

Game Physics
Second Edition

This page intentionally left blank

Game Physics
Second Edition

David H. Eberly

AMSTERDAM • BOSTON •HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without permission
in writing from the publisher. Details on how to seek permission, further information about the Publisher’s
permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the
Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Eberly, David H.

Game physics / David H. Eberly. – 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-12-374903-1 (hardcover : alk. paper)

1. Computer games–Programming. 2. Physics–Computer simulation. 3. Computer graphics.
4. Three-dimensional display systems. I. Title.

QA76.76.C672E24 2010
794.8’1526–dc22

2009049828

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374903-1

For information on all Morgan Kaufmann publications
visit our Web site at www.elsevierdirect.com

Typeset by : diacriTech, India

Printed in the United States of America
10 11 12 13 10 9 8 7 6 5 4 3 2 1

Dedication

After surgery for Stage 4 gallbladder cancer, aggressive chemotherapy, and radiation
treatments, it was not clear I would ever have a chance to write the second edition of
this book. My survival is a testament to the advances that modern medicine has made.
The unselfish caregiving by my loving wife, Shelly, her support through difficult times,
and her encouragement for me to recover and continue writing are things for which
I am extremely grateful. I have finished this book and look forward to writing many
more with her at my side.

v

This page intentionally left blank

Contents

Trademarks xvii

Figures xix

Tables xxxiii

Preface to the Second Edition xxxv

Preface to the First Edition xxxvii

About the CD-ROM xli

Chapter

1 Introduction 1

1.1 A Brief History of the World 1

1.2 A Summary of the Topics 7

1.3 Examples and Exercises 12

Chapter

2 Basic Concepts from Physics 13

2.1 Rigid Body Classification 14

2.2 Rigid Body Kinematics 15

2.2.1 Single Particle 15
2.2.2 Particle Systems and Continuous Materials 27

2.3 Newton’s Laws 30

2.4 Forces 31

2.4.1 Gravitational Forces 32
2.4.2 Spring Forces 33
2.4.3 Friction and Other Dissipative Forces 34
2.4.4 Torque 36
2.4.5 Equilibrium 38

2.5 Momenta 40

2.5.1 Linear Momentum 40
2.5.2 Angular Momentum 41
2.5.3 Center of Mass 42

vii

viii Contents

2.5.4 Moments and Products of Inertia 55
2.5.5 Mass and Inertia Tensor of a Solid Polyhedron 64

2.6 Energy 77

2.6.1 Work and Kinetic Energy 78
2.6.2 Conservative Forces and Potential Energy 80

Chapter

3 Rigid Body Motion 85

3.1 Newtonian Dynamics 86

3.2 Lagrangian Dynamics 98

3.2.1 Equations of Motion for a Particle 100
3.2.2 Time-Varying Frames or Constraints 111
3.2.3 Interpretation of the Equations of Motion 114
3.2.4 Equations of Motion for a System of Particles 115
3.2.5 Equations of Motion for a Continuum of Mass 118
3.2.6 Examples with Conservative Forces 129
3.2.7 Examples with Dissipative Forces 135

3.3 Euler’s Equations of Motion 147

Chapter

4 Deformable Bodies 155

4.1 Elasticity, Stress, and Strain 156

4.2 Mass–Spring Systems 158

4.2.1 One-Dimensional Array of Masses 158
4.2.2 Two-Dimensional Array of Masses 160
4.2.3 Three-Dimensional Array of Masses 164
4.2.4 Arbitrary Configurations 165

4.3 Control Point Deformation 168

4.3.1 B-Spline Curves 168
4.3.2 NURBS Curves 177
4.3.3 B-Spline Surfaces 179
4.3.4 NURBS Surfaces 182
4.3.5 Surfaces Built from Curves 184

4.4 Free-Form Deformation 192

4.5 Implicit Surface Deformation 196

4.5.1 Level Set Extraction 199

Contents ix

4.5.2 Isocurve Extraction in 2D Images 201
4.5.3 Isosurface Extraction in 3D Images 206

Chapter

5 Fluids and Gases 213

5.1 Vector Calculus 214

5.1.1 Gradient, Directional Derivative, and Total Derivative 214
5.1.2 Vector Fields, Divergence, and Laplacian 215
5.1.3 Curl 217
5.1.4 Line Integrals 219
5.1.5 Surface Integrals and Stokes’ Theorem 219
5.1.6 Volume Integrals and the Divergence Theorem 220
5.1.7 Green’s Theorem, Laplace’s Equation, and Poisson’s Equation 221
5.1.8 Vector Field Decomposition 224

5.2 Strain and Stress 230

5.2.1 Strain Tensor 230
5.2.2 Stress Tensor 233
5.2.3 The Relationship Between Strain and Stress 236

5.3 Conservation Laws 237

5.3.1 Conservation of Mass 238
5.3.2 Conservation of Momentum 242

5.4 A Simplified Model for Fluid Flow 246

5.5 Implementing the Simplified 2D Model 247

5.5.1 The Density Equation 247
5.5.2 The Diffusion Term 249
5.5.3 The Advection Term 257
5.5.4 The Source–Sink Term 260
5.5.5 The Total Density Update 261
5.5.6 The Velocity Equations 263
5.5.7 Specialized Boundary Handling 270

5.6 Implementing the Simplified 3D Model 274

5.7 Variations of the Simplified Model 290

5.7.1 Vorticity Confinement and Vortex Particles 291
5.7.2 Separate Pressure Term 291
5.7.3 Omit Diffusion Terms 291
5.7.4 Density and Velocity Dissipation 291
5.7.5 Include Temperature 292
5.7.6 Compressible Flow 292
5.7.7 Obstacles in the Fluid Region 293

x Contents

5.7.8 Moving Boundaries and Multiple Fluids 293
5.7.9 Finding Papers on Fluid Simulation 293

Chapter

6 Physics Engines 295

6.1 The Physics Tick 297

6.2 Collision Culling 298

6.2.1 Culling with Bounding Spheres 299
6.2.2 Culling with Axis-Aligned Bounding Boxes 304
6.2.3 AABB Culling in a Single-Threaded Environment 320
6.2.4 AABB Culling Using a Separate Core of a CPU 330
6.2.5 AABB Culling Using a Specialized Processor 335

6.3 Test-Intersection Queries 349

6.3.1 Spheres 349
6.3.2 Capsules 350
6.3.3 Ellipsoids 353
6.3.4 Cylinders 376

6.4 Collision Detection with Convex Polyhedra 390

6.4.1 The Method of Separating Axes 394
6.4.2 Stationary Objects 396
6.4.3 Objects Moving with Constant Linear Velocity 421
6.4.4 Oriented Bounding Boxes 445
6.4.5 Boxes Moving with Constant Linear and Angular Velocity 453
6.4.6 GJK Algorithm 459

6.5 Unconstrained Motion 465

6.6 Acceleration-Based Constrained Motion 473
6.6.1 Collision Points 474
6.6.2 Collision Response for Colliding Contact 475
6.6.3 Collision Response for Resting Contact 498
6.6.4 An Illustrative Implementation 502
6.6.5 Lagrangian Dynamics 509

6.7 Velocity-Based Constrained Motion 512
6.7.1 Constraint on a Particle 512
6.7.2 Constraints on a Particle System 515
6.7.3 Constraint on a Rigid Body 519
6.7.4 Constraints on a Rigid Body System 522
6.7.5 Comments and Variations on the Algorithm 525

6.8 Variations 533

Contents xi

Chapter

7 Linear Algebra 539

7.1 A Review of Number Systems 539

7.1.1 The Integers 539
7.1.2 The Rational Numbers 539
7.1.3 The Real Numbers 540
7.1.4 The Complex Numbers 541
7.1.5 Fields 541

7.2 Systems of Linear Equations 542

7.2.1 A Closer Look at Two Equations in Two Unknowns 545
7.2.2 Gaussian Elimination and Elementary Row Operations 548
7.2.3 Nonsquare Systems of Equations 552
7.2.4 The Geometry of Linear Systems 552
7.2.5 Numerical Issues 556
7.2.6 Iterative Methods for Solving Linear Systems 558

7.3 Matrices 561

7.3.1 Some Special Matrices 564
7.3.2 Elementary Row Matrices 565
7.3.3 Inverse Matrices 567
7.3.4 Properties of Inverses 569
7.3.5 Construction of Inverses 570
7.3.6 LU Decomposition 572

7.4 Vector Spaces 578

7.4.1 Definition of a Vector Space 583
7.4.2 Linear Combinations, Spans, and Subspaces 588
7.4.3 Linear Independence and Bases 590
7.4.4 Inner Products, Length, Orthogonality, and Projection 595
7.4.5 Dot Product, Cross Product, and Triple Products 600
7.4.6 Orthogonal Subspaces 606
7.4.7 The Fundamental Theorem of Linear Algebra 609
7.4.8 Projection and Least Squares 614
7.4.9 Linear Transformations 617

7.5 Advanced Topics 626

7.5.1 Determinants 626
7.5.2 Eigenvalues and Eigenvectors 637
7.5.3 Eigendecomposition for Symmetric Matrices 643
7.5.4 S+N Decomposition 646
7.5.5 Applications 652

xii Contents

Chapter

8 Affine Algebra 659

8.1 Introduction 659

8.2 Coordinate Systems 663

8.3 Subspaces 665

8.4 Transformations 666

8.5 Barycentric Coordinates 667

8.5.1 Triangles 668
8.5.2 Tetrahedra 669
8.5.3 Simplices 670
8.5.4 Length, Area, Volume, and Hypervolume 671

Chapter

9 Calculus 679

9.1 Univariate Calculus 680

9.1.1 Limits 682
9.1.2 Limits of a Sequence 684
9.1.3 Continuity 685
9.1.4 Differentiation 686
9.1.5 L’Hôpital’s Rule 689
9.1.6 Integration 689

9.2 Multivariate Calculus 692

9.2.1 Limits and Continuity 692
9.2.2 Differentiation 692
9.2.3 Integration 696

9.3 Applications 698

9.3.1 Optimization 698
9.3.2 Constrained Optimization 702
9.3.3 Derivative Approximations by Finite Differences 705

Chapter

10 Quaternions 713

10.1 Rotation Matrices 713

10.2 The Classical Approach 718

10.2.1 Algebraic Operations 718
10.2.2 Relationship of Quaternions to Rotations 720

Contents xiii

10.3 A Linear Algebraic Approach 722

10.4 Interpolation of Quaternions 727

10.4.1 Spherical Linear Interpolation 727
10.4.2 Spherical Quadratic Interpolation 729

10.5 Derivatives of Time-Varying Quaternions 731

Chapter

11 Differential Equations 733

11.1 First-Order Equations 733

11.2 Existence, Uniqueness, and Continuous
Dependence 736

11.3 Second-Order Equations 738

11.4 General-Order Differential Equations 740

11.5 Systems of Linear Differential Equations 741

11.6 Equilibria and Stability 746

11.6.1 Stability for Constant-Coefficient Linear Systems 747
11.6.2 Stability for General Autonomous Systems 749

Chapter

12 Ordinary Difference Equations 753

12.1 Definitions 753

12.2 Linear Equations 756

12.2.1 First-Order Linear Equations 756
12.2.2 Second-Order Linear Equations 757

12.3 Constant Coefficient Equations 759

12.4 Systems of Equations 762

Chapter

13 Numerical Methods 765

13.1 Euler’s Method 766

13.2 Higher-Order Taylor Methods 769

13.3 Methods via an Integral Formulation 770

xiv Contents

13.4 Runge–Kutta Methods 772

13.4.1 Second-Order Methods 773
13.4.2 Third-Order Methods 775
13.4.3 Fourth-Order Method 776

13.5 Multistep Methods 777

13.6 Predictor–Corrector Methods 779

13.7 Extrapolation Methods 780

13.7.1 Richardson Extrapolation 780
13.7.2 Application to Differential Equations 781
13.7.3 Polynomial Interpolation and Extrapolation 783
13.7.4 Rational Polynomial Interpolation and Extrapolation 783
13.7.5 Modified Midpoint Method 784
13.7.6 Bulirsch–Stoer Method 785

13.8 Verlet Integration 785

13.8.1 Forces Without a Velocity Component 786
13.8.2 Forces with a Velocity Component 787
13.8.3 Simulating Drag in the System 788
13.8.4 Leapfrog Method 788
13.8.5 Velocity Verlet Method 790
13.8.6 Gear’s Fifth-Order Predictor-Corrector Method 792

13.9 Numerical Stability and Its Relationship to
Physical Stability 794

13.9.1 Stability for Single-Step Methods 795
13.9.2 Stability for Multistep Methods 797
13.9.3 Choosing a Stable Step Size 798

13.10 Stiff Equations 809

Chapter

14 Linear Complementarity and Mathematical
Programming 813

14.1 Linear Programming 814

14.1.1 A Two-Dimensional Example 814
14.1.2 Solution by Pairwise Intersections 816
14.1.3 Statement of the General Problem 818
14.1.4 The Dual Problem 825

14.2 The Linear Complementarity Problem 828

14.2.1 The Lemke Algorithm 829
14.2.2 Zero Constant Terms 834
14.2.3 The Complementary Variable Cannot Leave the Dictionary 837

Contents xv

14.3 Mathematical Programming 838

14.3.1 Karush–Kuhn–Tucker Conditions 841
14.3.2 Convex Quadratic Programming 843
14.3.3 General Duality Theory 846

14.4 Applications 847

14.4.1 Distance Calculations 847
14.4.2 Contact Forces 855

Bibliography 857

Index 865

This page intentionally left blank

Trademarks

The following trademarks, mentioned in this book and the accompanying CD-ROM,
are the property of the following organizations.

■ DirectX, Direct3D, Visual C++, DOS, Windows, and Xbox 360 are trademarks
of Microsoft Corporation.

■ Playstation 3 is a trademark of Sony Corporation.

■ OpenGL is a trademark of Silicon Graphics, Inc.

■ Radeon is a trademark of ATI Technologies, Inc.

■ NVIDIA, GeForce, PhysX, and the Cg Language are trademarks of NVIDIA
Corporation.

■ NetImmerse and R-Plus are trademarks of Numerical Design, Ltd.

■ MathEngine is a trademark of Criterion Studios.

■ The Havok physics engine is a trademark of Havok.com Inc.

■ SoftImage is a trademark of Avid Technology, Inc.

■ Prince of Persia 3D is a trademark of Brøderbund Software, Inc.

■ XS-G and Canyon Runner are trademarks of Greystone Technology.

■ Mathematica is a trademark of Wolfram Research, Inc.

■ Turbo Pascal is a trademark of Borland Software Corporation.

■ The 8086 and Pentium are trademarks of Intel Corporation.

■ Macintosh and Xcode are trademarks of Apple Corporation.

■ Gigi and VAX are trademarks of Digital Equipment Corporation.

■ MASPAR is a trademark of MasPar Computer Corporation.

xvii

This page intentionally left blank

Figures

Color Plates

3.3 The Foucault pendulum.

3.7 A ball rolling down a hill.

3.14 A mass pulley spring system shown at two different times.

3.25 Two snapshots of a freely spinning top.

4.2 A rope modeled as a linear chain of springs.

4.4 A cloth modeled as a rectangular array of springs.

4.6 A gelatinous cube that is oscillating because of random forces.

4.7 A gelatinous blob that is oscillating because of small, random forces.

4.15 A skirt modeled by a generalized cylinder surface.

4.17 A water drop modeled as a control point surface of revolution.

4.18 A closed tube surface whose central axis is a helix.

4.19 A wriggling snake modeled as a tube surface whose central curve is a
control point curve.

4.20 Free-form deformation.

4.29 A bouncing ball with deformation based on implicit surfaces.

5.4 Image (a) [upper left]: The initial density is generated by a uniform
random number generator. Image (b) [upper right]: The evolved
density after a small period of time. The only force is due to a spike of
wind moving from the left-center of the grid. The bright blob-like
region is a density source. The dark blob-like region is a density sink.
Image (c) [lower left]: Starting from the random initial density, eight
vortices were added to the grid. They are shown in white in the
equivalent gray-scale image of Figure 5.4; the direction of rotation is
indicated by the arrows. You can see the swirl-like effects of the
vortices. Image (d) [lower right]: The grid of image (c) is allowed to
evolve further. The density source and sink are more pronounced, and
the density is starting to become more homogeneous in regions
centered at the vortices.

5.5 Image (a) [upper left]: The initial density is a spherical blob of
constant density. Image (b) [upper right]: The evolved density after a
small period of time. The only force is due to a spike of wind moving
from the right-center of the grid; the scene has been rotated slightly so
you can see the portion of the sphere on which the wind interacted
first. There are no density sources or sinks. You can see the material
being pushed out of the sphere by the wind. Image (c) [lower left]:
Eight vortices were added to the grid, which causes the density to swirl

xix

xx Figures

around a bit. The scene was rotated so you can see the tunnel carved
out by the wind. Image (d) [lower right]: The lower-left grid is allowed
to evolve further.

5.6 Image (a) [top] shows the initial 128× 128× 64 gray scale image (a
CT image). The boundary voxels are drawn in light gray. The z = 0
slice is the upper left tile. The z = 63 slice is the lower right tile. Image
(b) [bottom] shows the 3D image after a number of blurring operations.

Figures in Chapters

2.1 A couple of coordinate systems at points on a curve. 16

2.2 A polar coordinate frame at a point on a curve. 18

2.3 A curve, a tangent vector at a point, and the circle of choices for the
normal vector. The circle lies in the plane containing the point and
perpendicular to the tangent. 20

2.4 Cylindrical coordinates (x, y , z)= (r cosθ , r sinθ , z). 22

2.5 Spherical coordinates (x, y , z)= (ρ cosθ sinφ,ρ sinθ sinφ,ρ cosφ). 24

2.6 Motion of a particle about a fixed axis, a constant distance from
the axis. 25

2.7 (a) The body coordinate system as seen by the body observer. (b) The
body coordinate system as seen by the world observer. 28

2.8 Gravitational forces on objects located at various places around
the Earth. 32

2.9 Gravitational forces on objects located nearly on the Earth’s surface,
viewed as a flat surface. 33

2.10 (a) Unstretched spring. (b) Force due to stretching the spring.
(c) Force due to compressing the string. 34

2.11 A block in contact with an inclined plane. (a) Static friction is
dominant and the block remains at rest. (b) Gravity is dominant and
the block slides, so kinetic friction applies. 35

2.12 Torque from a force exerted on a particle. 36

2.13 A force couple. 37

2.14 (a) All forces applied to a point mass are concurrent but are not
balanced, so the point moves. (b) All forces are concurrent but do
balance, so the point does not move. (c) A rigid rod with noncon-
current forces applied to the endpoints. The forces are equal in
magnitude but opposite in direction. The rod rotates about its center.
(d) Nonconcurrent forces are applied to three locations, two forces of
equal magnitudes and directions at the endpoints and one force of
twice the magnitude of an endpoint force but opposite in direction
applied to the rod center. The rod is balanced and does not rotate
about its center. 38

Figures xxi

2.15 Balancing discrete masses on a line. The center of mass for two masses
viewed as the balance point for a seesaw on a fulcrum. 43

2.16 Balancing continuous masses on a line. The center of mass for the wire
is viewed as the balance point for a seesaw on a fulcrum. A general
point location x is shown, labeled with its corresponding mass
density δ(x). 44

2.17 Balancing discrete masses in a plane. 45

2.18 Balancing discrete masses in a plane on a fulcrum. 46

2.19 Balancing continuous masses in a plane. The shades of gray indicate
variable mass density. 47

2.20 A continuous mass bounded by a parabola and a line. 48

2.21 A continuous mass in the shape of a hemicircle. 49

2.22 A force applied to a particle traveling on a straight line from position
x0 to x1. 78

3.1 The infinitesimal area dA swept out by motion of the earth over an
infinitesimal change in position dr. The swept region is effectively a
triangle whose sides are r and r+dr. 88

3.2 The Foucault pendulum. The pendulum joint is at O, the mass is m
and is attached to the pendulum rod of length L. The gravitational
force acts in the direction k , a unit-length vector from the joint to the
center of the Earth. 92

3.3 The Foucault pendulum. The figures show the path of the pendulum
tip in the horizontal plane. New points on the path are colored white,
but the intensity of the older points along the path gradually decreases. 95

3.4 The simple pendulum. The motion is constrained to a plane. The
mass is located at position X (t) at time t and is always a fixed length L
from the joint P . The angle formed by the pendulum rod with the
vertical is θ(t). The curve of motion is a circle with tangent T(t) and
outward pointing normal N(t). The only force acting on the mass is
gravitational, −mgj , where m is the mass of the particle, g is the
gravitational constant, and−j is the direction of the force (vertically
downward). The joint P provides no frictional force. 99

3.5 A ball of mass m on a flat table. A rubber band connects the ball to a
fixed point on the table. The force F due to the rubber band is shown.
The position x of the ball is shown together with its velocity ẋ. 104

3.6 A ball is at the top of a frictionless hill. With a small push, the ball will
roll down the hill. 105

3.7 A ball rolling down a hill. Image (b) shows the path of the center of
the ball as it rolls down the hill. The ball rotates at a speed
commensurate with its downhill velocity. (See also Color Plate 3.7.) 108

xxii Figures

3.8 (a) A metal chute of length L, one end attached to the origin, the
other end raised by a height H . (b) Side view of the chute. 109

3.9 The initial configuration of a rigid rod containing a mass that is
attached to a spring. 114

3.10 Three masses aligned vertically and subject to gravitational force. 116

3.11 A modification of the simple pendulum problem. 118

3.12 A triangle pendulum. 121

3.13 A system consisting of two masses, a pulley with mass, and a
spring. 122

3.14 A mass pulley spring system shown at two different times. The spring
expands and compresses and the pulley disk rotates during the
simulation. The system stops when a mass reaches the center line of
the pulley or the ground. (See also Color Plate 3.14.) 125

3.15 A system of two pulleys, two springs, and a mass. 125

3.16 A physical system with a bent pipe rotating about the z-axis and
a disk rotating about its axis. 126

3.17 A solid disk that rolls on a rough, inclined plane. 128

3.18 A simple diving board. 129

3.19 An inclined plane that forms an angle φ with the horizontal. The
particle has mass m. It is located at r0 = (x0, y0, z0); hash marks are
shown on the axes corresponding to x0, y0, z0, and w0, where
y0 = w0 cosφ and z0 = w0 sinφ. 137

3.20 Two particles, connected by a massless rod, that slide along a rough
plane. 138

3.21 A flat board on a rough plane. 144

3.22 A side view of a solid box on a rough, inclined plane. 146

3.23 The world coordinates and body coordinates for a rigid body where
both systems have the same origin. 148

3.24 A freely spinning top with tip fixed at the origin of the world
coordinate system. 150

3.25 Two snapshots of a freely spinning top. The black line is the vertical
axis. The white line is the axis of the top. (See also Color Plate 3.25.) 154

4.1 Two curve mass objects represented as mass–spring systems. 159

4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope
at rest with only gravity acting on it. Image (b) shows the rope subject
to a wind force whose direction changes by small random amounts.
(See also Color Plate 4.2.) 161

4.3 A surface mass represented as a mass–spring system with the masses
organized as a two-dimensional array. 162

Figures xxiii

4.4 A cloth modeled as a rectangular array of springs. Wind forces make
the cloth flap about. Notice that the cloth in image (b) is stretched in
the vertical direction. The stretching occurs while the gravitational
and spring forces balance out in the vertical direction during the
initial portion of the simulation. (See also Color Plate 4.4.) 163

4.5 A volume mass represented as a mass–spring system with the masses
organized as a three-dimensional array. Only the masses and springs
on the three visible faces are shown. The other connections are shown,
but without their springs. 164

4.6 A gelatinous cube that is oscillating because of random forces. The
cube is modeled by a three-dimensional array of mass connected by
springs. (See also Color Plate 4.6.) 166

4.7 A gelatinous blob that is oscillating because of small, random forces.
This blob has the masses located at the vertices of an icosahedron with
additional masses of infinite weight to help stabilize the oscillations.
The springs connecting the blob to the infinite masses are shown in
white. (See also Color Plate 4.7.) 167

4.8 Six pairs of B-spline curves of various types. The right image of each
pair shows the deformed curve by modifying one control point. 176

4.9 The initial control points and curve are shown at the top of the figure.
The evolved control points and curve are shown at three later times,
with time increasing from top to bottom in the figure. 179

4.10 The control points and curve at later times in the evolution. 180

4.11 Deformation of a line segment into a closed curve that splits away
from the original curve. 181

4.12 The decomposition of (u, v) space into an n×m grid of rectangles,
each rectangle consisting of two triangles. A typical rectangle is shown
in (b), with lower corner index (i, j) corresponding to u = i/n and
v = j/m. 184

4.13 A cylinder surface (b) obtained by extruding the curve (a) in a
direction oblique to the plane of the curve. 186

4.14 A generalized cylinder surface obtained by linearly interpolating pairs
of points on two curves. 187

4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces are
acting on the skirt and are applied in the radial direction. Image (a)
shows the skirt after wind is blowing it about. Image (b) shows a
wireframe view of the skirt so that you can see it consists of two closed
curve boundaries and is tessellated between. (See also Color Plate 4.15.) 188

4.16 A surface of revolution. 189

4.17 A water drop modeled as a control point surface of revolution. The
surface dynamically changes to show the water drop forming,
separating from the main body of water, then falling to the floor. The

xxiv Figures

evolution is from left to right and top to bottom. (See also Color
Plate 4.17.) 190

4.18 A closed tube surface whose central axis is a helix. (See also Color
Plate 4.18.) 191

4.19 A wriggling snake modeled as a tube surface whose central curve is a
control point curve. (See also Color Plate 4.19.) 193

4.20 Free-form deformation. Image (a) shows the initial configuration
where all control points are rectangularly aligned. Image (b) shows
that some control points have been moved and the surface is
deformed. The control point shown in red in (b) is the point at which
the mouse was clicked on and moved. (See also Color Plate 4.20.) 197

4.21 A disk-shaped body and various deformations of it. 198

4.22 This is an illustration of a level surface F(x, y , z)= 0, a cube whose
eight corners correspond to image samples. Four of the image values
are shown, one positive and three negative. Assuming the image values
vary continuously, each edge connecting a positive and negative value
must have a point where the image is zero. The level surface
F(x, y , z)= 0 necessarily passes through those zero points, as
illustrated by the triangular-shaped surface shaded in dark gray. 200

4.23 The 16 possible sign configurations for a pixel. 202

4.24 The three possible resolutions for the ambiguous pixel case. 203

4.25 Two possible configurations for hyperbolic isocurves with pixels
superimposed. The four edge intersections are P0, P1, P2, and P3 as
marked. 204

4.26 Topological inconsistencies introduced in two voxels sharing an
ambiguous face. 207

4.27 A voxel and its extracted edge mesh. 208

4.28 Triangle removal in the edge mesh of Figure 4.27. The sequence is
from (a) to (h). 209

4.29 A bouncing ball with deformation based on implicit surfaces.
Image (a) shows the bouncing ball with only the implicit surface
deformation. Image (b) shows an additional deformation of
nonuniform scaling by applying an affine transformation.
(See also Color Plate 4.29.) 211

5.1 The left image shows the vector field v= (x, y), which has a divergence
∇ · v= 2. The flow lines are expanding at the indicated point (black
dot), illustrated by flow lines with directions v+ and v−. The right
image shows the vector field v= (−x,−y), which has a divergence
∇ · v=−2. The flow lines are compressing at the indicated point
(black dot). 241

Figures xxv

5.2 A typical lattice of points, where imax = jmax = 5. The lattice cell
centers are shown as black dots. The interior cells have a white
background. The boundary corner cells have a dark gray background.
The boundary edge–interior cells have a light gray background. 248

5.3 Left: Forward transport of the density from three cell centers. The cell
with light gray background contains two transported centers. Right:
Backward transport of the density from three cell centers. One of the
transported cell centers is shown contained in a square formed by four
cell centers. 259

5.4 Image (a) [upper left]: The initial density is generated by a uniform
random number generator. Image (b) [upper right]: The evolved
density after a small period of time. The only force is due to a spike of
wind moving from the left-center of the grid. The bright blob-like
region is a density source. The dark blob-like region is a density sink.
Image (c) [lower left]: Starting from the random initial density, eight
vortices were added to the grid. They are shown in white in the figure;
the direction of rotation is indicated by the arrows. You can see the
swirl-like effects of the vortices. Image (d) [lower right]: The grid of
image (c) is allowed to evolve further. The density source and sink are
more pronounced, and the density is starting to become more
homogeneous in regions centered at the vortices. (See also Color
Plates 5.4(ab) and 5.4(cd).) 275

5.5 Image (a) [upper left]: The initial density is a spherical blob of
constant density. Image (b) [upper right]: The evolved density after a
small period of time. The only force is due to a spike of wind moving
from the right-center of the grid; the scene has been rotated slightly so
you can see the portion of the sphere on which the wind interacted
first. There are no density sources or sinks. You can see the material
being pushed out of the sphere by the wind. Image (c) [lower left]:
Eight vortices were added to the grid, which causes the density to swirl
around a bit. The scene was rotated so you can see the tunnel carved
out by the wind. Image (d) [lower right]: The lower-left grid is allowed
to evolve further. (See also Color Plates 5.5(ab) and 5.5(cd).) 288

5.6 Image (a) [top] shows the initial 128× 128× 64 gray scale image
(a CT image). The boundary voxels are drawn in light gray. The z = 0
slice is the upper left tile. The z = 63 slice is the lower right tile. Image
(b) [bottom] shows the 3D image after a number of blurring
operations. (See also Color Plate 5.6.) 291

6.1 Culling of bounding spheres against a view frustum. 299

6.2 Decomposition of space to reduce the number of comparisons
between pairs of objects. 301

xxvi Figures

6.3 The sweep phase of the algorithm. 305

6.4 The update phase of the algorithm when intervals have moved. 310

6.5 Axis-aligned rectangles overlap when both their x-intervals and
y-intervals overlap. 313

6.6 The relationships among the CPU, SPU, send queue, receive port,
CPU memory, and SPU memory. The gray-background items are the
shared heaps. 336

6.7 E1 is contained in E0. The maximum E0-level-curve value λ1 for E1 is
negative. 354

6.8 E1 transversely intersects E0. The minimum E0-level-curve value λ0

for E1 is negative, the maximum value λ1 is positive. 355

6.9 E1 is separated from E0. The minimum E0-level-curve value λ0 for E1

is positive. 355

6.10 Intersection of two ellipses. 357

6.11 The configuration of two ellipses at contact time. The contact
point is P. 359

6.12 The transformed configuration to a circle of radius 1 with center at the
origin and an axis-aligned ellipse. 360

6.13 The transformed configuration to a circle of radius 1, with center at
the origin and an axis-aligned ellipse. The circle and ellipse are
separated. The point P is the ellipse point that is closest to the origin.
An outer-pointing normal at this point is ∇Q(P). 361

6.14 The left-most branch of the graph of f (s). The vertical asymptote is at
s = 1/d1 when k1 �= 0, or at s = 1/d0 when k1 = 0. 363

6.15 The ellipse sweeps a region bounded by two parallel lines. Left: The
ellipse will intersect the circle when the circle intersects the swept
region. Right: The ellipse will not intersect the circle when the circle is
disjoint from the swept region. 365

6.16 Possibilities for the graph of h(t). Upper left: The ellipse is moving
away from the circle, so there is no intersection at any time. Upper
right: The ellipse initially moves towards the circle, but then veers
away and passes it without intersection. Lower left: The ellipse moves
towards the circle and just grazes it at the contact time. Lower right:
The ellipse moves towards the circle, just touching the circle at contact
time, and then interpenetrates for a period of time. 367

6.17 (a) Object at time t0. (b) Object at time t0+�t/2. (c) Object at time
t0 +�t . 392

6.18 (a) A convex set. No matter which two points you choose in the set,
the line segment connecting them is in the set. (b) A nonconvex set.
The line segment connecting two specific points is not (fully)
contained in the set. 394

Figures xxvii

6.19 Nonintersecting convex objects and a separating line for them. The

algebraic condition for separation is λ
(0)
max(D) < λ

(1)
min(D) as indicated

in equation (6.58). 395

6.20 (a) Nonintersecting convex polygons. (b) Intersecting convex
polygons. 397

6.21 (a) edge–edge contact. (b) vertex–edge contact. (c) vertex–vertex
contact. 397

6.22 Two polygons separated by an edge-normal direction of the first
polygon. 398

6.23 (a) A convex polygon. (b) A unit circle whose vertices correspond to
normal directions of the polygon and whose arcs connecting the
vertices correspond to vertices of the polygon (the polar dual of the
polygon). 403

6.24 A BSP tree constructed by recursive splitting of the unit disk. Each
node is labeled with the test used for the split. The subsectors
consisting of points satisfying the test are shaded in dark gray. The
leaf nodes are shaded in light gray and labeled with a vertex that is
extremal. 404

6.25 Two views of two cubes that are not separated by any face normal but
are separated by a cross product of two edges, one from each cube. 409

6.26 (a) A tetrahedron. (b) A unit sphere whose vertices correspond to
normal directions of the tetrahedron, whose great circle arcs
connecting the vertices correspond to edges of the tetrahedron, and
whose spherical polygons correspond to vertices of the tetrahedron
(the spherical dual of the tetrahedron). 414

6.27 The root of the BSP tree and the two hemispheres obtained by
splitting. Both children are displayed with a viewing direction
(0, 0,−1). The right child is the top of the sphere viewed from the
outside and the left child is the bottom of the sphere viewed from the
inside. 415

6.28 The BSP trees for the children of the root. 416

6.29 Left: A convex polyhedron for which the point-in-spherical-polygon
test, using only the original arcs, is O(n) (the figure shows n = 8, but
imagine a very large n). Right: The inscribed convex polyhedron
whose edges generate the arcs of the spherical convex polygons. 417

6.30 A convex polygon with bisectors used for an O(log n) point-in-
polygon query. The polygon is partitioned into four triangles labeled
T0 through T3. 418

6.31 (a) Edge–edge intersection predicted. (b) Vertex–vertex intersection
predicted. (c) No intersection predicted. 426

6.32 Edge–edge contact for two moving triangles. 432

xxviii Figures

6.33 An OBB with center point C, coordinate axis directions U0, U1, and
U2, and extents e0, e1, and e2 along the coordinate axes. The object
bounded by the box is shown in gray. 446

6.34 The projection intervals of two OBBs onto a line P + t D. (a) The
intervals are disjoint, so the OBBs are separated. (b) The intervals
overlap, so the line is not a separating axis. 447

6.35 Two projected intervals, one stationary and one moving. 457

6.36 Triangles A and B and sets A+B,−B, and A−B. The black dots on
the grid are the origin (0, 0). The gray point in the lower right grid is
the closest point on A−B to the origin. 460

6.37 The first iteration in the GJK algorithm. 462

6.38 The second iteration in the GJK algorithm. 462

6.39 The third iteration in the GJK algorithm. 463

6.40 The fourth iteration in the GJK algorithm. 463

6.41 Left: Construction of Vk+1 in the convex hull of Sk ∪ {Wk}. Right:
The new simplex S̄k+1 generated from M = {W0, W2, W3}. 464

6.42 (a) Colliding contact. Body A attempts to penetrate into body B.
(b) Resting contact. Body A rests on body B and attempts neither to
penetrate into B nor to separate from B. Body A is allowed to slide
along B. (c) Separation. Body A has a velocity that separates it from
body B. 474

6.43 The reduced contact set for two convex polyhedra A and B. 475

6.44 The effects on p(t) as ε approaches zero: (a) Small ε; (b) Smaller ε;
and (c) Really small ε (like zero). 477

6.45 (a) Reflection of the preimpulse velocity v− through the contact
normal to obtain the postimpulse velocity v+. (b) An imperfect
reflection that represents a loss of kinetic energy. (c) An imperfect
reflection that represents a maximum loss of kinetic energy. 479

6.46 (a) The square traveling towards a sloped plane. (b) The preimpulse
configuration at the instant of contact. (c) The postimpulse
configuration at the instant of contact. (d) The square moving away
from the plane. 482

6.47 An axis-aligned box colliding with a sloped plane along an entire edge
of the box, (1− s)P0 + sP1 for s ∈ [0, 1]. 483

6.48 A rectangle travels downwards and intersects two objects
simultaneously. 489

6.49 Four rigid bodies with six points of contact. The centers of mass of the
four bodies are also shown. 494

6.50 A book resting on a table. Forces applied to the book include only
gravitational (force vertically downward) and those used to push the
book around the table (force has only a horizontal component). 511

Figures xxix

6.51 Two rigid bodies in contact at point K. The centers of mass are xi and
the offsets to the contact point are ri . The normal N1 is for rigid
body 1. 529

7.1 (a) Two nonparallel lines. (b) Two parallel and disjoint lines.
(c) Two coincident lines (shown in bold black). 553

7.2 (a) Two nonparallel planes. (b) Two parallel and disjoint planes.
(c) Two coincident planes (shown in bold black). 554

7.3 The coincident planes are shown in bold (black for visible portions,
gray for hidden portions). 555

7.4 A vector v at two locations in the plane. 579

7.5 Addition of u and v. 579

7.6 Addition of u, v, and w. Which pair of vectors is added first is
irrelevant. 580

7.7 Addition of u and v. The order of the vectors is irrelevant. 580

7.8 A vector v and its additive identity−v. 581

7.9 The vectors u and v and the difference u− v. 581

7.10 The vectors u and v, the parallelogram formed by them, and the sum
u+ v and difference u− v shown as diagonals of the parallelogram. 582

7.11 The vector v and two scalar multiples of it, one positive and one
negative. 582

7.12 (a) Distributing across a scalar sum. (b) Distributing across a
vector sum. 583

7.13 (a) Two orthogonal vectors drawn in the plane spanned by them.
(b) Two nonorthogonal vectors and the angle between them. 596

7.14 The projection of vectors onto a unit length vector u. (a) v projects to
Lu with L > 0. The angle θ between u and v is shown. The vector w is
obtained as w= v− Lu and is itself a projection. (b) v is perpen-
dicular to u, so the projection onto u is the zero vector 0.
(c) The projection is Lu with L < 0. 597

7.15 Gram–Schmidt orthonormalization applied to two vectors in the
plane. 598

7.16 Gram–Schmidt orthonormalization applied to three vectors in space. 599

7.17 (a) The cross product of u and v according to the right-hand rule.
(b) The parallelogram formed by u and v with angle θ and
parallelogram base length and height marked. 600

7.18 A parallelepiped formed by vectors u, v, and w where u forms an acute
angle with v×w. The angle between v and w is θ and the angle
between u and v×w is φ. 603

7.19 The triple vector product p= u× (v×w). Note that p must lie in the
plane spanned by v and w. 605

xxx Figures

7.20 A subspace U of IR3 and its orthogonal complement U⊥. 608

7.21 The four fundamental subspaces. 613

7.22 The projection p ∈ S of b ∈ IR3, where S is a two-dimensional
subspace of IR3 (a plane through the origin). 614

7.23 A linear transformation from V to V with respect to two different
bases (horizontal arrows). The change of basis for V (vertical arrows). 624

7.24 (a) A unit-area square. (b) The parallelogram obtained by
transforming the square when the transformed basis vectors have the
same order as the basis vectors. (c) The parallelogram obtained by
transforming the square when the transformed basis vectors have the
opposite order as the basis vectors. (d) The basis vectors mapped to
parallel vectors, in which case A is not invertible. 627

7.25 An illustration of the butterfly rule for the determinant of a 3× 3
matrix. 629

7.26 (a) A unit-volume cube. (b) The parallelepiped obtained by
transforming the cube when the transformed basis vectors have the
same order as the basis vectors. 630

7.27 Three graphs showing critical points. (a) f (x0) is a local minimum.
(b) f (x0) is a local minimum. (c) (x0, f (x0)) is a point of inflection for
the graph of f . 655

7.28 Three graphs showing critical points. (a) f (x0) is a local minimum.
(b) f (x0) is a local minimum. (c) (x0, f (x0)) is a saddle point on the
graph of f . The tangent planes at the graph points are shown in all
three figures. 657

8.1 (a) A vector v connecting two points P and Q. (b) The sum of vectors,
each vector determined by two points. 660

8.2 The parallelogram law for affine algebra. 661

8.3 Three coordinate systems in the plane. Observe that the vectors in the
coordinate system are not required to be unit length or perpendicular
in pairs. 663

8.4 An illustration of condition 1 of the definition for affine
transformation. 666

8.5 Various barycentric combinations of two points P and Q. 668

8.6 The triangle partitions the plane into seven regions. The signs of
c1, c2, and c3 are listed as ordered triples. 669

8.7 (a) A triangle with base length b and height h marked. The area of the
triangle is bh/2. (b) A triangle viewed as a union of an infinite number
of line segments of varying lengths (only a few are shown). The area of
the triangle is the sum of the lengths of those line segments. 672

Figures xxxi

8.8 A tetrahedron with base formed by P0, P1, and P2. A triangle slice
parallel to the base is shown. The direction perpendicular to the base
is marked as the positive z-axis. 674

9.1 The graph of f (x)= x2 + x for x near 1. 683

9.2 The graph of a function that is discontinuous at x = 0. 686

9.3 The graph of x(t) = t(1− t) with two points marked at times t1 and
t2. The light gray lines connecting the origin (0, 0) to (t1, x(t1)) and
(t2, x(t2)) are secant lines to the graph. The dark gray line is the
tangent line to the graph at (0, x(0))= (0, 0). 687

9.4 An attempt to compute the area bounded by a parabola and the x-axis
by filling it with rectangles. 690

9.5 Bases of some rectangular solids as an attempt to fill the domain D. 696

9.6 The graph of a function f (x) on its domain [a, b]. 699

10.1 A right-handed orthonormal set of vectors. A rotation is desired about
d by the angle θ > 0. 715

10.2 A 3D rotation about the z-axis that is represented as the product of
two 4D rotations. 724

10.3 Illustration of the spherical linear interpolation, or slerp, of two
vectors. 728

10.4 Four points forming a convex quadrilateral. Any interior point of the
quadrilateral can be generated using bilinear interpolation with
parameters s and t . The curve connecting v0 and v3 indicates that we
want a particular function s = f (t) with f (0)= f (1)= 0. 729

13.1 (a) Area under a curve. (b) Approximation of the area by a rectangle
(leads to Euler’s method). (c) Approximation of the area by a
trapezoid (leads to the modified Euler method). 770

13.2 The explicit Euler’s method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time. 801

13.3 The implicit Euler method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time. 803

13.4 The Runge–Kutta fourth-order method applied to the simple
pendulum problem. The image shows a plot of the pendulum angles
over time. 804

13.5 The leapfrog method applied to the simple pendulum problem. The
image shows a plot of the pendulum angles over time. 805

13.6 The region of stability for the explicit Euler method is shown in gray. 806

xxxii Figures

13.7 The region of stability for the implicit Euler method is shown in gray. 807

13.8 The region of stability for the Runge–Kutta fourth-order method is
shown in gray. 808

13.9 The region of stability for the leapfrog method is shown in black and
consists of a line segment on the imaginary axis. 809

13.10 (a) An approximation to x(t) using the Runge–Kutta fourth-order
method. (b) The graph of the actual solution x0e−ct . 810

14.1 (a) Various level curves f (x1, x2)= c (straight lines) superimposed on
the quadrilateral region implied by the constraints. (b) The graph of
x3 = f (x1, x2) (a plane) over the quadrilateral region. The x3 values at
four points on the plane are shown. 815

14.2 (a) Constraints with no solution. The hash marks indicate on which
side of the lines the half planes occur. (b) Constraints defining an
unbounded convex set. (c) Constraints defining a bounded convex set. 815

14.3 (a) All five constraints are relevant to forming the convex domain.
(b) Two of the six constraints are redundant, because only four of the
constraints form the convex domain. 817

14.4 The convex domain implied by the two nonnegativity constraints and
three linear inequality constraints of the example. 820

14.5 Graph of f (u, v)= π/
√

uv in the first quadrant. 840

14.6 (a) The graph of a convex function. Any line segment connecting two
graph points is always above the graph. (b) The graph of a nonconvex
function. The line segment connecting two graph points is not always
above the graph. 841

14.7 The graph of a convex function f (x, y). 842

Tables

2.1 Moments and Products of Inertia for Vertices 61

2.2 Moments and Products of Inertia for Edges 62

2.3 Moments and Products of Inertia for Faces 63

2.4 Generation of Polynomials by Vector Fields 66

4.1 Recursive Dependencies for B-Spline Basis Functions for n = 4
and d = 2 170

4.2 Nonzero Values (Boxed) from Table 4.1 for N3,0(u)= 1 172

4.3 Knot Vectors and Parameter Intervals Affected by Modifying the
Control Point 176

4.4 The Vertex–Edge Configurations for a Pixel 205

6.1 Timing for the Project-All and BSP-Tree Extremal Queries 420

6.2 Potential Separating Directions for OBBs and Values for r0, r1, and r 449

9.1 Average Speed Calculations on Intervals [0,�t] with Decreasing �t 681

9.2 Function Values for x Near c 682

9.3 Derivatives of Some Common Functions 688

9.4 Parameters for Various Finite Difference Approximations 708

13.1 The Actual and Approximate Values for the Solution to the System of
Equations 811

14.1 Solving All Possible Systems of Two Equations in Two Unknowns 816

14.2 Tableau of Coefficients and Constants (Example 14.1) 821

14.3 Updated Tableau: Exchanging w2 with x2 822

14.4 Updated Tableau: Exchanging x1 with w3 822

14.5 Updated Tableau: Exchanging w1 with s1 823

14.6 Maximizing f 824

14.7 Maximizing f : Exchanging s1 with s2 825

xxxiii

This page intentionally left blank

Preface to the
Second Edition

The first edition of Game Physics appeared in December 2003. At that time physics
was quite a popular topic in games – it still is. I had mentioned in the introductory
chapter of the first edition that we should expect physics hardware soon. In fact, Ageia
Technologies produced their physics processing unit (PPU), but since then, NVIDIA
Corporation acquired the company and provides PhysX® to access the physics hard-
ware. However, some physics computations can even be performed on the graphics
processing unit (GPU). And with all the power of multiple processors and cores
on current generation desktop computers and game consoles, highly performing
complex physical simulations are becoming a reality at minimal cost to the consumer.

A lot of research has been done over the years, so much so that it is difficult to keep
up with and determine which are the important results and which are not. In this, the
second edition, I have added some new material to address some of the criticisms
about the first edition. The main criticism was that the impulse-based approach I dis-
cussed in the physics engine chapter is not what most commercial or Open Source
engines use. The Wild Magic physics engine did (and does) contain a global LCP
solver, and there was (and is) a sample application that illustrates its use. However,
the number of interacting objects is small. The global solver is not suitable for a large
number of objects. I had not discussed iterative dynamics in the first edition, but have
remedied that in the second edition with a new section that describes the more com-
mon velocity-based dynamics. I had planned on adding a section on position-based
dynamics, but the papers of interest to me are very dense in content. I prefer spending
a lot of time dissecting the methods and researching the references of those papers
before I am comfortable writing about them. Position-based dynamics will have to
wait until a third edition.

The second edition also contains a lengthy chapter about fluid dynamics, both in
2D and 3D. The vector calculus background is extensive, and the goal is to derive the
partial differential equations of motion from conservation of mass (density equation)
and conservation of momentum (Navier–Stokes equation for velocity). Solving these
equations on moderate-sized grids still takes a large number of CPU cycles, so much
so that it would not be correct to say they are real-time algorithms. However, with
multiple cores and processors these days, it is possible to obtain real-time rates. In
fact, the source code on the CD-ROM contains a GPU-based implementation for a
2D Navier–Stokes solver that runs in real time. I have provided the framework in the
Wild Magic libraries to solve the 3D problem on a GPU. A sample application that
uses the library involves Gaussian blurring of a 3D image. I leave it as a project to
implement the 3D fluid solver on top of this framework, although I am certain I will
post my own implementation at some time after this book is released. The framework

xxxv

xxxvi Preface to the Second Edition

is where most of the work is done anyway. The application work involves writing the
shaders and setting up all the render targets necessary to run the application with a
minimum amount of video memory and a minimum of transfer of data from system
memory to video memory. This work is at a high level and relatively easy to do.

The broad-phase collision culling using axis-aligned boxes and space-time
coherency was a topic in the first edition, and there was an implementation for the
CPU on the CD-ROM. I greatly expanded this section to discuss how to move the
broad-phase culling onto its own CPU core and use multithreading to support it.
This is useful when programming on a Microsoft Xbox 360. I also added a discussion
on how to move the broad-phase culling onto a specialized processor such as an SPU
of the Sony Playstation 3. I have implemented this on the aforementioned consoles,
and it was absolutely essential for good performance in a physics-heavy racing game
with lots of interacting objects.

Of course, books have bugs just as source code does. The second edition contains
as many corrections to typographical errors and content errors as I could possibly
find.

The CD-ROM for the book contains a new version of Wild Magic, version 5.0.
This is a significant rewrite of Wild Magic 4, except for the mathematics library (some
ancient topics never change). I have greatly modified the graphics engine to have
its own general FX system. Adding specialized shaders in Wild Magic 4 was a bit
tedious and not general. The same thing in Wild Magic 5 is straightforward – the
engine design for managing renderer resources does not get in your way. For exam-
ple, the rewrite made it easy to implement the fluid solvers that are part of the sample
applications. Perhaps superficial yet wanted by many users, I have eliminated the ver-
bose Hungarian-style variable naming conventions (and there was great rejoicing …).
Finally, the Wild Magic 5 engine uses the Boost License, which is as liberal as you can
get. I hope you enjoy playing with the new version.

As always, my thanks go to the Elsevier and Focal Press folks for their diligence
and hard work to make this book possible: Laura Lewin (Senior Acquisitions Editor),
Chris Simpson (Associate Acquisitions Editor), Anaı̈s Wheeler (Assistant Editor),
Julie Ochs (Project Manager), and the entire production team at Elsevier.

Preface to the
First Edition

The evolution of the games industry has been motivated clearly by the gamers’
demands for more realistic environments. 3D graphics on a 2D graphics card requires
necessarily a classical software renderer. Historically, rasterization of triangles was the
bottleneck on 2D cards because of the low fill rate, the rate at which you can draw
pixels during rasterization. To overcome fill rate limitations on consumer cards the
graphics hardware accelerator was born in order to off-load the rasterization from the
2D card and the central processing unit (CPU) to the accelerator. Later generations
of graphics cards, called 3D graphics cards, took on the role of handling the standard
work of a 2D graphics card (drawing windows, bitmaps, icons, etc.) as well as support-
ing rasterization that the 3D graphics requires. In this sense the adjective accelerator
for a combined 2D/3D card is perhaps a misnomer, but the term remains in use.

As fill rates increased, the complexity of models increased, further driving the evo-
lution of graphics cards. Frame buffer and texture memory sizes increased in order to
satisfy the gamers’ endless desires for visual realism. With enough power to render a
large number of triangles at real-time rates, the bottleneck of the cards was no longer
the fill rate. Rather it was the front end of the graphics pipeline that provides the ras-
terizers with data. The process of transforming the 3D triangle meshes from world
coordinates to camera coordinates, lighting vertices, clipping, and finally projecting
and scaling to screen coordinates for the purposes of rasterization became a perfor-
mance issue. The next generation of graphics cards arrived, called hardware transform
and lighting (HW T&L) cards, the name referring to the fact that now the work of the
graphics pipeline has been off-loaded from the CPU to the graphics processing unit
(GPU). Although the intent of HW T&L cards was to support the standard graphics
pipeline, most of these cards also supported some animation, namely skin-and-bones
or skinning where the vertices of a triangle mesh (the skin) are associated with a matrix
hierarchy (the bones), and a set of offsets and a set of weights relative to the bones.
As the matrices vary during run time, the vertices are computed from the matrices,
offsets, and weights, and the triangle mesh deforms in a natural way. Thus, we have
some hardware support for deformable bodies.

The standard graphics pipeline is quite low-level when it comes to lighting of ver-
tices. Dynamic lights in a scene and normal vectors at vertices of a triangle mesh are
combined to produce vertex colors that are interpolated across the triangles by the
rasterizer. Textured objects are rendered by assigning texture coordinates to the ver-
tices of a mesh, the coordinates used as a lookup into a texture image. The rasterizer
interpolates these coordinates during rasterization, then performs a lookup on a per-
pixel basis for each triangle it rasterizes in the mesh. With a lot of creativity on the
artists’ end, the vertex coloring and texturing functions can be used to produce high

xxxvii

xxxviii Preface to the First Edition

quality, realistic renderings. Fortunately, artists and programmers can create more
interesting effects than a standard graphics pipeline can handle, producing yet more
impetus for graphics cards to evolve. The latest generation of graphics cards now are
programmable and support vertex shading, the ability to incorporate per-vertex infor-
mation in your models and tell the rasterizer how to interpolate them. Clever use
of vertex shading allows you to control more than color. For example, displacement
mapping of vertices transfers some control of positional data to the rasterizer. And
the cards support pixel shading, the ability to incorporate per-pixel information via
images that no longer are required to represent texture data. Dot3 bumpmapping is
the classic example of an effect obtained by a pixel shader function. You may view
vertex shading as a generalization of the vertex coloring function and pixel shading as
a generalization of the basic texturing function.

The power of current generation graphics cards to produce high quality visual
effects is enormous. Much of the low-level programming you would do for software
rendering is now absorbed in the graphics card drivers and the graphics APIs built on
top of them, such as OpenGL and DirectX, allowing the programmers to concentrate
at a higher level in a graphics engine. From a visual perspective, game designers and
programmers have most of what they need to create realistic looking worlds for their
gamer customers. But since you are reading this preface, you already know that visual
realism is only half the battle. Physical realism is the other half. A well-crafted, good-
looking character will attract your attention for the wrong reasons if it walks through
a wall of a room. And if the characters cannot realistically interact with objects in their
physical environment, the game will not be as interesting as it could be.

Some day we programmers will see significant hardware support for physics by
off-loading work from the CPU to a physics processing unit (PPU). Until that day
arrives we are, so to speak, at the level of software rendering. We need to imple-
ment everything ourselves, both low level and high level, and it must run on the
CPU. Moreover we need real-time rates. Even if the renderer can display the environ-
ment at 60 frames per second, if the physics system cannot handle object interactions
fast enough, the frame rate for the game will be abysmally low. We are required to
understand how to model a physical environment and implement that model in a
fast, accurate, and robust manner. Physics itself can be understood in an intuitive
manner – after all it is an attempt to quantify the world around us. Implementing a
physical simulation on a computer, though, requires more than intuition. It requires
mathematical maturity as well as the ability and patience to synthesize a large system
from a collection of sophisticated, smaller components. This book is designed to help
you build such a large system, a physics engine as it were.

I believe this book is a good companion to my book 3D Game Engine Design,
a large tome that discusses the topic of constructing a real-time graphics engine for
consumer hardware. Game Physics focuses on the topic of real-time physical simu-
lation on consumer hardware. The two, of course, will be used simultaneouly in a
game application. Game Physics has a similar philosophy to 3D Game Engine Design
in two ways. First, both books were conceived while working on commercial engines
and tools to be used for building games. The occurrence of the word “game” in the

Preface to the First Edition xxxix

titles reflects this. The material in both books applies to more than just game applica-
tions. For example, it is possible to build a virtual physics laboratory for students to
explore physical concepts. Second, both books assume that the reader’s background
includes a sufficient level of mathematics. In fact, Game Physics requires a bit more
background. To be comfortable with the material presented in this book, you will
need some exposure to linear algebra, calculus, differential equations, and numerical
methods for solving differential equations. All of these topics are covered in an under-
graduate program in mathematics or computer science. Not to worry, though. As a
refresher, the appendices contain a review of the essential concepts of linear algebra,
affine algebra, calculus, and difference equations that you will need to read this book.
Two detailed chapters are included that cover differential equations and numerical
methods for solving them.

I did not call the book 3D Game Physics because the material is just as appropriate
for one- or two-dimensional settings. Many of the constrained physical models are
of lower dimension. For example, a simple pendulum is constrained to move within
a plane, even though a rendering of the physical system is in three dimensions. In
fact, the material is applicable even to projects that are not game related, for example,
supporting a virtual physics laboratory for students to explore physical concepts. I
did call the book Game Physics and I expect that some readers might object to the
title when in fact I do not cover all possible topics one might encounter in a game
environment. Moreover, some topics I discuss are not in as much depth as some might
like to see. Spending even a few years to write a book, I believe it is impossible to
cover all the relevant topics in significant detail to support building a fully featured
physics engine that rivals what you see commercially. Some projects just require a
team of more than one. For example, I specifically avoided getting into fluid dynamics
because that is an enormous topic all on its own. I chose to focus on the mechanics
of rigid bodies and deformable bodies so that you can build a reasonable, working
system for physical simulation. Despite this restricted coverage, I believe there is a
significant amount of content in this book that will make it worth every minute of
your reading time. This content includes both the written text and a vast amount of
source code on the CD-ROM that accompanies the book, including both the Wild
Magic graphics engine and components and applications for physics support. I have
made every attempt at presenting all the content in a manner that will suit your needs.

As in the production of any book, the author is only part of the final result. The
reviewers for an early draft of this book have been extremely helpful in providing
guidance for the direction the book needed to take. The original scope of the book
was quite large, but the reviewers’ wisdom led me to reducing the scope to a man-
ageable size by focusing on a few topics rather than providing a large amount of
background material that would detract from the main purpose of the book – showing
you the essentials of physical simulation on a computer. I wish to personally thank the
reviewers for their contributions: Ian Ashdown (byHeart Consultants), Colin Barrett
(Havok), Michael Doherty (University of the Pacific), Eric Dybsand (Glacier Edge
Technology), David Eberle (Havok), Todd Growney (Electronic Arts), Paul Hemler
(Wake Forest University), Jeff Lander (Darwin 3D), Bruce Maxim (University of

xl Preface to the First Edition

Michigan–Dearborn), Doug McNabb (Rainbow Studios), Jon Purdy (University of
Hull), and Craig Reinhart (California Lutheran University). Thanks also go to Tim
Cox, my editor, Stacie Pierce, editorial coordinator, and Rick Camp, editorial assis-
tant for the book. Tim has been patient with my seemingly endless delays in getting a
final draft to him. Well, the bottom line is that the draft arrived. Now it is your turn
to enjoy reading the book!

About the CD-ROM

License Agreement

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. Each source file has a preamble stating that the source code is subject to the
Boost License (http://www.boost.org/LICENSE_1_0.txt), which is quite simple:

Boost Software License – Version 1.0 – August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtain-
ing a copy of the software and accompanying documentation covered by this
license (the “Software”) to use, reproduce, display, distribute, execute, and trans-
mit the Software, and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all subject to the
following:

The copyright notices in the Software and this entire statement, including the
above license grant, this restriction and the following disclaimer, must be included
in all copies of the Software, in whole or in part, and all derivative works of
the Software, unless such copies or derivative works are solely in the form of
machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPY-
RIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Installing and Compiling the Source Code

The Wild Magic 5 engine is portable and runs on desktop computers running the
Microsoft Windows XP/Vista/7 operating systems or Linux operating systems. Ren-
derers are provided for both OpenGL (version 2.x) and Direct3D (version 9). The
engine also runs on Apple computers, whether PowerPC- or Intel-powered, with the
Macintosh OS X operating system (version 10.5.x or higher). Project files are pro-
vided for Microsoft Visual Studio (version 2009) on Microsoft Windows. Make files
are provided for Linux. Xcode 3.x project files are provided for the Macintosh.

xli

xlii About the CD-ROM

The CD-ROM includes a file, Wm5p0InstallationRelease.pdf, that contains the
installation directions. You must read this first as it addresses various computing envi-
ronment issues that you must be aware of, such as setting environment variables and
project path settings.

Updates and Bug Fixes

Regularly visit the Geometric Tools, LLC web site, http://www.geometrictools.com, for
updates and bug fixes. Histories of source code changes, book corrections, and known
problems are maintained at the web site.

C h a p t e r 1
Introduction

1.1 A Brief History of the World

The first real experience I had with a “computing device” was in the early 1970s when
I attended my first undergraduate college, Albright College in Reading, Pennsylvania,
as a premedical student. The students with enough financial backing could afford
handheld calculators. The rest of us had to use slide rules – and get enough signifi-
cant digits using them in order to pass our examinations. I was quite impressed with
the power of the slide rule. It definitely was faster than the previous generation of
computing to which I was accustomed: pencil and paper. I did not survive the pro-
gram at the college (my grades were low enough that I was asked to leave) and took a
few years’ break to explore a more lucrative career.

“There is no reason anyone would want a computer in their home.”

Ken Olson, founder and president of Digital Equipment Corp

Deciding that managing a fast-food restaurant was not quite the career I thought
it would be, I returned to the college track and attended Bloomsburg University (BU)
in Bloomsburg, Pennsylvania as a mathematics major, a field that suited me more
than chemistry and biology did. During my stay I was introduced to an even more
powerful computing device, a mainframe computer. Writing Fortran programs by
punching holes in Hollerith cards1 was even better than having to use a slide rule,

1. Herman Hollerith used punched cards to represent the data gathered for the 1890 American census. The
cards were then used to read and collate the data by machines. Hollerith’s company became International
Business Machines (IBM) in 1924.

© 2010 by Elsevier Inc. All rights reserved. 1
DOI: 10.1016/B978-0-12-374903-1.00001-3

2 Chapter 1 Introduction

except for the occasional time or two when the high-speed card reader decided it was
really hungry. By the end of my stay I had access to a monitor/terminal, yet another
improvement in the computing environment. Linear programming problems were a
lot easier to solve this way than with the slower modes of computing! I finished up at
BU and decided graduate school was mandated.

“I think there is a world market for maybe five computers.”

Thomas J. Watson, former chairman of IBM

Next stop, the University of Colorado at Boulder (CU) in 1979. I took a liking to
differential equations and got another shot at punching cards, this time to numerically
solve the differential equations of motion for a particular physical system. I under-
stood the theory of differential equations and could properly analyze the phase space
of the nonlinear equations to understand why I should expect the solution to have cer-
tain properties. However, I could not compute the solution that I expected – my first
introduction to being careless about applying a numerical method without under-
standing its stability and how that relates to the physical system. The remainder of my
stay at CU was focused on partial differential equations related to combustion with
not much additional computer programming.

“Computers are useless. They can only give you answers.”

Pablo Picasso, Spanish painter

After graduating in 1984, I started my academic career at the University of Texas
at San Antonio (UTSA) in the Division of Mathematics, Computer Science, and
Statistics. The university had recently started an engineering program and designed
four courses for applied mathematics and computer science relevant to the new
program. The two applied mathematics courses were your standard fare for an engi-
neering program and included topics on differential equations, numerical methods,
and physics concepts. The two computer science courses were somewhat unique in
that both required students to work on the fast personal computers that were avail-
able at the time: 4.77 MHz Intel 8086 machines. The first course was introductory
programming with Borland’s Turbo Pascal 3. The second course was on computer
graphics. Although Turbo Pascal supported graphics primitives, my requirements
for the course included writing device drivers for the state-of-the-art graphics card:
the Enhanced Graphics Adapter (EGA). With a blazingly fast CPU, Microsoft’s Disk
Operating System (DOS), 20M of hard disk space, 640K of accessible system memory,
and an EGA card with four 64K memory chips (one chip per color plane), we were able
to produce some fine quality output rivaling that of the 2D computer games of that
era. The output was almost as good as what we could produce on the department’s
DEC Gigi that was attached to a VAX 730 and allowed you to draw to the monitor

1.1 A Brief History of the World 3

by sending cryptic escape sequences of the type that you normally see in printer
drivers.

“640K ought to be enough for anybody.”

William (“Bill”) H. Gates

During my tenure at UTSA, I became more involved in computer-related top-
ics and less involved in theoretical considerations in my research field of differential
equations. In particular I became involved with the University of Texas Health Science
Center’s Department of Radiology. The field of medical imaging was quite interesting
to me with its inherent connection to computer graphics and visualization, but also of
interest were aspects of geometry and numerical methods since we were interested in
analyzing and extracting anatomical information from 3D medical images. My inter-
est in the topic was strong enough that I decided to leave UTSA in 1991 and become
a “retread” by studying computer science and medical imaging at the University of
North Carolina (UNC) at Chapel Hill.

While at UNC I had access to more powerful equipment. We did not have a Cray
supercomputer with a couple of powerful processors, but we did have a massively par-
allel machine appropriately named the MASPAR with 8,196 processors, individually
not very powerful, but a natural architecture for 2D image processing.

“If you were plowing a field, which would you rather use?
Two strong oxen or 1024 chickens?”

Seymour Cray, father of supercomputing

Still, there was a strong attraction to compute numerically on a personal com-
puter, to see the results graphically and immediately, if not sooner.

“The PC is the LSD of the 90’s.”

Timothy Leary, educator and psychologist

At the time I had upgraded my Intel 8086 machine to an Intel 80486 machine
with a floating point coprocessor. I was able to implement many algorithms of inter-
est in image analysis, including constructing something called ridges that are defined
in terms of differential equations. The same programming issues that arose at CU
bit me again: applying numerical methods for differential equation solvers without
thought about the stability of the methods or about their applicability to the prob-
lem at hand. Another problem of interest was to compute geodesic curves on surfaces,
curves that represent the shortest surface path between two points on the surface.

4 Chapter 1 Introduction

The formulation of the problem is akin to what you see in Lagrangian dynamics in
physical modeling and results in yet more differential equations to solve numerically.2

After leaving UNC, I eventually found my way into the games industry in 1997
by signing on at Numerical Design Ltd. (www.ndl.com), a company cofounded by
J. Turner Whitted, credited with the invention of ray tracing, and Robert Whitton,
a mathematics professor at Davidson College. The company’s business model had
been focused on contract work in computer graphics, and they had developed a
photorealistic ray tracing package called R-Plus. Times were changing, and they had
decided that a product-oriented business model was better than a contract-based
model. When I arrived the code base for NetImmerse was in its infancy. The goal of
the product was a real-time graphics engine for 3D games. At the time, the Voodoo 1
graphics accelerator from the company 3Dfx (now defunct) had arrived on the scene.
This was a true accelerator in the sense that it coexisted with a standard 2D graphics
card. As you are already aware, this type of graphics technology started a whole new
trend in the computer industry leading to significant evolution of central processing
units (CPUs) and off-loading of a lot of work to graphics processing units (GPUs).
The standard development machine at NDL in 1997 was a Pentium 133 MHz with
32M of system memory, not a lot of power compared to present-day machines but at
the time quite a good system.

One of the first customers for NetImmerse was Broderbund, a software com-
pany that intended to use the package for their upcoming game Prince of Persia 3D
(POP3D). The game engine needed a lot of help to evolve and keep up with the
features that POP3D required. In particular, the collision detection system of Net-
Immerse was crude and needed improvement. The game engine was overhauled,
including the addition of quaternions to support fast keyframe animations. The col-
lision detection and response system was built from scratch, used hierarchical culling
for collision purposes, and used an oriented bounding box tree-based hierarchy to
support collision detection of the triangle mesh geometry [GLM96], but with an
enhancement to predict the time of first contact of moving objects (see Section 6.4).
The system also implemented 3D picking (intersection of line/ray/segment with
objects), something heavily used in POP3D to allow the Prince to jump and catch
ledges, and other related movements with constraints. The collision system was func-
tional, but not what I would call sophisticated. CPUs were finally reaching speeds of
800 MHz by the time POP3D shipped in 1999, but they still did not have sufficient
power for complex geometric environments. The collision system was also used suc-
cesfully in an arcade game called XS-G (originally called Canyon Runner) that was
shipped by Greystone Technology in 1998.

As CPUs and GPUs evolved because of consumer demands in the gaming arena,
the graphics cards became powerful enough to give players a visually rich and

2. Specifically, a geodesic curve on a surface is the natural extension of a straight line in a plane – it has zero
curvature. The physical analogy is that a particle traveling along a geodesic has zero acceleration while
satisfying the constraint of remaining on the surface.

1.1 A Brief History of the World 5

convincing environment for the games. But consumers are relentless and wanted
more physical realism. Predicting a trend in this direction, the company MathEngine
was started to build what was called a physics engine. The product was a good one,
but some of the demonstrations showed jittering objects in resting contact with a flat
surface. The problem is that applying numerical methods to the differential equations
of motion is not enough. Stability of the methods is important, but also important
is having a robust system that integrates collision detection and collision response
involving multiple rigid bodies. Resting contact is now a classic problem that requires
great care when implementing to avoid the jittering objects. While I was at NDL,
Steven Collins, the CTO of a Dublin-based company called Telekinesys, Inc., con-
tacted us to see what we thought about their physics engine and how it handled
problems like resting contact. The demonstrations were very convincing and showed
that, in fact, you can obtain physical realism with good frame rates even on cur-
rent consumer CPUs. Eventually Telekinesys announced their new technology, and
the company name changed to Havok.com. Their commerical physics engine is an
extremely good product. Many of the robustness issues that show up in any product
attempting to handle geometric queries on a computer with floating point arithmetic
have been solved by the Havok folks. In fact, in January of 2003 I walked into my
favorite store, Intrex Computers, to satisfy my latest silicon craving. On display was
a computer with an ATI Radeon 9700 graphics card running a demonstration from
Havok.com that showed a creature in exotic garb dancing about. The clothing was
flowing in a very believable manner – no self-intersections of the cloth – and running
at real-time rates. All I wanted was a hard drive, but I also walked out with a new
graphics card and the desire to write my own physics engine. You know the feeling.

Other companies, of course, bought into the idea that you can do realistic physics
in real time. AGEIA Technologies, Inc., produced PhysX, hardware support for real-
time physics. They were acquired later by NVIDIA Corporation. Intel Corporation
acquired Havok, Inc. Various open source packages are available for download – one
of the most popular is the Bullet Physics Engine (www.bulletphysics.com). Other
packages include the Open Dynamics Engine (ode.org), Newton Game Dynamics
(www.newtondynamics.com), the Box2D Engine (www.gphysics.com), and the Tokamak
Open Source Physics Engine (www.tokamakphysics.com) among others.

The games industry has gone through quite an evolutionary period over the past
few decades. The computers of 10 years ago are nowhere near the powerful machines
we have today. I started out with a 4.77 MHz Intel 8086 machine and a 2D EGA
graphics card. Now I have machines with very fast CPUs and lots of system mem-
ory, and they all have 3D graphics hardware. These include a Macintosh system, a
Linux system, and a few Microsoft Windows PCs (maintaining portable source code
comes at a price). These systems are all capable of real-time graphics and real-time
physics, whereas the systems of a decade ago just did not have that kind of power. In
recent years, I have programmed on Microsoft’s Xbox 360 and on Sony’s Playstation 3.
These are quite powerful machines, each with multiple processors, and both capable
of handling complex physics. With current generation consoles and CPUs, you now
get to enjoy the pleasure (and pain) of multiprocessor/multithreaded programming.

6 Chapter 1 Introduction

I have added some discussion about this regarding the broad-phase collision culling
using axis-aligned bounding boxes and space-time coherency, including pseudocode
for consoles as well as desktop computers.

“Grove giveth and Gates taketh away.”
Bob Metcalfe, Ethernet inventor and founder of 3Com Corporation,on the trend of

hardware speedups not keeping up with software demands

Nevertheless, a major theme in this brief historical journey of mine is, The mathe-
matics and physics that you will deal with in this book is not new. Much of the computer
graphics research that appears in the literature of the past decade is motivated by the
power that machines have now (or soon will have).

“A mathematician is a device for turning coffee into theorems.”
Paul Erdos, mathematician. My variant: “A computer graphics researcher is a device for

turning coffee into SIGGRAPH papers.”

Much of what occurs in that research is a reapplication of classic mathematical
and physical concepts and shows that the researchers appreciate the importance and
power of mathematics and physics in achieving their goals.

“For the things of this world cannot be made known without a
knowledge of mathematics.”

Roger Bacon, philosopher from the 12th century

Thus, you too should appreciate the power of all things mathematical and
physical.

“It is the merest truism, evident at once to unsophisticated
observation, that mathematics is a human invention.”

from. The Logic of Modern Physics, by P. W. Bridgman, physicist

As readers of my books certainly know, I have not shied away from mathematics,
because it is my language for understanding the technical world around me.

“Omnia apud me mathematica fiunt”
(With me everything turns into mathematics).

Rene Descartes

1.2 A Summary of the Topics 7

“A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made

with ideas.”

G. H. Hardy, mathematician

I wish it to be your language, too. After all, you will need it to appreciate fully
the complexities and difficulties in implementing a robust physical simulation on a
computer. What else can I say!

1.2 A Summary of the Topics

Physics concepts and their application to games is quite a large topic. Rather than
attempt to provide brief summaries of all possible topics, in other words a survey
book, I decided to focus on the subset that most programmers seem to ask questions
about in the various Usenet news groups: mechanics, rigid bodies, deformable bod-
ies, and collision detection and response systems. These topics are discussed in depth
and require a minimum mathematical background that includes linear algebra and
calculus, both univariate and multivariate. Also helpful would be some exposure to
ordinary differential equations and to numerical methods that solve these, but if you
have not had this exposure, a couple of chapters provide enough material to support
what you will need for implementing a physical simulation.

Chapter 2 introduces curves in two dimensions and in three dimensions as repre-
sentative paths of a particle. The chapter introduces the physical concepts of position,
velocity, and acceleration. The choice of coordinate system is important in an appli-
cation, so the standard systems are covered, including polar coordinates, cylindrical
coordinates, and spherical coordinates. The motion of particles along paths in the
absence of forces is called kinematics. In addition to kinematics of a single particle,
we also look into the kinematics of a particle system. This material is the all important
foundation for the physics engines discussed in Chapter 6.

The remainder of Chapter 2 is an introduction to the standard concepts that you
see in a course on physics, starting with Newton’s laws of motion. The topics of force,
torque, equilibrium, linear and angular momentum, center of mass, moments and
products of inertia, and kinetic and potential energy are discussed in detail, with the
goal of being able to calculate these quantities on a computer. Computing the center of
mass and the inertia tensor for a solid convex polyhedron is necessary for the physics
engines of Chapter 6.

Chapter 3 is about dynamics: the interaction of rigid bodies when forces and
torques are present in the physical system. The classical approach in an introduc-
tory physics course uses Newtonian dynamics and the famous formula of Newton’s
second law of motion, F=ma, where m is the constant mass of an object, a is its
acceleration, and F is the applied force. I do not spend a lot of time delving into this

8 Chapter 1 Introduction

approach. The coverage is sufficient to support the general purpose physics engines
that use Newton’s second law for simulation.

The majority of Chapter 3 is spent on Lagrangian dynamics, a framework for
setting up the equations of motion for objects when constraints are present. In
Lagrangian dynamics, the equations of motion naturally incorporate the constraints.
A Newtonian formulation requires that forces of constraint be part of the term F in
the equation of motion, and the constraint forces are sometimes difficult to derive.
For example, you will see in the Lagrangian approach that frictional forces are easier
to deal with than in the Newtonian approach. For many games, a designer’s specific
knowledge of the physical system can be exploited to good effect by formulating the
simulation using Lagrangian dynamics, the result being that the computational time
of the simulation is reduced, compared to a general purpose system using Newtonian
dynamics.

Euler’s equations of motion are also discussed in Chapter 3, because a few prob-
lems are more naturally formulated in terms of Euler angles than in terms of other
dynamics systems. Although Hamiltonian dynamics is of importance, especially in
dealing with the n-body problem, I made the decision not to include a discussion of
it in this book, since the other approaches are sufficient to allow implementations on
a computer.

Chapter 4 is about deformable bodies. There are many ways to simulate defor-
mation; we will address a subset in this book. In all cases you should consider these
“hacked” physics in the sense that at no time do we use a real physical model for the
actual material that makes up the bodies. The real models do not lend themselves to
the fast computation that a game requires. All that is required of a hacked physics
approach in a game is that the deformations look believable to the player. I do cover
mass–spring systems for the purposes of deformation, but even these might not be as
realistic a model for deformable objects as you might wish.

Another method that I have included for describing deformable objects includes
the use of control point surfaces, where you vary the control points in some suitable
manner to cause the surface to deform as you desire. A brief discussion is given for
B-spline curves and surfaces and for nonrational uniform B-spline (NURBS) curves
and surfaces. The presentation is limited to the computational aspects of curves and
surfaces, including optimizations that allow fast evaluation. You are referred to other
sources for a more detailed look at the properties of B-splines and NURBS.

Free-form deformation is a method for deforming an object and uses a volumetric
approach. The object is embedded in a portion of space that is defined via a control-
point lattice. The volume of space is deformed, causing the object itself to deform.

The final deformation method is based on the object’s surface being defined
implicitly. The popular term for such surfaces is metaballs. I prefer to call them what
they are, implicit surfaces. The discussion of this topic shows how you define a 3D
lattice of sample points, trilinearly interpolate to obtain a continuous representation
of a function defined on the volume occupied by the lattice, then extract the implicit
surface as the level surface of the constructed function. Implicit surfaces are deformed
by varying the constructed function itself.

1.2 A Summary of the Topics 9

Chapter 5 is a new chapter on fluid dynamics. The primary focus is on using
conservation laws to derive partial differential equations for the density of the fluid
(conservation of mass) and for the velocity of the fluid (conservation of momentum,
the Navier–Stokes equation). Stability of the numerical methods for solving these
equations is of importance. More important, though, is that the numerical methods
are quite expensive. Current generation CPUs have the power to solve the 2D equa-
tions in real time for a moderate-sized grid, but the 3D equations require a lot of cycles
even for small grids. Sample applications that solve the equations on the CPU are pro-
vided. Better yet, a sample application is provided for the 2D implementation on the
GPU – this certainly runs at real-time rates for moderate-to-large-sized grids. The
framework is provided for the 3D implementation, illustrated by a 3D Gaussian blur-
ring application, but the framework easily allows you to solve the 3D fluid equations
on the GPU (a suitable class project).

Chapter 6 is about what most readers probably think of as the meat of game
physics – the physics engine. The chapter describes a general system for handling a col-
lection of rigid bodies, including collision detection and collision response. A general
system is one that uses Newton’s second law of motion, F=ma, to control the motion
of objects. The constraint forces are unknown to the system and must be calculated
based on the information that is provided by the collision detection system.

Section 6.1 discusses the game loop and the physics tick as one of the subsystems
managed by the loop. In computer graphics, it is said that the fastest way to draw
something is not to draw it at all. Practitioners use various culling algorithms to deter-
mine objects that are not in the view frustum – such objects are not sent to the renderer
for drawing. This process is part of the graphics tick. The physics tick has a similar phi-
losophy. If it is possible to quickly determine that two objects are not close enough to
be in contact, then that pair of objects need not be processed by the collision response
system. Section 6.2 discusses broad-phase collision culling using axis-aligned bounding
boxes and takes advantage of space–time coherency for speed. Detailed pseudocode
is provided that allows you to implement this in a single-threaded application on a
CPU, in a multicore/multithreaded application for the CPU (good for desktop PCs or
Xbox 360), and in an application using specialized processors (good for Playstation 3).
Test-intersection queries for medium-phase collision culling are discussed briefly in
Section 6.3 for bounding volumes that are spheres, ellipsoids, or cylinders. However,
more popular and useful are those queries for oriented bounding boxes and convex
polyhedra, the topic of Section 6.4. This section covers the method of separating axes,
for overlap tests of a pair of convex polyhedra, and the GJK algorithm, for comput-
ing the distance between convex polyhedra. Good books with a lot more details about
collision detection are [Eri03], which has a lot of hands-on information, and [vdB03],
which has a lot of details about the GJK algorithm and how it may be used robustly
in a physics engine.

Section 6.5 is about unconstrained motion. This gives you an idea of how to design
a data structure to represent a rigid body and how to solve the differential equations
of motion for a body that does not interact with other bodies in its environment.
Sections 6.6 and 6.7 complicate matters by allowing interaction between bodies,

10 Chapter 1 Introduction

referred to as constrained motion. As you will see, building a collision detection and
response system for constrained motion is a formidable task! I have provided enough
pseudocode to allow you to build a working engine if you choose to do so. Source
code is provided for a working engine with which you can experiment. A lot of code
was written by George Innis of Magic Software, Inc., after reading a draft of this
book – hopefully evidence that other folks will be able to implement real systems
from my descriptions.

I discuss the impulse-based approach that Brian Mirtich [Mir96b] and David
Baraff [Bar01] made popular, but by all means this is not the only approach one can
take. My goal is to go into significant detail about the impulse-based approach so
that you (1) understand the layout of a general physics engine, (2) see what compli-
cations arise, and (3) learn to evaluate what are its strengths and weaknesses. Other
approaches to building a robust physics engine are based on trying to fix the weak-
nesses of the previous generation engine. Once you understand the impulse-based
engine, you should be able to start experimenting with modifications; references
to other approaches are provided, so you have a nearly endless supply of ideas to
investigate. For instance, a good tutorial site for rigid body dynamics is [Hec98].
I refer to the impulse-based approach as acceleration-based constrained motion. A new
section provides a discussion of velocity-based constrained motion. Researchers are
still investigating the various approaches and trying to make improvements in speed
and robustness. Some papers on position-based constrained motion, [MHHR06] and
[Mül08], are of importance. You can spend a lot of time tracking down what is the
latest and greatest.

Chapters 7 through 9 provide mathematical background. The chapters on linear
algebra, affine algebra, and calculus are intended as brief reviews of the material you
would see in undergraduate college courses.

Chapter 10 is on quaternions, one of the most misunderstood and abused top-
ics in the Usenet newsgroups (in my opinion). Yes, these are mathematical in flavor,
but in fact a physical simulation benefits from using these because of the resulting
reduced memory in representing rotations and in the reduced computation time
in actually rotating or updating the equations of motion for a physical system. The
molecular dynamics folks have been using these for a really long time, so you can
find a lot of online material discussing quaternions in the context of that field,
including higher-order methods for numerically solving the quaternion differential
equation that shows up in the physical simulation. I provide the classical approach
to how quaternions relate to rotations and I provide a linear algebraic approach to
try to motivate the connection by considering rotation in four dimensions. The final
sections involve interpolation of quaternions and derivatives of time-varying quater-
nions, the latter section being related to how you derive the equation of motion for
updating orientations of rigid bodies when quaternions are used to represent the
orientations.

Chapter 11 is a brief overview of the theory of differential equations. This material
is provided for those readers who want to understand the basic theory of differential

1.2 A Summary of the Topics 11

equations relevant to physical simulation. The overview is at the level of what you
will find in an undergraduate textbook on the topic; it is intentionally limited in
scope but should give you enough of the flavor of what analysis of differential equa-
tions is all about. Numerical methods for solving differential equations (ordinary
or partial) involve finite-difference algorithms. Chapter 12 on ordinary difference
equations shows some general concepts for solving such equations. This material is
usually not presented together with a course on differential equations or on numerical
methods.

Chapter 13 is on numerical methods for solving differential equations. This is a
large chapter that shows you a vast collection of methods, including how the methods
are derived using basic mathematical principles. The methods include Euler’s method,
higher-order Taylor methods, methods obtained by an integral formulation, and the
all-popular and robust Runge–Kutta methods. These are all single-step methods that
require information only at the previous time step to generate information at the
current time step. I also discuss multistep methods that use multiple previous times
to generate information at the current step. These methods include the concept of a
predictor–corrector that attempts to provide good estimates of the solution from ones
that are less precise. Extrapolation methods are also covered, leading to the Bulirsch–
Stoer method that uses rational polynomial extrapolation to produce highly accurate
results with a minimum of computation cost. A class of methods that is very popular
now in the games arena, and has been used for a long time in molecular dynamics,
is the Verlet methods. A section of the chapter is devoted to these methods, including
the standard Verlet method, the Leap Frog method, and the Velocity Verlet method.
I also included a reasonable alternative called the Gear fifth-order predictor–corrector
method. Thus, you have a large collection of solvers, all of them implemented in the
source code on the CD-ROM that accompanies the book.

Implementing a numerical method is only half the battle. Understanding the sta-
bility of a method, how to choose an appropriate step size, and how to evaluate the
trade-offs between accuracy and computation time is the other half of the battle. Per-
haps the most important part of Chapter 13 is the section on numerical stability and
its relationship to physical stability of equilibrium solutions. You might think of this
as an irrelevant mathematical exercise, but in fact I provide a stability analysis for a
handful of methods when applied to the simple pendulum problem. This gives you
the blueprint to follow when analyzing the stability of methods for your particular
applications. The last section of the chapter discusses the problem of stiffness, another
issue related to the stability of numerical solvers.

Finally, Chapter 14 is on the topics of linear programming (LP), the linear com-
plementarity problem (LCP), and mathematical programming (MP) generally. One
application of the material is to use LCP methods to compute the distance between
points, convex polygons, and convex polyhedra. Another application is to use LCP
methods to compute resting contact forces and to use MP methods, namely con-
strained quadratic minimization, to compute impulsive contact forces at the points
of contact among a collection of interacting rigid bodies.

12 Chapter 1 Introduction

1.3 Examples and Exercises

Quite a few examples and exercises are provided in this book. The examples are
worked through in detail, of course, with some of them implemented in source code,
which is on the CD-ROM. The exercises are for you to try. They vary in difficulty. In
the first edition of the book, I marked the exercises as easy, medium, or hard. Appar-
ently my marking algorithm is no different from a random number generator, so in
the second edition I have removed the classifications. The answers to the exercises are
on the CD-ROM. I recommend that you make a significant attempt to answer the
questions before looking up the answers.

C h a p t e r 2
Basic Concepts

from Physics

In this chapter we review some of the basic concepts of physics that are relevant to the
analysis of motion and interaction of rigid bodies. A rigid body is classified accord-

ing to the type of region that contains its mass, the topic of Section 2.1. Section 2.2
introduces curves in two or three dimensions as representative paths of a particle in
the absence of forces. This topic is referred to as kinematics. The section introduces
the physical concepts of position, velocity, and acceleration. Many applications are
better handled with an appropriate choice of coordinate system. The Cartesian sys-
tem is usually convenient, but we also take a look at polar coordinates, cylindrical
coordinates, and spherical coordinates. In addition to kinematics of a single particle,
we also look into the kinematics of particle systems and of solid bodies. This material
is the foundation for the physics engines discussed in Chapter 6.

The remainder of this chapter is an introduction to the standard concepts that
you see in a course on physics, starting with Newton’s Laws of Motion in Section 2.3.
The topic of forces is discussed in Section 2.4 with specific reference to forces you will
see throughout the book in the examples: gravitational forces, spring forces, and fric-
tional forces. The closely related topics of torque and equilibrium are also covered in
the section. Various measures of momenta are discussed in Section 2.5, including lin-
ear and angular momenta, first-order moments and their relationship to the center of
mass of an object, and moments and products of inertia. The last part of Section 2.5
shows how to compute the center of mass and the inertia tensor for a solid polyhedron
of constant mass, something you will need to implement in the physics engines dis-
cussed in Chapter 6. Work and energy are the final topic of the chapter. The kinetic

© 2010 by Elsevier Inc. All rights reserved. 13
DOI: 10.1016/B978-0-12-374903-1.00002-5

14 Chapter 2 Basic Concepts from Physics

energy is an important quantity in the development of Lagrangian dynamics. The
potential energy is important when dealing with conservative forces such as gravity.

2.1 Rigid Body Classification

A rigid body is characterized by the region that its mass lives in. The simplest body
is a single particle of mass m that occupies a single location x. A particle system is a
collection of a finite number of particles, say p of them, the ith particle having mass
mi and located at xi , 1≤ i ≤ p. Single particles and particle systems are examples of
discrete material since the number of particles is finite. Various physical quantities
involve summations over the particles in a system. The standard notation is

Q total =
p∑

i=1

Qi

where Qi is some physical quantity associated with the ith particle, and Q total is the
summary quantity for all the particles. Although the equation here involves a scalar-
valued physical quantity, vector-valued quantities will be encountered as well.

Another type of body is referred to as a continuous material, consisting of infinitely
many particles that lie in a bounded region of space, denoted R. We refer to such a
rigid body as a continuum of mass. Within the category of a continuum of mass we
have a further set of classifications. The region R can be a bounded segment of a curve,
whether in one, two, or three dimensions. Mathematically we may refer to such a rigid
body as a curve mass. Physically we may call the body a wire. R can be a bounded region
in the plane (two-dimensional mass living in two dimensions) or a bounded portion
of a surface in space (two-dimensional mass living in three dimensions). Mathemat-
ically we may refer to such a rigid body as a surface mass. Physically we may call the
body a lamina or, in two dimensions, a planar lamina. Finally, R can be a solid occu-
pying a bounded region of space. Mathematically we may refer to such a body as a
volume mass. Physically we may call the body a solid.

Various physical quantities involve summations over all particles of mass in the
region. The summation notation for particle systems no longer applies and is replaced
by integration over the region. The method of integration depends on the category of
region. Generically we will use the notation

Q total =
∫
R

Q dR

where R is the region, dR is an infinitesimal portion of the region, and Q is the physi-
cal quantity of interest and can be scalar- or vector-valued. An analysis for a particular
type of rigid body, whether for mathematical purposes or for a computer implemen-
tation, must provide the specific type of integration in order to compute the integral.
For a curve mass, the integration is computed as a line integral, where the curve is

2.2 Rigid Body Kinematics 15

parameterized by a single parameter and the limits of integration depend on that
parameterization. For a surface mass in the plane, the integration is computed as a
double integral, where the limits of integration depend on how the region is repre-
sented. For a surface mass in space, the integration is via a surface integral whose
evaluation may very well involve Stokes’ theorem. For a volume mass, the integration
is computed as a triple integral, where the limits of integration depend on how the
region is represented. Throughout the book I will use the generic notation

∫
R Q dR

when presenting general physical topics. I will resort to the specific type of integration
when demonstrating the concepts with examples.

2.2 Rigid Body Kinematics

The study of motion of objects without considering the influence of external forces
is referred to as kinematics. The basics of the topic are presented in this section. We
look at the three basic types of rigid bodies: a single particle, a particle system, and
a continuum of mass. For the purposes of rigid body kinematics, the analyses for
particle systems and continuous materials are the same.

2.2.1 Single Particle

Let us focus first on the kinematics of a single particle. Although we might start
directly with the analysis of a particle moving through space, many situations arise
where the particle is constrained to moving within a plane. We start our analysis with
particle motion in the xy-plane, ignoring the z-component of the position. If the con-
straining plane is another one at some arbitrary orientation in space, basic methods
of linear algebra may be applied to represent the particle’s position with respect to
an orthonormal basis of two vectors in that plane. The ideas we present here for the
xy-plane apply directly to the coordinates within the general plane.

Whether in two or three dimensions we may choose Cartesian coordinates to
represent the particle’s position. However, some problems are better formulated in
different coordinate systems. Particle motion is first discussed in Cartesian coordi-
nates, but we also look at polar coordinates for 2D motion and at cylindrical or
spherical coordinates for 3D motion, because these coordinate systems are the most
common ones you will see in applications.

Planar Motion in Cartesian Coordinates

First let us consider when the particle motion is constrained to be planar. In Cartesian
coordinates, the position of the particle at time t is

r(t)= x(t) ı + y(t) j (2.1)

16 Chapter 2 Basic Concepts from Physics

where ı = (1, 0) and j = (0, 1). The velocity of the particle at time t is

v(t)= ṙ= ẋ ı+ ẏ j (2.2)

The dot symbol denotes differentiation with respect to t . The speed of the particle
at time t is the length of the velocity vector, |v|. If s(t) denotes the arc length mea-
sured along the curve, the speed is ṡ = |v|. The quantity ṡ = ds/dt is intuitively read as
“change in distance per change in time,” what you expect for speed. The acceleration
of the particle at time t is

a(t) = v̇= r̈= ẍ ı+ ÿ j (2.3)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector,

T(t)= v

|v| = (cos(φ(t)), sin(φ(t))) (2.4)

The right-hand side of equation (2.4) defines φ(t) and is valid since the tangent vector
is unit length. A unit-length normal vector is chosen as

N(t) = (−sin(φ(t)), cos(φ(t))) (2.5)

The normal vector is obtained by rotating the tangent vector π/2 radians counter-
clockwise in the plane. A coordinate system at a point on the curve is defined by origin
r(t) and coordinate axis directions T(t) and N(t). Figure 2.1 illustrates the coordinate
systems at a couple of points on a curve. The coordinate system {r(t); T(t), N(t)} is
called a moving frame.

T1

T2

r2

r1

N1

N2

Figure 2.1 A couple of coordinate systems at points on a curve.

2.2 Rigid Body Kinematics 17

The velocity and acceleration vectors may be represented in terms of the curve
tangent and normal. The velocity is a minor rearrangement of equation (2.4),

v= |v|T= ṡT (2.6)

The acceleration is obtained by differentiating the last equation,

a = v̇= d

dt
(ṡT)= s̈ T+ ṡ

dT

dt
= s̈ T+ ṡ2 dT

ds

Differentiating the tangent vector in equation (2.4) with respect to arc length s
produces

dT

ds
= d

ds
(cos φ, sinφ)= dφ

ds
(−sinφ, cosφ)= κN(s)

where κ = dφ/ds is the curvature of the curve at arc length s. Observe that large angu-
lar changes in the normal vector over a small length of curve equate to large curvature
values. The acceleration is therefore

a = s̈ T+ κ ṡ2N (2.7)

The component s̈T is called the tangential acceleration, the acceleration in the
direction of motion. The component κ ṡ2N is called the normal acceleration or cen-
tripetal acceleration, the acceleration that is perpendicular to the direction of motion.
Equations (2.6) and (2.7) may be used to show that the curvature is

κ = v · a⊥

|v|3 = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
(2.8)

where a⊥ = (α,β)⊥ = (β,−α).
The rate of change of the tangent vector with respect to arc length is related to the

normal vector. You might be curious about the rate of change of the normal vector
with respect to arc length. It is

dN

ds
= d

ds
(−sinφ, cos φ)= dφ

ds
(−cos φ,−sinφ)=−κT

Summarizing the s-derivatives in a formal matrix notation:⎡
⎢⎢⎣

dT

ds
dN

ds

⎤
⎥⎥⎦=

[
0 κ

−κ 0

][
T
N

]
(2.9)

Observe that the coefficient matrix is skew-symmetric, a common theme when
computing the derivatives of the vectors in a frame.

Example
2.1

Construct the various vectors and quantities mentioned earlier for a parabolic
curve r(t)= t ı+ t 2j . For simplicity of notation, we use r= (t , t 2). The velocity
is v= (1, 2t), and the speed is just the length of the velocity vector, ṡ =√1+ 4t 2.

18 Chapter 2 Basic Concepts from Physics

The magnitude of tangential acceleration is s̈ = 4t/
√

1+ 4t 2. The acceleration is
a = (0, 2). The unit-length tangent and normal vectors are

T= (1, 2t)√
1+ 4t 2

, N= (−2t , 1)√
1+ 4t 2

Finally, the curvature is κ = 2/(1+ 4t 2)3/2. ■

(Example 2.1
continued)

Planar Motion in Polar Coordinates

The particle motion may also be represented using polar coordinates. The choice of
Cartesian form versus polar form depends on your application. The position vector is
represented as a unit-length vector R= r/|r| and a distance r = |r| from the origin,

r= |r| r

|r| = rR (2.10)

Since R= r/|r| is unit length, we may write it as R = (cos θ , sinθ), where θ depends
on t . A unit-length vector perpendicular to R is P= (− sinθ , cos θ) and is obtained by
a π/2 counterclockwise rotation of R in the plane. The moving frame {r(t); R(t), P(t)}
provides an alternate coordinate system to the tangent-normal one. Figure 2.2 shows
the polar frames at points on a curve, the same curve shown in Figure 2.1.

The derivatives of the frame directions with respect to time are summarized in
formal matrix notation: [

Ṙ
Ṗ

]
=
[

0 θ̇

−θ̇ 0

][
R
P

]
(2.11)

Notice the similarity to equation (2.9).

R2

R1P1

P2

r2

r1

Figure 2.2 A polar coordinate frame at a point on a curve.

2.2 Rigid Body Kinematics 19

The velocity is represented in the polar frame by

v= ṙ= d

dt
(rR)= ṙR+ r Ṙ= ṙR+ r θ̇P (2.12)

The acceleration is represented in the polar frame by

a = v̇= r̈R+ ṙ Ṙ+ d

dt

(
r θ̇
)

P+ r θ̇ Ṗ= (r̈ − r θ̇2)R+ (r θ̈ + 2ṙ θ̇)P (2.13)

Example
2.2

Construct the various quantities for a spiral r = θ , where θ is a function of time t .
The position is r= θR = (θ cosθ ,θ sinθ), the velocity is v= θ̇R+ θθ̇P= θ̇ (cos θ −
θ sinθ , sinθ + θ cos θ), and the acceleration is a= (θ̈ − θθ̇2)R+ (θθ̈ + 2θ̇2)P=
θ̈ (cos θ − θ sinθ , sinθ + θ cos θ)+ θ̇2(−θ cosθ − 2 sinθ ,−θ sinθ + 2 cosθ). ■

Spatial Motion in Cartesian Coordinates

We now consider the spatial case. In Cartesian coordinates the position of a particle
at time t is

r(t) = x(t) ı + y(t) j + z(t) k (2.14)

where ı = (1, 0, 0), j = (0, 1, 0), and k= (0, 0, 1). The velocity of the particle at
time t is

v(t)= ṙ= ẋ ı+ ẏ j + ż k (2.15)

The speed of the particle at time t is the length of the velocity vector, |v|. If s(t) denotes
the arc length measured along the curve, the speed is ṡ = |v|. The acceleration of the
particle at time t is

a(t) = v̇= r̈= ẍ ı+ ÿ j + z̈ k (2.16)

At each point on the curve of motion we can define a unit-length tangent vector by
normalizing the velocity vector:

T(t)= v

|v| (2.17)

In 2D we had only two choices for unit-length vectors that are perpendicular to
the curve. We chose the one that is always a counterclockwise rotation from the tan-
gent vector. As long as the tangent vector is a continuous function of t (the angle φ(t)
is a continuous function), the normal vector is also a continuous function. In 3D there
are infinitely many choices for a unit-length vector perpendicular to the tangent vec-
tor, an entire circle of them in the plane that is perpendicular to T and centered at the
point on the curve. Figure 2.3 shows a curve, a tangent at a point, and the circle of
choices for the normal.

20 Chapter 2 Basic Concepts from Physics

T

N

Circle of potential normals

Figure 2.3 A curve, a tangent vector at a point, and the circle of choices for the normal vector.
The circle lies in the plane containing the point and perpendicular to the tangent.

Which one do we choose for a normal vector N? Keeping consistent with the 2D
setting, T · T= 1 because T is a unit length vector. Differentiating with respect to
the arc length parameter s yields T · dT/ds = 0, and as a result the vector dT/ds is
perpendicular to the tangent. We use this vector to define both the normal vector and
the curvature κ as a function of the arc length s,

dT

ds
= κ(s)N(s) (2.18)

The velocity satisfies equation (2.6) and the acceleration satisfies equation (2.7), the
vector quantities living in three dimensions in both cases.

The normal is a unit-length vector in the direction of dT/ds, but notice that there
are two choices for such a vector. Think of the second choice as the negative of the
first, −N(s). The curvature function that must be associated with the second choice
is the negative of the first, −κ(s), so that the product of curvature and normal still
produces dT/ds. If the curve were planar, we could resort to the two-dimensional
construction and select a normal that is a counterclockwise rotation from the tangent
within that plane. This reasoning does not apply to a nonplanar curve. The choice
of normal should be made in an attempt to maintain a continuous function N(s).
Exercise 2.1 is designed to show that it is not always possible to do this. Once a choice is
made for the normal vector, the curvature is κ =N · dT/ds. The sign of the curvature
depends on which of the two possible N was chosen.

Exercise
2.1

Consider a curve defined in two pieces. The first piece is r(t) = (t , t 3, 0) for t ≤ 0 and
the second piece is r(t)= (t , 0, t 3) for t ≥ 0. Prove that r, v, and a are continuous
at t = 0 by showing limt→0 r(t) = r(0), limt→0 v(t) = v(0), and limt→0 a(t)= a(0).
Construct the normal vectors for each piece as a function of t ; call this N(t). Prove
that limt→0− N(t) = (0, 1, 0) and limt→0+ N(t)= (0, 0, 1). Since the one-sided limits

2.2 Rigid Body Kinematics 21

have different values, N(t) is not continuous at t = 0. Changing the sign of the normal
on one piece of the curve cannot change the conclusion. ■

The acceleration vector in 3D satisfies the relationship shown in equation (2.7).
The curvature, however, is

κ = σ
|v× a|
|v|3 (2.19)

where σ is a sign parameter that is 1 or−1 and chosen, if possible, to make the normal
vector continuous. A formula for the normal vector may be derived that contains the
sign parameter,

N= σ(v× a)× v

|v× a||v| (2.20)

The tangent T and normal N only account for two of the three degrees of freedom
in space. A third unit-length vector, called the binormal vector, is defined by

B= T×N (2.21)

The coordinate system {r(t); T(t), N(t), B(t)} is a moving frame for the curve. The
binormal is perpendicular to the tangent and normal vectors, so B · T= 0 and
B · N= 0 for all t . Differentiating with respect to arc length s, we obtain

0= dB

ds
· T+B · dT

ds
= dB

ds
· T+ κB · N= dB

ds
· T

The binormal is unit length, so B · B= 1 for all t . Differentiating with respect to s and
dividing by 2, we obtain

0= B · dB

ds

The last two displayed equations show that the derivative of the binormal is
perpendicular to both T and B. It must therefore be parallel to N and represented as

dB

ds
=−τN (2.22)

for some scalar function τ , called the torsion of the curve. The choice of minus
sign is the standard convention. The curvature measures how the curve wants to
bend within the plane spanned by the tangent and normal to the curve. The torsion
measures how the curve wants to bend out of that plane.

To this point we know how the derivatives dT/ds and dB/ds relate to the tan-
gent, normal, and binormal. We may complete the set of relationships by computing
dN/ds. The normal is N= B×T. Differentiating with respect to s yields

dN

ds
= B× dT

ds
+ dB

ds
×T= κB×N− τN×T=−κT+ τB (2.23)

22 Chapter 2 Basic Concepts from Physics

Equations (2.18), (2.22), and (2.23) are called the Frenet–Serret equations for the
curve. In a formal matrix notation,⎡

⎢⎢⎢⎢⎢⎢⎣

dT

ds
dN

ds
dB

ds

⎤
⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎣ 0 κ 0
−κ 0 τ

0 −τ 0

⎤
⎦
⎡
⎣T(s)

N(s)
B(s)

⎤
⎦ (2.24)

An explicit formula for the torsion is obtained as follows. The derivative of
acceleration, sometimes called a measure of jerk is

ȧ= d

dt

(
s̈ T+ κ ṡ2N

)= (...
s − κ2 ṡ3)T+

[
d

dt

(
κ ṡ2)+ κ s̈ ṡ

]
N+ (τκ ṡ3)B

A simple calculation shows that v× a= κ ṡ3B. Consequently, v× a · ȧ = τκ2 ṡ6 =
τ |v× a|2. The torsion is

τ = v× a · ȧ

|v× a|2 (2.25)

Spatial Motion in Cylindrical Coordinates

A point (x, y , z) is represented in cylindrical coordinates as x = r cosθ , y = r sinθ ,
and z as given, where r is the distance in the xy-plane from the origin (0, 0, 0) to
(x, y , z), and z is the vertical height of the point above that plane. The angle satis-
fies θ ∈ [0, 2π). Figure 2.4 shows a typical point (x, y , z) and its related parameters
r and θ .

z

x

y
r

(x, y, z)

Figure 2.4 Cylindrical coordinates (x, y , z)= (r cos θ , r sinθ , z).

2.2 Rigid Body Kinematics 23

Using notation similar to that of planar motion in polar coordinates, a unit-length
vector in the xy-plane is R = (cos θ , sinθ , 0). A perpendicular vector in the plane is
P= (−sinθ , cosθ , 0). The vertical direction is k= (0, 0, 1). The moving frame for the
curve is {r(t); R(t), P(t), k}. The position of a point is

r= rR+ zk (2.26)

The velocity is

v= ṙ= ṙR+ r θ̇P+ żk (2.27)

The acceleration is

a = v̇= (r̈ − r θ̇2)R+ (r θ̈ + 2ṙ θ̇)P+ z̈k (2.28)

Observe that the position, velocity, and acceleration have the same R and P compo-
nents as the polar representations in two dimensions, but have additional components
in the z-direction. The time derivatives of the frame vectors are shown below in formal
matrix notation: ⎡

⎣Ṙ
Ṗ
k̇

⎤
⎦=

⎡
⎣ 0 θ̇ 0
−θ̇ 0 0

0 0 0

⎤
⎦
⎡
⎣R

P
k

⎤
⎦ (2.29)

As always, the coefficient matrix for rates of change of frame vectors is skew-
symmetric.

Exercise
2.2

Construct the position, velocity, and acceleration vectors in cylindrical coordinates
for the helix (cos(t), sin(t), t). ■

Spatial Motion in Spherical Coordinates

A point (x, y , z) is represented in spherical coordinates as x = ρ cos θ sinφ, y =
ρ sinθ sinφ, and z = ρ cos φ, where θ ∈ [0, 2π) and φ ∈ [0,π]. Figure 2.5 shows a
typical point (x, y , z) and its related parameters ρ, θ , and φ.

The position of a point is

r= ρR (2.30)

where R= (cos θ sinφ, sinθ sinφ, cosφ) is a unit-length vector. Two unit-length
vectors that are perpendicular to R are P= (−sinθ , cos θ , 0) and Q = R× P=
(−cos θ cos φ,−sinθ cosφ, sinφ). A moving frame for the curve is

{r(t); P(t), Q(t), R(t)}
The derivatives of the moving frame are shown in equation (2.31). The formal repre-
sentation in terms of vectors and matrices is intended to emphasize that the coefficient

24 Chapter 2 Basic Concepts from Physics

z

x

y

(x, y, z)

Figure 2.5 Spherical coordinates (x, y , z)= (ρ cos θ sinφ,ρ sinθ sinφ,ρ cosφ).

matrix is skew-symmetric:⎡
⎢⎣

Ṗ

Q̇

Ṙ

⎤
⎥⎦ =

⎡
⎢⎣

0 θ̇ cos φ −θ̇ sinφ

−θ̇ cos φ 0 φ̇

θ̇ sinφ −φ̇ 0

⎤
⎥⎦
⎡
⎢⎣

P

Q

R

⎤
⎥⎦ (2.31)

The proof of these equations is left as an exercise. The velocity of a point is

v= ρ̇R+ρṘ = (ρθ̇ sinφ
)

P+ (−ρφ̇
)

Q+ (ρ̇)R (2.32)

where equation (2.31) was used to replace the derivative of R. Another application of
a time derivative and equation (2.31) produces the acceleration of a point,

a= ((ρθ̈ + 2ρ̇θ̇) sinφ+ 2ρθ̇ φ̇ cos φ
)

P+ (ρ(θ̇2 sinφ cos φ− φ̈)− 2ρ̇φ̇
)

Q

+ (ρ̈−ρ(φ̇2 + θ̇2 sin2 φ)
)

R (2.33)

Exercise
2.3

Construct the position, velocity, and acceleration in spherical coordinates for the
spherical helix (cos(t), sin(t), t)/

√
1+ t 2. What happens to the helix as time increases

without bound? ■

Exercise
2.4

Verify the formulas in equation (2.31). Hint : Compute the partial derivatives with
respect to θ and φ of R, P, and Q; then use the chain rule from calculus to obtain the
time derivatives. ■

Motion About a Fixed Axis

A classic question is how to compute the position, velocity, and acceleration of a parti-
cle that is rotating about a fixed axis and is a constant distance from that axis. For the

2.2 Rigid Body Kinematics 25

sake of argument, assume that the axis is a line that contains the origin and whose
unit-length direction is D. We may choose the coordinate system so that D plays the
role of k in equation (2.26) and R(t) = (cos θ(t), sin θ(t), 0) is radial to that axis. The
3-tuple shown in Figure 2.6 is relative to a fixed coordinate system at the origin with
an orthonormal set of axes ξ , η, and D. That is, R= (cos θ)ξ + (sinθ)η. In this system,
the angular speed is σ(t) = θ̇ (t). The angular velocity is w(t) = σ(t)D. The angular
acceleration is α(t)= σ̇ (t)D. Figure 2.6 illustrates the motion.

The position for the particle in motion about the axis is

r(t)= r0R(t)+ h0D (2.34)

where r0 is the constant distance from the particle to the axis and where h0 is the
constant height above the plane D · r= 0. From equation (2.27) the velocity is

v(t) = r0σP= r0σD×R= w× r (2.35)

where we have used the facts that r0 and h0 are constants, so their derivatives are always
zero, and θ̇ = σ . This formula should be intuitive. The cross product of the axis direc-
tion and the position vector is tangent to the circle of motion. From equation (2.28)
the acceleration is

a(t) =−r0σ
2R+ r0θ̈P=−r0σ

2R+ r0σ̇ D×R=−r0σ
2R+α× r (2.36)

The vector−r0σ
2R is the centripetal acceleration of the particle. The vector α× r is the

tangential acceleration of the particle and, of course, is a vector that is tangent to the
circle of motion.

D

r(t)

R(t)

h0

r0

Figure 2.6 Motion of a particle about a fixed axis, a constant distance from the axis.

26 Chapter 2 Basic Concepts from Physics

Motion About a Moving Axis

To motivate the concept of angular velocity for a time-varying axis with unit-length
direction vector D(t), let us take a closer look at motion about a fixed axis. Equa-
tion (2.34) tells you the position of the particle that is rotating about the fixed
axis, r(t)= r0(cos(θ(t))ξ + sin(θ(t))η)+ h0D. The initial position is r0 = r(0) =
r0ξ + h0D. Positions at later times are determined by a rotation of r(t) about the
axis D by an angle θ(t), namely r(t)= R(t)r0 where R(t) is the rotation matrix cor-
responding to the specified rotation about the axis. For any vector u= (u1, u2, u3),
define the skew-symmetric matrix:

Skew(u)=
⎡
⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎦

This matrix has the property that Skew(u)r= u× r. The derivation in Chapter 10
that leads to equation (10.14) shows that the rotation matrix is

R(t) = I + (sin(θ(t)))Skew(D)+ (1− cos(θ(t)))Skew(D)2

We can also write the linear velocity as

ṙ(t) =w(t)× r(t)= Skew(w(t))r(t)

where the angular velocity is w(t)= θ̇ (t)D. Differentiating r(t)= R(t)r0 directly, we
obtain

ṙ(t)= Ṙ(t)r0 = Ṙ(t)RTRr0 = (Ṙ(t)RT)r(t) (2.37)

Equating this to the previously displayed equation, we have

Ṙ(t)RT = Skew(w(t))

or

Ṙ(t)= Skew(w(t))R(t) (2.38)

These equations tell us the rate of change of the rotation in terms of the current
rotation and the current angular velocity.

Now consider what happens if we allow the unit-length direction vector to vary
with time, D(t). The rotation matrix corresponding to this direction vector and
rotation angle θ(t) is

R(t) = I + (sin(θ(t)))Skew(D(t))+ (1− cos(θ(t)))Skew(D(t))2 (2.39)

The initial point r0 is still transformed by r(t)= R(t)r0 and the linear velocity is
still provided by equation (2.37). A rotation matrix satisfies the identity I = RRT.
Taking the time derivative, 0= ṘRT+RṘT = ṘRT+ (ṘRT)T, or (ṘRT)T =−ṘRT.
Thus, S(t) = Ṙ(t)RT(t) is a skew-symmetric matrix. We have already made this

2.2 Rigid Body Kinematics 27

observation for rotation matrices that arise in specific coordinate systems, namely
equations (2.9) and (2.29). Since S(t) is a skew-symmetric matrix, it can be written
as S(t)= Skew(w(t)).

We saw that for a fixed axis D, the angular velocity is w= θ̇D. A natural question
to ask is how the angular velocity relates to θ(t) and D(t) in the general case. We can
directly calculate this by computing Ṙ(t) for the matrix in equation (2.39) followed by
computing ṘRT. Some algebraic and trigonometric manipulations and the identity
Skew(D)3 =−Skew(D) for a unit-length vector D will lead you to

w= θ̇D+ (sinθ)Ḋ+ (cos θ − 1)Ḋ×D (2.40)

Because D is unit-length, D · Ḋ= 0, in which case Ḋ is perpendicular to D. Thus, D,
Ḋ, and Ḋ×D are mutually orthogonal. The angular velocity is a linear combination
of these three vectors.

Exercise
2.5

Prove equation (2.40) is true. ■

2.2.2 Particle Systems and Continuous Materials

In the last section we discussed the basic concepts of kinematics for a single particle.
Let us now look at the same concepts for a discrete set of particles, a particle system
so to speak, or a continuous material. In this general discussion we are not assuming
the body is rigid.

When a body moves through the world, each point in the body travels along a path
that is measured in world coordinates. At time 0, if P is a body point specified in world
coordinates, the position after time t in world coordinates is denoted X (t ;P). The
inclusion of P as an argument of the function indicates that we are thinking of many
paths, each path generated by a starting point P . By our definition, X (0;P)= P .
The world coordinates of the body points are what an observer measures when he is
standing at the world origin using a known set of directions for the world coordinate
axes. We will refer to this observer as the world observer.

We can also measure points in body coordinates. You can imagine such a coordinate
system as the one that an observer situated in the body uses to measure the location
of body points. We will refer to this observer as the body observer. The body observer
stands at a special point that we call the body origin. He also has his own view of
three coordinate axes called the body axes. The axis directions are assumed to form a
right-handed orthonormal set. The body origin and axes never change from the body
observer’s point of view, but the world observer sees these change over time.

If the world observer measures the point at X (t ;P), the body observer sees this
point relative to his origin, measuring it as a vector b(t ;P). Again the inclusion of P
as an argument indicates that there are many paths, one for each initial pointP . If the
body is rigid, then necessarily b is independent of time; its time derivative is identi-
cally zero. If C is what the world observer sees as the body origin at time 0, at time t

28 Chapter 2 Basic Concepts from Physics

he sees X (t ;C). Of course the body observer always measures this as a relative differ-
ence 0 regardless of the time t . The world observer sees the body axis directions as
orthonormal vectors measured in world coordinates; call these Ui(t) for i = 0, 1, 2.
For convenience the world coordinate vectors can be stored as the columns of a
rotation matrix R(t) = [U0(t) U1(t) U2(t)]. Figure 2.7 illustrates the two coordinate
systems, but in two dimensions to keep the diagrams simple.

The relative difference between the world point and world center is r(t ;C) =
X (t ;P)−X (t ;C) = R(t)b(t ;P). The transformation that produces the world coor-
dinates of body points at time t , given the location of points as measured by the body
observer is

X (t ;P) =X (t ;C)+ r(t ;P)= X (t ;C)+R(t)b(t ;P) (2.41)

The orientation changes are uncoupled from the translation changes.
Consider a time-varying vector written in the body coordinate system, ξ (t) =

R(t)s(t). The body coordinates s(t) vary with time because ξ (t) does. The time
derivative is

dξ

dt
= R

ds

dt
+ Ṙs= R

ds

dt
+ ṘRTξ = Dξ

Dt
+w× ξ (2.42)

where ṘRT = Skew(w) and w is the angular velocity of the body measured in world
coordinates as determined by equation (2.38). The last equality of equation (2.42)
defines

Dξ

Dt
= R(t)

ds

dt

a quantity that measures the rate of change of ξ relative to the body coordinate sys-
tem. The rate of change dξ/dt is what the world observer sees. The quantity Dξ/Dt

b(t; P)

0

X (t; C)

U1(t)

U0 (t)

X (t; PP)

r (t; P)

(a) (b)

i

Figure 2.7 (a) The body coordinate system as seen by the body observer. (b) The body coordinate
system as seen by the world observer.

2.2 Rigid Body Kinematics 29

represents the time rate of change of ξ relative to the body coordinates because ds/dt
is what the body observer measures. The body observer does not see the change w× ξ

because he is rotating with the body coordinate system.
The body origin has world velocity vcen = dX (t ;C)/dt and world acceleration

acen = dvcen/dt . Differentiating equation (2.41) with respect to time, the world
velocity vwor = dX (t ;P)/dt is

vwor = vcen+R
db

dt
+ Ṙb= vcen+ Dr

Dt
+w× r (2.43)

where w is the angular velocity of the body at time t in world coordinates. The terms
of the equation are

■ vcen, the velocity of the body origin relative to the world coordinates, sometimes
referred to as the drag velocity,

■ Dr/Dt , the velocity of P measured relative to the body coordinates, and

■ w× r, the velocity due to rotation of the frame.

The world acceleration awor = dvwor/dt is obtained by differentiating equa-
tion (2.43) with respect to time,

awor = acen+ d

dt

(
Dr

Dt

)
+ d

dt
(w× r)

The vector Dr/Dt is measured in the body coordinate system, so equation (2.42)
applies to it:

d

dt

(
Dr

Dt

)
= D

Dt

(
Dr

Dt

)
+w× Dr

Dt
= D2r

Dt 2
+w× Dr

Dt

Similarly, equation (2.42) is applied to w× r to obtain

d

dt
(w× r)= D(w× r)

Dt
+w× (w× r)=w× Dr

Dt
+ Dw

Dt
× r+w× (w× r)

Observe that Dw/Dt = dw/dt since we may apply equation (2.42) to w and use the
identity w×w= 0. The last three displayed equations combine to form an equation
for the acceleration,

awor = acen+w× (w× r)+ Dw

Dt
× r+ 2w× Dr

Dt
+ D2r

Dt 2
(2.44)

The terms of the equation are

■ acen, the translational acceleration of the body origin relative to the world coor-
dinates,

■ w× (w× r), the centripetal acceleration due to rotation of the frame,

30 Chapter 2 Basic Concepts from Physics

■ (Dw/Dt)× r, the tangential acceleration due to angular acceleration,

■ 2w× (Dr/Dt), the Coriolis acceleration, and

■ D2r/Dt 2, the acceleration of P relative to the body.

The first three terms collectively are called the drag acceleration.

Exercise
2.6

Consider a rigid sphere of radius 1 and center at 0 that rotates about its center. The
angular velocity is w(t)= (cos(t), sin(t),

√
3). Does the path of the point starting at

(0, 0, 1) ever reach this same point at a later time? If it were not to reach (0, 0, 1) again,
is there some other constant angular speed for which it will reach that point again? ■

Exercise
2.7

Consider the same rigid sphere of the preceding example, but whose angular velocity
is unknown. Suppose the path of the point starting at (0, 0, 1) is ((1− t 2)cos(πt), (1−
t 2) sin(πt), t 2)/

√
(1− t 2)2 + t 4 for t ∈ [−1, 1]. What is the angular velocity w(t)? If

r(t) is the path traversed by (1, 0, 0) over the time interval [−1, 1], then by definition
r(−1) = (1, 0, 0). What is r(1)? If you have difficulties constructing all the components
of this point, can you say something about any of the components? ■

Exercise
2.8

In the constructions of this section, the standard first-derivative operator d/dt was
applied to vector quantities. This operator has certain rules associated with it. The
operator D/Dt was introduced in this section, and I used the same rules for it.
For example, I used the rule D(A×B)/Dt = A× (DB/Dt)+ (DA/Dt)×B. What
is the relationship between d/dt and D/Dt ? Use this relationship to prove that the
differentiation rules for d/dt are equally valid for D/Dt . ■

2.3 Newton’s Laws

We have seen the concepts of position, velocity, and acceleration of a point; all are
relevant in describing the motion of an object. A key concept is inertia, the tendency
of an object in motion to remain in motion. Although we tend to think of the mass
of an object as a measure of the amount of matter making up the object, it is just as
valid to think of mass as a measure of the inertia of the object. The standard unit of
measurement for mass is a kilogram.

Another key concept is force, the general mechanism for changing the mechanical
state of an object. Empirically we know that a force is a vector quantity, so it has
a direction and a magnitude. For our purposes, forces are what lead to changes in
velocity of an object and cause objects to interact with each other. An external force
is one whose source is outside the system of interest. From experimental studies we
know that the net external force on an object causes it to accelerate in the direction of
the force. Moreover, the magnitude of the acceleration of the object is proportional
to the magnitude of the force (the larger the force, the more the object accelerates)
and inversely proportional to the mass of the object (the heavier the object, the less

2.4 Forces 31

it accelerates). The standard unit of measurement for the magnitude of a force is a
newton. One newton is the required magnitude of a force to give a one kilogram mass
an acceleration of one meter per second squared.

An introductory course to physics summarizes these concepts as a statement of
Newton’s laws of physics:

■ First Law. In the absence of external forces, an object at rest will remain at
rest. If the object is in motion and no external forces act on it, the object
remains in motion with constant velocity. (Only forces can change an object’s
motion.)

■ Second Law. For an object of constant mass over time, its acceleration a is pro-
portional to the force F and inversely proportional to the mass m of the object:
a = F/m. We normally see this written as F=ma. If the mass changes over time,
the more general statement of the law is

F= d

dt
(mv)=ma+ dm

dt
v (2.45)

where v is the velocity of the object. The quantity mv is the linear momentum of
the object. Thus, the second law states that the application of an external force on
an object causes a change in the object’s momentum over time. (An object’s path
of motion is determined from the applied forces.)

■ Third Law. If a force is exerted on one object, there is a force of equal magnitude
but opposite direction on some other body that interacts with it. (Action and
reaction always occur between interacting objects.)

The most important law for this book is the second one, although we will deal specif-
ically with constant mass. The equations of motion F=ma will be used to establish
the path of motion for an object by numerically solving the second-order differential
equations for position.

Each of the vector quantities of position, velocity, and acceleration is measured
with respect to some coordinate system. This system is referred to as the inertial
frame. If x= (x1, x2, x3) is the representation of the position in the inertial frame, the
components x1, x2, and x3 are referred to as the inertial coordinates. Although in many
cases the inertial frame is considered to be fixed (relative to the stars as it were), the
frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. In many situations it is
important to know whether the coordinate system you use is inertial or noninertial. In
particular, we will see later that kinetic energy must be measured in an inertial system.

2.4 Forces

A few general categories of forces are described here. We restrict our attention to those
forces that are used in the examples that occur throughout this book. For example,
we are not going to discuss forces associated with electromagnetic fields.

32 Chapter 2 Basic Concepts from Physics

2.4.1 Gravitational Forces

Given two point masses m and M that have gravitational interaction, they attract each
other with forces of equal magnitude but opposite direction, as indicated by Newton’s
third law. The common magnitude of the forces is

Fgravity = GmM

r 2
(2.46)

where r is the distance between the points and G
.= 6.67× 10−11 newton-meters

squared per kilogram squared. The units of G are selected, of course, so that Fgravity

has units of newtons. The constant is empirically measured and is called the universal
gravitational constant.

In the special case of the Earth represented as a single-point mass M located at the
center of the Earth and an object represented as a single-point mass m located on or
above the Earth’s surface, the gravitational force exerted on the object by the Earth is

F=−FgravityR (2.47)

where R is a unit-length vector whose direction is that of the vector from the center
of the Earth to the center of the object. In the special case when the two objects are
the Earth and the Sun, the equations of motion F=ma that represent the path the
Earth travels around the Sun may be solved in closed form to produce Kepler’s Laws.
We do so in detail in Section 2.3. Figure 2.8 shows the Earth and the forces exerted on
various objects above its surface.

Figure 2.8 Gravitational forces on objects located at various places around the Earth.

2.4 Forces 33

U

Figure 2.9 Gravitational forces on objects located nearly on the Earth’s surface, viewed as a flat
surface.

If the object does not vary much in altitude and its position does not move far
from its initial position, we can make an approximation to the equation of gravita-
tional force by assuming that the Earth’s surface is flat (a plane), at least within the
vicinity of the object, and that the direction of the gravitational force is normal to the
plane. Moreover, the distance r is approximately a constant, the radius of the Earth,
so g = GM/r 2 .= 9.81 meters per second squared is approximately a constant. If we
choose U as the unit-length upward direction (increasing altitude above the plane),
the gravitational force exerted on the object by the Earth is

F=−mg U (2.48)

Figure 2.9 shows the Earth viewed as a flat surface and the forces exerted on various
objects above it.

The weight w of the object is different from its mass, namely, w =mg , the mag-
nitude of the gravitational force exerted on the object. Astronauts of course are
weightless when in orbit, but still have the same mass as on the Earth’s surface.

2.4.2 Spring Forces

One end of a spring is attached to a fixed point. The other end is free to be pushed or
pulled in any direction. The unstretched length of the spring is L. Experiments have
shown that for small displacements � of the end of the spring, the force exerted by
the spring on the end has a magnitude proportional to |�| and a direction opposite
that of the displacement. That is, if the end of the spring is pulled away from the fixed
point, the direction of the force is towards the fixed point, and vice versa. If U is a
unit-length vector pointing in the direction from the fixed end to the free end, the
force is

F=−c�U (2.49)

34 Chapter 2 Basic Concepts from Physics

At rest

(a)

Pull

F

D > 0

Push

D < 0

F

D = 0

F = 0

(b) (c)

Figure 2.10 (a) Unstretched spring. (b) Force due to stretching the spring. (c) Force due to
compressing the string.

where c > 0 is the constant of proportionality called the spring constant. For very stiff
springs, c is large, and vice versa. This law for spring forces is known as Hooke’s Law.
The law breaks down if |�| is very large, so be careful if you have a physics application
involving springs; you might want to modify the force equation when |�| is large.
Figure 2.10 illustrates a spring that is stretched or compressed.

Hooke’s Law will be applied in upcoming examples where we think of two points
connected by an elastic line segment. This will be useful in modeling deformable
objects as a system of masses connected by elastic threads.

2.4.3 Friction and Other Dissipative Forces

A dissipative force is one for which energy of the system decreases when motion takes
place. Typically the energy is transferred out of the system by conversion to heat.
A simple model for the magnitude of a dissipative force applied to a rigid object is

Fdissipative = c |v|n (2.50)

where v is the object’s velocity, c > 0 is a scalar of proportionality, and n ≥ 0 is an inte-
ger power. In most applications you probably will choose c to be a constant, but in
general it may vary with position, for example when the underlying material on which
the object moves is not homogeneous. The value c may also vary with time. A simple
model for a dissipative force also usually includes the assumption that the direction of
the force is opposite the motion of the object, that is, in the direction−v. In our appli-
cations in this book we will consider two special types of dissipative forces, friction and
viscosity.

Friction

A frictional force between two objects in contact opposes the sliding of one (mov-
ing) object over the surface of the adjacent (nonmoving) object. The frictional force
is tangent to the surface of the adjacent object and opposite in direction to the

2.4 Forces 35

velocity of the moving object. The magnitude of the frictional force is assumed to
be proportional to the magnitude of the normal force between surfaces. It is also
assumed to be independent of the area of contact and independent of the speed of
the object once that object starts to move. These assumptions argue that n = 0 in
equation (2.50), so the frictional force is modeled as

F=
{−ck

v
|v| , v �= 0

0, v= 0

}
(2.51)

where ck is referred to as the coefficient of kinetic friction. The coefficient is the ratio
of the magnitudes of frictional force over normal force, ck = Ffriction/Fnormal, but with
the correct physical units so that the right-hand side of equation (2.51) has units of
force.

Physically the transition between the nonzero and zero force cases involves
another concept called static friction. For example, if an object is in contact with a
flat surface and initially not moving, an external force is applied to the object to make
it move. If the magnitude of the external force is sufficiently small, it is not enough
to exceed the force due to static friction. As that magnitude increases, eventually the
static friction is overcome and the object moves. At that instant the frictional force
switches from static to kinetic; that is, the first case in equation (2.51) comes into
play because the object is now moving. Another physical constant is the coefficient of
static friction, denoted cs . It is the ratio of the maximum frictional force over normal
force, cs =max(Ffriction)/Fnormal, and with the correct physical units assigned to it.
The classical experiment to illustrate the transition from the static to kinetic case is a
block of one material resting on an inclined plane of another material. Both materials
are subject to gravitational force. Figure 2.11 illustrates.

Initially the angle of incline is small enough so that the static friction force domi-
nates the gravitational force. The block remains at rest even though the plane is tilted.
As the angle of incline increases, the gravitational force exerts a stronger influence on
the block, enough so that it overcomes static friction. At that instant the block starts to
slide down the plane. When it does, the frictional force switches from static to kinetic.

(a) Static case (b) Kinetic case

g

Figure 2.11 A block in contact with an inclined plane. (a) Static friction is dominant and the
block remains at rest. (b) Gravity is dominant and the block slides, so kinetic friction
applies.

36 Chapter 2 Basic Concepts from Physics

Viscosity

A viscous force has magnitude, modeled by equation (2.50), when n = 1. The typical
occurrence of this type of force is when an object is dragged through a thick fluid. The
force is modeled to have direction opposite to that of the moving object:

F=−Fdissipative
v

|v| = −(c |v|) v

|v| = −cv (2.52)

where c > 0 is a scalar of proportionality. Unlike friction that has a discontinuity when
the speed is zero, a viscous force is continuous with respect to speed.

2.4.4 Torque

The concept of torque is one you are familiar with in everyday life. One example is
replacing a tire on an automobile. You have to remove the lug nuts with a wrench.
In order to turn a nut, you have to exert a force on the end of the wrench. The more
force you apply, the easier the nut turns. You might also have noticed that the longer
the wrench, the easier the nut turns. The ease of turning is proportional to both the
magnitude of the applied force and the length of the wrench. This product is referred
to as torque or moment of force. When you need a nut tightened, but not too much,
you can use a tool called a torque wrench that is designed to stop turning the nut if
the torque exceeds a specified amount.

The formal mathematical definition for torque applied to a single particle of mass
m is given below. Let F be the applied force. Let r be the position of the particle relative
to the origin. The torque is the quantity

τ = r× F (2.53)

In the analogy of a wrench and bolt, the bolt is located at the origin, the wrench
lies along the vector r, and the force F is what you exert on the end of the wrench.
Figure 2.12 illustrates torque due to a single force.

F

s

r

0

Figure 2.12 Torque from a force exerted on a particle.

2.4 Forces 37

Notice that F is not necessarily perpendicular to r. The applied force on the parti-
cle can be in any direction, independent of the position of the particle. The gray line
indicates the line of force for F. If the particle were on that line at a different position
s relative to the origin, the torque on it is s× F. Since r− s is a vector on the line of
force, it must be that (r− s)× F= 0. That is, r× F= s× F and the torque is the same
no matter where the particle is located along the line of force.

Two forces of equal magnitude, opposite direction, but different lines of action are
said to be a couple. Figure 2.13 shows two such forces. The torque due to the couple is
τ = (r− s)× F. The location of r and s on their respective lines is irrelevant. As you
vary r along its line, the torque does not change. Neither does the torque change when
you vary s along its line.

For a system of p particles located at positions ri with applied forces Fi for 1 ≤
i ≤ p, the torque is

τ =
p∑

i=1

ri × Fi (2.54)

If the object is a continuum of mass that occupies a region R, the torque is

τ =
∫
R

r× F dR (2.55)

where F is the applied force that varies with position r.
Important: The torque due to internal forces in an object must sum to zero. This

is an immediate consequence of Newton’s third law. The essence of the argument is
in considering two points in the object. The first point is at position r1 and exerts a
force F on the second point at position r2. The second point exerts a force−F on the
first point (Newton’s third law). The lines of force are the same, having direction F
and containing both positions r1 and r2. The total torque for the two points is r1×
F+ r2× (−F)= (r1− r2)× F= 0. The last equality is true because r1− r2 is on the
line of force.

F

–F
s

r

Figure 2.13 A force couple.

38 Chapter 2 Basic Concepts from Physics

2.4.5 Equilibrium

Forces on an object are said to be concurrent if their lines of action all pass through
a common point. If an object is a point mass, then all forces acting on the object are
concurrent, the common point being the object itself. An example of nonconcurrent
forces is a rigid rod with opposite direction forces applied at the endpoints. Figure 2.14
illustrates. The forces at the endpoints of the rod are parallel, but the lines through the
endpoints and whose directions are those of the forces do not intersect in a common
point, so those forces are not concurrent. In Figure 2.14 (c), the forces lead to a torque
about the center of the rod.

An object is said to be in equilibrium if two conditions are met. The first condition
is that the sum of all external forces acting on the object must be zero. That is, if Fi for
1 ≤ i ≤ n are the external forces, then

∑n
i=1 Fi = 0. The second condition is that the

torques on the object must sum to zero, as we see intuitively in Figure 2.14 (d). The two
endpoints have mass, but the rod connecting them is assumed to be massless. Let the

(a) Concurrent, not balanced

(c) Not concurrent, not balanced

r1

r2
F

–F

(b) Concurrent, balanced

(d) Not concurrent, balanced

r2

r1+ r2

2

r1

–2F

F

F

Figure 2.14 (a) All forces applied to a point mass are concurrent but are not balanced, so the point
moves. (b) All forces are concurrent but do balance, so the point does not move. (c)
A rigid rod with nonconcurrent forces applied to the endpoints. The forces are equal
in magnitude but opposite in direction. The rod rotates about its center. (d) Non-
concurrent forces are applied to three locations, two forces of equal magnitudes and
directions at the endpoints and one force of twice the magnitude of an endpoint force
but opposite in direction applied to the rod center. The rod is balanced and does not
rotate about its center.

2.4 Forces 39

lower endpoint be at position r1 and the upper endpoint be at position r2. Let the force
applied to the upper point be F and the force applied to the lower point be−F. We have
a force couple with total torque τ = r2× F+ r1 × (−F)= (r2− r1)× F. The torque
is a nonzero vector perpendicular to the plane of the diagram. The configuration in
Figure 2.14 is not in equilibrium even though the sum of the forces is F+ (−F)= 0.
In Figure 2.14 (d), the center point is (r1+ r2)/2. The system shown has a total torque
of zero, assuming the vectors at the endpoints are both F and the vector at the cen-
ter point (r1+ r2)/2 is −2F. The total torque is τ = r1× F+ r2× F+ (r1+ r2)/2×
(−2F)= 0. This system is in equilibrium since the forces sum to zero and the torques
sum to zero.

An important observation is that an object in equilibrium is not necessarily sta-
tionary. It is possible that the inertial frame in which the object is measured is moving
with constant velocity. However, another coordinate system may be chosen in which
the object is not moving. A simple example, to a first approximation, is the fact that
you are currently reading this book while in equilibrium sitting in your chair, even
though the Earth is rotating with an angular speed of 1,000 miles per hour! The first
approximation is that your current physical location moves along a straight line with
constant velocity, at least over a short period of time, thus making it an inertial frame.

For a single particle, the second condition for equilbrium is a consequence of the
first condition. Let the particle be located at r and let the applied forces be Fi for
1 ≤ i ≤ n. Assume that the sum of forces is zero,

∑n
i=1 Fi = 0. The total torque on the

particle is

τ =
n∑

i=1

r× Fi = r×
n∑

i=1

Fi = r× 0= 0

For a particle system whose external forces sum to zero, the total torque is not
necessarily zero, in which case the second condition for equilibrium is independent
of the first. However, it is true that the torque relative to one point is the same as the
torque relative to another. Let the particles be at positions ri for 1≤ i ≤ p. Let the

forces on particle i be F(i)
j for 1≤ j ≤ ni (the number of forces per particle may vary).

The torque relative to an origin A for a single particle subject to a single force is

(ri −A)× F(i)
j

The total torque for the particle is

ni∑
j=1

(ri −A)× F(i)
j

The total torque for the particle system, relative to origin A, is

τ A =
p∑

i=1

ni∑
j=1

(ri −A)× F(i)
j =

p∑
i=1

(ri −A)×G(i)

40 Chapter 2 Basic Concepts from Physics

where

G(i) =
ni∑

j=1

F(i)
j

is the total applied force on particle i. The total torque relative to another origin B is

τ B =
p∑

i=1

(ri −B)×G(i)

The difference is

τ A− τ B =
p∑

i=1

(B−A)×G(i) = (B−A)×
p∑

i=1

G(i) = (B−A)× 0= 0

where the G(i) summing to zero is the mathematical statement that the net force on
the particle system is zero. Thus, τ A = τ B and the torque is the same about any point.
A similar argument applies to a continuum of mass. When setting up equations of
equilibrium, it is enough to require the sum of the external forces to be zero and the
torque about a single point to be zero.

2.5 Momenta

In this section we are presented with the definitions for various physical quantities that
are relevant to understanding the motion of an object undergoing external forces. We
already saw one such quantity, torque. The first portion of this section introduces the
concepts of linear and angular momentum. The second portion covers the concept
you should be most familiar with, mass of an object. We derive formulas for com-
puting the center of mass of an object, whether it consists of a finite number of point
masses (discrete) or is a solid body (continuous). The construction of the center of
mass involves a quantity called a moment, a summation for discrete masses and an
integral for continuous masses. The third portion discusses moments and products
of inertia, a topic that is particularly important when discussing motion of a rigid
body.

2.5.1 Linear Momentum

We have already seen the concept of linear momentum in the presentation of Newton’s
second law of motion for a single particle. The linear momentum is the product

p=mv (2.56)

2.5 Momenta 41

where m is the mass of the particle and v is its velocity. The applied force and momen-
tum are related by F= dp/dt ; that is, an applied force on the particle causes a change
in its linear momentum. For a system of p particles of masses mi and velocities vi for
1 ≤ i ≤ p, the linear momentum is

p=
p∑

i=1

mi vi (2.57)

If the object is a continuum of mass that occupies a region R, the linear
momentum is

p=
∫
R

v dm=
∫
R

δv dR (2.58)

where dm = δ dR is an infinitesimal measurement of mass. The function δ is the mass
density. The density and velocity v may depend on spatial location; they cannot be
factored outside the integral. In a loose sense the integration over the region is a sum-
mation of the linear momenta of the infinitely many particles occupying that region.
You will find the trichotomy represented by the equations (2.56), (2.57), and (2.58)
throughout the rest of this book. We will consider physical systems that consist of a
single particle, of multiple particles, or of a continuum of mass.

An important physical law is the conservation of linear momentum. The law states
that if the net external force on a system of objects is zero, the linear momentum is a
constant. This law is an immediate consequence of Newton’s second law. In the single
particle case, if Fi for 1≤ i ≤ n are the external forces acting on the particle, then

0=
n∑

i=1

Fi = d(mv)

dt
= dp

dt

The derivative of p is the zero vector, which implies that p is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.

2.5.2 Angular Momentum

Linear momentum has some intuition about it. You think of it as a measure of inertia,
the tendency to remain in motion along a straight line in the absence of any external
forces. Angular momentum is less intuitive but is similar in nature. The quantity mea-
sures the tendency to continue rotating about an axis. For a single particle of mass m,
the angular momentum of that particle about the origin is

L= r× p= r×mv (2.59)

where r is the vector from the origin to the particle and v is the velocity of the par-
ticle. The angular momentum vector L is necessarily perpendicular to both r and v.
The direction of L is that of the axis of rotation at each instant of time. For a system

42 Chapter 2 Basic Concepts from Physics

of p particles of masses mi , positions ri relative to the origin, and velocities vi for
1 ≤ i ≤ p, the angular momentum is

L=
p∑

i=1

ri ×mi vi (2.60)

If the object is a continuum of mass that occupies a region R, the angular momen-
tum is

L=
∫
R

r× v dm =
∫
R

δ r× v dR (2.61)

where dm = δ dR is an infinitesimal measurement of mass. The function δ is the mass
density. The density, position r, and velocity v may depend on spatial location.

