rotation. The world
point is therefore

Y = RpR�SX

The trackball motion applies a world-to-world rotation matrix, which we called Q.
The transformation of the world point Y to the rotated point Z is

Z = QY = (QRpR�)SX

We do not want to modify the parent’s rotation matrix by multiplying on the left
by Q. Instead, we wish to adjust the local rotation R� while preserving the parent
rotation. If R′

�
is the adjusted local rotation, we need

RpR′
�
= QRpR�

Solving for the adjusted local rotation,

R′
�
= (RT

p
QRp)R�

The expression RT
p
QRp is a similarity transformation and is viewed as the represen-

tation of the rotation Q in the coordinate system of the object. The matrix Q by itself
represents the rotation in the parent’s coordinate system.

The source code for RotateTrackBall is lengthy, but this is a straightforward
implementation of the ideas discussed here:

void WindowApplication3::RotateTrackBall (float fX0, float fY0,
float fX1, float fY1)

{
if ((fX0 == fX1 && fY0 == fY1) || !m_spkCamera)
{

// nothing to rotate
return;

}
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// Get first vector on sphere.
float fLength = Mathf::Sqrt(fX0 * fX0 + fY0 * fY0);
float fInvLength, fZ0, fZ1;
if (fLength > 1.0f)
{

// Outside unit disk, project onto it.
fInvLength = 1.0f/fLength;
fX0 *= fInvLength;
fY0 *= fInvLength;
fZ0 = 0.0f;

}
else
{

// Compute point (x0,y0,z0) on negative unit hemisphere.
fZ0 = 1.0f - fX0 * fX0 - fY0 * fY0;
fZ0 = (fZ0 <= 0.0f ? 0.0f : Mathf::Sqrt(fZ0));

}
fZ0 *= -1.0f;

// Use camera world coordinates; order is (D,U,R),
// so point is (z,y,x).
Vector3f kVec0(fZ0,fY0,fX0);

// Get second vector on sphere.
fLength = Mathf::Sqrt(fX1 * fX1 + fY1 * fY1);
if (fLength > 1.0f)
{

// Outside unit disk, project onto it.
fInvLength = 1.0f/fLength;
fX1 *= fInvLength;
fY1 *= fInvLength;
fZ1 = 0.0f;

}
else
{

// Compute point (x1,y1,z1) on negative unit hemisphere.
fZ1 = 1.0f - fX1 * fX1 - fY1 * fY1;
fZ1 = (fZ1 <= 0.0f ? 0.0f : Mathf::Sqrt(fZ1));

}
fZ1 *= -1.0f;

// Use camera world coordinates; order is (D,U,R),
// so point is (z,y,x).
Vector3f kVec1(fZ1,fY1,fX1);



18.9 An Application Layer 863

// Create axis and angle for the rotation.
Vector3f kAxis = kVec0.Cross(kVec1);
float fDot = kVec0.Dot(kVec1);
float fAngle;
if (kAxis.Normalize() > Mathf::ZERO_TOLERANCE)
{

fAngle = Mathf::ACos(kVec0.Dot(kVec1));
}
else // Vectors are parallel.
{

if (fDot < 0.0f)
{

// rotated pi radians
fInvLength = Mathf::InvSqrt(fX0 * fX0 + fY0 * fY0);
kAxis.X() = fY0 * fInvLength;
kAxis.Y() = -fX0 * fInvLength;
kAxis.Z() = 0.0f;
fAngle = Mathf::PI;

}
else
{

// rotation by zero radians
kAxis = Vector3f::UNIT_X;
fAngle = 0.0f;

}
}

Vector3f kWorldAxis =
kAxis.X()*m_spkCamera->GetDVector() +
kAxis.Y()*m_spkCamera->GetUVector() +
kAxis.Z()*m_spkCamera->GetRVector();

Matrix3f kTrackRotate(kWorldAxis,fAngle);

const Spatial* pkParent = m_spkMotionObject->GetParent();
Matrix3f kLocalRot;
if (pkParent)
{

const Matrix3f& rkPRotate = pkParent->World.GetRotate();
kLocalRot = rkPRotate.TransposeTimes(kTrackRotate)*rkPRotate *

m_kSaveRotate);
}
else
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{
kLocalRot = kTrackRotate * m_kSaveRotate);

}
kLocalRot.Orthonormalize();
m_spkMotionObject->Local.SetRotate(kLocalRot);

m_spkMotionObject->UpdateGS();
}

The first part of the code computes the world axis of rotation and the angle
of rotation, just as I described. The last part of the code updates the object’s local
rotation based on the trackball motion. The incremental update matrix is Q if the
object has no parent, but RT

p
QRp if the object has a parent.

You should notice that the update uses a data member named m_kSaveRotate.
The trackball rotation is always anchored to the starting point. When that point is
selected, the object’s current local rotation is saved. The trackball rotation is always
applied to the original local rotation.

The mouse event callbacks are simple enough:

bool WindowApplication3::OnMouseClick (int iButton, int iState,
int iX, int iY, unsigned int)

{
if (!m_bUseTrackBall
|| iButton != MOUSE_LEFT_BUTTON
|| !m_spkMotionObject)
{

return false;
}

float fMult =
1.0f/(m_iWidth >= m_iHeight ? m_iHeight : m_iWidth);

if (iState == MOUSE_DOWN)
{

// Get the starting point.
m_bTrackBallDown = true;
m_kSaveRotate = m_spkMotionObject->Local.GetRotate();
m_fXTrack0 = (2 * iX - m_iWidth) * fMult;
m_fYTrack0 = (2 * (m_iHeight - 1 - iY) - m_iHeight) * fMult;

}
else
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{
m_bTrackBallDown = false;

}

return true;
}

bool WindowApplication3::OnMotion (int iButton, int iX, int iY)
{

if (!m_bUseTrackBall
|| iButton != MOUSE_LEFT_BUTTON
|| !m_bTrackBallDown
|| !m_spkMotionObject)
{

return false;
}

// Get the ending point.
float fMult =

1.0f/(m_iWidth >= m_iHeight ? m_iHeight : m_iWidth);
m_fXTrack1 = (2 * iX - m_iWidth) * fMult;
m_fYTrack1 = (2 * (m_iHeight - 1 - iY) - m_iHeight) * fMult;

// Update the object’s local rotation.
RotateTrackBall(m_fXTrack0,m_fYTrack0,m_fXTrack1,m_fYTrack1);
return true;

}

When the left mouse button is pressed, the callback OnMouseClick is executed. The
trackball is set to its down state, the object’s local rotation R is saved, and the starting
point is calculated from the screen coordinates of the mouse click. As the mouse is
dragged, the callback OnMotion is continually called. It computes the ending point,
and then calls the trackball rotation function to compute the incremental rotation Q

and update the object’s local rotation to QR.

Performance Measurements

Nearly all my sample applications include measuring the frame rate using function
calls in the OnIdle callback. The rate is stored in the data member m_dFrameRate. The
data member m_dAccumulatedTime stores the accumulated time used by the applica-
tion. The function MeasureTime updates the accumulated time with the time differ-
ence between the last time the function was called, a value stored in m_dLastTime, and
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the current time as read by System::GetTime. The data member m_iFrameCount stores
the number of times OnIdle has been called and is the number of frames displayed.
The frame rate is the ratio of the number of the frame count and the accumulated
time.

Because the application can run quite rapidly, the resolution of the System::
GetTime call might be too coarse to use on a frame-by-frame basis. If you have con-
cerns about the resolution, I provided a miniature timer that is designed to have
the accumulated time updated less frequently than each frame. The data member
m_iTimer is the clock counter. The starting value for the counter is stored in the data
member m_iMaxTimer. My libraries use a default of 30, but you are certainly welcome
to set it to a different value in the constructor of your application. The idea is that
m_iTimer is decremented on each frame. Once it reaches zero, System::Time is read,
the accumulated time is updated, and m_iTimer is reset to m_iMaxTimer. The Measure-
Time implementation is

void WindowApplication3::MeasureTime ()
{

// Start performance measurements.
if (m_dLastTime == -1.0)
{

m_dLastTime = System::GetTime();
m_dAccumulatedTime = 0.0;
m_dFrameRate = 0.0;
m_iFrameCount = 0;
m_iTimer = m_iMaxTimer;

}

// Accumulate the time only when the miniature timer allows it.
if (--m_iTimer == 0)
{

double dCurrentTime = System::GetTime();
double dDelta = dCurrentTime - m_dLastTime;
m_dLastTime = dCurrentTime;
m_dAccumulatedTime += dDelta;
m_iTimer = m_iMaxTimer;

}
}

The initial value of m_dLastTime is −1, indicating that the frame rate measuring
system is uninitialized. You may reset the measuring system via ResetTimer, which
just sets the last time to the invalid −1. A convenience function for displaying the
frame rate in the lower-left corner of the screen is DrawFrameRate.

A convenience key is provided for the ResetTimer call, namely, the question mark
(?) key.
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18.9.6 Managing the Engines

The two parts of the application layer you care about the most are the idle loop and
the event handlers. These are both part of the message pump mentioned previously.

do_forever
{

if ( message pending )
{

(6) If message is to quit, break out of loop;
(7) Dispatch the message;

}
else
{

(8) Do idle processing;
}

}

Events such as keystrokes and mouse clicks will be detected by the operating
system and sent to the relevant applications through the message dispatch system.
Callbacks will be executed such as OnKeyPress or OnMousePress. An operating system
might have native support for gamepads and joysticks but, if not, there is always
some mechanism for polling the hardware to check its status. The polling code can
be added to the application layer, or it can be part of a callback that is executed
during idle time. In Wild Magic’s application layer, this callback is OnIdle. It is also
possible that the input devices are managed by another API. For example, in addition
to Direct3D graphics, you have DirectInput for accessing input devices.

The OnIdle Callback

For a single-threaded application, the callback OnIdle is the place where you manage
all the subsystems for the application. All the Wild Magic graphics samples have code
blocks of the form

void DefaultShader::OnIdle ()
{

MeasureTime();

if (MoveCamera())
{

m_kCuller.ComputeVisibleSet(m_spkScene);
}
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if (MoveObject())
{

m_spkScene->UpdateGS();
m_kCuller.ComputeVisibleSet(m_spkScene);

}

m_pkRenderer->ClearBuffers();
if (m_pkRenderer->BeginScene())
{

m_pkRenderer->DrawScene(m_kCuller.GetVisibleSet());
DrawFrameRate(8,GetHeight()-8,ColorRGBA::WHITE);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

UpdateFrameCount();
}

The first and last functions are used to coarsely measure the frame rate and the
function DrawFrameRate just displays the result in the lower-left corner of the screen.

The function MoveCamera checks to see if the camera has moved as a result of
transformation changes that occurred because of keystrokes (arrow keys, page up or
page down, home or end). If the camera has moved, the potentially visible set needs
updating by a call to ComputeVisibleSet.

The function MoveScene checks to see if the scene has moved as a result of trans-
formation changes that occurred because of mouse drags (via the virtual trackball)
or by keystrokes (the first six function keys). If any transformation in the scene has
changed, the scene graph is told to update its geometric state. The potentially vis-
ible set needs updating by a call to ComputeVisibleSet. Scene graph motion by the
trackball or keystrokes causes local transformations to be set, but the call to the geo-
metric update function UpdateGS is deferred until the idle loop. This is a design choice
for my application layer. The idea is that you can set multiple local transformations
and call UpdateGS once rather than calling UpdateGS after each local transformation is
set. However, the setting of local transformations within your own application might
have patterns that allow you to implement smart updates, calling UpdateGS only when
needed and only at a minimum set of nodes in the scene.

Managing the Graphics Engine

The remaining block of code in OnIdle to discuss is the drawing pass. The function
ClearBuffers clears the color, depth, and stencil buffers. Once rendering to the back
buffer is completed, the function DisplayBackBuffer informs the graphics system
that it is time to transfer the back buffer to the front buffer for display. Both of these
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functions are implemented by the derived-class renderers. The pair of functions Be-
ginScene and EndScene are implemented only by the Direct3D renderer to support
similarly named function calls in the Direct3D API. The OpenGL and software ren-
derers do nothing during these calls. All rendering function calls must occur between
this pair of functions. In the current example, the potentially visible set is passed to
the renderer. The objects in this set are drawn by the renderer, adhering to any se-
mantics implied by the existence of global effects.

Managing the Physics Engine

Many of the physics sample applications on the CD-ROM have an OnIdle function of
the following form:

void SomePhysicsApplication::OnIdle ()
{

MeasureTime();
DoPhysical();
DoVisual();
UpdateFrameCount();

}

The function DoVisual is a wrapper for the graphics portion of the processing.

m_pkRenderer->ClearBuffers();
if (m_pkRenderer->BeginScene())
{

m_pkRenderer->DrawScene(m_kCuller.GetVisibleSet());
DrawFrameRate(8,GetHeight() - 8,ColorRGBA::WHITE);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

The function DoPhysical encapsulates three things:

1. Simulating the physics.

2. Processing the results of the simulation to update the geometric state of the scene
graphs.

3. Updating the potentially visible set.

How the scene graphs change depends on the physical simulation, so it makes
sense that DoPhysical encapsulates this in a way that minimizes the work of updating.
In my physics samples, the physical simulations themselves are nearly always separate
components that are neatly encapsulated to deal only with the physics. The separation
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between the graphics (visual display) and the physics (simulation) is important. The
physics components tend to occur in files named PhysicsModule.

In a large-scale game application, the physical simulations can be quite compli-
cated, so a simple factorization, as the previous pseudocode showed, is not necessarily
possible. However, you should try as much as possible to maintain a separation of
concerns and not intermingle graphics and physics code.

Managing Other Engines

The state changes to the scene graphs, whether geometric state or renderer state, can
be driven by the event-handling system (keystrokes, mouse clicks, gamepad events).
In a game application, there are other sources for state changes. For example, you
might have an indoor level with a collection of rooms and hallways. The good guy
(your character, of course) walks down a hall and turns into a room. A bad guy
comes out of the shadows of the room to attack you. This happened because your
walking through the doorway to the room triggered the event. A game can have a lot
of triggers in it. The logic for managing these is specific to your game and, perhaps,
considered part of your artificial intelligence (AI) engine. Naturally, there is a lot
more to AI engines, but that is not my expertise. You will need to read other books
for information on building such engines. That said, integration into a Wild Magic
graphics application should not be difficult.

You might also have 3D sound capabilities in your application, the system en-
capsulated in a sound engine. Wild Magic is actually designed to support this. The
Spatial class is the base class for internal nodes, Node, and for leaf nodes representing
drawable data, Geometry. The intent of the scene graph core classes is to also allow
a class SoundEmitter, which is derived from Spatial. The Camera class identifies the
region of space in which you can see things. The Geometry objects in this region are
drawn by the graphics renderer. The analogous class in the sound system is Listener.
It defines the region of space in which you can hear things. The SoundEmitter objects
in this region are played by the sound renderer. The NetImmerse engine had such a
system, built on top of Intel’s RSX sound system, which used an ellipsoidal model
for the region in which you can hear things. Later, we supported 3D sound hardware
from Aureal, but that company closed its doors. The sound system in NetImmerse fi-
nally used the Miles Sound System from Rad Games Tools. Gamebryo, the successor
to NetImmerse, still uses this. A sound system in Wild Magic may be built using an
abstract sound renderer API with back ends implemented for each platform of inter-
est. On a Windows PC, you can use DirectSound to implement the back end. Other
possibilities are to build the back end with OpenAL or with FMOD.

Yet one more engine to integrate would be a networking engine, whether it be for
an application supporting a few machines or for a client-server–based application for
a massively multiplayer online game. This also is not my area of expertise, but the
clean design of the application layer makes it easy to integrate a networking engine
into Wild Magic applications.
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Asynchronous Behavior

Although OnIdle gives you the impression of a list of programming instructions that
must be executed in sequential order, the order of execution is not necessarily that.
When MoveCamera is called, the keyboard is not polled directly. The keystrokes that
are tied into camera motion occur as hardware-generated interrupts, which are then
mapped to messages in the event-handling system. The key press messages are dis-
patched by the message pump. The event handler receives these and calls the ap-
propriate Wild Magic callback functions OnKeyDown, OnKeyUp, OnSpecialKeyDown, or
OnSpecialKeyUp. For example, suppose that the up arrow key is pressed, indicat-
ing a desire to move the camera forward. This key is processed by OnSpecialKeyUp
and OnSpecialKeyDown. The default implementation of OnSpecialKeyUp is in the class
WindowApplication3, which sets a Boolean flag m_bUArrowPressed to true when the
up arrow key has been pressed. The Boolean flag remains true until the key is re-
leased, a hardware interrupt is generated, a message corresponding to this is created
and dispatched by the message pump, the event handler has received the message,
and the callback OnSpecialKeyDown has executed. This callback sets m_bUArrowPressed
to false, indicating the up arrow key is no longer depressed. The key press/release
events occur much less frequently than calls to OnIdle. While the up arrow is de-
pressed, m_bUArrowPressed remains true. The call to MoveCamera in OnIdle tests to
see if m_bUArrowPressed is true, in which case the application callback MoveForward
is executed. Thus, MoveCamera polls the keyboard indirectly in the sense of testing an
application-supplied Boolean variable whose value represents some keyboard state.

You might have asked the question, Why not call MoveCamera in the key-event
callback OnSpecialKeyDown? Try it yourself and see what the results are! What you
will discover is that the camera motion is choppy. Effectively, the event handler and
the idle loop are tasks that run asynchronously. The event handler gets called at a
much less frequent rate than OnIdle. By calling MoveCamera in the key-event callback,
the camera is moved infrequently compared to the rate at which OnIdle moves the
camera. In this scenario, the call MoveCamera effectively does poll the keyboard, being
called only at the rate the key events are occurring. This throws a wrench into your
attempt to run at real-time rates with smooth camera motions.

This example shows that asynchronous tasks must communicate in a manner
that does not (significantly) slow down the application. The application data member
m_bUArrowPressed provides a means to communicate. Think of it as a mailbox. The
event handler is the postal delivery person, depositing mail in your mailbox once a
day—on a schedule unknown to most people. You may check the mailbox whenever
you have the time and as often as you wish. This allows you to focus on other equally
(or more) important tasks. If you so desired, you could ride around the city in the
postal delivery person’s truck. When he stopped at your mailbox, you would know
exactly the right time to check for new mail. However, riding around in a truck is not
an effective use of your time.

The OnIdle discussion so far has been in the context of an application running
in a single thread. Despite this, there is asynchronicity inherent in the system. This
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becomes explicit when you decide to write applications that launch other threads.
Each thread performs some task (or tasks), the results of which are interesting to the
application itself. Rather than have the application poll the threads (if that is actually
possible) to see if their results are ready to use, a communication mechanism much
like that used for key press/release events is useful. This mechanism might even be as
simple as providing a Boolean flag such as m_bPhysicsResultsAvailable. The flag is
set to false when the thread is launched to do its thing. The application polls the flag
in the OnIdle function. Once the flag is detected as true, the application responds
accordingly, whether this be calling functions within its own thread or launching
new threads. The thread whose results just became available most likely will have
associated with it other data members in which to store its results. These, of course,
will be accessible to the application. In this sense, the Boolean flag also acts as a “dirty
bit,” indicating whether or not the thread’s data is current.

The application itself might be given a way to communicate with the other subsys-
tems. For example, the DisplayBackBuffer call that is made after a scene is rendered
is a request to the graphics subsystem to transfer the contents of the back buffer to
the front buffer. Nothing guarantees this will happen immediately. The request can
be queued up by the graphics subsystem for later processing when the subsystem has
the time.

How you structure your application, how you use the various engines, and how
you manage threads and processes is highly dependent on what your application
does. The OnIdle loop is where all the logic resides, albeit via high-level function calls
to the various engines.
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Memory Management

The majority of the discussion in this book about resource management has to do
with data that is transferred to video memory to be used by the graphics system.
This data includes vertex and index buffers, vertex and shader programs, and texture
images. Memory management in video memory is the responsibility of the graphics
drivers. Whether the data resides in video memory or in accelerated graphics port
(AGP) memory is up to the drivers to decide, although you might be allowed to pro-
vide hints about where to store items based on how frequently you plan on modifying
those items. On the other hand, system memory is your responsibility. This is yet
another resource that must be properly managed. This chapter contains some basic
information about memory mangement. The topic is quite broad and has been stud-
ied extensively over the years. For a broader and deeper discussion than that provided
here, you will need to do some research on your own. As always, the quintessen-
tial reference is Donald Knuth’s famous book series [Knu73]. (For online references,
using your favorite Internet search engine, a search on the key words “memory man-
agement” will produce a significant number of hits. A well-written online reference
is [Lim01].)

19.1 Memory Budgets for Game Consoles

When you are raised on desktop computers, memory management is a simple matter
of allocating and deallocating memory from the global heap whenever you must. In
C, you do this with malloc and free. In C++, you do this with calls to the global new
and delete operators. Desktop computers tend to have an enormous amount of phys-
ical memory, so you probably are infrequently concerned about exceeding the limits.

873
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I had not thought much about memory usage until working on visualization and
analysis of medical image data sets. The 3D images are quite large. Computational
geometry algorithms applied to the data sets usually require adjacency information
for surface meshes extracted from the images. The meshes can have on the order of
millions of vertices, edges, and triangles. These all use significant amounts of mem-
ory, so much that my main reason for upgrading computer motherboards was to
get more memory slots and support larger amounts of memory (my current medical
image analysis development machine has 4 gigabytes of memory). Larger and faster
throughput of triangles and larger amounts of video memory on graphics cards also
cause me to upgrade regularly, whether for computer graphics and games contract
programming or for medical image analysis (my development machines are now run-
ning on PCI Express rather than AGP).

Developing on machines with a large amount of memory (and fast CPUs) is a
double-edged sword. On one hand, you have enough memory not to worry much
about using it all. On the other hand, if you create applications that run on lower-
end machines with a smaller amount of memory, careless disregard about memory
usage might cause such applications to crash because its memory requirements just
cannot be met. Naturally, your applications should go to great pains not to crash in
such situations.

Game consoles are different beasts than desktop computers. Invariably, the con-
soles have much more processing power, usually because they have multiple pro-
cessors, and they have much less physical memory. The mind-set you have when
developing on a machine with 64MB of memory must be different from that when
developing on a machine with 4GB of memory.

During development of a console game, it is quite reasonable to specify a memory
budget for each system/engine used in the game. The graphics engine, physics engine,
and sound, AI, networking, and other systems need to stay within their budgets. On a
first game, it is not clear how you determine the budgets. For companies that develop
game sequels, you at least have the previous version of the game to give you an idea of
how to partition the console memory into chunks for each of the systems. How you
partition memory is not a topic I will cover.

As I said previously, desktop development tends to use memory allocation and
deallocation from a global heap. If you were told that you had a budget of N

megabytes, how would you guarantee that you stayed within your budget? If you
were to exceed your budget, what would you do? What you need to do is encapsulate
the memory management into a system that supports budgets.

One way to accomplish this is to create a wrapper around the global heap manage-
ment, say, by a class MemoryManager. Instead of calling the global new and delete oper-
ators yourself, MemoryManager provides member functions for allocation and deallo-
cation, each function calling new and delete as needed but also tracking the requests.
These functions force you to specify the system that needs the memory (graphics,
physics, sound, etc.). The class logs information about the requests and keeps track
of how much memory each system is currently using. If a request for allocation ex-
ceeds the system’s budget, the allocation fails, even though the global heap might
have sufficient memory to support the request. The bottom line is that you cannot
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borrow memory from other systems. You get what you get. During development, if
your system often attempts to exceed its budget, you most likely need to sit down
with the game designers and explain why your budget needs to be revised. Just like
in any other commercial application, the shipped product needs to be robust. If an
allocation fails, the application must handle this gracefully. How you do that depends
on your application and what the program is trying to do at the time.

The advantage to a class like MemoryManager is that you can rely on the operating
system and run-time libraries to handle the details of memory allocation and deallo-
cation. The disadvantage is that you have the potential for fragmentation of a system’s
memory. For example, if you have systems A, B, and C, and each in turn requests a
block of memory, the global heap has used blocks organized as

A0, B0, C0, A1, B1, C1, A2, B2, C2, . . .

where the Ai are memory blocks for system A; Bi are memory blocks for system B;
and Ci are memory blocks for system C. This type of fragmentation is not the same
as fragmentation of the global heap. In the aforementioned example, all the blocks
fill a contiguous portion of the global heap, so there is no heap fragmentation. But
the blocks for a single system are scattered about the heap. This has the potential for
generating cache misses during program execution.

The alternative is to allocate local heaps for the systems. In its simplest form,
each system receives a single contiguous block of memory (a local heap) from the
global heap. The system may use only that memory. This can help to reduce frag-
mentation within a system. Moreover, it allows you to easily shut down (or restart)
a system—deallocation of all the subblocks is simply not required. Instead, the local
heap manager can reset its data structures. Of course, this alternative requires you to
write a memory manager for the local heap.

C++ has the concept of implementing the new and delete operators within a
class. The idea is that the class knows about its memory patterns and usage, some-
thing the global operators do not. The class may take advantage of this, essentially
providing its own local heap (allocated from the global heap) and memory manage-
ment. Although this is a useful concept, the problem in a system such as the graphics
system is that the collection of objects to be allocated and deallocated is heteroge-
neous. A single memory manager will not suffice for the system.

19.2 Leak Detection and Collecting Statistics

Before talking about the general concepts involved in building a memory manage-
ment system, let us take a closer look at the C++ mechanism for allocating and
deallocating memory via the global new and delete operators. The C++ language al-
lows you to create allocation functions referred to as placement new operators. You
may implement these to provide additional information when allocating memory
and to include your own flavor of memory tracking and management. Wild Magic
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implements these to check for memory leaks and to collect statistics about mem-
ory usage. The statistical information is not extensive, but the source code is easy
to modify, so you can include as much gathering of information as you like—even to
the point of logging each and every memory allocation and deallocation in order to
analyze the access patterns and memory utilization.

The Wild Magic memory manager is encapsulated in the class named Memory,
found in the Foundation library System folder. The class represents a singleton—all
data members are static. By default, the memory manager is disabled. The macros
WM4_NEW and WM4_DELETE expand to new and delete, respectively. To enable the system,
you must define the preprocessor symbol WM4_MEMORY_MANAGER. I do so by including
two build configurations, Debug Memory and Release Memory, in the core libraries.
The configurations define the preprocessor symbol in the project properties. The
applications have build configurations that are dependent on the graphics API, so you
will see configurations such as Dx9 Debug Memory and Wgl Release Memory. The Linux
makefiles and the Macintosh Xcode projects have similarly named configurations.

When the memory manager is enabled, the macros are defined as shown next.
Moreover, the global new and delete operators are overridden and placement new and
delete operators are defined.

#define WM4_NEW new(__FILE__,__LINE__)
#define WM4_DELETE delete
void* operator new (size_t uiSize);
void* operator new[](size_t uiSize);
void* operator new (size_t uiSize, char* acFile, unsigned int uiLine);
void* operator new[] (size_t uiSize, char* acFile, unsigned int uiLine);
void operator delete (void* pvAddr);
void operator delete[] (void* pvAddr);
void operator delete (void* pvAddr, char* acFile, unsigned int uiLine);
void operator delete[] (void* pvAddr, char* acFile, unsigned int uiLine);

An allocation using WM4_NEW leads to a call of the third or fourth new operator in the
list. The macro __FILE__ expands to the file name containing the line of code that
has the allocation. The macro __LINE__ expands to the line number for that line of
code. The uiSize parameter is automatically generated by the compiler since it knows
how large a memory chunk is needed to store a to-be-allocated object or an array of
to-be-allocated objects. The acFile parameter receives the file name and the uiLine
parameter receives the line number.

As an example, suppose that the placement new operator is called (as compared
to the placement new[] operator). The implementation of this function is

void* operator new (size_t uiSize, char* acFile, unsigned int uiLine)
{

return Memory::Allocate(uiSize,acFile,uiLine,false);
}
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All the semantics of memory allocation and of the gathering of statistical information
is wrapped up in the Memory function Allocate. The last parameter is a Boolean whose
value is false if new is called but true if new[] is called. I track this to see if mismatches
have occurred, pairing a call to new with a call to delete[] or pairing a call to new[]
with a call to delete. Use your imagination to come up with all sorts of Memory-like
classes you can build to track allocations and deallocations.

My own allocation wrapper is

void* Memory::Allocate (size_t uiSize, char* acFile,
unsigned int uiLine, bool bIsArray)

{
ms_uiNumNewCalls++;

// The ’assert’ used to be enabled to trap attempts to
// allocate zero bytes. However, the DirectX function
// D3DXCheckNewDelete may pass in a value of zero.
// assert(uiSize > 0);

// Allocate additional storage for the block header
// information.
size_t uiExtendedSize = sizeof(Block) + uiSize;
char* pcAddr = (char*)malloc(uiExtendedSize);

// Save the allocation information.
Block* pkBlock = (Block*)pcAddr;
pkBlock->Size = uiSize;
pkBlock->File = acFile;
pkBlock->Line = uiLine;
pkBlock->IsArray = bIsArray;
InsertBlock(pkBlock);

// Move the pointer to the start of what the user expects
// from ’new’.
pcAddr += sizeof(Block);

// Keep track of the number of allocated blocks and bytes.
ms_uiNumBlocks++;
ms_uiNumBytes += uiSize;

if (ms_uiMaxAllowedBytes > 0
&& ms_uiNumBytes > ms_uiMaxAllowedBytes)
{

// The allocation has exceeded the maximum number of
// bytes.



878 Chapter 19 Memory Management

assert(false);
}

// Keep track of the maximum number of bytes allocated.
if (ms_uiNumBytes > ms_uiMaxAllocatedBytes)
{

ms_uiMaxAllocatedBytes = ms_uiNumBytes;
}

// Keep track of the distribution of sizes for allocations.
if (ms_bTrackSizes)
{

// Keep track of the largest block ever allocated.
if (uiSize > ms_uiMaxBlockSize)
{

ms_uiMaxBlockSize = uiSize;
}

unsigned int uiTwoPowerI = 1;
int i;
for (i = 0; i <= 30; i++, uiTwoPowerI <<= 1)
{

if (uiSize <= uiTwoPowerI)
{

ms_auiHistogram[i]++;
break;

}
}
if (i == 31)
{

ms_auiHistogram[i]++;
}

}

return (void*)pcAddr;
}

The function has a mixture of memory management and statistical gathering.
Let’s look at the memory management first. Abstractly, a call to the global new oper-
ator resolves to a request for a specific number of bytes from memory. A run-time
library might very well use malloc to allocate the memory and just return the pointer
to the memory block. My manager actually allocates the requested number of bytes,
and it prepends extra bytes that store information about the request . The extra bytes are
structured according to the nested struct Memory::Block,
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class Memory
{
public:

struct Block
{

size_t Size;
const char* File;
unsigned int Line;
bool IsArray;
Block* Prev;
Block* Next;

};
};

In Memory::Allocate, the size of the requested memory plus the size for a Block
is stored in uiExtendedSize. The allocation occurs using malloc; do not call new here
because you will get an infinitely recursive call! The allocated memory is typecast to
a Block to allow you to store statistical information in that block. The struct member
Size stores the requested number of bytes for the allocation. The member File stores
a pointer to the file name. The file name is stored as global data, so File is not a
dynamically allocated field of Block. The member Line stores the line number of the
file where the allocation occurs. The member IsArray indicates whether new or new[]
was called.

The last two data members of Block—namely, Prev and Next—support keeping
track of the memory blocks using a doubly linked list. This is not an attempt to
usurp the responsibilities of the global heap manager. The doubly linked list exists
only to efficiently generate a report at the end of the application. It is expected that
the list of blocks is empty. If it is not, a traversal of the list is performed and the
block information is written to disk. The information includes the file names and
line numbers where the blocks were allocated, hopefully giving you some valuable
information that lets you discover why the blocks were not deallocated. The report is
generated at any time by a call to Memory::GenerateReport.

After the Block information is initialized, it is necessary to return a pointer to the
caller that points to the actual data it expects—the memory occurring immediately
after the Block header. This happens by incrementing the full block pointer pcAddr by
the size of the header.

The deallocation that is paired with the allocation mentioned previously is

void operator delete (void* pvAddr)
{

Memory::Deallocate((char*)pvAddr,false);
}
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The semantics of deallocation and statistical information gathering are also handled
by the Memory class. The deallocation function is

void Memory::Deallocate (char* pcAddr, bool bIsArray)
{

ms_uiNumDeleteCalls++;

if (!pcAddr)
{

return;
}

// Move the pointer to the start of the actual allocated block.
pcAddr -= sizeof(Block);

// Get the allocation information and remove the block. The removal
// modifies only the Prev and Next pointers, so the block information is
// accessible after the call.
Block* pkBlock = (Block*)pcAddr;
RemoveBlock(pkBlock);

// Check for correct pairing of new/delete or new[]/delete[].
assert(pkBlock->IsArray == bIsArray);

// Keep track of the number of allocated blocks and bytes. If the number
// of blocks is zero at this time, a delete has been called twice on the
// same pointer. If the number of bytes is too small at this time, some
// internal problem has occurred within this class and needs to be
// diagnosed.
assert(ms_uiNumBlocks > 0 && ms_uiNumBytes >= pkBlock->Size);
ms_uiNumBlocks--;
ms_uiNumBytes -= pkBlock->Size;

// Deallocate the memory block.
free(pcAddr);

}

Regarding the memory management itself, the Memory::Allocate function called
malloc to allocate a block of the requested size, including enough memory to store a
Block header. The pcAddr pointer was incremented to point to the memory that the
application expects. Before the memory can be deallocated, pcAddr must be decre-
mented to point to the beginning of the header block. Once all statistical information
is computed, a call to free causes the memory to be deallocated.
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The statistics collected by the memory manager include counting how many
times new or new[] is called (ms_uiNumNewCalls) and how many times delete or
delete[] is called (ms_uiNumDeleteCalls). The number of currently active blocks is
maintained (ms_uiNumBlocks), as well as the number of currently used bytes (ms_
uiNumBytes). The number of bytes includes what the user requested but not the
amount of memory used by the Block headers.

I also allow the user to specify the maximum amount of memory used by the en-
tire engine by setting ms_uiMaxAllocatedBytes. When exceeded, an assert is triggered
in debug mode. In an application that must not exceed its budget, you probably will
need to modify the Memory class to gracefully exit (no memory allocated) and the ap-
plication must respond to the crisis accordingly.

Finally, I keep track of the maximum-size block ever allocated (ms_uiMaxBlock-
Size). I also keep track of the number of allocated blocks of various sizes. The array
element ms_auiHistogram[0] stores the number of allocated blocks of size 1. The
array element ms_auiHistogram[31] stores the number of allocated blocks of size
larger than 230. For 1 ≤ i ≤ 30, the element ms_auiHistogram[i] stores the number of
allocated blocks of size n, where 2i−1 < n ≤ 2i. If you discover that you have a large
number of allocations of small chunks of memory, you will want to understand why
this is occurring and formulate a plan on how to avoid this.

The information I store is relatively minimal. As you increase the amount of
information to be stored, the block header size must increase. This measurement
system itself affects memory usage, so you need to be careful about the memory usage
by the memory manager on a machine with a small amount of memory.

Some memory management systems make an attempt to detect memory overruns.
You can have a Header class to store information about the allocated memory block,
but the end of the structure has a fixed number of bytes, called guard bytes, that are
initialized to some known values. A Header object occurs before the user-requested
memory block. You can also have a Footer class to store information after the user-
requested memory block. This might be something as simple as a fixed number of
guard bytes also initialized to some known values. When a memory block is deallo-
cated, a check is made to see if the guard bytes have changed values. If they have, then
memory was written to it that should not have been. When running in debug mode
in Microsoft Visual Studio, you may have seen messages about heap corruption. The
memory manager is set up to use guard bytes and in this case has detected that a
memory overrun has occurred.

A system that uses guard bytes is not perfect. If your application incorrectly writes
to memory in the Header block before the guard bytes, the error is not detected on
deallocation, but the header information has been destroyed. In my Memory class, if
the block size is accidentally overwritten, the deallocation is incorrect, most likely re-
sulting in some type of crash. You can be more sophisticated in the design of header
and footer information, but at the cost of performance during debug runs. For ex-
ample, you could use a cyclic redundancy check (CRC) by storing derived information
from the header/footer on allocation and then verifying the derived information has
not changed on deallocation. The CRC information most likely is not stored with the
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allocated block, but in some location that (hopefully) is far enough away from the
actively used memory to protect it from corruption itself.

If you want fine-tuned information about memory usage, you could also have
a logging system that writes to disk information about each and every allocation/
deallocation call. This is very slow if you write to disk every time, but you can attempt
to have a disk cache, either provided by the hardware itself or by a virtual disk in
system memory. You amortize the costs by writing to the cache, flushing it to disk
when full. Statistical analyses may be applied to the logged information to give you
an idea of how your game application is using (or abusing) memory.

19.3 General Memory Management Concepts

The issues in buidling a memory management system are the same as those for
building other software components. You have a number of goals to achieve and
not all of them are possible simultaneously. There are trade-offs to consider. Your
choices need to be based on understanding how such a system will be used in your
applications.

The three main issues to deal with are memory utilization, speed of allocation/
deallocation, and memory reclamation. A memory management system with good
memory utilization will waste as little space as possible in the full amount of memory
it must manage. If the current memory has lots of small chunks of unused memory,
finding a chunk to accommodate an allocation request is costly, so the allocation
is slow. On the other hand, if the memory manager does not have to search every
available chunk of unused memory to find a free block to satisfy an allocation request,
the allocation is quite fast. Thus, memory utilization and speed of allocation are at
direct odds with each other. Regardless of which factor you decide on, it is possible
that enough free memory exists to satisfy an allocation request, but the problem
is that the required amount is not contiguous. The full memory block is said to
be externally fragmented. You have a few options in responding to the allocation
request. The easiest, but most undesirable, is to simply fail and return a null pointer.
Another possibility is to borrow memory from the global heap, but this defeats the
requirement of having a memory budget. Yet another possibility, one that is desirable
but comes with some cost, is to reorganize the free memory and package it into a
contiguous block, after which the allocation request is granted. The reorganization is
referred to as memory compaction, or garbage collection.

19.3.1 Allocation Using Sequential-Fit Methods

The full memory block is a contiguous collection of bytes. Sub-blocks of contiguous
bytes are either free for allocation or used because they were already allocated and are
currently in use by the application. The free blocks are maintained as a doubly linked
list. Hypothetical block structures are listed next. The status flag, Used, is listed as a
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Boolean in order to keep the pseudocode simple. In practice you can make this a 1-bit
quantity, using the high-order bit of the size variable.

class HeaderBlock
{
public:

bool Used;
unsigned int Size;
Block* Prev;
Block* Next;

};

class FooterBlock
{
public:

bool Used;
unsigned int Size;

};

It is possible to represent a doubly linked list with only a single pointer member
per object. The trick is to store the exclusive-or of the addresses of the previous and
next blocks. If P is the address of the previous block and N is the address of the
next block, the current block stores P ⊗ N , where ⊗ denotes the exclusive-or of
the address treated as integer values. Two useful properties for exclusive-or are P =
(P ⊗ N) ⊗ N and N = (P ⊗ N) ⊗ P . Let L be a known address for a node in the
doubly linked list, typically the starting node for a list traversal. You must also have
an address S to “start” a traversal. Let this be the address of the previous node for L,
say, S = P . To obtain the address of the next node, use L ⊗ S = (P ⊗ N) ⊗ P = N .

The HeaderBlock and FooterBlock classes are intended for use by the MemoryMan-
ager, which allocates the full memory block using malloc and typecasts it to be of
type Block.

m_memoryBudget = <integer specified by client system>;
m_fullMemory = (char*)malloc(memoryBudget);

// for convenience in allocating/deallocating
m_hsize = sizeof(HeaderBlock);
m_fsize = sizeof(FooterBlock);
m_hfsize = m_hsize + m_fsize;

HeaderBlock* header = (HeaderBlock*)m_fullMemory;
header->Used = false;
header->Size = m_memoryBudget;
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FooterBlock* footer = (FooterBlock*)(m_fullMemory +
m_memoryBudget - m_fsize);

footer->Used = false;
footer->Size = m_memoryBudget;

// The memory manager stores the free list of blocks as a
// doubly linked cyclic list.
header->Prev = header;
header->Next = header;

// the first free block to examine when allocating
m_freeBlock = (HeaderBlock*)m_fullMemory;

The header information is stored in the first part of the full memory block.
The information is duplicated at the end of the block. As blocks are split during
allocation, each sub-block has header information associated with it. This status
and size information is repeated at the end of the block. These are convenient for
coalescing adjacent sub-blocks during deallocation; the details are presented later in
this discussion.

Memory allocation is described by the following pseudocode. The function
SearchByPolicy iterates over the list of free blocks, starting with m_freeBlock, search-
ing for a block with sufficient memory to satisfy the request. You get to specify a
policy for the search, of which a few are discussed later.

char* MemoryManager::Allocate (unsigned int requestedSize)
{

HeaderBlock* header = SearchByPolicy(requestedSize);
if (header == NULL)
{

// What to do when the allocation request fails?
return NULL;

}

unsigned int Size = header->Size;
FooterBlock* footer = header + Size - m_fsize;
if (Size == requestedSize + m_hfsize)
{

// The block is an exact fit for the requested size.

// the allocated memory from the caller’s perspective
char* allocated = header + m_hsize;
header->Used = true;
footer->Used = true;
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// Detach the block from the free list.
if (header->Next == header)
{

// This is the only block on the free list.
m_freeBlock = 0;

}
else
{

m_freeBlock->Prev->Next = m_freeBlock->Next;
m_freeBlock->Next->Prev = m_freeBlock->Prev;
m_freeBlock = m_freeBlock->Next;

}
return allocated;

}

// The free block has more storage than is needed for the
// allocation request. We need to split it into two blocks,
// but because of header/footer space requirements, the
// free block needs to be sufficiently large.
if (Size >= requestedSize + 2*m_hfsize)
{

// the allocated memory from the caller’s perspective
char* allocated = header + m_hsize;

// Split the block into a used block and a free block.
HeaderBlock* usedHeader = header;
FooterBlock* usedFooter = header + m_hsize + requestedSize;
HeaderBlock* freeHeader = usedFooter + m_fsize;
FooterBlock* freeFooter = footer;
usedHeader->Used = true;
usedFooter->Used = true;
freeHeader->Used = false;
freeFooter->Used = false;

// Update the block sizes to reflect the splitting.
unsigned int usedSize = requestedSize + m_hfSize;
freeHeader->Size = header->Size - usedSize;
usedHeader->Size = usedSize;

// The used block is not part of a list structure. The
// free block inherits the previous/next pointers from
// the used block.
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freeHeader->Prev = header->Prev;
freeHeader->Next = header->Next;

m_freeBlock = freeHeader;

return allocated;
}

// The free block has more storage than is needed for the
// allocation request, but there is not enough storage to
// split the block into two sub-blocks, each with a header
// and a footer. Allocate as in the exact-fit case, but
// with the understanding that a small amount of memory is
// wasted (the application is unaware this memory exists).
// This is called "internal fragmentation."

// the allocated memory from the caller’s perspective
char* allocated = header + m_hsize;
header->Used = true;
footer->Used = true;

// Detach the block from the free list.
if (header->Next == header)
{

// This is the only block on the free list.
m_freeBlock = 0;

}
else
{

m_freeBlock->Prev->Next = m_freeBlock->Next;
m_freeBlock->Next->Prev = m_freeBlock->Prev;
m_freeBlock = m_freeBlock->Next;

}
return allocated;

}

Figure 19.1 shows the free list before and after splitting of the current block.
Memory deallocation is described by the following pseudocode. Attempts are

made to coalesce the deallocated block with memory-adjacent free blocks.

void MemoryManager::Deallocate (char* toDeallocate)
{

// Assert: toDeallocate is not NULL.
HeaderBlock* header = toDeallocate - m_hsize;
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Figure 19.1 The free list of memory blocks. (a) The free block before splitting. (b) The used block
and free block after splitting.

FooterBlock* footer = header + header->Size - m_fsize;
header->Used = false;
footer->Used = false;

if (m_freeBlock == NULL)
{

// The free list is empty; just add the block to it.
// The header and footer sizes are already correct.
header->Prev = header;
header->Next = header;
m_freeBlock = header;
return;

}

// Check if the left memory-adjacent neighbor is free.
// If so, coalesce the two blocks.
FooterBlock* leftFooter = header - m_fsize;
if (leftFooter->Used == false)
{

HeaderBlock* leftHeader = leftFooter -
leftFooter->Size - m_hsize;

leftHeader->Size += header->Size;
leftFooter->Size = leftHeader->Size;



888 Chapter 19 Memory Management

if (leftHeader->Next == leftHeader)
{

// This block is the only free one remaining on the free list.
return;

}

// Remove the coalesced block from the free list. This
// makes the current block appear to be used, which sets
// up for coalescing with the right block and/or for
// adding the coalesced block back to the free list.
header = leftHeader;
header->Next->Prev = header->Prev;
header->Prev->Next = header->Next;

}

// Check if the right memory-adjacent neighbor is free.
// If so, coalesce the two blocks.
HeaderBlock* rightHeader = header + header->Size;
if (rightHeader->Used == false)
{

FooterBlock* rightFooter = rightHeader +
rightHeader->Size - m_fsize;

header->Size += rightHeader->Size;
rightFooter->Size = header->Size;

header->Prev = rightHeader->Prev;
header->Next = rightHeader->Next;

if (header->Prev == header)
{

// This block is the only free one remaining on the free list.
m_freeBlock = header;
return;

}

// Remove the coalesced block from the free list. This
// makes the current block appear to be used, which sets
// up for adding the coalesced block back to the free list.
header->Next->Prev = header->Prev;
header->Prev->Next = header->Next;

}

// Add the block to the free list.
m_freeBlock->Prev->Next = header;
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Figure 19.2 Coalescing the used block with the left free block. (a) Before coalescing. (b) After
coalescing.

header->Prev = m_freeBlock->Prev;
header->Next = m_freeBlock;
m_freeBlock->Prev = header;

}

The Boolean Used fields in the header and footer are set to false, so all processing in
this function is with blocks marked as “free.”

Figure 19.2 shows the situation before and after coalescing the used block with
the left free block. The coalesced block is removed from the free list. This allows the
attempt to coalesce with the right free block, making it appear as if the current block
is used. If the block to be deallocated does not have a left free neighbor, then the block
is also ready to attempt to coalesce with the right free block.

Figure 19.3 shows the situation before and after coalescing the used block with
the right free block. The coalesced block is removed from the free list. This supports
adding the block to the free list. If the block to be deallocated had neither a left free
nor a right free neighbor, it is ready to be added to the free list.

The mechanics for updating the free list are straightforward. The heart of the mat-
ter, though, is the policy for searching that is encapsulated by the function SearchBy-
Policy in MemoryManager::Allocate. A few standard policies are as follows:

First fit . The free list of blocks is traversed until a block is found that is large
enough to satisfy the allocation request. Of all the policies, this one tends to have
the minimum amount of search time, but can choose quite large blocks when in
fact a better-fitting one exists.
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Figure 19.3 Coalescing the used block with the right free block. (a) Before coalescing. (b) After
coalescing.

Best fit . The free list of blocks is traversed until either an exact-fitting block is
found or until the entire list has been traversed. In the latter case, the smallest
block able to satisfy the request is chosen. This can be quite expensive because of
having to traverse the entire list, but in exchange you get good memory utiliza-
tion.

Optimal fit . This is an approach that is designed to be a compromise between
the first-fit and best-fit policies. The free list of blocks is traversed. A sample of
n free blocks able to satisfy the allocation request is created, and the size of the
best-fitting block in the sample is tracked. After the sample is created, the free
list is traversed further until a block is found that is a better fit for the allocation
request than the best-fitting block in the sample. This “optimal” block is used to
satisfy the request. The concept has quite a bit of statistics to back it up. The result
is that a certain percent of the time (dependent on n) you will actually choose
the block produced by the best-fit policy. If the optimal-fit policy fails to find a
suitable block after the sample is built, the method falls back to the best-fit policy.
An amortized analysis shows that the optimal-fit policy generally performs better
than the best-fit policy (on average, of course).

Worst fit . The largest block on the free list is chosen. The idea is that over time,
the number of small blocks on the free list will be lower than what other policies
produce.

Regardless of the policy selected, the general rule of thumb is that the sequential-
fit methods have good memory utilization but slow memory allocation because of
the free-list traversals.
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Exercise
19.1

Implement a memory manager that uses sequential-fit methods. Implement the four
policies discussed here and devise some experiments to compare their performances.

19.3.2 Allocation Using Buddy-System Methods

A different approach to memory allocation is the buddy system. The goal is to improve
on sequential-fit methods by having faster allocation, hopefully not leading to a
significant reduction in memory utilization.

The ideas are illustrated for binary buddy systems. The full memory pool has 2m

storage locations for some user-specified m. The memory blocks used to satisfy allo-
cation requests are required to have sizes that are powers of 2. The maximum block
size is, of course, 2m. The minimum block size must be large enough to store any
header and footer information as well as what the user has requested for the allo-
cation. The memory manager maintains a set of doubly linked lists for tracking free
blocks, one for each power-of-2 block size. That is, the doubly linked list FreeList[p]
contains free blocks that are all of size 2p.

When a block of size n is requested for allocation (n includes the size of storage for
headers and footers), the smallest p is computed for which n ≤ 2p. If FreeList[p] is
not empty, a block on this list is used to satisfy the allocation request. If n < 2p, there
will be some unused memory in the block—exactly 2p − n storage locations. Thus,
some internal fragmentation can occur in the system.

If FreeList[p] is empty but FreeList[p+1] is not, a free block in the latter list is
used to satisfy the allocation request. This block has 2p+1 storage locations, but we
already know that n ≤ 2p, so there is an excess of wasted storage, at least 2p storage
locations. To avoid the waste, the block is split into two sub-blocks, each with 2p

storage locations. The block of size 2p+1 is removed from FreeList[p+1], the two sub-
blocks are added to FreeList[p], and the first of these sub-blocks is used to satisfy the
allocation request.

Of course it is also possible that FreeList[p+1] is empty. Generally, the first
nonempty free list is located, say, FreeList[p+i], for some i > 0. A block in this
list has size 2p+i and is removed. The block is split into two sub-blocks, one of
them placed on the list FreeList[p+i-1]. The other sub-block is further subdivided
and the process repeated until you finally have added one block to each of the lists
FreeList[p] through FreeList[p+i-1] and the remaining block is of size 2p and is
used to satisfy the allocation request.

When a block of size 2k+1 is subdivided into two sub-blocks, each of size 2k, the
sub-blocks are said to be buddies. The memory deallocation algorithm releases a used
block of size 2k by adding it to FreeList[k]. If that block’s buddy is also on the free list,
the two are removed from FreeList[k] and coalesced into a block of size 2k+1, and
the coalesced block is added to FreeList[k+1]. It is possible yet again that the buddy
of this block is also on that free list. These are coalesced and the process repeated until
a block reinserted into a free list does not have its buddy there.
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To coalesce two blocks, it is not sufficient that they be adjacent in memory.
Consider a block of 4 bytes. The splitting of the block produces two sub-blocks, each
having 2 bytes. These sub-blocks are further subdivided into 1-byte units. If the bytes
are numbered 0, 1, 2, and 3, the original block has bytes {0, 1, 2, 3}. The first split
produces blocks {0, 1} and {1, 2}. The second split produces {0}, {1}, {2}, and {3}. The
bytes 0 and 1 are buddies and the bytes 2 and 3 are buddies. However, 1 and 2 are not
buddies, even though they are adjacent in memory.

Because of the binary subdivision, it is easy to identify buddies based on the
memory addresses of their first bytes relative to the beginning of the full memory
block. That is, think of the full memory block as having address zero. Buddies of size
2k will have relative addresses where the first buddy (in memory-address order) has
0-valued bits in locations 0 through k, where 0 is the location of the least significant
bit. The second buddy has 0-valued bits in locations 0 through k − 1, but a 1-valued
bit in location k.

Memory allocation is described by the following pseudocode. It assumes that the
MemoryManager class has defined a set of free lists for the various block sizes. The data
member of MemoryManager that stores the power m of 2m, the size of the full memory,
is m_maxPower. The HeaderBlock class is used here with one minor modification: the
Size field stores the logarithm (base 2) of the block size. That is, if the block stores
2k units, then the Size field stores k and not 2k. There is no need for the FooterBlock
class.

char* MemoryManager::Allocate (unsigned int requestedSize)
{

// Compute the smallest integer k for which the requested
// size n satisfies n <= pow(2,k) and there is a free list
// with blocks of size pow(2,k).
unsigned int kmin = ceiling(Log2(requestedSize));
unsigned int k = kmin;
List freeList = empty_list;
for (/**/; k <= m_maxPower; k++)
{

freeList = m_freeList[k];
if (freeList is not empty)
{

break;
}

}
if (freeList is empty or k > m_maxPower)
{

// The request cannot be satisfied. What to do?
return NULL;

}
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// Remove a block from the free list.
HeaderBlock* header = freeList.RemoveFront();
header->Used = true;

// Subdivide the blocks until you find one of the
// minimal size to satisfy the request.
while (k > kmin)
{

// The block needs to be split.
k = k - 1;
HeaderBlock* buddy = header + pow(2,k);
buddy->Used = false;
buddy->Size = k;

// The list m_freeList[k] is empty to have gotten
// here. Add buddy to this list (easy).
m_freeList[k] = buddy;
buddy->Prev = buddy;
buddy->Next = buddy;

}

// At this point we know k == kmin.
char* allocated = header + m_hsize;
return allocated;

}

Memory deallocation is described by the following pseudocode. Attempts are
made to coalesce buddies.

void MemoryManager::Deallocate (char* toDeallocate)
{

// Assert: toDeallocate is not NULL.
HeaderBlock* header = toDeallocate - m_hsize;

// Get the buddy of this block.
unsigned int k = header->Size; // Block size is really 2^k.
unsigned int bitKmask = pow(2,k);
HeaderBlock* buddy = header XOR bitKmask; // complement bit k

while (true)
{

if ((buddy->Used == true) // buddy in use
|| (k == m_maxPower) // header is full memory
|| (buddy->Size != k)) // buddy free, size mismatch
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{
// The buddy is not available for coalescing.
header->Used = false;
m_freeList[k].InsertBlock(header);
return;

}

// The buddy is available for coalescing.
m_freeList[k].RemoveBlock(buddy);
header = minimum(header,buddy);
header->Used = false;
k = k + 1;
header->Size = k;
bitKmask = 2*bitKmask;
buddy = header XOR bitKmaxk;

}
}

The use of power-of-2 blocks leads to poor memory utilization because of the
internal fragmentation but is relatively fast for allocation. Other methods of splitting
lead to less internal fragmentation. The sizes of blocks and their two binary buddies
are represented by the recurrence relation

Sp = 2p , Sn = Sn−1 + Sn−1, n > p

with Sn the size of the block and Sn−1 the size of the sub-blocks. The smallest block
size is Sp. Alternative buddy systems use different recurrence relations. The Fibonacci
buddy system uses

Sn = Sn−1 + Sn−2, n ≥ 2

for suitably chosen initial sizes S0 and S1. A generalized Fibonacci buddy system uses

Sn = Sn−1 + Sn−k , n ≥ k

and requires you to specify k > 2 and initial sizes S0 through Sk−1. Yet another
alternative is to support sizes 2k and 3 . 2k in hopes of obtaining less internal fragmen-
tation.

Exercise
19.2

Implement a memory manager that uses the binary buddy method. Note: The pseu-
docode for allocation and deallocation is based on the full memory block having
starting address zero; that is, the pseudocode uses relative addressing. Your actual
implementation needs to take this into account when computing addresses.
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19.3.3 Allocation Using Segregated-Storage Methods

The sequential-fit methods and the buddy methods both use a contiguous block of
memory to manage. The blocks can be of arbitrary (and nonuniform) sizes. The
mixing of block sizes is problematic in affecting the performance of the memory
manager, but mixed block sizes are essential in a general-purpose system. Segregated-
storage methods are a compromise in hopes of obtaining better performance.

A contiguous block of memory is used by the memory manager, but this block is
partitioned into smaller chunks. Each chunk has its own mechanism for storage, al-
location, and deallocation. In a sense, I have already suggested this for game console
applications—each engine gets its own chunk of memory and each engine is respon-
sible for managing that memory. In a general-purpose system, each chunk might
represent a collection of uniform-sized blocks, which are easier to manage regarding
allocation and deallocation (much like the class new operator does).

I will not go into the details of such methods here. Systems like these are used in
memory paging systems for standard operating systems. They have also been studied
extensively in the field of database management. The systems have partitioned stor-
age, but then require some type of indexed structure on top of the partitions to allow
fast access to them. The material in the preceding sections on memory management
is intended to get you to think about memory budgets and the fact that building your
own memory management system for a game component (graphics engine, physics
engine, etc.) is a reasonable thing to do when you need really tight control over the
resources on a game console.

19.3.4 Memory Compaction

Although I am certain your own applications never run out of memory (famous last
words), a memory management system must deal with the improbable, but possible,
failure to grant an allocation request. If you really are out of all possible memory,
consider yourself short on luck. However, it is more likely that memory is available,
but the free blocks are not large enough to satisfy the allocation request.

In a language such as Java, the memory management system automatically han-
dles this problem. Moreover, you the programmer do not have to explicitly allocate
or deallocate memory. The objects in Java are reference counted. Whenever you are
finished referencing an object and either explicitly or implicitly release your hold on
that object, if the object’s reference count becomes zero, Java will make the associated
memory available for later use. This might not happen the moment you release your
hold on the object, but the language does allow you to tell the system to do garbage
collection.

In a language such as C++, you call new and delete as needed. If you forget to
delete memory at the time you no longer need it, no one will remind you of this.
You are responsible for requesting allocations and deallocations. Use of the Standard
Template Library (STL) might help you to some degree because the containers tend
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to isolate you from when memory is allocated or deallocated. However, your applica-
tions might very well be dynamically allocated STL containers, in which case you are
back to managing allocation and deallocation requests. In Wild Magic, much of the
responsibility for this is handled by the smart pointer and reference counting system.
The Object class has support for this, and the initialization and termination system
has components that attempt to detect object leaks. The Memory class provides sup-
port for detecting memory leaks. The two together give you some automatic support
for memory management at a high level.

That said, the inevitability of a failed allocation request must be dealt with. This
is especially true if you write your own memory manager as described previously.
Reclaiming small memory blocks in order to satisfy an allocation request is called
memory compaction.

The topics of memory compaction and garbage collection are quite large. I will
not discuss the details here. You may find a good presentation of this in many data
structure books and in Volume 1 of Knuth’s famous series [Knu73]. The key algo-
rithms to look into are mark-and-sweep methods for automatic reclamation, incre-
mental garbage collection in order to amortize the cost of reclamation rather than
forcing the application to wait for a long period of time when reclamation is initi-
ated, and copying and moving of cyclic, doubly linked lists in bounded memory. The
last topic is important when your memory usage is nearly at capacity, so you have
very little free space to store temporary blocks as you move other chunks of memory
around.

What you will find out about memory compaction, though, is interesting. The
issue comes down to working with multilinked structures. In particular, the types of
operations you work with are traversing , compacting , copying , moving , and equality
testing . The scene graph data structures I have described in this book and have im-
plemented in Wild Magic are in fact multilinked structures. The operations I have
mentioned here all apply to scene graphs. Traversing is the most common operation
you have seen. Copying and moving come into play during streaming operations,
whether to memory or to disk. Streaming to disk can also be viewed as a form of
compacting, but so can various scene graph compilers. Although I do not have a
subsystem in the scene graph management system for equality testing, we put such
a system into NetImmerse/Gamebryo. The conclusion? Scene graph management is
just a particular case of memory management. If you want more details on scene
graph management, read as much as you can about multilinked data structures and
memory management.

In the context of a game application on a console with limited memory, your goal
is to avoid having a subsystem run out of the memory budgeted to it. My preference is
to trap the failure to satisfy an allocation request, and then determine if the problem
is that the budget was really not large enough or if the problem really is memory
fragmentation. The latter case is not what you want in the game application, so it is
better to spend your time on rethinking the budget rather than on implementing a
sophisticated memory compaction and garbage collection scheme.



C h a p t e r20
Special Effects
Using Shaders

Various shader programs are described in this chapter. Their level of complexity
varies from very simple (vertex colors, single textures, lights, and materials) to very
complicated (planar shadows, planar reflections, water effects). The shader programs
built into the engine are found in the folder

GeometricTools/WildMagic4/Shader Programs/Cg

Some applications have their own specially constructed shader programs. The
shader files are located in the application folders.

20.1 Vertex Colors

Applying vertex colors to a geometric object is a simple task. The Vertex.cg file
contains two vertex programs:

void v_VertexColor3
(

in float4 kModelPosition : POSITION,
in float3 kModelColor : COLOR,
out float4 kClipPosition : POSITION,
out float3 kVertexColor : COLOR,
uniform float4x4 WVPMatrix)

897
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{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the vertex color.
kVertexColor = kModelColor;

}

void v_VertexColor4
(

in float4 kModelPosition : POSITION,
in float4 kModelColor : COLOR,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the vertex color.
kVertexColor = kModelColor;

}

The first program is for RGB vertex colors; the second program is for RGBA vertex
colors. If you choose to use the RGBA version, you must enable alpha blending when
drawing an object to which the effect is attached. You must choose the source and
destination blending modes according to your needs.

As with any shader program, the input model-space positions must be trans-
formed to clip-space (projection) coordinates using the composition of the model-
to-world (W) matrix, the world-to-view (V) matrix, and the view-to-projection (P)
matrix. The composition occurs in the Renderer code and the matrix is assigned to
the shader constant registers.

In both vertex programs, the vertex colors are passed through. The rasterizer
interpolates these to generate per-pixel colors. The pixel programs that are paired
with the vertex programs are in the file PassThrough.cg:

void p_PassThrough3
(

in float3 kInPixelColor : COLOR,
out float4 kPixelColor : COLOR)

{
kPixelColor.rgb = kInPixelColor;
kPixelColor.a = 1.0f;

}
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void p_PassThrough4
(

in float4 kInPixelColor : COLOR,
out float4 kPixelColor : COLOR)

{
kPixelColor = kInPixelColor;

}

The program v_VertexColor3 is paired with p_PassThrough3. The alpha value is not
part of the inputs but must be set for the output. In this case, it is assigned a value of
1 so that the pixel color is opaque.

The program v_VertexColor4 is paired with p_PassThrough4. As described in
Section 3.1.10, if alpha blending is enabled, the pixel color output from the pixel
program will be blended accordingly with the contents of the frame buffer (or render
target that is an offscreen buffer).

The classes VertexColor3Effect and VertexColor4Effect are the wrappers for
shader effects using simple vertex coloring.

20.2 Lighting and Materials

Lighting and materials were discussed in Section 2.6.2. Certain mathematical formu-
las were mentioned for a simple lighting model. Some shader programs that imple-
ment these models are found in the file Lighting.cg. I will describe these briefly in a
moment.

For objects whose vertices all have the same color, vertex colors are overkill be-
cause of their memory usage. Instead you may use a material-only (no lighting) vertex
program. My implementation is in the file Material.cg:

void v_Material
(

in float4 kModelPosition : POSITION,
out float4 kClipPosition : POSITION,
out float4 kDiffuseColor : COLOR,
uniform float4x4 WVPMatrix,
uniform float4 MaterialDiffuse)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Use the material diffuse color as the vertex color.
kDiffuseColor = MaterialDiffuse;

}
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The program requires that you have a Material global state object attached to the
geometric object. If you do not provide one, a default Material object is used. All that
you need to set in the Material object are the diffuse (RGB) color and the alpha (A)
value. The combined RGBA value is passed as the shader constant MaterialDiffuse.
If the alpha value is smaller than 1, you must have alpha blending enabled in order to
obtain semitransparent drawing.

The diffuse-plus-alpha value is passed through. The rasterizer will interpolate this
and send it to each call of the pixel program. Since the diffuse-plus-alpha values are
the same at every pixel, you could instead use the default vertex program, in file
Default.cg:

void v_Default
(

in float4 kModelPosition : POSITION,
out float4 kClipPosition : POSITION,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

}

You could then create a pixel program with uniform inputs consisting of the diffuse-
plus-alpha value. This saves cycles on the GPU because only the clip-space position
must be interpolated during rasterization.

In the material vertex program listed here, the shader constant MaterialDiffuse
is one of the automatic values sent by the renderer to the graphics API shader system.
You do not have to manage this value as a user-defined constant.