Just as force is the time derivative of linear momentum, torque is the time deriva-
tive of angular momentum. To see this, differentiate equation (2.59) with respect to
time:

dL

dt
= dr× p

dt
From equation (2.59)

= r× dp

dt
+ dr

dt
× p Using the chain rule

= r× F From Newton’s Second Law and v× v= 0

= τ From equation (2.53)

(2.62)

Similar constructions may be applied to the pair of equations (2.60) and (2.54) or to
the pair (2.61) and (2.55).

Another important physical law is the conservation of angular momentum. The
law states that if the net external torque on a system of objects is zero, the angular
momentum is a constant. The proof is similar to that of the conservation of linear
momentum. In the single-particle case, if Fi for 1≤ i ≤ n are the external forces acting
on the particle, then

dL

dt
=

n∑
i=1

r× Fi = r×
n∑

i=1

Fi = r× 0= 0

The derivative of L is the zero vector, which implies that L is a constant. Similar
arguments apply in the cases of a discrete system and of a continuous system.

2.5.3 Center of Mass

In many mechanical systems, each object can behave as if its mass is concentrated at
a single point. The location of this point is called the center of mass of the object. This
section shows how to define and compute the center of mass in one, two, and three
dimensions, both for discrete sets of points and continuous materials.

2.5 Momenta 43

Discrete Mass in One Dimension

Consider two masses m1 and m2 on the x-axis at positions x1 and x2. The line segment
connecting the two points is assumed to have negligible mass. Gravity is assumed to
exert itself in the downward direction. You can imagine this system as a child’s seesaw
that consists of a wooden plank, a supporting base placed somewhere between the
ends of the plank, and two children providing the masses at the ends. Figure 2.15
illustrates the system. The supporting base is drawn as a wedge whose uppermost
vertex is positioned at x̄.

If we select x̄ = x1, clearly the system is not balanced because the torque induced
by the mass m2 will cause that mass to fall to the ground. Similarly, the system is not
balanced for x̄ = x2. Your intuition should tell you that there is a proper choice of x̄
between x1 and x2 at which the system is balanced. If m1 =m2, the symmetry of the
situation suggests that x̄ = (x1 + x2)/2, the midpoint of the line segment. For differ-
ent masses, the choice of x̄ is not immediately clear, but we can rely on equilibrium of
forces to help us. The force on mass mi due to gravity g is mig . The torque for mass
mi about the position x̄ is mi g (xi − x̄). For the system to balance at x̄ , the total torque
must be zero,

0=m1g (x1− x̄)+m2g (x2 − x̄)= g [(m1x1+m2x2)− (m1 +m2)x̄]

The solution to the equation is

x̄ = m1x1+m2x2

m1 +m2
= m1

m1+m2
x1+ m2

m1 +m2
x2 = w1x1 +w2x2 (2.63)

which is a weighted average of the positions of the masses called the center of mass. If
m1 is larger than m2, your intuition should tell you that the center of mass should be
closer to x1 than to x2. The coefficient of x1, w1 =m1/(m1 +m2), is larger than the
coefficient of x2, w2 =m2/(m1+m2), so in fact the center of mass is closer to x1, as
expected.

A similar formula is derived for the center of mass x̄ of p masses m1 through mp

located at positions x1 through xp . The total torque is zero,
∑p

i=1 mi g (xi − x̄)= 0,

x1 x

m1

x2

m2

Figure 2.15 Balancing discrete masses on a line. The center of mass for two masses viewed as the
balance point for a seesaw on a fulcrum.

44 Chapter 2 Basic Concepts from Physics

the solution being

x̄ =
∑p

i=1 mi xi∑p
i=1 mi

=
p∑

i=1

mi∑p
j=1 mj

xi =
p∑

i=1

wi xi (2.64)

The sum
∑p

i=1 mi is the total mass of the system and the sum
∑p

i=1 mi xi is the moment
of the system about the origin.

Continuous Mass in One Dimension

The center of mass for a discrete set of masses was simple enough to compute. All you
need are the masses themselves and their locations on the x-axis. However, you might
very well be interested in computing the center of mass for a wire of finite length. Let
us assume that the endpoints of the wire are located at a and b, with a < b. The wire
consists of a continuum of particles, infinitely many so to speak. Each particle has
an infinitesimal amount of mass – call this dm – and is located at some position x.
The infinitesimal mass is distributed over an infinitesimal interval of length dx. The
mass values can vary over this interval, so we need to know the mass density δ(x)

at each point x. The units of density are mass per unit length, from which it follows
dm = δ(x)dx. Figure 2.16 is the continuous analogy of Figure 2.15. The gray levels
are intended to illustrate varying density, dark levels for large density and light levels
for small density.

The infinitesimal force due to gravity is g dm and the infinitesimal torque about
a position x̄ is (x − x̄)g dm. For x̄ to be the center of mass, the total torque must be
zero. You should recognize this as a problem suited for calculus. The summation that
occurred for discrete point sets is replaced by integration for a continuum of points.
The equilibrium condition for torque is

b∫
a

(x − x̄) g dm = g

b∫
a

(x − x̄)δ(x) dx = 0

x
x

(x)

Figure 2.16 Balancing continuous masses on a line. The center of mass for the wire is viewed as the
balance point for a seesaw on a fulcrum. A general point location x is shown, labeled
with its corresponding mass density δ(x).

2.5 Momenta 45

This equation can be solved to produce the center of mass:

x̄ =
∫ b

a xδ(x) dx∫ b
a δ(x) dx

(2.65)

The integral
∫ b

a δ dx is the total mass of the system and the integral
∫ b

a xδ dx is the
moment of the system about the origin. If the density of the system is constant, say
δ(x) = c for all x, equation (2.65) reduces to

x̄ =
∫ b

a xc dx∫ b
a c dx

=
∫ b

a x dx∫ b
a dx

= (b2− a2)/2

b− a
= b+ a

2

As expected, the center of mass for a constant density wire is situated at the midpoint
of the wire.

Discrete Mass in Two Dimensions

The extension of the computation of center of mass from one to two dimensions is
straightforward. Let the p masses be mi and located at (xi , yi) for 1 ≤ i ≤ p. Imagine
these lying on a thin, massless plate. Gravity is assumed to exert itself in the down-
ward direction; the magnitude of the force is g . The center of mass is the point (x̄, ȳ),
such that the plate balances when placed on a support at that location. Figure 2.17
illustrates this.

The gravitational force exerted on each mass is mig . The torque about (x̄ , ȳ) is
mi g (xi − x̄ , yi − ȳ). The total torque must be the zero vector,

p∑
i=1

mi g (xi − x̄ , yi − ȳ)= (0, 0)

Figure 2.17 Balancing discrete masses in a plane.

46 Chapter 2 Basic Concepts from Physics

x

y

Figure 2.18 Balancing discrete masses in a plane on a fulcrum.

The equation is easily solved to produce the center of mass:

(x̄ , ȳ)=
∑p

i=1 mi(xi , yi)∑p
i=1 mi

=
(∑p

i=1 mi xi∑p
i=1 mi

,

∑p
i=1 mi yi∑p

i=1 mi

)
(2.66)

The sum m =∑p
i=1 mi is the total mass of the system. The sum My =∑p

i=1 mi xi is the

moment of the system about the y-axis and the sum Mx =∑p
i=1 mi yi is the moment of

the system about the x-axis.
The center of mass formula has some interesting interpretations. First, observe

that if you look only at the x-components of the mass locations (i.e., project the
masses onto the x-axis), x̄ is the center of mass of the projected points. Similarly, ȳ is
the center of mass of the points projected onto the y-axis. Second, observe that the
thin, massless plate containing the masses balances when placed on a fulcrum whose
top edge contains the center of mass and is parallel to either of the coordinate axes.
Figure 2.18 illustrates this.

Exercise
2.9

Show that the plate balances on a fulcrum containing the center of mass regardless of
the fulcrum’s orientation. ■

Continuous Mass in Two Dimensions

Now let us consider the case of a continuum of mass that lies in a bounded region
R in the xy-plane. As in the one-dimensional case, each point in the region has an
associated infinitesimal mass, dm. The mass is distributed over an infinitesimal rect-
angle of size dx by dy and having area dA= dx dy , the distribution represented by a
density function δ(x, y) with units of mass per unit area. Thus, the infinitesimal mass
is dm= δ dA = δ dx dy . Figure 2.19 illustrates.

2.5 Momenta 47

Figure 2.19 Balancing continuous masses in a plane. The shades of gray indicate variable mass
density.

The infinitesimal torque relative to a location (x̄ , ȳ) is (x − x̄ , y − ȳ)g dm. The
equilibrium condition is ∫ ∫

R

(x − x̄, y − ȳ)g dm= 0

The center of mass is obtained by solving this equation:

(x̄ , ȳ)=
∫∫

R(x, y)δ(x, y) dx dy∫∫
R δ(x, y) dx dy

=
(∫∫

R x δ(x, y) dx dy∫∫
R δ(x, y) dx dy

,

∫∫
R y δ(x, y) dx dy∫∫
R δ(x, y) dx dy

)
(2.67)

The integral m = ∫∫R δ dx dy is the total mass of the system. The integral My =∫∫
R xδ dx dy is the moment of the system about the y-axis and the integral Mx =∫∫
R yδ dx dy is the moment of the system about the x-axis.

Example
2.3

Consider the region R bounded by the parabola y = x2 and the line y = 1. Let the
mass density be constant, δ(x, y)= 1 for all (x, y). Figure 2.20 shows the region.

Your intuition should tell you that the center of mass must lie on the y-axis, x̄ = 0,
and the value ȳ should be closer to y = 1 than it is to y = 0. The total mass of the
system is

m =
∫ ∫

R

dy dx =
1∫

−1

1∫
x2

dy dx =
1∫

−1

1− x2 dx = 4

3

The moment about the y-axis is

My =
∫ ∫

R

x dy dx =
1∫

−1

1∫
x2

x dy dx =
1∫

−1

x(1− x2) dx = x2

2
− x4

4

∣∣∣∣
1

−1
= 0

48 Chapter 2 Basic Concepts from Physics

y 5 1

y

y 5 x2

x

Figure 2.20 A continuous mass bounded by a parabola and a line.

The moment about the x-axis is

Mx =
∫ ∫

R

y dy dx =
1∫

−1

1∫
x2

y dy dx =
1∫

−1

1− x4

2
dx = 4

5

The center of mass is therefore (x̄ , ȳ)= (My , Mx)/m = (0, 3/5). As predicted, the
center of mass is on the y-axis and is closer to y = 1 than to y = 0. ■

(Example 2.3
continued)

In many situations the continuous mass is in a bounded region with positive area.
But we must also consider the case where the mass is distributed along a curve. The
typical physical example is one of computing the center of mass of a planar wire whose
mass density varies with arc length along the wire. Let the curve be continuously
differentiable and specified parametrically by (x(t), y(t)) for t ∈ [a, b]. In terms of
arc length s, the mass density is δ̄(s). In terms of the curve parameter, it is spec-
ified parametrically as δ(t). The infinitesimal mass at the position corresponding
to t is distributed over an infinitesimal arc length ds of the wire. The infinitesi-
mal mass is dm= δ(t) ds, where ds =√ẋ2+ ẏ2 dt for parametric curves (again, the
dot symbol denotes differentiation with respect to t). The total mass of the wire is
therefore

m =
L∫

0

δ̄(s) ds =
b∫

a

δ(t)
√

ẋ2+ ẏ2 dt

where s is the arc length parameter and L is the total length of the curve. The rightmost
integral is the formulation in terms of the curve parameter, making it the integral that
is actually evaluated. The moment about the y-axis is

My =
L∫

0

x δ̄(s) ds =
b∫

a

x(t)δ(t)
√

ẋ2+ ẏ2 dt

2.5 Momenta 49

and the moment about the x-axis is

Mx =
L∫

0

y δ̄(s) ds =
b∫

a

y(t)δ(t)
√

ẋ2+ ẏ2 dt

The center of mass is

(x̄ , ȳ)= (My , Mx)

m
=
(∫ b

a x(t)δ(t)
√

ẋ2 + ẏ2 dt ,
∫ b

a y(t)δ(t)
√

ẋ2 + ẏ2 dt
)

∫ b
a δ(t)

√
ẋ2+ ẏ2 dt

(2.68)

Example
2.4

Compute the center of mass for a wire of constant density 1 and that lies on the
hemicircle x2+ y2 = 1 for y ≥ 0, as shown in Figure 2.21.

y

x

Figure 2.21 A continuous mass in the shape of a hemicircle.

By symmetry, the center of mass should lie on the y-axis, x̄ = 0, so let us calculate
only the value for ȳ . The curve is parameterized by (x(t), y(t)) = (cos(t), sin(t)) for
t ∈ [0,π]. The derivative of the curve is (x ′(t), y ′(t)) = (−sin(t), cos(t)). The total
mass is

m =
π∫

0

√
ẋ2+ ẏ2 dt =

π∫
0

dt = π

The length of the hemicircle is π units of distance, but keep in mind that the units of
mass are not distance. The moment about the x-axis is

Mx =
π∫

0

y(t)
√

ẋ2 + ẏ2 dt =
π∫

0

sin(t) dt = 2

The y-value for the center of mass is therefore ȳ =Mx /m= 2/π
.= 0.64. The center

of mass is clearly not on the wire itself. If the wire were to be placed on a thin, massless
plate, the balancing point for the plate and wire would be at (0, 2/π). ■

50 Chapter 2 Basic Concepts from Physics

Exercise
2.10

Show that the center of mass for the half-disk x2 + y2 ≤ 1, with y ≥ 0, has x̄ = 0 and
ȳ = 4/(3π)

.= 0.42. The y-value is smaller than that of the wire, as is to be expected
because the additional mass inside the hemicircle should bias the y-value toward the
origin. ■

Discrete Mass in Three Dimensions

Let the p masses be mi and located at (xi , yi , zi) for 1≤ i ≤ p. Imagine these lying
within a massless gel. Gravity is assumed to exert itself in the downward direction;
the magnitude of the force is g . The center of mass is the point (x̄, ȳ , z̄), such that
the gel balances when a support is embedded at that location. The gravitational force
exerted on each mass is mi g . The torque about (x̄ , ȳ , z̄) is mi g (xi − x̄ , yi − ȳ , zi − z̄).
The total torque must be the zero vector,

p∑
i=1

mi g (xi − x̄ , yi − ȳ , zi − z̄)= (0, 0, 0)

The equation is easily solved to produce the center of mass:

(x̄ , ȳ , z̄)=
∑p

i=1 mi(xi , yi , zi)∑p
i=1 mi

=
(∑p

i=1 mi xi∑p
i=1 mi

,

∑p
i=1 miyi∑p

i=1 mi

,

∑p
i=1 mizi∑p
i=1 mi

)
(2.69)

The sum m =∑p
i=1 mi is the total mass of the system. The sum Myz =∑p

i=1 mixi is

the moment of the system about the yz-plane, the sum Mxz =∑p
i=1 mi yi is the moment

of the system about the xz-plane, and the sum Mxy =∑p
i=1 mi zi is the moment of the

system about the xy-plane.

Continuous Mass in Three Dimensions

We have three different possibilities to consider. The mass can be situated in a
bounded volume, on a surface, or along a curve.

Volume Mass

In the case of a bounded volume V , the infinitesimal mass dm at (x, y , z) is distributed
in an infinitesimal cube with dimensions dx, dy , and dz and volume dV = dx dy dz .
The density of the distribution is δ(x, y , z), so the infinitesimal mass is dm = δ dV =
δ dx dy dz . The total torque is the zero vector,∫ ∫ ∫

V

(x − x̄ , y − ȳ , z− z̄)g dm = 0

2.5 Momenta 51

The center of mass is obtained by solving this equation:

(x̄ , ȳ , z̄)=
∫∫∫

V (x, y , z)δ dx dy dz∫∫∫
V δ dx dy dz

=
(∫∫∫

V x δ dx dy dz∫∫∫
V δ dx dy dz

,

∫∫∫
V y δ dx dy dz∫∫∫
V δ dx dy dz

,

∫∫∫
V z δ dx dy dz∫∫∫
V δ dx dy dz

) (2.70)

The integral m = ∫∫∫V δ dx dy dz is the total mass of the system. The integral Myz =∫∫∫
V xδ dx dy dz is the moment of the system about the yz-plane, the integral Mxz =∫∫∫
V yδ dx dy dz is the moment of the system about the xz-plane, and the integral

Mxy =
∫∫∫

V zδ dx dy dz is the moment of the system about the xy-plane.

Example
2.5

Compute the center of mass of the solid hemisphere x2+ y2 + z2 ≤ 1, with z ≥ 0,
assuming the density is a constant δ ≡ 1. From the symmetry, we know that x̄ = ȳ = 0.
The numerical value of the total mass should be the same as the volume of the hemi-
sphere, m = 2π/3. Let us verify that anyway. The mass integral is computed using a
change to spherical coordinates:

m =
∫ ∫ ∫

V

dx dy dz

=
π/2∫
0

1∫
0

2π∫
0

ρ2 sinφ dθ dρ dφ

=
⎛
⎝ π/2∫

0

sinφ dφ

⎞
⎠
⎛
⎝ 1∫

0

ρ2 dρ

⎞
⎠
⎛
⎝ 2π∫

0

dθ

⎞
⎠

= (1)(1/3)(2π)

= 2π/3

The moment about the xy-plane is

Mxy =
∫ ∫ ∫

V

z dx dy dz

=
π/2∫
0

1∫
0

2π∫
0

(ρ cos φ)ρ2 sinφ dθ dρ dφ

=
⎛
⎝ π/2∫

0

sinφ cosφ dφ

⎞
⎠
⎛
⎝ 1∫

0

ρ3 dρ

⎞
⎠
⎛
⎝ 2π∫

0

dθ

⎞
⎠

= (1/2)(1/4)(2π)

= π/4

52 Chapter 2 Basic Concepts from Physics

(Example 2.5
continued)

The z-value of the center of mass is z̄ =Mxy /m= 3/8= 0.375. As you might have
predicted, the point is closer to the xy-plane than to the pole of the hemisphere. ■

Surface Mass

In the case of a bounded surface S, the infinitesimal mass dm at (x, y , z) is distributed
in an infinitesimal surface area dS. The representation of dS depends on how the
surface is defined. If the surface is the graph of the function z = f (x, y), then

dS =
√

1+
(

∂f

∂x

)2

+
(

∂f

∂y

)2

dx dy

If the surface is defined parametrically as P(u, v)= (x(u, v), y(u, v), z(u, v)), then

dS =
∣∣∣∣∂P

∂u
× ∂P

∂v

∣∣∣∣ du dv

The density of the distribution is δ and is assumed to be a function defined at each
point on the surface. Solving the equilibrium equation for torque, the center of mass
for the surface is

(x̄ , ȳ , z̄)=
∫∫

S(x, y , z)δ dS∫∫
S δ dS

=
(∫∫

S x δ dS∫∫
S δ dS

,

∫∫
S y δ dS∫∫
S δ dS

,

∫∫
S z δ dS∫∫
S δ dS

)
(2.71)

where the integration is performed over the two-dimensional surface (hence, the use
of double integrals). The integral m = ∫∫S δ dS is the total mass of the system. The
integral Myz =

∫∫
S xδ dS is the moment of the system about the yz-plane ; the integral

Mxz =
∫∫

S yδ dS is the moment of the system about the xz-plane ; and the integral
Mxy =

∫∫
S zδ dS is the moment of the system about the xy-plane.

Example
2.6

Compute the center of mass of the hemisphere x2+ y2 + z2 = 1, with z ≥ 0, assum-
ing the density is a constant δ ≡ 1. From the symmetry, we know that x̄ = ȳ = 0. The
numerical value of the total mass should be the same as the area of the hemisphere,
m = 2π . The mass integral is computed using a change to spherical coordinates with
δ = 1:

m =
∫ ∫

S

dS

=
π/2∫
0

2π∫
0

sinφ dθ dφ

=
⎛
⎝ π/2∫

0

sinφ dφ

⎞
⎠
⎛
⎝ 2π∫

0

dθ

⎞
⎠

= 2π

2.5 Momenta 53

The moment about the xy-plane is

Mxy =
∫ ∫

S

z dS

=
π/2∫
0

2π∫
0

(cos φ) sinφ dθ dφ

=
⎛
⎝ π/2∫

0

sinφ cosφ dφ

⎞
⎠
⎛
⎝ 2π∫

0

dθ

⎞
⎠

= π

The z-value of the center of mass is z̄ =Mxy /m= 1/2= 0.5. This value is closer to
the pole than its counterpart for the solid hemisphere, as expected. ■

(Example 2.6
continued)

Curve Mass

Last of all, suppose that the continuous material is a wire that consists of mass
distributed along a curve in three dimensions. Let the curve be continuously differ-
entiable and specified parametrically by (x(t), y(t), z(t)) for t ∈ [a, b]. In terms of
arc length, s, the mass density is δ̄(s). In terms of the curve parameter, it is speci-
fied parametrically as δ(t). The infinitesimal mass at the position corresponding to t
is distributed over an infinitesimal arc length ds of the wire. The infinitesimal mass
is dm = δ(t) ds, where ds =√ẋ2+ ẏ2 + ż2 dt for parametric curves in space; the dot
symbol denotes differentiation with respect to t . The total mass of the wire is therefore

m =
L∫

0

δ̄(s) ds =
b∫

a

δ(t)
√

ẋ2+ ẏ2 + ż2 dt

where s is the arc length parameter and L is the total length of the curve. The right-
most integral is the formulation in terms of the curve parameter, making it the integral
that is actually evaluated. The moment about the yz-plane is

Myz =
L∫

0

x δ̄(s) ds =
b∫

a

x(t)δ(t)
√

ẋ2 + ẏ2+ ż2 dt

the moment about the xz-plane is

Mxz =
L∫

0

y δ̄(s) ds =
b∫

a

y(t)δ(t)
√

ẋ2 + ẏ2 + ż2 dt

and the moment about the xy-plane is

Mxy =
L∫

0

z δ̄(s) ds =
b∫

a

z(t)δ(t)
√

ẋ2+ ẏ2 + ż2 dt

54 Chapter 2 Basic Concepts from Physics

The center of mass is

(x̄ , ȳ , z̄)= (Myz , Mxz , Mxy)

m
=
∫ b

a (x(t), y(t), z(t)) δ(t)
√

ẋ2 + ẏ2 + ż2 dt∫ b
a δ(t)

√
ẋ2+ ẏ2 + ż2 dt

(2.72)

Example
2.7

Compute the center of mass of a constant density wire in the shape of a helix,
(x(t), y(t), z(t)) = (cos t , sin t , t 2/2) for t ∈ [0, 2π]. For simplicity, set the density
to 1. The mass of the wire is

m =
2π∫

0

√
ẋ2+ ẏ2 + ż2 dt

=
2π∫

0

√
1+ t 2 dt

= 1

2

(
t
√

1+ t 2 + ln(t +
√

1+ t 2)
)∣∣∣∣2π

0

= 2π
√

1+ 4π2+ ln(2π +√1+ 4π2)

2
.= 21.2563

The moment about the yz-plane is

Myz =
2π∫

0

x(t)
√

ẋ2 + ẏ2+ ż2 dt =
2π∫

0

(cos t)
√

1+ t 2 dt
.= 0.386983

This integral cannot be evaluated in terms of elementary functions. A numerical
integration leads to the approximation shown in the equation. Similarly,

Mxz =
2π∫

0

y(t)
√

ẋ2 + ẏ2+ ż2 dt =
2π∫

0

(sin t)
√

1+ t 2 dt
.=−5.82756

The last moment can be calculated in closed form and is

Mxy =
2π∫

0

z(t)
√

ẋ2 + ẏ2 + ż2 dt =
2π∫

0

t 2

2

√
1+ t 2 dt

.= 199.610

The center of mass is

(x̄, ȳ , z̄)= (Myz , Mxz , Mxy)/m
.= (0.018206,−0.274157, 9.390627)

■

2.5 Momenta 55

2.5.4 Moments and Products of Inertia

Another moment quantity of physical significance is moment of inertia. This is a mea-
sure of the rotational inertia of a body about an axis. The more difficult it is to set the
object into rotation, the larger the moment of inertia about that axis. Intuitively this
happens if the object’s mass is large or if its distance from the axis is large. Empirical
studies for a single particle show that the moment of inertia is mr 2, where m is the
mass of the particle and r is its distance to the axis. For completeness, we also look at
the one- and two-dimensional problems and define moment of inertia with respect
to a point, because there is no concept of rotation about a line in those dimensions.

Moment of Inertia in One Dimension

Given a discrete set of p particles with masses mi and located on the real line at posi-
tions xi , the total mass is m =∑p

i=1 mi . The moment with respect to the origin x = 0

is M0 =∑p
i=1 mi xi . This quantity showed up when computing the center of mass

x̄ =∑p
i=1 mi xi/

∑p
i=1 mi =M0/m. The motivation for x̄ is that it is the location for

which
∑p

i=1 mi(xi − x̄)= 0. The quantities
∑p

i=1 mi and
∑p

i=1 mi xi are special cases

of
∑p

i=1 mi xk
i , where k = 0 for the mass and k = 1 for the moment. The special case

k = 2 has great physical significance itself. The quantity

I0 =
p∑

i=1

mix
2
i (2.73)

is referred to as the moment of inertia with respect to the origin of the real line. The
moment of inertia with respect to the center of mass is

I =
p∑

i=1

mi(xi − x̄)2 = I0−mx̄2
(2.74)

For a continuous mass located on the interval [a, b] of the real line and with mass
density δ(x), the total mass is m = ∫ b

a δ(x)dx and the moment about the origin is

M0 =
∫ b

a xδ(x)dx. The center of mass is x̄ =M0/m. The moment of inertia with
respect to the origin is

I0 =
b∫

a

x2δ(x)dx
(2.75)

and the moment of inertia with respect to the center of mass is

I =
b∫

a

(x − x̄)2δ(x)dx = I0−mx̄2

(2.76)

with the right-hand side occurring just as in the discrete case.

56 Chapter 2 Basic Concepts from Physics

Moment of Inertia in Two Dimensions

Given a discrete set of p particles with masses mi and located in the plane at positions
(xi , yi), the total mass is m =∑p

i=1 mi . The moment with respect to the y-axis was

defined as My =∑p
i=1 mi xi , and the moment with respect to the x-axis was defined

as Mx =∑p
i=1 mi yi . The center of mass is (x̄ , ȳ)= (My /m, Mx/m). We define the

moment of inertia with respect to the origin as

I0 =
p∑

i=1

mi(x
2
i + y2

i) (2.77)

The moment of inertia with respect to the center of mass is

I =
p∑

i=1

mi
∣∣(xi , yi)− (x̄ , ȳ)

∣∣2 = I0−m(x̄2 + ȳ2) (2.78)

For a continuous mass located in the region R of the plane and having mass density
δ(x, y), the total mass is m = ∫∫R δ(x, y) dx dy and the moments with respect to the
y- and x-axes are My =

∫∫
R xδ(x, y) dx dy and Mx =

∫∫
R yδ(x, y) dx dy . The center

of mass is (x̄ , ȳ)= (My /m, Mx /m). The moment of inertia with respect to the origin is

I0 =
∫ ∫

R

(x2 + y2)δ(x, y) dx dy (2.79)

and the moment of inertia with respect to the center of mass is

I =
∫ ∫

R

((x − x̄)2 + (y − ȳ)2)δ(x, y) dx dy = I0−m(x̄2 + ȳ2) (2.80)

with the right-hand side occurring just as in the discrete case.

Moment of Inertia in Three Dimensions

Of course the interesting case is in three dimensions. We could easily define a moment
of inertia relative to a point, just as we did in one and two dimensions. However,
keeping in mind that we are interested mainly in the motion of rigid bodies, if one
point on the body rotates about a line (even if only instantaneously), then all other
points rotate about that same line. In this sense it is more meaningful to define a
moment of inertia relative to a line.

Given an origin O and a discrete set of p particles with masses mi located at ri =
(xi , yi , zi) relative to O, the total mass is m =∑p

i=1 mi . The moments with respect to

2.5 Momenta 57

the xy-, xz-, and yz-planes were defined, respectively, as

Mxy =
p∑

i=1

mizi , Mxz =
p∑

i=1

mi yi , and Myz =
p∑

i=1

mi xi

The center of mass is

(x̄ , ȳ , z̄)= (Myz /m, Mxz /m, Mxy /m)

The moments of inertia about the x-, y-, and z-axes are, respectively,

Ixx =
p∑

i=1

mi(y
2
i + z2

i), Iyy =
p∑

i=1

mi(x
2
i + z2

i), and Izz =
p∑

i=1

mi(x
2
i + y2

i) (2.81)

The moment of inertia about a line L through O, given parametrically as O+ t D
with unit-length direction vector D = (d1, d2, d3), is the sum of mi r 2

i , where ri is the
distance from ri to the line, or

IL =
p∑

i=1

mi
(|ri|2− (D · ri)

2)

= d2
1

p∑
i=1

mi(y
2
i + z2

i)+ d2
2

p∑
i=1

mi(x
2
i + z2

i)+ d2
3

p∑
i=1

mi(x
2
i + y2

i) (2.82)

− 2d1d2

p∑
i=1

mixi yi − 2d1d3

p∑
i=1

mi xizi − 2d2d3

p∑
i=1

mi yizi

= d2
1 Ixx + d2

2 Iyy + d2
3 Izz − 2d1d2Ixy − 2d1d3Ixz − 2d2d3Iyz

where the first three terms contain the moments of inertia about the coordinate axes,
and the last three terms have newly defined quantities called the products of inertia,

Ixy =
p∑

i=1

mixi yi , Ixz =
p∑

i=1

mi xizi , and Iyz =
p∑

i=1

mi yi zi (2.83)

Equation (2.82) may be written in matrix form as

IL = DT

⎡
⎣ Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤
⎦D=: DTJ D (2.84)

58 Chapter 2 Basic Concepts from Physics

where the last equality defines the symmetric matrix J , called the inertia tensor or mass
matrix,

J =
⎡
⎢⎣

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤
⎥⎦ (2.85)

Moments and products of inertia are similar for a continuum of mass occupying
a region R. The moments of inertia are

Ixx =
∫
R

y2+ z2 dm, Iyy =
∫
R

x2+ z2 dm, Izz =
∫
R

x2+ y2 dm (2.86)

and the products of inertia are

Ixy =
∫
R

xy dm, Ixz =
∫
R

xz dm, Iyz =
∫
R

yz dm (2.87)

Equation (2.84) is the same whether the mass is discrete or continuous.
The reason for the use of the term mass matrix is clear by considering a single

particle of mass m, located at r relative to the origin, and that rotates about a fixed
axis. As indicated by equations (2.34), (2.35), and (2.36), the position is r= (x, y , z);
the velocity is v=w× r, where w is the angular velocity; and the acceleration is a =
−r0σ

2R+α× r, where σ is the angular speed and α is the angular acceleration. The
angular momentum is

L= r×mv=mr× (w× r)=m(|r|2I − rrT)w = J w (2.88)

where the inertia tensor for a single particle is

J =m
(|r|2I − rrT

)=m

⎡
⎣ y2+ z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2+ y2

⎤
⎦

Notice the similarity of the angular momentum equation L= J w to the linear
momentum equation p=mv. The coefficient of linear velocity in the latter equation
is the mass m. The coefficient of angular velocity in the former equation is the mass
matrix J . Similarly, the torque is

τ = r×ma =mr× (−σ 2r+α× r)=mr× (α× r)=m(|r|2I − rrT)α = Jα
(2.89)

Notice the similarity of the torque equation τ = Jα to Newton’s second law,
F=ma. The coefficient of linear acceleration in Newton’s second law is the mass
m, whereas the coefficient of angular acceleration in the torque equation is the mass
matrix J . Equations (2.88) and (2.89) apply as well to particle systems and continuous
mass, where the world and body origins coincide.

2.5 Momenta 59

Equation (2.84) is a quadratic form that has a maximum and a minimum, both
eigenvalues of the matrix J . From linear algebra (see [Str88] for example or see
Chapter 7), a scalar λ is an eigenvalue of J with a corresponding eigenvector V �= 0,
such that J V = λV. The intuition, at least for real-valued eigenvalues, is that the vec-
tor V has only its length changed by J but not its direction. The unit-length directions
D that generate the extreme values are eigenvectors corresponding to the eigenvalues.
Using techniques from linear algebra and matrix theory, we can factor J using an
eigendecomposition, J = RMRT, where M = Diag(μ1,μ2,μ3) is a diagonal matrix
whose diagonal entries are the eigenvalues of J . The matrix R = [U1 U2 U3] is a rota-
tion matrix whose columns are eigenvectors of J , listed in the order of the eigenvalues
in M . The eigenvalues μi are called the principal moments of inertia, and the columns
Ui are called the principal directions of inertia.

Equation (2.62) shows us that torque is just the time derivative of angular momen-
tum. Equation (2.42) shows us how to compute the time derivative of a vector in
a moving frame for the rigid body. In particular, we can apply this formula to the
angular momentum:

τ = dL

dt

= DL

Dt
+w× L

= D(J w)

Dt
+w× (J w) (2.90)

= J
Dw

Dt
+w× (J w)

= J
dw

dt
+w× (J w)

This vector-valued equation may be viewed as equations of motion for a rigid body.
When τ and w are represented in a body coordinate system where the coordinate axis
directions are the principal directions of inertia, equation (2.90) reduces to

τ =M
dw

dt
+w× (M w) (2.91)

where M is the diagonal matrix of principal moments. This equation is referred
to as Euler’s equation of motion. Mathematically, equation (2.91) is derived from
equation (2.90) by replacing J with RM RT and by replacing the world coordinate rep-
resentations τ and w with the body coordinate representations RTτ and RTw. In the
process you need to use the identity (Ra)× (Rb)= R(a× b) when R is a rotation
matrix.

Exercise
2.11

Let a and b be vectors and let R be a rotation matrix. Prove that

(Ra)× (Rb)= R(a× b) (2.92)

60 Chapter 2 Basic Concepts from Physics

In words, the cross product of rotated vectors is the rotated cross product of the
vectors. This makes sense from a purely geometric perspective. ■

Example
2.8

Compute the inertia tensor for a solid triangle of constant mass density δ = 1 with
vertices at (0, 0), (a, 0), and (0, b).

The region of integration R is determined by z = 0, 0≤ x ≤ a, and 0≤ y ≤
b(1− x/a). Since the mass density is always 1, the mass is just the area of the triangle,
m = ab/2. The quantity Ixx is

Ixx =
∫ ∫

R

(y2 + z2)dR

=
a∫

0

b(1−x/a)∫
0

y2 dy dx

=
a∫

0

y3

3

∣∣∣∣
b(1−x/a)

0
dx

=
a∫

0

(b(1− x/a))3

3
dx

= −ab3(1− x/a)4

12

∣∣∣∣
a

0

= ab3

12

= mb2

6

Similar integrations yield Iyy =ma2/6, Izz =m(a2 + b2)/6, Ixy =mab/12, Ixz = 0,
and Iyz = 0. ■

Example
2.9

Consider a box centered at the origin with dimensions 2a > 0, 2b > 0, and 2c > 0.
The vertices are (±a,±b,±c), where you have eight choices for the signs in the
components. Let the mass density be 1.

1. Compute the inertia tensor for the eight vertices of the box where all masses are
1 (discrete points).

2. Compute the inertia tensor for the box treated as a wireframe of masses where
the 12 edges are the wires (curve mass).

3. Compute the inertia tensor for the box treated as a hollow body (surface mass).

4. Compute the inertia tensor for the box treated as a solid (volume mass).

2.5 Momenta 61

Solution 1

The moments and products of inertia are easily calculated by setting up a table
(Table 2.1). The total mass is m = 8.

Table 2.1 Moments and Products of Inertia for Vertices

Point Ixx Iyy Izz Ixy Ixz Iyz

(a, b, c) b2+ c2 a2+ c2 a2+ b2 ab ac bc
(a, b,−c) b2+ c2 a2+ c2 a2+ b2 ab −ac −bc
(a,−b, c) b2+ c2 a2+ c2 a2+ b2 −ab ac −bc
(a,−b,−c) b2+ c2 a2+ c2 a2+ b2 −ab −ac bc
(−a, b, c) b2+ c2 a2+ c2 a2+ b2 −ab −ac bc
(−a, b,−c) b2+ c2 a2+ c2 a2+ b2 −ab ac −bc
(−a,−b, c) b2+ c2 a2+ c2 a2+ b2 ab −ac −bc
(−a,−b,−c) b2+ c2 a2+ c2 a2+ b2 ab ac bc

Sum m(b2 + c2) m(a2 + c2) m(a2 + b2) 0 0 0

Solution 2

The moments and products of inertia can be calculated for each of the 12 edges, then
summed. Consider the edge (x, b, c) for |x| ≤ a. The moments and products of inertia
for this edge are

Ixx =
a∫

−a

y2+ z2 dx = (b2+ c2)

a∫
−a

dx = 2a(b2+ c2)

Iyy =
a∫

−a

x2 + z2 dx =
a∫

−a

x2+ c2 dx = x3/3+ c2x
∣∣a−a = 2(a3/3+ ac2)

Izz =
a∫

−a

x2+ y2 dx =
a∫

−a

x2+ b2 dx = x3/3+ b2x
∣∣a−a = 2(a3/3+ ab2)

Ixy =
a∫

−a

xy dx = b

a∫
−a

x dx = 0

Ixz =
a∫

−a

xz dx = c

a∫
−a

x dx = 0

Iyz =
a∫

−a

yz dx = bc

a∫
−a

dx = 2abc

62 Chapter 2 Basic Concepts from Physics

Table 2.2 Moments and Products of Inertia for Edges

Edge Ixx Iyy Izz Ixy Ixz Iyz

(x ,b,c) 2a(b2+ c2) 2(a3/3+ ac2) 2(a3/3+ ab2) 0 0 2abc

(x ,b,−c) 2a(b2+ c2) 2(a3/3+ ac2) 2(a3/3+ ab2) 0 0 −2abc

(x ,−b,c) 2a(b2+ c2) 2(a3/3+ ac2) 2(a3/3+ ab2) 0 0 −2abc

(x ,−b,−c) 2a(b2+ c2) 2(a3/3+ ac2) 2(a3/3+ ab2) 0 0 2abc

(a,y ,c) 2(b3/3+ bc2) 2b(a2+ c2) 2(b3/3+ ba2) 0 2abc 0

(a,y ,−c) 2(b3/3+ bc2) 2b(a2+ c2) 2(b3/3+ ba2) 0 −2abc 0

(−a,y ,c) 2(b3/3+ bc2) 2b(a2+ c2) 2(b3/3+ ba2) 0 −2abc 0

(−a,y ,−c) 2(b3/3+ bc2) 2b(a2+ c2) 2(b3/3+ ba2) 0 2abc 0

(a,b,z) 2(c3/3+ cb2) 2(c3/3+ ca2) 2c(a2+ b2) 2abc 0 0

(a,−b,z) 2(c3/3+ cb2) 2(c3/3+ ca2) 2c(a2+ b2) −2abc 0 0

(−a,b,z) 2(c3/3+ cb2) 2(c3/3+ ca2) 2c(a2+ b2) −2abc 0 0

(−a,−b,z) 2(c3/3+ cb2) 2(c3/3+ ca2) 2c(a2+ b2) 2abc 0 0

Sum
m

3

(b+ c)3+ 3a(b2+ c2)

a+ b+ c

m

3

(a+ c)3+ 3b(a2+ c2)

a+ b+ c

m

3

(a + b)3+ 3c(a2+ b2)

a + b+ c
0 0 0

Similar integrals must be evaluated for the other edges. Table 2.2 shows the moments
and products of inertia for the edges. The total mass is the sum of the lengths of the
edges, m = 8(a+ b+ c).

Solution 3

The moments and products of inertia can be calculated for each of six faces, then
summed. Consider the face z = c with |x| ≤ a and |y| ≤ b. The moments and
products of inertia for this face are

Ixx =
b∫

−b

a∫
−a

y2 + z2 dx dy = 4a(b3/3+ bc2)

Iyy =
b∫

−b

a∫
−a

x2+ z2 dx dy = 4b(a3/3+ ac2)

Izz =
b∫

−b

a∫
−a

x2+ y2 dx dy = 4ab(a2+ b2)/3

Ixy =
b∫

−b

a∫
−a

xy dx dy = 0

2.5 Momenta 63

Table 2.3 Moments and Products of Inertia for Faces

Face Ixx Iyy Izz Ixy Ixz Iyz

z = c 4ab(b2+ 3c2)/3 4ab(a2+ 3c2)/3 4ab(a2+ b2)/3 0 0 0

z =−c 4ab(b2+ 3c2)/3 4ab(a2+ 3c2)/3 4ab(a2+ b2)/3 0 0 0

y = b 4ac(c2 + 3b2)/3 4ac(a2+ c2)/3 4ac(a2+ 3b2)/3 0 0 0

y =−b 4ac(c2 + 3b2)/3 4ac(a2+ c2)/3 4ac(a2+ 3b2)/3 0 0 0

x = a 4bc(b2+ c2)/3 4bc(c2 + 3a2)/3 4bc(b2+ 3a2)/3 0 0 0

x =−a 4bc(b2+ c2)/3 4bc(c2 + 3a2)/3 4bc(b2+ 3a2)/3 0 0 0

Sum
m

3

a(b+ c)3+ bc(b2+ c2)

ab+ ac+ bc

m

3

b(a+ c)3+ ac(a2+ c2)

ab+ ac + bc

m

3

c(a + b)3+ ab(a2+ b2)

ab+ ac + bc
0 0 0

Ixz =
b∫

−b

a∫
−a

xz dx dy = 0

Iyz =
b∫

−b

a∫
−a

yz dx dy = 0

Similar integrals must be evaluated for the other faces. Table 2.3 shows moments and
products of inertia for the faces. The total mass is the sum of the areas of the faces,
m = 8(ab+ ac + bc).

(Example 2.9
continued)

Solution 4

The total mass is the volume of the box, m = 8abc . The moments and products of
inertia are

Ixx =
c∫

−c

b∫
−b

a∫
−a

y2 + z2 dx dy dz = 8abc(b2+ c2)

3
= m(b2 + c2)

3

Iyy =
c∫

−c

b∫
−b

a∫
−a

x2+ z2 dx dy dz = 8abc(a2+ c2)

3
= m(a2 + c2)

3

Izz =
c∫

−c

b∫
−b

a∫
−a

x2 + y2 dx dy dz = 8abc(a2+ b2)

3
= m(a2 + b2)

3

Ixy =
c∫

−c

b∫
−b

a∫
−a

xy dx dy dz = 0

64 Chapter 2 Basic Concepts from Physics

Ixz =
c∫

−c

b∫
−b

a∫
−a

xz dx dy dz = 0

Iyz =
c∫

−c

b∫
−b

a∫
−a

yz dx dy dz = 0

■

(Example 2.9
continued)

Exercise
2.12

Repeat the experiment of Example 2.9 using a tetrahedron instead of a box. The
vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c), where a > 0, b > 0, and c > 0. ■

Exercise
2.13

Compute the inertia tensor for the planar object in Example 2.3, but treated as a 3D
object (a surface mass). ■

Exercise
2.14

Compute the inertia tensor for the hemicircle wire in Example 2.4, but treated as a
3D object (a curve mass). ■

Exercise
2.15

Transfer of Axes. The derivation of equation (2.82) used any specified origin O and
produced the quantities Ixx , Iyy , Izz , Ixy , Ixz , and Iyz . Let the total mass of the system
be m. Suppose that the origin is chosen to be the center of mass (x̄ , ȳ , z̄) and that
coordinate axes are chosen so that they are parallel to those used at origin O. If the
corresponding inertia quantities are Īxx , Īyy , Īzz , Īxy , Īxz , and Īyz , show that Ixx = Īxx +
m(ȳ2 + z̄2), Iyy = Īyy +m(x̄2 + z̄2), Izz = Īzz +m(x̄2 + ȳ2), Ixy = Īxy +mx̄ȳ , Ixz =
Īxz +mx̄z̄ , and Iyz = Īyz +mȳ z̄ . Compare this result with equations (2.74), (2.76),
(2.78), and (2.80).

Conclude that the moment of inertia about a line L containing the center of mass
and having unit-length direction D is

IL = DT

⎡
⎢⎢⎢⎣

Īxx +m(ȳ2 + z̄2) −(Īxy +mx̄ȳ) −(Īxz +mx̄z̄)

−(Īxy +mx̄ ȳ) Īyy +m(x̄2 + z̄2) −(Īyz +mȳz̄)

−(Īxz +mx̄ z̄) −(Īyz +mȳz̄) Īzz +m(x̄2 + ȳ2)

⎤
⎥⎥⎥⎦D

The significance of this result is that an application needs only to compute the inertia
tensor relative to the body’s center of mass. The inertia tensor for other coordinate
frames is then easily calculated from this tensor. ■

We will look at moments of inertia in more detail in Section 3.2 when dealing with
rigid body motion.

2.5.5 Mass and Inertia Tensor of a Solid Polyhedron

In a game environment the objects that physically interact typically are constructed
as simple polyhedra. In order to set up the equations of motion for such objects, we

2.5 Momenta 65

need to compute the mass and inertia tensor for a solid polyhedron. This can be quite
a difficult task if the mass density of the object is variable, but turns out to be relatively
simple for constant mass density. For the sake of simplicity we will assume that the
mass density is ρ = 1. For any other value you will need to multiply the mass and
inertia tensors by that value.

A mathematical algorithm for computing the mass and inertia tensor for solid
polyhedra of constant mass density is described by Mirtich [Mir96a]. The construc-
tion uses the divergence theorem from calculus for reducing volume integrals to
surface integrals, a reduction from three-dimensional integrals to two-dimensional
integrals. The polyhedron surface is a union of planar faces, so the surface integrals are
effectively integrals in various planes. Projection of these faces onto coordinate planes
are used to set up yet another reduction in dimension. Green’s theorem, the two-
dimensional analog of the divergence theorem, is used to reduce the planar integrals
to line integrals around the boundaries of the projected faces.

Two important points emphasized in the paper are (1) the projection of the poly-
hedron faces onto the appropriate coordinate planes to avoid numerical problems;
and (2) the reduction using Green’s theorem to obtain common subexpressions,
which are integrals of polynomials of one variable, to avoid redundant calculations.
Item (2) occurs to handle polyhedron faces with four or more vertices. Item (1) is
necessary in order to robustly compute what is required by item (2). When the poly-
hedron faces are triangles, neither item (1) nor (2) is necessary. A simpler construction
is provided here when the polyhedron faces are triangles. A consequence of the for-
mulas as derived in this document is that they require significantly less computational
time than Mirtich’s formulas.

Reduction of Volume Integrals

The mass, center of mass, and inertia tensor require computing volume integrals of
the type, ∫

V

p(x, y , z)dV

where V is the volumetric region of integration and dV is an infinitesimal measure
of volume. The function p(x, y , z) is a polynomial selected from 1, x, y , z , x2, y2, z2,
xy , xz , and yz . We are interested in computing these integrals where V is the region
bounded by a simple polyhedron. A volume integral may be converted to a surface
integral via the divergence theorem from calculus:∫

V

p(x, y , z)dV =
∫
V

∇ · F dV =
∫
S

N · F dS

where S is the boundary of the polyhedron, a union of triangular faces, and where dS
is an infinitesimal measure of surface area. The function F(x, y , z) is chosen so that

66 Chapter 2 Basic Concepts from Physics

Table 2.4 Generation of Polynomials by Vector Fields

p F p F

1 (x, 0, 0) y2 (0, y3/3, 0)

x (x2/2, 0, 0) z2 (0, 0, z3/3)

y (0, y2/2, 0) xy (x2y/2, 0, 0)

z (0, 0, z2/2) xz (0, 0, z2x/2)

x2 (x3/3, 0, 0) yz (0, y2z/2, 0)

∇ · F= p. The vector N denotes outward-pointing, unit-length surface normals. The
choices for F in the Mirtich paper are given in Table 2.4.

The computational effort is now devoted to calculating the integrals
∫

S N · F dS.
The boundary S is just the union of polyhedral faces F . An outward-pointing,
unit-length normal to face F is denoted by NF = (η̂x , η̂y , η̂z). The surface integral
decomposes to ∫

S

N · F dS =
∑
F∈S

∫
F

NF · F dS (2.93)

The integrals to be computed are now reduced to∫
V

dV =
∑
F∈S

η̂x

∫
F

x dS

∫
V

y2 dV = 1

3

∑
F∈S

η̂y

∫
F

y3 dS

∫
V

x dV = 1

2

∑
F∈S

η̂x

∫
F

x2 dS

∫
V

z2 dV = 1

3

∑
F∈S

η̂z

∫
F

z3 dS

∫
V

y dV = 1

2

∑
F∈S

η̂y

∫
F

y2 dS

∫
V

xy dV = 1

2

∑
F∈S

η̂x

∫
F

x2y dS

∫
V

z dV = 1

2

∑
F∈S

η̂z

∫
F

z2 dS

∫
V

yz dV = 1

2

∑
F∈S

η̂y

∫
F

y2z dS

∫
V

x2 dV = 1

3

∑
F∈S

η̂x

∫
F

x3 dS

∫
V

xz dV = 1

2

∑
F∈S

η̂z

∫
F

z2x dS

We now need to compute integrals of the form,

η̂�

∫
F

q(x, y , z)dS (2.94)

where� is one of x, y , or z and where q is one of x, x2 , y2, z2, x3, y3, z3, x2y , y2z , or z2x.

2.5 Momenta 67

Computation by Reduction to Line Integrals

Although we do not need to compute a surface integral when q(x, y , z) = 1, we use it
as motivation. Notice that

∫
F dS is the area A of the polygonal face. The area may be

computed as a three-dimensional quantity:

A =
∫
F

dS = 1

2
NF ·

n−1∑
i=0

Pi × Pi+1

where the polygon vertices are Pi = (xi , yi , zi), 0≤ i ≤ n− 1, and the vertices are
ordered counterclockwise relative to the face normal NF . Modular indexing is used
so that Pn = P0. This formula occurs in [Arv91] and is derived using Stokes’ theorem
from calculus. The computation is not as efficient as it can be. A discussion of various
methods for computing area (and volume) is found in [SE02].

An efficient method for computing the area is to project the polygon onto a coor-
dinate plane, compute the area in two dimensions, and adjust the result to account
for the projection. The plane of the polygonal face is η̂xx + η̂y y + η̂z z +w = 0, where
w =−NF · P0. As long as η̂z �= 0, we may project onto the xy-plane. The plane equa-
tion is written z = f (x, y)=−(w + η̂x x + η̂y y)/η̂z . The infinitesimal surface area in
terms of the independent variables x and y is

dS =
√

1+
(

∂f

∂x

)2

+
(

∂f

∂y

)2

dx dy

=
√

1+
(−η̂x

η̂z

)2

+
(−η̂y

η̂z

)2

dx dy

= 1

|η̂z | dx dy

where we have used the fact that |NF | = 1. The surface integral becomes∫
F

dS = 1

|η̂z |
∫
R

dx dy

where R is the region bounded by the projected polygon. That polygon has vertices
Qi = (xi , yi). A planar integral may be converted to a line integral via Green’s theorem,
the two-dimensional analog of the divergence theorem,∫

R

p(x, y)dx dy =
∫
R

∇ · G dx dy =
∫
L

M · G ds

where L is the boundary of the region R and where ds is an infinitesimal measure of
arc length. The function G(x, y) is chosen so that ∇ · G = p. The vector M denotes
outward-pointing, unit-length curve normals. In our special case p(x, y)= 1 and L is

68 Chapter 2 Basic Concepts from Physics

a polygon. Many choices exist for G, one being G = (x, 0). The boundary is the union
of edges E . An outward-pointing, unit-length normal to the edge is denoted ME . The
area integral decomposes to

∫
L

M · Gds =
∑
E

∫
E

ME · G ds (2.95)

Note the similarity to equation (2.93). If edge E is the line segment connect-
ing Qi to Qi+1 and has length Li = |Qi+1−Qi|, then the edge is parameterized
by (x(s), y(s)) = (1− s/Li)Qi + (s/Li)Qi+1 for s ∈ [0, Li]. At first glance you might
choose the edge normals to be Mi = (yi+1− yi , xi − xi+1)/Li . This is a correct choice
if the Qi are counterclockwise ordered. When η̂z > 0, a counterclockwise traver-
sal of the Pi results in a counterclockwise traversal of the Qi . But when η̂z < 0,
the Qi are traversed clockwise; the previous formula for Mi must be negated. In
general Mi = Sign(η̂z)(yi+1− yi , xi − xi+1)/Li . The integral of equation (2.95) is
rewritten as

∫
L

M · G ds =
n−1∑
i=0

Li∫
0

Mi · (x(s), 0)ds

= Sign(η̂z)

n−1∑
i=0

yi+1− yi

Li

Li∫
0

(
1− s

Li

)
xi +

(
s

Li

)
xi+1 ds

= Sign(η̂z)

n−1∑
i=0

(yi+1− yi)

1∫
0

(1− t)xi + txi+1 dt

= Sign(η̂z)

2

n−1∑
i=0

(xi+1+ xi)(yi+1− yi)

= Sign(η̂z)

2

n−1∑
i=0

xi(yi+1− yi−1)

(2.96)

where the third equality is based on the change of variables s = Lit . The last equality
uses modular indexing (yn = y0 and y−1 = yn−1); it results in a reduction of one third
the arithmetic operations from the previous equation. The proof of equality is left as
an exercise.

One potential source of numerical error is when η̂z is nearly zero. The division
by |η̂z | is ill conditioned. In this case we may project onto another coordinate plane.
The same ill conditioning can occur for one of those, but not both since at least one
of the components of NF must be larger or equal to 1/

√
3 in magnitude. The area of

2.5 Momenta 69

the polygonal face is computed accordingly:

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Rxy

dx dy

|η̂z | = 1

2η̂z

n−1∑
i=0

xi(yi+1− yi−1), |η̂z | =max{|η̂x|, |η̂y |, |η̂z |}
∫

Ryz
dy dz

|η̂x | = 1

2η̂x

n−1∑
i=0

yi(zi+1− zi−1), |η̂x | =max{|η̂x |, |η̂y|, |η̂z |}
∫

Rzx
dz dx

|η̂y| = 1

2η̂y

n−1∑
i=0

zi(xi+1− xi−1), |η̂y | =max{|η̂x|, |η̂y |, |η̂z |}

(2.97)

where Rxy , Ryz , and Rzx are the regions of projection of the polygonal face.
The construction of

∫
S q(x, y , z)dS is handled in a similar manner except that

now the integrand has variables, the dependent one needing replacement using the
appropriate formulation of the plane equation:∫

S

q(x, y , z)dS

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|η̂z |
∫

Rxy

q(x, y ,−(w + η̂x x + η̂y y)/η̂z)dx dy , |η̂z | =max{|η̂x |, |η̂y|, |η̂z |}

1

|η̂x|
∫

Ryz

q(−(w + η̂y y + η̂z z)/η̂x , y , z)dy dz , |η̂x| =max{|η̂x |, |η̂y|, |η̂z |}

1

|η̂y|
∫

Rzx

q(x,−(w + η̂x x + η̂z z)/η̂y , z)dz dx, |η̂y | =max{|η̂x |, |η̂y|, |η̂z |}

(2.98)

Each integrand is a polynomial of two independent variables. A function G must be
chosen so that ∇ · G is that polynomial. When |η̂z | is the maximum absolute normal
component, G will have components that depend on x and y . Using the same notation
that led to equation (2.96), the integral is∫

S

q(x, y , z)dS

= 1

|η̂z |
n−1∑
i=0

Li∫
0

Mi · G(x(s), y(s))ds

= Sign(η̂z)

|η̂z |
n−1∑
i=0

(yi+1− yi , xi − xi+1)

Li
·

Li∫
0

G

((
1− s

Li

)
Qi +

(
s

Li

)
Qi+1

)
ds

= 1

η̂z

n−1∑
i=0

(yi+1− yi , xi − xi+1) ·
1∫

0

G((1− t)Qi + t Qi+1)dt

70 Chapter 2 Basic Concepts from Physics

At this point the remaining work involves selecting G for each integrand of equa-

tion (2.98) and computing the integral
∫ 1

0 G((1− t)Qi + t Qi+1)dt . See [Mir96a] for
all the tedious details. I summarize the formulas below. The notation used in that
paper is that (α,β,γ) is a permutation of the usual coordinates, chosen from one of
(x, y , z), (y , z , x), or (z , x, y). The projection integrals are πf =

∫
R f dα dβ, where R

is the projection of the polygonal face onto the αβ-plane and f is some polynomial
function: ∫

F
α dS = |η̂γ |−1πα

∫
F

β dS = |η̂γ |−1πβ

∫
F

γ dS =−|η̂γ |−1η̂−1
γ (η̂απα + η̂βπβ +wπ1)

∫
F

α2 dS = |η̂γ |−1πα2

∫
F

β2 dS = |η̂γ |−1πβ2

∫
F

γ 2 dS = |η̂γ |−1η̂−2
γ (η̂2

απα2 + 2η̂αη̂βπαβ+η̂2
βπβ2

+2w(η̂απα + η̂βπβ)+w2π1)∫
F

α3 dS = |η̂γ |−1πα3

∫
F

β3 dS = |η̂γ |−1πβ3

∫
F

γ 3 dS =−|η̂γ |−1η̂−3
γ (η̂3

απα3 + 3η̂2
αη̂βπα2β + 3η̂αη̂2

βπαβ2 + η̂3
βπβ3

+3w(η̂2
απα2 + 2η̂αη̂βπαβ + η̂2

βπβ2)

+3w2(η̂απα + η̂βπβ)+w3π1)∫
F

α2β dS = |η̂γ |−1πα2β∫
F

β2γ dS =−|η̂γ |−1η̂−1
γ (η̂απαβ2 + η̂βπβ3 +wπβ2)

∫
F

γ 2α dS = |η̂γ |−1η̂−2
γ (η̂2

απα3 + 2η̂αη̂βπα2β + η̂2
βπαβ2

+2w(η̂απα2 + η̂βπαβ)+w2πα)

2.5 Momenta 71

The projection integrals are

π1 = Sign(η̂γ)

2

n−1∑
i=0

(βi+1−βi)(αi+1+αi)

πα = Sign(η̂γ)

6

n−1∑
i=0

(βi+1−βi)
(
α2

i+1+αi+1αi +α2
i

)

πβ =−Sign(η̂γ)

6

n−1∑
i=0

(αi+1−αi)
(
β2

i+1+βi+1βi +β2
i

)

πα2 = Sign(η̂γ)

12

n−1∑
i=0

(βi+1−βi)
(
α3

i+1+α2
i+1αi +αi+1α

2
i +α3

i

)

παβ = Sign(η̂γ)

24

n−1∑
i=0

(βi+1−βi)
(
βi+1

(
3α2

i+1+ 2αi+1αi +α2
i

)
+ βi

(
α2

i+1+ 2αi+1αi + 3α2
i

))
πβ2 =−Sign(η̂γ)

12

n−1∑
i=0

(αi+1−αi)
(
β3

i+1+β2
i+1βi +βi+1β

2
i +β3

i

)

πα3 = Sign(η̂γ)

20

n−1∑
i=0

(βi+1−βi)
(
α4

i+1+α3
i+1αi +α2

i+1α
2
i +αi+1α

3
i +α4

i

)

πα2β =
Sign(η̂γ)

60

n−1∑
i=0

(βi+1−βi)
(
βi+1

(
4α3

i+1+ 3α2
i+1αi + 2αi+1α

2
i +α3

i

)
+ βi

(
α3

i+1+ 2α2
i+1αi + 3αi+1α

2
i + 4α3

i

))
παβ2 =−Sign(η̂γ)

60

n−1∑
i=0

(αi+1−αi)
(
αi+1

(
4β3

i+1+ 3β2
i+1βi + 2βi+1β

2
i +β3

i

)
+ αi

(
β3

i+1+ 2β2
i+1βi + 3βi+1β

2
i + 4β3

i

))
πβ3 =−Sign(η̂γ)

20

n−1∑
i=0

(αi+1−αi)
(
β4

i+1+β3
i+1βi +β2

i+1β
2
i +βi+1β

3
i +β4

i

)

Notice that the formula for π1 is exactly what we derived for the area of the polygonal
face.

An example of how these are used is

η̂x

∫
S

x dS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|η̂−1

z |η̂xπx , |η̂z | =max{|η̂x |, |η̂y|, |η̂z |}
|η̂−1

y |η̂xπx , |η̂y | =max{|η̂x|, |η̂y |, |η̂z |}
−|η̂−1

x |(η̂y πy + η̂zπz +wπ1), |η̂x | =max{|η̂x |, |η̂y|, |η̂z |}

72 Chapter 2 Basic Concepts from Physics

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̂x

6η̂z

n−1∑
i=0

(yi+1− yi)
(
x2

i+1+ xi+1xi + x2
i

)
, |η̂z | =max{|η̂x |, |η̂y|, |η̂z |}

− η̂x

6η̂y

n−1∑
i=0

(zi+1− zi)
(
x2

i+1+ xi+1xi + x2
i

)
, |η̂y | =max{|η̂x |, |η̂y|, |η̂z |}

− η̂y

6η̂x

n−1∑
i=0

(zi+1− zi)
(
y2

i+1+ yi+1yi + y2
i

)

η̂z

6η̂x

n−1∑
i=0

(yi+1− yi)
(
z2

i+1+ zi+1zi + z2
i

)

η̂x x0+ η̂y y0+ η̂z z0

2η̂x

n−1∑
i=0

(zi+1− zi)(yi+1+ yi), |η̂x| =max{|η̂x |, |η̂y|, |η̂z |}
(2.99)

As we will see in the next section, these formulas reduce greatly when the polyhedron
has triangle faces.

Computation by Direct Parameterization of Triangles

Let the triangular face be counterclockwise ordered and have vertices Pi = (xi , yi , zi),
0 ≤ i ≤ 2. Two edges are

Ei = Pi −P0 = (xi − x0, yi − y0, zi − z0)= (αi ,βi ,γi)

for 1≤ i ≤ 2. A parameterization of the face is

P(u, v)= P0+ uE1+ vE2

= (x0 +α1u+α2v , y0+β1u+β2v , z0+ γ1u+ γ2v)

= (x(u, v), y(u, v), z(u, v))

(2.100)

where u ≥ 0, v ≥ 0, and u+ v ≤ 1. The infinitesimal measure of surface area is

dS =
∣∣∣∣∂P

∂u
× ∂P

∂v

∣∣∣∣ du dv = |E1× E2|du dv

and the outer-pointing unit-length face normal is

NF = E1× E2

|E1× E2| =
(β1γ2−β2γ1,α2γ1−α1γ2,α1β2 −α2β1)

|E1× E2| = (δ0,δ1,δ2)

|E1× E2|

2.5 Momenta 73

The integrals in equation (2.94) reduce to

(NF · �)

∫
F

q(x, y , z)dS = (E1× E2 · �)

1∫
0

1−v∫
0

q(x(u, v), y(u, v), z(u, v))du dv

(2.101)

where x(u, v), y(u, v), and z(u, v) are the components of the parameterization in
equation (2.100).

The integrals on the right-hand side of equation (2.101) can be computed sym-
bolically, either by hand or by a symbolic algebra package. The formulas following
these integrals were computed using Mathematica. Common subexpressions may be
obtained by some additional factoring. Define

sn(w) =
n∑

i=0

wn−i
0 wi

1, f0(w)= 1, and fn(w) = sn(w)+w2 fn−1(w) for n ≥ 1

Think of these as macros where the input argument is a textual replacement wherever
w occurs in the right-hand sides. Also define the macro

gi(w)= f2(w)+wi f1(w)+w2
i

The specific expressions required in the surface integrals are listed below in terms
of w. Each macro is expanded three times, once for each of x, y , and z :

f1(w) = w0 +w1 +w2 = [w0 +w1]+w2

f2(w) = w2
0 +w0w1 +w2

1 +w2f1(w)

= [[w2
0]+w1{w0 +w1}]+w2{f1(w)}

f3(w) = w3
0 +w2

0 w1+w0w2
1 +w3

1 +w2f2(w)

= w0{w2
0 }+w1{w2

0 +w0w1+w2
1 }+w2{f2(w)}

gi(w) = {f2(w)}+wi ({f1(w)}+wi)

(2.102)

The square brackets [] indicate that the subexpression is computed and saved in tem-
porary variables for later use. The curly braces {} indicate that the subexpression
was computed earlier and can be accessed from temporary variables. The number
of subexpressions that must be stored at any one time is small, so cache coherence
should not be an issue when enough floating point registers are available for storing
the subexpressions (see the pseudocode section on page 75 of this text).

74 Chapter 2 Basic Concepts from Physics

The integrals are

(NF · ı)

∫
F

x dS = δ0

6
f1(x) (NF · j)

∫
F

y3 dS = δ1

20
f3(y)

(NF · ı)

∫
F

x2 dS = δ0

12
f2(x) (NF · k)

∫
F

z3 dS = δ2

20
f3(z)

(NF · j)

∫
F

y2 dS = δ1

12
f2(y) (NF · ı)

∫
F

x2y dS = δ0

60
(y0g0(x)+ y1g1(x)

+y2g2(x))

(NF · k)

∫
F

z2 dS = δ2

12
f2(z) (NF · j)

∫
F

y2z dS = δ1

60
(z0g0(y)+ z1 g1(y)

+z2g2(y))

(NF · ı)

∫
F

x3 dS = δ0

20
f3(x) (NF · k)

∫
F

z2x dS = δ2

60
(x0g0(z)+ x1g1(z)

+x2g2(z))

Comparison to Mirtich’s Formulas

Let us compare the formulas for Qx = (NF · ı)
∫
F x dS. Our derivation led to the

formula,

Qx = δ0

6
f1(x)= δ0

6
(x0+ x1 + x2) (2.103)

In equation (2.99) there are three possibilities for computing Qx . In the case γ = z ,

Qx = δ0

6

(y1 − y0)(x2
1 + x0x1 + x2

0)+ (y2− y1)(x2
2 + x1x2 + x2

1)+ (y0− y2)(x2
0 + x0x2+ x2

2)

(x1− x0)(y2− y0)− (x2 − x0)(y1 − y0)

The final formula requires much more computational time than the one derived
in this document. In fact, the numerator is exactly divisible by the denominator and
the fraction reduces to x0+ x1 + x2, as it should to be equivalent to the Qx in equa-
tion (2.103). The reduction was verified using Mathematica. If γ = x, equation (2.99)
produces

Qx =− 1

δ0

(
δ1

6

2∑
i=0

(zi+1− zi)
(
y2

i+1+ yi+1yi + y2
i

)

−δ2

6

2∑
i=0

(yi+1− yi)
(
z2

i+1+ zi+1zi + z2
i

)

− δ0x0+ δ1y0+ δ2z0

2

2∑
i=0

(zi+1− zi)(yi+1+ yi)

)

2.5 Momenta 75

The correctness of this formula was verified using Mathematica; in fact it reduces to
equation (2.103). The computational requirements for this expression are enormous
compared to that of equation (2.103).

Comparisons between the formulas for the other integrals is possible, but you
will find that the differences in computational time become even greater than in the
example shown here.

Pseudocode

Source Code
PolyhedralMassProperties

The pseudocode for computing the integrals is quite simple. The polyhedron vertices
are passed as the array p[]. The number of triangles is tmax. The array index[] has
tmax triples of integers that are indices into the vertex array. The return values are the
mass, the center of mass, and the inertia tensor.

constant Real oneDiv6 = 1/6;
constant Real oneDiv24 = 1/24;
constant Real oneDiv60 = 1/60;
constant Real oneDiv120 = 1/120;

MACRO Subexpressions(w0,w1,w2,f1,f2,f3,g0,g1,g2)
{

// These are the expressions discussed in equation (2.101).
temp0 = w0 + w1;
f1 = temp0 + w2;
temp1 = w0 * w0;
temp2 = temp1 + w1 * temp0;
f2 = temp2 + w2 * f1;
f3 = w0 * temp1 + w1 * temp2 + w2 * f2;
g0 = f2 + w0 * (f1 + w0);
g1 = f2 + w1 * (f1 + w1);
g2 = f2 + w2 * (f1 + w2);

}

void Compute (Point p[], int tmax, int index[],
Real& mass, Point& cm, Matrix& inertia)

{
// order: 1, x, y, z, xˆ2, yˆ2, zˆ2, xy, yz, zx
Real integral[10] = {0,0,0,0,0,0,0,0,0,0};
for (t = 0; t < tmax; t++)
{

// get vertices of triangle t
i0 = index[3 * t];
i1 = index[3 * t + 1];
i2 = index[3 * t + 2];
x0 = p[i0].x;
y0 = p[i0].y;
z0 = p[i0].z;

76 Chapter 2 Basic Concepts from Physics

x1 = p[i1].x;
y1 = p[i1].y;
z1 = p[i1].z;
x2 = p[i2].x;
y2 = p[i2].y;
z2 = p[i2].z;

// get edges and cross product of edges
a1 = x1 - x0;
b1 = y1 - y0;
c1 = z1 - z0;
a2 = x2 - x0;
b2 = y2 - y0;
c2 = z2 - z0;
d0 = b1 * c2 - b2 * c1;
d1 = a2 * c1 - a1 * c2;
d2 = a1 * b2 - a2 * b1;

// compute integral terms
Subexpressions(x0,x1,x2,f1x,f2x,f3x,g0x,g1x,g2x);
Subexpressions(y0,y1,y2,f1y,f2y,f3y,g0y,g1y,g2y);
Subexpressions(z0,z1,z2,f1z,f2z,f3z,g0z,g1z,g2z);

// update integrals
integral[0] += d0 * f1x;
integral[1] += d0 * f2x;
integral[2] += d1 * f2y;
integral[3] += d2 * f2z;
integral[4] += d0 * f3x;
integral[5] += d1 * f3y;
integral[6] += d2 * f3z;
integral[7] += d0 * (y0 * g0x + y1 * g1x + y2 * g2x);
integral[8] += d1 * (z0 * g0y + z1 * g1y + z2 * g2y);
integral[9] += d2 * (x0 * g0z + x1 * g1z + x2 * g2z);

}
integral[0] *= oneDiv6;
integral[1] *= oneDiv24;
integral[2] *= oneDiv24;
integral[3] *= oneDiv24;
integral[4] *= oneDiv60;
integral[5] *= oneDiv60;
integral[6] *= oneDiv60;
integral[7] *= oneDiv120;
integral[8] *= oneDiv120;
integral[9] *= oneDiv120;

mass = integral[0];

2.6 Energy 77

// center of mass
cm.x = integral[1] / mass;
cm.y = integral[2] / mass;
cm.z = integral[3] / mass;

// inertia relative to world origin
inertia.xx = integral[5] + integral[6];
inertia.yy = integral[4] + integral[6];
inertia.zz = integral[4] + integral[5];
inertia.xy = -integral[7];
inertia.yz = -integral[8];
inertia.xz = -integral[9];

// inertia relative to center of mass
inertia.xx -= mass * (cm.y * cm.y + cm.z * cm.z);
inertia.yy -= mass * (cm.z * cm.z + cm.x * cm.x);
inertia.zz -= mass * (cm.x * cm.x + cm.y * cm.y);
inertia.xy += mass * cm.x * cm.y;
inertia.yz += mass * cm.y * cm.z;
inertia.xz += mass * cm.z * cm.x;

}

The format of the input vertices and triangle connectivity array is useful if the
input comes from triangle meshes that are also used for drawing. However, for even
greater speed you may exchange some memory usage by passing in a single array of
a more complicated triangle data structure that stores the three vertices and the cross
product of two edges. This format will avoid the indirect lookup of vertices, the vector
subtraction used to compute edges, and the cross product operation.

Exercise
2.16

1. Implement the pseudocode for computing the mass, center of mass, and inertia
tensor for a polyhedron.

2. Implement the Mirtich algorithm for computing the mass, center of mass, and
inertia tensor for a polyhedron.

3. Set up a profiling experiment to compare the average time per polyhedron
required to compute the physical quantities. ■

2.6 Energy

This section is a brief one and describes the concepts of work, kinetic energy, and
potential energy. The concept of kinetic energy is important in the development of
Lagrangian dynamics. The concept of potential energy is important in the realm of
conservative forces.

78 Chapter 2 Basic Concepts from Physics

2.6.1 Work and Kinetic Energy

Consider a particle of mass m that is constrained to travel along a straight line whose
direction is the unit-length vector D. Suppose that a constant force F is applied to the
particle while it is moving. Figure 2.22 illustrates the situation.

If L = |x1− x0| is the distance traveled by the particle over a given time interval,
the work done by the force on the particle over that time is defined to be the product
of the magnitude of the force along the direction of the line and the distance traveled.
In the simple illustration of Figure 2.22, the work is

W = (|F|cosθ)L = (F · D)L (2.104)

Observe that the component of the force in the direction of the line is (F · D)D. The
work is just the magnitude of that component times the distance traveled.

The path of the particle may very well be any smooth curve x(t). In this case
we resort to the usual infinitesimal argument from calculus. Over an infinitesimal
amount of time dt , the path looks like a line, and that line is the tangent line to
the curve at the initial position of the particle. The infinitesimal amount of distance
traveled by the particle during this instant of time is ds, the element of arc length.
The direction at the initial instant of time is the unit-length tangential direction
D = dx/ds. Using equation (2.104) as our motivation, the infinitesimal amount of
work dW done by the force on the particle is

dW = (F · D)ds =
(

F · dx

ds

)
ds

The total work done by the force on the particle as it travels over an arc length L is

W =
L∫

0

F · dx

ds
ds (2.105)

F

D

L

x1

x0

Figure 2.22 A force applied to a particle traveling on a straight line from position x0 to x1.

2.6 Energy 79

However, we usually know the position as a function of time t rather than as a function
of arc length s. The infinitesimal amount of work is

dW =
(

F · dx

ds

)
ds = (F · dx)=

(
F · dx

dt

)
dt

The total work done by the force on the particle as it travels over a time interval
[t0, t1] is

W =
t1∫

t0

F · dx

dt
dt =

t1∫
t0

F · v dt (2.106)

where v(t) is the velocity of the particle.
In this development it is important to keep in mind that the position x(t) may

not be entirely controlled by F. Other forces can be acting on the particle at the same
time. For example, the particle might be subject to gravitational force and F represents
a wind force. The quantity W in equation (2.106) represents the work done by the
wind on the particle, but does not include work done by gravity.

Example
2.10

A projectile of mass m follows a parabolic path x(t)= (t , 0, t(100− t)) for t ∈
[0, 100]. The projectile is subject to gravitational force F= (0, 0,−mg), where g > 0
is a constant. Compute the work done by the force over the specified interval.
The velocity of the projectile is v= (1, 0, 100− 2t). The work done by the force is

W =
100∫
0

F · v dt

=
100∫
0

(0, 0,−mg) · (1, 0, 100− 2t) dt

= 2mg

100∫
0

t − 50 dt

= 0

■

Exercise
2.17

A particle travels along the circular path x(t)= (r cos(ωt), r sin(ωt), 1). A constant
wind force is applied to the particle, F= (1, 1, 1). What is the work done by the wind
on the particle during one period of rotation 0 ≤ t ≤ 2π/ω? What is a time interval
over which the work is a maximum? Repeat the experiment, but for a time-varying
wind F= (t , t , 1). ■

If F is the net force on a particle and it does fully control the position, the integral
in equation (2.106) can be integrated in closed form for a constant mass particle. In

80 Chapter 2 Basic Concepts from Physics

this case Newton’s Second Law allows us to use F=ma:

W =
t1∫

t0

ma · v dt =
t1∫

t0

d

dt

(m

2
|v|2
)

dt = m

2

(|v(t1)|2−|v(t0)|2
)

The quantity W represents the work required to change the velocity of the particle
from v(t0) to v(t1). If the particle starts out at rest, that is v(t0)= 0, then W is referred
to as kinetic energy. In general, kinetic energy for a moving particle is

T = m

2
|v|2 (2.107)

By construction, kinetic energy is measured with respect to an inertial frame of
reference. That frame is used to specify the position x(t) of the particle.

Kinetic energy is additive in the sense that for a system of particles, the kinetic
energy of the system is the sum of the kinetic energies of the individual particles. For
continuous material, the addition is in the sense of integration over a curve, surface,
or volumetric region, just as we have seen in other parts of this chapter.

2.6.2 Conservative Forces and Potential Energy

The work done by a force on a particle traveling along a path x(t) for t ∈ [t0, t1] is
defined by equation (2.106). The particle starts at x0 = x(t0) and ends at x(t1). By
definition, the work done on the force depends on the path taken by the particle
between the endpoints x0 and x1. In many physical situations, though, the work is
independent of the path given the right type of force. When this happens, the force is
said to be conservative.

Example
2.11

A particle is allowed to move between two points (x0, y0, z0) and (x1, y1, z1) along a
smooth path (x(t), y(t), z(t)) connecting them, t ∈ [t0, t1]. The particle is subjected
to a gravitational force F=−mg k. The work done by gravity is

W =
t1∫

t0

F · v dt

=
t1∫

t0

−mg k · (ẋ(t), ẏ(t), ż(t)) dt

=−mg

t1∫
t0

ż(t) dt

=−mg (z(t1)− z(t0))

(2.108)

2.6 Energy 81

Regardless of how you choose the path connecting the two points, the work is always
a constant times the difference in heights of the endpoints. That is, W is independent
of the path of the particle and gravitational force is a conservative force. ■

Example
2.12

One end of a spring is attached to the origin (0, 0, 0) and the other end is attached
to a particle whose position x(t) varies with time, t ∈ [t0, t1]. The spring constant is
c > 0 and the unstretched spring length is L. The force exerted on the particle by the
spring is F=−c(x− �) where �= Lx/|x|, a vector of constant length L in the same
direction as x. The work done by the spring force is

W =
t1∫

t0

F · v dt

=
t1∫

t0

−c(x− �) · ẋ dt

=
t1∫

t0

−c(x− �) · (ẋ− �̇) dt

=−c

t1∫
t0

d

dt

1

2
|x− �|2 dt

=−(c/2)
(|x(t1)− �(t1)|2 −|x(t0)− �(t0)|2

)

(2.109)

The introduction of (x− �) · �̇ in the integrand is valid because (1) x− � is parallel to
�, and (2) �̇ is perpendicular to �, because � · �= L2 implies � · �̇= 0. That is, (x− �) ·
�̇= 0. The work depends only on the endpoints and not on the path connecting them,
so the spring force is a conservative force. ■

Example
2.13

A particle moves from (0, 0, 0) to (1, 1, 0) and is subject to the spatially varying force
F= (y ,−x, 0). This force is not conservative. The work done by the force when the
particle travels along the line segment (t , t , 0) for t ∈ [0, 1] is

W1 =
1∫

0

F · v dt =
1∫

0

(t ,−t , 0) · (1, 1, 0) dt = 0

The work done by the force when the particle travels along the parabolic arc (t , t 2, 0)

for t ∈ [0, 1] is

W2 =
1∫

0

F · v dt =
1∫

0

(t 2,−t , 0) · (1, 2t , 0) dt =
1∫

0

−t 2 dt =−1/3 �=W1

The work done by the force depends on the path taken by the particle. ■

82 Chapter 2 Basic Concepts from Physics

Other examples of nonconservative forces include friction, viscous drag when
moving through a fluid, and many forces that have explicit dependence on time and
velocity.

Consider a system of p particles with masses mi and positions (x̂i , ŷi , ẑi) for 1 ≤
i ≤ p. These positions are referred to as the reference system. Conservative forces Fi are
applied to the particles in a general system, where the positions are (xi , yi , zi), and work
is measured as the general system is transferred to the reference system. The work done
by the forces in transferring the system is referred to as the potential energy that the
general system has with respect to the reference system. This quantity is denoted V
and is defined by

V =−
p∑

i=1

1∫
0

Fi · vi dt (2.110)

The paths implicit in the integration connect (x̂i , ŷi , ẑi), at time 0, to (xi , yi , zi), at
time 1. Because the forces are conservative, any smooth paths that are parameterized
by t ∈ [0, 1] will do. The potential energy is therefore dependent only on the general
system; the reference positions are assumed to be constant. That is, as a function we
have

V = V (x1 , y1, z1, . . . , xp, yp , zp)

so that V is dependent on 3p variables. From calculus the total derivative of V is

dV = ∂V

∂x1
dx1+ ∂V

∂y1
dy1+ ∂V

∂z1
dz1+ · · ·+ ∂V

∂xp
dxp + ∂V

∂y1
dyp + ∂V

∂zp
dzp

=
p∑

i=1

(
∂V

∂xi
dxi + ∂V

∂yi
dyi + ∂V

∂zi
dzi

)

In terms of infinitesimal quantities, the potential energy is

dV =−
p∑

i=1

Fi · dxi =−
p∑

i=1

(
Fxi dxi + Fyi dyi + Fzi dzi

)

where each force is specified componentwise as Fi = (Fxi , Fyi , Fzi). In order to be
independent of path, the right-hand sides of the last two differential equations must
be equal. Thus,

Fxi =−
∂V

∂xi
, Fyi =−

∂V

∂yi
, Fzi =−

∂V

∂zi

2.6 Energy 83

for all i. In compact vector notation, Fi =−∇i V , where ∇i denotes the gradient
operator with respect to the three variables xi , yi , and zi .

By definition, if F is a conservative force, there is a potential energy function V for
which F=−∇V . But how do you know if you have a conservative force? The answer
lies in the same condition. If it were the case that (F1, F2, F3)= F=−∇V , then

F1 =−∂V

∂x
, F2 =−∂V

∂y
, F3 =−∂V

∂z

Assuming V has continuous second-order partial derivatives, the mixed partials are
equal. That is, ∂2V/∂x∂y = ∂2V/∂y∂x, ∂2V/∂x∂z = ∂2V/∂z∂x, and ∂2V/∂y∂z =
∂2V/∂z∂y . In terms of the function components, it is necessary that

∂F1

∂y
= ∂F2

∂x
,

∂F1

∂z
= ∂F3

∂x
, and

∂F2

∂z
= ∂F3

∂y
(2.111)

The conditions in equation (2.111) are referred to as an exactness test. As it turns
out, these conditions are sufficient as well as necessary for the existence of a potential
energy function V for which F=−∇V . If the conditions in the equation are satis-
fied, F must be a conservative force. Note that equation (2.111) is written concisely as
∇ × F= 0; that is, the curl of F is zero.

Example
2.14

In Example 2.11 the gravitational force is (F1, F2, F3)= (0, 0,−mg), a constant force.
The conditions in equation (2.111) are trivially satisfied because all the derivatives of
the Fi are zero.

In Example 2.12 the spring force is (F1, F2, F3)=−c(x, y , z). The exactness condi-
tions are satisfied,

∂F1

∂y
= 0= ∂F2

∂x
,

∂F1

∂z
= 0= ∂F3

∂x
,

∂F2

∂z
= 0= ∂F3

∂y

so the force is conservative.
In Example 2.13 the force is (F1, F2, F3)= (y ,−x, 0). This force is not conservative

because

∂F1

∂y
= 1 �= −1 = ∂F2

∂x

The other two exactness tests are true, but as long as one of the three fails, the force is
not conservative. ■

One very important consequence of having a conservative force is that the total
energy of the system is conserved. Let F(x) be the force and let V (x) be the potential

84 Chapter 2 Basic Concepts from Physics

energy function for which F=−∇V . The kinetic energy is T =m|ẋ|2/2 and the total
energy is

E = T +V = 1

2
m|ẋ|2+V (x) (2.112)

The time derivative of the energy is

dE

dt
= d(T +V)

dt
=mẋ · ẍ+ ẋ ·∇V = ẋ · (mẍ−F)= 0

where the last equality follows from Newton’s second law, mẍ= F.

C h a p t e r 3
Rigid Body Motion

Chapter 2 introduced the topic of kinematics, the motion of a body along a path
in the absence of external forces. Given the position, we can compute velocity

and acceleration by differentiation. This chapter is about dynamics, the interaction of
rigid bodies when forces and torques are present in the physical system. The classi-
cal approach in an introductory physics course uses Newtonian dynamics and the
famous formula of Newton’s second law of motion, F=ma, where m is the con-
stant mass of an object, a is its acceleration, and F is the applied force. The applied
force determines the acceleration of the object, so velocity and position are obtained
by integration, exactly the opposite process we saw in kinematics. The coverage of
Newtonian dynamics is brief yet sufficient to support the general purpose physics
engines that use Newton’s second law for simulation as described in Chapter 6.

The majority of this chapter is on the topic of Lagrangian dynamics, a frame-
work for setting up the equations of motion for objects when constraints are present.
In Lagrangian dynamics, the equations of motion are derived from the kinetic
energy function and naturally incorporate the constraints. A Newtonian formulation
requires that forces of constraint be part of the term F in the equation of motion;
the constraint forces are sometimes difficult to derive. Frictional forces are difficult
to deal with in a general purpose physics engine that uses Newtonian dynamics. In
the Lagrangian approach, frictional forces are easier to deal with. An entire section
is devoted to various examples involving objects moving on a rough plane, that is, a
plane whose material causes frictional forces.

A game designer’s specific knowledge of what the game physics will entail
can exploit that knowledge to good effect by formulating the simulations using
Lagrangian dynamics. The result is that the computational time of the simulation

© 2010 by Elsevier Inc. All rights reserved. 85
DOI: 10.1016/B978-0-12-374903-1.00003-7

86 Chapter 3 Rigid Body Motion

is reduced compared to a general purpose system using Newtonian dynamics. Even
more important is that the robustness problems with enforcing nonpenetration in
a general purpose engine are reduced. In the situation where you explicitly know the
constraining surface on which an object must lie, you can periodically check if numer-
ical round-off errors have caused the object to be slightly off the surface, then correct
the position accordingly. On the other hand, a simulation modeled with Lagrangian
dynamics is specific to each physics application, thus requiring more programming
development time. My choice is to spend more time on the programming and gain
the faster and more robust applications. In addition, Euler’s equations of motion are
discussed in this chapter because a few problems are more naturally formulated in
terms of Euler angles than in terms of other dynamics systems.

The classic textbook covering mechanics, including the topics mentioned in this
chapter, is [GPS02]. The text is on the heavy side with mathematics compared to
what you see in a standard physics course. In my opinion, the ultimate textbook for
Lagrangian dynamics is a title in the Schaum’s Outline Series, [Wel67]. The presenta-
tion shirks away from many direct derivative computations and uses the infinitesimal
approach that is popular among physicists to motivate some of the derivations (not
my personal preference), but the book has a lot of good examples for you to try. If you
are able to understand these and correctly work the exercises, you will be in a very good
position to solve any similar problem that comes your way in an application.

3.1 Newtonian Dynamics

The section on kinematics describes the position, velocity, and acceleration of a par-
ticle in motion along a curve and having no external forces acting on it. Dynamics, on
the other hand, describes how the particle must move when external forces are act-
ing on it. I assume that the mass m of the particle is constant over time, so Newton’s
law states that F=ma, where F are the external forces acting on the particle and a
is the acceleration of the particle. If there are no external forces, F= 0, the accelera-
tion is a(t) = 0. This equation integrates to v(t)= v0, a constant. That is, the particle
travels with constant velocity when the acceleration is zero. Integrating again yields
r(t)= t v0+ r0, where r0 is the initial location of the particle at time zero. The path
of motion is a straight line, as expected when no forces act on the object.

In the case of kinematics, we postulated the path of a particle and computed the
velocity and acceleration from it by differentiation. In the case of dynamics, we are
specifying the acceleration and must integrate to obtain the velocity and acceleration.
This is not always possible in a closed form, so many problems require numerical
methods to approximate the solution.

Example
3.1

Let us take a look at a classic problem of motion of the Earth about the Sun. The
equations describing the motion are called Kepler’s Laws, after Johann Kepler, who
established the first two laws in 1609 and the third law in 1616. The basis for the
equation is that the Sun exerts a gravitational force on the Earth according to an

3.1 Newtonian Dynamics 87

inverse-squared-distance law. Let M be the mass of the Sun and m be the mass of
the Earth. Let r be the distance between the Earth and Sun. Let the position of the
Sun define the origin of the coordinate system. The force exerted is

F=−GMm

r 2
R

where G is a positive constant whose value is determined by empirical means. The
vector R is unit length and in the direction of the vector from the Sun to the Earth.
The minus sign states that the force on the Earth is attracting it towards the Sun.
Newton’s law states that the acceleration a of the Earth is determined by

ma = F=−GMm

r 2
R=−GMm

r 3
r

where we have used r= rR. Dividing by the Earth’s mass and using a = v̇:

v̇=−GM

r 3
r (3.1)

Now consider

d

dt
(r× v)= r× v̇+ ṙ× v

= r×
(
−GM

r 3
r

)
+ v× v

=−GM

r 3
r× r+ v× v

= 0

This implies r× v= c0, a constant vector for all time. Observe that the angular
momentum of the Earth is r×mv, so the implication is that the angular momentum
is a constant vector for all time. Another immediate consequence of the constancy is
that

0= r · r× v= r · c0

The motion is necessarily within a plane containing the Sun’s location and having
normal vector c0.

Kepler’s First Law Equal areas in the plane of motion are swept out in equal
time intervals. To see that this is true, consider an infinitesimal area dA swept out by
moving the Earth from current position r by an infinitesimal change in position dr.
Figure 3.1 illustrates this.

The infinitesimal area is that of a triangle with two sides r and r+ dr. The
area of the triangles is half the magnitude of the cross product of two edges, so

88 Chapter 3 Rigid Body Motion

r + dr

rdA

Figure 3.1 The infinitesimal area dA swept out by motion of the earth over an infinitesimal
change in position dr. The swept region is effectively a triangle whose sides are r and
r+dr.

dA = |r× dr|/2. On the macroscopic level,

Ȧ = 1

2
|r× ṙ| = 1

2
|r× v| = 1

2
|c0|

The rate of change in the swept area is constant, so equal areas are swept out in equal
time intervals.

(Example 3.1
continued)

Kepler’s Second Law The orbit of the Earth is an ellipse with the Sun as one of the
focal points. To see that this is true, consider:

d

dt
(v× c0)= v̇× c0

=−GM

r 3
r× c0

=−GM

r 3
r× (r× v)

=−GM

r 3
r× (r× (r Ṙ+ ṙR

))
=−GM

r 3
r× (rr× Ṙ

)
=−GM R× (R× Ṙ

)
=−GM

((
R · Ṙ

)
R− (R · R) Ṙ

)
= GM Ṙ

3.1 Newtonian Dynamics 89

Integrating yields v× c0 = GM R+ c1 for some constant vector c1. Define γ0 = |c0|
and γ1 = |c1| and observe that

γ 2
0 = |c0|2
= r× v · c0

= r · v× c0

= r · (GM R+ c1)

= GMr + r · c1

= GMr + rγ1 cos θ

where θ is the angle between r and c1. In polar coordinates (r ,θ), the equation is
solved for r as a function of θ :

r(φ)= γ 2
0

GM + γ1 cos θ
= eρ

1+ e cosθ
(3.2)

which gives an ellipse with eccentricity e = γ1/(GM) and where ρ = γ 2
0 /γ1. The

major axis length is 2a = r(0)+ r(π)= 2ρe/(1− e2). The minor axis length is 2b =
2a
√

1− e2. The area of the ellipse is A = πab.

Kepler’s Third Law The square of the period of the motion is proportional to
the cube of the major axis length. The proof is as follows. The areal rate of change is
Ȧ = γ0/2. Integrating over one period of time t ∈ [0, T] yields the total area of the
ellipse A = γ0T/2. Therefore, the period is

T = 2A

γ0
= 2πa2

√
1− e2√

GMa(1− e2)
= 2π√

GM
a3/2

or T 2 = Ka3 for a constant of proportionality K . ■

Exercise
3.1

Convert equation (3.2) to Cartesian coordinates and verify that it does in fact rep-
resent an ellipse. ■

Exercise
3.2

Solve equation (3.1) using a differential equation solver. The left-hand side of that
equation is replaced by r̈, so the equation is second order in position. Use GM = 1
for the right-hand side of the equation. Choose an initial position r(0) and an initial
velocity ṙ(0) that are perpendicular vectors. ■

Exercise
3.3

Consider the polar coordinate coordinate form for acceleration given in equation
(2.13). We saw in equation 3.2 that the motion of the Earth is along an elliptical path
that defines r as a function of θ . However, we had not considered how θ varies in time.
This exercise is designed to give you that information.

90 Chapter 3 Rigid Body Motion

1. Derive two second-order differential equations, r̈ − r θ̇2 =−GM/r 2 and r θ̈ +
2ṙ θ̇ = 0, that are the equations of motion in polar coordinates.Source Code

KeplerPolarForm 2. Show that the equation with θ̈ implies α =Mr 2θ̇ is a constant. The value α is
angular momentum, so this physical system exhibits conservation of angular
momentum as well as conservation of total energy. Since α is a constant, argue
that θ̇ always has the same sign, in which case r may be thought of as a function
of θ , r = r(θ).

3. Use the expression for α to eliminate θ̇ in the equation with r̈ to obtain r̈ −
α2/(M 2r 3)=−GM/r 2. This may be solved numerically for r(t), but you might
find that the singularity at r = 0 causes quite a fuss!

4. The potential energy is V (φ) =−GM/r . Equivalently, r =−GM/V . I empha-
sized earlier that I am thinking of r as a function of θ , so V is also a function of θ .
Its first derivative with respect to θ is denoted V ′ and its second derivative with
respect to θ is denoted V ′′. Dots above variables will still be reserved to indicate
time derivatives.

(a) Show that ṙ = GMV ′ θ̇ /V 2 = αV ′/(GM 2).

(b) Show that r̈ = αV ′′θ̇ /(GM 2)= α2V ′′V 2/(G3M 5).

(c) Use the last result in r̈ −α2/(M 2r 3)=−GM/r 2 to obtain V ′′ +
V =−G2M 4/α2. Show that the general solution to this equation is
V (θ) = c0 sin(θ)+ c1 cos(θ)−G2M 4/α2.

(d) Determine c0 and c1 from the initial data r0, ṙ0, θ0, and θ̇0.

5. From conservation of momentum, show that θ̇ = αV 2/(G2M 3).

6. Using the formula for V (θ) and the differential equation for θ , conclude that

θ̇ = α

G2M 3

(
c0 sin(θ)+ c1 cos(θ)− G2M 4

α2

)2

, θ(0) = θ0

The result of this exercise is a first-order nonlinear differential equation that can be
solved by standard numerical methods. Can you solve for θ(t) in closed form? ■

Example
3.2

Here is a second example and it is formulated for motion of a particle relative to the
moving frame of a rigid body. Newton’s second law is F=ma, where the acceleration
a is given in equation (2.44). The problem is to determine the path of motion of a
particle that is freely falling towards the Earth, the rigid body, subject only to gravi-
tational force. If the Earth were not rotating, the path of motion would clearly be a
line containing the center of the Earth and the initial particle location. Fortunately,
the Earth does rotate, so the problem is a bit more complex!

The world coordinate system is chosen so that its origin is at the center of the
Earth. One of the coordinate axes is chosen to be in the direction from the Earth’s

3.1 Newtonian Dynamics 91

center to the north pole. The Earth rotates about this axis with angular velocity w.
Since we are dealing with a single particle, the center of mass is the particle’s loca-
tion and, subsequently, the origin of the moving frame. The moving frame directions
are chosen to be those of spherical coordinates, ξ 1 = P, ξ 2 =Q, and ξ 3 = R. The
force on the particle due to gravity is −mg R, where m is the mass of the particle
and g > 0 is the gravitational constant. Since R points away from the Earth’s center,
the minus sign in the force expression indicates the Earth is attracting the particle
towards it. Equation (2.44) describes the path r of the particle relative to the Earth’s
center.

We will take the usual liberties that you see in many physics applications. The equa-
tion of motion is quite complicated, so we will make a few simplifying assumptions
that lead to a more tractable problem. First, let us assume that the time interval for
which we want to know the path of motion is small. Over this time the difference
between the particle and the world origin � is effectively a constant. If it were iden-
tically a constant, then �̈= 0. We also assume that the angular velocity does not
change significantly during the time interval. The mathematical approximation is
ẇ = 0. Finally, the number of seconds per day is approximately 86,400. The angular
speed is |w| .= 2π/86,400. The radius of the Earth is approximately 6440 kilometers.
Assuming the particle is relatively near the Earth’s surface, its position r is of the order
of magnitude of the Earth’s radius. The magnitude of w× (w× r) is of the order of
|w|2|r| .= 3.4× 10−5, a very small number. The mathematical approximation to this
term is w× (w× r)= 0.

Using all the approximations in the equation of motion leads to

D2r

Dt 2
=−2w× Dr

Dt
− g R (3.3)

This is a linear second-order system of ordinary differential equations in the unknown
r(t). If we supply an initial position r0 = r(0) and an initial velocity v0 =Dr(0)/Dt ,
the equation can be solved in closed form. We may integrate equation (3.3) to
obtain

Dr

Dt
= v0− 2w× (r− r0)− gt R =−2w× r+ (v0+ 2w× r0)− gt R (3.4)

Define w = ωu where u is the normalized vector for w and ω = |w|. Using methods
for solving linear systems of differential equations, equation (3.4) can be solved as

r= Rot(−2ωt , u)r0+ (v0+ 2w× r0) t − (gt 2/2)R (3.5)

where Rot(θ , u) denotes the rotation matrix about the axis with unit-length direction
u by the angle θ . Observe that if there were no rotation, that is, w= 0, equation (3.5)
is instead r= r0+ t v0− (gt 2/2)R, exactly the equation you see in standard physics
for a freely falling body where the Earth’s rotation is considered neglible. ■

92 Chapter 3 Rigid Body Motion

Exercise
3.4

Suppose that the particle represents a booster rocket that was fired from Cape
Canaveral. Suppose the rocket traveled vertically upward to an altitude of 10 kilo-
meters. At that point the rocket starts falling to Earth. Assuming the physical model
of the last example applies for all time, how long does it take for the rocket to reach
the ground? Where on Earth does it strike the ground? ■

Example
3.3

This example is a model of the Foucault pendulum. The pendulum consists of a particle
of mass m attached to one end of a wire of length L of negligible mass. The other end
of the wire is attached to a joint at position O. The joint is assumed to be frictionless.
The only forces acting on the particle are gravity and the tension in the wire. Figure 3.2
shows the pendulum relative to a fixed frame with origin O. We assume the Earth is
rotating and that its angular velocity w is in the direction from the center of the Earth
C to the North Pole, just as in the previous example.

Source Code
FoucaultPendulum

m

L

m

C

Ow

North

Pendulum

Earth

(a) (b)

Figure 3.2 The Foucault pendulum. The pendulum joint is at O, the mass is m and is attached
to the pendulum rod of length L. The gravitational force acts in the direction k, a
unit-length vector from the joint to the center of the Earth.

The fixed frame vectors are k, a vector in the direction from O to the center of the
earth; j , a vector in the plane of w and k; and ı, a vector pointing out of the page
and perpendicular to the other two frame vectors. The mass at the end of the wire is
represented in spherical coordinates relative to O. The position is

r= LR(θ ,φ)

where the angle φ is measured between the wire and the vertical k, and the angle θ is
measured from the ı axis in the (ı ,j) plane as shown in Figure 3.2(b). The angular

3.1 Newtonian Dynamics 93

velocity is represented in the fixed frame as

w= ω
[
(cos λ)j − (sinλ)k

]
where ω is the angular speed and λ is the latitude measured from the equator.

The simplifications that were made in the last example are also made here. The
gravitational force is approximately mg k and the tension in the wire is −mτR for
some scalar τ > 0. The equation of motion for the pendulum is

D2r

dt 2
=−2w× Dr

dt
+ g k− τR (3.6)

Equations (2.32) and (2.33) apply, but with ρ = L, a constant for all time. The
velocity is

Dr

dt
= L

[(
θ̇ sinφ

)
P− (φ̇)Q

]

and the acceleration is

D2r

dt 2
= L

[(
θ̈ sinφ+ 2θ̇ φ̇ cosφ

)
P+ (θ̇2 sinφ cos φ− φ̈

)
Q− (φ̇2 + θ̇2 sin2 φ

)
R
]

These may be substituted into equation (3.6) to obtain three equations, one for each
spherical frame direction.

The first equation of motion is

L(θ̈ sinφ+ 2θ̇ φ̇ cos φ)= P · D2r

dt 2

=−2w× Dr

dt
· P+ g k · P− τR · P

=−2w · Dr

dt
× P

=−2w · (Lφ̇R
)

=−2Lφ̇ (w · R)

= 2Lωφ̇ (−cosλ sinθ sinφ+ sinλ cosφ)

94 Chapter 3 Rigid Body Motion

The L terms cancel, so the first equation of motion has been simplified to

θ̈ sinφ+ 2θ̇ φ̇ cos φ = 2ωφ̇ (−cosλ sinθ sinφ+ sinλ cosφ) (3.7)

(Example 3.3
continued)

The second equation of motion is

L(θ̇2 sinφ cos φ− φ̈)=Q · D2r

dt 2

=−2w× Dr

dt
· Q+ g k · Q− τ r · Q

=−2w · Dr

dt
×Q+ g sinφ

=−2w · ((Lθ̇ sinφ)R
)+ g sinφ

= 2Lωθ̇ sinφ (−cos λ sinθ sinφ+ sinλ cosφ)+ g sinφ

Dividing by the L term, the second equation of motion simplifies to

θ̇2 sinφ cos φ− φ̈ = 2ωθ̇ sinφ (−cos λ sinθ sinφ+ sinλ cosφ)+ g

L
sinφ (3.8)

The third equation is

−L(φ̇2 + θ̇2 sin2 φ)= R · D2r

dt 2

=−2w× Dr

dt
· R+ g k · R− τR · R

= 2Lw · [(φ̇)P+ (θ̇ sinφ)Q
]+ g (k · R)− τ

which simplifies to

τ = L
[
φ̇2+ θ̇2 sin2 φ+ 2φ̇ (w · P)+ 2θ̇ sinφ (w · Q)

]+ g (k · R) (3.9)

This is an equation of constraint and says that for static equilibrium, the tension in
the wire, −mτR, must have τ satisfy the equation. Therefore, only the two equa-
tions (3.7) and (3.8) control the motion through the time-varying angles θ(t) and
φ(t). Figure 3.3 – also Color Plate 3.3 – shows some screen shots from the Foucault
pendulum application found on the CD-ROM.

3.1 Newtonian Dynamics 95

Figure 3.3 The Foucault pendulum. The figures show the path of the pendulum tip in the hori-
zontal plane. New points on the path are colored white, but the intensity of the older
points along the path gradually decreases. ■

96 Chapter 3 Rigid Body Motion

Example
3.4

The simple pendulum model is obtained by neglecting the angular velocity over a
small period of time. The angle θ is constant, and the angular speed ω may as
well be assumed to be zero. Under these assumptions, equation (3.7) is a tautology
and offers no information. Equation (3.8) is a single nonlinear differential equation
in φ:

φ̈+ g

L
sinφ = 0 (3.10)

Let the initial conditions be φ(0)= φ0 > 0 and φ̇(0)= 0. That is, the mass at the end
of the wire starts off at some nonzero angle from the vertical and is released with zero
speed. Since the joint of the pendulum is frictionless, your intuition is that for some
future time T > 0, the angle φ(T) =−φ0, the motion is periodic, and T is the half
period. So what is this time T ?

Multiply equation (3.10) by 2φ̇ to obtain

0= 2φ̇φ̈+ 2g

L
φ̇ sinφ = d

dt

(
φ̇2− 2g

L
cos φ

)

An integration leads to

φ̇2 = 2g

L
(cos φ− cos φ0)

We may take the square root and choose the appropriate sign to indicate that the angle
is initially decreasing in time,

φ̇ =−
√

2g

L
(cos φ− cosφ0)

In differential form, we have

dφ√
cos φ− cosφ0

=−
√

2g

L
dt

Integrating yields

φ∫
φ0

dψ√
cos ψ − cos φ0

=−
√

2g

L
t

Since we require φ(T)=−φ0,

−φ0∫
φ0

dψ√
cosψ − cos φ0

=−
√

2g

L
T

3.1 Newtonian Dynamics 97

Solving for the time,

T =
√

L

2g

φ0∫
−φ0

dψ√
cosψ − cos φ0

=
√

2L

g

φ0∫
0

dψ√
cosψ − cos φ0

(3.11)

Section 13.9 is about the stability of numerical solutions that solve differential equa-
tions. In particular, Example 13.1 is provided for a stability analysis of the simple
pendulum. It is not as easy as you might think to obtain a robust solution that exhibits
periodic behavior.

Under the assumption that we want the pendulum to continue swinging with no
other external forces acting on it, including friction, there is no reason to solve the
problem for more than one period of oscillation. The differential equation can be
solved over one period to produce a sequence of sampled angles. Angles for other
times during that period can be interpolated from the samples, and we can use peri-
odicity to calculate times larger than the first period. In order to proceed, we need
to calculate the half period T , the time difference between the two angles where the
pendulum has stopped. Once known, we can use a stable numerical method to solve
the differential equation over that half period, store the computed samples for use by
the application over its life time, and use periodicity and interpolate as needed.

The integral in equation (3.11) is not solvable in closed form. The integral is
improper since the integrand becomes infinite at the upper limit of integration; that
is, when ψ approaches φ0. Such integrals must be split into two integrals, the first
integral numerically integrated by standard methods. The integrand of the second
integral is approximated by some function to remove the singularity at the upper
limit. Equation (3.11) is split into

φ0−ε∫
0

dψ√
cos ψ − cos φ0

+
φ0∫

φ0−ε

dψ√
cos ψ − cos φ0

for a sufficiently small ε > 0. The quadratic approximation from the Taylor series for
cos ψ expanded about φ0 is

cos θ
.= cos φ0− (sinφ0)(ψ −φ0)− 1

2
(cos φ0)(ψ −φ0)

2

Substituting this in the second integrand and making the change of variables z =
φ0−ψ leads to the approximation:

φ0∫
φ0−ε

dψ√
cos ψ − cosψ0

.=
ε∫

0

dz√
(sinφ0)z − (cos φ0)z2/2

98 Chapter 3 Rigid Body Motion

=
√

2

cos φ0

(
π

2
− sin−1

(
1− ε cosφ0

sinφ0

))

As ε approaches zero, the approximation (and integral itself) goes to zero. You need
to choose ε in your numerical methods so that the calculations in the first integral are
well behaved; that is, the denominator of the integrand stays sufficiently away from
zero to avoid introducing significant floating point errors.

(Example 3.4
continued)

■

Exercise
3.5

Selecting 2L/g = 1 and φ0 = π/6, estimate T using numerical integration. ■

Exercise
3.6

Redo the derivation that led to the integral for T in equation (3.11) to take into
account that the initial speed is φ̇(0)= φ̇0 > 0. That is, the mass of the pendulum
is initially positioned at a nonzero angle from the vertical and is then given a small
push farther away from the vertical.

1. What is the time τ > 0 at which the mass reaches its maximum angle from the
vertical? Hint : Notice that φ̇(τ)= 0. If φ1 = φ(τ) is the maximum angle, show
that

φ1 = cos−1

(
cos φ0− Lφ̇2

0

2g

)

Subsequently show that

τ =
φ1∫

φ0

dψ√
φ̇2

0 + 2g (cos ψ − cos φ0)/L

2. What is the half period T > 0 of the pendulum? Hint : Use a numerical estimate
obtained from equation (3.11) when the initial data of the pendulum is φ(0) = φ1

and φ̇0 = 0.

Example 13.1 uses φ0 = 0.1, φ̇0 = 1, and g/L = 1. In your constructions of the cur-
rent example, show that τ

.= 1.59 and T
.= 3.37 and compare to the numerical results

obtained by the Runge-Kutta method in Example 13.1 as some assurance that your
results are good approximations. ■

3.2 Lagrangian Dynamics

Let us revisit the basic formulation of Newton’s second law. For a constant mass m
undergoing a force F, the motion of the mass over time is governed by

F=ma =mv̇ =mẍ (3.12)

3.2 Lagrangian Dynamics 99

where x(t) is the position, v(t) = ẋ(t) is the velocity, and a(t)= ẍ(t) is the accel-
eration of the mass at time t . Each of these vector quantities is measured with
respect to some coordinate system. This system is referred to as the inertial frame.
If x= (x1, x2, x3) is the representation of the position in the inertial frame, the com-
ponents x1, x2, and x3 are referred to as the inertial coordinates. Although in many
cases the inertial frame is considered to be fixed (relative to the stars as it were), the
frame can have a constant linear velocity and no rotation and still be inertial. Any
other frame of reference is referred to as a noninertial frame. Newton’s second law,
which we saw in equation (3.12), is simple to state and remember, but its simplicity
can disguise the complexity of the problem at hand. Consider the simple pendulum
problem from the last section, shown in Figure 3.4.

The only postulated force is gravitational, F=−mgj , where g is a positive con-
stant. You might be tempted to directly apply Newton’s second law to obtain the
equations of motion mẍ=−mgj . An integration of these will show that the mass
drops straight to the ground, which is not the correct motion! The problem is that
F must represent all relevant forces. The pendulum has an additional force, the force
that constrains the mass to be attached to the end of the rod, thus causing the mass to
move along a circular path over time. This force is referred to as a constraining force
or a reactive force. Newton’s second law requires that the constraining forces occur in
addition to the external forces applied to the mass. This example motivates what is
called Lagrangian dynamics. We will discuss this topic, then return to the pendulum
example to illustrate how to construct the Lagrangian equations of motion.

(t)
L

x2

x1

P

X (t)

T(t)

N(t)–mg

Figure 3.4 The simple pendulum. The motion is constrained to a plane. The mass is located at
position X (t) at time t and is always a fixed length L from the joint P . The angle
formed by the pendulum rod with the vertical is θ(t). The curve of motion is a circle
with tangent T(t) and outward pointing normal N(t). The only force acting on the
mass is gravitational, −mgj , where m is the mass of the particle, g is the gravitational
constant, and −j is the direction of the force (vertically downward). The joint P
provides no frictional force.

100 Chapter 3 Rigid Body Motion

3.2.1 Equations of Motion for a Particle

From Newton’s second law, equation (3.12), we may compute the small amount
of work dW that is done by F when we move the mass at position x by a small
displacement dx. Recall from Section 2.6.1 that the work done is

dW = F · dx

The displacement of the mass and the force need not be in the same direction. Using
equation (3.12) we have

mẍ · dx= F · dx (3.13)

The right-hand side is the small amount of work done by the force for the given dis-
placement. The left-hand side is the corresponding small change in the kinetic energy
of the mass. Equation (3.13) is referred to as D’Alembert’s equation.

Let x= (x1, x2, x3) and F= (F1, F2, F3). With no constraints on the position, the
displacement can be in any direction. In particular, setting dx= ı and substituting
into D’Alembert’s equation produces mẍ1 =mẍ · ı = F · ı = F1. Similarly, the dis-
placement can be j or k, producing mẍ2 = F2 or mẍ3 = F3. The three equations
written in vector form are mẍ= F, which is Newton’s second law. Of course this
should come as no surprise. The power of D’Alembert’s equation is in naturally
supporting the idea of constraints on the position, as we now demonstrate.

Motion on a Curve

Consider the simplest situation when the mass is constrained to follow a curve in
space. The curve may be parameterized by a variable q, say x(q). The derivative vec-
tor dx/dq is tangent to the path of motion. The small displacements dx can now occur
only so that the mass remains on the curve. In this sense the displacement is infinites-
imal. The infinitesimal displacements dx in D’Alembert’s equation may be replaced
by positional derivatives:

mẍ · dx

dq
= F · dx

dq
(3.14)

This equation will be reformulated, the construction requiring a few derivative
identities from calculus. An application of the chain rule yields

ẋ= dx

dt
= dx

dq

dq

dt
= dx

dq
q̇ (3.15)

Treating ẋ as a formal function of both q and q̇, we may compute the partial derivative
of equation (3.15) with respect to q̇ to obtain

∂ẋ

∂ q̇
= ∂

∂ q̇

(
dx

dq
q̇

)
= dx

dq
(3.16)

3.2 Lagrangian Dynamics 101

Another identity is

d

dt

(
dx

dq

)
= d

dq

(
dx

dq

)
q̇ = ∂

∂q

(
dx

dq
q̇

)
= ∂ẋ

∂q
(3.17)

where the first equality is an application of the chain rule, the second equality treats
q̇ as a variable independent of q, and the third equality uses equation (3.15). Finally,
the product rule

d

dt

(
dx

dt
· dx

dq

)
= d2x

dt 2
· dx

dq
+ dx

dt
· d

dt

(
dx

dq

)

produces the identity

ẍ · dx

dq
= d

dt

(
ẋ · dx

dq

)
− ẋ · d

dt

(
dx

dq

)
(3.18)

Substituting equations (3.16) and (3.17) into (3.18) and multiplying by the mass m
yields

mẍ · dx

dq
= d

dt

(
mẋ · ∂ẋ

∂ q̇

)
−mẋ · ∂ẋ

∂q

= d

dt

(
∂

∂ q̇

(
1

2
m|ẋ|2

))
− ∂

∂q

(
1

2
m|ẋ|2

)
(3.19)

= d

dt

(
∂T

∂ q̇

)
− ∂T

∂q

where T =m|ẋ|2/2 is the kinetic energy of the system. Substituting equation (3.19)
into equation (3.14) and defining Fq = F · dx/dq, we have the Lagrangian equation of
motion for a single particle constrained to a curve:

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
= Fq (3.20)

The scalar value Fq is referred to as a generalized force. Although called a force, it
is not a force since it is not vector valued and since the physical units are not those
of a force. An important distinction between the Newtonian equations of motion,
equation (3.12), and the Lagrangian equations of motion, equation (3.20), is that the
force term in equation (3.12) includes external and constrainting forces, but the force
term in equation (3.20) eliminates the constraining forces.

Example
3.5

Returning to our simple pendulum problem, let us set up the Lagrangian equations
of motion. The mass is constrained to lie on a circle of radius L centered at P. The
position is parameterized by the angle θ , the constraint variable that we named q in
the general discussion of the Lagrangian equations of motion. The position is

X(θ) = P+ LN(θ)

102 Chapter 3 Rigid Body Motion

where N(θ)= (sinθ ,−cosθ) is normal to the circle and where T(θ)= (cos θ , sinθ) is
tangent to the circle. The derivative of position with respect to θ and the velocity are,
respectively,

dx

dθ
= L

dN

dθ
= LT and ẋ= dx

dt
= dx

dθ

dθ

dt
= Lθ̇T

(Example 3.5
continued)

The kinetic energy is

T = 1

2
m|ẋ|2 = 1

2
mL2θ̇2

and its derivatives with respect to θ and θ̇ are

∂T

∂θ
= 0 and

∂T

∂θ̇
=mL2θ̇

The left-hand side of equation (3.20) becomes

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= d

dt

(
mL2 θ̇

)=mL2θ̈

The right-hand side of equation (3.20) becomes

Fθ = F · dx

dθ
= (−mgj

) · (LT)=−mgL sinθ

Equating the left-hand and right-hand sides produces mL2θ̈ =−mgL sinθ , or θ̈ +
(g/L) sinθ = 0, just like we derived in equation (3.10). ■

Exercise
3.7

A bead of mass m is attached to a frictionless wire whose shape is defined by the spi-
ral curve x(q) = (q, q2, q3). The bead is subject to the gravitational force F=−mg k,
where g is a positive constant. Initially, the bead is held fixed at (1, 1, 1), then released
to slide down the wire. How long does the bead take to reach the origin (0, 0, 0)? ■Source Code

BeadSlide

Motion on a Surface

We now constrain the mass to lie on a parametric surface, x(q1, q2), where q1 and q2

are independent parameters. The infinitesimal displacements in equation (3.13) are
now constrained to be tangential to the surface at the point in question. In particu-
lar, the derivatives ∂x/∂q1 and ∂x/∂q2 are tangent vectors, so D’Alembert’s equation
becomes

mẍ · ∂x

∂qi
= F · ∂x

∂qi
, i = 1, 2 (3.21)

The construction used in the case of motion on a curve applies to these equations as
well to produce the Lagrangian equations of motion. An application of the chain rule

3.2 Lagrangian Dynamics 103

to the velocity yields

ẋ= dx

dt
= ∂x

∂q1

dq1

dt
+ ∂x

∂q2

dq2

dt
= ∂x

∂q1
q̇1 + ∂x

∂q2
q̇2 (3.22)

Treating ẋ as a formal function of q1, q2, q̇1, and q̇2, we may compute the partial
derivative of equation (3.22) with respect to q̇i to obtain

∂x

∂qi
= ∂

∂ q̇i

(
∂x

∂q1
q̇1 + ∂x

∂q2
q̇2

)
= ∂ẋ

∂ q̇i
, i = 1, 2 (3.23)

Another identity is

d

dt

(
∂x

∂q1

)
= ∂

∂q1

(
∂x

∂q1

)
q̇1 + ∂

∂q2

(
∂x

∂q1

)
q̇2 By the chain rule

= ∂

∂q1

(
∂x

∂q1

)
q̇1 + ∂

∂q1

(
∂x

∂q2

)
q̇2 Order of differentiation unimportant

= ∂

∂q1

(
∂x

∂q1
q̇1+ ∂x

∂q2
q̇2

)
Differentiation is linear

= ∂ẋ

∂q1
Using equation (3.22)

A similar construction applies to differentiating with respect to q2. The two formulas
are jointly represented as

d

dt

(
∂x

∂qi

)
= ∂ẋ

∂qi
, i = 1, 2 (3.24)

Just as in equation (3.18), the product rule may be applied to obtain

ẍ · dx

dq
= d

dt

(
ẋ · dx

dq

)
− ẋ · d

dt

(
dx

dq

)
(3.25)

Substituting equations (3.23) and (3.24) into (3.25) and multiplying by the mass m
yields

mẍ · ∂x

∂qi
= d

dt

(
mẋ · ∂ẋ

∂ q̇i

)
−mẋ · ∂ẋ

∂qi

= d

dt

(
∂

∂ q̇i

(
1

2
m|ẋ|2

))
− ∂

∂qi

(
1

2
m|ẋ|2

)
(3.26)

= d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi

104 Chapter 3 Rigid Body Motion

where T =m|ẋ|2/2 is the kinetic energy of the system. Substituting equation (3.26)
into equation (3.21) and defining Fqi = F · ∂x/∂qi , we have the Lagrangian equations
of motion for a single particle constrained to a surface:

d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi
= Fqi , i = 1, 2 (3.27)

Example
3.6

We have a ball constrained to lie on a flat, frictionless table. A rubber band is attached
to the ball, the other end attached to a point on the table. The rubber band is
unstretched when the ball is located at the same attachment point on the table. What
are the Lagrangian equations of motion?

Source Code
BallRubberBand

The ball has mass m. The forces on the ball due to the rubber band are assumed
to follow Hooke’s law: The magnitude of the force is negatively proportional to the
length of the rubber band. If the ball is pulled to stretch the rubber band, the force
is in the direction along the rubber band away from the ball and has magnitude cL,
where c > 0 is a constant and L is the length of the stretched rubber band. Figure 3.5
illustrates.

x2
x3

x x

F
x1

Figure 3.5 A ball of mass m on a flat table. A rubber band connects the ball to a fixed point on
the table. The force F due to the rubber band is shown. The position x of the ball is
shown together with its velocity ẋ.

We may assume that the table surface is in the x1x2-plane, x3 = 0, in which case x=
(x1, x2, 0). The kinetic energy is T =m(ẋ2

1 + ẋ2
2)/2 and the force is F=−c(x1, x2, 0)

for some positive constant c . The constraint variables are q1 = x1 and q2 = x2, so we
will use just the x-names rather than keep track of the q-names. The relevant partial
derivatives in equation (3.27) are

∂T

∂x1
= 0,

∂T

∂x2
= 0,

∂T

∂ ẋ1
=mẋ1,

∂T

∂ ẋ2
=mẋ2,

d

dt

(
∂T

∂ ẋ1

)
=mẍ1,

d

dt

(
∂T

∂ ẋ2

)
=mẍ2

3.2 Lagrangian Dynamics 105

The generalized forces are

Fx1 = F · ∂x

∂x1
=−c(x1, x2, 0) · (1, 0, 0)=−cx1

Fx2 = F · ∂x

∂x2
=−c(x1, x2, 0) · (0, 1, 0)=−cx2

The Lagrangian equations of motion are therefore,

mẍ1 =−cx1, mẍ2 =−cx2

Consequently each component of the position adheres to simple harmonic motion
with frequency ω =√c/m. For an initial position x(0)= (p1, p2, 0) and velocity
ẋ(0)= (v1, v2, 0), the solutions to the differential equations are x1(t) = p1 cos(ωt)+
(v1/ω) sin(ωt) and x2(t)= p2 cos(ωt)+ (v2/ω) sin(ωt). ■

Exercise
3.8

In Example 3.6, show that the path of motion is an ellipse. At what time will the ball
reach the origin? ■

Exercise
3.9

In Example 3.6, assume that the table is covered with a viscous fluid. Let the viscous
force on the ball be in the opposite direction of motion of the ball, say G=−aẋ for
some constant a > 0. What are the Lagrangian equations of motion? At what time
will the ball reach the origin? ■

Source Code
BallHill

Example
3.7

A ball is placed at the top of a hill whose shape is an elliptical paraboloid. The hill
is assumed to be frictionless. The only force acting on the ball is gravitational force.
The ball is slightly pushed so that it may roll down the hill. What are the Lagrangian
equations of motion? Figure 3.6 illustrates.

a3

a1
a2

k–mg

Figure 3.6 A ball is at the top of a frictionless hill. With a small push, the ball will roll down the
hill.

The vertical axis is assumed to be the x3-axis. The gravitational force is F=−mg k.
The height of the hill is a3 > 0, so the ground is considered to be the plane x3 = 0. The
cross section of the hill on the ground is an ellipse with semimajor axis length a1 (in

106 Chapter 3 Rigid Body Motion

the x1 direction) and semiminor axis length a2 (in the x2 direction). The equation of
the paraboloid is x3 = a3− (x1/a1)

2 − (x2/a2)
2. The ball is constrained to

x=
(

x1, x2, a3−
(

x1

a1

)2

−
(

x2

a2

)2
)

so once again q1 = x1 and q2 = x2 and we will just use the x-names.

(Example 3.7
continued)

The time derivative of x3 is

ẋ3 =−2x1ẋ1

a2
1

− 2x2ẋ2

a2
2

The kinetic energy is

T = m

2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)= m

2

(
ẋ2

1 + ẋ2
2 +

(
2x1ẋ1

a2
1

+ 2x2ẋ2

a2
2

)2
)

The relevant terms in equation (3.27) are

∂T

∂x1
= 4mẋ1

a2
1

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

)

∂T

∂x2
= 4mẋ2

a2
2

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

)

∂T

∂ ẋ1
=m

(
ẋ1+ 4x1

a2
1

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

))

∂T

∂ ẋ2
=m

(
ẋ2+ 4x2

a2
2

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

))

d

dt

(
∂T

∂ ẋ1

)
=m

(
ẍ1+ 4x1

a2
1

(
x1ẍ1+ ẋ2

1

a2
1

+ x2ẍ2+ ẋ2
2

a2
2

)
+ 4ẋ1

a2
1

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

))

d

dt

(
∂T

∂ ẋ2

)
=m

(
ẍ2+ 4x2

a2
2

(
x1ẍ1+ ẋ2

1

a2
1

+ x2ẍ2+ ẋ2
2

a2
2

)
+ 4ẋ2

a2
2

(
x1ẋ1

a2
1

+ x2ẋ2

a2
2

))

∂x

∂x1
=
(

1, 0,−2x1

a2
1

)

∂x

∂x2
=
(

0, 1,−2x2

a2
2

)

3.2 Lagrangian Dynamics 107

Fx1 = (−mg k) · ∂x

∂x1
= 2mgx1

a2
1

Fx2 = (−mg k) · ∂x

∂x2
= 2mgx2

a2
2

The Lagrangian equations of motion are

ẍ1+ 4x1

a2
1

(
x1ẍ1+ ẋ2

1

a2
1

+ x2ẍ2+ ẋ2
2

a2
2

)
= 2gx1

a2
1

ẍ2+ 4x2

a2
2

(
x1ẍ1+ ẋ2

1

a2
1

+ x2ẍ2+ ẋ2
2

a2
2

)
= 2gx2

a2
2

Observe that this is a coupled system of second-order differential equations since
ẍ1 and ẍ2 appear implicitly in both equations. The equations may be algebraically
manipulated to obtain two explicit equations, one for each of the second deriva-
tives. Figure 3.7 – also Color Plate 3.7 – shows some screen shots from the ball/hill
application found on the CD-ROM.

Figure 3.7 (Continued)

108 Chapter 3 Rigid Body Motion

Figure 3.7 A ball rolling down a hill. Image (b) shows the path of the center of the ball as it rolls
down the hill. The ball rotates at a speed commensurate with its downhill velocity.
(See also Color Plate 3.7.)

(Example 3.7
continued)

■

Exercise
3.10

The equations of the Example 3.7 appear to be quite complex. However, if the
paraboloid is circular, say a1 = a2 = 1, the radial symmetry of the surface should stoke
your intuition and allow you to deduce that the ball will roll directly down the hill.
That is, the path in the x1x2 plane is along a ray that starts at the origin. If r is the
radial distance in the plane from the origin, prove that

r̈ + 2r(2ṙ 2− g)

1+ 4r 2
= 0

Choose a3 = 1 so that the intersection of the hill and the ground plane occurs at r =
1. Numerically solve this differential equation for g = 1 with the initial conditions
r(0)= 0 and ṙ(0)= 1. Estimate the time T > 0 when the ball reaches the ground,
that is, the time T at which r(T)= 1. ■

Exercise
3.11

In Example 3.7 with the elliptical paraboloid, verify that a solution to the system
of differential equations is (x1(t), x2(t)) = (v1t , v2t). Does this mean that the path
of motion will always project to a straight line in the plane x3 = 0? Justify your
answer. ■

3.2 Lagrangian Dynamics 109

x3

x2

x1

H

x3

H
x1

L

(a) (b)

Figure 3.8 (a) A metal chute of length L, one end attached to the origin, the other end raised by
a height H . (b) Side view of the chute.

Exercise
3.12

In Example 3.7, include a second force in addition to the gravitational force. That
force is due to wind blowing on the particle with constant velocity W. Derive the
Lagrangian equations of motion. Determine conditions on W that prevent the ball
from rolling to the ground plane. ■

Exercise
3.13

A frictionless metal chute is constructed in the shape of half a cylinder of radius R
and length L. The chute is aligned to be parallel to the x1-axis. One end of the chute is
attached to the ground plane x3 = 0. The other end is raised by a height H . Figure 3.8
illustrates the situation:

A ball is placed at the top of the chute and released (initial velocity is zero). The only
force acting on the ball is gravitational force. Construct the Lagrangian equations of
motion for the ball. What are these equations if you modify the problem by coating the
chute with a viscous oil? Assume that the viscous force is negatively proportional to
the ball’s velocity. With or without viscosity, verify that if the ball starts in the middle
of the chute, the path of motion is a straight line. ■

Exercise
3.14

For the mathematically inclined: If the mass always lies on a frictionless height field,
the graph of the function x3 = h(x1, x2), and the only force acting on the mass is
gravitational force, derive the Lagrangian equations of motion. ■

Determining Constraint Forces

In general you can think of having a Lagrangian equation for each degree of freedom
in the system. When the particle is constrained to a curve, you have one degree of
freedom and one equation governing the particle’s motion. When constrained to a

110 Chapter 3 Rigid Body Motion

surface, you have two degrees of freedom and two equations governing the motion.
Later we will study particle systems with many degrees of freedom. Even though we
are in three dimensions, the degrees of freedom may very well be greater than three.
A Lagrangian equation occurs for each degree of freedom.

The construction that led to the Lagrangian equations applies equally well to
additional parameters, even if those parameters are not freely varying. However, the
generalized forces in these equations must include terms from the forces of constraint.
These additional equations allow us to determine the actual constraint forces.

Example
3.8

Consider the simple pendulum problem. In polar coordinates we can represent the
position as x(r ,θ)= P+ rN(θ). The pendulum requires a constant radius, r = L for
all time. The radius is not free to vary. However, if we think of r as variable, we may
construct two Lagrangian equations. In this setting we can think of the constraint
force C to be an applied force. The positional derivatives are

∂x

∂θ
= rT,

∂x

∂r
= N,

dx

dt
= ∂x

∂θ
θ̇ + ∂x

∂r
ṙ = r θ̇T+ ṙN

The kinetic energy is

T = m

2

(
r 2θ̇2+ ṙ 2)

and the relevant derivatives are

∂T

∂θ
= 0

∂T

∂r
=mr θ̇2

∂T

∂θ̇
=mr 2θ̇

∂T

∂ ṙ
=mṙ

d

dt

(
∂T

∂θ̇

)
=m

(
r 2θ̈ + 2r ṙ θ̇

)
d

dt

(
∂T

∂ ṙ

)
=mr̈

The generalized force for the θ variable is

Fθ = (−mgj +C) · ∂x

∂θ
= (−mg sinθ +C · T)r

The generalized force for the r variable is

Fr = (−mgj +C) · ∂x

∂r
=mg cos θ +C · N

3.2 Lagrangian Dynamics 111

The equations of motion are

0= d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ̇
− Fθ =mLθ̈ + 2mṙ θ̇ +mg sinθ −C · T

and

0= d

dt

(
∂T

∂ ṙ

)
− ∂T

∂ ṙ
− Fr =mr̈ −mr θ̇2−mg cosθ −C · N

These may be solved to obtain C · N=m(r̈ − r θ̇2)−mg cos θ and C · T=m(r θ̈ +
2ṙ θ̇)+mg sinθ . Using the normal and tangent vectors as a basis, we have

C= (m(r̈ − r θ̇2)−mg cos θ)N+ (m(r θ̈ + 2ṙ θ̇)+mg sinθ)T

When r = L for all time, we found earlier that Lθ̈ + g sinθ = 0 for all time. The
constraint function reduces to

C=−m(Lθ̇2 + g cosθ)N(θ)

Just to verify that this makes sense, consider when the mass is at the origin and
not moving; that is, θ = 0 and θ̇ = 0. The constraint force is C=−mg N(0)=
−mg (sin(0),−cos(0)) =mgj . It exactly balances the gravitational force −mgj , as
expected.

Also observe that the normal component of the gravitational force is −mg cosθ .
You might have tried selecting−mg cos θ as the constraining force, but the actual force
has the term −mLθ̇2 in additional to the gravitational one. The constraining force,
therefore, also must counter a force due to the motion of the particle itself. ■

3.2.2 Time-Varying Frames or Constraints

If the frame of reference varies over time or if the constraining curve or surface varies
over time, the Lagrangian equations of motion in equations (3.20) or (3.27) still apply.
The method of proof is general, so it covers both the curve and surface cases. The
constraining parameters may be written as a vector q. In the case of a curve, the vec-
tor has one component q = (q1). In the case of a surface it is q= (q1, q2). In general
let n denote the number of constraining variables. The position as a function of the
constraining parameters and time is x(t , q). You need to be careful now about what
the time derivatives mean. The velocity vector is the total derivative of position with
respect to time. As such, you use ordinary differentiation with respect to t :

ẋ= dx

dt

But now the position has an explicit dependency on time that represents either the ref-
erence frame moving or the constraining curve/surface changing. The rate of change

112 Chapter 3 Rigid Body Motion

of position with respect to time in that sense is represented by the partial derivative
with respect to t . The chain rule from calculus relates the two:

dx

dt
= ∂x

∂t
+

m∑
i=1

∂x

∂qi
q̇i (3.28)

Observe that this is the analogy of the identity from equation (3.22). The extension
of equation (3.23) to our new situation is

∂x

∂qj
= ∂

∂ q̇j

(
∂x

∂t
+

n∑
i=1

∂x

∂qi
q̇i

)
= ∂ẋ

∂ q̇j
(3.29)

The extension of equation (3.24) is

d

dt

(
∂x

∂qj

)
= ∂

∂t

(
∂x

∂qj

)
+

n∑
i=1

∂

∂qi

(
∂x

∂qj

)
q̇i By the chain rule

= ∂

∂qj

(
∂x

∂t

)
+

n∑
i=1

∂

∂qj

(
∂x

∂qi

)
q̇i Order of differentiation unimportant

= ∂

∂qj

(
∂x

∂t
+

n∑
i=1

∂x

∂qi
q̇i

)
Differentiation is linear

= ∂ẋ

∂qj
Using equation (3.28)

(3.30)

Since all the identities are used in deriving the Lagrangian equations of motion,
whether equation (3.20) or (3.27), these identities must equally apply when the
position function has the explicit time component. The equations of motion for
time-varying frames or constraints are still

d

dt

(
∂T

∂ q̇j

)
− ∂T

∂qj
= Fqj (3.31)

for all indices j.

Example
3.9

Let us revisit the simple pendulum problem that is illustrated in Figure 3.4 and whose
equations of motion are derived in Example 3.5. Rather than having the joint remain
fixed over time, we allow it to vary in time, say P(t). The position function is

x(t ,θ) = P(t)+ LN(θ)

The total time derivative is

ẋ= dx

dt
= ∂x

∂t
+ ∂x

∂θ
θ̇ = Ṗ+ Lθ̇T

3.2 Lagrangian Dynamics 113

The kinetic energy is

T = m

2

∣∣Ṗ+ Lθ̇T
∣∣2 = m

2

(
Ṗ · Ṗ+ 2Lθ̇ Ṗ · T+ L2θ̇2)

The relevant derivatives are

∂T

∂θ
= m

2

(
2Lθ̇ Ṗ · dT

dθ

)
=−mLθ̇ Ṗ · N

∂T

∂θ̇
= m

2

(
2LṖ · T+ 2L2θ̇

)=mL
(

Ṗ · T+ Lθ̇
)

and

d

dt

(
∂T

∂θ̇

)
=mL

(
Ṗ · Ṫ+ P̈ · T+ Lθ̈

)=mL
(
P̈ · T− θ̇ Ṗ · N+ Lθ̈

)

The generalized force is

Fθ = (−mgj) · ∂x

∂θ
= (−mgj) · (LT)=−mgL sinθ

Combining these into equation (3.20) produces

Lθ̈ + P̈ · T+ g sinθ = 0

In the case where P(t) is a constant (the joint is immovable as in the original prob-
lem), we obtain Lθ̈ + g sinθ = 0 as before. However, you should also notice that if the
joint has constant linear velocity, P(t)= A+ t B, then we still obtain Lθ̈ + g sinθ = 0.
This should come as no surprise because the frame of reference is moving with
constant linear velocity and is still an inertial frame.

Also curious is that if you were to hold the pendulum joint in the fingers of one
hand, hold the mass away from the vertical with the fingers of your other hand, then
drop the entire system, the angle formed by the mass never changes! Assuming no air
resistance, the joint acceleration is controlled by gravity, P̈=−gj . The differential
equation reduces to Lθ̈ = 0. The initial angle is θ(0)= θ0 and the initial angular speed
is θ̇ (0)= 0. The solution to the equation is θ(t)= θ0 for all t ≥ 0. ■

Exercise
3.15

A rigid, frictionless rod of length L has one end attached to the origin of three-
dimensional space. The initial direction of the rod is (1, 0, 1)/

√
2. Thus, the other end

of the rod is at L(1, 0, 1)/
√

2= (a, 0, a). A mass m is constrained to move on the rod
and has initial location at (b, 0, b), where 0 < b < a. One end of a spring is attached
to the mass. The other end is attached to a joint at location (c , 0, 0) for some positive
constant c . The spring is unstretched in this initial configuration. Figure 3.9 illustrates
the setup.

114 Chapter 3 Rigid Body Motion

x3

x1

(0,d,d)

(0,a,a)

(b,0,b)

(a,0,a)

(c,0,0)

x2

m

Figure 3.9 The initial configuration of a rigid rod containing a mass that is attached to a spring.

The rod is rotated about the x3-axis so that the angle θ between the rod and axis
remains constant. The rotation occurs with angular speed θ t for t ≥ 0. Determine
the equations of motion for the mass. What is the position (0, d , d) of the mass when
the rod reaches the x1x3-plane for the first time? ■

3.2.3 Interpretation of the Equations of Motion

We now look at a simple, yet elegant way of interpreting the Lagrangian equations of
motion. The position of the particle constrained to a curve or surface is x(t , q), where
q = (q1) for a curve or q= (q1, q2) for a surface. The partial derivatives of position
with respect to the qj are tangent vectors. Unit-length tangent vectors are therefore,

Tj = 1

|∂x/∂qj |
∂x

∂qj
= 1

Lj

∂x

∂qj

where the last equality defines Lj as the length of the partial derivative vector. The
component of acceleration of the particle in each of the tangent directions, denoted
by aqj , is computed by projection onto the tangent:

aqj = a · Tj = 1

Lj

(
ẍ · ∂x

∂qj

)

= 1

mLj

(
d

dt

(
∂T

∂ q̇j

)
− ∂T

∂qj

)

= 1

mLj
Fqj

3.2 Lagrangian Dynamics 115

We have used the Lagrangian equations of motion, equation (3.31), in this construc-
tion. Now recall that the generalized force is

Fqj = F · ∂x

∂qj
= LjF · Tj

Define the quantity fqj = F · Tj , the projection of the force onto the tangent vector
Tj . That is, fqj is the component of force in the tangent direction. Thus, aqj = Fqj/

(mLj) or

maqj = fqj (3.32)

for each constraining variable qj . You should recognize the similarity to Newton’s
second law. As a matter of fact, the Lagrangian formulation is the natural exten-
sion of Newton’s second law when the motion is constrained to a manifold (curve or
surface).

3.2.4 Equations of Motion for a System of Particles

Consider a system of p particles, particle i having mass mi and located at position xi ,
1 ≤ i ≤ p. D’Alembert’s equation (3.13) applies to each particle when displaced by an
infinitesimal amount dxi and influenced by a force Fi . The derivations for the equa-
tions of motion are applied for each such particle, to produce a Lagrangian equation
of motion for each constraint of interest:

d

dt

(
∂Ki

∂ q̇j

)
− ∂Ki

∂qj
= Fi · ∂xi

∂qj

where Ki =mi |ẋi |2/2 is the kinetic energy of the particle. The total kinetic energy is

T =
p∑

i=1

Ki = 1

2

p∑
i=1

mi |ẋi |2

and the total generalized force for the qj coordinate is

Fqj =
p∑

i=1

Fi · ∂xi

∂qj

The Lagrangian equations of motion are obtained by summing those for the individ-
ual particles, leading to

d

dt

(
∂T

∂ q̇j

)
− ∂T

∂qj
= Fqj , j ≥ 1 (3.33)

116 Chapter 3 Rigid Body Motion

Example
3.10

Three masses m1, m2, and m3 are aligned vertically and are subject to gravitational
force. The first two masses are attached by a spring with spring constant c1 and
unstretched length L1. The second two masses are attached by a spring with spring
constant c2 and unstretched length L2. The mass mi is located at zi vertical units
with respect to the ground plane. The particle system has three degrees of freedom
represented by the variables zi , 1≤ i ≤ 3. Figure 3.10 illustrates the situation.

z1

z

z2

z3

m1

m2

m3

–mgk

Figure 3.10 Three masses aligned vertically and subject to gravitational force.

The force due to gravity on mass mi is Gi =−mi g k for 1≤ i ≤ 3. The force due
to the spring connecting masses m1 and m2 is

G4 =−c1(z1 − z2 − L1)k

The leading sign is negative as shown by the following argument. When the spring
is unstretched, the magnitude of the spring force is zero. The separation between the
two masses is z1− z2 = L1. If the mass m2 is pulled upwards to a new position z1+ δ,
where δ > 0, the force on m2 must be in the downward direction. This force is−c1δk.
Since both c1 and δ are positive, the leading negative sign guarantees that the force is
downward. Similarly, the force due to the spring connecting masses m2 and m3 is

G5 =−c2(z2 − z3 − L2)k

The force on m1 is F1 = G1+G4. The force on m2 is F2 = G2−G4 +G5. The neg-
ative sign on the G4 term occurs because an increase in z2 causes the first spring to
compress, in which case that spring must exert a force in the opposite direction. The
force on m3 is F3 =G3 −G5. The negative sign on the G5 term occurs because an
increase in z3 causes the second spring to compress, in which case that spring must
exert a force in the opposite direction.

The kinetic energy for the system is

T = 1

2

3∑
i=1

miż
2
i

3.2 Lagrangian Dynamics 117

The relevant derivatives are ∂T/∂zi = 0, ∂T/∂ żi =mi żi , and d(∂T/∂ żi)/dt =mi z̈i

for 1≤ i ≤ 3.
The Lagrangian equations of motion are therefore miz̈i = Fi · k, or

m1 z̈1 =−c1(z1 − z2− L1)−m1g

m2 z̈2 =−c2(z2 − z3− L2)+ c1(z1 − z2− L1)−m2g

m3 z̈3 = c2(z2 − z3 − L2)−m3g

Setting z= [z1 z2 z3]T, the system of equations in matrix form is

z̈=

⎡
⎢⎢⎢⎢⎢⎢⎣

− c1

m1

c1

m1
0

c1

m2
− c1+ c2

m2

c2

m2

0
c2

m3
− c2

m3

⎤
⎥⎥⎥⎥⎥⎥⎦

z+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1L1

m1
− g

c2L2− c1L1

m2
− g

− c2L2

m3
− g

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This is a second-order linear system of differential equations. Using methods from
linear systems of differential equations, it may be reduced to a first-order system by
setting

x= [x1 x2 x3 x4 x5 x6]= [z1 z2 z3 ż1 ż2 ż3]T

leading to

ẋ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− c1

m1

c1

m1
0 0 0 0

c1

m2
− c1 + c2

m2

c2

m2
0 0 0

0
c2

m3
− c2

m3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

c1L1

m1
− g

c2L2− c1L1

m2
− g

− c2L2

m3
− g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is of the form ẋ= Ax+b and may be solved in closed form using the methods
of linear systems of differential equations. The matrix A happens to be invertible, so
the solution is

x= eAt x0−A−1b

where x0 is an initial condition (see Section 11.5). However, this solution will involve
trigonometric functions. Because these are expensive to calculate, a numerical dif-
ferential equation solver may be used instead to obtain a good approximation to the
solution while requiring less computational time to calculate. ■

118 Chapter 3 Rigid Body Motion

Exercise
3.16

Consider a modification of the simple pendulum problem, a double pendulum problem
so to speak. In addition to the mass m1 attached to a rigid rod of length r1, a second
mass m2 is attached via a rigid rod of length r2 to the first mass. The second rod pivots
at the location of m1 and does so without friction. Figure 3.11 illustrates.Source Code

DoublePendulum

x1

h

x2

x

m1

m2

y1

y

y2

r1

r2

1

2

g

Figure 3.11 A modification of the simple pendulum problem.

Construct the equations of motion as two coupled differential equations in the
unknown angles θ1(t) and θ2(t). ■

3.2.5 Equations of Motion for a Continuum of Mass

As expected, the Lagrangian equations of motion are also valid for a continuum of
mass, whether a curve mass, a surface mass, or a volume mass. The summations that
occur in the formulas for kinetic energy and generalized forces for particle systems
are replaced by integrals. Rather than write separate formulas for curve masses (sin-
gle integral), surface masses (double integral), and volume masses (triple integral),
we use a suggestive notation with one integral whose domain of integration R gener-
ically refers to the correct type of object. The mass density is δ and varies over R. The
infinitesimal measure of mass is dm = δ dR, where dR is an infinitesimal measure of
arc length, surface area, or volume, depending on what type of object R represents.
The kinetic energy is

T = 1

2

∫
R

|v|2dm

where the world velocity is v. That is, the kinetic energy must be measured in an
inertial frame; in our case this frame is labeled as the world frame. For each constraint

3.2 Lagrangian Dynamics 119

variable qj , the generalized force is

Fqj =
∫
R

F · ∂x

∂qj
dR

where F represents the applied forces on the object. The Lagrangian equations of
motion are

d

dt

(
∂T

∂ q̇j

)
− ∂T

∂qj
= Fqj

for all j.
Although the kinetic energy is computed from the velocity in the inertial frame,

we may compute it using a transformation to local coordinates. For a rigid body we
do this by equation (2.43):

v= vcen+w× r

where vcen is the velocity of the point C identified as the origin of the body and where w
is the angular velocity of the body measured in the inertial frame. The relative position
r is from a rigid body point to the body origin. The kinetic energy in this case is

T = 1

2

∫
R

|v|2 dm

= 1

2

∫
R

|vcen|2+ 2vcen · w× r+|w× r|2 dm

= 1

2
|vcen|2

∫
R

dm+ vcen · w
∫
R

r dm+ 1

2

∫
R

(|w|2|r|2− (w · r)2) dm

= 1

2
m|vcen|2+mvcen · w× rcm+ 1

2
wTJ w

where m is the total mass of the body, rcm is the position of the center of mass of the
rigid body relative to C, and J is the inertia tensor of the rigid body as specified in
equation (2.84). If we choose C to be the center of mass, the middle term vanishes
since rcm = 0. We may also choose the local coordinate basis vectors to be the prin-
cipal directions of motion (see Section 2.5.4, the portion on inertia of 3D objects).
If the principal directions are ui , 1≤ i ≤ 3, they may be written as the columns of
a rotation matrix Q = [u1 | u2 | u3]. By definition of principal directions, the inertia
tensor satisfies the equation J = QDQT, where D is a diagonal matrix whose diag-
onal entries μ1, μ2, and μ3 are the principal moments. The world angular velocity
w is represented in terms of the principal direction basis as w= Qξ . Consequently,
wTJ w = ξTDξ . If ξ = [ξ1 ξ2 ξ3]T, then the kinetic energy in this special case is

T = 1

2
m|vcm|2+ 1

2

(
μ1ξ

2
1 +μ2ξ

2
2 +μ3ξ

2
3

)
(3.34)

120 Chapter 3 Rigid Body Motion

where vcm is the world velocity of the center of mass. The formula is quite aesthetic.
The first term is the energy due to the linear velocity of the center of mass. The
last terms are the energies due to the angular velocity about principal direction lines
through the center of mass. Although these formulas for kinetic energy were derived
using integrals, they apply equally well to particle systems (the construction works for
sums and integrals).

Equation (2.44) allows a similar simplification to the generalized force integral.
Using Newton’s law, an infinitesimal force dF applied to a particle in R of infinitesimal
mass dm satisfies the relationship dF= a dm, where a is the acceleration applied to
that particle. Integrating over the entire region to obtain the total force F and applying
the aforementioned equation:

F=
∫
R

a dm

=
∫
R

acen+w× (w× r)+ d W

dt
× r dm

= acen

∫
R

dm+w×
⎛
⎝w×

∫
R

r dm

⎞
⎠+ d W

dt
×
∫
R

rdm

=macen+mw× (w× rcm)+m
d W

dt
× rcm

where m is the total mass of the body, acen is the world acceleration of the point C
identified as the body origin, and rcm is the position of the center of mass relative to
C. If we choose C to be the center of mass, then rcm = 0 and

F=macm (3.35)

That is, the external forces applied to the rigid body act as if they are applied to a single
particle located at the center of mass of the body and having mass equal to the total
mass of the body. The generalized force for the rigid body may be calculated based
only on the center of mass and how it is constrained.

Example
3.11

This example is a modification of the simple pendulum problem, but we treat this as a
fully 3D problem. The z-axis is perpendicular to the plane of the diagram. The simple
pendulum consists of a single point mass located at the end of a rigid, massless rod.
The other end of the rod is attached to a frictionless joint at (0, y0, 0). The rod–point
object is replaced by a triangular object as shown in Figure 3.12.

The triangle is isoceles with base length b and height h. Its mass density is constant,
δ = 1, so the total mass is the area of the triangle (in units of mass), m = bh/2. The
center of mass is located at (x̄ , ȳ , z̄). The distance from the pendulum joint to the
center of mass is L and the angle formed with the vertical is θ , so the center of mass
location is (x̄ , ȳ , z̄)= (L sinθ , y0 − L cosθ , 0).

3.2 Lagrangian Dynamics 121

x

z

y0

y

g

L

x

y

Figure 3.12 A triangle pendulum.

We assign a local coordinate frame using the principal directions of motion associ-
ated with the inertia tensor. From the symmetry of the object, the principal directions
are (cos θ , sinθ , 0), (−sinθ , cosθ , 0), and (0, 0, 1). The first two of these are drawn
in the figure as small black arrows at the center of mass. Although we could com-
pute the principal moments associated with the first two principal directions, it is
not necessary since the world angular velocity, w= (0, 0, θ̇), is already a multiple of
the principal direction. The zero components of this vector multiply the principal
moments in equation (3.34). The only relevant moment is μ3 associated with the
direction (0, 0, 1). The kinetic energy is

T = 1

2
mL2θ̇2 + 1

2
μ3 θ̇

2 = mL2+μ3

2
θ̇2

Since the body is rigid, according to equation (3.35) the gravitational force Fgrav =
−mgj acts as if it is applied at the center of mass. The generalized force is

Fθ = Fgrav · ∂(x̄ , ȳ , z̄)

∂θ
= (−mgj) · L(cos θ , sinθ , 0)=−mgL sinθ

The Lagrangian equation of motion is

(mL2 +μ3)θ̈ = d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= Fθ =−mgL sinθ

or θ̈ + c sinθ = 0, where c =mgL/(mL2+μ3). Note the similarity to the equation
of motion for the simple pendulum. As the base of the triangle shrinks to zero, all
the while maintaining constant mass, the limiting case is the rod itself (of the simple
pendulum problem). The principal moment μ3 is zero in the limiting case and c =
g/L, exactly what occurs in the simple pendulum problem. ■

122 Chapter 3 Rigid Body Motion

A couple of observations about the last example are in order. Although we have
set up the equations of motion, a numerical implementation must have available the
values of the mass m and the principal moment μ3. Under the stated assumptions, the
center of mass is the area of the triangle. In your implementation, you simply need to
supply the dimensions of the triangle. However, if the triangle is more complicated –
namely the mass density ρ is not constant – you must compute the center of mass for
the triangle, most likely using a numerical integrator applied to m = ∫R δ dR, where
R is the region of the plane that the triangle occupies. Also, the principal moment
μ3 must be computed, also by numerical integration when δ is not a constant. In
general for any rigid body, in order to construct the kinetic energy specified by equa-
tion (3.34), you will need to compute the mass and inertia tensor of the body. These
calculations are typically done before the simulation starts and stored with the data
structures representing the rigid body and its motion.

The second observation is that if the triangle in the last example is replaced by
another planar object of the same mass m and having the same principal directions of
motion and principal moments leading to the same value μ3, the equation of motion
for the planar object is identical to that of the triangle. The triangle and planar object
are said to be dynamically equivalent.

Exercise
3.17

In the Foucault pendulum Example 3.3, replace the massless rod and single-point
mass by a cone of height h and base radius r . Compute the equations of motion. ■

Example
3.12

Consider the physical system shown in Figure 3.13. This example has a mixture of
point–mass objects and a planar mass.

Source Code
MassPulleySpring

A gravitational force is applied, but note that the y-axis has been selected to point
downward, so g= gj where g > 0. The masses and locations are labeled in the figure,
as is the radius of the pulley. The other relevant quantities are the spring constant
c > 0, the unstretched spring length L > 0, and the principal moment of inertia of

g

y3

y

y2
y1 m1

m2

m3

R

Figure 3.13 A system consisting of two masses, a pulley with mass, and a spring.

3.2 Lagrangian Dynamics 123

the pulley I , measured with respect to the z-axis that is perpendicular to the plane of
the figure.

This system has two degrees of freedom, the vertical distance y3 from the ceiling to
the center of mass of the pulley and the vertical distance y1 from the vertical location
of the center of mass of the pulley to the mass m1. The vertical distance y2 is auto-
matically determined, because the length of the wire connecting m1 and m2, namely
y1+ y2 +πR = �, a constant.

The kinetic energy of the first mass is m1(ẏ3+ ẏ1)
2/2 and the kinetic energy of the

second mass is m2(ẏ3 + ẏ2)
2/2=m2(ẏ3− ẏ1)

2/2. The kinetic energy of the pulley
is calculated using equation (3.34). The component associated with the velocity of
the center of mass is m3 ẏ2

3 /2. The component associated with the angular velocity is
I θ̇2/2, where θ is an angle measured from the horizontal line through the center of
the pulley, as shown in Figure 3.13. Notice that for an angle θ as shown, the length of
the subtended arc on the pulley circumference is Rθ . The rate of change is Rθ̇ , where
θ̇ is the angular speed of the pulley. Any change in arc length amounts to a change in
the y1 vertical distance; that is, ẏ1 = Rθ̇ . The kinetic energy component is therefore,
I (ẏ1/R)2/2. The total kinetic energy is

T = m1

2
(ẏ3 + ẏ1)

2 + m2

2
(ẏ3− ẏ1)

2+ m3

2
ẏ2

3 +
I

2R2
ẏ2

1

The principal moment, measured with respect to the center of the pulley, is I =∫
D r 2 r dr dθ , where D is the disk r ≤ R. The integral is easily calculated to produce

I = πR4/2.
The relevant derivatives of the kinetic energy are (1) ∂T/∂y3 = 0, ∂T/∂y1 = 0,

∂T/∂ ẏ3=αẏ3+βẏ1, where α=m1+m2+m3 and β=m1−m2, and (2) ∂T/∂ ẏ1 =
βẏ3 + γ ẏ1, where γ =m1 +m2 + I/R2.

The position of mass m1 is (y3 + y1)j . The generalized forces for this mass are

Fy3 =m1gj · ∂((y3 + y1)j)

∂y
=m1g

Fy1 =m1gj · ∂((y3 + y1)j)

∂y1
=m1g

The position of mass m2 is (y3+ y2)j . The generalized forces for this mass are

Fy3 =m2gj · ∂((y3 + y2)j)

∂y
=m2g

Fy1 =m2gj · ∂((y3 + y2)j)

∂y1
=−m2g

The negative sign on the right-hand side occurs because y1+ y2 = �−πR (a con-
stant) implies dy2/dy1 =−1. The position of the center of the pulley is y3j . The

124 Chapter 3 Rigid Body Motion

generalized forces for the pulley are

Fy3 = (m3g + c(L− y3))j · ∂(y3j)

∂y
=m3g + c(L− y3)

Fy1 = (m3g + c(L− y3))j · ∂(y3j)

∂y1
= 0

The Lagrangian equations of motion are

αÿ3+βÿ1 = Fy3 =m1g +m2g +m3g + c(L− y3)= αg + c(L− y3)

and

βÿ3+ γ ÿ1 = Fy1 =m1g −m2g = βg

(Example 3.12
continued)

The equations are uncoupled by solving the second for ÿ1 and replacing in the first,

ÿ3 = cγ

αγ −β2
(L− y3)+ g

This is a second-order linear differential equation with a nonhomogeneous term.
Figure 3.14 – also Color Plate 3.14 – shows some screen shots from the mass/pul-
ley/spring application found on the CD-ROM.

Figure 3.14 (Continued)

3.2 Lagrangian Dynamics 125

Figure 3.14 A mass pulley spring system shown at two different times. The spring expands and
compresses and the pulley disk rotates during the simulation. The system stops when
a mass reaches the center line of the pulley or the ground. (See also Color Plate 3.14.)

■

Exercise
3.18

In Example 3.12, solve the final differential equation explicitly for y , then solve for y1

and y2 explicitly. ■

Exercise
3.19

Compute the equations of motion for the physical system shown in Figure 3.15.

g

y1

y

y2

y3c2

c1
m2 , I2

m1, I1

m3

R1

R2

L1

L2

Figure 3.15 A system of two pulleys, two springs, and a mass.

126 Chapter 3 Rigid Body Motion

The spring constants c1 and c2 and the unstretched lengths L1 and L2 are labeled in
the figure. The masses, moments of inertia, and radii of the pulleys are shown, as well
as the mass of the single particle. ■

Example
3.13

Figure 3.16 shows a physical system consisting of a rigid, but massless, pipe that has
a slight bend in it. The vertical portion of the pipe freely rotates about the z-axis
with angular speed θ̇ . At the end of the pipe is a solid, cylindrical disk of constant
mass density. The radius of the disk is a and the thickness is b. The disk freely rotates
about the cylinder axis with angular speed ψ̇ . The force acting on the system is given
generically by F. We wish to determine the equations of motion for the system.

z

x

y
h

L

g

Figure 3.16 A physical system with a bent pipe rotating about the z-axis and a disk rotating about
its axis.

The bend in the joint is h units above the end of the pipe. The bent portion of the
pipe has length L. The local coordinate system at the center of mass uses spherical
coordinates, where P= (−sinθ , cosθ , 0), Q= (−cos θ cos φ,−sinθ cos φ, sinφ), and
R = (cos θ sinφ, sinθ sinφ, cosφ). If O denotes the origin of the physical system, the
center of mass C of the disk is located relative to the origin by

r= C−O = hk+ LR

The velocity of the center of mass is

vcm = dr

dt
= LṘ= L

(
θ̇ sinφP− φ̇Q

)
The world coordinates of the angular velocity of the pipe about its shaft is wpipe =

θ̇k. The world coordinates of the angular velocity of the disk is wdisk = ψ̇R, where ψ is
the angular measurement made in the plane of P and Q. The world coordinates of the

3.2 Lagrangian Dynamics 127

angular velocity of the physical system as a whole is the sum of the angular velocities,

w =wpipe +wdisk = θ̇k+ ψ̇R

We may write the angular velocity in local coordinates using the fact that k = cosφR+
sinφQ:

w= 0P+ θ̇ sinφQ+ (ψ̇ + θ̇ cos φ)R

in which case the local coordinates are

ξ = (0, θ̇ sinφ, ψ̇ + θ̇ cos φ)

From equation (3.34) the kinetic energy is

T = 1

2
mL2(θ̇2 sin2 φ+ φ̇2)+ 1

2
μ2θ̇

2 sin2 φ+ 1

2
μ3(ψ̇ + θ̇ cosφ)2

where m is the mass of the disk and where μ2 and μ3 are principal moments for the
disk. Although we do not need the value here, by symmetry μ1 = μ2. The only degrees
of freedom are θ and ψ , because φ is constant. The relevant derivatives are

∂T

∂θ
= 0,

∂T

∂ψ
= 0

∂T

∂θ̇
= (mL2+μ2)θ̇ sin2 φ+μ3(ψ̇ + θ̇ cosφ)cos φ,

∂T

∂ψ̇
= μ3(ψ̇ + θ̇ cos φ)

d

dt

(
∂T

∂θ̇

)
= (mL2+μ2)θ̈ sin2 φ+μ3(ψ̈ + θ̈ cosφ)cos φ,

d

dt

(
∂T

∂ψ̇

)
= μ3(ψ̈ + θ̈ cos φ)

The generalized forces are

Fθ = F · ∂r

∂θ
= F · ∂(hk+ LR)

∂θ
= F · L(−sinθ sinφ, cos θ sinφ, 0)

and

Fψ = F · ∂r

∂ψ
= F · ∂(hk+ LR)

∂ψ
= F · (0, 0, 0)= 0

The fact that Fψ = 0 is to be expected. The center of mass is invariant with respect to
the rotation of the disk, so the applied force cannot affect it.

The equations of motion are therefore,

(mL2 +μ2)θ̈ sin2 φ+μ3(ψ̈ + θ̈ cos φ)cos φ = Fθ

and

μ3(ψ̈ + θ̈ cosφ)= 0

128 Chapter 3 Rigid Body Motion

The equations may be solved explicitly for the second derivative terms:

θ̈ = Fθ

(mL2 +μ2) sin2 φ
, ψ̈ = −Fθ cosφ

(mL2 +μ2) sin2 φ

The principal moment μ3 does not enter into the solution. This does not mean the
angular speeds of the pipe and disk are unaffected by physical characteristics of the
disk. The solution still has μ2 in it. If you increase μ2 (i.e., make the disk heav-
ier, increase its radius, or make it thicker), the right-hand sides of the differential
equations become smaller because of the presence of μ2 in the denominators. This in
turn causes the angular accelerations to become smaller, leading to reduced angular
speeds. ■

(Example 3.13
continued)

Exercise
3.20

In Example 3.13, show that μ2 =m(a2/2+ b2/12) and μ3 =ma2/2. ■

Exercise
3.21

In Example 3.13, if the only applied force is gravitational, say F=−mg k, show that
the angular speeds of the pipe and disk are constant over time. ■

Exercise
3.22

Consider a solid disk that is attached by a massless rod to the origin. The disk rolls on
the plane z = y tanα for a small positive angle α. Gravitational forces are present and
the plane is assumed to be rough so that frictional forces come into play. Figure 3.17
illustrates.

z

x

y

L

Q P
R

g

Figure 3.17 A solid disk that rolls on a rough, inclined plane.

The disk has radius a > 0 and thickness b > 0. One end of the rod is attached to the
origin, the other end to the center of the face closest to the origin. The distance from
the rod to the center of mass is L units. The physical system has one degree of freedom,
the angle θ . Construct the equation of motion for θ . (See Section 3.2.7 for a model of
motion of a solid box over a plane with frictional forces.) ■

3.2 Lagrangian Dynamics 129

3.2.6 Examples with Conservative Forces

Recall that a Lagrangian equation of motion for the constraint variable q, is of the
form

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
= Fq

where Fq = F · dx/dq is a generalized force. If F is a conservative force, then
F=−∇V for some potential energy function V , in which case,

Fq = F · dx

dq
=−∇V · dx

dq
=−∂V

∂q

The Lagrangian equation of motion for a conservative force is

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
=−∂V

∂q

The potential function in mechanical problems is almost always independent of time
derivatives q̇, so if we define the scalar function L = T −V , called a Lagrangian
function, the equation of motion for a conservative force is

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= 0 (3.36)

Example
3.14

A simple model of a diving board is presented here. Figure 3.18 illustrates.

h m

s r

g

Figure 3.18 A simple diving board.

The board has length r and is massless, but has a mass m on the end that represents
someone standing on the end of the board (and can be affected by gravity). The flexi-
bility of the board is modeled by a spring attached between the board and the ground.

130 Chapter 3 Rigid Body Motion

This spring affects the angular motion of the board about the joint at (0, h). The spring
is located at position s and has spring constant c > 0. The spring is unstretched with
length �, not necessarily the height h of the joint above the ground. The location of the
mass is measured by the angle θ relative to the horizontal. The position of the mass is
x= (0, h)+ r(cosθ , sinθ). The velocity is ẋ= r(−sinθ , cos θ)θ̇ . The kinetic energy is
T =mr 2θ̇2/2.

(Example 3.14
continued)

The potential energy due to a change in height from the board’s horizontal position
is the magnitude of the force multiplied by the change in height, as seen in equation
(2.108). For an angle θ , the change in height is r sinθ . The contribution to potential
energy is Vgravity =mgr sinθ . The potential energy due to the spring stretching was
derived in equation (2.109). It only depends on the endpoints (s, h) and (s cos θ , h+
s sinθ). The stretched length at the first endpoint is h− �. The stretched length at the
second endpoint is the value

√
s2(cos θ − 1)2 + (h+ s sinθ)2 − �

The contribution is

Vspring = c

2

((√
s2(cos θ − 1)2+ (h + s sinθ)2 − �

)2− (h− �)2
)

The total potential energy is V = Vgravity +Vspring. The constant (h− �)2 may be
ignored because the derivative of V is all that matters in the Lagrangian equations
of motion. Moreover, if you want to make an approximation by allowing θ to be only
a small angle, then cosθ

.= 1 and sinθ
.= θ , so V

.= (c/2)(h+ sθ − �)2 +mgrθ is a
reasonable approximation.

Using the approximation for potential energy, the Lagrangian is

L = T −V = 1

2
mr 2θ̇2− 1

2
c(h+ sθ − �)2 −mgrθ

The Lagrangian equation of motion is

0= d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= d

dt
(mr 2θ̇)− (−cs(h + sθ − �)−mgr)

=mr 2θ̈ + cs(h + sθ − �)+mgr

If the spring is such that the diving board is in static equilibrium at θ = 0, that is
cs(h− �)+mgr = 0, then the equation of motion is θ̈ + ((cs2)/(mr 2))θ = 0, and the
board exhibits simple harmonic motion. ■

Exercise
3.23

Construct the equations of motion for the Example 3.14, but without the approxi-
mation involving a small angle θ . ■

3.2 Lagrangian Dynamics 131

Example
3.15

Consider a double pendulum that consists of two rigid and massless rods. The first
rod is attached to a frictionless joint on the ceiling and has length r1. The other end
of the rod has a mass m1 attached. The second rod is attached to the other end of the
first rod, this joint also frictionless, and has length r2. A mass m2 is attached to the
other end of the second rod. The only applied force is gravitational. See Figure 3.11
for an illustration.

Mass mi is located at (xi , yi) for i = 1, 2. The kinetic energy is T =m1(ẋ2
1 +

ẏ2
1)/2+m2(ẋ2

2 + ẏ2
2)/2. However, we have only two degrees of freedom, which may

as well be chosen to be the angles θ1 and θ2. Trigonometric identities lead to x1 =
r1 sinθ1, h− y1 = r1 cos θ1, x2− x1 = r2 sinθ2, and y1− y2 = r2 cos θ2. Solving for the
components:

x1 = r1 sinθ1

y1 = h− r1 cosθ1

x2 = r1 sinθ1 + r2 sinθ2

y2 = h− r1 cosθ1 − r2 cosθ2

and the derivatives are

ẋ1 = r1θ̇1 cos θ1

ẏ1 = r1θ̇1 sinθ1

ẋ2 = r1θ̇1 cos θ1+ r2 θ̇2 cosθ2

ẏ2 = r1θ̇1 sinθ1 + r2θ̇2 sinθ2

The kinetic energy is therefore,

T = m1

2
r 2

1 θ̇2
1 +

m2

2

(
r 2

1 θ̇2
1 + r 2

2 θ̇2
2 + 2r1r2θ̇1 θ̇2 cos(θ1 − θ2)

)
The contribution to potential energy from mass m1 is −m1g (h− y1) and the

contribution from mass m2 is−m2g (h− y2), so the total potential energy is

V =−m1g (h − y1)−m2g (h− y2)=−(m1 +m2)gr1 cos θ1−m2gr2 cos θ2

The Lagrangian L = T −V is

L = m1

2
r 2

1 θ̇2
1 +

m2

2

(
r 2

1 θ̇2
1 + r 2

2 θ̇2
2 + 2r1r2θ̇1θ̇2 cos(θ1 − θ2)

)
+ (m1 +m2)gr1 cos θ1+m2gr2 cos θ2

132 Chapter 3 Rigid Body Motion

and its relevant derivatives are

∂L

∂θ1
=−m2r1r2θ̇1θ̇2 sin(θ1 − θ2)− (m1 +m2)gr1 sinθ1

∂L

∂θ2
=m2r1r2θ̇1 θ̇2 sin(θ1 − θ2)−m2gr2 sinθ2

∂L

∂θ̇1
=m1r 2

1 θ̇1+m2
(
r 2

1 θ̇1+ r1r2θ̇2 cos(θ1 − θ2)
)

∂L

∂θ̇2
=m2

(
r 2

2 θ̇2+ r1r2θ̇1 cos(θ1 − θ2)
)

d

dt

(
∂L

∂θ̇1

)
=m1r 2

1 θ̈1+m2
(
r 2

1 θ̈1+ r1r2(−θ̇2(θ̇1− θ̇2) sin(θ1 − θ2)+ θ̈2 cos(θ1 − θ2))
)

d

dt

(
∂L

∂θ̇2

)
=m2

(
r 2

2 θ̈2+ r1r2(−θ̇1(θ̇1 − θ̇2) sin(θ1 − θ2)+ θ̈1 cos(θ1− θ2))
)

(Example 3.15
continued)

The two Lagrangian equations of motion are

0= d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1

= (m1 +m2)r1
(
r1θ̈1 + g sinθ1

)+m2r1r2
(
θ̈2 cos(θ1 − θ2)+ θ̇2

2 sin(θ1 − θ2)
)

0= d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2

=m2r2
(
r2θ̈2 + g sinθ2

)+m2r1r2
(
θ̈1 cos(θ1 − θ2)− θ̇2

1 sin(θ1 − θ2)
)

The two equations may be solved simultaneously to produce explicit formulas for the
second derivatives θ̈1 and θ̈2. ■

Exercise
3.24

In the double pendulum problem, replace the rigid rods by massless springs whose
spring constants are c1 and c2 and whose unstretched lengths are �1 and �2. Calcu-
late the kinetic energy, the potential energy, the Lagrangian, and the equations of
motion. ■

Exercise
3.25

Compute the equations of motion for the triple pendulum problem where all the rods
are rigid. This problem adds one more massless rod to the system: one end is attached
to mass m2 (the joint is frictionless) and the free end has a mass m3 attached to it. The
rod length is r3. ■

Example
3.16

Two-body problem. This is the same problem discussed in Example 3.1 that was derived
with Newtonian dynamics and that led to Kepler’s Laws. We now derive the equa-
tions of motion using Lagrangian dynamics. Consider two particles with masses mi

and positions (xi , yi , zi) for i = 1, 2. The center of mass is (x, y , z) = (m1(x1, y1, z1)+

3.2 Lagrangian Dynamics 133

m2(x2, y2, z2))/(m1 +m2). The particles may be represented in the coordinate system
whose origin is the center of mass and whose axes are parallel to the world coordinate
axes. Specifically,

(xi , yi , zi)= (x, y , z)+ ri R(θ ,φ)

where R(θ ,φ)= (cos θ sinφ, sinθ sinφ, cosφ) is in the direction from particle 1 to par-
ticle 2. Using the fact that the total moment about the center of mass is zero, namely∑2

i=1 mi(xi−x, yi−y , zi−z)= (0, 0, 0), the radial values must satisfy m1r1+m2r2 =
0. Define r to be the distance between the particles, so r = r2− r1. Consequently,
r1 =−m2r/(m1+m2) and r2 =m1r/(m1+m2). In this notation the gravitational
force exerted by particle 1 on particle 2 is

F=−Gm1m2

r 2
R(θ ,φ)

where G is the gravitational constant. This force is conservative with potential energy
V =−Gm1m2/r . The kinetic energy is

T = 1

2

2∑
i=1

mi
(
ẋ2

i + ẏ2
i + ż2

i

)

= m1+m2

2

(
ẋ2+ ẏ2 + ż2)+ m1m2

2(m1 +m2)

(
ṙ 2+ r 2(φ̇2+ θ̇2 sin2 φ

))
For simplicity we will assume that the center of mass travels through space with
constant linear velocity. In this case the Lagrangian function is

L = T −V = c1

2

(
ṙ 2+ r 2(φ̇2 + θ̇2 sin2 φ

))+ c2

r

where c1 =m1m2/(m1+m2) and c2 = Gm1m2.
The relevant derivatives of L are

∂L

∂r
= c1r

(
φ̇2+ θ̇2 sin2 φ

)− c2

r 2

∂L

∂ ṙ
= c1ṙ

∂L

∂θ
= 0

∂L

∂θ̇
= c1r 2θ̇ sin2 φ

∂L

∂φ
= c1r 2θ̇2 sinφ cos φ

∂L

∂φ̇
= c1r 2φ̇

The Lagrangian equations of motion are

0= d

dt

(
∂L

∂ ṙ

)
− ∂L

∂r
= c1r̈ − c1r

(
φ̇2+ θ̇2 sin2 φ

)+ c2

r

0= d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= c1

d

dt

(
r 2θ̇ sin2 φ

)

134 Chapter 3 Rigid Body Motion

0= d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= c1

(
d

dt

(
r 2φ̇
)− r 2θ̇2 sinφ cosφ

)
(Example 3.16

continued)

The second equation implies r 2θ̇ sin2 φ = α is a constant. If we choose θ̇ (0)= 0,
then α = 0, which in turn implies θ̇ (t)= 0 for all time. Therefore, the motion of the
two particles must be in the plane θ = θ0. If the value θ̇ (0) �= 0, it is still the case
that the motion is in a plane, but the analysis is a bit more complicated and left as
an exercise. The third equation of motion reduces to d(r 2φ̇)/dt = 0, so r 2φ̇ = β, a
constant for all time. Replacing this in the first equation of motion, dividing by c1,
and defining γ = c2/c1, we have

r̈ = β2

r 3
− γ

r 2

This equation may be solved numerically for r(t) when initial conditions r(0) and
ṙ(0) are selected. The angle is obtained by one more integration, φ(t)= φ(0)+∫ t

0 β/r 2(τ)dτ , with φ(0) selected as an initial condition.
How does this relate back to Example 3.1 on Kepler’s laws? At first glance you might

have thought we found explicit solutions for r(t) and φ(t). This is not so. What we
found was a relationship between the two,

r(t)= eρ

1+ e cosφ(t)

an equation of an ellipse. To obtain a numerical solution for r and φ as functions
of time, you would need to solve r̈=−(Gm1/r 2)r, where r= rR. In the derivation
in that example we also showed that r× ṙ= c0 for some constant vector c0. This
constant is determined from the initial position r(0) and initial velocity ṙ(0), namely
c0 = r(0)× ṙ(0). This information can be used to reduce the differential equation to
one involving motion in a plane whose normal is c0.

As it turns out, the ellipse equation does satisfy the second-order equation for r(t)
that we just derived using Lagrangian dynamics. Taking a derivative leads to

ṙ = e2ρφ̇ sinφ

(1+ e cosφ)2
= r 2φ̇ sinφ

ρ
= β sinφ

ρ

Taking another derivative:

r̈ = β

ρ
cos φ = β

ρ

β

r 2

1

e

(eρ

r
− 1
)
= β2

r 3
− β2

eρ

1

r 2

For this to equate to our Lagrangian equation, we need β2 = eργ . ■

Exercise
3.26

In Example 3.16, if θ̇ (0) �= 0, show that the motion of the particles is still in a plane.
What is the equation of that plane? Hint : The plane will depend on the choices for
θ̇ (0) and φ̇(0). ■

3.2 Lagrangian Dynamics 135

Exercise
3.27

Write a computer program to solve the Lagrangian equations of motion in
exercise 3.16. ■

3.2.7 Examples with Dissipative Forces

This section contains some examples for setting up the equations of motion when at
least one of the applied forces is dissipative. The first example is a slight modification
of the simple pendulum. Other examples are slightly more complicated.

Example
3.17

Consider the simple pendulum problem that is illustrated in Figure 3.4. The joint
at P is now assumed to apply a frictional force Ffric to impede the motion of
the rod. The gravitational force is Fgrav =−mgj . The position of the mass is x=
(r sinθ , h− r cosθ), where the joint is a height h above the ground. The velocity is
v= r θ̇ (cos θ , sinθ). The kinetic energy is T =m|v|2/2=mr 2θ̇2/2. The generalized
force is Fθ = (Fgrav+F fric) · dx/dθ . The Lagrangian equation of motion is

mr 2θ̈ = d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= Fθ =−mgr sinθ +F fric · r(cos θ , sinθ)

The frictional force is assumed not to contain a static friction component.

Source Code
SimplePendulumFriction

If the frictional force is kinetic friction, the force is modeled by Ffric =−cv/|v| for
some constant c > 0. The force is in the opposite direction of velocity. The equation
of motion reduces to

0= θ̈ + c

mr

θ̇

|θ̇ | +
g

r
sinθ = θ̈ + aσ(θ̇)+ b sinθ

where a = c/(mr), b = g/r , and σ(θ̇) acts as a switch. If θ̇ > 0, then σ(θ̇)= 1. If
θ̇ < 0, then σ(θ̇)=−1. To avoid the singularity at θ̇ = 0, we define σ(0) = 0.

If the dissipative force is viscous, for example when the joint has a layer of oil to
prevent overheating, the force is modeled by Ffric =−cv for some constant c > 0. The
equation of motion reduces to

θ̈ + c

m
θ̇ + g

r
sinθ = 0

If the pendulum has only small oscillations about the vertical so that θ is nearly zero
and sinθ

.= θ , an approximation to the equation of motion is

θ̈ + c

m
θ̇ + g

r
θ = 0

This is a second-order linear differential equation whose solution may be written in
closed form (see Section (11.3)). If we set a = c/m and b = g/r , the characteristic
equation is λ2+ aλ+ b = 0. If a2 > 4b, this equation has two negative real-valued

136 Chapter 3 Rigid Body Motion

roots, λ1 = (−a−√a2− 4b)/2 and λ2 = (−a +√a2− 4b)/2. The solution to the
differential equation with initial conditions θ(0) = θ0 �= 0 and θ̇0 = θ̇ (0) is

θ(t) = (λ2θ0− θ̇0)exp(λ1t)− (λ1θ0 − θ̇0)exp(λ2t)

λ2−λ1

No sinusoidal terms occur, so the pendulum cannot continually oscillate about its
rest position. In the limit as t →∞ (physically after a large amount of time), the
right-hand side of the equation becomes zero, that is, θ(∞) = limt→∞ θ(t) = 0. The
condition a2 > 4b is equivalent to c > 2m

√
g/r . The coefficient of friction of the joint

is sufficiently large to prevent oscillation about the rest position, and after a large
amount of time the damping causes the pendulum to stop. (Question: If θ0 > 0 and
θ̇0 = 0, does the pendulum ever pass the origin? That is, does there exist a time T > 0
for which θ(T) < 0? How about when θ̇0 < 0?)

(Example 3.17
continued)

If a2 = 4b, the characteristic equation has a repeated real-valued root, λ=−a/2.
The solution to the differential equation is

θ(t) = ((θ̇0 −λθ0)t + θ0)exp(λt)

Just as in the previous case, θ(∞) = limt→∞ θ(t) = 0 and the pendulum eventually
stops. The condition a2 = 4b is equivalent to c = 2m

√
g/r and the coefficient is still

large enough to prevent oscillation about the rest position. (Question: If θ0 > 0 and
θ̇0 = 0, does the pendulum ever pass the origin? That is, does there exist a time T > 0
for which θ(T) < 0? How about when θ̇0 < 0?)

The last case is a2 < 4b. The characteristic equation has two nonreal roots, λ1 =
ρ− iω and λ2 = ρ+ iω, where ρ =−a/2 and ω =√4b− a2/2. The solution to the
differential equation is

θ(t) = exp(ρt)

(
θ0 cos(ωt)+ θ̇0−ρθ0

ω
sin(ωt)

)

In this case the pendulum does oscillate about the rest position, but the amplitude of
the oscillation decays exponentially over time. Once again θ(∞)= limt→∞ θ(t)=0,
so the pendulum eventually stops. The condition a2 < 4b is equivalent to c <

2m
√

g/r . Physically this means the coefficient of friction is sufficiently small and can-
not prevent the oscillations, but the slightest amount of friction is enough to stop the
pendulum after a long time. ■

Exercise
3.28

Compute the equations of motion for the double pendulum of Example 3.15 assum-
ing that both joints have kinetic friction. Repeat the exercise when both joints have a
dissipative viscous force. ■

The next few examples deal with kinetic friction on flat surfaces. The examples
increase in complexity. The first involves a single particle, the second involves multiple
particles, the third involves a curve mass, and the fourth involves an areal mass. The
last example is typical of what you can expect in a 3D simulation when one object
slides over another.

3.2 Lagrangian Dynamics 137

One Particle on a Rough Plane

A single particle is constrained to move on an inclined plane and is subject to
gravitational force. The plane forms an acute angle φ with the horizontal, so the height
relative to the horizontal is z = y tanφ. The plane is two dimensional. We choose coor-
dinates x and w with w shown in Figure 3.19. Basic trigonometric definitions show
us that y = w cosφ and z = w sinφ. A single particle with mass m, initial position
r0 = (x0, y0, z0), and initial velocity v0 = (ẋ0, ẏ0, ż0) is shown.

Source Code
RoughPlaneParticle1

A portion of the path r(t) traveled by the particle is also shown. The velocity, of
course, is v(t)= ṙ(t).

In terms of x and w, the kinetic energy is

T (x, w) = m

2

(
ẋ2+ ẏ2 + ż2)= m

2

(
ẋ2+ ẇ2)

The relevant derivatives are ∂T/∂x = 0, ∂T/∂w = 0, ∂T/∂ ẋ =mẋ , ∂T/∂ẇ =mẇ ,
d(∂T/∂ ẋ)/dt =mẍ , and d(∂T/∂ẇ)/dt =mẅ .

The gravitational force is Fgrav =−mg k. The frictional force is Ffric =−cv/|v|,
where c = μmg cosφ > 0. The constant μ depends on the material properties of the
mass and inclined plane. The generalized forces are

Fx = (Fgrav+F fric) · dr

dx

=
(
−mg k− c

v

|v|
)

· (1, 0, 0)

=− c ẋ√
ẋ2+ ẇ2

w

m

z

z0

w0 g

y0

x0

v0

x

y

Figure 3.19 An inclined plane that forms an angle φ with the horizontal. The particle has mass m.
It is located at r0 = (x0, y0, z0); hash marks are shown on the axes corresponding to
x0, y0, z0, and w0, where y0 = w0 cos φ and z0 = w0 sinφ.

138 Chapter 3 Rigid Body Motion

and

Fw = (Fgrav+F fric) · dr

dw

=
(
−mg k − c

v

|v|
)

· (0, cos φ, sinφ)

=−mg sinφ− cẇ√
ẋ2 + ẇ2

The Lagrangian equations of motion are

mẍ + c ẋ√
ẋ2+ ẇ2

= 0, mẅ + cẇ√
ẋ2 + ẇ2

+mg sinφ = 0

Just as in the pendulum example, the frictional terms are undefined at zero velocity,
when ẋ2+ ẇ2 = 0. When this happens, define the ratios to be zero (no friction at that
instant). In the event that the inclined surface is exactly on the horizontal, the angle is
φ = 0 and w = y . The generalized force due to gravity has no effect on the particle’s
motion since mg sinφ = 0.

Two Particles on a Rough Plane

Consider two particles with positions ri = (xi , yi) and masses mi for i = 1, 2. The
xy-plane is a rough surface and so provides a frictional force on the particles. The
particles are interconnected with a massless rod that does not touch the plane. Thus,
the particle system is a rigid body that has three degrees of freedom: the location (x, y)

of the center of mass and an orientation angle θ formed by the rod with the x-axis.
Figure 3.20 illustrates.

y

x

m2

m1

L1

L2

(x2, y2)

(x, y)

(x1, y1)

Figure 3.20 Two particles, connected by a massless rod, that slide along a rough plane.

3.2 Lagrangian Dynamics 139

The lengths Li are measured from the center of mass to the particles. The particle
positions are r1 = (x + L1 cos θ , y + L1 sinθ) and r2 = (x − L2 cos θ , y − L2 sinθ).
The velocities are v1 = (ẋ − L1 θ̇ sinθ , ẏ + L1θ̇ cos θ) and v2 = (ẋ + L2θ̇ sinθ , ẏ −
L2θ̇ cos θ). The frictional forces are Fi =−ci vi/|vi|, where ci = μmi g with μ depend-
ing on the material properties, and g is the gravitational constant.

The kinetic energy is

T (x, y ,θ) =
2∑

i=1

mi

2

(
ẋ2

i + ẏ2
i

)

= m1

2

(
(ẋ − L1θ̇ sinθ)2 + (ẏ + L1θ̇ cosθ)2)

+ m2

2

(
(ẋ + L2θ̇ sinθ)2 + (ẏ − L2θ̇ cosθ)2) (3.37)

= m1+m2

2

(
ẋ2 + ẏ2)+ m1L2

1 +m2L2
2

2
θ̇2

= μ0

2

(
ẋ2+ ẏ2)+ μ2

2
θ̇2

where the last equality defines the constants μ0 and μ2. Formally, a term with
(m1L1−m2L2) appears, but just as in Example 3.16 on the two-body problem,
m1L1−m2L2 = 0. If L = L1− L2, then L1 =m2L/(m1+m2) and L2 =m1L/(m1+
m2). The relevant derivatives of kinetic energy are

∂T

∂x
= 0,

∂T

∂y
= 0,

∂T

∂θ
= 0,

∂T

∂ ẋ
= μ0ẋ,

∂T

∂ ẏ
= μ0ẋ,

∂T

∂θ̇
= μ2θ̇ ,

d

dt

(
∂T

∂ ẋ

)
= μ0ẍ,

d

dt

(
∂T

∂ ẏ

)
= μ0 ÿ ,

d

dt

(
∂T

∂θ̇

)
= μ2θ̈

The generalized force corresponding to x is

Fx =
2∑

i=1

Fi · ∂ri

∂x

=
2∑

i=1

−ci
vi

|vi | · (1, 0)

140 Chapter 3 Rigid Body Motion

=− c1(ẋ − L1θ̇ sinθ)√
(ẋ − L1θ̇ sinθ)2 + (ẏ + L1θ̇ cos θ)2

− c2(ẋ + L2θ̇ sinθ)√
(ẋ + L2 θ̇ sinθ)2 + (ẏ − L2θ̇ cos θ)2

The generalized force corresponding to y is

Fy =
2∑

i=1

Fi · ∂ri

∂y

=
2∑

i=1

−ci
vi

|vi | · (0, 1)

=− c1(ẏ + L1θ̇ cos θ)√
(ẋ − L1θ̇ sinθ)2 + (ẏ + L1θ̇ cosθ)2

− c2(ẏ − L2θ̇ cos θ)√
(ẋ + L2θ̇ sinθ)2 + (ẏ − L2 θ̇ cosθ)2

The generalized force corresponding to θ is

Fθ =
2∑

i=1

Fi · ∂ri

∂θ

=− c1v1

|v1| · L1(−sinθ , cos θ)− c2v2

|v2| · L2(sinθ ,−cos θ)

=− c1L1(−ẋ sinθ + ẏ cos θ + L1θ̇)√
(ẋ − L1θ̇ sinθ)2 + (ẏ + L1θ̇ cos θ)2

− c2L2(ẋ sinθ − ẏ cosθ + L2θ̇)√
(ẋ + L2 θ̇ sinθ)2 + (ẏ − L2θ̇ cos θ)2

The Lagrangian equations of motion are

μ0ẍ = Fx , μ0 ÿ = Fy , μ2 θ̈ = Fθ (3.38)

Multiple Particles on a Rough Plane

The example for two particles on a rough plane can be extended to more particles,
leading to only a slightly more complicated set of equations. Consider p > 1 particles
with positions ri = (xi , yi) and masses mi for 1≤ i ≤ p. The particle system is a rigid
body that has three degrees of freedom: the location (x, y) of the center of mass and
an orientation angle θ . At least one point is not located at the center of mass. With
a renumbering of the particles if necessary, let that point be (x1, y1). We choose θ

to be the angle between (x1− x, y1 − y) and the x-axis direction (1, 0). Thus, x1 =
x + L1 cos θ and y1 = L1 sinθ , where L1 is the length of (x1 − x, y1− y). The dif-
ferences between the points and the center of mass form fixed angles with
(x1−x, y1−y):

xi = x + Li cos(θ +φi), yi = y + Li sin(θ +φi), 1≤ i ≤ p

3.2 Lagrangian Dynamics 141

where Li is the length of (xi − x, yi − y) and φi is the angle between (xi − x, yi − y)

and (x1 − x, y1− y). By definition of θ , it is the case that φ1 = 0. The frictional
forces are Fi =−ci vi/|vi |, where vi = ṙi , ci = μmi g with μ depending on the material
properties, and g is the gravitational constant.

The kinetic energy is

T =
p∑

i=1

mi

2

(
ẋ2

i + ẏ2
i

)

=
p∑

i=1

mi

2

((
ẋ − Li θ̇ sin(θ +φi)

)2+ (ẏ + Li θ̇ cos(θ +φi)
)2)

=
(p∑

i=1

mi

)
1

2
(ẋ2 + ẏ2)+

(p∑
i=1

miL
2
i

)
1

2
θ̇2

= μ0

2
(ẋ2 + ẏ2)+ μ2

2
θ̇2

(3.39)

where the last equation defines the constants μ0 and μ2. Just as in the case of two
particles, the choice of center of mass as the origin causes a few formal terms to vanish
when computing kinetic energy. Specifically, that choice implies

p∑
i=1

mi Li cos(θ +φi)= 0 and

p∑
i=1

mi Li sin(θ +φi)= 0

This is exactly the same form as equation (3.37). The generalized forces are

Fx =
p∑

i=1

Fi · ∂ri

∂x
=

p∑
i=1

− ci vi

|vi | · (1, 0)=−
p∑

i=1

ci(ẋ − Li θ̇ sin(θ +φi))

|vi|

Fy =
p∑

i=1

Fi · ∂ri

∂y
=

p∑
i=1

− ci vi

|vi | · (0, 1)=−
p∑

i=1

ci(ẏ + Li θ̇ cos(θ +φi))

|vi |

Fθ =
p∑

i=1

Fi · ∂ri

∂θ
=

p∑
i=1

− ci vi

|vi | · Li(−sin(θ +φi), cos(θ +φi))

=−
p∑

i=1

ci Li(−ẋ sin(θ +φi)+ ẏ cos(θ +φi)+ Li θ̇)

|vi|
The Lagrangian equations of motion are

μ0ẍ = Fx , μ0 ÿ = Fy , μ2 θ̈ = Fθ (3.40)

which are the same as for two particles, equation (3.38).

142 Chapter 3 Rigid Body Motion

A Thin Rod on a Rough Plane

This example is an extension of the one for two particles connected by a thin, massless
rod. Now the rod itself has mass and is in contact with the rough plane at every
point. The system still has three degrees of freedom: the center of mass (x, y) of the
rod and the angle θ formed by the rod with the positive x-axis direction. The rod
is parameterized by r(L)= (x + L cosθ , y + L sinθ) for L ∈ [−L2, L1]. The velocity is
v(L)= (ẋ − Lθ̇ sinθ , ẏ + Lθ̇ cosθ). The total length of the rod is L1+ L2. The mass
distribution is not necessarily uniform; mass density is the function δ(L). The total
mass μ0 and second moment μ2 are

μ0 =
L1∫

−L2

δ(L)dL and μ2 =
L1∫

−L2

δ(L)L2 dL

The kinetic energy is

T (x, y ,θ) =
L1∫

−L2

1

2
δ(L)|v(L)|2 dL

=
L1∫

−L2

1

2
δ(L)

(
(ẋ − Lθ̇ sinθ)2 + (ẏ + Lθ̇ cos θ)2)dL

= μ0

2
(ẋ2 + ẏ2)+ μ2

2
θ̇2

(3.41)

Just as in the case of particle systems, some terms in the formal construction of
kinetic energy vanish due to the choice of the center of mass as the origin. Specifi-

cally,
∫ L1
−L2

δL cosθ dL = 0 and
∫ L1
−L2

δL sinθ dL = 0. This is exactly of the form shown
in equation (3.37).

The frictional force is F(L)=−cv(L)/|v(L)|, where c is allowed to vary for each
particle in the rod (c is allowed to be a function of L) but is assumed not to vary with
position or velocity. The generalized force Fx is now formulated as an integral rather
than as a sum:

Fx =
L1∫

−L2

F(L) · ∂r(L)

∂x
dL

=
L1∫

−L2

−c
v

|v| · (1, 0)dL

3.2 Lagrangian Dynamics 143

=
L1∫

−L2

−c(ẋ − Lθ̇ sinθ)√
(ẋ − Lθ̇ sinθ)2 + (ẏ + Lθ̇ cosθ)2

dL

Similarly, the generalized force Fy is

Fy =
L1∫

−L2

F(L) · ∂r(L)

∂y
dL

=
L1∫

−L2

−c
v

|v| · (1, 0)dL

=
L1∫

−L2

−c(ẏ + Lθ̇ cosθ)√
(ẋ − Lθ̇ sinθ)2 + (ẏ + Lθ̇ cos θ)2

dL

and the generalized force Fθ is

Fθ =
L1∫

−L2

F(L) · ∂r(L)

∂θ
dL

=
L1∫

−L2

−c
v

|v| · L(−sinθ , cos θ)dL

=
L1∫

−L2

−cL(−ẋ sinθ + ẏ cos θ + Lθ̇)√
(ẋ − Lθ̇ sinθ)2 + (ẏ + Lθ̇ cosθ)2

dL

The Lagrangian equations of motion are the same as those in equation (3.38).

Exercise
3.29

How do the formulas for kinetic energy, generalized forces, and the Lagrangian equa-
tions of motion change if the mass is distributed along a curve rather than a straight
line segment? ■

A Flat Board on a Rough Plane

This example is an extension of the one for multiple particles on a rough surface. We
now consider a continuum of mass in the region R, as shown in Figure 3.21.

The system has three degrees of freedom: the center of mass (x, y) of the rod and
an angle θ that represents the orientation of the region relative to the positive x-axis.

144 Chapter 3 Rigid Body Motion

y

x

R

Figure 3.21 A flat board on a rough plane.

The rod is parameterized in a local coordinate system whose origin is the center of
mass and whose orthonormal axes are chosen to be (cos θ , sinθ) and (−sinθ , cos θ):

r(α,β)= (x, y)+α(cos θ , sinθ)+β(−sin θ , cos θ)

The velocity is

v(α,β)= (ẋ , ẏ)+ θ̇ (α(−sinθ , cos θ)−β(cos θ , sinθ))

Since the region R represents a rigid body, the local coordinates (α,β) for a particle are
independent of the orientation of the body. The distance between the particle at (α,β)

and the center of mass is L =√α2+β2. The mass density is the function δ(α,β) and
is allowed to vary over the region. In the integral quantities used in the following, the
infinitesimal for the region is dR = dα dβ.

The kinetic energy is

T = 1

2

∫
R

δ|v|2 dR

= 1

2

∫
R

δ
(
(ẋ − θ̇ (α cos θ +β sinθ))2 + (ẏ + θ̇ (α cos θ −β sinθ))2

)
dR

=
⎛
⎝∫

R

δ dR

⎞
⎠ 1

2
(ẋ2 + ẏ2)+

⎛
⎝∫

R

(α2+β2)δ dR

⎞
⎠ 1

2
θ̇2

= μ0

2
(ẋ2 + ẏ2)+ μ2

2
θ̇2

(3.42)

3.2 Lagrangian Dynamics 145

where

μ0 =
∫
R

δ dR and μ2 =
∫
R

(α2+β2)δ dR

Once again some formal terms in the computation of kinetic energy vanish due to
the choice of center of mass as the origin. Specifically,

∫
R δ(α sinθ +β cos θ)dR = 0

and
∫

R δ(α cos θ −β sinθ)dR = 0. The form of the kinetic energy is the same as in
equation (3.39).

The frictional forces are F=−cv/|v|, where c is allowed to vary with α and β.
The generalized force Fx is

Fx =
∫
R

F · ∂r

∂x
dR

=
∫
R

−c
v

|v| · (1, 0) dR

=
∫
R

−c(ẋ − θ̇ (α sinθ +β cosθ))

|v| dR

The generalized force Fy is

Fy =
∫
R

F · ∂r

∂y
dR

=
∫
R

−c
v

|v| · (0, 1) dR

=
∫
R

−c(ẏ + θ̇ (α cos θ −β cos θ))

|v| dR

The generalized force Fθ is

Fθ =
∫
R

F · ∂r

∂θ
dR

=
∫
R

−c
v

|v| · (−α sinθ −β cos θ ,α cosθ −β sinθ) dR

=
∫
R

−c(−(α sin θ +β cos θ)ẋ + (α cos θ −β sinθ)ẏ + (α2+β2)θ̇)

|v| dR

The Lagrangian equations of motion are exactly the ones shown in equation (3.40).

146 Chapter 3 Rigid Body Motion

A Solid Box on a Rough Plane

The problem we now look at is a variation on the one involving a particle on an
inclined plane as shown in Figure 3.19. Instead of a particle, we have a solid box of
dimensions 2a, 2b, and 2h. The box has constant mass density. A side view of the box
and plane is shown in Figure 3.22.

Source Code
RoughPlaneSolidBox

In addition to sliding down the plane, the box is also rotating about its local ver-
tical axis with angular speed θ̇ . The center of mass is located at r= (x, w cos φ−
h sinφ, w sinφ+ h cos φ). The contribution to the kinetic energy due to the veloc-
ity of the center of mass is m(ẋ2 + ẇ2)/2, where m is the mass of the box. Because
the box has angular velocity, we need to compute the contribution due to the rota-
tion as indicated by equation (3.34). The angular velocity in world coordinates
is w = θ̇ (0,−sinφ, cosφ). Local coordinates for the box are as follows. The box’s
vertical direction is u3 = [0 − sinφ cos φ]T. The other two coordinate axes vary
with θ because of the rotation. A reference frame is u′1 = [1 0 0]|TRN and u′2 =
[0 cos φ sinφ]T. The frame that rotates with the box as θ varies is

u1 = cos θu′1− sinθu′2 = [cos θ − sinθ cos φ − sinθ sinφ]T

and

u2 = sinθu′1+ cos θu′2 = [sinθ cos θ cos φ cos θ sinφ]T

The local coordinates for the angular velocity are ξ = [ξ1 ξ2 ξ3]T, where w =∑3
i=1 ξiui . In our case, w= θ̇u3, so ξ = [0 0 θ̇]T. From Example 2.9 we saw that the

principal moment for the vertical axis is μ3 = (a2+ b2)/3, so the contribution of the
angular velocity to the kinetic energy is θ̇2m(a2 + b2)/3. The total kinetic energy is

T = 1

2
m(ẋ2 + ẇ2)+ 1

6
m(a2 + b2)θ̇2 (3.43)

y

z

g

h

Figure 3.22 A side view of a solid box on a rough, inclined plane.

3.3 Euler’s Equations of Motion 147

The system has three degrees of freedom given by x, w, and θ , so there will be
three Lagrangian equations of motion: mẍ = Fx , mẅ = Fw , and m(a2 + b2)θ̈/3=
Fθ , where the right-hand sides of the equations are the generalized forces.

The center of mass is located at r as mentioned earlier. You might be tempted
to construct the generalized forces by dotting the applied forces Fgrav+Ffric with the
partial derivatives of r with respect to x, w, and θ . However, that would be an error in
analysis. The contributions of the gravitational force to the generalized forces may be
computed by assuming that gravity applies only to the center of mass. The frictional
forces apply only to the face of the box that is sliding on the plane. In this sense we need
to compute the contribution of friction to the generalized forces in the same manner
as in the example of a flat board on a rough plane (see Figure 3.21). In that example,
replace y with w and use the generalized forces exactly as shown in the example.

Exercise
3.30

In the discussion about a box sliding on a rough plane, the kinetic energy in
equation (3.43) was computed using equation (3.34). First, the box half height h
does not appear to affect the kinetic energy. Does this make sense to you? Second,
the expression does not have terms of the form ẋ θ̇ or ẇθ̇ . In the example of a flat
board sliding over a rough plane, the kinetic energy in equation (3.42) was computed
directly as an integral over the velocity of points in the board. This latter formula has
terms involving ẋ θ̇ and ẏ θ̇ (thinking of y and w as the same variable). From the per-
spective of friction, the sliding box and sliding flat board are identical in nature since
the friction of the sliding box is only relevant for its bottom flat face. Why is it, then,
that one expression has the ẋ θ̇ and ẇθ̇ terms but not the other expression? ■

Exercise
3.31

Write a computer program that implements the example of a box sliding on a rough
plane. The example, as modeled, uses only kinetic friction. Incorporate static friction
into your program by specifying a minimum angle φmin > 0 for which static friction
prevents the box from moving when the plane is inclined at an angle φ smaller than
φmin but allows movement when the angle of inclination is larger than φmin. ■

3.3 Euler’s Equations of Motion

Sometimes a physical application is more naturally modeled in terms of rotations
about axes in a coordinate system. The prototypical example is that of a spinning
top, where the top rotates about its axis of symmetry but simultaneously the entire
top is rotating about a vertical axis. Euler’s equations of motion are the likely choice
for determining the motion of such an object. These equations are the focus of this
section.

Consider a rigid body with origin O that coincides with the origin of the world
coordinate system. The basis vectors for the world are ηi for 1≤ i ≤ 3. The rigid body
is given its own basis vectors ξ i for 1≤ i ≤ 3, such that η3 and ξ3 are not parallel.
The plane spanned by η1 and η2 intersects the plane spanned by ξ 1 and ξ 2 in a line.
That line passes through the origin and has unit-length direction N. Figure 3.23(a)
illustrates the two coordinate systems.

148 Chapter 3 Rigid Body Motion

3

2

3

1

2

1
N

2

1

N

2

1

N

(a) (b)

Figure 3.23 The world coordinates and body coordinates for a rigid body where both systems have
the same origin.

The angle between η3 and ξ 3 is φ, the angle between N and η1 is θ , and the angle
between N and ξ 1 is ψ . The positive direction for the angles is shown in Figure 3.23.
By definition, N lies in the plane spanned by η1 and η2. Moreover, it must lie on the
unit circle centered at the origin. The vector also lies on the unit circle centered at the
origin of the plane spanned by ξ 1 and ξ 2. As such we may write it as

N= (cos θ)η1+ (sinθ)η2 = (cos ψ)ξ 1− (sinψ)ξ 2 (3.44)

Figure 3.23(b) illustrates the location of N relative to the various axes of the planes.
The three angles φ, θ , and ψ completely determine the orientation of the body

relative to the world coordinates. Observe that φ̇ is the angular speed of rotation about
N, θ̇ is the angular speed of rotation about η3, and ψ̇ is the angular speed of rotation
about ξ 3. The angular velocity of the rigid body is the sum of the axial angular veloc-
ities w = φ̇N+ θ̇η3+ ψ̇ξ 3. The vector ξ3 is obtained from η3 by a rotation about the
N axis through an angle φ. Using a standard rotation formula and using equation
(3.44) for cross products:

ξ 3 = η3+ (sinφ)N× η3+ (1− cos φ)N× (N× η3)

= η3+ (sinφ)(−(cos θ)η2+ (sinθ)η1)+ (1− cos φ)(−η3)

= (sinθ sinφ)η1− (cos θ sinφ)η2+ (cos φ)η3

(3.45)

3.3 Euler’s Equations of Motion 149

The angular velocity in world coordinates is

w= φ̇N+ θ̇η3+ ψ̇ξ 3

= φ̇((cos θ)η1+ (sinθ)η2)+ θ̇η3+ ψ̇((sin θ sinφ)η1

− (cos θ sinφ)η2+ (cos φ)η3)

= (φ̇ cosθ + ψ̇ sinθ sinφ)η1+ (φ̇ sinθ − ψ̇ cosθ sinφ)η2

+ (θ̇ + ψ̇ cos φ)η3

(3.46)

Similarly, the vector η3 is obtained from ξ 3 by a rotation about the N axis through
an angle −φ. Using a standard rotation formula and using equation (3.44) for cross
products:

η3 = ξ 3 − (sinφ)N× ξ 3+ (1− cos φ)N× (N× ξ 3)

= ξ 3 − (sinφ)(−(cos ψ)ξ 2− (sinψ)ξ 1)+ (1− cos φ)(−ξ 3)

= (sinψ sinφ)ξ 1+ (cos ψ sinφ)ξ 2+ (cos φ)ξ 3

(3.47)

The angular velocity in body coordinates is

w= φ̇N+ θ̇η3+ ψ̇ξ 3

= φ̇((cos ψ)ξ 1 − (sinψ)ξ 2)+ θ̇ ((sinψ sinφ)ξ 1+ (cos ψ sinφ)ξ 2

+ (cos φ)ξ 3)+ ψ̇ξ 3

= (φ̇ cosψ + θ̇ sinψ sinφ)ξ 1+ (−φ̇ sinψ + θ̇ cos ψ sinφ)ξ 2

+ (ψ̇ + θ̇ cos φ)ξ 3

(3.48)

The angular velocity in world coordinates is useful in setting up Euler’s general
equations of motion, equation (2.90). The angular velocity in body coordinates, when
the ξ are chosen to be principal directions of the inertia tensor, is useful in setting up
Euler’s special equations of motion, equation (2.91). If the principal moments are μi ,
the body coordinates of the torque are τi , and the body coordinates of the angular
velocity are wi , then the special equations are

μ1ẇ1+ (μ3 −μ2)w2w3 = τ1

μ2ẇ2+ (μ1 −μ3)w1w3 = τ2

μ3ẇ3+ (μ2 −μ1)w1w2 = τ3

(3.49)

150 Chapter 3 Rigid Body Motion

Example
3.18

Consider a freely spinning top whose tip is fixed in place. The top is assumed to
be symmetric about the axis of the third principal direction vector, in which case
μ1 = μ2. We assume no torques on the top, a situation that can be approximated by
assuming the center of mass is effectively at the tip of the top. Figure 3.24 shows the
configuration.

Figure 3.24 A freely spinning top with tip fixed at the origin of the world coordinate system.

The world coordinate axes ηi are shown. The body coordinate axes are ξ i , which are
the principal directions of the inertia tensor, but only the axis of symmetry is shown.

The Euler equations, equation (3.49), reduce to

μ1ẇ1+ (μ3 −μ1)w2w3 = 0, μ1ẇ2 − (μ1 −μ3)w1w3 = 0, μ3ẇ3 = 0

The last equation implies the component w3 = c , a constant. Define λ= c(μ3−
μ1)/μ1. The first two equations are then ẇ1 +λw2 = 0 and ẇ2 −λw1 = 0. Taking
derivatives and replacing one equation in the other leads to ẅ1 +λ2w1 = 0. This is
the differential equation for simple harmonic motion. A solution is w1 = α cos(λt).
The other component is determined from the second differential equation by substi-
tuting in w1, the result being w2 = α sin(λt). The angular velocity of the top in body
coordinates is

w= (α cos(λt))ξ 1+ (α sin(λt))ξ 2+ cξ 3

The angular speed is |w| = √α2+ c2, a constant. If the top rotates only about its axis
of symmetry, then α = 0 must occur so that w is parallel to ξ 3. However, the top can
be rotating about the η3 axis while simultaneously rotating about its axis of symmetry.
In this case the angular velocity is not parallel to ξ3, and α �= 0 is required.

In world coordinates the torque τ and angular momentum L are related by τ =
dL/dt . Since the torque is assumed to be zero, the rate of change of angular momen-
tum is zero. Thus, the angular momentum vector is constant. Moreover, we know

3.3 Euler’s Equations of Motion 151

that L= J w in world coordinates. For L to be a constant and w to be time-varying,
J must also be time varying. In the specified body coordinates, the angular momen-
tum vector is

L=M w = (μ1α cos(λt))ξ 1+ (μ1α sin(λt))ξ 2+ (μ3c)ξ 3

The first two coefficients are time varying, but so are the principal directions, and
all must do so in order to guarantee the angular momentum vector is constant. This
equation says that the angular momentum vector rotates about the body axis ξ 3 with
constant angular speed λ. However, we know L is fixed in world space, and it must be
parallel to η3, so the body axis ξ 3 is rotating about η3 with angular speed −λ. ■

Example
3.19

This example is a modification of Example 3.18. Now we assume that the center of
mass is located � units of distance from the origin along the axis of symmetry. The
total mass of the top is m. Using the same notation as in our general discussion earlier
in this section, the torque is

τ = r× Fgrav

= (�ξ 3)× (−mgη3)

= (mg� sinφ)N

= (mg� sinφ cosψ)ξ 1+ (−mg� sin φ sinψ)ξ 2

Source Code
FreeTopFixedTip

Euler’s equations of motion are

μ1ẇ1+ (μ3 −μ1)w2w3 =mg� sinφ cosψ

μ1ẇ2− (μ3 −μ1)w1w3 =−mg� sinφ sinψ

μ3ẇ3 = 0

As in the previous example, w3 = c , a constant. Define λ= c(μ3−μ1)/μ1 and α =
mg�/μ1 . The first two equations of motion are

ẇ1 +λw2 = α sinφ cos ψ , ẇ2−λw1 =−α sinφ sinψ

Multiplying the first by w1, the second by w2, and adding:

d

dt

(
w2

1 +w2
2

)= 2α sinφ(w1 cos ψ −w2 sinψ)

Equation (3.48) may be used to show that w2
1 +w2

2 = φ̇2+ θ̇2 sin2 φ and w1 cosψ −
w2 sinψ = φ̇ . Consequently,

d

dt

(
φ̇2+ θ̇2 sin2 φ

)= 2αφ̇ sinφ =− d

dt
(2α cosφ)

152 Chapter 3 Rigid Body Motion

Integrating leads to

φ̇2+ θ̇2 sin2 φ = β− 2α cos φ

where the right-hand side is a constant.

(Example 3.19
continued)

In body coordinates we know that the angular momentum is

L=M w= μ1w1ξ 1+μ1w2ξ 2+ cμ3ξ3

Dotting with η3 and defining γ = L · η3, we have

γ = L · η3

= μ1w1ξ 1 · η3+μ1w2ξ 2 · η3+ cμ3ξ 3 · η3

= μ1w1 sinψ sinφ+μ1w2 cosψ sinφ+ cμ3 cos φ

where the last equality follows from dotting equation (3.47) with the ξ i . But τ =
dL/dt and τ · η3 = 0 imply that d(L · ξ 3)/dt = 0, so γ = L · ξ 3 is a constant. Once
again we may substitute the body coordinates for w from equation (3.48) to obtain

μ1 θ̇ sin2 φ+ cμ3 cos φ = γ

Finally, equation (3.48) is used once more to produce

c = w3 = ψ̇ + θ̇ cosφ

This has been a long mathematical construction. Let us summarize what we have
so far, three differential equations involving the three angles φ, θ , and ψ :

φ̇2+ θ̇2 sin2 φ = β− 2α cos φ, μ1 θ̇ sin2 φ+ cμ3 cos φ = γ , ψ̇ + θ̇ cos φ = c

The second equation can be solved for θ̇ = (γ − cμ3 cos φ)/(μ1 sin2 φ). Defining the
constants δ = γ /μ1 and ε = cμ3/μ1 and replacing θ̇ in the first equation:

φ̇2+
(

δ− ε cos φ

sinφ

)2

= β− 2α cos φ

This differential equation involves only the angle φ. Solving for the first derivative:

dφ

dt
=
√

(β − 2α cos φ)−
(

δ− ε cos φ

sinφ

)2

You should convince yourself why the positive square root is chosen instead of the
negative one. In a numerical implementation, to avoid the many trigonometric func-
tion calls that can be expensive to evaluate, the change of variables p = cos φ may be
used. The derivative is ṗ =−φ̇ sinφ and sin2 φ = 1− p2. The differential equation
becomes

dp

dt
=−

√
(1− p2)(β − 2αp)− (δ− εp)2 (3.50)

3.3 Euler’s Equations of Motion 153

This equation cannot be solved in closed form, even if we were to separate variables
and solve for t as an integral of a function of p. It may be solved numerically to
obtain p as a function of t , say p(t). The other angles are computed by numerically
integrating

dθ

dt
= γ − cμ3 cosφ

μ1 sin2 φ
= δ− εp

1− p2
(3.51)

and

dψ

dt
= c − θ̇ cos φ = c − p

δ− εp

1− p2
(3.52)

Although you can solve equations (3.50), (3.51), and (3.52) as a system of differen-
tial equations, an alternative is to solve the first equation by generating a sequence
of samples (ti , pi), fitting those samples with a parametric curve in t , then using that
curve in a numerical integration of the second and third equations with respect to t .
Yet another alternative is to multiply the second and third equations by dt/dp to
obtain dθ/dp = F(p) and dψ/dp = G(p), where the right-hand sides are functions
of only p. Numerical integrators may be applied to solve for θ and ψ as functions
of p. Figure 3.25 – also Color Plate 3.25 – shows some screen shots from the free top
application found on the CD-ROM.

Figure 3.25 (Continued)

154 Chapter 3 Rigid Body Motion

Figure 3.25 Two snapshots of a freely spinning top. The black line is the vertical axis. The white
line is the axis of the top. (See also Color Plate 3.25.) ■

(Example 3.19
continued)

Exercise
3.32

Write a computer program that uses a differential equation solver to solve equations
(3.50), (3.51), and (3.52).

If you are feeling bold, add the following to your program. Assuming the top is
a cone of height h and radius r , detect when φ(t) reaches an angle for which the
cone becomes tangent to the horizontal plane. At that instant, the physical system
should change to one that models the cone rolling around the plane, still with its tip
connected to the origin (see Exercise 3.22). The plane is considered rough, so friction
comes into play. In this mode the cone should eventually stop rolling. ■

Exercise
3.33

Compute the Lagrangian equations of motion for the freely spinning top subject to
torque as in Example 3.19. ■

Exercise
3.34

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with no torque, where the tip is allowed to move on the xy-plane. ■

Exercise
3.35

Compute equations of motion (Eulerian or Lagrangian) for the freely spinning top
with torque, where the tip moves in the x-direction of the xy-plane according to
x(t) = α sinλt , y(t) = 0. ■

C h a p t e r 4
Deformable

Bodies

In the last chapter we focused on rigid bodies and their behavior under various
forces. In reality, no body is rigid, but for many bodies the assumption of rigidity is

a close approximation to the actual physical conditions. For example, a ball bearing
made of steel may be treated as a spherical rigid body. The equations of motion for
reasonable forces applied to the ball bearing are good approximations to the physics.
However, if the ball bearing is struck with a hard hammer with sufficient force, the
bearing will deform, most likely into an elliptically shaped object.

In some physics applications, the objects we want to model are considered to be
deformable bodies, ones for which the rigid body analyses do not apply. Section 4.1
gives you a brief description of some concepts related to deformation. The other
sections provide alternatives for modeling deformable bodies in a manner that is
computationally reasonable on current computers.

A calculus-based approach to understanding deformation of a solid material is
typically used in a course on continuum mechanics. Although current hardware may
be of assistance in computing deformations through this approach, in particular
GPU support for physics, it is still worthwhile to use a few alternatives to model-
ing deformable bodies. These are useful for maintaining a reasonable frame rate for
a physics simulation involving the bodies. The first one is based on physical princi-
ples and requires solving systems of differential equations. The other alternatives are
not physically based, but as long as the results look physically correct, they are good
choices for deformation in that they avoid the numerical stability issues associated
with differential equation solvers.

© 2010 by Elsevier Inc. All rights reserved. 155
DOI: 10.1016/B978-0-12-374903-1.00004-9

156 Chapter 4 Deformable Bodies

Section 4.2 shows how to model a body as a system of point masses connected
by springs. The quantity of masses, the configuration of springs, and the choice of
spring constants depend on the particular needs of an application. The mathematical
model of such a system will involve Hooke’s Law and result in a system of differential
equations that must be numerically solved.

Section 4.3 shows how to model a body by explicitly defining its boundary to be a
parametric surface with control points. In order to localize the deformation to small
portions of the surface, we would like a surface with local control. This suggests using
B-spline or NURBS surfaces. The control points may be varied over time to simulate
time-varying forces applied to the surface of the body.

Free-form deformation of the region that contains the body is another practical
alternative, one described in Section 4.4. The surface of the body may be represented
as a triangle mesh or as a parametric surface with control points. In the latter case
a triangle mesh can be generated from the parametric surface for the purposes of
display of the physical simulation. The idea is that the deformation region is param-
eterized by three variables and has a small number of control points that can be
modified by the application. As the control points change, the region is deformed.
The vertices for the triangle mesh or the control points for the parametric surface
are located in the deformation region. As the region is deformed, the vertices or sur-
face control points are moved about, causing the corresponding triangle meshes to
deform.

The boundary of the region occupied by a body may be modeled as a surface
implicitly by F(x, y , z)= 0 for a suitably chosen function F . This is the topic of
Section 4.5. We will choose the convention that the interior of the body is the set
of points for which F(x, y , z) < 0. A force on the body is simulated by adding a defor-
mation function D(x, y , z) to F(x, y , z) and setting the deformed surface to be that
defined implicitly by F(x, y , z)+D(x, y , z) = 0. The interior of the deformed body is
defined by F(x, y , z)+D(x, y , z) < 0.

4.1 Elasticity, Stress, and Strain

The primary concept for a deformable body is elasticity. This is the property by
which the body returns to its original shape after the forces causing the deforma-
tion are removed. A plastic rod in the shape of a line segment can be easily bent
and returned to its original form. A similarly shaped rod made of steel is more diffi-
cult to bend but will bend slightly and return to its original shape once the bending
force is removed. The rod can be significantly bent so that it does not return to
its initial shape once the force is removed. Such catastrophic behavior will not be
dealt with in this book. Clearly, the amount of force necessary to deform a steel rod
is greater than that required to deform a plastic rod.

The stress within a solid object is the magnitude of the applied force divided by the
surface area over which the force acts. The stress is large when the force magnitude

4.1 Elasticity, Stress, and Strain 157

is large or when the surface area is small, both intuitive behaviors. For example, if a
heavy rigid body of mass m subject to gravitational force sits on the circular top of
a cylinder of radius r , the stress on the cylinder is mg/(πr 2), where g is the gravita-
tional constant. A heavier mass causes more stress. A thinner cylinder has more stress
generated by the same body. Since stress is the ratio of force magnitude to area of
influence, it is effectively pressure and has the units of pressure, pascals. One pascal is
defined to be one newton per meter squared.

The strain on an object is the fractional deformation caused by stress. The quantity
is dimensionless since it measures a change in a dimension relative to the original
dimension. Although the method of measuring a change depends on the particular
type of object and how a force is applied, the simplest example to illustrate is a thin
rod of elastic material that is fixed at one end, the other end pulled. If the rod has
initial length L and changes length by �L due to the force pulling on the end, the
strain on the rod is �L/L.

By themselves, stress and strain do not appear to contain information about the
specific material to which a force is applied. The amount of stress to produce a strain
in a material does depend on that material. This suggests calculating the ratio of stress
to strain for materials. Three variations of this ratio are presented here: Young’s mod-
ulus, the shear modulus, and the bulk modulus. Loosely speaking, the three moduli
represent the stress to strain ratio in a linear direction, along a planar region, and
throughout a volume region.

If a wire of length L and cross-sectional area A has a force with magnitude F
applied to one end, a change in length �L occurs. Young’s modulus is the ratio of
stress to strain:

Y = linear stress

linear strain
= F/A

�L/L

Consider a thin rectangular slab whose thickness is L units and whose other
dimensions are x and y . L is assumed to be small relative to x and y . The large faces
have area A = xy . One face is attached to a flat table. A tangential force of magnitude F
and direction that of the x dimension is applied to the other face. This causes a shear-
ing stress of F/A units. The rectangular slab slightly deforms into a parallelepiped
whose volume is the same as the slab. The area of the large faces also remains the
same. The slab has an edge length of L, but increases slightly by an amount �L due
to the shearing. The shearing strain is �L/L and represents the strain of the one face
attempting to move parallel to the other. The shearing modulus is

S = planar stress

planar strain
= F/A

�L/L

Finally, consider a material occupying a region of volume V . A force of magnitude
F is uniformly distributed over the surface of the material, the direction of the force
perpendicular at each point of the surface. You may consider the application of the

158 Chapter 4 Deformable Bodies

force as an attempt to compress the material. If the surface area is A, the pressure on
the material is P = F/A. If the pressure is increased by an amount �P , the volume
decreases by an amount �V . The volume stress is �P and the volume strain is �V/V .
The bulk modulus is

B = volume stress

volume strain
= �P

�V/V

In all three cases the measurement is stress versus strain, but the difference lies in
the dimensionality, so to speak, of how the material changes shape due to the stress.

4.2 Mass–Spring Systems

A deformable body can be modeled as a system of point masses connected by springs.
The bodies can be curve masses (e.g., hair or rope), surface masses (e.g., cloth or the
surface of a body of water), or volume masses (e.g., a gelatinous blob or a moving, vis-
cous material). The time complexity of the system is related to the number of masses
and how they are interconnected. We will look at some simple configurations to illus-
trate the key ideas. Curve masses are modeled as a one-dimensional array of particles,
surface masses as two-dimensional arrays, and volume masses as three-dimensional
arrays. Sections 4.2.1 through 4.2.3 cover those cases. Section 4.2.4 discusses less
regular configurations and the issues that arise when implementing them.

4.2.1 One-Dimensional Array of Masses

A curve mass is thought of as a polyline, open with two endpoints or closed with no
endpoints. Each vertex of the polyline represents a mass. Each edge represents a spring
connecting the two masses at the endpoints of the edge. Figure 4.1 shows two such
configurations.

A motivating example we looked at previously is Example 3.10, in which three
masses aligned in the vertical direction were connected with two springs and allowed
to fall due to gravitational forces. The masses are mi and located at height zi for 1 ≤
i ≤ 3. Two springs connect the masses, one between m1 and m2 with spring constant
c1 > 0 and rest length L1 and one between m2 and m3 with spring constant c2 > 0.
The gravitational force constant is g > 0. We determined the equations of motion
to be

m1z̈1 = −c1(z1 − z2 − L1) −m1g

m2z̈2 = +c1(z1 − z2− L1) −c2(z2 − z3 − L2) −m2g

m3z̈3 = +c2(z2 − z3− L2) −m3g

4.2 Mass–Spring Systems 159

Figure 4.1 Two curve mass objects represented as mass–spring systems.

The organization of the terms on the right-hand side of the equation are suggestive of
the pattern that occurs if more masses are added to a vertical chain of particles. The
force on the boundary particle at z1 has a contribution due to the spring below the
mass, that contribution prefixed by a minus sign. The force on the boundary particle
at z3 has a contribution due to the spring above the mass, that contribution prefixed
by a plus sign. The force on the interior particle at z2 has two contributions, one from
the spring above the mass (prefixed with a plus sign) and one from the spring below
the mass (prefixed with a minus sign).

We can generalize the equations of motion to handle p particles in the chain. The
masses are mi and the positions are zi for 1≤ i ≤ p. The system has p− 1 springs with
constants ci > 0 and rest lengths Li for 1≤ i ≤ p− 1. Spring i connects masses mi and
mi+1. The boundary points are at z1 and zp . All other points are interior points. The
equation of motion for an interior point is modeled by

mi z̈i = ci−1(zi−1− zi − Li−1)− ci(zi − zi+1− Li)−mi g (4.1)

for 2≤ i ≤ p− 1. If we define c0 = z0 = L0 = cp = Lp = zp+1 = 0, then this equation
applies to all points in the system.

In our example every particle is falling because of gravitational forces. If we were
to attach the boundary point z1 to some stationary rigid object, perhaps the ceiling
in a room, a constraint is introduced into the system. Since z1 is now a constant
over time, the first differential equation no longer applies in solving the remaining
equations, and in fact becomes m1 z̈1 = 0. The force terms previously on the right-
hand side of the equation are cancelled by the constraint forces (see Section 3.2.1
for determining constraint forces). Similarly, other particles in the system can be
tacked down and their differential equations removed from the system. If you tack
down an interior point zi , the linear chain is decomposed into two smaller lin-
ear chains, each with a fixed boundary point. The smaller systems may be solved
separately.

160 Chapter 4 Deformable Bodies

Also in our example, the vertical chain of masses is only one-dimensional with
regard to position, in this case vertical position z . In general, the masses can be located
anywhere in space. When formulated in a full spatial setting, another variation is
allowed: masses m1 and mp can be connected by yet another spring. If that spring has
constant cp > 0 and rest length Lp, equation (4.1) still applies, but wrapped indexing
is required: c0 = cp, z0 = zp+1, and L0 = Lp. Finally, forces other than gravitational
ones can be applied to the particles.

The general formulation for an open linear chain is as follows. The masses mi

are located at positions xi for 1≤ i ≤ p. The system has p− 1 springs connecting the
masses, spring i connecting mi and mi+1. At an interior point i, two spring forces are
applied, one from the spring shared with point i − 1 and one from the spring shared
with point i + 1. The differential equation for this point is

mi ẍi = ci−1 (|xi−1− xi| − Li−1)
xi−1− xi

|xi−1− xi |

+ ci (|xi+1− xi | − Li)
xi+1− xi

|xi+1− xi| +Fi

(4.2)

where Fi represents other forces acting on particle i, such as gravitational or wind
forces. Just as in the case of vertical masses, with the proper definitions of c0, cp ,
L0, Lp, x0, and xp+1, equation (4.2) also handles fixed boundary points and closed
loops.

Source Code
Rope

Example
4.1

This application shows how to solve the equations of motion for a one-dimensional
array of masses connected by springs. Figure 4.2 – also Color Plate 4.2 – shows some
screen shots from this application found on the CD-ROM. ■

4.2.2 Two-Dimensional Array of Masses

The equations of motion for a linear chain of masses are provided by equation (4.2).
At an interior particle i, the two force terms due to Hooke’s law occur because
two springs are attached to the particle and its neighbors. A surface mass can be
represented by a collection of particles arranged as a two-dimensional array. An
interior particle has four neighbors as shown in Figure 4.3.

The masses are mi0,i1 and are located at xi0,i1 for 0≤ i0 < n0 and 0≤ i1 < n1. The

spring to the right of a particle has spring constant c (0)
i0,i1

and resting length L(0)
i0,i1

. The

spring below a particle has spring constant c (1)
i0,i1

and resting length L(1)
i0,i1

. The under-
standing is that the spring constants and resting lengths are zero if the particle has no
such spring in the specified direction.

4.2 Mass–Spring Systems 161

(a)

(b)

Figure 4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with only
gravity acting on it. Image (b) shows the rope subject to a wind force whose direction
changes by small random amounts. (See also Color Plate 4.2.)

162 Chapter 4 Deformable Bodies

Figure 4.3 A surface mass represented as a mass–spring system with the masses organized as a
two-dimensional array.

The equation of motion for particle (i0, i1) has four force terms due to Hooke’s
law, one for each neighboring particle. That equation is

mi0,i1ẍi0,i1 = ci0−1,i1

(|xi0−1,i1 − xi0,i1| − Li0−1,i1

) xi0−1,i1− xi0,i1

|xi0−1,i1− xi0,i1|

+ ci0+1,i1

(|xi0+1,i1 − xi0,i1| − Li0+1,i1

) xi0+1,i1 − xi0,i1

|xi0+1,i1 − xi0,i1 |

+ ci0,i1−1
(|xi0,i1−1− xi0,i1| − Li0,i1−1

) xi0,i1−1− xi0,i1

|xi0,i1−1− xi0,i1 |

+ ci0,i1+1
(|xi0,i1+1− xi0,i1| − Li0,i1+1

) xi0,i1+1− xi0,i1

|xi0,i1+1− xi0,i1 |
+Fi0,i1

(4.3)

As in the case of linear chains, with the proper definition of the spring constants
and resting lengths at the boundary points of the mesh, equation (4.3) applies to the
boundary points as well as the interior points.

Source Code
Cloth

Example
4.2

This application shows how to solve the equations of motion for a two-dimensional
array of masses connected by springs. Figure 4.4 – also Color Plate 4.4 – shows some
screen shots from this application found on the CD-ROM. ■

4.2 Mass–Spring Systems 163

Figure 4.4 A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap
about. Notice that the cloth in image (b) is stretched in the vertical direction. The
stretching occurs while the gravitational and spring forces balance out in the vertical
direction during the initial portion of the simulation. (See also Color Plate 4.4.)

164 Chapter 4 Deformable Bodies

Figure 4.5 A volume mass represented as a mass–spring system with the masses organized as a
three-dimensional array. Only the masses and springs on the three visible faces are
shown. The other connections are shown, but without their springs.

4.2.3 Three-Dimensional Array of Masses

A volume mass can be represented by a collection of particles arranged as a
three-dimensional array. An interior particle has eight neighbors as shown in
Figure 4.5.

The masses are mi0,i1,i2 and are located at xi0,i1,i2 for 0≤ ij < nj , j = 0, 1, 2. In

the direction of positive increase of index ij , the spring has a spring constant c
(j)
i0,i1,i2

and resting length L
(j)
i0,i1,i2

for j = 0, 1, 2. The understanding is that the spring con-
stants and resting lengths are zero if the particle has no such spring in the specified
direction.

The equation of motion for particle (i0, i1, i2) has six force terms due to Hooke’s
law, one for each neighboring particle. That equation is

mi0,i1,i2ẍi0,i1,i2 = ci0−1,i1,i2

(|xi0−1,i1,i2 − xi0,i1,i2 | − Li0−1,i1,i2

) xi0−1,i1,i2 − xi0,i1,i2

|xi0−1,i1,i2 − xi0,i1,i2 |
+ ci0+1,i1,i2

(|xi0+1,i1,i2 − xi0,i1,i2| − Li0+1,i1,i2

) xi0+1,i1,i2 − xi0,i1,i2

|xi0+1,i1,i2 − xi0,i1,i2|

4.2 Mass–Spring Systems 165

+ ci0,i1−1,i2

(|xi0,i1−1,i2 − xi0,i1,i2| − Li0,i1−1,i2

) xi0,i1−1,i2 − xi0,i1,i2

|xi0,i1−1,i2 − xi0,i1,i2|
+ ci0,i1+1,i2

(|xi0,i1+1,i2 − xi0,i1,i2| − Li0,i1+1,i2

) xi0,i1+1,i2 − xi0,i1,i2

|xi0,i1+1,i2 − xi0,i1,i2|
+ ci0,i1,i2−1

(|xi0,i1,i2−1− xi0,i1,i2| − Li0,i1,i2−1
) xi0,i1,i2−1− xi0,i1,i2

|xi0,i1,i2−1− xi0,i1,i2|
+ ci0,i1,i2+1

(|xi0,i1,i2+1− xi0,i1,i2| − Li0,i1,i2+1
) xi0,i1,i2+1− xi0,i1,i2

|xi0,i1,i2+1− xi0,i1,i2|
+Fi0,i1,i2

(4.4)

With the proper definition of the spring constants and resting lengths at the boundary
points of the mesh, the equation (4.4) applies to the boundary points as well as interior
points.

Source Code
GelatinCube

Example
4.3

This application shows how to solve the equations of motion for a three-dimensional
array of masses connected by springs. Figure 4.6 – also Color Plate 4.6 – shows some
screen shots from this application found on the CD-ROM. ■

4.2.4 Arbitrary Configurations

In general you can set up an arbitrary configuration for a mass–spring system of p
particles with masses mi and location xi . Each spring added to the system connects
two masses, say, mi and mj . The spring constant is cij > 0, and the resting length
is Lij .

Let Ai denote the set of indices j such that mj is connected to mi by a spring, the
set of adjacent indices so to speak. The equation of motion for particle i is

mi ẍi =
∑
j∈Ai

cij
(|xj − xi| − Lij

) xj − xi

|xj − xi | +Fi (4.5)

The technical difficulty in building a differential equation solver for an arbitrary graph
is encapsulated solely by a vertex–edge table that stores the graph. Whenever the
numerical solver must process particle i via equation (4.5), it must be able to iterate
over the adjacent indices to evaluate the Hooke’s law terms.

Source Code
GelatinBlob

Example
4.4

This application shows how to solve the equations of motion for a collection of masses
connected by springs. The mass–spring configuration forms an arbitary topology that
is not representable as a two- or three-dimensional array of connections. Figure 4.7 –
also Color Plate 4.7 – shows some screen shots from this application found on the
CD-ROM. ■

166 Chapter 4 Deformable Bodies

Figure 4.6 A gelatinous cube that is oscillating because of random forces. The cube is modeled
by a three-dimensional array of mass connected by springs. (See also Color Plate 4.6.)

4.2 Mass–Spring Systems 167

Figure 4.7 A gelatinous blob that is oscillating because of small, random forces. This blob has
the masses located at the vertices of an icosahedron with additional masses of infinite
weight to help stabilize the oscillations. The springs connecting the blob to the infinite
masses are shown in white. (See also Color Plate 4.7.)

168 Chapter 4 Deformable Bodies

4.3 Control Point Deformation

A deformable body can be modeled as a parametric surface with control points that
are varied according to the needs of an application. Although this approach is not
physically based, a careful adjustment of control points can make the surface deform
in a manner that is convincing to the viewer. To obtain localized deformations to small
portions of a surface, a good choice for surface representation is B-splines or NURBS.
A surface need not be a spline patch; it can be constructed from curves in a couple of
ways. A tube surface can be constructed from a central curve and a radius function. If
the control points of the central curve and the radius are time varying, the resulting
tube surface deforms. A surface may also be generated from a spline curve as a surface
of revolution or as a cylinder surface.

This chapter provides a brief summary of B-spline and NURBS curves, B-spline
and NURBS surfaces, tube surfaces, and cylinder surfaces. The summary is con-
fined to the processes of how such curves and surfaces are evaluated. The focus
on evaluation is because you will want your deformable surfaces to be updated
as rapidly as possible so as not to unnecessarily consume cycles during the game
application runtime. A more thorough understanding of B-spline and NURBS curves
and surfaces may be obtained by reading books such as [CRE01, Far90, Far99, Rog01].
The construction here is closest to that of [Rog01], a good book for an engineering-
style approach to NURBS. Section 4.3.5 describes the applications on the CD-ROM
that use ideas reviewed in Sections 4.3.1–4.3.4.

4.3.1 B-Spline Curves

The control points for a B-spline curve are Bi , 0≤ i ≤ n. The construction is dimen-
sionless, so the control points can be in whatever dimension interests you. The degree
d of the curve must be selected so that 1≤ d ≤ n. The curve itself is defined by

X(u)=
n∑

i=0

Ni ,d(u)Bi (4.6)

where the functions Ni ,d(u) are called the B-spline basis functions. These functions
are defined recursively and require selection of a sequence of scalars ui for 0≤ i ≤
n+ d + 1. The sequence must be nondecreasing, that is ui ≤ ui+1. Each ui is referred
to as a knot, the total sequence a knot vector. The basis function that starts the recursive
definition is

Ni ,0(u)=
{

1, ui ≤ u < ui+1

0, otherwise
(4.7)

for 0≤ i ≤ n+ d . The recursion itself is

Ni ,j(u)= u− ui

ui+j − ui
Ni ,j−1(u)+ ui+j+1− u

ui+j+1− ui+1
Ni+1,j−1(u) (4.8)

4.3 Control Point Deformation 169

for 1 ≤ j ≤ d and 0 ≤ i ≤ n+ d − j. The support of a function is the smallest closed
interval on which the function has at least one nonzero value. The support of Ni ,0(u)

is clearly [ui , ui+1]. In general, the support of Ni ,j(u) is [ui , ui+j+1]. We will use this
information later to show how X(u) for a specific value of u depends only on a small
number of control points, the indices of those points related to the choice of u. This
property is called local control and will be important when you want to deform a
portion of a curve (or surface) by varying only those control points affecting that
portion.

The knots can be within any domain, but I will choose them to be in [0, 1] to
provide a standardized interface for B-spline and NURBS curves and surfaces.

Types of Knot Vectors

The main classification of the knot vector is that it is either open or periodic. If open,
the knots are either uniform or nonuniform. Periodic knot vectors have uniformly
spaced knots. The use of the term open is perhaps a misnomer since you can construct
a closed B-spline curve from an open knot vector. The standard way to construct a
closed curve uses periodic knot vectors.

An open, uniform knot vector is defined by

ui =

⎧⎪⎪⎨
⎪⎪⎩

0, 0≤ i ≤ d
i− d

n+ 1− d
, d+ 1 ≤ i ≤ n

1, n+ 1≤ i ≤ n+ d + 1

An open, nonuniform knot vector is in the same format except that the values ui

for d+ 1 ≤ i ≤ n are user defined. These must be selected to maintain monotonicity
0 ≤ ud+1 ≤ · · · ≤ un+1 ≤ 1. A periodic knot vector is defined by

ui = i − d

n+ 1− d
, 0≤ i ≤ n+ d + 1

Some of the knots are outside the domain [0, 1], but this occurs to force the curve to
have period 1. When evaluating X(u), any input value of u outside [0, 1] is reduced
to this interval by periodicity before evaluation of the curve point.

Evaluation

The straightforward method for evaluation of X(u) is to compute all of Ni ,d(u) for 0 ≤
i ≤ n using the recursive formulas from equations (4.7) and (4.8). The pseudocode to
compute the basis function values is shown below. The value n, degree d, knots u[],
and control points B[] are assumed to be globally accessible.

float N (int i, int j, float u)
{

170 Chapter 4 Deformable Bodies

if (j > 0)
{

c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + j + 1] - u) / (u[i + j + 1] - u[i + 1]);
return c0 * N(i,j - 1,u) + c1 * N(i + 1,j - 1,u);

}
else // j == 0
{

if (u[i] <= u && u < u[i + 1])
{

return 1;
}
else
{

return 0;
}

}
}

Point X (float u)
{

Point result = ZERO;
for (i = 0; i <= n; ++i)
{

result += N(i,d,u) * B[i];
}
return result;

}

This is an inefficient algorithm because many of the basis functions are evaluated
twice. For example, the value N0,d(u) requires computing N0,d−1(u) and N1,d−1(u).
The value N1,d(u) also requires computing N1,d−1(u), as well as N2,d−1(u). The
recursive dependencies are illustrated in Table 4.1 for n = 4 and d = 2. The vari-
ous types of knot vectors are shown below the table of basis function values. The

Table 4.1 Recursive Dependencies for B-spline Basis Functions for n = 4 and d = 2

N0,2 N1,2 N2,2 N3,2 N4,2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0,1 N1,1 N2,1 N3,1 N4,1 N5,1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0,0 N1,0 N2,0 N3,0 N4,0 N5,0 N6,0

Open uniform 0 0 [0 1
3

2
3 1) 1 1

Open nonuniform 0 0 [0 u3 u4 1) 1 1

Periodic − 2
3 − 1

3 [0 1
3

2
3 1) 4

3
5
3

4.3 Control Point Deformation 171

rows of knot vectors include brackets [and parentheses). These indicate that an
evaluation for a specified u ∈ [0, 1) requires searching for the bounding interval
[ui , ui+1) containing u. Only those knots in the bracketed portion need to be searched.
The search returns the index of the left endpoint i, where d ≤ i ≤ n. For an open knot
vector, the knots corresponding to other indices are included for padding. For a peri-
odic knot vector, the knots corresponding to other indices are included to force the
periodicity.

To avoid the redundant calculations, you might think to evaluate the table from
the bottom up rather than from the top down. In our example you would compute
Ni ,0(u) for 0≤ i ≤ 6 and save these for later access. You would then compute Ni ,1(u)

for 0≤ i ≤ 5 and look up the values Nj,0(u) as needed. Finally, you would compute
Ni ,2(u) for 0≤ i ≤ 4. The pseudocode follows.

Point X (float u)
{

float basis[d + 1][n + d + 1]; // basis[j][i] = N(i,j)

for (i = 0; i <= n + d; ++i)
{

if (u[i] <= u && u < u[i + 1])
{

basis[0][i] = 1;
}
else
{

basis[0][i] = 0;
}

}

for (j = 1; j <= d; ++j)
{

for (i = 0; i <= n + d - j; ++i)
{

c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + j + 1] - u)/(u[i + j + 1] - u[i + 1]);
basis[i][j] = c0 * basis[j - 1][i]

+ c1 * basis[j - 1][i + 1];
}

}

Point result = ZERO;
for (i = 0; i <= n; ++i)
{

result += basis[d][i] * B[i];
}
return result;

}

172 Chapter 4 Deformable Bodies

Table 4.2 Nonzero Values (boxed) from Table 4.1 for N3,0(u)= 1

N0,2 N1,2 N2,2 N3,2 N4,2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0,1 N1,1 N2,1 N3,1 N4,1 N5,1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N0,0 N1,0 N2,0 N3,0 N4,0 N5,0 N6,0

This is a reasonable modification but still not as efficient as it could be. For a single
value of u, only one of Ni ,0(u) is 1; the others are all zero. In our example, suppose
that u ∈ [u3, u4), so that N3,0(u) is 1 and all other Ni ,0(u) are 0. The only nonzero
entries from Table 4.1 are shown as boxed quantites in Table 4.2.

The boxed entries cover a triangular portion of the table. The values on the left
diagonal edge and on the right vertical edge are computed first since each value effec-
tively depends only on one previous value, the other value already known to be zero.
If Ni ,0(u)= 1, the left diagonal edge is generated by

Ni−j,j(u)= ui+1− u

ui+1− ui−j+1
Ni−j+1,j−1(u)

and the right vertical edge is generated by

Ni ,j(u)= u− ui

ui+j − ui
Ni ,j−1(u)

both evaluated for 1≤ j ≤ d . The interior values are computed using the recursive
formula, equation (4.8). The pseudocode for computing the curve point follows.

Point X (float u)
{

float basis[d + 1][n + d + 1]; // basis[j][i] = N(i,j)

// get i for which u[i] <= u < u[i + 1]
i = GetKey(u);

// evaluate left-diagonal and right-vertical edges
for (j = 1; j <= d; ++j)
{

c0 = (u - u[i]) / (u[i + j] - u[i]);
c1 = (u[i + 1] - u) / (u[i + 1] - u[i - j + 1]);
basis[j][i] = c0 * basis[j-1][i];
basis[j][i - j] = c1 * basis[j - 1][i - j + 1];

}

// evaluate interior
for (j = 2; j <= d; ++j)

4.3 Control Point Deformation 173

{
for (k = i - j + 1; k < i; ++k)
{

c0 = (u - u[k]) / (u[k + j] - u[k]);
c1 = (u[k + j + 1] - u) / (u[k + j + 1] - u[k + 1]);
basis[j][k] = c0 * basis[j - 1][k] * fInvD0 +

c1 * basis[j - 1][k + 1];
}

Point result = ZERO;
for (j = i - d; j <= i; ++j)
{

result += basis[d][j] * B[j];
}
return result;

}

The only remaining issue is how to compute index i from the input parame-
ter u. For optimal efficiency, the computation should take into account whether the
knot vector is open or periodic and if open, whether the knots are uniformly or
nonuniformly spaced. The pseudocode follows. Observe that the choice is made to
clamp u to [0, 1] when the spline is open and to wrap u to [0, 1] when the spline is
periodic.

int GetKey (float& u) const
{

if (knot vector is open) // open splines clamp to [0,1]
{

if (u <= 0)
{

u = 0;
return d;

}
if (u >= 1)
{

u = 1;
return n;

}
}
else // periodic splines wrap to [0,1]
{

if (u < 0 || u > 1)
{

u -= floor(u);
}

}

int i;

174 Chapter 4 Deformable Bodies

if (knots are uniformly spaced)
{

i = d + floor((n + 1 - d) * u);
}
else // knots are nonuniformly spaced
{

for (i = d + 1; i <= n + 1; ++i)
{

if (u < u[i])
{

break;
}

}
--i;

}
return i;

}

In all cases the search for the bounding interval [ui , ui+1] of u produces an
index i, for which d ≤ i ≤ n, according to the discussion immediately following
Table 4.1.

The basis function data and operations can be encapsulated into a class
BasisFunction so that a B-spline curve class has a basis function objects for
the parameter u. For the purpose of curve evaluation, only two public interface
functions must exist for a BasisFunction class. One function computes the basis
function values at u and returns the index i of the nonzero basis value Ni ,0(u),
call it int Compute(float u). The function returns the index i. The GetKey func-
tion described earlier becomes a nonpublic helper function for Compute. Another
function is an accessor to the values Ni ,d(u), call it float Basis(int i). The
BasisFunction class stores the degree d internally, so only i needs to be passed.
The curve evaluator does not need access to basis function values Ni ,j(u) for
j < d. The B-spline curve itself can be encapsulated in a class BSplineCurve. This
class manages the control points B[], knows the degree d of the curve, and has a
BasisFunctionmember called Nu. The curve evaluator becomes a member function of
BSplineCurve and is

Point BSplineCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
for (int j = i - d; j <= i; ++j)
{

result += Nu.Basis(j) * B[j];
}
return result;

}

4.3 Control Point Deformation 175

Local Control

Our goal is to dynamically modify the control points of the B-spline curve in order to
deform only a portion of that curve. If we were to change exactly one control point
Bj in equation (4.6), what part of the curve is affected? The modified Bj is blended
into the curve equation via the basis function Nj,d(u). The curve associated with those
parameters u for which this function is not zero is affected by the change. The set of
such u is exactly what we called the support of the function, in this case the inter-
val [uj , uj+d+1]. The property such that changing a control point affects only a small
portion of the curve is referred to as local control.

The practical application of local control is that in drawing the curve, you cre-
ate a polyline approximation by selecting samples ūk ∈ [0, 1] for 0≤ k < m, with
ūk < ūk+1 for all k . The curve points are Pk = X(ūk). The polyline consists of the
line segments 〈Pk , Pk+1〉 for 0 ≤ k < m− 1. If we were to change control point Bj ,
only some of the line segments need to be recomputed. Specifically, define kmin and
kmax to be the extreme indices for which ūk ∈ [uj , uj+d+1]. The polyline points Pk for
kmin ≤ k ≤ kmax are the only ones to be recomputed.

Closed Curves

In order to obtain closed curves, additional control points must be included by the
curve designer or automatically generated by the B-spline curve implementation. If
the latter, and the implementation allows the user to dynamically modify control
points, the additional control points must be modified accordingly.

Closing a B-spline curve with an open knot vector is simple. If the curve has con-
trol points Bi for 0≤ i ≤ n, the first control point must be duplicated, Bn+1 = B0.
An additional knot must also be added. The extra knot is automatically calculated
for uniformly spaced knots, but the curve designer must specify the extra knot for
nonuniformly spaced knots.

Closing a B-spline curve with a periodic knot vector requires the first d control
points to be duplicated, Bn+i = Bi for 0≤ i < d . Since a periodic knot vector has
uniformly spaced knots, the d additional knots are automatically calculated.

Source Code
BSplineCurve-
Examples

Example
4.5

Figure 4.8 shows six pairs of B-spline curves, pairs (a)–(f). The left image in each pair
is generated from the eight ordered control points (0, 0), (1, 0), (2, 0), (2, 1), (2, 2),
(1, 2), (0, 2), and (0, 1). The right image uses the same control points except that (2, 2)

is replaced by (2.75, 2.75). Also, the light gray portions of the curves in the right images
are those points that were affected by modifying the control point (2, 2) to (2.75, 2.75).
In order to avoid confusion between the two uses of the term open, a curve is labeled
as either closed or not closed.

Table 4.3 shows the knot vectors and the parameter intervals affected by modifying
the control point (2, 2). The nonuniform knot vectors were just chosen arbitrarily.
The other knot vectors were automatically generated. ■

176 Chapter 4 Deformable Bodies

(d) Open, nonuniform, not closed

(e) Periodic, not closed (f) Periodic, closed

(b) Open, uniform, not closed(a) Open, uniform, closed

(c) Open, nonuniform, closed

Figure 4.8 Six pairs of B-spline curves of various types. The right image of each pair shows the
deformed curve by modifying one control point.

Table 4.3 Knot Vectors and Parameter Intervals Affected by Modifying the Control Point

Open, uniform, not closed {0, 0, 0, 1
6 , 2

6 , 3
6 , 4

6 , 5
6 , 1, 1, 1} [2

6 , 5
6]

Open, nonuniform, not closed {0, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 1,1, 1} [0.2, 0.8]

Periodic, not closed {− 2
6 ,− 1

6 , 0, 1
6 , 2

6 , 3
6 , 4

6 , 5
6 , 1, 7

6 , 8
6 } [2

6 , 5
6]

Open, uniform, closed {0, 0, 0, 1
7 , 2

7 , 3
7 , 4

7 , 5
7 , 6

7 , 1, 1, 1} [2
7 , 5

7]

Open, nonuniform, closed {0, 0, 0, 0.1, 0.2, 0.4, 0.7, 0.8, 0.9,1, 1,1} [0.2, 0.8]

Periodic, closed {− 2
8 ,− 1

8 , 0, 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1, 9

8 , 10
8 } [2

8 , 5
8]

4.3 Control Point Deformation 177

4.3.2 NURBS Curves

As we touched on earlier, NURBS is an acronym for NonUniform Rational B-Spline(s).
B-spline curves are piecewise polynomial functions. The concept of NURBS provides
a level of generality by allowing the curves to be piecewise, rational polynomial
functions; that is, the curve components are ratios of polynomial functions. The
mathematics of NURBS is quite deep and is described concisely in [Far99]. Not to
de-emphasize the theoretical foundations, but for our purposes the use of NURBS is
for the greater flexibility in constructing shapes than what B-splines provide.

The control points for a NURBS curve are Bi for 0≤ i ≤ n, just as in the case of
B-spline curves. However, control weights are also provided, wi for 0≤ i ≤ n. The con-
struction is dimensionless; the control points can be m-tuples. The idea for defining
NURBS is quite simple. The (m+ 1)-tuples (wi Bi , wi) are used to create a B-spline
curve (Y(u), w(u)). These tuples are treated as homogeneous coordinates. To project
back to m-dimensional space, you divide by the last component: X(u)= Y(u)/w(u).
The degree d of the curve is selected so that 1≤ d ≤ n. The NURBS curve is
defined by

X(u)=
∑n

i=0 Ni ,d(u)wi Bi∑n
i=0 Ni ,d(u)wi

(4.9)

where Ni ,d(u) are the B-spline basis functions discussed earlier.

Example
4.6

The classical example of the greater flexibility of NURBS compared to B-splines
is illustrated in 2D. A quadrant of a circle cannot be represented using polyno-
mial curves, but it can be represented as a NURBS curve of degree 2. The curve is
x2 + y2 = 1, x ≥ 0, y ≥ 0. The general parameterization is

(x(u), y(u)) = w0(1− u)2(1, 0)+w12u(1− u)(1, 1)+w2u2(0, 1)

w0(1− u)2 +w12u(1− u)+w2u2

for u ∈ [0, 1]. The requirement that x2+ y2 = 1 leads to the weights constraint 2w2
1 =

w0w2. The choice of weights w0 = 1, w1 = 1, and w2 = 2 leads to a well-known
parameterization:

(x(u), y(u)) = (1− u2, 2u)

1+ u2

If you were to tessellate the curve with an odd number of uniform samples of u, say
ui = i/(2n) for 0≤ i ≤ 2n, then the resulting polyline is not symmetric about the
midpoint u = 1/2. To obtain a symmetric tessellation, you need to choose w0 = w2.
The weight constraint then implies w0 = w1

√
2. The parameterization is then

(x(u), y(u)) = (
√

2(1− u)2+ 2u(1− u), 2u(1− u)+√2u2)√
2(1− u)2 + 2u(1− u)+√2u2

178 Chapter 4 Deformable Bodies

In either case we have a ratio of quadratic polynomials.

An algebraic construction of the same type, but quite a bit more tedious to solve,
produces a ratio of quartic polynomials. The control points and control weights are
required to be symmetric to obtain a tessellation that is symmetric about its midpoint.
The middle weight is chosen as w2 = 4 as shown:

(x(u),y(u))

= (1− u)4w0(1,0)+ 4(1− u)3uw1(x1,y1)+ 24(1− u)2u2(x2,x2)+ 4(1− u)u3w1(y1,x1)+ u4w0

(1− u)4w0+ 4(1− u)3uw1+ 24(1− u)2u2+ 4(1− u)u3w1+ u4w0

The parameters are x1 = 1, y1 = (
√

3− 1)/
√

3, x2 = (
√

3+ 1)/(2
√

3), w0 =
4
√

3(
√

3− 1), and w1 = 3/
√

2. ■

(Example 4.6
continued)

We already have all the machinery in place to deal with the basis functions. The
NURBS curve can be encapsulated in a class NURBSCurve that manages the control
points B[], the control weights W[], the degree d, and has a BasisFunction member
Nu. The curve evaluator is

Point NURBSCurve::X (float u)
{

int i = Nu.Compute(u);
Point result = ZERO;
float totalW = 0;
for (int j = i-d; j <= i; ++j)
{

float tmp = Nu.Basis(j) * W[j];
result += tmp * B[j];
totalW += tmp;

}
result /= totalW;
return result;

}

The next example shows a dynamic deformation of a planar NURBS curve and
is used as the foundation for the three-dimensional deformation that we will see in
Example 4.10

Source Code
NURBSCurveExample

Example
4.7

Consider a NURBS curve with 13 control points that are initially on the same
straight line. The knot vector is open with uniformly spaced knots. The curve is
necessarily a line segment. The control points must be moved to deform the cen-
tral portion of the curve into a closed loop. The control weights are all 1 except
for points 3, 5, 7, and 9, whose weights are 3/10. These weights were chosen to
produce a final closed loop that is nearly circular. Figure 4.9 shows the initial line seg-
ment and its control points. It also shows how the control points evolve early in the
process.

4.3 Control Point Deformation 179

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.9 The initial control points and curve are shown at the top of the figure. The evolved
control points and curve are shown at three later times, with time increasing from top
to bottom in the figure.

The end control points 0 and 12 remain fixed. Control points 1 and 11 are constrained
to lie on the initial line segment, but move towards the midpoint of the segment with
constant speed; they will eventually coincide. Control points 5, 6, and 7 move verti-
cally upward with constant speed. Control points 3 and 4 move towards the vertical
line containing point 5. Control points 8 and 9 move towards the vertical line contain-
ing point 7. Control points 2 and 6 move towards the vertical line containing point 6
and will eventually coincide.

Figure 4.10 shows the control points and curves much further along in time. The
time sequence is from (a) to (f). In image (e), control points 1 and 11 finally coin-
cide, as do control points 2 and 6. At that instant the NURBS curve is split into two
NURBS curves, as shown in image (f). The closed curve has a periodic knot vector.
The closed curve continues to move vertically upward by uniform translations of the
control points. The other curve has 5 control points with points 1 and 3 coinciding.
The curve evolves back to a line segment by translating the middle control point 2 so
that it too coincides with control points 1 and 3. Figure 4.11 shows an entire sequence
of frames of the deformation. The sequence of images is top row to bottom row, left
to right in each row. ■

4.3.3 B-Spline Surfaces

The simplest extension of the concept of B-spline curves to surfaces is to blend a rect-
angular array of control points Bi0,i1 for 0≤ i0 ≤ n0 and 0≤ i1 ≤ n1. The blending
occurs separately in each dimension, leading to a rectangle surface patch. The degree

180 Chapter 4 Deformable Bodies

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.10 The control points and curve at later times in the evolution.

4.3 Control Point Deformation 181

Figure 4.11 Deformation of a line segment into a closed curve that splits away from the original
curve.

must be specified for each dimension, d0 and d1 with 1≤ di ≤ ni . The surface patch
is defined by

X(u, v)=
n0∑

i0=0

n1∑
i1=0

Ni0,d0(u)Ni1,d1(v)Bi0,i1 (4.10)

Once again we already have the mechanism in place for computing the basis func-
tions. The B-spline surface is encapsulated in a class BSplineSurface and manages
the control points B[][], the degrees d0 and d1, and has BasisFunction objects Nu
and Nv. The surface evaluation is

Point BSplineSurface::X (float u, float v)
{

int i0 = Nu.Compute(u), i1 = Nv.Compute(v);
Point result = ZERO;
for (int j0 = i0 - d0; j0 <= i0; ++j0)
{

for (int j1 = i1 - d1; j1 <= i1; ++j1)
{

result += Nu.Basis(j0) * Nv.Basis(j1) * B[j0][j1];
}

}
return result;

}

182 Chapter 4 Deformable Bodies

4.3.4 NURBS Surfaces

B-spline surface patches are piecewise polynomial functions of two variables. NURBS
surface patches are piecewise rational polynomial functions of two variables. Just
as for curves, the construction involves fitting homogeneous points in one higher
dimension with a B-spline surface (Y(u, v), w(u, v)), then projecting back to your
application space by dividing by the w(u, v) term: X(u, v)= Y(u, v)/w(u, v). NURBS
surfaces have greater flexibility than B-spline surfaces.

A NURBS rectangle surface patch is built from control points Bi0,i1 and weights
wi0,i1 for 0≤ i0 ≤ n0 and 0≤ i1 ≤ n1. The degrees di are user selected with 1≤ di ≤
ni . The surface patch is defined by

X(u, v)=
∑n0

i0=0

∑n1
i1=0 Ni0,d0(u)Ni1,d1(v)wi0 ,i1 Bi0,i1∑n0

i0=0

∑n1
i1=0 Ni0,d0(u)Ni1,d1(v)wi0 ,i1

(4.11)

The B-spline construction in one higher dimension uses the homogeneous control
points (wi0,i1Bi0,i1, wi0,i1).

Example
4.8

The classical example of the greater flexibility of NURBS compared to B-splines is
illustrated in 3D. An octant of a sphere cannot be represented using a polynomial
surface patch, but it can be represented as a triangular NURBS surface patch of degree
4. A simple parameterization of x2 + y2 + z2 = 1 can be made by setting r 2= x2 + y2.
The sphere is then r 2+ z2 = 1. Now apply the parameterization for a circle,

(r , z)= (1− u2, 2u)

1+ u2

But (x/r)2+ (y/r)2 = 1, so another application of the parameterization for a circle
is

(x, y)

r
= (1− v2 , 2v)

1+ v2

Combining these produces

(x(u, v), y(u, v), z(u, v)) = ((1− u2)(1− v2), (1− u2)2v , 2u(1+ v2))

(1+ u2)(1+ v2)

The components are ratios of quartic polynomials. The domain is u ≥ 0, v ≥ 0, and
u+ v ≤ 1. In barycentric coordinates, set w = 1− u− v so that u+ v +w = 1 with
u, v , and w nonnegative. In this setting, you can think of the octant of the sphere as a
mapping from the uvw-triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). Although
a valid parameterization, a symmetric subdivision of the the uvw-triangle does not
lead to a symmetric tessellation of the sphere.

4.3 Control Point Deformation 183

Another parameterization is provided in [Far90]. This one chooses symmetric
control points and symmetric weights:

(x(u, v), y(u, v), z(u, v)) =
∑4

i=0

∑4−i
j=0 wi ,j,4−i−jPi ,j,4−i−jBi ,j(u, v)∑4

i=0

∑4−i
j=0 wi ,j,4−i−jBi ,j(u, v)

where

Bi ,j(u, v)= 4!

i! j! (4− i − j)!
uivj(1− u − v)4−i−j , u ≥ 0, v ≥ 0, u+ v ≤ 1

are the Bernstein polynomials. The control points Pi ,j,k are defined in terms of three

constants, a0 = (
√

3− 1)/
√

3, a1 = (
√

3+ 1)/(2
√

3), and a2 = 1− (5−√2)(7−√
3)/46:

P040

P031 P130

P022 P121 P220

P013 P112 P211 P310

P004 P103 P202 P301 P400

=

(0, 1, 0)

(0, 1, a0) (a0, 1, 0)

(0, a1, a1) (a2, 1, a2) (a1, a1, 0)

(0, a0, 1) (a2, a2, 1) (1, a2, a2) (1, a0, 0)

(0, 0, 1) (a0, 0, 1) (a1, 0, a1) (1, 0, a0) (1, 0, 0)

The control weights wi ,j,k are defined in terms of four constants, b0 = 4
√

3(
√

3− 1),

b1 = 3
√

2, b2 = 4, and b3 =
√

2(3+ 2
√

2−√3)/
√

3:

w040

w031 w130

w022 w121 w220

w013 w112 w211 w310

w004 w103 w202 w301 w400

=

b0

b1 b1

b2 b3 b2

b1 b3 b3 b1

b0 b1 b2 b1 b0

Both the numerator and denominator polynomial are quartic polynomials. Notice
that each boundary curve of the triangle patch is a quartic polynomial of one variable
that is exactly what was shown previously for a quadrant of a circle. ■

We can encapsulate NURBS rectangle patches into a class NURBSSurfaceand give it
two BasisFunctionmembers, just like we did for BSplineSurface. The class manages
the control points B[][] and the control weights W[][]. The surface evaluation is

Point NURBSSurface::X (float u, float v)
{

int i0 = Nu.Compute(u), i1 = Nv.Compute(v);
Point result = ZERO;
float totalW = 0;
for (int j0 = i0 - d0; j0 <= i0; ++j0)
{

for (int j1 = i1 - d1; j1 <= i1; ++j1)
{

184 Chapter 4 Deformable Bodies

float tmp = Nu.Basis(j0) * Nv.Basis(j1) * W[j0][j1];
result += tmp * B[j0][j1];
totalW += tmp;

}
}
result /= totalW;
return result;

}

4.3.5 Surfaces Built from Curves

In order to avoid the complexity of dealing with a naturally defined surface patch such
as B-spline or NURBS rectangle patches, sometimes it is convenient to build a surface
from curves. The idea is that the curves are easier to work with and potentially lead
to less expensive dynamic updates of the surface. A few types of surfaces built from
curves are described here. In all cases the parameter space is (u, v) ∈ [0, 1].

A triangle mesh is constructed by partitioning the parameter space into a
rectangular grid, each rectangle representing two triangles. Figure 4.12 illustrates
this.

The numbers n and m do not have to be the same. Generally you want a lot of
samples in u to capture the shape of the curve (n large), but fewer samples in v since
the surface is relatively flat in that direction (m small). The grid samples are (ui , vj)=

(a) (b)

v

u

j+1

i+1
j
i

Figure 4.12 The decomposition of (u, v) space into an n×m grid of rectangles, each rectangle
consisting of two triangles. A typical rectangle is shown in (b), with lower corner
index (i, j) corresponding to u = i/n and v = j/m.

4.3 Control Point Deformation 185

(i/n, j/m) for 0≤ i < n and 0 ≤ j < m. The vertices are stored in a single array in
lexicographic order: k = i+ nj where 0≤ k < nm. The triangles are stored in an array
of triples of k-indices, a total of 2(n− 1)(m− 1) triples. Pseudocode to generate the
vertices, normals, uniform texture coordinates, and triangles is as follows:

// generate vertices
// X(u,v) = point on the surface at (u,v)
// N(u,v) = normal on the surface at (u,v)
int vquantity = n*m;
Point3 vertex[vquantity], normal[vquantity];
Point2 texcoord[vquantity];

for (j = 0, k = 0; j < m; ++j)
{

float v = j / (m - 1.0);
for (i = 0; i < n; ++i)
{

float u = i / (n - 1.0);
vertex[k] = X(u,v);
normal[k] = N(u,v);
texcoord[k] = Point2(u,v);
k++;

}
}

// generate triangles
int tquantity = 2 * (n - 1) * (m - 1);
int indices[3 * tquantity];
for (j = 0, k = 0; j < m - 1; ++j)
{

for (i = 0; i < n - 1; i++)
{

int v0 = i + n * j;
int v1 = v0 + 1;
int v2 = v1 + n;
int v3 = v0 + n;
indices[k++] = v0;
indices[k++] = v1;
indices[k++] = v2;
indices[k++] = v0;
indices[k++] = v2;
indices[k++] = v3;

}
}

If the surface is closed in the u-direction, that is, X(1, v)= X(0, v), the first and
last columns of vertices of the mesh coincide. The texture coordinates of the first and
last columns do not coincide, since the first column has u = 0 and the last column

186 Chapter 4 Deformable Bodies

(a) (b)

Figure 4.13 A cylinder surface (b) obtained by extruding the curve (a) in a direction oblique to
the plane of the curve.

has u = 1. The texture image should be designed accordingly to make sure the seam
is not visible. The same care must be taken if the surface is closed in the v-direction
or in both directions.

Cylinder Surfaces

Surface patches might provide more curvature variation than is needed for a par-
ticular model. For example, a curved archway is curved in one dimension and flat in
another. A single curve may be built to represent the curved dimension, then extruded
linearly for the flat dimension. The surface obtained by this operation is said to be a
cylinder surface. Figure 4.13 illustrates the process.

If Y(u) is a parameterization of the curve for u ∈ [0, 1], and if D is the desired
amount of linear translation of the curve, the cylinder surface is parameterized by

X(u, v)= Y(u)+ vD

for v ∈ [0, 1]. First-order partial derivatives are ∂X/∂u = Y′(u) and ∂X/∂v = D.
Normal vectors to the surface are the cross product of the derivatives,

N(u)= Y′(u)×D

|Y′(u)×D|
Notice that the normal does not depend on v .

Generalized Cylinder Surfaces

Some applications might require that a starting and ending curve be specified and an
interpolation applied between them to generate a surface. This is called a generalized
cylinder surface. Figure 4.14 illustrates.

4.3 Control Point Deformation 187

Figure 4.14 A generalized cylinder surface obtained by linearly interpolating pairs of points on
two curves.

If Y0(u) and Y1(u) are the starting and ending curves, u ∈ [0, 1], the generalized
cylinder surface is parameterized by

X(u, v)= (1− v)Y0(u)+ vY1(u)

for v ∈ [0, 1]. The first-order derivatives are ∂X/∂u = (1− v)Y′0(u)+ vY′1(u) and
∂X/∂v = Y1(u)−Y0(u). Normal vectors to the surface are

N(u, v)= ((1− v)Y′0(u)+ vY′1(u))× (Y1(u)−Y0(u))

|((1− v)Y′0(u)+ vY′1(u))× (Y1(u)−Y0(u))|

Source Code
FlowingSkirt

Example
4.9

This application shows a flowing skirt. The skirt is modeled as a generalized cylin-
der surface whose control points are varied over time to produce the deformation.
Figure 4.15 – also Color Plate 4.15 – shows some screen shots from this application
found on the CD-ROM. ■

Revolution Surfaces

A revolution surface is obtained by revolving a curve about a line that does not intersect
the curve. To simplify the discussion, suppose that the line is the z-axis and the curve is
(x(u), z(u)) in the xz-plane. The parameter u ∈ [0, 1] and x(u) > 0. The intersection
of the surface and a plane of constant z , given by z(u) for a specified u, is a circle
whose radius is x(u) as shown by Figure 4.16.

The surface is parameterized as

X(u, v)= (x(u)cos(2πv), x(u) sin(2πv), z(u))

for (u, v) ∈ [0, 1]2.

Source Code
WaterSphere-
Formation

Example
4.10

The curve deformation in Example 4.7 may be used to generate a control point defor-
mation of a surface. The surface is constructed as a surface of revolution of the curve
about the vertical axis. Figure 4.17 – also Color Plate 4.17 – shows some screen shots
from this application found on the CD-ROM. ■

188 Chapter 4 Deformable Bodies

Figure 4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the
skirt and are applied in the radial direction. Image (a) shows the skirt after wind is
blowing it about. Image (b) shows a wireframe view of the skirt so that you can see
it consists of two closed curve boundaries and is tessellated between. (See also Color
Plate 4.15.)

4.3 Control Point Deformation 189

z

y

x

Figure 4.16 A surface of revolution.

Source Code
HelixTubeSurface

Tube Surfaces

A surface in the shape of a tube can be generated by specifying the central curve
of the tube, say C(v) for v ∈ [0, 1], and by specifying a closed planar curve Y(u)=
(y1(u), y2(u)) to represent the boundary of a cross section of the surface. The cross
section for a given v is within a plane whose coordinate system has origin C(v) and one
unit-length coordinate direction T(v)= C′(v)/|C′(v)|, a tangent to the central curve.
The other two unit-length coordinate directions are chosen as desired, call them N(v)

and B(v). The three vectors form a right-handed orthonormal set. The names are
suggestive of using the Frenet frame for the curve, where N is the curve normal and
B= T×N is the curve binormal. However, other choices are always possible. The
tube surface is constructed as

X(u, v)= C(v)+ y1(u)N(v)+ y2(u)B(v)

for (u, v) ∈ [0, 1]2. The classical tube surface is one whose cross sections are circular,
Y(u)= r(cos u, sinu) for a positive radius r . More generally, the radius can be allowed
to vary with v . For example, a surface of revolution is a tube surface whose central
curve is a line segment and whose radius varies based on the curve that was revolved
about the line segment. Figure 4.18 – also Color Plate 4.18 – shows a tube surface that
was built so that the inside surface is visible to the camera.

190 Chapter 4 Deformable Bodies

Figure 4.17 A water drop modeled as a control point surface of revolution. The surface dynam-
ically changes to show the water drop forming, separating from the main body of
water, then falling to the floor. The evolution is from left to right and top to bottom.
(See also Color Plate 4.17.)

4.3 Control Point Deformation 191

Figure 4.18 A closed tube surface whose central axis is a helix. (See also Color Plate 4.18.)

192 Chapter 4 Deformable Bodies

We now look at an example of a deformation of a tube surface. The central curve
of the tube is a control point curve. The control points are modified over time, thereby
causing the tube surface itself to deform over time.

Source Code
WrigglingSnake

Example
4.11

This application shows a wriggling snake. The snake is modeled as a tube surface
whose central curve is a control point curve. The control points are varied over time
to produce the deformation. Figure 4.19 – also Color Plate 4.19 – shows some screen
shots from this application found on the CD-ROM. ■

4.4 Free-Form Deformation

The deformation methods of the last section are useful for deforming a surface that
is defined parametrically based on user-specified control points. In a game environ-
ment we need to display the deforming object in addition to handling it in a physical
simulation. The typical representation of an object in the game is a triangle mesh.
The parametric surface may be tessellated to produce that representation. Although
the resulting mesh is required for display, that same mesh might also be used if the
object participates in a collision detection system. The mesh dynamically changes as
the control points are deformed, the vertices having to be recalculated after each mod-
ification of the control points. The triangle connectivity can be calculated once and
maintained during the deformations.

In many cases, though, the triangle meshes are constructed by artists using a mod-
eling package. No underlying control point surface is used to build those meshes. If
the game application requires deforming these meshes, how do we do this? Certainly
it is possible to construct a control point surface that, in some sense, approximates
the triangle mesh. However, that is generally a difficult algorithm to implement and
even more difficult to obtain approximations that an artist will agree looks like the
original mesh.

A good alternative is to embed the triangle mesh in a volume of space that itself
may be deformed via control points. The parameterization of the volume by three
parameters is just the natural extension of the parameterization of surfaces by two
parameters. The vertices of the triangle mesh initially are assigned parameters based
on where they lie in the volume. The control points of the volume are then modified
dynamically, causing a deformation of the volume, which in turn causes the vertices
to move about. This process is called free-form deformation (FFD) and was formally
introduced in [SP86], but earlier works exist regarding volume deformation with the
goal of analyzing surface deformation, for example [Bar84]. The FFD algorithm uses
a blending of control points using Bernstein polynomials, producing a Bézier volume
patch that is a natural extension of a Bézier rectangle patch. A B-spline representation
of the volume may be used instead [GP89].

Equation (4.10) extends to a lattice of control points Bi0,i1,i2 for 0≤ i0 ≤ n0, 0 ≤
i1 ≤ n1, and 0 ≤ i2 ≤ n2. The degree must be specified for each dimension, d0, d1, and

4.4 Free-Form Deformation 193

Figure 4.19 A wriggling snake modeled as a tube surface whose central curve is a control point
curve. (See also Color Plate 4.19.)

194 Chapter 4 Deformable Bodies

d2 with 1≤ di ≤ ni . The volume patch is defined by

X(u, v , w)=
n0∑

i0=0

n1∑
i1=0

n2∑
i2=0

Ni0,d0(u)Ni1 ,d1(v)Ni2 ,d2(w)Bi0,i1,i2 (4.12)

Just as for B-spline curves and surfaces, we have the mechanism in place for comput-
ing the basis functions. The B-spline volume is encapsulated in a class BSplineVolume
and manages the control points B[][][] and the degrees d0, d1, and d2 and has
BasisFunctionobjects Nu, Nv, and Nw. The volume evaluation is

Point BSplineVolume::X (float u, float v, float w)
{

int i0 = Nu.Compute(u);
int i1 = Nv.Compute(v);
int i2 = Nw.Compute(w);
Point result = ZERO;
for (int j0 = i0 - d0; j0 <= i0; ++j0)
{

for (int j1 = i1 - d1; j1 <= i1; ++j1)
{

for (int j2 = i1 - d2; j2 <= i2; ++j2)
{

result += Nu.Basis(j0) * Nv.Basis(j1) *
Nw.Basis(j2) * B[j0][j1][j2];

}
}

}
return result;

}

Assuming the control points are selected so that the volume patch encloses the
application’s triangle mesh, for each mesh vertex Pi we need to compute the corre-
sponding parameters (ui , vi , wi) so that X(ui , vi , wi)= Pi . In general, this is a difficult
problem in that this equation represents three polynomial equations of three unknown
variables that must be solved by some numerical method. Keeping in mind our appli-
cation is to deform the mesh, we can make this a simple problem. Choose the control
points so that the initial volume is an axis-aligned box containing the triangle mesh.
If the box is [xmin, xmax]× [ymin, ymax]× [zmin, zmax], then the control points are

Bi0,i1,i2 =M+ (�x i0,�y i1,�z i2)

where M= (xmin, ymin, zmin), �x = (xmax− xmin)/n0, �y = (ymax− ymin)/n1, and
�z = (zmax− zmin)/n2. The volume function reduces as follows:

X(u, v , w)=
n0∑

i0=0

n1∑
i1=0

n2∑
i2=0

Ni0,d0(u)Ni1,d1(v)Ni2 ,d2(w)(M+ (�x i0,�y i1,�z i2))

= c0M+ c1�x ı+ c2�yj + c3�z k

4.4 Free-Form Deformation 195

where

c0 =
n0∑

i0=0

n1∑
i1=0

n2∑
i2=0

Ni0,d0(u)Ni1,d1(v)Ni2 ,d2(w)

=
⎛
⎝ n0∑

i0=0

Ni0,d0(u)

⎞
⎠
⎛
⎝ n1∑

i1=0

Ni1,d0(v)

⎞
⎠
⎛
⎝ n2∑

i2=0

Ni2,d0(w)

⎞
⎠

= 1 · 1 · 1= 1

We used the well-known property for basis functions,
∑n

i=0 Ni ,d(t) = 1 for all t ∈
[0, 1]. Similarly,

c1 =
n0∑

i0=0

n1∑
i1=0

n2∑
i2=0

i0Ni0,d0(u)Ni1 ,d1(v)Ni2 ,d2(w)

=
⎛
⎝ n0∑

i0=0

i0Ni0,d0(u)

⎞
⎠
⎛
⎝ n1∑

i1=0

Ni1,d0(v)

⎞
⎠
⎛
⎝ n2∑

i2=0

Ni2,d0(w)

⎞
⎠

= u · 1 · 1= u

where we use the property
∑n

i=0 Ni ,d(t)= t for t ∈ [0, 1]. The same argument shows
that c2 = v and c3 = 2. Therefore,

X(u, v , w)=M+ n0�x uı+ n1�y vj + n2�z wk

for the initially selected control points. The parameters to locate a mesh vertex
Pi = X(ui , vi , wi) are simply ui = ı · (Pi −M)/�x , vi = j · (Pi −M)/�y , and wi =
k · (Pi −M)/�z .

The straightforward approach to deforming the surface is to modify the control
points and recompute X(ui , vi , wi) for all i. Although this certainly works, it is less effi-
cient than it can be. The input parameters never change for a mesh vertex. Each time
the B-spline volume function is calculated, the basis functions Ni0,d0(ui), Ni1,d1(vi),
and Ni2,d2(wi) are calculated. These may be calculated once and stored for use in later
volume evaluations. Another optimization is possible if only a few control points are
modified at each step. To indicate the dependence of the volume function on the con-
trol points, let us write the function as X(u, v , w; B). The mesh vertex positions for the
initial set of control points are

Pi = X(ui , vi , wi ; B)

for all i. The control points are modified to Bi0,i1,i2 +dBi0,i1,i2 where the control point
perturbations might be nonzero only for a few control points. In an interactive mod-
eling package, the interface will most likely support dragging one control point at a
time, in which case dBi0,i1,i2 is nonzero for exactly one triple of indices, but zero for
all the others. The new mesh vertex positions are

Qi = X(ui , vi , wi ; B+dB)= X(ui , vi , wi ; B)+X(ui , vi , wi ; dB)= Pi +dPi

196 Chapter 4 Deformable Bodies

where the perturbation of the old mesh vertices is denoted by dPi = X(ui , vi , wi ; dB).
If you keep track of the original mesh vertices and measure only the control point
perturbations, the new mesh vertices may be rapidly computed. The evaluation of the
perturbation X(ui , vi , wi ; dB) is implemented to avoid multiplying the basis functions
by a point dBi0,i1,i2 when that point is the zero vector.

Source Code
FreeForm-
Deformation

Example
4.12

This programming example is a full implementation of the free-form deformation
using a B-spline volume function. The application constructs the axis-aligned bound-
ing box for a triangle mesh, computes the parameter triples for the mesh vertices,
and displays the mesh. The volume is drawn as a wireframe box with line seg-
ments connecting the control points. The interface allows you to select a control
point and drag it with the mouse. For each change the embedded triangle mesh is
updated. The program also has an option for randomly perturbing the current set
of control points so that the mesh wiggles. This option is toggled with the r/R keys.
Figure 4.20 – also Color Plate 4.20 – shows some screen shots from this application on
the CD-ROM. ■

The ideas of FFD have been extended by various researchers. An extended free-
form deformation (EFFD) was developed in [Coq90], and it allows the surface to be
embedded in a collection of multiple volumes to gain better control over the spatial
deformations. These results were developed more from an engineering perspective
than from a desire to obtain physically meaningful deformations. Along the latter
lines the paper [HML99] describes an algorithm to preserve the total volume enclosed
by the surface during the deformation. This is a reasonable goal, but it implicitly
assumes that the object’s mass density is constant throughout the deformation. For
some objects this assumption makes sense, but for others it does not. Consider a
foam ball that is deformed by squeezing it. Clearly, the volume is not preserved, but
the total mass is preserved. The next step in developing deformation models of the
free-form type should have the goal of modifying the mass density function so that
the total mass is preserved. By accurately computing the mass density during defor-
mation, the inertia tensor for the deformed object can then be calculated for use in
physical simulations.

4.5 Implicit Surface Deformation

A body is modeled as the region F(x, y , z) ≤ 0 for a suitably chosen function F . The
surface of the body is implicitly defined by F(x, y , z)= 0. A force on the body is
simulated by adding a deformation function D(x, y , z) to F(x, y , z). The deformed
body is the region F(x, y , z)+D(x, y , z) ≤ 0 and has a surface implicitly defined by
F(x, y , z)+D(x, y , z) = 0. A simple example in two dimensions will illustrate the
concept.

4.5 Implicit Surface Deformation 197

Figure 4.20 Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been
moved and the surface is deformed. The control point shown in red in (b) is the point
at which the mouse was clicked on and moved. (See also Color Plate 4.20.)

198 Chapter 4 Deformable Bodies

Example
4.13

Consider a planar body in the shape of a circular disk defined by F(x, y)= x2 + y2−
1 ≤ 0. The boundary of the object is the circle defined by F(x, y)= 0, namely x2+
y2 = 1. Figure 4.21(a) illustrates the object before deformation.