The class MaterialEffect is the wrapper for a shader effect using only material
colors. Generally, material colors alone are visually unappealing. When you use mate-
rials in conjunction with lighting, you can obtain better results. The file Lighting.cg
has four vertex programs: one for an ambient light, one for a directional light, one
for a point light, and one for a spotlight. The file contains some helper functions that
implement the mathematical models described in Section 2.6.2. These are

GetDirectionalLightFactors. Computes the diffuse and specular coefficients for
the directional light model.

GetPointLightFactors. Computes the diffuse and specular coefficients for the
point-light model. The inputs are different from those for the directional light
factors, so a separate function is needed to compute the point-light factors.

GetSpotLightFactors. Computes the diffuse, specular, and spot coefficients for
the spotlight model.

GetAttenuation. Computes the attenuation coefficient for point lights and spot-
lights. This coefficient is not relevant for ambient or directional lights.
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The file has two additional vertex programs, one for two ambient lights and
one for an ambient and a diffuse light. These illustrate how to obtain multilight
vertex programs, making calls to the helper functions that compute the light factors.
Support for multiple lights is the sole reason for factoring out the helper functions as
I did.

For simple lighting with no textures, the pixel program to pair with the lighting
vertex programs is p_PassThrough4, which is found in the file PassThrough.cg. The
class LightingEffect is the wrapper for a shader effect using simple lighting.

20.2.1 Ambient Lights

The vertex program for a single ambient light is

void v_L1a
(

in float4 kModelPosition : POSITION,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
uniform float4x4 WVPMatrix,
uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float3 Light0Ambient,
uniform float4 Light0Attenuation)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

float3 kLAmb = Light0Attenuation.w*Light0Ambient;
kVertexColor.rgb = MaterialEmissive + MaterialAmbient*kLAmb;
kVertexColor.a = 1.0f;

}

The shader constants are all set up automatically by the renderer. It uses the active
Material object, presumably one attached to the geometric primitive, to look up the
emissive and ambient material colors. It also uses the first light stored in index 0 of its
internal array of active lights. The ambient color of the light is looked up and sent to
the shader system of the graphics API. Although ambient lighting does not support
attenuation, the Light class in Wild Magic allows you to adjust the intensity of the
light. This value is stored as one of the attenuation constants; it is passed via the w-
component of the 4-tuple Light0Attenuation.

The RGB values of the output vertex color have an ambient component, which
was defined in Equation (2.77). The material emissive color is added to the result.
The material’s alpha channel is not processed here, so the vertex colors are opaque
(an alpha of 1).
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20.2.2 Directional Lights

The vertex program for a single directional light is

void v_L1d
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
uniform float4x4 WVPMatrix,
uniform float3 CameraModelPosition,
uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float4 MaterialDiffuse,
uniform float4 MaterialSpecular,
uniform float3 Light0ModelDirection,
uniform float3 Light0Ambient,
uniform float3 Light0Diffuse,
uniform float3 Light0Specular,
uniform float4 Light0Attenuation)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

float fDiff, fSpec;
GetDirectionalLightFactors((float3)kModelPosition,kModelNormal,

CameraModelPosition,Light0ModelDirection,MaterialSpecular.a,
fDiff,fSpec);

float3 kColor = MaterialAmbient*Light0Ambient;
if (fDiff > 0.0f)
{

kColor += fDiff*MaterialDiffuse.rgb*Light0Diffuse;
if (fSpec > 0.0f)
{

kColor += fSpec*MaterialSpecular.rgb*Light0Specular;
}

}

kVertexColor.rgb = MaterialEmissive + Light0Attenuation.w*kColor;
kVertexColor.a = MaterialDiffuse.a;

}
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The shader constants are all set up automatically by the renderer. It uses the ac-
tive Material object, the first light in the array of active lights, and the camera’s
model-space position. All lighting is performed in model space for efficiency, avoid-
ing applying transformations to inputs to convert them to other coordinate systems.

The diffuse coefficient μ from Equation (2.79) and the specular coefficient γ

from Equation (2.82) are computed by GetDirectionalLightFactors, returning the
results in fDiff and fSpec, respectively. The diffuse contribution is computed ac-
cording to Equation (2.78) and the specular contribution is computed according to
Equation (2.81).

The vertex color is assigned the alpha value of the material. If the material alpha is
smaller than 1, alpha blending must be enabled to obtain the semitransparent effect.

20.2.3 Point Lights

The vertex program for a single point light is

void v_L1p
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
uniform float4x4 WVPMatrix,
uniform float4x4 WMatrix,
uniform float3 CameraModelPosition,
uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float4 MaterialDiffuse,
uniform float4 MaterialSpecular,
uniform float3 Light0ModelPosition,
uniform float3 Light0Ambient,
uniform float3 Light0Diffuse,
uniform float3 Light0Specular,
uniform float4 Light0Attenuation)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

float fDiff, fSpec;
GetPointLightFactors(kModelPosition.xyz,kModelNormal,

CameraModelPosition,Light0ModelPosition,MaterialSpecular.a,
fDiff,fSpec);
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float fAttn = GetAttenuation((float3x3)WMatrix,kModelPosition.xyz,
Light0ModelPosition,Light0Attenuation);

float3 kColor = MaterialAmbient*Light0Ambient;
if (fDiff > 0.0f)
{

kColor += fDiff*MaterialDiffuse.xyz*Light0Diffuse;
if (fSpec > 0.0f)
{

kColor += fSpec*MaterialSpecular.xyz*Light0Specular;
}

}

kVertexColor.rgb = MaterialEmissive + fAttn*kColor;
kVertexColor.a = MaterialDiffuse.a;

}

Once again, the shader constants are all set up automatically by the renderer
and all lighting is performed in model space for efficiency. The diffuse and specu-
lar coefficients are computed by GetPointLightFactors and the diffuse and specular
contributions are computed, just as for directional lights. One difference, though,
is the attenuation computation. Attenuation depends on the distance from the light
source to the vertex position. This computation must be done in world space in the
event that the model-to-world matrix has nonunit scaling. For example, if the model-
to-world matrix has uniform scaling of 2, the model-space distance between the light
source and the vertex position is half that of the world-space distance. Nonuniform
scaling makes this even more complicated. Therefore, the model-to-world matrix
must be accessible to the vertex program; it is passed as the shader constant WMa-
trix. The GetAttenuation function computes the vector from the model-space light
source to the model-space vertex position, and then transforms it to world-space co-
ordinates. The length of the vector is calculated and used in the calculation of the
attenuation factor.

20.2.4 Spotlights

The vertex program for a single spotlight is

void v_L1s
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
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uniform float4x4 WVPMatrix,
uniform float4x4 WMatrix,
uniform float3 CameraModelPosition,
uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float4 MaterialDiffuse,
uniform float4 MaterialSpecular,
uniform float3 Light0ModelPosition,
uniform float3 Light0ModelDirection,
uniform float3 Light0Ambient,
uniform float3 Light0Diffuse,
uniform float3 Light0Specular,
uniform float4 Light0SpotCutoff,
uniform float4 Light0Attenuation)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

float fDiff, fSpec, fSpot;
GetSpotLightFactors(kModelPosition.xyz,kModelNormal,

CameraModelPosition,Light0ModelPosition,MaterialSpecular.a,
Light0ModelDirection,Light0SpotCutoff.y,Light0SpotCutoff.w,fDiff,
fSpec,fSpot);

float fAttn = GetAttenuation((float3x3)WMatrix,kModelPosition.xyz,
Light0ModelPosition,Light0Attenuation);

float3 kColor = MaterialAmbient*Light0Ambient;
if (fSpot > 0.0f)
{

if (fDiff > 0.0f)
{

kColor += (fSpot*fDiff)*MaterialDiffuse.rgb*Light0Diffuse;
if (fSpec > 0.0f)
{

kColor += (fSpot*fSpec)*MaterialSpecular.rgb*Light0Specular;
}

}
}

kVertexColor.rgb = MaterialEmissive + fAttn*kColor;
kVertexColor.a = MaterialDiffuse.a;

}
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Figure 20.1 A plane and sphere illuminated by a single ambient light.

The comments made about point lights apply as well to spotlights. The spotlight
vertex program does additional work, computing the spot coefficient of Equation
(2.84).

The sample application Lighting contains a plane and a sphere. The initial con-
figuration has the default effect attached to the objects, so they show up as magenta.
You can attach lights to the scene by pressing the lowercase keys a (ambient light),
d (directional light), p (point light), or s (spotlight). Lights are detached by pressing
the uppercase equivalents. Up to eight lights are supported. Wireframe is toggled us-
ing the w key. You may select the active light by pressing the keys 0 through 7. Once a
light is active, you can decrease its intensity by pressing the lowercase i key or you can
increase its intensity by pressing the uppercase I key. If the active light is a spotlight,
you can adjust its cone angle by pressing c (decrease angle) or C (increase angle). You
can also adjust its spot exponent by pressing e (decrease the exponent by one-half its
value) or E (increase the exponent by doubling its value).

By pressing the a key, a single ambient light is attached to the scene. Figure 20.1
shows the result. The lighting is somewhat dark and the image appears flat in color.

Now press the d key so that an ambient light and a directional light are attached
to the scene. Figure 20.2 shows the result. The lighting uses multipass rendering. If
you want single-pass lighting, you can write a shader to do so. The Lighting.cg file
already has a shader in it for single-pass lighting for an ambient and a directional
light. You need to compile this vertex program to wmsp files.

Remove the directional light by pressing the D key and add a point light by press-
ing p. Figure 20.3 shows the result. Remove the point light by pressing the P key
and add a spotlight by pressing s. Figure 20.4 shows the results. The spot angle is
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Figure 20.2 A plane and sphere illuminated by an ambient light and a directional light.

Figure 20.3 A plane and sphere illuminated by an ambient light and a point light.
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(a) (b)

Figure 20.4 (a) A plane and sphere illuminated by an ambient light and a spotlight with spot
exponent 1. (b) A wireframe view of the ground.

Figure 20.5 A plane and sphere illuminated by an ambient light and a spotlight with spot
exponent 32.



20.3 Textures 909

Figure 20.6 A plane and sphere illuminated by two ambient lights, two directional lights, two
point lights, and two spotlights.

π/8 radians and the spot exponent is 1. Notice the jaggedness around the brightly lit
region. The tessellation of the plane is coarse enough to cause the jaggedness. You can
eliminate some of this effect by choosing a larger spot exponent. Figure 20.5 shows
the spotlighting with an exponent of 32.

Finally, Figure 20.6 shows the scene lit by eight lights: two ambient lights, two
directional lights, two point lights, and two spotlights. The display is washed out
due to the accumulation of so many lights. A small amount of dynamic lighting is
reasonable to use, but it is probably better to rely on texturing effects and full-screen
image-space effects to obtain better realism. More sophisticated lighting models are
also better to use than the standard models, but they come at the cost of more GPU
cycles.

20.3 Textures

Applying a single texture to a geometric object is a simple task. The Texture.cg file
contains two programs that are used to apply a 2D texture to a geometric primitive:

void v_Texture
(

in float4 kModelPosition : POSITION,
in float2 kInBaseTCoord : TEXCOORD0,
out float4 kClipPosition : POSITION,
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out float2 kOutBaseTCoord : TEXCOORD0,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the texture coordinate.
kOutBaseTCoord = kInBaseTCoord;

}

void p_Texture
(

in float2 kBaseTCoord : TEXCOORD0,
out float4 kPixelColor : COLOR,
uniform sampler2D BaseSampler)

{
// Sample the texture image.
kPixelColor = tex2D(BaseSampler,kBaseTCoord);

}

The vertex program assumes that 2D texture coordinates have been associated
with the vertices of the geometric primitive. The coordinates are passed through by
the program. The rasterizer interpolates these, producing per-pixel texture coordi-
nates and passing them to the pixel program. The pixel’s texture coordinates are
passed to the sampler associated with the texture, and the sampled color is returned
as the pixel color.

The Cg compiler associates texture units with the samplers. The Program parser
reads this information and creates Wild Magic data structures containing this in-
formation, as well as other texture unit information. The PixelShader object stores
Texture objects that contain information for setting up the texture unit, including fil-
ter type and texture coordinate wrap types. The setup occurs automatically for you,
but you are responsible for associating images with the texture and for choosing the
filter and wrap types. The Cg files with extension .fx are designed for you to place
this information in a file, load it, and use the Cg Runtime to handle the setup. Wild
Magic has its own system, just for illustration, but does not yet have an equivalent to
an .fx file.

The class TextureEffect is the wrapper for a shader effect using a single 2D
texture. If you want basic vertex and pixel programs for a 3D texture, you need to
choose more suggestive names for the programs. The naming conventions become
important also when you have multiple textures and multiple blending modes for
combining them, the topic of the next section.
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20.4 Multitextures

Most good-looking special effects use multiple textures on a single object. For exam-
ple, you might want a brick texture for a wall, but then blend into it a light map to
give the wall the appearance of being lit without actually resorting to the more ex-
pensive dynamic lighting. Another example is to have a window with a base texture
to give it a glassy tint (perhaps a bluish tint), a decal texture to make it appear as if
it has a bullet hole with fracture lines around the hole, and an environment map to
make it appear as if the window is reflecting what is behind the observer.

You can easily achieve these effects with shader programs that handle multiple
textures in a single pass. To write the classes corresponding to all the possibilities
of blending two through n textures, each blend operation chosen from a multitude
of source and destination blending modes, would be a time-consuming adventure.
This is exactly the situation where you need to think about shader stitching , creating
new shaders as combinations of old ones and compiling them on the fly. Wild Magic
does not yet have a shader stitching system. For now, the class MultitextureEffect
supports multitexturing, but only a few shader programs are provided to go with it.
You can write additional ones as needed, using the naming convention supported by
the class. This was described in Section 4.6.1.

The sample applications

GeometricTools/WildMagic4/SampleGraphics/Multitextures
GeometricTools/WildMagic4/SampleGraphics/Multieffects

illustrate drawing a geometric primitive with two textures, supporting three different
blending operations. The Multitextures sample uses single-pass multitexturing us-
ing an object of class MultitextureEffect. The Multieffects sample shows the same
geometric primitive and textures, but the result is obtained by attaching two Texture-
Effect objects to the primitive and using a multipass drawing operation. Visually, you
get the same results, but the frame rates are different. On my test machines, the single
pass drawing is about 20 to 25 percent faster.

Figure 20.7 shows the two texture images that are applied to a square. The de-
fault blending used in the application is multiplicative mode; the final texture is the
product of the two input textures. Figure 20.8 shows the result. If you press the n
key, the blending switches to hard additive mode; the final texture is the sum of the
two input textures. Figure 20.9 shows the result. If you press the n key again, the
blending switches to soft additive mode; the final texture is the sum of the two in-
put textures. If C0 and C1 are the two texture colors at a single pixel, the soft addition
is (1 − C1) ◦ C0 + C1, where the products and sums are componentwise. Figure 20.10
shows the result.
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(a) (b)

Figure 20.7 The two texture images used in the Multitextures and Multieffects sample
applications. (a) The primary texture image. (b) The secondary texture image.

Figure 20.8 The two textures are multiplied during rendering.
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Figure 20.9 The two textures are added during rendering. Notice how washed out the result is.
This happens because the sum of colors at many pixels exceeds the upper bound on
the color channels, so they are clamped to white.

Figure 20.10 The two textures are blended according to (1 − C1) ◦ C0 + C1. The result is not
washed out as it was for hard additive mode. No clamping is necessary for soft
additive mode.
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20.5 Bump Maps

Bump-mapping is the generic term for a texturing mechanism that allows you to
provide normal vectors on a per-pixel basis and is used to control per-pixel lighting.
The texture that stores the normal vector information is called a normal map. The red,
green, and blue channels of the texture colors are encodings of unit-length normal
vectors N = (n0, n1, n2). The associated color is C = (r , g , b) = (1 + n0, 1 + n1, 1 +
n2)/2 with components in [0, 1]. The pixel program maps such colors to normal
vectors to be used in the per-pixel lighting.

20.5.1 Generating Normal Maps

The original texture image is converted to a gray-scale image. The intensities are
treated as heights. The normal vectors to this surface are estimated by using finite dif-
ference approximations. In the sample application, the original texture image shows
a collection of bricks. Figure 20.11 shows the texture image and a gray-scale mapping
of it.

Figure 20.12 shows a rendering of the height field generated by the gray-scale
image. The camera has been placed close to the height field so you can see the height
variation. The normal vectors are the gradients of the height field, which happen to
be normal to the surface.

The idea is that in regions of approximately constant intensity, the object to be
textured is flat. The height field normals point directly upward from the surface. The
bricks themselves have this property. In regions with significant changes in intensity,
the height field normals point up to a 90-degree angle from the up direction (they
point “off to the sides”). The portions of the mortar immediately adjacent to the
bricks have this property. The texture is modulated by the dot product between the
light direction and the normal direction at a point on the surface.

The normal map is generated for the gray-scale image according to the following.
Think of the gray-scale image as H(x , y), where (x , y) are the continuous-valued
texture coordinates. The texture images are defined for left-handed (x , y), but we
want to process the height field in right-handed (x , y , z). To preserve the order of x

and y, the right-handed system is obtained by negating z, which flips the direction of
one of the basis vectors for the coordinate system. Thus, we look at the graph of the
function z = −H(x , y). Define F(x , y , z) = H(x , y) + z; the height field is defined
implicitly by F(x , y , z) = 0. From calculus, normal vectors are the gradient of F :

∇F =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=

(
∂H

∂x
,
∂H

∂y
, 1

)

The normal vectors are chosen to be N = ∇F/|∇F |.
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(a) (b)

Figure 20.11 (a) The original texture image shows a collection of bricks. (b) A gray-scale mapping
of the image. The intensities are computed by I = 0.2125R + 0.7154G + 0.0721B,
where R is the red channel, G is the green channel, and B is the blue channel.

(a) (b)

Figure 20.12 (a) A close-up rendering of the height field generated by the gray-scale image of
Figure 20.11 (b). (b) The same rendering but in wireframe mode.
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Finite difference approximations are used to estimate the derivatives:

∂H

∂x

.= H(x + �x , y) − H(x − �x , y)

2�x

and

∂H

∂y

.= H(x , y + �y) − H(x , y − �y)

2�y

In pixel units, we may as well choose �x = 1 and �y = 1. Special handling must
occur at the image boundaries x = 0, y = 0, x = w − 1, and y = h − 1, where the
image has width w and height h. One method is to use wraparound, treating (w , y)

as (0, y) and (x , h) as (x , 0). This is reasonable when the texture coordinates are
set to repeat, but if you use texture coordinates that are strictly inside the domain of
the image, the wraparound is fine to use. You can also use one-sided estimates at the
boundary; for example, the one-sided x-derivative estimate at x = 0 is

∂H(0, y)

∂x

.= H(�x , y) − H(0, y)

�x

Similar formulas exist for the three other boundary derivative estimates.
The Tools folder has a project, CreateNormalMap, which implements the normal

map construction from a color bitmap. The program allows you to scale the height
field to give you more control over the normals. The default is to scale the gray-scale
values to be in [−1, 1]. You can select a multiplier σ to change this to [−σ , σ ]. As
you decrease the value of σ to be smaller than 1, the visual effect is to reduce the
variation in the normal vectors. If you have a sharp edge, say, at the pixels just between
brick and mortar, a large variation in normals produces a very dark or very bright
transition. With smaller values of σ , the transition is less dark or less bright.

The normal map computed for the bricks texture of Figure 20.11 is shown in
Figure 20.13.

Exercise
20.1

Assuming a normal map was constructed using finite difference approximations as
mentioned here, reconstruct the height field from it. The answer will depend on
whether the approximations used wraparound or one-sided estimates at the bound-
aries. You will have to assume that you know the height for one pixel, so you may as
well choose the height at pixel (0, 0) to be zero.

20.5.2 Generating Tangent-Space Information

The variation I have implemented in the BumpMaps sample application uses tangent-
space lighting . A coordinate system is defined at each point P on a surface. If N is
the unit-length normal vector obtained from the gradient of the height field, then
it is possible to compute two unit-length tangent vectors T and B. The first vector
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Figure 20.13 The normal map for the bricks texture. This map was generated by the CreateNor-
malMap tool.

is usually just called the tangent and the second vector is called the bitangent .1 It is
important that the tangent and bitangent vary as smoothly as possible. For a surface
with the topology of a square, this is always possible. For a surface with the topology
of a sphere, it is impossible to guarantee global continuity.2 If we can compute a
tangent T, the bitangent is computed using a cross product, B = N . T. The ordered
set {T, B, N} is a right-handed orthonormal set.

The negative of the light direction vector at the surface position P is −D and is in
world coordinates. It is transformed to the model-space coordinates of the geometric
primitive to be drawn; call this vector L. This vector is represented in the coordinate
system at P:

L = (L . T)T + (L . B)N + (L . N)N

1. Some people call B the binormal. This is incorrect terminology as far as differential geometers are con-
cerned. A binormal is defined for curves in space; in particular, it is part of the Frenet frame for a curve. A
bitangent is defined for surfaces; the coordinate system is called the Darboux frame.

2. The lack of global continuity of a unit-length tangent vector field is a well-known problem in topology.
If you have a continuous tangent vector field defined on a sphere, there must be at least one point on the
sphere at which the tangent is the zero vector. Sometimes an analogy is made to combing a “hairy billiard
ball.” If you have a ball with hair sticking straight out of it everywhere, and if you attempt to comb the hair
to be flat (tangent to the ball), your intuition should tell you that at some point you have to part the hair
away from it in all directions.
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Although all three dot products can be used in advanced shader effects, in the simple
bump-mapping sample application, I only use the component L . N to modulate the
color at P.

To generate a light vector at each point on the surface, we will generate a light
vector at each triangle mesh vertex, map it to an RGB value and store it in a vertex
color array, and let the rasterizer interpolate the vertex colors in the usual manner. To
have the light vector vary smoothly from vertex to vertex, we need to have a param-
eterization of the surface and transform the light vector into the coordinates relative
to the parameterization. However, the triangle mesh was most certainly generated
without such a coordinate system in mind. The texture coordinates themselves may
be thought of as inducing a parameterization of the surface. Each point (x , y , z)

has a texture coordinate (u, v), so you may think of the surface parametrically as
(x(u, v), y(u, v), z(u, v)). Now we do not actually know the functions for the com-
ponents. All we know are sample values at the vertices. We can obtain a continuous
representation using the following. Consider a triangle with vertices P0, P1, and P2
and with corresponding texture coordinates (u0, v0), (u1, v1), and (u2, v2). Any point
on the triangle may be represented as

P(s , t) = P0 + s(P1 − P0) + t (P2 − P0)

where s ≥ 0, t ≥ 0, and s + t ≤ 1. The texture coordinate corresponding to this point
is similarly represented as

(u, v) = (u0, v0) + s((u1, v1) − (u0, v0)) + t ((u2, v2) − (u0, v0))

= (u0, v0) + s(u1 − u0, v1 − v0) + t (u2 − u0, v2 − v0)

Abstractly, we have a surface defined by P(s , t), where s and t depend implicitly
on two other parameters u and v. The problem is to estimate a tangent vector relative
to u or v. We will estimate with respect to u, a process that involves computing the
rate of change of P as u varies, namely, the partial derivative ∂P/∂u. Using the chain
rule from calculus:

∂P

∂u
= ∂P

∂s

∂s

∂u
+ ∂P

∂t

∂t

∂u
= (P1 − P0)

∂s

∂u
+ (P2 − P0)

∂t

∂u

Now we need to compute the partial derivatives of s and t with respect to u. The
equation that relates s and t to u and v is written as a system of two linear equations
in two unknowns:

[
u1 − u0 u2 − u0
v1 − v0 v2 − v0

] [
s

t

]
=

[
u − u0
v − v0

]

Inverting this leads to
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[
s

t

]
= 1

(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

] [
u − u0
v − v0

]

Computing the partial derivative with respect to u produces[
∂s/∂u

∂t/∂u

]
= 1

(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

] [
1
0

]

= 1

(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)[
v2 − v0

−(v1 − v0)

]

Combining this into the partial derivative for P, we have

∂P

∂u
= (v2 − v0)(P1 − P0) − (v1 − v0)(P2 − P0)

(u1 − u0)(v2 − v0) − (u2 − u0)(v1 − v0)

= (v1 − v0)(P2 − P0) − (v2 − v0)(P1 − P0)

(v1 − v0)(u2 − u0) − (v2 − v0)(u1 − u0)

(20.1)

which is used as an estimate of the tangent vector T.
The actual implementation for computing T using Equation (20.1) must handle

degenerate cases. The triangle might be needlelike, in which case the denominator in
Equation (20.1) might be too small, causing numerical problems. It is also possible
that the u-component of the texture coordinate does not vary sufficiently, making it
appear as a constant. In this case, ∂P/∂u = 0, a degeneracy. These cases are handled
in the sample bump-mapping application.

20.5.3 The Shader Programs

The vertex and pixel programs are listed next.

float3 MapFromUnit (float3 kVector)
{

// Map [0,1] to [-1,1].
return 2.0f*kVector - 1.0f;

}
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void v_SimpleBumpMap
(

in float4 kModelPosition : POSITION,
in float3 kInLightDir : COLOR,
in float2 kInBaseTCoord : TEXCOORD0,
in float2 kInNormalTCoord : TEXCOORD1,
out float4 kClipPosition : POSITION,
out float3 kOutLightDir : COLOR,
out float2 kOutBaseTCoord : TEXCOORD0,
out float2 kOutNormalTCoord : TEXCOORD1,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the parameters.
kOutBaseTCoord = kInBaseTCoord;
kOutNormalTCoord = kInNormalTCoord;
kOutLightDir = kInLightDir;

}

void p_SimpleBumpMap
(

in float3 kLightDir : COLOR,
in float2 kBaseTCoord : TEXCOORD0,
in float2 kNormalTCoord : TEXCOORD1,
out float4 kPixelColor : COLOR,
uniform sampler2D BaseSampler,
uniform sampler2D NormalSampler)

{
float3 kLDir = MapFromUnit(kLightDir);
float3 kNDir = MapFromUnit(tex2D(NormalSampler,kNormalTCoord).rgb);
float fDot = saturate(dot(kLDir,kNDir));
float3 kBaseColor = tex2D(BaseSampler,kBaseTCoord).rgb;
kPixelColor.rgb = fDot*kBaseColor;
kPixelColor.a = 1.0f;

}

The vertex program does the usual step of computing the clip-space position. It
passes through all the other parameters. The pixel program has access to the (negative
of the) light direction, but in tangent-space coordinates. The normal vectors are
looked up in the normal map texture. Because both vectors are stored as RGB values
with components in [0, 1], they must be uncompressed to vectors with components
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(a) (b)

Figure 20.14 (a) A bump-mapped square. (b) The same rendering with only the base texture and
no bump-mapping.

in [−1, 1]. The dot product of the two vectors is computed and used to modulate the
base texture color.

Figure 20.14 shows two images, one with bump-mapping enabled and one with
only the base texture and no bump-mapping. Notice how the bump-mapping does
give the appearance that there is geometric variation in the rendering, even though
the object really is planar.

To illustrate that the tangent-space coordinate system construction works cor-
rectly, the same brick texture was applied to a torus. Figure 20.15 shows the bump-
mapped torus and the torus with only the base texture and no bump-mapping. There
is some variation in the lighting that gives you an impression that the bump-mapped
torus has some geometric variation. The impression is more pronounced when you
move closer to the torus. Figure 20.16 illustrates this.

The vertex program v_SimpleBumpMap just passes through the (negative of the)
light direction vector. Each vertex has a unit-length light vector assigned to it and
compressed as RGB values. The light vectors are passed through for the rasterizer
to interpolate them. The interpolated values are passed to the pixel program. The
problem with this approach is that the interpolated values are not guaranteed to
correspond to unit-length vectors. For example, suppose the light vector at one ver-
tex is (1, 0, 0) and at an adjacent vertex is (0, 1, 0). The RGB compressed values
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(a) (b)

Figure 20.15 (a) A bump-mapped torus. (b) The same rendering with only the base texture and
no bump-mapping.

(a) (b)

Figure 20.16 (a) A close-up view of the bump-mapped torus. (b) The same rendering with only
the base texture and no bump-mapping.
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are (1, 1/2, 1/2) and (1/2, 1, 1/2), respectively. At a pixel midway between the ver-
tices, the interpolated RGB value is (3/4, 3/4, 1/2), so the uncompressed vector is
2(3/4, 3/4, 1/2) − (1, 1, 1) = (1/2, 1/2, 0), which is not unit length.

A fix to this problem is to use what is called a normalization cube map. Cube maps
are discussed in Section 20.8 and are essentially six 2D square textures that concep-
tually represent a texture cube. A 3D vector is used as a lookup into a cube map, a
process that identifies the face intersected by the ray with the input vector direction
and does a 2D texture lookup using the point that is the intersection of the ray and
that face. The textures are typically a rendering of the environment surrounding the
object, but in the case of normalization cube maps, the textures represent unit-length
vectors. If the aforementioned ray corresponds to a non-unit-length vector V, then
the texture lookup gives you V/|V| (in RGB compressed format). Well, almost. If you
use a nearest-filter mode, you get a unit-length result. If you use bilinear filtering, four
unit-length vectors are bilinearly interpolated, the result not necessarily unit length.
However, what you do get should be quite close to unit length as long as your face
textures are sufficiently large.

After the discussion of cube maps in Section 20.8, you will see an exercise asking
you to modify the bump-mapping pixel program and the sample application to use a
normalization cube map.

20.6 Gloss Maps

A gloss map is a texture that is used to modulate the specular lighting on a surface.
This gives the surface a shininess in some places, as if those places reflected more
specular light than other places. To achieve this effect, the shader programs must
handle the specular lighting separately from the ambient and diffuse lighting.

The GlossMaps sample application is a simple illustration of gloss maps. The
application uses a directional light for lighting. An RGBA texture is attached to the
geometric primitive. The RGB component is modulated by the emissive-ambient-
diffuse lighting. The A (alpha) component is used to modulate the specular lighting,
the result added into the modulated RGB component. The vertex program is

void v_GlossMap
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
in float2 kModelTCoord : TEXCOORD0,
out float4 kClipPosition : POSITION,
out float3 kEADColor : COLOR,
out float2 kTCoord : TEXCOORD0,
out float3 kSpecularColor : TEXCOORD1,
uniform float4x4 WVPMatrix,
uniform float3 CameraModelPosition,
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uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float4 MaterialDiffuse,
uniform float4 MaterialSpecular,
uniform float3 Light0ModelDirection,
uniform float3 Light0Ambient,
uniform float3 Light0Diffuse,
uniform float3 Light0Specular)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Compute the specular color for the lit material.
float fDiff, fSpec;
GetDirectionalLightFactors((float3)kModelPosition,kModelNormal,

CameraModelPosition,Light0ModelDirection,MaterialSpecular.a,
fDiff,fSpec);

kEADColor = MaterialEmissive + MaterialAmbient*Light0Ambient;
kSpecularColor = 0.0f;
if (fDiff > 0.0f)
{

kEADColor += fDiff*MaterialDiffuse.rgb*Light0Diffuse;
if (fSpec > 0.0f)
{

kSpecularColor += fSpec*MaterialSpecular.rgb*Light0Specular;
}

}

// Pass through the texture coordinate.
kTCoord = kModelTCoord;

}

You should recognize the portions of the code related to lighting with a direc-
tional light; see Section 20.2. The difference is that the specular color is computed
separately. The vertex program outputs the emissive-ambient-diffuse color, kEAD-
Color, and the specular color, kSpecularColor. The texture coordinate is just passed
through.