A force is to be applied to the body at the point (1, 0) to produce a deformed
body, with some possibilities shown in Figure 4.21(c)–(f). You have a lot of flexibility
in choosing the deformation functions. A simple one to illustrate is

D(x, y) =
{

A(1− 4((x − 1)2 + y2)), (x − 1)2 + y2 < 1/4
0, otherwise

This function is continuous. It is differentiable everywhere except on the circle (x −
1)2 + y2 = 1/4. This small circle intersects the original one at x = 7/8. Outside this
circle the level curve is defined by F(x, y)= 0 and produces a large circular arc x2+
y2 = 1 for x ≤ 7/8. Inside this circle the level curve is

0= F(x, y)+D(x, y) = (1− 4A)x2 + (1− 4A)y2 + 8Ax − (1+ 3A)

If A = 1/4, the level curve is the line segment x = 7/8 with |y| ≤ √15/8. For A �= 1/4,
divide by 1− 4A and complete the square on x to obtain the factored equation:(

x + 4A

1− 4A

)2

+ y2 = 1−A+ 4A2

(1− 4A)2

This is the equation for a circle. Notice that the endpoints of the large circular arc,
(7/8,±√15/8), are always on the arc defined by this new circle.

(a) Original body

(d) A > 1/4

(c) A = 1/4

(f) A < 0

(b) Region of deformation

(e) 0 < A < 1/4

Figure 4.21 A disk-shaped body and various deformations of it.

4.5 Implicit Surface Deformation 199

A time-varying deformation may be induced by allowing the amplitude A of the
deformation to vary with time. For example, A(t) = ct for a positive constant c causes
a gradual depression in the disk. Oscillatory behavior can be induced by something
like A(t) = c sin(t) for a positive constant c . ■

In the example the deformation D(x, y) is symmetric about the point (1, 0), that
center point considered to be the point of application of the simulated force. Gen-
erally, D is neither required to be symmetric nor to be viewed has having a center
point that is on the boundary of the object. We could just have easily added D(x, y) =
A(1− 4((x − x0)

2+ (y − y0)
2)) for any point (x0, y0) in the plane. Of course if the

region of influence does not intersect the level curve defining the object boundary, no
deformation occurs.

The example is also a continuous one. In practice we will have discrete objects,
polygonal objects in the plane (approximations to the level curve object boundaries),
and triangle mesh objects in space (approximations to the level surface object bound-
aries). Given a continuous representation F = 0 of the object boundary, we need to
construct the approximations. This requires extraction of curves or surfaces from data
generated by sampling F on a regular lattice. The curves and surfaces are extracted
from the data using methods from image analysis. Keeping in mind we want to have a
reasonably fast simulation, the deformation D can be defined to be nonzero within a
small region so that only a handful of pixels/voxels will be affected by the deformation.
The level curves/surfaces need be updated only at those pixels/voxels.

4.5.1 Level Set Extraction

A standard isosurface extraction algorithm for a 3D image is the Marching Cubes
algorithm [LC87]. The image is assumed to be defined on a regular lattice of size N0×
N1 ×N2 with integer points (x, y , z), where 0≤ x < N0, 0≤ y < N1, and 0≤ z < N2.
The image values themselves are F(x, y , z). An isosurface is of the form F(x, y , z)= c
for some specified level value c , where x, y , and z are treated as continuous variables.
A voxel in the image is a rectangular solid whose corners are eight neighboring lattice
points (x0, y0, z0), (x0 + 1, y0, z0), (x0, y0+ 1, z0), (x0 + 1, y0+ 1, z0), (x0, y0, z0+ 1),
(x0 + 1, y0, z0+ 1), (x0, y0+ 1, z0 + 1), and (x0 + 1, y0+ 1, z0+ 1). Figure 4.22 illus-
trates the level surface contained by a single voxel.

The Marching Cubes algorithm analyzes each voxel in the image and determines
if the isosurface intersects it. If so, the algorithm produces a triangle mesh for the
voxel that is intended to approximate that portion of the isosurface inside the voxel.
By selecting a level value that cannot be an image value, for example, by selecting a
noninteger value when the image has only integer values, the voxel analysis requires
determining the signs of G(x, y , z)= F(x, y , z)− c at the eight corners, each sign
positive or negative. If two adjacent corners have opposite signs, and if the image
values are assumed to be linear along the edge connecting the corners, the isosurface
G(x, y , z) = 0 must intersect the edge in a single point somewhere along the edge. The

200 Chapter 4 Deformable Bodies

–2

–1

+1

–3

Figure 4.22 This is an illustration of a level surface F(x, y , z)= 0, a cube whose eight corners
correspond to image samples. Four of the image values are shown, one positive and
three negative. Assuming the image values vary continuously, each edge connecting a
positive and negative value must have a point where the image is zero. The level sur-
face F(x, y , z)= 0 necessarily passes through those zero points, as illustrated by the
triangular-shaped surface shaded in dark gray.

complexity of the surface of intersection is related to the sign changes that occur on
all the edges of the voxel.

The heart of the Marching Cubes algorithm is that only a small number of sign
combinations is possible, 2 signs at each of 8 corners for a total of 256 combinations.
Each combination is analyzed to determine the nature of the isosurface of intersection;
a triangle mesh is selected to represent that intersection. These meshes are stored in a
table of size 256. The sign analysis for a voxel leads to an index into the table to select
a triangle mesh representing the surface of intersection for that voxel. The strength of
this algorithm is the speed in which the triangle meshes are generated for the entire
isosurface, the performance due to the simplicity of the table lookups.

The Marching Cubes algorithm has two undesirable consequences. The first con-
sequence is that for a typical 3D medical image and typical isosurface, the number of
triangles in the mesh is on the order of a million. The generation of the mesh certainly
requires only a small amount of time, but most rendering systems are slow to render
millions of triangles per frame, even with graphics hardware acceleration. Of course,
the large number of triangles is a problem with any isosurface extraction algorithm
that works at the voxel level. The second undesirable consequence is that the trian-
gle mesh table can lead to topological inconsistencies in the mesh. Specifically, the
two meshes generated at adjacent voxels might have triangles that should share edges,
but do not, thereby producing holes in the final mesh. How these holes occur will be
discussed later in this section.

4.5 Implicit Surface Deformation 201

One approach that addresses the issue of the large number of triangles is to apply
mesh reduction algorithms to the extracted surface [DZ91, GH97, HDD+93, SZL92,
Tur92]. The idea is to extract the triangles at the voxel level, build the triangle mesh
using data structures that store the adjacency information for vertices, edges, and tri-
angles, then attempt to reduce triangles according to some heuristic. The algorithm
in [GH97] is based on the concept of an edge collapse, where an edge is removed, the
triangles sharing the edge are removed, and the remaining triangles affected by the
removed triangles are modified to preserve the local topology. Although the reduced
meshes are quality representations of the isosurface and can be quickly rendered,
the reduction scheme is computationally expensive, thus offsetting the speed of an
extraction algorithm such as Marching Cubes. In our context of deformable surfaces,
the computation time is kept to a minimum by selecting deformation functions that
require updating only a small subset of voxels in the lattice.

In this section I provide an extraction algorithm that has no ambiguities and pre-
serves the topology of the isosurface itself when the image data within each voxel has
a continuous representation using trilinear interpolation of the image values at the
eight corners. The table lookup of Marching Cubes is replaced by constructing an
edge mesh on the voxel faces. That mesh approximates the intersection of the isosur-
face with the faces. The mesh is then triangulated using an extension of an ear-clipping
algorithm for planar polygons [O’R98] to three dimensions. The triangulation does
not introduce new points (called Steiner points in the computational geometry liter-
ature), something other researchers have tried in attempts to remove the topological
ambiguities of Marching Cubes. The triangulation is fast and efficient, but it is also
possible to avoid the runtime cost by having a table lookup. The table has 256 entries,
just as in Marching Cubes, but each entry that has potential ambiguities stores mul-
tiple triangle meshes. Selection of the correct mesh in the table entry is based on a
secondary index. The concepts are first discussed for 2D images to give the reader
intuition on how the algorithms apply to 3D images.

4.5.2 Isocurve Extraction in 2D Images

A 2D image is assumed to be defined on a regular lattice of size N0×N1 with integer
points (x, y), where 0≤ x < N0 and 0≤ y < N1. The image values themselves are
F(x, y). An isocurve is of the form F(x, y)= c for some specified level value c , where
x and y are treated as continuous variables. A pixel in the image is a rectangle whose
corners are four neighboring lattice points (x0, y0), (x0 + 1, y0), (x0, y0+ 1), and (x0+
1, y0+ 1). I choose F(x, y) to be a bilinear interpolation of the four image values F00,
F10, F01, and F11 at the corners, respectively. The continuous representation of the
image over the entire pixel is given below, where δx = x − x0 and δy = y − y0:

F(x, y)= (1− δy)((1− δx)F00 + δx F10)+ δy ((1− δx)F01+ δx F11) (4.13)

The equation F(x, y)= c is a quadratic equation in x and y when the xy term appears,
a linear equation when xy does not. The isocurves for F when viewed as a function

202 Chapter 4 Deformable Bodies

on all of the plane are either hyperbolas or lines. As in 3D, I make the simplifying
assumption that the level value c is chosen not to be an image value. The isocurves
can intersect interior edge points of a pixel, but cannot intersect the corner points. I
also work with G(x, y)= F(x, y)− c and its isocurves generated by G(x, y) = 0.

The specialization of Marching Cubes to 2D images is usually referred to as
Marching Squares. The isocurve extraction for G(x, y) = 0 on a pixel is performed
by analyzing the signs of G at the four corners. Since the signs can be only+1 or −1,
there are 16 possible sign configurations. Figure 4.23 shows these.

In the case of sign changes on two edges, clearly we can connect the two edge
points with a line segment. The actual isocurve is either a portion of a hyperbola or
a line segment. In the first case, the segment connecting the two edge points is a rea-
sonable approximation to the isocurve. In the second case, the segment is exactly the
isocurve. Figure 4.23 shows the approximating segments in the unambiguous cases.
However, two cases are ambiguous and are labeled with question marks. The possible
resolutions are shown in Figure 4.24.

The question is how to select one of the three possibilities in Figure 4.24 to obtain
a mesh that is topologically consistent with the isocurves. The answer is based on
an analysis of the quadratic equation G(x, y)= 0 to actually determine what the
isocurves look like. For simplicity, we may consider the problem when 0≤ x ≤ 1 and
0 ≤ y ≤ 1 and where the pixel-image values are (0, 0, G00), (1, 0, G10), (0, 1, G01), and

+ –

++

+ –

+–

+ –

–+

+ –

––

– +

++

– +

+–

– +

–+

– +

––

– –

++

– –

+–

– –

–+

– –

––

+ +

++

+ +

+–

+ +

–+

+ +

––

?

?

Figure 4.23 The 16 possible sign configurations for a pixel.

4.5 Implicit Surface Deformation 203

Figure 4.24 The three possible resolutions for the ambiguous pixel case.

(1, 1, G11). The equation is of the form,

G(x, y)= a00+ a10x + a01y + a11xy

where a00 = G00, a10 = G10 −G00, a01 = G01 −G00, and a11 = G00 −G10 −G01+
G11. Of course the interesting case is when all four edges have sign changes. We
may consider the case G00 < 0, G10 > 0, G01 > 0, and G11 < 0. The opposite signs
case has a similar analysis. Notice that a00 < 0, a10 > 0, a01 > 0, and a11 < 0. The
four edge points where G(x, y) = 0 are (0, ȳ0), (1, ȳ1), (x̄0, 0), and (x̄1, 0). The linear
interpolation will show that

x̄0 = −G00

G10 −G00
, x̄1 = −G01

G11 −G01
, ȳ0 = −G00

G01−G00
, ȳ1 = −G10

G11 −G10

Because a11 �= 0, the product a11G(x, y) is not formally zero and can be fac-
tored as

a11G(x, y)= (a00a11− a01a10)+ (a01 + a11x)(a10 + a11y)

Moreover, some algebra will show that a00a11− a01a10 = G00G11 −G01G10. Define
�= G00G11 −G01G10. I consider the two cases when � is zero or nonzero.

If �= 0, then a11G(x, y)= (a01+ a11x)(a10 + a11y). The isocurves G = 0 occur
when x =−a01/a11 and y =−a10/a11. The isocurves in the entire plane consist of
the vertical and horizontal lines defined by the two equations. Thus, the right-most
pixel in Figure 4.24 shows the isocurve structure within the pixel. In this case the line
segments forming the plus sign are exactly the isocurves. The center of the plus sign
was not found by edge intersections but is added to the vertex–edge data structure for
storing the edge mesh representing the total isocurve for the image. That is, when a
plus sign configuration is encountered, we add the four edge intersections and plus-
sign center as vertices to the mesh and we add the four segments to the mesh edges
that connect the edge intersections with the center point.

If � �= 0, then the isocurves of G = 0 are hyperbolas with asymptotes
x =−a01/a11 and y =−a10/a11. The two possible graphs are shown in Figure 4.25.

To distinguish which configuration is correct for the given pixel, observe that
a pair of edge points is on the same hyperbolic component whenever the signs

204 Chapter 4 Deformable Bodies

(a)

P2

P1

P0

P3

(b)

P2

P1

P0

P3

Figure 4.25 Two possible configurations for hyperbolic isocurves with pixels superimposed. The
four edge intersections are P0, P1, P2, and P3 as marked.

of the expression a01+ a11x are the same at those points. This test follows from
the observation that points (x, y) on the vertical asymptote satisfy a01+ a11x = 0.
Points to the right of the vertical asymptote satisfy a01+ a11x > 0 for Figure 4.25(a)
and a01+ a11x < 0 for Figure 4.25(b). Points to the left of the vertical asymptote
have opposite sign, a01+ a11x < 0 for Figure 4.25(a) and a01+ a11x > 0 for Figure
4.25(b). Let σ(P) denote the sign of a01+ a11x for point P = (x, y). Some simple
computations produce

σ(P0)= Sign(a01)= Sign(G01 −G00)=−Sign(G00)

and

σ(P1)= Sign(a01+ a11)= Sign(G11 −G10 = Sign(G00)

Now σ(P2)= Sign(a01 + a11x̄0). Some algebra will show that the argument of the
right-hand side is

a01+ a11x̄0 = G01G10 −G00G11

G10 −G00

Therefore,

σ(P2)= Sign(G01G10 −G00G11)Sign(G10 −G00)=−Sign(�)Sign(G00)

Similarly, σ(P3)= Sign(a01 + a11x̄1) where

a01+ a11x̄1 = G01G10 −G00G11

G11 −G01

4.5 Implicit Surface Deformation 205

Therefore,

σ(P3)= Sign(G01G10−G00G11)Sign(G10 −G00)= Sign(�)Sign(G00)

Each of the four signs is computed and the points are grouped into two pairs, each
pair having the same sign. Equivalently, we may analyze the signs of Sign(G00)σ(Pi)

and pair the points accordingly. In this formulation, the modified signs are

Sign(G00)σ(P0) = −1
Sign(G00)σ(P1) = +1
Sign(G00)σ(P2) = −Sign(�)

Sign(G00)σ(P3) = +Sign(�)

Clearly, P0 and P1 can never be paired just as P2 and P3 can never be paired. This
should be clear geometrically from Figure 4.25. We pair (P0, P2) and (P1, P3) when
� > 0 or (P0, P3) and (P1, P2) when � < 0.

Table 4.4 summarizes all the possible vertex–edge configurations based on analysis
of the bilinear function for the pixel. The signs at the four pixels are written from left
to right and correspond to the signs of G00, G10, G01, and G11, in that order. The

Table 4.4 The Vertex–edge Configurations for a Pixel

Signs Sign of � Edges

+ + + +
+ + + − 〈P0, P3〉
+ + − + 〈P1, P3〉
+ + − − 〈P0, P1〉
+ − + + 〈P1, P2〉

+ 〈P0, P2〉, 〈P1, P3〉
+ − + − − 〈P0, P3〉, 〈P1, P2〉

0 〈P0, C〉, 〈P1, C〉, 〈P2, C〉, 〈P3, C〉
+ − − + 〈P2, P3〉
+ − − − 〈P0, P2〉
− + + + 〈P0, P2〉
− + + − 〈P2, P3〉

0 〈P0, C〉, 〈P1, C〉, 〈P2, C〉, 〈P3, C〉
− + − + − 〈P0, P3〉, 〈P1, P2〉

+ 〈P0, P2〉, 〈P1, P3〉
− + − − 〈P1, P2〉
− − + + 〈P0, P1〉
− − + − 〈P1, P3〉
− − − + 〈P0, P3〉
− − − −

206 Chapter 4 Deformable Bodies

sign of � is only relevant in the ambiguous cases, so nothing is listed in this column
in the unambiguous cases. The names P0, P1, P2, and P3 always refer to edge points
on the edges x = 0, x = 1, y = 0, and y = 1, respectively. The center point, if any, is
labeled C .

4.5.3 Isosurface Extraction in 3D Images

A 3D image is assumed to be defined on a regular lattice of size N0×N1×N2 with
integer points (x, y , z), where 0≤ x < N0, 0 ≤ y < N1, and 0 ≤ z < N2. The image
values themselves are F(x, y , z). An isosurface is of the form F(x, y , z)= c for some
specified level value c , where x, y , and z are treated as continuous variables. A
voxel in the image is a rectangular solid whose corners are eight neighboring lattice
points (x0, y0, z0), (x0 + 1, y0, z0), (x0, y0+ 1, z0), (x0 + 1, y0+ 1, z0), (x0, y0, z0+ 1),
(x0 + 1, y0, z0+ 1), (x0, y0+ 1, z0 + 1), and (x0 + 1, y0+ 1, z0+ 1). I choose F(x, y , z)

to be a trilinear interpolation of the eight image values, which are F000, F100, F010,
F110, F001, F101, F011, and F111 at the corners, respectively. The continuous represen-
tation of the image over the entire voxel follows, where δx = x − x0, δy = y − y0, and
δz = z − z0:

F(x, y , z) = (1− δz)((1− δy)((1− δx)F000+ δx F100)

+ δy ((1− δx)F010+ δx F110)))

+ δz ((1− δy)((1− δx)F001+ δx F101)

+ δy ((1− δx)F011+ δx F111)))

(4.14)

The equation F(x, y , z)= c is a cubic equation in x, y , and z when the xyz term
appears, a quadratic equation when xyz does not, and a linear equation when none
of xyz , xy , xz , or yz occurs. I make the simplifying assumption that the level value c
is chosen not to be an image value. The isosurfaces can intersect interior edge points
of any of the 12 edges of a voxel, but cannot intersect the corner points. I also work
with G(x, y , z)= F(x, y , z)− c and its isosurfaces generated by G(x, y , z) = 0.

Table-Based Mesh Selection

As I mentioned in the introduction, the Marching Cubes algorithm is based on the
fact that each corner has an image value that is either positive or negative, leading to
256 possible sign configurations. The corner sign values are used to construct an index
into a precomputed table of 256 triangle meshes. I discussed the analogy of this in 2D
and showed the ambiguities that arise in two sign configurations. In 2D, rather than
having a precomputed table of 16 edge meshes, we needed a secondary index to select
one of three edge meshes that can occur in each of the two ambiguous cases. Thus,
we have a total of 20 edge meshes from which to select. The same ambiguities arise
in 3D. In fact, the ambiguities have a more serious consequence: the triangle mesh

4.5 Implicit Surface Deformation 207

generated by adjacent voxels can have topological inconsistencies. In particular, when
two voxels share a face that is ambiguous in the 2D sense, the table lookup can produce
triangle meshes that do not properly share edges on the common face. Figure 4.26
illustrates this.

The voxel on the right had its edge points on the ambiguous face paired differ-
ently than the voxel on the left. This leads to a triangle mesh where a pair of triangles
occurs, one triangle from each voxel, but the triangles touch at a single edge point
rather than sharing an entire edge. To remedy this, all we need to do is make sure
that the pairing of edge points on ambiguous faces occur according to the scheme I
constructed for 2D. Interpolating each face bilinearly is consistent with the trilinear
interpolation assumed for the entire voxel.

In the 2D setting, I mentioned that the precomputed table of edge meshes has a
primary and a secondary index. The primary index takes on 16 values, each value rep-
resenting a sign configuration for the corners of the pixel. The secondary index is 0 for
the nonambiguous cases; that is, if the primary index corresponds to a nonambiguous
case, the entry in the table stores a single edge mesh. Assuming the edge meshes in the
table entry are stored as an array with zero-based indexing, the secondary index of 0
will always locate the correct (and only) mesh. For the ambiguous case, the secondary
index takes on three values that represent whether the quantity � I defined previously
is zero, positive, or negative. The table entries for the ambiguous cases have arrays of
three edge meshes.

A similar construction can be applied in 3D. However, the table construction
can be a bit tedious. An ambiguity for a voxel occurs whenever one or more of its
faces is an ambiguous case in 2D. Suppose that exactly one face is ambiguous (e.g.,
Figure 4.26). Marching Cubes has a single triangle mesh to approximate the isosurface
of the voxel. However, the ambiguous face has one of three possible interpretations,
so the table entry for this case really needs an array of three triangle meshes. As in 2D,

+

+

__

_

_

_

_

+

+

+

_

_

+

_

+

Figure 4.26 Topological inconsistencies introduced in two voxels sharing an ambiguous face.

208 Chapter 4 Deformable Bodies

a secondary index can be used to select the correct mesh. Now suppose that exactly
two faces are ambiguous. Each face can be resolved in one of three ways, thus lead-
ing to nine possible triangle meshes for the table entry of the given primary index.
Worst case, of course, is that all six faces are ambiguous, requiring a secondary index
that takes on 36 = 729 values. Consequently, the tables will be quite large but still
constructible.

Ear-Clipping–Based Mesh Construction

An alternative to the table lookup is to generate the triangle mesh for each voxel at
runtime. The concept is quite simple. The edge meshes of a voxel are generated for
each face of the voxel. A vertex–edge data structure is used to store the isosurface
points on the edges of the voxel and to keep track of which points are paired by an
edge. The assumptions that the image is trilinearly interpolated on the voxel and that
the level values are not image values guarantees that isosurface points on the voxel
edges share exactly two mesh edges.

If a plus-sign configuration occurs on the face of a voxel, then the center point of
that configuration is added as a vertex of the mesh. That point shares four edges. Thus,
a vertex shares either two or four edges. The triangle generation amounts to finding a
vertex sharing two edges, locating its two adjacent vertices, adding the triangle formed
by those three vertices to a list, then removing the original vertex and the two edges it
shares. If necessary, an edge is added to connect the remaining adjacent vertices. This
process is repeated until no more vertices exist that share exactly two edges. I illustrate
with an example. Figure 4.27 shows a voxel and the edge mesh generated by analyzing
the six faces using the 2D algorithm.

V1
V7

V2
V3

V8

V4

V9

V0

V5

V6

Figure 4.27 A voxel and its extracted edge mesh.

4.5 Implicit Surface Deformation 209

Vertices V3 and V5 are centers of plus-sign configurations and share four edges
each. The other vertices share two edges each. Vertex V0 shares two edges. The adjacent
vertices are V1 and V5. The triangle 〈V5, V0, V1〉 is added to a list. V0 and its edges to
the adjacent vertices are removed from the edge mesh. A new edge is added to connect
V5 and V1. Figure 4.28(a) shows the resulting edge mesh.

V1 shares two edges. The adjacent vertices are V5 and V2. The triangle 〈V5, V1, V2〉
is added to the list. V1 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V5 and V2. Figure 4.28(b) shows the resulting
edge mesh.

V2 shares two edges. The adjacent vertices are V5 and V3. The triangle 〈V5, V2, V3〉
is added to the list. V2 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V5 and V3. Figure 4.28(c) shows the resulting
edge mesh.

V4 shares two edges. The adjacent vertices are V5 and V3. The triangle 〈V5, V4, V3〉
is added to the list. V4 and its edges to the adjacent vertices are removed from the edge
mesh. An edge already exists between V5 and V3, so a new one does not have to be
added. Figure 4.28(d) shows the resulting edge mesh.

V6 shares two edges. The adjacent vertices are V5 and V7. The triangle 〈V5, V6, V7〉
is added to the list. V6 and its edges to the adjacent vertices are removed from the edge

V1 V7

V2

V8

V3
V6

V4
V5

V9

V7

V2

V8

V3

V6

V5

V9

V4

V7

V8

V3
V6

V5

V9

V4

V7

V8

V3
V6

V5

V9

V7

V8

V3

V5

V9

V8

V3

V5

V9

V8

V3

V9

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.28 Triangle removal in the edge mesh of Figure 4.27. The sequence is from (a) to (h).

210 Chapter 4 Deformable Bodies

mesh. A new edge is added to connect V5 and V7. Figure 4.28(e) shows the resulting
edge mesh.

V7 shares two edges. The adjacent vertices are V5 and V3. The triangle 〈V5, V7, V3〉
is added to the list. V7 and its edges to the adjacent vertices are removed from the edge
mesh. An edge already exists between V5 and V3, so a new one does not have to be
added. Figure 4.28(f) shows the resulting edge mesh.

V5 shares two edges. The adjacent vertices are V3 and V9. The triangle 〈V3, V5, V9〉
is added to the list. V5 and its edges to the adjacent vertices are removed from the edge
mesh. A new edge is added to connect V3 and V9. Figure 4.28(g) shows the resulting
edge mesh.

Finally, V3 shares two edges. The adjacent vertices are V8 and V9. The triangle
〈V8, V3, V9〉 is added to the list. V3 and its edges to the adjacent vertices are removed
from the edge mesh. No more vertices exist, so the triangulation is finished. Figure
4.28(h) shows the voxel with all vertices and edges removed.

Source Code
BouncingBall

Example
4.14

An example of implicit surface deformation is provided in the source code on the
CD-ROM. A deformable body initially in the shape of a sphere is bounced on a
floor. When the body hits the floor, it starts to deform. At the instant of maximum
deformation, the body bounces off the floor and gradually returns to its spherical
shape.

The floor is represented by the xy-plane (z = 0). The spherical body is defined
implicitly at time 0 by F(x, y , z)= x2 + y2+ (z − 1)2 − 1 = 0. The center point of the
body is denoted C(t) = (c1(t), 0, c3(t)) and is a hard-coded path for the purposes of
simplifying the demonstration. The body bounces back and forth striking the plane
in only the points (2, 0, 0) and (−2, 0, 0). At time zero the center is at (0, 0, 2) and
the body is not in contact with the floor. The x-coordinate of the center is c1(t)=
2 sin(π t/2) for t ∈ [0, 1]. During that same time interval the z-coordinate is defined
as c3(t)= 2− t 2. The body is not in contact with the floor until the time reaches one.
At that instant a time-varying deformation is applied to the body. The path of the
center during the deformation is allowed to be downward only.

A slight complication arises because of the body motion. The body surface can
be defined implicitly using world coordinates, but then F should additionally depend
on t . To avoid this we will use a local coordinate system for the body and define the
deformations within that system. We may therefore consider F(x, y , z)= x2 + y2+
(z − 1)2 − 1= 0 as defining the body surface in local coordinates but translate the
surface itself to world coordinates when displaying the object.

The time interval of deformation and the actual z-value of the path of the center
depend on how the deformation is defined. Consider using

D(x, y , z ; t) =
{

A(t)(1− x2 − y2 − z2); x2+ y2 + z2 ≤ 1, t ∈ [1, 1+ d]

0; otherwise

where A(t) = 4(t − 1)(1+ d − t)/d2. The time interval over which the deformation
is applied is [1, 1+ d] for some selected duration d > 0. The amplitude A(t) varies

4.5 Implicit Surface Deformation 211

Figure 4.29 A bouncing ball with deformation based on implicit surfaces. Image (a) shows the
bouncing ball with only the implicit surface deformation. Image (b) shows an addi-
tional deformation of nonuniform scaling by applying an affine transformation. (See
also Color Plate 4.29.)

212 Chapter 4 Deformable Bodies

from 0 at time t = 1, to 1 at time t = 1+ d/2, back to 0 at time t = 1+ d . The
deformation is implicitly defined by F(x, y , z)+D(x, y , z) = 0, leading to

x2 + y2+
(

z − 1

1−A

)2

= 1−A+A2

(1−A)2

which is the equation for a sphere. The portion of the original sphere contained
in the region of influence x2+ y2 + z2 ≤ 1 is replaced by a spherical section from
the previously displayed equation. By symmetry, the minimum point of that section
occurs at x = y = 0, so zmin = (1−√1−A+A2)/(1−A) ∈ [0, 1/2] for A ∈ [0, 1].
In the limit as A approaches 1, zmin approaches 1/2. When that limit is reached, the
deformed section of the body is a flat disk. So that the visual display of the body will
make it appear as if it is in contact with the floor, the locally defined level surface
for the deformed body should be translated downward by subtracting zmin from the
z-coordinates of the vertices.

Figure 4.29 – also Color Plate 4.29 – shows some screen shots from this application
found on the CD-ROM.

The level surface extractor is configured to update only those voxels that are
affected by the deformation. We know by design that only the portion of the body
below z = 1/2 is affected. Moreover, we can limit our search for new voxels that
define the next deformable surface by examining those vertically neighboring vox-
els intersected by the current deformable surface, thus taking advantage of continuity
in time.

The deformed ball as constructed here most likely does not look physically real-
istic. You would expect a ball hitting the ground to flatten vertically and expand
horizontally about its middle. The deformation function we used does not cause
that to happen. Although we could choose a different deformation function and/or
increase the region of influence of the function, a cheaper alternative involving more
hacked physics is to apply a nonuniform scaling to the vertices of the triangle mesh
after the effects of the deformation are calculated. The x and y components may
be scaled by a factor σ1 > 1. The z component may be scaled by a factor σ2 < 1.
Figure 4.29(b) shows some screen shots for the modified physical simulation that uses
the affine deformation to get nonuniform scaling. ■

(Example 4.14
continued)

C h a p t e r 5
Fluids and Gases

This chapter introduces some basic concepts for fluid dynamics, allowing us to
model fluid flow and to implement algorithms that run in real time.

Section 5.1 is a summary of topics in vector calculus that are applicable to fluid
dynamics. This is a lengthy section about the gradient, directional derivatives, vec-
tor fields, divergence, curl, and integration (line, surface, volume integrals). A few
important results are mentioned: divergence theorem, Stokes’ theorem, and Green’s
theorem. Applications are shown for solving some partial differential equations,
namely, Laplace’s equation and Poisson’s equation. The final result of the section is
the Helmholtz decomposition that shows a vector field may be decomposed into a
gradient vector field and a curl vector field. This result plays an important role in the
numerical methods for solving the equations of fluid motion.

Section 5.2 contains a discussion about strain and stress of fluids. Under special
assumptions about the fluid, the stress tensor is simplified to a form that at least gives
us hope of numerically solving the equations of fluid motion.

Conservation of mass and conservation of momentum are the topics of
Section 5.3. Conservation of mass leads to a partial differential equation that models
the density of a fluid moving within a bounded region. Conservation of momen-
tum leads to a partial differential equation that models the velocity of the fluid; this
equation is called the Navier–Stokes equation. The density and velocity occur in both
equations, so the equations are coupled, which makes the numerical solution a bit of
a challenge.

© 2010 by Elsevier Inc. All rights reserved. 213
DOI: 10.1016/B978-0-12-374903-1.00005-0

214 Chapter 5 Fluids and Gases

With more assumptions, the density equation and Navier–Stokes equation are
simplified to a form that allows us to solve them with some standard numerical
methods. The solutions may be generated in real time. Section 5.4 presents the ideas
leading to the equations used in the real-time fluids for games paper [Sta03].

Section 5.5 covers the implementation of the simplified model in two dimensions
where the region of fluid is a rectangle. Pseudocode is provided for all the details.
Section 5.6 summarizes the implementation in three dimensions where the region of
fluid is a cube. Pseudocode is also provided. The CD-ROM has implementations for
both two and three dimensions.

A few variations on the simplified model are mentioned in Section 5.7. The most
important one is called vorticity confinement [FSJ01] and helps to keep the vortices
that one associates with motion of smoke.

5.1 Vector Calculus

Rather than make this a section in Chapter 9 on calculus, I decided it would be more
useful to include it here. The derivations for the partial differential equations related
to fluid flow are heavily dependent on topics in vector calculus, so it is convenient to
have this material here for quick reference.

5.1.1 Gradient, Directional Derivative, and Total Derivative

Consider three-dimensional space with position x = (x0, x1, x2). The gradient operator
in three dimensions is

∇ =
(

∂

∂x0
,

∂

∂x1
,

∂

∂x2

)
(5.1)

and is applied to a function f (x) to obtain the gradient of f ,

∇f =
(

∂f

∂x0
,
∂f

∂x1
,

∂f

∂x2

)
(5.2)

which is the 3-tuple of first-order partial derivatives of f .
Sometimes we wish to compute the rate of change of f at a point x in a specified

direction u. According to convention, the direction is a unit-length vector. The rate
of change of f at x in the direction u is the directional derivative

u ·∇f (x)= u ·
(

∂f

∂x0
,
∂f

∂x1
,
∂f

∂x2

)
= u0

∂f

∂x0
+ u1

∂f

∂x1
+ u2

∂f

∂x2
(5.3)

5.1 Vector Calculus 215

In fact, u ·∇f = (u ·∇)f , which defines the directional derivative operator

u ·∇ =
(

u0
∂

∂x0
, u1

∂

∂x1
, u2

∂

∂x2

)
(5.4)

where u= (u0, u1, u2).
The total derivative of a function f (x) is defined as the differential form,

df = dx0
∂f

∂x0
+ dx1

∂f

∂x1
+ dx2

∂f

∂x2
= dx ·∇f = (dx ·∇)f (5.5)

where the coordinate differentials are summarized in vector form as dx=
(dx0, dx1, dx2). The equation f (x)= c for constants c defines a family of surfaces (pos-
sibly degenerate to a curve or point) called level surfaces. If x varies only within one
level surface, then f is constant for those x and the total derivative is zero, df = 0.
Consequently, dx ·∇f = 0, which says that if you start on the surface and then move
an infinitesimal amount dx while staying on the surface, the gradient of f remains
perpendicular to dx. Because such an infinitesimal amount keeps you on the surface,
dx is tangent to the surface and∇f must be perpendicular to the surface. Thus,∇f (x)

is a normal vector to the level surface at the point x on that surface.

5.1.2 Vector Fields, Divergence, and Laplacian

A vector field is a vector-valued function of a vector-valued variable. Specifically, if
x is position, a vector field is f(x). You may think of the vector field in terms of its
components,

f(x)= (f0(x), f1(x), f2(x)
)

Although the motivation for directional derivative involved application of the
operator u ·∇ to scalar-valued functions, we may also apply the operator to vector
fields f,

(u ·∇) f= u0
∂f

∂x0
+ u1

∂f

∂x1
+ u2

∂f

∂x2
(5.6)

Exercise
5.1

For any vector field f, prove that

(f ·∇)x= f (5.7)
■

An expression involving the gradient operator and vector fields that shows up
frequently in physics topics is the divergence, defined by

∇ · f = ∂f0
∂x0

+ ∂f1
∂x1

+ ∂f2
∂x2

=
(

∂

∂x0
,

∂

∂x1
,

∂

∂x2

)
· (f0, f1, f2) (5.8)

216 Chapter 5 Fluids and Gases

The right-most equality shows that, formally, you may think of the divergence as a
dot product of the gradient operator and the vector field.

Exercise
5.2

Prove that ∇ · x= 3. ■

Exercise
5.3

In Example 3.1, Newton’s law led to the equation involving gravitational force,

ma =−GMm

r 2
R

where G, M , and m are constants and where R= r/r is a unit-length direction vector.
The right-hand side is referred to as an inverse-square force. Let x= r and |x| = r . The
equation becomes

ma =−GMm
x

|x|3
Prove that

∇ ·
(

x

|x|3
)
= 0

which says that the divergence of an inverse-square force is always zero. ■

Exercise
5.4

Let φ(x) be a scalar-valued function. Let f(x) be a vector field. Prove that

∇ · (φf)= φ∇ · f+∇φ · f (5.9)

This equation has the flavor of a product rule for differentiation. ■

Exercise
5.5

Let f be a vector field. Let M be a constant 3× 3 matrix. Prove that

∇ · (M f)= (M T∇) · f (5.10)

Observe that g · M f= gTM f = (M Tg)Tf = (M Tg) · f. Equation (5.10) says that you
may formally apply this construction with g= ∇. ■

An important concept that shows up in fluid flow is diffusion. This involves the
Laplacian operator

∇2 = ∂2

∂x2
0

+ ∂2

∂x2
1

+ ∂2

∂x2
2

(5.11)

and is applied to a scalar-valued function φ(x) as

∇2φ = ∇ · (∇φ)= ∂2φ

∂x2
0

+ ∂2φ

∂x2
1

+ ∂2φ

∂x2
2

(5.12)

5.1 Vector Calculus 217

The Laplacian of f is the divergence of the gradient of φ. We may also formally apply
the Laplacian operator to a vector field f,

∇2f= ∂2f

∂x2
0

+ ∂2f

∂x2
1

+ ∂2f

∂x2
2

(5.13)

The result, of course, is vector-valued.

5.1.3 Curl

Another useful operation involving the gradient operator is the curl of a vector field
f(x). This is defined by

∇ × f=
(

∂f2
∂x1

− ∂f1
∂x2

,
∂f0
∂x2

− ∂f2
∂x0

,
∂f1
∂x0

− ∂f0
∂x1

)
= det

⎡
⎢⎢⎢⎣

ı j k

∂

∂x0

∂

∂x1

∂

∂x2

f0 f1 f2

⎤
⎥⎥⎥⎦ (5.14)

The right-most equality shows that, formally, the curl may be computed using the
butterfly rule for determinants applied to the gradient operator and the vector field.
Here are a few exercises involving the curl operator.

Exercise
5.6

Prove that ∇ × x= 0. ■

Exercise
5.7

Let φ(x) be a scalar-valued function. Let f(x) be a vector field. Prove that

∇× (φf)= φ∇ × f+∇φ× f (5.15)

This equation has the flavor of a product rule for differentiation. ■

Exercise
5.8

Let f(x) be a vector field and let R be a rotation matrix that is constant (independent
of x). Prove that

(R∇)× (Rf)= R (∇ × f) (5.16)

Compare this with equation (2.92). ■

Exercise
5.9

Let φ(x) be a scalar-valued function. Prove that

∇ × (∇φ)= 0 (5.17)

The curl of a gradient is always the zero vector. You may also think of this in operator
form, (∇ ×∇)φ = 0, which says that the operator ∇ ×∇ applied to scalar functions
is always the zero vector. ■

Here are some additional exercises involving the divergence and the curl
operators.

218 Chapter 5 Fluids and Gases

Exercise
5.10

Let f be a vector field. Prove that

∇ · (∇ × f)= 0 (5.18)

The divergence of a curl is always the zero vector. ■

Exercise
5.11

Let f and g be vector fields. The cross product f× g is also a vector field, so we may
compute its divergence. Prove that

∇ · (f× g
)= (∇ × f

) · g− (∇ × g
) · f (5.19)

This is not quite a product rule because the antisymmetry of the cross product (g×
f =−f× g) causes the minus sign to occur rather than a plus sign. ■

Exercise
5.12

Let f and g be vector fields. The cross product f× g is also a vector field, so we may
compute its curl. Prove that

∇ × (f× g
)= f

(∇ · g
)− g

(∇ · f
)+ (g ·∇) f− (f ·∇)g (5.20)

The equation makes use of the application of the directional derivative operator to
vector fields; see equation (5.6). ■

Exercise
5.13

Let f and g be vector fields. The dot product f · g is a scalar-valued function, so we
may compute its gradient. Prove that

∇ (f · g
)= f× (∇ × g

)+ g× (∇ × f
)+ (f ·∇)g+ (g ·∇) f (5.21)

The equation makes use of the application of the directional derivative operator to
vector fields; see equation (5.6). ■

Exercise
5.14

Let f be a vector field. The curl of f is itself a vector field, so we may apply the curl to it.
Prove that

∇ × (∇ × f
)= ∇(∇ · f

)−∇2f (5.22)

The equation makes use of the Laplacian operator applied to a vector field; see
equation (5.13). ■

Exercise
5.15

Exercise 5.14 provides a formula for the application of the curl twice to a vector field f.
Let us refer to the curl operator as ∇×. The curl of f is therefore (∇×)f =∇ × f. The
curl of the curl of f is(∇ ×)2f = (∇ ×)(∇ × f

)= ∇ × (∇ × f
)

Derive a formula for (∇×)3 f. Be daring and try to derive a formula for
(∇ ×)nf for

any positive integer n. ■

5.1 Vector Calculus 219

5.1.4 Line Integrals

Let f(x) be a vector field. Let x(s) be a curve that is parameterized by arc length s. The
derivative is x′(s)= dx/ds and is a unit-length tangent to the curve. The projection
of f onto the tangents is

[f(x(s)) · x′(s)]x′(s)

We may add up the dot products along a segment of the curve in the sense of
integration,

s1∫
s0

(
f(x(s)) · dx

ds

)
ds

where the curve segment corresponds to the interval [s0, s1]. An arc-length parame-
terization is not usually readily available, so we may write the previous integral in a
parameterless format, ∫

C

f · dx (5.23)

where C denotes the curve and where dx= (dx0, dx1, dx2) is the infinitesimal position
that we have seen previously in this chapter. The integral of equation (5.23) is referred
to as a line integral. Perhaps a better name would have been curve integral, but that’s
history.

If instead we have a curve parameterization x(t), then equation (5.23) may be
written as

t1∫
t0

(
f(x(t)) · dx(t)

dt

)
dt

where the curve segment of interest is that corresponding to the parameter interval
[t0, t1]. We have already seen such integrals when computing the total work done by
a force; see Section 2.6.

5.1.5 Surface Integrals and Stokes’ Theorem

The concept of a line integral extends naturally to integrals over a surface. We have
already seen this in Section 2.5.3 for continuous mass in three dimensions, under
the heading Surface Mass. In that example, we computed the mass of a surface for a
parametric function of two variables.

Generally, let f(x) be a vector field. Consider a surface S for which the normal
vector at position x is the unit-length normal vector n(x). The projection of f onto

220 Chapter 5 Fluids and Gases

the normals is [
f(x) · n(x)

]
n(x)

We may add up the normal projections in the sense of integration,∫
S

f · n dS =
∫
S

f · dS (5.24)

where dS is an infinitesimal amount of surface area and where dS= n dS is an
infinitesimal amount of surface. The integrals of equation (5.24) are referred to as
surface integrals.

An important result that is important in physics applications is Stokes’ theorem,
which is stated here without proof. Let f be a vector field. Let S be a surface patch
whose boundary is the closed curve C . The surface integral of the curl of f may be
reduced to a line integral of f on the boundary C .∫

S

(∇ × f) · dS=
∫
C

f · dx (5.25)

where dS is an infinitesmal amount of surface and dx is an infinitesimal amount of
curve.

5.1.6 Volume Integrals and the Divergence Theorem

Integrals of functions defined on a region of space V are naturally covered in a
multivariate calculus course. For a scalar function φ(x), the volume integral of φ is

∫
V

φ dV (5.26)

where dV = dx0dx1dx2 is an infinitesimal amount of volume of the region. We have
already seen such an integral when computing the total mass of an object occupying
the region V ; see Section 2.5.3 for continuous mass in three dimensions, under the
heading Volume Mass. In that example, the function to be integrated is the density
function δ(x).

We may compute volume integrals for vector fields as well, by integrating each of
the components of the vector field. For a vector field f(x), the volume integral of f is

∫
V

f dV =
⎛
⎝∫

V

f0 dV ,

∫
V

f1 dV ,

∫
V

f2 dV

⎞
⎠ (5.27)

An important result in physics applications is the divergence theorem, which is
stated here without proof. Let f be a vector field. Let V be a region of space whose

5.1 Vector Calculus 221

boundary is the closed surface S. The volume integral of the divergence of f may be
reduced to a surface integral of f on the boundary S.∫

V

∇ · f dV =
∫
S

f · dS (5.28)

where dV is an infinitesimal amount of volume and dS is an infinitesmal amount of
surface.

5.1.7 Green’s Theorem, Laplace’s Equation, and Poisson’s
Equation

Another important result is Green’s theorem, which states that for twice continuously
differentiable functions u and v defined on a region V with boundary S,∫

V

(
u∇2v − v∇2u

)
dV =

∫
S

(u∇v − v∇u) · dS (5.29)

The proof is simple. The divergence theorem applied to u∇v is∫
V

(
u∇2v +∇u ·∇v

)
dV =

∫
V

∇ · (u∇v) dV =
∫
S

u∇v · dS

The divergence theorem applied to v∇u is∫
V

(
v∇2u+∇v ·∇u

)
dV =

∫
V

∇ · (v∇u) dV =
∫
S

v∇u · dS

Subtracting the second displayed equation from the first displayed equation produces
equation (5.29).

A function φ for which ∇2φ = 0 is said to be a harmonic function. The differen-
tial equation is referred to as Laplace’s equation. Consider ∇2φ = 0 for φ defined on
a region V with boundary S. We may specify boundary conditions for φ on S. The
Dirichlet boundary conditions involve specifying the function values on the boundary,

∇2φ(x)= 0, x ∈ V

φ(x)= B(x), x ∈ S
(5.30)

for some specified function B whose domain is the surface S. The Neumann bound-
ary conditions involve specifying directional derivatives of the function values on the
boundary,

∇2φ(x)= 0, x ∈ V

n(x) ·∇φ(x)= B(x), x ∈ S
(5.31)

222 Chapter 5 Fluids and Gases

for some specified function B whose domain is the surface S. The vector n(x) is the
outer-pointing unit-length normal to the surface at the position x. Equations (5.30)
and (5.31) are referred to as boundary value problems. If V = IR3 (all of space), then
there are no boundary conditions.

For a known function f (x), Poisson’s equation is the differential equation ∇2φ =
−f . This is a generalization of Laplace’s equation and reduces to it when f = 0. When
defined on a region V with boundary S, we may set up boundary value problems. The
problem with Dirichlet boundary conditions is

∇2φ(x)=−f (x), x ∈ V

φ(x)= B(x), x ∈ S
(5.32)

for some specified function B whose domain is the surface S. The problem with
Neumann boundary conditions is,

∇2φ(x)=−f (x), x ∈ V

n(x) ·∇φ(x)= B(x), x ∈ S
(5.33)

for some specified function B whose domain is the surface S. If V = IR3, then there are
no boundary conditions. However, the integrals are defined on an unbounded region.
To hope for a solution to the equation, it is necessary to impose decay conditions on f .
The standard one is to require |f (x)| =O(1/r 2) for r = |x|. This is order notation
that means there is a constant K > 0 and a value r0 > 0 such that |f (x)| ≤ K /r 2 for
r ≥ r0. We also require that the solution and its derivative decay like φ = O(1/r) and
|∇φ| = O(1/r 2).

The solutions to Laplace’s equation and Poisson’s equation involve constructing
something called a Green’s function. The mathematics is advanced, so only a brief but
intuitive summary is presented here.

Given a linear differential operator L(x), a Green’s function is a solution G(x, y) to

L(x)G(x, y)=−δ(x− y) (5.34)

where δ(z) is the Dirac delta function defined by

δ(z)=
{

0, z �= 0
∞, z = 0

Technically, δ is not a function; rather, it is a distribution with the substitution property

∫
V

φ(y)δ(x− y) dV =
{

φ(x), x ∈ V
0, x �∈ V

(5.35)

where dV is the infinitesimal with respect to the y-variables; that is, if y= (y0, y1, y2),
then dV = dy0 dy1 dy2. This is where the mathematics gets deep. Distributions are

5.1 Vector Calculus 223

part of the topic of measure theory and are not typically covered in detail until you
have a graduate-level course on the topic.

A note on sign conventions: Physicists tend to use equation (5.34) to define a
Green’s function. Mathematicians tend to have +δ on the right-hand side of this
equation. When reading about Green’s functions, you need to be careful about which
convention is used. For example, at the time of this writing, the Wikipedia page on
Green’s function mentions the varying sign conventions, chooses the mathematician’s
version for constructing a Green’s function for the Laplace operator, and then uses the
incorrect sign for the solution to Poisson’s equation.

A Green’s function for the Laplace operator∇2 is a solution G(x, y) to∇2G(x, y)=
−δ(x− y). In Green’s theorem of equation (5.29), set u = φ and v = G; then

∫
V

(
φ(y)δ(x− y)−G(x, y)∇2φ(y)

)
dV =

∫
S

(
φ(y)∇G(x, y)−G(x, y)∇φ(y)

) · dS

where it is understood that x is a free variable so that in the integrands, ∇ and ∇2

are applied as y-derivatives. For Poisson’s equation and using equation (5.35) on the
left-hand side, the previously displayed equation is rewritten as

φ(x)=
∫
V

G(x, y)f (y) dV +
∫
S

(
G(x, y)∇φ(y)−φ(y)∇G(x, y)

) · dS

The solution to Poisson’s equation has a volume integral dependent on f and a sur-
face integral depending on φ and ∇φ. We have some latitude in selecting the Green’s
function. For the Dirichlet boundary value problem, G is chosen so that G(x, y)= 0
when either x or y is a surface point. The solution is

φ(x)=
∫
V

G(x, y)f (y) dV −
∫
S

B(y)∇G(x, y) · n(y) dS (5.36)

where B is the boundary function of equation (5.32). For the Neumann boundary
value problem, G is chosen so that ∇G(x, y) · n(y)= 0 when either x or y is a surface
point. The solution is

φ(x)=
∫
V

G(x, y)f (y) dV +
∫
S

G(x, y)B(y) dS (5.37)

where B is the boundary function of equation (5.33). Constructing Green’s functions
for an arbitrary V is difficult, and cannot usually be done in closed form. Numerical
methods are used instead to solve the boundary value problems.

When V = IR3, the Green’s function is G(x, y)= 1/|x− y|. The decay conditions
on φ and ∇φ guarantee that the surface integrals in Equations (5.36) and (5.37) tend
to zero as S becomes unbounded (think of S as a sphere of radius r). The solution to

224 Chapter 5 Fluids and Gases

Poisson’s equation is then

φ(x)=
∫

IR3

f (y)

|x− y| dV (5.38)

The decay condition on |f | guarantees that the integral exists.
Equation (5.38) also produces the solution to Laplace’s equation on IR3, because

f = 0. Specifically, the solution is φ = 0. You might have observed that ∇2c = 0 for
any constant c , so how can φ = 0 be the unique solution? If c �= 0, the decay condi-
tions are no longer satisfied – the solution must decay to zero for large |x|, which a
nonzero constant does not do.

5.1.8 Vector Field Decomposition

This section contains some results to decomposing vector fields into other vector fields
that have some physical significance. The end result will be to present the fundamental
theorem of vector calculus, which gives us a decomposition of a vector field into a sum
of three vector fields – a gradient of a scalar function, a curl of a vector function, and
a harmonic vector function.

Scalar Potential

Consider a vector field defined by f =∇φ for some scalar function φ. The vector field
is said to be generated by the scalar potential φ. By Exercise 5.17, f has the property
that∇ × f=∇ × (∇φ)= 0. In words, a scalar potential–generated vector field has no
curl; the vector field is said to be curl free.

Suppose that we are given a vector field f for which ∇ × f= 0. Can we construct
a scalar potential φ that generates f ? The answer is “yes,” although not uniquely. Let
f = (f0, f1, f2) so that ∇ × f= 0 implies

∂f2
∂y
= ∂f1

∂z
,

∂f0
∂z
= ∂f2

∂x
,

∂f1
∂x
= ∂f0

∂y
(5.39)

Let us construct a function φ for which

∂φ

∂x
= f0,

∂φ

∂y
= f1,

∂φ

∂z
= f2

Integrating the x-derivative equation,

φ(x, y , z)=
x∫

x0

f0(x̄ , y , z) dx̄ +A(y , z)

5.1 Vector Calculus 225

for an arbitrary constant x0 and a function A(y , z) that needs to be determined.
Differentiate with respect to y to obtain

∂φ(x, y , z)

∂y
= ∂

∂y

x∫
x0

f0(x̄, y , z) dx̄ + ∂A(y , z)

∂y

=
x∫

x0

∂f0(x̄, y , z)

∂y
dx̄ + ∂A(y , z)

∂y

=
x∫

x0

∂f1(x̄, y , z)

∂x
dx̄ + ∂A(y , z)

∂y
by equation (5.39)

= f1(x, y , z)− f1(x0, y , z)+ ∂A(y , z)

∂y

= f1(x, y , z) by requirement

To satisfy the requirement that ∂φ/∂ = f1, we need ∂A/∂y = f1(x0, y , z). Integrating
with respect to y leads to

A(y , z) =
y∫

y0

f1(x0, ȳ , z) dȳ +B(z)

for an arbitrary constant y0 and a function B(z) that needs to be determined. Now we
have

φ(x, y , z)=
x∫

x0

f0(x̄ , y , z) dx̄ +
y∫

y0

f1(x0, ȳ , z) dȳ +B(z)

Differentiate with respect to z to obtain

∂φ(x, y , z)

∂z
= ∂

∂z

x∫
x0

f0(x̄ , y , z) dx̄ + ∂

∂z

y∫
y0

f1(x0, ȳ , z) dȳ +B′(z)

=
x∫

x0

∂f0(x̄, y , z)

∂z
dx̄ +

y∫
y0

∂f1(x0, ȳ , z)

∂z
dȳ +B′(z)

=
x∫

x0

∂f2(x̄, y , z)

∂x
dx̄ +

y∫
y0

∂f2(x0, ȳ , z)

∂y
dȳ +B′(z) by equation (5.39)

= f2(x, y , z)− f2(x0, y0, z)+B′(z)

= f2(x, y , z) by requirement

226 Chapter 5 Fluids and Gases

To satisfy the requirement that ∂φ/∂z = f2, we need B′(z)= f2(x0, y0, z). Integrating
with respect to z leads to

B(z)=
z∫

z0

f2(x0, y0, z̄) dz̄ +C

for an arbitrary constant y0 and an arbitrary constant C . Finally, we have

φ(x, y , z)=
x∫

x0

f0(x̄ , y , z) dx̄ +
y∫

y0

f1(x0, ȳ , z) dȳ +
z∫

z0

f2(x0, y0, z̄) dz̄ +C (5.40)

and by construction, f = ∇φ.

Vector Field Uniquely Determined by Divergence and Curl

Suppose you have a vector field f defined in a region V with boundary S. The diver-
gence is ∇ · f, the curl is ∇ × f, and the boundary components are f · n where n is
the vector field of outer-pointing normals to S. Can there be another vector field g
with the same divergence, curl, and boundary components? The answer is “no”. If
there were such a g for which ∇ · g= ∇ · f, ∇ × g=∇ × f, and g · n= f · n on the
boundary, then define the difference h= f− g. Consequently, ∇ · h= 0, ∇ × h= 0,
and h · n= 0 on the boundary of S.

We had just argued that a vector field h for which ∇ × h= 0 has a scalar
potential φ. Thus,∫

V

|h|2 dV =
∫
V

φ∇ · h+h ·∇φ dV because ∇ · h = 0 and ∇φ = h

=
∫
V

∇ · (φh) dV

=
∫
S

φh · dS by the divergence theorem

=
∫
S

φh · n dS

= 0 because h · n= 0

The only way the integral of a nonnegative function can be zero is if the integrand is
zero, |h|2 = 0, which implies that h= 0. Consequently, g= f, so the divergence, curl,
and boundary components of a vector field on V uniquely determine the vector field.

If V = IR3 (all of space), then there is no boundary S. In this case, f is uniquely
determined by its divergence and curl as long as the infinite integrals involving f are

5.1 Vector Calculus 227

valid. It is sufficient to require that |f| = O(1/r 2), which is order notation that trans-
lates to: There is a constant K > 0 and an r0 > 0 such that |f| ≤ K /r 2 for r ≥ r0. In
the vernacular, |f| tends to zero like 1/r 2 as r →∞.

In the construction of the previous paragraph, let V (r) be a solid sphere of radius
r centered at the origin. Its boundary is the sphere S(r). We have∫

V (r)

|h|2 dV =
∫

S(r)

φh · n dS

Unlike the previous proof, the right-hand side is not zero because we have made no
assumptions about the boundary components on S(r). Using spherical coordinates
for the boundary, x= r(cosθ sinφ, sinθ sinφ, cosφ), the element of surface area is
dS = r 2 sinφ dθ dφ. For r sufficiently large,∫

V (r)

|h|2 dV =
∫

S(r)

φh · n r 2 sinφ dθ dφ

=

∣∣∣∣∣∣∣
∫

S(r)

φh · n r 2 sinφ dθ dφ

∣∣∣∣∣∣∣
≤
∫

S(r)

|φh · n| r 2 sinφ dθ dφ

≤
∫

S(r)

|φ||h| r 2 sinφ dθ dφ

≤
∫

S(r)

(K1/r)(K2/r 2) r 2 sinφ dθ dφ

= K3/r 2

I have used the fact that |h| = |∇φ| is O(1/r 2) which implies the antiderivative
φ = O(1/r). Taking the limit as r becomes unbounded,

0≤
∫

IR3

|h|2 dV = lim
r→∞

∫
V (r)

|h|2 dV ≤ lim
r→∞(K3/r 2)= 0

which forces the infinite integral to be zero and, consequently, h = 0.

Vector Potential

Consider a vector field defined by f= ∇ × g for some vector field g. The vector field f
is said to be generated by the vector potential g. By Exercise 5.18, f has the property

228 Chapter 5 Fluids and Gases

∇ · f =∇ ·∇ × g= 0. In words, a vector potential–generated vector field has no
divergence; the vector field is said to be divergence free.

Suppose that we are given a vector field f for which ∇ · f= 0. Can we construct a
vector potential g that generates f ? The answer is “yes,” although not uniquely.

Let f = (f0, f1, f2) be a vector field for which ∇ · f = 0. Let g= (g0, g1, g2) be an
as-yet-unknown vector field for which we want f= ∇ × g; then

(f0, f1, f2)=
(

∂g2

∂y
− ∂g1

∂z
,
∂g0

∂z
− ∂g2

∂x
,
∂g1

∂x
− ∂g0

∂y

)

To simplify matters, let us try to construct a vector field for which g0 = 0. The previous
equation becomes

(f0, f1, f2)=
(

∂g2

∂y
− ∂g1

∂z
,−∂g2

∂x
,
∂g1

∂x

)

We may integrate the last two components to obtain

g1(x, y , z) =
x∫

x0

f2(x, y , z) dx +A(y , z)

g2(x, y , z) = −
x∫

x0

f1(x, y , z) dx +B(y , z)

(5.41)

for any choice of constant x0 and for some as-yet-unknown functions A(y , z) and
B(y , z).

In equation (5.41), differentiate g1 with respect to z and g2 with respect to y and
combine to obtain

∂g2

∂y
− ∂g1

∂z
= −

x∫
x0

(
∂f1
∂y
+ ∂f2

∂z

)
dx + ∂B

∂y
− ∂A

∂z

=
x∫

x0

∂f0
∂x

dx + ∂B

∂y
− ∂A

∂z

= f0(x, y , z)− f0(x0, y , z)+ ∂B

∂y
− ∂A

∂z

(5.42)

where the second equality uses∇ · f = 0, namely, by solving for ∂f0/∂x =−∂f1/∂y −
∂f2/∂z . Equation (5.41) also states that we want f0(x, y , z)= ∂g2/∂y − ∂g1/∂z , so in
equation (5.42) we need

−f0(x0, y , z)+ ∂B

∂y
− ∂A

∂z
= 0

5.1 Vector Calculus 229

It is sufficient to choose A = 0 and B = ∫ y
y0

f0(x0, y , z) dy for any choice of constant y0.

Thus,

g=
⎛
⎜⎝0,

x∫
x0

f2(x, y , z) dx,−
x∫

x0

f1(x, y , z) dx +
y∫

y0

f0(x0, y , z) dy

⎞
⎟⎠

is a vector function for which f= ∇ × g. The choice for g is not unique. Given any
continuously differentiable function ψ(x), the function g+∇ψ also is a solution; see
Exercise 5.17. Solutions are

g=
⎛
⎜⎝0,

x∫
x0

f2(x, y , z) dx,−
x∫

x0

f1(x, y , z) dx +
y∫

y0

f0(x0, y , z) dy

⎞
⎟⎠+∇ψ (5.43)

for an arbitrary differentiable function ψ .

Fundamental Theorem of Vector Calculus

The fundamental theorem of vector calculus, also known as the Helmholtz decomposi-
tion, says that any twice continuously differentiable vector field f defined on all of IR3,
and for which |f| = O(1/r 2), can be decomposed into a gradient and a curl,

f=−∇φ+∇ × g (5.44)

where φ is a scalar potential and g is a vector potential. The scalar potential is
not unique, because ∇(φ + c)= ∇φ for any constant c . The vector potential is not
unique, because ∇ × (g+∇ψ)= ∇ × g for any differentiable function ψ . However,
the decomposition of f is unique by our previous results that show f is uniquely
determined by its divergence and curl.

The construction is as follows. Let p be a solution to Poisson’s equation defined
on IR3; that is, p is a solution to ∇2p=−f. Equation (5.38) is the solution per
component, so

p=
∫

IR3

f(y)

|x− y| dV

Exercise 5.14 states that

∇ × (∇ × p)= ∇(∇ · p)−∇2p

in which case

f=−∇2p=−∇(∇ · p)+∇ × (∇× p)=−∇φ+∇ × g

230 Chapter 5 Fluids and Gases

where φ = ∇ · p and g= ∇ × p. Observe that this decomposition implies

∇2φ =∇2(∇ · p)=−∇ · f, ∇2g =∇2(∇ × p)=−∇ × f

where

∇ · p=
∫

IR3

f(y)∇ · 1

|x− y| dV , ∇ × p=
∫

IR3

f(y)∇ × 1

|x− y| dV

In the integrands, ∇ is applied as x-derivatives, whereas y are the variables of
integration.

5.2 Strain and Stress

This section provides the derivations for the strain tensor, the deformation tensor, and
the stress tensor for a fluid. The development depends on analyzing the structure of
the velocity field of a fluid locally at each point.

5.2.1 Strain Tensor

Let p be a point in the volume of fluid with velocity v(p). We will analyze points
nearby, say p+ x, where x is a small displacement. The velocity at such a point
is v(p+ x). We may use a Taylor polynomial to approximate the velocity at the
neighboring points.

For a small displacement x, define

g(h)= v(p+ hu)

where u is a unit-length vector in the direction of the displacement x. The derivative
of g is computed using the chain rule,

g′(h)= (u ·∇)v(p+ hu)

From calculus, we may write

g(h)= g(0)+ hg′(0)+ ε

where ε is an error that is on the order of h2 for small h. The function g(h) is
approximated by the Taylor polynomial of degree 1, g(h)

.= g(0)+ hg′(0).
In terms of the velocity,

v(p+ hu)= v(p)+ h((u ·∇)v)(p)+ ε

5.2 Strain and Stress 231

The parentheses around the expression (u ·∇)v indicates that the derivative is com-
puted first before evaluating the result second by substituting in p. Setting x= hu, we
have

v(p+ x)= v(p)+ ((x ·∇)v)(p)+ ε

Define

w= ((x ·∇)v)(p)= x0vx0(p)+ x1vx1 (p)+ x2vx2 (p) (5.45)

The term vxi (p) is the first-order partial derivative of v with respect to xi which is
computed first and then evaluated at p, which means the end results are all constants
with respect to the xi . It is easily shown that

(x ·∇)w=w (5.46)

and

∇ ×w= (∇ × v)(p) (5.47)

with the same convention that the curl of v is computed first before the evaluation
at p. Also,

∇ (x · w) = x× (∇ ×w)+w× (∇ × x)+ (x ·∇)w+ (w ·∇)x
using equation (5.21)

= x× (∇ ×w)+ 0+ (x ·∇)w+w
using Equations (5.6) and (5.7)

= x× ((∇ × v)(p))+ 2w
using Equations (5.46) and (5.47)

(5.48)

We may solve this for w and obtain the velocity representation

v(p+ x)= v(p)+ 1

2
((∇ × v)(p))× x+ 1

2
∇ (x · w)+ ε (5.49)

Compute the dot product of x and w using equation (5.45) to obtain

x · w= xT(∇ ⊗ v)x (5.50)

where M =∇ ⊗ v is the matrix of first-order partial derivatives of v. The symbol ⊗
denotes a tensor product. If you are familiar with tensor index notation, this matrix
has entry vr ,c in row r and column c . It is the partial derivative of component r of
v with respect to the variable xc . Equation (5.50) may look like a quadratic form,
but technically it is not because quadratic forms xTM x require M to be a symmetric
matrix. The matrix ∇ ⊗ v is not symmetric. However, we can easily fix the problem
by noticing that a matrix A may always be written as the sum of a symmetric matrix
and a skew-symmetric matrix,

A = A+AT

2
+ A−AT

2

232 Chapter 5 Fluids and Gases

where A+AT is symmetric and A−AT is skew-symmetric. In such a factorization,
notice that

xTAx = xT

(
A+AT

2

)
x

because xT(A−AT)x= 0.

Exercise
5.16

Prove that xT(A−AT)x= 0 for a 3× 3 matrix A and for any 3× 1 vector x. ■

Therefore, equation (5.50) may be written as the quadratic form

x · w= xTM x= xT

(∇⊗ v+ (∇ ⊗ v)T

2

)
x= xTEx (5.51)

where the last equality defines the symmetric matrix E . The gradient is

∇ (x · w)= 2Ex (5.52)

Also, define

α = 1

2
((∇ × v)(p)) (5.53)

Substitute equations (5.52) and (5.53) into equation (5.49) to obtain

v(p+ x)= v(p)+α× x+Ex+ ε (5.54)

The matrix E is symmetric, so it may be decomposed using an eigensystem solver
into E = RE ′RT, where R is a rotation matrix and E ′ =Diag(e0, e1, e2) is a diagonal
matrix. Define y= RTx, in which case x= Ry. This is effectively a rotation of the
x-coordinate system into the y-coordinate system. Equation (5.54) now reduces to

v(p+Ry)= v(p)+R(β × y)+E ′y+ ε (5.55)

where α = Rβ and where I have used the vector identity mentioned in Exercise 2.11.
In equation (5.55), treating the error term ε as negligible (displacements y have

very small length), the velocity at position p+Ry consists of three terms:

1. v(p) is a velocity that represents a linear translation at p.

2. α× x= R(β × y) is a velocity that corresponds to rotation about a line with
direction α and containing p; see equation (2.35).

3. E ′y= e0y0+ e1y1+ e2y2 is a velocity that represents stretching of the volume at p.
This velocity is referred to as a pure strain.

Consider a point p in the fluid. Over a small time period �t , the point moves to
p+�t v(p). A neighboring point is p+ x for a small displacement x. This point also

5.2 Strain and Stress 233

moves over the time period to p+ x+�t v(p+ x). The displacement between the
two moved points is

y= x+�t [v(p+ x− v(p)]= x+�t [α × x+Ex+ ε]

The term x is a displacement and the term �t (α× x) corresponds to a rotation,
both rigid motions. The term �t (Ex) corresponds to a strain. We constructed the
matrix

E = ∇ ⊗ v+ (∇ ⊗ v)T

2
(5.56)

see equation (5.51). E is referred to as the (infinitesimal) strain tensor. Sometimes it
is called the deformation tensor since its eigenvalues and eigenvectors give you an idea
of how the fluid deforms at a specified position.

5.2.2 Stress Tensor

Any strain within the fluid must be caused by forces called stresses. Consider a small
amount of fluid that lies in a region V with boundary S. We may first consider such
forces along coordinate-axis directions, called stress vectors,

T(0) = (σ00,σ01,σ02), T(1) = (σ10 ,σ11,σ12), T(2) = (σ20,σ21,σ22) (5.57)

The values σ00, σ11, σ22 are called normal stresses and the other values are called shear
stresses. Imagine T(0) acting on a fluid surface that is planar with normal (1, 0, 0). The
component σ00 is the stress in the normal direction, which is why it is called a normal
stress. The components σ01 and σ02 act within the plane perpendicular to the normal,
so they have a shearing nature about them. The nine values of equation (5.57) may
be written as a tensor, as indicated by the matrix

σ =
⎡
⎣σ00 σ01 σ02

σ10 σ11 σ12

σ20 σ21 σ22

⎤
⎦ (5.58)

The stress vector in an arbitrary unit-length direction n= (n0, n1, n2) is a combi-
nation of the coordinate-axis stress vectors. The argument is based on considering a
tetrahedron of small volume that contains fluid. One vertex of the tetrahedron is at
the origin. The slant face has outer-pointing normal n and is a distance h > 0 from
the origin. The equation of the plane is n · x= h. The other vertices of the tetrahedron
must be (h/n0, 0, 0)/3, (0, h/n1, 0)/3, and (0, 0, h/n2)/3.

The area of the slant face is A = h2/(18n0n1n2), the area of the face in the x1x2-
plane is A0 = h2/(18n1n2), the area of the face in the x0x2-plane is A1 = h2/(18n0n2),
and the area of the face in the x0x1-plane is A2 = h2/(18n0n1). Observe that Ai =
ni A for all i. The height of the tetrahedron is h, measured from the origin to the
slant face. The volume of the tetrahedron is one-third the area of the base (slant face)

234 Chapter 5 Fluids and Gases

times the height, V = h3/(18n0n1n2). The mass of the fluid is m = ρV , where ρ is
the (constant) density of the fluid.

The fluid adjacent to the slant face exerts a force ma, where m is the mass of the
fluid in the tetrahedron and a is the acceleration of the fluid toward the slant face. The
coordinate-axis stress vectors also induce forces on their corresponding faces, T(i)Ai

for all i. The stress vector for the slant face is denoted T(n) and induces a force T(n)A
on the slant face. In equilibrium, the forces on the tetrahedron must balance,

T(n)A = ρh3

18n0n1n2
a+

2∑
i=0

T(i)Ai

Dividing by A and using Ai = niA leads to

T(n) = ρh a+
2∑

i=0

T(i)ni

This is true no matter how small the tetrahedron, so it is true in the limit as h
approaches zero. This leaves us with

T(n) =
2∑

i=0

ni T(i) = nTσ (5.59)

where σ is the stress tensor of equation (5.58).
Consider a small region V with boundary S. The surface forces are T(n) and the

body forces per unit volume are F. In equilibrium, the resultant force must be zero,
which can be summarized componentwise. In this construction, I use the tensor index
notation that a repeated index in a term implies a summation over that term. For
example, aijbj indicates to sum over the j index, leaving i as a free index. I also use the
convention that for a 1-index tensor ai that depends on position, the 2-index tensor
ai ,j represents the derivatives of the ai with respect to the variable xj . You can have any
number of indices before the comma (tensor component indices) and any number of
indices after the comma (positional indices).

0 =
∫
S

T(n)
i dS+

∫
V

Fi dV

=
∫
S

σji nj dS+
∫
V

Fi dV

=
∫
V

σji ,j dV +
∫
V

Fi dV

=
∫ (

σji ,j + Fi
)

dV

5.2 Strain and Stress 235

The second equality uses the definition of the slant stress vector in equation (5.59).
The term σji nj is summed over j with free index i. The third equality is an application
of the divergence theorem. The term σji ,j indicates that you differentiate each entry of
the stress tensor σji with respect to xj and then sum over j. The index i is free. The last
equality lists an integral whose value is zero no matter how you choose the region V .
The only way for this to happen is when the integrand is identically zero,

σji ,j + Fi = 0 (5.60)

Similarly, equilibrium requires that the resultant moment about an arbitrary
point is zero. In this construction I use a tensor notation for the cross product of vec-
tors. The permutation tensor is the triply indexed quantity eijk and has 27 elements.
They are e123 = e312 = e231 = 1, e132 = e321 = e213 =−1, and all other elements are
zero. If a = [ai] and b= [bi], the cross product is written as a× b= [eijkajbk], where
the repeated indices mean sum over the j index and sum over the k index. The index
i is free. In equilibrium,

0 =
∫
S

x×T dS+
∫
V

x× F dV

=
∫
S

eijkxj T
(n)

k dS+
∫
V

eijkxjFk dV

=
∫
S

eijkxjσ�k n� dS+
∫
V

eijkxjFk dV

=
∫
V

(
eijkxjσ�k

)
,� dV +

∫
V

eijkxjFk dV

=
∫
V

eijk
(
xj,�σ�k + xjσ�k,j

)
dV +

∫
V

eijkxj Fk dV

=
∫
V

eijk
[
δj�σ�k + xj (σ�k,�+ Fk)

]
dV

=
∫
V

eijk
(
δj�σ�k

)
dV

=
∫
V

eijkσjk dV

The second equality defines what T actually means, and the indexed quantities are
used in the subsequent steps. The third equality uses the definition of the slant stress
vector in equation (5.59). The fourth equality is an application of the divergence
theorem. The parenthesized expression has a subscript with a comma followed by
index �. This means that the parenthesized expression, which is a tensor, must have
its components differentiated with respect to x�. The fifth equality is an application

236 Chapter 5 Fluids and Gases

of the product rule for differentiation. The sixth equality has xj,� = δj�; the right-
hand side is the identity matrix: δ00 = δ11 = δ22 = 1 and all other entries zero. The
right-hand side of the sixth equality also groups together the terms involving xj .
The seventh equality uses the equilibrium of forces condition in equation (5.60).
The eighth equality uses the substitution property of δij ; that is, in the expression
δj�σ�k , anywhere there is an �-index, substitute it with j and then throw away the
δ-term.

In summary, we have
∫

V eijkσjk dV = 0 no matter how we choose V . The only
way this can happen is when the integrand is identically zero, eijkσjk , in which case

(0, 0, 0)= (e0jkσjk , e1jkσjk , e2jkσjk)= (σ12 −σ21,σ20−σ02,σ01−σ10) (5.61)

which implies σ01 = σ10, σ02 = σ20, and σ12 = σ21. Thus, the stress tensor σ is a
symmetric matrix.

5.2.3 The Relationship Between Strain and Stress

In the previous sections we constructed the strain tensor E and the stress tensor σ .
We had decomposed the strain tensor as E = RE ′RT, where R is a rotation matrix
and E ′ =Diag(e0, e1, e2) is a diagonal matrix. I make the assumption that the fluid is
isotropic ; that is, an infinitesimal cube whose axes are the principal directions of strain
(the column vectors of R) will deform only along those principal directions.

One of the consequences for isotropic fluids is that the stress tensor σ is simul-
taneously diagonalizable with E . That is, σ may be decomposed using an eigensolver
as σ = Rσ ′RT, where R is the same rotation matrix used to diagonalize E and where
σ ′ =Diag(s0, s1, s2) is a diagonal matrix. Thus, the principal directions are the same
for the strain and stress tensors. Empirical evidence shows that locally,

e0 = as0− b(s1 + s2)= (a+ b)s0 − b(s0+ s1 + s2)

e1 = as1− b(s0 + s2)= (a+ b)s1 − b(s0+ s1 + s2)

e2 = as2− b(s0 + s1)= (a+ b)s2 − b(s0+ s1 + s2)

(5.62)

for some (physical) constants a and b that depend on the fluid. Imagine an elastic
linear strand of fluid. When you pull on both ends of the strand, the tension pro-
duces an extension along the axis of the strand that is proportional to the strand. This
leads to the terms asi in equation (5.62). That same tension causes contractions in the
directions perpendicular to the axis of the strand. This leads to the terms of the form
b(si + sj).

Equation (5.62) may be written succinctly as

E ′ = (a+ b)σ ′ − bTrace(σ ′)I (5.63)

where I is the identity matrix and where Trace(A) is the sum of the diagonal entries of
a matrix A. Applying R to the left and RT to the right of these expressions, and using

5.3 Conservation Laws 237

E = RE ′RT and σ = Rσ ′RT,

E = (a+ b)σ − bTrace(σ)I (5.64)

where I used the identity Trace(RART)= Trace(A) for any rotation matrix R and any
matrix A. Both E = [Eij] and σ = [σij] are symmetric, so we need only work with the
upper triangular terms. Equation (5.64) leads to

E00 = aσ00 − bσ11− bσ22

E01 = (a + b)σ01

E02 = (a + b)σ02

E11 =−bσ00 + aσ11− bσ22

E12 = (a + b)σ12

E22 =−bσ00 − bσ11+ aσ22

Using ⎡
⎣ a −b −b
−b a −b
−b −b a

⎤
⎦
−1

= 1

(a − 2b)(a+ b)

⎡
⎣a− b b b

b a− b b
b b a− b

⎤
⎦

we may solve for the σij in terms of the Eij ,

σ00 = [(a − b)E00+ b(E11+E22)]/[(a − 2b)(a+ b)]

σ01 = E01/(a+ b)

σ02 = E02/(a+ b)

σ11 = [(a − b)E11+ b(E00+E22)]/[(a − 2b)(a+ b)]

σ12 = E12/(a+ b)

σ22 = [(a − b)E22+ b(E00+E11)]/[(a − 2b)(a+ b)]

In matrix form this is

σ = 1

a+ b
E + b

(a − 2b)(a+ b)
Trace(E)I (5.65)

5.3 Conservation Laws

In physics, conservation laws are of utmost importance. They are typically formulated
in terms of partial differential equations. We have already been exposed to these laws.
For example, Section 2.5.1 appeals to the conservation of linear momentum to show
that the linear momentum is constant for a system of objects with zero net external
forces. Similarly, Section 2.5.2 appeals to the conservation of angular momentum.

238 Chapter 5 Fluids and Gases

Previous chapters made reference to conservation of energy. A summary of some basic
conservation laws is provided here. The outcome is a set of differential equations we
may use to model fluid flow.

5.3.1 Conservation of Mass

Consider a region V in three dimensions that contains a fluid. For the sake of argu-
ment, let the region have the topology of a solid sphere. Let the surface bounding V
be named S. The fluid has a density ρ(x, t) that varies with position x and with time t .
The total mass of the fluid is

M(t)=
∫
V

dm=
∫
V

ρ(x, t) dV (5.66)

where the infinitesimal element of mass is dm = ρdV with dV an infinitesimal ele-
ment of volume. The total mass varies with time because the density varies with time.
The rate of change of mass is the time derivative

dM

dt
= d

dt

∫
V

ρ dV =
∫
V

∂ρ

∂t
dV (5.67)

One way the mass of the fluid can change in the region V is that fluid may enter
or leave through the boundary S. The amount of change is

−
∫
S

ρv · n dS (5.68)

where v is the velocity of the mass particles as they enter or leave the boundary, n is
a unit-length normal to the boundary, and dS is an infinitesimal element of surface
area. At a boundary point, if v points outside the region, then v · n > 0, in which case
equation (5.68) is a negative contribution; that is, the mass is decreasing inside V . The
larger the magnitude of the velocity, the more the mass decreases. The larger the mass
density at that boundary point, the larger the magnitude of the negative contribution,
so the more the mass decreases. Similar intuition may be used for when v points inside
the region.

Another way the mass of the fluid can change is when matter is created or
destroyed within V . The creation of matter is due to a source and the destruction
of matter is due to a sink. Although we tend to think of sources and sink occurring
at single points, the creation and destruction may be allowed to occur in a contin-
uous manner, varying with space and time. Let the source-sink function be s(x, t),
which measures the amount of matter created or destroyed per unit volume at the

5.3 Conservation Laws 239

specified location and time. Matter is created when s > 0 and destroyed when s < 0.
The amount of change in mass due to the source–sink function is

∫
V

s(x, t) dV (5.69)

Consider a small subregion R ⊂ V with boundary B. The surface has a density
flux, κ∇ρ, at each position. The coefficient κ is a constant that depends on the fluid
and has units �2/t for length units � and time units t . Adding the density flux over
the surface gives us

∫
B

κ∇ρ · dS=
∫
B

κ∇ρ · n dS

The units of ρ are m/�3 for mass units m, the units of ∇ρ are m/�4, and the units of
dS are �2, so the integral has units m/t , which is the rate of change of mass through
the surface B due to the gradient of density. An application of the divergence theorem
converts the surface integral to a volume integral

∫
R

κ∇2ρ dV

which has the same units m/t . The mass flux per unit volume is

φ(R)=
∫

R κ∇2ρ dV∫
R dV

and is valid for any region R no matter how small. Thinking of this informally as
taking the limit of φ(R) as the volume of R goes to zero – R shrinks to a point x – we
obtain φ(x)= κ∇2ρ(x). In the large, we have

∫
V

κ∇2ρ dV (5.70)

as the contribution to the mass rate of change.
To motivate the idea of “shrinking to a point” with a formal argument, consider

the one-dimensional problem. Let f and g be continuous functions. For a specified x,
let g (y) be the average of a function f (y) over an interval [x, y]; that is,

g (y) =
∫ y

x f (ξ) dξ

y − x

240 Chapter 5 Fluids and Gases

Compute the following,

g (x) = limy→x g (y) by continuity of g

= limy→x

∫ y
x f (ξ) dξ

y − x
by definition of g

= limy→x

d
dy

∫ y
x f (ξ) dξ

d
dy (y − x)

by L’Hôpital’s rule

= limy→x
f (y)

1
numerator by fundamental theorem of calculus

= f (x) by continuity of f

Therefore, by “shrinking to a point,” g is just the integrand f .
The net change in the mass in V is represented by equation (5.67). It is also repre-

sented by the sum of the quantities in equations (5.68), (5.70), and (5.69). Thus, the
conservation of mass is stated mathematically as∫

V

∂ρ

∂t
dV =

∫
V

(
κ∇2ρ+ s

)
dV −

∫
S

ρv · n dS (5.71)

The divergence theorem may be applied to the boundary integral in equation (5.71),
after which we may collect all terms to the left-hand side of the equation to obtain

∫
V

(
∂ρ

∂t
+∇ · (ρv)− κ∇2ρ− s

)
dV = 0 (5.72)

This equation states that the integral on the left-hand side is zero for all time t . The
only way this can happen is when the integrand is zero for all time t . This leads us to
a partial differential equation that represents conservation of mass,

∂ρ

∂t
+∇ · (ρv)− κ∇2ρ− s = 0 (5.73)

Applying the product rule for the term involving divergence, we have

∂ρ

∂t
+ v ·∇p+ρ∇ · v− κ∇2ρ− s = 0 (5.74)

A fluid is said to be incompressible when the density is constant for all positions
and time, in which case ∂ρ/∂t = 0, ∇ρ = 0, and ∇2ρ = 0. Additionally, if there are
no sources or sinks, then s = 0. Equation (5.74) becomes

∇ · v= 0

5.3 Conservation Laws 241

that is, the divergence of the velocity vector field is zero. A flow line of the velocity
vector field is a curve for which the tangents are velocity vectors. If x(t) is the position
of a particle at time t , then the tangents are required to be

dx

dt
= v, t ≥ 0; x(0) = x0 (5.75)

The initial position is specified as x0. The divergence of the velocity vector field mea-
sures the rate of expansion (∇ · v > 0) or the rate of compression (∇ · v < 0) of the
flow lines. Figure 5.1 illustrates this.

For a fluid in region V without sources or sinks and without diffusion (κ = 0),
constant density is a sufficient condition for zero divergence. With variable density
and a velocity of zero divergence, equation (5.74) becomes

Dρ

Dt
= ∂ρ

∂t
+ v ·∇p = 0

where D/Dt = ∂/∂t + v ·∇ is the material derivative operator with respect to the
velocity. This equation states that when the velocity has zero divergence, the mate-
rial derivative of density is zero. What does a zero material derivative say about the
density itself? Define the function

f (t) = ρ(x(t), t)

y y

x

(a) (b)

x

v2

v2

v1

v1

v

v

Figure 5.1 The left image shows the vector field v= (x, y), which has a divergence ∇ · v= 2.
The flow lines are expanding at the indicated point (black dot), illustrated by flow
lines with directions v+ and v−. The right image shows the vector field v= (−x,−y),
which has a divergence ∇ · v=−2. The flow lines are compressing at the indicated
point (black dot).

242 Chapter 5 Fluids and Gases

for a specific flow line x(t), so f measures the density along the flow line. The
derivative is

f ′(t) = ∂ρ

∂t
+ x′(t) ·∇ρ, using the chain rule from calculus

= ∂ρ

∂t
+ v ·∇ρ, since x(t) is a flow line

= Dρ

Dt
, by definition of the material derivatives

= 0, the material derivative of density is zero

The derivative f ′(t) is zero for all time, so f (t) must be a constant. The implication is
that the density is constant along a flow line.

Certainly if the density is a constant, it is constant along all flow lines. On the other
hand, a zero material derivative says that density is constant along a flow line, but the
actual density value can vary among flow lines. For example, the flow line containing a
point x0 has constant density ρ0 = ρ(x0, 0)= ρ(x(t), t) for all time, where x(t) is the
flow line containing x0. The flow line containing a point x1 has constant density ρ1 =
ρ(x1, 0)= ρ(y(t), t) for all time where y(t) is the flow line containing x1. However,
the values ρ0 and ρ1 can be unequal.

The intuition for constant density along a flow line matches the intuition for a
velocity field of zero divergence. If the divergence of the velocity is negative, the flow
lines are being compressed into each other. Particles from the various flow lines are
being forced into the nearby flow lines due to the compression, which must cause the
density to increase. Similarly, if the divergence of the velocity is positive, the flow lines
are expanding away from each other. Particles from the various flow lines are free to
flow away from their current flow lines due to the expansion, which must cause the
density to decrease. A zero divergence means no expansion or compression, so the
density of the particles is unvarying along the flow lines.

5.3.2 Conservation of Momentum

Consider fluid in a region V with boundary S. The total linear momentum of the
fluid is

M=
∫
V

ρv dV

and the time derivative is

dM

dt
= d

dt

∫
V

ρv dV =
∫
V

∂(ρv)

∂t
dV (5.76)

In the discussion about conservation of mass, mass enters or leaves the bound-
ary S. The mass flux is shown in equation (5.68). The corresponding momentum

5.3 Conservation Laws 243

flux has a similar form, although it is vector-valued,

−
∫
S

(ρv)v · n dS =−
∫
S

(
ρvvT

)
n dS =−

∫
S

ρvivjnj dS (5.77)

where the right-hand side uses tensor index notation. The summation is over the
index j and i is a free index. An application of the divergence theorem leads to

−
∫
V

∇ · (ρvvT
)

dV =−
∫
V

(ρvi vj),j dV (5.78)

The left-hand side notation indicates that you apply the divergence to a 3-tuple by
applying it to each component of the 3-tuple. The right-hand side uses tensor index
notation. The parenthesized expression is a two-index tensor and is differentiated
with respect to xj , followed by summation over the j index. The index i is free. Observe
that

(ρvi vj), j = [(ρvj)vi],j = (ρvj)vi ,j + (ρvj),j vi = ρ(v ·∇)v+∇ · (ρv)v

The integral of equation (5.78) becomes

−
∫
V

ρ(v ·∇)v+∇ · (ρv)v dV (5.79)

Various forces act on the fluid. External forces such as gravity may act on the
fluid; call these f, a force per unit mass. Pressure on the boundary S is specified by the
function p. Stresses occur within the fluid, call them g, a force per unit volume.

The contribution due to external forces is∫
V

ρf dV (5.80)

where ρ is the density of the fluid.
The contribution from the pressure on the boundary is

−
∫
S

p dS=−
∫
S

pn dS =−
∫
V

∇p dV (5.81)

where the last equality is an application of the divergence theorem componentwise.
Specifically, let ei be the unit-length vector with a 1 in entry i and 0 in the other two
entries; then

∫
V ∂p/∂xi dV = ∫V ∇ · pei dV = ∫S pei · n dS = ∫S pni dS. The minus

sign in the equation indicates that a positive pressure is applied into the surface.
The contribution from the stresses is slightly more complicated to derive. Con-

sider a small region of fluid, call it R, with boundary B. The stress forces on the

244 Chapter 5 Fluids and Gases

boundary lead to a resultant force acting on the region of

g=
(∫

B T(0) · dS,
∫

B T(1) · dS,
∫

B T(2) · dS
)∫

R dR

where T(i) are the coordinate-axis stress vectors mentioned previously. The denom-
inator is the volume of R, because g is measured as force per unit volume. Applying
the divergence theorem, we have

g =
(∫

R σ00,0+σ01,1+σ02,2 dR,
∫

R σ10,0+σ11,1+σ12,2 dR,
∫

R σ20,0+σ21,1+σ22,2 dR
)∫

R dR

=
∫

R ∇ · σ dR∫
R dR

where ∇ · σ = σij,j using the tensor index and summation conventions. This result is
true no matter how we choose R. Shrinking R to a point, we have g= ∇ · σ . The total
contribution from g over all of V is ∫

V

∇ ·σ dV (5.82)

The sum of the external forces, including the momentum flux, satisfies the equa-
tion F= dM/dt . Combining equations (5.80), (5.81), (5.82), (5.79), and (5.76), we
have

0=
∫
V

(
∂(ρv)

∂t
+ρ(v ·∇)v+∇ · (ρv)v−ρf+∇p−∇ · σ

)
dV

This equation is true no matter the choice of V . The only way this can happen is when
the integrand is zero, which leads us to the Navier–Stokes equation,

∂(ρv)

∂t
+ρ(v ·∇)v+∇ · (ρv)v = ρf−∇p+∇ · σ (5.83)

Applying the product rule to ∂(ρv)/∂t and grouping terms, we have

ρ

(
∂v

∂t
+ (v ·∇)v

)
+
(

∂ρ

∂t
+∇ · (ρv)

)
v= ρf−∇p+∇ · σ

The standard assumption in derivations of the Navier–Stokes equations is that the
system has no density sources or sinks and no density diffusion, in which case
equation (5.73) is used with s = 0 and κ = 0,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= ρf−∇p+∇ · σ

5.3 Conservation Laws 245

If you plan on including density sources or sinks and density diffusion, you must use
instead the equation

ρ

(
∂v

∂t
+ (v ·∇)v

)
+ (κ∇2ρ + s

)
v= ρf−∇p+∇ · σ (5.84)

We have some additional knowledge of the stress tensor σ . Equation (5.65) has
a relationship between the strain and stress tensors, but in the presence of a viscous
fluid, the frictional forces lead to a similar relationship but with dynamic viscosity
constant μ and a yet-to-be-determined constant μ′,

σ = 2μE +μ′Trace(E)I

The trace of the stress tensor is an invariant for such fluids and must be zero in the
static case, so

0= Trace(σ)= (2μ+ 3μ′)Trace(E)

It is sufficient to choose μ′ = −2μ/3 for the trace to be zero. Also, from the definition
of E note that Trace(E)= ∇ · v. Therefore,

σ = 2μ

(
E − ∇ · v

3
I

)

Recall that 2E = ∇ ⊗ v+ (∇ ⊗ v)T, ∇ ⊗ v= vi ,j in tensor index notation, where
v= (v0, v1, v2), and ∇ · v= vk,k . Consequently,

σij = μ

(
vi ,j + vj,i − 2vk,k

3
δij

)

The divergence of stress, ∇ · σ , in tensor index notation is

σij,j = μ

(
vi ,jj + vj,ij − 2vk,kj

3
δij

)

= μ

(
vi ,jj + vj,ij − 2vk,ki

3

)

= μ

(
vi ,jj + vj,ji − 2vj,ji

3

)

= μ
(

vi ,jj + vj,ji

3

)
The second equality uses the substitution property of the δ tensor. The third equality
just renames the summation index k to j and switches the order of differentiation
(valid for functions that are twice continuously differentiable). Switching back to
vector form, we have

∇ · σ = μ

(
∇2v+ 1

3
∇ (∇ · v)

)
(5.85)

246 Chapter 5 Fluids and Gases

Equation (5.84) is now

ρ

(
∂v

∂t
+ (v ·∇)v

)
+ (κ∇2ρ+ s

)
v= ρf−∇p+μ

(
∇2v+ 1

3
∇ (∇ · v)

)
(5.86)

5.4 A Simplified Model for Fluid Flow

In summary, the equations for conservation of mass and momentum from the pre-
vious section are listed next, where the left-hand sides are the material derivatives of
density ρ and velocity v,

∂ρ

∂t
+ (v ·∇)ρ = κ∇2ρ+ s −ρ∇ · v

and

∂v

∂t
+ (v ·∇)v = f− 1

ρ
∇p+ μ

ρ

(
∇2v+ 1

3
∇ (∇ · v)

)
− 1

ρ
(κ∇2ρ+ s)v

A few more assumptions about the fluid allows us to simplify the equations. Let us
assume that the fluid is incompressible, so ∇ · v= 0. The equations are then

∂ρ

∂t
+ (v ·∇)ρ = κ∇2ρ+ s

∂v

∂t
+ (v ·∇)v= f− 1

ρ
∇p+ μ

ρ
∇2v− 1

ρ
(κ∇2ρ+ s)v

These equations almost look like those used in the paper [Sta03], which are

∂ρ

∂t
+ (v ·∇)ρ = κ∇2ρ + s

∂v

∂t
+ (v ·∇)v= ν∇2v+ f

(5.87)

The expression f− (s/ρ)v− (1/ρ)∇p is replaced by a single term, which is still
called f. You may think of this as having no pressure on the boundary of the fluid,
p = 0, but unfortunately it is not possible to think that κ = 0 and s = 0 in the velocity
equation. Any such assumptions for the velocity equation must then also be made for
the density equation. Effectively, the term (κ∇2ρ+ s)v/ρ is discarded, yet this term
involves the state of the system (density and velocity).

The paper also has ν = μ/ρ. The numerator is the dynamic viscosity, which is
a ratio of pressure exerted on the surface of the fluid in the lateral direction and the
change in velocity of the fluid as you move through it. The value ν is the kinematic vis-
cosity, which is the ratio of viscous force (dynamic viscosity) to inertial force (from the
fluid density). In the derivation of the stress tensor, μ was assumed to be a constant, so
ν is not a constant (varies with density). However, [Sta03] treats ν as a constant. This

5.5 Implementing the Simplified 2D Model 247

might be a reasonable assumption should the density be approximately a constant,
but the simulations show otherwise.

The goal of [Sta03] is to obtain visually convincing simulations, not ones that
are of high accuracy and match the actual physics models. For the purpose of fluid
dynamics in games, equation (5.87) is as good a model as any. The remaining sections
in this chapter are devoted to describing the algorithms in the paper.

5.5 Implementing the Simplified 2D Model

A numerical method is formulated for solving the density equation in equation (5.87).
This equation is a parabolic partial differential equation. To solve the equation for den-
sity ρ(x, t), we need to specify an initial condition ρ(x, t)= ρ0(x), where the function
ρ0 is chosen however you like – a nonnegative function for this application, because
ρ represents density. Our original region V of fluid is bounded with boundary S, so
we also need to specify boundary conditions, which are the values of ρ on S for all time
t ≥ 0. The two classical choices are Dirichlet conditions, where ρ(x, t) is specified for
all x ∈ S, or Neumann conditions, where n(x) ·∇ρ(x, t) for all x ∈ S and where n(x)

is the outer-pointing surface normal at x.
Solving the differential equation on a general region V requires finite element

methods, a way of decomposing the region to allow derivative approximations at vari-
ous points in the region. Typical is to approximate a 2D region by a triangle mesh and
a 3D region by a tetrahedron mesh. The approximations are computed at the vertices
of the mesh.

5.5.1 The Density Equation

To simplify our problem for games, V will be a solid rectangle in 2D, say, V =
{(x, y) : x ∈ [x0, x1], y ∈ [y0, y1]}. The velocity vector has components u(x, y , t) and
v(x, y , t). The differential equation and initial conditions are

ρt = κ
(
ρxx +ρyy

)− uρx − vρy + s, (x, y) ∈ [x0, x1]× [y0, y1], t ≥ 0

ρ(x, y , 0)= ρ0(x, y), (x, y) ∈ [x0, x1]× [y0, y1]
(5.88)

where the subscripts on ρ indicate partial derivatives with respect to the variables t ,
x, and y . The initial-value function ρ0 is specified by you.

The Dirichlet boundary conditions are

ρ(x0, y , t)= φ0(y , t), y ∈ [y0, y1], t ≥ 0
ρ(x1, y , t)= φ1(y , t), y ∈ [y0, y1], t ≥ 0
ρ(x, y0, t)=ψ0(x, t), x ∈ [x0, x1], t ≥ 0
ρ(x, y1, t)=ψ1(x, t), x ∈ [x0, x1], t ≥ 0

(5.89)

248 Chapter 5 Fluids and Gases

where the functions φ0, φ1, ψ0, and ψ1 are specified by you. For continuity on the
boundary at the corners, you must guarantee that φ0(y0, t)= ψ0(x0, t), φ1(y0, t)=
ψ0(x1, t), φ0(y1, t)= ψ1(x0, t), and φ1(y1, t)=ψ1(x1, t). For continuity with the ini-
tial conditions, you must guarantee that ρ0(x0, y)= φ0(y , 0), ρ0(x1, y)= φ1(y , 0),
ρ0(x, y0)=ψ0(x, 0), and ρ0(x, y1)= ψ1(x, 0).

The Neumann boundary conditions are

ρx(x0, y , t)= φ′0(y , t), y ∈ [y0, y1], t ≥ 0
ρx(x1, y , t)= φ′1(y , t), y ∈ [y0, y1], t ≥ 0
ρy(x, y0, t)= ψ ′0(x, t), x ∈ [x0, x1], t ≥ 0
ρy(x, y1, t)= ψ ′1(x, t), x ∈ [x0, x1], t ≥ 0

(5.90)

where the functions φ′0, φ′1, ψ ′0, and ψ ′1 are specified by you. The prime symbols
are part of the function names and are used solely to remind you that these func-
tions produce derivative values. For continuity on the boundary at the corners, you
must guarantee that φ′0(y0, t)= ψ ′0(x0, t), φ′1(y0, t)= ψ ′0(x1, t), φ′0(y1, t)=ψ ′1(x0, t),
and φ′1(y1, t)= ψ ′1(x1, t). For continuity with the initial conditions, assume that
the initial-value function is differentiable with partial derivatives ρ0,x = ∂ρ/∂x and
ρ0,y = ∂ρ/∂y . You must guarantee that ρ0,x(x0, y)= φ′0(y , 0), ρ0,x(x1, y)= φ′1(y , 0),
ρ0,y(x, y0)= ψ ′0(x, 0), and ρ0,y(x, y1)= ψ ′1(x, 0).

The rectangular region is decomposed into a rectangular lattice of points, say,
(x[i], y[j]) for 0≤ i ≤ imax and 0 ≤ j ≤ jmax. Each lattice cell is centered at (x[i], y[j])
and has dimensions �x = (x1 − x0)/imax and �y = (y1 − y0)/jmax. Thus, x[i] = x0 +
i�x and y[j] = y0+ j�y . Figure 5.2 shows a typical lattice.

Figure 5.2 A typical lattice of points, where imax = jmax = 5. The lattice cell centers are shown as
black dots. The interior cells have a white background. The boundary corner cells
have a dark gray background. The boundary edge–interior cells have a light gray
background.

5.5 Implementing the Simplified 2D Model 249

The time variable is also discretized by t [k]= k�t for k ≥ 0, where the time
step �t > 0 is specified by the user. The choice for the time step can affect the
numerical stability of the algorithm, so depending on how the differential equation is
numerically solved, you might have restrictions on the size of the time step.

The initial-value function is needed at the lattice points. We could precompute the
values and store them in a double array, but for simplicity the algorithm assumes that
ρ0(x, y) is available as a function that can be evaluated at (x[i], y[j]). Similarly, the
source–sink function s(x, y , t) is assumed to be available for evaluation at the lattice
points. It you were to store the source–sink values in a double array, you would have to
update that array for each time step because of the time dependence of that function.

If you were considering the density equation as the only one to solve, the veloc-
ity components u(x, y) and v(x, y) could also be evaluated by the algorithm using
function calls at the lattice points. However, the differential equations for den-
sity and velocity are generally coupled, so we will store estimated values of these
quantities at the lattice points. Specifically, we store ρk [j][i]

.= ρ(x[i], y[j], t [k]),
uk [j][i]

.= u(x[i], y[j], t [k]), and vk [j][i]
.= v(x[i], y[j], t [k]), obtained by using

finite-difference approximations in the differential equation. The choice of approxi-
mations is discussed later in this chapter. By using subscripts k , I mean that there is no
persistent storage in the time variable; that is, we will not have a triple array f [k][j][i]
for any of the state variables ρ, u, or v . The estimates will be stored in a two-buffer
system where the buffers represent state information for two consecutive time steps.
The numerical method will swap the buffers for each iteration of time.

5.5.2 The Diffusion Term

Consider the density equation that contains only the time derivative and the diffusion
term,

ρt = κ(ρxx +ρyy)

In fact, this is the model for diffusion of heat. When the (x, y) domain is the entire
xy-plane, the solution represents Gaussian blurring of the initial-value data when
thought of as an image.

The classical numerical method to estimating ρ uses a forward difference to
estimate the time derivative.

ρt(x, y , t)
.= ρ(x, y , t +�t)−ρ(x, y , t)

�t

and centered differences to estimate the spatial derivatives,

ρxx
.= ρ(x +�x , y , t)− 2ρ(x, y , t)+ρ(x −�x , y , t)

�2
x

250 Chapter 5 Fluids and Gases

and

ρyy
.= ρ(x, y +�y , t)− 2ρ(x, y , t)+ρ(x, y −�y , t)

�2
y

Let ρ
(k)
i ,j = ρ(x[i], y[j], t [k]). Substituting the finite differences into the differential

equation, we have the approximation

ρ
(k+1)
i ,j −ρ

(k)
i ,j

�t
= κ

⎛
⎝ρ

(k)
i+1,j − 2ρ

(k)
i ,j +ρ

(k)
i−1,j

�2
x

+
ρ

(k)
i ,j+1− 2ρ

(k)
i ,j +ρ

(k)
i ,j−1

�2
y

⎞
⎠

or

ρ
(k+1)
i ,j = ρ

(k)
i ,j +λx

(
ρ

(k)
i+1,j − 2ρ

(k)
i ,j +ρ

(k)
i−1,j

)
+λy

(
ρ

(k)
i ,j+1− 2ρ

(k)
i ,j +ρ

(k)
i ,j−1

)
(5.91)

where λx = κ�t /�
2
x and λy = κ�t /�

2
x . The density at time step k + 1 for lattice

cell (i, j) depends on the density at time step k at lattice cell (i, j) and at the four
neighboring cells (i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1).

The algorithm starts with the initial values ρ
(0)
i ,j = ρ0(x[i], y[j]) for 0≤ i ≤ imax

and 0 ≤ j ≤ jmax. At time zero, the boundary values at i = 0, i = imax, j = 0, and jmax

must match the initial values. The first iteration of the algorithm computes the update
of equation (5.91) for the interior lattice cells, after which it fills in the boundary
lattice cells by evaluating the boundary-value functions and either assigning them
to those cells (Dirichlet boundary conditions) or determining them from derivatives
(Neumann boundary conditions) also using finite difference estimates. Subsequent
iterations duplicate the process. The pseudocode is presented next.

Much of the differential equation solver code can be shared when updating density
or when updating the velocity components. The following pseudocode supports the
sharing.

enum BoundaryType = { Dirichlet, Neumann };

typedef float (*Function2)(float, float);
typedef float (*Function3)(float, float, float);

struct BoundaryFunctions
{

BoundaryType type;
Function2 BoundaryX0, BoundaryX1, BoundaryY0, BoundaryY1;

};

void SwapBuffers (float*** addrBuffer0, float*** addrBuffer1)
{

float** save = *addrBuffer0;

5.5 Implementing the Simplified 2D Model 251

*addrBuffer0 = *addrBuffer1;
*addrBuffer1 = save;

}

Global variables, functions, local state arrays, and the simulation are shown in the
next code.

// global values
float x0, y0, x1, y1; // rectangle bounds
int imax, jmax; // lattice bounds
float deltaT; // time step (positive)
float deltaX = (x1 - x0)/imax; // cell x-dimension
float deltaY = (y1 - y0)/jmax; // cell y-dimension

// global function for initial values
float RhoT0 (float x, float y);

// global functions for Dirichlet boundary conditions
float RhoX0 (float y, float t); // phi0
float RhoX1 (float y, float t); // phi1
float RhoY0 (float x, float t); // psi0
float RhoY1 (float x, float t); // psi1

// global functions for Neumann boundary conditions
float RhoDerX0 (float y, float t); // phi0’
float RhoDerX1 (float y, float t); // phi1’
float RhoDerY0 (float x, float t); // psi0’
float RhoDerY1 (float x, float t); // psi1’

// local values
float kappa; // density viscosity constant (positive)
float lambdaX = kappa*deltaT/(deltaX*deltaX);
float lambdaY = kappa*deltaT/(deltaY*deltaY);
BoundaryType type; // choose one of Dirichlet or Neumann
float x[imax], y[jmax]; // lattice cell centers
float rhoOld[jmax][imax]; // density, old time
float rhoNew[jmax][imax]; // density, new time
float t = 0.0; // initial time

BoundaryFunctions bf;
if (type == Dirichlet)
{

bf.type = Dirichlet;
bf.BoundaryX0 = RhoX0;
bf.BoundaryX1 = RhoX1;
bf.BoundaryY0 = RhoY0;
bf.BoundaryY1 = RhoY1;

}

252 Chapter 5 Fluids and Gases

else // type == Neumann
{

bf.type = Neumann;
bf.BoundaryX0 = RhoDerX0;
bf.BoundaryX1 = RhoDerX1;
bf.BoundaryY0 = RhoDerY0;
bf.BoundaryY1 = RhoDerY1;

}

// simulation code in the application
InitializeExplicit(x, y, RhoT0, rhoOld);
while (simulating)
{

UpdateDiffusionExplicit(t, x, y, lambdaX, lambdaY, bf,
rhoOld, rhoNew);

SwapBuffers(&rhoOld, &rhoNew);
t = t + deltaT;

}

The initialization function is

void InitializeExplicit (float* x, float* y, Function2 InitialT0,
float** sOld)

{
int i, j;
for (i = 0; i <= imax; ++i)
{

x[i] = x0 + deltaX*i;
}
for (j = 0; j <= jmax; ++j)
{

y[j] = y0 + deltaY*j;
}
for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

sOld[j][i] = InitialT0(x[i], y[j]);
}

}
}

The update function is

void UpdateDiffusionExplicit (float t, float* x, float* y,
float lambdaX, float lambdaY, BoundaryFunctions bf,
float** sOld, float** sNew)

{
// Update the interior cells.
for (int j = 1; j < jmax; ++j)

5.5 Implementing the Simplified 2D Model 253

{
for (int i = 1; i < imax; ++i)
{

sNew[j][i] = sOld[j][i]
+ lambdaX*(sOld[j][i+1] - 2*sOld[j][i]

+ sOld[j][i-1])
+ lambdaY*(sOld[j+1][i] - 2*sOld[j][i]

+ sOld[j-1][i]);
}

}

UpdateBoundary(t, x, y, bf, sNew);
}

The boundary update function is

void UpdateBoundary (float t, float* x, float* y,
BoundaryFunctions bf, float** sNew)

{
int i, j;

if (bf.type == Dirichlet)
{

// edge interiors
for (j = 1; j < jmax; ++j)
{

sNew[j][0] = bf.BoundaryX0(y[j], t);
sNew[j][imax] = bf.BoundaryX1(y[j], t);

}
for (i = 1; i < imax; ++i)
{

sNew[0][i] = bf.BoundaryY0(x[i], t);
sNew[jmax][i] = bf.BoundaryY1(x[i], t);

}

// corners
sNew[0][0] = bf.BoundaryX0(y[0], t);
sNew[0][imax] = bf.BoundaryX1(y[0], t);
sNew[jmax][0] = bf.BoundaryX0(y[jmax], t);
sNew[jmax][imax] = bf.BoundaryX1(y[jmax], t);

}
else // Neumann
{

// Diagonally adjacent neighbor is farther away than
// horizontal or vertical neighbor.
float delta = sqrt(deltaX*deltaX + deltaY*deltaY);

// edge interiors
for (j = 1; j < jmax; ++j)

254 Chapter 5 Fluids and Gases

{
sNew[j][0] = sNew[j][1] +

delta*bf.BoundaryX0(y[j], t);
sNew[j][imax] = sNew[j][imax-1] +

delta*bf.BoundaryX1(y[j], t);
}
for (i = 1; i < imax; ++i)
{

sNew[0][i] = sNew[1][i] +
delta*bf.BoundaryY0(x[i], t);

sNew[jmax][i] = sNew[jmax-1][i] +
delta*bf.BoundaryY1(x[i], t);

}

// corners
sNew[0][0] = sNew[1][1] +

delta*bf.BoundaryX0(y[0], t);
sNew[0][imax] = sNew[1][imax-1] +

delta*bf.BoundaryX1(y[0], t);
sNew[jmax][0] = sNew[jmax-1][1] +

delta*bf.BoundaryX0(y[jmax], t);
sNew[jmax][imax] = sNew[jmax-1][imax-1] +

delta*bf.BoundaryX1(y[jmax], t);
}

}

All is well with this approach until you choose �t to be sufficiently large, at which
time you will notice that the density values start oscillating between positive and neg-
ative values. This is a problem, because we require that density be nonnegative. The
issue is one of numerical stability. The finite-difference algorithm described here is
only conditionally stable, requiring the time step to be relatively small. Specifically,
rewrite equation (5.91) to

ρ
(k+1)
i ,j =

[
1− 2κ�t

(
1

�2
x
+ 1

�2
y

)]
ρ

(k)
i ,j +λx

(
ρ

(k)
i+1,j +ρ

(k)
i−1,j

)
+λy

(
ρ

(k)
i ,j+1+ρ

(k)
i ,j−1

)
(5.92)

If the coefficient of ρ
(k)
i ,j is negative, imagine a time step for which ρ

(k)
i ,j is very large

compared to its four neighboring values. It may be so large that the right-hand side

sums to a negative number, in which case ρ
(k+1)
i ,j is negative. Once this happens, the

oscillatory behavior begins.

To maintain numerical stability, we need the coefficient of ρ
(k)
i ,j to be positive,

which implies

�t <
1

2κ

(
1

�2
x
+ 1

�2
y

)

5.5 Implementing the Simplified 2D Model 255

The coefficients of the density terms in the right-hand side of equation (5.92) are all
positive, so as long as the density at the current time step is positive, the right-hand
side is positive, which guarantees that the density at the next time step is positive.

The finite-difference scheme mentioned here uses a forward difference in time.
This is called an explicit method because you can solve directly for the state at the next
time from state at the current time. Explicit methods are typically only conditionally
stable. We may instead use a backward difference in time, which is an implicit method
that tends to be stable for any size time step. The explicit method of equation (5.91)
is replaced by the implicit method

ρ
(k+1)
i ,j = ρ

(k)
i ,j +λx

(
ρ

(k+1)
i+1,j − 2ρ

(k+1)
i ,j +ρ

(k+1)
i−1,j

)
+λy

(
ρ

(k+1)
i ,j+1 − 2ρ

(k+1)
i ,j +ρ

(k+1)
i ,j−1

)
(5.93)

The equation is implicit in the following sense. The right-hand side contains a term for
the density at the current time iteration k for the lattice cell (i, j). The other right-hand
side terms involve the as-yet-unknown density at neighboring lattice cells for the time
iteration k+ 1. We cannot simply update cell-by-cell as we did in the explict method.
Instead, equation (5.93) represents a linear system of equations in the unknown den-
sity values at time iteration k + 1. This finite-difference scheme is referred to as the
Crank–Nicholson scheme.

If we were working in one spatial dimension, the linear system of the Crank–
Nicholson scheme is tridiagonal. A linear system solver for a tridiagonal matrix is
easy to implement and uses computational time that is linear in the number of spatial
samples. The two-dimensional problem is more complicated to set up, but the matrix
of coefficients is sparse. To avoid the complexities of solving the linear system directly,
[PFTV88] suggests something called the alternating-direction implicit method, which
is an operator splitting method that divides each time step into two time steps (half the
time per step). Each substep involves solving a tridiagonal matrix system.

As is typical these days for sparse matrix systems in game applications, [Sta03] uses
an iterative method called Gauss–Seidel, which is also an operator splitting method;

see Section 7.2.6 for details. Equation (5.93) may be solved for ρ
(k+1)
i ,j to obtain

ρ
(k+1)
i ,j = γ0 ρ

(k)
i ,j + γ1

(
ρ

(k+1)
i+1,j +ρ

(k+1)
i−1,j

)
+ γ2

(
ρ

(k+1)
i ,j+1 +ρ

(k+1)
i ,j−1

)
(5.94)

where

γ0 = 1

1+ 2(λx +λy)
, γ1 = λx

1+ 2(λx +λy)
, γ2 = λy

1+ 2(λx +λy)

Equation (5.94) is iterated some specified number of times. On the first iteration, the
densities for the time iterate k+ 1 are just the densities known for time iterate k . The

equation modifies the ρ
(k+1)
i ,j , so on the second and later iterations, the right-hand

side densities for the time iterate k + 1 are different from those at time iterate k . The

256 Chapter 5 Fluids and Gases

function UpdateDiffusionExplicit is replaced by

// Global value chosen before starting the simulation.
int numGaussSeidelIterations; // your choice;

// Local values computed before starting the simulation.
float gamma0 = 1/(1 + 2*(lambdaX + lambdaY));
float gamma1 = lambdaX*gamma0;
float gamma2 = lambdaY*gamma0;

void UpdateDiffusionImplicit (float t, float* x, float* y,
float gamma0, float gamma1, float gamma2,
BoundaryFunctions bf, float** sOld, float** sNew)

{
CopyArray(sOld, sNew); // copy elements of sOld to sNew
for (int iter = 0; iter < numGaussSeidelIterations; ++iter)
{

// Update interior cells.
for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)
{

sNew[j][i] = gamma0*sOld[j][i]
+ gamma1*(sNew[j][i+1] + sNew[j][i-1])
+ gamma2*(sNew[j+1][i] + sNew[j-1][i]);

}
}

UpdateBoundary(t, x, y, bf, sNew);
}

}

The CopyArray function appears to be necessary to initialize the rhoNew values
on the right-hand side of the assignment statement. Assuming that the number of
Gauss–Seidel iterations are sufficient to guarantee convergence (within floating-point
tolerances), we can avoid the copy per time iterate by initializing rho[0] and rho[1]
to the same values,

initialize:
rho[0] = density(0); // density at time iterate 0 (t = 0)
rho[1] = density(0);

update:
rho[0] = density(0);
rho[1] = density(1); // density at time iterate 1

swap:
rho[0] = density(1);
rho[1] = density(0); // rho[1] starts at density(0)

5.5 Implementing the Simplified 2D Model 257

update:
rho[0] = density(1);
rho[1] = density(2); // with CopyArray, rho[1] would have

// started at density(1), not density(0)

The initialization function to support this is

void InitializeImplicit (float* x, float* y, Function2 InitialT0,
float** sOld, float** sNew)

{
for (int j = 0; j <= jmax; ++j)
{

y[j] = y0 + deltaY*j;
for (int i = 0; i <= imax; ++i)
{

x[i] = x0 + deltaX*i;
float value = InitialT0(x[i], y[j]);
sOld[j][i] = value;
sNew[j][i] = value;

}
}

}

5.5.3 The Advection Term

Consider the partial differential equation for density but with only the time derivative
and the velocity directional derivative term,

ρt =−uρx − vρy , (x, y) ∈ [x 0, x1]× [y0, y1], t ≥ 0

For the sake of argument, assume that the initial values and boundary values are spec-
ified as for the diffusion equation. This is a hyperbolic differential equation. To solve
this numerically, we can choose a forward difference in time and centered differences
in space,

ρ
(k+1)
i ,j −ρ

(k)
i ,j

�t
=−u(k)

i ,j

⎛
⎝ρ

(k)
i+1,j −ρ

(k)
i−1,j

2�x

⎞
⎠− v(k)

i ,j

⎛
⎝ρ

(k)
i ,j+1−ρ

(k)
i ,j−1

2�y

⎞
⎠

where u(k)
i ,j = u(x[i], y[j], t [k]) and v(k)

i ,j = v(x[i], y[j], t [k]). The time update of
density is

ρ
(k+1)
i ,j = ρ

(k)
i ,j +

�t

2�x
u(k)

i ,j

(
ρ

(k)
i+1,j−ρ

(k)
i−1,j

)
+ �t

2�y
v(k)

i ,j

(
ρ

(k)
i ,j+1−ρ

(k)
i ,j−1

)

This explicit scheme has the same stability problems as that for the diffusion equation
(conditional stability requires small time steps).

258 Chapter 5 Fluids and Gases

We could attempt to remedy the problem by using an implicit scheme, just as we
did for diffusion,

ρ
(k+1)
i ,j = ρ

(k)
i ,j +

�t

2�x
u(k+1)

i ,j

(
ρ

(k+1)
i+1,j −ρ

(k+1)
i−1,j

)
+ �t

2�y
v(k+1)

i ,j

(
ρ

(k+1)
i ,j+1 −ρ

(k+1)
i ,j−1

)

Solving this is much more complicated. The problem is that the velocity components
at time iterate k+ 1 occur on the right-hand side. We can use Gauss–Seidel iterates
for the density terms at time iterate k + 1, but then we are required to compute the
velocity terms at time iterate k + 1. These values must be obtained from a similar
numerical method applied to the Navier–Stokes equation. Thus, we have a coupling of
density and velocity by the two partial differential equations. The resulting numerical
method that has to deal with the coupling is complicated.

The approach in [Sta03] is a transport algorithm1 that uses the velocity field to
determine how density at time iterate k+ 1 was accumulated from nearby densities
at time iterate k . Intuitively, this is the concept mentioned in the discussion of conser-
vation of mass whereby the material derivative ρt + uρx + vρy is the rate of change
of density along flow lines; that is, the update function simply tracks density along
the flow lines and adjusts over time as necessary. This mechanism is also referred to
as advection.

Figure 5.3 shows two possible ways of implementing the transport algorithm. In
Figure 5.3(a), the light gray cell contains two transported centers. How should we
compute the densities at the transported center and how show these densities be used
to update the density at the center of the light gray cell? In Figure 5.3(b), a transported
cell center is shown contained in a square formed by four cell centers. The density at
the transported center is computed using bilinear interpolation of the densities at
the four cell centers (all correspond to time iterate k). This density is assigned to the
source cell center’s density (the value for time iterate k+ 1).

In the forward transport method, we could also use bilinear interpolation for
each transported cell center. However, if two transported cell centers are in the same
cell, then one of the lattice cells will not contain a transported cell. Such a lattice
cell will have no density update. This has the flavor of rotating a bitmap to gener-
ate another bitmap. If you iterate over the source bitmap pixels and rotate them, the
destination bitmap will be missing some pixels. Instead, you iterate over the destina-
tion bitmap pixels, inverse-rotate each one, and then use bilinear interpolation in the
source bitmap to obtain the value for the destination pixel.

1. This term is not used in [Sta03], but it is mentioned that this is a semi-Lagrangian method. However, it is
used in a variety of fields. For example, in the field of air pollution, sensors at various locations measure
particulate matter (pollutants). Naturally, it is important to know the source of the pollutants (so proper
blame can be placed for polluting). Wind forces move the particulate matter from the sources to the sensors
(forward transport). Given the sensor measurements and time-varying wind velocity field in a lattice of
cells, the contributions at a sensor can be traced backward through time via the velocity field (backward
transport), hopefully identifying the pollutant sources.

5.5 Implementing the Simplified 2D Model 259

(a) (b)

Figure 5.3 Left: Forward transport of the density from three cell centers. The cell with light gray
background contains two transported centers. Right: Backward transport of the den-
sity from three cell centers. One of the transported cell centers is shown contained in
a square formed by four cell centers.

The update function for the lattice cells is

// Global values computed before starting the simulation.
float dtDivDx = deltaT/deltaX;
float dtDivDy = deltaT/deltaY;

void UpdateAdvection (float t, float* x, float* y, float** uOld,
float** vOld, BoundaryFunctions bf, float** sOld,
float** sNew)

{
// Update interior cells.
for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)
{

float iPrevious = i - dtDivDx*uOld[j][i];
Clamp(iPrevious, 0.5, imax - 0.5);
int i0 = Floor(iPrevious);
int i1 = i0 + 1;
float a1 = iPrevious - i0;
float a0 = 1 - a1;

float jPrevious = j - dtDivDy*vOld[j][i];
Clamp(jPrevious, 0.5, jmax - 0.5);
int j0 = Floor(jPrevious);

260 Chapter 5 Fluids and Gases

int j1 = j0 + 1;
float b1 = jPrevious - j0;
float b0 = 1 - b1;

sNew[j][i] =
b0*(a0*sOld[j0][i0] + a1*sOld[j0][i1]) +
b1*(a0*sOld[j1][i0] + a1*sOld[j1][i1]);

}
}

UpdateBoundary(t, x, y, bf, sNew);
}

where Clamp(z,a,b) maps z < a to a and z > b to b, with all other z remaining the
same, and where Floor(z) is the largest integer smaller or equal to z .

To explain the floating-point index iPrevious, observe that u = dx/dt is the x-
component of velocity. The units of u are length per unit time, where length has units
of the original x ∈ [x 0, x1]. The change in position is estimated by �t u =�t (dx/dt),
where �t has units of time. This change still has units of length in the original x vari-
able. To convert to units of the i-index of the lattice, notice that x(i + h)− x(i) =
(x 0 + (i + h)�x)− (x 0 + i�x)= h�x . The left-hand side of the expression is change
of x in units of length for the original variable. The value h is the change in the
index i, so we need to divide by �x to obtain the i-index units; that is, (�t /�x)u =
(�t /�x)(dx/dt) has units of the i-index. A similar argument for jPrevious shows
that (�t /�y)v has units of the j-index.

5.5.4 The Source–Sink Term

Consider the density equation that contains only the time derivative and the source–
sink term,

ρt = s

The update of density for a single time step is trivial. The pseudocode is

// global function
float RhoSource (float x, float y, float t);

void UpdateSource (float t, float* x, float* y, Function3 Source,
bool clampToZero, float** sOld, float** sNew)

{
int i, j;

if (clampToZero)
{

for (j = 0; j <= jmax; ++j)

5.5 Implementing the Simplified 2D Model 261

{
for (i = 0; i <= imax; ++i)
{

sNew[j][i] = sOld[j][i] +
deltaT*Source(x[i], y[j], t);

if (sNew[j][i] < 0)
{

sNew[j][i] = 0;
}

}
}

}
else
{

for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

sNew[j][i] = sOld[j][i] +
deltaT*Source(x[i], y[j], t);

}
}

}
}

Because we have no guarantee the source–sink function will keep the densities
nonnegative, we must clamp the updated value to be nonnegative.

5.5.5 The Total Density Update

The following pseudocode combines the source–sink update, the diffusion update,
and the advection update.

// global values
float x0, y0, x1, y1; // rectangle bounds
int imax, jmax; // lattice bounds
float deltaT; // time step (positive)
float deltaX = (x1 - x0)/imax; // cell x-dimension
float deltaY = (y1 - y0)/jmax; // cell y-dimension
float dtDivDx = deltaT/deltaX;
float dtDivDy = deltaT/deltaY;
float dtDivDxDx = dtDivDx/deltaX;
float dtDivDyDy = dtDivDy/deltaY;
int numGaussSeidelIterations; // your choice;
enum BoundaryType = { Dirichlet, Neumann };
BoundaryType type; // choose one of Dirichlet or Neumann

262 Chapter 5 Fluids and Gases

// global functions
float RhoT0 (float x, float y);
float RhoX0 (float y, float t);
float RhoX1 (float y, float t);
float RhoY0 (float x, float t);
float RhoY1 (float x, float t);
float RhoDerX0 (float y, float t);
float RhoDerX1 (float y, float t);
float RhoDerY0 (float x, float t);
float RhoDerY1 (float x, float t);
float RhoSource (float x, float y, float t);

// local values
float kappa; // density viscosity constant (positive)
float lambdaX = kappa*dtDivDxDx;
float lambdaY = kappa*dtDivDyDy;
float gamma0 = 1/(1 + 2*(lambdaX + lambdaY));
float gamma1 = lambdaX*gamma0;
float gamma2 = lambdaY*gamma0;
float x[imax], y[jmax]; // lattice cell centers
float rhoOld[jmax][imax]; // density, old time
float rhoNew[jmax][imax]; // density, new time
float uOld[jmax][imax]; // current x-component of velocity
float vOld[jmax][imax]; // current y-component of velocity
float t = 0.0; // initial time

BoundaryFunctions bf;
if (type == Dirichlet)
{

bf.type = Dirichlet;
bf.BoundaryX0 = RhoX0;
bf.BoundaryX1 = RhoX1;
bf.BoundaryY0 = RhoY0;
bf.BoundaryY1 = RhoY1;

}
else // type == Neumann
{

bf.type = Neumann;
bf.BoundaryX0 = RhoDerX0;
bf.BoundaryX1 = RhoDerX1;
bf.BoundaryY0 = RhoDerY0;
bf.BoundaryY1 = RhoDerY1;

}

// simulation code in the application
InitializeImplicit(x, y, RhoT0, rhoOld, rhoNew);
while (simulating)
{

5.5 Implementing the Simplified 2D Model 263

UpdateSource(t, x, y, bf, RhoSource, true, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);

UpdateDiffusionImplicit(t, x, y, gamma0, gamma1, gamma2, bf,
rhoOld, rhoNew);

SwapBuffers(&rhoOld, &rhoNew);

UpdateAdvection(t, x, y, uOld, vOld, bf, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);

t = t + deltaT;
}

Source Code
GpuGaussianBlur2

Here is a side note on the explicit method for solving the diffusion equation and for
solving parabolic equations generally of the form

ρt = κ(ρxx +ρyy)+ F(t , x, y ,ρ,ρx ,ρy)

where F is a function of the indicated variables, where an initial-value function is
specified, and using Neumann boundary conditions with boundary derivatives set to
zero. The numerical method may be solved by shader programming on a GPU. An
implementation of Gaussian blurring (F = 0) is provided on the CD-ROM.

5.5.6 The Velocity Equations

The simplified Navier–Stokes equation for 2D can be written componentwise as

ut = ν(ux x + uyy)− uux − vuy + f

vt = ν(vx x + vyy)− uvx − v vy + g

where the velocity is (u, v) and the external forces are summarized by (f , g). The pos-
itive constant ν is the viscosity coefficient. The velocity components must have initial
values specified at time zero as well as boundary conditions over time.

The velocity equations are structured exactly like the density differential equation,
so we could use the previously developed pseudocode to solve these simultaneously
with the density equation.

// global values
float x0, y0, x1, y1; // rectangle bounds
int imax, jmax; // lattice bounds
float deltaT; // time step (positive)
float deltaX = (x1 - x0)/imax; // cell x-dimension
float deltaY = (y1 - y0)/jmax; // cell y-dimension
float dtDivDx = deltaT/deltaX;
float dtDivDy = deltaT/deltaY;
float dtDivDxDx = dtDivDx/deltaX;

264 Chapter 5 Fluids and Gases

float dtDivDyDy = dtDivDy/deltaY;
int numGaussSeidelIterations; // your choice;
enum BoundaryType = { Dirichlet, Neumann };
BoundaryType rhoType, uType, vType; // Dirichlet or Neumann

// global functions
float RhoT0 (float x, float y);
float RhoX0 (float y, float t);
float RhoX1 (float y, float t);
float RhoY0 (float x, float t);
float RhoY1 (float x, float t);
float RhoDerX0 (float y, float t);
float RhoDerX1 (float y, float t);
float RhoDerY0 (float x, float t);
float RhoDerY1 (float x, float t);
float RhoSource (float x, float y, float t); // s(x,y,t)
float UT0 (float x, float y);
float UX0 (float y, float t);
float UX1 (float y, float t);
float UY0 (float x, float t);
float UY1 (float x, float t);
float UDerX0 (float y, float t);
float UDerX1 (float y, float t);
float UDerY0 (float x, float t);
float UDerY1 (float x, float t);
float USource (float x, float y, float t); // f(x,y,t)
float VT0 (float x, float y);
float VX0 (float y, float t);
float VX1 (float y, float t);
float VY0 (float x, float t);
float VY1 (float x, float t);
float VDerX0 (float y, float t);
float VDerX1 (float y, float t);
float VDerY0 (float x, float t);
float VDerY1 (float x, float t);
float VSource (float x, float y, float t); // g(x,y,t)

// local values
float viscosity[2]; // viscosity[0] = kappa, viscosity[1] = nu
float lambdaX[2] =
{

viscosity[0]*dtDivDxDx,
viscosity[1] n*dtDivDxDx

};
float lambdaY[2] =
{

viscosity[0]*dtDivDyDy,

5.5 Implementing the Simplified 2D Model 265

viscosity[1]*dtDivDyDy
};
float gamma0[2] =
{

1/(1+2*(lambdaX[0]+lambdaY[0])),
1/(1+2*(lambdaX[1]+lambdaY[1]))

};
float gamma1[2] = { lambdaX[0]*gamma0[0], lambdaX[1]*gamma0[1] };
float gamma2[2] = { lambdaY[0]*gamma0[0], lambdaY[1]*gamma0[1] };
float x[imax], y[jmax]; // lattice cell centers
float rhoOld[jmax][imax]; // density, old time
float rhoNew[jmax][imax]; // density, new time
float uOld[jmax][imax]; // x-component of velocity, old time
float uNew[jmax][imax]; // x-component of velocity, new time
float vOld[jmax][imax]; // y-component of velocity, old time
float vNew[jmax][imax]; // y-component of velocity, new time
float t = 0.0; // initial time

BoundaryFunctions rhoBF;
if (rhoType == Dirichlet)
{

rhoBF.type = Dirichlet;
rhoBF.BoundaryX0 = RhoX0;
rhoBF.BoundaryX1 = RhoX1;
rhoBF.BoundaryY0 = RhoY0;
rhoBF.BoundaryY1 = RhoY1;

}
else // type == Neumann
{

rhoBF.type = Neumann;
rhoBF.BoundaryX0 = RhoDerX0;
rhoBF.BoundaryX1 = RhoDerX1;
rhoBF.BoundaryY0 = RhoDerY0;
rhoBF.BoundaryY1 = RhoDerY1;

}

BoundaryFunctions uBF;
if (uType == Dirichlet)
{

uBF.type = Dirichlet;
uBF.BoundaryX0 = UX0;
uBF.BoundaryX1 = UX1;
uBF.BoundaryY0 = UY0;
uBF.BoundaryY1 = UY1;

}
else // type == Neumann
{

266 Chapter 5 Fluids and Gases

uBF.type = Neumann;
uBF.BoundaryX0 = UDerX0;
uBF.BoundaryX1 = UDerX1;
uBF.BoundaryY0 = UDerY0;
uBF.BoundaryY1 = UDerY1;

}

BoundaryFunctions vBF;
if (vType == Dirichlet)
{

vBF.type = Dirichlet;
vBF.BoundaryX0 = VX0;
vBF.BoundaryX1 = VX1;
vBF.BoundaryY0 = VY0;
vBF.BoundaryY1 = VY1;

}
else // type == Neumann
{

vBF.type = Neumann;
vBF.BoundaryX0 = VDerX0;
vBF.BoundaryX1 = VDerX1;
vBF.BoundaryY0 = VDerY0;
vBF.BoundaryY1 = VDerY1;

}

// simulation code in the application
InitializeImplicit(x, y, RhoT0, rhoOld, rhoNew);
InitializeImplicit(x, y, UT0, uOld, uNew);
InitializeImplicit(x, y, VT0, vOld, vNew);
while (simulating)
{

// density update
UpdateSource(t, x, y, rhoBF, RhoSource, true, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);
UpdateDiffusionImplicit(t, x, y, gamma0[0], gamma1[0],

gamma2[0], rhoBF, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);
UpdateAdvection(t, x, y, uOld, vOld, rhoBF, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);

// velocity update
UpdateSource(t, x, y, uBF, USource, false, uOld, uNew);
UpdateSource(t, x, y, vBF, VSource, false, vOld, vNew);
SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

UpdateDiffusionImplicit(t, x, y, gamma0[1], gamma1[1],

5.5 Implementing the Simplified 2D Model 267

gamma2[1], uBF, uOld, uNew);
UpdateDiffusionImplicit(t, x, y, gamma0[1], gamma1[1],

gamma2[1], vBF, vOld, vNew);
SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

UpdateAdvection(t, x, y, uOld, vOld, uBF, uOld, uNew);
UpdateAdvection(t, x, y, uOld, vOld, vBF, vOld, vNew);
SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

t = t + deltaT;
}

A new numerical issue manifests itself. The continuous formulation of the partial
differential equations included conservation of mass and the condition that∇ · v= 0.
The numerical algorithm using finite differences introduces error that causes the
divergence not to be zero. Effectively, the mass conservation does not happen. To
remedy this, the velocity field must be adjusted.

From the Helmholtz decomposition, equation (5.44), the velocity is

v=−∇φ+∇ × g

where φ is a solution to ∇2φ =−∇ · v and g is a solution to ∇2g=−∇ × v with
∇ · g= 0. If we were to treat the left-hand side of this equation as the velocity field
produced by the numerical solver, we can add to it the gradient field

v ′ = v+∇φ =∇ × g

The new vector field on the left-hand side has the property ∇ · v′ = ∇ ·∇ × g= 0.
The result is a velocity field v ′ that is mass preserving.

This adjustment requires solving the Poisson equation for φ on our rectangular
domain. Using centered differences in space, the numerical method is

φi+1,j − 2φi,j +φi−1,j

�2
x

+ φi,j+1− 2φi,j +φi,j−1

�2
y

= −
(

ui+1,j − ui−1,j

2�x
+ vi,j+1− vi,j−1

2�y

)

where φi ,j = φ(x[i], y[j]), ui ,j = u(x[i], y[j]), and vi ,j = v(x[i], y[j]). Defining the
right-hand side as−di ,j , we may rewrite the equation as

φi ,j = ε0 di ,j + ε1
(
φi+1,j +φi−1,j

)+ ε2
(
φi ,j+1+φi ,j−1

)
where

ε0 =
�2

x �2
y

2(�2
x +�2

y)
, ε1 =

�2
y

2(�2
x +�2

y)
, ε2 = �2

x

2(�2
x +�2

y)

We also need boundary conditions. In the absence of numerical errors, ∇ · v= 0 and
φ = 0. This indicates we should choose Dirichlet boundary conditions, φ(x)= 0 for

268 Chapter 5 Fluids and Gases

boundary points x. In terms of finite differences, φi ,0 = 0 for all i and φ0,j = 0 for
all j. The finite-difference equation is implicit and may be solved using Gauss–Seidel
iteration.

The pseudocode for computing the adjustment v′ = v+∇φ is listed next.

// Global values computed before starting the simulation.
float halfDivDX = 0.5/deltaX;
float halfDivDY = 0.5/deltaY;
float deltaXSqr = deltaX*deltaX;
float deltaYSqr = deltaY*deltaY;
float invDenom = 0.5/(deltaXSqr + deltaYSqr);
float epsilon0 = deltaXSqr*deltaYSqr*invDenom;
float epsilon1 = deltaYSqr*invDenom;
float epsilon2 = deltaXSqr*invDenom;

void AdjustVelocity (float t, float* x, float* y,
BoundaryFunctions uBF, BoundaryFunctions vBF, float** u,
float** v)

{
int i, j;

// Approximate the divergence of velocity.
float div[jmax][imax];
for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

div[j][i] =
halfDivDX*(u[j][i+1] - u[j][i-1]) +
halfDivDY*(v[j+1][i] - v[j-1][i]);

}
}

// Use zero-valued derivative on boundary to assign divergence.
for (int i = 0; i <= imax; ++i)
{

div[0][i] = div[1][i];
div[jmax][i] = div[jmax-1][i];

}
for (int j = 0; j <= jmax; ++j)
{

div[j][0] = div[j][1];
div[j][imax] = div[j][imax-1];

}

// Initialize phi.
float phi[jmax][imax];
for (j = 0; j <= jmax; ++j)

5.5 Implementing the Simplified 2D Model 269

{
for (i = 0; i <= imax; ++i)
{

phi[j][i] = 0.0;
}

}

// Numerically solve Poisson’s equation for phi. The boundary
// values remain zero, so there is no need to call a boundary
// update function.
for (int iter = 0; iter < numGaussSeidelIterations; ++iter)
{

for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

phi[j][i] = epsilon0*div[j][i] +
epsilon1*(phi[j][i+1] + phi[j][i-1]) +
epsilon2*(phi[j+1][i] + phi[j-1][i]);

}
}

}

// Adjust the velocity v’ = v + gradient(phi).
for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

u[j][i] = u[j][i] + halfDivDX*(phi[j][i+1]
- phi[j][i-1]);

v[j][i] = v[j][i] + halfDivDY*(phi[j+1][i]
- phi[j-1][i]);

}
}
UpdateBoundary(t, x, y, uBF, u);
UpdateBoundary(t, x, y, vBF, v);

}

The simulation portion of the pseudocode is now modified to

while (simulating)
{

// density update
UpdateSource(t, x, y, rhoBF, RhoSource, true, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);
UpdateDiffusionImplicit(t, x, y, gamma0[0], gamma1[0],

gamma2[0], rhoBF, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);

270 Chapter 5 Fluids and Gases

UpdateAdvection(t, x, y, uOld, vOld, rhoBF, rhoOld, rhoNew);
SwapBuffers(&rhoOld, &rhoNew);

// velocity update
UpdateSource(t, x, y, uBF, USource, false, uOld, uNew);
UpdateSource(t, x, y, vBF, VSource, false, vOld, vNew);
SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

UpdateDiffusionImplicit(t, x, y, gamma0[1], gamma1[1],
gamma2[1], uBF, uOld, uNew);

UpdateDiffusionImplicit(t, x, y, gamma0[1], gamma1[1],
gamma2[1], vBF, vOld, vNew);

SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

AdjustVelocity(t, x, y, uBF, vBF, uOld, vOld);
UpdateAdvection(t, x, y, uOld, vOld, uBF, uOld, uNew);
UpdateAdvection(t, x, y, uOld, vOld, vBF, vOld, vNew);
AdjustVelocity(t, x, y, uBF, vBF, uNew, vNew);
SwapBuffers(&uOld, &uNew);
SwapBuffers(&vOld, &vNew);

t = t + deltaT;
}

AdjustVelocity is called before UpdateAdvection so that the velocity is mass preserv-
ing before advection. It is also called after UpdateAdvectionso that the velocity is mass
preserving before the simulation loop repeats.

5.5.7 Specialized Boundary Handling

In my development, the boundary value handling is general in that you call various
functions to set the boundary values. In [Sta03], the boundary values are set by a
single function shown next.

void set_bnd (int N, int b, float* x)
{

int i;

for (i = 1; i <= N; ++i)
{

x[IX(0, i)] = b == 1 ? -x[IX(1,i)] : x[IX(1,i)];
x[IX(N+1,i)] = b == 1 ? -x[IX(N,i)] : x[IX(N,i)];
x[IX(i, 0)] = b == 2 ? -x[IX(i,1)] : x[IX(i,1)];
x[IX(i,N+1)] = b == 2 ? -x[IX(i,N)] : x[IX(i,N)];

}

5.5 Implementing the Simplified 2D Model 271

x[IX(0, 0)] = 0.5*(x[IX(1,0)] + x[IX(0,1)]);
x[IX(0, N+1)] = 0.5*(x[IX(1,N+1)] + x[IX(0,N)]);
x[IX(N+1,0)] = 0.5*(x[IX(N,0)] + x[IX(N+1,1)]);
x[IX(N+1,N+1)] = 0.5*(x[IX(N,N+1)] + x[IX(N+1,N)]);

}

The lattice is square with dimensions (N + 2)× (N + 2). The macro IX(i,j) expands
to (i)+(N+2)*(j). The input b is 0 for density ρ, 1 for the velocity component u, and
2 for the velocity component v .

The paper mentions that for the density, the boundary values are chosen by “con-
tinuity.” The boundary handling for density, written in the notation of this chapter,
is equivalent to

void SetRhoBoundary (float** rho)
{

for (int i = 1; i < imax; ++i)
{

rho[0][i] = rho[1][i];
rho[jmax][i] = rho[jmax-1][i];

}
for (int j = 1; j < jmax; ++j)
{

rho[j][0] = rho[j][1];
rho[j][imax] = rho[j][imax-1];

}
rho[0][0] = rho[1][1];
rho[0][imax] = rho[1][imax-1];
rho[jmax][0] = rho[jmax-1][1];
rho[jmax][imax] = rho[jmax-1][imax-1];

}

The code is actually the standard implementation for Neumann boundary conditions
where the boundary directional derivatives are all zero. Such conditions, when used
in heat diffusion, indicated the boundary is insulated; that is, no heat is allowed to
diffuse out of the domain. In the fluids application, the boundary conditions specify
that no mass change occurs at the boundary.

The paper also mentions that the fluid is contained in the rectangle “with solid
walls” and that no flow should exit the walls. The horizontal component of the velocity
(u) should be zero on the vertical walls and the vertical component of the velocity (v)
should be zero on the horizontal walls. The claim is that set_bnd implements this, but
that does not appear to be the case. For example, the function when applied to u is
equivalent to

void SetUBoundary (float** u)
{

for (int i = 1; i < imax; ++i)
{

u[0][i] = u[1][i];

272 Chapter 5 Fluids and Gases

u[jmax][i] = u[jmax-1][i];
}
for (int j = 1; j < jmax; ++j)
{

u[j][0] = -u[j][1];
u[j][imax] = -u[j][imax-1];

}
u[0][0] = 0;
u[0][imax] = 0;
u[jmax][0] = 0;
u[jmax][imax] = 0;

}

The i-loop involves Neumann boundary conditions on the horizontal walls where the
boundary directional derivatives are zero. The j-loop sets the vertical wall values, but
the u-values are negated instead of being set to zero. It is not clear why the negation is
used, but one consequence is that if u[1][1] > 0, then u[1][0] < 0 in which case the
velocity vector at the boundary point is directed outside the lattice, which is probably
not the desired behavior.

The negation of the components is not one of the standard Dirichlet or Neumann
boundary conditions, because it involves setting the boundary based on u itself. Recall
that the boundary conditions were functions that depend only on the surface posi-
tions, not on the state of the solution near the surface. Regardless, as long as the
numerical solution has desired behavior for the simulation, it is reasonable to have
boundary dependence on the solution. In the case at hand, to satisfy the require-
ment that u is zero on the vertical walls, we may use mixed boundary conditions.
Dirichlet boundary conditions are used on the vertical walls where the boundary
values are zero. Neumann boundary conditions are used on the horizontal walls where
the boundary derivative values are zero.

void SetUBoundary (float** u)
{

for (int i = 1; i < imax; ++i)
{

u[0][i] = u[1][i];
u[jmax][i] = u[jmax-1][i];

}
for (int j = 1; j < jmax; ++j)
{

u[j][0] = 0;
u[j][imax] = 0;

}
u[0][0] = 0;
u[0][imax] = 0;
u[jmax][0] = 0;
u[jmax][imax] = 0;

}

5.5 Implementing the Simplified 2D Model 273

Mixed boundary conditions can also be used for the velocity component v .

void SetVBoundary (float** v)
{

for (int i = 1; i < imax; ++i)
{

v[0][i] = 0;
v[jmax][i] = 0;

}
for (int j = 1; j < jmax; ++j)
{

v[j][0] = v[j][1];
v[j][imax] = v[j][imax-1];

}
v[0][0] = 0;
v[0][imax] = 0;
v[jmax][0] = 0;
v[jmax][imax] = 0;

}

Another possibility is to clamp the u values to zero on the vertical walls and to
clamp the v values to zero on the horizontal walls. This has the consequence that the
velocities on the boundary never point outside the lattice. This is also a nonstandard
boundary condition, but if the simulation looks good, then so be it.

void SetUBoundary (float** u)
{

for (int i = 1; i < imax; ++i)
{

u[0][i] = u[1][i];
u[jmax][i] = u[jmax-1][i];

}
for (int j = 1; j < jmax; ++j)
{

u[j][0] = u[j][1];
if (u[j][0] < 0) { u[j][0] = 0; }
u[j][imax] = u[j][imax-1];
if (u[j][imax] > 0) { u[j][imax] = 0; }

}
u[0][0] = 0;
u[0][imax] = 0;
u[jmax][0] = 0;
u[jmax][imax] = 0;

}

void SetVBoundary (float** v)
{

for (int i = 1; i < imax; ++i)
{

274 Chapter 5 Fluids and Gases

v[0][i] = v[1][i];
if (v[0][i] < 0) { v[0][i] = 0; }
v[jmax][i] = v[jmax-1][i];
if (v[jmax][i] > 0) { v[jmax][i] = 0; }

}
for (int j = 1; j < jmax; ++j)
{

v[j][0] = v[j][1];
v[j][imax] = v[j][imax-1];

}
v[0][0] = 0;
v[0][imax] = 0;
v[jmax][0] = 0;
v[jmax][imax] = 0;

}

Source Code
Fluids2D

An implementation of this algorithm is provided on the CD-ROM. Dirichlet bound-
ary conditions with zero values are used for density. Mixed boundary conditions with
zero values or zero derivatives are used for velocity. In the pseudocode presented here,
the update functions are applied separately to u and v . In the actual code, the updates
are applied jointly to avoid the repeated double loops and to avoid the repeated
bilinear interpolation setup in the advection update.

The physics library has a class Fluid2Da that implements the three-stage update
algorithm of [Sta03] on the CPU. The class Fluid2Db has a single-stage update that
combines the source–sink evaluation, the diffusion term, and the advection. The
modified algorithm is only conditionally stable, but a reasonable time step can be
chosen. For a 256× 256 grid and running on a single 3 GHz core and an NVIDIA
GeForce 9600 GT graphics card, the Fluid2Da algorithm ran at 7 frames per second.
The Fluid2Db algorithm ran at 28 frames per second.

Figure 5.4 – also Color Plates 5.4(ab) and 5.4(cd) – shows some screen captures
from the application running with the Fluid2Db class.

Source Code
GpuFluids2D

An implementation of this algorithm on the GPU is provided on the CD-ROM. The
sample duplicates the behavior of the Fluids2Db sample. Running on a single 3 GHz
core and an NVIDIA GeForce 9600 GT graphics card, the frame rate for the 256× 256
grid was 135 frames per second.

5.6 Implementing the Simplified 3D Model

The region V is chosen to be a solid cube in 3D, say, V = {(x, y , z) : x ∈ [x0, x1], y ∈
[y0, y1], z ∈ [z0, z1]}. The velocity vector has components u(x, y , z , t), v(x, y , z , t), and
w(x, y , z , t). The differential equations are

ρt = κ
(
ρxx +ρyy +ρzz

)− uρx − vρy −wρz + s

ut = ν
(
uxx + uyy + uzz

)− uux − vuy −wuz + f

vt = ν
(
vxx + vyy + vzz

)− uvx − vvy −wvz + g

wt = ν
(
wxx +wyy +wzz

)− uwx − vwy −wwz + h

(5.95)

5.6 Implementing the Simplified 3D Model 275

Figure 5.4 Image (a) [upper left]: The initial density is generated by a uniform random number
generator. Image (b) [upper right]: The evolved density after a small period of time.
The only force is due to a spike of wind moving from the left-center of the grid. The
bright blob-like region is a density source. The dark blob-like region is a density sink.
Image (c) [lower left]: Starting from the random initial density, eight vortices were
added to the grid. They are shown in white in the figure; the direction of rotation is
indicated by the arrows. You can see the swirl-like effects of the vortices. Image (d)
[lower right]: The grid of image (c) is allowed to evolve further. The density source and
sink are more pronounced, and the density is starting to become more homogeneous
in regions centered at the vortices. (See also Color Plates 5.4(ab) and 5.4(cd).)

for (x, y , z) ∈ [x0, x1]× [y0, y1]× [z0, z1] and t ≥ 0. The subscripts on the functions
indicate partial derivatives with respect to the variables t , x, y , and z . The density
source–sink function is s and the velocity impulse function is (f , g , h). Initial values
and boundary values must be specified.

276 Chapter 5 Fluids and Gases

The cube is decomposed into a lattice of points, say, (x[i], y[j], z[k]) for 0≤ i ≤
imax, 0≤ j ≤ jmax, and 0≤ k ≤ k max. Each lattice cell is centered at (x[i], y[j], z[k])
and has dimensions �x = (x1− x0)/imax, �y = (y1− y0)/jmax, and �z = (z1 −
z0)/kmax. Thus, x[i] = x0 + i�x , y[j] = y0+ j�y , and z[k]= z0 + k�z .

The time variable is also discretized by t [�]= ��t for �≥ 0, where the time
step �t > 0 is specified by the user. The choice for the time step can affect the
numerical stability of the algorithm, so depending on how the differential equation is
numerically solved, you might have restrictions on the size of the time step.

The derivation of the numerical method for 3D is similar to that for 2D. The
initial-value functions must be specified for each of ρ, u, v , and w. The boundary
value functions must also be specified. There are two such functions for the x-faces
of the cube, two for the y-faces, and two for the z-faces. The functions must be
continuous as a whole over the six faces. In the pseudocode, the boundary values
are set for voxels of type face-interior, edge-interior, and corners. Rather than having
generic functions as in the 2D case, the pseudocode has functions specific to density
(Neumann boundary conditions) and velocity (mixed boundary conditions).

The global and local data and functions are

// global values
float x0, y0, x1, y1, z0, z1; // cube bounds
int imax, jmax, kmax; // lattice bounds
float deltaT; // time step (positive)
float deltaX = (x1 - x0)/imax; // cell x-dimension
float deltaY = (y1 - y0)/jmax; // cell y-dimension
float deltaZ = (z1 - z0)/kmax; // cell y-dimension
float halfDivDX = 0.5/deltaX;
float halfDivDY = 0.5/deltaY;
float halfDivDZ = 0.5/deltaZ;
float deltaXSqr = deltaX*deltaX;
float deltaYSqr = deltaY*deltaY;
float deltaZSqr = deltaZ*deltaZ;
float epsilon0 = 0.5*deltaXSqr*deltaYSqr*deltaZSqr

/ (deltaXSqr + deltaYSqr + deltaZSqr);
float epsilonX = epsilon0/deltaXSqr;
float epsilonY = epsilon0/deltaYSqr;
float epsilonZ = epsilon0/deltaZSqr;
float dtDivDx = deltaT/deltaX;
float dtDivDy = deltaT/deltaY;
float dtDivDz = deltaT/deltaZ;
float dtDivDxDx = dtDivDx/deltaX;
float dtDivDyDy = dtDivDy/deltaY;
float dtDivDzDz = dtDivDz/deltaZ;

float denViscosity; // density viscosity, kappa
float denLambdaX = denViscosity*dtDivDxDx;
float denLambdaY = denViscosity*dtDivDyDy;

5.6 Implementing the Simplified 3D Model 277

float denLambdaZ = denViscosity*dtDivDzDz;
float denGamma0 = 1/(1 + 2*(denLambdaX + denLambdaY + denLambdaZ));
float denGammaX = denLambdaX*denGamma0;
float denGammaY = denLambdaY*denGamma0;
float denGammaZ = denLambdaZ*denGamma0;

float velViscosity; // velocity viscosity, nu
float velLambdaX = velViscosity*dtDivDxDx;
float velLambdaY = velViscosity*dtDivDyDy;
float velLambdaZ = velViscosity*dtDivDzDz;
float velGamma0 = 1/(1 + 2*(velLambdaX + velLambdaY + velLambdaZ));
float velGammaX = velLambdaX*velGamma0;
float velGammaY = velLambdaY*velGamma0;
float velGammaZ = velLambdaZ*velGamma0;

int numGaussSeidelIterations; // your choice;

// global functions
float InitialDensity (float x, float y, float z);
float SourceDensity (float x, float y, float z, float t);
Vector3 InitialVelocity (float x, float y, float z);
Vector3 SourceVelocity (float x, float y, float z, float t);

void SwapBuffers (float**** oldBuffer, float**** newBuffer);
void SwapBuffers (Vector3**** oldBuffer, Vector3**** newBuffer);

// local values
float x[imax], y[jmax], z[kmax];
float densityOld[kmax][jmax][imax];
float densityNew[kmax][jmax][imax];
Vector3 velocityOld[kmax][jmax][imax];
Vector3 velocityNew[kmax][jmax][imax];
float t = 0.0; // initial time

The simulation portion of the pseudocode is

Initialize(x, y, z, densityOld, densityNew, velocityOld,
velocityNew);

while (simulating)
{

// density update
UpdateDensitySource(t, x, y, z, densityOld, densityNew);
SwapBuffers(&densityOld, &densityNew);
UpdateDensityDiffusion(densityOld, densityNew);
SwapBuffers(&densityOld, &densityNew);
UpdateDensityAdvection(velocityOld, densityOld, densityNew);
SwapBuffers(&densityOld, &densityNew);

278 Chapter 5 Fluids and Gases

// velocity update
UpdateVelocitySource(t, x, y, z, velocityOld, velocityNew);
SwapBuffers(&velocityOld, &velocityNew);
UpdateVelocityDiffusion(velocityOld, velocityNew);
SwapBuffers(&velocityOld, &velocityNew);
UpdateVelocityAdvection(velocityOld, velocityNew);
SwapBuffers(&velocityOld, &velocityNew);

t = t + deltaT;
}

where the AdjustVelocity calls are now made inside any function that updates
the velocity field. This includes the functions Initialize, UpdateVelocitySource,
UpdateVelocityDiffusion, and UpdateAdvection. The idea is that any “consumer” of
the velocity field wants it to be divergence free.

The adjustment of velocity is

void AdjustVelocity (float*** velocity)
{

int i, j, k;

// Approximate the divergence of velocity.
float div[kmax][jmax][imax];
for (k = 1; k < kmax; ++k)
{

for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

div[k][j][i] =
halfDivDX*(velocity[k][j][i+1].x

- velocity[k][j][i-1].x) +
halfDivDY*(velocity[k][j+1][i].y

- velocity[k][j-1][i].y) +
halfDivDZ*(velocity[k+1][j][i].z

- velocity[k-1][j][i].z);
}

}
}

// Use zero-valued derivative on boundary to assign divergence.
for (k = 0; k <= kmax; ++k)
{

for (j = 0; j <= jmax; ++j)
{

div[k][j][0] = div[k][j][1];
div[k][j][imax] = div[k][j][imax-1];

}

5.6 Implementing the Simplified 3D Model 279

}
for (k = 0; k <= kmax; ++k)
{

for (i = 0; i <= imax; ++i)
{

div[k][0][i] = div[k][1][i];
div[k][jmax][i] = div[k][jmax-1][i];

}
}
for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

div[0][j][i] = div[1][j][i];
div[kmax][j][i] = div[kmax-1][j][i];

}
}

// Initialize phi.
float phi[kmax][jmax][imax];
for (k = 0; k <= kmax; ++k)
{

for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

phi[k][j][i] = 0;
}

}
}

// Numerically solve Poisson’s equation for phi. The
// boundary values remain zero, so there is no need to
// call a boundary update function.
for (int iter = 0; iter < numGaussSeidelIterations; ++iter)
{

for (k = 1; k < kmax; ++k)
{

for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

phi[k][j][i] = epsilon0*div[k][j][i] +
epsilonX*(phi[k][j][i+1]

+ phi[k][j][i-1]) +
epsilonY*(phi[k][j+1][i]

+ phi[k][j-1][i]) +

280 Chapter 5 Fluids and Gases

epsilonZ*(phi[k+1][j][i]
+ phi[k-1][j][i]);

}
}

}
}

// Adjust the velocity v’ = v + gradient(phi).
for (k = 1; k < kmax; ++k)
{

for (j = 1; j < jmax; ++j)
{

for (i = 1; i < imax; ++i)
{

velocity[k][j][i].x += halfDivDX*(phi[k][j][i+1]
- phi[k][j][i-1]);

velocity[k][j][i].y += halfDivDY*(phi[k][j+1][i]
- phi[k][j-1][i]);

velocity[k][j][i].z += halfDivDZ*(phi[k+1][j][i]
- phi[k-1][j][i]);

}
}

}
UpdateVelocityBoundary(velocity);

}

The initialization of density and velocity is

void Initialize (float* x, float* y, float* z,
float*** densityOld, float*** densityNew,
Vector3*** velocityOld, Vector3*** velocityNew)

{
for (int k = 0; k <= kmax; ++k)
{

z[k] = z0 + deltaZ*k;
for (int j = 0; j <= jmax; ++j)
{

y[j] = y0 + deltaY*j;
for (int i = 0; i <= imax; ++i)
{

x[i] = x0 + deltaX*i;
float density = InitialDensity(x[i], y[j], z[k]);
densityOld[k][j][i] = density;
densityNew[k][j][i] = density;
velocityOld[k][j][i] =

InitialVelocity(x[i], y[j], z[k]);
}

}
}

5.6 Implementing the Simplified 3D Model 281

AdjustVelocity(velocityOld);
CopyArray(velocityOld, velocityNew);

}

The update of density on the boundary is

void UpdateDensityBoundary (float*** density)
{

int i, j, k;

// x-faces (i = 0, i = imax)
for (k = 0; k <= kmax; ++k)
{

for (j = 0; j <= jmax; ++j)
{

density[k][j][0] = density[k][j][1];
density[k][j][imax] = density[k][j][imax-1];

}
}

// y-faces (j = 0, j = jmax)
for (k = 0; k <= kmax; ++k)
{

for (i = 0; i <= imax; ++i)
{

density[k][0][i] = density[k][1][i];
density[k][jmax][i] = density[k][jmax-1][i];

}
}

// z-faces (k = 0, k = kmax)
for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

density[0][j][i] = density[1][j][i];
density[kmax][j][i] = density[kmax-1][j][i];

}
}

}

The update of velocity on the boundary is

void UpdateVelocityBoundary (Vector3*** velocity)
{

int i, j, k;

// (v,w) zero derivatives on x-faces (i = 0, i = imax)
for (k = 0; k <= kmax; ++k)

282 Chapter 5 Fluids and Gases

{
for (j = 0; j <= jmax; ++j)
{

velocity[k][j][0].y = velocity[k][j][1].y;
velocity[k][j][0].z = velocity[k][j][1].z;
velocity[k][j][imax].y = velocity[k][j][imax-1].y;
velocity[k][j][imax].z = velocity[k][j][imax-1].z;

}
}

// (u,w) zero derivatives on y-faces (j = 0, j = jmax)
for (k = 0; k <= kmax; ++k)
{

for (i = 0; i <= imax; ++i)
{

velocity[k][0][i].x = velocity[k][1][i].x;
velocity[k][0][i].z = velocity[k][1][i].z;
velocity[k][jmax][i].x = velocity[k][jmax-1][i].x;
velocity[k][jmax][i].z = velocity[k][jmax-1][i].z;

}
}

// (u,v) zero derivatives on z-faces (k = 0, k = kmax)
for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

velocity[0][j][i].x = velocity[1][j][i].x;
velocity[0][j][i].y = velocity[1][j][i].y;
velocity[kmax][j][i].x = velocity[kmax-1][j][i].x;
velocity[kmax][j][i].y = velocity[kmax-1][j][i].y;

}
}

// u = 0 on x-faces
for (k = 0; k <= kmax; ++k)
{

for (j = 0; j <= jmax; ++j)
{

velocity[k][j][0].x = 0;
velocity[k][j][imax].x = 0;

}
}

// v = 0 on y-faces
for (k = 0; k <= kmax; ++k)
{

5.6 Implementing the Simplified 3D Model 283

for (i = 0; i <= imax; ++i)
{

velocity[k][0][i].y = 0;
velocity[k][jmax][i].y = 0;

}
}

// w = 0 on z-faces
for (j = 0; j <= jmax; ++j)
{

for (i = 0; i <= imax; ++i)
{

velocity[0][j][i].z = 0;
velocity[kmax][j][i].z = 0;

}
}

}

The updates of density and velocity sources are

void UpdateDensitySource (float t, float* x, float* y, float* z,
float*** densityOld, float*** densityNew)

{
for (int k = 0; k <= kmax; ++k)
{

for (int j = 0; j <= jmax; ++j)
{

for (int i = 0; i <= imax; ++i)
{

densityNew[k][j][i] = densityOld[k][j][i] +
deltaT*SourceDensity(x[i], y[j], z[k], t);

if (densityNew[k][j][i] < 0)
{

densityNew[k][j][i] = 0;
}

}
}

}
}

void UpdateVelocitySource (float t, float* x, float* y, float* z,
Vector3*** velocityOld, Vector3*** velocityNew)

{
for (int k = 0; k <= kmax; ++k)
{

for (int j = 0; j <= jmax; ++j)
{

for (int i = 0; i <= imax; ++i)

284 Chapter 5 Fluids and Gases

{
velocityNew[k][j][i] = velocityOld[k][j][i] +

deltaT*SourceVelocity(x[i], y[j], z[k], t);
}

}
}
AdjustVelocity(velocityNew);

}

The updates of density and velocity by diffusion are

void UpdateDensityDiffusion (Vector3*** densityOld,
Vector3*** densityNew)

{
for (int iter = 0; iter < numGaussSeidelIterations; ++iter)
{

for (int k = 1; k < kmax; ++k)
{

for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)
{

densityNew[k][j][i] =
denGamma0*densityOld[k][j][i] +
denGammaX*(densityNew[k][j][i+1]

+ densityNew[k][j][i-1]) +
denGammaY*(densityNew[k][j+1][i]

+ densityNew[k][j-1][i]) +
denGammaZ*(densityNew[k+1][j][i]

+ densityNew[k-1][j][i]);

}
}

}
UpdateDensityBoundary(densityNew);

}
}

void UpdateVelocityDiffusion (Vector3*** velocityOld,
Vector3*** velocityNew)

{
for (int iter = 0; iter < numGaussSeidelIterations; ++iter)
{

for (int k = 1; k < kmax; ++k)
{

for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)

5.6 Implementing the Simplified 3D Model 285

{
velocityNew[k][j][i] =

velGamma0*velocityOld[k][j][i] +
velGammaX*(velocityNew[k][j][i+1]

+ velocityNew[k][j][i-1]) +
velGammaY*(velocityNew[k][j+1][i]

+ velocityNew[k][j-1][i]) +
velGammaZ*(velocityNew[k+1][j][i]

+ velocityNew[k-1][j][i]);
}

}
}
UpdateVelocityBoundary(velocityNew);

}
AdjustVelocity(velocityNew);

}

The updates of density and velocity by advection are

void UpdateDensityAdvection (Vector3*** velocityOld,
float*** densityOld, float*** densityNew)

{
for (int k = 1; k < kmax; ++k)
{

for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)
{

float iPrevious =
i - dtDivDx*velocityOld[k][j][i].x;

Clamp(iPrevious, 0.5, imax - 0.5);
int i0 = Floor(iPrevious);
int i1 = i0 + 1;
float a1 = iPrevious - i0;
float a0 = 1 - a1;

float jPrevious =
j - dtDivDy*velocityOld[k][j][i].y;

Clamp(jPrevious, 0.5, jmax - 0.5);
int j0 = Floor(jPrevious);
int j1 = j0 + 1;
float b1 = jPrevious - j0;
float b0 = 1 - b1;

float kPrevious =
k - dtDivDz*velocityOld[k][j][i].z;

Clamp(kPrevious, 0.5, kmax - 0.5);
int k0 = Floor(kPrevious);

286 Chapter 5 Fluids and Gases

int k1 = k0 + 1;
float c1 = kPrevious - k0;
float c0 = 1 - c1;

densityNew[k][j][i] =
c0*(

b0*(a0*densityOld[k0][j0][i0] +
a1*densityOld[k0][j0][i1]) +
b1*(a0*densityOld[k0][j1][i0] +
a1*densityOld[k0][j1][i1])

)
+
c1*(

b0*(a0*densityOld[k1][j0][i0] +
a1*densityOld[k1][j0][i1]) +
b1*(a0*densityOld[k1][j1][i0] +
a1*densityOld[k1][j1][i1])

);
}

}
}
UpdateDensityBoundary(densityNew);

}

void UpdateVelocityAdvection (Vector3*** velocityOld,
Vector3*** velocityNew)

{
AdjustVelocity(velocityOld);

for (int k = 1; k < kmax; ++k)
{

for (int j = 1; j < jmax; ++j)
{

for (int i = 1; i < imax; ++i)
{

float iPrevious =
i - dtDivDx*velocityOld[k][j][i].x;

Clamp(iPrevious, 0.5, imax - 0.5);
int i0 = Floor(iPrevious);
int i1 = i0 + 1;
float a1 = iPrevious - i0;
float a0 = 1 - a1;

float jPrevious =
j - dtDivDy*velocityOld[k][j][i].y;

Clamp(jPrevious, 0.5, jmax - 0.5);
int j0 = Floor(jPrevious);

5.6 Implementing the Simplified 3D Model 287

int j1 = j0 + 1;
float b1 = jPrevious - j0;
float b0 = 1 - b1;

float kPrevious =
k - dtDivDz*velocityOld[k][j][i].z;

Clamp(kPrevious, 0.5, kmax - 0.5);
int k0 = Floor(kPrevious);
int k1 = k0 + 1;
float c1 = kPrevious - k0;
float c0 = 1 - c1;

velocityNew[k][j][i] =
c0*(

b0*(a0*velocityOld[k0][j0][i0] +
a1*velocityOld[k0][j0][i1]) +
b1*(a0*velocityOld[k0][j1][i0] +
a1*velocityOld[k0][j1][i1])

)
+
c1*(

b0*(a0*velocityOld[k1][j0][i0] +
a1*velocityOld[k1][j0][i1]) +
b1*(a0*velocityOld[k1][j1][i0] +
a1*velocityOld[k1][j1][i1])

);
}

}
}
UpdateVelocityBoundary(velocityNew);
AdjustVelocity(velocityNew);

}

Source Code
Fluids3D

An implementation of this algorithm is provided on the CD-ROM. The physics
library has a class Fluids3Da that implements the three-stage update of [Sta03]. It
also has a class Fluids3Db that has a single-stage update combining sources, diffusion,
and advection, but it is only conditionally stable. A 24× 24× 24 grid is used. On a
single 3 GHz core, the three-stage algorithm runs at 20 frames per second. The density
is displayed using billboarded particles. The single-state algorithm runs at 33 frames
per second.

Figure 5.5 – also Color Plates 5.5(ab) and 5.5(cd) – shows some screen captures
from the application running with the Fluid3Dbclass. The lattice is a 243 grid. The ren-
dering uses cheesy looking particle billboards, each having a texture with a solid disk
in the RGB channels and an alpha channel whose value is proportional to the density.
The particles are sorted each time the camera moves or scene rotated, which really
slows down the rendering. GPU support or use of multiple CPU cores is called for.

288 Chapter 5 Fluids and Gases

Figure 5.5 Image (a) [upper left]: The initial density is a spherical blob of constant density. Image
(b) [upper right]: The evolved density after a small period of time. The only force is
due to a spike of wind moving from the right-center of the grid; the scene has been
rotated slightly so you can see the portion of the sphere on which the wind interacted
first. There are no density sources or sinks. You can see the material being pushed
out of the sphere by the wind. Image (c) [lower left]: Eight vortices were added to the
grid, which causes the density to swirl around a bit. The scene was rotated so you can
see the tunnel carved out by the wind. Image (d) [lower right]: The lower-left grid is
allowed to evolve further. (See also Color Plates 5.5(ab) and 5.5(cd).)

The images in the figure are gray scale. The application actually allows you to display
the particles in pseudocolor using a rainbow palette. It is easier to see how the density
evolves when using the pseudocolor.

5.6 Implementing the Simplified 3D Model 289

Class Project. Here is a class project that will take some time. Implement the single-
stage update algorithm for a 3D fluid on the GPU. The 2D fluid required writing to 2D
render targets in a natural way; that is, samplers evaluated the state textures at a point
and its neighboring points in order to estimate derivatives. The graphics APIs do not
have the concept of a 3D render target, so the derivative estimation does not naturally
map into a simple shader program using a 2D render target. The trick is to store the 3D
state texture in a 2D render target as an array of 2D textures. For example, if you have
a 22n× 22n× 22n state grid, map it to a 2n× 2n array of tiles, each tile a z-slice of size
22n × 22n. Observe that this is not the standard lexicographical ordering that maps a
grid point (x, y , z) to linear memory as i = x + b0(y + b1z), when the 3D texture has
dimensions b0× b1× b2. The finite-difference estimates for x- and y-derivatives are
computed using neighboring texel values. However, the finite-difference estimates for
z-derivatives require texel values that are not immediate neighbors. A z-offset texture
must be provided. The pixel shader looks up the z-offsets first and then uses these to
form texture coordinates to look up the corresponding state values.

Figure 5.6 (Continued)

290 Chapter 5 Fluids and Gases

Figure 5.6 Image (a) [top] shows the initial 128× 128× 64 gray scale image (a CT image). The
boundary voxels are drawn in light gray. The z = 0 slice is the upper left tile. The
z = 63 slice is the lower right tile. Image (b) [bottom] shows the 3D image after a
number of blurring operations. (See also Color Plate 5.6.)

Source Code
GpuGaussianBlur3

As a hint for the class project, this sample application implements Gaussian blurring
for 3D images on the GPU. The framework for generating a 2D tiled render target
from a 3D image is part of Wild Magic. On a 3 Ghz core and an NVIDIA GeForce
9600 GT graphics card, the application runs at 210 frames per second. Figure 5.6 –
also Color Plate 5.6 – shows a couple of screen captures.

5.7 Variations of the Simplified Model

The simplified model of equation (5.87) may be enhanced to obtain other visually
realistic behavior in the simulation. This section describes a few variations.

5.7 Variations of the Simplified Model 291

5.7.1 Vorticity Confinement and Vortex Particles

The finite-difference approximations led to a velocity field that is not necessarily
divergence free. The Helmholtz decomposition was used to adjust the velocity field
by subtracting out the gradient field, leaving only a curl field (that is divergence free)
and is mass preserving. Another consequence of the finite-difference approximations
is that the system can lose energy. This manifests itself in that any vortex behavior
of the fluid is dampened over time. Instead, [FSJ01] introduced a modification that
detects where the curl of velocity is large (curl is what causes the vorticity/circulation)
and adds energy back into the system by including a force that encourages the velocity
field to have vorticity. This process is referred to as vorticity confinement.

Another approach to modeling the vorticity behavior involves having separate sets
of particles, those for the fluid (smoke) and those to model the vortex behavior. The
latter set is referred to as vortex particles. The idea is to construct and evolve curves
that “carry” the vorticity. See [SRF05] for details.

5.7.2 Separate Pressure Term

A simple change is to keep the pressure term separate from the force term

vt + (v ·∇)v = ν∇2v− 1

ρ
∇p+ f

The simulation can allow for user input to control the pressure within the fluid, han-
dling this separately from forces such as gravity (that are still encapsulated by the
f term).

5.7.3 Omit Diffusion Terms

Some arguments have been made to ignore the density diffusion and velocity diffu-
sion terms of equation (5.87). In theory, viscosity causes dampening of the fluid flow.
However, the use of implicit numerical solvers for the differential equations also cause
a dampening effect. The dampening of the solver helps with stability, as does the vis-
cosity and diffusion terms, so in practice there might not be a need to have dampening
from both processes.

5.7.4 Density and Velocity Dissipation

It is possible to make the density dissipate over time by including another term in the
density differential equation,

∂ρ

∂t
+ (v ·∇)ρ =−λρ+ κ∇2ρ+ s

292 Chapter 5 Fluids and Gases

for a positive constant λ. In absence of the other terms, we have ρt =−λρ, whose
solution is

ρ(x, t)= ρ0(x)e−λt

As t increases, the density decreases. Such an effect might be useful for making smoke
or clouds dissipate over time.

It is also possible to have a dissipation-like term in the velocity differential equa-
tion. This is accomplished by keeping the term involving the source–sink density
function times velocity rather than absorbing it into the f term,

vt + (v ·∇)v= ν∇2v− s

ρ
v+ f

If the density has only source contributions (and no density sink), then s/ρ ≥ 0 and
the extra term acts as a velocity dissipation, much like that described for density
dissipation.

5.7.5 Include Temperature

It is possible to include conservation of energy in the physical modeling. The deriva-
tion is complicated and not provided here. A simplified equation that involves the
temperature T of the system is

∂T

∂t
+ (v ·∇)T = c∇2T +H

where c is a nonnegative constant and H is a heat source–sink function. Just as for
density and velocity, the left-hand side is the material derivative of the temperature.
The right-hand side has a diffusion term and a term that models external heat added
or subtracted in the system.

For a smoke simulation, it is intuitively clear that when you heat the air, the hot air
rises and induces upward force on the smoke particles. Similarly, when you cool the
air, a downward force is applied to the particles. The force from heating or cooling the
air causes the smoke velocity to change, so the pressure term in the velocity differential
equation should be included and contain a force whose magnitude is proportional to
the difference between the temperature of the fluid and the ambient temperature.

5.7.6 Compressible Flow

We made the assumption that the velocity field is incompressible; that is, ∇ · v= 0.
This assumption may be discarded to produce a compressible fluid. For example, see
[YOH00].

5.7 Variations of the Simplified Model 293

5.7.7 Obstacles in the Fluid Region

The implementations of Sections 5.5 and 5.6 involved a lattice of cells. The fluid is free
to move about the region into and out of any cell it likes. In a more realistic situation,
the fluid flow might be obstructed by an obstacle in the region. For example, imagine
modeling the flow of a river (2D) within a rectangular strip. You might want to place
rocks in the river to impede the flow. The fluid naturally will encounter the rocks and
flow around them.

It is not too difficult to modify the implementations to allow the placement of
obstacles. Additional storage is used for a Boolean variable that is true when a cell is
an obstacle or falsewhen it is not. The cells that are marked true and have at least one
immediate neighbor that is marked false is a “boundary cell.” Such cells must also be
assigned boundary values. The finite differences are used to approximate state at cells
marked false and whose immediate neighbors (4 in 2D and 6 in 3D) are marked
false. Inside the loops over the cells, the Boolean conditions are tested to decide
whether you apply the finite difference. The boundary update functions must also
test the Boolean conditions to decide whether you assign/compute a boundary value.

5.7.8 Moving Boundaries and Multiple Fluids

The simulations discussed here involve a region that is invariant over time. The
boundaries are always in the same place. Consider, though, modeling water is poured
onto a flat surface and that flows over the surface. The surface below the water acts as
part of the boundary, but part of the boundary is also around the leading edge of the
water puddle. This edge varies with time, which makes the simulation more difficult
to implement.

Even more complicated is to have a simulation involving multiple fluids. The dif-
ferent species of fluid are separated from each other by boundaries that vary with time,
and if the fluids are poured onto a surface, we have the additional complications to
deal with regarding boundaries.

In both cases, allowing for moving boundaries makes the simulation difficult.
I consider this beyond the scope of the book, but encourage you to study research
papers that attempt to solve the inherent problems and provide simulations. The
paper [Sta03] mentions a few early approaches. [FF01] and [EMF02] model water
and air (both fluids) using a mixture of particles and level sets (level-set methods are
a powerful technique; see the books [Set99] and [OF03]). [NFJ02] models fire and air.

5.7.9 Finding Papers on Fluid Simulation

The field of fluid simulation has grown substantially, so much that it is not difficult to
perform an Internet search on some of the terms introduced in this chapter and find
lots of papers to read. It is difficult, however, to read all those papers and still have
a life…

294 Chapter 5 Fluids and Gases

One of the topics not discussed here is smoothed particle hydrodynamics (SPH),
which was introduced in the field of astrophysics by [Mon92]. A detailed master’s
thesis on the topic applied to fluids is [Ves04]. The paper [MCG03] discusses the
application of SPH to fluid simulation and addresses many of the inherent issues,
including rendering aspects of the simulation. More recently, here is an SPH approach
that avoids solving a pressure Poisson’s equation (much like the divergence Poisson’s
equation used to correct the velocity field) yet allows large time steps while retaining
stability [SP09].

[SB08] introduces an approach that uses typical fluid solvers to generate low-
resolution behavior, but then adds on top of this some high-resolution turbulent
behavior. A mixture of particles, double-density relaxation, and mass–springs is pre-
sented in [CBP05]. A lot of attention has been given lately to simulations that run
with the aid of GPUs. For example, see [HKK07], [ZSP08], and [Har08].

These are just a handful of papers you can find by searching. Happy hunting.

C h a p t e r 6
Physics Engines

We arrive at the topic I believe most readers will think of as the heart of game
physics – the physics engine. This chapter describes a general system for han-

dling a collection of rigid bodies, including collision detection and collision response.
The system uses Newton’s second law of motion, F=ma, to control the motion of
objects. The constraint forces are unknown to the system and must be calculated
based on the information that is provided by the collision detection system. A nat-
ural requirement for a general system is that the rigid bodies never interpenetrate.
A model for satisfying the requirement is the impulse-based (or acceleration-based)
approach that Brian Mirtich [Mir96b] and David Baraff [Bar01] made popular, but
by all means this is not the only approach one can take. Velocity-based approaches
are found in [Ani97], [AP97], and [Cat05]. Position-based approaches are found in
[MHHR06] and [Mül08].

My goal is to go into significant detail about the impulse-based approach so
that you

■ Understand the layout of a general physics engine,

■ See what complications arise, and

■ Learn to evaluate its strengths and weaknesses.

I will also describe in lesser detail the velocity-based and position-based approaches.
Other approaches to building a robust physics engine are based on trying to
fix the weaknesses of the previous generation engine. Once you understand the
impulse-based engine, you should be able to start experimenting with modifications;

© 2010 by Elsevier Inc. All rights reserved. 295
DOI: 10.1016/B978-0-12-374903-1.00006-2

296 Chapter 6 Physics Engines

references to other approaches are provided, so you have a nearly endless supply of
ideas to investigate.

A physics engine naturally partitions the physical simulation into two phases,
collision detection and collision response. Collision detection refers to the process of
determining if two bodies are currently intersecting or will intersect at a future time.
Even though we are concerned with nonpenetration, an implementation has to deal
with penetration due to numerical round-off errors. A collision detection system must
be prepared to deal with all cases and report time-zero intersections and/or penetra-
tions when they occur. The time of intersection is important, especially in the case
of moving objects that are currently not intersecting but will do so at a later time.
The first such time is called the contact time. In many situations, just knowing that
two objects will intersect is sufficient information. I refer to this as a test-intersection
query, the end result a Boolean value: true if an intersection will occur, false if not. In
other situations we will want to know where the objects intersect at the time of contact.
The set of intersection points is referred to as the contact set or contact manifold, the
latter term appropriate when the intersection set is not a finite set but a continuum of
points. For example, the intersection set of a box sitting on a table is the set of points
on a face of the box. When the contact set is desired, I refer to this as a find-intersection
query. As you would expect, in most cases a find intersection query is more expensive
than a test intersection query for a given pair of objects.

Collision detection is about determining the contact time and the contact set for
two moving objects. At the time they intersect we need to decide how the objects will
continue moving, the collision response so to speak. For example, if a rigid ball strikes
a flat surface at an angle, you most likely want the ball to bounce away from the surface.
In particular, you will want to reflect the velocity vector through the normal of the
surface so that the angle of incidence is equal to the angle of reflection. The method
of response falls into two categories based on how the objects collide: colliding contact
and resting contact.

General analysis of two rigid bodies is quite intractable for real-time game physics.
The geometric nature of the bodies can be quite complicated, preventing any reason-
able attempt at modeling their dynamics. To simplify matters, we will restrict our
attention to rigid bodies that are convex polyhedra.

This chapter describes the various stages of a physics engine. At its highest level,
the application layer needs to control when the physics engine is executed. The game
loop and various ticks, including the physics tick, are described in Section 6.1.

An all-pairs comparison of interactable objects in a game application is expen-
sive. Moreover, it is usually not necessary because not all objects interact with all
other objects during the same physics frame. To rule out pairs of objects that can-
not interact during a frame, Section 6.2 describes a collision culling algorithm that
uses axis-aligned bounding boxes and space–time coherency.

The collision culling algorithm of Section 6.2 is referred to as a broad-phase
algorithm. It uses coarse-fitting bounding volumes for the objects. If the bounding
volumes of two objects are not intersecting, then the objects are not intersecting.
When the bounding volumes intersect, the objects still might not intersect, which

6.1 The Physics Tick 297

is likely the case for coarse-fitting bounding volumes. As a medium-phase algorithm,
tighter-fitting bounding volumes for the objects can be used. If two such bounding
volumes do not intersect, then the objects do not intersect. Section 6.3 describes var-
ious bounding volumes and the corresponding test-intersection queries that are used
to determine if (and not where) the bounding volumes intersect. In applications that
have a limited number of interacting objects, the broad-phase algorithm might be
skipped completely in favor of only a medium-phase algorithm.

As mentioned previously, we consider rigid bodies that are convex polygons or
convex polyhedra. A narrow-phase algorithm is used to determine when (contact time)
and where (contact set) the polyhedra intersect. Section 6.4 describes some of the
ideas used for determining intersection of convex polyhedra.

Once the contact time and contact sets are known, the collision response
must occur. This is inarguably the most complicated part of the physics engine.
Section 6.5 describes how the rigid bodies move about when unconstrained. This
gives you a sense of the mathematics necessary to formulate the equations of motion.
Constrained motion involves the constraints implied by the contact set and the
equations of motion. Section 6.6 describes in detail the impulse-based dynamics.
Section 6.7 is a summary of velocity-based dynamics.

6.1 The Physics Tick

A typical game application has a top-level game loop that executes until the user
terminates the game. For example, the game loop might be structured as follows:

repeat
gameLogic.Tick(currentTime);
inputDevices.Tick(currentTime);
physics.Tick(currentTime);
network.Tick(currentTime);
audio.Tick(currentTime);
graphics.Tick(currentTime);
userInterface.Tick(currentTime);

until game_over;

Each tick function represents the execution of one of the subengines of the game
engine. The order of the ticks shown here is arbitrary, but in an actual game you
probably will have constraints that cause some implied ordering.

The game logic tick encapsulates the game play itself. Of course, the complexity
of this tick depends on the game itself. The input devices tick will involve processing
events such as keyboard and gamepad input. The network tick (if any) encapsulates
the network activities required for the game. For example, an online racing game will
require your current vehicle information to be transmitted to all opponents in the
game. Game statistics and leaderboards are also transmitted and received by the net-
work layer. The audio tick (if any) encapsulates 2D sound and/or 3D sound. Some of

298 Chapter 6 Physics Engines

these sounds might be triggered based on the state of other ticks. For example, if your
racing vehicle strikes another vehicle, this will trigger collision sounds that must be
played by the audio system. The graphics tick involves rendering of the 3D environ-
ment and objects. The user interface tick displays menus, buttons, controls, and vari-
ous information (game statistics and leaderboards) as overlays on the rendered scene.

The physics tick is what we are interested in. An abstract formulation is as follows.
The axis-aligned bounding boxes (AABBs) are part of the broad-phase algorithm. The
bounding volumes (BVs) are part of the medium-phase algorithm.

physics.Initialize:
assign an AABB to each object that can interact;

physics.Tick:
// collision culling
update AABBs and compute overlapping pairs;

// optional collision culling
remove overlapping pairs using BV tests;

// compute contact points, resolve interpenetrations
do collision detection;

// resolve constraints
update physics state;

// solve equations of motion
move objects;

The narrow-phase algorithms are part of the “do collision detection” operation.
The order of the steps in the physics tick is reasonable for an application that is sin-

gle threaded. However, the collision culling using AABBs can be quite expensive and
moved to a separate unit of execution (a dedicated core or processor) to speed up the
execution. In this case, the order will change slightly. Section 6.2 includes discussions
about parallel execution of the AABB-based collision culling, including an implemen-
tation on a separate core of a CPU (the cores share memory) and on a specialized
processor (the processor has its own local memory).

6.2 Collision Culling

In a graphics system a standard approach to improving the performance of rendering
is to avoid drawing objects that are outside the view frustum. This process is called
culling. The classic algorithm is to associate a bounding volume with each drawable
object and use plane-at-a-time culling. For each frustum plane, the bounding vol-
ume is tested to see whether it is on the side outside the frustum. If so, then the
object contained by it is outside the frustum and need not be drawn. If the bounding
volume is not outside any of the planes, the object is drawn. This is not an exact culling

6.2 Collision Culling 299

Not culled Not culled

Culled
View frustum

Figure 6.1 Culling of bounding spheres against a view frustum.

algorithm because the bounding volume can be outside the frustum even though not
outside any of the six planes. Figure 6.1 illustrates this for bounding spheres.

However, any culling that occurs is better than attempting to draw all objects in
the system. Of course, it is essential that the time it takes to cull an object is less than
the time spent by the rendering system transforming its triangles into view space and
clipping, only to find out that all triangle vertices are outside the frustum. The essence
of view frustum culling is that a bounding volume is a simple geometric entity for
which intersection testing with the frustum is much cheaper than intersection testing
between the original object and the frustum. The performance of collision detection
systems can be enhanced using culling in a similar manner.

One algorithm for determining whether two convex polyhedra are intersecting
uses the method of separating axes. If the polyhedra are not intersecting, we will find
that out once we project onto one of the N0+N1 +N0N1 potential separating direc-
tions, where polyhedra i has Ni faces. An object in the system tends to interact with
only a small subset of the total objects, so you expect most pairs of objects at any given
time not to be intersecting. The system can spend a lot of time telling you something
you already know. Using view frustum culling as motivation, we should have a bound-
ing volume per convex polyhedra that is simpler in structure and allows us to quickly
determine whether two bounding volumes are (or are not) intersecting.

A drawback of the method of separating axes is that the number of potential sep-
arating can be quite large–quadratic in the number of polyhedra vertices. A better
alternative for such polyhedra is to compute distance between them using the GJK
algorithm [GJK88].

Section 6.4 presents discussions of both the method of separating axes and of the
GJK algorithm. This section is about collision culling that uses space-time coherence
to speed up the execution.

6.2.1 Culling with Bounding Spheres

An obvious choice for a bounding volume of a convex polyhedron is a sphere. Given
spheres with centers Ci and radii ri for i = 0, 1, the spheres do not intersect whenever

300 Chapter 6 Physics Engines

the distance between their centers is larger than the sum of their radii. The algebraic
condition for nonintersection is |C1− C0| > r0+ r1. This should look familiar to you
because it is the same form as the inequality for specifying the separation of two pro-
jection intervals on a separating axis. The set of potential separating axes for a sphere is
the set of all directions. When comparing two spheres, we need only project onto a line
containing both centers. The separation test in practice is implemented using squared
quantities, |C1− C0|2 > (r0+ r1)

2, to avoid the expensive square root calculation of
distance between centers.

Suppose our environment has n convex polyhedra. Let cp denote the average cost
of the intersection testing for two convex polyhedra. Testing all pairs, the total cost
for a test-intersection query is

c1 = n(n− 1)

2
cp (6.1)

Let cs denote the cost of the intersection testing for two spheres. We still compute
an all-pairs, test-intersection query, this time for spheres. If two spheres intersect,
the contained polyhedra might or might not intersect. We still have to perform the
polyhedra intersection test in this case. If m pairs of spheres intersect where 0≤m ≤
n(n− 1)/2, the total cost for a test-intersection query is

c2 = n(n− 1)

2
cs +mcp (6.2)

The culling system needs to be more efficient, so we require that c2 < c1. This happens
when

cs

cp
< 1− 2m

n(n− 1)

If the expected number of separating axis tests for a pair of polyhedra is k where
1 ≤ k ≤N0 +N1+N0N1, then we expect the ratio to be cs/cp = 1/k to a first approx-
imation. Consequently, c2 < c1 implies

m <

(
1− 1

k

)
n(n− 1)

2

That is, the sphere-based culling system is more efficient as long as the number of
intersecting spheres does not exceed the fraction (1− 1/k) of total objects in the
system.

Despite the benefits from sphere-based culling, the system requires a comparison
of all pairs of n objects. The objects are moving about, so the comparisons occur at
each time step. When n is large, this culling system still might not be enough to rem-
edy the sluggishness of the application. Another improvement is called for, one that
uses coherence of the objects in the system. We have two possibilities for coherence,
spatial coherence where we take advantage of knowledge about the spatial locations
of the objects in the system (locality in space), and temporal coherence where we take

6.2 Collision Culling 301

advantage of the fact that with a small change in time, the new state of the system does
not deviate much from its old state (locality in time).

We may modify the sphere-based culling to illustrate how to use spatial coherence
to improve the performance of the collision system. A simple idea is to decompose the
space known to be occupied by all the objects during the life of the simulation. If the
total space is an axis-aligned box, we decompose it into a regular lattice of disjoint,
smaller axis-aligned boxes. Each box maintains a list of spheres that are fully or par-
tially inside the box. Figure 6.2 illustrates for a collection of 8 spheres and a partition
into 4 boxes.

If Bij denotes the bin in row i and column j, the bins are B00 = {A, C , D, E}, B01 =
{B, D, E}, B10 = {E , F}, and B11 = {E , F , G}. As you can see, if a sphere overlaps any
box in the decomposition, it is placed into the list of spheres for that bin. For the sake
of argument, suppose that we have b bins labeled Bi and the spheres are uniformly
distributed in the bins. The number of spheres in each bin is n/b, where n is the total
number of spheres. Let mi denote the number of intersecting spheres in bin Bi . The
cost for the sphere-based culling in bin i is

(n/b)(n/b− 1)

2
cs +mi cp

The total cost is

c3 =
b∑

i=1

(n/b)(n/b− 1)

2
cs +mi cp = n(n/b− 1)

2
cs +mcp (6.3)

A

C

D
B

E

G

H
F

0

0

1

1

Figure 6.2 Decomposition of space to reduce the number of comparisons between pairs of
objects.

302 Chapter 6 Physics Engines

where m =∑b
i=1 mi . The cost of the sphere comparisons in c3 is approximately 1/b

that of the cost in c2 as shown in equation (6.2). If b is a small constant compared to n,
the cost of sphere comparisons in equations (6.2) and (6.3) are both O(n2). However,
if we choose b to be on the order of n, say b = rn for some fraction r ∈ (0, 1), then
the cost of sphere comparisons is ((1/r − 1)/2)ncs , which is O(n) in time, something
quite desirable in a collision system.

Unfortunately, the analysis for the binning is not complete. We have forgotten to
include the cost of determining which bins contain the spheres. The algorithm itself
requires testing for overlap between a sphere with center C and radius r and an axis-
aligned box [xmin, xmax]× [ymin, ymax]× [zmin, zmax]. To test for overlap it is sufficient
to compute the distance from the center of the sphere to the solid box and show that
it is less than the radius. The algorithm is listed next. The Sphere class is assumed to
have members C for the center and r for the radius. The AxisAlignedBox class has six
members for the minimum and maximum values on the coordinate axes.

bool TestIntersection (Sphere S, AxisAlignedBox B)
{

double sqrDist = 0.0, d;

if (S.C.x < B.xmin)
{

d = S.C.x - B.xmin;
sqrDist += d * d;

}
else if (S.C.x > B.xmax)
{

d = S.C.x - B.xmax;
sqrDist += d * d;

}

if (S.C.y < B.ymin)
{

d = S.C.y - B.ymin;
sqrDist += d * d;

}
else if (S.C.y > B.ymax)
{

d = S.C.y - B.ymax;
sqrDist += d * d;

}

if (S.C.z < B.zmin)
{

d = S.C.z - B.zmin;
sqrDist += d * d;

}
else if (S.C.z > B.zmax)

6.2 Collision Culling 303

{
d = S.C.z - B.zmax;
sqrDist += d * d;

}

return sqrDist < S.r * S.r;
}

The return value is true whenever the sphere intersects the box and the intersection
has positive volume. The cost of this test is denoted ct , a relatively small cost. The
naive algorithm for determining the bins containing the spheres just iterates over all
spheres and tests each sphere against all boxes, a double loop, leading to a cost of bnct .
The cost of the sphere-based culling with binning is now

c4 = n(n/b− 1)

2
cs +mcp + bnct (6.4)

We argued earlier that to make the cost of sphere comparisons O(n), we needed b = rn
for some fraction r . Unfortunately, this makes the cost of binning O(n2). This is to be
expected: The more bins you select, the cheaper the cost of sphere comparisons, but
the more expensive the cost of deciding which bins contain the spheres.

Exercise
6.1

Develop a more efficient algorithm than the naive one for determining which bins
are intersected by a sphere. How does the cost equation (6.4) change with your new
algorithm? ■

In a dynamic simulation, the polyhedra (and spheres) will move each time step
of the simulation. The binning algorithm can be applied at each step if you so desire,
but we can do better by modifying the algorithm to take advantage of temporal coher-
ence. When the simulation is initialized we can determine which boxes the spheres
intersects. On the next step of the simulation the spheres are moved. Under reason-
able assumptions on the speeds of the objects, the maximum distance traveled by the
spheres should be small compared to the dimensions of a box in the partition, or at
least no worse than a couple of box extents. The set of candidate boxes that a sphere
now intersects should be quite small, restricted to the current boxes that the sphere
intersects and a small ring of neighboring boxes. The set size is constant, compared
to the total number of spheres in the system, so we can update for each bin the set of
spheres overlapping it in O(n) time.

Exercise
6.2

Develop an efficient algorithm that updates each bin’s set of spheres overlapping
it. (Hint : Use a breadth-first search starting with the current box containing the
sphere.) ■

Exercise
6.3

Write a computer program to implement sphere-based culling as described in this
section. The program should use binning to take advantage of spatial coherence and
should efficiently update the overlap information of the bins to take advantage of
temporal coherence. ■

304 Chapter 6 Physics Engines

One final issue is to be mentioned: The convex polyhedra are both translated and
rotated at each time step of the simulation. The bounding spheres after the motion
still must be bounds. Depending on how you chose your spheres, you might have to
update the bounding spheres for each time step, adding yet one more term to the cost
equation. However, we can avoid this extra cost by choosing the bounding sphere cen-
ter to be the center of mass of the polyhedron. No matter how the polyhedron rotates
about its center of mass, the bounding sphere will contain it. Consequently, the update
of the bounding sphere requires translating its center, the exact same translation that
is applied to the polyhedron.

6.2.2 Culling with Axis-Aligned Bounding Boxes

Here we investigate another culling system that uses both spatial and temporal coher-
ence. This one performs particularly well in practice. To each convex polyhedron,
we associate an AABB. If two AABBs do not intersect, then the convex polyhedra
contained by them do not intersect. If the AABBs do intersect, we then test whether
the enclosed polyhedra intersect. Of course, this is the same approach we used for
bounding spheres.

We have the same issues to deal with as we did for sphere-based culling. Each
time step the convex polyhedra move, their AABBs move. First, we need to update
the AABB to make sure it contains the polyhedron. When we used a sphere whose
center is the center of mass, only a translation was applied to the center since the
sphere is guaranteed to contain the polyhedron regardless of its orientation. This is
not the case for AABBs. If the polyhedron rotates, the current AABB is not necessarily
a bound and we need to compute a new one. Certainly, an iteration over the vertices
of the newly moved polyhedron may be used to compute the extremes along each
coordinate axis, but if we have added the fast extremal query support to the convex
polyhedra discussed earlier, we can use six queries to compute the AABB.

Second, once the AABBs are updated for all the polyhedra we expect that the inter-
section status of pairs of polyhedra/AABBs has changed – old intersections might no
longer exist, new intersections might now occur. Spatial and temporal coherence will
be used to make sure the update of status is efficient.

Source Code
IntersectingIntervals

Intersecting Intervals

The idea of determining intersection between AABBs is based on sorting and update
of intervals on the real line, a one-dimensional problem that we will analyze first. The
method we describe here is mentioned in [Bar01]. A more general discussion of inter-
sections of rectangles in any dimension is provided in [PS85]. Consider a collection of
n intervals Ii = [bi , ei] for 1≤ i ≤ n. The problem is to efficiently determine all pairs
of intersecting intervals. The condition for a single pair Ii and Ij to intersect is bj ≤ ei

and bi ≤ ej . The naive algorithm for the full set of intervals just compares all possible
pairs, an O(n2) algorithm.

6.2 Collision Culling 305

A more efficient approach uses a sweep algorithm, a concept that has been used
successfully in many computational geometry algorithms. First, the interval end-
points are sorted into ascending order. An iteration is made over the sorted list (the
sweep) and a set of active intervals is maintained, initially empty. When a beginning
value bi is encountered, all active intervals are reported as intersecting with interval Ii

and Ii is added to the set of active intervals. When an ending value ei is encountered,
interval Ii is removed from the set of active intervals. The sorting phase is O(n log n).
The sweep phase is O(n) to iterate over the sorted list, clearly asymptotically faster
than O(n log n). The intersecting reporting phase is O(m) to report the m intersect-
ing intervals. The total order is written as O(n log n+m). The worst case behavior
is when all intervals overlap, in which case m =O(n2), but for our applications we
expect m to be relatively small. Figure 6.3 illustrates the sweep phase of the algorithm.

The sorted interval endpoints are shown on the horizontal axis of the figure.
The set of active intervals is initially empty, A = ∅. The first five sweep steps are
enumerated as follows:

1. b3 encountered. No intersections reported because A is empty. Update A = {I3}.
2. b1 encountered. Intersection I3 ∩ I1 is reported. Update A = {I3, I1}.
3. b2 encountered. Intersections I3 ∩ I2 and I1 ∩ I2 reported. Update A = {I3, I1, I2}.
4. e3 encountered. Update A = {I1, I2}.
5. e1 encountered. Update A = {I2}.

The remaining steps are easily stated and are left as an exercise.
A warning is in order here: The sorting of the interval endpoints must be han-

dled carefully when equality occurs. For example, suppose that two intervals [bi , ei]

I5

I4

I3

I2

I1

b3 b1 b2 e3 e1 b5 b4 e5 e2 e4

Figure 6.3 The sweep phase of the algorithm.

306 Chapter 6 Physics Engines

and [bj , ej] intersect in a single point, ei = bj . If the sorting algorithm lists ei before
bj , when ei is encountered in the sweep we remove Ii from the set of active intervals.
Next, bj is encountered and intersections of Ij with the active intervals are reported.
The interval Ii was removed from the active set on the previous step, so Ij ∩ Ii is not
reported. In the sort suppose instead that bj is listed before ei by the sorting algorithm.
Since bi was encountered earlier in the sweep, the set of active intervals contains Ii .
When bj is encountered Ij ∩ Ii is reported as an intersection. Clearly, the order of
equal values in the sort is important. Our application will require that we report
just-touching intersections, so the interval endpoints cannot be sorted just as a set
of floating point numbers. Tags need to be associated with each endpoint indicating
whether it is a beginning point or an ending point. The sorting must take the tag
into account to make sure that equal endpoint values are sorted so that values with a
“begin” tag occur before values with an “end” tag. The tags are not a burden because,
in fact, we need them anyway to decide during the sweep what type of endpoint we
have encountered.

The basic data structures for the algorithm are Endpoint, to represent an interval
endpoint and to contain necessary information for sorting, and Interval, to represent
the interval itself,

struct Endpoint
{

enum Type { BEGIN = 0, END = 1 };
Type mType;
float mValue;
int mIndex; // index of interval containing this endpoint

// Endpoint end0, end1;
// end0 < end1 when
// end0.value < end1.value, or
// end0.value == end1.value AND end0.type < end1.type

}

// An interval [min,max].
struct Interval { float end[2]; }

// A pair of indices for overlapping intervals. A Pair instance
// is stored so that mI0 < mI1.
class Pair
{
public:

Pair (int i0, int i1)
{

if (i0 < i1)
{

mI0 = i0;
mI1 = i1;

}

6.2 Collision Culling 307

else
{

mI0 = i1;
mI1 = i0;

}
}

int mI0, mI1;
};

The class managing the intervals and overlap status is

class IntervalManager
{
public:

IntervalManager (array<Interval> intervals);
void Set (int i, Interval interval);
Interval Get (int i) { return mIntervals[i]; }
void Update ();
set<Pair> GetOverlaps () { return mOverlaps; }

private:
array<Interval> mIntervals;
array<Endpoint> mEndpoints;
set<Pair> mOverlaps;
array<int> mLookup;

}

The application will move the intervals about using the Set function. It is easy to
set the mIntervals values for the specified index. However, mEndpoints is a sorting of
the endpoints. If an interval of the array mIntervals is set, then the corresponding
endpoints in mEndpoints must be set. This requires a lookup table to be maintained
during the moving/sorting; the array mLookup is that table. The set function is

void IntervalManager::Set (int i, Interval interval)
{

mIntervals[i] = interval;
mEndpoints[mLookup[2*i]].mValue = interval.end[0];
mEndpoints[mLookup[2*i+1]].mValue = interval.end[1];

}

The initialization of the system involves user specification of intervals whose end-
points are first sorted (the sort phase), and the intervals are then tested for overlap (the
sweep phase) to build a set of pairs of indices. Each pair represents two overlapping
intervals.

IntervalManager::IntervalManager (array<Interval> intervals)
{

// Copy the intervals and create the endpoint array.
mIntervals = intervals;
mEndpoints.resize(2*mIntervals.size());

308 Chapter 6 Physics Engines

for (i = 0; i < mIntervals.size(); ++i)
{

mEndpoints[2*i].mType = Endpoint::BEGIN;
mEndpoints[2*i].mValue = mIntervals[i].end[0];
mEndpoints[2*i].mIndex = i;
mEndpoints[2*i+1].mType = Endpoint::END;
mEndpoints[2*i+1].mValue = mIntervals[i].end[1];
mEndpoints[2*i+1].mIndex = i;

}

// Use an O(n log n) in-place sort of the endpoints. The
// ordering of the endpoints is specified in class Endpoint.
Sort(mEndpoints);

// Create the lookup table to allow setting of endpoint values
// whenever interval values are modified.
mLookup.resize(mEndpoints.size());
for (j = 0; j < mEndpoints.size(); ++j)
{

mLookup[2*mEndpoints[j].mIndex + mEndpoints[j].mType] = j;
}

// The active set of intervals (stored by index in array).
set<int> active = empty;

// Sweep through the endpoints to determine overlapping
// intervals. The presence of (i,j) in mOverlaps means
// mIntervals[i] and mIntervals[j] overlap.
mOverlaps = empty;
for (i = 0; i < mEndpoints.size(); i++)
{

Endpoint end = mEndpoints[i];
int index = end.mIndex;
if (end.mType == Endpoint::BEGIN)
{

for (each activeIndex in active)
{

mOverlaps.insert(Pair(activeIndex, index));
}
active.insert(index);

}
else // end.mType == Endpoint::END
{

active.remove(index);
}

}
}

6.2 Collision Culling 309

Once the sort and sweep has occurred, the intervals are allowed to move about,
thus invalidating the order of the endpoints in the sorted list. We can re-sort the val-
ues and apply another sweep, an O(n log n+m) process. However, we can do better
than that. The sort itself may be viewed as a way to know the spatial coherence of
the intervals. If the intervals move only a small distance, we expect that not many of
the endpoints will swap order with their neighbors. The modified list is nearly sorted,
so we should re-sort using an algorithm that is fast for nearly sorted inputs. Taking
advantage of the small number of swaps is our way of using temporal coherence to
reduce our workload. The insertion sort is a fast algorithm for sorting nearly sorted
lists. For general input it is O(n2), but for nearly sorted data it is O(n+ e), where e is
the number of exchanges used by the algorithm. Pseudocode for the insertion sort is

// input: A[0] through A[n-1]
// output: array sorted in-place
void InsertionSort (int n, type A[])
{

for (j = 1; j < n; ++j)
{

key = A[j];
i = j-1;
while (i >= 0 and A[i] > key)
{

Swap(A[i], A[i+1]);
--i;

}
A[i+1] = key;

}
}

The situation so far is that we applied the sort and sweep algorithm to our
collection of intervals, a once-only step that requires O(n log n+m) time. The output
is a set S of pairs (i, j) that correspond to overlapping intervals, Ii ∩ Ij . Some intervals
are now moved and the list of endpoints is re-sorted in O(n+ e) time. The set S might
have changed. Two overlapping intervals might not overlap now. Two nonoverlapping
intervals might now overlap. To update S we can simply apply the sweep algorithm
from scratch, an O(n+m) algorithm, and build S anew. Better, though, is to mix the
update with the insertion sort. An exchange of two “begin” points with two “end”
points does not change the intersection status of the intervals. If a pair of “begin” and
“end” points is swapped, then we have either gained a pair of overlapping intervals or
lost a pair. By temporal coherence, we expect the number of changes in status to be
small. If c is the number of changes of overlapping status, we know that c ≤ e , where
e is the number of exchanges in the insertion sort. The value e is expected to be much
smaller than m, the number of currently overlapping intervals. Thus, we would like
to avoid the full sweep that takes O(n+m) time and update during the insertion sort
that takes smaller time O(n+ e).

310 Chapter 6 Physics Engines

b3 b2 b1 e3 b4 e2 e4e5e1

I5

I4

I3

I2

I1

b5

Figure 6.4 The update phase of the algorithm when intervals have moved.

Figure 6.4 illustrates the update phase of the algorithm applied to the intervals
shown in Figure 6.3.

At the initial time the sorted endpoints are {b3, b1, b2, e3, e1, b5, b4, e5, e2, e4}.
The pairs of indices for the overlapping intervals are S = {(1, 2), (1, 3), (2, 3), (2, 4),
(2, 5), (4, 5)}. Now I1 moves to the right and I5 moves to the left. The new endpoints
are denoted b̄1, ē1, b̄5, and ē5. The list of endpoints that was sorted but now has had
values changed is {b3, b̄1, b2, e3, ē1, b̄5, b4, e5, e2, e4}. The insertion sort is applied to this
set of values. The steps follow.

1. Initialize the sorted list to be L = {b3}.
2. Insert b̄1, L = {b3, b̄1}.
3. Insert b2, L = {b3, b̄1, b2}.

(a) Exchange b̄1 and b2, L = {b3, b2, b̄1}. No change to S.

4. Insert e3, L = {b3, b2, b̄1, e3}.
5. Insert ē1, L = {b3, b2, b̄1, e3, ē1}.
6. Insert b̄5, L = {b3, b2, b̄1, e3, ē1, b̄5}.

(a) Exchange ē1 and b̄5, L = {b3, b2, b̄1, e3, b̄5, ē1}. This exchange causes I1 and I5

to overlap, so insert (1, 5) into the set
S = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)}.

7. Insert b4, L = {b3, b2, b̄1, e3, b̄5, ē1, b4}.
8. Insert ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, b4, ē5}.

6.2 Collision Culling 311

(a) Exchange b4 and ē5, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4}. This exchange causes I4

and I5 to no longer overlap, so remove (4, 5) from the set
S = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5)}.

9. Insert e2, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2}.
10. Insert e4, L = {b3, b2, b̄1, e3, b̄5, ē1, ē5, b4, e2, e4}.
11. The new list is sorted and the set of overlaps is current.

The update function that implements this algorithm is

void IntervalManager::Update ()
{

// Apply an insertion sort. Under the assumption that the
// intervals have not changed much since the last call, the
// endpoints are nearly sorted. The insertion sort should be
// very fast in this case.
for (int j = 1; j < mEndpoints.size(); ++j)
{

Endpoint key = mEndpoints[j];
int i = j - 1;
while (i >= 0 && key < mEndpoints[i])
{

Endpoint end0 = mEndpoints[i];
Endpoint end1 = mEndpoints[i+1];

// Update the overlap status.
if (end0.mType == Endpoint::BEGIN)
{

if (end1.mType == Endpoint::END)
{

// The ’b’ of interval end0.mIndex was smaller
// than the ’e’ of interval end1.mIndex and
// the intervals *might have been* overlapping.
// Now ’b’ and ’e’ are swapped and the intervals
// cannot overlap. Remove the pair from the
// overlap set. The removal operation needs to
// find the pair and erase it if it exists.
// Finding the pair is the expensive part of the
// operation.
mOverlaps.remove(Pair(end0.mIndex, end1.mIndex));

}
}
else
{

if (end1.mType == Endpoint::BEGIN)
{

// The ’b’ of interval end1.mIndex was larger

312 Chapter 6 Physics Engines

// than the ’e’ of interval end0.mIndex and the
// intervals were not overlapping. Now ’b’ and
// ’e’are swapped and the intervals *might be*
// overlapping. Determine whether they are
// overlapping and then insert.
Interval interval0 = mIntervals[end0.mIndex];
Interval interval1 = mIntervals[end1.mIndex];
if (interval0.end[0] <= interval1.end[1])
{

mOverlaps.insert(
Pair(end0.mIndex, end1.mIndex));

}
}

}

// Reorder the items to maintain the sorted list.
mEndpoints[i] = end1;
mEndpoints[i+1] = end0;
mLookup[2*end1.mIndex + end1.mType] = i;
mLookup[2*end0.mIndex + end0.mType] = i+1;
--i;

}
mEndpoints[i+1] = key;
mLookup[2*key.mIndex + key.mType] = i+1;

}
}

Source Code
IntersectingRectangles

Intersecting Rectangles

The algorithm for computing all pairs of intersecting axis-aligned rectangles is a sim-
ple extension of the algorithm for intervals. An axis-aligned rectangle is of the form
[xmin, xmax]× [ymin, ymax]. Two such rectangles intersect whenever there is overlap
between both their x-intervals and their y-intervals, as shown in Figure 6.5.

The rectangles are [x0, x1]× [y0, y1] and [x2, x3]× [y2, y3]. The rectangles overlap
because [x0, x1]∩ [x2, x3] �= ∅ and [y0, y1]∩ [y2, y3] �= ∅.

In the two-dimensional setting we maintain two sorted lists, one for the endpoints
of the x-intervals and one for the endpoints of the y-intervals. The initial step of the
algorithm sorts the two lists. The sweep portion is only slightly more complicated than
for one dimension. The condition for overlap is that the x-intervals and y-intervals
overlap. If we were to sweep the sorted x-list first and determine that two x-intervals
overlap, that is not sufficient to say that the rectangles of those x-intervals overlap.
We could devise some fancy scheme to sweep both x- and y-lists at the same time,
but it is simpler just to do a little extra work. If two x-intervals overlap, we will test
for overlap of the corresponding rectangles in both dimensions and update the set of
overlapping rectangles as needed.

6.2 Collision Culling 313

y3

y1

y0

y2

x0 x2 x1 x3

Figure 6.5 Axis-aligned rectangles overlap when both their x-intervals and y-intervals overlap.

Once we have the sorted lists and a set of overlapping rectangles, we will move
the rectangles and must update the lists and set. The process will use an insertion sort
to take advantage of spatial and temporal coherence. The x-list is processed first. If
an exchange occurs so that two previously overlapping intervals no longer overlap,
the corresponding rectangles no longer overlap so we can remove that pair from the
set of overlaps. If an exchange occurs so that two previously nonoverlapping intervals
now overlap, the corresponding rectangles may or may not overlap. Just as we did for
the initialization phase, we will simply test the corresponding rectangles for overlap
in both dimensions and adjust the set of overlaps accordingly.

The basic data structures for endpoints and index pairs are the same as for
intervals. We need a data structure for the rectangle,

struct Rectangle { float xEnd[2]; float yEnd[2]; }

which represents an axis-aligned bounding box in two dimensions. The class manag-
ing the rectangles and overlap status is

class RectangleManager
{
public:

RectangleManager (array<Rectangle> rectangles);
void Set (int i, Rectangle rectangle);
Rectangle Get (int i) { return mRectangles[i]; }
void Update ();
set<Pair> GetOverlaps () { return mOverlaps; }

private:
void Update (array<Endpoint> endpoints, array<int> lookup);

array<Rectangle> mRectangles;
array<Endpoint> mXEndpoints, mYEndpoints;

314 Chapter 6 Physics Engines

set<Pair> mOverlaps;
array<int> mXLookup, mYLookup;

}

The sorting of endpoints requires lookup tables to be maintained during
the moving/sorting; the arrays mXLookup and mYLookup are those tables. The set
function is

void RectangleManager::Set (int i, Rectangle rectangle)
{

mRectangles[i] = rectangle;
mXEndpoints[mXLookup[2*i]].mValue = rectangle.xEnd[0];
mXEndpoints[mXLookup[2*i+1]].mValue = rectangle.xEnd[1];
mYEndpoints[mYLookup[2*i]].mValue = rectangle.yEnd[0];
mYEndpoints[mYLookup[2*i+1]].mValue = rectangle.yEnd[1];

}

The initialization of the system involves user specification of rectangles whose
endpoints are first sorted (the sort phase), and the rectangles are then tested for
overlap (the sweep phase) to build a set of pairs of indices. Each pair represents two
overlapping rectangles.

RectangleManager::RectangleManager (array<Rectangle> rectangles)
{

// Copy the rectangles and create the endpoint arrays.
mRectangles = rectangles;
mXEndpoints.resize(2*mRectangles.size());
mYEndpoints.resize(2*mRectangles.size());
for (i = 0; i < mRectangles.size(); ++i)
{

mXEndpoints[2*i].mType = Endpoint::BEGIN;
mXEndpoints[2*i].mValue = mRectangles[i].xEnd[0];
mXEndpoints[2*i].mIndex = i;
mYEndpoints[2*i].mType = Endpoint::BEGIN;
mYEndpoints[2*i].mValue = mRectangles[i].yEnd[1];
mYEndpoints[2*i].mIndex = i;
mXEndpoints[2*i+1].mType = Endpoint::END;
mXEndpoints[2*i+1].mValue = mRectangles[i].xEnd[1];
mXEndpoints[2*i+1].mIndex = i;
mYEndpoints[2*i+1].mType = Endpoint::END;
mYEndpoints[2*i+1].mValue = mRectangles[i].yEnd[1];
mYEndpoints[2*i+1].mIndex = i;

}

// Use an O(n log n) in-place sort of the endpoints. The
// ordering of the endpoints is specified in class Endpoint.
Sort(mXEndpoints);
Sort(mYEndpoints);

6.2 Collision Culling 315

// Create the lookup tables to allow setting of endpoint values
// whenever rectangle values are modified.
mXLookup.resize(mXEndpoints.size());
mYLookup.resize(mYEndpoints.size());
for (j = 0; j < mEndpoints.size(); ++j)
{

mXLookup[2*mXEndpoints[j].mIndex + mXEndpoints[j].mType] = j;
mYLookup[2*mYEndpoints[j].mIndex + mYEndpoints[j].mType] = j;

}

// The active set of rectangles (stored by index in array).
set<int> active = empty;

// Sweep through the endpoints to determine overlapping
// rectangles. The presence of (i,j) in mOverlaps means
// mRectangles[i] and mRectangles[j] overlap.
mOverlaps = empty;
for (i = 0; i < mEndpoints.size(); i++)
{

Endpoint end = mEndPoints[i];
int index = end.mIndex;
if (end.mType == Endpoint::BEGIN)
{

// In the 1D problem, the current x-interval overlaps
// with all the active x-intervals. In 2D, we also
// need to check for y-overlap.
for (each activeIndex in active)
{

Rectangle rectangle0 = mRectangles[activeIndex];
Rectangle rectangle1 = mRectangles[index];
if (rectangle0.HasYOverlapWith(rectangle1))
{

mOverlaps.insert(Pair(activeIndex, index));
}

}
active.insert(index);

}
else // end.mType == Endpoint::END
{

active.remove(index);
}

}
}

The update function must handle both the x- and y-dimensions of the problem.

void RectangleManager::Update()
{

316 Chapter 6 Physics Engines

Update(mXEndpoints, mXLookup);
Update(mYEndpoints, mYLookup);

}

The update function with array inputs is identical to that for intervals except for
the block of code where both endpoints are “begin” points. In the interval case, the
block of code is

Interval interval0 = mIntervals[end0.mIndex];
Interval interval1 = mIntervals[end1.mIndex];
if (interval0.end[0] <= interval1.end[1])
{

mOverlaps.insert(Pair(end0.mIndex, end1.mIndex));
}

In the rectangle case, the block of code is

Rectangle rectangle0 = mRectangles[end0.mIndex];
Rectangle rectangle1 = mRectangles[end1.mIndex];
if (Overlapping(rectangle0, rectangle1))
{

mOverlaps.insert(Pair(end0.mIndex, end1.mIndex));
}

The overlap test for two axis-aligned rectangles is

bool Overlapping (Rectangle r0, Rectangle r1)
{

if ((r0.xEnd[1] < r1.xEnd[0]) or (r0.xEnd[0] > r1.xEnd[1]))
{

return false;
}
if ((r0.yEnd[1] < r1.yEnd[0]) or (r0.yEnd[0] > r1.yEnd[1]))
{

return false;
}
return true;

}

Source Code
IntersectingBoxes

Intersecting Boxes

You should see clearly that the algorithm for axis-aligned rectangles in two dimensions
extends easily to axis-aligned boxes in three dimensions. The basic data structures for
endpoints and index pairs are the same as for intervals. We need a data structure for
the box,

struct Box { float xEnd[2]; float yEnd[2]; float zEnd[2]; }

which represents an axis-aligned bounding box in three dimensions. The class man-
aging the boxes and overlap status is

6.2 Collision Culling 317

class BoxManager
{
public:

BoxManager (array<Box> boxes);
void Set (int i, Box box);
Box Get (int i) { return mBoxes[i]; }
void Update ();
set<Pair> GetOverlaps () { return mOverlaps; }

private:
array<Box> mBoxes;
array<Endpoint> mXEndpoints, mYEndpoints, mZEndpoints;
set<Pair> mOverlaps;
array<int> mXLookup, mYLookup, mZLookup;

}

The sorting of endpoints requires lookup tables to be maintained during the mov-
ing/sorting; the arrays mXLookup, mYLookup, and mZLookup are those tables. The set
function is

void BoxManager::Set (int i, Box box)
{

mBoxes[i] = box;
mXEndpoints[mXLookup[2*i]].mValue = box.xEnd[0];
mXEndpoints[mXLookup[2*i+1]].mValue = box.xEnd[1];
mYEndpoints[mYLookup[2*i]].mValue = box.yEnd[0];
mYEndpoints[mYLookup[2*i+1]].mValue = box.yEnd[1];
mZEndpoints[mZLookup[2*i]].mValue = box.zEnd[0];
mZEndpoints[mZLookup[2*i+1]].mValue = box.zEnd[1];

}

The initialization of the system involves user specification of boxes whose end-
points are first sorted (the sort phase) and the boxes are then tested for overlap (the
sweep phase) to build a set of pairs of indices. Each pair represents two overlapping
boxes.

BoxManager::BoxManager (array<Box> boxes)
{

// Copy the boxes and create the endpoint arrays.
mBoxes = boxes;
mXEndpoints.resize(2*mBoxes.size());
mYEndpoints.resize(2*mBoxes.size());
mZEndpoints.resize(2*mBoxes.size());
for (i = 0; i < mBoxes.size(); ++i)
{

mXEndpoints[2*i].mType = Endpoint::BEGIN;
mXEndpoints[2*i].mValue = mBoxes[i].xEnd[0];
mXEndpoints[2*i].mIndex = i;
mYEndpoints[2*i].mType = Endpoint::BEGIN;

318 Chapter 6 Physics Engines

mYEndpoints[2*i].mValue = mBoxes[i].yEnd[1];
mYEndpoints[2*i].mIndex = i;
mZEndpoints[2*i].mType = Endpoint::BEGIN;
mZEndpoints[2*i].mValue = mBoxes[i].zEnd[1];
mZEndpoints[2*i].mIndex = i;
mXEndpoints[2*i+1].mType = Endpoint::END;
mXEndpoints[2*i+1].mValue = mBoxes[i].xEnd[1];
mXEndpoints[2*i+1].mIndex = i;
mYEndpoints[2*i+1].mType = Endpoint::END;
mYEndpoints[2*i+1].mValue = mBoxes[i].yEnd[1];
mYEndpoints[2*i+1].mIndex = i;
mZEndpoints[2*i+1].mType = Endpoint::END;
mZEndpoints[2*i+1].mValue = mBoxes[i].zEnd[1];
mZEndpoints[2*i+1].mIndex = i;

}

// Use an O(n log n) in-place sort of the endpoints. The
// ordering of the endpoints is specified in class Endpoint.
Sort(mXEndpoints);
Sort(mYEndpoints);
Sort(mZEndpoints);

// Create the lookup tables to allow setting of endpoint values
// whenever box values are modified.
mXLookup.resize(mXEndpoints.size());
mYLookup.resize(mYEndpoints.size());
mZLookup.resize(mZEndpoints.size());
for (j = 0; j < mEndpoints.size(); ++j)
{

mXLookup[2*mXEndpoints[j].mIndex + mXEndpoints[j].mType] = j;
mYLookup[2*mYEndpoints[j].mIndex + mYEndpoints[j].mType] = j;
mZLookup[2*mZEndpoints[j].mIndex + mZEndpoints[j].mType] = j;

}

// The active set of boxes (stored by index in array).
set<int> active = empty;

// Sweep through the endpoints to determine overlapping boxes.
// The presence of (i,j) in mOverlaps means mBoxes[i] and
// mBoxes[j] overlap.
mOverlaps = empty;
for (i = 0; i < mEndpoints.size(); i++)
{

Endpoint end = mEndPoints[i];
int index = end.mIndex;
if (end.mType == Endpoint::BEGIN)
{

6.2 Collision Culling 319

// In the 1D problem, the current x-interval overlaps
// with all the active x-intervals. In 3D, we also
// need to check for y-overlap and for z-overlap.
for (each activeIndex in active)
{

Box box0 = mBoxes[activeIndex];
Box box1 = mBoxes[index];
if (box0.HasYOverlapWith(box1) or

box0.HasZOverlapWith(box1))
{

mOverlaps.insert(Pair(activeIndex, index));
}

}
active.insert(index);

}
else // end.mType == Endpoint::END
{

active.remove(index);
}

}
}

The update function must handle the x-, y-, and z-dimensions of the problem.

void BoxManager::Update()
{

Update(mXEndpoints, mXLookup);
Update(mYEndpoints, mYLookup);
Update(mZEndpoints, mZLookup);

}

The update function with array inputs is similar to that for intervals except for the
block of code where both endpoints are “begin” points.

Box box0 = mBoxes[end0.mIndex];
Box box1 = mBoxes[end1.mIndex];
if (Overlapping(box0, box1))
{

mOverlaps.insert(Pair(end0.mIndex, end1.mIndex));
}

The overlap test for two axis-aligned boxes is

bool Overlapping (Box b0, Box b1)
{

if ((b0.xEnd[1] < b1.xEnd[0]) or (b0.xEnd[0] > b1.xEnd[1]))
{

return false;
}
if ((b0.yEnd[1] < b1.yEnd[0]) or (b0.yEnd[0] > b1.yEnd[1]))

320 Chapter 6 Physics Engines

{
return false;

}
if ((b0.zEnd[1] < b1.zEnd[0]) or (b0.zEnd[0] > b1.zEnd[1]))
{

return false;
}
return true;

}

6.2.3 AABB Culling in a Single-Threaded Environment

This section describes an implementation for the three-dimensional AABB culling
in a single-threaded computing environment. Moreover, it is designed to be extend-
able to a multithreading/multiprocessing computing environment with relatively few
changes; the design choices reflect this need. You should read this section first, because
the later sections refer back to the ideas in this one. One assumption is that the proces-
sors have a native word size of 32 bits. Another assumption is that memory is limited,
so some concern must be given to how much memory the system uses.

The workhorse in the system is the Update() function. Although the insertion sort
for nearly sorted data takes only a small amount of time compared to a full sort, it is
still the bottleneck when you have thousands of objects (and corresponding AABBs)
in the system. The Update() function calls three separate insertion sorts (the update
function with array inputs), one for each dimension.

During an insertion sort, it is possible that (1) a pair of nonoverlapping boxes
is inserted into the overlap set, or (2) a pair of overlapping boxes is removed from
the overlap set. Each of these operations is referred to as an event. The system may
itself manage the sorted endpoints and lookup tables, but it must communicate events
(changes in the overlap set) to the application. The memory storage size for the end-
points and lookup tables is O(n) in the number of boxes. However, it is O(n2) for the
overlap set – in worst case the overlap set stores all pairs of boxes. This is not an issue
for a single-threaded or single-core environment with shared memory, but it is an
issue for a specialized processor with limited local memory. Even if there was enough
local memory, it is not clear you want the specialized processor to deal with a complex
data structure such as a set.

The compromise is to have an array of events. The array is of sufficient size to
store a reasonable number of events during a physics tick. In the improbable case that
you have more events than the array can store, the culling system will stall and make
additional calls into the sorting and event-reporting subsystems. Situations like this
can be avoided during game design; for example, the designer should ensure that not
all pairs of objects are colliding at the same time.

Regarding memory usage, I introduced a data type called Endpoint that had three
members. The member mType has one of two values indicating whether the end-
point is the initial endpoint or final endpoint of a projection interval of the AABB.

6.2 Collision Culling 321

The member mValue stored the endpoint value. The member mIndex is the index
of the AABB that generated the endpoint. These three members, presumably each
requiring 32 bits of storage, may be combined into two members. The mType value
requires only 1 bit of storage, which can be borrowed from the mIndex storage. For
example, you could use the sign bit of the index as an indicator of type of endpoint.
A negative index i refers to a minimum endpoint for box |i| and a nonnegative index
i refers to a maximum endpoint for box i. In fact, we will require the number of
boxes to be relatively small, so the index storage is handled differently. Even with cur-
rent generation powerful consoles, the number of boxes must be limited to obtain
real-time frame rates (when lots of other systems are executing such as graphics and
audio).

The basic design for the system uses the producer–consumer model. The applica-
tion produces box moves and the box culling system consumes those moves. The box
culling system then produces a sequence of events. The application consumes the events
and decides which pairs of objects to process in the narrow-phase collision detection
system.

Enumerations, Masks, and Endpoint

The following enumerations are used by the classes in the system.

enum
{

// number of boxes in system
NUM_BOXES = <desired number of boxes>,

// number of bits per index
LG2_NUM_BOXES = <ceil(log2(NUM_BOXES))>,

// number of endpoints in system
NUM_ENDPOINTS = 2*NUM_BOXES,

// bit mask for maximum endpoint
TYPE_MAXIMUM = 0x80000000,

MAX_EVENTS = <maximum number of events for one physics frame>,

// bit mask for insert event during update
INSERT_EVENT = 0x80000000,

// 1-value bits for low-order LG2_NUM_BOXES
// 0-value bits otherwise;
MASK_INDEX0 = <mask value>,

// 0-value bits for low-order LG2_NUM_BOXES bits
// 1-value bits for next LG2_NUM_BOXES bits

322 Chapter 6 Physics Engines

// 0-value otherwise
MASK_INDEX1 = <mask value>

};

The information stored by an event is the pair of indices for the boxes involved
in the event and whether the event is an insertion into the overlap set or a removal
from the overlap set. The insertion/removal requires 1 bit of storage. This leaves
31 bits for the pair of indices, so each index is alloted at most 15 bits. The type infor-
mation in the Endpoint class requires 1 bit of storage, so it is combined with the box
index member. In either case of event or type, the high-order bit is reserved for the
1-bit information. The masks for this bit are TYPE_MAXIMUM and INSERT_EVENT. The
masks to extract box indices from an event are MASK_INDEX0 and MASK_INDEX1. For
example, if LG2_NUM_BOXES is 10, then MASK_INDEX0 is 0x000003FF and MASK_INDEX1 is
0x000FFC00.

The endpoint class is chosen to be the following:

class Endpoint
{
public:

Endpoint ();

void Set (int i, float value, bool isMinimum)
{

mValue = value;
mIndex = (isMinimum ? i : (i | TYPE_MAXIMUM));

}

int GetType () const
{

return (mIndex & TYPE_MAXIMUM) >> LG2_NUM_BOXES;
}

int GetIndex () const
{

return mIndex & ˜TYPE_MAXIMUM;
}

int GetLookup () const
{

return 2*(mIndex & ˜TYPE_MAXIMUM) +
((mIndex & TYPE_MAXIMUM) >> LG2_NUM_BOXES);

}

// The high-order bit stores the type information. The 15
// low-order bits store the actual box index.
int mIndex;

6.2 Collision Culling 323

// The numerical value of the endpoint.
float mValue;

// Endpoints are ordered during a sort according to the
// total ordering:
bool operator< (const Endpoint& end) const
{

if (mValue < end.mValue)
{

return true;
}
if (mValue > end.mValue)
{

return false;
}
return GetType() < end.GetType();

}
};

Class BoxManager

The class design for the box culling system is listed next. It is effectively identical to
the one mentioned in the previous section, except that the event array replaces the
overlap set and the class does not store the boxes themselves, only the endpoints and
lookup tables. The class also has a queue of box indices. Whenever a box has been
modified, its index must be inserted into the queue.

struct Box
{

float mMin[3], mMax[3];
};

class BoxManager
{
public:

BoxManager ();

void InsertMoveQueue (int i);
bool MoveBoxes (const Box* boxes);
void Update ();
bool ProcessEvents (std::set<Pair>& overlaps);

private:
void Move (int i, const Box& box);
bool Overlapping (int i0, int i1);

324 Chapter 6 Physics Engines

bool Overlapping (int i0, int i1, Endpoint* endpoints,
int* lookup);

void Update (Endpoint* endpoints, int* lookup);

Endpoint mXEndpoints[NUM_ENDPOINTS];
Endpoint mYEndpoints[NUM_ENDPOINTS];
Endpoint mZEndpoints[NUM_ENDPOINTS];
int mXLookup[NUM_ENDPOINTS];
int mYLookup[NUM_ENDPOINTS];
int mZLookup[NUM_ENDPOINTS];

int mNumMoveQueue;
int mMoveQueue[NUM_BOXES];
int mNumEvents;
int mEvents[MAX_EVENTS];

};

The constructor handles the initialization of the system. Unlike the pseudocode
of the previous section, the constructor is not passed the array of boxes. Instead, the
application inserts into a queue the indices of those boxes that have been modified.
When finished modifying, it calls MoveBoxes(boxes)followed by a call to Update(). On
completion of the update, the application calls ProcessEvents(overlaps) so that its
set of pairs of indices for overlapping boxes is made current. The constructor initial-
izes the boxes to invalid values. The endpoints are already sorted in this construction,
so there is no need to explicitly sort them.

BoxManager::BoxManager ()
{

// Larger than any world coordinate of game.
float invalid = SOME_LARGE_FLOAT;
for (int i = 0, j = 0; i < NUM_BOXES; ++i)
{

mXEndpoints[j].Set(i, invalid, true);
mYEndpoints[j].Set(i, invalid, true);
mZEndpoints[j].Set(i, invalid, true);
++j;
invalid += 1.0f;

mXEndpoints[j].Set(i, invalid, false);
mYEndpoints[j].Set(i, invalid, false);
mZEndpoints[j].Set(i, invalid, false);
++j;
invalid += 1.0f;

}

for (int j = 0; j < NUM_ENDPOINTS; ++j)
{

6.2 Collision Culling 325

mXLookup[mXEndpoints[j].GetLookup()] = j;
mYLookup[mYEndpoints[j].GetLookup()] = j;
mZLookup[mZEndpoints[j].GetLookup()] = j;

}

// no pending moves
mNumMoveQueue = 0;

// no pending events
mNumEvents = 0;
memset(mEvents, 0, MAX_EVENTS*sizeof(int));

}

The function to insert an index into the queue is trivial.

void BoxManager::InsertMoveQueue (int i)
{

mMoveQueue[mNumMoveQueue++] = i;
}

Once queue insertions are finished for the current physics frame, the endpoint arrays
need to be updated.

bool BoxManager::MoveBoxes (const Box* boxes)
{

for (int i = 0; i < mNumMoveQueue; ++i)
{

Move(mMoveQueue[i], boxes[mMoveQueue[i]]);
}

bool hasMoved = (mNumMoveQueue > 0);
mNumMoveQueue = 0;
return hasMoved;

}

The Boolean return value is true if and only if any of the boxes has moved. This is
a hint to the application whether to continue the physics processing – if nothing has
moved, there are no physics to apply.

The Move function uses the lookup tables, as before.

void BoxManager::Move (int i, const Box& box)
{

mXEndpoints[mXLookup[2*i]].mValue = box.mMin[0];
mXEndpoints[mXLookup[2*i+1]].mValue = box.mMax[0];
mYEndpoints[mYLookup[2*i]].mValue = box.mMin[1];
mYEndpoints[mYLookup[2*i+1]].mValue = box.mMax[1];
mZEndpoints[mZLookup[2*i]].mValue = box.mMin[2];
mZEndpoints[mZLookup[2*i+1]].mValue = box.mMax[2];

}

326 Chapter 6 Physics Engines

The Update() function of the previous section made three calls to the update
function that takes array parameters. It is slightly more complicated when the number
of events is limited.

void BoxManager::Update ()
{

mNumEvents = 0;
Update(mXEndpoints, mXLookup);

if (mNumEvents < MAX_EVENTS)
{

Update(mYEndpoints, mYLookup);
}

if (mNumEvents < MAX_EVENTS)
{

Update(mZEndpoints, mZLookup);
}

}

The issue is that if any of the individual updates fills the event array, the main update
must terminate. The client of BoxManager is required to test mNumEvents. If it is equal
to MAX_EVENTS, then the client must make an additional call to the update; this is the
stall mentioned previously.

The per-dimension update is

void BoxManager::Update (Endpoint* endpoints, int* lookup)
{

int i, j;
for (j = 1; j < NUM_ENDPOINTS; ++j)
{

Endpoint key = endpoints[j];
i = j - 1;
while (i >= 0 && key < endpoints[i])
{

Endpoint end0 = endpoints[i];
Endpoint end1 = endpoints[i + 1];
if (end0.GetType() == 0)
{

if (end1.GetType() == 1)
{

int i0 = end0.GetIndex();
int i1 = end1.GetIndex();
if (i0 != i1)
{

// Report boxes i0 and i1 no longer
// overlap.
mEvents[mNumEvents++] =

6.2 Collision Culling 327

i0 | (i1 << LG2_NUM_BOXES);
}

}
}
else
{

if (end1.GetType() == 0)
{

int i0 = end0.GetIndex();
int i1 = end1.GetIndex();
if (i0 != i1 && Overlapping(i0, i1))
{

// Report box0 and box1 are now
// overlapping.
mEvents[mNumEvents++] =

i0 | (i1 << LG2_NUM_BOXES)
| INSERT_EVENT;

}
}

}

// Reorder the items to maintain the sorted list.
endpoints[i] = end1;
endpoints[i + 1] = end0;
lookup[end1.GetLookup()] = i;
lookup[end0.GetLookup()] = i + 1;
--i;

if (mNumEvents == MAX_EVENTS)
{

// The event array is full. Another update pass
// is needed.
break;

}
}

endpoints[i + 1] = key;
lookup[key.GetLookup()] = i + 1;

if (mNumEvents == MAX_EVENTS)
{

// The event array is full. Another update pass is
// needed.
break;

}
}

}

328 Chapter 6 Physics Engines

The overlap tests are listed next. The per-dimension overlap test is slightly more
complicated than that of the previous section, because BoxManager has access only to
endpoints, not to the original boxes.

bool BoxManager::Overlapping (int i0, int i1)
{

return Overlapping(i0, i1, mXEndpoints, mXLookup)
&& Overlapping(i0, i1, mYEndpoints, mYLookup)
&& Overlapping(i0, i1, mZEndpoints, mZLookup);

}

bool BoxManager::Overlapping (int i0, int i1, Endpoint* endpoints,
int* lookup)

{
float max0 = endpoints[lookup[2*i0+1]].mValue;
float min1 = endpoints[lookup[2*i1]].mValue;
if (max0 < min1)
{

return false;
}
float min0 = endpoints[lookup[2*i0]].mValue;
float max1 = endpoints[lookup[2*i1+1]].mValue;
return min0 <= max1;

}

The application needs to update its overlap set by

bool BoxManager::ProcessEvents (set<Pair>& overlaps)
{

for (int i = 0; i < mNumEvents; ++i)
{

int i0 = mEvents[i] & MASK_INDEX0;
int i1 = (mEvents[i] & MASK_INDEX1) >> LG2_NUM_BOXES;
if (mEvents[i] & INSERT_EVENT)
{

overlaps.insert(Pair(i0, i1));
}
else
{

overlaps.erase(Pair(i0, i1));
}

}

return mNumEvents == MAX_EVENTS;
}

The Boolean return value is true when the event queue was full. This is a message to
the application that Update() must be called one or more additional times to ensure
that all events are reported.

6.2 Collision Culling 329

The application code is summarized abstractly as the following:

initialization:
Box boxes[NUM_BOXES];
BoxManager manager;
set<Pair> overlaps = empty;
for (int i = 0; i < NUM_BOXES; ++i)
{

<set the initial boxes[i] parameters>;
manager.InsertMoveQueue(i);

}

physics_tick:
bool updateInProgress = manager.MoveBoxes(boxes);
while (updateInProgress)
{

manager.Update();
updateInProgress = manager.ProcessEvents(overlaps);

}

// The remaining steps in the physics tick; they use the
// ‘overlaps’ set.
<remove overlapping pairs using BV tests>;
<do collision detection>;
<update physics state (resolve constraints)>;
<move objects>;

// solve equations of motion;
// set boxes[i] parameters for all moved boxes;
for (each boxes[i] that has moved)
{

manager.InsertMoveQueue(i);
}

As mentioned previously, the expected number of times in the physics tick “while”
loop (that tests updateInProgress) is 1. If a large number of boxes were involved in
events, the number of loop passes will be larger than 1, but you can try to design the
game environment so this will not happen. However, if it does, the code supports it
(with a stall).

Notice that the manager is informed about the moved boxes, and then the man-
ager is asked to perform an update to re-sort the endpoints. The update must be
completed before the physics engine can continue with its work. This approach is
acceptable when using sequential execution in a single thread. In fact, the function
that processes the events can begin only after the Update() function returns.

When the update is moved to a separate execution unit, either in a second thread
on a separate core or on a specialized processor, the ordering of the code is not rea-
sonable. Specifically, when manager.Update() is called, the application must wait for
the update to finish before it can consume its events. You certainly do not want to

330 Chapter 6 Physics Engines

wait, because that defeats the reason for having multiple execution units in the first
place. A better choice is to have the manager.Update() call made after the final “move
objects.” The update is initiated on the separate execution unit. The current execution
unit is finished with the physics tick and then processes the other game loop ticks. By
the time those ticks are finished, the chances are that the separate execution unit has
completed its tasks (done in parallel with the other ticks). When you next enter the
physics tick, the events are ready to be consumed and the overlaps set is updated. The
next sections describe this process.

6.2.4 AABB Culling Using a Separate Core of a CPU

With only minor changes, the BoxManager class can perform the endpoint sorting in a
separate thread that we will assume can be specified to run on a separate core. Depend-
ing on the computer, the operating system might not allow you to specify the core, but
it should schedule the threads to balance the load between cores. The class interface
has some additional members, as shown next.

class BoxManager
{
public:

BoxManager ();
˜BoxManager ();

void InsertMoveQueue (int i);
bool MoveBoxes (const Box* boxes);
void Update ();
void WaitForUpdateEnd();
static void UpdateAsynchronous (void* userdata);
bool ProcessEvents (std::set<Pair>& overlaps);

private:
void Move (int i, const Box& box);
bool Overlapping (int i0, int i1);
bool Overlapping (int i0, int i1, Endpoint* endpoints,

int* lookup);
void Update (Endpoint* endpoints, int* lookup);

Endpoint mXEndpoints[NUM_ENDPOINTS];
Endpoint mYEndpoints[NUM_ENDPOINTS];
Endpoint mZEndpoints[NUM_ENDPOINTS];
int mXLookup[NUM_ENDPOINTS];
int mYLookup[NUM_ENDPOINTS];
int mZLookup[NUM_ENDPOINTS];

int mNumMoveQueue;
int mMoveQueue[NUM_BOXES];

6.2 Collision Culling 331

int mNumEvents;
int mEvents[MAX_EVENTS];

bool mUpdateBegin;
Event mUpdateEndEvent;
bool mTerminate;
Event mUpdateAsynchronousEndEvent;
int mThreadID;

};

The function UpdateAsynchronous will be managed by a thread that is separate from
the main thread of the game (where the physics tick is executing). When an update
is launched, in rare cases we might have to wait for it to finish when we return to the
physics tick. The function WaitForUpdateEnd handles the waiting.

The Boolean variable mUpdateBegin is set to true when an update starts and is set
to falsewhen the update is finished. The event mUpdateEndEvent is used by the thread
to let the main thread know that the update (sorting of endpoints) has finished. The
state of this event is queried by WaitForUpdateEnd. The Boolean mTerminate and the
event mUpdateAsynchronousEndEventare used for proper cleanup once the BoxManager
object is destroyed (at game exit). The member mThreadID is associated with the thread
that manages UpdateAsynchronous on creation and is used for thread destruction.

The constructor has additional work to do other than that listed previously. The
destructor now has work to do.

BoxManager::BoxManager ()
{

float invalid = SOME_LARGE_FLOAT;
for (int i = 0, j = 0; i < NUM_BOXES; ++i)
{

mXEndpoints[j].Set(i, invalid, true);
mYEndpoints[j].Set(i, invalid, true);
mZEndpoints[j].Set(i, invalid, true);
++j;
invalid += 1.0f;

mXEndpoints[j].Set(i, invalid, false);
mYEndpoints[j].Set(i, invalid, false);
mZEndpoints[j].Set(i, invalid, false);
++j;
invalid += 1.0f;

}

for (int j = 0; j < NUM_ENDPOINTS; ++j)
{

mXLookup[mXEndpoints[j].GetLookup()] = j;
mYLookup[mYEndpoints[j].GetLookup()] = j;
mZLookup[mZEndpoints[j].GetLookup()] = j;

332 Chapter 6 Physics Engines

}

mNumMoveQueue = 0;
mNumEvents = 0;
memset(mEvents, 0, MAX_EVENTS*sizeof(int));

// Additional work.
mUpdateBegin = false;
mTerminate = false;
mUpdateAsynchronousEndEvent = CreateEvent(false);
mUpdateEndEvent = CreateEvent(true);
mThreadID = CreateThread(UpdateAsynchronous, this, coreID);

}

BoxManager::˜BoxManager ()
{

mTerminate = true;
WaitForObjectToSignal(mUpdateAsynchronousEndEvent, INFINITE);
DestroyEvent(mUpdateAsynchronousEndEvent);
DestroyEvent(mUpdateEndEvent);

}

In the constructor, the Boolean variable mUpdateBegin is set to false, indicating that
no update is in progress. The Boolean variable mTerminate is set to false, indicating
that the BoxManagerobject exists.

The CreateEvent creates events for interthread communication. The Boolean
parameter of the creation function is true when the event must be initially in the sig-
naled state and false when the event must be initially in the nonsignaled state. The
event mUpdateAsynchronousEndEvent is initially nonsignaled, meaning that the thread
is not ready to terminate. The event mUpdateEndEvent is in the signaled state, meaning
that no update is in progress (the previous update, of which there is none, is at an
end).

The CreateThread function creates a thread to manage the specified function
(the first parameter). The second parameter is the user data that is passed to
UpdateAsynchronous; in our case, this is a pointer to the BoxManager object. The third
parameter is the core on which to execute the thread; of course, this input is allowed
only if the operating system supports it. It is assumed that the thread will begin exe-
cution immediately on creation. Most operating systems allow you to specify that the
thread is created in a suspended mode, and you have to activate it with something like
a ResumeThread function call.

In the destructor, mTerminate is set to false. The UpdateAsynchronous function
will notice this and terminate the thread. The destructor has to wait for the thread
termination; it does so via the WaitForObjectToSignal function call. The second
parameter of the call is the amount of time it should wait before giving up – in this
case, it waits for as long as it takes. The DestroyEvent function calls destroy the two
events of the class.

6.2 Collision Culling 333

The class function WaitForUpdateEnd is a simple wrapper.

void BoxManager::WaitForUpdateEnd ()
{

WaitForObjectToSignal(mUpdateEndEvent, INFINITE);
}

A call to this function causes the main thread to wait until the update is completed.
It is with high probability that the update will be completed before the return to
the physics tick. If it is not completed frequently, you have too many interacting
objects to process in the given time slice. As mentioned previously, you can design
your game environment to reduce the number of potentially interacting objects/boxes
to avoid the stall caused by the wait. The WaitForObjectToSignal function resets
mUpdateEndEvent to the nonsignaled state.

The asynchronous sorting function is shown next.

void BoxManager::UpdateAsynchonous (void* userdata)
{

BoxManager* manager = (BoxManager*)userdata;
while (!manager->mTerminate)
{

if (manager->mUpdateBegin)
{

// A request to update has been received.
manager->mUpdateBegin = false;
manager->Update();

// Signal that the update is completed.
SetEvent(manager->mUpdateEndEvent);

}
else
{

sleep(1);
}

}

DestroyThread(manager->mThreadID);

// Signal that the thread is destroyed, so termination of
// the manager can continue in the main thread.
SetEvent(manager->mSortAsyncEndEvent);

}

The parsing of events and updating of the overlaps set is the following:

void BoxManager::ProcessEvents (set<Pair>& overlaps)
{

while (true)
{

334 Chapter 6 Physics Engines

int i;
for (i = 0; i < mNumEvents; ++i)
{

int i0 = mEvents[i] & MASK_INDEX0;
int i1 = (mEvents[i] & MASK_INDEX1) >> LG2_NUM_BOXES;
if (mEvents[i] & INSERT_EVENT)
{

overlaps.insert(Pair(i0, i1));
}
else
{

overlaps.remove(Pair(i0, i1));
}

}

if (mNumEvents < MAX_EVENTS)
{

// The high-frequency case.
return;

}

// The low-frequency case. Too many events to process
// in one frame. Stall by updating until no more events
// occur.
Update();
WaitForUpdateEnd();

}
}

The client code of the culling system now becomes the following:

initialization:
Box boxes[NUM_BOXES];
BoxManager manager;
set<Pair> overlaps = empty;
for (int i = 0; i < NUM_BOXES; ++i)
{

<set the initial boxes[i] parameters>;
manager.InsertMoveQueue(i);

}
manager.MoveBoxes(boxes);
manager.Update();
manager.WaitForUpdateEnd();
manager.ProcessEvents(overlaps);

physics_tick:
manager.WaitForUpdateEnd();
manager.ProcessEvents(overlaps);

6.2 Collision Culling 335

// The remaining steps in the physics tick; they use the
// ‘overlaps’ set.
<remove overlapping pairs using BV tests>;
<do collision detection>;
<update physics state (resolve constraints)>;
<move objects>;

// solve equations of motion;
// set boxes[i] parameters for all moved boxes;
for (each boxes[i] that has moved)
{

manager.InsertMoveQueue(i);
}

manager.MoveBoxes(boxes);
manager.Update();

The algorithm and pseudocode presented here are ideal for implementing on a
desktop computer with a multicore CPU or on the Xbox 360. On the latter, it is
possible to specify which of the six cores that the update thread should run on.

6.2.5 AABB Culling Using a Specialized Processor

Let us assume that we have a specialized processing unit (SPU) that can execute a
single C++ program and that has a small amount of local memory. The CPU com-
municates with the SPU by sending messages to a send queue. The SPU receives
messages from this queue by polling. The SPU communicates with the CPU by send-
ing messages to a receive port. A CPU receive thread is responsible for processing
these messages. Whenever the SPU sends a message to the receive port, a signal is sent
to the CPU that the receive thread should be activated and the receive port message
is passed to that thread. The CPU and SPU can access shared heaps that reside in
CPU memory. The CPU accesses such memory in the standard way by dereferencing
pointers to the heap storage. However, the SPU must access the shared heaps using
direct memory access (DMA). Figure 6.6 has a schematic of the relationships among
the various components.

To make the situation slightly more complicated, let us assume that the amount
of local memory for the SPU is limited, say, less than a megabyte. Although we could
store some number of floating-point-valued endpoints and integer-valued indices
for a specified number of boxes, we can store even more such values if we trans-
form the floating-point values (32-bit quantities) and integer-valued indices (32-bit
quantities) to short values and indices (16-bit quantities). These reduce the memory
requirements by half for the Endpoint class.

Both the CPU and the SPU have implementations of BoxManager. Additionally,
the SPU has an implementation of Endpoint. Let us look at the SPU implementation
first.

336 Chapter 6 Physics Engines

CPU Main Thread

CPU Receive Thread

send
message

send
message

receive
message

receive
message

shared_box_heap_address
shared_event_heap_address

update_begin
terminate

Send Queue SPU Program

SPU memoryCPU memory

boxes

events

overlaps

endpoints

lookups

numEvents

Receive Port

update_end
terminate

standard access DMA access

Figure 6.6 The relationships among the CPU, SPU, send queue, receive port, CPU memory, and
SPU memory. The gray-background items are the shared heaps.

The SPU Implementation

Various enumerations supporting the system are listed next,

enum
{

// number of boxes in system
NUM_BOXES = <desired number of boxes>,

// number of bits per index
LG2_NUM_BOXES = <ceil(log2(NUM_BOXES))>,

// number of endpoints in system
NUM_ENDPOINTS = 2*NUM_BOXES,

// bit mask for maximum endpoint
TYPE_MAXIMUM = 0x8000,

// maximum number of events for one physics frame

6.2 Collision Culling 337

MAX_EVENTS = <value>,

// bit mask for insert event during update
INSERT_EVENT = 0x80000000,

// 1-value bits for low-order LG2_NUM_BOXES bits
// 0-value otherwise
MASK_INDEX0 = <mask value>,

// 0-value bits for low-order LG2_NUM_BOXES bits
// 1-value bits for next LG2_NUM_BOXES bits
// 0-value otherwise
MASK_INDEX1 = <mask value>,

// = moderately large ‘short’
POS_INFINITY = SHRT_MAX - 2*NUM_BOXES + 1,
NEG_INFINITY = -POS_INFINITY,

// memory tag shared by CPU and SPU for box heap
BOX_DMA_TAG = <tag value>,

// memory tag shared by CPU and SPU for event heap
EVENT_DMA_TAG = <tag value>,

// messages between CPU and SPU
MSG_SHARED_BOX_HEAP_ADDRESS = 1,
MSG_SHARED_EVENT_HEAP_ADDRESS = 2,
MSG_UPDATE_BEGIN = 3,
MSG_UPDATE_END = 4,
MSG_TERMINATE = 5

};

The first eight enumerations are what we used for the CPU-only implementation,
except that TYPE_MAXIMUM is now a 16-bit mask that will be used by the SPU’s Endpoint
class.

The floating-point box values will be transformed to short-valued data and stored
on the SPU. The range of short values is specified by POS_INFINITYand NEG_INFINITY.
The subtraction of twice the number of boxes from the maximum short value is
designed to allow us to initialize the boxes to invalid state using values larger than
or equal to POS_INFINITY, yet not exceeding the maximum value for short.

The CPU is responsible for creating two shared heaps. One heap stores an array
of box information. Each box requires six short values for the two extremes in each
of the three dimensions and one integer value for the box index. The other heap
stores the array of events, each event represented by an integer value. The DMA tags
BOX_DMA_TAG and EVENT_DMA_TAG are required by the SPU to access the shared heaps
(by tag number).

338 Chapter 6 Physics Engines

The CPU sends messages of four types. Message MSG_SHARED_BOX_HEAP_ADDRESS
is bundled with the address of the box heap and sent to the SPU. Likewise, message
MSG_SHARED_EVENT_HEAP_ADDRESS is bundled with the address of the event heap and
sent to the SPU. These messages are sent only once, when the CPU’s box manager
is created. The message MSG_UPDATE_BEGIN is bundled with the number of box-heap
items (the number of moved boxes) and sent to the SPU during the physics simula-
tion. When the CPU’s box manager is to be destroyed (on game exit), the message
MSG_TERMINATE is sent.

The SPU sends messages of two types. After receiving an update request from
the CPU, the SPU re-sorts endpoints and stores events in the event array. Message
MSG_UPDATE_END is bundled with the number of events in the event array and sent to the
CPU. At game exit, the CPU sends the MSG_TERMINATE to the SPU. The SPU responds
with the same message and self-terminates the thread running its main program.

At the highest level, the CPU creates the send queue, receive port, and tells the
SPU to begin its main program. The queue and port are referenced by an integer-
valued handle. This program is structured as shown next. For now observe that there
is a singleton for the class BoxManagerSPU. We will look at the class details later. Also,
note that the enumerations must be known to both the CPU and the SPU.

BoxManagerSPU manager;

int main (int sendQueue, int receivePort)
{

// The box manager needs this to send messages to the CPU.
manager.mReceivePort = receivePort;

while (true)
{

// Poll the send-queue for any pending messages.
int message, data;
SpuReceiveMessage(sendQueue, &message, &data);

// Process the message.
switch (message)
{
case MSG_SHARED_BOX_HEAP_ADDRESS:

manager.mBoxes = (BoxManagerSPU::BoxState*)data;
break;

case MSG_SHARED_EVENT_HEAP_ADDRESS:
manager.mEvents = (int*)data;
break;

case MSG_UPDATE_BEGIN:
// ’data’ is the number of boxes to process in
// manager.mBoxes
manager.Update(data);

6.2 Collision Culling 339

break;

case MSG_TERMINATE:
// The CPU’s box manager is in the process of being
// destroyed. The SPU acknowledges this, breaks from
// the loop, and terminates its main thread.
SpuSendMessage(receivePort, MSG_TERMINATE, 0);

// This function has an exit code that is returned
// from ’main’.
return SpuDestroyThread();

}
}

}

The SPU’s Endpoint class is listed next. Observe that the index and value members
are now shorts, which cuts the memory usage by half compared to a floating-point
value and an integer-valued index.

class Endpoint
{
public:

Endpoint();

void Set (int i, short value, bool isMinimum)
{

mValue = value;
mIndex = (isMinimum ? i : (i | TYPE_MAXIMUM));

}

int GetType () const
{

return (mIndex & TYPE_MAXIMUM) >> LG2_NUM_BOXES;
}

int GetIndex () const
{

return mIndex & ˜TYPE_MAXIMUM;
}

int GetLookup () const
{

return 2*(mIndex & ˜TYPE_MAXIMUM) +
((mIndex & TYPE_MAXIMUM) >> LG2_NUM_BOXES);

}

// The high-order bit stores the type information. The 15
// low-order bits store the actual box index.

340 Chapter 6 Physics Engines

short mIndex;

// The value is in (NEG_INFINITY,POS_INFINITY).
short mValue;

// Endpoints are ordered during a sort according to the
// total ordering:
bool operator< (const Endpoint& end) const
{

if (mValue < end.mValue)
{

return true;
}
if (mValue > end.mValue)
{

return false;
}
return GetType() < end.GetType();

}
};

The box manager class for the SPU is

class BoxManagerSPU
{
public:

BoxManagerSPU ();

void Update (int numBoxes);

struct BoxState
{

int mXExtremes; // two shorts packed into one int
int mYExtremes; // two shorts packed into one int
int mZExtremes; // two shorts packed into one int
int mIndex; // index into the CPU box array

};

int mReceivePort;
BoxState* mBoxes;
int* mEvents;

private:
bool Overlapping (int i0, int i1);
bool Overlapping (int i0, int i1, EndPoint* endpoints,

short* lookup);
void Update (Endpoint* endpoints, short* lookup);

EndPoint mXEndpoints[NUM_ENDPOINTS];

6.2 Collision Culling 341

EndPoint mYEndpoints[NUM_ENDPOINTS];
EndPoint mZEndpoints[NUM_ENDPOINTS];
short mXLookup[NUM_ENDPOINTS];
short mYLookup[NUM_ENDPOINTS];
short mZLookup[NUM_ENDPOINTS];
int mNumEvents;

};

The constructor initializes the endpoints and lookup tables, just as we had seen
for the CPU-only implementations.

BoxManagerSPU::BoxManagerSPU ()
{

mReceivePort = 0;
mBoxes = 0;
mEvents = 0;
mNumEvents = 0;

short invalidValue = POS_INFINITY;
for (int i = 0, j = 0; i < NUM_BOXES; ++i)
{

mXEndpoints[j].Set(i, invalidValue, true);
mYEndpoints[j].Set(i, invalidValue, true);
mZEndpoints[j].Set(i, invalidValue, true);
++j+;
++invalidValue;

mXEndpoints[end].Set(i, invalidValue, false);
mYEndpoints[end].Set(i, invalidValue, false);
mZEndpoints[end].Set(i, invalidValue, false);
++j;
++invalidValue;

}

for (int j = 0; j < NUM_ENDPOINTS; ++j)
{

mXLookup[mXEndpoints[j].GetLookup()] = j;
mYLookup[mYEndpoints[j].GetLookup()] = j;
mZLookup[mZEndpoints[j].GetLookup()] = j;

}
}

The main update function is listed next. The extremes for a given dimension of
the box are both short values but packed into an unsigned integer.

void BoxManagerSPU::Update (int numBoxes)
{

// Update the endpoints for the boxes that were moved by
// the CPU.

342 Chapter 6 Physics Engines

BoxState box;
BoxState* current = mBoxes;
for (int i = 0; i < numMoves; i++, current += sizeof(BoxState))
{

DmaGet(BOX_DMA_TAG, &box, current, sizeof(BoxState));
DmaWait(BOX_DMA_TAG);
int j0 = 2*box.mIndex;
int j1 = j0 + 1;
mXEndpoints[mLookupX[j0]].mValue =

(short)(box.mXExtremes & 0x0000FFFF);
mXEndpoints[mLookupX[j1]].mValue =

(short)((box.mXExtremes & 0xFFFF0000) >> 16);
mYEndpoints[mLookupY[j0]].mValue =

(short)(box.mYExtremes & 0x0000FFFF);
mYEndpoints[mLookupY[j1]].mValue =

(short)((box.mYExtremes & 0xFFFF0000) >> 16);
mZEndpoints[mLookupZ[j0]].mValue =

(short)(box.mZExtremes & 0x0000FFFF);
mZEndpoints[mLookupZ[j1]].mValue =

(short)((box.mZExtremes & 0xFFFF0000) >> 16);
}

// Re-sort the endpoints.
mNumEvents = 0;
Update(mXEndpoints, mXLookup);

if (mNumEvents < MAX_EVENTS)
{

Update(mYEndpoints, mYLookup);
}

if (mNumEvents < MAX_EVENTS)
{

Update(mZEndpoints, mZLookup);
}

SpuSendMessage(mReceivePort, MSG_UPDATE_END, mNumEvents);
}

The update per dimension is the following:

void BoxManagerSPU::Update (Endpoint* endpoints, short* lookup)
{

int i, j, event;
for (j = 1; j < NUM_ENDPOINTS; ++j)
{

Endpoint key = endpoints[j];

6.2 Collision Culling 343

i = j - 1;
while (i >= 0 && key < endpoints[i])
{

Endpoint end0 = endpoints[i];
Endpoint end1 = endpoints[i + 1];

if (end0.GetType() == 0)
{

if (end1.GetType() == 1)
{

int i0 = end0.GetIndex();
int i1 = end1.GetIndex();
if (i0 != i1)
{

// Report boxes i0 and i1 no longer
// overlap.
event = i0 | (i1 << LG2_NUM_BOXES);
DmaWrite(EVENT_DMA_TAG,

&mEvents[mNumEvents++], event,
sizeof(int));

DmaWait(EVENT_DMA_TAG);
}

}
}
else
{

if (end1.GetType() == 0)
{

int i0 = end0.GetIndex();
int i1 = end1.GetIndex();
if (i0 != i1 && Overlapping(i0, i1))
{

// Report boxes i0 and i1 are now
// overlapping.
event =

i0 | (i1 << LG2_NUM_BOXES)
| INSERT_EVENT;

DmaWrite(EVENT_DMA_TAG,
&mEvents[mNumEvents++], event,
sizeof(int));

DmaWait(EVENT_DMA_TAG);
}

}
}

// Reorder the items to maintain the sorted list.
endpoints[i] = end1;

344 Chapter 6 Physics Engines

endpoints[i + 1] = end0;
lookup[end1.GetLookup()] = i;
lookup[end0.GetLookup()] = i + 1;
--i;

if (mNumEvents == MAX_EVENTS)
{

// The event array is full. Another update pass
// is needed.
break;

}
}

endpoints[i + 1] = key;
lookup[key.GetLookup()] = i + 1;

if (mNumEvents == MAX_EVENTS)
{

// The event array is full. Another update pass is
// needed.
return;

}
}

}

The overlap processing is implemented with the following functions:

bool BoxManagerSPU::Overlapping (int i0, int i1)
{

return Overlapping(i0, i1, mXEndpoints, mXLookup)
&& Overlapping(i0, i1, mYEndpoints, mYLookup)
&& Overlapping(i0, i1, mZEndpoints, mZLookup);

}

bool BoxManagerSPU::Overlapping (int i0, int i1,
Endpoint* endpoints, short* lookup)

{
short max0 = endpoints[lookup[2*i0+1]].mValue;
short min1 = endpoints[lookup[2*i1]].mValue;
if(max0 < min1)
{

return false;
}
short min0 = endpoints[lookup[2*i0]].mValue;
short max1 = endpoints[lookup[2*i1+1]].mValue;
return min0 <= max1;

}

6.2 Collision Culling 345

The CPU Implementation

The box manager class for the CPU is similar to what we had for the CPU-only
implementation.

class BoxManagerCPU
{
public:

BoxManagerCPU (float minWorld[3], float maxWorld[3]);
˜BoxManagerCPU ();

void InsertMoveQueue (int i);
bool MoveBoxes (const Box* boxes);
void Update ();
void WaitForUpdateEnd();
bool ProcessEvents (std::set<Pair>& overlaps);

private:
static void ReceiveMessageFromSPU (int receiveQueue);

float mMinWorld[3];
float mMaxWorld[3];
float mPosInfinity;
float mNegInfinity;
float mC0[3], mC1[3];

struct BoxState
{

int mXExtremes, mYExtremes, mZExtremes, mIndex;
};
BoxState* mBoxes;
int mNumMoveQueue;
int mMoveQueue[NUM_BOXES];
int mNumEvents;
int* mEvents;
Event mUpdateEvent;
int mSendQueue;

// The class represents a ‘singleton’. The
// ReceiveMessageFromSPU function needs access to the class
// data. The message passing between CPU and SPUs can be
// easily modified to support more instances, if necessary.
static BoxManagerCPU* mThis;

};

Unlike the previous box manager classes, this constructor has inputs. These are
used to map the floating point box values to short-valued quantities.

346 Chapter 6 Physics Engines

BoxManagerCPU::BoxManagerCPU (float minWorld[3], float maxWorld[3])
{

// For access by ReceiveMessageFromSPU.
mpThis = this;

// This event signals when ReceiveMessageFromSPU receives the
// update-end message.
mUpdateEvent = CreateEvent(true);

// Parameters for transforming the world coordinates to ‘short’.
mPosInfinity = (float)POS_INFINITY;
mNegInfinity = (float)NEG_INFINITY;
for (int i = 0; i < 3; ++i)
{

float twoInvRange = 2.0f/(maxWorld[i] - minWorld[i]);
mC0[i] = mNegInfinity*(1.0f + twoInvRange*minWorld[i]);
mC1[i] = mPosInfinity*twoInvRange;

}

mNumMoveQueue = 0;
mNumEvents = 0;

// Set up the SPU, including specifying the program it should
// run and creating the send-queue, receive-port, and thread
// associated with ReceiveMessageFromSPU. In practice, this
// takes a lot of code. On the Sony Playstation 3, I factored
// this support into a base class for any derived class wanting
// to run an SPU program.
SpuConnect(input, output);

mBoxes = SpuAllocateSharedHeap(BOX_DMA_TAG,
NUM_BOXES*sizeof(BoxState));

mEvents = SpuAllocateSharedHeap(EVENT_DMA_TAG,
MAX_EVENTS*sizeof(int));

SpuSendMessage(mSendQueue, MSG_SHARED_BOX_HEAP_ADDRESS,
mBoxes);

SpuSendMessage(mSendQueue, MSG_SHARED_EVENT_HEAP_ADDRESS,
mEvents);

}

The destructor cleans up resources and disconnects from the SPU.

BoxManagerCPU::˜BoxManagerCPU ()
{

SpuSendMessage(mSendQueue, MSG_TERMINATE, 0);

// The ’input’ parameter is whatever is needed by the SPU

6.2 Collision Culling 347

// system to wait for the thread to terminate and to
// disconnect and destroy the send-queue, receive-queue,
// and thread that manages ReceiveMessageFromSPU.
SpuWaitForThreadTermination(input);
SpuDisconnect(input);

SpuDeallocateSharedHeap(BOX_DMA_TAG, mBoxes);
SpuDeallocateSharedHeap(EVENT_DMA_TAG, mEvents);
DestroyEvent(mUpdateEvent);

}

The functions InsertMoveQueue, MoveBoxes, WaitForUpdateEnd, and
ProcessEvents have the same implementation as before, with the exception that
MoveBoxes no longer sets mNumMoveQueue to zero. The Update function will do this.
The Move function is different in that it must now transform the floating point box
data to shorts.

void BoxManagerCPU::Move (int i, const Box& box)
{

int smin[3], smax[3];
for (int j = 0; j < 3; ++j)
{

float fmin = floorf(mC0[j] + mC1[j]*box.mMin[j]);
if (fmin < mNegInfinity)
{

fmin = mNegInfinity + 1.0f;
}
else if (fmin > mPosInfinity)
{

fmin = mPosInfinity - 1.0f;
}
smin[j] = (int)fmin;

float fmax = ceilf(mC0[j] + mC1[j]*box.mMax[j]);
if (fmax < mNegInfinity)
{

fmax = mNegInfinity + 1.0f;
}
else if (fmax > mPosInfinity)
{

fmax = mPosInfinity - 1.0f;
}
smax[j] = (int)fmax;

}

BoxState& box = mBoxes[mNumMoves++];
box.mXExtremes =

(smin[0] & 0x0000FFFF) | ((smax[0] & 0x0000FFFF) << 16);

348 Chapter 6 Physics Engines

box.mYExtremes =
(smin[1] & 0x0000FFFF) | ((smax[1] & 0x0000FFFF) << 16);

box.mZExtremes =
(smin[2] & 0x0000FFFF) | ((smax[2] & 0x0000FFFF) << 16);

box.mIndex = i;
}

The transformation is applied to the box extremes. The values are clamped to the
desired short-valued range. The minimum values are rounded down to the nearest
short and the maximum values are rounded up to the nearest short. This is a conser-
vative approach that will lead to slightly larger boxes, and guarantees at least the same
number of overlaps. We are guaranteed not to lose overlaps because of the conversion
to shorts.

The update function is a simple wrapper for sending a message to the SPU. Setting
mNumMoveQueue to zero here instead of MoveBoxes is necessary because its value must
persist until we send it to the SPU.

void BoxManagerCPU::Update ()
{

SpuSendMessage(mSendQueue, MSG_UPDATE_BEGIN, mNumMoveQueue);
mNumMoveQueue = 0;

}

Finally, the function that is managed by a thread created during SPU set up is
specified next.

void BoxManagerCPU::ReceiveMessageFromSPU (int receiveQueue)
{

while (true)
{

int message, data;
if (SpuReceiveMessage(receiveQueue, &message, &data))
{

switch (message)
{
case MSG_UPDATE_END:

mThis->mNumEvents = data;

// Signal that the update is finished.
SetEvent(mThis->mUpdateEvent);
break;

case MSG_TERMINATE:
SpuDestroyThread();
return;

}
}
else

6.3 Test-Intersection Queries 349

{
sleep(1);

}
}

}

The application code that was presented for the CPU-only asynchronous updating
remains the same for the SPU version. As you might have deduced, this implementa-
tion is ideal for the Playstation 3 with its synergistic processing units (SPUs).

6.3 Test-Intersection Queries

Axis-aligned bounding boxes were useful for the broad-phase collision culling
algorithm that used space–time coherency. For medium-phase culling or for test-
intersection queries generally, a few other bounding volumes might be of use.

Oriented bounding boxes (OBBs) are quite common for coarse-level intersec-
tion testing for objects. More generally, convex polyhedra may be used. The two
approaches to testing for intersection are the method of separating axes and distance-
based methods using the GJK algorithm. These concepts require a lot of discussion,
so let us postpone that until Section 6.4.

6.3.1 Spheres

Practitioners have used spheres as bounding volumes. The intersection testing algo-
rithms are easy to implement. However, spheres are generally not a tight fit for an
object; for example, consider a tall telephone pole on the side of a race track. Colli-
sion detection between race cars and telephone poles could use bounding spheres for
medium-phase culling. You can see the problem – the bounding sphere of the tele-
phone pole will have a radius that is half its length, so the sphere sticks out into the
middle of the race track. Every race car will lead to a “potential intersection” because
their bounding spheres will always intersect that of the telephone pole.

Ignoring the goodness-of-fit issue, a sphere has a center C and a radius r . Two
spheres, {C0, r0} and {C1, r1}, intersect when the distance between C0 and C1 is smaller
than or equal to the sum of the radii r0+ r1. Pseudocode is

bool Overlapping (Sphere S0, Sphere S1)
{

float rsum = S0.radius + S1.radius;
Vector3 diff = S0.center - S1.center;
float distance = Length(diff);
return distance <= rsum;

}

350 Chapter 6 Physics Engines

6.3.2 Capsules

Alternatives to using spheres for obtaining a better fitting bounding volumes are
capsules. A capsule has a line segment S and a radius r associated with it. The
(solid) capsule consists of those points that are within a distance r of the segment
S. Consequently, a capsule is the union of a cylinder and two hemispheres. The
cylinder axis is the segment, has radius r , and has height equal to the length of the
segment. The hemispheres have radii r and are centered at the endpoints of the
segment.

The test-intersection query for two capsules, {S0, r0} and {S1, r1}, is simply formu-
lated. The capsules intersect when the distance between segments S0 and S1 is smaller
than or equal to the sum of the radii r0+ r1. The query requires you to have an imple-
mentation of the algorithm for computing the distance between two line segments.
Pseudocode is

bool Overlapping (Capsule C0, Capsule C1)
{

float rsum = C0.radius + C1.radius;
float distance = Distance(C0.segment, C1.segment);
return distance <= rsum;

}

The Wild Magic files Wm5DistSegment3Segment3.{h,cpp} contain an implementation
for computing the distance between line segments.

Consider two spheres, each moving with constant linear velocity over a specified
time interval. Let sphere i be {Ci , ri} and have velocity Vi for i = 0, 1. The test-
intersection query for the moving spheres becomes a test-intersection query for two
capsules. If [0, T] is the time interval, the capsules have line segments with endpoints
Ci +T Vi and radii ri . Pseudocode is

bool WillOverlap (float tmin, float tmax, Sphere S0, Vector3 V0,
Sphere S1, Vector3 V1)

{
Capsule C0(S0.center + tmin*V0, S0.center + tmax*V0,

S0.radius);
Capsule C1(S1.center + tmin*V1, S1.center + tmax*V1,

S1.radius);
return Overlapping(C0, C1);

}

The test-intersection query for two capsules, each moving with constant linear
velocity, is more complicated. The set spanned by a segment moving with con-
stant linear velocity is either a line segment (velocity is parallel to the capsule axis)
or a parallelogram (velocity is not parallel to the capsule axis). The query for the
moving capsules becomes a query for two stationary sets. The capsules will inter-
sect during the specified time interval when the distance between the two sets is
smaller than or equal to the sum of the radii. You will need a segment–segment

6.3 Test-Intersection Queries 351

distance function, a segment–parallelogram distance function, and a parallelogram–
parallelogram distance function. Pseudocode is

// A ‘lozenge’ is the set of points within a specified radius of
// a parallelogram.

bool Overlapping (Capsule C, Lozenge L)
{

return Distance(C.segment, L.parallelogram) <=
C.radius + L.radius;

}

bool Overlapping (Lozenge L0, Lozenge L1)
{

return Distance(L0.parallelogram, L1.parallelogram) <=
L0.radius + L1.radius;

}

bool WillOverlap (float tmin, float tmax, Capsule C0, Vector3 V0,
Capsule C1, Vector3 V1)

{
if (Cross(V0, C0.segment.direction) != Vector3::ZERO)
{

Lozenge L0(
C0.segment.end0 + tmin*V0,
C0.segment.end1 + tmin*V0,
C0.segment.end0 + tmax*V0,
C0.segment.end1 + tmax*V0,
C0.radius);

if (Cross(V1, C1.segment.direction) != Vector3::ZERO)
{

Lozenge L1(
C1.segment.end0 + tmin*V1,
C1.segment.end1 + tmin*V1,
C1.segment.end0 + tmax*V1,
C1.segment.end1 + tmax*V1,
C1.radius);

return Overlapping(L0, L1);
}
else
{

Capsule MC1;
if (Dot(C1.segment.direction, V1) > 0)
{

MC1 = Capsule(
C1.segment.end0 + tmin*V1,

352 Chapter 6 Physics Engines

C1.segment.end1 + tmax*V1,
C1.radius);

}
else
{

MC1 = Capsule(
C1.segment.end1 + tmin*V1,
C1.segment.end0 + tmax*V1,
C1.radius);

}

return Overlapping(MC1, L0);
}

}
else
{

Capsule MC0;
if (Dot(C0.segment.direction, V0) > 0)
{

MC0 = Capsule(
C0.segment.end0 + tmin*V0,
C0.segment.end1 + tmax*V0,
C0.radius);

}
else
{

MC0 = Capsule(
C0.segment.end1 + tmin*V0,
C0.segment.end0 + tmax*V0,
C0.radius);

}

if (Cross(V1, C1.segment.direction) != Vector3::ZERO)
{

Lozenge L1(
C1.segment.end0 + tmin*V1,
C1.segment.end1 + tmin*V1,
C1.segment.end0 + tmax*V1,
C1.segment.end1 + tmax*V1,
C1.radius);

return Overlapping(MC0, L1);
}
else
{

Capsule MC1;
if (Dot(C1.segment.direction, V1) > 0)

6.3 Test-Intersection Queries 353

{
MC1 = Capsule(

C1.segment.end0 + tmin*V1,
C1.segment.end1 + tmax*V1,
C1.radius);

}
else
{

MC1 = Capsule(
C1.segment.end1 + tmin*V1,
C1.segment.end0 + tmax*V1,
C1.radius);

}

return Overlapping(MC0, MC1);
}

}
}

6.3.3 Ellipsoids

Occasionally you will see on developer forums a post where the person wants to use
ellipsoids as bounding volumes that fit better than spheres, but it is not clear how
to perform the intersection testing. When confronted with the answer, the posters
will frequently abandon the task and instead work with bounding volumes whose
test-intersection queries are easier to implement. Intersection testing for ellipsoids
is nontrivial. The algorithm is heavy on mathematics and is iterative, leading to a
potentially expensive test. I will present the details here anyway to give you an idea of
the complexity of the problem. The ideas are motivated first using ellipses in 2D and
then extended to ellipsoids in 3D.

Test-Intersection Query for Stationary Ellipses

An ellipse is implicitly defined by a quadratic equation Q(x, y) = 0. Given two ellipses
defined by Q0(x, y) = 0 and Q1(x, y) = 0, you may eliminate the y-variable and
obtain a quartic equation P(x)= 0. The x-roots may be computed using closed-
form equations or numerically. For each x-root you can compute corresponding
y-values from the quadratic Q0(x, y) = 0. It is possible that extraneous solutions
occur (because of the elimination process). The end result is a set of points (x̄, ȳ)

that are intersection points of the ellipse (or extraneous pairs that occurred because
of the elimination and can be discarded).

In collision culling, more information is needed other than just knowing points
of intersection. Specifically, if the ellipses are used as bounding regions, it might be

354 Chapter 6 Physics Engines

important to know if one ellipse is fully contained in another. This information is not
provided by the algebraic method applied to the two quadratic equations defining the
ellipses. The more precise queries for ellipses E0 and E1 are:

■ Do E0 and E1 intersect?

■ Are E0 and E1 separated? That is, does there exist a line for which the ellipses are
on opposite sides?

■ Is E0 properly contained in E1, or is E1 properly contained in E0?

Let the ellipse Ei be defined by the quadratic equation Qi (X)= XTAi X+BT
i X+Ci for

i = 0, 1. It is assumed that the Ai are positive definite. In this case, Qi(X) < 0 defines
the inside of the ellipse and Qi(X) > 0 defines the outside.

The discussion focuses on level curves of the quadratic functions. All level curves
defined by Q0(x, y)= λ are ellipses, except for the minimum (negative) value λ for
which the equation defines a single point, the center of every level curve ellipse. The
ellipse defined by Q1(x, y)= 0 is a curve that generally intersects many level curves of
Q0. The problem is to find the minimum level value λ0 and maximum level value λ1

attained by any (x, y) on the ellipse E1. If λ1 < 0, then E1 is properly contained in E0.
If λ0 > 0, then E0 and E1 are separated. Otherwise, 0 ∈ [λ0,λ1] and the two ellipses
intersect. Figures 6.7, 6.8, and 6.9 illustrate the three possibilities. The figures show
the relationship of one ellipse E1 to the level curves of another ellipse E0.

This can be formulated as a constrained optimization that can be solved by the
method of Lagrange multipliers: Optimize Q0 (X) subject to the constraint Q1(X)= 0.
Define F(X, t)= Q0(X)+ tQ1(X). Differentiating with respect to the components of
X yields ∇F = ∇Q0+ t∇Q1. Differentiating with respect to t yields ∂F/∂t = Q1.

Q0 > 0

Q0 < 0

Figure 6.7 E1 is contained in E0. The maximum E0-level-curve value λ1 for E1 is negative.

6.3 Test-Intersection Queries 355

Q0 > 0

Q0 < 0

Figure 6.8 E1 transversely intersects E0. The minimum E0-level-curve value λ0 for E1 is negative,
the maximum value λ1 is positive.

Q0 < 0

Q0 > 0

Figure 6.9 E1 is separated from E0. The minimum E0-level-curve value λ0 for E1 is positive.

356 Chapter 6 Physics Engines

Setting the t -derivative equal to zero reproduces the constraint Q1 = 0. Setting the
X-derivative equal to zero yields ∇Q0+ t∇Q1 = 0 for some t . Geometrically this
means that the gradients are parallel.

Note that ∇Qi = 2AiX+Bi , so

0= ∇Q0+ t∇Q1 = 2(A0 + tA1)X+ (B0+ t B1).

Formally solving for X yields

X=−1

2
(A0 + tA1)

−1(B0 + t B1)= 1

δ(t)
Y(t)

where A0+ tA1 is a matrix of linear polynomials in t and δ(t) is its determinant,
a quadratic polynomial. The components of Y(t) are quadratic polynomials in t .
Replacing this in Q1(X)= 0 leads to a polynomial equation,

p(t)= Y(t)TA1Y(t)+ δ(t)BT
1 Y(t)+ δ(t)2 C1 = 0 (6.5)

a quartic polynomial in t . The roots can be computed, the corresponding values of X
computed, and Q0(X) evaluated. The minimum and maximum values are stored as
λ0 and λ1, and the earlier comparisons with zero are applied.

This method leads to a quartic polynomial, just as the original algebraic method
for finding intersection points did. But the current style of query does answer ques-
tions about the relative positions of the ellipses (separated or proper containment),
whereas the original method does not.

Example
6.1

Consider Q0(x, y) = x2 + 6y2 − 1 and Q1(x, y) = 52x2 − 72xy + 73y2 − 32x −
74y + 28. Figure 6.10 shows the plots of the two ellipses.