The pixel program implements the blending equation

(rf , gf , bf ) = (rt , gt , bt) ◦ (re , ge , be) + at(rs , gs , bs)

where (rf , gf , bf ) is the final color, (rt , gt , bt) is the texture color, (re , ge , be) is
the emissive-ambient-diffuse color, and (rs , gs , bs) is the specular color. The pixel
program is
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void p_GlossMap
(

in float3 kEADColor : COLOR,
in float2 kTCoord : TEXCOORD0,
in float3 kSpecularColor : TEXCOORD1,
out float4 kPixelColor : COLOR,
uniform sampler2D BaseSampler)

{
float4 kTextureColor = tex2D(BaseSampler,kTCoord);
kPixelColor.rgb = kTextureColor.rgb*kEADColor +

kTextureColor.a*kSpecularColor;
kPixelColor.a = 1.0f;

}

The application has two squares that can be rotated simultaneously. A directional
light and a material are attached to the scene, thus affecting both squares. One square
has no effects attached to it and is only lit using the material colors. The other square
has a gloss map attached to it. The texture image has all white RGB values, but the
alpha values are 0 in the background and 1 on the pixels that lie in a text string
“Magic.” As you rotate the squares, you see that the first square has a certain specular
color to it. The second square has the same color but only in the region covered
by the text string, giving it a glossy look. Figure 20.17 shows a couple of snapshots

Figure 20.17 Three different rotations of the squares. The left square has lighting only via a
material. The right square has a gloss map attached to it.
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of the squares. The up axis has the direction (0, 1, 0). The light is directional with
direction (0, −1, 0). When the squares are rotated to fully face the camera, both
squares become completely black since the light no longer influences the visible
surfaces.

20.7 Sphere Maps

A sphere map is a texture drawn on a surface that gives the appearance of the surface
reflecting the environment around it. We need to assign texture coordinates to the
geometric object to which the sphere map is attached. These depend on the eye
point’s location and the object’s location and orientation. Figure 20.18 illustrates how
a texture coordinate is assigned to a point on the surface.

The image to be reflected is in a coordinate space (the sphere map space) with
the y-axis pointing down, the x-axis pointing to the right, and the z-axis as shown in
Figure 20.18 (b). The image domain is |x| ≤ 1 and |y| ≤ 1. The (x , y)-coordinates are
left-handed to match what we are used to for texture images. The sample application,
SphereMaps, chooses this to be in view space, but with the swap from right-handed
to left-handed coordinates. Figure 20.18 (a) shows the eye point E, an object with
a position P and corresponding unit-length normal N, the unit-length direction of
view V = (P − V)/|P − V|, and the reflection of V through the normal N, all in
world-space coordinates. The reflection in world-space coordinates is

R = E − 2(N . E)N

In view space, the normal vector N is mapped to h and the reflected vector R is
mapped to r, as shown in Figure 20.18 (b).

(a) (b)

R

r
h

E
V P

N

(0, 0, –1)

y

z

x

–1

+1

–1

+1

Figure 20.18 The mapping of a texture coordinate to a point on an object using sphere-mapping.
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A sphere of radius 1 and centered at the view-space origin (0, 0, 0) is shown
in Figure 20.18 (b). Also shown is the reflection vector r and the normal vector h.
The direction vector for view space is (0, 0, 1). The figure shows the negation of
this positioned at the reflected vector on the sphere. The normal vector is projected
onto the image plane (the vertical blue line segment); the orange line segment is
the direction of projection. The black endpoint of the orange segment shown on the
image plane gives you a pair (x , y), which is the texture coordinate assigned to the
position P of the original object.

The view-space normal is the normalized average of (0, 0, −1) and r = (rx , ry , rz):

h = (rx , ry , rz − 1)√
r2
x

+ r2
y

+ (rz − 1)2

The first two components are in [−1, 1], so they must be mapped to [0, 1] by adding
1 and dividing by 2. Thus, the texture coordinates are

x = rx

2
√

r2
x

+ r2
y

+ (rz − 1)2
+ 1

2
, y = ry

2
√

r2
x

+ r2
y

+ (rz − 1)2
+ 1

2

The shader programs for the sample application are

void v_SphereMap
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
out float4 kClipPosition : POSITION,
out float2 kBaseTCoord : TEXCOORD0,
uniform float4x4 WVPMatrix,
uniform float4x4 WVMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Transform the normal from model space to eye space.
float3 kESNormal = normalize(mul(kModelNormal,(float3x3)WVMatrix));

// Calculate the eye direction (in eye space).
float3 kEyeDirection = normalize(mul(kModelPosition,WVMatrix).xyz);

// Calculate the reflection vector.
float3 kReflection = reflect(kEyeDirection,kESNormal);

// Calculate the texture coordinates.
float fOmRz = kReflection.z - 1.0f;
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float fInvM = 1.0f/sqrt(kReflection.x*kReflection.x +
kReflection.y*kReflection.y + fOmRz*fOmRz);

kBaseTCoord = 0.5f*(kReflection.xy*fInvM + 1.0f);
}

void p_SphereMap
(

in float2 kBaseTCoord : TEXCOORD0,
out float4 kPixelColor : COLOR,
uniform sampler2D SphereMapSampler)

{
kPixelColor = tex2D(SphereMapSampler,kBaseTCoord);

}

The vertex program maps the model-space normal to view-space coordinates.
The eye location in view space is (0, 0, 0), so P − E in world space is mapped to
P′ in view space, where P′ is the mapping from the model-space position to view-
space coordinates. This vector is normalized to obtain V, the direction of view from
the eye to the vertex. The reflection vector is computed and the texture coordinates
are generated according to the previous discussion. The pixel program just uses the
texture coordinates to look up the texture color in the image to be reflected. Figure
20.19 shows the image to be reflected and its rendering onto a torus.

(a) (b)

Figure 20.19 (a) The image to be reflected by sphere-mapping. (b) The rendering of a torus to
reflect the image.
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Figure 20.20 (a) The cube of textures. The images themselves are generated from a camera at the
center of the cube with a 90-degree field of view. Six renderings are made, one per
face. Notice that a left-handed coordinate system is used for (x , y , z). (b) The cube is
cut along its edges and unfolded. The label xp indicates that face is the one in the +x

direction from the cube center. The other labels have similar interpretations. (c) The
texture images are laid out in memory in the manner shown.

20.8 Cube Maps

A better form of environment mapping than using sphere maps is using cube maps.
The environment is rendered to six faces of a cube. The resulting images are used as
textures to be reflected by objects in the scene. Figure 20.20 shows the layout of the
texture images and how they relate to the 3D setting.

A vector V is computed from the camera’s world position to the world position
for a vertex. This is the direction of view along which the observer sees that vertex.
Just as we did for sphere maps, the direction of view is reflected. The reflection ray,
when positioned at the origin of the cube, intersects the cube in some face. That point
of intersection has a 2D coordinate relative to the plane of the face. This coordinate is
used to look up a color in the texture image associated with that face. It is important
to set up the texture images correctly. OpenGL and Direct3D have cube map samplers
that do the lookups for you. The Wild Magic software renderer has its own cube map
sampler. Figure 20.21 shows the left-handed coordinate systems associated with each
face of the cube. The faces are numbered according to the memory layout for the
texture images. Face 0 goes with +x; face 1 goes with −x; face 2 goes with +y; face 3
goes with −y; face 4 goes with +z; and face 5 goes with −z.

The cube map lookup takes the vector V and determines the face of the cube its
ray intersects. The vector is not guaranteed to be unit length. The face it intersects is
easily determined by locating the component with the largest magnitude. The logic is



930 Chapter 20 Special Effects Using Shaders

Face 4
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Figure 20.21 The left-handed coordinate systems for the faces of the cubes.

Vector3 V = (x,y,z);
float max = |x|;
int face = (x > 0 ? 0 : 1);
if (|y| > max)
{

max = |y|;
face = (y > 0 ? 2 : 3);

}
if (|z| > max)
{

max = |z|;
face = (z > 0 ? 4 : 5);

}

The vector components are divided by the largest magnitude, max. The compo-
nent of largest magnitude becomes 1 or −1. The other two components are in [−1, 1].
They are mapped to [0, 1] for the actual texture coordinates:

float invMax = 1/max;
float u, v; // texture coordinates
switch (face)
{
case 0: // +x face, left-handed planar coordinates (-z,-y)

(u,v) = ((1,1) + (-z,-y)/max)/2;
case 1: // -x face, left-handed planar coordinates (+z,-y)

(u,v) = ((1,1) + (+z,-y)/max)/2;
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case 2: // +y face, left-handed planar coordinates (+x,+z)
(u,v) = ((1,1) + (+x,+z)/max)/2;
break;

case 3: // -y face, left-handed planar coordinates (+x,-z)
(u,v) = ((1,1) + (+x,-z)/max)/2;

case 4: // +z face, left-handed planar coordinates (+x,-y)
(u,v) = ((1,1) + (+x,-y)/max)/2;

case 5: // -z face, left-handed planar coordinates (-x,-y)
(u,v) = ((1,1) + (-x,-y)/max)/2;

}

The sample application CubeMaps is an illustration of cube maps. The environ-
ment itself is a cube whose faces have textures with the face names; for example, the
+x face has a texture with fxp. The scene has a sphere whose vertices include po-
sitions, normals, and colors. The vertex colors are randomly generated in shades of
blue and green. The sphere also has a cube map effect attached to it in order for it to
reflect its environment. Figure 20.22 shows two screen captures from the sample.

(a) (b)

Figure 20.22 (a) The rendering when the application first runs. The camera is close to the sphere
in the center of the environment. (b) The rendering when the camera is farther away
from the sphere. You can see that the image on the sphere is the reflection of the walls
of the cube.
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The sample application also has a dynamic update system. If the environment
changes, the scene is re-rendered to create the cube maps. Of course, the objects that
will receive the reflection are also rendered. If one reflecting object reflects another,
you will not see the environment map on the reflected object.

Example
20.1

Create a cube map whose texture RGB values are compressed unit-length vectors.
If V generates (s , t) on one of the faces, and if U = V/|V| = (u0, u1, u2), the texture
RGB color is C(s , t) = ((1, 1, 1) + (u0, u1, u2))/2. This is called a normalization map.
Given a vector V, a lookup into the normalization map gives you its normalized
equivalent. This is designed to avoid expensive inverse square root operations in
the pixel program when the program receives non-unit-length vectors. Modify the
BumpMaps pixel shader and application to use a normalization map.

20.9 Refraction

A beam of light travels through two semitransparent media that are separated by a
planar surface. The speed of light through a medium depends on the density of that
medium. The difference in densities at the planar surface causes the light to slightly
change direction as it crosses from one medium into the other. This bending effect
is called refraction. The planar surface typically has reflective properties. A portion of
the light is reflected, the other portion refracted. Figure 20.23 depicts a beam of light
that is reflected and refracted.

The incoming light has direction L and the unit-length outward surface normal
is N. A unit-length normal to the plane spanned by L and N is L × N/|L × N|. The

N

N⊥
RL

n1

n2

P

Refracted

ReflectedIncoming

Figure 20.23 Reflection and refraction of a light beam traveling through two media.
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vector N⊥ is also unit length and is defined by

N⊥ = N × L × N

|L × N|
The angles of incidence and reflection are both θ . Notice that cos θ = −L . N. Some
basic trigonometry and linear algebra will convince you that

L = (− cos θ)N + (sin θ)N⊥

The reflected light has direction

R = (cos θ)N + (sin θ)N⊥ = L + (2 cos θ)N = L − 2(N . L)N (20.2)

The refraction angle φ is different than the reflection angle θ because of the
difference in densities of the media. The actual amount of bending depends on the
ratio of densities, or equivalently, on the ratio of speeds through the media. Physicists
assign an equivalent measure called the index of refraction. In Figure 20.23, the index
of refraction of the first medium is n1 and the index of refraction of the second
medium is n2. If v1 and v2 are the speeds of light through the media, then n1/n2 =
v2/v1. The indices of refraction, the reflection angle, and the refraction angle are
related by Snell’s law:

n1 sin θ = n2 sin φ

It follows that

cos φ =
√

1 −
(

n1

n2

)2

sin2 θ

The refracted light has direction

P = (− cos φ)N + (sin φ)N⊥

=
⎛
⎝−

√
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cos θ −
√
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(
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⎞
⎠ N + n1
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L

(20.3)

The formula is expressed in terms of the independent input values: the surface nor-
mal N, the incoming light direction L, the angle of incidence θ , and the indices of
refraction n1 and n2.
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(a) (b)

Figure 20.24 Two screen shots from the refraction shader application. (a) Refraction, but no
reflection. (b) Refraction and reflection.

Refraction is clearly observed when placing a stick into water. The stick appears
to bend at the water surface. Empirical measurements have shown that the index of
refraction for air is 1.00029 and the index of refraction for water is 1.333. If the first
medium in Figure 20.23 is air and the second medium is water, and if the angle of
incidence (angle of reflection) is π/4 radians (45 degrees), then the refraction angle
is φ .= 0.559328 radians. This angle is slightly larger than π/6 radians (30 degrees).

Figure 20.24 shows some screen shots from the sample application Refraction.
The texture image is a modification of one that is available from the Cg texture
library at http://oss.ckk.chalmers.se/textures/ . The reflection effects in Figure 20.24 (b)
are produced by Fresnel reflectance. Notice that rendering using both refraction and
reflection appears to be more realistic than with refraction alone; the model has a
glassier look to it.

The refraction application uses both a vertex and a pixel shader and calculates
refraction and reflection of the environment. The light direction is computed as the
view direction from the eye point to a surface vertex. Using the surface normal and the
indices of refraction, a refraction vector is computed according to Equation (20.3).
This vector is used as a lookup into the environment map. If the environment map
is a cube map, a shader can directly perform the lookup. If the environment map is
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a sphere map, a few more calculations are needed to obtain the correct texture coor-
dinates. A reflection vector is calculated in a similar manner according to Equation
(20.2). A Fresnel factor is calculated to determine the strength of the reflection versus
the refraction. For a more realistic refraction, a textured quadrilateral that represents
the environment map is placed behind the object.

20.10 Planar Reflection

An object in a scene can cast reflections onto one or more planar surfaces. Thinking
of the planes as mirrors, each plane has some amount of reflectance, say, a value in the
interval [0, 1]. A reflectance of 0 means the plane does not reflect at all. A reflectance
of 1 means the plane fully reflects the image. Values between 0 and 1 give varying
degrees of reflectance.

Planar reflections are handled by an Effect-derived class, which makes it a global
effect. The class name is PlanarReflectionEffect and is in the sample applications
folder, PlanarReflections. In Wild Magic version 3, planar reflections were imple-
mented by adding a virtual function to the Renderer class. Each derived class had to
implement that virtual function to handle all the details of drawing the object and
its reflections. In Wild Magic version 4, the roles are reversed. The global effect class
is responsible for drawing the object and its reflections. By placing the responsibility
for drawing complicated effects in the effect class itself, the Renderer class does not
have to be modified when you add the new effect to the engine.

The class that encapsulates this is PlanarReflectionEffect and has the interface

class PlanarReflectionEffect : public Effect
{
public:

PlanarReflectionEffect (int iQuantity);
virtual ~PlanarReflectionEffect ();

virtual void Draw (Renderer* pkRenderer, Spatial* pkGlobalObject,
int iVisibleQuantity, VisibleObject* akVisible);

// member access
int GetQuantity () const;
void SetPlane (int i, TriMeshPtr spkPlane);
TriMeshPtr GetPlane (int i) const;
void SetReflectance (int i, float fReflectance);
float GetReflectance (int i) const;

protected:
PlanarReflectionEffect ();
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void GetReflectionMatrixAndPlane (int i, Matrix4f& rkReflection,
Plane3f& rkPlane);

int m_iQuantity;
TriMeshPtr* m_aspkPlane;
float* m_afReflectance;

// Temporary render state for drawing.
AlphaStatePtr m_spkAState;
StencilStatePtr m_spkSState;
ZBufferStatePtr m_spkZState;

};

The constructor is passed the number of planes on which the object will cast a
reflection. Each plane has an associated reflectance value. The planes and reflectances
are all set by the member functions of the class.

This effect is a global effect. You may attach it to a Node object in the scene graph.
A specialized drawing function is provided, namely, PlanarReflectionEffect:Draw.
The abstraction of the drawing routine is

enable depth buffering;
enable stencil buffering;

for each reflecting plane do
{

// See comment (1) after source code.
disable writing to depth buffer;
disable writing to frame buffer;
render plane into stencil buffer;

// See comment (2) after source code.
enable writing to depth buffer;
enable writing to frame buffer;
render plane to write depth buffer to ‘far’;
restore depth buffer state to normal;

// See comment (3) after source code.
enable extra clip plane for reflection plane;

// See comment (4) after source code.
compute the reflection matrix;
enable it as a postworld transformation;
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// See comment (5) after source code.
reverse the culling direction;

// See comment (6) after source code.
draw node subtree with culling disabled;

restore the cull direction;
disable extra clip plane;
disable the postworld transformation;

// See comment (7) after source code.
enable alpha blending;
set blending color to (r,g,b,a) = (0,0,0,reflectance);
disallow alpha state changes;
render the plane;
allow alpha state changes;
disable alpha blending;

}

disable stencil buffering;
disable depth buffering;
draw the node subtree;

The steps of the pseudocode are as follows:

1. Render the reflecting plane into the stencil buffer. No pixels are written to the
depth buffer or color buffer, but we use depth buffer testing so that the stencil
buffer will not be written where the plane is behind something already in the
depth buffer.

2. Render the reflecting plane again by only processing pixels where the stencil buffer
contains the plane’s assigned stencil value. This time there are no changes to the
stencil buffer, and the depth buffer value is reset to the far clipping plane. This
is done by setting the range of depth values in the viewport volume to be [1, 1].
Since the reflecting plane cannot also be semitransparent, it does not matter what
is behind the reflecting plane in the depth buffer. We need to set the depth buffer
values to the far plane value (essentially infinity) wherever the plane pixels are, so
that when the reflected object is rendered, it can be depth-buffered correctly. Note
that the rendering of the reflected object will cause depth values to be written
that will appear to be behind the mirror plane. Writes to the color buffer are
now enabled. When the reflecting plane is rendered later and blended into the
background, which should contain the reflected caster, we need to use the same
blending function so that the pixels where the reflected object was not rendered
will contain the reflecting plane’s colors. In that case, the blending result will show
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that the reflecting plane is opaque when in reality it was blended with blending
coefficients summing to 1.

3. Enable a clip plane so that only objects above the mirror plane are reflected. We
do not want objects below the clip plane to be reflected, because we cannot see
them.

4. The reflection matrix is computed using a function in the class Matrix4.

5. Reverse the cull direction. This is necessary because of the use of the reflection
matrix. The triangles in the meshes need to be treated as if their vertices are
ordered in the opposite direction that they normally are in. In the actual imple-
mentation, a flag is set in the Renderer class telling the CullState processing code
to treat back-facing triangles as front facing, and vice versa. This allows us not to
assume that all models use back-facing triangles or all use front-facing triangles.

6. The rendering of the reflected object draws only where the stencil buffer contains
the reflecting plane’s stencil value. The node object is told to draw itself. The
actual function call takes two arguments; the first is the renderer itself and the
second is a Boolean flag indicating whether or not to allow culling by bounding
volumes. In this case the culling is disabled to allow out-of-view objects to cast
reflections.

7. The reflecting plane will be blended with what is already in the frame buffer, ei-
ther the image of the reflected caster or the reflecting plane. All we want for the
reflecting plane at this point is to force the alpha channel to always be the re-
flectance value for the reflecting plane. The reflecting plane is rendered wherever
the stencil buffer is set to the plane’s stencil value. The stencil buffer value for the
plane will be cleared. The normal depth buffer testing and writing occurs. The
frame buffer is written to, but this time the reflecting plane is blended with the
values in the frame buffer based on the reflectance value. Note that where the
stencil buffer is set, the frame buffer has color values from either the reflecting
plane or the reflected object. Blending will use a source coefficient of 1 − α for
the reflecting plane and a destination coefficient of α for the reflecting plane or
reflected object.

The sample application PlanarReflections illustrates the planar reflection effect.
A biped model is loaded and drawn standing on a plane. Another plane perpendicular
to the first is also drawn. The biped casts two reflections, one on the floor plane and
one on the wall plane. Figure 20.25 shows a screen shot from the application. The
reflectance for the wall mirror is set to be larger than the reflectance of the floor. Press
the G key to animate the biped and see the reflections change dynamically. You can
also rotate the scene using the virtual trackball. The reflection on the wall will still
occur even when the biped itself is out of view of the camera.
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Figure 20.25 Illustration of planar reflections.

20.11 Planar Shadows

An object in a scene can cast shadows onto one or more planar surfaces. Planar shad-
ows are handled by an Effect-derived class, which makes it a global effect. The class
name is PlanarShadowEffect and is in the sample applications folder, PlanarShadows.
In Wild Magic version 3, planar shadows were implemented by adding a virtual func-
tion to the Renderer class. Each derived class had to implement that virtual function
to handle all the details of drawing the object and its shadows. In Wild Magic version
4, the roles are reversed. The global effect class is responsible for drawing the object
and its shadows. By placing the responsibility for drawing complicated effects in the
effect class itself, the Renderer class does not have to be modified when you add the
new effect to the engine.

The class that encapsulates this is PlanarReflectionEffect and has the interface

class PlanarShadowEffect : public Effect
{
public:

PlanarShadowEffect (int iQuantity);
virtual ~PlanarShadowEffect ();

virtual void Draw (Renderer* pkRenderer, Spatial* pkGlobalObject,
int iVisibleQuantity, VisibleObject* akVisible);
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// member access
int GetQuantity () const;
void SetPlane (int i, TriMeshPtr spkPlane);
TriMeshPtr GetPlane (int i) const;
void SetProjector (int i, LightPtr spkProjector);
LightPtr GetProjector (int i) const;
void SetShadowColor (int i, const ColorRGBA& rkShadowColor);
const ColorRGBA& GetShadowColor (int i) const;

protected:
PlanarShadowEffect ();

bool GetProjectionMatrix (int i,
const BoundingVolume* pkGlobalObjectWorldBound,
Matrix4f& rkProjection);

int m_iQuantity;
TriMeshPtr* m_aspkPlane;
LightPtr* m_aspkProjector;
ColorRGBA* m_akShadowColor;

// temporary render state for drawing
AlphaStatePtr m_spkAState;
MaterialStatePtr m_spkMState;
StencilStatePtr m_spkSState;
ZBufferStatePtr m_spkZState;
MaterialEffectPtr m_spkMEffect;

};

The constructor is passed the number of planes on which the object will cast a
shadow. Each plane has an associated light source for projecting the shadow and a
shadow color. The planes, projectors, and colors are all set by the member functions
of the class.

This effect is a global effect. You may attach it to a Node object in the scene graph.
A specialized drawing function is provided, namely, PlanarShadowEffect::Draw. The
abstraction of the drawing routine is

for each geometric primitive do
{

draw the primitive;
}

for each projection plane do
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{
enable depth buffering;
enable stencil buffering;
draw the plane; // Stencil keeps track of pixels drawn.

compute the shadow projection matrix;
enable it as a postworld transformation;

enable alpha blending;
set special material diffuse/alpha to shadow color;

// drawing controlled only by stencil
disable depth buffering;
enable stencil buffering;

// Shadow occurs only where plane is.
for each geometric primitive do
{

save material of primitive;
save effects of primitive;
attach special material to primitive;
draw primitive using material-only shader;
detach special material from primitive;
restore effects of primitive;
restore material of primitive;

}

disable stencil buffering;
disable alpha blending;

disable the postworld transformation;
}

The shadow caster is drawn first. Each projection plane is processed one at a time.
The plane is drawn with the stencil buffer enabled so that you keep track of those
pixels affected by the plane. The shadow caster needs to be drawn into the plane from
the perspective of the light projector. This involves computing a shadow projection
matrix, which I will discuss in a moment. The matrix is pushed onto the model view
matrix stack so that the resulting transformation places the camera in the correct
location and orientation to render the caster onto the projection plane, which acts as
the view plane. The only colors we want for the rendering are the shadow colors. This
is accomplished by drawing each geometric primitive using a material whose diffuse
and alpha channels are set to the shadow color. The caster is rendered into the plane,
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but with stencil buffering enabled yet again, the only pixels blended with the shadow
color are those that were drawn with the plane. The stencil buffer only allows those
pixels to be touched. The remainder of the code is the restoration of rendering state
to what it was before the function call was made.

The projection matrix construction requires a small amount of mathematics.
The projection plane is implicit in the TriMesh representation of the plane. We need
to know the equation of the plane in world coordinates. The TriMesh::GetWorld-
Triangle function call returns the three vertices of the first triangle in the mesh of the
plane, and from these vertices we can construct the plane equation. The light source
is either directional, in which case the projection is an oblique one, or positional,
in which case the projection is a perspective one. The homogeneous matrices for
these projections are computed by the Matrix4 class, in particular by the function
MakeObliqueProjection or MakePerspectiveProjection.

The sample application PlanarShadows illustrates the projected, planar shadow
effect. A biped model is loaded and drawn standing on a plane. Another plane per-
pendicular to the first is also drawn. The biped casts two shadows, one on the floor
plane and one on the wall plane. Figure 20.26 shows a screen shot from the appli-
cation. The light is a point source. You can move the location with the x, y, and z
keys (both lowercase and uppercase). Press the G key to animate the biped and see the
shadow change dynamically.

Figure 20.26 Illustration of projected, planar shadows.
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20.12 Projected Textures

A projected texture is a texture that is applied to an object as if it were projected from
a light source onto the object. You may think of this as the model of a motion picture
projection system that casts an image onto a screen. Another realistic example is light
passing through a stained-glass window and tinting the objects in a room. The class
that encapsulates this effect is ProjectedTextureEffect:

class ProjectedTextureEffect : public ShaderEffect
{
public:

ProjectedTextureEffect (Camera* pkProjector,
const char* acProjectorImage,
Light* pkLight);

virtual ~ProjectedTextureEffect ();

virtual void SetGlobalState (int iPass, Renderer* pkRenderer,
bool bPrimaryEffect);

virtual void RestoreGlobalState (int iPass, Renderer* pkRenderer,
bool bPrimaryEffect);

protected:
// streaming
ProjectedTextureEffect ();

CameraPtr m_spkProjector;
LightPtr m_spkLight;

};

The first input to the constructor is the projector, which is a Camera object to allow
perspective projection into a view frustum. The projector actually represents the view
of the world from the light source. The second input is the image to be projected.
The third input is an actual light and must be directional for the purposes of the
sample application, ProjectedTextures, which blends the projected texture and the
directional lighting together.

Because dynamic lighting is used, the renderer needs to be informed about the
light. Moreover, it needs to know about the projector. Both parameters are made
known through the SetGlobalState call. The function RestoreGlobalState resets the
renderer state after drawing has occurred. This pair of functions was discussed in
Sections 3.3.3 and 3.4.2.

The vertex program is
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void v_ProjectedTexture
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
out float4 kTCoord : TEXCOORD0,
uniform float4x4 WVPMatrix,
uniform float4x4 ProjectorMatrix,
uniform float3 CameraModelPosition,
uniform float3 MaterialEmissive,
uniform float3 MaterialAmbient,
uniform float4 MaterialDiffuse,
uniform float4 MaterialSpecular,
uniform float3 Light0ModelDirection,
uniform float3 Light0Ambient,
uniform float3 Light0Diffuse,
uniform float3 Light0Specular)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Compute directional lighting.
float fDiff, fSpec;
GetDirectionalLightFactors((float3)kModelPosition,kModelNormal,

CameraModelPosition,Light0ModelDirection,MaterialSpecular.a,
fDiff,fSpec);

float3 kColor = MaterialAmbient*Light0Ambient;
if (fDiff > 0.0f)
{

kColor += fDiff*MaterialDiffuse.rgb*Light0Diffuse;
if (fSpec > 0.0f)
{

kColor += fSpec*MaterialSpecular.rgb*Light0Specular;
}

}

kVertexColor.rgb = MaterialEmissive + kColor;
kVertexColor.a = MaterialDiffuse.a;

// Compute the projected texture coordinates.
kTCoord = mul(kModelPosition,ProjectorMatrix);

}
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The clip-space position is computed by transforming the model-space position.
The remainder of the code except for the last line is the same code that occurs
in Lighting.cg, vertex program L1d, for directional lighting. This requires the ver-
tices to have normals specified. The vertex colors are output from the program. The
last line of code computes the texture coordinates for the projected texture. The
uniform constant ProjectorMatrix is one of the special constants associated with
the renderer. The renderer is told about the projector during the function call Pro-
jectedTextureEffect::SetGlobalState. When the uniform constants are set up for
a call to the vertex program, the projection matrix associated with the projector
is automatically computed and passed to the graphics API. See the function Ren-
derer::SetConstantProjectorMatrix in the graphics engine.

The pixel program is

void p_ProjectedTexture
(

in float4 kVertexColor : COLOR,
in float4 kTCoord : TEXCOORD0,
out float4 kPixelColor : COLOR,
uniform sampler2D ProjectorSampler)

{
float4 kProjectorColor = tex2Dproj(ProjectorSampler,kTCoord);
kPixelColor = kProjectorColor*kVertexColor;

}

Cg has a sampler for looking up the colors in a projected texture. The texture coordi-
nate is of the form (s , t , r , q). The sampler computes (s′, t ′) = (s/q , t/q) and uses
this as a lookup into the projected texture image. The Wild Magic software renderer
has an implementation of a projected texture sampler, class SoftSamplerProj.

The sample application ProjectedTextures illustrates the projected texture effect.
A mesh representing a face is loaded and has no texture associated with it. A sunfire
texture is projected onto the face. Figure 20.27 shows the face in a couple of orien-
tations. Notice that the face moves relative to the observer, but the projected texture
does not since the projector is fixed in space in this application.

20.13 Shadow Maps

Casting shadows is a desirable effect in many applications. One of the simplest meth-
ods, planar shadows, was discussed in Section 20.11. The method requires that the
recipient of the shadow be a plane. It would be nice, though, to cast shadows onto
nonplanar objects. One method to do this is using shadow maps, where a light is used
to cast the shadows.

The process requires two rendering passes. The scene is rendered from the light’s
point of view. All that matters in this pass is computing the distances from the light
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Figure 20.27 Illustration of projected textures.

source to the geometric primitives. These are stored as pixel depths and stored in a
depth texture (the shadow map). The scene is then rendered from the camera’s point
of view. The depth texture is used as a projected texture, projected from the light’s
point of view. At each pixel, the depth texture value is compared to the fragment’s
distance from the light source. If the depth texture value is greater than the distance,
the pixel is in shadow—another fragment is closer to the light and casts a shadow on
this pixel.

Although this sounds simple, there are quite a few setup details to take care of.

An offscreen buffer must be created to store the depth texture, and the renderer
must be told to compute only the depths when rendering the scene from the light’s
point of view. Getting an offscreen buffer system to work has been the source of
great pain for many newcomers to graphics. OpenGL’s pbuffer construct is prob-
lematic because the details of construction are specific to the platform (Windows
Wgl, Apple’s Agl, Unix/Linux Glx). The recent introduction of framebuffer ob-
jects has made this easier to do since the construction is independent of platform.

The texture resource management system must support depth textures. These are
handled slightly differently from regular textures.

Precision problems can cause the depth texture and other textures to have z-
fighting. To avoid this, a polygon offset may be used, but the bias parameters
are specific to the objects, the camera model, and the environment they live in. A
better option would be to have access to the samplers, configuring them to sample
differently, but that capability is not yet available on GPUs.

Ideally, the depth texture may be rendered to as a texture, so it may be applied as
a texture (without first having to copy it from video memory to system memory),
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(a) (b)

Figure 20.28 Two screen captures from the ShadowMaps sample.

copied to another texture object, and then sent back to video memory. Render-
to-texture is becoming more common, but older hardware and drivers might not
support this.

The sample application to illustrate this concept is ShadowMaps. Figure 20.28
shows two screen captures. The light is represented by the yellow globe. The larger
sphere and the torus have material colors and are lit but also allow a projected tex-
ture to be blended with their colors. The ground plane has a base texture (stone) and
accepts the projected texture and the shadow map. Figure 20.28 (b) shows the scene
slightly tilted, so the shadows are cast closer to the observer.

20.14 Volumetric Fog

Standard depth-based fog is useful to hide the abrupt change that would otherwise
occur at the far plane. There are times, though, when you want a fog effect such that
fog occurs in a localized region anywhere you choose in the view frustum. This could
very well be in a region close to the near plane. A mechanism for creating such effects
is volumetric fog .

The idea is to generate per-vertex fog factors and use these to blend the fog color
with the other vertex attributes. To obtain a localized effect, you add nondisplayable
objects to your scene. Such an object is called a fog generator. For each vertex, a ray
is cast from the eye position to the vertex position. If the ray does not intersect any
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of the fog generators, then the fog factor is 1 and the vertex color is whatever the
vertex attributes generate. If the ray does intersect a fog generator, then a fog factor
is chosen to be smaller than 1 and proportional to the size of the intersection of the
ray with that generator. The intersection calculations are performed on the CPU, so
to keep computational time to a minimum, the fog generators are usually chosen to
be simple convex objects; for example, a sphere, box, or slab are reasonable choices.
For convex fog generators, the intersection set of the ray and generator is a single line
segment, a single point, or empty.