The various parameters are

A0 =
[

1 0
0 6

]
, B0 =

[
0
0

]
, C0 =−1,

A1 =
[

52 −36
−36 73

]
, B1 =

[−32
−74

]
, C1 = 28

From these are derived

Y(t)=
[

4t(625t + 24)

t(2500t + 37)

]
, δ(t) = 2500t 2+ 385t + 6

The polynomial of equation (6.5) is p(t)=−156250000t 4− 48125000t 3+
1486875t 2+ 94500t + 1008. The two real-valued roots are t0

.=−0.331386 and t1
.=

0.0589504. The corresponding X(t) values are X(t0)= (x0, y0)
.= (1.5869, 1.71472)

and X(t1)= (x1, y1)
.= (0.383779, 0.290742). The axis-aligned ellipse level val-

ues at these points are Q0(x0, y0)=−0.345528 and Q0(x1, y1)= 19.1598. Since
Q0(x0, y0) < 0 < Q0(x1, y1), the ellipses intersect. Figure 6.10 shows the two points
on Q1 = 0 that have extreme Q0 values.

6.3 Test-Intersection Queries 357

1.71

0.408
0.38

–0.408

–1 1 1.580.29

Figure 6.10 Intersection of two ellipses.
■

Test-Intersection Query for Stationary Ellipsoids

The algorithm for determining the relationship between two stationary ellipsoids is
similar to that for ellipses. The precise queries we answer for testing for intersection
of two ellipsoids E0 and E1 are

■ Do E0 and E1 intersect?

■ Are E0 and E1 separated? That is, does there exist a plane for which the ellipsoids
are on opposite sides?

■ Is E0 properly contained in E1 or is E1 properly contained in E0?

Finding the set of intersection points is more complicated. A couple of methods
are discussed. An ellipsoid Ei is defined by the quadratic equation Qi(X)= XTAX+
BT

i X+Ci = 0 where Ai is a 3× 4 positive definite matrix, Bi is a 3× 1 vector, Ci is a
scalar, and Xi is a 3× 1 vector that represents an ellipsoid point. Because A is posi-
tive definite, Qi(X) < 0 defines the inside of the ellipsoid and Qi(X) > 0 defines the
outside.

The test-intersection query is based on level surfaces of the quadratic functions.
All level surfaces defined by Q0(x, y , z)= λ are ellipsoids, except for the minimum
(negative) value λ for which the equation defines a single point, the center of every
level surface ellipsoid. The ellipsoid defined by Q1(x, y , z)= 0 is a surface that gener-
ally intersects many level surfaces of Q0. The problem is to find the minimum Q0-level

358 Chapter 6 Physics Engines

value λ0 and the maximum Q0-level value λ1 attained by any point (x, y , z) on the
ellipsoid E1. If λ1 < 0, E1 is properly contained in E0. If λ0 > 0, then E0 and E1 are
separated. Otherwise, 0 ∈ [λ0,λ1] and the two ellipsoids intersect. Illustrations in two
dimensions are shown in Figures 6.7, 6.8, and 6.9, but apply equally well to the three
dimensional case.

The problem can be formulated as a constrained optimization that is solved by the
method of Lagrange multipliers. Optimize Q0 (X) subject to the constraint Q1(X)= 0.
Define F(X, t)=Q0(X)+ tQ1(X). Differentiating with respect to the X components
yields ∇F = ∇Q0+ t∇Q1. Differentiating with respect to t yields ∂F/∂t = Q1. Set-
ting the t -derivative equal to zero reproduces the constraint Q1 = 0. Setting the
X-derivative equal to zero yields ∇Q0+ t∇Q1 = 0 for some t . Geometrically this
means the gradients are parallel.

Note that ∇Qi = 2Ai X+Bi , so

0= ∇Q0+ t∇Q1 = 2(A0 + tA1)X+ (B0+ t B1)

Formally solving for X yields

X=−1

2
(A0 + tA1)

−1(B0 + t B1)= 1

δ(t)
Y(t)

where A0 + tA1 is a matrix of linear polynomials in t and δ(t) is its determinant, a
cubic polynomial in t . The components of Y(t) are cubic polynomials in t . Replacing
this in Q1(X)= 0 yields

Y(t)T A1Y(t)+ δ(t)BT
1 Y(t)+ δ(t)2 C1 = 0

a degree six polynomial in t . The roots can be computed, the corresponding values of
X computed, and Q0(X) evaluated. The minimum and maximum values are stored
as λ0 and λ1, and the earlier comparisons with zero are applied.

Intersection of Moving Ellipses

Consider two ellipses that are initially separated and are moving with constant lin-
ear velocities. The first problem is to determine whether or not the ellipses intersect
at a later time. If they do intersect, the second problem is to determine the contact
time and contact point of the ellipses. The contact time is the smallest positive time
tcontact > 0 such that the two ellipses are separated for times 0≤ t < tcontact and just
touching at time t = tcontact. This document describes an algorithm for solving these
problems.

At time zero, the ellipses are defined by quadratic equations in standard form. The
first ellipse is defined by

(X−K0)
T M0 (X−K0)= 1 (6.6)

The center of the ellipse is K0. The matrix M0 is positive definite and can be factored
as M0 = R0D0RT

0 , where R0 is a rotation matrix and D0 is a diagonal matrix whose

6.3 Test-Intersection Queries 359

diagonal entries are positive. The diagonal values of D0 are eigenvalues of M0, and the
columns of R0 are eigenvectors of M0. The second ellipse is defined by

(X−K1)
T M1 (X−K1)= 1 (6.7)

where K1 is the center and where M1 = R1D1RT
1 is positive definite.

The ellipses are moving with constant linear velocities V0 and V1, where the
indices make it clear which velocity goes with which ellipse. The ellipse centers at
time t ≥ 0 are K0+ t V0 and K1+ t V1. To simplify the problem, we may use relative
velocity; the first ellipse is assumed to be stationary and the second ellipse is moving
with constant linear velocity V= V1−V0.

The Configuration at Contact Time

At the contact time, the contact set must contain a single point because of the con-
vexity of the ellipses. Moreover, the ellipses must be tangent at the contact point.
Figure 6.11 illustrates this.

Let us analyze this configuration to determine the location of the contact point.
We make several changes of variables to reduce the problem to one involving a circle
of radius 1 and centered at the origin and an ellipse that is axis-aligned. The trans-
formations are affine and invertible, so the contact set still contains a single point.
Figure 6.12 shows such a configuration.

Reduction to Circle and Axis-Aligned Ellipse

For the sake of argument, we will use equations (6.6) and (6.7) as if the contact time
were T = 0.

P

Figure 6.11 The configuration of two ellipses at contact time. The contact point is P.

360 Chapter 6 Physics Engines

P

Figure 6.12 The transformed configuration to a circle of radius 1 with center at the origin and an
axis-aligned ellipse.

The first change of variables is

Y= D1/2
0 RT

0 (X−K0) (6.8)

where D1/2
0 is the diagonal matrix whose diagonal entries are the square roots of the

diagonal entries of D0. Equation (6.6) transforms to

YTY= 1 (6.9)

which represents a circle of radius 1 centered at the origin. Define

K2 = RT
0 D1/2

0 (K1−K0) (6.10)

and

M2 = RT
0 D−1/2

0 R1D1RT
1 D−1/2

0 R0 (6.11)

Equations (6.8), (6.10), and (6.11) transform equation (6.7) to

(Y−K2)
T M2 (Y−K2)= 1 (6.12)

The matrix M2 may be factored using an eigendecomposition to M2 = RDRT,
where D is a diagonal matrix and R is a rotation matrix. The second change of
variables is

Z= RTY (6.13)

6.3 Test-Intersection Queries 361

Equation (6.9) is transformed to

ZTZ= 1 (6.14)

which is the same circle, but rotated about the origin. Defining

K= RTK2 (6.15)

Equation (6.12) is transformed to

(Z−K)T D (Z−K)= 1 (6.16)

Because D is diagonal, this equation represents an axis-aligned ellipse with center
point K, as illustrated in Figure 6.13. Define

Q(Z)= (Z−K)T D (Z−K)− 1 (6.17)

The ellipse is implicitly defined by Q(Z)= 0, and the gradient vector ∇Q(Z) is an
outer-pointing normal to the point Z on the ellipse.

P

K

=Q (P)

Figure 6.13 The transformed configuration to a circle of radius 1, with center at the origin and
an axis-aligned ellipse. The circle and ellipse are separated. The point P is the ellipse
point that is closest to the origin. An outer-pointing normal at this point is ∇Q(P).

362 Chapter 6 Physics Engines

Computing the Closest Point P

The point P shown in Figure 6.13 is the ellipse point closest to the origin (and to
the circle). We know that P is on the ellipse, so Q(P)= 0. An outer-pointing nor-
mal to the ellipse at P is the gradient vector ∇Q(P)= 2D(P−K). In fact, this vector
is parallel to P but in the opposite direction; thus, there is some scalar s < 0 for
which

sD(P−K)= P (6.18)

If P= (p0, p1), K= (k0, k1), and D = Diag(d0, d1) with d1 ≥ d0, then equation (6.18)
may be solved for

p0 = d0k0s

d0s− 1
, p1 = d1k1s

d1s− 1
(6.19)

Knowing that P is on the ellipse, we have

0= Q(P)= d0k2
0

(d0s − 1)2
+ d1k2

1

(d1s − 1)2
− 1 (6.20)

We will show that equation (6.20) has a unique negative root s̄.
The summary of the algorithm is the following. It assumes that the eigen-

decompositions for M0 and M1 are computed once and stored with the ellipse data
structure.

1. Given two separated ellipses, E0 = {K0, R0, D0} and E1 = {K1, R1, D1}.
2. Compute K2 = RT

0 D1/2
0 (K1−K0).

3. Compute M2 = RT
0 D−1/2

0 R1D1RT
1 D−1/2

0 R0.

4. Use an eigendecomposition to factor M2 = RDRT with D = Diag(d0, d1).

5. Compute K= RTK2 = (k0, k1).

6. Compute the unique negative root s̄ to equation (6.20).

7. Compute P= (d0k0s̄/(d0s̄ − 1), d1k1s̄/(d1s̄− 1)).

What remains is to determine an algorithm for computing s̄.

Computing the Negative Root

Equation (6.20) may be rewritten as a quartic polynomial equation:

p(s)= (d0s− 1)2(d1s− 1)2 − d0k2
0(d1s− 1)2 − d1k2

1 (d0s− 1)2 = 0 (6.21)

The closed-form equations for the roots of a quartic may be used to compute the
real-valued roots, one of which will be negative. These equations are known to be
numerically ill-conditioned, and we do not need all the roots.

6.3 Test-Intersection Queries 363

An algorithm that is better suited for numerical computations is described next.
Define the function

f (s)= d0k2
0

(d0s − 1)2
+ d1k2

1

(d1s− 1)2
− 1 (6.22)

The sets of roots of p(s) and f (s) are the same. The first derivative is

f ′(s)= −2d2
0 k2

0

(d0s − 1)3
+ −2d2

1 k2
1

(d1s − 1)3
(6.23)

and the second derivative is

f ′′(s)= 6d3
0k2

0

(d0s− 1)4
+ 6d3

1 k2
1

(d1s − 1)4
> 0 (6.24)

I have indicated that the second derivative is always positive, which makes f (s) a
convex function. Such functions are ideal for locating roots using Newton’s method.

Part of the graph of f (s) is illustrated by Figure 6.14.
Because we want only the negative roots, the left-most branch of the graph is of
interest. A simple calculation shows that

f (0)= d0k2
0 + d1k2

1 − 1 =Q(0) > 0 (6.25)

 d
0

k2
0
 1 d

1
k2

1
 2 1

0

f

21

s̄ s

Figure 6.14 The left-most branch of the graph of f (s). The vertical asymptote is at s = 1/d1 when
k1 �= 0, or at s = 1/d0 when k1 = 0.

364 Chapter 6 Physics Engines

The positivity is guaranteed because the origin 0 is outside the ellipse. Also,

lim
s→−∞ f (s)=−1 (6.26)

The convexity of f and equations (6.25) and (6.26) guarantee that f (s) has a unique
negative root s̄. We may use Newton’s method to numerically estimate this root:

s0 = 0; si+1 = si − f (si)

f ′(si)
, i ≥ 0 (6.27)

The convexity of f guarantees convergence of the sequence, and in practice the
number of iterates for an accurate estimate is small.

Computing the Contact Time

In the previous construction, the ellipses were stationary and assumed to be in tan-
gential contact. When the ellipses are moving, we replace in the construction K0 by
K0+ t V0 and K1 by K1+ t V1. The center of the axis-aligned ellipse is time varying,

C(t) = RTRT
0 D1/2

0 (K1−K0 + t V)= K+ t W (6.28)

where V = V1−V0 is the relative velocity. The last equality defines the velocity W,
which is the relative velocity of the axis-aligned ellipse compared to the stationary
circle. For notation’s sake, let K= (k0, k1), W= (w0, w1), and C= (c0, c1)= (k0 +
tw0 , k1+ tw1).

The circle and ellipse are initially separated, as Figure 6.13 illustrates. A quick-out
test is convenient here. The initially closest point P to the circle moves with velocity
W. If the velocity vector forms an acute angle with P, then initially P moves away
from the circle and must do so for all later times. Thus, when W · P≥ 0, the ellipse
will never intersect the circle.

When W · P < 0, we would like to know whether or not the ellipse will intersect
the circle. The ellipse sweeps a region R that is bounded by two parallel lines. An
intersection between the ellipse and circle will occur if and only if the circle intersects
the region R. This is a tractable problem. The bounding parallel lines have direction
W and pass through the two extreme points in the perpendicular direction W⊥ =
(w1 ,−w0). Determining whether or not the circle intersects these lines, or is between
them, is a matter of algebra. Figure 6.15 illustrates the geometric relationship between
the circle and R.

The extreme points E0 and E1 are in the directions of ±N where N=W⊥. The
point B0 is extreme in the direction of −W. The extreme point B1 = B0+ tmaxW is
chosen such that the moving ellipse has completely passed the circle. Thus, the contact
time is in the interval [0, tmax].

The algorithm presented here for computing the contact point has the circle-
region intersection test in it implicitly. There is a trade-off: The implicit test requires
more computational cycles than the direct test. But the ideas here apply to higher-
dimensional ellipsoids, where the direct test becomes more computationally inten-
sive. For example, the direct test in 3D requires testing whether a sphere intersects the

6.3 Test-Intersection Queries 365

t 5 0

t 5 tmax

E0

B1

N

W

B0

E1

Figure 6.15 The ellipse sweeps a region bounded by two parallel lines. Left: The ellipse will inter-
sect the circle when the circle intersects the swept region. Right: The ellipse will not
intersect the circle when the circle is disjoint from the swept region.

ellipsoid-sweep region which happens to be a right-elliptical cylinder. Computing the
equation of the elliptical cylinder is tedious, but tractable. The intersection test can
then be reduced to a 2D problem of testing whether or not a circle and ellipse overlap.
The algorithm here has no component for reduction of dimension, which makes it
easy to adapt to higher dimensions.

With the introduction of the time parameter, the function of equation (6.22) is
now dependent on two parameters,

f (s, t)= d0c2
0

(d0s − 1)2
+ d1c2

1

(d1s− 1)2
− 1 (6.29)

where c0 and c1 are linear functions of t . For each time t , we may compute the negative
root of f (s, t)= 0, call it s(t) to indicate that it now depends on the choice of t (it
is a function of t). For notational simplicity, I have dropped the overbar on s. It is
therefore the case that f (s(t), t) ≡ 0; as a function of t , f is zero for all t . This allows
us to compute the rate of change of s with respect to t . Using the chain rule from
calculus,

fs(s(t), t)s ′(t)+ ft (s(t), t) ≡ 0 (6.30)

366 Chapter 6 Physics Engines

where fs = ∂f /∂s and ft = ∂f /∂t are the first-order partial derivatives of f ,

fs = −2d2
0 c2

0

(d0s − 1)3
+ −2d2

1 c2
1

(d1s − 1)3
, ft = d0(c2

0)′

(d0s− 1)2
+ d1(c2

1)′

(d1s − 1)2
(6.31)

The derivative of s(t) is therefore

s ′(t)=− ft (s(t), t)

fs(s(t), t)
(6.32)

Let P(t)be the ellipse point closest to the origin at time t . We are trying to compute
the contact time tcontact for which the ellipse is just touching the circle. When this
happens, the ellipse point P(tcontact) closest to the origin must be on the circle; that is,
|P(tcontact)|2 − 1= 0. Define the function h(t)= |P(t)|2 − 1. As a function of s and t ,
the right-hand side of the equation is

g (s, t)= d2
0 c2

0 s2

(d0s − 1)2
+ d2

1 c2
1 s2

(d1s − 1)2
− 1 (6.33)

in which case h(t)= g (s(t), t), where s is the negative root at time t of f (s, t)= 0.
Using the chain rule, the first derivative of h(t) is

h′(t) = gs(s(t), t)s ′(t)+ gt (s(t), t) = 2d0(c2
0)′s

d0s − 1
+ 2d1(c2

1)′s
d1s − 1

(6.34)

where

gs = −2d2
0 c2

0 s

(d0s − 1)3
+ −2d2

1 c2
1 s

(d1s − 1)3
, gt = d2

0 (c2
0)′s2

(d0s − 1)2
+ d2

1 (c2
1)′s2

(d1s− 1)2
(6.35)

The right-most equality of equation (6.34) was obtained by substituting into
gs (s, t)s ′ + gt (t , s) the expressions of equations (6.35), (6.32), and (6.31). I used
Mathematica to simplify the resulting expression to that shown in the right-most
equality.

Half the second derivative of h′′(t) may be computed from the right-most equality
of equation (6.34),

h′′(t)
2

=
[

d0s(c2
0)′′

d0s − 1
+ d1s(c2

1)′′

d1s − 1

]
−
⎡
⎢⎣
(

d0(c2
0)′

(d0s−1)2 + d1(c2
1)′

(d1s−1)2

)2

(
d2

0 c2
0

(d0s−1)3 + d2
1 c2

1
(d1s−1)3

)
⎤
⎥⎦> 0 (6.36)

where the positivity is guaranteed as long as s is negative, which it is by construction
(it is a negative root of a function). To verify the positivity, the first square-bracketed
expression is positive because (c2

0)′′ = 2w2
0 , (c2

1)′′ = 2w2
1 and because d0s/(d0s − 1) >

0 and d1s/(d1s − 1) > 0 as long as s < 0. The numerator of the second square-
bracketed term is positive because it is the square of an expression. The denominator
is negative because (d0s − 1)3 < 0 and (d1s − 1)3 < 0 as long as s < 0. The negative

6.3 Test-Intersection Queries 367

sign in front of the second square-bracketed term makes the denominator positive.
Thus, the combination of the expressions on the right-hand side of equation (6.36)
are positive as long as s is negative.

I have shown that h(0) > 0, because the initial closest point is outside the circle,
and that h′′(t) > 0, in which case h(t) is a convex function. Figure 6.16 illustrates four
different possibilities for the graph of h.

Because h(t) is convex, we may use Newton’s method to locate the smallest
positive root,

t0 = 0; ti+1 = ti − h(ti)

h′(ti)
, i ≥ 0 (6.37)

but with one constraint. In the lower-left and lower-right images of Figure 6.16, the
iterates are guaranteed to be on the left of the root of h. Moreover, the derivatives
at the iterates are always negative. During Newton’s method, if we ever discover that
h′(ti) ≥ 0, then we know we have one of the graphs of the upper-left and upper-right
images of the figure. In this case, we terminate the iteration and conclude that the
ellipse and circle do not intersect.

h

t

h

t

h

t

h

t

Figure 6.16 Possibilities for the graph of h(t). Upper left: The ellipse is moving away from the
circle, so there is no intersection at any time. Upper right: The ellipse initially moves
towards the circle, but then veers away and passes it without intersection. Lower left:
The ellipse moves towards the circle and just grazes it at the contact time. Lower right:
The ellipse moves towards the circle, just touching the circle at contact time, and then
interpenetrates for a period of time.

368 Chapter 6 Physics Engines

When we do have a contact point, it is in the transformed coordinates. Let the
computed contact point be

Zcontact = P(tcontact) (6.38)
We then compute

Ycontact = RZcontact (6.39)

In the original coordinate system, the contact point is

Xcontact = K0+R0D−1/2
0 Ycontact (6.40)

Source Code

Here is Wild Magic code for computing the contact time and contact point, if they
exist, for two moving ellipses.

double ComputeClosestPoint (const Matrix2d& D, const Vector2d& K,
Vector2d& closestPoint)

{
double d0 = D[0][0], d1 = D[1][1];
double k0 = K[0], k1 = K[1];
double d0k0 = d0*k0;
double d1k1 = d1*k1;
double d0k0k0 = d0k0*k0;
double d1k1k1 = d1k1*k1;

if (d0k0k0 + d1k1k1 - 1.0 < 0.0)
{

// The ellipse contains the origin, so the ellipse and
// circle are/ overlapping.
return FLT_MAX;

}

const int maxIterations = 128;
const double epsilon = 1e-08;

double s = 0.0;
int i;
for (i = 0; i < maxIterations; ++i)
{

// Compute f(s).
double tmp0 = d0*s - 1.0;
double tmp1 = d1*s - 1.0;
double tmp0sqr = tmp0*tmp0;
double tmp1sqr = tmp1*tmp1;
double f = d0k0k0/tmp0sqr + d1k1k1/tmp1sqr - 1.0;

if (fabs(f) < epsilon)

6.3 Test-Intersection Queries 369

{
// We have found a root.
break;

}

// Compute f’(s).
double tmp0cub = tmp0*tmp0sqr;
double tmp1cub = tmp1*tmp1sqr;
double fder = -2.0*(d0*d0k0k0/tmp0cub + d1*d1k1k1/tmp1cub);

// Compute the next iterate sNext = s - f(s)/f’(s).
s -= f/fder;

}

// assert: i < maxIterations

closestPoint[0] = d0k0*s/(d0*s - 1.0);
closestPoint[1] = d1k1*s/(d1*s - 1.0);
return s;

}

bool ComputeContact (const Matrix2d& D, const Vector2d& K,
const Vector2d& W, double& contactTime, Vector2d& Zcontact)

{
double d0 = D[0][0], d1 = D[1][1];
double k0 = K[0], k1 = K[1];
double w0 = W[0], w1 = W[1];

int maxIterations = 128;
double epsilon = 1e-08;

contactTime = 0.0;
for (int i = 0; i < maxIterations; ++i)
{

// Compute h(t).
Vector2d Kmove = K + contactTime*W;
double s = ComputeClosestPoint(D, Kmove, Zcontact);
double tmp0 = d0*Kmove[0]*s/(d0*s - 1.0);
double tmp1 = d1*Kmove[1]*s/(d1*s - 1.0);
double h = tmp0*tmp0 + tmp1*tmp1 - 1.0;

if (fabs(h) < epsilon)
{

// We have found a root.
return true;

}

// Compute h’(t).

370 Chapter 6 Physics Engines

double hder = 4.0*tmp0*w0 + 4.0*tmp1*w1;
if (hder > 0.0)
{

// The ellipse cannot intersect the circle.
return false;

}

// Compute the next iterate tNext = t - h(t)/h’(t).
contactTime -= h/hder;

}

ComputeClosestPoint(D, K + contactTime*W, Zcontact);
return true;

}

bool FindContact (const Ellipse2d &ellipse0,
const Vector2d& velocity0, const Ellipse2d &ellipse1,
const Vector2d& velocity1, double& contactTime,
Vector2d& contactPoint)

{
// Get the parameters of ellipse0.
Vector2d K0 = ellipse0.Center;
Matrix2d R0(ellipse0.Axis, true);
Matrix2d D0(

1.0/(ellipse0.Extent[0]*ellipse0.Extent[0]),
1.0/(ellipse0.Extent[1]*ellipse0.Extent[1]));

// Get the parameters of ellipse1.
Vector2d K1 = ellipse1.Center;
Matrix2d R1(ellipse1.Axis, true);
Matrix2d D1(

1.0/(ellipse1.Extent[0]*ellipse1.Extent[0]),
1.0/(ellipse1.Extent[1]*ellipse1.Extent[1]));

// Compute K2.
Matrix2d D0NegHalf(ellipse0.Extent[0], ellipse0.Extent[1]);
Matrix2d D0Half(1.0/ellipse0.Extent[0], 1.0/ellipse0.Extent[1]);
Vector2d K2 = (D0Half*(K1 - K0))*R0;

// Compute M2.
Matrix2d R1TD0NegHalfR0 = R1.TransposeTimes(D0NegHalf*R0);
Matrix2d M2 = R1TD0NegHalfR0.TransposeTimes(D1)*R1TD0NegHalfR0;

// Factor M2 = R*D*RˆT.
Matrix2d R, D;
M2.EigenDecomposition(R, D);

// Compute K.

6.3 Test-Intersection Queries 371

Vector2d K = K2*R;

// Compute W.
Vector2d W = ((D0Half*(velocity1 - velocity0))*R0)*R;

// Transformed ellipse0 is ZˆT*Z = 1 and transformed ellipse1 is
// (Z-K)ˆT*D*(Z-K) = 0.

// Compute the initial closest point.
Vector2d P0;
if (ComputeClosestPoint(D, K, P0) >= 0.0)
{

// The ellipse contains the origin, so the ellipses were not
// separated.
return false;

}
double dist0 = P0.Dot(P0) - 1.0;
if (dist0 < 0.0)
{

// The ellipses are not separated.
return false;

}

Vector2d Zcontact;
if (!ComputeContact(D, K, W, contactTime, Zcontact))
{

return false;
}

// Transform contactPoint back to original space.
contactPoint = K0 + R0*D0NegHalf*R*Zcontact;
return true;

}

Intersection of Moving Ellipsoids

The reduction of swept ellipses to the circle and axis-aligned ellipse is shown in equa-
tions (6.8) through (6.17). The construction is independent of dimension, so it also
applies to swept ellipsoids.

Using the same notation as before, let P= (p0, p1, p2), K= (k0, k1, k2), and D =
Diag(d0, d1, d2). Equation (6.20) becomes

0= Q(P)= d0k2
0

(d0s − 1)2
+ d1k2

1

(d1s − 1)2
+ d2k2

2

(d2s − 1)2
− 1 (6.41)

372 Chapter 6 Physics Engines

The function whose negative root determines the closest ellipse point is now as shown
together with its derivatives

f (s)= d0k2
0

(d0s − 1)2
+ d1k2

1

(d1s− 1)2
+ d2k2

2

(d2s − 1)2
− 1 (6.42)

and

f ′(s)= −2d2
0 k2

0

(d0s− 1)3
+ −2d2

1 k2
1

(d1s − 1)3
+ −2d2

2 k2
2

(d2s − 1)3
(6.43)

and

f ′′(s)= 6d3
0 k2

0

(d0s− 1)4
+ 6d3

1 k2
1

(d1s − 1)4
+ 6d3

2 k2
1

(d2s − 1)4
> 0 (6.44)

so f (s) is a convex function that has a unique negative root s̄. Newton’s method may
be used to compute robustly s̄.

The moving center of the axis-aligned ellipsoid is C(t) = (c0, c1, c2)= K+ t W,
just as in equation (6.28). The function h(t) and its derivative h′(t) are

h(t)= d2
0 c2

0 s2

(d0s − 1)2
+ d2

1 c2
1 s2

(d1s − 1)2
+ d2

2 c2
2 s2

(d2s− 1)2
− 1 (6.45)

and

h′(t) = 2d0(c2
0)′s

d0s − 1
+ 2d1(c2

1)′s
d1s − 1

+ 2d2(c2
2)′s

d2s − 1
(6.46)

It may be shown that h′′(t) > 0, so h(t) is a convex function. Newton’s method may
be used to compute robustly tcontact.

Once we have the contact point, equations (6.38) through (6.40) may be use to
transform back to the original coordinates.

Source Code

Here is Wild Magic code for computing the contact time and contact point, if they
exist, for two moving ellipsoids.

double ComputeClosestPoint (const Matrix3d& D, const Vector3d& K,
Vector3d& closestPoint)

{
double d0 = D[0][0], d1 = D[1][1], d2 = D[2][2];
double k0 = K[0], k1 = K[1], k2 = K[2];
double d0k0 = d0*k0;
double d1k1 = d1*k1;
double d2k2 = d2*k2;
double d0k0k0 = d0k0*k0;
double d1k1k1 = d1k1*k1;
double d2k2k2 = d2k2*k2;

6.3 Test-Intersection Queries 373

if (d0k0k0 + d1k1k1 + d2k2k2 - 1.0 < 0.0)
{

// The ellipsoid contains the origin, so the ellipsoid and
// sphere are overlapping.
return FLT_MAX;

}

const int maxIterations = 128;
const double epsilon = 1e-08;

double s = 0.0;
int i;
for (i = 0; i < maxIterations; ++i)
{

// Compute f(s).
double tmp0 = d0*s - 1.0;
double tmp1 = d1*s - 1.0;
double tmp2 = d2*s - 1.0;
double tmp0sqr = tmp0*tmp0;
double tmp1sqr = tmp1*tmp1;
double tmp2sqr = tmp2*tmp2;
double f = d0k0k0/tmp0sqr + d1k1k1/tmp1sqr +

d2k2k2/tmp2sqr - 1.0;

if (fabs(f) < epsilon)
{

// We have found a root.
break;

}

// Compute f’(s).
double tmp0cub = tmp0*tmp0sqr;
double tmp1cub = tmp1*tmp1sqr;
double tmp2cub = tmp2*tmp2sqr;
double fder = -2.0*(d0*d0k0k0/tmp0cub + d1*d1k1k1/tmp1cub

+ d2*d2k2k2/tmp2cub);

// Compute the next iterate sNext = s - f(s)/f’(s).
s -= f/fder;

}

// assert: i < maxIterations

closestPoint[0] = d0k0*s/(d0*s - 1.0);
closestPoint[1] = d1k1*s/(d1*s - 1.0);
closestPoint[2] = d2k2*s/(d2*s - 1.0);
return s;

}

374 Chapter 6 Physics Engines

bool ComputeContact (const Matrix3d& D, const Vector3d& K,
const Vector3d& W, double& contactTime, Vector3d& Zcontact)

{
double d0 = D[0][0], d1 = D[1][1], d2 = D[2][2];
double k0 = K[0], k1 = K[1], k2 = K[2];
double w0 = W[0], w1 = W[1], w2 = W[2];

int maxIterations = 128;
double epsilon = 1e-08;

contactTime = 0.0;
for (int i = 0; i < maxIterations; ++i)
{

// Compute h(t).
Vector3d Kmove = K + contactTime*W;
double s = ComputeClosestPoint(D, Kmove, Zcontact);
double tmp0 = d0*Kmove[0]*s/(d0*s - 1.0);
double tmp1 = d1*Kmove[1]*s/(d1*s - 1.0);
double tmp2 = d2*Kmove[2]*s/(d2*s - 1.0);
double h = tmp0*tmp0 + tmp1*tmp1 + tmp2*tmp2 - 1.0;

if (fabs(h) < epsilon)
{

// We have found a root.
return true;

}

// Compute h’(t).
double hder = 4.0*tmp0*w0 + 4.0*tmp1*w1 + 4.0*tmp2*w2;
if (hder > 0.0)
{

// The ellipsoid cannot intersect the sphere.
return false;

}

// Compute the next iterate tNext = t - h(t)/h’(t).
contactTime -= h/hder;

}

ComputeClosestPoint(D, K + contactTime*W, Zcontact);
return true;

}

bool FindContact (const Ellipsoid3d &ellipsoid0,
const Vector3d& velocity0, const Ellipsoid3d &ellipsoid1,
const Vector3d& velocity1, double& contactTime,
Vector3d& contactPoint)

{

6.3 Test-Intersection Queries 375

// Get the parameters of ellipsoid0.
Vector3d K0 = ellipsoid0.Center;
Matrix3d R0(ellipsoid0.Axis, true);
Matrix3d D0(

1.0/(ellipsoid0.Extent[0]*ellipsoid0.Extent[0]),
1.0/(ellipsoid0.Extent[1]*ellipsoid0.Extent[1]),
1.0/(ellipsoid0.Extent[2]*ellipsoid0.Extent[2]));

// Get the parameters of ellipsoid1.
Vector3d K1 = ellipsoid1.Center;
Matrix3d R1(ellipsoid1.Axis, true);
Matrix3d D1(

1.0/(ellipsoid1.Extent[0]*ellipsoid1.Extent[0]),
1.0/(ellipsoid1.Extent[1]*ellipsoid1.Extent[1]),
1.0/(ellipsoid1.Extent[2]*ellipsoid1.Extent[2]));

// Compute K2.
Matrix3d D0NegHalf(ellipsoid0.Extent[0], ellipsoid0.Extent[1],

ellipsoid0.Extent[2]);
Matrix3d D0Half(

1.0/ellipsoid0.Extent[0],
1.0/ellipsoid0.Extent[1],
1.0/ellipsoid0.Extent[2]);

Vector3d K2 = (D0Half*(K1 - K0))*R0;

// Compute M2.
Matrix3d R1TD0NegHalfR0 = R1.TransposeTimes(D0NegHalf*R0);
Matrix3d M2 = R1TD0NegHalfR0.TransposeTimes(D1)*R1TD0NegHalfR0;

// Factor M2 = R*D*RˆT.
Matrix3d R, D;
M2.EigenDecomposition(R, D);

// Compute K.
Vector3d K = K2*R;

// Compute W.
Vector3d W = ((D0Half*(velocity1 - velocity0))*R0)*R;

// Transformed ellipsoid0 is ZˆT*Z = 1 and transformed
// ellipsoid1 is (Z-K)ˆT*D*(Z-K) = 0.

// Compute the initial closest point.
Vector3d P0;
if (ComputeClosestPoint(D, K, P0) >= 0.0)
{

// The ellipsoid contains the origin, so the ellipsoids
// were not separated.

376 Chapter 6 Physics Engines

return false;
}
double dist0 = P0.Dot(P0) - 1.0;
if (dist0 < 0.0)
{

// The ellipsoids are not separated.
return false;

}

Vector3d Zcontact;
if (!ComputeContact(D, K, W, contactTime, Zcontact))
{

return false;
}

// Transform contactPoint back to original space.
contactPoint = K0 + R0*D0NegHalf*R*Zcontact;
return true;

}

6.3.4 Cylinders

Practitioners also sometimes consider using cylinders as bounding volumes. The test-
intersection query for two cylinders is even more difficult to derive than that for
ellipsoids. My advice is to avoid cylinders and try to use capsules instead. That said,
this section shows how to formulate an algorithm that uses the method of separat-
ing axes, although the construction is more complicated than one encounters when
separating convex polyhedra (see Section 6.4). The resulting algorithm is a fairly
expensive one.

Representation of a Cylinder

A cylinder has a center point C, unit-length axis direction W, radius r and height h.
The end disks of the cylinder are centered at C± (h/2)W. Let U and V be any unit-
length vectors for which {U, V, W} is a right-handed set of orthonormal vectors. That
is, the vectors are unit length, mutually orthogonal, and W= U×V. Points in the
cylinder are parameterized by

X(θ , t) = C+ (s cosθ)U+ (s sinθ)V+ t W, θ ∈ [0, 2π), 0≤ s ≤ r , |t | ≤ h/2
(6.47)

The projections of a cylinder onto a line are determined solely by the cylinder wall,
not the end disks.

The choice of U and V is arbitrary. Intersection queries between cylinders should
be independent of this choice, but some of the algorithms are better handled if a

6.3 Test-Intersection Queries 377

choice is made. A quadratic equation that represents the cylinder wall is (X−C)T(I −
WWT)(X−C)= r 2. The boundedness of the cylinder is specified by |W · (X−C)| ≤
h/2. This representation is dependent only on C, W, r , and h.

Nonintersection of Convex Objects by Projection Methods

Consider the problem of determining whether two convex objects in 3D are inter-
secting. This test-intersection geometric query is concerned only about whether the
objects intersect, not about where they intersect. The latter problem is said to be a
find-intersection geometric query. This document is about the test-intersection query
for two bounded cylinders.

Separation by Projection onto a Line

A test for nonintersection of two convex objects is simply stated: If there exists a line
for which the intervals of projection of the two objects onto that line do not inter-
sect, then the objects do not intersect. Such a line is called a separating line or, more
commonly, a separating axis. The translation of a separating line is also a separating
line, so it is sufficient to consider lines that contain the origin. Given a line containing
the origin and with unit-length direction D, the projection of a compact convex set
C onto the line is the interval

I = [λmin(D),λmax(D)]= [min{D · X : X ∈ C}, max{D · X : X ∈ C}]
Two compact convex sets C0 and C1 are separated if there exists a direction D such
that the projection intervals I0 and I1 do not intersect, I0 ∩ I1 = ∅. Specifically they
do not intersect when

λ
(0)
min(D) > λ(1)

max(D) or λ(0)
max(D) < λ

(1)
min(D). (6.48)

The superscripts correspond to the indices of the convex set. Although the com-
parisons are made where D has unit length, the comparison results are invariant
to changes in length of the vector. This follows from λmin(t D)= tλmin(D) and
λmax(t D)= tλmax(D) for t > 0. The Boolean value of the pair of comparisons is
also invariant when D is replaced by the opposite direction −D. This follows from
λmin(−D)=−λmax(D) and λmax(−D)=−λmin(D). When D is not unit length, the
intervals obtained for the separating axis tests are not the projections of the object
onto the line; rather, they are scaled versions of the projection intervals. I make no
distinction in this document between the scaled projection and regular projection. I
will also use the terminology that the direction vector for a separating axis is called a
separating direction and is not necessarily unit length.

For a pair of convex polyhedra, only a finite set of direction vectors needs to be
considered for separation tests. That set includes the normal vectors to the faces of the

378 Chapter 6 Physics Engines

polyhedra and vectors generated by a cross product of two edges, one from each poly-
hedron. I am aware of no general theory for constructing the smallest set of potential
separating directions for other convex objects.

In equation (6.48), allowing equality means that the two convex objects might be
separated, but they also might be just touching. The intersection set does not have
volume to it, so one might say that the objects are not overlapping. In this document,
I will allow the equality because it allows for some simplification of the algorithm
for separation testing. If you need strict separation, the algorithm may be modified
appropriately to support this.

Projection of a Cylinder onto a Line

Let the line be λD where D is a nonzero vector. The projection of a cylinder wall point
onto the line is

λ(θ , t)= D · X(θ , t)= D · C+ (r cosθ)D · U+ (r sinθ)D · V+ t D · W (6.49)

The interval of projection has endpoints determined by the extreme values of this
expression. The maximum value occurs when all three terms involving the param-
eters are made as large as possible. The t -term has a maximum of (h/2)|D · W|.
The θ-terms, not including the radius, can be viewed as a dot product (cos θ , sinθ) ·
(D · U, D · V). This is maximized when (cos θ , sinθ) is in the same direction as
(D · U, D · V). Therefore,

(cos θ , sinθ)= (D · U, D · V)√
(D · U)2 + (D · V)2

and the maximum projection value is

λmax =D · C+ r
√
|D|2− (D · W)2 + (h/2)|D · W| (6.50)

The construction uses the identities

D = (D · U)U+ (D · V)V+ (D · W)W
(D · U)2+ (D · V)2 + (D · W)2 = |D|2
UUT+VVT+WWT = I

(6.51)

where I is the 3× 3 identity matrix. The minimum projection value is similarly
derived,

λmin = D · C− r
√
|D|2− (D · W)2 − (h/2)|D · W|

Separating Axis Tests for Two Cylinders

Given two cylinders with centers Ci , axis directions Wi , radii ri , and heights hi , for
i = 0, 1, the cylinders are separated if there exists a nonzero direction D such that

6.3 Test-Intersection Queries 379

either

D · C0− r0

√|D|2− (D · W0)2 − (h0/2)|D · W0| ≥
D · C1+ r1

√|D|2− (D · W1)2 + (h1/2)|D · W1|
or

D · C0+ r0

√|D|2− (D · W0)2 + (h0/2)|D · W0| ≤
D · C1− r1

√|D|2− (D · W1)2 − (h1/2)|D · W1|
These are just a restatement of equation (6.48) for bounded cylinders.

Defining �= C1−C0, these tests can be combined into a single expression

f (D)= r0|P0D| + r1|P1D| + (h0/2)|D · W0| + (h1/2)|D · W1| − |D · �| ≤ 0
(6.52)

where Pi = I −WiWT
i for i = 0, 1 are projection matrices.

If �= 0, then f > 0. This is geometrically obvious because two cylinders with
the same center always intersect. The remainder of the discussion assumes � �= 0.
If D is perpendicular to �, then f (D) > 0. This shows that any line perpendicular
to the line containing the two cylinder centers can never be a separating axis. This
is also clear geometrically. The line of sight C0+ s� intersects both cylinders at their
centers. If you project the two cylinders onto the plane � · (X−C0)= 0, both regions
of projection overlap. No matter which line you choose containing C0 in this plane,
the line intersects both projection regions.

If D is a separating direction, then f (D) ≤ 0. Observe that f (t D)= tf (D) for
t > 0, so f (t D) ≤ 0. This is consistent with the geometry of the problem. Any nonzero
multiple of a separating direction must itself be a separating direction. This allows us
to restrict our attention to the unit sphere, |D| = 1. Function f is continuous on the
unit sphere, a compact set, so f must attain its minimum at some point on the sphere.
This is a minimization problem in two dimensions, but the spherical geometry com-
plicates the analysis somewhat. As we will see later, different restrictions on the set
of potential separating directions can be made that yield minimization problems in a
plane rather than on a sphere.

The analysis of f involves computing its derivatives to determine its critical points.
These are points for which the derivative is zero or undefined. The latter category is
easy to specify. The derivatives are undefined when any of the terms inside the five
absolute value signs is zero. Thus, the derivatives are undefined at W0, W1, at vectors
that are perpendicular to W0, at vectors that are perpendicular to W1, and at vectors
that are perpendicular to �. I already argued that f > 0 for vectors perpendicular to
�, so we may ignore this case.

The next two sections describe how to handle those directions for which the
derivatives of f are undefined. The section after those describes how to handle those
directions for which the derivatives of f are defined.

380 Chapter 6 Physics Engines

Separation Tests Involving the Cylinder Axis Directions

The cylinder axis directions themselves can be tested first for separation. The tests for
separation are

f (W0)= r1|W0×W1| + (h0/2)+ (h1/2)|W0 · W1| − |W0 · �| ≤ 0

and

f (W1)= r0|W0×W1| + (h0/2)|W0 · W1| + (h1/2)−|W1 · �| ≤ 0

If either condition is satisfied, the cylinders are separated.
The test for direction W0×W1 does not require many more operations and might

lead to a quick no-intersection test,

f (W0×W1)= (r0 + r1)|W0×W1| − |W0×W1 · �| ≤ 0

assuming that W0 ×W1 �= 0. This vector is one for which the derivatives of f are
undefined.

If W0 and W1 are parallel, then W0×W1 = 0, |W0 · W1| = 1, and |W0 ×W1|2 =
1− (W0 · W1)

2. The test for separation by W0 is

f (W0)= (h0 + h1)/2−|W0 · �| ≤ 0

If f (W0) ≥ 0, the two cylinders are potentially separated by a direction that is per-
pendicular to W0. Geometrically it is enough to determine whether or not the circles
of projection of the cylinders onto the plane W0 · X= 0 intersect. These circles are
disjoint if and only if the length of the projection of � onto that plane is larger than
the sum of the radii of the circles. The projection of � is �− (W0 · �)W0 and the
separation test is

|�− (W0 · �)W0| ≥ r0+ r1

In fact, this test is equivalent to the separating axis test for the direction D =�−
(W0· �)W0. The test has a common factor |D| that may be divided out of the
expression.

For the remainder of this document I assume that W0 and W1 are not parallel.

Separation Tests Involving the Cylinder Axis Perpendiculars

We now consider the directions D perpendicular to W0. The function of equation
(6.52) becomes

f (D)= r0|D| + r1|P0D| + (h1/2)|D · W1| − |D · �| (6.53)

We may choose D(θ)= (cos θ)U0+ (sinθ)V0, where {U0, V0, W0} is a right-handed
orthonormal set, giving us a circle of directions to analyze. We may then define
g (θ) = f (D(θ)). The analysis of the derivative of g in order to determine critical

6.3 Test-Intersection Queries 381

points is complicated by the presence of the four absolute value signs. We discussed
previously the cases when the derivative is undefined (in terms of f itself). To compute
symbolically the values θ where g ′(θ) = 0 is an intractable task.

An alternative parameterization is the following and is equivalent to testing direc-
tions on a hemicircle. It is sufficient to consider only a hemicircle because −D is a
separating direction if and only if D is a separating direction. By assumption, W0 and
W1 are not parallel. A normalized projection of W1 onto the plane perpendicular to
W0 is

V0 = W1 − (W0 · W1)W0

|W1 − (W0 · W1)W0|
Define U0 = V0 ×W0. The set {U0, V0, W0} is a right-handed orthonormal basis.
Notice also that

U0 = W1×W0

|W1×W0|
Define D(t)= (1− t)U0+ t V0 for t ∈ [0, 1], which are nonzero vectors whose nor-
malized values cover one quarter of a circle. Define

F(t)= f (D(t))

= r0

√
(1− t)2 + t 2 + r1

√
(1− t)2 + c2

1 t 2+ h1b1t/2 (6.54)

−|(1− t)a2 + tb2|
where a1 =W1 · U0 = 0, b1 =W1 · V0 > 0, c1 =W1 · W0, a2 =� · U0, and b2 =� ·
V0. Observe that the absolute value signs were discarded for the term corresponding
to |D · W1|. This is a result of knowing that the directions D for the hemicircle form an
acute angle with W1, so D · W1 ≥ 0. I have also used the fact that 1 = a2

1 + b2
1 + c2

1 =
b2

1 + c2
1 , in which case 1− b2

1 = c2
1 .

The first derivative of F(t) is

F ′(t)= r0(2t − 1)√
(1− t)2 + t 2

+ r1((1+ c2
1)t − 1)√

(1− t)2 + c2
1 t 2

+ h1b1/2

− (b2 − a2)Sign((1− t)a2 + tb2)

(6.55)

where Sign(x) =+1 when x > 0, −1 when x < 0, and 0 when x = 0. The second
derivative is

F ′′(t) = 3r0

((1− t)2 + t 2)3/2
+ r1c2

1

((1− t)2 + c2
1 t 2)3/2

(6.56)

The warning is that F ′(t) and F ′′(t) are discontinuous when Sign((1− t)a2 + b2)= 0.
Notice that F ′′(t) > 0, so F(t) is a strictly convex function. One implication is that F ′(t)
is a strictly increasing function. Another is that F(t) must have a global minimum that

382 Chapter 6 Physics Engines

occurs for exactly one t on the interval [0, 1]. The minimum is either F(0), F(1), or
F(t̄) where F ′(t̄) is zero or undefined. If the global minimum is nonpositive, we have
a separating direction.

The algorithm is as follows. If F(0) ≤ 0, then U0 is a separating direction. If F(1) ≤
0, then V0 is a separating direction. Otherwise, F(0) > 0 and F(1) > 0. If F ′(0) ≥ 0,
then the convexity of F guarantees that F(0) is the global minimum. Since F(0) > 0,
there is no separation. If F ′(1) ≤ 0, then the convexity of F guarantees that F(1) is
the global minimum. Since F(1) > 0, there is no separation. We are now at the point
where F(0) > 0, F(1) > 0, F ′(0) < 0, and F ′(1) > 0. A global minimum must occur at
an interior point t̄ ∈ [0, 1] for which F ′(t̄) is zero or undefined. Use bisection based
on the signs of F ′(t) to locate t̄ . At each iterate ti it is worthwhile to test whether
F(ti)≤ 0. For if it is, we have found a separating direction. If the bisection terminates
and F(t̄) > 0, there is no separation.

The other line segment of directions to process has D(t) = (1− t)(−U0)+ t V.
The only thing that changes in equations (6.54), (6.55), and (6.56) is that a2 is
replaced by−a2. The bisection algorithm is applied once again to compute the global
minimum of F and test whether or not F is nonpositive at the iterates.

The same algorithm is applied when the two cylinders reverse roles.

Separation Tests Involving Other Directions

The idea is similar to what was discussed previously – to compute global minima of
functions and determine whether any of the bisection iterates produces a separating
direction.

The symmetry f (−D)= f (D) implies that we only need to analyze f on a hemi-
sphere; the other hemisphere values are determined automatically. Since f > 0 on the
great circle of vectors that are perpendicular to �, we can restrict our attention to the
hemisphere whose pole is W=�/|�|. Choose U and V such that the set {U, V, W} is
right-handed and orthonormal.

The hemisphere is processed by decomposing it into octants and analyzing a func-
tion that is defined on a triangular surface in each octant. For example, in the first
octant define D(s, t)= sU+ t V+ (1− s − t)W and G(s, t)= f (D(s, t)) for s ≥ 0,
t ≥ 0, and s + t ≤ 1,

G(s, t) = r0

√
s2+ t 2 + (1− s − t)2 − (a0s+ b0t + c0(1− s − t))2

+ r1

√
s2+ t 2 + (1− s − t)2 − (a1s+ b1t + c1(1− s − t))2

+(h0/2)|a0s + b0t + c0(1− s − t)|
+(h1/2)|a1s + b1t + c1(1− s − t)|
−(1− s − t)|�|

(6.57)

It turns out that G(s, t) is a convex function. To simplify the presentation, define

Li(s, t)= ais + bit + ci(1− s − t)

6.3 Test-Intersection Queries 383

and

Qi(s, t)= s2+ t 2 + (1− s − t)2 − (ai s + bit + ci(1− s − t))2

for i = 0, 1. The first-order derivatives are

Qi ,s = 2s − 2(1− s − t)− 2(ai − ci)(ai s + bit + ci(1− s − t))

Qi ,t = 2t − 2(1− s − t)− 2(bi − ci)(ai s + bi t + ci(1− s − t))

and the second-order derivatives are

Qi ,ss = 4− 2(ai − ci)
2

Qi ,st = 2− 2(ai − ci)(bi − ci)

Qi ,tt = 4− 2(bi − ci)
2

The function G becomes

G(s, t)= r0

√
Q0 + r1

√
Q1 + (h0/2)|L0| + (h1/2)|L1| − (1− s − t)|�|

The first-order derivatives are

Gs = r0
Q0,s

2
√

Q0
+ r1

Q1,s

2
√

Q1
+(h0/2)(a0− c0)Sign(L0)+(h1/2)(a1− c1)Sign(L1)+|�|

Gt = r0
Q0,t

2
√

Q0
+ r1

Q1,t

2
√

Q1
+(h0/2)(b0− c0)Sign(L0)+ (h1/2)(b1− c1)Sign(L1)+|�|

The second-order derivatives are

Gss = r0
2Q0Q0,ss −Q0,s Q0,s

4Q3/2
0

+ r1
2Q1Q1,ss −Q1,sQ1,s

4Q3/2
1

Gst = r0
2Q0Q0,st −Q0,s Q0,t

4Q3/2
0

+ r1
2Q1Q1,st −Q1,s Q1,t

4Q3/2
1

Gtt = r0
2Q0Q0,tt −Q0,t Q0,t

4Q3/2
0

+ r1
2Q1Q1,tt −Q1,t Q1,t

4Q3/2
1

where it is understood that the first- and second-order derivatives are discontinuous
when Sign(Li)= 0. If we define

ηi(s, t)=√Qi(s, t)

then

Gss = r0η0,ss + r1η1,ss , Gst = r0η0,st + r1η1,st , Gtt = r0η0,tt + r1η1,tt

384 Chapter 6 Physics Engines

The factorizations in the following were computed with the help of Mathematica,
although that program needed quite a bit of manual guidance to complete the tasks.
It was demonstrated that

Q3/2
i ηi ,ss = (2Qi Qi ,ss −Qi ,sQi ,s)/4= ((ai + bi + ci)t − bi)

2 ≥ 0

and

Q3/2
i ηi ,tt = (2Qi Qi ,tt −Qi ,t Qi ,t)/4= ((ai + bi + ci)s − ai)

2 ≥ 0

These establish the facts that Gss ≥ 0 and Gtt ≥ 0. The more challenging work was to
factor GssGtt −G2

st . It was demonstrated that

Q3
i (ηi ,ssηi ,tt − η2

i ,st) = (2Qi Qi ,ss −Qi ,sQi ,s)(2Qi Qi ,tt −Qi ,t Qi ,t)

−(2Qi Qi ,st −Qi ,sQi ,t)
2

= (a2
i + b2

i + c2
i − 1)pi(s, t)

= 0

where pi(s, t) are quadratic polynomials. However, we know that (ai , bi , ci) are the
coefficients of unit-length vectors W i with respect to the orthonormal basis {U, V, W},
so a2

i + b2
i + c2

i = 1. The determinant of the second-derivative matrix for G is

Gss Gtt −G2
st = (r0η0,ss + r1η1,ss)(r0η0,tt + r1η1,tt)− (r0η0,st + r1η1,st)

2

= r 2
0 (η0,ssη0,tt − η2

0,st)+ r 2
1 (η1,ssη1,tt − η2

1,st)

+ r0r1(η0,ssη1,tt + η1,ssη0,tt − 2η0,st η1,st)

= r0r1(η0,ssη1,tt + η1,ssη0,tt − 2η0,st η1,st)

Finally, we were able to demonstrate that

Q3/2
0 Q3/2

1 (η0,ssη1,tt + η1,ssη0,tt − 2η0,st η1,st)= (αs +βt + γ (1− s − t))2

where α = b0c1− b1c0, β = a1c0− a0c1, and γ = a0b1− a1b0. Observe that W0×
W1 = αU+βV+ γ W and D · W0×W1 = αs+βt + γ (1− s − t). This establishes
the fact that GssGtt −G2

st ≥ 0, with equality occurring only when D is perpendicular
to W0×W1.

The conditions Gss ≥ 0, Gtt ≥ 0, and Gss Gtt −G2
st ≥ 0 are sufficient to conclude

that G(s, t) is a convex function. Numerical minimizers tend to perform quite well
for convex functions.

Pseudocode for the Algorithm

This section describes the high-level details for the test-intersection query between
two bounded cylinders.

At the topmost level, the separation function is the following. It returns true
whenever the cylinders are separated.

6.3 Test-Intersection Queries 385

bool SeparatedCylinders (Point C0, Vector W0, Real r0, Real h0,
Point C1, Vector W1, Real r1, Real h1)

{
Vector Delta = C1 - C0;
Vector W0xW1 = Cross(W0,W1);
Real lenW0xW1 = |W0xW1|;
Real h0Div2 = h0/2;
Real h1Div2 = h1/2;
Real rSum = r0 + r1;

if (lenW0xW1 > 0)
{

// Test for separation by W0.
if (r1*lenW0xW1 + h0Div2 + h1Div2*|Dot(W0,W1)|

- |Dot(W0,Delta)| < 0) return true;

// Test for separation by W1.
if (r0*lenW0xW1 + h0Div2*|Dot(W0,W1)| + h1Div2

- |Dot(W1,Delta)| < 0) return true;

// Test for separation by W0xW1.
if (rSum*lenW0xW1 - |Dot(W0xW1,Delta)| < 0) return true;

// Test for separation by directions perpendicular to W0.
if (SeparatedByCylinderPerpendiculars(C0,W0,r0,h0,

C1,W1,r1,h1)) return true;

// Test for separation by directions perpendicular to W1.
if (SeparatedByCylinderPerpendiculars(C1,W1,r1,h1,

C0,W0,r0,h0)) return true;

// Test for separation by other directions.
if (SeparatedByOtherDirections(W0,r0,h0,

W1,r1,h1,Delta)) return true;
}
else
{

// Test for separation by height.
if (h0Div2 + h1Div2 - |Dot(W0,Delta)| < 0) return true;

// Test for separation radially.
if (rSum - |Delta - Dot(W0,Delta)*W0| < 0) return true;

// If parallel cylinders are not separated by height or
// radial distance, then the cylinders must overlap.

}

return false;
}

386 Chapter 6 Physics Engines

Processing of directions perpendicular to the cylinder axes is handled by the
following code.

Real F (Real t, Real r0, Real r1, Real h1b1Div2, Real c1sqr,
Real a2, Real b2)

{
Real omt = 1 - t;
Real tsqr = t*t;
Real omtsqr = omt*omt;
Real term0 = r0*sqrt(omtsqr + tsqr);
Real term1 = r1*sqrt(omtsqr + c1sqr*tsqr);
Real term2 = h1b1Div2*t;
Real term3 = |omt*a2 + t*b2|;
return term0 + term1 + term2 - term3;

}

Real FDer (Real t, Real r0, Real r1, Real h1b1Div2, Real c1sqr,
Real a2, Real b2)

{
Real omt = 1 - t;
Real tsqr = t*t;
Real omtsqr = omt*omt;
Real term0 = r0*(2*t-1)/sqrt(omtsqr + tsqr);
Real term1 = r1*((1+c1sqr)*t - 1)/sqrt(omtsqr + c1sqr*tsqr);
Real term2 = h1b1Div2;
Real term3 = (b2 - a2)*sign(omt*a2 + t*b2);
return term0 + term1 + term2 - term3;

}

bool SeparatedByCylinderPerpendiculars (Point C0, Vector W0,
Real r0, Real h0, Point C1, Vector W1, Real r1, Real h1)

{
Vector Delta = C1 - C0;
Real c1 = Dot(W0,W1);
Real b1 = sqrt(1 - c1*c1);
Vector V0 = (W1 - c1*W0)/b1;
Vector U0 = Cross(V0,W0);
Real a2 = Dot(Delta,U0);
Real b2 = Dot(Delta,V0);

// Test directions (1-t)*U0 + t*V0.
if (F(0) <= 0) return true; // U0 is a separating direction
if (F(1) <= 0) return true; // V0 is a separating direction
if (FDer(0) >= 0) return false; // no separation perp dirs
if (FDer(1) <= 0) return false; // no separation perp dirs

// Use bisection to locate t-bar for which F(t-bar) is a
// minimum. The upper bound maxIterations may be chosen to

6.3 Test-Intersection Queries 387

// guarantee a specified number of digits of precision in the
// t-variable.
Real t0, t1, fd0, fd1, tmid, fdmid;
int i;
t0 = 0;
t1 = 1;
for (i = 0; i < maxIterations; ++i)
{

tmid = 0.5*(t0 + t1);
if (F(tmid) <= 0)
{

// (1-t)*U0 + t*V0 is a separating direction
return true;

}
fdmid = FDer(tmid);
if (fdmid > 0)
{

t1 = tmid;
}
else if (fdmid < 0)
{

t0 = tmid;
}
else
{

break;
}

}

// Test directions (1-t)*(-U0) + t*V0.
a2 = -a2;
if (F(0) <= 0) return true; // U0 is a separating direction
if (F(1) <= 0) return true; // V0 is a separating direction
if (FDer(0) >= 0) return false; // no separation perp dirs
if (FDer(1) <= 0) return false; // no separation perp dirs

// Use bisection to locate t-bar for which F(t-bar) is a
// minimum. The upper bound maxIterations may be chosen to
// guarantee a specified number of digits of precision in the
// t-variable.
t0 = 0;
t1 = 1;
for (i = 0; i < maxIterations; ++i)
{

tmid = 0.5*(t0 + t1);
if (F(tmid) <= 0)
{

388 Chapter 6 Physics Engines

// (1-t)*U0 + t*V0 is a separating direction
return true;

}
fdmid = FDer(tmid);
if (fdmid > 0)
{

t1 = tmid;
}
else if (fdmid < 0)
{

t0 = tmid;
}
else
{

break;
}

}
}

Processing of other directions is handled by the following code.

Real G (Real s, Real t, Real r0, Real h0Div2, Real r1,
Real h1Div2, Real a0, Real b0, Real c0, Real a1,
Real b1, Real c1, Real lenDelta)

{
Real omsmt = 1 - s - t;
Real ssqr = s*s;
Real tsqr = t*t;
Real omsmtsqr = omsmt*omsmt;
Real temp = ssqr + tsqr + omsmtsqr;
Real L0 = a0*s + b0*t + c0*omsmt;
Real L1 = a1*s + b1*t + c1*omsmt;
Real Q0 = temp - L0*L0;
Real Q1 = temp - L1*L1;
return r0*sqrt(Q0) + r1*sqrt(Q1) + h0Div2*|L0|

+ h1Div2*|L1| - omsmt*lenDelta;
}

Vector GDer (Real s, Real t, Real r0, Real h0Div2,
Real r1, Real h1Div2, Real a0, Real b0, Real c0,
Real a1, Real b1, Real c1, Real lenDelta)

{
Real omsmt = 1 - s - t;
Real ssqr = s*s;
Real tsqr = t*t;
Real omsmtsqr = omsmt*omsmt;
Real temp = ssqr + tsqr + omsmtsqr;
Real L0 = a0*s + b0*t + c0*omsmt;
Real L1 = a1*s + b1*t + c1*omsmt;

6.3 Test-Intersection Queries 389

Real Q0 = temp - L0*L0;
Real Q1 = temp - L1*L1;
Real diffS = s - omsmt;
Real diffT = t - omsmt;
Real diffa0c0 = a0 - c0;
Real diffa1c1 = a1 - c1;
Real diffb0c0 = b0 - c0;
Real diffb1c1 = b1 - c1;
Real halfQ0s = diffS - diffa0c0*L0;
Real halfQ1s = diffS - diffa1c1*L1;
Real halfQ0t = diffT - diffb0c0*L0;
Real halfQ1t = diffT - diffb1c1*L1;
Real factor0 = r0/sqrt(Q0);
Real factor1 = r1/sqrt(Q1);
Real signL0 = sign(L0);
Real signL1 = sign(L1);

Vector gradient = (0,0);
gradient[0] += halfQ0s*factor0;
gradient[0] += halfQ1s*factor1;
gradient[0] += h0Div2*diffa0c0*signL0;
gradient[0] += h1Div2*diffa1c1*signL1;
gradient[0] += lenDelta;
gradient[1] += halfQ0t*factor0;
gradient[1] += halfQ1t*factor1;
gradient[1] += h0Div2*diffb0c0*signL0;
gradient[1] += h1Div2*diffb1c1*signL1;
gradient[1] += lenDelta;

return gradient;
}

bool SeparatedByOtherDirections (Vector W0, Real r0, Real h0,
Vector W1, Real r1, Real h1, Vector Delta)

{
// Minimize G(s,t) subject to s >= 0, t >= 0, and s+t <= 1.
// If at any iterate you find a value for which G <= 0,
// return ’true’. If no separating directions have been
// found at the end of the minimization, return ’false’.

}

The function SeparatedByOtherDirections encapsulates a numerical method
such as the conjugate gradient method or Powell’s direction set method to minimize
the function G(s, t). In either case, the idea is to start at a parameter point (s0, t0) and
choose the direction (d0, d1) for a line along which to minimize,

(s(r), t(r)) = (s0, t0)+ r(d0, d1)

390 Chapter 6 Physics Engines

The interval for the line parameter r is determined by the intersection of the line with
the triangular domain for s and t . Let this interval be denoted [r0, r1]. The function
to minimize is

γ (r)= G(s(r), t(r))

and its derivative is

γ ′(r)= Gs(s(r), t(r))d0 +Gt (s(r), t(r))d1 = (d0, d1) ·∇G(s(r), t(r))

Because G(s, t) is a convex function, so is γ (r). The algorithm for minimizing γ

on [r0, r1] is the same one mentioned previously for F(t) on [0, 1]. If γ (r0) ≤ 0, then
D = s(r0)U+ t(r0)V+ (1− s(r0)− t(r0))W is a separating direction. If γ (r1)≤ 0,
then D= s(r1)U+ t(r1)V+ (1− s(r1)− t(r1))W is a separating direction. Other-
wise, γ (r0) > 0 and γ (r1) > 0. If γ ′(r0)≥ 0, then the convexity of γ guarantees that
γ (r0) is the global minimum. Since γ (r0) > 0, there is no separation using directions
along the current r-interval. If γ ′(r1) ≤ 0, then the convexity of γ guarantees that γ (r1)

is the global minimum. Since γ (r1) > 0, there is no separation using directions along
the current r-interval. Otherwise, γ (r0) > 0, γ (r1) > 0, γ ′(r0) < 0, and γ ′(r1) > 0. A
global minimum must occur at an interior point r̄ ∈ [r0, r1] for which γ ′(t̄) is zero or
undefined. Use bisection based on the signs of γ ′(r) to locate r̄ . At each iterate ri it is
worthwhile to test whether γ (ri) ≤ 0. For if it is, we have found a separating direction.
If the bisection terminates and γ (r̄) > 0, there is no separation using directions along
the current r-interval.

Once a minimum has been located along the current r-interval, say, γ (r̄), then the
new starting point is (s0, t0)= (s(r̄), t(r̄)), and a new direction is chosen for (d0, d1).
If the minimum of the previous line occurs on a boundary of the triangular domain,
then you need only search that boundaries of the triangular domain for the global
minimum. Otherwise, the line search is repeated for the new line. If the global mini-
mum is interior to the triangular domain, then you will never reach the boundary on
a line search.

The choice of directions depends on the numerical minimizer you choose. The
number of lines to search is usually based on convergence criteria – are you close
enough to a global minimum?

6.4 Collision Detection with Convex
Polyhedra

In this chapter our rigid bodies have been selected to be convex polyhedra of con-
stant mass density. The short name for convex polyhedron is polytope, a term we will
use throughout the remainder of this section. The invariant of the collision detection
and response system is nonpenetration of the polyhedra. The collision detection system

6.4 Collision Detection with Convex Polyhedra 391

must compute points of contact between each pair of polytopes. The response of the
system is designed so that at all points of contact, the polytopes move with nonnega-
tive velocity relative to the normal directions at the contact points, thus maintaining
the nonpenetration invariant.

Now we take a close look at how to compute the contact points. Since we must
find actual intersection points, a test-intersection geometric query will not suffice.
A find-intersection geometric query must be formulated. For two stationary poly-
topes a find-intersection query must compute the polytope of intersection. If we were
just to use a generic intersection algorithm, we would be ignoring the fact that our
invariant prevents interpenetration. Because of our invariant, the intersection must
consist of points, line segments, or convex polygons; intersection regions with volume
are disallowed. Assuming a collision detection and response system designed to han-
dle a finite set of contact points, the find-intersection query might very well detect a
line segment of intersection but need only report the endpoints as the contact points.
Similarly, only the vertices of a convex polygon of intersection need to be reported.
Thus, a find-intersection query should be tailored to our needs.

We have an additional problem with which to deal. Time is a continuous vari-
able in the physical setting, but we are using a differential equation solver to estimate
motion over small time intervals. Let P(t) be the path of a point on a moving poly-
tope. The equations of motion determine this path, but we do not know the path
in closed form. Knowing the location of a point P0 = P(t0) at the current time t0,
our goal is to determine the location P1 = P(t1) at the next sampled simulation time
t1 = t0+�t . The differential equation solver produces a point Q1 that is an approxi-
mation toP1. The collision system might very well report thatQ1 is outside (or inside)
another polytope when in fact P1 is inside (or outside), the collision result being in
error. For most game applications, if a collision is reported when in fact there is none,
the system is effectively conservative in its handling in that some action will be taken
to “prevent” the collision; the only harm done is that some extra cycles are spent on
the event. More serious, though, is for the collision system not to report a collision
when in fact there is one. For those of you with some experience programming with
collision detection systems, I am certain you have seen the situation where an object
whose motion is controlled by an input device such as a mouse or joystick slightly
interpenetrates a wall because the collision system failed to report the intersection.
When you attempt to steer the object away from the wall, it becomes stuck because
now the collision system does detect an intersection, this one between the object and
the opposite side of the wall. In some collision detection systems you might even see
the object stutter, a high-frequency oscillation of a system in conflict, one portion try-
ing to pull the object out of the wall and another portion pulling it into the wall. We
would like to avoid such behavior in our collision detection system.

Even if we were able to compute the exact value P1, the system can still be in
error. The problem now is that we have incremented t0 to t1 by a positive increment
in time. It is possible that P0 and P1 are both outside another polytope, but at some
time t2 ∈ [t0, t1] the point P(t2) is inside that polytope. The time step �t of the dif-
ferential equation solver was too large to “notice” the collision event. Although your

392 Chapter 6 Physics Engines

One step, missed collision

Half step,
no collision

Half step,
missed collision

t t + Dtt + Dt/2
(a) (b) (c)

Figure 6.17 (a) Object at time t0. (b) Object at time t0 +�t/2. (c) Object at time t0+�t .

instinct might be to choose a smaller value for �t , you can do so, move the object in
two time steps and miss the intersection again. Figure 6.17 illustrates.

In fact, the reduction in time step has problems exactly in those circumstances
that we are interested in – contact without interpenetration.

A classical solution to the problem, and one mentioned in [Bar01], is to use
a bisection method. Let B0(t) and B1(t) denote the solid polytopes at time t (as
sets of points). The assumption is that two polytopes are not intersecting at time
t0, B0(t0)∩ B1(t0)= ∅ (the intersection is the empty set). The polytopes are to be
moved during the time interval [t0, t1], the difference �t = t1− t0 supplied by the
application. If B0(t1) and B1(t1) intersect and the intersection set has volume, say
I = B0(t1)∩ B1(t1) �= ∅with Volume(I) > 0, the time step was too large. Now try the
motion with half the time step, the final time being tm = (t0 + t1)/2. The intersect set
is I = B0(tm)∩ B1(tm). If I �= ∅ and Volume(I) > 0, the half step was also too large
and we repeat the bisection of the time interval. If I = ∅, the half step was too large
and we search for potential intersection on the other half interval [tm , t1]. Our goal is
to obtain an intersection I �= ∅ with Volume(I)= 0. The pseudocode is

void GetContactSet (double t0, double t1, polytope B0(t),
polytope B1(t), double& tContact, set& I)

{
// precondition: B0(t0) and B1(t0) do not intersect

6.4 Collision Detection with Convex Polyhedra 393

I = GetIntersection(B0(t1),B1(t1));
if (I is the empty_set)
{

tContact = <irrelevant>;
return;

}
if (Volume(I) == 0)
{

tContact = t1;
return;

}

for (i = 1; i <= maxIterations; ++i)
{

tm = (t0 + t1) / 2;
I = GetIntersection(B0(tm),B1(tm));
if (I is the empty_set)
{

t0 = tm;
}
else if (Volume(I) > 0)
{

t1 = tm;
}
else
{

tContact = tm;
return;

}
}

}

Well, this is still not a correct algorithm for two reasons. First, it can terminate
immediately when B0(t1) and B1(t1) do not intersect and the system reports that no
intersection has occurred. Second, it is possible that the system reports contact points
at the last time of contact. However, if the time steps are small compared to the sizes and
velocities of the polytopes, the algorithm should have reasonable behavior. Observe
that the pseudocode contains a function call GetIntersection that requires comput-
ing the polytope of intersection for two purposes, testing if the intersection is empty
and measuring the volume if not. As mentioned earlier, we want to avoid a generic
intersection calculator for polytopes because they can be somewhat expensive to exe-
cute. Moreover, it would be useful to have an intersection system that can predict the
time of collision on the interval [t0, t1] rather than search for one by sampling the
interval.

This section addresses how we go about testing for intersection of polytopes and
predicting when they intersect. A powerful algorithm is used, called the method of

394 Chapter 6 Physics Engines

separating axes. A detailed description of the method for moving as well as stationary
objects and for 2D (convex polygons) and 3D (convex polyhedra) is provided in the
books [Ebe07] and [SE02]. A summary of the method is provided here, but with some
additional material that is relevant to objects participating in a constrained dynamics
system. In particular, we want to take advantage of time coherence to help minimize
calculations at the next time step by caching information from the previous time step.

6.4.1 The Method of Separating Axes

We have been using the term convex when referring to the polyhedra that represent
our rigid bodies. A reminder of what that term means is in order: A set C is convex if
given any two points P and Q in C , the line segment (1− t)P + tQ for t ∈ [0, 1] is
also in C . Figure 6.18 shows a convex set and a nonconvex set in the plane.

A test for nonintersection of two convex objects is simply stated: If there exists
a line for which the intervals of projection of the two objects onto that line do not
intersect, then the objects do not intersect. Such a line is called a separating line or,
more commonly, a separating axis. Figure 6.19 illustrates.

The translation of a separating line is also a separating line, so it is sufficient to
consider lines that contain the origin. Given a line containing the origin O and with
unit-length direction D, the projection of a convex set C onto the line is the interval

I = [λmin(D),λmax(D)]= [min{D · (X −O) : X ∈ C}, max{D · (X −O) : X ∈ C}]
where possibly λmin(D)=−∞ or λmax(D)=+∞, these cases arising when the
convex set is unbounded. Two convex sets C0 and C1 are separated if there exists

(b)(a)

Figure 6.18 (a) A convex set. No matter which two points you choose in the set, the line segment
connecting them is in the set. (b) A nonconvex set. The line segment connecting two
specific points is not (fully) contained in the set.

6.4 Collision Detection with Convex Polyhedra 395

C1 D

C0

(0)
min

(1)
min

(0)
max

(1)
max

Figure 6.19 Nonintersecting convex objects and a separating line for them. The algebraic condi-

tion for separation is λ
(0)
max(D) < λ

(1)
min(D) as indicated in equation (6.58).

a direction D such that the projection intervals I0 and I1 do not intersect. Specifically,
they do not intersect when

λ
(0)
min(D) > λ(1)

max(D) or λ(0)
max(D) < λ

(1)
min(D) (6.58)

The superscript corresponds to the index of the convex set. Although the compari-
sons are made where D is unit length, the comparison results are invariant to changes
in length of the vector. This follows from λmin(t D)= tλmin(D) and λmax(t D)=
tλmax(D) for t > 0. The Boolean value of the pair of comparisons is also invariant
when D is replaced by the opposite direction −D. This follows from λmin(−D)=
−λmax(D) and λmax(−D)=−λmin(D). When D is not unit length, the intervals
obtained for the separating line tests are not the projections of the object onto the
line, rather they are scaled versions of the projection intervals. We make no distinction
between the scaled projection and regular projection. We will also use the terminol-
ogy that the direction vector for a separating line is called a separating direction, a
direction that is not necessarily unit length.

Please note that in two dimensions, the terminology for separating line or axis
is potentially confusing. The separating line separates the projections of the objects
on that line. The separating line does not partition the plane into two regions, each
containing an object. In three dimensions, the terminology should not be confusing
since a plane would need to be specified to partition space into two regions, each
containing an object. No real sense can be made for partitioning space by a line.

396 Chapter 6 Physics Engines

6.4.2 Stationary Objects

The method of separating axes for stationary objects determines whether or not two
objects intersect, a test-intersection query. We will analyze the method for convex
polygons in 2D to motivate the ideas, then extend the method to convex polyhedra
in 3D.

Convex Polygons

The following notation is used throughout this section. Let Cj for j = 0, 1 be the

convex polygons with vertices P(j)
i for 0≤ i < Nj that are counterclockwise ordered.

The edges of the polygons have direction vectors E
(j)
i = P(j)

i+1−P(j)
i for 0≤ i < Nj

and where modular indexing is used to handle wraparound (index N is the same
as index 0; index −1 is the same as index N − 1). Outward normal vectors to the
edges are N(j)

i . No assumption is made about the length of the normal vectors; an
implementation may choose the length as needed. Regardless of length, the condi-

tion of outward pointing means
(

N
(j)
i

)⊥ · E
(j)
i > 0, where (x, y)⊥ = (−y , x). All the

pseudocode relating to convex polygons will use the class shown:

class ConvexPolygon
{
public:

// N, number of vertices
int GetN();

// V[i], counterclockwise ordered
Point GetVertex (int i);

// E[i] = V[i + 1]-V[i]
Vector GetEdge (int i);

// N[i], N[i].x * E[i].y - N[i].y * E[i].x > 0
Vector GetNormal (int i);

};

All functions are assumed to handle the wraparound. For example, if the input
value is N , the number of vertices, then GetVertex returns P0 and GetEdge returns
P1−P0. If the input value is −1, then GetVertex returns PN−1 and GetEdge returns
P0−PN−1. Only the relevant interface is supplied for clarity of the presentation. The
implementation details will vary with the needs of an application.

For a pair of convex polygons, only a finite set S of direction vectors needs to be
considered for separation tests. That set contains only the normal vectors to the edges
of the polygons. Figure 6.20(a) shows two nonintersecting polygons that are separated
along a direction determined by the normal to an edge of one polygon. Figure 6.20
shows two polygons that intersect; there are no separating directions.

6.4 Collision Detection with Convex Polyhedra 397

[[]]D

C1

C0

No separation on any axis

[[]]D

D

C1

C0

Projection(C0) Projection(C1)

Separation

(a) (b)

Figure 6.20 (a) Nonintersecting convex polygons. (b) Intersecting convex polygons.

(a) (b) (c)

Figure 6.21 (a) edge–edge contact. (b) vertex–edge contact. (c) vertex–vertex contact.

The intuition for why only edge normals must be tested is based on having two
convex polygons just touching with no interpenetration. Figure 6.21 shows the three
possible configurations: edge–edge contact, vertex–edge contact, and vertex–vertex
contact.

The lines between the polygons are perpendicular to the separation lines that
would occur for one object translated away from the other by an infinitesimal dis-
tance. The vertex–vertex edge case has a low probability of occurrence. The collision
system should report this as a vertex–face collision to be consistent with our classifica-
tion of contact points (vertex–face or edge–edge with appropriately assigned normal
vectors).

398 Chapter 6 Physics Engines

[[]]

D

D

Figure 6.22 Two polygons separated by an edge-normal direction of the first polygon.

A naive implementation of the method of separating axes selects a potential sep-
arating direction D, computes the intervals of projection by projecting the vertices of
both polygons onto that line, then tests if the intervals are separated. This requires
computing Ni projections for polygon Ci and keeping track of the minimum and
maximum projection values for each polygon. In the worst case that the polygons
intersect, N0 directions are tested from C0, each requiring N0 +N1 projections, and
N1 directions are tested from C1, each requiring N0+N1 projections. The total
number of projections is (N0+N1)

2.
A smarter algorithm avoids projecting all the vertices for the polygons by only

testing for separation using the maximum of the interval for the first polygon and
the minimum of the interval for the second polygon. If D is an outward pointing

normal for the edge P(0)
i+1−P(0)

i of C0, then the projection of the C0 onto the sep-

arating line P(0)
i + t D is [−μ, 0], where μ > 0. If the projection of C1 onto this

line is [ρ0,ρ1], then the reduced separation test is ρ0 > 0. Figure 6.22 illustrates two
separated polygons using this scheme.

The value μ is irrelevant since we only need to compare ρ0 to 0. Consequently,
there is no need to project the vertices of C0 to calculate μ. Moreover, the vertices
of C1 are projected one at a time until either the projected value is negative, in which
case D is no longer considered for separation, or until all projected values are positive,
in which case D is a separating direction.

bool TestIntersection (ConvexPolygon C0, ConvexPolygon C1)
{

// Test edges of C0 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C0 is [m,0] where m <= 0. Only try to determine if C1
// is on the ‘positive’ side of the line.
for (i0 = C0.GetN()-1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

P = C0.GetVertex(i1);

6.4 Collision Detection with Convex Polyhedra 399

D = C0.GetNormal(i0);
if (WhichSide(C1,P,D) > 0)
{

// C1 is entirely on ‘positive’ side of line P + t * D
return false;

}
}

// Test edges of C1 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C1 is [m,0] where m <= 0. Only try to determine if C0
// is on the ‘positive’ side of the line.
for (i0 = C1.GetN()-1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

P = C1.GetVertex(i1);
D = C1.GetNormal(i0);
if (WhichSide(C0,P,D) > 0)
{

// C0 is entirely on ‘positive’ side of line P + t * D
return false;

}
}

return true;
}

int WhichSide (ConvexPolygon C, Point P, Vector D)
{

// C vertices are projected onto line P+t*D. Return value
// is +1 if all t > 0, -1 if all t < 0, or 0 if the line
// splits the polygon.

posCount = 0;
negCount = 0;
zeroCount = 0;
for (i = 0; i < C.GetN(); ++i)
{

t = Dot(D,C.GetVertex(i) - P);
if (t > 0)
{

posCount++;
}
else if (t < 0)
{

negCount++;
}
else

400 Chapter 6 Physics Engines

{
zeroCount++;

}

if ((posCount > 0 and negCount > 0) or zeroCount > 0)
{

return 0;
}

}
return posCount ? 1 : -1;

}

In the worst case, the polygons do intersect. We have processed N0 edge normals of
C0, each requiring N1 projections for C1, and N1 edge normals of C1, each requiring
N0 projections for C0. The total number of projections is 2N0N1, still a quadratic
quantity but considerably smaller than (N0 +N1)

2.
We can do even better in an asymptotic sense as the number of vertices becomes

large. A form of bisection may be used to find an extreme point of the projection of
the polygon [O’R98]. The bisection effectively narrows in on sign changes of the dot
product of edges with the specified direction vector. For a polygon of N0 vertices, the
bisection is of order O(log N0), so the total algorithm is O(max{N0 log N1, N1 log N0}).

Given two vertex indices i0 and i1 of a polygon with N vertices, the middle index
of the indices is described by the following pseudocode.

int GetMiddleIndex (int i0, int i1, int N)
{

if (i0 < i1)
{

return (i0 + i1) / 2;
}
else
{

return ((i0 + i1 + N) / 2) (mod N);
}

}

The division of two integers returns the largest integer smaller than the real-valued
ratio and the mod operation indicates calculating the remainder after dividing the
argument by N . Observe that if i0 = i1 = 0, the function returns a valid index. The
condition when i0 < i1 has an obvious result – the returned index is the average of
the input indices, certainly supporting the name of the function. For example, if the
polygon has N = 5 vertices, inputs i0 = 0 and i1 = 2 lead to a returned index of 1.
The other condition handles wraparound of the indices. If i0 = 2 and i1 = 0, the
implied set of ordered indices is {2, 3, 4, 0}. The middle index is selected as 3 since
3 = (2+ 0+ 5)/2(mod 5).

The bisection algorithm to find the extreme value of the projection is

int GetExtremeIndex (ConvexPolygon C, Vector D)

6.4 Collision Detection with Convex Polyhedra 401

{
i0 = 0;
i1 = 0;
while (true)
{

mid = GetMiddleIndex(i0,i1,C.GetN());
if (Dot(D,C.GetEdge(mid)) > 0)
{

if (mid != i0)
{

i0 = mid;
}
else
{

return i1;
}

}
else
{

if (Dot(D,C.GetEdge(mid - 1)) < 0)
{

i1 = mid;
}
else
{

return mid;
}

}
}

}

Using the bisection method, the intersection testing pseudocode is

bool TestIntersection (ConvexPolygon C0, ConvexPolygon C1)
{

// Test edges of C0 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C0 is [m,0] where m <= 0. Only try to determine if C1
// is on the ‘positive’ side of the line.
for (i0 = C0.GetN()-1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

P = C0.GetVertex(i1);
D = C0.GetNormal(i0);
if (Dot(D,C1.GetVertex(GetExtremeIndex(C1,-D)) - P) > 0)
{

// C1 is entirely on ‘positive’ side of line P + t * D
return false;

}
}

402 Chapter 6 Physics Engines

// Test edges of C1 for separation. Because of the
// counterclockwise ordering, the projection interval for
// C1 is [m,0] where m <= 0. Only try to determine if C0
// is on the ‘positive’ side of the line.
for (i0 = C1.N-1, i1 = 0; i1 < C1.N; i0 = i1++)
{

P = C1.GetVertex(i1);
D = C1.GetNormal(i0);
if (Dot(D,C0.GetVertex(GetExtremeIndex(C0,-D)) - P) > 0)
{

// C0 is entirely on ‘positive’ side of line P + t * D
return false;

}
}

return true;
}

Let us consider an alternate formulation of the bisection problem. Just as we would
do in the 3D problem, the vertices, edges, and normals of the convex polygon are
stored in body coordinates. The polygon additionally stores the center of mass (the
body origin) and an orientation matrix that transforms the body coordinate axes to
the world coordinates. We will transform a potential separating direction D from
world coordinates to body coordinates and continue the separation process in those
coordinates. Figure 6.23 illustrates the initial part of the process of determining which
polygon vertex or edge is extremal.

If D=Ni , then all points on the edge Ei are extremal. If D is strictly between N0

and N1, then P1 is the unique extremal point in that direction. Similar arguments
apply for D strictly between any pair of consecutive normals. The normal points
on the circle decompose the circle into arcs, each arc corresponding to an extremal
vertex of the polygon. An endpoint of an arc corresponds to an entire edge being
extremal. The testing of D to determine the full set of extremal points is summarized
as follows.

■ Vertex Pi is optimal when N⊥i · D > 0 and N⊥i−1 · D < 0

■ Edge Ei is optimal when N⊥i−1 · D= 0 and N⊥i D < 0

where (x, y)⊥ = (−y , x). The indexing is computed in the modular sense, N−1 =N5.
Since we will be projecting the extremal point onto a potential separating axis, we can
collapse the two tests into a single test and just use one vertex of an extremal edge as
the to-be-projected point:

■ Vertex Pi is optimal when N⊥i−1 · D≥ 0 and N⊥i · D < 0

6.4 Collision Detection with Convex Polyhedra 403

E0

E5

E4
E3

E2

E1

N4 N3

N2

N1N0

N5

N3

N2

N1
N0

N5

N4

 extremal
for this arc

(a) (b)

Figure 6.23 (a) A convex polygon. (b) A unit circle whose vertices correspond to normal directions
of the polygon and whose arcs connecting the vertices correspond to vertices of the
polygon (the polar dual of the polygon).

Generally, there are N arcs for an N -sided polygon. We could search the arcs one
at a time and test if D is on that arc, but then we are back to an O(N) search. Instead,
we can create a binary space partitioning tree (BSP tree) for the circle that supports an
O(log N) search. Effectively, this is a binary search of an ordered array of numbers,
so thinking of it as a BSP tree might not be useful to you. However, in 3D we will
construct something similar that is a BSP tree in the sense you are used to. A sim-
ple illustration using the polygon of Figure 6.23 suffices. Figure 6.24 illustrates the
construction of the BSP tree. The unit disk is recursively split into sectors, each split
representing a test N⊥j · D≥ 0.

The vertices on the circle are Ni for 0≤ i ≤ 5. The circular arcs are denoted Aij =
〈Ni , Nj 〉 where j = (i + 1) mod 6. The set of all vertices and the set of all arcs are used
to initialize the process. These are shown at the top of Figure 6.24. The root node
of the tree claims the first normal in the list, namely N0, and uses it for computing
dot products with other vectors, N⊥0 · D≥ 0. When creating the tree, the remaining
normals in the input set are tested. If N⊥0 · Ni ≥ 0, vector Ni is placed in a set of vectors
that will be used to create the right child of the root (marked as T in Figure 6.24);
otherwise Ni is placed in another set of vectors that will be used to create the left child
of the root (marked as F in Figure 6.24).

The set of arcs is also processed at each node. The endpoints of the arc Aij are
normals for which we have already computed di = N⊥0 · Ni and dj = N⊥0 · Nj . If di ≥ 0
and dj ≥ 0, then the arc is placed in a set of arcs that will be used to create the right
child of the root. If di ≤ 0 and dj ≤ 0, then the arc is placed in a set of arcs that will be

404 Chapter 6 Physics Engines

N (012345)
A (01) (12) (23) (34) (45) (50)

N (45)
A (34) (45) (50)

N (123)
A (01) (12) (23) (34)

N4 • D$ 0

N5 • D$ 0 N1 • D$ 0

N0 • D$ 0

N2 • D$ 0

N3 • D$ 0

A (34)

A (45) A (50)

N (5)
A (45) (50)

N (3)
A (23) (34)

A (34)A (23)A (12)A (01)

N (1)
A (01) (12)

F

F

F F F

F

T

T

TTT

T

Figure 6.24 A BSP tree constructed by recursive splitting of the unit disk. Each node is labeled
with the test used for the split. The subsectors consisting of points satisfying the test
are shaded in dark gray. The leaf nodes are shaded in light gray and labeled with a
vertex that is extremal.

used to create the left child. If didj < 0, then the arc is split in a sense, but we do not
need to literally subdivide it into two subarcs. Instead, we just add that arc to both sets
to be used in constructing the child subtrees. In our example the only arc that is split
is A34. In fact this will be the only split and represents the wraparound, so to speak, of
the circle.

The process just described above is applied recursively. At the end, each interior
node of the tree has been assigned a normal vector for testing purposes. Each leaf node
was given an arc Aij , but not a normal. The last index j is that of the extreme vertex
represented by the leaf node.

Some pseudocode is provided. Let us assume a class for a BSP node as shown next.
The class ConvexPolygondescribed earlier is given a new data member of typeBSPNode.

class BSPNode
{
public:

6.4 Collision Detection with Convex Polyhedra 405

// normal index (interior node), vertex index (leaf node)
int I;

// if Dot(E,D) >= 0, D gets propagated to this child
BSPNode R;

// if Dot(E,D) < 0, D gets propagated to this child
BSPNode L;

};

class ConvexPolygon
{
public:

// N, number of vertices
int GetN();

// P[i], counterclockwise ordered
Point GetVertex (int i);

// E[i] = P[i + 1]-P[i]
Vector GetEdge (int i);

// N[i], N[i].x * E[i].y - N[i].y * E[i].x > 0
Vector GetNormal (int i);

BSPNode tree;
};

The BSP tree must be able to access the vertices and edges of the polygon, so the
creation of the tree involves passing the polygon as a parameter. Because N⊥i = Ei , the
direction of the edge, and since we are assuming the edges are stored in the polygon,
we do not need a Perp function. The pseudocode is written for clarity and thus not
optimized.

void CreateTree (ConvexPolygon C)
{

// Create the root node first, knowing that the only split can
// occur here.

array<int> NIR, NIL; // normal index sets

// Arc index sets, array element written {j0,j1},
// AIR[i][0] = j0, AIR[i][1] = j1.
array<int,int> AIR, AIL;
array<int> d(C.GetN());
d[0] = 0;
for (i = 1; i < C.GetN(); ++i)
{

406 Chapter 6 Physics Engines

d[i] = Dot(C.GetEdge(0), C.GetNormal(i));

if (d[i] >= 0)
{

NIR.append(i);
}
else
{

NIL.append(i);
}

if (d[i-1] >= 0 and d[i] >= 0)
{

AIR.append({i-1,i});
}
else if (d[i-1] <= 0 and d[i] <= 0)
{

AIL.append({i-1,i});
}
else // d[i-1]*d[i] < 0
{

AIR.append({i-1,i});
AIL.append({i-1,i});

}
}
AIL.append({C.GetN()-1,0}); // always left!

C.tree = CreateNode(0, CreateNode(C,NIR,AIR),
CreateNode(C,NIL,AIL));

}

BSPNode CreateNode (int I, BSPTree R, BSPTree L)
{

BSPNode node;
node.I = I;
node.R = R;
node.L = L;
return node;

}

BSPNode CreateNode (ConvexPolygon C, array<int> NI,
array<int,int> AI)

{
array<int> NIR, NIL;
array<int> d(NI.size());
d[0] = NI[0];
for (i = 1; i < NI.size(); ++i)

6.4 Collision Detection with Convex Polyhedra 407

{
d[i] = Dot(C.GetEdge(NI[0]), C.GetNormal(NI[i]));
if (d[i] >= 0)
{

NIR.append(NI[i]);
}
else
{

NIL.append(NI[i]);
}

}

array<int,int> AIR, AIL;
for (i = 0; i < AI.size(); ++i)
{

if (d[AI[i][0]] >= 0 and d[AI[i][1]] >= 0)
{

AIR.append(AI[i]);
}
else
{

AIL.append(AI[i]);
}

}

BSPNode RChild;
if (NIR.size() > 0)
{

RChild = CreateNode(C,NIR,AIR);
}
else
{

RChild = CreateNode(AIR[0][1],null,null);
}

BSPNode LChild;
if (NIL.size() > 0)
{

LChild = CreateNode(C,NIL,AIL);
}
else
{

LChild = CreateNode(AIL[0][1],null,null);
}

return CreateNode(NI[0],RChild,LChild);
}

408 Chapter 6 Physics Engines

Once the BSP tree has been constructed, locating an extreme vertex for a potential
separating direction D can be done using the following pseudocode. This func-
tion replaces the one that was used for the bisection of indices shown earlier. The
TestIntersection function corresponding to that bisection remains the same.

int GetExtremeIndex (ConvexPolygon C, Vector D)
{

BSPTree node = C.tree;
while (node.R)
{

if (Dot(C.GetEdge(node.I),D) >= 0)
{

node = node.R;
}
else
{

node = node.L;
}

}
return node.I;

}

The leaf nodes have no children and internal nodes have two children, so the test on
one child pointer is sufficient to identify leaf nodes.

Convex Polyhedra

The following notation is used throughout this section. Let Cj for j = 0, 1 be the

convex polyhedra with vertices P(j)
i for 0≤ i < Nj , edges with directions E

(j)
i for

0 ≤ i < Mj , and faces that are planar convex polygons whose vertices are ordered
counterclockwise as you view the face from outside the polyhedron. The outward

normal vectors for the faces are N
(j)
i for 0≤ i < Lj . All the pseudocode relating to

convex polyhedra will use the class shown next.

class ConvexPolyhedron
{
public:

int GetVCount (); // number of vertices
int GetECount (); // number of edges
int GetFCount (); // number of faces
Point GetVertex (int i);
Vector GetEdge (int i);
Vector GetNormal (int i);

};

Only the relevant interface is supplied for clarity of the presentation. The implemen-
tation details will vary with the needs of an application.

6.4 Collision Detection with Convex Polyhedra 409

U0

U1
U2

V2

V1

V0 DD

(a) (b)

Figure 6.25 Two views of two cubes that are not separated by any face normal but are separated
by a cross product of two edges, one from each cube.

The ideas of separation of convex polygons extend to convex polyhedra. For a
pair of convex polyhedra, only a finite set of direction vectors needs to be considered
for separating tests. The intuition is similar to that of convex polygons. If the two
polyhedra are just touching with no interpenetration, the contact is one of face–face,
face–edge, face–vertex, edge–edge, edge–vertex, or vertex–vertex. The set of potential
separating directions that capture these types of contacts include the normal vectors
to the faces of the polyhedra and vectors generated by a cross product of two edges,
one from each polyhedron. The necessity of testing more than just the face normals
is shown by Figure 6.25.

The first cube (dark gray) has unit-length face normals U0 = (1, 0, 0), U1 =
(0, 1, 0), and U2 = (0, 0, 1). The second cube (light gray) has unit-length face normals
V0 = (1,−1, 0)/

√
2, V1 = (1, 1,−√2)/2, and V2 = (1, 1,

√
2)/2. The other vector

shown in the figure is D = (1, 1, 0)/
√

2. Figure 6.25(a) shows a view of the two cubes
when looking in the direction −U2. Figure 6.25(b) shows a view when looking along
the direction U2×D. In view (a), neither U0, U1, nor V0 are separating directions.
In view (b), neither U2, V1, nor V2 are separating directions. No face axis separates
the two cubes, yet they are not intersecting. A separating direction is D=U2×V0, a
cross product of edges from the cubes.

The pseudocode for using the method of separating axes to test for intersection
of two polyhedra, similar to the naive implementation in 2D, is

bool TestIntersection (ConvexPolyhedron C0, ConvexPolyhedron C1)
{

// test faces of C0 for separation
for (i = 0; i < C0.GetFCount(); ++i)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,min0,max0);

410 Chapter 6 Physics Engines

ComputeInterval(C1,D,min1,max1);
if (max1 < min0 || max0 < min1)
{

return false;
}

}

// test faces of C1 for separation
for (j = 0; j < C1.GetFCount(); ++j)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
if (max1 < min0 || max0 < min1)
{

return false;
}

}

// test cross products of pairs of edges
for (i = 0; i < C0.GetECount(); ++i)
{

for (j = 0; j < C1.GetECount(); ++j)
{

D = Cross(C0.GetEdge(i),C1.Edge(j));
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
if (max1 < min0 || max0 < min1)
{

return false;
}

}
}

return true;
}

void ComputeInterval (ConvexPolyhedron C, Vector D, double& min,
double& max)

{
min = Dot(D,C.GetVertex(0));
max = min;
for (i = 1; i < C.GetVCount(); ++i)
{

value = Dot(D,C.GetVertex(i));
if (value < min)
{

6.4 Collision Detection with Convex Polyhedra 411

min = value;
}
else
{

max = value;
}

}
}

The function ComputeInterval is O(N) for a polyhedron of N vertices. A quick glance
at the code shows that you need L0(N0+N1)+ L1(N0 +N1)+M0M1(N0 +N1)=
(L0 + L1+M0M1)(N0 +N1) units of time to execute the test (cubic order). Since all
pairs of edges are tested in the worst case, the time is at least quadratic. Our only
hope in reducing the time complexity is to have a faster algorithm for finding extreme
vertices for convex polyhedra, just as we did for convex polygons.

The asymptotically better algorithm for finding the extreme points of a convex
polygon in 2D does have a counterpart for polytopes in 3D. Given N vertices, it
is possible to find extreme points in O(log N) time [Kir83, DK90]. The algorithm
requires preprocessing the polytope to build a data structure, called the Dobkin–
Kirkpatrick hierarchy, that supports the queries. The preprocessing requires O(N)

time. A well-written presentation of the algorithm is provided in [O’R98] and has
enough information and pseudocode to assist you in implementing the algorithm.
The idea is to construct a sequence of nested polytopes C0, . . . , Ck , where the inner-
most polytope Ck is either a triangle or a tetrahedron and the outermost polytope C0

is the original one. The extremal query relies on quickly finding the extreme point on
Ci given the extreme point on Ci+1; in fact, this can be done in constant time, O(1).
The construction of the nested polytopes shows that k = O(log N), so the total query
executes in O(log N) time.

Here is a brief summary of the ideas presented in [O’R98] to give you an idea of
the complexity of implementing the algorithm. The vertices and edges of a polytope
form a planar graph. The construction of Ci+1 from Ci is based on locating a maxi-
mum independent set of vertices for the graph of Ci . A set of vertices is independent if
no two vertices are adjacent. An independent set S is maximum if no other indepen-
dent set has more vertices than does S. The vertices in the maximum independent set
are removed from Ci , one at a time. On removal of a vertexP , a hole is introduced into
the current polytope. The neighboring vertices of P – call this set N (P) – must be tri-
angulated to generate the faces that fill in the hole. The triangulation is accomplished
via a convex hull algorithm. After removal of a maximum independent set of vertices
from Ci , we have Ci+1. However, the construction must support the extremal query;
linking steps must occur between faces of Ci+1 and Ci . The pseudocode mentioned in
[O’R98] is

void ComputeHierarchy (ConvexPolyhedron C)
{

int i = 0;

412 Chapter 6 Physics Engines

C.hier.poly[0] = C; // the assignment copies C into poly[0]
while (C.hier.poly[0].N > 4)
{

set<point> S = GetMaximumIndependentSet(C.hier.poly[i]);
C.hier.poly[i+1] = C.hier.poly[i];
for (each P in S) do
{

delete P from C.hier.poly[i+1];
triangulate the hole by constructing ConvexHull(N(V));
insert the triangles into C.hier.poly[i+1];
link each new triangle of C.hier.poly[i+1] to P;

}
link unchanged faces of C.hier.poly[i+1] to C.hier.poly[i];

}
}

As it turns out, constructing a maximum independent set of a graph is NP-
complete [CLR90, ch. 36]. To obtain a polynomial time construction of the hierarchy,
an approximation is required. This is provided by [Ede87, Theorem 9.8] and is
proved that the hierarchy construction remains O(N) and the extremal query remains
O(log N). The approximation produces a sufficiently large independent set, although
not necessarily a maximum independent set. The pseudocode is

set<point> GetLargeIndependentSet (ConvexPolyhedron C)
{

set<point> S = empty;
mark all vertices P in C of degree(P) >= 9;
while (some nodes remain unmarked) do
{

choose an unmarked node P;
mark P and all neighbors in N(P);
S.insert(P);

}
}

The function call GetMaximumIndependentSet in the hierarchy construction is replaced
by a call to the function GetLargeIndependentSet.

The extremal query is based on the following result, formulated for the direction
D = (0, 0, 1), but easily adaptable to other directions [EM85]. If Mi is the extreme
point for Ci and Mi+1 is the extreme point for Ci+1, then either Mi =Mi+1 or
Mi+1 has the largest z-value among the vertices adjacent to Mi . Although the obvi-
ous approach now is just to search the neighbors directly, the problem is that the
number of neighbors can be quite large and lead to an O(N) query rather than an
O(log N) query. The search must be narrowed to some subset of neighbors.

The key is to project Ci+1 onto a coordinate plane parallel to the z-axis. That
projection is a convex polygon whose extreme vertex M′

i+1 in the z-direction is the
projection of Mi+1. Two edges of the convex polygon share M′

i+1, call them L′i+1

6.4 Collision Detection with Convex Polyhedra 413

and R′i+1. These edges are projections of some edges Li+1 and Ri+1 that share Mi+1.
The umbrella parents of an edge E of Ci+1 are defined as follows. If E is not an edge of
Ci , then it was generated for Ci+1 by the removal of a vertex V from Ci . In this case V is
the sole umbrella parent of E (“umbrella” refers to the umbrella of faces sharing V). If
E is an edge of Ci , then its umbrella parents are the two vertices of Ci at the tips of the
triangle faces that share E. This allows us to narrow the search for the extreme point:
If Mi is the extreme point for Ci and Mi+1 is the extreme point for Ci+1, then either
Mi =Mi+1 orMi+1 has the largest z-value among the umbrella parents of the edges
Li+1 and Ri+1. The pseudocode for the query as presented in [O’R98] is listed below.
It is assumed that the sequence of nested polytopes was already constructed.

point GetExtremePoint (ConvexPolyhedron C, Vector D)
{

// polys 0 through k = size - 1
int k = C.hier.size() - 1;
array<point> M[k + 1];

// extreme of triangle or tetrahedron
M[k] = GetExtremeVertex(C.hier.poly[k]);

compute extreme edges L[k] and R[k];
for (i = k - 1; i >= 0; --i)
{

M[i] = SelectExtremeFrom(M[i + 1],Parents(L[i + 1]),
Parents(R[i + 1]);

if (M[i] not equal to M[i + 1]) then
{

for (all edges incident to M[i]) do
{

save extreme edges L[i] and R[i];
}

}
else
{

compute L[i] from L[i + 1];
compute R[i] from R[i + 1];

}
}
return M[0];

}

The summary here should give you the idea that the implementation of the
Dobkin–Kirkpatrick hierarchy and the extremal queries is tractable, but tedious. An
alternative that is easier to implement is presented here and is the extension of the
BSP tree construction used for finding extreme points for convex polygons. The con-
struction of the BSP tree is O(N log N) and the query is O(log N) as long as you have

414 Chapter 6 Physics Engines

a balanced tree. The asymptotic order of construction of the BSP data structure is
worse than the O(N) construction of the data structure for the Dobkin–Kirkpatrick
hierarchy, but since a collision system does the constructions on start-up of the sim-
ulation, and since the BSP tree is easy code to write, the comparison of asymptotic
times is irrelevant.

Extremal Query for a Convex Polyhedron

A convex polyhedron has vertices Vi for 0≤ i < n and a set of edges and a set of faces
with outer pointing normals Nj . The set of extremal points for a specified direction is
either a polyhedron vertex, edge, or face. To illustrate, Figure 6.26 shows a tetrahedron
and a unit sphere with vertices that correspond to the face normals of the tetrahedron,
whose great circle arcs connecting the vertices correspond to the edges of the tetra-
hedron, and whose spherical polygons correspond to the vertices of the tetrahedron.
This view of the sphere is called the spherical dual of the polyhedron.

The tetrahedron has vertices V0 = (0, 0, 0), V1 = (1, 0, 0), V2 = (0, 1, 0), and V3 =
(0, 0, 1). The face normals are N0 = (1, 1, 1)/

√
3, N1 = (−1, 0, 0), N2 = (0,−1, 0), and

N3 = (0, 0,−1). The sphere is partitioned into four spherical triangles. The interior
of the spherical triangle with 〈N0, N1, N2〉 corresponds to those directions for which

N1

N3

N0

N2

V3

V0

V2

V1

N2

N0

N1

N3

(a)

(b)

Figure 6.26 (a) A tetrahedron. (b) A unit sphere whose vertices correspond to normal direc-
tions of the tetrahedron, whose great circle arcs connecting the vertices correspond to
edges of the tetrahedron, and whose spherical polygons correspond to vertices of the
tetrahedron (the spherical dual of the tetrahedron).

6.4 Collision Detection with Convex Polyhedra 415

V3 is the unique extreme point. Observe that the three normals forming the spherical
triangle are the normals for the faces that share vertex V3.

Generally, the normal and edge directions of a polytope lead to a partitioning of
the sphere into spherical convex polygons. The interior of a single spherical convex
polygon corresponds to the set of directions for which a vertex of the polytope is the
unique extreme point. The number of edges of the spherical convex polygon is the
number of polytope faces sharing that vertex. Just as for convex polygons in 2D, we
can construct a BSP tree of the spherical polygons and use it for fast determination of
extreme vertices. The method used for 2D extends to 3D with each node of the BSP
tree representing a hemisphere determined by Ni ×Nj · D≥ 0, where Ni and Nj are
unit-length normal vectors for two adjacent triangles.

The vector Hij = Ni ×Nj is perpendicular to the plane containing the two
normals. The hemispheres corresponding to this vector are Hij · D≥0 and Hij · D<0.
The tetrahedron of Figure 6.26 has six such vectors, listed as {H12, H13, H23, H01,
H02, H03}. Please note that the subscripts correspond to normal vector indices, not
to vertex indices. Each arc of the sphere connecting two normal vectors corresponds
to an edge of the tetrahedron, label the arcs Aij . The root node of the tree claims arc A12

for splitting. The condition N1×N2 · D≥ 0 splits the sphere into two hemispheres.
Figure 6.27 shows those hemispheres with viewing direction (0, 0,−1).

N1 N1

N0

N3N2 N2

A (12) (13) (23) (01) (02) (03)
S (012:3) (013:2) (023:1) (123:0)

Initial sphere N1 3N2 • D$ 0

A (13) (23) (03)
S (013:2) (023:1) (123:0)

A (01) (02) (03)
S (012:3) (013:2) (023:1)

F T

Figure 6.27 The root of the BSP tree and the two hemispheres obtained by splitting. Both children
are displayed with a viewing direction (0, 0,−1). The right child is the top of the sphere
viewed from the outside and the left child is the bottom of the sphere viewed from
the inside.

416 Chapter 6 Physics Engines

A (13) (23) (03)
S (013:2) (023:1) (123:0)

A (01) (02) (03)
S (012:3) (013:2) (023:1)

A (03)
S (013:2) (023:1)

A (03)
S (013:2) (023:1)

A (23)
S (013:2) (123:0)

A (02)
S (012:3) (023:1)

S (023:1) S (013:2)
S (123:0)

S (023:1)S (013:2) S (013:2) S (012:3) S (023:1)

V1
V0 V2

F

F

F F

F

F F

T

T T

T

T

TT

V2

V1

V3

V1

V2

N0 3N3 • D$ 0

N1 3N3 • D$ 0

N2 3N3 • D$ 0

N0 3N3 • D$ 0

N0 3N2 • D$ 0

N0 3N1 • D$ 0

Figure 6.28 The BSP trees for the children of the root.

The set of arcs and the set of spherical polygons bounded by the arcs are the inputs
to the BSP tree construction. These sets are shown at the top of the figure. An arc
is specified by Aij and connects Ni and Nj . A spherical polygon is Si1,...,in:� and has
vertices Ni1 through Nin . The vertex V� of the original polyhedron is the extreme
vertex corresponding to the spherical polygon. In our example the spherical polygons
all have three vertices. Figure 6.28 shows the BSP trees for the children of the root.

During BSP tree construction, the root node claims the first arc A12 and uses the
vector E= N1×N2 for testing other vectors corresponding to arcs Aij . Let di = E · Ni

and dj = E · Nj . If di ≥ 0 and dj ≥ 0, then the arc is completely on one side of the
hemisphere implied by E. Aij is placed in a set that will be used to generate the BSP
tree for the right child of the root. If di ≤ 0 and dj ≤ 0, then the arc is completely on
the other side of the hemisphere and is placed in a set that will be used to generate
the BSP tree for the left child of the root. If didj < 0, then the arc is partially in each
hemisphere and is added to both sets. This is exactly the algorithm we used in 2D.

In 3D we have some additional work in that the spherical faces must be processed
by the tree to propagate to the leaf nodes the indices of the extreme vertices repre-
sented by those nodes. In fact, the processing is similar to that for arcs. Let Si ,j,k:� be
a face to be processed at the root node. Let di = E · Ni , dj = E · Nj , and dk = E · Nk .
If di ≥ 0 and dj ≥ 0 and dk ≥ 0, then the spherical face is completely on one side of
the hemisphere implied by E. Si ,j,k:� is placed in a set that will be used to generate
the BSP tree for the right child of the root. If di ≤ 0, dj ≤ 0, and dk ≤ 0, then the
face is completely on the other side of the hemisphere and is placed in a set that will
be used to generate the BSP tree for the right child of the root. Otherwise the arc is

6.4 Collision Detection with Convex Polyhedra 417

partially in each hemisphere and is added to both sets. In general for a spherical face
with n vertices, the face is used for construction of the right child if all dot products
are nonnegative, for construction of the left child if all dot products are nonpositive,
or for construction of both children if some dot products are positive and some are
negative.

A query for a specified direction D is structured the same as for convex polygons.
The signs of the dot products of D with the H vectors in the BSP tree are computed,
and the appropriate path is taken through the tree. A balanced tree will have depth
O(log n) for a polyhedron of n vertices, so the query takes logarithmic time. However,
there is a technical problem. The spherical arcs as described so far might not lead to a
balanced tree. Consider a polyhedron formed by an (n− 2)-sided convex polygon in
the xy-plane with vertices Vi = (xi , yi, 0) for 1 ≤ i ≤ n− 2 and by two vertices V0 =
(0, 0, z0), with z0 < 0, and Vn−1 = (0, 0, zn−1), with zn−1 > 0. Figure 6.29 shows such
a polyhedron.

The spherical dual has two spherical convex polygons, each with n− 2 arcs and
n− 2 spherical convex polygons, each with 4 arcs. If D is contained by one of the

Figure 6.29 Left: A convex polyhedron for which the point-in-spherical-polygon test, using only
the original arcs, is O(n) (the figure shows n = 8, but imagine a very large n). Right:
The inscribed convex polyhedron whose edges generate the arcs of the spherical
convex polygons.

418 Chapter 6 Physics Engines

V4

V5

V0 V1

V2

V3

T3

B1

T1

B0

B1

T2

T2

1

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

2

〈V5, V0〉

〈V3, V5〉

〈V0, V3〉

〈V2, V3〉

〈V1, V2〉

〈V0, V2〉

〈V0, V1〉〈V
3
, V

4
〉

〈V4, V5〉out

T3

T0

T1
out

out

out

outout
T0

Figure 6.30 A convex polygon with bisectors used for an O(log n) point-in-polygon query. The
polygon is partitioned into four triangles labeled T0 through T3.

(n− 2)-sided spherical polygons, the determination of this using only the given arcs
requires n− 2 point-on-which-side-of-arc queries. This is an O(n) algorithm.

The pathological problem mentioned previously is avoided by appealing to an
O(log n) query for point-in-convex-polygon determination. In fact, this problem uses
what you may think of as the Dobkin–Kirkpatrick hierarchy restricted to two dimen-
sions. However, it is phrased in terms of a binary search using binary separating lines.
Consider the convex polygon of Figure 6.30.

If we use only the polygon edges for containment testing, we would need six tests,
each showing that the query point is to the left of the edges. Instead, we use bisectors.
The first bisector is segment 〈V0, V3〉 and is marked with B0 in the figure. The query
point P is either to the left of the bisector, where (V3−V0) · (P−V0)

⊥·≥ 0, or to the
right of the bisector, where (V3−V0) · (P−V0)

⊥· < 0. The original polygon has six
edges. The polygon to the left of the bisector has four edges, and the containment test
is applied to that left polygon. The bisector edge has already been tested, so only the
three remaining edges need to be tested for the containment.

The next bisector to be used is one of the segments marked with B1, either 〈V3, V5〉
or 〈V0, V2〉. Naturally, the choice depends on which side of the bisector 〈V0, V3〉 the
query point P occurs. If P is to the left of 〈V0, V3〉 and to the left of 〈V3, V5〉, then
the only subpolygon that might contain P is a triangle. The remaining edge to test
is 〈V5, V0〉. If instead P is to the right of 〈V3, V5〉, then P is potentially in trian-
gle T3. There are two remaining edges to test, so we can consider this yet another
bisection step.

The binary tree in the right image of Figure 6.30 shows the query tree implied
by the bisectors and polygon edges. A tree link marked with a “+” indicates “to the
left of,” and a link marked with a “−” indicates “to the right of.” The query point is

6.4 Collision Detection with Convex Polyhedra 419

tested against each edge, leading to a path from the root of the tree to a leaf node. The
leaves are labeled with the region defined by the path. Four of the leaf nodes represent
the triangles that make up the convex polygon. Six of the leaf nodes represent the
exterior of the polygon; that is, a query point can be “outside” one of the six edges of
the polygon.

The choice of the bisectors is based on selecting the medians of the ranges of
indices for the subpolygon of interest. This leads to a balanced tree, so a polygon of
n edges. The point-in-polygon query requires computing vector differences and dot
products for a linear path of nodes through the tree. Such a path has O(log n) nodes.

The same idea may be applied to determining whether a unit-length vector D is
contained in a spherical convex polygon on the unit sphere. In the 2D problem, the
dot product whose sign determines which side of the bisector the point is on was of
the form

d = (Vi −Vj) · (P−Vj)
⊥

We cared about d ≥ 0 or d < 0. In the 3D problem, we use the normal vectors as the
vertices and the direction vector as the query point. The dot product of interest is

d =Ni ×Nj · D

Imagine walking along the spherical arc from Nj to Ni . The vector Ni ×Nj points to
your left as you walk along the arc. The spherical point D is to your left whenever
d ≥ 0 and is to your right whenever d < 0.

What this means is that the BSP tree we build for the spherical dual must use
the bisectors of the spherical polygons as well as the arcs which are their boundary
edges. Moreover, we do not just have one spherical polygon to test – we have n such
polygons, one for each of the n vertices of the original convex polyhedron. Given
the collection of all bisector arcs and boundary edge arcs, we can build the BSP tree
one arc at a time. Each arc is tested at a node of the BSP tree to see on which side of
the node arc it lies. If fully on the left side, we send the arc to the left subtree of the
node for further classification. If fully on the right side, we send the arc to the right
subtree. When the arc arrives at a leaf node, it is similarly tested for sideness and stored
as the appropriate child of the leaf node (which now becomes an interior node). If an
arc straddles the great circle containing the node arc – one arc endpoint is to the left
of the node arc and one arc endpoint is to the right of the node arc – we send the arc
to both subtrees of the node. That is, no actual splitting of the arc is performed. This
avoids expensive arc–arc intersection finding.

The order of the arcs is important in determining the structure of the BSP tree. We
do want a balanced tree. A heuristic to obtain a balanced tree is to sort the arcs. The
bisector arcs occur first, the boundary edge arcs last. The first bisector arc of an n-sided
spherical polygon splits the polygon into two subpolygons, each with half the number
of boundary edge arcs. If we were to do a point-in-spherical-polygon query using
such a bisector edge first, we will eliminate half of that spherical polygon’s bisectors
and half of its boundary arcs from further processing. This suggests that we order the

420 Chapter 6 Physics Engines

bisector arcs based on how many other arcs they reject during a sidedness test. In the
implementation, I maintain an ordered set of arcs, using a separation measure. The
first bisector arc for an n-sided spherical polygon has a separation of n/2, measuring
how many boundary arcs of that polygon separate the endpoints. A boundary arc
itself has a separation measure of 1. The BSP tree is built using the arcs in decreasing
order of separation. My numerical experiments showed that indeed the BSP trees are
balanced.

An Implementation and Timing
Source Code

ExtremalQuery The Foundation library files Wm5ExtremalQuery3.h and Wm5ExtremalQuery3.cpp are
the base class for extremal queries for convex polyhedra. The straightforward O(n)

method for computing the extreme points just involves projecting the vertices onto
the specified direction vector and computing the extreme projection values. This algo-
rithm is implemented in Wm5ExtremalQuery3PRJ.h and Wm5ExtremalQuery3PRJ.cpp.

The files Wm5ExtremalQuery3BSP.hand Wm5ExtremalQuery3BSP.cpp implement the
BSP tree algorithm described in this document. The identification of adjacent poly-
hedron normal vectors Ni and Nj requires building a vertex–edge–face data structure.
The class implemented in Wm5BasicMesh.h and Wm5BasicMesh.cpp suffices, but the
edges adjacent to a vertex are not required for the extremal queries. You could modify
BasicMesh to eliminate this adjacency information.

Table 6.1 shows the results of the experiment to compare the BSP tree approach
to a simple project-all-vertices approach. The column with header n is the number of
vertices of the convex polyhedron. Each polyhedron was used in 107 extremal queries.
The execution times are listed in the second and third columns, and are in seconds.
The target machine was an AMD Athlon XP 2800+ (2.08GHz). The next to last col-
umn is the BSP time divided by log n. This ratio is expected to be a constant for large n;

Table 6.1 Timing for the Project-All and BSP-Tree Extremal Queries

n BSP time tb project-all time tp tb/ logn tp/n

4 2.141 0.812 1.0705 0.2030
8 3.922 1.547 1.3073 0.1933

16 5.422 2.563 1.3555 0.1601
32 5.937 4.328 1.1874 0.1352
64 6.922 7.765 1.1536 0.1213

128 7.922 14.391 1.1317 0.1124
256 9.281 27.359 1.1601 0.1068
512 10.250 53.859 1.1388 0.1051

1024 11.532 104.125 1.1532 0.1016
2048 12.797 210.765 1.1633 0.1029

6.4 Collision Detection with Convex Polyhedra 421

that is, we expect the query to be O(log n). The last column is the project-all-vertices
time divided by n, because we expect this algorithm to be O(n).

Of interest is the break-even n. It is somewhere between 32 and 64. If the con-
vex polyhedra in your applications have a small number of vertices, the project-
all-vertices approach is clearly the choice. For a larger number of vertices, the BSP
approach wins.

The sample application illustrates the queries. A convex polyhedron is displayed
using an orthogonal camera. You may rotate it with the mouse. The extreme vertices
in the x-direction are drawn as small spheres. The orthogonal camera is used to make
it clear that the points are extreme.

6.4.3 Objects Moving with Constant Linear Velocity

The method of separating axes is used to test for intersection of two stationary convex
polyhedra. The set of potential separating axes consists of the face normals for the
polyhedra and cross products of edges, each product using an edge from each of
the participating polyhedra. As described earlier, a collision detection system can be
implemented using a bisection technique. At the first time step, no polyhedra are
intersecting. For the next time step, the physical simulation decides how each polyhe-
dron should move based on constraints (using a differential equation solver for the
equations of motion). All the polyhedra are moved to their desired locations. Each
pair of convex polyhedra are tested for intersection using the method of separating
axes. If any pair reports interpenetration, then the system is restarted at the first time
step, but with a time increment that is half of what was tried the first time.

The strategy is not bad when only a small number of polyhedra are in the sys-
tem and when the frequency of contact (or close contact) is small. However, for large
numbers of polyhedra in close proximity, a lot of time can be spent in restarting the
system. A quick hack to reduce the time is to restart the system only for those pairs
that reported an interpenetration. When the bisection is completed, all the objects
have been moved to a new state with no interpenetrations, but the time step is (poten-
tially) different for the objects, an implied change in the speeds of some of the objects.
For a system that runs on the order of 30 frames per second or larger, this is not usually
a noticeable problem.

An alternative to the bisection approach is to attempt to predict the time of colli-
sion between two polyhedra. For a small change in time an assumption we can make is
that the polyhedra are moving with constant linear velocity and zero angular velocity.
Whether or not the assumption is reasonable will depend on your application. The
method of separating axes can be extended to handle polyhedra moving with constant
linear velocity and to report the first time of contact between a pair. The algorithm
is attributed to Ron Levine in a post to the SourceForge game developer algorithms
mailing list [Lev00]. As we did for stationary objects, let us first look at the problem
for convex polygons to illustrate the ideas for convex polyhedra.

422 Chapter 6 Physics Engines

Separation of Convex Polygons

If C0 and C1 are convex polygons with linear velocities V0 and V1, it can be determined
via projections if the polygons will intersect for some time T ≥ 0. If they do intersect,
the first time of contact can be computed. It is enough to work with a stationary
polygon C0 and a moving polygon C1 with velocity V since one can always use V =
V1−V0 to perform the calculations as if C0 were not moving.

If C0 and C1 are initially intersecting, then the first time of contact is T = 0.
Otherwise, the convex polygons are initially disjoint. The projection of C1 onto a line
with direction D not perpendicular to V is itself moving. The speed of the projection
along the line is σ = (V · D)/|D|2. If the projection interval of C1 moves away from
the projection interval of C0, then the two polygons will never intersect. The cases
when intersection might happen are those when the projection intervals for C1 move
towards those of C0.

The intuition for how to predict an intersection is much like that for selecting the
potential separating directions in the first place. If the two convex polygons intersect
at a first time Tfirst > 0, then their projections are not separated along any line at that
time. An instant before first contact, the polygons are separated. Consequently there
must be at least one separating direction for the polygons at time Tfirst− ε for small
ε > 0. Similarly, if the two convex polygons intersect at a last time Tlast > 0, then their
projections are also not separated at that time along any line, but an instant after last
contact, the polygons are separated. Consequently there must be at least one separat-
ing direction for the polygons at time Tlast+ ε for small ε > 0. Both Tfirst and Tlast can
be tracked as each potential separating axis is processed. After all directions are pro-
cessed, if Tfirst ≤ Tlast, then the two polygons do intersect with first contact time Tfirst.
It is also possible that Tfirst > Tlast , in which case the two polygons cannot intersect.

Pseudocode for testing for intersection of two moving convex polygons is given
next. The time interval over which the event is of interest is [0, Tmax]. If knowing
an intersection at any future time is desired, then set Tmax =∞. Otherwise, Tmax is
finite. The function is implemented to indicate there is no intersection on [0, Tmax],
even though there might be an intersection at some time T > Tmax.

bool TestIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, double tmax, double& tfirst,
double& tlast)

{
V = V1 - V0; // process as if C0 is stationary, C1 is moving
tfirst = 0;
tlast = INFINITY;

// test edges of C0 for separation
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

D = C0.GetNormal(i0);
ComputeInterval(C0,D,min0,max0);

6.4 Collision Detection with Convex Polyhedra 423

ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,

tlast))
{

return false;
}

}

// test edges of C1 for separation
for (i0 = C1.N - 1, i1 = 0; i1 < C1.N; i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,

tlast))
{

return false;
}

}
return true;

}

bool NoIntersect (double tmax, double speed, double min0,
double max0, double min1, double max1, double& tfirst,
double& tlast)

{
if (max1 < min0)
{

// interval(C1) initially on ‘left’ of interval(C0)

if (speed <= 0) // intervals moving apart
{

return true;
}

t = (min0 - max1)/speed;
if (t > tfirst)
{

tfirst = t;
}
if (tfirst > tmax)
{

return true;
}

424 Chapter 6 Physics Engines

t = (max0 - min1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (max0 < min1)
{

// interval(C1) initially on ‘right’ of interval(C0)

if (speed >= 0) // intervals moving apart
{

return true;
}

t = (max0 - min1)/speed;
if (t > tfirst)
{

tfirst = t;
}
if (tfirst > tmax)
{

return true;
}

t = (min0 - max1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else
{

// interval(C0) and interval(C1) overlap

if (speed > 0)
{

t = (max0 - min1)/speed;

6.4 Collision Detection with Convex Polyhedra 425

if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (speed < 0)
{

t = (min0 - max1)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
}
return false;

}

The function ComputeInterval(C,D,min,max) computes the projection interval
[min, max] of a convex polygon C onto the line of direction D using the fast extremal
queries described earlier that use an approach based on BSP trees. The pseudocode
as written projects the convex polygons onto the line t D. In an implementation, you
most likely will want to avoid floating point problems in the projection values when
the vertices have large components. An additional parameter to ComputeInterval
should be a point approximately near one (or both) polygons, something as simple
as choosing a vertex P of a polygon. The projection is onto P + t D instead.

The following example illustrates the ideas. The first box is the unit cube 0 ≤ x ≤ 1
and 0≤ y ≤ 1 and is stationary. The second box is initially 0≤ x ≤ 1 and 1+ δ ≤
y ≤ 2+ δ for some δ > 0. Let its velocity be (1,−1). Whether or not the second box
intersects the first box depends on the value of δ. The only potential separating axes are
(1, 0) and (0, 1). Figure 6.31 shows the initial configuration for three values of δ, one
where there will be an edge–edge intersection, one where there will be a vertex–vertex
intersection, and one where there is no intersection.

The black box is stationary. The dark gray box is moving. The black vector indi-
cates the direction of motion. The dotted boxes indicate where the moving box first
touches the stationary box. In Figure 6.31(c), the dotted line indicates that the moving
box will miss the stationary box. For D= (1, 0), the pseudocode produces min0 = 0,
max0 = 1, min1 = 0, max1 = 1, and speed = 1. The projected intervals are initially over-
lapping. Since the speed is positive, T = (max0-min1)/speed = 1 < TLast = INFINITY

426 Chapter 6 Physics Engines

1 1

0
0 1

(a)

0
0

1

(b)

1

0 1
0

(c)

Figure 6.31 (a) Edge–edge intersection predicted. (b) Vertex–vertex intersection predicted. (c) No
intersection predicted.

and TLast is updated to 1. For �D = (0, 1), the pseudocode produces min0 = 0, max0 = 1,
min1 = 1+delta, max1 = 2+delta, and speed = -1. The moving projected interval is
initially on the right of the stationary projected interval. Since the speed is negative,
T = (max0-min1)/speed = delta > TFirst = 0 and TFirst is updated to delta. The
next block of code sets T = (min0-max1)/speed = 2+delta. The value TLast is not
updated since 2+ δ < 1 cannot happen for δ > 0. On exit from the loop over poten-
tial separating directions, TFirst = δ and Tlast = 1. The objects intersect if and only
if Tfirst ≤ Tlast, or δ ≤ 1. This condition is consistent with the images in Figure 6.31.
Figure 6.31(a) has δ < 1 and Figure 6.31(b) has δ = 1, intersections occurring in both
cases. Figure 6.31(c) has, δ > 1 and no intersection occurs.

Contact Set for Convex Polygons

Although we are interested in nonpenetration intersections for moving objects, I
mention the stationary case just for completeness. The find-intersection query for
two stationary convex polygons is a special example of Boolean operations on poly-
gons. If the polygons have N0 and N1 vertices, there is an intersection algorithm of
order O(N0 +N1) for computing the intersection [O’R98]. A less efficient algorithm
is to clip the edges of each polygon against the other polygon. The order of this algo-
rithm is O(NM). Of course, the asymptotic analysis applies to large N and M , so the
latter algorithm is potentially a good choice for triangles and rectangles.

6.4 Collision Detection with Convex Polyhedra 427

Given two moving convex objects C0 and C1, initially not intersecting and with
velocities V0 and V1, we showed earlier how to compute the first time of contact T , if it
exists. Assuming it does, the sets C0+T V0 = {X +T V0 : X ∈ C0} and C1+T V1 =
{X +T V1 : X ∈ C1} are just touching with no interpenetration. See Figure 6.21 for
the various configurations.

The TestIntersection function can be modified to keep track of which vertices
or edges are projected to the endpoints of the projection interval. At the first time
of contact, this information is used to determine how the two objects are oriented
with respect to each other. If the contact is vertex–edge or vertex–vertex, then the
contact set is a single point, a vertex. If the contact is edge–edge, the contact set is a
line segment that contains at least one vertex. Each endpoint of the projection interval
is either generated by a vertex (unique extreme) or an edge (nonunique extreme).
A class to store all the relevant projection information is

class ProjInfo
{
public:

double min, max; // projection interval [min,max]
int index[2];
bool isUnique[2];

};

The zero-indexed entries of the array correspond to the minimum of the inter-
val. If the minimum is obtained from the unique extreme vertex Vi , then index[0]
stores i and isUnique[0] is true. If the minimum is obtained from an edge Ej , then
index[0] stores j and isUnique[0] stores false. The same conventions apply for the
one-indexed entries corresponding to the maximum of the interval.

To support calculation of the contact set and the new configuration structure,
we need to modify the extremal query GetExtremeIndex. The version we developed
just returned the index of an extreme vertex with no information about whether it
is unique or an endpoint of an extreme edge. We now need this information. The
revised query is

int GetExtremeIndex (ConvexPolyhedron C, Vector D, bool& isUnique)
{

BSPTree node = C.tree;
isUnique = true;
while (node.R)
{

d = Dot(C.GetEdge(node.I),D);
if (d > 0)
{

node = node.R;
}
else if (d < 0)
{

node = node.L;

428 Chapter 6 Physics Engines

}
else // d == 0
{

// direction is an edge normal, edge is extreme
isUnique = false;
break;

}
}
return node.I;

}

Of course, in an implementation using floating point numbers, the test on the dot
product d would use some application-specified value ε > 0 and replace d > 0 by
d > ε and d < 0 by d <−ε. Function ComputeIntervalmust be modified to provide
more information than just the projection interval.

void ComputeInterval (ConvexPolyhedron C, Vector D, ProjInfo& info)
{

info.index[0] = GetExtremeIndex(C,-D,info.isUnique[0]);
info.min = Dot(D,C.GetVertex(info.index[0]));
info.index[1] = GetExtremeIndex(C,+D,info.isUnique[1]);
info.max = Dot(D,C.GetVertex(info.index[1]));

}

The projection intervals for the two polygons were inputs to the NoIntersect
function. Now those intervals are stored in the ProjInfoobjects, so NoIntersectmust
be modified to reflect this. In the event that there will be an intersection between the
moving polygons, it is necessary that the projection information be saved for later
use in determining the contact set. As a result, NoIntersect must keep track of the
ProjInfo objects corresponding to the current first time of contact. Finally, the con-
tact set calculation will require knowledge of the order of the projection intervals.
NoIntersect will set a flag side with value +1 if the intervals intersect at the maxi-
mum of the C0 interval and the minimum of the C1 interval, or with value −1 if the
intervals intersect at the minimum of the C0 interval and the maximum of the C1

interval. The modified pseudocode is

bool NoIntersect (double tmax, double speed, ProjInfo info0,
ProjInfo info1, ProjInfo& curr0, ProjInfo& curr1, int& side,
double& tfirst, double& tlast)

{
if (info1.max < info0.min)
{

if (speed <= 0)
{

return true;
}

t = (info0.min - info1.max)/speed;

6.4 Collision Detection with Convex Polyhedra 429

if (t > tfirst)
{

tfirst = t;
side = -1;
curr0 = info0;
curr1 = info1;

}
if (tfirst > tmax)
{

return true;
}

t = (info0.max - info1.min)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (info0.max < info1.min)
{

if (speed >= 0)
{

return true;
}
t = (info0.max - info1.min)/speed;
if (t > tfirst)
{

tfirst = t;
side = +1;
curr0 = info0;
curr1 = info1;

}
if (tfirst > tmax)
{

return true;
}

t = (info0.min - info1.max)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)

430 Chapter 6 Physics Engines

{
return true;

}
}
else
{ if (speed > 0)

{
t = (info0.max - info1.min)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
else if (speed < 0)
{

t = (info0.min - info1.max)/speed;
if (t < tlast)
{

tlast = t;
}
if (tfirst > tlast)
{

return true;
}

}
}
return false;

}

With the indicated modifications, TestIntersectionhas the equivalent formula-
tion

bool TestIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, double tmax, double& tfirst,
double& tlast)

{
ProjInfo info0, info1, curr0, curr1;
V = V1 - V0; // process as if C0 stationary and C1 moving
tfirst = 0;
tlast = INFINITY;

// process edges of C0
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

6.4 Collision Detection with Convex Polyhedra 431

D = C0.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// process edges of C1
for (i0 = C1.GetN() - 1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

return true;
}

The FindIntersection pseudocode has exactly the same implementation as
TestIntersection, but with one additional block of code after the two loops that is
reached if there will be an intersection. When the polygons will intersect at time T ,
they are effectively moved with their respective velocities and the contact set is cal-

culated. Let Q(j)
i =P(j)

i +T V(j) represent the polygon vertices after motion. In the
case of edge–edge contact, for the sake of argument, suppose that the contact edges

are E(0)
0 and E(1)

0 . Figure 6.32 illustrates the configurations for two triangles.
Because of the counterclockwise ordering of the polygons, observe that the two

edge directions are parallel, but in opposite directions. The edge of the first polygon

is parameterized as Q(0)
0 + sE(0)

0 for s ∈ [0, 1]. The edge of the second polygon has the
same parametric form, but with s ∈ [s0, s1] where

s0 =
E(0)

0 ·
(
Q(1)

1 −Q(0)
0

)
|E0|2 and s1 =

E(0)
0 ·

(
Q(1)

0 −Q(0)
0

)
|E0|2 .

The overlap of the two edges occurs for s̄ ∈ I = [0, 1]∩ [s0, s1] �= ∅. The correspond-

ing points in the contact set are P(0)
0 +T �W (0) + s̄ �E(0)

0 for s̄ ∈ I .

432 Chapter 6 Physics Engines

(1)

(1)(0)

(0)

(0)

(1)

E0
(0)

s = 1

s = s0

s = s1

s = 0

Figure 6.32 Edge–edge contact for two moving triangles.

In the event the two polygons are initially overlapping, the contact set is more
expensive to construct. This set can be constructed by standard methods involving
Boolean operations on polygons.

The pseudocode is shown next. The intersection is a convex polygon and is
returned in the last two arguments of the function. If the intersection set is nonempty,
the return value of the function is true. The set must itself be convex. The number
of vertices in the set is stored in quantity and the vertices, in counterclockwise order,
are stored in the array I[]. If the return value is false, the last two arguments of the
function are invalid and should not be used.

bool FindIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector W1, double tmax, double& tfirst,
double& tlast, int& quantity, Point I[])

{
ProjInfo info0, info1, curr0, curr1;
V = V1 - V0; // process as if C0 stationary and C1 moving
tfirst = 0;
tlast = INFINITY;

// process edges of C0
for (i0 = C0.GetN() - 1, i1 = 0; i1 < C0.GetN(); i0 = i1++)
{

D = C0.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);

6.4 Collision Detection with Convex Polyhedra 433

if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,
tfirst,tlast))

{
return false;

}
}

// process edges of C1
for (i0 = C1.GetN() - 1, i1 = 0; i1 < C1.GetN(); i0 = i1++)
{

D = C1.GetNormal(i0);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,v);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// compute the contact set
GetIntersection(C0,V0,C1,V1,curr0,curr1,side,tfirst,

quantity,I);
return true;

}

The intersection calculator pseudocode is shown next. Observe how the pro-
jection types are used to determine if the contact is vertex–vertex, edge–vertex, or
edge–edge.

void GetIntersection (ConvexPolygon C0, Vector V0,
ConvexPolygon C1, Vector V1, ProjInfo info0,
ProjInfo info1, int side, double tfirst, int& quantity,
Point I[])

{
if (side == 1) // C0-max meets C1-min
{

if (info0.isUnique[1])
{

// vertex-vertex or vertex-edge intersection
quantity = 1;
I[0] = C0.GetVertex(info0.index[1]) + tfirst * V0;

}
else if (info1.isUnique[0])
{

// vertex-vertex or edge-vertex intersection
quantity = 1;
I[0] = C1.GetVertex(info1.index[0]) + tfirst * V1;

434 Chapter 6 Physics Engines

}
else
{

// edge-edge intersection
P = C0.GetVertex(info0.index[1]) + tfirst * V0;
E = C0.GetEdge(info0.index[1]);
Q0 = C1.GetVertex(info1.index[0]);
Q1 = C1.GetVertex(info1.index[0] + 1);
s0 = Dot(E,Q1-P) / Dot(E,E);
s1 = Dot(E,Q0-P) / Dot(E,E);
FindIntervalIntersection(0,1,s0,s1,quantity,interval);
for (i = 0; i < quantity; ++i)
{

I[i] = P + interval[i] * E;
}

}
}
else if (side == -1) // C1-max meets C0-min
{

if (info1.isUnique[1])
{

// vertex-vertex or vertex-edge intersection
quantity = 1;
I[0] = C1.GetVertex(info1.index[1]) + tfirst * V1;

}
else if (info0.isUnique[0])
{

// vertex-vertex or edge-vertex intersection
quantity = 1;
I[0] = C0.GetVertex(info0.index[0]) + tfirst * V0;

}
else
{

// edge-edge intersection
P = C1.GetVertex(info1.index[1]) + tfirst * V1;
E = C1.GetEdge(info1.index[1]);
Q0 = C0.GetVertex(info0.index[0]);
Q1 = C0.GetVertex(info0.index[0] + 1);
s0 = Dot(E,Q1-P) / Dot(E,E);
s1 = Dot(E,Q0-P) / Dot(E,E);
FindIntervalIntersection(0,1,s0,s1,quantity,interval);
for (i = 0; i < quantity; ++i)
{

I[i] = P + interval[i] * E;
}

}
}

6.4 Collision Detection with Convex Polyhedra 435

else // polygons were initially intersecting
{

ConvexPolygon C0Moved = C0 + tfirst * V0;
ConvexPolygon C1Moved = C1 + tfirst * V1;
FindPolygonIntersection(C0Moved,C1Moved,quantity,I);

}
}

The final case is the point at which the two polygons were initially overlapping so that
the first time of contact is T = 0. FindPolygonIntersection is a general routine for
computing the intersection of two polygons. In our collision detection system with the
nonpenetration constraint, we should not need to worry about the last case, although
you might want to trap the condition for debugging purposes.

Separation of Convex Polyhedra

The structure of the algorithm for convex polyhedra moving with constant linear
velocity is similar to the one for convex polygons, except for the set of potential
separating axes that must be tested. The pseudocode is listed

bool TestIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, double tmax,
double& tfirst, double& tlast)

{
V = V1 - V0; // process as if C0 stationary, C1 moving
tfirst = 0;
tlast = INFINITY;

// test faces of C0 for separation
for (i = 0; i < C0.GetFCount(); ++i)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,

tlast))
{

return false;
}

}

// test faces of C1 for separation
for (j = 0; j < C1.GetFCount(); ++j)
{

D = C1.GetNormal(j);

436 Chapter 6 Physics Engines

ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,

tlast))
{

return false;
}

}

// test cross products of pairs of edges
for (i = 0; i < C0.GetECount(); ++i)
{

for (j = 0; j < C1.GetECount(); ++j)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,min0,max0);
ComputeInterval(C1,D,min1,max1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,

tlast))
{

return false;
}

}
}

return true;
}

The function NoIntersect is exactly the one used in the two-dimensional problem.

Contact Set for Convex Polyhedra

The find-intersection query for two stationary convex polyhedra is a special example
of Boolean operations on polyhedra. Since we are assuming nonpenetration in our
collision system, we do not need to implement this.

Given two moving convex objects C0 and C1, initially not intersecting, with
velocities V0 and V1, if T > 0 is the first time of contact, the sets C0+T VW0 =
{X +T V0 : X ∈ C0} and C1+T V1 = {X +T V1 : X ∈ C1} are just touching with no
interpenetration. As indicated earlier for convex polyhedra, the contact is one of face–
face, face–edge, face–vertex, edge–edge, edge–vertex, or vertex–vertex. The analysis is
slightly more complicated than that of the 2D setting, but the ideas are the same – the
relative orientation of the convex polyhedra to each other must be known to properly
compute the contact set.

6.4 Collision Detection with Convex Polyhedra 437

The TestIntersection function can be modified to keep track of which vertices,
edges, or faces are projected to the endpoints of the projection interval. At the first
time of contact, this information is used to determine how the two objects are oriented
with respect to each other. If the contact is vertex–vertex, vertex–edge, or vertex–
face, then the contact point is a single point, a vertex. If the contact is edge–edge,
the contact is typically a single point, but can be an entire line segment. If the con-
tact is edge–face, the contact set is a line segment. Finally, if the contact is face–face,
the intersection set is a convex polygon. This is the most complicated scenario and
requires a two-dimensional convex polygon intersector. Each endpoint of the projec-
tion interval is either generated by a vertex, an edge, or a face. Similar to the imple-
mentation for the two-dimensional problem, a projection information class can be
defined.

class ProjInfo
{
public:

double min, max; // projection interval [min, max]
int index[2];
enum Type { V, E, F };
Type type[2];

};

The zero-indexed values correspond to the minimum of the interval, the one-indexed
values to the maximum. If the extreme point is exactly a vertex, the type is set to V. If
the extreme points are exactly an edge, the type is set to E. If the extreme points are
exactly a face, the type is set to F.

Just as for convex polygons, the extremal query must be modified to support
calculation of the contact set via ProjInfo. In particular, we need to know the
enumerated type to assign based on the extremal set.

int GetExtremeIndex (ConvexPolyhedron C, Vector D,
ProjInfo::Type& type)

{
BSPTree node = C.tree;
array<int> edges;
while (node.R)
{

d = Dot(C.GetEdge(node.i),D);
if (d > 0)
{

node = node.R;
}
else if (d < 0)
{

node = node.L;
}
else

438 Chapter 6 Physics Engines

{
node = node.R;
edges.append(node.I);
++type;

}
}

if (edges.size() == 0)
{

type = ProjInfo::V;
return node.I; // vertex index at leaf node

}
else if (edges.size() == 1)
{

type = ProjInfo::E;
return edges[0]; // edge index at interior node

}
else
{

type = ProjInfo::F;
return C.GetFaceFromEdges(edges);

}
}

Note that you need another interface function for ConvexPolyhedron,

class ConvexPolyhedron
{
public:

// other members...

int GetFaceFromEdges (array<int> edges);
};

that can determine the face bounded by the input edges. Alternatively, you could build
more information into the BSP tree nodes so that this information is immediately
available. Function ComputeIntervalmust be modified to provide more information
than just the projection interval.

void ComputeInterval (ConvexPolyhedron C, Vector D, ProjInfo& info)
{

info.index[0] = GetExtremeIndex(C,-D,info.type[0]);
info.min = Dot(D,C.GetVertex(info.index[0]));
info.index[1] = GetExtremeIndex(C,+D,info.type[1]);
info.max = Dot(D,C.GetVertex(info.index[1]));

}

The NoIntersect function that was modified in two dimensions to accept
ProjInfo objects instead of projection intervals is used exactly as is for the

6.4 Collision Detection with Convex Polyhedra 439

three-dimensional problem, so I do not restate that code here. With all modifications
to this point, TestIntersection is rewritten as

bool TestIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, double tmax, double& tfirst,
double& tlast)

{
ProjInfo info0, info1, curr0, curr1;
V = V1 - V0; // process as if C0 stationary, C1 moving
tfirst = 0;
tlast = INFINITY;

// test faces of C0 for separation
for (i = 0; i < C0.GetFCount(); ++i)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// test faces of C1 for separation
for (j = 0; j < C1.GetFCount(); ++j)
{

D = C1.GetNormal(j);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// test cross products of pairs of edges
for (i = 0; i < C0.GetECount(); ++i)
{

for (j = 0; j < C1.GetECount(); ++j)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);

440 Chapter 6 Physics Engines

speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}
}

return true;
}

The FindIntersection pseudocode has exactly the same implementation as that
of TestIntersection, but with one additional block of code after all the loops that is
reached if there will be an intersection. When the polyhedra intersect at time T , they
are effectively moved with their respective velocities and the contact set is calculated.
The pseudocode follows. The intersection is a convex polyhedron and is returned in
the last argument of the function, but keep in mind that for nonpenetration we should
have only a convex polygon in 3D. If the intersection set is nonempty, the return value
is true. Otherwise, the original moving convex polyhedra do not intersect and the
function returns false.

bool FindIntersection (ConvexPolyhedron C0, Vector W0,
ConvexPolyhedron C1, Point W1, double tmax, double& tfirst,
double& tlast, ConvexPolyhedron& I)

{
ProjInfo info0, info1, curr0, curr1;
V = V1 - V0; // process as if C0 stationary, C1 moving
tfirst = 0;
tlast = INFINITY;

// test faces of C0 for separation
for (i = 0; i < C0.GetFCount(); ++i)
{

D = C0.GetNormal(i);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// test faces of C1 for separation
for (j = 0; j < C1.GetFCount(); ++j)

6.4 Collision Detection with Convex Polyhedra 441

{
D = C1.GetNormal(j);
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,side,

tfirst,tlast))
{

return false;
}

}

// test cross products of pairs of edges
for (i = 0; i < C0.GetECount(); ++i)
{

for (j = 0; j < C1.GetECount(); ++j)
{

D = Cross(C0.GetEdge(i),C1.GetEdge(j));
ComputeInterval(C0,D,info0);
ComputeInterval(C1,D,info1);
speed = Dot(D,V);
if (NoIntersect(tmax,speed,info0,info1,curr0,curr1,

side,tfirst,tlast))
{

return false;
}

}
}

// compute the contact set
GetIntersection(C0,V0,C1,V1,curr0,curr1,side,tfirst,I);
return true;

}

The intersection calculator pseudocode follows.

void GetIntersection (ConvexPolyhedron C0, Vector V0,
ConvexPolyhedron C1, Vector V1, ProjInfo info0,
ProjInfo info1, int side, double tfirst,
ConvexPolyhedron& I)

{
if (side == 1) // C0-max meets C1-min
{

if (info0.type[1] == ProjInfo::V)
{

// vertex-{vertex/edge/face} intersection
I.InsertFeature(C0.GetVertex(info0.index[1])

+ tfirst * V0);

442 Chapter 6 Physics Engines

}
else if (info1.type[0] == ProjInfo::V)
{

// {vertex/edge/face}-vertex intersection
I.InsertFeature(C1.GetVertex(info1.index[0])

+ tfirst * V1);
}
else if (info0.type[1] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[1])
+ tfirst * V0;

if (info1.type[0] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[0])
+ tfirst * V1;

I.InsertFeature(IntersectSegmentSegment(E0,E1));
}
else
{

Polygon F1 = C1.GetFPolygon(info1.index[0])
+ tfirst * V1;

I.InsertFeature(IntersectSegmentPolygon(E0,F1));
}

}
else if (info1.type[0] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[0])
+ tfirst * V1;

if (info0.type[1] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[1])
+ tfirst * V0;

I.InsertFeature(IntersectSegmentSegment(E1,E0));
}
else
{

Polygon F0 = C0.GetFPolygon(info0.index[1])
+ tfirst * V0;

I.InsertFeature(IntersectSegmentPolygon(E1,F0));
}

}
else // info0.type[1] and info1.type[0] both ProjInfo::F
{

// face-face intersection
Polygon F0 = C0.GetFPolygon(info0.index[1])

+ tfirst * V0;
Polygon F1 = C1.GetFPolygon(info1.index[0])

6.4 Collision Detection with Convex Polyhedra 443

+ tfirst * V1;
I.InsertFeature(IntersectPolygonPolygon(F0,F1));

}
}
else if (side == -1) // C1-max meets C0-min
{

if (info1.type[1] == ProjInfo::V)
{

// vertex-{vertex/edge/face} intersection
I.InsertFeature(C1.GetVertex(info1.index[1])

+ tfirst * V1);
}
else if (info0.type[0] == ProjInfo::V)
{

// {vertex/edge/face}-vertex intersection
I.InsertFeature(C0.GetVertex(info0.index[0])

+ tfirst * V0);
}
else if (info1.type[1] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[1])
+ tfirst * V1;

if (info0.type[0] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[0])
+ tfirst * V0;

I.InsertFeature(IntersectSegmentSegment(E1,E0));
}
else
{

Polygon F0 = C0.GetFPolygon(info0.index[0])
+ tfirst * V0;

I.InsertFeature(IntersectSegmentPolygon(E1,F0));
}

}
else if (info0.type[0] == ProjInfo::E)
{

Segment E0 = C0.GetESegment(info0.index[0])
+ tfirst * V0;

if (info1.type[1] == ProjInfo::E)
{

Segment E1 = C1.GetESegment(info1.index[1])
+ tfirst * V1;

I.InsertFeature(IntersectSegmentSegment(E0,E1));
}
else
{

444 Chapter 6 Physics Engines

Polygon F1 = C1.GetFPolygon(info1.index[1])
+ tfirst * V1;

I.InsertFeature(IntersectSegmentPolygon(E0,F1));
}

}
else // info1.type[1] and info0.type[0] both ProjInfo::F
{

// face-face intersection
Polygon F0 = C0.GetFPolygon(info0.index[0])

+ tfirst * V0;
Polygon F1 = C1.GetFPolygon(info1.index[1])

+ tfirst * V1;
I.InsertFeature(Intersection(F0,F1));

}
}
else // polyhedra were initially intersecting
{

ConvexPolyhedron M0 = C0 + tfirst * V0;
ConvexPolyhedron M1 = C1 + tfirst * V1;
I = IntersectionPolyhedronPolyhedron(M0,M1);

}
}

The type Segment refers to a line segment and the type Polygon refers to a convex
polygon in 3D. The various functions Intersect<Type1><Type2> are almost generic
intersection calculators. I say “almost,” meaning that you know the two objects
must intersect because the separating axis results say so. Given that they intersect,
you can optimize generic intersection calculators to obtain your results. The pos-
sible outputs from the intersection calculators are points, line segments, or convex
polygons, referred to collectively as “features.” The class ConvexPolyhedronmust sup-
port construction by allowing the user to insert any of these features. I simply used
the name InsertFeature to cover all the cases (overloading of the function name,
so to speak). The function GetESegment returns some representation of a line seg-
ment, for example, a pair of points. The calculation S+t*V where S is a Segment,
V is a vector, and t is a floating point number requires the vector class to sup-
port scalar-times-vector. Moreover, the expression requires addition to be defined
for a Segment object and a Vector object. Similarly GetFPolygon returns some rep-
resentation of the convex polygon face, for example an ordered array of points. The
calculation F+t*V requires addition to be defined for a Polygon object and a Vector
object.

As you can see, this is the workhorse of the collision system, the geometric details
of calculating intersections of line segments and convex polygons. You should expect
that this is a likely candidate for the bottleneck in your collision system. For this reason
you will see simplified systems such as [Bar01] where the contact set is reduced to a
container of points. The preceding intersection calculator can be greatly optimized
for such a system.

6.4 Collision Detection with Convex Polyhedra 445

6.4.4 Oriented Bounding Boxes

So far we have discussed collision detection for convex polyhedra in general terms.
A very common polyhedron used in applications is an oriented bounding box, the
acronym OBB used for short. The term box is enough to describe the shape, but the
modifier bounding applies when the box contains a more complex object and is used
as a coarse measure of that portion of space the object occupies. The modifier ori-
ented refers to the fact that the box axes are not necessarily aligned with the standard
coordinate axes. Details are presented in Section 6.2 on the use of bounding boxes
(and volumes) in the context of minimizing the work the collision detection system
must do by not processing pairs of objects, if you can cheaply determine that they will
not intersect. A descriptive name for this process is collision culling, suggestive of the
culling that a graphics engine does in order not to draw objects if you can cheaply
determine that they are not visible.

An OBB is defined by a center point C that acts as the origin for a coordinate
system whose orthonormal axis directions are Ui for i = 0, 1, 2. The directions are
normal vectors to the faces of the OBB. The half-widths or extents of the box along
the coordinate axes are ei > 0 for i = 0, 1, 2. Figure 6.33 shows an OBB and the
intersection of the coordinate axes with three faces of the box.

The eight vertices of the OBB are of the form

P = C+σ0e0U0+σ1e1U1+σ2e2U2

where |σi| = 1 for i = 0, 1, 2; that is, we have eight choices for the signs σi .
Our interest is restricted to testing when two OBBs intersect, whether station-

ary or moving. As a convex polyhedron, an OBB has 6 faces and 12 edges. If we just
blindly applied the test-intersection query for a pair of convex polyhedra, the number
of potential separating axis tests is 156: 6 face normals for the first OBB, 6 face normals
for the second OBB, and 144= 12∗12 edge–edge pairs. In the worst case we would
try all 156 axes only to find the OBBs are intersecting. That is quite a large number of
tests for such simple looking objects! The nature of an OBB, though, is that the sym-
metry allows us to reduce the number of tests. You probably already observed that we
have three pairs of parallel faces, so we only need to consider three face normals for an
OBB for the purposes of separation. Similarly, only three edge directions are unique
and happen to be those of the face normals. Thus, for a pair of OBBs we have only 15
potential separating axis tests: 3 face normals for the first OBB, 3 face normals for the
second OBB, and 9= 3 ∗ 3 edge–edge pairs.

We still have to project an OBB onto a potential separating axis Q+t D. Although
the fast extremal query for general convex polyhedra may be applied, the symmetry
of the OBB allows us to quickly determine the interval of projection. Because a vertex
must be an extreme point, it suffices to try to find a vertex P which maximizes the
dot product

D · (P −Q)=D · (C −Q)+ e0σ0D · U0+ e1σ1D · U1+ e2σ2D · U2

446 Chapter 6 Physics Engines

U2

U1

U0

+ e2U2

+ e0U0

+ e1U1

Figure 6.33 An OBB with center point C, coordinate axis directions U0, U1, and U2, and extents
e0, e1, and e2 along the coordinate axes. The object bounded by the box is shown
in gray.

The sign σ0 is either 1 or −1. To make the term σ0D · U0 as large as possible, we
want σ0 = 1 when D · U0 > 0 and σ0 =−1 when D · U0 < 0. If D · U0 = 0, it does
not matter what the choice is for σ0. The resulting quantity can be written as the
single term |D · U0|. The same argument applies to the other terms, so

max D · (P −Q)=D · (C −Q)+ e0|D · U0| + e1|D · U1| + e2|D · U2|
Similarly, the minimum is

minD · (P −Q)=D · (C −Q)− e0|D · U0| − e1|D · U1| − e2|D · U2|
Therefore, the projection interval is [γ − r ,γ + r], where γ =D · (C −Q) and r =∑2

i=0 ei|D · Ui|.
Given two oriented bounding boxes, one with center C0, axes Ai , and extents ai ,

and one with center C1, axes Bi , and extents bi , let the projection intervals onto a line

6.4 Collision Detection with Convex Polyhedra 447

[[]]

r1r0

 + tD

[[]]

r1

r0

(a)

(b)

 + tD

Figure 6.34 The projection intervals of two OBBs onto a line P + t D. (a) The intervals are
disjoint, so the OBBs are separated. (b) The intervals overlap, so the line is not a
separating axis.

Q+ t D be [γ0 − r0,γ0+ r0] and [γ1 − r1,γ1+ r1]. Figure 6.34 shows two cases, one
with separated intervals and one with overlapping intervals.

The algebraic condition that describes the separated intervals in Figure 6.34(a)
is |γ1− γ0|> r0+ r1. In words, this says that the distance between the centers of the
projected intervals is larger than the sum of the radii of the intervals. The intervals in
the bottom image of the figure overlap, so |γ1− γ0| < r0+ r1. If the intervals are just
touching, |γ1− γ0| = r0+ r1. This last case is important when dealing with moving
OBBs.

Define r = |γ1− γ0|. A closer look at the algebraic condition for separation of the
projected intervals shows that

r = |γ1− γ0| = |D · (C1 −Q)−D · (C0−Q)| = |D · (C1 − C0)|
This means we need to specify only the direction D and not worry about providing a
point Q on the line. Also,

r0 =
2∑

i=0

ai|D · Ai |, r1 =
2∑

i=0

bi|D · Bi|

The condition for separation of the projection intervals is r > r0+ r1 and is formally
expanded as

|D · �| = r > r0+ r1 =
2∑

i=0

ai|D · Ai| +
2∑

i=0

bi|D · Bi | (6.59)

448 Chapter 6 Physics Engines

where �= C1− C0. We have been thinking of D as a unit-length direction vector.
The face normals are already unit-length potential separating directions. A poten-
tial separating direction D= Ai ×Bj obtained as a cross product of edges, one edge
from each of the OBBs, is not necessarily unit length. We should then use D/|D| in
equation (6.59) instead of D. Notice, though, that the truth of the inequality is
unchanged whether we use the vector or the normalized vector, since we can mul-
tiply through by |D|. Consequently, we do not need to worry about normalizing the
cross product.

A further optimization can be made. The formal sum for r0 is a single term only
when D is a face normal of the first OBB. For example, if D= A0, then r0 = a0. The
formal sum for r1 is also a single term only when D is a face normal of the second
OBB. The summation term of r0 involves dot products Ai · Bj when using face nor-
mals of the second OBB for potential separating directions. The summation term of
r1 involves the same dot products when face normals of the first OBB are used for
potential separating directions. When D = Aj ×Bk , the summation term of r0 is

D · Ai = Aj ×Bk · Ai = Ai · Aj ×Bk = Ai ×Aj · Bk = A� · Bk

where {i, j,�} = {0, 1, 2}. For example, if i = 2 and j = 0, then �= 1. Similarly, the
summation term of r1 is

D · Bi = Aj ×Bk · Bi = Aj · Bk ×Bi = Aj · B�

where again {i, j,�} = {0, 1, 2}. Therefore, all the separating axis tests require comput-
ing the quantities cij = Ai · Bj and do not need cross product operations. A convenient
summary of the axes and quantities required by r > r0+ r1 are listed in Table 6.2. The
table uses αi =� · Ai and βi =� · Bi .

A term of the form c10α2− c20α1 occurs as a result of �= α0A0+α1A1+α2A2,
and

A0×B0 · �= α0(A0×B0 · A0)+α1(A0×B0 · A1)+α2(A0×B0 · A2)

= α0(0)−α1A2×B0+α2A1 · B0

= c10α2− c20α1

Pseudocode follows. The code is organized to compute quantities only when
needed. The code also detects when two face normals Ai and Bj are nearly parallel.
Theoretically, if a parallel pair exists, it is sufficient to test only the face normals of
the two OBBs for separation. Numerically, though, two nearly parallel faces can lead
to all face normal tests reporting no separation along those directions. The cross-
product directions are tested next, but Ai ×Bj is nearly the zero vector and can cause
the system to report that the OBBs are not intersecting when in fact they are.

bool TestIntersection (OBB box0, OBB box1)
{

// OBB: center C; axes U[0], U[1], U[2];
// extents e[0], e[1], e[2]

6.4 Collision Detection with Convex Polyhedra 449

Table 6.2 Potential Separating Directions for OBBs and Values for r0, r1, and r

D r0 r1 r

A0 a0 b0|c00| + b1|c01| + b2|c02| |α0|
A1 a1 b0|c10| + b1|c11| + b2|c12| |α1|
A2 a2 b0|c20| + b1|c21| + b2|c22| |α2|
B0 a0|c00| + a1|c10| + a2|c20| b0 |β0|
B1 a0|c01| + a1|c11| + a2|c21| b1 |β1|
B2 a0|c02| + a1|c12| + a2|c22| b2 |β2|
A0×B0 a1|c20| + a2|c10| b1|c02| + b2|c01| |c10α2− c20α1|
A0×B1 a1|c21| + a2|c11| b0|c02| + b2|c00| |c11α2− c21α1|
A0×B2 a1|c22| + a2|c12| b0|c01| + b1|c00| |c12α2− c22α1|
A1×B0 a0|c20| + a2|c00| b1|c12| + b2|c11| |c20α0− c00α2|
A1×B1 a0|c21| + a2|c01| b0|c12| + b2|c10| |c21α0− c01α2|
A1×B2 a0|c22| + a2|c02| b0|c11| + b1|c10| |c22α0− c02α2|
A2×B0 a0|c10| + a1|c00| b1|c22| + b2|c21| |c00α1− c10α0|
A2×B1 a0|c11| + a1|c01| b0|c22| + b2|c20| |c01α1− c11α0|
A2×B2 a0|c12| + a1|c02| b0|c21| + b1|c20| |c02α1− c12α0|

// values that are computed only when needed
double c[3][3]; // c[i][j] = Dot(box0.U[i],box1.U[j])
double absC[3][3]; // |c[i][j]|
double d[3]; // Dot(box1.C-box0.C,box0.U[i])

// interval radii and distance between centers
double r0, r1, r;
int i;

// cutoff for cosine of angles between box axes
const double cutoff = 0.999999;
bool existsParallelPair = false;

// compute difference of box centers
Vector diff = box1.C - box0.C;

// axis C0 + t * A0
for (i = 0; i < 3; ++i)
{

c[0][i] = Dot(box0.U[0],box1.U[i]);
absC[0][i] = |c[0][i]|;
if (absC[0][i] > cutoff)
{

450 Chapter 6 Physics Engines

existsParallelPair = true;
}

}
d[0] = Dot(diff,box0.U[0]);
r = |d[0]|;
r0 = box0.e[0];
r1 = box1.e[0] * absC[0][0] + box1.e[1] * absC[0][1]

+ box1.e[2] * absC[0][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A1
for (i = 0; i < 3; ++i)
{

c[1][i] = Dot(box0.U[1],box1.U[i]);
absC[1][i] = |c[1][i]|;
if (absC[1][i] > cutoff)
{

existsParallelPair = true;
}

}
d[1] = Dot(diff,box0.U[1]);
r = |d[1]|;
r0 = box0.e[1];
r1 = box1.e[0] * absC[1][0] + box1.e[1] * absC[1][1]

+ box1.e[2] * absC[1][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A2
for (i = 0; i < 3; ++i)
{

c[2][i] = Dot(box0.U[2],box1.U[i]);
absC[2][i] = |c[2][i]|;
if (absC[2][i] > cutoff)
{

existsParallelPair = true;
}

}
d[2] = Dot(diff,box0.U[2]);
r = |d[2]|;
r0 = box0.e[2];
r1 = box1.e[0] * absC[2][0] + box1.e[1] * absC[2][1]

6.4 Collision Detection with Convex Polyhedra 451

+ box1.e[2] * absC[2][2];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * B0
r = |Dot(diff,box1.U[0])|;
r0 = box0.e[0] * absC[0][0] + box0.e[1] * absC[1][0]

+ box0.e[2] * absC[2][0];
r1 = box1.e[0];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * B1
r = |Dot(diff,box1.U[1])|;
r0 = box0.e[0] * absC[0][1] + box0.e[1] * absC[1][1]

+ box0.e[2] * absC[2][1];
r1 = box1.e[1];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * B2
r = |Dot(diff,box1.U[2])|;
r0 = box0.e[0] * absC[0][2] + box0.e[1] * absC[1][2]

+ box0.e[2] * absC[2][2];
r1 = box1.e[2];
if (r > r0 + r1)
{

return false;
}

if (existsParallelPair)
{

// A pair of box axes was (effectively) parallel,
// boxes must intersect.
return true;

}

// axis C0 + t * A0 x B0
r = |d[2] * c[1][0] - d[1] * c[2][0]|;
r0 = box0.e[1] * absC[2][0] + box0.e[2] * absC[1][0];
r1 = box1.e[1] * absC[0][2] + box1.e[2] * absC[0][1];

452 Chapter 6 Physics Engines

if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A0 x B1
r = |d[2] * c[1][1] - d[1] * c[2][1]|;
r0 = box0.e[1] * absC[2][1] + box0.e[2] * absC[1][1];
r1 = box1.e[0] * absC[0][2] + box1.e[2] * absC[0][0];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A0 x B2
r = |d[2] * c[1][2] - d[1] * c[2][2]|;
r0 = box0.e[1] * absC[2][2] + box0.e[2] * absC[1][2];
r1 = box1.e[0] * absC[0][1] + box1.e[1] * absC[0][0];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A1 x B0
r = |d[0] * c[2][0] - d[2] * c[0][0]|;
r0 = box0.e[0] * absC[2][0] + box0.e[2] * absC[0][0];
r1 = box1.e[1] * absC[1][2] + box1.e[2] * absC[1][1];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A1 x B1
r = |d[0] * c[2][1] - d[2] * c[0][1]|;
r0 = box0.e[0] * absC[2][1] + box0.e[2] * absC[0][1];
r1 = box1.e[0] * absC[1][2] + box1.e[2] * absC[1][0];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A1 x B2
r = |d[0] * c[2][2] - d[2] * c[0][2]|;
r0 = box0.e[0] * absC[2][2] + box0.e[2] * absC[0][2];
r1 = box1.e[0] * absC[1][1] + box1.e[1] * absC[1][0];
if (r > r0 + r1)
{

6.4 Collision Detection with Convex Polyhedra 453

return false;
}

// axis C0 + t * A2 x B0
r = |d[1] * c[0][0] - d[0] * c[1][0]|;
r0 = box0.e[0] * absC[1][0] + box0.e[1] * absC[0][0];
r1 = box1.e[1] * absC[2][2] + box1.e[2] * absC[2][1];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A2 x B1
r = |d[1] * c[0][1] - d[0] * c[1][1]|;
r0 = box0.e[0] * absC[1][1] + box0.e[1] * absC[0][1];
r1 = box1.e[0] * absC[2][2] + box1.e[2] * absC[2][0];
if (r > r0 + r1)
{

return false;
}

// axis C0 + t * A2 x B2
r = |d[1] * c[0][2] - d[0] * c[1][2]|;
r0 = box0.e[0] * absC[1][2] + box0.e[1] * absC[0][2];
r1 = box1.e[0] * absC[2][1] + box1.e[1] * absC[2][0];
if (r > r0 + r1)
{

return false;
}

return true;
}

6.4.5 Boxes Moving with Constant Linear and Angular Velocity

OBBs may certainly be used as objects in and of themselves in an application. A classic
application in the industry is having a moving vehicle run through a wall of bricks.
A large number of bricks will demand a lot of performance from the physics engine.
After the vehicle crashes through the wall, the collision detection system has a lot to
handle. The bricks will have both nonzero linear and angular velocities, the actual
values dependent on the interactions with other bricks. To avoid performance issues
with the bisection approach to collision, we would like to predict collisions at later
times and reduce the desired time step accordingly. But is that not what the differential
equation solving is about, predicting future behavior from current state? Taking the
time step with the solver just to predict that we should take half the time step puts us

454 Chapter 6 Physics Engines

right back in the bisection algorithm. The question: Can we predict collisions without
actually running the solver?

Well, the answer is “almost.” For a physical simulation running at real-time rates,
the time step will be a fraction of a second. During the time interval [0,�t], where
�t > 0 is small, the linear and angular velocities should not change very much. If
you assume that the linear and angular velocities are constant over the time step, you
can estimate the location of the center of mass and the orientation of the body at the
end of that time. The general equations of motion for these quantities are ẋ(t)= v(t)
and Ṙ(t)= Skew(w(t))R(t), where v(t) is linear velocity and w(t) is angular velocity.
In mathematical terms the assumption of constancy over the time interval produces
the approximate equations ẋ(t) = v0 and Ṙ(t)= Skew(w0)R(t), where v0 = v(0) and
w0 = w(0). These have exact solutions,

x(t) = x0+ t v0, R(t)= Rot(t |w0|, w0/|w0|)R0

where x0 = x(0), R0 = R(0), and Rot(θ , u) is the rotation matrix by an angle θ about
an axis whose direction is the unit-length vector u. We can run our collision detection
system using x(t) and R(t) produced by these equations to predict if any collisions
will occur on the time interval [0,�t]. If not, we can solve the differential equations
using the desired step �t . If collisions are predicted, the system should report the
largest time T ∈ [0,�t] for which no collisions occur on the interval [0, T]. The time
step for the differential equation solver is chosen to be T instead of �t . Our estimates
x(t) and R(t) are essentially a numerical method of the Euler type for solving differ-
ential equations, but in our case we are using these estimates in conjunction with the
collision system to provide an adaptive time step for the actual differential equation
solver (such as Runge–Kutta) that our physical simulator is using.

A collision detection system built on the method of separating axes can handle
constant linear and angular velocities with a minimum of computational effort when
the objects are oriented bounding boxes.

Constant Linear Velocity

Consider two OBBs whose centers are moving with constant linear velocity, Ci + t Vi

for i = 0, 1 and t ≥ 0. The OBB axes are assumed not to rotate over time; that is,
there is no angular velocity. The general analysis that led to TestIntersection for
convex polyhedra moving with constant linear velocities applies here. The differ-
ence is that the general case required ComputeInterval for computing the projection
intervals of the polyhedra. The intervals are simpler to compute for OBBs. Partial
pseudocode for the test-intersection query is listed below. The organization is similar
to the pseudocode for testing stationary OBBs. Blocks of the form,

if (r > r0 + r1)
{

return false;
}

6.4 Collision Detection with Convex Polyhedra 455

are replaced by

speed = Dot(D,V);
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,tlast))
{

return false;
}

where speed is of type double, D is the relevant potential separating axis, and V is the
velocity of the second box relative to the first. The input to NoIntersect consisted of
two projection intervals [min0, max0] and [min1, max1] on a line O+ t D, where O
is the origin. Now we are projecting onto a line with the same direction but contain-
ing the center of the first box. A brief look at the code for NoIntersect will convince
you that only the relative position of the projection intervals matters, not the abso-
lute location of their centers. In the pseudocode that follows, the interval values are
computed relative to the projected center of the first box.

bool TestIntersection (OBB box0, Vector V0, OBB box1, Vector V1,
double tmax, double& tfirst, double& tlast)

{
// OBB: center C; axes U[0], U[1], U[2];
// extents e[0], e[1], e[2]

// values that are computed only when needed
double c[3][3]; // c[i][j] = Dot(box0.U[i],box1.U[j])
double absC[3][3]; // |c[i][j]|
double udc[3]; // Dot(box0.U[i],box1.C-box0.C)
double udv[3]; // Dot(box0.U[i],V1-V0)

double center, speed, r0, r1, min0, max0, min1, max1;
int i;

// cutoff for cosine of angles between box axes
const double cutoff = 0.999999;
bool existsParallelPair = false;

// compute difference of box centers and velocities
Vector CDiff = box1.C - box0.C;
Vector VDiff = V1 - V0;

tfirst = 0;
tlast = INFINITY;

// axis C0 + t * A0
for (i = 0; i < 3; ++i)
{

c[0][i] = Dot(box0.U[0],box1.U[i]);
absC[0][i] = |c[0][i]|;
if (absC[0][i] > cutoff)

456 Chapter 6 Physics Engines

{
existsParallelPair = true;

}
}
udc[0] = Dot(box0.U[0],CDiff);
udv[0] = Dot(box0.U[0],VDiff);
center = udc[0];
speed = udv[0];
r0 = box0.e[0];
r1 = box1.e[0] * absC[0][0] + box1.e[1] * absC[0][1]

+ box1.e[2] * absC[0][2];
min0 = -r0;
max0 = +r0;
min1 = center - r1;
max1 = center + r1;
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,tlast))
{

return false;
}

//*** other face normal cases go here ***

if (existsParallelPair)
{

// A pair of box axes was (effectively) parallel,
// boxes must intersect.
return true;

}

// axis C0 + t * A0 x B0
center = udc[2] * c[1][0] - udc[1] * c[2][0];
speed = udv[2] * c[1][0] - udv[1] * c[2][0];
r0 = box0.e[1] * absC[2][0] + box0.e[2] * absC[1][0];
r1 = box1.e[1] * absC[0][2] + box1.e[2] * absC[0][1];
min0 = -r0;
max0 = +r0;
min1 = center - r1;
max1 = center + r1;
if (NoIntersect(tmax,speed,min0,max0,min1,max1,tfirst,tlast))
{

return false;
}

//*** other edge-edge cases go here ***

return true;
}

The pseudocode for NoIntersect is the same used for convex polyhedra generally.

6.4 Collision Detection with Convex Polyhedra 457

Constant Angular Velocity

The analysis for constant linear velocity is based on two things, the separating test
in equation (6.59) and the time-varying difference between centers �(t) =D · (C1−
C0)+ t D · (V1−V0)= c + tσ . If you consider the first projection interval [−r0, r0]
to be stationary, the second projection interval is [c + tσ − r1, c + tσ + r1]. At time
0 its center is c and it moves with speed σ . Figure 6.35 shows the four cases of
interest.

The first two rows of the figure show the moving interval on the right of the
stationary one. In the first row σ ≥ 0 and the intervals will never intersect. In the
second row σ < 0 and the intervals will intersect at time t = (r0 + r1− c)/σ . The last
two rows of the figure show the moving interval on the left of the stationary one.
In the third row σ > 0 and the intervals will intersect at time t =−(r0+ r1+ c)/σ .
In the fourth row σ ≤ 0 and the intervals will never intersect. The constant linear
velocities of the bodies leads to a linear equation in t for computing the first time of
contact.

We are not so lucky to obtain a simple formulation for bodies moving with con-
stant angular velocities wk , k = 0, 1, but we can obtain a formulation nonetheless.
The constant angular speeds are ωk = |wk | and the unit-length directions for the axes
of rotation are Uk = wk/|wk |. The rotation matrices corresponding to the angular

≥

≤

Figure 6.35 Two projected intervals, one stationary and one moving.

458 Chapter 6 Physics Engines

velocities are

Rk (t)= I + sin(tωk)Sk + (1− cos(tωk))S2
k

where Sk = Skew(Uk). Let Ai and Bj be the OBB axes at time zero. At a later time
the axes are R0(t)Ai and R1(t)Bj . The separation condition along an axis based on
equation (6.59) is

|D(t) · �| = r(t) > r0(t)+ r1(t) =
2∑

i=0

ai|D(t) · R0(t)Ai| +
2∑

j=0

bj|D(t) · R1(t)Bi|

where �= C1− C0 does not vary with time (the box centers are stationary). The
choices for potential separating direction D(t) are R0(t)Ai , R1(t)Bj , and (R0(t)Ai)×
(R1(t)Bj).

To get an idea of the complexity of the separating equation, let us look at the
case D(t)= R0(t)A0. The simplest distance quantity is r0(t)= a0. For r(t) and r1(t),
define σi(t)= sin(tωi) and γi(t) = cos(tωi). The quantity r(t) is

r(t) = |(A0 · �)+ (S0A0 · �)σ0(t)+ (S2
0 A0 · �)(1− γ0(t))|

= |c0+ c1 sin(ω0t +ψ)|
for some constants c0, c1, and ψ . The last equality follows from an application of
trigonometric identities. The general term in the summation for r1(t) involves the
absolute value of

R0(t)A0 · R1(t)Bj = d00h + d01jσ1(t)+ d02j (1− γ1(t))

+ d10jσ0(t)+ d11j σ0(t)σ1(t)+ d12j σ0(t)(1− γ1(t))

+ d20j (1− γ0(t))+ d21j (1− γ0(t))σ1 (t)

+ d22j (1− γ0(t))(1− γ1 (t))

where dk�j = Sk
0 A0 · S�

1Bj . Trigonometric identities may be used to reduce this to

R0(t)A0 · R1(t)Bj = ej +
3∑

i=0

fji sin(λi t +φi)

where ej , fji , and φi are constants. The frequencies are λ0 = ω0, λ1 = ω1, λ2 = ω0 +
ω1, and λ3 = ω0 −ω1. The separating equation becomes

|c0+ c1 sin(λ0t +ψ)| > a0+
2∑

j=0

bj

∣∣∣∣∣ej +
3∑

i=0

fji sin(λi t +φi)

∣∣∣∣∣
Computing the first time t for which you get equality in the above expression requires
a numerical root finder. And keep in mind that the worst case is having to process all
15 separating axes, each yielding a complicated inequality of this form.

6.4 Collision Detection with Convex Polyhedra 459

We could make yet another approximation and replace sin(ωk t)
.= ωk t and

1− cos(ωk t)
.= 0. The separating equation for potential separating axis R0(t)A0 with

these approximations is of the form,

|g0+ g1t |> a0+
2∑

j=0

bj

∣∣hj0 + hj1t + hj2t 2
∣∣

This looks less formidable, but still requires a bit of work to find when equality
occurs.

6.4.6 GJK Algorithm

An alternative to the method of separating axes for determining when two convex
polyhedra overlap is to compute the distance between the polyhedra. The distance is
positive when the polyhedra are separated. The distance is zero when the polyhedra
are just touching or overlapping.

An effective method for computing the distance was developed by E.G. Gilbert,
D.W. Johnson, and S.S. Keerthi [GJK88] for convex polyhedra in 3D, but the ideas
apply equally as well in 2D (and in any dimension for the generalization of convex
polyhedra in that dimension). The algorithm has become known as the GJK algo-
rithm, where the acronym is just the initial letters of the last names of the authors
of the paper. The algorithm was later extended to handle convex objects in gen-
eral [GF90]. An enhancement of the algorithm was also developed that computes
penetration distances when the polyhedra are intersecting [Cam97].

A detailed description of the algorithm and its use in collision detection systems
is in the book by Gino van den Bergen [vdB03]. The CD-ROM of the reference book
has an implementation. Software is also available at [vdB01c]. Of great interest in
this implementation is that special attention is paid to numerical issues that have
plagued many other implementations of the GJK algorithm. Related materials are
[vdB97, vdB99, vdB01b].

The ideas are illustrated here for convex polygons in 2D, but the concepts extend
naturally to 3D.

Set Operations

The Minkowski sum of two sets A and B is defined as the set of all sums of vec-
tor pairs, one from each set. Formally, the set is A+B = {X+Y : X ∈ A, Y ∈ B}.
The negation of a set B is −B = {−X : X ∈ B}. The Minkowski difference of the sets
is A−B = {X−Y : X ∈ A, Y ∈ B}. Observe that A−B = A+ (−B). If the sets A
and B are both convex, then the A+B, −B, and A−B are all convex sets. If A
is a convex polygon with n vertices and B is a convex polygon with m vertices,
in worst case the sum A+B has n+m vertices. Figure 6.36 illustrates where A is

460 Chapter 6 Physics Engines

U2

U1U0

V0

V2

V1

A

B

U2 – V1 U2 – V0

U0 – V1

U0 – V2 U1 – V2

U1 – V0A – B

U2 + V2

U2 + V0

U0 + V0

U1 + V2

A + B

–V2

–V0

–V1

–B

U0 + V1 U1 + V1

Figure 6.36 Triangles A and B and sets A+B, −B, and A−B. The black dots on the grid are the
origin (0, 0). The gray point in the lower right grid is the closest point on A−B to the
origin.

the triangle 〈U0, U1, U2〉 = 〈(0, 0), (2, 0), (0, 2)〉 and B is the triangle 〈V0, V1, V2〉 =
〈(2, 2), (4, 1), (3, 4)〉. The origin (0, 0) is marked as a black dot.

The upper left of Figure 6.36 shows the original triangles. The lower left
shows −B. The upper right of the figure shows A+B. To provide some geometric
intuition on the sum, the figure shows three dark gray triangles corresponding to
triangle A translated by each of the three vertices of triangle B. Triangle B itself is
shown in lighter gray. Imagine painting the hexagon interior by the translated trian-
gle A where you move U0+V0 within triangle B. The same geometric intuition is
illustrated in the drawing of A−B.

The distance between any two sets A and B is formally

Distance(A, B)=min{|X−Y| : X ∈ A, Y ∈ B} =min{|Z| : Z ∈ A−B}
The latter equation shows that the Minkowski difference can play an important role
in distance calculations. The minimum distance is attained by a point in A−B that is
closest to the origin. Figure 6.36 illustrates this for two triangles. The closest point to
the origin is the dark gray dot at the point (−1,−1) ∈ A−B. That point is generated

6.4 Collision Detection with Convex Polyhedra 461

by (1, 1) ∈ A and (2, 2) ∈ B, so the distance between A and B is
√

2 and is attained by
the aforementioned points.

The heart of the distance calculation is how to efficiently search A−B for the
closest point to the origin. A straightforward algorithm is to compute A−B directly,
then iterate over the edges and computing the distance from each edge to the origin.
The minimum such distance is the distance between A and B. However, this approach
is not efficient in that it can take significant time to compute A−B as the convex hull
of the set of points U−V, where U is a vertex of A and V is a vertex of B. Moreover,
an exhaustive search of the edges will process edges that are not even visible to the
origin. The approach is O(nm) where A has n vertices and B has m vertices since the
convex hull can have nm vertices. The GJK algorithm is an iterative method designed
to avoid the direct convex hull calculation and to localize the search to edges near the
origin.

Overview of the Algorithm

The discussion here is for the general n-dimensional problem for convex objects A
and B. Let C = A−B where A and B are convex sets. As noted earlier, C itself is a
convex set. If 0 ∈ C , then the original sets intersect and the distance between them is
zero. Otherwise, let Z ∈ C be the closest point to the origin. It is geometrically clear
that only one such point exists and must lie on the boundary of C . However, there
can be many X ∈ A and Y ∈ B such that X−Y = Z. For example, this happens for
two disjoint convex polygons in 2D whose closest features are a pair of parallel edges,
one from each polygon.

The GJK algorithm is effectively a descent method that constructs a sequence of
points on the boundary of C , each point having smaller distance to the origin than the
previous point in the sequence. In fact, the algorithm generates a sequence of simplices
with vertices in C (triangles in 2D, tetrahedra in 3D), each simplex having smaller
distance to the origin than the previous simplex. Let Sk denote the simplex vertices
at the kth step and let S̄k denote the simplex itself. The point Vk ∈ S̄k is selected to
be the closest point in S̄k to the origin. Initially, S0 = ∅ (the empty set) and V0 is an
arbitrary point in C. The set C is projected onto the line through 0 with direction V0,
the resulting projection being a closed and bounded interval on the line. The interval
endpoint that is farthest left on the projection line is generated by a point W0 ∈ C .
The next set of simplex vertices is S1 = {W0}. Figure 6.37 illustrates this step.

Since S1 is a singleton point set, S̄1 = S1 and V1 =W0 is the closest point in S̄1 to
the origin. The set C is now projected onto the line containing 0 with direction V1.
The interval endpoint that is farthest left on the projection line is generated by a point
W1 ∈ C . The next set of simplex vertices is S2 = {W0, W1}. Figure 6.38 illustrates
this step.

The set S̄2 is the line segment 〈W0, W1〉. The closest point in S̄2 to the origin is an
edge–interior point V2. The set C is projected onto the line containing 0 with direc-
tion V2. The interval endpoint that is farthest left on the projection line is generated

462 Chapter 6 Physics Engines

C

W0

V00

Figure 6.37 The first iteration in the GJK algorithm.

C

W0

W1

V1

0

Figure 6.38 The second iteration in the GJK algorithm.

by a point W2 ∈ C . The next set of simplex vertices is S3 = {W0, W1, W2}. Figure 6.39
illustrates this step.

The set S̄3 is the triangle 〈W0, W1, W2〉. The closest point in S̄3 to the origin is
a point V3 on the edge 〈W0, W2〉. The next simplex vertex that is generated is W3.
The next set of simplex vertices is S4 = 〈W0, W2, W3〉. The old simplex vertex W1 is
discarded. Figure 6.40 illustrates this step. The simplex S̄3 is shown in dark gray.

6.4 Collision Detection with Convex Polyhedra 463

C

W0

W2

W1

V2

0

Figure 6.39 The third iteration in the GJK algorithm.

C

W0

W2

W3

W1

V3
S3

0

Figure 6.40 The fourth iteration in the GJK algorithm.

Generally, Vk+1 is chosen to be the closest point to the origin in the convex hull
of Sk ∪ {Wk }. The next set of simplex vertices Sk+1 is chosen to be set M ⊆ Sk ∪ {Wk}
with the fewest number of elements such that Vk+1 is in the convex hull of M . Such
a set M must exist and is unique. The left half of Figure 6.41 shows the convex hull of
S3 ∪ {W3}, a quadrilateral. The next iterate V4 is shown on that hull. The right half of
Figure 6.41 shows the simplex S̄4 that was generated by M = {W0, W2, W3}.

Stated without proof, the sequence of iterates is monotonically decreasing in
length, |Vk+1| ≤ |Vk |. In fact, equality can occur only when Vk = Z, the closest point.

464 Chapter 6 Physics Engines

C C

W0 W0

W2
W2

W3 W3

W1

V4

0 0

hull (S3 {W3})

S4

¯

Figure 6.41 Left: Construction of Vk+1 in the convex hull of Sk ∪ {Wk}. Right: The new simplex
S̄k+1 generated from M = {W0, W2, W3}.

For convex faceted objects, the closest point is reached in a finite number of steps. For
general convex objects, the sequence can be infinite, but must converge to Z. If the
GJK algorithm is implemented for such objects, some type of termination criterion
must be used. Numerical issues arise when the algorithm is implemented in a float-
ing point number system. One item to pay attention to is that the simplices eventually
become flat in one or more dimensions.

Alternatives to GJK

The GJK algorithm is by no means the only algorithm for computing distance between
convex polygons or convex polyhedra. The distance between two nonintersecting
convex polygons can be computed using the method of rotating calipers [Pir]. This
powerful method is useful for solving many other types of problems in computational
geometry. Assuming both polyhedra have O(n) vertices, an O(n2) algorithm, both in
space and in time, for computing the distance is [CC86]. An asymptotically better
algorithm is [DK90] and is O(n) in space and O(log2 n) in time. However, no imple-
mentation appears to be publicly available. The method is based on constructing a
hierarchical representation of a polyhedron that is useful for solving other queries,
for example in rapid determination of an extreme point of a polyhedron for a speci-
fied direction. In more recent times, the Lin-Canny algorithm [LC91] is O(n) in space,
empirically O(n) in time, but maintains the closest pair of features to exploit frame
coherence. After computing the distance in one frame, the polyhedra move slightly
and the distance must be recalculated in the next frame. The incremental update is
O(1) in time. Implementations based on this method are I-Collide [CLMP95] and
V-Clip [Mir98].

6.5 Unconstrained Motion 465

6.5 Unconstrained Motion

For unconstrained motion, Newtonian dynamics may be used rather than Lagrangian
dynamics to establish the equations of motion. The equations of motion for a single
particle of mass m with world position x, world velocity v= ẋ, and world acceleration
a = v̇= ẍ are in the form of Newton’s second law:

mẍ =mv̇ =ma = F(t)

The right-hand side represents all forces applied to the particle. The dependence on
time is indicated just to remind you that the force can change dynamically. This is
a second-order differential equation in x. Numerical differential equation solvers are
typically set up to solve first-order systems. We can transform our single second-order
equation into two first-order equations by allowing the velocity to be one of the vari-
ables: ẋ= v, v̇= F/m. The vector S(t)= [x v]T is referred to as the state vector for the
system. The system of differential equations is

dS

dt
= d

dt

[
x

v

]
=
[

ẋ

v̇

]
=
[

v
F
m

]

The physical simulation is a matter of updating the state vector over time using the
differential equation solvers.

Newton’s second law applies equally as well to a system of n particles. If the ith
particle has mass mi , position xi , velocity vi , and applied force Fi , then the state vector
is a list of all pairs of positions and velocities, S= [x1 v1 · · · xn vn]T, and the system
of differential equations is

dS

dt
= d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

v1

...

xn

vn

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

v̇1

...

ẋn

v̇n

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

F1
m1

...

vn

Fn
mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is conceptually the same as a system of one particle. The numerical differential
equation solver just has to deal with more variables and equations.

A typical game application, though, has rigid bodies that are not single points. The
physical concepts we introduced earlier come into play. Section 2.2.2 showed us the
kinematics for a solid rigid body. In particular, we saw how to construct the position,
velocity, and acceleration vectors for each pointP in the solid. We identified an object
center point C. As noted many times, the equations of motion greatly simplify when
that point is chosen to be the center of mass of the object. The path of the center of
mass was denoted by X (t ;C). To work solely with vectors in this section, we will use
the difference x(t) =X (t ;C)−O, where O is the origin of the world. The velocity

466 Chapter 6 Physics Engines

of the center of mass measured in world coordinates was denoted by vcen(t). We will
drop the subscript in this section and use just the notation v(t). The position and
velocity are related by

dx(t)

dt
= v(t) (6.60)

A restatement of equation (2.56), the linear momentum of the rigid body is

p(t) =mv(t) (6.61)

where m is the total mass of the body. Since the mass is a constant, we may keep track
of either (linear) velocity or linear momentum in the state of the system. We choose
the state to include x and p. The driving force behind the center of mass is F(t), the
equations of motion provided by Newton’s second law, equation (2.45),

dp(t)

dt
= F(t) (6.62)

The abstract operations to determine the location of the center of mass given an
applied force F(t) are

1. Compute p from F by integrating equation (6.62).

2. Compute v from p by dividing by m in equation (6.61).

3. Compute x from v by integrating equation (6.60).

In practice these steps are handled simultaneously by a numerical differential equa-
tion solver.

An analogous set of equations tell us how the orientation matrix R(t) is affected by
an externally applied torque. The analogy to mass m is the inertia tensor (mass matrix)
J defined in equation (2.85). Keep in mind that the inertia tensor is constructed rela-
tive to some coordinate system. In this section we are computing it relative to the
center of mass of the object. The analogy to linear velocity v is the angular velocity w.
The analogy to linear momentum is angular momentum L. The relationship between
angular velocity and the orientation matrix is equation (2.38),

dR(t)

dt
= Skew(w(t))R(t) (6.63)

The relationship between angular momentum and angular velocity is equation
(2.88),

L(t)= J(t)w(t) (6.64)

The inertia tensor is measured in world coordinates. Since the object is moving and
rotating, J does vary with time. The driving torque behind the orientation is τ (t), the

6.5 Unconstrained Motion 467

equations of motion provided by equation (2.62),

dL(t)

dt
= τ (t) (6.65)

The abstract operations to determine the orientation of the rigid body given an
applied torque τ (t) are analogous to those for determining the location:

1. Compute L from τ by integrating equation (6.65).

2. Compute w from L by dividing by J in equation (6.64). The division is in the
matrix sense – you need to multiply by the inverse matrix J−1.

3. Compute R from w by integrating equation (6.63).

Recomputing the inertia tensor J(t) and its inverse J−1(t) for each time step
of the simulation can be expensive depending on how complex the shape of the
rigid body. We can eliminate the direct computation by an observation. Recall that
r(t ;P)= R(t)b(P), where R(t) is the orientation matrix and b(P) is the location of
point P measured in body coordinates. If B denotes the region of space that the rigid
body occupies, the inertia tensor is

J(t) =
∫
B

(|r|2I − rrT
)
dm, Definition of inertia tensor

=
∫
B

(|Rb|2I − (Rb)(Rb)T
)
dm, Definition of r

=
∫
B

(|b|2I −RbbTRT
)
dm, Rotation preserves length

=
∫
B

(|b|2RRT−RbbTRT
)
dm, Rotations satisfy I = RRT

= R

⎛
⎝∫

B

(|b|2I −bbT
)
dm

⎞
⎠RT, R is constant with respect to the integration

= R(t)JbodyR(t)T

(6.66)

where Jbody is the inertia tensor measured in the body coordinate frame and is
independent of time since the body is rigid. The inverse matrix is easy to compute,

J(t)−1 = R(t)J−1
bodyR(t)T (6.67)

Another observation that leads to a robust implementation is that we can use
quaternions to represent the orientation matrix. Chapter 10 provides a large amount
of background material on quaternions and how they relate to rotations. The main
problem when numerically integrating equation (6.63) over many time steps is that

468 Chapter 6 Physics Engines

numerical error builds up, and the computed matrix R(t) is no longer precisely a
rotation matrix. We may easily correct for this situation. If R̂(t)= [û0 û1 û2] is the
output of the differential equation solver, Gram–Schmidt orthonormalization may
be applied to its columns to generate a set of orthonormal vectors that become the
columns of the orientation matrix, R(t) = [u0 u1 u2]. Specifically,

u0 = û0

|û0| , u1 = û1− (û1 · u0)u0

|û1− (û1 · u0)u0| , u2 = u0× u1

The orthonormalization does not have to be applied at every step, but often enough to
avoid numerical problems. If q(t) is a quaternion that represents R(t), and if ω(t) is
the (not necessarily unit length) quaternion that corresponds to the angular velocity
w(t), then the differential equation for q(t) equivalent to equation (6.63) is

dq(t)

dt
= 1

2
ω(t)q(t) (6.68)

See Chapter 10 for the derivation of this equation. A numerical integration still occurs
and produces an output q̂(t) that can be normalized to unit length q(t) to account
for the numerical round-off errors, but the frequency of normalization can be chosen
smaller than for rotation matrices. Treating q(t) as a vector in four dimensions, the
normalization is

q = q̂

|q̂|
where |q̂| is the length of the input 4-tuple. This normalization is less expensive to
compute than Gram–Schmidt orthonormalization for rotation matrices.

Now to put all this together. For a single rigid body, the state vector is expanded to

S(t)=

⎡
⎢⎢⎢⎣

x(t)
q(t)

p(t)

L(t)

⎤
⎥⎥⎥⎦ (6.69)

The applied force is F(t) and the applied torque is τ (t). The equations of motion are

dS

dt
= d

dt

⎡
⎢⎢⎣

x
q
p

L

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ẋ
q̇

ṗ

L̇

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

m−1p

ωq/2

F
τ

⎤
⎥⎥⎥⎦ (6.70)

The force F(t) and torque τ(t) are always computable at time t . The state values for
p(t), q(t), and L(t) at time t are maintained by the physics simulator. The orientation
matrix R(t) is computed from q(t). The angular velocity is determined by equations
(6.64) and (6.67), namely

w(t) = J−1(t)L(t)= R(t)J−1
bodyR(t)TL(t)

6.5 Unconstrained Motion 469

The corresponding quaternion ω is computed from w(t). After these calculations we
know all the quantites on the right-hand side of equation (6.70) and can apply the
numerical differential equation solver to compute the values at the next time t +�t
for a suitably chosen step size �t > 0.

For n rigid bodies, the state vector contains n blocks of values, each block the
position, orientation, linear momentum, and angular momentum of a single rigid
body. The state vector of the entire system is

S(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
q1(t)
p1(t)

L1(t)
...

xn(t)
qn(t)
pn(t)

Ln(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.71)

For the ith rigid body, the applied force is Fi(t) and the applied torque is τ i(t). The
equations of motion are

dS

dt
= d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
q1(t)
p1(t)

L1(t)
...

xn(t)
qn(t)
pn(t)

Ln(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1(t)
q̇1(t)

ṗ1(t)

L̇1(t)
...

ẋn(t)
q̇n(t)

ṗn(t)

L̇n(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m−1
1 p1

ω1q1/2

F1

τ 1
...

m−1
n pn

ωnqn/2

Fn

τn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=G(t , S) (6.72)

The nonlinear system of differential equations Ṡ= G(t , S) is solved numerically to
compute the state at any time during the physical simulation.

Source Code
RigidBody

The main design goal of a rigid body class is to encapsulate the state handling
to support a simulation of the form shown next. This is essentially part of the work
implied by “update physics state” and “move objects” in Section 6.1. At the moment

470 Chapter 6 Physics Engines

we are assuming unconstrained motion, so there is no pseudocode that corresponds
to “resolve constraints” in the physics tick.

// initialization
RigidBody body[n];
double t = <your choice of initial time>;
double dt = <your choice of time step>;
for (int i = 0; i < n; ++i)
{

// Set the initial state of the rigid bodies. X is position,
// Q is a quaternion that represents the orientation, P is
// linear momentum, and L is angular momentum.
body[i].SetState(X[i], Q[i], P[i], L[i]);

}

// Part of the physics tick.
for (i = 0; i < n; ++i)
{

body[i].Update(t, dt);
}
t += dt;

The class definition is shown next. The position is X, the orientation as a quater-
nion is Q, the linear momentum is P, the angular momentum is L, the orientation as a
matrix is R, the linear velocity is V, and the angular velocity is W. The mass is mass and
the inertia tensor in body coordinates is inertia. The interface is written in a simpli-
fied manner for illustrative purposes. The actual interface in the source code is more
extensive.

class RigidBody
{
public:

RigidBody (double m, matrix inertia);
virtual ˜RigidBody ();

void SetState (point X, quaternion Q, vector P, vector L);
void GetState (point& X, quaternion& Q, vector& P, vector& L);

// force/torque function format
typedef vector (*Function)
(

double, // time of application
point, // position
quaternion, // orientation
vector, // linear momentum
vector, // angular momentum
matrix, // orientation
vector, // linear velocity

6.5 Unconstrained Motion 471

vector // angular velocity
);

// for computing external forces and torques
void SetForceFunction (Function force);
void SetTorqueFunction (Function torque);

// Runge-Kutta fourth order differential equation solver
void Update (double t, double dt);

protected:
// convert (Q,P,L) to (R,V,W)
void Convert (quaternion Q, vector P, vector L,

matrix& R, vector& V, vector& W) const;

// constant quantities
double m_mass, m_invMass;
matrix m_inertia, m_invInertia;

// state variables
vector m_X; // position
quaternion m_Q; // orientation
vector m_P; // linear momentum
vector m_L; // angular momentum

// derived state variables
matrix m_R; // orientation matrix
vector m_V; // linear velocity
vector m_W; // angular velocity

// force and torque functions
Function m_force;
Function m_torque;

};

The constructor and the SetState member function make up the initialization
portion of the physical simulation. The conversion from the primary state (quater-
nion orientation, linear momentum, and angular momentum) to the secondary state
(matrix orientation, linear velocity, and angular velocity) is handled via the member
function Convert. The conversions require access to the rigid body mass and inertia
tensor, thus this function is nonstatic.

void RigidBody::Convert (quaternion Q, vector P, vector L,
matrix& R, vector& V, vector& W) const

{
Q.ToRotationMatrix(R);
V = m_invMass*P;
W = R*m_invInertia*Transpose(R)*L;

}

472 Chapter 6 Physics Engines

Rather than having force and torque data members to store the current force and
torque, we use function pointers. The force and torque vectors are required only dur-
ing the differential equation update step, so there is no need to store the vectors with
the rigid body. The force and torque functions take as input the current time and a
list of state information. As noted earlier, one of the reasons the illustrative example
code copies data from the state array to the rigid bodies during the multifunction
evaluation differential equation solver is to make sure that the force and torque are
computed with the current state values. These state values persist only for the life-
time of the update call of the solver since they are only needed temporarily by the
multifunction evaluation algorithm. They may as well be stack variables, the main
consequence being that the global state arrays are no longer necessary; each rigid body
is now responsible for updating itself. The member function Update implements a
Runge–Kutta fourth order solver.

void RigidBody::Update (double t, double dt)
{

double halfdt = 0.5 * dt, sixthdt = dt / 6.0;
double tphalfdt = t + halfdt, tpdt = t + dt;

vector XN, PN, LN, VN, WN;
quaternion QN;
matrix RN;

// A1 = G(t,S0), B1 = S0 + (dt / 2) * A1
vector A1DXDT = m_V;
quaternion A1DQDT = 0.5 * m_W * m_Q;
vector A1DPDT = m_force(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
vector A1DLDT = m_torque(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
XN = m_X + halfdt * A1DXDT;
QN = m_Q + halfdt * A1DQDT;
PN = m_P + halfdt * A1DPDT;
LN = m_L + halfdt * A1DLDT;
Convert(QN,PN,LN,RN,VN,WN);

// A2 = G(t + dt / 2,B1), B2 = S0 + (dt / 2) * A2
vector A2DXDT = VN;
quaternion A2DQDT = 0.5 * WN * QN;
vector A2DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
vector A2DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
XN = m_X + halfdt * A2DXDT;
QN = m_Q + halfdt * A2DQDT;
PN = m_P + halfdt * A2DPDT;
LN = m_L + halfdt * A2DLDT;
Convert(QN,PN,LN,RN,VN,WN);

// A3 = G(t + dt / 2,B2), B3 = S0 + dt * A3
vector A3DXDT = VN;
quaternion A3DQDT = 0.5 * WN * QN;

6.6 Acceleration-Based Constrained Motion 473

vector A3DPDT = m_force(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
vector A3DLDT = m_torque(tphalfdt,XN,QN,PN,LN,RN,VN,WN);
XN = m_X + dt * A3DXDT;
QN = m_Q + dt * A3DQDT;
PN = m_P + dt * A3DPDT;
LN = m_L + dt * A3DLDT;
Convert(QN,PN,LN,RN,VN,WN);

// A4 = G(t + dt,B3),
// S1 = S0 + (dt / 6) * (A1 + 2 * A2 + 2 * A3 + A4)
vector A4DXDT = VN;
quaternion A4DQDT = 0.5 * WN * QN;
vector A4DPDT = m_force(tpdt,XN,QN,PN,LN,RN,VN,WN);
vector A4DLDT = m_torque(tpdt,XN,QN,PN,LN,RN,VN,WN);
m_X = m_X + sixthdt*(A1DXDT + 2.0*(A2DXDT + A3DXDT) + A4DXDT);
m_Q = m_Q + sixthdt*(A1DQDT + 2.0*(A2DQDT + A3DQDT) + A4DQDT);
m_P = m_P + sixthdt*(A1DPDT + 2.0*(A2DPDT + A3DPDT) + A4DPDT);
m_L = m_L + sixthdt*(A1DLDT + 2.0*(A2DLDT + A3DLDT) + A4DLDT);
Convert(m_Q,m_P,m_L,m_R,m_V,m_W);

}

After each call to Update, all rigid body state variables have correct and consistent
information due to the last call to Convert.

6.6 Acceleration-Based Constrained
Motion

The previous section was about the unconstrained motion of rigid bodies that are
assumed not to interact with each other. We used the equations of motion that fol-
low from Newtonian dynamics, a natural choice in the absence of constraints on
the bodies. In realistic applications we, in fact, have to deal with interaction among
many objects. A physics engine must decide what to do when two objects collide.
The approach in [Bar01] is to force nonpenetration constraints. When one object col-
lides with another, the two are not allowed to penetrate into each other. Despite the
constraints imposed by collisions between objects, the Newtonian approach is still
used to drive the physical simulation. The collision response for objects in contact
falls into two categories based on how the objects collide at a point, either a collid-
ing contact or a resting contact. When all contact points are known, the differential
equation solver is interrupted during the simulation and the various physical param-
eters are adjusted based on the type of contact. The solver is then restarted using the
new parameters. Adjustment of the physical parameters at points of colliding contact
requires the introduction of impulsive forces. Adjustment of the physical parameters
at points of resting contact requires computing contact forces. Sections 6.6.1 and 6.6.2
cover these topics in detail. The Baraff approach is quite popular with people inter-
ested in adding physical simulations to their games, but this approach is not the only

474 Chapter 6 Physics Engines

A

B

P

N

VA

A

B

P

N

VA

A

B

P

N
VA

(a) (b) (c)

Figure 6.42 (a) Colliding contact. Body A attempts to penetrate into body B. (b) Resting con-
tact. Body A rests on body B and attempts neither to penetrate into B nor to separate
from B. Body A is allowed to slide along B. (c) Separation. Body A has a velocity that
separates it from body B.

way to go about handling the physics. For example, Section 6.6.5 presents an alterna-
tive that is based on Lagrangian dynamics, a natural choice for dealing with motion
in the presence of constraints.

6.6.1 Collision Points

Let us now define what is meant by colliding contact and resting contact. At a point
of contact of two objects we need to decide how the objects will continue moving, the
collision response so to speak. For example, if a rigid ball strikes a flat surface at an
angle, you most likely want the ball to bounce away from the surface. In particular,
your natural instinct is to reflect the velocity vector through the normal of the surface
so that the angle of incidence is equal to the angle of reflection. This type of contact
between moving rigid bodies is called colliding contact because the velocities of the
bodies cause them to want to penetrate into each other. Figure 6.42(a) shows a point
of colliding contact.

The velocity of body A, shown in Figure 6.42(a) as VA , has direction into the body
B at the point of contact P . If A has zero velocity at P or has velocity perpendicular
to the surface of body B at P , the point of contact is said to be a resting contact. This
situation is shown in part (b). The last possibility is that bodies A and B are separating,
as shown in part (c). The figure also shows a normal vector N to the surface of body
B at the contact point P . The algebraic quantity that distinguishes between the three
cases is the magnitude of the velocity VA in the direction of the normal N:

N · VA < 0 Colliding contact
N · VA = 0 Resting contact
N · VA > 0 Separation

(6.73)

6.6 Acceleration-Based Constrained Motion 475

A

B

0

3

1
2

Figure 6.43 The reduced contact set for two convex polyhedra A and B.

The dot product N · VA is the speed of body A in the normal direction.
Recall that we are restricting our attention to rigid bodies in the shape of convex

polyhedra. The contact set between two convex polyhedra is potentially more com-
plicated than just a single point that arises because of a vertex–face intersection. The
set is infinite in the case of edge–face or face–face intersections. To simplify matters
we will work with a reduced contact set that consists only of vertex–face or edge–edge
intersections, the latter case only when the edges are not parallel. If the collision sys-
tem detects an edge–face intersection, we will record only an edge endpoint (a vertex)
if it is contained in the face and an edge–edge intersection point if the edge overlaps
an edge of the face. If a face–face intersection is detected, the only recorded points are
vertices of one face contained in the other face or edge–edge intersections, one edge
from each face. Figure 6.43 illustrates this.

The pointP0 is generated by a vertex of B and a face of A; the pointP2 is generated
by a vertex of A and a face of B; and points P1 and P3 are generated by edges of A
and B.

The reduction to a finite point set helps to minimize the time spent in the phys-
ical simulation. However, this is only an approximation to the actual physics. If our
target goal is N frames per second, the computational time available for one frame is
1/N seconds. If the physics simulation does not use all of this time, ideally we would
calculate the line segment of intersection in an edge–face intersection or the polygon
of intersection in a face–face intersection, then proceed with the collision response
accordingly. We also process the reduced contact set a point at a time. The collision
response becomes dependent on the order and is not quite physically correct. This
can be a problem, especially when a rigid body makes simultaneous contact with two
(or more) other rigid bodies.

6.6.2 Collision Response for Colliding Contact

Let us now formulate how our physics simulation will respond at a point of colliding
contact. Let t0 denote the first time of contact between a pair of rigid bodies A and B.

476 Chapter 6 Physics Engines

Let P0 be the contact point. If the point is a vertex–face intersection, we choose the
convention that the vertex is from the first body and the face is from the second body.
Let N0 be the unit-length, outer pointing normal for the face. If the point is an edge–
edge intersection, let N0 be the unit-length cross product of the edge directions. The
vector is chosen to point outside the second body of the pair. For a brief time inter-
val before the collision, the path of the point on the first body contributing to the
intersection is PA(t) for t ≤ t0, and PA(t0)= P0. During that same time interval the
second body is (potentially) moving; the path of the point on it that contributes to
the intersection is PB(t) for t ≤ t0, and PB(t0)= P0. Backing up in time, the nor-
mal vector at the point on the second body contributing to the intersection is N(t),
and N(t0)= N0. The signed distance between the body points contributing to the
intersection, as measured in the normal direction, is

d(t) =N(t) · (PA(t)−PB (t)) (6.74)

The velocity component in the normal direction has magnitude,

ḋ(t)= N(t) · (ṖA(t)− ṖB (t))+ Ṅ(t) · (PA(t)−PB (t)) (6.75)

At the instant of contact, d(t0)= 0 and ḋ(t0)= N0 · (ṖA(t0)− ṖB(t0)). The quantity
ḋ(t0) is exactly what was mentioned in equation (6.73) for determining the type of
contact point that P0 is.

In Section 2.2 on kinematics, we derived the velocity equation for a parti-
cle, namely equation (2.43). We have two particles in motion, hence two velocity
equations:

ṖA = vA +wA × rA , ṖB = vB +wB× rB (6.76)

where vC is the velocity of the center of mass XC of body C (C is either A or B), wC

is the angular velocity of the body about its center of mass, and rC =PC −XC is the
location of the point relative to the center of mass. Equation (2.43) also had a term
DrC/Dt , but for rigid bodies it is the zero vector. At the contact time, the speed of P0

in the normal direction N0 is

ḋ(t0)= N0 · ((vA(t0)+wA(t0)× rA(t0))− (vB(t0)+wA(t0)× rB(t0))) (6.77)

All the quantities on the right-hand side of this equation are known during the physics
simulation at the contact time and are stored as part of the state information of the
rigid body, just as in the case of unconstrained motion. Thus, after the collision detec-
tion system reports all contact points, we may iterate over them and determine which
of them are colliding contacts, resting contacts, or separating points.

Impulses

To prevent interpenetration at P0 when ḋ(t0) < 0, the relative velocity ṖA(t)− ṖB (t)
must be changed in a discontinuous manner. Of course, this is not physically possible
since any forces acting on the bodies take some time to change the velocity smoothly.

6.6 Acceleration-Based Constrained Motion 477

Example
6.2

To illustrate, consider a one-dimensional problem where a particle located at x(t) on
a line travels with constant velocity ẋ(t)= v0 > 0. The implication, of course, is that
no forces are acting on the particle. The path of motion is x(t) = x0+ v0t , where x0

is the initial position of the particle. If the particle strikes an object located at x1 > x0

at time t0 > 0, so that x1 = x0+ v0t0, you would expect the object to give way so
that over some time interval [t0, t0+ ε], for a small positive ε. During this interval
the particle and object remain in contact at the common position x(t) = x1+ p(t)
for some function p(t) such that p(t0)= 0, ṗ(t0)= v0, p(t0 + ε)= 0, and p(t) > 0
for t ∈ (t0, t0+ ε). For illustrative purposes, let p(t)= v0(t − t0)(t0 + ε− t)/ε whose
graph is a parabola. During the interval of contact the velocity of the particle is
ẋ(t)= ṗ(t)= v0(ε− 2(t − t0))/ε. At the first contact, v0 = ẋ(t0)= ṗ(t0). At time
t0 + ε/2 the particle and object come to rest, ẋ(t0 + ε/2)= 0. The particle then
reverses direction. At time t0+ ε the particle’s velocity is ẋ(t0 + ε)=−v0.

The particle had velocity v0 at time t0 and now has the opposite velocity −v0 at
time t0 + ε. The change in velocity occurred over a time period of duration ε > 0. This
is true no matter how small the duration is, so consider taking a limit and let ε go to
zero. Intuitively, by letting ε = 0, we have changed the velocity in a discontinuous
manner:

ẋ(t)=
{

v0, t ≤ t0

−v0, t > t0

Mathematically, however, the limit is not defined. Consider what has to happen to
p(t) as ε approaches zero. Figure 6.44 shows the graph of p(t) for various values of ε.
The interval on which p(t) > 0 gets smaller while the maximum value of p, namely
v0/ε, gets larger. The limiting function appears to be W

δ(t − t0)=
{

0, t �= t0

∞, t = t0

t
t0

(c)(a)

t
t0 t0+

p

v0/

t0+

(b)

t0
t

`p
v0/

Figure 6.44 The effects on p(t) as ε approaches zero: (a) Small ε; (b) Smaller ε; and (c) Really
small ε (like zero).

478 Chapter 6 Physics Engines

The physicists refer to δ(t − t0) as the Dirac delta function. It is not a function in
the mathematical sense, but the mathematicians refer to such an entity as a generalized
function. Its properties are defined in terms of integrals rather than using the informal
definition. For example, one important property is

t∫
0

g (τ)δ(τ − t0)dτ =
{

g (t0) If 0 ≤ t0 ≤ t

0 Otherwise
(6.78)

In the special case when g (t) ≡ 1 we have
∫ t

0 δ(τ − t0), dτ = u(t − t0), where u(s)= 1
for s ≥ 0 and u(s)= 0 for s < 0. The velocity of our particle is consequently ẋ(t)=
v0(1− 2u(t − t0)) and the acceleration is ẍ(t) =−2v0δ(t − t0). The quantity f (t)=
−2mv0δ(t − t0) is referred to as an impulsive force. ■

(Example 6.2
continued)

For a discussion of delta functions in the context of differential equations, see
[Bra84]. A key idea discussed in that book is that an integration of Newton’s second
law of motion produces

mv(t)−mv(0) =
t∫

0

F(τ)dτ

The integral on the right-hand side of this equation is called the impulse imparted
by the force. If we allow the force F(t) to include impulsive forces as motivated by
Example 6.2, then we can cause a discontinuity in the linear momentum of the system.
This is exactly what we do in our physical simulation at a point of colliding contact.

Computing the Change of Velocity

Rather than constructing an impulsive function that leads to a discontinuous change
in velocity at a point of colliding contact, we will select the desired velocity to be used
at that point after the impulse is applied. I mentioned earlier that the intuitive choice
you want to make for the new velocity is a reflection of the old velocity through the
normal vector. That is, if v− is the (relative) velocity before the impulse and N is the
unit-length outer pointing normal, you can write

v− =N⊥+ (N · v−)N

where N⊥ is that portion of v− after projecting out the component in the N direction.
The velocity after the impulse is selected to be

v+ =N⊥− (N · v−)N

Figure 6.45(a) illustrates the reflection.
The perfect reflection represents no loss of kinetic energy during the collision

event. We may, however, want to incorporate loss of energy to make the collision
response a bit more realistic. We can do this by introducing a coefficient of restitution,

6.6 Acceleration-Based Constrained Motion 479

v+

v–

N

N

–(N •v–)N

(N •v–)N

N

v+

v–

N

(N •v–)N

(N •v–)N

(a) (b) (c)

N

v+

v–(N •v–)N

Figure 6.45 (a) Reflection of the preimpulse velocity v− through the contact normal to obtain the
postimpulse velocity v+. (b) An imperfect reflection that represents a loss of kinetic
energy. (c) An imperfect reflection that represents a maximum loss of kinetic energy.

ε ∈ [0, 1], and generate a postimpulse velocity of

v+ =N⊥− ε(N · v−)N

Figure 6.45(c) shows such a vector. No kinetic energy is lost when ε = 1 and the
reflection is perfect. The maximum amount of kinetic energy is lost when ε = 0 and
the bodies remain in contact at the contact point, a change from colliding contact to
resting contact.

In the following discussion, the contact time t0 is omitted from function argu-
ments for clarity. Let Ṗ−A and Ṗ+A denote preimpulse and postimpulse velocities for
P0 as measured from body A. Let Ṗ−B and Ṗ+B denote the similar quantities for body B.
From equation (6.76) we have

Ṗ±A = v±A +w±A × rA , Ṗ±B = v±B +w±B × rB (6.79)

where the use of the plus and minus superscripts on the velocity terms is clear from
context. The impulsive force changes velocities at the contact time but not the posi-
tions of P0 relative to the centers of mass, so the r terms do not require plus/minus
superscripts.

Let us begin by postulating an impulsive force F= f N0 that affects body A at the
colliding contact point. The scalar f is the magnitude of the impulse that we need to
compute to obtain the desired postimpulse velocity vector. The impulsive force has
a contribution that changes the velocity of the center of mass, f N0/mA , where mA is
the mass of body A. The preimpulse and postimpulse linear velocities are related by

v+A = v−A +
f N0

mA
(6.80)

480 Chapter 6 Physics Engines

The corresponding change in linear momentum is p+A = p−A + f N0. The impulsive
force also has a contribution that changes the angular velocity of the body via an
impulsive torque, J−1

A (rA × f N0), where JA is the inertia tensor at the contact time and
is measured in world coordinates. The preimpulse and postimpulse angular velocities
are related by

w+A =w−A + J−1
A (rA × f N0) (6.81)

The corresponding change in angular momentum is L+A = L−A + rA × f N0. Substitut-
ing equations (6.80) and (6.81) into the velocity equation (6.79) and applying a few
algebraic steps produces

Ṗ+A = Ṗ−A + f

(
N0

mA
+ J−1

A (rA ×N0)× rA

)
(6.82)

The opposite direction impulsive force −F is applied to body B. A construction
similar to the previous one produces v+B = v−B − f N0/mB , p+B = p−B − f N0, w+B =
w−B − J−1

B (rB × f N0), L+B = L−B − rB × f N0, and

Ṗ+B = Ṗ−B − f

(
N0

mB
+ J−1

B (rB ×N0)× rB

)
(6.83)

Equations (6.82) and (6.83) are combined to form the relative velocity

Ṗ+A − Ṗ+B = (Ṗ−A − Ṗ−B)+ f

(
N0

mA
+ N0

mB
+
(

J−1
A (rA ×N0)

)
× rA

+
(

J−1
B (rB×N0)

)
× rB

) (6.84)

The final step in computing the magnitude f involves our choice of how the
postimpulse relative velocity relates to the preimpulse one. In particular, we choose a
coefficient of restitution ε ∈ [0, 1] and require that

N0 · (Ṗ+A − Ṗ+B
)=−εN0 · (Ṗ−A − Ṗ−B

)
(6.85)

Dot equation (6.84) with N0, substitute equation (6.85) into the left-hand side, use
equation (6.79), and solve to obtain

f = −(1+ ε)(N0 · (v−A − v−B)+ (w−A · (rA ×N0)−w−B · (rB×N0)))

m−1
A +m−1

B + (rA ×N0)TJ−1
A (rA ×N0)+ (rB ×N0)TJ−1

B (rB×N0)
(6.86)

where rA = P0−XA and rB = P0−XB. Some algebraic steps were performed to
factor out the common expressions rA×N0 and rB×N0. The right-hand side of equa-
tion (6.86) depends only on constants

(
ε, m−1

A , J−1
A , m−1

B , J−1
B

)
, preimpulse rigid

body state
(XA, v−A , w−A , XB, v−B , w−B

)
, and the contact information (P0, N0). The

6.6 Acceleration-Based Constrained Motion 481

inverse inertia tensors J−1
A and J−1

B are positive definite, implying ξTJ−1
A ξ > 0 and

ξTJ−1
B ξ > 0 for any ξ �= 0. Consequently, the denominator of f must be positive, so

the division is not of numerical concern in an implementation.
Pseudocode for processing a point of colliding contact follows and uses the

RigidBody structure discussed in the illustrative implementation for unconstrained
motion.

void ProcessCollidingContact (RigidBody A, RigidBody B, point P,
vector N)

{
// compute impulse force
const double e = <coefficient of restitution>;
vector rA = P - A.x;
vector rB = P - B.x;
vector kA = Cross(rA,N);
vector kB = Cross(rB,N);
vector uA =A.jinv * kA;
vector uB = B.jinv * kB;
double numer = -(1 + e) * (Dot(N,A.v - B.v) + Dot(A.w,kA)

- Dot(B.w,kB));
double denom = A.massinv + B.massinv + Dot(kA,uA)

+ Dot(kB,uB);
double f = numer / denom;
vector impulse = f * N;

// apply impulse to bodies to change linear/angular momentum
A.p += impulse;
B.p -= impulse;
A.L += f * kA;
B.L -= f * kB;

// compute derived quantities, linear/angular velocity
A.v = A.p * A.massinv;
B.v = A.p * B.massinv;
A.w += f * uA;
B.w += f * uB;

}

Notice that this function does not modify the centers of mass or orientations of
the rigid bodies. Only the differential equation solver may change these quantities
and only because of a positive increment in time. The colliding contact processing
represents the application of an impulse at the current instant of time.

Before we look at a couple of simple examples, let us make an observation. In
virtual environments you will want some immovable objects, the ground clearly an
ideal candidate. We can simulate an immovable object by specifying that it has infi-
nite mass and infinite principal moments, the former preventing translation of the
center of mass, the latter preventing rotation about the center of mass. Since our

482 Chapter 6 Physics Engines

simulations are using only the inverse mass and inverse inertia tensor, we can instead
set the inverse mass to zero and the inverse inertia tensor to the zero matrix. The veloc-
ities and momenta of an immovable object should also be set to zero. The values for
the center of mass and orientation are irrelevant in the simulation.

Example
6.3

Consider a constant density square traveling with constant linear velocity towards
a sloped plane of 45 degrees from the horizontal. The square is assumed to have
zero angular velocity (not rotating about its center). The sloped plane is immovable.
The coefficient of restitution is assumed to be ε = 1 for a completely elastic collision.
Gravity is not assumed here. Figure 6.46 illustrates.

A

B

vB = 0
wB = 0

–

–vA

(a)

A

B

wA = 0+wA = 0
wA = 0wA = 0 +

+vA

(d)

N

A

B

+vA
rA

(c)

N

A

B

–

–vA

rA

(b)

Figure 6.46 (a) The square traveling towards a sloped plane. (b) The preimpulse configuration
at the instant of contact. (c) The postimpulse configuration at the instant of contact.
(d) The square moving away from the plane.

The square is labeled as body A and the slope as body B. Since the slope is
immovable, vB = wB = 0 always, and m−1

B = 0 and J−1
B = 0.

The point of contact is P and the unit-length outer pointing normal to the slope
is N. The position of the contact point relative to body A is rA = P −XA where XA

is the center of mass of A. In this special situation of a square and 45 degree slope,
the normal is N=−rA/|rA|, in which case rA ×N= 0. The impulse magnitude is
f =−2mA N · v−A . The postimpulse linear velocity is v+A = v−A − 2(N · v−A)N and the
postimpulse angular velocity is w+A =w−A + f J−1

A (rA ×N)= 0. Therefore, the square
travels downward and bounces to the right with no change in linear speed or angular
velocity. ■

Exercise
6.4

Did you expect the result of Example 6.3 to be that the square obtains a nonzero
angular velocity and starts to rotate after the impulse is applied? Speculate why the
square maintains a zero angular velocity.

Suppose body A is rectangular in shape, but not a square, and axis-aligned as the
square was. At the point of contact the normal N and the relative position rA are not

6.6 Acceleration-Based Constrained Motion 483

parallel, so u= rA ×N �= 0. Show that the postimpulse velocities are

v+A = v−A −
2N · v−A

1+uTmAJ−1
A u

N, w+A =−
2N · v−A

1+uTmAJ−1
A u

mAJ−1
A u

Make an intuitive argument that if the rectangle is wider than tall, the angular veloc-
ity corresponds to a clockwise rotation around the vector pointing out of the plane
of the figure towards you. Similarly, argue that if the rectangle is taller than wide,
the angular velocity corresponds to a counterclockwise rotation about that same vec-
tor. Now analyze the term J−1

A u and show how its values relate to the direction of
rotation. ■

Multiple Contact Points

Example 6.3 and Exercise 6.4 are useful as a simple verification of the ideas regard-
ing impulses. Both involve a two-dimensional setting. What happens in a three-
dimensional setting? Specifically, let us add thickness to the rectangle of Exercise 6.4
and consider an axis-aligned box that is traveling vertically towards the sloped plane
in such a way that the contact occurs along an entire edge of the box. Figure 6.47
illustrates.

According to the convention mentioned earlier, the collision detection system will
report only the endpoints of the edge as collision points. I previously made an innocu-
ous statement about processing the collision points sequentially. The consequences of
doing so must be weighed against the extra time needed to implement a system that
can handle points simultaneously.

N

Figure 6.47 An axis-aligned box colliding with a sloped plane along an entire edge of the box,
(1− s)P0 + sP1 for s ∈ [0, 1].

484 Chapter 6 Physics Engines

Let us process the contact points sequentially starting with P0. The relative posi-
tion in body A is r0 = P0−XA . Define u0 = r0×N. The magnitude of the impulsive
force and the postimpulse velocities are

f0 =− 2mAN · v−A
1+uT

0 mAJ−1
A u0

, v+A = v−A + (f0N)/mA , w+A = f0J−1
A u0

In our full three-dimensional setting, J−1
A u0 is not the zero vector! This means that

the box’s postimpulse angular velocity is not zero and the box will begin rotating.
Now for the conundrum. Do we process the impulsive force at P1 next? Or should we
run one time step of the differential equation solver first? Either way we have issues to
consider. The impulsive force at P0 was used to change the state of the rigid body A.
Point P1 was a collision point determined based on the previous state. If you were to
run the differential equation solver first, it is quite possible thatP1 would no longer be
a collision point. In our example the angular velocity due to the impulse at P0 could
rotate the corner at P1 up off the sloped plane, in which case we do not have to even
consider that point. On the other hand, the angular velocity could cause that corner of
the box to rotate through the plane, violating the nonpenetration constraint. To avoid
this dilemma, perhaps we should process the impulse at P1 first. The dilemma here is
that we just finished computing postimpulse velocities due to P0. In order to retain
a dependence on that point, you would most likely use the postimpulse velocities
from P0 as preimpulse velocities for P1. The relative position in body A is r1 =P1 −
XA . Define u1 = r1×N. The magnitude of the impulsive force and the postimpulse
(post-postimpulse?) velocities are

f1 =− 2mA N · v+A
1+uT

1 mAJ−1
A u1

, v++A = v+A + (f1N)/mA , w++A =w+A + f1J−1
A u1

It is not clear that this produces a reasonably correct physical response.
The simplest thing to do from an implementation perspective is to process a col-

lision point and change the state of the rigid bodies sharing that point, the changes
based on the impulsive force introduced at the point, then run the differential equa-
tion solver for one time step. Next, the collision detection system is enabled. If an
interpenetration has occurred, rerun the differential equation solver using a smaller
time step. Repeat until no interpenetrations occur or until a maximum number of
iterations has occurred.

The latter constraint is necessary because it is quite possible that interpenetration
occurs for any increase in time. In this case great care must be taken about how to pro-
ceed. You will need a system that can decide if motion is possible and, if so, what that
motion is. This is where even commercial packages can run into problems. Getting a
generic system to work in all cases is more of an art than a science. Invariably, you will
need to use knowledge of the types of objects you have and the environment in which
they are interacting in order to adapt the generic system for your application. A more
complicated solution is to process the points simultaneously. In our example of a box
colliding with a plane, let us make the problem even more general and determine how

6.6 Acceleration-Based Constrained Motion 485

to introduce an impulsive force that applies to the entire edge of intersection rather
than just to endpoints of the edge.

Our approach requires a better understanding of delta functions, introduced in
Example 6.2. The delta function of that example was motivated as the limit of a
function as a parameter ε was decreased to zero. Equation (6.78) shows the selection
property of a delta function; integrating a function g (t) against a delta function selects
the function value g (t0), where t0 is the discontinuity of the delta function. As shown
in that example, the selection is for the time variable. Delta functions can be defined
to select spatial variables as well.

Example
6.4

Define the function u(x, y ,η,ε)= 1/(4ηε) for |x| ≤ η and |y| ≤ ε, but zero otherwise,
for η > 0 and ε > 0. The volume of the region bounded by the graph of u(x, y ,η,ε)
and the xy-plane is 1 regardless of the choice of ε. For any continuous function g (x, y),
define the functions φ(x, y) and ψ(y) so that ∂φ/∂x = g (x, y) and dψ/dy = g (0, y).
Consider the integral

I (η,ε)=
∫

IR2

g (x, y)u(x, y ,η,ε)dx dy =
ε∫

−ε

η∫
−η

g (x, y)

4ηε
dx dy

We may compute the limits of I (η,ε) as η and ε approach zero. This is done informally
here (with apologies to mathematicians who cringe at swapping the order of limit and
integration without justification):

lim
ε→0

lim
η→0

I (η,ε) = lim
ε→0

lim
η→0

ε∫
−ε

η∫
−η

g (x, y)

4ηε
dx dy

= lim
ε→0

lim
η→0

ε∫
−ε

φ(η, y)−φ(−η, y)

4ηε
dy Definition of φ

= lim
ε→0

ε∫
−ε

lim
η→0

φ(η, y)−φ(−η, y)

4ηε
dy Swap limit, integration

= lim
ε→0

ε∫
−ε

lim
η→0

g (η, y)+ g (−η, y)

4ε
dy l’Hôpital’s rule

= lim
ε→0

ε∫
−ε

g (0, y)

2ε
dy

= lim
ε→0

ψ(ε)−ψ(−ε)

2ε
Definition of ψ

= lim
ε→0

g (0,ε)+ g (0,−ε)

2
l’Hôpital’s rule

= g (0, 0)

486 Chapter 6 Physics Engines

(Example 6.4
continued)

If we informally think of δ(x, y) as the limit of u(x, y ,η,ε) when η and ε goes to zero,
we have the selection property

y2∫
y1

x2∫
x1

g (x, y)δ(x − x0, y − y0)dx dy

=
{

g (x0, y0), x1 ≤ x0 ≤ x2, y1 ≤ y0 ≤ y2

0 Otherwise

(6.87)

This is a two-dimensional analog of equation (6.78). ■

We can use the last example to formulate the impulse function at a single point
of contact. The example showed the selection for a scalar function of two spatial vari-
ables, but the idea clearly extends to vector-valued functions of three spatial variables.
The impulse occurs at a spatial point P0 and at a time t0, so the function may be
defined using the selection property of the delta function, both in time and space.
The function to which the selection is applied is G(X , t)= f N0, a constant in space
and time. The formulation below is a bit loose with the mathematical notation so as
not to cloud the issue with facts:

F =
∫
X

∫
t

G(X , t)δ(t − t0)δ(X −P0)dX dt

=
∫
X

G(X , t0)δ(X −P0)dX

= G(P0, t0)

= f N0

Yet one more variation of the delta function is needed to handle the case of
colliding contact of a box edge with the sloped plane.

Example
6.5

Define u(x, y ,ε)= 1/(4ε) for |x| ≤ 1 and |y| ≤ ε, but zero otherwise, for ε > 0. The
volume of the region bounded by the graph of u(x, y ,ε) and the xy-plane is 1 regard-
less of the choice of ε. For any continuous function g (x, y), define the function φ(x, y)

so that ∂φ/∂y = g (x, y). Consider the integral,

I (ε)=
∫

IR2

g (x, y)u(x, y ,ε)dy dx =
1∫

−1

ε∫
−ε

g (x, y)

4ε
dy dx

6.6 Acceleration-Based Constrained Motion 487

We may compute the limit of I (ε) as ε approaches zero. This is again done informally:

lim
ε→0

I (ε) = lim
ε→0

1∫
−1

ε∫
−ε

g (x, y)

4ε
dy dx

= lim
ε→0

1∫
−1

φ(x,ε)−φ(x,−ε)

4ε
dx Definition of φ

=
1∫

−1

lim
ε→0

φ(x,ε)−φ(x,−ε)

4ε
dx Swap limit, integration

=
1∫

−1

lim
ε→0

g (x,ε)+ g (x,−ε)

4
dx l’Hôpital’s rule

= (1/2)

1∫
−1

g (x, 0)dx

You might have noticed that the right-hand side is the average value (in the inte-
gral sense of calculus) of g (x, 0) over the line segment (x, 0) for |x| ≤ 1. Informally,∫ 1
−1 g (x, 0)dx “adds” up all the g values along the segment. The “total number of val-

ues” that are added is the length of the interval, in our case 2. The average is just the
ratio of the these two numbers.

Informally, the delta function that is obtained by letting ε approach zero in
u(x, y ,ε) has the averaging property rather than a selection property. The integral of
g (x, y) against the delta function produces the average value of g on the line segment
connecting (−1, 0) and (1, 0). ■

Using some more informal notation, let S denote a line segment in space. Let
G(X) be a vector-valued function of the spatial variable X . Let δ(X , S) denote the
type of delta function we constructed in the last example. This delta function has the
averaging property,∫

X
G(X)δ(X , S)dX =

∫
X∈S G(X)dS∫

X∈S dS
=
∫
X∈S G(X)dS

Length(S)
(6.88)

Now we can address the problem of computing an impulsive force when the con-
tact set is a line segment (the box edge in our example). Let f be a to-be-determined
scalar constant, and let N be the outward unit-length normal to the sloped plane.
Let the edge have endpoints P0 and P1. The edge is denoted by S and has an arc-
length parameterization (1− s/�)P0 + (s/�)P1 for s ∈ [0,�], where �= |P1−P0|.

488 Chapter 6 Physics Engines

The update of the linear velocity for body A is

v+A = v−A +m−1
A

∫
X

∫
t

f Nδ(t − t0)δ(X , S)dt dX

= v−A +m−1
A

∫
X

f Nδ(X , S)dX

= v−A +m−1
A �−1

∫
X∈S

f N dS

= v−A +m−1
A �−1(�f N)

= v−A +m−1
A f N

(6.89)

The update of the linear velocity for body B is

v+B = v−B −m−1
B f N (6.90)

The update of the angular velocity for body A is

w+A = w−A + J−1
A

∫
X

∫
t

rA(X , t)× f N δ(t − t0)δ(X , S)dt dX

= w−A + J−1
A

∫
X

rA(X , t0)× f N δ(X , S)dX

= w−A + J−1
A �−1

∫
X∈S

rA(X , t0)× f N dS

= w−A + J−1
A �−1

⎛
⎝ ∫

X∈S

rA(X , t0)dS

⎞
⎠× f N

= w−A + J−1
A �−1

⎛
⎝ �∫

0

(1− s/�)P0 + (s/�)P1 −XA ds

⎞
⎠× f N

= w−A + J−1
A ((P0+P1)/2−XA)× f N

= w−A + J−1
A rA(M, t0)× f N

(6.91)

where M= (P0+P1)/2. The update of the angular velocity for body B is

w+B = w−B − J−1
A rA(M, t0)× f N (6.92)

The update formulas for the angular velocities have a physically intuitive appeal. The
torque applied to the line segment shows up as a torque applied to the center of mass of
the line segment. The construction of equation (6.86) from equations (6.79) through

6.6 Acceleration-Based Constrained Motion 489

(6.85) is still valid for the line segment of contact, but applied to the midpoint. The
magnitude of the impulse is therefore,

f = −(1+ ε)(N · (v−A − v−B)+ (w−A · (rA ×N)−w−B · (rB ×N)))

m−1
A +m−1

B + (rA ×N)TJ−1
A (rA ×N)+ (rB ×N)TJ−1

B (rB ×N)
(6.93)

where rA =M−XA and rB =M−XB .

Exercise
6.5

The collision system suggested in [Bar01] computes only a finite set of contact points
(the reduced contact set; see Figure 6.43). If an edge of body A intersects a face of
body B, only the endpoints of the edge, P0 and P1, are stored by the system. Derive
equations for the velocity updates and the impulse magnitude, analogous to equations
(6.89) through (6.93), that correspond to applying an impulsive force simultaneously
to the endpoints. (Hint : The delta function for a point and the delta function for a
segment are limits of functions whose volumes are always 1.)

Exercise
6.6

Suppose your collision system computes the full set of intersection points for two col-
liding (but not interpenetrating) convex polyhedra. The set consists of either a single
point, a line segment, or a convex polygon. We have seen how to compute an impulse
force for a single point or for a line segment. If the intersection is a convex polygon,
derive equations for the velocity updates and the impulse magnitude, analogous to
equations (6.89) through (6.93).

Now suppose the collision system stores only the vertices of a convex polygon
of intersection. Derive equations for the velocity updates and the impulse magni-
tude, analogous to equations (6.89) through (6.93), that correspond to applying an
impulsive force simultaneously to the vertices. (Hint: Same as for Exercise 6.5.)

We finish the colliding contact discussion with an example that illustrates another
problem with which a collision system must deal.

Example
6.6

Consider a rectangle traveling downward and that intersects two other objects simul-
taneously. Figure 6.48 illustrates.

B

A

C

N0

vA

N1

–

Figure 6.48 A rectangle travels downwards and intersects two objects simultaneously.

490 Chapter 6 Physics Engines

(Example 6.6
continued)

As shown in Figure 6.48, body A intersects body B at P0 and body C at P1. The
outward unit-length normals at the contact points are N0 and N1. The velocity of
body A is v−A = (0,−λ) for λ > 0. The slope of the diagonal line of B is −1 and the
slope of the diagonal line of C is 2. As we saw in Example 6.3, an impulsive force
applied to P0 (with coefficient of restitution ε = 1) causes a postimpulse velocity

v+A = v−A +
f0N0

mA

= v−A − 2(N0 · v−A)N0

= (0,−λ)+ (λ,λ)

= (λ, 0)

If we were to apply that impulse without considering the other contact point, body A
tends to move to the right. It cannot because body C impedes the motion of body A
in that direction. Similarly, if we apply the impulse at P1, the postimpulse velocity is

v+A = v−A +
f1N1

mA

= v−A − 2(N1 · v−A)N1

= (0,−λ)+ (−4λ/5,λ/5)

= (−4λ/5,−3λ/5)

Body B impedes the motion of body A in this direction. Applying simultaneous
impulses (see Exercise 6.5), the postimpulse velocity is

v+A = v−A +
f0N0+ f1N1

2mA

= (λ/10,−4λ/5)

The implied motion is to the right and downward, in which case both bodies B and
C impede the motion of A. So how do you handle this situation in a physically mean-
ingful manner? Two choices are (1) require body A to stop, or (2) require body A to
bounce upward.

If body A is very heavy compared to bodies B and C, the first choice is reasonable.
The choice is also reasonable when you have a body that you want to collide with an
immovable surface, and you want the body not to bounce at the instant of collision
but to slide down the surface. The initial contact is colliding contact, but you want
the component of velocity in the surface-normal direction set to zero rather than
reflected as in the impulse approach. This is an instantaneous change from being a
colliding contact to a resting contact. The body still has a nonzero velocity, but it is
now orthogonal to the surface normal, so the body can slide along the surface.

If instead you want the body to bounce upward, you will need an algorithm to
determine the new velocity of the center of mass of A. This might be as simple as

6.6 Acceleration-Based Constrained Motion 491

reversing the direction and choosing v+A =−v−A . Of course, you also need to compute
a new angular velocity w+A . If the slope of the diagonal edge for C were chosen to be
1, the symmetry of the contact would imply w+A = 0. With a slope of 2 as shown in
Figure 6.48, your physical intuition says that body A should “slip downhill” a little
bit more at P1 than at P0. The normals at the contact points can be used to generate
the angular velocity. For our current example, you might arbitrarily choose w+A =
ξN0×N1, where ξ is the x-component of N0+N1. ■

Simultaneous Processing of Contact Points

Either choice in Example 6.6 appears to require feedback from the user or application
about how to update the rigid body parameters when there are multiple colliding
contact points for that body. In hopes that we can build a collision detection and
response system that is completely automated, let us reconsider how impulse forces
were chosen.

By definition, at a point of colliding contact the magnitude of the velocity in the
normal direction at the point of contact is negative. Equation (6.75) provides us with
a formula for the relative velocity. At the instant of contact, ḋ(t0)= N0 · (ṖA(t0)−
ṖB(t0)), where N0 is the normal at the contact point P0. The paths on bodies A
and B for the points that meet at time t0 are PA(t) and PB(t), with PA(t0)=P0 =
PB(t0). The relative velocity between the points on the path is ṖA(t)− ṖB (t). The
construction of impulse functions was based on two assumptions:

1. The points of colliding contact will be processed one at a time.

2. The relative velocity must be reflected through the contact normal using
equation (6.85).

In light of Example 6.6, both of these assumptions create problems.
What we want physically is to avoid interpenetration of body A into body B when

ḋ(t0) < 0 is negative. To avoid the interpenetration, body B must exert a contact force
C on body A at the point of contact. Such a force must satisfy four conditions:

1. C acts only at the instant of contact, not before and not later.

2. C must be a repulsive force. It cannot act like glue between the bodies.

3. C must prevent the interpenetration of the bodies.

4. The system cannot gain kinetic energy from the introduction of this contact force.

We postulate an impulsive force of the form C = f N0 for some scalar f ≥ 0 at the point
of contact P0. The use of an impulsive force satisfies condition 1. To satisfy condition
2, we need f ≥ 0 so that the force repels the first body away from the second one.

Let us consider what condition 3 means at a single contact point such as the con-
figuration of Example 6.3 (using a square or a rectangle). The pre- and postimpulse

492 Chapter 6 Physics Engines

velocities are related by equation (6.84), but with m−1
B = 0, J−1

B = 0, and ṖB =O:

Ṗ+A −O = (Ṗ−A −O)+ f

(
N0

mA
+
(

J−1
A (rA ×N0)

)
× rA

)

The normal component of the preimpulse world velocity is ḋ− = N0 · (Ṗ−A −O) and

the normal component of the postimpulse world velocity is ḋ+ = N0 · (Ṗ+A −O).
Thus,

ḋ+ = ḋ−+ f
(

m−1
A + (rA ×N0)

TJ−1
A (rA ×N0)

)
(6.94)

If ḋ− ≥ 0, the bodies are separating so we may select f = 0 (no impulse), in which
case ḋ+ = ḋ− (no change in world velocity). If ḋ− < 0, body A is trying to penetrate
into body B. We must prevent this by choosing f > 0 large enough so that ḋ+ ≥ 0.
If f0 > 0 is chosen so that ḋ+ = 0, we have met our constraint of nonpenetration.
But any choice of f > f0 leads to ḋ+ > 0 and we still satisfy the constraint. The larger
we choose f , the larger the impulse, and consequently the larger the magnitude of
the normal component of the postimpulse velocity. An unwanted degree of freedom
exists in the simplest of configurations.

This is where condition 4 comes into play. By choosing a sufficiently large value
for f , we obtain a postimpulse value for ḋ+ that exceeds |ḋ−|, causing an increase in
the kinetic energy of the system. We need to bound the postimpulse value so that the
kinetic energy remains the same or even decreases; that is, the constraint ḋ+ ≤ |ḋ−|
is required. We are still analyzing the case for ḋ− < 0, so the constraint is ḋ+ ≤−ḋ−.
Combining this with equation (6.94) we obtain

f ≤ −2ḋ−

m−1
A + (rA ×N0)TJ−1

A (rA ×N0)
= fmax (6.95)

where the last equality defines fmax. This equation tells us that we need an impulsive
force to generate a nonnegative postimpulse velocity ḋ+ ≥ 0, but the impulsive force
cannot be too large. This limits our choice of f to a bounded interval [0, fmax], but
we still have a degree of freedom to eliminate. We can do so by setting a goal for the
postimpulse velocity to be as close as possible to the reflected preimpulse velocity
while satisfying all the constraints of the system. In our special configuration of one
contact point, we can choose f = fmax and the postimpulse velocity is the reflection
of the preimpulse velocity, just as we saw in Example 6.3.

Now for a slightly more complicated example, the multiple contact configuration
of Example 6.6. The impulse equation for linear velocity is

v+A = v−A +
f0N0+ f1N1

mA

and the impulse equation for angular velocity is

w+A = w−A + J−1
A

(
f0r0×N0+ f1r1 ×N1

)

6.6 Acceleration-Based Constrained Motion 493

Define ri =XA −Pi , where XA is the center of mass of body A and Pi are the colli-
sion points, i = 0, 1. The outer normals at the collision points are Ni . Bodies B and
C are not moving. The preimpulse and postimpulse world velocities of body A are
related by

Ṗ+A −O = (Ṗ−A −O)+ 1∑
i=0

fi

(
Ni

mA
+
(

J−1
A (ri ×Ni)

)
× ri

)

The normal component of the preimpulse world velocity at the ith contact point is
ḋ−i = Ni · (Ṗ−i −O) and the normal component of the postimpulse world velocity is

ḋ+ = N0 · (Ṗ+A −O). Thus,

ḋ+0 = ḋ−0 + a00f0+ a01f1

ḋ+1 = ḋ−1 + a10f0+ a11f1

for appropriate constants aij . Our constraints to satisfy conditions 1, 2, and 3 are fi ≥ 0

and ḋ+i ≥ 0. Condition 4 may be satisfied by requiring ḋ+i ≤ |ḋ−i |.
As in the example of a single point of contact, we must analyze cases based on the

signs of ḋ−i . Taking a hint from that example, let us set goals for what we want ḋ+i to be.

If ḋ−0 ≥ 0, our goal is ḋ+0 = ḋ−0 . In the single-point example, we would choose f0 = 0
to support the goal. This two-point example causes us to think twice about doing so.
The choice for f0 = 0 does not directly force the goal. Instead, we get ḋ+0 = ḋ−0 + a01f1.
Well, we can always then choose f1 = 0 so that ḋ+0 = ḋ−0 as desired. Unfortunately
the other postimpulse velocity equation becomes ḋ+1 = ḋ−1 , which is a problem when
ḋ−1 < 0, the implication being that body A will penetrate body C. The two postimpulse
velocity equations are coupled, causing us to obtain our goal not as “equality”; but
“get as close as you can.”

More formally, if ḋ−i ≥ 0, our goal for ḋ+i is to make it as close to ḋ−i as possible

while maintaining its nonnegativity. If ḋ−i < 0, our goal for ḋ+i is to make it as close

to−ḋi as possible while maintaining its nonnegativity. We can achieve these goals in
the sense of least squares, whereby we minimize the length of a vector rather than
requiring the vector to be zero. Define:

bi =
{

0, ḋ−i ≥ 0

2ḋ−i , ḋ−i < 0

We want to choose (f0, f1) to make the length of the vector (a00f0 + a01f1+ b0, a10f0+
a11f1 + b1) as small as possible. The minimization is constrained by fi ≥ 0 and
ai0f0+ ai1f1+ ḋ−i ≥ 0 for i = 0, 1. You should recognize this as a convex quadratic
programming problem which we will discuss in Chapter 14.

Let us look at an even more complicated example and set up the general formu-
lation for choosing the impulsive functions at all the contact points simultaneously.

494 Chapter 6 Physics Engines

Example
6.7

Four rigid bodies with six points of contact are shown in Figure 6.49.

B

A

C

D

N1 N2 N3 N4

N5 N6

6

Figure 6.49 Four rigid bodies with six points of contact. The centers of mass of the four bodies
are also shown.

It is irrelevant to us whether the contact points are colliding or resting. We require
impulsive contact forces Ci = fi Ni for 1≤ i ≤ 6. Using the same superscript nota-
tion as before for indicating preimpulse and postimpulse quantities, the simultaneous
updates of the linear momenta of the centers of mass using the impulsive forces are

mA v+A =mAv−A − f1N1− f2N2− f3N3− f4N4

mBv+B =mBv−B + f1N1+ f2N2− f5N5

mC v+C =mC v−C + f3N3+ f4N4+ f6N6

mD v+D =mDv−D + f5N5− f6N6

The simultaneous updates of the angular momenta using the impulsive torques are

JA w+A = JAw−A − f1r1
A ×N1− f2r2

A ×N2− f3r1
A ×N3 − f4r1

A ×N4

JBw+B = JBw−B + f1r1
B×N1+ f2r2

B×N2− f5r5
B ×N5

JC w+C = JC w−C + f3r3
C ×N3+ f4r4

C ×N4 + f6r6
C ×N6

JD w+D = JDw−D + f5r5
D ×N5− f6r6

D ×N6

where ri
γ =Pi −Xγ for body γ and contact point i.

6.6 Acceleration-Based Constrained Motion 495

Each contact point leads to a relative velocity equation which we will index by i. For
example, consider the contact point P1 involving bodies A and B. By our convention,
the pair of bodies is ordered as (B, A) since a vertex of B intersects a face of A.

ḋ+1 = N1 · ((v+B +w+B × r1
B

)− (v+A +w+A × r1
A

))
= N1 ·

[
m−1

B

(
f1N1+ f2N2− f5N5

)
+
(

J−1
B

(
f1r1

B ×N1+ f2r2
B ×N2 − f5r5

B

))× r1
B

− m−1
A

(−f1N1− f2N2− f3N3− f4N4
)

−
(

J−1
A

(−f1r1
A ×N1− f2r2

A ×N2− f3r3
A ×N3− f4r4

A ×N4
))× r1

A

]
+ ḋ−1

= a11f1+ a12f2+ a13f3 + a14f4+ a15f5+ a16f6 + ḋ−1
where

a11 =N1 ·
[(

m−1
B N1+

(
J−1
B

(
r1

B ×N1
))× r1

B

)
−
(
−m−1

A N1−
(

J−1
A

(
r1

A ×N1
))× r1

A

)]
a12 =N1 ·

[(
m−1

B N2+
(

J−1
B

(
r2

B×N2
))× r1

B

)
−
(
−m−1

A N2−
(

J−1
A

(
r2

A ×N2
))× r1

A

)]
a13 =N1 ·

[
(0)−

(
−m−1

A N3−
(

J−1
A

(
r3

A ×N3
))× r1

A

)]
a14 =N1 ·

[
(0)−

(
−m−1

A N4−
(

J−1
A

(
r4

A ×N4
))× r1

A

)]
a15 =N1 ·

[(
−m−1

B N5−
(

J−1
B

(
r5

B×N5
))× r1

B

)
− (0)

]
a16 =N1 · [(0)− (0)]

ḋ−1 =N1 · [(v−B +w−B × r1
B

)− (v−A +w−A × r1
A

)]
These expressions were not simplified to be suggestive of the general formula and

an algorithm to compute it. The simplest term to explain is a16 = 0. The two bodies
sharing the contact pointP1 are B and A. PointP6 is not part of either of these bodies,
so the contact force f6N6 does not contribute to resolution at P1. The term a12 has
a couple of similar expressions, one involving values for body B, the other involving
values for body A. The different subscripts B and A are one difference. The other
difference is that the second expression has minus signs. This has to do with the fact
that if the contact force on the first body is±f N, then the contact force on the second
body is ∓f N (reversed direction). Both expressions occur in a12 because P2 is also
shared by bodies B and A. The second expression in the term a13 occurs because P3

is part of body A, thus indirectly affecting body B. However, the first expression is 0
because P3 is not a point of body B. Finally, a11 contains both expressions since P1 is
shared by both bodies.

Similar expressions can be constructed for the other contact points to obtain ḋ+i =∑6
j=1 aij fj + ḋ−i for 1≤ i ≤ 6. ■

496 Chapter 6 Physics Engines

In the general case we have a collection of rigid bodies and n contact points Pi for
1 ≤ i ≤ n. The velocity at Pi in the normal direction Ni has magnitude

ḋ+i =
n∑

i=1

aij fj + ḋ−i (6.96)

where the contact force at Pi is ±fi Ni , the sign chosen based on the body that is
sharing the contact point. The general formula for the aij is listed next; the pair of
bodies is (α,β):

aij = σ
ij
α

(
m−1

α Ni · Nj +
(

ri
α ×Ni

)T
J−1
α

(
rj
α ×Nj

))
−σ

ij
β

(
m−1

β Ni · Nj +
(

ri
β ×Ni

)T
J−1
β

(
r

j
β ×Nj

)) (6.97)

where σ
ij
γ is +1 when Pj is in the body γ and the force direction is +Nj , is−1 when

Pj is in the body γ and the force direction is −Nj , or is 0 when Pj is not in the
body γ . Convince yourself from the physical situation that aji = aij ; that is, the matrix
A = [aij] is symmetric. You can also verify this by direct manipulation of the general
formula for the aij values. The preimpulse velocities are

ḋ−i = Ni ·
[(

v−α +w−α × ri
α

)
−
(

v−β +w−β × ri
β

)]
(6.98)

Let us reformulate our conditions using vector and matrix notation. Let f be the
n× 1 vector that stores the magnitudes of the impulsive forces. The magnitudes are

nonnegative, a condition we may write succinctly as f≥ 0. Let ḋ
−

be the n× 1 vector

that stores the preimpulse velocities and let ḋ
+

be the n× 1 vector that stores the

postimpulse velocities. To avoid interpenetrations we need ḋ
+ ≥ 0. Equation (6.96)

is written as ḋ
+ = Af+ ḋ

−
where A = [aij] is an n× n matrix. Define the n× 1 vector

b to have ith component bi = 0 if ḋ−i ≥ 0 and bi = 2ḋ−i if ḋ−i < 0. Define the n× 1

vector c to have ith component ci = |ḋ−i |.
The problem is abstracted to the following. We want to choose f to minimize

the convex quadratic function |Af+b|2 subject to the constraints f≥ 0 (forces are
repulsive), Af+b ≥ 0 (bodies cannot interpenetrate), and Af+b ≤ c (kinetic energy
cannot be gained via impulses). This is a convex quadratic programming problem that
can be formulated as a linear complementarity problem (LCP) and solved using the
Lemke algorithm of Chapter 14.

An illustrative implementation will be provided later in this chapter. For now it is
sufficient to mention the general order of operations:

1. The collision detection system calculates all contact points for the current state
of the rigid bodies.

2. The contact points and rigid body states are used to compute the matrix A and

vector ḋ
−

.

6.6 Acceleration-Based Constrained Motion 497

3. The LCP solver computes f and ḋ
+

. We are guaranteed of no interpenetration

since ḋ
+ ≥ 0 is a postcondition of the LCP solver.

4. The postimpulse velocities are computed from f and the normal vectors at the
collision points. These velocites replace the preimpulse values in the rigid bodies.

5. The differential equation solver computes the new positions and orientations of
the rigid bodies.

6. Repeat step 1.

This process will be modified when we take into account that some of the contact
points are resting contact, as described in Section 6.6.3.

Exercise
6.7

The postcondition of any system that instantaneously updates the linear and angular
velocities for a collection of rigid bodies is that no instantaneous interpenetration
can occur at any contact point. The original design of processing the colliding points
sequentially does not satisfy this postcondition (see Example 6.6). The LCP-based
method of this subsection does satisfy the postcondition. The sequential processing is
conceptually simpler to implement. The LCP-based method requires a high-powered
piece of software that is difficult to implement (robustly). Is there a middle ground?

Explore the following two concepts (mentally or programatically, whatever):

1. In sequential processing, postimpulse velocities at a contact point shared by two
bodies is computed, call them v+A and v+B . Before actually updating the rigid body
states, determine if the new velocity is consistent with the postcondition. That is,
if body A has contact points Pi and contact normals Ni for 1≤ i ≤ n, and if
body B has contact points Qj and contact normals Mj for 1≤ j ≤m, compute
the values αi = Ni · v+A and βj =M · v+B . If αi ≥ 0 for all i and βj ≥ 0 for all j,
then the postcondition is satisfied. If satisfied, update the rigid body states for
these two bodies, call the differential equation solver, and proceed as usual. If not
satisfied, repeat the process on the next contact point. If the set of current contact
points becomes empty because the postcondition was never satisfied, set the new
velocities to be zero.

2. In simultaneous processing, iterate over the rigid bodies. For a body A, let Pi

be the contact points contained by that body and let Ni be the contact normals,
1≤ i ≤ n. Assume that any body B that shares a contact point with A is at rest.
Construct vectors v+ and w+ using impulsive forces so that if body A is updated
with these velocities, no interpenetration can occur with any neighboring body
B. If at least one of these velocities is nonzero, update the state of body A, call the
differential equation solver, and proceed as usual. If both velocities are forced to
be zero, repeat the process on the next rigid body.

Both concepts require that your collision detection system support a query whose
input is a rigid body and whose output is the set of current contact points and normals
for that body.

498 Chapter 6 Physics Engines

6.6.3 Collision Response for Resting Contact

If two rigid bodies A and B are in contact at time t0 at a point P0, and if N0 is an
outward, unit-length normal for body B, we distinguish between colliding contact,
resting contact, or separation based on the normal component of the velocity of body
A relative to body B. Equation (6.74) provides us with the function d(t), a measure of
signed distance between the two body points PA(t) and PB(t) that meet at P0 at time
t0. By the definition, d(t0)= 0. The relative velocity has a normal component given by
equation (6.75). That component is ḋ(t). A contact point is a colliding contact when
ḋ(t0) < 0 (body A moves into body B), a separation contact when ḋ(t0) > 0 (body A
moves away from body B), or a resting contact when ḋ(t0)= 0. The latter case is the
one we now analyze.

At a resting contact P0 the distance and relative velocity are zero. If body A has an
acceleration aN0 relative to body B atP0 with a < 0, body A is attempting to accelerate
into body B at the instant of contact. Clearly, we need to measure the relative accel-
eration to determine if this situation occurs. The relative acceleration is provided by
the time derivative d̈(t), which we can compute by differentiating equation (6.75):

d̈(t) =N(t) · (P̈A(t)− P̈B (t))+ 2Ṅ(t) · (ṖA(t)− ṖB (t))+ N̈ · (PA(t)−PB (t))
(6.99)

At the time of contact, d̈(t0)=N0 · (P̈A(t0)− P̈B (t0))+ 2Ṅ(t0) · (ṖA(t0)− ṖB (t0)),
where the last term of equation (6.99) is zero since PA(t0)= P0 = PB(t0). In order
to compute the relative acceleration, we need a formula for the normal N(t) so that
we can compute the first derivative and evaluate Ṅ(t0). We have two cases to con-
sider. The first case is for a vertex–face intersection, where N(t0) is the face normal of
body B. Equation (2.42) tells us how a vector quantity changes in the world coordinate
system of a body. The normal vector derivative for this case is

Ṅ(t)= wB(t)×N(t) (6.100)

where DN/Dt = 0 since the body is rigid. The angular velocity of body B is used since
the normal rotates with B. The second case is for an edge–edge intersection, where
the normal is formed by taking the cross product of an edge of A and an edge of B,
then normalized. Since each edge rotates due to the angular velocity of its respective
body, the normal derivative is more complicated to compute. As a function of time the
normal is N(t)= EA(t)× EB(t)/L(t)with L(t) = |EA(t)× EB(t)|. Using the product
and quotient rules from vector calculus, the derivative is

Ṅ= L(EA × ĖB + ĖA × EB)− L̇(EA × EB)

L2
= EA × ĖB + ĖA × EB − L̇N

L

Now since L2 = (EA × EB) · (EA × EB), its derivative is 2LL̇ = 2(EA × EB) · (EA ×
ĖB + ĖA × EB), in which case

L̇ = (EA × ĖB + ĖA × EB) · N

6.6 Acceleration-Based Constrained Motion 499

Using equation (2.42), the edge derivatives are ĖA =wA × EA and ĖB = wB× EB .
Combining all these steps produces

U= EA × (wB × EB)+ (wA × EA)× EB, Ṅ= U− (U · N)N

L
(6.101)

An implementation for computing the normal derivative acts on whether the contact
point is a vertex–face or an edge–edge intersection and uses either equation (6.100)
or equation (6.101), accordingly.

We also need to compute ṖA(t)− ṖB (t) and P̈A(t)− P̈B (t). These follow from
an application of equations (2.43) and (2.44), the latter equation containing linear
acceleration terms with v̇= a and angular acceleration terms that can be evalu-
ated using equation (2.90), ẇ = J−1(τ −w× J w). The final formula for the relative
acceleration at the point and time of contact is

d̈(t0) = N0 · ((v̇A + ẇA × rA +wA × (wA × rA))

−(v̇B + ẇB× rB +wB × (wB × rB)))

+ 2(wB ×N0) · ((vA +wA × rA)− (vB +wB× rB))

= N0 ·
((

aA +
(

J−1
A τA

)
× rA

)
−
(

aB +
(

J−1
B τB

)
× rB

))
+ e

(6.102)

where the second equality groups the acceleration and torque terms together for our
later convenience. The term e contains all the remaining terms from the first equality,
including those portions from the torque equation of the form J−1(w× J w).

To avoid the interpenetration of body A into body B when d̈(t0) < 0, body B must
exert a contact force C on body A. Such a force must satisfy three conditions:

1. C must prevent the interpenetration of the bodies.

2. C must be a repulsive force. It cannot act like glue between the bodies.

3. C must become zero when the bodies separate.

We postulate that C= g N0 for some scalar g ≥ 0 at the point of contact P0. The value
of g is chosen to satisfy condition 1. The nonnegativity of the magnitude g satisfies
condition 2. To satisfy condition 3 we specify that g d̈(t0)= 0. If the bodies separate
an instant after the contact, we have d̈(t0 + ε) > 0 and g = 0 is required. If d̈(t0)= 0,
the bodies are not separating, so the choice of g is irrelevant.

Just as for colliding contact, the contact force at a resting contact of a rigid body
A has a contribution to changing the velocity of the center of mass, gm−1

A N0, and a
contribution to changing the angular velocity of the body about its center, g (J−1

A (rA ×
N0))× rA . The computation of contact forces must be done simultaneously for all
points of contact, each point contributing terms of this type. We use Example 6.7 to
illustrate, the same one that was used to illustrate computing impulse forces for the
simultaneous handling of contact points.

500 Chapter 6 Physics Engines

Example
6.8

Let Fγ denote the external forces applied to body γ and let Tγ denote the external
torques applied to body γ . The external forces contribute to the linear acceleration of
the centers of mass, and the external torques contribute to the angular acceleration
of the bodies about their centers of mass. The postulated contact forces giNi at the
points of contact Pi contribute as well. A quick glance at Figure 6.49 will convince
you that the resolution of forces at the centers of mass produces

mAaA =−g1N1− g2N2− g3N3− g4N4+FA

mBaB = g1N1+ g2N2− g5N5+FB

mC aC = g3N3+ g4N4+ g6N6+FC

mD aD = g5N5− g6N6+FD

The torque resolution is

τA =−g1r1
A ×N1− g2r2

A ×N2 − g3r1
A ×N3− g4r4

A ×N4+TA

τB = g1r1
B ×N1 + g2r2

B ×N2− g5r5
B×N5+TB

τC = g3r3
C ×N3+ g4r4

C ×N4+ g6r6
C ×N6+TC

τD = g5r5
D ×N5− g6r6

D ×N6+TD

where ri
γ =Pi −Xγ for body γ and contact point i.

Each contact point leads to a relative acceleration equation of the form in equation
(6.102), so we will index those equations with i. In each equation the acceleration
terms we grouped together can have their accelerations and torques replaced by the
expressions we obtained in the resolution of forces. For example, consider the contact
point P1 involving bodies A and B. By our convention, the pair of bodies is ordered
as (B, A), because a vertex of B intersects a face of A:

d̈1 = N1 ·
((

aB +
(

J−1
B τB

)
× r1

B

)
−
(

aA +
(

J−1
A τA

)
× r1

A

))
+ e1

= N1 ·
[

m−1
B

(
g1N1+ g2N2 − g5N5+FB

)
+
(

J−1
B

(
g1r1

B ×N1+ g2r2
B ×N2 − g5r5

B +TB
))× r1

B

−m−1
A

(−g1N1− g2N2− g3N3− g4N4+FA
)

− (J−1
A

(− g1r1
A ×N1− g2r2

A ×N2− g3r3
A ×N3

−g4r4
A ×N4+TA

))× r1
A

]+ e1

= a11g1+ a12g2 + a13g3+ a14g4+ a15g5+ a16g6 + b1

where the aij are exactly the same as those computed in Example 6.7! The term b1 is

b1 = e1+N1 ·
[(

m−1
B FB +

(
J−1
B TB

)
× r1

B

)
−
(

m−1
A FA +

(
J−1
A TA

)
× r1

A

)]

6.6 Acceleration-Based Constrained Motion 501

Similar expressions can be constructed for the other contact points to obtain d̈i =∑6
i=1 aijgj + bi for 1 ≤ i ≤ 6. ■

In the general case we have a collection of rigid bodies and n contact points Pi for
1 ≤ i ≤ n. The acceleration at Pi in the normal direction Ni has magnitude

d̈i =
n∑

i=1

aijgj + bi (6.103)

where the aij are provided by equation (6.97). The general formula for the bi is listed
below:

bi = ei +Ni ·
[(

m−1
α Fα +

(
J−1
α Tα

)× ri
α

)
−
(

m−1
β Fβ +

(
J−1
β Tβ

)
× ri

β

)]
(6.104)

where

ei = Ni ·
[((

J−1
α (Lα ×wα)

)× ri
α +wα ×

(
wα × ri

α

))
−
((

J−1
β

(
Lβ ×wβ

))× ri
β +wβ ×

(
wβ × ri

β

))]

+ 2Ṅi ·
[(

vα +wα × ri
α

)−(vβ +wβ × ri
β

)]
(6.105)

and where Fγ is the external force and Tγ is the external torque on body γ . The
quantity Lγ = Jγ wγ is the angular momentum of body γ .

We now know how to compute the accelerations d̈i , given the contact forces. How-
ever, the original problem was to choose the contact forces to prevent interpenetration.
Let us reformulate our conditions using vector and matrix notation. Let g be the n× 1
vector that stores the magnitudes of the contact forces. The magnitudes are all non-
negative. We may write this succinctly as g≥ 0, a shortcut for stating gi ≥ 0 for all i.
Let d̈ be the n× 1 vector that stores the accelerations. To avoid interpenetrations we
need d̈≥ 0. If the bodies separate at resting contact point i an instant after the con-
tact has occurred, we require that the contact force become zero. The mathematical
formulation is d̈igi = 0. In vector notation this is d̈ ◦ g= 0. Finally, equation (6.103)
is written as d̈= Ag+b, where A = [aij] is an n× n matrix and b= [bi] is an n× 1
vector.

In summary, given A and b, we need to compute d̈ and g that satisfy d̈= Ag+b
subject to the constraints d̈≥ 0 and g≥ 0 and subject to the complementarity con-
dition d̈ ◦ g= 0. This is a linear complementarity problem (LCP) which we discuss
briefly in Section 5.2.2 and cover in Chapter 14 in more detail. In particular, it is
of the form of equation (14.5) where M is our A, q is our b, w is our d̈, and z is
our g.

502 Chapter 6 Physics Engines

The order of operations listed for handling colliding contact is modified to the
following:

1. The collision detection system calculates all contact points for the current state
of the rigid bodies.

2. The contact points and rigid body states are used to compute the matrix A,

vector ḋ
−

, and vector b.

3. The LCP solver computes f and ḋ
+

from the inputs A and ḋ
−

. The LCP
solver computes g and d̈ from the inputs A and b. We are guaranteed of no

interpenetration since ḋ
+ ≥ 0 and d̈≥ 0 are postconditions of the LCP solver.

4. The postimpulse velocities are computed from f and the normal vectors at the
collision points. These velocites replace the preimpulse values in the rigid bodies.

5. The resting contact forces involving the g are included when computing the total
forces and torques on the rigid bodies.

6. The differential equation solver computes the new positions and orientations of
the rigid bodies.

7. Repeat step 1.

The next section expands on this.

6.6.4 An Illustrative Implementation

The rigid bodies are convex polyhedral solids. We will assume the existence of a col-
lision detection system that handles convex polyhedra. Section 6.4 provides details of
such a system. The structure RigidBodiesused earlier will also be used here. We need
another structure for representing contact points:

struct Contact
{

RigidBody A; // body containing vertex
RigidBody B; // body containing face
point P; // contact point
vector N; // outward unit-length normal of face
vector EA; // edge from A
vector EB; // edge from B
bool isVFContact; // true if vertex-face, false if edge-edge

}

If the contact point is a vertex–face intersection, then N is valid but the edges EA and
EB are not. If the contact point is an edge–edge intersection, then all fields are valid.
All point and vector quantities are assumed to be in world coordinates.

The highest level view of the physical simulation is listed below. It is assumed that
the initialization of the rigid bodies results in no interpenetrations.

6.6 Acceleration-Based Constrained Motion 503

void DoSimulation ()
{

// For the arrays, size() indicates the number of array
// elements.

array<RigidBody> body;
for (i = 0; i < body.size(); ++i)
{

body[i].Initialize(<parameters>);
}

array<Contact> contact;

double t = <your choice of initial time>;
double dt = <your choice of time step>;

while (application_running)
{

DoCollisionDetection(t,dt,body,contact);
if (contact.size() > 0)
{

DoCollisionResponse(t,dt,body,contact);
}

t += dt;
}

}

The function DoCollisionDetection removes all old contact points from the array
contact before inserting new ones.

The collision response function is

void DoCollisionResponse (double t, double dt,
array<RigidBody> body, array<Contact> contact)

{
matrix A;
vector preRelVel, postRelVel, impulseMag;
vector restingB, relAcc, restingMag;

ComputeLCPMatrix(contact,A);

// guarantee no interpenetration by postRelVel >= 0
ComputePreImpulseVelocity(contact,preRelVel);
Minimize(A,preRelVel,postRelVel,impulseMag);
DoImpulse(contact,impulseMag);

// guarantee no interpenetration by relAcc >= 0
ComputeRestingContactVector(contact,restingB);

504 Chapter 6 Physics Engines

LCPSolver(A,restingB,relAcc,restingMag);
DoMotion(t,dt,contact,restingMag,body);

}

// Minimize |A * f + b|ˆ2 subject to f >= 0, c - b >= A * f >= -b.
// The i-th component of b is b[i] = 0 if dneg[i] >= 0 and
// b[i] = 2 * dneg[i] if dneg[i] < 0. The i-th component of
// c is c[i] = |dneg[i]|. The inputs are A and dneg. The
// outputs are dpos and f.
//
void Minimize (matrix A, vector dneg, vector& dpos, vector& f);

// The parameter names match those in the chapter discussing
// LCP. The input is the matrix M and vector q. The output
// is the vector w and the vector z.
//
void LCPSolver (matrix M, vector q, vector& w, vector& z);

The function ComputeLCPMatrix computes the matrix A = [aij] whose entries are
defined by equation (6.97).

void ComputeLCPMatrix (array<Contact> contact, matrix& A)
{

for (i = 0; i < contact.size(); ++i)
{

Contact ci = contact[i];
vector rANi = Cross(ci.P - ci.A.x,ci.N);
vector rBNi = Cross(ci.P - ci.B.x,ci.N);

for (j = 0; j < contact.size(); ++j)
{

Contact cj = contact[j];
vector rANj = Cross(cj.P - cj.A.x,cj.N);
vector rBNj = Cross(cj.P - cj.B.x,cj.N);

A[i][j] = 0;

if (ci.A == cj.A)
{

A[i][j] += ci.A.massinv * Dot(ci.N,cj.N);
A[i][j] += Dot(rANi,ci.A.jinv * rANj);

}
else if (ci.A == cj.B)
{

A[i][j] -= ci.A.massinv * Dot(ci.N,cj.N);
A[i][j] -= Dot(rANi,ci.A.jinv * rANj);

}

6.6 Acceleration-Based Constrained Motion 505

if (ci.B == cj.A)
{

A[i][j] -= ci.B.massinv * Dot(ci.N,cj.N);
A[i][j] -= Dot(rBNi,ci.B.jinv * rBNj);

}
else if (ci.B == cj.B)
{

A[i][j] += ci.B.massinv * Dot(ci.N,cj.N);
A[i][j] += Dot(rBNi,ci.B.jinv * rBNj);

}
}

}
}

The function ComputePreImpulseVelocitycomputes the preimpulse velocities ḋ−i
defined by equation (6.98).

void ComputePreImpulseVelocity (array<Contact> contact,
vector& ddot)

{
for (i = 0; i < contact.size(); ++i)
{

contact ci = contact[i];
RigidBody A = ci.A;
RigidBody B = ci.B;

vector rAi = ci.P - A.x;
vector rBi = ci.P - B.x;
vector velA = A.v + Cross(A.w,rAi);
vector velB = B.v + Cross(B.w,rBi);
ddot[i] = Dot(ci.N,velA - velB);

}
}

The function ComputeRestingContactVectorcomputes the vector b = [bi] defined
by equation (6.104). The derivative of the normal vector is computed using equations
(6.100) and (6.101).

void ComputeRestingContactVector (array<Contact> contact, vector& b)
{

for (i = 0; i < contact.size(); ++i)
{

contact ci = contact[i];
RigidBody A = ci.A, B = ci.B;

// body A terms
vector rAi = ci.P - ci.A.x;
vector wAxrAi = Cross(A.w,rAi);

506 Chapter 6 Physics Engines

vector At1 = A.massinv * A.force;
vector At2 = Cross(A.jinv * (A.torque + Cross(A.L,A.w)),rAi);
vector At3 = Cross(A.w,wAxrAi);
vector At4 = A.v + wAxrAi;

// body B terms
vector rBi = ci.P - ci.B.x;
vector wBxrBi = Cross(B.w,rBi);
vector Bt1 = B.massinv * B.force;
vector Bt2 = Cross(B.jinv * (B.torque + Cross(B.L,B.w)),rBi);
vector Bt3 = Cross(B.w,wBxrBi);
vector Bt4 = B.v + wBxrBi;

// compute the derivative of the contact normal
vector Ndot;
if (ci.isVFContact)
{

Ndot = Cross(B.w,ci.N);
}
else
{

vector EAdot = Cross(A.w,ci.EA);
vector EBdot = Cross(B.w,ci.EB);
vector U = Cross(ci.EA,EBdot) + Cross(EAdot,ci.EB);
Ndot = (U - Dot(U,ci.N) * ci.N) / Length(ci.N);

}

b[i] = Dot(ci.N,At1 + At2 + At3 - Bt1 - Bt2 - Bt3) +
2*Dot(Ndot,At4 - Bt4);

}
}

The function DoImpulse has the responsibility of replacing the preimpulse lin-
ear and angular velocities by the postimpulse vectors. The motivation was given in
Example 6.7. That example shows that it suffices to iterate over the contacts and
impulse magnitudes and incrementally update the velocities.

void DoImpulse (array<Contact> contact, vector f)
{

for (i = 0; i < contact.size(); ++i)
{

contact ci = contact[i];

// update linear/angular momentum
vector impulse = f[i] * ci.N;
ci.A.p += impulse;

6.6 Acceleration-Based Constrained Motion 507

ci.B.p -= impulse;
ci.A.L += Cross(ci.P - ci.A.x,impulse);
ci.B.L -= Cross(ci.P - ci.B.x,impulse);

// compute linear/angular velocity
ci.A.v = ci.A.massinv * ci.A.p;
ci.B.v = ci.B.massinv * ci.B.p;
ci.A.w = ci.A.jinv * ci.A.L;
ci.B.w = ci.B.jinv * ci.B.L;

}
}

Finally, the function DoMotion implements the differential equation solver. It also
must incorporate the resting contact forces into the solver in addition to any externally
applied forces. We used a Runge–Kutta method for solving the differential equa-
tions for unconstrained motion. This method uses multiple function evaluations and
requires some careful programming to handle the forces and torques. The structure
RigidBody in the illustrative implementation for unconstrained motion has two mem-
bers, force and torque, that are intended to store the current externally applied force
and torque at the current time of the simulation. To support solvers that use multiple
function evaluations and to avoid the copying in the illustrative implementation, we
designed a C++ class RigidBody that had function members for computing the exter-
nal force and torque. Let us modify this class by adding two data members to store the
current external force and torque in addition to having the force and torque function
members. Moreover, we will add two data members to store the resting contact forces.
Only the modified interface is shown:

class RigidBody
{
public:

void AppendInternalForce (vector intForce)
{

m_internalForce += intForce;
}

void AppendInternalTorque (vector intTorque)
{

m_internalTorque += intTorque;
}

protected:
// external force/torque at current time of simulation
vector m_externalForce, m_externalTorque;

// Resting contact force/torque. Initially zero, changed by
// simulator before call to ODE solver, ODE solver uses for

508 Chapter 6 Physics Engines

// motion of bodies, then reset to zero for next pass.
vector m_internalForce, m_internalTorque;

// force/torque functions (same as before)
Function m_force, m_torque;

};

The initialization of the rigid body objects must now include calling the force
and torque member functions m_force and m_torque to initialize the data members
m_externalForce and m_externalTorque. The member function RigidBody::Update
must also be modified to support these changes. The old function had the following
lines of code for the first step of the Runge–Kutta solver:

// A1 = G(t,S0), B1 = S0 + (dt / 2) * A1
:
vector A1DPDT = m_force(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
vector A1DLDT = m_torque(t,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
:

The force and torque evaluation are at the current time, but we are now storing those
values in the rigid body itself. The new function replaces these lines by

// A1 = G(t,S0), B1 = S0 + (dt / 2) * A1
:
vector A1DPDT = m_externalForce + m_internalForce;
vector A1DLDT = m_externalTorque + m_internalTorque;
:
m_internalForce = 0;
m_internalTorque = 0;

// A2 = G(t + dt / 2,B1), B2 = S0 + (dt / 2) * A2
:

// A3 = G(t + dt / 2,B2), B3 = S0 + dt * A3
:

// A4 = G(t + dt,B3),
// S1 = S0 + (dt / 6) * (A1 + 2 * A2 + 2 * A3 + A4)
:

The inclusion of the internal quantities takes into account that, just before the update
function is called, the collision response system needs to set the internal quantites to
support resting contact. After using the internal values for the first step, I have set
them to zero. They are not used in steps two, three, or four because the time in those
steps is later than the current time; separation potentially has occurred and the resting
contact forces must become zero as specified in our analysis. However, it is possible
that after the half-step in time, resting contact still exists, so you might want to use
the internal force and torque terms in the later steps.

6.6 Acceleration-Based Constrained Motion 509

The dilemma is that we are now in the middle of running the differential equation
solver. If we want more accurate information about contact after the first step, we
would have to exit after the first step and rerun the other parts of the collision system
to once again find out which intersections are resting contacts. By doing so, our solver
is nothing more than an Euler’s method and we suffer from its lack of robustness and
stability. I chose to zero out the internal values for simplicity. You might very well
experiment and rewrite the solver to use the internal values for all the steps. One last
change must be made to the solver to maintain the invariant that the external force
and torque members are those of the current simulation time. Two lines of code must
be added to the end of RigidBody::Update after the fourth step is complete:

// A4 = G(t + dt,B3),
// S1 = S0 + (dt / 6) * (A1 + 2 * A2 + 2 * A3 + A4)
:
Convert(m_Q,m_P,m_L,m_R,m_V,m_W);

// new lines to make force and torque correspond to new time t+dt
m_externalForce = m_force(tpdt,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);
m_externalTorque = m_torque(tpdt,m_X,m_Q,m_P,m_L,m_R,m_V,m_W);

void DoMotion (double t, double dt, array<Contact> contact,
vector g, array<RigidBody> body)

{
// update internal force/torque
for (i = 0; i < contact.size(); i++)
{

contact ci = contact[i];
vector resting = g[i] * ci.N;
ci.A.AppendInternalForce(resting);
ci.A.AppendInternalTorque(Cross(ci.p - ci.A.x,resting));
ci.B.AppendInternalForce(-resting);
ci.B.AppendInternalTorque(-Cross(ci.p - ci.B.x,resting));

}

// update rigid bodies
for (i = 0; i < body.size(); i++)
{

body[i].Update(t,dt);
}

}

6.6.5 Lagrangian Dynamics

The extensive system for constrained motion that we have studied so far is designed to
be general. Other than requiring the rigid bodies to be modeled as convex polyhedra,
no assumptions are made about how the environment might constrain the objects.

510 Chapter 6 Physics Engines

In fact, the main role of the collision detection system is to determine the constraints
dynamically, then let the collision response system know what it has to work with.
Such a general dynamics system is useful for many game applications but is not nec-
essary for all situations arising in a game. Just as game designers will take into account
the strengths and limitations of a graphics engine when deciding on the complexity of
art content, they will also consider the strengths and limitations of a physics engine.

For example, automatic and efficient occlusion culling in a graphics engine is a dif-
ficult task to implement. Portal systems are particularly useful for limiting the depth
complexity of an indoor scene while allowing the player to move in unconstrained
ways. However, if a level is built in such a way that the player looks through a door
(portal) of a room and can see through another door across the room, followed by a
long path of visible doors of yet more adjacent rooms, the portal system performance
can decrease quite rapidly. Yes, a general portal system is quite powerful, but it has
its limitations. A level designer will arrange for such a configuration not to happen,
knowing that the portal system is good for a couple of doors along the line of sight.
Thus, the designer establishes the constraints during development time to keep the
performance reasonable at runtime.