The per-vertex fog factors can be computed using a vertex program. The sample
application VolumeFog illustrates how to do this. The geometric primitive is a height
field. A gray-scale texture is used to define the height field. Once the heights are
obtained (from the red channel), the texture image is modified to produce shades
of green (small height) and red (large height). Vertex colors are used to store the
fog color and the fog factor. This allows you to actually assign different fog colors
to different vertices. In the sample source code, the fog colors are all set to white. The
alpha channel of the vertex colors is used to store the fog factor.

A rectangular slab parallel to the ground plane is used as the fog generator. As
the camera is moved around the terrain, a function UpdateFog is called. Its job is to
compute the intersections of the rays (from eye position to vertex position) and the
rectangular slab. The rays are of the form E + tP, where E is the eye position and
P is a vertex position. All we care about are those points for which t ∈ [0, 1]. The
intersection of the ray with the slab produces a subinterval [t0, t1]. The length L of
the interval is used to generate the fog factor f = L/(L + L0), where L0 is a user-
defined constant. The application chooses L0 = 8, so f can never be 1, which prevents
oversaturation by the fog color. UpdateFog handles the cases when E is below, within,
and above the slab.

The shader programs are

void v_VolumeFog
(

in float4 kModelPosition : POSITION,
in float4 kModelColor : COLOR,
in float2 kModelTCoord : TEXCOORD0,
out float4 kClipPosition : POSITION,
out float4 kVertexColor : COLOR,
out float2 kTCoord : TEXCOORD0,
uniform float4x4 WVPMatrix)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the vertex color and texture coordinate.
kVertexColor = kModelColor;
kTCoord = kModelTCoord;

}
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void p_VolumeFog
(

in float4 kVertexColor : COLOR,
in float2 kTCoord : TEXCOORD0,
out float4 kPixelColor : COLOR,
uniform sampler2D BaseSampler)

{
// The blending equation is
// (rf,gf,bf) = (1 - av) * (rt,gt,bt) + av * (rv,gv,bv),
// where (rf,gf,bf) is the final color, (rt,gt,bt)
// is the texture color, and (rv,gv,bv,av) is the
// vertex color.

float4 kTextureColor = tex2D(BaseSampler,kTCoord);
kPixelColor.rgb = (1.0f - kVertexColor.a)*kTextureColor.rgb +

kVertexColor.a*kVertexColor.rgb;
kPixelColor.a = 1.0f;

}

The blending uses the fog factor, stored in the alpha channel of the incoming color,
and applies a linear interpolation to the RGB channels of the incoming color and of
the texture color.

Figure 20.29 shows screen captures from the sample application. Some artifacts
are noticeable on the distant mountains. This is due to the coarse-level tessellation of
the height field. You can always switch to per-pixel fog, but this can be very expensive

(a) (b)

Figure 20.29 (a) The height field rendered with volumetric fog. (b) The height field rendered
without volumetric fog.
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if you use function calls in the pixel program. For finer control using per-pixel fog,
consider using a texture approach.

20.15 Skinning

I had discussed skin-and-bones animation in Section 5.4. The computation of the
world coordinates for the vertex positions is handled by the SkinController class, all
done on the CPU. The GPU can also handle skin-and-bones animation.

The sample application Skinning illustrates skinning with four matrices. The
vertex program is

void v_Skinning
(

in float4 kModelPosition : POSITION,
in float3 kModelColor : COLOR,
in float4 kWeight : TEXCOORD0,
out float4 kClipPosition : POSITION,
out float3 kVertexColor : COLOR,
uniform float4x4 WVPMatrix,
uniform float4x4 SkinningMatrix0,
uniform float4x4 SkinningMatrix1,
uniform float4x4 SkinningMatrix2,
uniform float4x4 SkinningMatrix3)

{
// Calculate the position by adding together a convex combination of
// transformed positions.
float4 kSkinPos0 = mul(kModelPosition,SkinningMatrix0)*kWeight.x;
float4 kSkinPos1 = mul(kModelPosition,SkinningMatrix1)*kWeight.y;
float4 kSkinPos2 = mul(kModelPosition,SkinningMatrix2)*kWeight.z;
float4 kSkinPos3 = mul(kModelPosition,SkinningMatrix3)*kWeight.w;
float4 kSkinPosition = kSkinPos0 + kSkinPos1 + kSkinPos2 + kSkinPos3;

// Transform the position from model space to clip space.
kClipPosition = mul(kSkinPosition,WVPMatrix);

// Pass through the color.
kVertexColor = kModelColor;

}

This is just one way to do skinning in a shader—by passing in four (or more)
skinning matrices to transform the vertices. Another way is to pass in an arbitrary
number of skinning matrices as constants, and then use the texture coordinates as
indices into the global array of constants to select the correct skinning matrix. If you
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(a) (b)

Figure 20.30 Two screen shots from the skinning application. The bones are randomly generated
to cause the object to continuously deform. The sequence of deformations is (a) from
left to right, then (b) from top to bottom.

only have a small number of skinning matrices, the method shown here is the easiest
way to handle skinning.

In this simple application, the vertices are assigned only vertex colors. Figure
20.30 shows a few screen captures from the application.

20.16 Iridescence

Another optical effect related to reflection and refraction at the surface between
two media, iridescence is caused by interference when light is partially transmitted
through the surface and partially reflected by the surface. The classical occurrence
of iridescence is with soap bubbles obtained by dipping a circular wire into a soapy
solution. When the wire is removed from the solution, bands of color will appear on
the soap film. The physical mechanism is a bit complex, the interference caused by
some of the light waves being reflected out of phase and interacting with other light
waves in phase. The typical hack by computer graphics programmers is to simulate
the effects with view-dependent coloring.

The Iridescence shader calculates a per-pixel viewing direction and normal vec-
tor. In the pixel shader, a dot product of the viewing direction and normal is com-
puted and used as an input to a 1D gradient texture lookup. When viewed straight
on, the gradient texture has a green tint. When viewed at an angle, the tint is blue.
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The lookup texture color is blended with the original texture and produces an irides-
cent sheen.

The vertex program is

void v_Iridescence
(

in float4 kModelPosition : POSITION,
in float3 kModelNormal : NORMAL,
in float2 kInBaseTCoord : TEXCOORD0,
out float4 kClipPosition : POSITION,
out float2 kOutBaseTCoord : TEXCOORD0,
out float fOutInterpolateFactor : TEXCOORD1,
out float3 kWorldNormal : TEXCOORD2,
out float3 kEyeDirection : TEXCOORD3,
uniform float4x4 WVPMatrix,
uniform float4x4 WMatrix,
uniform float3 CameraWorldPosition,
uniform float InterpolateFactor)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Transform the position from model space to world space.
float3 kWorldPosition = mul(kModelPosition,WMatrix).xyz;

// Transform the normal from model space to world space.
// In case the model-to-world matrix has nonunit scales,
// the resulting vector must be normalized. Map the
// vector to [0,1]^3.
kWorldNormal = MapToUnit(normalize(mul(kModelNormal,

(float3x3)WMatrix)));

// Calculate the eye direction. Map the vector to [0,1]^3.
kEyeDirection = MapToUnit(

normalize(kWorldPosition-CameraWorldPosition));

// Pass through the base texture coordinate.
kOutBaseTCoord = kInBaseTCoord;

// Pass through the interpolation factor.
fOutInterpolateFactor = InterpolateFactor;

}
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The object to which the shader is attached has a 2D base texture. The texture
colors are blended with the 1D gradient mentioned previously. The blending uses
linear interpolation with InterpolateFactor used for the weights. The application
can modify this to see what effect it has.

The pixel program is

void p_Iridescence
(

in float2 kBaseTCoord : TEXCOORD0,
in float fInterpolateFactor : TEXCOORD1,
in float3 kWorldNormal : TEXCOORD2,
in float3 kEyeDirection : TEXCOORD3,
out float4 kPixelColor : COLOR,
uniform sampler2D BaseSampler,
uniform sampler1D GradientSampler)

{
// Map the vectors to [-1,1]^3.
kWorldNormal = MapFromUnit(kWorldNormal);
kEyeDirection = MapFromUnit(kEyeDirection);

// Calculate a Fresnel factor for a view-dependent lookup
// into a gradient texture. A different color/saturation
// occurs depending on the angle used for viewing.
float fFresnel = 1 + dot(kWorldNormal,kEyeDirection);
fFresnel = fFresnel*fFresnel;

float3 kBaseColor = tex2D(BaseSampler,kBaseTCoord).xyz;

// The small perturbation of the Fresnel factor eliminates
// some spotting where values are nearly zero.
float fGradientTCoord = saturate(fFresnel + 1.0f/256.0f);
float3 kGradientColor = tex1D(GradientSampler,fGradientTCoord).xyz;

// Blend the colors for the pixel color.
kPixelColor.rgb = lerp(kBaseColor,kGradientColor,

fInterpolateFactor);
kPixelColor.a = 1.0f;

}

Figure 20.31 shows some screen shots from the sample application Irides-
cence. The leaf texture image is available from the Cg texture library at http://oss.ckk
.chalmers.se/textures/. The upper-left quadrants of both images show the torii with no
iridescence. The interpolation factor used to control the iridescence is set to zero in
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(a)

(b)

Figure 20.31 Screen shots from the iridescence shader application. The two sets of images
show a textured torus in two different orientations and with various amounts of
interpolation to produce the iridescent sheen.

the application. The upper-right quadrants show the torii using an interpolation fac-
tor of 0.3. The lower-left quadrants use an interpolation factor of 0.5, the renderings
having good quality texture detail and iridescence. The lower-right quadrants use an
interpolation factor of 0.7. The iridescence is stronger but at the cost of quality in the
texture detail.
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20.17 Water Effects

A shader program that is more complex than the previously mentioned ones shows
a rippling ocean water effect with large waves and small bump-mapped ripples.
This shader is built using ideas from the book [Eng02], in particular the arti-
cle, “Rendering Ocean Water,” by John Isidoro, Alex Vlachos, and Chris Bren-
nan. The sky texture is edited from Jeremy Engleman’s page of public textures
http://art.net/~jeremy/photo/public_texture/ . The plasma height map was made with
the GNU Image Manipulation Program (GIMP), using the render sky plasma2 ef-
fect with the “tile horizontally” and “tile vertically” options enabled. The GIMP is
available at www.gimp.org .

The RipplingOcean application has both a vertex shader and a pixel shader. The
vertex shader is responsible for creating the wave displacement effect. The pixel
shader is responsible for calculating the water color, the diffuse lighting, and the
specular reflection, and for putting it all together.

The vertex shader is responsible for many aspects of the rendering. First, the
wave effect is obtained by creating a surface that is the sum of four sinusoidal waves,
each propagating in the 2D tangent space of the surface. The waves have a specific
height along the normal direction, as well as a speed, direction, and offset in that
direction. Using only one or two sinusoidal components give the water an unrealistic
appearance. Four sinusoidal waves gives it a very undulating effect. You can easily add
another four waves if you want yet more control over fine-scale variations.

Second, the vertex shader also calculates a number of vectors that the pixel shader
uses. A new tangent vector, normal vector, and binormal vector are computed, all
based on the cosines of the wave. These vectors are used by the pixel shader to gen-
erate a coordinate frame at each pixel. The vertex shader also calculates a view vector
for the pixel shader. Finally, it creates two texture coordinates. These coordinates vary
with different wave speeds, with one coordinate inverted relative to the other, so that
the two image textures are never aligned, a condition that leads to an unnatural ren-
dering.

The pixel shader first samples the plasma height map, which has been converted
into a normal map, with both texture coordinates. The resulting bump maps are
averaged together to form a new normal vector for the current pixel. Using the
normal, tangent, and binormal vectors, the bump map value is transformed into
world space. This value becomes the new normal for the pixel, thereby causing the
ripple effect.

The water color is calculated by computing the dot product of the originally
calculated normal vector and the view direction and using it as an index into a lookup
table for a gradient. When the view direction is nearly perpendicular to the water
surface, the water has a green tint. When the view direction is nearly parallel, for
example, when looking at the water in the distance, the water has a blue tint. The
originally calculated normals are used rather than the new normals, because the latter
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(a) (b)

Figure 20.32 Two screen shots from the rippling ocean application. The images were captured at
two different times in the simulation.

vector field is too high-frequency for the colors to look realistic. Because of the bump-
mapping, blue and green patches appear to be equally distributed over the entire
water surface.

The diffuse color is calculated as a dot product of the normal with a directional
light. A specular reflection is also calculated. The view direction is reflected through
the new normal and a color is looked up from the background image. The magnitude
of this color is squared to emphasize the bright parts and then multiplied by the
background color. The resulting specular color is multiplied by a Fresnel factor as
a dot product of the view direction and the normal. The visual effect is that the
water has a large reflectance when the view direction is nearly perpendicular to the
surface normal. The reflectance is small when the view direction is nearly parallel to
the surface normal. All calculated colors are then combined to obtain the final water
color.

Figure 20.32 shows some screen shots from the RipplingOcean application. The
RipplingOcean shader required many tweaks to make the water look realistic. The
most important contributor to the realism is the specular reflection. Without it, the
shadowing from the bump-mapping looks very strange. In addition to the specular
reflection, offsetting the amount of shadowing from the bump-mapping required
that a certain amount of ambience be added to the diffuse color term. Adjusting the
ambient color gives the water an appearance anywhere from that seen at sunset to
full noon on a clear day. The application has various controls to adjust at run time,
including adjusting the wave height, the wave speed, the ripple frequency, the ripple
texture coordinate repeat factor, and the addition of ambient lighting.



A p p e n d i x

Creating a Shader in
Wild Magic

There are two basic ways to create a shader effect in Wild Magic version 4. The first
method is classless in that you assemble all the components within your application
code and attach the effect to the geometric primitive of interest. The second method
involves creating a new class, either derived from ShaderEffect for a local efffect or
derived from Effect for a global effect that requires its own drawing function.

The sections in this appendix illustrate the two methods for a particular effect.
The sample application is located in

GeometricTools/WildMagic4/SampleGraphics/BlendedTerrain

and contains a height field representing a small piece of terrain. The terrain will
receive a blend of two 2D textures, one representing grass and the other representing
stone. The blending factor will be proportional to the height. The smaller the height,
the more grass will appear in the blend. The larger the height, the more stone will
appear in the blend. Rather than rely on the height values at the vertices, a 1D
texture is used to represent the height. This gives you some additional control over
the blending factor via the 1D texture’s image values instead of relying solely on
vertex height. Moreover, the blending factors allow for a nonlinear adjustment to help
control how much grass and how much stone are blended together.

A cloud layer will cast cloud shadows on the terrain, but the clouds themselves
are not rendered geometry. A sky dome is used for rendering the sky. The clouds
are represented by a 2D texture. This texture will be orthogonally projected onto
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the terrain. However, the cloud shadows will move based on a direction of motion
specified by the application.

A.1 Shader Programs for an Illustrative
Application

The Cg vertex program is

void v_BlendedTerrain
(

in float4 kModelPosition : POSITION,
in float2 kInGroundTCoord : TEXCOORD0,
in float kInBlendTCoord : TEXCOORD1,
in float2 kInCloudTCoord : TEXCOORD2,
out float4 kClipPosition : POSITION,
out float2 kOutGroundTCoord : TEXCOORD0,
out float kOutBlendTCoord : TEXCOORD1,
out float2 kOutCloudTCoord : TEXCOORD2,
out float2 kOutFlowDirection : TEXCOORD3,
uniform float4x4 WVPMatrix,
uniform float2 FlowDirection)

{
// Transform the position from model space to clip space.
kClipPosition = mul(kModelPosition,WVPMatrix);

// Pass through the texture coordinates.
kOutGroundTCoord = kInGroundTCoord;
kOutBlendTCoord = kInBlendTCoord;
kOutCloudTCoord = kInCloudTCoord;

// Pass through the flow direction, to be used as an offset
// in the pixel program.
kOutFlowDirection = FlowDirection;

}

The Cg pixel program is

void p_BlendedTerrain
(

in float2 kGroundTCoord : TEXCOORD0,
in float kBlendTCoord : TEXCOORD1,
in float2 kCloudTCoord : TEXCOORD2,
in float2 kFlowDirection : TEXCOORD3,
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out float4 kPixelColor : COLOR,
uniform float PowerFactor,
uniform sampler2D GrassSampler,
uniform sampler2D StoneSampler,
uniform sampler1D BlendSampler,
uniform sampler2D CloudSampler)

{
float4 kGrassColor = tex2D(GrassSampler,kGroundTCoord);
float4 kStoneColor = tex2D(StoneSampler,kGroundTCoord);
float4 kBlendColor = tex1D(BlendSampler,kBlendTCoord);

float2 kOffsetCloudTCoord = kCloudTCoord + kFlowDirection;
float4 kCloudColor = tex2D(CloudSampler,kOffsetCloudTCoord);

float fStoneWeight = pow(kBlendColor.r,PowerFactor);
float fGrassWeight = 1.0f - fStoneWeight;
kPixelColor = kCloudColor*(fGrassWeight*kGrassColor +

fStoneWeight*kStoneColor);
}

The Cg programs can be compiled using NVIDIA’s cgc command-line compiler.
The batch files in the GeometricTools/WildMagic4/Bin directory may be used by
executing them in the directory containing the cg file.

GLVProgram BlendedTerrain BlendedTerrain
GLPProgram BlendedTerrain BlendedTerrain
DXVProgram BlendedTerrain BlendedTerrain
DXPProgram BlendedTerrain BlendedTerrain

The prefix GL is for OpenGL and the prefix DX is for DirectX. The output files are

v_BlendedTerrain.ogl.wmsp
p_BlendedTerrain.ogl.wmsp
v_BlendedTerrain.dx9.wmsp
p_BlendedTerrain.dx9.wmsp

respectively.
The “compiled” shader programs for the software renderer must be (for now)

manually written. It is simple enough to write these based on the Cg code itself.
I copy the dx9.wmsp files and change the extensions on the copies to be sft.wmsp.
I then format the comments in the first part of the files to conform to what the
Program parser expects. Look at other samples to see what this format is; for example,
look at the Iridescence software shader programs. The vertex program is in file
v_BlendedTerrain.sft.wmsp:
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// software vertex shader generated by Wild Magic
//
// var float4 kModelPosition $vin.POSITION
// var float2 kInGroundTCoord $vin.TEXCOORD0
// var float kInBlendTCoord $vin.TEXCOORD1
// var float2 kInCloudTCoord $vin.TEXCOORD2
// var float4 kClipPosition $vout.POSITION
// var float2 kOutGroundTCoord $vout.TEXCOORD0
// var float kOutBlendTCoord $vout.TEXCOORD1
// var float2 kOutCloudTCoord $vout.TEXCOORD2
// var float2 kOutFlowDirection $vout.TEXCOORD3
// var float4x4 WVPMatrix c[0]
// var float2 FlowDirection c[4]

#include "Wm4SoftRenderer.h"
#include "Wm4Matrix4.h"
#include "Wm4Vector3.h"

namespace Wm4
{

void v_BlendedTerrain (const float* afRegister, const float* afInVertex,
float* afOutVertex)

{
// Get the register items.
const Matrix4f& rkWVPMatrix = *(const Matrix4f*)&afRegister[0];
const Vector2f& rkFlowDirection = *(const Vector2f*)&afRegister[16];

// Get the input items.
Vector4f kModelPosition(afInVertex[0],afInVertex[1],afInVertex[2],1.0f);
const Vector2f& rkInGroundTCoord = *(const Vector2f*)&afInVertex[3];
float fInBlendTCoord = afInVertex[5];
const Vector2f& rkInCloudTCoord = *(const Vector2f*)&afInVertex[6];

// Access the output items.
Vector4f& rkClipPosition = *(Vector4f*)&afOutVertex[0];
Vector2f& rkOutGroundTCoord = *(Vector2f*)&afOutVertex[4];
float& rfOutBlendTCoord = afOutVertex[6];
Vector2f& rkOutCloudTCoord = *(Vector2f*)&afOutVertex[7];
Vector2f& rkOutFlowDirection = *(Vector2f*)&afOutVertex[9];

// *** program ***
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// Transform the position from model space to clip space.
rkClipPosition = kModelPosition*rkWVPMatrix;

// Pass through the texture coordinates.
rkOutGroundTCoord = rkInGroundTCoord;
rfOutBlendTCoord = fInBlendTCoord;
rkOutCloudTCoord = rkInCloudTCoord;

// Pass through the flow direction, to be used as an offset
// in the pixel program.
rkOutFlowDirection = rkFlowDirection;

}

WM4_IMPLEMENT_VPROGRAM(BlendedTerrain);
WM4_REGISTER_VPROGRAM(BlendedTerrain);
}

The majority of the work is converting the Cg code to C++ code. The register
constants are set up by accessing the input array afRegister. The indices into this
array are multiples of 4 since each register is a 4-float quantity. The input FlowDirec-
tion is a 2-float quantity, so only the first two float values of the 4-float register are
used.

The macros used at the end of the code block are necessary for the vertex pro-
gram to be registered with the software renderer. The registration guarantees that the
software renderer can locate the vertex program during application execution.

The pixel program is in file p_BlendedTerrain.sft.wmsp:

// software pixel shader generated by Wild Magic
//
// var float2 kGroundTCoord $vin.TEXCOORD0
// var float kBlendTCoord $vin.TEXCOORD1
// var float2 kCloudTCoord $vin.TEXCOORD2
// var float2 kFlowDirection $vin.TEXCOORD3
// var float4 kPixelColor $vout.COLOR
// var float PowerFactor c[1]
// var sampler2D GrassSampler texunit 0
// var sampler2D StoneSampler texunit 1
// var sampler1D BlendSampler texunit 2
// var sampler2D CloudSampler texunit 3

#include "Wm4SoftRenderer.h"
#include "Wm4ColorRGBA.h"
#include "Wm4Vector3.h"
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namespace Wm4
{

ColorRGBA p_BlendedTerrain (const float* afRegister,
SoftSampler** apkSampler, const float* afInPixel)

{
// Get register values.
float fPowerFactor = afRegister[0];

// Get samplers.
SoftSampler& rkGrassSampler = *apkSampler[0];
SoftSampler& rkStoneSampler = *apkSampler[1];
SoftSampler& rkBlendSampler = *apkSampler[2];
SoftSampler& rkCloudSampler = *apkSampler[3];

// Get input values.
const float* afGroundTCoord = &afInPixel[0];
const float* afBlendTCoord = &afInPixel[2];
const float* afCloudTCoord = &afInPixel[3];
const float* afFlowDirection = &afInPixel[5];

// *** program ***

ColorRGBA kGrassColor = rkGrassSampler(afGroundTCoord);
ColorRGBA kStoneColor = rkStoneSampler(afGroundTCoord);
ColorRGBA kBlendColor = rkBlendSampler(afBlendTCoord);

float afOffsetCloudTCoord[2] =
{

afCloudTCoord[0] + afFlowDirection[0],
afCloudTCoord[1] + afFlowDirection[1]

};
ColorRGBA kCloudColor = rkCloudSampler(afOffsetCloudTCoord);

float fStoneWeight = Mathf::Pow(kBlendColor.R(),fPowerFactor);
float fGrassWeight = 1.0f - fStoneWeight;
ColorRGBA kPixelColor = kCloudColor*(fGrassWeight*kGrassColor +

fStoneWeight*kStoneColor);

return kPixelColor;
}

WM4_IMPLEMENT_PPROGRAM(BlendedTerrain);
WM4_REGISTER_PPROGRAM(BlendedTerrain);
}
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I mentioned that I copy the dx9.wmsp file and edit the copy to produce the software
renderer’s version of the shader program. One issue to be aware of is that Direct3D
does not have a representation for a 1D texture. The line of code in the dx9.wmsp file
related to the 1D texture is the sampler declaration

//var sampler2D BlendSampler : : texunit 2 : 8 : 1

Notice that this is a sampler2D, even though the Cg program listed it as a sampler1D.
The Cg compiler converts this to a sampler2D when compiling for Direct3D. The
software renderer expects the sampler to be of the type specified by Cg, so the cor-
responding shader code is

// var sampler1D BlendSampler texunit 2

The macros used at the end of the pixel program code block are necessary for the
pixel program to be registered with the software renderer. The registration guarantees
that the software renderer can locate the pixel program during application execution.

Because of the nonstandard extensions used for the software shader programs,
you need to tell your development environment to compile these using the C++
compiler. In Microsoft’s Visual Studio, add the two files to the project. For the soft-
ware renderer build configurations, select each of the files and then launch the prop-
erties dialog. One of the options in the dialog is to specify the tool used to process the
file. Select it to be the C++ compiler.

A.2 Creating the Geometric Data

The height field is created to have an up direction of (0, 0, 1). The function creating
the height field is shown next. The terrain covers the xy-rectangle |x| ≤ e0 and |y| ≤
e1, where e0 is represented by fXExtent and e1 is represented by fYExtent. The inputs
iXSamples and iYSamples specify how many grid cells to create in the rectangle with
two triangles per cell. The heights are all set to zero initially but modified later to
nonzero values.

void BlendedTerrain::CreateHeightField ()
{

Attributes kAttr;
kAttr.SetPChannels(3); // position (x,y,z)
kAttr.SetTChannels(0,2); // grass and stone (s,t) tcoords
kAttr.SetTChannels(1,1); // blending (s) tcoord
kAttr.SetTChannels(2,2); // cloud (s,t) coords

const int iXSamples = 64, iYSamples = 64;
const float fXExtent = 8.0f, fYExtent = 8.0f;
int iVQuantity = iXSamples * iYSamples;
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int iTQuantity = 2 * (iXSamples - 1) * (iYSamples - 1);
VertexBuffer* pkVB = WM4_NEW VertexBuffer(kAttr,iVQuantity);
IndexBuffer* pkIB = WM4_NEW IndexBuffer(3*iTQuantity);

// Generate the geometry for a flat height field.
float fInv0 = 1.0f/(iXSamples - 1.0f);
float fInv1 = 1.0f/(iYSamples - 1.0f);
float fU, fV;
int i, i0, i1;
for (i1 = 0, i = 0; i1 < iYSamples; i1++)
{

fV = i1*fInv1;
Vector3f kYTmp = ((2.0f*fV - 1.0f)*fYExtent)*Vector3f::UNIT_Y;
for (i0 = 0; i0 < iXSamples; i0++)
{

fU = i0*fInv0;
Vector3f kXTmp = ((2.0f*fU - 1.0f)*fXExtent)*Vector3f::UNIT_X;
pkVB->Position3(i) = kXTmp + kYTmp;
Vector2f kTCoord(fU,fV);
pkVB->TCoord2(0,i) = kTCoord;
pkVB->TCoord1(1,i) = 0.0f;
pkVB->TCoord2(2,i) = kTCoord;
i++;

}
}

// Generate the index array for a regular grid of squares,
// each square a pair of triangles.
int* aiIndex = pkIB->GetData();
for (i1 = 0, i = 0; i1 < iYSamples - 1; i1++)
{

for (i0 = 0; i0 < iXSamples - 1; i0++)
{

int iV0 = i0 + iXSamples * i1;
int iV1 = iV0 + 1;
int iV2 = iV1 + iXSamples;
int iV3 = iV0 + iXSamples;
aiIndex[i++] = iV0;
aiIndex[i++] = iV1;
aiIndex[i++] = iV2;
aiIndex[i++] = iV0;
aiIndex[i++] = iV2;
aiIndex[i++] = iV3;

}
}
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// Set the heights based on a precomputed height field.
m_spkHeight = Image::Load("BTHeightField");
unsigned char* pucData = m_spkHeight->GetData();
for (i = 0; i < iVQuantity; i++, pucData += 3)
{

unsigned char ucValue = *pucData;
float fHeight = ((float)ucValue)/255.0f;
float fPerturb = 0.05f*Mathf::SymmetricRandom();
pkVB->Position3(i).Z() = 3.0f*fHeight + fPerturb;
pkVB->TCoord2(0,i) *= 8.0f;
pkVB->TCoord1(1,i) = fHeight;

}

m_spkHeightField = WM4_NEW TriMesh(pkVB,pkIB);
m_spkScene->AttachChild(m_spkHeightField);

}

The heights for the terrain are stored in the red channel of a gray-scale RGB image.
This image is loaded from disk and the heights are assigned accordingly. The height
image is shown in Figure A.1.

The application function CreateScene creates a scene graph with two children, the
first a sky dome that has already been created and loaded from disk and the second
the height field constructed as shown previously. The sky dome is a hemisphere and
has a texture whose image is shown in Figure A.2. The 1D height texture used for
blending grass and stone is a linear ramp in gray-scale color:

const int iHSize = 256;
unsigned char* aucData = WM4_NEW unsigned char[3*iHSize];
int i;
for (i = 0; i < iHSize; i++)
{

aucData[3 * i + 0] = i;
aucData[3 * i + 1] = i;
aucData[3 * i + 2] = i;

}
m_spkBlend = WM4_NEW Image(Image::IT_RGB888,iHSize,aucData,‘‘BTBlend’’);

A.3 A Classless Shader Effect

To create a shader effect for the terrain without writing source code for a class to
manage the effect’s data, use the following code:

VertexShader* pkVShader = WM4_NEW VertexShader("BlendedTerrain");
PixelShader* pkPShader = WM4_NEW PixelShader("BlendedTerrain");
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Figure A.1 The height field for the terrain is stored in a gray-scale RGB image.

Figure A.2 The image associated with the sky dome.
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pkPShader->SetTextureQuantity(4);
pkPShader->SetImageName(0,"BTGrass");
pkPShader->SetImageName(1,"BTStone");
pkPShader->SetImageName(2,"BTBlend");
pkPShader->SetImageName(3,"BTCloud");
pkPShader->GetTexture(0)->SetFilterType(Texture::LINEAR_LINEAR);
pkPShader->GetTexture(0)->SetWrapType(0,Texture::REPEAT);
pkPShader->GetTexture(0)->SetWrapType(1,Texture::REPEAT);
pkPShader->GetTexture(1)->SetFilterType(Texture::LINEAR_LINEAR);
pkPShader->GetTexture(1)->SetWrapType(0,Texture::REPEAT);
pkPShader->GetTexture(1)->SetWrapType(1,Texture::REPEAT);
pkPShader->GetTexture(2)->SetFilterType(Texture::LINEAR);
pkPShader->GetTexture(2)->SetWrapType(0,Texture::CLAMP_EDGE);
pkPShader->GetTexture(3)->SetFilterType(Texture::LINEAR_LINEAR);
pkPShader->GetTexture(3)->SetWrapType(0,Texture::REPEAT);
pkPShader->GetTexture(3)->SetWrapType(1,Texture::REPEAT);

ShaderEffect* pkEffect = WM4_NEW ShaderEffect(1);
pkEffect->SetVShader(0,pkVShader);
pkEffect->SetPShader(0,pkPShader);

m_pkRenderer->LoadResources(pkEffect);
Program* pkProgram = pkEffect->GetVProgram(0);
pkProgram->GetUC("FlowDirection")->SetDataSource(m_afFlowDirection);
pkProgram = pkEffect->GetPProgram(0);
pkProgram->GetUC("PowerFactor")->SetDataSource(m_afPowerFactor);

m_spkHeightField->AttachEffect(pkEffect);

The VertexShader and PixelShader objects are created. The input string is the
name used to locate the shader programs. The vertex shader is associated with
v_BlendedTerrain.*.wmsp and the pixel shader is associated with p_BlendedTerrain
.*.wmsp.

The pixel shader requires four textures. The texture images named by BTGrass,
BTStone, and BTCloud images are found on disk by the image catalog system. These
are shown in Figure A.3. The image BTBlend is already in the catalog, placed there
when the Image object m_spkBlend was created. It does not exist on disk. The filter
types and wrap types for the texture coordinates are specified for all images.

A ShaderEffect object is created. The input parameter 1 indicates that the effect
uses a single pass. The vertex and pixel shaders are then attached to the shader effect.

Both the vertex and pixel programs have inputs that are user-defined constants.
The vertex program has an input, FlowDirection, which is used to offset the cloud
texture coordinates. The input is time-varying, modified by the application code
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(a) (b) (c)

Figure A.3 (a) The grass image BTGrass.wmif. (b) The stone image BTStone.wmif. (c) The cloud
image BTCloud.wmif.

itself. The pixel program has an input, PowerFactor, which is used to adjust the
blending coefficients for the grass and stone. The application provides storage for
both user-defined constants, m_afFlowDirection and m_afPowerFactor. These are ar-
rays of four floating-point numbers each, since the shader constants are stored in
4-float registers. Only the first two components of m_afFlowDirection are used and
only the first component of m_afPowerFactor is used. Although not necessary, it is
convenient to redirect the shader program to use these storage locations rather than
the default ones created by the Program base class. The user-defined constants are
looked up by name, and the function SetDataSource is used for the redirection. In
order for this to work, it is necessary that the shader programs actually be loaded
from disk into system memory (via the shader program catalogs). It is therefore re-
quired that you force a load of the effect by calling the renderer’s LoadResources
function.

A.4 Creating a Class Derived from
ShaderEffect

The code block for a classless construction of a shader effect can be encapsulated in a
class, which in this application is named BlendedTerrainEffect. If you prefer, think
of the class as something in your own fixed-function pipeline. It must be compiled
and linked into an application to be used. The classless approach allows you to create
effects at run time, which is more flexible but requires you to make all the appropriate
function calls to set up the effect.
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The class declaration is

class BlendedTerrainEffect : public ShaderEffect
{

WM4_DECLARE_RTTI;
WM4_DECLARE_NAME_ID;
WM4_DECLARE_STREAM;

public:
BlendedTerrainEffect (const char* acGrassName,

const char* acStoneName, const char* acBlendName,
const char* acCloudName);

virtual ~BlendedTerrainEffect ();

// for the vertex program
void SetFlowDirection (const Vector2f& rkFlowDirection);
Vector2f GetFlowDirection () const;

// for the pixel program
void SetPowerFactor (float fPowerFactor);
float GetPowerFactor () const;

protected:
// streaming
BlendedTerrainEffect ();

// Set the user-defined constants to use local storage.
virtual void OnLoadPrograms (int iPass, Program* pkVProgram,

Program* pkPProgram);

// The flow direction is stored in locations 0 and 1.
// The others are unused.
float m_afFlowDirection[4];

// The power factor is stored in location 0. The
// others are unused.
float m_afPowerFactor[4];

};

The constructor accepts the string names of the four texture images to be used by
the effect. The texture setup occurs within the constructor. The shader constants are
stored as class data members. The redirection mentioned earlier occurs in the func-
tion OnLoadPrograms, which is called the first time the programs are required by the
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application. You can also make this happen with a call to the renderer’s LoadResources
function, but if you do not, the renderer’s ApplyEffect function will load the shader
programs and call OnLoadPrograms. The binding here is as late as possible—just before
the effect is used for drawing.

A.5 Dynamic Updates for the Shader
Constants

The sample application has a function, UpdateClouds, which updates the FlowDirec-
tion vertex program constant. This function is called in the idle loop. The visual
result is that the texture coordinates are translated each frame, giving the appearance
of the cloud shadows moving over the terrain.

The OnKeyDown callback allows you to press the plus (+) key and minus (−) key to
change the PowerFactor pixel program constant. The blending of the grass and stone
textures (without the cloud shadows) is

Cblend =
(

1 − hf
)

Cgrass + hf Cstone

where h ∈ [0, 1] is the red channel of the sampled 1D texture image and where f > 0
is the power factor. When f = 1, the blending uses linear interpolation.

The redirection of the storage for the shader constants allows you to change the
constants without having to worry about any details of how those constants are fed
to the shader programs.

When you run the application, the flow direction is chosen so that the clouds
move from right to left. The sky dome is rotated at a rate that makes it appear as
though its clouds are moving and are the ones casting shadows on the ground. Screen
captures are shown in Figure A.4.
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Figure A.4 Two screen captures from the BlendedTerrain sample application. The power factor
is 1/2. Notice that the cloud shadows are different in the two images.
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Index

Numbers
3D objects, 7
3D picking, 247
3-tuples, 8, 17
4-tuples, 17, 40, 129
16-byte data alignment, 17

A
Absolute dot product, 532
Abstract base class, 455–461

defined, 457
Find function, 459–461
implementation, 458–459
implementation for

estimating pseudodistance
derivative, 461

interface, 455–457
See also Classes

Abstract interfaces
bounding volume, 248–251
data association and, 248

Abstract rendering API,
175–194

buffer clearing, 178–179
camera management,

176–177
construction/destruction,

175–176
global-state management,

177–178
miscellaneous operations,

180–182
object drawing, 179–180
resource management,

182–194
text and 2D drawing, 180

Accelerated graphics port
(AGP) memory, 174, 183

use, 194
VRAM transfer speed, 174,

183
See also Memory

Acceleration function, 509,
512, 515, 519, 521

Active intervals, 466
Ada, 790
AddInitializer function, 826
Additive blending, 119
Adjacent indices, 519
AdjustVerticalDistance

function, 479, 480
Affine algebra, 15, 240
Affine transformations, 29–31

block-matrix form, 41
characterization, 43
conditions, 29
defined, 29
between points, 29–30
translation, 30
See also Transformations

Aliasing, reducing, 108
Alignment

billboard, 379
16-byte data, 17

Allocate function, 515, 877,
879, 880

Allocation
with buddy-system methods,

891–894
pseudocode, 884–886,

892–893
with segregated-storage

methods, 895
with sequential-fit methods,

882–891

speed, 882
See also Deallocation;

Memory
Alpha blending, 170

code in ApplyPixelShader,
170

defined, 117
disabled, 170
equation, 117
in pixel pipeline, 166

Alpha channels, 94
Alpha testing

applications, 121–122
defined, 120
in pixel pipeline, 166

Ambient light, 93, 95, 262, 303
global, 99
plane and sphere

illumination, 906,
907, 908, 909

shader program, 901
See also Lighting; Lights

Angular momentum, 523–524
equations of motion, 524
rigid bodies, 523
See also Linear momentum

Angular velocity, 524
Animation

controller-based, 315–351
keyframe, 317–320
skin-and-bones, 347–349

Anisotropic filtering, 114, 115
Application class, 836–839

defined, 836
interface, 836–837

Application layer, 831–872
Application class, 836–839
command line parameters,

832–836

981
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Application layer (continued)
console, 831
ConsoleApplication class,

839–842
engine management,

867–872
event handlers, 867
features, 831
idle loop, 867
initialization/termination,

831
Wild Magic, 831
window, 831
WindowApplication class,

842–849
WindowApplication3 class,

849–866
See also Object-oriented

infrastructure
Application library, 831
Application objects, 839
Application programming

interfaces (APIs), 125
abstract rendering, 175–194
conventions, 128–145
fast computations, 143–145
graphics, 125
matrix composition, 134
matrix representation and

storage, 129–133
projection matrices, 136–139
rotations, 140–143
view matrices, 134–136
window handedness,

139–140
Applications

alpha testing, 121–122
console, 839–842
picking, 478–479
types, 832
windowed, 842–849
See also specific applications

ApplyEffect function, 179, 180,
199–200, 201, 970

ApplyForward function, 240
ApplyInverse function, 240
ApplyPixelShader function, 92,

166, 167, 170
ApplyStencilCompare function,

167–168
Arc length

parameterized by, 542
reparameterization by, 541,

543–544
specifying, 543
subdivision by, 566–567

Artificial intelligence (AI)
engine, 870

Assignment operator, 805
AttachChild function, 230
AttachLight function, 265
AttachOutside function, 370
Attenuation, spot, 97–98
Attributes

comparison, 215
shader, 206
surface, 92
vertex, 92–125

Attributes class, 206
Axis-aligned bounding boxes

(AABBs)
collision culling with,

465–472
computation queries, 465
defined, 534
intersecting boxes, 472
intersecting intervals,

466–471
intersecting rectangles, 471
nonintersecting, 465
updated, 466

Axis-aligned boxes, 472
Axis-aligned ellipses

code, 86–87
decision variable, 85–86
implicit definition, 85
points to, 672–673
rasterization, 85–87

See also Ellipses
Axis-aligned rectangles, 471

B
Back-face culling, 67–70,

151–154
coordinate systems and,

67–68
default, 152
defined, 67
See also Culling

Back-facing triangles, 69
detection, 158
rasterizer test, 159
See also Triangles

Backward differences, 453–454
defined, 453
next iterate based on, 454

Banded matrix, 324
Barycentric coordinates, 534,

613
computation, 652
for intersection point, 651

BasisFunction class, 557, 582
BeginScene function, 179, 869
Best fit policy, 890
Bézier curves, 545–548

Bernstein form, 545
defined, 545
definitions, 545
degree elevation, 546
degree reduction, 546–548
derivative, 545
evaluation, 545–546
See also Curves

Bézier rectangle patches,
574–578

defined, 574–575
degree elevation, 575–576
degree reduction, 576–577
evaluation, 575

Bézier triangle patches, 578–582
defined, 578
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degree elevation, 580
degree reduction, 580–582
evaluation, 578–580

Bézout determinant, 721
Bilinear filtering, 106, 110
Bilinear interpolation, 104, 110
Billboards, 378–379

axial alignment, 379
defined, 378
screen alignment, 379

Binary buddy systems, 891
Binary space partitioning

defined, 354
nodes, 358, 364

Bisection
defined, 737
in many dimensions, 741
in one dimension, 737

Bitangents, 917
Bits, shifting, 107
BlendedTerrainEffect class,

968–970
Blending

additive, 119
alpha, 117, 170
for dark maps, 119
destination, coefficients, 119
destination, functions, 118
modes, 118–119
soft addition, 119
source, coefficients, 118
source, functions, 118

Blinn lighting, 97
Blockers, 376
Block function, 878, 879
Block-matrix form, 40–41
Blueprints, 312, 488–489

abstract graph from, 313
defined, 489
room, 484

Boost library, 801
Border colors, 103
Bottom plane, 47
Boundary class, 503, 504

Boundary polygons, 483
Bounded memory, 896
Bounding boxes

axis-aligned, 465–472
oriented, 436–443
See also Oriented bounding

boxes (OBBs)
Bounding spheres, 278
BoundingVolume class, 248, 249
Bounding volumes, 244–251

abstract interface, 248–251
collision determination, 247
culling, 245–247
default type, 247
defined, 244
merging, 251
model, 277
pairs, 251
in Spatial class, 250
3D picking, 247
vertex data, 250
world, propagation, 274
world, updating, 277

Boxes, 534–535, 617–627
axis-aligned, 472, 534
capsule pseudodistance, 464
containing points, 618–625
fitting based on mesh edges,

621–622
fitting based on mesh faces,

622–623
fitting based on mesh solid,

624
fitting points with mean and

covariance, 618–621
intersecting, 472
merging, 625–627
minimum-volume, 624–625
point in, 617–618
sphere pseudodistance, 463
See also Oriented bounding

boxes (OBBs); Oriented
boxes

Brent’s method, 732–733
bracketing, 732
defined, 732
variation, 733

Bresenham’s algorithm, 78, 82,
148

defined, 78
drawing circles and, 82
pixel sets, 159

Broad phase, collision
detection, 465

B-spline basis functions, 322
defined, 552
evaluation, 333
recursive dependencies, 326,

554
BSplineCurve function,

557–558
B-spline curves, 551–560

closed, 558–560
control points, 325
cubic, 333
defined, 321
degree 2, 338
degree 3, 333–338
encapsulation, 557
evaluation, 325–333,

553–558
evaluation speedup, 338
fitting points with, 321–324
illustrated, 559
knot vectors, 552–553
local control, 558
nonuniform, 559
open, 559
periodic, 559
uniform, 559
See also Curves

BSplineFitBasis class, 333
BSplineFit class, 333
B-spline rectangle patches,

582–583
BSplineSurface class, 582
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BspNode class, 358–359
constructors, 359
GetVisibleSet function

implementation, 360–363
BSP trees, 354–364

arc testing at nodes, 402
of children of root, 399
for computational solid

geometry operations, 357
constructed by recursive

subdivision, 397
construction, 355–357
convex region manager, 370
defined, 354
leaf nodes, 364
as partitioning of space, 355
root, 367, 398
sorting, 357
in two dimensions, 354, 355
usage, 357–364

Buddies
defined, 891
identifying, 892

Buddy system
binary, 891
defined, 891–894
methods, 891–894

Buffers
back, 179
clearing, 178–179, 868
color, 172
depth, 169–170, 178–179
displaying, 868
edge, 159–161
encapsulating, 172
frame, 172–173
front, 179
index, 222, 253
stencil, 167–168, 179
swapping, 179
vertex, 222, 282, 284

BuildCompatibleArray
function, 214

Bump maps, 914–923
defined, 914
normal map, 914–916, 917
shader programs, 919–923
square, 921
torus, 922

C
Callbacks

defined, 845
execution, 846
mouse, 864–865
OnIdle, 849, 865, 867–868
OnInitialize, 848
OnKeyDown, 871, 970
OnKeyUp, 871
OnMotion, 859, 865
OnMouseClick, 859, 865
OnPassiveMotion, 848
OnPrecreate, 846, 848
OnSpecialKeyDown, 847, 871

Cameras, 43–66
eye point, 851
incremental rotation, 855
management, 176–177
motion, 851–857
orientation, 851
origin, 43
orthographic models, 125
perspective model, 43–48
right vector, 44
translation speeds, 857
up vector, 44
view direction, 43

Camera space. See View space
Capped cones, 538
Capsules, 539, 627–630

box pseudodistance, 464
capsule pseudodistance, 462
containing points, 628–629
defined, 539
least-squares fit, 628
line intersection, 703–707

lozenge pseudodistance,
462–463

merging, 629–630
minimum of minimum-area

projected circles, 628–629
object culling by planes,

712–713
point in, 627–628
sphere pseudodistance, 462
triangle pseudodistance, 464

Carmichael and Mason bound,
739

Cartesian coordinates, 8
Cartesian space, 8, 11
Catalogs, 193–194

classes, 203
defined, 193
hash map, 203
inserting/removing items,

193–194
multiple, 194

Catmull-Rom spline, 562
Cauchy’s bound, 739
Ceilings, 483
Center-direction-radius, 532
Centered differences, 453
Cg compiler, 148, 302, 963
Cg pixel programs, 300,

958–959
Cg shader programs, 164, 212,

958–959
Cg vertex program, 300, 958
Chapter summaries, this book,

3–5
Characteristic polynomial, 722
Child nodes, 229–230, 270
Cholesky decomposition, 324
Circles

circles to, 676–679
decision variable, 82, 83
fitting to 2D points, 727–729
implementation, 83
pixel drawing decision, 82
points to, 675–676
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rasterization, 82–83
Clamped coordinates, 100–101,

102
Clamped splines, 549, 550
Clamp-to-edge mode, 103–104
Classes, 790

abstract base, 455–461
container, 801
derived, 799, 818

ClearBackBuffer function, 178
ClearBuffers function, 868
ClearStencilBuffer function,

179
ClearZBuffer function,

178–179
Clip coordinates, 55
Clip matrix, 55
Clipping, 17, 154–158

in clip space, 181
defined, 43, 66, 70
entry point, 154
plane-at-a-time, 71–74, 154
planes, 155
planes, OpenGL, 183
polygon-of-intersection,

74–77, 154
triangles, 55
triangles, by one edge of

rectangle, 157
to view frustum, 70–77

ClipPolygon function, 154–155
Clip space, 8, 52–55

clipping in, 181
defined, 55
to window space

transformation, 164
ClipToWindow function, 92
ClodMesh class, 384–385
Closed curves, 558–560
Closed polyline, 252
Closed splines, 549, 550–551
Cloud shadows, 957–958
Coefficient matrix, 642
Cofactors, 720

Coherency
render-state, 219
spatial, 218, 219
support, 219

Colliders class, 455–457, 461
Collision avoidance, 392

application support, 481
defined, 481
pathfinding, 481–506

Collision culling, 436
with axis-aligned bounding

boxes, 465–472
defined, 436
See also Culling

Collision detection, 389–506
accuracy, 449
algorithms, 389
broad phase, 465
dynamic, 455–472
moving objects, 390,

444–455
narrow phase, 465
object picking, 472–480
predictive, 449
pseudodistance, 444–445
robust, implementation, 392
speed, 449
stationary objects, 390

Collision determination, 247
Color buffers, 172
Color masking, 166, 171
Colors

border, 103
destination, 117, 170
emissive, 94
light, 264
maximum number,

renderers, 182
source, 117, 170
specular, 94
texture, 103
vertex, 92, 897–899
Wild Magic, 183

Column-major order, 131

Command class, 832–833
Command-line parameters,

processing, 832–836
Commutativity, of uniform

scale and rotation, 237
Companion matrix, 738
ComparesFavorably() function,

121
Compatibility, 784
Compilers

Cg, 148, 302, 963
scene graph, 305–313

ComputeContactInformation
function, 457

ComputeEdgeBuffers function,
91, 125, 160

ComputeInterval function, 412,
417, 419, 429

ComputeVisibleSet function,
868

Cones, 537–538
acute angle, 538
axis intersection, 716
capped, 538
double-sided, 538, 710
line intersection, 710
object culling by planes,

716–717
single-sided, 537–538, 710
vertex, 716

Configure function, 302
Conics, project to conics, 39
Conjugate gradient search,

734–735
Connector class, 503, 504
ConsoleApplication class,

839–842
deriving class, 840
interface, 839–840

Console applications, 839–842
function pointer, 840
results display, 839
setup, 839
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Constructors
BspNode class, 359
ConvexRegion class, 372
Culler class, 291
default, 204
Portal class, 372, 375
RigidBody class, 526
WindowApplication class, 844

Contact
first point, 446
first time, 446, 448
first time, computing,

448–452
last point, 446
last time, 446

Contact set
calculation support, 419
convex polygons, 418–426
convex polyhedra, 428–436

Container classes, 801
Containment methods,

609–638
boxes, 617–627
capsules, 627–630
cylinders, 634–636
ellipsoids, 636–638
lozenges, 631–633
spheres, 609–617

Continuous level of detail, 378,
380–387

algorithms, 386
recording of vertices/indices,

385–386
simplification with quadratic

error metrics, 380–385
terrain, 386–387
See also Level of detail (LOD)

Contour edges, 503
Controller-based animation,

315–351
Controller class, 225, 316, 317
Controllers, 225

index, 225
keyframe, 350

keyframe data, 309
morph, 350
pointers, 815
update function, 350
updates, 277
vertex, 225
Wild Magic support, 316
in world transformation

computation, 276
ConvertAxesToQuaternion

function, 627
Convex functions, 449
Convexity, 453
Convex objects

defined, 391
illustrated, 392
linear component

intersection, 681–684
nonintersecting, 393

ConvexPolygon class, 405
Convex polygons

with bisectors, 401
clipped, vertices, 156
clipped by edge of rectangle,

155, 156
contact set, 418–426
convex polyhedra

pseudodistance, 465
counterclockwise-ordered

vertices, 395
edge-edge contract, 406
edge-edge intersection, 417
external query, 394, 395–396
extrema, 394–404
illustrated, 396
intersecting, 406
line-segment intersection

calculation, 436
moving, testing for

intersection, 413–416
nonintersecting, 406
object culling by planes, 717
partitioning of sphere into,

398

projection interval, 394
separation of, 409, 413–418
spherical, 398, 401
stationary objects, 404–409
triangle fan, 158
vertex-edge contact, 406
vertex indices, 158
vertex-vertex contact, 406
See also Polygons

Convex polyhedra, 245
contact set, 428–436
convex polygons

pseudodistance, 465
external query, 396–401
extrema, 394–404
object culling by planes, 717
for point-in-spherical-

polygon test, 400
projection interval, 394
separation of, 409–410,

427–428
stationary objects, 409–412
See also Polyhedra

ConvexPolyhedron class, 409,
429

Convex region
drawing routine, 373
manager, 370, 373
portal update initiation, 372

ConvexRegion class, 371–372
constructor, 372
interface, 371–372

ConvexRegionManager class,
369–372

Convex sets, 450
Coordinate frames, 542
Coordinates

barycentric, 534, 613
clamped, 100–101, 102
clip, 55
integer-valued, 153
inter-valued, 153
normalized, 56, 473
repeated, 101, 102
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texture, 100–104
view, 51
window, 57, 153, 163
world, 482, 523, 860

Coordinate systems, 7, 9–10
back-face culling and, 67–68
Direct3D documentation,

10–11
elements, 9–10
left-handed, 10, 12, 13, 929
right-handed, 10, 12, 13
standard, 8, 9
vector representation, 13

CopyFrom function, 250, 251
Correctness, 784
Cosine, 756
Covariance matrix

of edge masses, 622
scaling, 623

CPUs, 126
AMD, 126, 128
Intel, 128

Cracking, 82
complicated, 598
no, 598
rectangle patch subdivision,

597–602
subdivision containing, 597

Crank-Nicholson method, 752
Create function, 248, 249
CreateNormalMap tool, 917
CreateScene function, 965
Cross products, 10–14

calculation summary, 14
Direct3D computation, 14

Cube maps, 929–932
creating, 932
defined, 929
lookup, 929
normalization, 923
sampler, 929
shader programs, 929–932

Culler class, 289, 291–293, 363
constructor, destructor, 291

culling planes in world
coordinates, 291

defined, 291
interface, 292–293
modification, 376
Spatial class interaction, 293

Culling
back-face, 67–70, 151–154
back-facing triangles, 55
bounding volumes, 245–247
collision, 436, 465–472
defined, 43, 66
exact test, 66
hierarchical, 293–296
inexact pseudocode, 245–246
inexact test, 66–67
object, 66–67
objects by planes, 710–717
occlusion, 368, 375–376
output, 297
plane-at-a-time, 245, 246
purpose, 245
sorted, 296–297
in Wild Magic, 289

Curve masses, 510–513
defined, 510
deformable, 511
illustrated, 511
See also Mass-spring systems

Curves, 541–571
bending, 541
Bézier, 545–548
B-spline, 551–560
clamped splines, 549, 550
classes, 542
closed, 558–560
closed splines, 549, 550–551
cubic polynomial, 568
curvature, 541, 542
natural splines, 549, 550
normal, 543
NURBS, 542, 560–562
object orientation, 570–571
parametric, 542

parametric subdivision,
566–570

planar, 542
reparameterization by arc

length, 541, 543–544
space, 543
surfaces built from, 548–587
tension-continuity-bias

splines, 562–566
torsion, 543

Cyclic coordinate descent
defined, 342
list manipulator with

multiple end effectors,
346–347

list manipulator with one
end effector, 342–345

numerical solution by,
342–347

rotate to line, 343
rotate to plane, 343–344
rotate to point, 343
slide to line, 245
slide to plane, 345
slide to point, 344–345
tree manipulator, 346

Cyclic redundancy check
(CRC), 881–882

Cylinders, 634–636
containing points, 634
finite, 537
height, 634
infinite, 537
input, projecting, 635
least-squares line contains

axis, 634
least-squares line move to

minimum-area center, 635
line intersection, 710
merging, 635–636
object culling by planes, 715
points in, 634
radius, 634, 635



988 Index

Cylinder surfaces, 584–585
defined, 584
generalized, 585
parameterized, 585
See also Surfaces

D
Dark maps, blending, 119
Data

derivable members, 815
functions and, 788–789
geometric, 227, 963–965
parameterized, types,

800–801
streaming of, 809

Deallocate function, 515, 880
Deallocation

memory block, 881
paired with allocation, 879
pseudocode, 886–889,

893–894
semantics, 880
speed, 882
See also Allocation; Memory

De Casteljau algorithm, 546,
575

Deformable bodies, 521–522
Degree elevation

Bézier curves, 546
Bézier rectangle patches,

575–576
Bézier triangle patches, 580

Degree reduction
Bézier curves, 546–548
Bézier rectangle patches,

576–577
Depth buffers, 169–170

clearing, 178–179
current value, 169–170
defined, 169
as read-only, 170
See also Buffers

Depth range, 47
default, modifying, 181
defined, 47

Depth test, 166
Depth textures, 946

defined, 99
as projected texture, 946
rendering, 946
sampling, 172
for shadow maps, 172

Derivative matrix, 113, 741
Derivative sequences, 738–739
Derived classes, 799, 818
Destination blending functions,

118
Destination colors, 117, 170
DetachChild function, 230
DetachOutside function, 370
Determinants

Bézout, 721
coefficient matrix, 642
round-off errors and, 643
testing, 643

Development platforms, 310
Diagonal scaling matrix, 861
Differential equations, 508,

747–754
elliptic, 753
Euler’s method, 748
hyperbolic, 752
midpoint method, 748
ordinary, 747–750
parabolic, 751–752
partial, 750–754
Runge-Kutta fourth-order

method, 748–749
Runge-Kutta with adaptive

step, 749–750
use, 747
See also Numerical methods

Diffuse coefficient, 96
Diffuse lighting, 95–96
Dijkstra’s algorithm, 492–494

defined, 493

for graphic vertices, 493
Directed acyclic graphs (DAGs),

230, 232
Direct3D, 7, 125

color data packaging, 214
conventions, 128–145
coordinate systems, 10–11
cross-product computation,

14
fast computations, 144–145
fine-grained control, 126
left-handed window

coordinates, 141
matrix composition, 134
OnLoadVProgram

implementation, 186–187
portability, 125–126
projection matrix, 136
renderer, 65, 148
rotations, 142, 143
vector/matrix conventions, 8
vector-on-left, row-major

order, 133
view matrices, 135
window handedness,

139–140
Directional lights, 303

defined, 93
nonlocal observer, 97
plane and sphere

illumination, 907,
909

shader program, 902–903
See also Lighting; Lights

Directions
Cartesian space, 8
linearly independent, 10
rotation, 21
separating, 394
shearing, 28

DirectSound, 870
DisableUserClipPlane

function, 181
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Discrete level of detail, 379–380
center, 380
defined, 378
popping effect, 380
See also Level of detail (LOD)

Discriminant, quadratic
equation, 698

Disk cache, 882
DisplayBackBuffer function,

178, 872
DisplayBuffer function, 868
Distance

far plane, 45
multiple queries, 659
near plane, 45
plane to origin, 532
squared, 639–679
See also Squared distance

Distance methods, 390,
639–679

circle to circle in 3D, 676–679
linear component to linear

component, 642–646
linear component to oriented

box, 663–667
linear component to

rectangle, 657–661
linear component to triangle,

651–657
line to line, 642–643
line to oriented box, 664–666
line to ray, 643–644
line to rectangle, 657–659
line to segment, 644
line to triangle, 651–654
oriented box to oriented box,

670–672
point to circle in 3D, 675–676
point to ellipse, 672–673
point to ellipsoid, 673–674
point to line, 640
point to linear component,

639–641
point to oriented box, 663

point to quadratic curve,
674–675

point to quadric surface,
674–675

point to ray, 640–641
point to rectangle, 655–657
point to segment, 641
point to triangle, 646–651
ray to oriented box, 666
ray to ray, 645
ray to rectangle, 659–660
ray to segment, 645
ray to triangle, 654
rectangle to oriented box,

669–670
rectangle to rectangle,

661–663
rectangle to triangle,

661–663
segment to oriented box,

666–667
segment to rectangle,

660–661
segment to segment, 645–646
segment to triangle, 654–655
triangle to oriented box,

667–668
triangle to rectangle,

661–663
triangle to triangle, 661–663

Dithering, 166
Division

deferred, 649
floating-point, 649
knots, 331
See also Subdivision

Dobkin-Kirkpatrick hierarchy,
394, 395

Do forever loop, 452
Doorway class, 503, 504
Doorways

defined, 482
room multigraphs, 482–483
waypoints, 486

See also Rooms
DoPhysical function, 869
DoPick function, 476

implementation, 477–478
in TriMesh class, 476–477

Double-sided cones, 538
defined, 538
line intersection, 710
See also Cones

DoVisual function, 869
Downsampling, 108, 109
DrawElements function, 179
DrawFrameRate function, 868
Draw function, 168, 179, 180,

268
stencil buffer and, 168
support, 194–195

Drawing
geometric primitives,

198–199
lines, 78, 82, 148
multipass, 300, 302–304
multiple-effect, 304–305
with multitextures, 300
objects, 179–180
pass, 297–305
pass index, 212
scenes, 195–197
single-effect, multipass,

302–304
single-pass, 298–302
text and, 180

DrawTriMesh function, 70, 151
back-facing triangle

detection, 158
triangle fan of convex

polygon, 158
wireframe mode and,

157–158
Dx9Renderer class, 180
Dynamic binding, 790
Dynamic collision detection,

455–472
Dynamic initialization, 825
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Dynamic lighting, 92
Dynamic multitextures,

116–117
Dynamic objects algorithm,

392
Dynamic scene graphs, 307
Dynamic typecasting

defined, 793
template functions, 796

Dynamic updates, 317
for shader constants, 970
SurfaceMesh class support,

521
See also Updates

Dynamic visibility graph,
491–492

E
Edge buffers, 159–161

algorithm, 159
maximum, 161
triangle with, 160
vertex colors, 161
See also Buffers

Edge intersections
edge-to-edge tests, 497
outer edges, locating,

498–501
rational arithmetic, 495–497

Edge rasterizers, 159
Edges

contour, 503
mesh, 621–622
outer, locating, 498–501
silhouette, 503
total mass, 622

Edge-to-edge contact, 423
Effect class, 266–268

defined, 266
interface for Spatial,

267–268
Effects, 266–268

applying, 199–201

fog, 166
global, 196, 290
local, 196, 222, 266
multipass, 188, 195
rendering, 304
single-pass, 298
texture, 304–305

Efficiency, software, 784
Eigendecomposition, 621, 781
Eigensystems, 722–724

defined, 722
extrema of constrained

quadratic forms, 723–724
extrema of quadratic forms,

722–723
Eigenvectors, 722, 724
Ellipses

axis-aligned, 85–87, 672
general, 87–89
integer coefficients, 84
mapped to ellipses, 39
pixel computations, 84
points to, 672–673
rasterization, 84–89
specifying, 84

Ellipsoids, 535–536, 636–638
containing points, 637
defined, 535
fitting points with Gaussian

distribution, 637
line intersection, 709
merging, 638
minimum-volume, 637
object culling by planes,

713–715
points, 636–637
points to, 673–674
representation, 535

EnableUserClipPlane function,
181

End effectors
defined, 339
list manipulator with,

342–346

EndScene function, 869
Engines

artificial intelligence (AI),
870

asynchronous behavior,
871–872

commercial, 128
graphics, 868–869
managing, 867–872
networking, 870
physics, 316, 507–528,

869–870
sound, 870
Wild Magic, 128

Envelopes
construction, 494–503
construction run times, 503
defined, 494
extraction, 502
illustrated, 502
performance testing,

501–503
projection graph, 494–495

Environment class, 503, 504
Environments, 482
Euler angles, 774–777
Euler’s method, 508, 748
Event handling, 845–849, 867
Events

key press, 847
mouse, 848
triggering, 870
See also Callbacks

Evolution, 1, 2–3
Exact culling test, 66
Exact interpolation, 548
ExactSphere1 function, 612,

614
ExactSphere2 function, 613,

614
ExactSphere3 function, 614
ExactSphere4 function, 614
ExcessArguments method, 834
Exponential fog, 123
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Extendability, 784
ExternalAcceleration

function, 513, 515,
519, 521

Eye point
in view coordinates, 69
view frustum and, 44

Eye space. See View space

F
Factorization, 775

physical simulations and, 870
pseudocode, 776–777

Factory function, 817
Far plane

defined, 43
distance, 45
inner-pointing, 45

Fast function evaluation,
754–757

cosine, 756
inverse square root, 754–755
inverse tangent, 756–757
sine, 755–756
square root, 754–755
tangent, 756
See also Numerical methods

FastNoIntersection function,
457

Find function, 452
FindIntersection pseudocode,

423, 424–426, 431–432
Find-intersection queries, 390,

681–684, 693–698
line-box, 693–698
line-capsule, 704
line-cylinder, 710
line-ellipsoid, 709
line-lozenge, 708–709
line-sphere, 699–700
See also Queries

FindPolygonIntersection
routine, 426

Finite cylinders, 537
Finite-difference approxima-

tion, 916
First derivative, estimating,

453–455
Fit first policy, 889
Fixed-function pipeline, 2, 173
Fixed-point iteration, 729, 731
Fixed up-vectors, 571
Flat shading, 94
Floating-point arithmetic, 238,

452
division, 649
round-off errors, 153, 495
values, 238, 452

Floating-point window
coordinates, 163

Floors, 483
Fog

density, 122
effects, 166
exponential, 123
factor, 122
linear, 123
range-based, 123
volumetric, 947–950
See also Vertex attributes

Fog generators, 947–948
FooterBlock class, 883, 892
Forward differences

defined, 453
next iterate based on, 454,

455
4-tuples, 17, 40, 129
Fractional linear transforma-

tion, 112
Frame buffers, 172–173
Frame rate

measurement, 865
measurement, resetting, 866

Frenet frames
defined, 543
orientation with, 571

Frenet-Serret equations, 543

Fresnel factor, 935
Front-facing triangles, 69,

70
Function function, 527
Functions

class-static, 812
data and, 788–789
initialization, 824
linking, 818
registration, 830
See also specific functions

G
Game consoles

memory budgets, 873–875
processing power, 874

Games, evolution, 1
Garbage collection, 895–896

implementation, 896
incremental, 896

Garland-Heckbert algorithm,
380, 381

Gaussian elimination, 720
Gaussian quadrature, 544,

746–747
defined, 746
implementation, 747
See also Integration

General ellipses
algorithm cases, 87–88
code, 89
decision variable, 88
rasterization, 87–89
subarc computation, 88
See also Ellipses

Generalized cylinder surfaces,
585

Geometric data, 227
creating, 963–965
representation, 227

Geometric level of detail
(LOD), 377
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Geometric pipeline, 58
model triangle to be sent

through, 59
transformation results

applied during, 61
Geometric primitives

collection, 195
drawing, 198–199
illustrated, 196
lights and, 199
mismatches, 215
topology, 199
Wild Magic, 195

Geometric state, 233–259
bounding volumes, 244–251
index buffers, 233
transformations, 234–244
vertex buffers, 233

Geometric-state updates,
268–280

defined, 268
illustrated, 273
See also Updates

Geometric types, 251–259
defined, 251
line segments, 254–256
particles, 258–259
points, 252–254
storage, 252
triangle meshes, 256–258

Geometry, 221–222
Geometry class, 221, 222, 226

geometric types, 251
geometric updates, 271–272
global state storage, 261
light support, 266
render-state updates,

280–281
smart pointers, 289

Geometry clipmaps, 387
GetAllObjectsByName function,

820, 821
GetAttenuation function, 904
GetChild function, 230

GetColorMask function, 181
GetCommentCharacter function,

182
GetContainingRegion function,

370
GetDirectionalLightFactors

function, 903
GetDiskUsed function, 810, 816
GetExtension function, 182,

203
GetExtremeIndex function, 419
GetGlobalState function, 178
GetIdentifier function, 185,

187
GetIndices function, 330
GetIntersection function,

433–435
GetKey function, 557
GetKnot function, 330
GetLastError function, 834
GetLight function, 178, 265
GetLinkID function, 819
GetMaxPShaderImages function,

183
GetMaxStencilIndices

function, 183
GetMaxTCoords function, 183
GetMaxUserClipPlanes

function, 183
GetMinIndex function, 328
GetName function, 820
GetObjectByID function, 821
GetObjectByName function, 820,

821
GetObjectCount function, 810
Getopt routines, 832
GetParent function, 229
GetPickRay function, 474
GetPointLightFactors

function, 904
GetPolygon function, 436
GetProjector function, 182
GetSegment function, 436
GetStateType function, 261

GetTime function, 866
GetVertex function, 405
GetVisibleSet function, 296,

360–363, 370, 375
GetWorldTriangle function, 942
GJK algorithm, 672
Global effects, 196, 290

defined, 196
derivation, 199
handling, 197
See also Local effects

GlobalState class, 259–261
Global states, 259–261

active, 198
defined, 259
effect on rendering, 261
management, 177–178
Set/Get functions, 178
stack, 283
storage, 260–261
updates, 262
See also Render states

Gloss maps, 923–926
defined, 923
shader programs, 923–926

GNU Image Manipulation
Program (GIMP), 955

Gouraud shading, 94
Gram-Schmidt orthonormal-

ization, 779–780
defined, 779
QR decomposition

equivalent, 780
Graphics drivers, 7
Graphics engine management,

868–869
Graphics processing units

(GPUs), 1, 173
Graphics renderer, 870
Graphics system, 2, 7–145
Gray-scale mapping, 915
GrowToContain function, 250,

251
Guard bytes, 881
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H
H-adjacent triangles, 604, 605,

606
Half-angle rotation, 766
Hardware rendering, 173–175
Hash maps, 803

factory, 812
registered object, 813

HeaderBlock class, 883, 892
Heat transfer, 751–752
HeightField class, 503, 504
Hierarchical culling, 293–296

entry point, 294
logic, 294–295
See also Culling

Homogeneous matrices, 40–43
defined, 40
determining, 69
operations, 42–43
projection, 55

Homogeneous points, 40–43
along a line, 42
concept, 42
defined, 40
See also Points

Homogeneous space. See Clip
space

Hooke’s law, 516
Householder transformations,

722
Hypotenuse, 603

I
Identifier names, 791, 792

capitalization, 791
encoding for, 792
underscores and, 792

Identifiers, unique, 820–821
Identity matrix, 674
Idle loop, 867
Idle processing, 849
IKController class, 522
Image-space algorithm, 375

Implicit surfaces, 574
Impostors. See Sprites
Incoming portals, 367
Incremental garbage collection,

896
Incremental update matrix, 864
IndexBuffer class, 222
Index buffers, 222

as data members, 253
defined, 222
See also Buffers

Index(es)
controllers, 225
recording, 385–386

Inertia tensor
computing, 527–528
rigid bodies, 523, 527–528
world coordinates, 523

Inexact culling test, 66–67
Infinite cylinders, 537
Infinite level of detail, 378, 387
Inheritance, 790

graph, 799
multiple, 790, 797–799
single, 793–797

Initialization
application layer, 831
dynamic, 825
function, 824
multiple, 825
pre-main, 822, 839
registered functions, 839
static data, 830

InitializeCameraMotion
function, 853

InitializeFactory function,
812

Initialize function, 826–827,
841, 842

InitializeObjectMotion
function, 857

Initial value problem, 747
Inner-pointing, 45, 47
Insertion sort, 468–469

Instances, 230
Instancing, 230, 232
Integer-valued coordinates, 153
Integration, 742–747

Gaussian quadrature, 544,
746–747

Romberg, 543–544, 742–746
See also Numerical methods

Integrity, software, 784
Interpolation

exact, 548
Hermite basis, 562
of orientation, 318
of position, 317–318
quaternions, 774
queries, 317
rotation matrices, 763
of scale, 318–320
spherical linear, 763

Intersection methods, 390,
681–717

culling objects by planes,
710–717

line and capsule, 703–708
line and cone, 710
line and cylinder, 710
line and ellipsoid, 709
line and lozenge, 708–709
line and OBB, 686–688
line and plane, 657
line and quadric surface,

709–710
line and sphere, 698–700
line and sphere-swept

volume, 703–709
linear component and

convex objects, 681–684
linear component and

oriented box, 686–698
linear component and planar

component, 684–686
linear component and

sphere, 698–703
ray and OBB, 688–691
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Intersection methods (contin-
ued)

ray and sphere, 700–701
segment and OBB, 691–693
segment and sphere, 701–703

Intersections
edge, 495–497
fast, sort-and-sweep for,

497
points, 651
self, 521

Intervals
active, 466
configurations, 445
initially overlapping, 448
initially separated, 446–448
intersecting, 466–471
moving, contact between,

446–448
moving apart, 446
moving toward each other,

447
notation, 106
overlapping, 469, 497
radius, 616
separated, 445
sorted endpoints, 466

Inverse function, 242
Inverse kinematics, 339–347

numerical solution by
cyclic coordinate descent,
342–346

numerical solution by
Jacobian methods,
341–342

numerical solution by
nonlinear optimization,
342

problem, 339, 340
variations and, 340

Inverse mapping, 38
Inverse square root, 754–755
Inverse tangent, 756–757

Inverse transformation,
241–244

computation, 241
implementation, 243–244

Iridescence, 951–954
application screenshots, 954
defined, 951
interpolation factor, 953
pixel program, 953
shader programs, 951–954
vertex program, 952

IridescenceEffect class, 212,
213

IsValidFrame function, 265
IsVisible function, 292

J
Jacobian matrix. See Derivative

matrix
Jacobian methods, numerical

solution, 341–342
Joints

parameter restriction, 346
prismatic, 340
processing order, 346
revolute, 340

K
Keyframe animation, 317–320

data use, 316
interpolation of orientation,

318
interpolation of position,

317–318
interpolation of scale,

318–320
potential problem, 316

Keyframe compression, 316,
320–339

KeyframeController class, 318
Keyframes

controller data, 309

controllers, 350
defined, 315
orientation, 320
position, 319
samples, 321
transformed values as, 321

Key presses, 847
Kinematics

defined, 339–347
forward, 339
inverse, 339–347

Knots, 322
in bracketed portion, 326
computing, 330–331
consecutive, difference, 337
distinctive, number of, 331
division, 331
nonuniform, 322
uniform, 322

Knot vectors
automatic generation, 559
control point modification

and, 560
defined, 322
nonuniform, 552, 559
open, 322, 552
periodic, 322, 552
rows, 553
types of, 552–553
uniform, 552

L
Leaf nodes, 228, 273

BSP tree, 364
render state at, 282

Leaks, memory, 876
Least-squares error function,

323
Least-squares fitting, 628,

724–732
circle to 2D points, 727–729
linear, of points, 724
linear, of points with
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orthogonal regression,
725–726

planar, of points, 726
planar, of points with

orthogonal regression,
726–727

quadratic curve to 2D points,
731

quadric surface to 3D points,
731–732

sphere to 3D points, 729–731
See also Numerical methods

Least-squares minimization,
727

Left-handed coordinate
systems, 929

defined, 10
determination, 13
for faces of cubes, 930
geometric illustration, 12
See also Coordinate systems

Left-hand rule, 10
Level class, 503, 504
Level-connector multigraphs,

483
Level of detail (LOD)

continuous, 378, 380–387
discrete, 378, 379–380
geometric, 377
infinite, 378, 387
nodes, 379

Levels
connectors, 487–488
defined, 482
moving between, 486–488
multiple connections

between, 488
sets of, 482
transporter, 488

Light class, 262–266
hierarchy, 263
interface, 264
light types support, 263

Lighting, 92–99, 261
ambient, 95
Blinn, 97
categories, 95
defined, 94
diffuse, 95–96
dynamic, 92
equation, 98–99
high dynamic range, 95
models, 95
Phong model, 96
specular, 96–97
tangent-space, 916–919
vertex shader programs, 303

Lighting application, 899, 906
Lights

ambient, 93, 262, 303, 901
colors, 264
concept support, 261–262
creating, 264
directional, 93, 97, 303,

902–903
geometric primitives and,

199
point, 93, 903–904
sources, 93–94
Spatial class, 265
spotlights, 93, 97, 264,

904–909
Wild Magic implementation,

94
Linear complementarity

problem (LCP), 527
Linear components, 529–532

convex object intersection,
681–684

defined, 529
to linear component,

642–646
to oriented box, 663–667
oriented box intersection,

686–698
planar component

intersection, 684–686

point to, 639–641
to rectangle, 657–661
spheres and, 698–703
to triangle, 651–655
See also Lines; Rays;

Segments
Linear filtering, 107
Linear fog, 123
Linear interpolation, 104, 125
Linear-linear filtering, 111, 112
Linear momentum, 522–523
Linear-nearest filtering, 111
Linear systems, 719–720
Linear transformations, 18–28

block-matrix form, 40
characterization, 43
defined, 18
examples, 18–19
form, 19
reflection, 23–24
rotation, 20–23
scaling, 24–26
shearing, 27–28
use, 19
See also Transformations

Line-box find-intersection
query, 693–698

Line loop, 252
Line-object query, 682–683
Line of anisotropy, 115
Lines

capsule intersection, 703–707
cone intersection, 710
cylinder intersection, 710
data structure, 654
defined, 529
drawing algorithm, 78, 82,

148
ellipsoid intersection, 709
homogeneous points along,

42
least-squares, 634–635, 725
to lines, 642–643
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Lines (continued)
lozenge intersection,

708–709
not parallel to capsule axis,

706–707
to oriented boxes, 664–666
orthogonal projection onto,

31–32
parallel to capsule axis,

705–706
point to, 640
project to lines, 36–38
project to points, 665–666
to rays, 643–644
to rectangles, 657–659
rotate to, 343
to segments, 644
separating, 393
slide to, 345
sphere intersection, 698–700
to triangles, 651–654
See also Linear components

Lines and OBBs, 686–688
illustrated, 687
Minkowski difference, 686

Link IDs, 817
LoadBuffer function, 214
Load function, 210, 212, 817

defined, 204
implementation, 818
parsing code, 205

LoadPrograms function, 201
Local control, 322, 558
Local effects, 266

defined, 196
lights and, 222
See also Global effects

Local heaps, 875
LookDown function, 854
LookUp function, 854
Lozenges, 631–633

capsule pseudodistance,
462–463

containing points, 631–633

defined, 539
fitting points using mean and

covariance, 631–632
line intersection, 708–709
lozenge pseudodistance, 463
medial set, 539
merging, 633
minimization method,

632–633
object culling by planes, 713
points in, 631
radius, 708
rectangle, 708
sphere pseudodistance, 462

M
Macros

RTTI support, 799
typesafety, 801

Main class, 825
Main macros, 799
Manifold meshes, 503
Manipulator

defined, 339
illustrated, 339
joints, 346
list, with multiple end

effectors, 345–346
list, with one end effector,

342–345
tree, 346

Mark-and-sweep methods, 896
Masses

accessing, 515, 519
boundary, 518
curve, 510–513
differential, 622
indexed, 518
matrix, 523
surface, 513–516
total of all edges, 622
triangle, 622, 623
volume, 516–519

MassSpringArbitrary class, 520
MassSpringCurve class, 511,

514–515
Mass-spring systems, 510–521

arbitrary configurations,
519–521

curve masses, 510–513
number of particles, 512
surface masses, 513–516
volume masses, 516–519

MassSpringVolume class,
517–518, 519

Matches function, 215
Material.cg, 899
Materials

concept support, 261–262
object, 94
shader program, 899

Matrix2 class, 130–131
Matrix3 class, 525, 777
Matrix4 class, 132
Matrix (matrices)

banded, 324
column-major order, 131
companion, 738
composition, 134
diagonal scaling, 861
identity, 674
incremental update, 864
inversion, 236, 324
mass, 523
nonuniform scaling, 235
orthographic, 138–139
orthonormal, 674
projection, 136–139, 181
reflection, 135, 181
representation, 129–133
rotation, 759–763
row-major order, 131
shear, 779
storage, 129–133
symmetric, 324
vector application, 129, 130
vector-on-left, 133
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vector-on-right, 133
view, 134–135

Matrix–vector product, 130
Medial sets

defined, 538
lozenges, 539

Memory
AGP, 174, 183, 194
allocation with buddy-

system methods, 891–894
allocation with segregated-

storage methods, 895
allocation with sequential-fit

methods, 882–891
automatic management, 790
blocks, maximum size, 881
bounded, 896
budgets for game consoles,

873–875
compaction, 882, 895–896
eternally fragmented, 882
hierarchy, 194
leak detection, 875–882
leaks, 896
management, 873–896
management concepts,

882–896
maximum, user

specification, 881
overruns, 881
reclamation, 882
speed of allocation/

deallocation, 882
statistics, 881
utilization, 882
VRAM, 174, 183

Memory blocks
defined, 882
free list, 887
power-of-two, 894
used, coalescing, 889, 890

Memory class, 876
Memory manager, 876

binary buddy method, 894

statistics, 881
MemoryManager class, 874

advantage, 875
local heaps, 875

Merging
bounding volumes, 251
boxes, 625–627
capsules, 629–630
cylinders, 635–636
ellipsoids, 638
lozenges, 633
multiple boxes, 627
spheres, 616–617

Meshes
edges, 621–622
faces, 622–623
solid, 624
triangle, 99, 256–258

Method of rotating calipers,
624

Method of separating axes, 391,
393–443

convex polygons, 407–409
convex polyhedra, 410–412
extrema of convex

polygons/polyhedra,
394–404

objects moving with constant
linear velocity, 412–436

oriented bounding boxes,
436–443

point-in-box queries, 671
stationary objects, 404–412

Microsoft Xbox 360, 1
Midpoint algorithm, 160
Midpoint distance subdivision,

567–568, 569
Midpoint line algorithm, 81–82
Midpoint method, 748
Miles Sound System, 870
Minimization, 732–736

Brent’s method, 732–733
conjugate gradient search,

734–735

methods in many
dimensions, 733–736

methods in one dimension,
732–733

Powell’s direction set
method, 735–736

steepest descent search,
733–734

See also Numerical methods
MinimizeOn function, 736
Minimum-estimate vertex, 493
MinimumSphere3 function, 613,

614
Minimum-volume boxes,

624–625
Minimum-volume ellipsoids,

637
Minimum-volume sphere,

611–615
computation, 611
three supporting points, 613
two supporting points, 613

Minkowski different
lines and OBBs, 686
rays and OBBs, 688
segments and OBBs, 691

Mipmapping, 106, 108–116
defined, 108
selection, 116
Wild Magic implementation,

116
Mirror-repeated coordinates,

101, 102
Model space, 8

defined, 48
object in, 49
points, 50

Modifiers, 226
Modular continuity, 269
Modularity, 785–787
Modules

commonality within
subgroups, 788

criteria, 785–786
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Modules (continued)
defined, 785
object-based, 789
open-closed principle, 787
related routines, 788
representation indepen-

dence, 788
reusability and, 788
variation in types, 788

MorphController class, 349, 521
Morphing

defined, 349
vertex, 316, 349–350

Morrowind, 306
Motion equations, 507
Mouse events, 848
MoveBackward function, 853
MoveCamera function, 855, 856,

868, 871
MoveDown function, 853
MoveForward function, 480, 853,

856
MoveObject function, 858
MoveScene function, 868
MoveUp function, 853
Moving objects, 390

with constant linear velocity,
412–436

finding collisions between,
444–455

GetExtremeIndex function
and, 419

Multigraphs, 482
level-connector, 483
room-doorway, 482–483

Multi-Media Extensions
(MMX), 143

Multipass drawing, 300,
302–304

code block, 302–303
ShaderEffect support, 302
single-pass, 302–304

Multipass effects, 195
Effect object and, 195

vertex attributes, 188
Multipass rendering, 906
Multiple-effect drawing,

304–305
Multiple-inheritance systems,

797–799
defined, 797
directed graph, 799
hierarchy system, 797
See also Run-time type

information (RTTI)
MultitextureEffect class, 911
Multitextures, 116–117,

911–913
added during rendering, 913
blended, 913
defined, 116
drawing with, 300
dynamic, 116–117
multiplied during rendering,

912
shader program, 911–913
static, 116
TextureEffect object and,

300
See also Textures

MyConsoleApplication class,
841

MyFunction class, 808
MyWindowApplication class,

843–844

N
Name strings, 820
Naming conventions, 791
Narrow phase, collision

detection, 465
Natural splines, 549, 550
Nearest-linear filtering, 111
Nearest-nearest filtering, 110
Nearest-neighbor filtering, 105
Near plane

defined, 43

distance, 45
See also Planes

NetImmerse, 2, 306
Networking engine, 870
Newton’s iteration scheme, 673
Newton’s method, 448, 449, 452

in many dimensions, 741
in one dimension, 737

Node-based sorting, 365–366
Node class, 221, 223–225, 806

member functions for
geometric updates, 272

objects, 309, 312
in render-state updates,

280–281
Nodes

BSP, 358, 364
child, 229–230, 270
grouping, 227
leaf, 228, 273, 282
list, transverse, 287
LOD, 379
subtree, 275
tagging, 311
top-level, 312
tree, 230

NoIntersect function, 419–421,
428, 430

Nonlinear optimization, 342
Nonuniform knots, 322
Nonuniform rational B-spline.

See NURBS curves
Nonuniform scaling, 319

curse, 778–782
defined, 25
diagonal matrix, 235
problems, 319
of sphere, 239
Wild Magic and, 234, 236
See also Scaling

Nonuniform subdivision
lengths of nonlinear terms,

596
rectangle patches, 594–596
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triangle patch subdivision,
603–607

See also Subdivision
Normalization cube map, 923
Normalization maps, 95
Normalized device coordinates

(NDCs), 56
Normalized time, 317, 318
Normalized viewpoint

coordinates, 473
Normalize function, 654
Normal maps

construction implementa-
tion, 916

defined, 914
generating, 914–916
illustrated, 917

NumericalConstant class, 207,
209

Numerical constants, 192, 207
Numerical methods, 719–757

differential equations,
747–754

eigensystems, 722–724
fast function evaluation,

754–757
integration, 742–747
least-squares fitting, 724–732
minimization, 732–736
root finding, 736–742
systems of equations,

719–722
Numerical Recipes in C, 719
NURBSCurve class, 561–562
NURBS curves, 542, 560–562

control points, 560
defined, 560
encapsulation, 561
evaluator, 561–562
flexibility, 560
general parameterization,

560–561
See also Curves

NURBS rectangle patches,
583–584

control points, 583
defined, 583

NURBSSurface class, 583–584
Nyquist frequency, 324

O
Object class, 228, 317, 802

API, 812–819
classes derived from, 810
name strings and, 820
static unsigned integer

member, 821
unique identifier support,

821
Object culling, 66–67

by planes, 710–717
capsules, 712–713
cones, 716–717
convex polygons, 717
convex polyhedra, 717
cylinders, 715–716
defined, 66, 710
ellipsoids, 713–715
exact culling test, 66
inexact culling test, 66–67
lozenges, 713
oriented boxes, 711–712
spheres, 712
as test-intersection query,

711
See also Culling

Object-oriented infrastructure,
783–872

application layer, 831–872
initialization/termination,

822–830
names, 819–820
namespaces, 790–793
naming conventions,

790–793

run-time type information,
793–799

software construction,
783–790

streaming, 808–819
style, 790–793
templates, 800–801
unique identifiers, 820–821

Object picking, 472–480
pick ray construction,

472–474
scene graph support,

475–479
Objects

application, 839
boxes, 534–535
convex, 391, 392
coordinate system, 857
culling, 245
curve mass, 511
describing, 789
drawing, 179–180
drawing algorithm, 217
dynamic, 392
finding, 789
grouping together, 224
linear component, 529–532
materials, 94
model bound association,

224
motion, 857–865
moving, 390
moving with constant linear

velocity, 412–436
orientation on curved paths,

570–571
planar component, 532–534
polygonal, 485–486
portal-system, 312
quadrics, 535–538
registered, 813
related, hierarchy, 223
render states, 219
shared, 230–233, 802–808
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Objects (continued)
sorting, 221
sphere-swept volumes,

538–539
standard, 529–539
static, 392
stationary, 390, 404–412
3D, 7
top-level, 809, 815

Object space, 48–50
algorithm, 376
defined, 48
See also Model space

ObjectSystem folder, 799
Oblique projection, 33–34
Obstacle class, 503, 504
Obstacles, 486, 503
Occluders, 376
Occlusion culling, 368, 375–376

depth buffering as, 375
dynamic, 376
occluders, 376
See also Culling

Occlusion queries, 166
Offscreen rendering, 172
OnDisableTexture function, 190
OnEnableTexture function,

189–190
OnFrameChange function, 177
OnFrustumChange function, 177
OnIdle callback, 849, 865,

867–868
loop, 872
physics engine, 869
for single-threaded

application, 867
OnInitialize function, 203
OnLoadProgram function,

210–211, 212, 213, 969
OnLoadVProgram function, 186
OnReleaseProgram function,

187, 212
OnSpecialKeyDown callback,

847, 871

OnViewportChange function,
139, 140

Open-closed principle, 226, 787
OpenGL, 7, 125

anisotropic filtering
extension, 115–116

clipping planes, 183
color data packaging, 214
conventions, 128–145
fast computations, 143–144
matrix composition, 134
OnLoadVProgram

implementation, 186
projection matrix, 136–137
renderer, 65, 148
right-handed window

coordinates, 141
rotations, 141–142
selection mechanism, 114
vector/matrix conventions, 8
vector-on-right, column-

major order, 133
view matrices, 135
window handedness, 139

Open knot vectors, 322
Optimal fit policy, 890
Order dependencies, 825
Ordinary differential equations,

747–750
Euler’s method, 748
first-order system, 747
midpoint method, 748
Runge-Kutta fourth-order

method, 748–749
Runge-Kutta with adaptive

step, 749–750
second-order system, 747
See also Differential

equations
Organization, this book, 3–5
Orientations

with Frenet frame, 571
interpolation of, 318–319
keyframes, 320

objects on curved paths,
570–571

Oriented bounding boxes
(OBBs), 244, 436–443

with center point, 437
defined, 436, 535
face normals, 437, 439
intersection testing, 437
lines and, 686–688
potential separating

directions, 440
projection intervals, 438
rays and, 688–691
segments and, 691–693
symmetry, 437, 438

Oriented boxes
linear component

intersection, 686–693
linear components to,

663–667
lines to, 664–666
object culling by planes,

711–712
to oriented boxes, 670–672
points to, 663
projection onto plane

perpendicular, 665
projection to rectangle, 665
rays to, 666
rectangles to, 669–670
segments to, 666–667
triangles to, 667–668
See also Boxes

Orthogonal frustum, 60
Orthogonal matrices, 24
Orthogonal projection

analysis, 31
onto line, 31–32
onto plane, 32–33

Orthogonal regression
linear fitting of points with,

725–726
planar fitting of points with,

726–727
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Orthographic matrix, 138–139
Outdoor environment, moving

in, 488
Outgoing portals, 367, 372
Outside region, 501
Overlapping intervals, 469
Overlapping rectangles, 471
Overshooting, 563

P
Parameterized data types. See

Templates
Parametric curves, 542
Parametric subdivision

by arc length, 566–567
by midpoint distance,

567–568
by uniform sampling, 566
for cubic curves, 568–570
curves, 566–570
rectangle patches, 587–602
surfaces, 587–607
triangle patches, 602–607
See also Subdivision

Parametric surface patch, 573
Parent-child relationship, 223
Parsers, 205
Parsing

command line, 834
shader programs, 201–213

Partial derivatives, 918, 919
Partial differential equations,

750–754
elliptic, 753
extension to higher

dimensions, 753–754
hyperbolic, 752
parabolic, 751–752
second-order, 751
use, 750
See also Differential

equations

Partial subdivision, 598–599
defined, 597
with one subdividing edge,

601
parent’s topological

constraint, 599, 600
with three subdividing edges,

599
with two adjacent

subdividing edges, 600
with two opposing

subdividing edges, 600
See also Subdivision

ParticleController class, 521
Particles

defined, 258
equation of motion, 513
with finite mass, 510
in mass-spring system, 512
as rigid bodies, 522

Particles class, 226, 258
ParticleSystem class, 509, 510,

511
Particle systems, 316, 508–510

defined, 258
physical simulation of, 508

Partitioning of st-plane
by rectangle domain, 656
by triangle domain, 647

PassThrough.cg, 898
Path controlling, 570
Pathfinding, 481–506

algorithm, 485, 486
blueprints, 488
data structures, 503–504
defined, 481
envelope construction,

494–503
environments, 482
implementation in 3D, 489
levels, 482
moving between levels,

486–488
moving between rooms, 486

moving through outdoor
environment, 488

reachability, 481
rooms, 482–486
visibility, 481
visibility graph calculation,

504–506
visibility graphs, 489–494

Paths
between adjacent rooms, 487
compound, 488
connecting rooms, 486
connecting two points, 487
destination location, 481
movement, 485
polyline, 484
shortest, 485
source location, 481

Performance
portability versus, 127–128
quaternions, 777–778
repackaging and, 310

Periodic knot vectors, 322
Perspective camera model,

43–48
PerspectiveInterpolate

function, 125
Perspective interpolation, 125
Perspective projection

conics project to conics, 39
lines project to lines, 36–38
onto plane, 34–35
properties, 35–39
triangles project to triangles,

38–39
Phong lighting model, 96
Phong shading, 94–95
Physics, 507–528
Physics engines, 316, 507

deformable bodies, 521–522
managing, 869–870
mass-spring systems,

510–521
particle systems, 508–510
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Physics engines (continued)
rigid bodies, 522–528

Picking, 472–480
applications, 478–479
defined, 472
hierarchical, 475
pick ray construction,

472–474
triangle mesh level and, 478

PickRecord class, 475–476
Pitch, 858
PixelProgram class, 205
Pixels

circle, 82
cracking, 82
pipeline operations, 166–167
selection, 78
shared, 163
span endpoints, 124
surface attributes, 92
vertex attributes, 92–125

Pixel shader programs, 91,
164–167, 299

applying, 164
calling, 164, 166
input, 165
parameters, 165
software version, 165
textures, 967
See also Shader programs

Placement new operators, 875
Planar components, 532–534

defined, 533
linear component

intersection, 684–686
rectangles, 534
triangles, 533–534

Planar curves, 542
PlanarReflectionEffect class,

935–936
Planar reflections, 935–939

defined, 935
effect, 938
handling, 935

illustrated, 939
PlanarShadowEffect class,

939–940
Planar shadows, 939–942

defined, 939
illustrated, 942
projection matrix, 942
shadow caster, 941–942
See also Shadows

Plane-at-a-time clipping,
71–74, 154

copying vertices and, 74
defined, 71
drawback, 74
pseudocode, 71
single triangle, pseudocode,

72–74
triangle splitting

configurations, 72
See also Clipping

Plane-at-a-time culling, 245,
246

Plane class, 363
Planes

clipping, 155
defined, 532
distance to origin, 532
far, 43, 45
model-space, 242
near, 43, 45
object culling by, 710–717
oblique projection onto,

33–34
origin, 532
orthogonal projection onto,

32–33
perspective projection onto,

34–35
rotate to, 343–344
slide to, 345
view, 43

Platforms, 310
PointController class, 350, 521

Pointers
controller, 815
function, 826
parent, 815
smart, 288–289, 802,

806–807
Point-in-sphere query, 609–610
Point lights

defined, 93
plane and sphere

illumination, 907, 909
shader program, 903–904
See also Lighting; Lights

Points, 9
affine transformation

between, 29–30
box containing, 618–625
in boxes, 617–618
in capsules, 627–628
capsules containing, 628–629
to circles in 3D, 675–676
collection of, 252
in cylinders, 634
cylinders containing, 634
to ellipses, 672–673
in ellipsoids, 636–637
to ellipsoids, 673–674
fitting, with B-spline curves,

321–324
fitting circles to, 727–729
fitting quadratic curve to,

731
fitting quadric surface to,

731–732
fitting spheres to, 729–730
fitting with mean an

covariance, 618–621
as 4-tuples, 40
homogeneous, 40–43
at infinity, 42
to linear components,

639–641
linear fitting, 724
linear fitting, with
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orthogonal regression,
725–726

to lines, 640
in lozenges, 631–633
model space, 50
oblique projection, 33
to oriented boxes, 663
origin, 9
orthogonal projection, 31, 32
perspective projection, 35
planar fitting, 726
planar fitting, with

orthogonal regression,
726–727

to quadratic curves, 674–675
to quadric surfaces, 674–675
to rays, 640–641
to rectangles, 655–657
rotate to, 343
to segments, 641
shearing of, 27
slide to, 344–345
sphere centered at average of,

610–611
sphere containing, 609–615
sphere containing axis-

aligned box of, 610
system, 350
to triangles, 646–651
vectors and, 15–17

Point systems, 316
Polar decomposition, 235–236,

779, 781
Polygon-of-intersection

clipping, 74–77, 154
defined, 74
implementation, 79–81
line pixel decision, 79
midpoint line algorithm,

81–82
triangle clipped against

bottom frustum plane, 75
triangle clipped against left

frustum plane, 76

triangle clipped against right
frustum plane, 76

triangle clipped against top
frustum plane, 75

triangle intersecting frustum
at multiple faces, 75

Wild Magic implementation,
77

See also Clipping
Polygons

boundary, 483
bounding, 313
edges for containment

testing, 401
inside frustum, 155
list, 357
outside frustum, 155
portal, 368
separated by edge-normal

direction, 407
spherical, 398, 399
subpolygons, 402, 403
See also Convex polygons

Polyhedra
convex, 245, 394–404,

409–410, 427–436
spherical dual, 396

Polyline class, 226
Polylines, 313

closed, 252
shared endpoints, 255

Polymorphism, 790, 793
Polynomial roots, 737–740

bounding by derivative
sequences, 738–739

bounding by Sturm
sequences, 739–740

Polynomials
characteristic, 722, 738
coefficients, 546, 578, 579
quartic, 672, 673, 721
roots, 675
Sturm, 740
systems, 720–722

Polypoint class, 226, 252, 253
Popping effect, 380
PopState function, 282
Population dynamics, 751–752
Portability, software, 784
Portal class, 296

constructor, 372, 375
interface, 371–372
objects, 312

Portals, 366–375
configuration, 368
culling code, 374
defined, 366
drawing system, 374
graph connections between

regions and, 367
incoming, 367
outgoing, 367, 372
polygons, 368
in sorting, 367
update, 372–373
Wild Magic system, 367

Positions
interpolation of, 317–318
keyframes, 319

Positive definite, 536
Positivity, 646
Post-main function, 822
Post-main termination, 825
PostMessage function, 847
Potential theory, 753
Powell’s direction set method,

735–736
defined, 735
pseudocode, 735–736

Pre-main mechanism, 822
Prismatic joint, 340
Probing, 481
Program class, 204–205

defined, 204
interface, 204–205
object, 208–209

Program text string, 207
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ProjectedTextureEffect class,
943–944

Projected textures, 943–945
defined, 99, 943
illustrated, 946
implementation, 945
See also Textures

Projection graphs, 494–495
Projection matrices, 136–139
Projection space. See Clip space
Projective geometry, 42
Projective transformations,

31–39
oblique projection onto

plane, 33–34
occurrence, 43
orthogonal projection onto

line, 31–32
orthogonal projection onto

plane, 32–33
perspective projection onto

plane, 34–35
See also Transformations

Projector sources, 182
ProjInfo class, 429
PropagateStateFromRoot

function, 282, 284, 286
Pseudodistance, 444–445

capsule and box, 464
capsule and capsule, 462
capsule and lozenge, 462–463
capsule and triangle, 464
convex polygons and convex

polyhedra, 465
derivative, estimating, 461
functions, 391, 444
lozenge and lozenge, 463
for specific pairs of object

types, 461–465
sphere and box, 463
sphere and capsule, 462
sphere and lozenge, 462
sphere and sphere, 461
sphere and triangle, 464

sphere-swept volumes,
461–463

time-varying, 450–452
PushState function, 282

Q
Quadratic curves

fitting to 2D points, 731
points to, 674–675

Quadratic equations
discriminant, 698
for root finding, 706, 707
solving two in two

unknowns, 721
Quadratic error metrics,

380–385
construction, 383
simplification, 384–385
surface attribute selection,

385
topological considerations,

383–384
Quadratic forms

constrained, extrema of,
723–724

defined, 722
extrema of, 722–723

Quadratics, 535–538
cones, 537–538
cylinders, 537
ellipsoids, 535
spheres, 535

Quadric surfaces
defined, 574
fitting to 3D points, 731–732
line intersection, 709–710
points to, 674–675

Quaternion class, 525, 777
Quaternions, 764–774

to axis-angle, 773
axis-angle to, 772
classical view, 770–772
interpolation, 774

linear algebraic view,
766–769

to matrix, 773
matrix to, 773
memory usage, 777
multiplication of, 771
representation, 771–772
unit, 772

Queries
find-intersection, 681–684,

685, 693–698
line-object, 682–683
multiple distance, 659
point-in-box, 671
ray-object, 682–683
segment-object, 683–684
test-intersection, 681,

686–693

R
Range-based fog, 123
Rasterization, 77–92, 158–159

circles, 82–83
defined, 77
ellipses, 84–89
line segments, 77–82
with top-left rule, 163
triangles, 89–92
vertex attributes, 124–125

RasterizeEdge function, 125,
164

Rasterizers, 159
RasterizeTriangle function,

91, 125, 158, 161
Rational arithmetic, 495–497
RationalArithmetic directory,

496
Ray-object query, 682–683
Rays

defined, 529
lines to, 643–644
to oriented boxes, 666
point to, 640–641
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to rays, 645
to rectangles, 659–660
to segments, 645
sphere intersection, 700–701
to triangles, 654
See also Linear components

Rays and OBBs, 688–691
illustrated, 689
Minkowski difference, 688
projections, 689
test-intersection query

implementation, 689–691
Rectangle patches

Bézier, 574–578
B-spline, 582–583
defined, 573
NURBS, 583–584

Rectangle patch subdivision,
587–602

camera model adjustments,
596–597

cracking, 597–602
nonuniform subdivision,

594–596
number of vertices, 590
parameter space, 588
recursive, 589, 594
uniform subdivision,

587–594
See also Parametric

subdivision
Rectangles, 534

axis-aligned, 471
defined, 534
intersecting, 471
linear component to,

657–661
lines to, 657–659
to oriented boxes, 669–670
overlapping, 471
points to, 655–657
rays to, 659–660
to rectangles, 661–663
rotation, 624

segments to, 660–661
to triangles, 661–663

Recursive subdivision, 570
Red Orb, 306
Reference counting, 802–808

defined, 802
smart pointers, 805–807

Reflection, 23–24
determinant value, 24
matrices, 24, 135, 181
planar, 935–939
of vector through plane, 23
See also Linear

transformations
Refraction, 932–935

angles of incidence and, 933
defined, 932
of light beam, 932
light direction, 933
observation, 934
shader programs, 934–935

Registered objects, 813
RegisterFactory function, 812
Register function, 813
Relaxation methods, 748
Renderer class, 138, 266

as abstract, 175
resource management

system, 183
screen dimensions, 474

RendererConstant class, 207,
209

Renderer constants, 191–192,
207

Renderer function, 266
Renderers, 147–216

derived-class, 182
Direct3D, 65, 148
heart of, 194–216
maximum number of colors,

182
OpenGL, 65, 148

Rendering
abstract API, 175–194

double-buffer, 178
global states effects, 261
hardware, 173–175
offscreen, 172
software, 149–173

Render-state coherency, 219
Render states, 259–268

effects, 266–268
global state, 259–261
at leaf node, 282
lights, 261–266
organization, 219

Render-state updates, 280–289
defined, 268
entry point, 285–286
interface portions for,

280–281
propagation down tree, 288
pushing/popping, 287
semantics, 284
situation illustration, 282
smart pointers, 288–289
See also Updates

Render targets, 172
Render-to-texture, 172
Reparameterization by arc

length, 541, 543–544
Repeated coordinates, 101, 102
RequestTermination function,

847
Resource management,

182–194
Renderer class, 183
system, 174

Resources
catalogs, 193–194
enabling/disabling, 189–193
loading/releasing, 183–189

RestorePostWorldTransforma-
tion function, 181

RestoreWorldTransformation
function, 181

Reusability, 784, 787–788
defined, 784
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Reusability (continued)
issues, 788
See also Software

Revolute joint, 340
Revolution surfaces, 586
Richardson extrapolation,

742–744, 745
Right direction, 8
Right-handed coordinate

systems
defined, 10
determination, 13
geometric illustration, 12
See also Coordinate systems

Right-hand rule, 10, 11
Rigid bodies, 522–528

angular momentum, 523
angular velocity, 524
constant quantities, 526
defined, 522
inertia tensor, 523
initializing, 527
linear momentum, 522–523

RigidBody class, 525–527
constructor, 526
interface, 525–526

Ripmaps, 114
RipplingOcean application, 956
Robustness, 784
Roll

controlling, 858
defined, 857–858

Romberg integration, 543–544,
742–746

code, 745–746
interval, 745
method, 744–746
Richardson extrapolation,

742–744, 745
trapezoid approximations,

744–745
trapezoid rule, 744
See also Integration

Room class, 503, 504

Room-doorway multigraphs,
482–483

Rooms
blueprint, 484
boundary polygon, 483
ceilings, 483
doorways, 482–483
floors, 483
moving between, 486
obstacles, 484, 486
structure, 483–486
walls, 483

Root finding, 736–742
bisection, 737, 741
methods in many

dimensions, 740–741
methods in one dimension,

736–740
Newton’s method, 737, 741
polynomial roots, 737–740
process, 736
See also Numerical methods

RotateTrackBall function,
861–864

Rotation, 20–23, 759–782
about coordinate axes, 21
about right vector, 852
about up vector, 852
about world right vector,

854–855
about world up vector, 854
angle, 762, 859
axis, 762, 771, 859
axis, in world coordinates,

860
axis direction, 761
clockwise, 775
commutativity, 237
coordinate axis, 774
counterclockwise, 21
determinant value, 24
direction, 21
double covering, 772
Euler angles, 774–777

graphics APIs, 140–143
half-angle, 766
incremental, calculation, 855
to line, 343
nonuniform scaling and,

778–782
object, via keyboard events,

858
performance issues, 777–778
pitch, 858
to plane, 343–344
to point, 343
product, 769–770
quaternions, 764–774
rectangles, 624
roll, 857–858
speed adjustment, 856
3D, about z-axis, 767
trackball, 859–860
transformation, 135
vector, 769
world, 861
in xz-plane, 22
yaw, 858
y-axis, 774
See also Linear

transformations
Rotation matrices, 20, 22,

759–763
axis-angle to matrix, 760–762
factorization, 775
identity, 761
interpolation, 763
matrix to axis-angle, 762–763
representation, 20, 759
rotation axis direction and,

761
skew-symmetric, 761
slerp, computing, 763
S-matrices, 23
trace, 762
world-to-world, 861
xy, 764
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Round-off errors, 483, 495
determinant and, 643
finding intersections and,

495
Row-major order, 131
Run function, 840, 842–843
Runge-Kutta fourth-order

method, 748–749
Runge-Kutta solver, 510, 521
Run-time type information

(RTTI), 176, 476, 793–799
data type, 707, 793
defined, 793
macro support, 799
multiple-inheritance

systems, 797–799
names, 814, 815
single-inheritance systems,

793–797
strings, 816

S
SamplerInformation class, 209
Save class, 815
Save function, 810
Scales, interpolation of,

318–320
Scaling, 24–26

of covariance matrix, 623
defined, 24
equation, 26
illustrated, 25
matrix representation, 24–25
nonuniform, 25, 234, 236,

319
in three dimensions, 26
uniform, 25
See also Linear

transformations
Scan line processing, 161–164

loops, 161
top-left rule and, 163

Scene graph compilers, 128,
305–313

compilation semantics,
311–313

culling of objects as, 311
Scene graph management, 7

core classes, 221–226
Wild Magic, 220

Scene graphs, 217–313
as abstract directed graph,

809
components, loading, 308
defined, 217, 305
depth-first traversal, 296
design issues, 217–233
developmental view, 307
drawing, 195–197
dynamic, 307
examples, 307–308
as expressions, 307–311
geometric primitives, 196
illustrated example, 231, 233
levels, 482
loading, 816–819
picking support, 475–479
saving, 812–816
semantics, 311
static, 307
structure, 308–309
as top-level data structure,

195
updates, 268–269

Scissor test, 166
Screen matrix, 60
SearchyByPolicy function, 889
Segment-object query, 683–684
Segments, 254–256

collection, 254
defined, 529
end points, 254
intersection calculation, 436
lines to, 644
to oriented boxes, 666–667

pixel selection based on
slope, 78

pixels forming best, 78
point to, 641
rasterization, 77–82
rays to, 645
to rectangles, 660–661
to segments, 645–646
sphere intersection, 701–703
to triangles, 654–655
See also Linear components

Segments and OBBs, 691–693
illustrated, 692
Minkowski difference, 691
projections, 692
test-intersection query

implementation, 691–693
Segregated-storage methods,

895
SelectPartitionPlane

function, 357
Self-intersections, 521
Semantics, scene graph, 311
Sentinels, 196
Separated intervals, 445
Separating axes, 393
Separating direction, 394
Separation test, 444
Sequential fit methods, 882–891
SetActiveQuantity function,

253
SetCamera function, 177
SetChild function, 230
SetColorBuffer function, 165,

170, 171
SetColorMask function, 181
SetDepthRange function, 181
SetFrustum function, 294
SetGlobalState function, 178,

198, 945
SetIndexQuantity function, 253
SetInterpolate function, 213
SetLight function, 178
SetLocal function, 270
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SetMatrix function, 239
SetName function, 820
SetPostWorldTransformation

function, 181
SetProjector function, 182
SetScale function, 239
SetSpring function, 521
SetTranslate function, 238
SetViewport function, 139, 473
SetWorldTransformation

function, 181, 199
Shader-based pipeline, 2
Shader class, 207–208

multiple instances, 208
user-defined constant

storage, 207
Shader constants, 175
ShaderEffect class, 266, 957

classes derived from, 213
multipass drawing support,

302
objects, 209, 967

Shader effect system, 2
Shader programs

ambient lights, 901
attributes, 206
bump maps, 919–923
Cg, 164, 212
“compiled,” 959
complexity, 897
constants, 191–192
constants, dynamic updates,

970
creating, in Wild Magic,

957–971
cube maps, 929–932
default, 215
directional lights, 902–903
effect, classless, 965–968
enabling, 190
gloss maps, 923–926
for illustrative application,

958–963
iridescence, 951–954

lighting equation, 98
loading, 201–213
material, 899
multitextures, 911–913
numerical constants, 207
parsing, 210–213
pixel, 164–167
point lights, 903–904
refraction, 934–935
renderer constants, 207
skinning, 950–951
special effects with, 897–956
sphere maps, 926–929
spotlights, 904–905
stitching, 174, 302, 304, 911
textures, 909–910
texture samplers, 208
user-defined constants,

207–208
validation of, 213–216
vertex, 68, 97, 149–151
vertex colors, 897–899
volumetric fog, 948–950
water effects, 955–956

Shader stitching
defined, 174, 911
with LightingEffect::

Configure, 304
with MultitextureEffect::

Configure, 302
See also Shader programs

Shading
defined, 94
flat, 94
Gouraud, 94
Phong, 94–95

Shadow maps, 945–947
defined, 945
depth texture for, 172, 946

Shadows
caster, 941
cloud, 957–958
generation, 195–196
planar, 939–942

projection matrix, 941
Shared objects, 230–233

bookkeeping, 802
reference counting and,

802–808
Shearing, 27–28

in arbitrary plane, 28
direction, 28
matrix representation, 27
of points, 27
three dimensions, 27
two dimensions, 27
See also Linear

transformations
Shear matrix, 779
Shininess, 94
Shooting methods, 748
Silhouette edges, 503
Similarity transformation, 861
Sine, 755–756
Single-effect, multipass

drawing, 302–304
Single-inheritance systems,

793–797
defined, 793
hierarchy illustration, 794
root class, 799

Single-pass drawing, 298–302
Single-sided cones, 537–538,

710
Singular value decomposition,

235, 236, 237, 779,
781–782

defined, 781
iterative approach, 782

16-byte data alignment, 17
SkinController class, 522, 950
Skinning, 316, 347–349

application screenshots, 951
defined, 347
shader programs, 950–951
skin representation, 347
support, 348
weights and offsets for, 348
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Sliding
defined, 344
to line, 345
to plane, 345
to point, 344–345

SmallTalk, 790
Smart pointers, 802

cleanup, 806
comparison, 806
copying, 288–289
destructor, 807
as function parameters, 807
Geometry class, 289
guidelines, 807
NodePtr, 806, 808
templates, 803

Soft addition, 119
SoftFrameBuffer class, 172
SoftRenderer class, 136, 138,

172
Software

compatibility, 784
construction, 783–790
correctness, 784
ease of use, 784
efficiency, 784
engineering goal, 784
evolution, 2–3
extendability, 784
integrity, 784
maintenance, 784–785
modularity, 785–787
object orientation, 789–790
portability, 784
quality, 784–785
reusability, 784, 787–788
robustness, 784
verifiability, 784

Software rendering, 149–173
alpha blending, 170
back-face culling, 151–154
clipping, 154–158
color masking, 171
depth buffering, 169–170

edge buffers, 159–161
frame buffers, 172–173
pixel shaders, 164–167
rasterizing, 158–159
scan line processing, 161–164
stencil buffering, 167–168
texture sampling, 171–172
vertex shaders, 149–151

Sony Playstation 3, 1
Sort-and-sweep algorithm, 497
Sorted culling, 296–297

portal system, 297
sorting, 296–297
See also Culling

Sorting
binary space partitioning,

354
node-based, 365–366
objects, 221
in sorted culling, 296–297
spatial, 353–376

SoundEmitter class, 870
Sound engine, 870
Sound renderer, 870
Source blending functions, 118
Source colors, 117, 170
Space curves, 543
Spaces

Cartesian, 8, 11
clip, 8, 52–55, 164, 181
defined, 8
model, 8, 48–50
view, 8, 50–52, 927
window, 8, 56–58, 164
world, 8, 48–50

Spatial class, 221, 222–223,
226, 228, 348

bounding volume storage,
250

Culler class interaction, 293
data members for geometric

updates, 268–269
hierarchical picking

subsystem, 475

light support, 265
member functions for

geometric updates, 271
in render-state updates,

280–281
world transformation, 270

Spatial coherency, 218, 219
Spatial hierarchy design,

226–230
Spatial sorting, 353–376

binary space partitioning,
354–364

node-based, 365–366
portals, 366–375

Special effects, with shaders,
897–956

Specular color, 94
Specular lighting, 96–97
Sphere maps, 926–929

defined, 926
shader programs, 926–929
texture coordinate mapping,

926
Spheres, 535, 609–617

bounding, 278
box pseudodistance, 463
capsule pseudodistance, 462
centered at average of points,

610–611
containing axis-aligned box

of points, 610
containing points, 610–615
defined, 535
fitting to 3D points, 729–731
linear component

intersection, 698–703
line intersection, 698–700
lozenge pseudodistance, 462
merging, 616–617
minimum-volume, 611–615
object culling by planes, 712
point in, 609–610
ray intersection, 700–701
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Spheres (continued)
segment intersection,

701–703
sphere pseudodistance, 461
triangle pseudodistance, 464

Sphere-swept volumes, 538–539
defined, 538
line intersection, 703–709
medial set, 838

Spherical dual
polyhedra, 396
spherical convex polygons,

401
tetrahedra, 397

Spherical linear interpolation,
763

Spherical polygons, 398, 399
Split function, 357
Splitting methods, 741
Spot attenuation, 97–98
Spot exponent, 98
Spotlights

angle, 264, 265
defined, 93
plane and sphere

illumination, 908,
909

position, unit-length cone
axis, angle, 97

shader program, 904–905
See also Lighting; Lights

Sprites, 378
Squared distance

line to line, 642–643
line to oriented box, 664–666
line to ray, 643–644
line to rectangle, 657–659
line to segment, 644
line to triangle, 651–654
minimum, 679
oriented box to oriented box,

670–672
point to circle, 675–676
point to line, 640

point to oriented box, 663
point to ray, 640–641
point to rectangle, 655–657
point to segment, 641
point to triangle, 646–651
ray to oriented box, 666
ray to ray, 645
ray to rectangle, 659–660
ray to segment, 645
ray to triangle, 654
rectangle to oriented box,

669–670
rectangle to rectangle,

661–663
rectangle to triangle,

661–663
segment to oriented box,

666–667
segment to rectangle,

660–661
segment to segment, 645–646
segment to triangle, 654–655
triangle to oriented box,

667–669
triangle to rectangle,

661–663
triangle to triangle, 661–663

Square root, 754–755
Stabbing, 481
Standard coordinate system, 8,

9
Static multitextures, 116
Static objects, 392
Static scene graphs, 307
Static typecasting, 796
Static visibility graph

defined, 489
pseudocode for computing,

490–491
vertices, 504, 505
See also Visibility graphs

Stationary objects, 390,
404–412

convex polygons, 404–409

convex polyhedra, 409–412
Steady-state heat flow, 753
Steepest descent search,

733–734
Stencil buffers, 167–168

clearing, 179
comparison function,

167–168
defined, 167
functioning, 167–168
function use, 168
modification, 168
See also Buffers

Stencil test, 166
Stream class

API, 809–812
defined, 809
interface, 809–810
object, 810

Streaming, 808–819
defined, 809
functions, 812
memory, 811–812
to memory block, 816
Object API, 812–819
Stream API, 809–812
to/from disk, 810
usage, 810–811
See also Object-oriented

infrastructure
Streaming SIMD Extensions

(SSE) Driver, 143
Stream macros, 799
Sturm sequences, 739–740
Subdivision

by arc length, 566–567
by midpoint distance,

567–568
by uniform sampling, 566
calculation in adjacent block,

601
for cubic curves, 568–570
curves, 566–570
fast, 568–570
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nonuniform, 594–596,
603–607

partial, 597, 598–599
rectangle patches, 587–602
recursive, 570
surfaces, 587–607
triangle patches, 602–607

Subpolygons, 402, 403
Subtree nodes, 275
Surface attributes, 92
Surface masses, 513–516

defined, 513
deformable, 514
illustrated, 513
See also Mass-spring systems

SurfaceMesh class, 521
Surfaces, 573–607

Bézier rectangle patches,
574–578

Bézier triangle patches,
578–582

B-spline rectangle patches,
582–583

built from curves, 584–587
cylinder, 584–585
generalized cylinder, 585
implicit, 574
NURBS rectangle patches,

583–584
parametric patch, 573
parametric subdivision,

587–607
quadratic, 574
revolution, 586
tube, 586–587

SurRender Umbra, 376
Sweep

algorithm, 466
pseudocode, 467–468

SwitchNode class, 476
Symmetric matrix, 324
Symmetric triangulation, 607
System class, 515

Systems of equations, 719–722
linear systems, 719–720
polynomial systems, 720–722
See also Numerical methods

System timer, 849

T
Tagging, nodes, 311
Tangent line, 453, 454
Tangents, 756

defined, 917
incoming, 562
outgoing, 562

Tangent-space lighting,
916–919

coordinate system, 921
defined, 916
See also Lighting

Target platforms, 310
Targets, 349
Templates, 800–801

for container classes, 801
defined, 800
library, 801
smart pointers, 803
use, 800

Temporal coherence, 469
Tension-continuity-bias

splines, 562–566
TerminateFactory function, 812
Termination

application layer, 831
post-main, 825
system, 827

Terrain, 386–387
Test function, 457
TestIntersection function,

407–409, 410–411,
422, 427–428, 430–431,
441–443

Test-intersection queries, 390,
681, 686–693

line-capsule, 703

lines and OBBs, 686–688
line-sphere, 699
ray-capsule, 703–704
rays and OBBs, 688–691
ray-sphere, 700–701
segment-capsule, 704
segments and OBBs, 691–693
segment-sphere, 701–703
See also Queries

Test method, 687
Tetrahedra

illustrated, 397
spherical dual, 397
vertices, 396

Text, 2D drawing and, 180
Texture coordinates

behavior, 106
clamped, 100, 102
clamp-to-edge mode,

103–104
color, 109
components, 100
computation, 109
defined, 99
mirror repeated, 101, 102
modes, 100–104
repeated, 101, 102
shader interpretation, 124

TextureEffect class, 298–299,
910

Texture filtering
anisotropic, 114, 115
bilinear, 106, 110
defined, 101
linear, 107
linear-linear, 111, 112
linear-nearest, 111
modes, 104–107
nearest-linear, 111
nearest-nearest, 110
nearest-neighbor, 105
trilinear, 112

Textures, 99–117
alpha values, 122
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Textures (continued)
clamped, 102
colors, 103
cube, 929
cylindrical, 101
depth, 99, 172, 946
effects, 304–305
mipmapping, 108–116
mirror repeated, 102
multitexture, 116–117,

911–913
pixel shader, 967
projected, 99, 943–945
realism, 99
repeated, 102
sampling, 107
shader programs, 909–910

Texture samplers, 165, 208
Texture sampling, 171–172

defined, 101, 171
implementation classes, 172
Wild Magic, 107, 171–172

ThreeBuffers function, 160
3D objects, 7
3D picking, 247
3-tuples, 8, 17
Top-down functional approach,

789
Top-left rule, 163
Top-level objects, 809, 815
Top plane, 47
Torsion, 543
Trackball, 859, 865

motion, 861
projection, 860
rotation, 859–860

Transformation class, 237–238,
359

Get functions, 239
member functions, 240
Set functions, 238–239

Transformations, 7, 18–43,
234–244

affine, 29–31

applied during geometric
pipeline, 61

homogeneous, 40–43
Householder, 722
inverse, 241–244
linear, 18–28
projective, 31–35
similarity, 861
Wild Magic support, 234

Translation, 19, 30
backward, 856
forward, 856
in right direction, 852
speed, 856, 857
in up direction, 852
in view direction, 851

Transporter class, 503, 504
Transporters, 488
Trapezoid rule, 744
Tree manipulator, 346
Tree structure, 230
Triangle meshes, 99, 256–258

class, 257
defined, 256–257
drawing, 151
edge collapses, 381
edge-to-edge contact, 423
particle locations, 258
picking and, 478
shared pixels, 163
vertices, 258
See also Meshes

Triangle patches
Bézier, 578–582
defined, 574

Triangle patch subdivision,
602–607

binary tree, 604
labeling, 604
nonuniform subdivision,

603–607
uniform subdivision,

602–603
See also Subdivision

Triangles, 533–534
back-facing, 69, 158
capsule pseudodistance, 464
clipped against bottom

frustum plane, 75
clipped against left frustum

plane, 76
clipped against right frustum

plane, 76
clipped against top frustum

plane, 75
clipped by one edge of

rectangle, 157
clipping, 55
culling, 55
defined, 533
drawing as white object, 89
edge buffers, 160
front-facing, 69, 70
H-adjacent, 604, 605, 606
hypotenuse, 603
in/out of frustum, 70–71
linear components to,

651–655
lines to, 651–654
mass, 622, 623
model, 59
to oriented boxes, 667–668
points to, 646–651
project to triangles, 36,

38–39
pseudocode, 89–90
rasterization, 38, 89–92
rasterization with top-left

rule, 163
rasterizer, 90–91
rays to, 654
to rectangles, 661–663
segments to, 654–655
sharing edges, 162
software-rendered image of,

62
sphere pseudodistance, 464
splitting configurations, 72
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to triangles, 661–663
vertices, 256
world, 59

Trilinear filtering, 112
Trilinear interpolation, 104
TriMesh class, 257

DoPick function, 476–477
objects, 309

Tube surfaces, 586–587
construction, 587
defined, 586–587
See also Surfaces

Tuples, 8
Cartesian, 14
3-tuples, 8, 17
4-tuples, 17, 40, 129

TurnLeft function, 854
TurnRight function, 854
TwoBuffers function, 160
Two-point boundary value

problem, 747
Typecasting

dynamic, 793, 796
static, 796

U
Underscore, 792
Undershooting, 563
Uniform knots, 322
Uniform scaling

commutativity, 237
defined, 25
inversion, 235
See also Scaling

Uniform subdivision, 566, 567
rectangle patches, 587–594
triangle patch subdivision,

602–603
See also Subdivision

Unique identifiers, 820–821
Unit-length eigenvectors, 619
UpdateBS function, 271, 278
Update function, 350, 527

UpdateGS function, 271, 274,
277, 278, 280

UpdateModeNormals function,
272

UpdateMS function, 272
UpdatePointMotion function,

350
UpdateRS function, 281, 284,

286, 303
Updates

controller, 277
dynamic, 317, 521
geometric-state, 268–280
occurrence with geometric

quantity change, 279
render-state, 280–289
scene graph, 268–289
as side effects to changes, 279
world bounding volume, 277

UpdateState function, 282
UpdateSystemMotion function,

350
UpdateWorldBound function, 272
UpdateWorldData function, 272,

275, 359
Up direction, 8
UserConstant class, 207–208,

209, 211
User-defined constants, 192,

207–208
objects, 209
shader program association,

209
User-defined maps, 375

V
Validation, of shader programs,

213–216
Vector class, 16–17
Vector2 class, 130
Vector4 class, 132
Vectors

direction, 857

fixed up, 571
inverse transformation, 241
knot, 332, 552–553, 558–559
matrix application, 129, 130
on-the-right notation, 130
perpendicular direction, 534
points and, 15–17
reflection, 928
right, 857
rotation, 759–782
squared length, 725
squares, summing, 677
storage in linear memory,

132
up, 857

Vector-valued equations, 323
Verifiability, software, 784
Vertex attributes, 92–125

colors, 92
computation, 156
defined, 92
fog, 122–123
interpolation, 123
lighting and materials, 92–99
multipass effects, 188
rasterizing, 124–125
storage, 91
textures, 99–117
transparency, opacity,

blending, 117–122
Vertex buffers, 222

functions associated with,
185

internal, 189
loading, 188
See also Buffers

Vertex.cg, 897
VertexColor3Effect class, 899
VertexColor4Effect class, 899
Vertex colors, 897–899

RGB, 898
RGBA, 898

Vertex controllers, 225
Vertex morphing, 316, 349–350
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VertexProgram class, 205
Vertex program loader, 185
Vertex shader programs, 68, 97,

249–251, 299
applying, 149
enabler, 192–193
for lighting, 303
outputs, 149–150
pass-through, 150
in shallow wrapper, 151

Vertex (vertices)
clipped convex polygon, 156
clustering, 380
color, 92, 161
convex, 499, 500
current, 500–501
decimation, 380
indices, 158
minimum-estimate, 493
outer edges, 501
of parabola, 323
recording, 385–386
skin, 348
static visibility graph, 504,

505
tetrahedra, 396
visibility graph, 489, 490, 493

Video RAM (VRAM), 174, 183
image loading to, 254
limited amount of, 353

View coordinates, 51
View direction, 8
View frustum

clipping to, 70–77
defined, 43
eye point and, 44
full viewport of, 48
3D drawing, 46

View matrices, 51–52, 134–136
View plane, 43
Viewports

defined, 43
entire, for drawing, 473
normalized coordinates, 473

on near plane, 474
settings, 473
of view frustum, 48

View space, 8, 50–52
defined, 50
normal, 927

View volume, 43
Visibility graphs, 482, 489–494

adjacency matrix, 490
construction pseudocode,

505–506
Dijkstra’s algorithm, 492–494
dynamic, 491–492
efficient calculation, 504–506
static, 489
vertex values, 493
vertices, 489, 490

VisibleObject class, 289
VisibleSet class, 289, 290
Volume masses, 516–519

defined, 516
deformable, 517
See also Mass-spring systems

Volumetric fog, 947–950
defined, 947
fog factor, 949
fog generator, 947–948
height field rendered with,

949
shader programs, 948–950

W–X
Walls, 483
Water effects, 955–956

pixel shader, 955
rippling ocean application,

956
vertex shader, 955

Wave and shock phenomena,
752

Waypoints, 486
Wedge class, 505
WglRenderer class, 176, 180

WhichSide function, 250, 292,
363

Which-side-of-plane query,
245, 250

Wild Magic
application layer, 65, 831
application types, 832
colors, 183
as commercial-quality

engine, 128
controllers support, 316
conventions, 128–145
cube-map sampler, 929
culling, 289
default bounding volume

type, 247
effect rendering, 304
engine, 128
fast computations, 144, 145
geometric primitives, 195
isotropic mipmapping

implementation, 116
lighting vertex shaders, 97,

98
lights implementation, 94
matrix composition, 134
memory manager, 876
nonuniform scaling and,

234, 236
portal system, 367
rendering layer, 174
resource management

system, 174
rotations, 141
scene graph files, 309
scene graph management,

220
shader creation in, 957–971
software renderer, 61
texture sampling, 107,

171–172
transformations, 234
vector/matrix conventions, 8
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vector-on-right, row-major
order, 133

versions, 3
view matrices, 135
window handedness, 140

WindowApplication3 class,
849–866

camera motion, 851–857
defined, 849
interface, 849–851
object motion, 857–865
performance measurements,

865–866
WindowApplication class,

842–849
constructor, 844
event callbacks, 845
event handling, 845–849
interface, 842–883
member set access, 844–845
object, 845

Window coordinates
defined, 57
floating-point, 163

Windowed applications,
842–849

Windows
handedness, 139–140
matrix, 57
width, 153

Window space, 8, 56–58
clip space to, 164
defined, 57

Wireframe mode
DrawTriMesh function,

157–158
RasterEdge function, 164
toggling to, 164

World bound, 223
World coordinates

generation, 860
inertia tensor in, 523

rotation axis, 860
system, 482

World matrix, 50
World space, 8, 48–50

defined, 48
object in, 49
problem, 48

World transformations, 223
controller in computation,

276
for DAG, 231
defined, 49
directly setting, 270
memory usage, 236
Spatial class, 270

Worst fit policy, 890

Y–Z
Yaw, 858
Z-buffer state, 282, 284
Z-test, 168
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