Careful consideration of how to build an environment to allow the physics engine
to perform well is also called for. For example, suppose that a game requires a charac-
ter to navigate through a room filled with boxes in order to reach an exit on the other
side of the room. The environment is designed to make it challenging – no open path
is available when the character enters the room. In order to reach the exit, boxes must
be moved around, some of them easy to move, others too heavy to move. Moreover,
the player must discover that some boxes need to be moved but that can happen only
when they are pushed by other boxes; the other boxes block the path to ones that need
to be moved. A general collision system can be used for this environment. Since the
boxes are in resting contact with the floor, the system must compute the appropriate
contact forces to keep the boxes from sinking through the floor. The collision detec-
tion system also spends a lot of time reporting that the boxes are intersecting the floor!
No doubt we will want the floor to have friction. As commercial physics engine devel-
opers will remind you regularly, getting the general collision system to work correctly
in the presence of static and dynamic friction is quite a difficult chore.

But we know that the boxes are on the floor and will remain so – that is our design.
Let us take advantage of the fact that we know a constraint of the system at develop-
ment time. What better way to take advantage of known constraints than by using
Lagrangian dynamics? We covered this topic in extensive detail in Section 3.2. At
the end of that section we even derived the equations of motion for a box moving
over a rough plane. And if you did your homework (Exercise 3.31), you are ready to
test out the environment you just built! Well, not quite. We still have the dynamic
situation of boxes being pushed by the character and colliding with other boxes. A
collision detection system is still required, but even this system can be specialized for
our environment.

Two of our boxes can collide only with edge–face or face–face contact. Although
the general collision detection system can handle this as contact between 3D objects,

6.6 Acceleration-Based Constrained Motion 511

we can do better. If you view the boxes from above, they all appear as rectangles.
The specialized collision detection system needs to work only in 2D. An edge–face
intersection in 3D is detected as a vertex–edge intersection in 2D. A face–face
intersection in 3D is detected as an edge–edge intersection in 2D. The Lagrangian
equations of motion for this collection of boxes will involve only floor variables (x, y)

but not the height variable z . The outline of how the system works is analogous to
what the general system did, except that now we are working in only two dimensions.

There is a drawback to what I just described. The collision system is specifically
written for this room (and similar rooms if you like). In the object-oriented approach,
the general differential equation solver was built into the RigidBody class. In our
Lagrangian setting, the equations of motion depend on the constraints. Moreover,
our intent is that the constraints are known at development time. A general collision
system is a reusable component, a good thing as any software engineer will tell you.
The Lagrangian approach might very well lead to building a lot of components that
are not reusable, thus increasing your development costs. Hopefully, the Lagrangian
components you build, such as for a room of objects sitting on a floor, will be useful
across levels and across games.

Can we find middle ground? That is, can we use Lagrangian dynamics even if our
constraints change dynamically? I think so, but I believe such an engine will require
a lot of thought be put into its design. To illustrate what I have in mind, consider a
book on a table as shown in Figure 6.50.

The book can be pushed around the table, all the while using the Lagrangian equa-
tions of motion with the constraint that the center of mass of the book is a constant
height above the table. If the book is pushed to the edge of the table and a small part
of it extends past the edge, the book remains on the table, our constraint still applies,
and the Lagrangian equations of motion remain as they are. However, if the book is
pushed far enough past the table’s edge, gravity will exert enough force to make the
book start to fall off the table. The collision detection system is constantly reporting
to us the polygon of intersection between the book and the table. This information is
what we use to decide if the book rests on the table or if the area of intersection is small
enough that torque causes the book to lift off the table and start to fall to the floor.

F F F

g

Figure 6.50 A book resting on a table. Forces applied to the book include only gravitational (force
vertically downward) and those used to push the book around the table (force has
only a horizontal component).

512 Chapter 6 Physics Engines

At the instant the book starts to fall, our constraint of constant height center of
mass is invalid and we need a new set of equations of motion. The book will slide
along the edge of the table while rotating about a line through its center of mass (the
line perpendicular to the plane of the figure), constraints that might be difficult to
dynamically convert to equations of motion. A physics engine that is a hybrid between
the general collision system and a Lagrangian-based one appears to be called for. In
our book–table example, once the book starts to fall, we enable the general system.
Once the book strikes the floor and attains a resting position, we switch back to the
Lagrangian-based engine.

I will leave the ideas at that. The development of an engine of this type is a
challenge I pose to those of you who have the energy and desire to follow such
a path!

6.7 Velocity-Based Constrained Motion

In this section I will describe velocity-based methods for the dynamics of particle
systems and rigid body systems. The approach uses constraints for pairs of objects.
The constraints are functions of position and orientation but not of linear and angular
momentum. This makes the approach different from that of Section 6.6.

The primary reference for this approach is [Cat05]. One of the problems with
the algorithm in Section 6.6 is that the LCP solver is formulated to handle all the
constraints simultaneously. The more rigid bodies in the system and the more con-
tact points between them in a single physics tick, the more expensive it is to use a
global LCP solver such as the Lemke algorithm. Effectively, the approach is NP-hard.
[Cat05] discusses an iterative algorithm that handles each pair of colliding bodies one
at a time has better performance. Catto points out the advantages of the algorithm,
which include a more robust algorithm based on handling penetrations (the non pen-
etration requirements for the impulse-based algorithm are difficult to make robust)
and the ease of modeling and the uniformity of handling both joint and contact
constraints.

The aforementioned paper talks about constraint forces, and the algorithm must
explicitly compute them, both for equality and inequality constraints. I will first moti-
vate the idea of computing constraint forces and the principle of virtual work, as
discussed in [Wit97], and show how to extend these from a single particle to particle
systems and rigid body systems.

6.7.1 Constraint on a Particle

This first part of this section analyzes the dynamics of a particle constrained to a sur-
face. The second part analyzes the dynamics when the particle is constrained to a
curve.

6.7 Velocity-Based Constrained Motion 513

Particle Constrained to a Surface

Consider a single particle constrained to a surface defined implicitly by C(x)= 0. The
particle position is x(t), indicating that it varies with time. Thus,

C(x(t)) = 0 (6.106)

for all time t .

First Derivative of Constraint

The time derivative must also be equal to zero for all t , as shown next

0= Ċ(x(t)) = ∇C · ẋ (6.107)

where the dot over C denotes the first-order time derivative. The first-order spa-
tial derivatives of C are stored in the 3× 1 vector ∇C . The right-most equality is an
application of the chain rule for differentiation. The dot over x also denotes the time
derivative, in which case ẋ is the velocity of the particle.

Second Derivative of Constraint

The second-order time derivative must as well be zero for all t ,

0= C̈(x(t)) = ∇C · ẍ+ ẋT∇ ⊗∇C ẋ (6.108)

where the double dots over C denote the second-order time derivative. The dou-
ble dots over x also denote the second-order time derivative, in which case ẍ is the
acceleration of the particle. The term ∇ ⊗∇C is the matrix of second-order spatial
derivatives of C .

Equations of Motion

The external force applied to the particle is F. This force most likely tries to move the
particle off the surface, so a constraint force F̂ must prevent this. Newton’s second law
requires

mẍ = F+ F̂

Substituting this into the equation (6.108) leads to

0 =∇C ·
(

F+ F̂

m

)
+ ẋT ∇ ⊗∇C ẋ (6.109)

which is one equation in the three unknown components of the constraint force.

514 Chapter 6 Physics Engines

Computing the Constraint Force

We have to provide information to eliminate the remaining two degrees of freedom
in the constraint force. This is accomplished by appealing to the principle of vir-
tual work: The constraint force cannot do work within the surface. This means the
constraint force at a point on the surface has no component in any of the tangential
directions at that point, which implies that the constraint force is normal to the sur-
face. In fact, the velocity of the particle is a tangent vector, so the constraint force must
be orthogonal to the velocity. The principle of virtual work makes sense in the follow-
ing way. In the absence of external forces, if the constraint force were allowed to have a
nonzero tangential component at a point, the constraint force would move a particle
at the point along the surface, which is not an appealing physical consequence.

For implicitly defined surfaces, the gradient of the defining function is known to
be normal to the surface. Thus, the constraining force is of the form

F̂= λ∇C (6.110)

The scalar λ is a single degree of freedom. Substituting equation (6.110) into equation
(6.109) leads to

λ=− ∇C · F+mẋT ∇ ⊗∇C ẋ

|∇C |2 (6.111)

in which case the magnitude of the constraint force is λ|∇C |.

Particle Constrained to a Curve

The same ideas may be applied even when a particle is constrained to lie on a spatial
curve. Assume that the curve is the intersection of two implicitly defined surfaces; that
is, we have two constraints C0(x)= 0 and C1(x)= 0. Applying a construction similar
to that for a surface,

0= ∇C0 · (F+ F̂)+m ẋT∇ ⊗∇C0 ẋ

0= ∇C1 · (F+ F̂)+m ẋT∇ ⊗∇C1 ẋ
(6.112)

These are two equations in the three unknowns of F̂. We need one additional restric-
tion. Appealing to the principle of virtual work, the constraint force must have no
component in the tangential direction to the curve,

0= T · F̂= ẋ

|ẋ| · F̂ (6.113)

where T is a unit-length tangent vector. If N is a unit-length normal and B is a unit-
length binormal, the constraint force may be written in terms of the Frenet–Serret

6.7 Velocity-Based Constrained Motion 515

frame,

F̂= λ0T+λ1N+λ2B (6.114)

Equation (6.113) trivially implies

λ0 = 0 (6.115)

Substituting equation (6.114) into equation (6.112) leads to

[
λ1

λ2

]
= 1

�

[∇C1 · B −∇C0 · B

−∇C1 · N ∇C0 · N

][∇C0 · F+mẋT ∇ ⊗∇C0 ẋ

∇C1 · F+mẋT ∇ ⊗∇C1 ẋ

]
(6.116)

where �= (∇C0 · B)(∇C1 · N)− (∇C0 · N)(∇C1 · B). Once again we have deter-
mined explicitly the constraint force.

6.7.2 Constraints on a Particle System

The ideas of Section 6.7.1 apply to a system of n particles. The goal of this section is
to motivate the extension of the ideas to a system of rigid bodies, so the assumptions
made here for the particles are similar to the assumptions for rigid bodies.

Particle Constraints

Let particle i have constant mass mi and time-varying position xi . We allow con-
straints between pairs of particles. The kth constraint is of the form

Ck(xik , xjk)= 0

and represents the restrictions between the particles of index ik and jk . Let x store
consecutively the positions xi ; that is, x can be thought of as a 3n× 1 vector. The
constraint function can be written as Ck(x), but it is understood that only two of
the 3-tuple components of x are allowed to take part in the constraint. Assuming
m constraints, an m× 1 vector C(x) may be used to store them. The vector-valued
constraint equation is then

C(x)= 0 (6.117)

This is the extension of equation (6.106) for one particle to a system of particles.

First Derivative of Constraints

The time derivative of the constraint vector must be equal to zero for all t . Using block
tensor index notation, the constraint vector equation is written as Ck(x)= 0, where
k is a free index. The time derivative is computed using the chain rule,

Ċk = Ck,i ẋi

516 Chapter 6 Physics Engines

where Ck,i is the 3× 1 vector of first-order partial derivatives of Ck with respect to
the components of xi . In the subscript of C , any index before the comma denotes a
“component” and any index after the comma denotes “differentiate with respect to the
component.” The repeated index i indicates you must sum over that index. The index
k is still a free index. I will use the suggestive vector notation ∂Ck/∂xi to represent the
quantity Ck,i .

For example, consider a system of four particles subject to the two constraints

C(x1, x2, x3, x4)=
[

C1(x1, x2)

C2(x2, x4)

]
=
[

0

0

]
= 0

The time derivative is

Ċ =
[

Ċ1(x1, x2)

Ċ2(x2, x4)

]
=

⎡
⎢⎢⎢⎣

∂C1

∂x1
ẋ1 + ∂C1

∂x2
ẋ2 + ∂C1

∂x3
ẋ3 + ∂C1

∂x4
ẋ4

∂C2

∂x1
ẋ1 + ∂C2

∂x2
ẋ2 + ∂C2

∂x3
ẋ3 + ∂C2

∂x4
ẋ4

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∂C1

∂x1

∂C1

∂x2

∂C1

∂x3

∂C1

∂x4

∂C2

∂x1

∂C2

∂x2

∂C2

∂x3

∂C2

∂x4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦

= DC ẋ

where DC is the matrix of first-order partial derivatives of C with respect to its inde-
pendent variables. The matrix is sometimes referred to as the Jacobian matrix. In this
particular example, observe that

DC=

⎡
⎢⎢⎢⎣

∂C1

∂x1

∂C1

∂x2
0 0

0
∂C2

∂x2
0

∂C2

∂x4

⎤
⎥⎥⎥⎦

The matrix DC is sparse, meaning the majority of its entries are zero. This is true
because each component constraint may involve the interaction of only two particles.

In general, the first-order time derivative of the constraint vector is

0= Ċ(x)=DC ẋ (6.118)

where DC is the Jacobian matrix of C. This is the extension of equation (6.107) for
one particle to a system of particles.

6.7 Velocity-Based Constrained Motion 517

Second Derivative of Constraints

The second-order time derivative must also be zero for all t . Using block tensor index
notation, we had Ċk = Ck,i ẋi . Applying another time derivative using the product
rule and then the chain rule,

C̈k = Ck,i ẍi + Ċk,i ẋi = Ck,i ẍi +Ck,ij ẋi ẋj

where Ck,ij is the 3× 3 matrix of second-order partial derivatives of Ck with respect
to the components of xi and xj . Indices before a comma are components and indices
after a comma are variables that you differentiate with respect to. Repeated indices are
summed, the remaining ones free. I will use the suggestive notation ∂2Ck/∂xi∂xj to
represent the quantity Ck,ij .

Using the previous example of four particles with two constraints, the second-
order time derivative of the kth component is

C̈k =
[

∂Ck

∂x1

∂Ck

∂x2

∂Ck

∂x3

∂Ck

∂x4

]⎡⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦

+ [ẋT
1 ẋT

2 ẋT
3 ẋT

4

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2Ck

∂x1
2

∂2Ck

∂x1 ∂x2

∂2Ck

∂x1 ∂x3

∂2Ck

∂x1 ∂x4

∂2Ck

∂x2 ∂x1

∂2Ck

∂x2
2

∂2Ck

∂x2 ∂x3

∂2Ck

∂x2 ∂x4

∂2Ck

∂x3 ∂x1

∂2Ck

∂x3 ∂x2

∂2Ck

∂x3
2

∂2Ck

∂x3 ∂x4

∂2Ck

∂x4 ∂x1

∂2Ck

∂x4 ∂x2

∂2Ck

∂x4 ∂x3

∂2Ck

∂x4
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎥⎥⎦

There are two such equations for our example.
Observe that Ck,ij is a triply indexed quantity. Unlike vectors (1 index) and matri-

ces (2 indices), we have no convention for writing coordinate-free expressions. For
example, given an r × c matrix M = [Mij] and a c × 1 vector V= [Vj], the product
of M and V is written as M V with a corresponding tensor expression of MijVj (i is
free, j is summed). Regardless, let us write a coordinate-free expression for C̈ generally,
with the understanding that the term involving the triply indexed tensor is computed
correctly according to the tensor expression we derived for C̈k ,

0= C̈=DC ẍ+ ẋTD⊗DCẋ (6.119)

where D⊗DC is the coordinate-free expression representing the triply index tensor
Ck,ij . Notice that the expression involves two “derivative operators” D that is applied

518 Chapter 6 Physics Engines

to all the components of C. The coordinate-free expression ẋTD⊗DCẋ represents
the tensor expression Ck,ij ẋi ẋj . Equation (6.119) is the extension of equation (6.108)
for one particle to a system of particles. The matrix Ck,ij is sometimes referred to as
the Hessian matrix for Ck . The collection of these matrices (as k varies) may be called
the Hessian tensor for C.

Equations of Motion

The external force applied to particle i is Fi . To ensure that the constraints are satisfied,
a constraint force per particle is required, call it F̂i . Newton’s second law requires

mi ẍi = Fi + F̂i

for all i. Define the n× n diagonal matrix M = Diag(m1, . . . , mn). Let F represent the
n× 1 vector of external force vectors and let F̂ represent the 3× 1 vector of constraint
force vectors. Newton’s second law for the particle system is

M ẍ= F+ F̂

Substituting this into equation (6.119) leads to

0=DCM−1(F+ F̂)+ ẋTD⊗DCẋ (6.120)

This a set of m equations (number of constraints) in the n unknown vector com-
ponents (number of constraint force components) of F̂. As in the case of a single
particle, we want to formulate an expression for F̂ and then substitute this expression
into equation (6.120) to help solve for the constraint force.

Computing the Constraint Force

We make an appeal to the principle of virtual work once again. The constraint force
F̂ cannot do work in the velocity direction ẋ. This means F̂ must be orthogonal to ẋ.
Equation (6.118) states that DC ẋ= 0, where DC is the Jacobian matrix. By definition,
ẋ is in kernel(DC). By the fundamental theorem of linear algebra (see Section 7.4.7),
range((DC)T) is the orthogonal complement of kernel(DC), so F̂ must be in the range
of (DC)T,

F̂= (DC)Tλ (6.121)

for some unknown m× 1 vector λ.
Substitute equation (6.121) into equation (6.120) and rearrange terms to obtain

GM−1GTλ=−(GM−1F+ ẋTH ẋ
)

(6.122)

6.7 Velocity-Based Constrained Motion 519

where G = DC is the Jacobian matrix and H = D⊗DC is the Hessian tensor. If
GM−1GT is invertible, then we can solve directly

λ =−(GM−1GT
)−1 (

GM−1F+ ẋTH ẋ
)

which is the analog of equation (6.111) for a single particle.
The invertibility happens, however, only when G is of full rank. Generally, G

might not be full rank, in which case there are infinitely many solutions λ to
equation (6.122). We may compute one of them using a least-squares or minimum-
norm approach (use the generalized inverse, called the Moore–Penrose inverse). Alter-
natively, one of the solutions may be computed by an iterative method for solving
linear systems. For example, Gauss–Seidel iteration may be used (see Section 7.2.6).

6.7.3 Constraint on a Rigid Body

Consider a rigid body whose position x and orientation q are constrained. The posi-
tion is a vector but the orientation is a quaternion. Although we can work with mixed
units, the discussion in this section converts everything to real-valued vector calcu-
lations. In particular, we will represent the quaternion with a 4-tuple vector q and
impose a single constraint on the rigid body that involves the position vector and the
orientation vector,

C(x(t), q(t))= 0 (6.123)

which is true for all time t .
Recall from Section 2.2.2 that the world position of a time-varying point in a rigid

body is of the form

p(t) = x(t)+R(t)b = x(t)+ r(t)

where x(t) is the time-varying center of mass, R(t) is the time-varying orientation of
the point about the center of mass, and b is the body coordinates of the point. The
offset of the point from the center of mass is r(t)= R(t)b.

In practice, a constraint on the rigid body involves center of mass x and orien-
tation R. However, the equations of motion are ẋ= v and q̇ = ωq/2, where v is the
linear velocity, q = q0+ q1i + q2j+ q3k is the unit quaternion that represents R, and
ω = w1i +w2j +w3k is the not-necessarily-unit quaternion that represents the angu-
lar velocity. Although the orientation differential equation introduces i, j, and k , the
constraint itself may be thought of as C(x, R)= 0 and does not contain i, j, or k
terms.

Let us eliminate the quaternion notation, choosing instead to represent q by q=
(q0 , q1, q2, q3) and ω by w= (w1, w2, w3). Some algebra will show that in vector form,

520 Chapter 6 Physics Engines

the orientation differential equation is

q̇ =

⎡
⎢⎢⎢⎣

q̇0

q̇1

q̇2

q̇3

⎤
⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎣
−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

⎤
⎥⎥⎥⎦
⎡
⎢⎣

w1

w2

w3

⎤
⎥⎦ = 1

2
Qw (6.124)

where the last equality defines the 4× 3 matrix Q. Observe that QTQ = I , the 3× 3
identity.

Also recall that the relationship between a rotation matrix R and the quaternion
q representing it is

R =

⎡
⎢⎢⎣

1− 2q2
2 − 2q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2+ q0q3) 1− 2q2
1 − 2q2

3 2(q2q3 − q0q1)

2(q1q3− q0q2) 2(q2q3 + q0q1) 1− 2q2
1 − 2q2

2

⎤
⎥⎥⎦ (6.125)

Any constraint involving R can replace it with this matrix that contains entries from
q, in which case we need only consider constraints of the form in equation (6.123).

First Derivative of Constraint

The time derivative of C(x, q)= 0 must also be equal to zero for all t ,

0= Ċ = ∂C

∂x
ẋ+ ∂C

∂q
q̇ =

[
∂C

∂x

∂C

∂q

][
ẋ
q̇

]

where ∂C/∂x denotes the 1× 3 vector of the first-order partial derivatives of C with
respect to the components of x. The symbol ∂C/∂q denotes the 1× 4 vector of the
first-order partial derivatives of C with respect to the components of q. The right-
most equality is a factorization into a matrix times a vector. The matrix stores the
first-order partial derivatives of C . You should recall that this is the Jacobian matrix
for C .

The vector in the factorization stores the linear velocity in its first component.
However, the second component is the rate of change of orientation. Velocity-based
methods insist that the linear velocity and angular velocity be stored explicitly. We
must make use of equation (6.124) and factor once more,

0= Ċ =
[

∂C

∂x

1

2

∂C

∂q
Q

][
v
w

]
= GV (6.126)

where we define

G =
[

∂C

∂x

1

2

∂C

∂q
Q

]
, V =

[
v
w

]

Please observe that G is not the Jacobian matrix of C . Equation (6.126) is the extension
of equation (6.107) from a particle to a rigid body.

6.7 Velocity-Based Constrained Motion 521

Second Derivative of Constraint

The second-order time derivative of C must be zero for all t ,

C̈ = ∂C

∂x
ẍ+ ∂Ċ

∂x
ẋ+ ∂C

∂q
q̈+ ∂Ċ

∂q
q̇

= ∂C

∂x
ẍ+ ẋT

(
∂2C

∂x2
ẋ+ ∂2C

∂x∂q
q̇

)
+ ∂C

∂q
q̈+ q̇T

(
∂2C

∂q∂x
ẋ+ ∂2C

∂q2
q̇

)

= ∂C

∂x
ẍ+ ∂C

∂q
q̈+ ẋT ∂2C

∂x2
ẋ+ 2ẋT ∂2C

∂x ∂q
q̇+ q̇T ∂2C

∂q2
q̇

where ∂2C/∂x2 is the 3× 3 matrix of second-order partial derivatives of C with
respect to the components of x, ∂2C/∂q2 is the 4× 4 matrix of second-order par-
tial derivatives of C with respect to the components of q, ∂2C/∂xq is the 3× 4 matrix
of second-order mixed partial derivatives of C , and (∂2C/∂q∂x)T = ∂2C/∂x∂q.

We know that ẋ= v, so it is trivial to obtain the equation v̇= ẍ. We also know
that q̇ =Qw/2 and want to derive a formula for q̈ that includes the term ẇ. Let us
use tensor index notation to do so. The quaternion equation of motion is

q̇i = 1

2
Qijwj

where qi are the entries of q, Qij are the entries of the matrix Q, and wj are the entries
of w. The repeated index j indicates that you sum over it. The index i is a free index.

Observe that the entries of Q are individual components of q with positive or
negative signs. We can use a triply indexed tensor to write Q as

Qij = σijkqk

where the repeated index k indicates that you sum over it. The indices i and j are free
indices. The tensor Sijk has 48 entries: i has 4 values, j has 3 values, and k has 4 values,
for a total of 4 ∗ 3 ∗ 4 entries. Of these entries, 36 are zero, 6 are +1, and 6 are −1.
Using zero-based indexing, the +1 entries are σ100, σ113, σ210, σ221, σ302, and σ320.
The −1 entries are σ001, σ012, σ023, σ122, σ203, and σ311. Thus,

q̇i = 1

2
σijkwj qk

Computing the time derivative,

q̈i = 1

2
σijk
(
ẇj qk +wj q̇k

)= 1

2
σijkqk ẇj + 1

4
σijkwj Qk�w� = 1

2
Qijẇj + 1

4
σijkwj Qk�w�

If we define Cq,i to be the ith component of ∂C/∂q and matrix A to have components
Aj� = Cq,iσijkQk�, then

∂C

∂q
q̈ = 1

2

∂C

∂q
Qẇ+ 1

4
wTAw

522 Chapter 6 Physics Engines

Some tedious calculations will show the following. Define di to be the ith component
of ∂C/∂q; then

A =
⎡
⎢⎣
−d0q0 − d1q1 − d2q2− d3q3 −d0q3 − d1q2 + d2q1+ d3q0 d0q2 − d1q3 − d2q0+ d3q1

d0q3 + d1q2 − d2q1+ d3q0 −d0q0 − d1q1 − d2q2− d3q3 −d0q1 + d1q0 − d2q3+ d3q2

−d0q2 + d1q3 + d2q0− d3q1 d0q1 − d1q0 + d2q3− d3q2 −d0q0 − d1q1 − d2q2− d3q3

⎤
⎥⎦

= ∂C

∂q
qI + S

where S is a skew-symmetric matrix. Consequently,

wTAw =−∂C

∂q
q wTw

Substituting the formulas for q̇ and q̈ into the equation for C̈ leads to

C̈ =
[

∂C

∂x

1

2

∂C

∂q
Q

][
v̇
ẇ

]

+[vT wT
]
⎡
⎢⎢⎢⎣

∂2C

∂x2

1

2

∂2C

∂x∂q
Q

1

2
QT

(
∂2C

∂x ∂q

)T
1

4
QT

(
∂2C

∂q2
− ∂C

∂q
qI

)
Q

⎤
⎥⎥⎥⎦
[

v

w

]

= GV̇+VTH V

(6.127)

This is the extension of equation (6.108) for a single particle to a rigid body. The
matrix G is not the Jacobian matrix of C and the matrix H is not the Hessian matrix
of C .

6.7.4 Constraints on a Rigid Body System

The ideas of Section 6.7.3 apply to a system of n rigid bodies.

Rigid Body Constraints

Let rigid body i have mass mi , inertia tensor Ji in world coordinates, time-varying
center of mass xi , and orientation vector qi . We allow constraints between pairs of
rigid bodies. The kth constraint is of the form

Ck(xik , qik
, xjk , qjk

)= 0

6.7 Velocity-Based Constrained Motion 523

and represents the restrictions between the rigid bodies of index ik and jk . Let x
store consecutively the positions xi and q store consecutively the orientations qi . The
constraint function can be written as Ck (x, q), but it is understood that only two of
the rigid bodies are allowed to take part in the constraint. Assuming m constraints,
an m× 1 vector C(x, q) may be used to store them. The vector-valued constraint
equation is

C(x, q)= 0 (6.128)

This is the extension of equation (6.123) for one rigid body to a system of rigid
bodies.

The first-order time derivative must be equal to zero for all time t and is of the
form

0= Ċ= GV (6.129)

where

V=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

w1

...

vn

wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The matrix G is not the Jacobian matrix of C. We already saw this for a single rigid
body (see Section 6.7.3). This is the extension of equation (6.123) for one rigid body
to a system of rigid bodies.

The second-order time derivative must be equal to zero for all time t and is of the
form

0= C̈= GV̇+VTH V (6.130)

where H is a triply indexed tensor that is not the Hessian tensor of C (see
Section 6.7.3).

Equations of Motion

The rigid body with index i has mass mi and inertia tensor Ji in world coordinates.
Equation (6.66) shows how the inertia tensor in body coordinates relates to the inertia
tensor in world coordinates. Specifically, if Bi is the inertia tensor in body coor-
dinates, then Ji = R(t)Bi R(t)T . The tensor Bi is a matrix of constants for a rigid
body.

524 Chapter 6 Physics Engines

An external force on the body is Fi and an external torque on the body is τ i . These
may be summarized as a single 6n× 1 vector,

F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1

τ 1

...

Fn

τn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.131)

Body i also has an internal reaction force F̂i and an internal reaction torque τ̂ i . These
may be summarized as a single vector,

F̂=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̂1

τ̂ 1

...

F̂n

τ̂n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.132)

For the body i, Newton’s equations of motion are

d(mi vi)

dt
= Fi + F̂i ,

d(Ji wi)

dt
= τ i + τ̂ i

These are mentioned in equations (6.62) and (6.65). The left-hand side of the second
of these equations expands to

d(Ji wi)

dt
= Ji ẇi + J̇i w

with

J̇i = d

dt

(
RBiR

T
)

= RBi Ṙ
T+ ṘBi R

T

= RBi(Skew(wi)R)T+ (Skew(wi)R)Bi RT

= RBi R
TSkew(wi)

T+ Skew(wi)
(
RBi R

T
)

= Ji Skew(wi)
T+ Skew(wi)Ji

and

J̇i wi = Ji Skew(wi)
Twi + Skew(wi)Ji wi

=−Ji wi ×wi +wi × Ji wi

= wi × Ji wi

6.7 Velocity-Based Constrained Motion 525

The right-hand side of the previous equality is referred to as the inertial torque. It is
assumed to be negligible in this application. Thus, the equations of motion become

mi v̇i = Fi + F̂i , Ji ẇi = τ i + τ̂ i

The masses and inertia tensors may be stored in a diagonal matrix,

M = Diag (m1I , J1, · · · , mnI , Jn)

where I is the 3× 3 identity matrix. The equations of motion for all the rigid bodies
are summarized by

M V̇ = F+ F̂

GV = 0
(6.133)

Equation (6.133) may be substituted into equation (6.130) to obtain

0= GM−1(F+ F̂)+VTH V (6.134)

As in the case for a system of particles, we want to formulate an expression for F̂ and
then substitute this into equation (6.134) to help solve for the constraint force.

Computing the Constraint Force

The principle of virtual work applies, so the constraint force does no work in the veloc-
ity direction, which means that this force has components orthogonal to the velocity
components. Equation (6.129) implies that V is in kernel(G). F̂ must be orthogonal
to V, so by the fundamental theorem of linear algebra (see Section 7.4.7), F̂ must be
in range(GT), which implies

F̂= GTλ (6.135)

for some unknown m× 1 vector λ.
Substitute equation (6.135) into equation (6.134) and rearrange terms to obtain

GM−1GTλ=−(GM−1F+VTH V
)

(6.136)

As in the case of particle systems, the matrix GM−1GT is usually not invertible, and
there are in fact infinitely many solutions λ. We may use an iterative method such as
Gauss–Seidel iteration to compute a solution (see Section 7.2.6).

6.7.5 Comments and Variations on the Algorithm

The ideas of the previous sections are briefly summarized in [Cat05]. However, the
paper does not consider computing the Hessian tensor H as we have done previously.
I will discuss briefly the comments and variations on the algorithm presented in the

526 Chapter 6 Physics Engines

paper. The terminology changes slightly. First, the paper uses J instead of G and calls
J the Jacobian matrix of C (which it is not) – I will continue to use G. Second, the
paper mentions the orientation differential equation q̇ = qω/2. To be consistent with
the representation of rigid body world positions p= x+Rb, it is necessary to use
q̇ = ωq/2. The comments and variations include

• The constraints are simple enough that the matrix G may be computed by
differentiating directly rather than applying a chain rule.

• A data structure is presented to show how to take advantage of the sparseness of
G, which helps reduce memory usage and increases performance.

• Inequality constraints are allowed so that joint angles and contact points can be
handled. The inequalities, however, are specified for the components of λ.

• A constraint bias is allowed, which means allowing GV = ζ �= 0. A consequence is
that the constraint force can do work.

• The contact model allows interpenetration of bodies and deals with this appro-
priately.

• The friction model encapsulates both static and dynamic friction.

• A time-stepping algorithm is used to solve for λ. This turns out to be an approxi-
mation to equation (6.136), so the algorithm described in previous sections here
is slightly different from that of the paper.

• A contact caching scheme is presented to help with robustness and increase
performance of the algorithm.

Computing G Directly

An example in [Cat05] illustrates the direct calculation of G where the world posi-
tions of two body points, one per rigid body in the pair generating the constraint, are
required to be separated by L units of distance. The constraint is

C = 1

2

(|p2−p1|2− L2
)= 0

where p1 = x1+R1b1 and p2 = x2 +R2b2. The time derivative of the constraint
function is

Ċ = (p2−p1) · (ṗ2− ṗ1)

= (p2−p1) · (v2+w2× r2 − v1 −w1× r1)

= [−�T −(r1×�)T �T (r2 ×�)T
]
⎡
⎢⎢⎢⎣

v1

w1

v2

w2

⎤
⎥⎥⎥⎦

6.7 Velocity-Based Constrained Motion 527

where �= p2−p1. The matrix G is

G = [−�T −(r1×�)T �T (r2×�)T
]

(6.137)

and depends implicitly on x1, q1, x2, and q2.

Data Structure for a Sparse Matrix

Recall that the first-order time derivative of the kth constraint function is the
following, written in tensor index notation,

Ċk = C (x)

k,i ẋi +C
(q)

k,i q̇i

where C (x)
k,i is the tensor representing ∂Ck/∂x and C

(q)

k,i is the tensor representing
∂Ck/∂q. The index i is repeated, so it is summed over. Only rigid bodies ik and jk
take part in the constraint, so the summations have only four terms,

Ċk = C (x)
k,ik

ẋik +C
(q)

k,ik
q̇ik
+C (x)

k,jk
ẋjk +C

(q)

k,jk
q̇jk

Therefore, the kth row of G has only four nonzero entries. The kth row of G is[
0 · · · 0

∂Ck

∂xik

1

2

∂Ck

∂qik

Qik 0 · · · 0
∂Ck

∂xjk

1

2

∂Ck

∂qjk

Qjk 0 · · · 0

]

The matrix G is therefore sparse. To use the minimum amount of memory to
store G, we need some mapping data structures. The body map is the m× 2 matrix
that stores the ik and jk indices for each of the m constraints,

Bmap =

⎡
⎢⎢⎣

i1 j1
...

...

im jm

⎤
⎥⎥⎦

Each row Gk contains 12 nonzero entries. The vector ∂Ck/∂xik is 1× 3, repre-
senting 3 of the nonzero entries. The vector ∂Ck/∂qik

is 1× 4 and Qik is 4× 3, so the
product is 1× 3, representing 3 more nonzero entries. The 2 terms corresponding to
jk bring the total entries to 12. We can store all the nonzero entries in an m× 4 block
matrix whose entries are 1× 3 vectors,

Gmap =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂C1

∂xi1

1

2

∂C1

∂qi1

Qi0

∂C1

∂xj1

1

2

∂C1

∂qj1

Qj0

...
...

...
...

∂Cm

∂xim

1

2

∂Cm

∂qim

Qim

∂Cm

∂xjm

1

2

∂Cm

∂qjm

Qjm

⎤
⎥⎥⎥⎥⎥⎥⎦

528 Chapter 6 Physics Engines

Pseudocode for computing Ċ= GV is

float Cdot[m];
for (int k = 1; k <= m; ++k)
{

int i_k = Bmap[k][1];
int j_k = Bmap[k][2];
Cdot[k] =

Gmap[k][1]*linvel[i_k]) + Gmap[k][2]*angvel[i_k] +
Gmap[k][3]*linvel[j_k] + Gmap[k][4]*angvel[j_k];

}

The multiplications are between 1× 3 vectors and 3× 1 vectors, so they are really
dot products. The computational work done inside the loop takes constant time, so
the pseudocode is O(m), which is linear in the number of constraints. Of course,
m = O(n2), which says the number of constraints is in worst case quadratic in the
number of rigid bodies. In practice, worstcase behavior is not expected (otherwise,
redesign your game to reduce the number of interacting objects).

Computing the constraint force F̂= GTλ is an O(m+ n) process. Pseudocode is

Vector3 Fhat[2*n]; // force and torque per rigid body
for (int i = 1; i <= n; ++i)
{

Fhat[2*i - 1] = Vector3::ZERO;
Fhat[2*i] = Vector3::ZERO;

}
for (int k = 1; k <= m; ++k)
{

int i_k = Bmap[k][1];
int j_k = Bmap[k][2];
FHat[2*i_k - 1] += lambda[k]*Gmap[k][1]; // force
FHat[2*i_k] += lambda[k]*Gmap[k][2]; // torque
FHat[2*j_k - 1] += lambda[k]*Gmap[k][3]; // force
FHat[2*j_k] += lambda[k]*Gmap[k][4]; // torque

}

Inequality Constraints

The discussion in this section has been all about equality constraints. Inequality con-
straints must also be allowed to handle things like contact points during collision and
joint angle limits. [Cat05] introduces this by allowing inequalities on the components
of λ; that is, a bounding interval [λ−i ,λ+i] may be specified for each component: λ−i ≤
λi ≤ λ+i . An equality constraint uses the entire real line, λi ∈ (−∞,+∞). Inequality
constraints have intervals that are not the entire real line, although it is not specifed
in the paper how you convert joint angle limits (conditions on constraint Ci) to an
interval (λ−i ,λ+i).

When inequalities are introduced for the λi , the Gauss–Seidel iterations applied
to equation (6.136) are not guaranteed to produce a solution that meets those

6.7 Velocity-Based Constrained Motion 529

constraints. Instead, you must use projected Gauss–Seidel iterations, which amounts
to clamping the current λ-values to the specified intervals after each iteration.

Constraint Bias

The principle of virtual work is discarded here, and the first-order time derivative
Ċ= GV= 0 is relaxed to allow

GV= ζ �= 0

This has the consequence that the constraint force does work on the rigid bodies. To
verify this, the work is the dot product of constraint force with velocity,

VTF̂= VTGTλ = (GV)Tλ= ζ Tλ �= 0

The vector ζ is called the constraint bias and may be a function of position and time.
This is useful in the context of collision detection where penetration occurs and must
be resolved.

Contact Model

The contact model is similar to that discussed in the acceleration-based dynamics,
but penetration is allowed and must be resolved. Figure 6.51 shows two rigid bodies
in contact at a single point.

The constraint function is the object separation measured as a signed distance
along the normal direction N1,

C = (x2+ r2− x1− r1) · N1

x2

r2

N1

r1

x1

K

Figure 6.51 Two rigid bodies in contact at point K. The centers of mass are xi and the offsets to
the contact point are ri . The normal N1 is for rigid body 1.

530 Chapter 6 Physics Engines

Observe that C > 0 when the objects are separated, C = 0 when the objects are just
touching, and C < 0 when the objects are overlapping (so there is penetration). The
inequality constraint we want satisfied is C ≥ 0.

The first-order time derivative of the constraint function is computed using the
product rule

Ċ = (v2 +w2× r2− v1−w1× r1) · N1+ (x2+ r2− x1− r1) · w×N1

We used Ṅ1 = w×N1, which follows from N1 = R(t)b1 for some body vector b1.
The derivative is

Ṅ1 = Ṙb1 = Skew(w)Rb1 = Skew(w)N1 = w×N1

In a simulation, the overlap is small, so the term

(x2 + r2 − x1− r1) · w×N1

itself is small and considered negligible – so it is discarded from the Ċ equation. The
matrix G is determined by factoring the Ċ equation,

GV = [−NT
1 −(r1×N1)

T NT
1 (r2×N1)

T
]
⎡
⎢⎢⎢⎣

v1

w1

v2

w2

⎤
⎥⎥⎥⎦

The inequality for the λ component corresponding to the constraint force of the
constraint is based on the following: The constraint force, which is parallel to N1,
must push the overlapping bodies apart but not pull them together. This implies 0 ≤
λ <∞.

To undo any penetration, a Baumgarte scheme [Bau72] is used to push the bodies
apart. A constraint bias is used,

Ċ = GV =−βC

where β is a constant that needs to be tuned for the method to work and where C
is the constraint function. The equation Ċ +βC = 0 is a first-order linear differen-
tial equation whose solution is C(t)= C(0)exp(−βt). Since C < 0 when penetration
occurs, we want C to vary towards zero over time, which forces β > 0. The con-
straint is part of the numerical differential equation solver, so we will solve Ċ +
βC = 0 numerically. Using Euler’s method, a simple analysis shows the numerical
solver is stable as long as 0 < β < 2/�t for time step �t > 0 (see, for example,
[BF01]). In practice, β should be chosen small enough for numerical stability but
large enough to guarantee the penetration is undone over a reasonable amount of
time.

6.7 Velocity-Based Constrained Motion 531

Friction Model

A simplified friction model is used that treats static and dynamic friction in the same
way. If N is the contact normal at a contact point, two unit-length vectors U1 and
U2 are chosen so that {U1, U2, N} is a right-handed orthonormal set. The friction
force needs to prevent motion in the two tangential directions. Similar to how we
formulated the constraint for the contact model, the time derivatives of the constraint
functions are

Ċ1 = (v2+w2× r2− v1−w1× r1) · U1

Ċ2 = (v2+w2× r2− v1−w1× r1) · U2

By factoring, we have

GV=
[−UT

1 −(r1×U1)
T UT

1 (r2×U1)
T

−UT
2 −(r1×U2)

T UT
2 (r2×U2)

T

]⎡⎢⎢⎢⎣
v1

w1

v2

w2

⎤
⎥⎥⎥⎦

In practice it appears that there is no need for a constraint bias.
Coulomb’s friction law requires the static and dynamic frictions to have magni-

tudes bounded by the normal force magnitude, thereby coupling the constraint force
λ terms. To avoid this complication, a simplified model is used,

−μmc g ≤ λ1 ≤ μmc g , −μmc g ≤ λ2 ≤ μmc g

where μ is the friction coefficient used both for static and dynamic friction (this is
not the case for standard friction models). Each contact point is assigned some mass
mc . The typical choice is to distribute the mass uniformly among the contact points
between the two interacting bodies.

Time Stepping

The equations of motion for the rigid body system are

M V̇= F+ F̂

subject to the constraints GV = ζ , where the constraint bias is included. In the section
on computing the constraint force for a system of rigid bodies, I solved for V̇ in the
equations of motion and substituted into the second-order time derivative of the
constraints to obtain

GM−1GTλ=−(GM−1F+VTH V
)

where H is the Hessian tensor for the constraints. This system of equations may be
solved using projected Gauss–Seidel iterations (so inequality constraints are allowed).

532 Chapter 6 Physics Engines

[Cat05] has an alternate approach. A first-order finite difference approximation
is used for V̇, namely,

V̇
.= V(2)−V(1)

�t

where �t is the time step, V(1) is the velocity at the current time, and V(2) is the new
velocity that we need to compute. With the approximation, the equations of motion
become

V(2) = V(1)+�tM−1
(

F+GTλ
)

To satisfy the constraints (with bias), use GV(2) = ζ ; then

ζ = GV(1)+�tGM−1 (F+GTλ
)

The equation may be rearranged to

GM−1GTλ = ζ −GV(1)

�t
−GM−1F

and a solution is computed using projected Gauss–Seidel iterations.
The solution λ is substituted into the equation for V(2) = (v(2), w(2)). The posi-

tion and orientation are updated using standard first-order approximations to the
differential equations of motion, namely,

x(2) = x(1)+�t v(2), q(2) = q(1)+ �t

2
Q(1)w(2)

The integration scheme is semi-implicit Euler (symplectic Euler), because the new
velocity is used to update the position. This integration scheme has good stability
and conservation properties. That said, it would be of interest to compare this to the
method that does not approximate V̇ and uses instead the quadratic term VTH V in
the linear system for λ.

Contact Caching

The projected Gauss–Seidel iterations may be slow to converge. The algorithms as
stated here do not take advantage of space-time coherency for specifying the initial
iterate λ0 in the linear system solving. [Cat05] describes a sophisticated scheme that
caches contact points from the last frame. If possible, these are used to choose the
initial values for λ0; otherwise, the initial values are set to zero. I leave it as an exercise
for you to read the paper for the details of caching.

6.8 Variations 533

Mixed Linear Complementarity Problem

The algorithms in this section are considered to be mixed linear complementarity
problems (MLCP). They are of the form

ν = GM−1GTλ− η

λ− ≤ λ ≤ λ+

νi = 0 if and only if λ−i ≤ λi ≤ λ+i
λi = λ−i if and only if νi ≥ 0

λi = λ+i if and only if νi ≤ 0

where ν is referred to as the constraint velocity. The first two lines are part of the algo-
rithms, regardless of whether you use the Hessian tensor term or the approximation
of [Cat05]. The last three lines are complementarity conditions. The third line says the
constraint can be satisfied as long as the λ component is within its interval bound. The
last two lines state that the λ component will reach its bound only if the constraint is
voiolated. For more details on MLCPs, see [CPS92].

6.8 Variations

Some of Chapter 6 has been about how to architect a general rigid body simula-
tion using Newton’s second law of motion, F=ma, and its implications for how
position, orientation, linear velocity/momentum, and angular velocity/momentum
change over time. In particular, a simulation based on impulsive forces to adjust linear
and angular velocities and to prevent interpenetration and based on resting contact
forces to prevent interpenetration was covered in detail. The simulation relies on a
collision detection system to provide information about the constraints of motion.
One requirement for a relatively simple system is that the rigid bodies be convex poly-
hedra. The intersection testing that we discussed uses the method of separating axes,
both for stationary and for moving objects. The goal is for you to assemble a simula-
tion of this type and see how it performs and what its strengths and weaknesses are.
Academic and industrial researchers alike have tried various alternatives in building
rigid body simulations. I briefly discuss a few of them here. References are provided to
papers so that you can explore them once you are comfortable with the architecture
of a simulation system as described in this book.

An alternative to impulsive forces is to use penalty-based methods in order to sat-
isfy nonpenetration constraints. The idea is to track the distance between each pair
of polytopes by maintaining the closest features for each pair [LC91, Lin93, CLMP95,
Mir98]. This is done using Voronoi regions and allows an O(1) update of the features
(temporal and spatial coherence). An algorithm for tracking closest features using

534 Chapter 6 Physics Engines

BSP trees in the style of what was discussed earlier for extremal queries is [GV91]
on multidimensional space partitioning. A recent paper on computing a directional
lookup table for finding extremal points uses O(n) preprocessing time for an O(1)

lookup [EL00]. Instead of using impulsive forces, the system internally modifies the
simulation by adding springs between a pair of closest features that will lead to a col-
liding contact; the forces due to the springs are part of the force/torque calculations in
the differential equation solver. As the distance between the closest features becomes
small, the springs exert repulsive forces between the polytopes owning those features.
A drawback of this approach is that the springs have large constants in the Hooke’s
law model, leading to stiff equations that cause numerical stability problems in the
differential equation solver (see Chapter 13 on Numerical Methods and, in particu-
lar, Sections 13.9 and 13.10 on stability and stiff equations, respectively). Maintaining
nonpenetration is also difficult with this approach.

People have also tried relaxing the constraint of nonpenetration. The differen-
tial equation solver computes the updates for position and orientation and the rigid
bodies are moved. The objects may interpenetrate after the motion. The penetration
distances can be computed for the polytopes and the objects are moved to undo the
penetration. In this approach you need to compute distances between the polyhedra.
The Gilbert-Johnson-Keerthi (GJK) distance algorithm [GJK88, vdB99, vdB01b] or
the enhanced GJK distance algorithm [Cam97] is suitable for this system. The closest
features [LC91] can be tracked to allow fast updating of the distance, another appli-
cation of spatial and temporal coherence. The book [vdB03] covers these concepts in
detail.

Variations have been tried regarding the linear complementarity problem (LCP)
approach. The idea of contact force calculation is revisited in [Bar94], addressing both
the issues of speed and of robustness when frictional forces are present. Nonlinear
complementarity problems (NCP) have also been used to improve the robustness of
calculation of contact forces. Resting contact has problems due to numerical round-
off errors. The paper [BS99] deals with this by formulating the problem as an NCP.
The brief paper [HKL+99] quickly summarizes the mathematics that goes into set-
ting up an NCP problem for contact force calculation and provides pseudocode for
an implementation. The NCP solver itself uses an LCP solver as a subtask. An energy-
based approach for contact force computation is [Fau96]. An iterative scheme is used,
the first pass handling force and torque computations and a global energy calcula-
tion. Subsequent passes redistribute energy about the system of objects. The method
also handles static and sliding friction. A change of paradigm occurs in [RKC02b]
and uses what is called Gauss’ principle of least constraints. The LCP-based method is
referred to as a contact space formulation. The number of degrees of freedom in this
formulation is not explicit. The Gauss principle is formulated in what is called motion
space and makes use of the explicit degrees of freedom to avoid unnecessary calcula-
tions. The abstract idea is that a kinetic norm is computed involving the constrained
acceleration. In the current contact configuration, the norm is minimized to pro-
duce the constrained acceleration that is the closest acceleration to the unconstrained
acceleration.

6.8 Variations 535

A variation on the impulsive force method allows you to simulate friction,
as proposed by Gino van den Bergen [vdB01a] in the Usenet news group,
comp.games.development.programming.algorithms excerpted as follows:

Contacts are resolved using impulses. At the time of collision, I have the contact
points (I use only points, no higher-dimension simplices), a contact normal and a
relative velocity for the contact points. The relative velocity is decomposed into a
normal component and a tangential (along the surface) component. I compute the
impulse in the direction of the normal that will result in the normal component of
the relative velocity being set to zero. (In order to avoid, the objects drifting into
each other, you’ll have to do a correction using translations of the objects, such
that the objects stay in contact, i.e., do not interpenetrate too much.)

I do the same for the tangential component. I compute the impulse that will set
the relative velocity along the surface to zero. However, by applying this impulse,
your objects will stick to the surface. They cannot slip since the friction is infinite.
According to Coulomb’s friction law, there is a maximum to the magnitude of
the friction impulse that is proportional to the magnitude of the normal impulse.
The ratio between the magnitude of the normal impulse and the magnitude of
the maximum friction impulse is the friction coefficient. So, given the normal
impulse, the magnitude of the maximum friction impulse is computed, and if the
magnitude of the tangential impulse is greater than the maximum, the tangen-
tial impulse’s magnitude is set to the maximum. In this way, it is possible to have
slipping objects.

If the need for realism is really high, you should use different friction coefficients
for slipping objects and “sticking” objects (the kinetic friction coefficient is usually
smaller than the static coefficient for the same material), but I reckon that you can
get by with only one coefficient. This is a games newsgroup after all. (Although, I
guess that realistic racing games will use two coefficients for the maximum friction
of the tyres.)

Finally, a lot of research has been done on collision detection systems themselves to
develop fast, accurate, and robust systems. Some of the earliest work was simply based
on algorithms for computing intersections of polyhedra. Nonconvex polyhedra nat-
urally make the problem complicated, but hierarchical bounding volumes provide a
relatively simple intersection system for two polyhedra represented as triangle meshes.
The general idea is to localize where the intersections can occur by rapid culling of
regions where they cannot be. Sphere trees were made popular by [Hub96] whereas
oriented bounding box trees (OBB trees) and the method of separating axes were
made popular by [GLM96]. A paper on hierarchical trees using axis-aligned bounding
boxes is [vdB97]. The Wild Magic source code has an implementation for hierarchi-
cal bounding volumes. A templated class in the system is BoundTree<Mesh,Bound>and
has an interface to support constructing bounding volume trees and supports the
intersection queries. The template types Mesh and Bound must be classes that con-
tained various member functions needed by BoundTree; the requirements are listed
in the comments of the source files. The CollisionGroupand CollisionRecord classes

536 Chapter 6 Physics Engines

support the intersection query using the bounding volume trees of two objects. The
IntersectingCylinder application shows how this collision system is used.

More sophisticated collision detection systems have been developed by one of the
foremost groups in this area, the University of North Carolina GAMMA Research
Group [GAM03]. GAMMA is the acronym for Geometric Algorithms for Modeling,
Motion, and Animation). One of their original systems was RAPID (Robust and
Accurate Polygon Interference Detection), which implements the OBB tree hierar-
chy of [GLM96] and is the basis for the Wild Magic code. RAPID did not use any
coherence for intersection testing. Each test- or find-intersection query started anew
the comparison between two OBB trees. If the tree is sufficiently deep, say 5 or 6 lev-
els deep, the system can spend a lot of time comparing bounding volumes, especially
when the two original triangle meshes are in close proximity to each other. Various
systems have been built by UNC GAMMA over the years to improve on the disad-
vantages of the previous systems. Brief descriptions of some of these are provided
here.

I-COLLIDE is an interactive and exact collision detection system that handles
large environments of convex polyhedra [CLMP95]. Nonconvex polyhedra must be
decomposed into convex polyhedra for this system to apply. The system uses temporal
coherence via Voronoi regions as mentioned earlier in this section [LC91, Lin93]. V-
COLLIDE [HLC+97] is a collision detection system that attempts to be more general
than I-COLLIDE and is designed for environments with a large number of polygo-
nal objects. The input models are allowed to be arbitrary (polygon soups). The system
uses OBB trees as defined in RAPID but uses temporal coherence to speed up the
location of possibly intersecting triangles in the system. The intersection candidate
triangles are then tested for exact intersection. Similarities and differences among
RAPID, I-COLLIDE, and V-COLLIDE are mentioned at [GAM03].

Another alternative intended to be more powerful than I-COLLIDE is SWIFT,
Speedy Walking via Improved Feature Testing [EL00]. This is a package for collision
detection, distance computation, and contact determination for polygonal objects
undergoing rigid motions. The distance calculations can be approximate when the
user specifies an error bound for the distance between objects or it can be exact. The
contact determination uses bounding volume hierarchies and fast updating of closest
features, just as earlier packages at UNC do. An evolution of the package is SWIFT++
[EL01] and it supports nonconvex polyhedra. It also supports a proximity query that
detects whether two objects are closer than a specified tolerance.

Other research at UNC includes DEEP (Dual-space Expansion for Estimating
Penetration depth between convex polytopes) [KLM02]; PIVOT (Proximity
Information from VOronoi Techniques) [IZLM01, IZLM02], systems that use graph-
ics hardware acceleration to support the queries; PQP (Proximity Query Package)
[LGLM99], a system that uses sphere-swept volumes and supports overlap testing,
distance computation, and tolerance verification; and IMMPACT, a system for parti-
tioning and handling massive models for interactive collision detection [WLML99],
where overlap graphs are used for localizing regions of interest. No surprise that IMM-
PACT also uses bounding volume hierarchies and spatial and temporal coherence.

6.8 Variations 537

Recent research regarding speedups, robustness, and accuracy of collision detec-
tion are provided by the following papers.

A non-UNC paper on a variation of I-COLLIDE and V-COLLIDE is called Q-
COLLIDE [CW96], and it uses separating axes to determine intersections rather than
tracking closest features, but still uses spatial and temporal coherence to speed up the
calculations.

An efficient algorithm for collision detection for moving polyhedra is presented
in [ST99]. Generally, it has been accepted that two polyhedra, each of O(n) features
(vertices, edges, or faces), requires O(n2) time to compute collisions. This paper
shows that in the case of translational movements you can compute intersections
in O(n8/5 + ε) time, and in the case of rotational movements you can compute
intersections in O(n5/3 + ε) time; both are aymptotically subquadratic.

The paper [SSW99] describes the following setting. A polyhedron is moved
through an environment that contains fixed polyhedral obstacles. Given a sequence
of prescribed translations and rotations of the single polyhedron, the question is
whether it can follow those transformations without colliding with the obstacles. Inte-
ger arithmetic is used for this algorithm. The maximum number of bits needed for
intermediate calculations is shown to be 14L+ 22 where L is the maximal bit size for
any input value. By knowing the maximum number of bits needed for the intermedi-
ate calculations, you can implement an exact arithmetic library with a fixed number
of bytes for the integer type. The time performance of such a library is better than
one supporting arbitrary precision arithmetic, the latter relying on dynamic memory
management to allocate the integer objects. In a game application that uses floating
point values to represent the data, an interface would be needed to hide the details
of converting the floating point values to integer values needed as input in the exact
arithmetic collision system.

A paper about reducing the time it takes to compute the collision time of two
objects is [RKC00]. Under some restrictions on the object motion, it is shown that
the collision time can be determined by solving polynomial equations of at most
degree 3. A similar reduction to small degree polynomials can be made regarding
the collision of two rotating OBBs. I showed earlier that the collision time of the
intervals of projection of the OBBs onto a potential separating axis is a root to an
equation f (t)= 0, where f (t) involves sinusoidals of different frequencies. By replac-
ing sine and cosine by polynomials with a bounded error of approximation, the
collision time is then computed as the root of a polynomial. Polynomial approxima-
tions to sine and cosine can be found on the CD-ROM in the source directory called
Numerics.

In the discussion of OBBs moving with linear and/or angular velocity, I made
the observation that during the time step of a differential equation solver, you can
assume that an OBB is moving with constant linear velocity and constant angular
velocity as an approximation to the theoretical motion (which you do not know;
that is why the numerical solver is being used). Along these lines the papers [RKC01,
RKC02a] propose arbitrary in-between motions to accurately predict the first time of
contact.

538 Chapter 6 Physics Engines

These variations are by no means exhaustive. I apologize in advance for not
including references to topics that readers believe should have been included here.
An online search of some common terms in game physics (rigid body simulation,
collision detection, etc.) will net you a lot of links. With a solid understanding of
the material in this book, you should be able to quickly identify those links that are
relevant to your pursuit of further knowledge in the field of game physics.

C h a p t e r 7
Linear Algebra

7.1 A Review of Number Systems

7.1.1 The Integers

We are all familiar with various number systems whose properties we take for granted.
The simplest set of numbers is the integers. The basic operations on this set are addi-
tion and multiplication. Each operation takes a pair of integers and produces another
integer. If n and m are integers, then n+m and n · m are integers. The result of
the operation does not depend on the order of the operands: n+m =m+ n and
n · m =m · n. The operations are said to be commutative. When adding or multi-
plying three integers n, m, and p, the grouping of the operands is unimportant:
n+ (m+ p)= (n+m)+ p and n · (m · p)= (n · m) · p. The operations are said to be
associative. Because the grouping is unimportant, we may unambiguously write the
sum as n+m+ p and the product as n · m · p. Multiplication is distributive across
a sum: n · (m+ p)= n · m+ n · p. The number zero is the additive identity in that
n+ 0 = n. Each integer n has an additive inverse −n where n+ (−n) = 0. This con-
cept supports the definition of subtraction of two numbers n and m, namely n−m =
n+ (−m). Finally, the number one is the multiplicative identity in that n · 1= n.

7.1.2 The Rational Numbers

The set of integers is deficient in a sense. Other than the numbers 1 and−1, no integer
has a multiplicative inverse that is itself an integer. If n is an integer such that |n| �= 1,

© 2010 by Elsevier Inc. All rights reserved. 539
DOI: 10.1016/B978-0-12-374903-1.00007-4

540 Chapter 7 Linear Algebra

there is no integer m for which n · m = 1. The remedy for this is to define a superset of
numbers that do have multiplicative inverses within that set. You are also familiar with
this set, the rational numbers, that consists of all ratios n/m where n and m are integers
and m �= 0. A single rational number has many representations, for example 2/5 and
4/10 represent the same number. The standard representative is one for which the
greatest common divisor of the numerator and denominator is 1. In the example,
the greatest common divisor of 2 and 5 is 1, so this is the standard representative.
The greatest common divisior of 4 and 10 is 2, so this number is not the standard,
but can be reduced by dividing both numerator and denominator by 2. An integer n
represented as a rational number is n/1, but for notational convenience, we still use
n to represent the number.

Addition of rational numbers is based on addition of integers. If n1/m1 and n2/m2

are rational numbers, then the sum and product are defined by

n1

m1
+ n2

m2
= n1 · m2 + n2 · m1

m1 · m2
and

n1

m1
· n2

m2
= n1 · n2

m1 · m2

The addition and multiplication operators on the left-hand sides of the definitions
are those for the rational numbers. The addition and multiplication operators on the
right-hand sides of the definitions are those for the integers. The rational operations
have all the properties that the integer operations do: commutative, associative, and
distributive. The rational number 0/1 (or 0 for short) is the additive identity. The
additive inverse of n/m is (−n)/m (or −n/m for short). The rational number 1/1
(or 1 for short) is the multiplicative identity. The multiplicative inverse of n/m with
n �= 0 is m/n.

7.1.3 The Real Numbers

The rational numbers may also be thought of as deficient in the sense that certain
algebraic equations with rational coefficients may not have rational roots. For exam-
ple, the equation 16x2 = 9 has two rational roots, x =±3/4. The equation x2 = 2
does not have rational roots. Looking ahead, we need the concept of irrational num-
bers. The remedy is, once again, to define a superset of numbers, in this case the real
numbers. The formal construction is nontrivial, normally taught in a course on real
analysis, and is not presented here. The construction includes defining the addition
and multiplication operations for real numbers in terms of the operations for rational
numbers. The operations are commutative and associative and multiplication dis-
tributes across addition. The additive identity is the real number 0 and each number
r has an additive inverse denoted −r . The multiplicative identity is the real number
1 and each nonzero number r has a multiplicative inverse denoted 1/r . In this book,
the set of real numbers is denoted by IR.

7.1 A Review of Number Systems 541

7.1.4 The Complex Numbers

And yet one more time we have another deficiency. Algebraic equations with real coef-
ficients may not have real roots. We can now solve x2 = 2 to obtain two real solutions
x =±√2, but x2 =−1 does not have real solutions since the square of a nonzero
real number must be positive. The remedy is to define a subset of numbers, in this
case the complex numbers. The symbol i is defined to be a complex number for which
i2 =−1. Complex numbers are written in the form x + iy , where x and y are real
numbers. Addition is defined by

(x1 + iy1)+ (x2 + iy2)= (x1+ x2)+ i(y1 + y2)

and multiplication is defined by

(x1 + iy1) · (x2+ iy2)= (x1x2− y1y2)+ i(x1y2+ x2y1)

The additive identity is 0+ i0 (or 0 for short). The additive inverse of x + iy is
(−x)+ i(−y) (or −x − iy for short). The multiplicative identity is 1+ i0 (or 1 for
short). The multiplicative inverse of x + iy , assuming not both x and y are zero, is

1

x + iy
= x

x2+ y2
− i

y

x2+ y2

The addition and multiplication operators are commutative and associative and mul-
tiplication distributes across addition. The set of complex numbers is finally complete
in the sense that the roots of any polynomial equation with complex-valued coeffi-
cients are always representable as complex numbers. This result is the fundamental
theorem of algebra.

7.1.5 Fields

The arithmetic properties of the rational numbers, the real numbers, and the complex
numbers may be abstracted. The general concept is a field that consists of a set F of
numbers, an addition operator (+), and a multiplication operator (·) that satisfy the
following axioms. In the axioms, x, y , and z are elements of F .

1. x + y is in F (set is closed under addition).

2. x + y = y + x (addition is commutative).

3. (x + y)+ z = x + (y + z) (addition is associative).

4. There is an element 0 in F such that x + 0 = x for all x in F (additive identity).

5. For each x in F , there is an element −x in F such that x + (−x) = 0 (additive
inverses).

6. x · y is in F (set is closed under multiplication).

542 Chapter 7 Linear Algebra

7. x · y = y · x (multiplication is commutative).

8. (x · y) · z = x · (y · z) (multiplication is associative).

9. x · (y + z)= x · y + x · z (multiplication distributes across addition).

10. There is an element 1 in F such that x · 1= c for all x in F (multiplicative
identity).

11. For each x �= 0 in F , there is an element x−1 such that x · x−1 = 1 (multiplicative
inverses).

This topic and related ones are usually presented in an undergraduate course in
abstract algebra.

7.2 Systems of Linear Equations

Suppose that a1 through am and b are known constants and that x1 through xm are
variables. The equation

a1x1+ · · ·+ amxm = b

is called a linear equation. A common problem in applications is to have to solve a
system of n linear equations in m unknown variables. In most cases n =m, but the
method of solution applies even if this is not the case. As we shall see, the system has no
solutions, one solution, or infinitely many solutions. The method of solution involves
elimination of one variable at a time from the equations. This phase is referred to as
forward elimination. At the end of the phase, the first equation has m variables, the
second equation has m− 1 variables, and so on, the last equation having 1 variable.
The equations are then processed in reversed order to eliminate variables and obtain
the final solution (if any). This phase is referred to as back substitution.

Example
7.1

Here is a simple example for mixing two acid solutions to obtain a desired ratio of
acid to water. Determine how many liters of a 10% and a 15% solution of acid must
be used to produce 3 liters of a 12% solution of acid. Let x and y represent the number
of liters of 10% and 15% solutions, respectively. Intuitively, x > y since 12 is closer to
10 than 15. Two conservation rules apply. Conservation of volume implies

x + y = 3
Liters of 10% solution Liters of 15% solution Liters of 12% solution

Conservation of acid implies

0.10x + 0.15y = 0.12(3)
Acid in 10% solution Acid in 15% solution Acid in 12% solution

Thus, we have two equations in two unknowns, x + y = 3 and 0.10x + 0.15y = 0.36.
Forward elimination is used to remove x from the second equation. The first equation

7.2 Systems of Linear Equations 543

implies x = 3− y . Substitute in the second equation to eliminate x and obtain
0.36= 0.10(3− y)+ 0.15y = 0.05y + 0.30. The last equation is solved for y = 6/5.
Back substitution is used to replace the occurrence of y in the first equation, x =
3− 6/5= 9/5. The final answer is that 9/5 liters of the 10% solution and 6/5 liters of
the 15% solution combine to produce 3 liters of the 12% solution. ■

Example
7.2

Here is an example of a system of three linear equations in three unknowns:
(1) x + y + z = 6, (2) x + 2y + 2z = 11, and (3) 2x + 3y − 4z = 3. The forward elim-
ination process is applied first. Use the first equation to eliminate x in the other
equations. Multiply equation 1 by−1 and add to equation 2:

−x − y − z = −6

x + 2y + 2z = 11

y + z = 5

Multiply equation 1 by−2 and add to equation 3:

−2x − 2y − 2z = −12

2x + 3y − 4z = 3

y − 6z = −9

We now have two equations in two unknowns: y + z = 5 and y − 6z =−9. Multiply
equation 1 by−1 and add to equation 2:

−y − z = −5

y − 6z = −9

− 7z = −14

We now have one equation in one unknown: −7z = 14. In summary, forward elim-
ination has produced the equations x + y + z = 6, y + z = 5, and −7z = 14. Back
substitution is the next process. Solve equation 3 for z = 2. Substitute this z value in
equation 2, 5= y + z = y + 2, and solve for y = 3. Substitute the z and y values in
equation 1, 6= x + y + z = x + 3+ 2, and solve for x = 1. The system has a single
solution x = 1, y = 3, and z = 2. ■

There are a couple of snags that can be encountered in forward elimination. The
next two examples illustrate these and how to get around them.

Example
7.3

In this example, the right-hand side values are unimportant in the illustration. We
simply put asterisks in these places. Consider

x + y + z = ∗
2x + 2y + 5z = ∗
4x + 6y + 8z = ∗

544 Chapter 7 Linear Algebra

(Example 7.3
continued)

Use equation 1 to eliminate x from equations 2 and 3. Multiply equation 1 by−1 and
add to equation 2. Multiply equation 1 by −4 and add to equation 3 to obtain the
system

x + y + z = ∗
+ 3z = ∗

2y + 4z = ∗
There is no y-term in equation 2, so you cannot use it to eliminate the y-term in
equation 3. In order to continue the formal elimination process, you must swap the
last two equations. The swap has no effect on the algebraic process of solving the
equations, but it is convenient in establishing an algorithm that a computer could use
in solving systems. After swapping we have

x + y + z = ∗
2y + 4z = ∗

3z = ∗
Forward elimination is now complete and back substitution may be applied to obtain
a solution. ■

Example
7.4

In the following system, the constants on the right-hand sides of the equation are
denoted a, b, and c , but are still considered to be known values:

x + y + z = a

2x + 2y + 5z = b

4x + 4y + 8z = c

Use equation 1 to eliminate x from equations 2 and 3. Multiply equation 1 by−2 and
add to equation 2. Multiply equation 1 by −4 and add to equation 3. The resulting
system is

x + y + z = a

3z = b− 2a

4z = c − 4a

There is no y-term in either equation 2 or 3. Instead we proceed to the next variable,
z , in the second equation and use it to eliminate z in the third equation. Multiply
equation 2 by−4/3 and add to equation 3.

x + y + z = a

3z = b− 2a

0 = (c − 4a)− 4(b− 2a)/3

The last equation contains none of the original variables, but nonetheless must still be
a true statement. That is, the constants a, b, and c , whatever they might be, must satisfy

7.2 Systems of Linear Equations 545

(c − 4a)− 4(b − 2a)/3= 0. If they do not, the system of equations has no solutions;
no choice of x, y , and z can force the last equation to be true. For example, if a = 1,
b =−1, and c = 1, (c − 4a)− 4(b − 2a)/3= 1 �= 0, and the system has no solutions.
If the constants do satisfy the last equation, the first two equations can be manipulated
further. The second equation is solved for z = (b− 2a)/3. Replacing this in the first
equation and moving the constant terms to the right-hand side, we have

x + y = a− (b− 2a)/3= (5a− b)/3

One of the variables may be freely chosen, the other variable depending on the choice.
If y is freely chosen, then x = (5a− b)/3− y . There are infinitely many choices for
y (any real number), so the system of equations has infinitely many solutions. For
example, if a = 1, b =−1, and c = 0, (c − 4a)− 4(b − 2a)/3= 0 and the solutions
are tabulated as

(x, y , z)= (−y + 2, y ,−1)= y(−1, 1, 0)+ (2, 0,−1)

which emphasizes the dependence on the free parameter y . ■

7.2.1 A Closer Look at Two Equations in Two Unknowns

Let us take a closer look at the forward elimination for a system of two equations,

a11x1+ a12x2 = b1

a21x1+ a22x2 = b2

The coefficients aij and the right-hand sides bj are known constants. The xj are the
unknowns. For the sake of argument, assume a11 �= 0 so that no row swapping is
needed. To eliminate x1 from equation 2, multiply equation 1 by a21/a11 and subtract
from equation 2. The resulting system is

a11x1 + (a12)x2 = b1(
a22− a12 ∗ a21

a11

)
x2 = b2− b1 ∗ a21

a11

Observe that you do not need to compute a21− a11 ∗ a21/a11 since the multiplier was
chosen so that this term is zero. To solve using back substitution, solve the second
equation for x2:

x2 =
b2− b1 ∗ a21

a11

a22− a12 ∗ a21
a11

Substitute this in the first equation and solve for x1:

x1 = b1− a12 ∗ x2

a11

546 Chapter 7 Linear Algebra

The method of solution needs to be implemented for a computer. A practical con-
cern is the amount of time required to compute a solution. The number of cycles for
floating point addition/subtraction, multiplication, and division can vary on differ-
ent processors. Historically, additions and subtractions were the fastest to compute,
multiplication somewhat slower, and division the slowest. A speedy implementation
had to be concerned about the cycle counts for the operations, sometimes replacing
the slower operations with fast ones. For example, if addition requires α cycles and
multiplication requires μ cycles, then the floating point expression 2*x requires μ

cycles to compute. The expression written instead as x+x requires α cycles. If α < μ,
then the application most likely would choose to use the latter expression. A variation
on this is to compute 3*x using μ cycles or x+x+x using 2α cycles. Again, if the cost
for an addition is less than half that for a multiplication, then the latter expression is
a better choice for speed.

A more interesting example is in the product of two complex numbers,
(a + bi) ∗ (c + di) = (a ∗ c − b ∗ d)+ (a ∗ d + b ∗ c)i. The expression on the right-
hand side requires four multiplications and two additions for a cost of 4μ+ 2α cycles.
An alternate form of the right-hand side is (d ∗ (a− b)+ a ∗ (c − d))+ (d ∗ (a−
b)+ b ∗ (c + d))i. The expression d ∗ (a− b) is common to the real and imaginary
parts, so only needs to be computed once. The alternate form requires 3 multiplica-
tions and 5 additions for a cost of 3μ+ 5α. As long as an addition is less than one
third the cost of a multiplication, the alternate form is cheaper to compute.

On some current-generation processors, additions and multiplications require
the same number of cycles. Tricks of the form discussed previously are no longer of use
in this setting. In fact, as hardware has evolved to eliminate the disparity between cycle
counts for basic arithmetic operations, other issues have become important. Inexpen-
sive comparisons were once used to steer the flow of computation along a path that
minimizes the cycle count for arithmetic operations. Now comparisons can be more
expensive to compute than additions or multiplications, so the steering might lead
to a larger cycle count than by just using a direct path. Cache misses, floating point
stalls, branch penalties, parallel integer and floating point units, and a collection of
other issues must be dealt with when implementing algorithms. They will certainly
make your programming life interesting!

Well, that was a long digression. How does it relate to linear systems? In the exam-
ple of a system of two equations, the expressions that are computed, in order, are listed
below:

1. Compute c1 = a21/a11.

2. Compute d1 = a22− a12 ∗ c1.

3. Compute e1 = b2− b1 ∗ c1.

4. Solve for x2 = e1/d1.

5. Compute f1 = b1− a12 ∗ x2.

6. Solve for x1 = f1/a11.

7.2 Systems of Linear Equations 547

The algorithm requires three additions, three multiplications, and three divisions.
Division is still typically more expensive to compute than additions and multipli-
cations, so you might try to eliminate them (if possible). Convince yourself that the
following sequence also leads to a solution:

1. Compute c2 = a11 ∗ a22− a21 ∗ a12.

2. Compute d2 = a11 ∗ b2− a21 ∗ b1.

3. Solve for x2 = c2/d2.

4. Compute e2 = b1− a12 ∗ x2.

5. Solve for x1 = e2/a11.

This algorithm requires three additions, five multiplications, and two divisions. The
trade-off is that one division has been replaced by two multiplications. Whether that
is a reduction in cycles depends on your processor. On most current processors, it is.

Other time-saving options depend on how you plan on using the solution (x1, x2).
For example, if your application needs only to compare the solution to see if it lies in
a rectangle, the divisions are not required at all. Suppose the comparisons to be tested
are x1 ∈ [u1, v1] and x2 ∈ [u2, v2]. The pseudocode using x1 and x2 directly is

bool Contains (float x1, float x2, float u1, float v1, float u2,
float v2)

{
return u1 <= x1 && x1 <= v1 && u2 <= x2 && x2 <= v2;

}

The divisions can be avoided:

bool Contains (float e2, float a11, float c2, float d2, float u1,
float v1, float u2, float v2)

{
if (a11 > 0)
{

if (d2 > 0)
{

return a11 * u1 <= e2 && e2 <= a11 * v1
&& d2 * u2 <= c2 && c2 <= d2 * v2;

}
else
{

return a11 * u1 >= e2 && e2 >= a11 * v1
&& d2 * u2 >= c2 && c2 >= d2 * v2;

}
}
else
{

if (d2 > 0)

548 Chapter 7 Linear Algebra

{
return a11 * u1 >= e2 && e2 >= a11 * v1

&& d2 * u2 >= c2 && c2 >= d2 * v2;
}
else
{

return a11 * u1 <= e2 && e2 <= a11 * v1
&& d2 * u2 <= c2 && c2 <= d2 * v2;

}
}

}

The two divisions have been replaced by four multiplications and two comparisons,
in worst case. It is possible that not all multiplications are performed since an early
return can occur if one of the Boolean subexpressions is false. On most current
processors, the alternate method will reduce the cycle count.

7.2.2 Gaussian Elimination and Elementary Row Operations

I believe we now have a sufficient grasp on the methods of forward elimination and
back substitution to look at the general setting. The total process is called Gaussian
elimination and starts with n linear equations in m unknowns:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

...
an1x1 + an2x2 + · · ·+ anmxm = bn

where the coefficients aij and inputs bi are known and where the xj are unknown
(1 ≤ i ≤ n, 1≤ j ≤m). The system can be written more concisely as

m∑
j=1

aijxj = bi , 1≤ i ≤ n

The coefficients aij can be written in tabular form, called a matrix, A = [aij]. The table
has n rows indexed by i and m columns indexed by j. The numbers bi can be written in
tabular form, called a column matrix, b= [bi]. This table also has n rows indexed by i
but only a single column. The variables xj can be written as a column matrix, x= [xj],
that has m rows indexed by j. Using the tabular forms, the system may be suggestively
written as Ax= b, where the implied product Ax denotes the operations necessary
to reconstruct the left-hand sides of the equations in the system. In a later section I
will define the general operation for multiplying matrices. The elimination process
algebraically manipulates the entries of the A and b matrices. The bookkeeping is
concisely represented in terms of operations on A, b, and the augmented matrix [A|b],
the matrix with n rows and m+ 1 columns that is obtained by appending b on the
right of A.

7.2 Systems of Linear Equations 549

Forward elimination is equivalent to applying what are called elementary row
operations to the augmented matrix. These operations are

1. Interchange row i with row j. Notation: Ri ↔ Rj .

2. Multiply row i by a scalar c �= 0. Notation: cRi → Ri .

3. Multiply row i by a scalar ci , multiply row j by a scalar cj , then add the results and
replace row j. Notation: ciRi + cj Rj → Rj .

The sequential application of the operations is performed until the following rules
are satisfied:

1. If row r has its first nonzero entry in column c , then every entry in column c
below row r is zero.

2. If row r1 has its first nonzero entry in column c1, row r2 has its first nonzero entry
in column c2, and r1 < r2, then c1 < c2 is required.

3. Each row having all zero entries must lie below any other row having at least one
nonzero entry.

Example
7.5

Solve x1+ x2+ x3 = 6, x1+ 2x2 + 2x3 = 11, 2x1 + 3x2− 4x3 = 3. The augmented
matrix is

[A|b]=
⎡
⎢⎣1 1 1 6

1 2 2 11

2 3 −4 3

⎤
⎥⎦

Apply elementary row operations to [A|b] so that the above rules are satisfied. For
each row of the matrix, try to satisfy rule 1. The entry in the row which is used to
eliminate the column entries below it is called a pivot and is nonzero. The pivots
are indicated below by boxes. The process of getting from one matrix to another is
denoted by the operator symbol ∼. The elementary row operations applied in that
step are written below that symbol.

⎡
⎢⎣ 1 1 1 6

1 2 2 11

2 3 −4 3

⎤
⎥⎦ ∼

−R1 +R2 → R2

−2R1 +R3 → R3

⎡
⎢⎣

1 1 1 6

0 1 1 5

0 1 −6 −9

⎤
⎥⎦

∼
−R2 +R3 → R3

⎡
⎢⎣

1 1 1 6

0 1 1 5

0 0 −7 −14

⎤
⎥⎦

The system of equations corresponding to this reduced matrix is x1+ x2+ x3 = 6,
x2 + x3 = 5, and −7x3 =−14. ■

550 Chapter 7 Linear Algebra

Back substitution involves solving for xn, xn−1, . . . , x1, one at a time using the
system obtained by forward elimination. In the last example we can solve the third
equation for x3 = 2. Substituting x3 in the second equation: x2 = 5− x3 = 5− 2= 3.
Substituting x2 and x3 in the first equation: x1 = 6− x2− x3 = 6− 3− 2= 1.

We will now count operations, just like we did for the case of two equations in two
unknowns. To simplify matters, let us assume that m = n and that no rows need to
be swapped. The first step of forward elimination is to zero out all entries below a11

in the first column.

[A|b] =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

...
...

an1 an2 · · · ann bn

⎤
⎥⎥⎥⎥⎦

∼
a11R2− a21R1 → R2

...

a11Rn − an1R1 → Rn

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

0 a11a22− a21a12 · · · a11a2n − a21a1n a11b2− a21b1

...
...

...
...

0 a11an2− an1a12 · · · a11ann − an1a1n a11bn − an1a11b1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n b1

0 a′11 · · · a′1,n−1 b′1
...

...
...

...

0 a′n−1,1 · · · a′n−1,n−1 b′n−1

⎤
⎥⎥⎥⎥⎥⎦

Note that the (n− 1)× n submatrix consisting of the a′ij and b′i is set up for the next
forward elimination step, thus leading to a recursive process.

Define Cn to be the cost of the arithmetic operations for solving the system of
equations using Gaussian elimination. Let Fn be the cost of forward elimination and
let Bn be the cost of back substitution; then Cn = Fn+Bn . The forward elimination
phase takes an augmented matrix of size n× (n+ 1) and reduces the problem to one
involving an augmented matrix of size (n− 1)× n. The cost for forward elimination
on the reduced augmented matrix is Fn−1. The elimination requires n− 1 elementary
row operations. Each row operation modifies n column entries; we do not count the
replacement of the first column entry by zero. Each modified column entry requires
2 multiplications and 1 addition. If α represents the cost of an addition and μ rep-
resents the cost of a multiplication, the zeroing of the first column entries has a cost
(2μ+α)n(n − 1). The forward elimination cost must satisfy

Fn = (2μ+α)n(n − 1)+ Fn−1, n ≥ 2

For a single equation in a single unknown (n = 1), no forward elimination is nec-
essary, so F1 = 0. This is an example of a linear difference equation. This equation,

7.2 Systems of Linear Equations 551

though, is easy to solve. Note that

Fi− Fi−1 = (2μ+α)i(i − 1)

n∑
i=2

(Fi − Fi−1) =
n∑

i=2
(2μ+α)i(i − 1)

Fn− F1 = (2μ+α)
n∑

i=2
i(i − 1)

Fn = (2μ+α)
n(n2 − 1)

3

The summation on the left-hand side is called a telescoping sum. The quantity −Fj

appears in one term of the summation, then appears as Fj in the next term and is
cancelled. The cancellation occurs for all but F1 and Fn . The right-hand summa-
tion is evaluated using standard formulas for summation,

∑n
i=1 i = n(n+ 1)/2 and∑n

i=1 i2 = n(n+ 1)(2n+ 1)/6. The number of operations for forward elimination is
therefore on the order of n3.

Now let us compute the cost of back substitution. After forward elimination, the
augmented matrix is of the form

⎡
⎢⎢⎢⎢⎣

α11 α12 · · · α1n β1

0 α22 · · · α2n β2

...
. . .

. . .
...

...

0 0 · · · αnn βn

⎤
⎥⎥⎥⎥⎦

where αij = 0 for i > j. The back substitution is

xn = βn

αnn
1 division

xn−1 = βn−1 −αn−1,n ∗ xn

αn−1,n−1
1 multiply, 1 add, 1 division

...

x1 = β1−α12 ∗ x2− · · ·−α1n ∗ xn

α11
n− 1 multiplies, n− 1 adds, 1 division

If δ is the cost of a division and α and μ are as before,

Bn = (δ)+ (μ+α + δ)+ · · ·+ ((n− 1)μ+ (n − 1)α+ δ)

= δn+
n−1∑
i=0

(μ+α)i

= δn+ (μ+α)
n(n − 1)

2

552 Chapter 7 Linear Algebra

The number of operations is on the order of n2, so clearly forward elimination is the
dominant cost in solving the system. The total cost for Gaussian elimination is

Cn = Fn+Bn = (2μ+α)
n(n2 − 1)

3
+ (μ+α)

n(n − 1)

2
+ δn

A long story, but this is the classical method for solving linear systems and counting
how many operations it takes to estimate the cost of solving systems. The cost is not
particularly important for small n, but for very large n it becomes an issue.

Exercise
7.1

The forward elimination is designed to satisfy the constraint mentioned earlier: If row
r has its first nonzero entry in column c, then every entry in column c below row r is
zero. Change this constraint to: If row r has its first nonzero entry in column c, then
every other entry in column c is zero. The entries above as well as below entry (r , c)
must be zeroed out using elementary row operations. Determine the total cost Cn for
this new elimination method. Compare it to the cost for Gaussian elimination. ■

7.2.3 Nonsquare Systems of Equations

Although I illustrated Gaussian elimination for systems of equations with the same
number of unknowns as equations, the same process applies to systems with any
number of equations and unknowns.

In general after application of the relevant elementary row operations, if row r has
its first nonzero entry in column c , then the variable xc is referred to as a basic variable.
All other variables are referred to as free variables. The quantity of basic variables is
called the rank of the matrix, denoted rank(A), where A is the matrix of coefficients.
Gaussian elimination allows us to solve for the basic variables in terms of the free
variables.

If Ax= b is the linear system, where A is an n×m matrix, then the following
holds. If rank(A)< rank([A|b]), the system has no solutions. Otherwise, rank(A) =
rank([A|b]). In this case, if rank(A) =m, then the system has a unique solution. Oth-
erwise, rank(A)<m and the system has infinitely many solutions; the number of free
variables is m− rank(A).

7.2.4 The Geometry of Linear Systems

The previous sections were about the algebraic manipulations needed to solve a
system of linear equations. The linear equations have geometric counterparts that,
perhaps, provide greater insight about what the solution set of a system really is. Let
us look at the simplest example, a system of two equations in two unknowns.

Consider a11x1+ a12x2 = b1 and a21x1 + a22x2 = b2. I assume that one of a11 and
a12 is nonzero and one of a21 and a22 is nonzero. Each of these equations represents
a line in the plane. The geometric possibilities are listed below.

7.2 Systems of Linear Equations 553

1. The lines are not parallel. They intersect in a single point.

2. The lines are parallel and disjoint. They do not intersect.

3. The lines are the same. The set of points common to both is infinite.

Figure 7.1 shows these configurations.
The vector (a11, a12) is normal to the first line and the vector (a21, a22) is normal

to the second line. If the two lines are parallel or the same line, then their normals are
parallel. Consequently, one vector is a multiple of the other, say (a11, a12)= t(a21, a22)

for some nonzero scalar t . Define d = a11a22− a12a21; then

d = a11a22− a12a21 = ta21a22− ta22a21 = 0

Conversely, the two lines are not parallel when d �= 0, an algebraic condition that
guarantees that the two lines intersect in a single point and the linear system has a
unique solution. If d = 0, the lines are parallel and either disjoint or coincident. The
second equation of the system can be multiplied by t to obtain

tb2 = ta21x1+ ta22x2 = a11x1 + a12x2 = b1

These equalities are valid only when b1 = tb2, in which case the two lines are coinci-
dent. Notice that (a11, a12, b1)= t(a21, a22, b2) in this case. The value d is computed
without explictly computing the multiplier t . We may obtain a similar expression
without t that indicates that the lines are coincident. Specifically, (a11, b1)= t(a21, b2)

implies a11b2− a21b1 = 0. Equivalently, (a12 , b1)= t(a22, b2) implies a12b1− a22b2 =
0. If b1 �= tb2, the lines are parallel and disjoint. The algebraic equivalents to the three
geometric possibilites mentioned earlier are summarized below.

(a) (b) (c)

Figure 7.1 (a) Two nonparallel lines. (b) Two parallel and disjoint lines. (c) Two coincident lines
(shown in bold black).

554 Chapter 7 Linear Algebra

1. a11a22− a12a21 �= 0: The lines are not parallel. The linear system has a unique
solution.

2. a11a22− a12a21 = 0 and a11b2− a21b1 �= 0: The lines are parallel and disjoint.
The linear system has no solution.

3. a11a22− a12a21 = 0 and a11b2− a21b1 = 0: The two lines are the same. The linear
system has infinitely many solutions.

A similar algebra–geometry relationship exists for equations involving three vari-
ables. Consider three equations in three unknowns,

∑3
j=1 aijxj = bi for 1≤ i ≤ 3.

A single equation represents a plane in three dimensions. If this is the only equa-
tion of the system, the set of solutions is infinite and is represented by all the
points on the plane. The possibilities for two equations in three unknowns are listed
below.

1. The planes are not parallel. They intersect in a line.

2. The planes are parallel and disjoint. They do not intersect.

3. The planes are parallel and coincident.

Figure 7.2 shows these configurations.
Three equations in three unknowns lead to yet more possibilities.

1. No two planes are parallel.

(a) The planes intersect in a single point.

(b) The planes intersect in a line.

(c) The three planes have no common point.

(a) (b) (c)

Figure 7.2 (a) Two nonparallel planes. (b) Two parallel and disjoint planes. (c) Two coincident
planes (shown in bold black).

7.2 Systems of Linear Equations 555

2. Two planes are parallel; the third is not parallel to them.

(a) The two parallel planes are disjoint. The three planes have no common
point.

(b) The two parallel planes are coincident. The three planes intersect in a line.

3. All three planes are parallel.

(a) At least two planes are not coincident. The three planes have no common
point.

(b) All planes are coincident. The intersection set is the common plane.

Figure 7.3 shows these configurations. The intersection set is either empty, a single
point, a line, or a plane. Further geometric interpretations of linear equations and
their solutions are discussed later in Section 7.2.4.

Case 2(b)Case 2(a)

Case 1(a) Case 1(b) Case 1(c)

Case 3(a) Case 3(b)

Figure 7.3 The coincident planes are shown in bold (black for visible portions, gray for hidden
portions).

556 Chapter 7 Linear Algebra

7.2.5 Numerical Issues

The method of Gaussian elimination was discussed previously in mathematical terms
without regard to numerical issues that can arise when implemented on a computer.
The main issue is using the first nonzero entry in a row, the pivot, to zero out the
column entries below it. The reciprocal of the pivot is required in the process. If the
pivot is nearly zero, the division can be a source of numerical errors.

Consider a system whose augmented matrix is[
ε 1 1

1 2 −1

]
(7.1)

where ε is a number that is nearly zero. If that entry is used as the pivot, then formally
we can row-reduce the augmented matrix to[

1 1/ε 1/ε

0 2− 1/ε −1− 1/ε

]

This matrix now has very large entries due to 1/ε. The numerical representations of
some of the numbers are now suspect. For example, the floating point calculation for
2− 1/ε could effectively ignore the 2 if 1/ε is so large that in matching the exponents
of the two numbers to allow the floating point sum of the mantissas, the intermediate
representation of 2 is the floating point number zero.

A better algorithm involves searching the entries in the first column of the aug-
mented matrix and looking for the pivot that is largest in absolute magnitude. In the
example we should have swapped the two equations:[

1 2 −1

ε 1 1

]
(7.2)

The forward elimination produces[
1 2 −1

0 1− 2ε 1+ ε

]

The last equation is solved for x2 = (1+ ε)/(1− 2ε). For ε nearly zero, the denom-
inator is nearly 1 and the division is numerically well behaved. The other variable is
x1 =−3/(1− 2ε).

Exercise
7.2

Write a computer program to solve the system in equation (7.1) using Gaussian elim-
ination so that the first pivot is ε. Allow this parameter to be supplied by the caller
of the function for solving the system. The program should also have a function for
solving the system in the form of equation (7.2), where ε is a parameter to the func-
tion. The test program should implement a loop that starts with ε = 0.1 and solves the
system. On each successive iteration, replace ε by ε/2. The system should be solved
using each of the two functions. Compare the results as ε becomes very small. ■

7.2 Systems of Linear Equations 557

The search for a pivot entry of largest absolute magnitude is a good approach in
solving systems. However, the next example shows that even this can be a problem.
The system is

ε1x1+ x2 = 1

ε2x1+ 2x2 =−1

where ε1 and ε2 are both nearly zero. Regardless of which of these entries is largest
in absolute magnitude, forward elimination will require a division by a number that
is nearly zero. A close inspection of the system will show that we were unfortunate
to name the variables as shown! Had we made x2 the “first” variable and x1 the “sec-
ond” variable, the division problem disappears. That is, name y1 = x2 and y2 = x1

and obtain the system

y1+ ε1y2 = 1

2y1+ ε2y2 =−1

The augmented matrix and the forward elimination are shown:

[
1 ε1 1

2 ε2 −1

]
∼
[

1 ε1 1

0 ε2− 2ε1 −3

]

The forward elimination step is well behaved numerically, but now we need to solve
for x2 =−3/(ε2− 2ε1) where the denominator is nearly zero. This is unavoidable; the
system is ill conditioned in the sense that if ε1 and ε2 really were zero, the equations
would be y1 = 1 and 2y1 =−1 implying that y1 = 1 and y1 =−1/2, an impossibility.
Even so, the divisions in the back substitution can be deferred (by using back elim-
ination instead) to make sure any numerical round-off errors from one division are
not propagated (and magnified) through the remaining divisions. In our example,
the operation is R1 ← (ε2 − 2ε1)R1 − ε1R2:[

ε2− 2ε1 0 ε1+ ε2

0 ε2− 2ε1 −3

]

If the application decides inversion of ε2− 2ε1 is justified, the division λ=
1/(ε2− 2ε1) is calculated once. The system solution is y1 = (ε1+ ε2)λ and y2 =−3λ.

The renaming of x1 and x2 to y2 and y1 amounts to swapping columns of the aug-
mented matrix. This is not an elementary row operation, so additional bookkeeping
must be done to reconstruct the solution components in the order in which they were
specified. You can do this by maintaining a permutation vector of indices. In the exam-
ple the original variable indices are stored as (1, 2). When the column swap is deemed
appropriate, and memory swapping is actually performed in a computer implementa-
tion, the permutation vector indices are swapped to (2, 1). If the final values obtained
on the right-hand sides of the equations after Gaussian elimination are (c1, c2) and
the permutation vector is (i1, i2), one of (1, 2) or (2, 1), then the system solution is
xi1 = c1 and xi2 = c2.

558 Chapter 7 Linear Algebra

Generally, for a system of n equations in n unknowns, you can search the entire
matrix of coefficients looking for the entry of largest absolute magnitude to be used
as the pivot. This process is known as full pivoting. If that entry occurs in row r
and column c , then rows r and 1 are swapped followed by a swap of column c and
column 1. The original permutation vector is (1, 2, . . . , c , . . . , n); the new vector is
(c , 2, . . . , 1, . . . , n). After both swaps, the entry in row 1 and column 1 is the largest
absolute magnitude entry in the matrix. If nearly zero, the linear system is ill condi-
tioned and you may choose to stop solving and notify the user of this situation. If you
choose to continue, the division can be performed to make the pivot 1 and forward
elimination commences. The process is repeated for the submatrix of n− 1 rows and
n− 1 columns. Many column swaps can occur during the process. Let the final val-
ues obtained on the right-hand sides of the equation be listed as (c1, . . . , cn). Let the
permutation vector be (i1, . . . , in), a permutation of (1, . . . , n). The system solution is
xij = cj for 1≤ j ≤ n.

7.2.6 Iterative Methods for Solving Linear Systems

As it turns out, Gaussian elimination is not the final word in solving systems. Iterative
methods can be used. After all, why look for the exact mathematical solution when a
good numerical approximation will do! Such algorithms are typically used in sparse
linear systems. These systems have a large number of equations, but each equation
involves only a small subset of the variables. The matrix A for the system is large, but
has only a small number of nonzero entries. These algorithms are also used when the
entries of A vary over time, in which case the solution at time t may be used as the
initial guess for the iteration that estimates the solution at time t + h for a small time
step h. Assuming the entries of A vary continuously with time, the initial guess for
time t + h should be close enough to the true solution that only a few iterations are
needed to obtain a good estimate. The iteration effectively makes use of time coher-
ence to compute rapidly a solution. I will not go into great detail as this topic is quite
extensive, but here are a few possibilities to ponder.

The first type of method we look at is known as a splitting method. I will illustrate
for a system of two equations in two unknowns:

a11x1+ a12x2 = b1

a21x1+ a22x2 = b2

For simplicity of the presentation, suppose that a11 �= 0 and a22 �= 0. The system can
be rewritten as

x1= b1− a12x2

a11

x2= b2− a21x1

a22

7.2 Systems of Linear Equations 559

The term splitting refers to splitting up the equations into the terms corresponding
to the diagonal entries and the terms corresponding to the nondiagonal entries. Why
bother with this form when it clearly does not give us a solution? The concept is to
generate a sequence of iterates x(1), x(2) , . . . , x(n) where n is large enough that x(n)

is an acceptable approximation to the actual solution to the equation. At the same
time we want n small enough to minimize the computational time in producing the

approximation. Each iterate is of the form x(i) = (x(i)
1 , x(i)

2). The key idea is to relate
the iterates by modifying the split equations to

x(i+1)
1 = b1− a12x(i)

2

a11

x(i+1)
2 = b2− a21x(i)

1

a22

The left-hand side is the next iterate and is obtained by substituting the current
iterate into the right-hand side. Whether or not the sequence of iterates converges to
the exact solution depends on your particular system. Another issue is that if any of
the aii are nearly zero, the division by that small number can cause numerical prob-
lems. The splitting used here to illustrate the concept is not the only one. In fact, each
equation on the right-hand side of the split system might very well contain all of the
original variables. Such is the case when one of the aii is zero or nearly zero. Ideally,
you want to split your terms so that you get rapid convergence and avoid numerical
problems.

Standard splitting methods take advantage of the decomposition A = L+D+U ,
where L is the lower-triangular portion of A, D is the matrix of diagonal entries of A,
and U is the upper-triangular portion of A. That is,

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
a21 0 · · · 0 0

a31 a32
. . . 0 0

...
...

. . .
...

...
an1 an2 · · · an,n−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, D =Diag(a11, a22, . . . , ann),

U =

⎡
⎢⎢⎢⎢⎢⎣

0 a12 a13 · · · a1n

0 0 a23 · · · a2n
...

...
. . .

. . .
...

0 0 0 · · · an−1,n

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

The usual assumption is that none of the diagonal entries is zero.

560 Chapter 7 Linear Algebra

The method I illustrated earlier for 2 equations is called the Jacobi method. The
linear system is written as Dx= b− (L+U)x. The iterative formulation is

x(k+1) =D−1
(

b− (L+U)x(k)
)

, k ≥ 0 (7.3)

where x(0) is the initial guess. The component-wise calculations for the iterates are

x(k+1)
i = 1

aii

⎛
⎝bi −

∑
j �=i

aijx
(k)
j

⎞
⎠ , 1≤ i ≤ n (7.4)

In practice, we must be concerned about convergence for an iterative method.
That is, the limit of the iterates must be a solution to the linear system:

y= lim
k→∞

x(k)

and Ay = b. The analysis of convergence is an advanced topic in matrix analysis;
for example, see [HJ85]. The Jacobi method is known to converge when A is strictly
diagonally dominant. This means that

|aii|>
∑
i �=j

|aij| (7.5)

for all i. In words, the diagonal entry in a row must have magnitude larger than the
sum of the magnitudes of the other row entries – the diagonal entries are dominant.
The term strict refers to the strict inequality in equation (7.5). The method is also
known to converge when A is irreducibly diagonally dominant. Such a matrix must be
diagonally dominant,

|aii| ≥
∑
i �=j

|aij| (7.6)

and it must be irreducible. Matrix A is reducible when there exists a permutation
matrix P for which A′ = P TAP is an upper-triangular block matrix; that is, the lower-
left (n− r)× r block of A′ is zero for some r for which 1≤ r < n. Finally, a recent
result shows a specific implementation of the Jacobi method that converges when A
is positive definite; see [JBD09]. Such a matrix is symmetric and has the property that
xTAx > 0 for all nonzero x. We will see in Section 7.5.3 that a positive definite matrix
has all positive eigenvalues.

A different splitting is the Gauss–Seidel method. The linear system is written as
(L +D)x = b−U x. The iterative formulation is

x(k+1) = (L+D)−1
(

b−U x(k)
)

, k ≥ 0 (7.7)

where x(0) is the initial guess. The component-wise calculations for the iterates are
listed next. The inverse of L+D is not computed explicitly; rather, it is computed by

7.3 Matrices 561

forward elimination:

x(k+1)
i = 1

aii

⎛
⎝bi −

∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

⎞
⎠ , 1≤ i ≤ n (7.8)

As with the Jacobi method, this method converges for matrices that are strictly
diagonally dominant, irreducibly diagonally dominant, or positive definite.

A variation of the Gauss–Seidel method is successive over-relaxation, which is an
algorithm that can be used for any iterative method of the form x(k+1) = F(x(k)). The
next iterate is chosen to be a weighted sum of the previous iterate and the result of the
iteration function

x(k+1) = (1−w)x(k)+wF(x(k)) (7.9)

where w is a scalar. The idea is to accelerate the convergence of the method – fewer
iterates should lead to a good numerical estimate of the solution. In general, it is dif-
ficult to know what to select for w. When applied to the Gauss–Seidel method of
equation (7.7), where the right-hand side of that equation is F(x(k)), the algorithm
converges for 0<w <2 when A is positive definite.

Another iterative method involves formulating the linear system Ax= b as a min-
imization problem. The function to minimize is the squared length f (x)= |Ax−b|2,
a quadratic function of x which you see in least-squares error algorithms.

The illustration here is for a system of two equations in two unknowns. The two
equations may be written as a11x1+ a12x2− b1 = 0 and a21x1 + a22x2− b2 = 0. The
sum of squares of the left-hand sides must be zero:

f (x1, x2)= (a11x1+ a12x2 − b1)
2+ (a21x1 + a22x2− b2)

2 = 0

Observe that f (x1, x2) ≥ 0 no matter the choice of input. Assuming the system has a
unique solution, the graph of this function is a paraboloid whose vertex lies in the
x1x2-plane and is the solution to the system of equations. An iterative minimization
algorithm takes the current iterate x(i), where f (x(i))<0, and produces the next iter-
ate x(i+1) so that (hopefully) f (x(i+1))< f (x(i)). You can visualize the iterates on the

graph of f as a sequence of points (x(i)
1 , x(i)

2 , f (x(i)
1 , x(i)

2)) for i ≥ 1 that descend toward
the vertex of the paraboloid. A good choice for generating the iterates is the conju-
gate gradient method, but other methods may be applied as well. See [PFTV88] for a
discussion of numerical methods for function minimization.

7.3 Matrices

Gaussian elimination applied to a system of linear equations is accomplished by set-
ting up a table of numbers called an augmented matrix. The algebraic operations are
applied only to the equation coefficients. The variable names themselves are unim-
portant in the manipulations. The concept of matrices is more powerful if we allow

562 Chapter 7 Linear Algebra

additional structure to be placed on them. Part of that structure is introduced here
in the context of solving linear systems of equations. More structure is introduced
later where matrices are shown to be naturally related to the concept of a linear
transformation.

The matrix of coefficients for the system of n equations in m unknowns is denoted
A = [aij] and has n rows and m columns. The column matrix for the right-hand side
values is denoted b= [bi] and has n rows and, of course, one column. Similarly, we
define the column matrix x= [xj] that has m rows and one column. The concise
representation for a linear system using summation notation is

m∑
j=1

aijxj = bi , 1≤ i ≤ n

A suggestive shorthand notation is Ax= b and makes the linear system appear sym-
bolically to be a single linear equation with known values A and b and unknown
value x. For this to really make sense, we need to formalize what it means to multiply
the matrices A and x and obtain the product Ax. Consider a system with two equa-
tions and three unknowns: a11x1+ a12x2 + a13x3 = b1, a21x1+ a22x2 + a23x3 = b2.
The symbolic form Ax= b with juxtaposed matrices is

[
a11 a12 a13

a21 a22 a23

]⎡⎢⎣
x1

x2

x3

⎤
⎥⎦=

[
b1

b2

]

In order to recreate the linear equations, it appears that we need to multiply each row
of A with the column x, then equate the resulting product with the corresponding row
of the column b. For this to work, clearly the number of columns of A must equal the
number of rows of x. We will use this as motivation for defining the product of two
matrices A and B. Let A have n rows and m columns. For the product C = AB to make
sense, the number of rows of B must be m. Let B have p columns. The product C itself
is a matrix of numbers. Your intuition from the example of a linear system should
convince you that C has n rows and p columns. Symbolically AB = C is shown next.

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...
bm1 bm2 · · · bmp

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(a11b11+ a12b21+··· + a1mbm1) (a11b12+ a12b22+ ··· + a1mbm2) · · · (a11b1p + a12b2p + ··· + a1mbmp)
(a21b11+ a22b21+··· + a2mbm1) (a21b12+ a22b22+ ··· + a2mbm2) · · · (a21b1p + a22b2p + ··· + a2mbmp)

...
...

. . .
...

(an1b11+ an2b21+ ··· + anmbm1) (an1b12+ an2b22+··· + anmbm2) · · · (an1b1p + an2b2p +··· + anmbmp)

⎤
⎥⎥⎦

7.3 Matrices 563

=

⎡
⎢⎢⎢⎢⎣

c11 c12 · · · c1p

c21 c22 · · · c2p

...
...

. . .
...

cn1 cn2 · · · cnp

⎤
⎥⎥⎥⎥⎦

In summation notation, the general entry of the product is

cij =
m∑

k=1

aikbkj

for 1≤ i ≤ n and 1≤ j ≤ p.

Example
7.6

Consider the matrices,

A =
[

1 0 −1

−1 2 0

]
and B =

⎡
⎢⎣
−1 1 2

0 1 −3

−2 3 0

⎤
⎥⎦

The product AB is

AB =
[

1 0 −1

−1 2 0

]⎡⎢⎣−1 1 2

0 1 −3

−2 3 0

⎤
⎥⎦ = [c11 c12 c13

c21 c22 c23

]

To compute cij , use the summation formula shown earlier,

cij = ai1b1j + ai2b2j + ai3b3j =
[
ai1 ai2 ai3

]
⎡
⎢⎣

b1j

b2j

b3j

⎤
⎥⎦

In the example, the product is

AB =
[

1 −2 2

1 1 −8

]
■

A matrix that has n rows and m columns is referred to as an n×m matrix. In
defining the product C = AB, A is an n×m matrix, B is an m× p matrix, and C is
an n× p matrix. It is important to note that the order of the matrices in a product is
relevant. For example, if A is 2× 3 and B is 3× 4, the product AB is defined and
is 2× 4. On the other hand, BA is not defined since the number of columns of B
is different from the number of rows of A. Now, it is possible that both products are
defined. This is the case when A is n×m and B is m× n. The product AB is n× n and
the product BA is m×m. If n �=m, then AB and BA cannot be the same matrix since

564 Chapter 7 Linear Algebra

their sizes are different. Even if n =m, the products still might differ. For example,

AB =
[

1 0
0 0

][
0 1
0 0

]
=
[

0 1
0 0

]
�=
[

0 0
0 0

]
=
[

0 1
0 0

][
1 0
0 0

]
= BA

Matrix multiplication is therefore considered not commutative. It is the case that
matrix multiplication is associative. That is, A(BC) = (AB)C for matrices A, B, and
C where the relevant pairwise products are defined.

7.3.1 Some Special Matrices

A few special types of matrices arise frequently in practice. Here are some that are of
interest, some of general size n×m and some that are called square matrices where
n =m (number of rows and number of columns are the same).

The diagonal entries of an n×m matrix A = [aij] are those entries aii. A square
matrix A = [aij] is a diagonal matrix if aij = 0 whenever i �= j. That is, the nondiagonal
terms are all zero. The diagonal terms can be anything, including zero. For example,
consider

A =
[

1 2 3
4 5 6

]
and B =

[
0 0
0 1

]

The diagonal entries of A are 1 and 5. The matrix B is diagonal. A shorthand notation
for the diagonal matrix is to list only its diagonal entries, B =Diag(0, 1).

A special diagonal matrix is the identity matrix I . All the diagonal entries are 1.
The identity matrices for n = 2 and n = 3 are shown:

I =
[

1 0
0 1

]
and I =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

The identity matrix has the property that IA = A. That is, the product of the n× n
identity matrix with the n×m matrix A does not change A.

If A = [aij] is an n×m matrix, the transpose of A is the m× n matrix AT = [aji].
That is, the entry aij in the ith row and jth column of A becomes the entry in the jth
row and ith column of AT. For example,

A =
[

1 2 3
4 5 6

]
and AT =

⎡
⎣ 1 4

2 5
3 6

⎤
⎦

Exercise
7.3

Verify that the transpose satisfies the property (AB)T = BTAT. ■

7.3 Matrices 565

A square matrix A is symmetric if A = AT. It is skew-symmetric if A =−AT. For
example, consider

A=
⎡
⎣ 1 2 3

2 4 5
3 5 6

⎤
⎦ and B =

⎡
⎣ 0 1 2
−1 0 3
−2 −3 0

⎤
⎦

The matrix A is symmetric and the matrix B is skew-symmetric. The diagonal entries
of a skew-symmetric matrix are necessarily zero.

An n×m matrix U = [uij] is said to be upper echelon if uij = 0 for i > j. In addi-
tion, if n =m, then U is said to be upper triangular. Similarly, an n×m matrix
L = [�ij] is said to be lower echelon if �ij = 0 for i < j. If n =m, then L is said to
be lower triangular. For example, consider

U =
[

1 2 3
0 4 5

]
and L =

[
1 0
2 3

]

The matrix U is upper echelon and the matrix L is lower triangular.

7.3.2 Elementary Row Matrices

Now that we have a concise symbolic representation of a system of equations, Ax= b,
let us review the forward elimination algorithm that reduces the augmented matrix
[A|b]. In our earlier discussion, the elimination was accomplished by applying ele-
mentary row operations to the augmented matrix in order to zero out various column
entries below pivot elements. A reminder of the operations:

1. Interchange row i with row j. Notation: Ri ↔ Rj .

2. Multiply row i by a scalar c �= 0. Notation: cRi → Ri .

3. Multiply row i by a scalar ci , multiply row j by a scalar cj , then add the results and
replace row j. Notation: ciRi + cj Rj → Rj .

Each elementary row operation can be represented by a square matrix that multiplies
the augmented matrix on its left.

Consider a general matrix A that is n×m (not necessarily an augmented matrix
for a linear system). Let O be an elementary row operation applied to A to obtain
a matrix B of the same size as A. The notation introduced in Example 7.5 was
A ∼O B. There is an n× n matrix E such that B = EA. The elementary row matrix E
corresponding to the elementary row operation O is obtained by applying O to the
n× n identity matrix: I ∼O E .

Example
7.7

Consider the 3× 4 matrix

A=
⎡
⎣1 −1 0 2

0 4 −1 −2
2 0 1 0

⎤
⎦

566 Chapter 7 Linear Algebra

A type 1 operation is

A = ∼
R1 ↔ R2

⎡
⎣0 4 −1 −2

1 −1 0 2
2 0 1 0

⎤
⎦ =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦A

A type 2 operation is

A = ∼
−2R1 → R1

⎡
⎣−2 2 0 −4

0 4 −1 −2
2 0 1 0

⎤
⎦=

⎡
⎣−2 0 0

0 1 0
0 0 1

⎤
⎦A

A type 3 operation is

A = ∼
−2R1 +R3 → R3

⎡
⎣1 −1 0 2

0 4 −1 −2
0 2 1 −4

⎤
⎦=

⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦A

Observe that in all cases, the 3× 3 elementary row matrices shown on the right-hand
sides of the equations are obtained by applying the row operations to the 3× 3 identity
matrix. ■

(Example 7.7
continued)

The final result of forward elimination can be stated in terms of elementary row
matrices applied to the augmented matrix [A|b]. Namely, if E1 through Ek are the
elementary row matrices corresponding to the applied elementary row operations,
then the final augmented matrix is the product

[U |v]= Ek · · ·E1[A|b]

The matrix U = [uij] is upper echelon; that is, uij = 0 whenever i > j. The only pos-
sible nonzero entries are on or above the diagonal, the diagonal defined by entries
where i = j. Back substitution is achieved by another sequence of elementary row
operations, Ek+1 through E�. The end result, assuming the diagonal entries of U are
all nonzero is

[I |w]= (E� · · ·Ek+1)[U |v]= (E� · · ·E1)[A|b]

The solution to the linear system is x= w.

Example
7.8

This example was shown earlier, but is revisited in terms of elementary row matri-
ces. Solve x1 + x2+ x3 = 6, x1+ 3x2+ 2x3 = 11, 2x1+ 3x2 − 4x3 = 3. The forward
elimination is

[A|b]=
⎡
⎣1 1 1 6

1 2 2 11
2 3 −4 3

⎤
⎦ ∼
−R1 +R2 → R2

⎡
⎣1 1 1 6

0 1 1 5
2 3 −4 3

⎤
⎦

7.3 Matrices 567

∼
−2R1 +R3 → R3

⎡
⎣1 1 1 6

0 1 1 5
0 1 −6 −9

⎤
⎦

∼
−R2 +R3 → R3

⎡
⎣1 1 1 6

0 1 1 5
0 0 −7 −14

⎤
⎦ = [U |v]

The backward substitution is

[U |v]=
⎡
⎣1 1 1 6

0 1 1 5
0 0 −7 −14

⎤
⎦ ∼
−(1/7)R3 → R3

⎡
⎣1 1 1 6

0 1 1 5
0 0 1 2

⎤
⎦

∼
−R3 +R2 → R2

⎡
⎣1 1 1 6

0 1 0 3
0 0 1 2

⎤
⎦

∼
−R3 +R1 → R1

⎡
⎣1 1 0 4

0 1 0 3
0 0 1 2

⎤
⎦

∼
−R2 +R1 → R1

⎡
⎣1 0 0 1

0 1 0 3
0 0 1 2

⎤
⎦= [I |w]

The solution is x1 = 1, x2 = 3, and x3 = 2. The elementary row matrices listed in the
order of operations shown previously are

E1 =
⎡
⎣ 1 0 0
−1 1 0

0 0 1

⎤
⎦ , E2 =

⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦ , E3 =

⎡
⎣1 0 0

0 1 0
0 −1 1

⎤
⎦ ,

E4 =
⎡
⎣1 0 0

0 1 0
0 0 −1/7

⎤
⎦ , E5 =

⎡
⎣1 0 0

0 1 −1
0 0 1

⎤
⎦ , E6 =

⎡
⎣1 0 −1

0 1 0
0 0 1

⎤
⎦ ,

E7 =
⎡
⎣1 −1 0

0 1 0
0 0 1

⎤
⎦

■

7.3.3 Inverse Matrices

The linear system is symbolically written as Ax = b. The product of the elemen-
tary row operations used in solving the system is P = E� · · ·E1. The application of

568 Chapter 7 Linear Algebra

all the elementary row matrices at one time is x= PAx= Pb=w. An implication
of the construction is that PA = I , where I is the identity matrix. We use this as
motivation for the inverse of a square matrix. That is, if A is an n× n matrix and
if P is another n× n matrix for which PA = I , then P is the inverse of A and is
denoted A−1.

Example
7.9

In the last example, the product of the elementary row matrices is

P = E7 · · ·E1 =

⎡
⎢⎢⎢⎣

2 −1 0

−8

7

6

7

1

7

1 1 −1

⎤
⎥⎥⎥⎦

It is easily verified that

PA =

⎡
⎢⎢⎢⎣

2 −1 0

−8

7

6

7

1

7

1 1 −1

⎤
⎥⎥⎥⎦
⎡
⎢⎣

1 1 1

1 2 2

2 3 −4

⎤
⎥⎦=

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ = I

As an exercise, also verify that AP = I . ■

Example
7.10

Not all square matrices are invertible. The 2× 2 zero matrix is clearly not
invertible:

Z =
[

0 0
0 0

]

since PZ = Z no matter which 2× 2 matrix P you choose. A more interesting example
of a noninvertible matrix is

A =
[

1 −1
−1 1

]

You may attempt to construct one, say,

P =
[

a b
c d

]

For this matrix to be the inverse, we need[
1 0
0 1

]
= I = PA =

[
a− b b− a
c − d d − c

]

Equating the first row entries yields a− b = 1 and b− a = 0. The second of these
forces b = a. Replacing in the first leads to 0= 1, a false statement. Thus, A is not
invertible. ■

7.3 Matrices 569

The elementary row matrices have inverses. The list of the elementary row
operations and their inverse operations is provided:

Row Operation Inverse Operation

Ri ↔ Rj Ri ↔ Rj

cRi → Ri
1

c
Ri → Ri

cRi +Rj → Rj −cRi +Rj → Rj

If E represents an elementary row operation, then E−1 denotes the matrix that
represents the inverse operation.

Example
7.11

The 3× 3 elementary row matrix corresponding to the row operation −2R1 +R3 →
R3 is

E =
⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦

The inverse row operation is 2R1 +R3 → R3 and

E−1 =
⎡
⎣1 0 0

0 1 0
2 0 1

⎤
⎦

It is easily shown that E−1 E = I , where I is the 3× 3 identity matrix. ■

7.3.4 Properties of Inverses

Here are some important properties of inverses. The first one is quite subtle. The def-
inition of inverse was that P is an inverse of A when PA = I . More precisely, P is a left
inverse. I already pointed out that matrix multiplication is generally not commutative,
so PA = I does not immediately imply AP = I .

1. If A−1A = I , then AA−1 = I . This is the same as saying that the inverse of A−1 is

A = (A−1
)−1

.

2. Inverses are unique.

3. If A and B are invertible, then so is AB. Its inverse is (AB)−1 = B−1A−1.

To prove the first item, I use the method of solution for linear systems as moti-
vation. The system is Ax= b and, assuming A is invertible, has solution x= A−1b.
Symbolically, this is obtained as

x= I x= (A−1A)x = A−1(Ax)= A−1b

570 Chapter 7 Linear Algebra

Now replace this in the original equation to obtain

(AA−1)b= A(A−1b)= Ax = b

The column matrix b can be anything you like. Regardless of the choice it is the case
that (AA−1)b= b. Some clever choices will help us out. Define ei to be the n× 1
row matrix with a 1 in row i and 0 in all other rows. For any n× n matrix M , the
product M ei is the n× 1 matrix that stores the entries of M from the ith column. In
particular, (AA−1)ei = ei , so the ith column of AA−1 is the vector ei . Consequently,
AA−1 consists of columns e1 through en , in that order, which is exactly the identity
matrix I . It is always the case for an invertible matrix A that A−1A = I = AA−1.

The second item is proved as follows. Suppose that A has two inverses, B and C ;
then AB = I = BA and AC = I = CA. Also,

AB = I B is an inverse for A

C(AB) = C(I) Multiply by C

(CA)B = C Matrix multiplication is associative; I is the identity

(I)B = C C is an inverse for A

B = C I is the identity

and so there is only one inverse.
The third item is proved by a simple set of calculations:

(B−1A−1)(AB) = B−1(A−1A)B Matrix multiplication is associative

= B−1IB A−1 is the inverse of A

= B−1B I is the identity

= I B−1 is the inverse of B

By direct verification, B−1A−1 is the inverse of AB.

7.3.5 Construction of Inverses

This is illustrated with 3× 3 matrices, but the ideas clearly carry over to the n× n
case. Let

e1 =
⎡
⎣1

0
0

⎤
⎦ , e2 =

⎡
⎣0

1
0

⎤
⎦ , e3 =

⎡
⎣0

0
1

⎤
⎦

Any 3× 3 matrix M = [mij] can be thought of as a block matrix consisting of three
column vectors:

M =
⎡
⎣m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎦= [M e1 M e2 M e3

]

7.3 Matrices 571

In particular, if A is invertible, then A−1 exists and

A−1 = [A−1e1 A−1e2 A−1e3
]= [v1 v2 v3

]
where the column vectors vk (k = 1, 2, 3) are unknowns to be determined. Matching
the similar entries in the block matrices yields

A−1ek = vk or Avk = ek , k = 1, 2, 3

Each of these systems of equations can be solved separately by row-reducing [A|ek]
to [I |vk]. However, we can solve these systems simultaneously by row-reducing
[A|e1|e2|e3]= [A|I] to [I |v1|v2|x3]= [I |A−1].

Example
7.12

Compute the inverse of

A =
⎡
⎣−2 1 1

0 1 1
−3 0 6

⎤
⎦

Row-reduce:

[A|I] =
⎡
⎣−2 1 1 1 0 0

0 1 1 0 1 0
−3 0 6 0 0 1

⎤
⎦ ∼

−1

2
R1 → R1

⎡
⎢⎢⎣

1 −1

2
−1

2
−1

2
0 0

0 1 1 0 1 0

−3 0 6 0 0 1

⎤
⎥⎥⎦

∼
3R1+R3 → R3

⎡
⎢⎢⎢⎢⎣

1 −1

2
−1

2
−1

2
0 0

0 1 1 0 1 0

0 −3

2

9

2
−3

2
0 1

⎤
⎥⎥⎥⎥⎦

∼
1

2
R2 +R1 → R1

3

2
R2 +R3 → R3

⎡
⎢⎢⎢⎢⎣

1 0 0 −1

2

1

2
0

0 1 1 0 1 0

0 0 6 −3

2

3

2
1

⎤
⎥⎥⎥⎥⎦

∼
1

6
R3 → R3

⎡
⎢⎢⎢⎢⎣

1 0 0 −1

2

1

2
0

0 1 1 0 1 0

0 0 1 −1

4

1

4

1

6

⎤
⎥⎥⎥⎥⎦

572 Chapter 7 Linear Algebra

∼
−R3 +R2 → R2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1

2

1

2
0

0 1 0
1

4

3

4
−1

6

0 0 1 −1

4

1

4

1

6

⎤
⎥⎥⎥⎥⎥⎥⎦
= [I |A−1]

■

(Example 7.12
continued)

Example
7.13

The matrix

A =
[

1 −1
−2 2

]

has no inverse. Row-reduce:

[A|I]=
[

1 −1 1 0
−2 2 0 1

] ∼
2R1 +R2 → R2

[
1 −1 1 0
0 0 2 1

]

This last matrix can never be row-reduced to the form [I |B], so A has no
inverse. ■

7.3.6 LU Decomposition

The forward elimination of a matrix A produces an upper echelon matrix U . Suppose
this happens with only row operations of the form cRi +Rj → Rj , i < j. Let E1, . . . , Ek

be the corresponding elementary row matrices; U = Ek · · ·E1A. The matrices Ei are
all lower triangular, the product Ek · · ·E1 is lower triangular, and L = (Ek · · ·E1)

−1 =
E−1

1 · · ·E−1
k is lower triangular. Thus, A = LU where L is lower triangular and U is

upper echelon. This is called the LU decomposition of the matrix A.

Example
7.14

A =
⎡
⎣1 0 −4 0 6

5 1 −3 −3 9
6 3 7 −3 1

⎤
⎦ ∼
−5R1 +R2 → R2

−6R1 +R3 → R3

⎡
⎣1 0 −4 0 6

0 1 17 −3 −21
0 3 31 −3 −35

⎤
⎦

∼
−3R2 +R3 → R3

⎡
⎣1 0 −4 0 6

0 1 17 −3 −21
0 0 −20 6 28

⎤
⎦= U

The elementary row matrices corresponding to these operations are

E1 =
⎡
⎣ 1 0 0
−5 1 0

0 0 1

⎤
⎦ , E2 =

⎡
⎣ 1 0 0

0 1 0
−6 0 1

⎤
⎦ , E3 =

⎡
⎣1 0 0

0 1 0
0 −3 1

⎤
⎦

7.3 Matrices 573

We have

U = E3E2E1A =
⎡
⎣ 1 0 0
−5 1 0
−6 −3 1

⎤
⎦A

and

A = E−1
1 E−1

2 E−1
3 U =

⎡
⎣ 1 0 0

5 1 0
6 3 1

⎤
⎦U = LU

■

The matrix U can be factored further by applying row operations of the type
cRi → Ri to obtain pivot values of 1. With a renaming of U to DU , we have the LDU
decomposition of the matrix, A = LDU , where L is lower triangular, D is a diagonal
matrix, and U is upper echelon with diagonal entries either 1 or 0.

Example
7.15

This is the continuation of the last example.

U = E3E2E1A=
⎡
⎣1 0 −4 0 6

0 1 17 −3 −21
0 0 −20 6 28

⎤
⎦ ∼

− 1

20
R3 → R3

⎡
⎢⎢⎣

1 0 −4 0 6
0 1 17 −3 −21

0 0 1 − 3

10
−7

5

⎤
⎥⎥⎦

The elementary row matrix representing this last row operation is

E4 =

⎡
⎢⎢⎣

1 0 0
0 1 0

0 0 − 1

20

⎤
⎥⎥⎦

Let D = E−1
4 = Diag(1, 1,−20), a diagonal matrix. With a renaming of U to be the

upper echelon matrix whose diagonal elements are 1,

A = LDU =
⎡
⎣1 0 0

5 1 0
6 3 1

⎤
⎦
⎡
⎣1 0 0

0 1 0
0 0 −20

⎤
⎦
⎡
⎢⎢⎣

1 0 −4 0 6
0 1 17 −3 −21

0 0 1 − 3

10
−7

5

⎤
⎥⎥⎦

■

If row swappings are needed in the forward elimination, then the LDU decom-
position method must be slightly modified, because matrices representing row swap-
pings are not lower triangular. A matrix which represents swapping rows is called a
permutation matrix.

574 Chapter 7 Linear Algebra

Example
7.16 A =

⎡
⎣ 1 1 0

2 2 1
−1 0 1

⎤
⎦ ∼
−2R1+R2 → R2

R1+R3 → R3

⎡
⎣1 1 0

0 0 1
0 1 1

⎤
⎦ ∼

R2 ↔ R3

⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦= U

If Ek (k = 1, 2, 3) represent the row operations, then U = E3E2E1A. Consequently,

A = E−1
1 E−1

2 E−1
3 U =

⎡
⎣ 1 0 0

2 0 1
−1 1 0

⎤
⎦
⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦

The first matrix in the decomposition is not lower triangular. However, apply the
operation R2 ↔ R3 to A first. Let P = E3, a permutation matrix. Then

PA =
⎡
⎣ 1 1 0
−1 0 1

2 2 1

⎤
⎦=

⎡
⎣ 1 0 0
−1 1 0

2 0 1

⎤
⎦
⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦= LU

■

In general, the factorization can be written as PA = LDU , where

1. P represents row operations of type Ri ↔ Rj ;

2. L is lower triangular, represents row operations of type ci Ri +Rj → Rj , and has
diagonal entries 1;

3. D is diagonal and represents row operations of type cRi → Ri ; and

4. U is upper echelon with diagonal entries 1.

In practice, we cannot expect to know which row swappings must be performed
first in order to obtain PA = LDU . The following procedure allows us to postprocess
the elementary row operations so that the row swappings are applied first. Apply row
operations in the usual manner: Do cRi +Rj → Rj and Ri ↔ Rj first, cRi → Ri last.

Example
7.17 A =

⎡
⎣ 1 3 0

2 6 1
−1 0 2

⎤
⎦ ∼
−2R1+R2 → R2

R1+R3 → R3

⎡
⎣1 3 0

0 0 1
0 3 2

⎤
⎦

∼
R2 ↔ R3

⎡
⎣1 3 0

0 3 2
0 0 1

⎤
⎦ ∼

1

3
R2 → R2

⎡
⎢⎢⎣

1 3 0

0 1
2

3
0 0 1

⎤
⎥⎥⎦

Instead of switching rows 2 and 3 of A first and re-reducing, do the following. Write
down the operations in the order applied:

−2R1+R2 → R2, R1+R3 → R3, R2 ↔ R3,
1

3
R2 → R2

7.3 Matrices 575

The row swapping operations should appear first. Interchange the row swapping oper-
ation with the one directly to its left. In doing so, swap any row indices on that
operation matching those of the row interchange. In the example,

−2R1+R2 → R2, R2 ↔ R3, R1+R2 → R2,
1

3
R2 → R2

and

R2 ↔ R3, −2R1 +R3 → R3, R1+R2 → R2,
1

3
R2 → R2

give the correct ordering of the operations, with row swappings first. Therefore,

P =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ , L =

⎡
⎣ 1 0 0

1 1 0
−2 0 1

⎤
⎦ , D =

⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦ , U =

⎡
⎢⎢⎣

1 3 0

0 1
2

3
0 0 1

⎤
⎥⎥⎦

■

The examples so far have been relatively simple. Here is a physics application that
is a bit more in-depth. If you are not yet ready for the calculus portion of the problem
(the exact solution), skip to the part after the point where an approximation is made
to the second derivative function.

Example
7.18

Given a homogeneous, thin rod of constant cross section and length 1, which is
insulated except at its ends, a simple model of steady-state heat distribution in the
rod is

−u′′(x) = f (x), 0 < x < 1

u(0)= u(1)= 0

where u(x) is the quantity of heat at position x, f (x) ≥ 0 is a given heat source, and
u(0)= u(1)= 0 represents fixed temperature 0 at the ends.

Exact Solution Integrate the differential equation u′′(x) =−f (x) from 0 to x to
obtain

u′(x)= u′(0)−
x∫

0

f (t)dt

where u′(0) needs to be determined. Integrate again from 0 to x to obtain

u(x) = u(0)+ u′(0)x −
x∫

0

s∫
0

f (t)dt ds

576 Chapter 7 Linear Algebra

(Example 7.18
continued)

Using the conditions u(0)= u(1)= 0 yields

u′(0)=
1∫

0

s∫
0

f (t)dt ds

so that

u(x) = x

1∫
0

s∫
0

f (t)dt ds−
x∫

0

s∫
0

f (t)dt ds

The double integral can be manipulated so that

u(x)=
1∫

0

G(x, t)f (t)dt

where

G(x, t)=
{
(1− t)x, x ≤ t

(1− x)t , x ≥ t

}

In most cases for f (t), the integral for u(x) cannot be evaluated symbolically to obtain
a closed-form solution in terms of elementary functions. However, you can resort to
numerical integration methods to obtain approximate values for u(x).

Approximate Solution Find approximations to the values u(jh) for 1≤ j ≤ n,
where h = 1/(n+ 1) for some large positive integer n. From calculus,

u′′(x) = lim
h→0

u(x + h)− 2u(x)+ u(x − h)

h2

The approximation below is reasonable for small values of h,

u′′(x)
.= u(x + h)− 2u(x)+ u(x − h)

h2

Replace h by 1/(n+ 1) and x = jh, j = 0, 1, . . . , n+ 1. Define uj = u(jh) (so that u0 =
un+1 = 0) and fj = f (jh). The differential equation is approximated by the second-
order linear difference equation

−uj+1+ 2uj − uj−1 = h2fj , 1 ≤ j ≤ n

u0 = un+1 = 0

7.3 Matrices 577

We can rewrite this as a system of n equations in n unknowns as

Au =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

...
...

...
...

0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

u3
...

un

⎤
⎥⎥⎥⎥⎥⎦ = h2

⎡
⎢⎢⎢⎢⎢⎣

f1
f2
f3
...

fn

⎤
⎥⎥⎥⎥⎥⎦= h2f

The matrix n× n matrix A = [aij] can be written concisely as

aij =
⎧⎨
⎩

2, i = j
−1, i = j ± 1

0, otherwise

⎫⎬
⎭ .

Such a matrix is said to be tridiagonal.
Consider the case n = 4; then

A =

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ ∼

1

2
R1 +R2 → R2

⎡
⎢⎢⎢⎢⎣

2 −1 0 0

0
3

2
−1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎥⎥⎦

∼
2

3
R2 +R3 → R3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0

0
3

2
−1 0

0 0
4

3
−1

0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∼
3

4
R3 +R4 → R4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0

0
3

2
−1 0

0 0
4

3
−1

0 0 0
5

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼
1

2
R1 → R1

2

3
R2 → R2

3

4
R3 → R3

4

5
R4 → R4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

2
0 0

0 1 −2

3
0

0 0 1 −3

4
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

578 Chapter 7 Linear Algebra

Therefore,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

−1

2
1 0 0

0 −2

3
1 0

0 0 −3

4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0

0
3

2
0 0

0 0
4

3
0

0 0 0
5

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

2
0 0

0 1 −2

3
0

0 0 1 −3

4
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= LDU

Note that LT = U and the diagonal entries of D are positive. Also note that A can be
factored into

A = LDU = L
√

D
√

DU = (L
√

D)(L
√

D)T =M M T

where
√

Diag(d1, . . . , dn)=Diag(
√

d1, . . . ,
√

dn). ■

(Example 7.18
continued)

A couple of observations are in order. First, if A is invertible, then its LDU
decomposition is unique. The proof is by contradiction. Assume that we have two
decompositions, A = L1D1U1 = L2D2U2. Then (L−1

2 L1)D1 = D2(U2U−1
1). The left-

hand side is lower triangular and the right-hand side is upper triangular. The only way
this can happen is if both are diagonal. Since D1 is invertible, L−1

2 L1 must be diago-
nal. Since the diagonal entries of L1 and L−1

2 are all 1, the diagonal of their product
must all be 1. Therefore, L−1

2 L1 = I and L1 = L2. Similarly, U1 = U2. Finally, can-
celling the L and U matrices yields D1 = D2. The conclusion is there can be only one
decomposition.

Second, if A is symmetric, then U in the LDU decomposition must be U = LT.
That is, A = LDLT. If in addition, the diagonal entries of D are nonnegative, then
A = (L

√
D)(L

√
D)T. To prove this, let A= LDU . Then A = AT = U TDLT. This is

another LDU decomposition for, so by the uniqueness we proved in the last para-
graph, U = LT. The additional factorization when D has nonnegative entries follows
trivially.

7.4 Vector Spaces

The central theme of linear algebra is the study of vectors and the sets in which they
live, called vector spaces. Our intuition about vectors comes from their manipulation
in the xy-plane. The classical introduction in a physics setting introduces vectors to
represent velocities, accelerations, or forces. In this setting, a vector is normally intro-
duced as a quantity with direction and magnitude. As such, it does not matter where
you place that vector in the plane – it is still the same vector. Figure 7.4 shows a vector
v occurring at two locations in the plane. The standard convention is used to draw
the vector as an arrow to indicate its direction, the length of the arrow corresponding
to its magnitude.

7.4 Vector Spaces 579

v v

Figure 7.4 A vector v at two locations in the plane.

u

v
u + v

Figure 7.5 Addition of u and v.

Regardless of location, the two arrows have the same direction and same magni-
tude, so they represent the same vector.

The visual approach of drawing arrows is also used to motivate various operations
on vectors. Figure 7.5 illustrates the addition of two vectors u and v, the result denoted
u+ v.

You think of this as starting at the initial point of the arrow u, walking to the end
of the arrow to get to the initial point of the arrow v, then walking to the end of that
arrow to arrive at your final destination. That destination may be achieved by starting
at the initial point of the arrow u+ v (placed conveniently at the initial point of u)
and walking to the end of the arrow for the sum. The concept of aligning the vectors
from initial point to final point and walking along the path may be used for motivation
in the remaining rules mentioned next.

Figure 7.6 illustrates that vector addition is associative: u+ (v+w)= (u+ v)+
w. Not only is the grouping irrelevant, but also the ordering. Figure 7.7 illustrates that
vector addition is commutative: u+ v= v+u.

580 Chapter 7 Linear Algebra

w

v

u

u + v

v + w
(u + v) + w

=
u + (v + w)

Figure 7.6 Addition of u, v, and w. Which pair of vectors is added first is irrelevant.

v

v

u

u

u + v

v + u

Figure 7.7 Addition of u and v. The order of the vectors is irrelevant.

If you start at the initial point of an arrow v, walk to its final point, then walk back
to the initial point, the net effect is as if you never moved in the first place. The 0 is
used to represent the zero vector that has length zero, but undefined direction, and
corresponds to the net effect of no motion. As such, the following rule is suggested:
v+ 0= v. The arrow representing moving from the final point of v to its initial point
is denoted−v and is called the additive identity of v. Figure 7.8 illustrates this vector.

Using our intuition about walking along the vectors, it is always true that v+
(−v)= 0. The concept of an additive identity allows us to naturally define subtraction

7.4 Vector Spaces 581

v

–v

Figure 7.8 A vector v and its additive identity−v.

v

u

u – v

–v

Figure 7.9 The vectors u and v and the difference u− v.

of a vector v from a vector u as u− v= u+ (−v). The quantity on the left of the
equality is also referred to as the difference of u and v. Figure 7.9 shows two vectors
and their difference.

Typically, though, the sum and difference vectors are visualized as the diagonals
of a parallelogram formed by u and v. Figure 7.10 illustrates this.

The direction of a vector v can be preserved, but its length changed by a multi-
plicative factor c >0. The resulting vector is denoted by cv. Figure 7.11 shows a vector
whose length is scaled by 2. The vector 2v has the same direction as v but twice the
length. The figure also shows the vector (−2/3)v, which may be thought of as having
the direction of−v but two-thirds of the length. We may as well allow c to be negative
in the definition.

582 Chapter 7 Linear Algebra

v

v

u

u
u + v

u – v

Figure 7.10 The vectors u and v, the parallelogram formed by them, and the sum u+ v and
difference u− v shown as diagonals of the parallelogram.

v

v

v2v

–2
3

Figure 7.11 The vector v and two scalar multiples of it, one positive and one negative.

A simple yet relevant observation: If you multiply a vector by the scalar 1, the
length is unchanged. This suggests the rule 1 · v= v. The dot is included to emphasize
that the left-hand side is a scalar multiple of the vector. It should also be intuitive that
you can scale a vector by a, scale that vector by b, and obtain the same vector if you
just scaled by ab. The formal rule is: a(bv)= (ab)v.

Figure 7.12 shows two distributive laws that apply to scalar multiplication of vec-
tors. The left of the figure illustrates the rule for distributing across a scalar sum
(a + b)v= av+ bv. The right of the figure illustrates the rule for distributing across
a vector sum a(u+ v)= au+ av.

7.4 Vector Spaces 583

av

bv

(a + b)v

av
a(u + v)

au

v

u

u + v

(a) (b)

Figure 7.12 (a) Distributing across a scalar sum. (b) Distributing across a vector sum.

The various rules that apply to vectors in the plane also apply to vectors in space.
More generally, a lot of systems in practice follow the same rules. The abstraction of
the objects we call vectors and of the rules that apply to them leads us to the heart of
linear algebra–vector spaces, as defined next.

7.4.1 Definition of a Vector Space

Let V be a set whose elements are called vectors. Assume that equality of vectors is
well defined. Suppose that there are two operations, vector addition (+) and scalar
multiplication (·), such that the following properties hold. To help distinguish vectors
from scalars, vectors are typeset in boldface. In the properties, u, v, w ∈ V and a, b ∈
IR. We can now state the following 10 axioms:

1. (Closure under +): u+ v ∈ V

2. (+ is associative): u+ (v+w)= (u+ v)+w

3. (+ is commutative): u+ v= v+u

4. (Additive identity): There is a vector 0 ∈ V such that v+ 0= v for any v ∈ V

5. (Additive inverses): For each v ∈ V there is a vector −v ∈ V such that v+
(−v)= 0

6. (Closure under ·): c · v ∈ V , written simply as cv

7. (· is distributive over real addition): (a+ b)v= av+ bv

8. (· is distributive over vector addition): a(u+ v)= au+ av

584 Chapter 7 Linear Algebra

9. (· is associative): a(bu)= (ab)v

10. (Multiplicative identity): The number 1 ∈ IR has the property 1 · v= v

The triple (V ,+, ·) is called a vector space over the real numbers. As it turns out,
any field of numbers is allowable, not just the field of real numbers. For exam-
ple, the complex numbers or even the rational numbers could be used. There are
also fields which have a finite number of elements; such fields could be used. In
the applications in this book, the field of real numbers invariably is the appropriate
choice.

A few comments are in order about the axioms for a vector space. First, the nota-
tion for the additive inverse of v ∈ V , namely, −v ∈ V , is not to be confused with
the scalar multiple −1 · v. However, we will prove that in fact, −v =−1 · v. Second,
the zero vector is indicated as 0, but as we will see in a later example, there are vec-
tor spaces where the numerical value of 0 has nothing to do with “zero.” Third, the
numerical value of the multiplicative identity 1 for a field may not be related to the
number “one.” (For example, S = {0, 2, 4, 6, 8}with addition and multiplication mod-
ulo 10 is an example of something called a finite field. It has additive identity 0 and
multiplicative identity 6.)

Example
7.19

This is the classic example of a vector space, n-tuples of numbers whose compo-
nents are real numbers. Let V = IRn = {(x1, . . . , xn) : xk ∈ IR, k = 1, . . . , n} be the set
of ordered n-tuples of real numbers. Let x, y ∈ V , where x= (x1, . . . , xn) and y=
(y1, . . . , yn), and let c ∈ IR.

Define vector equality by x= y if and only if xk = yk for every k = 1, . . . , n. That
is, the vectors must be the same component-wise. Define vector addition by

x+ y= (x1, . . . , xn)+ (y1 , . . . , yn)= (x1 + y1, . . . , xn+ yn)

and define scalar multiplication by

c · x= cx= c(x1, . . . , xn)= (cx1, . . . , cxn)

The triple (IRn,+, ·) is a vector space over the real numbers. The additive identity is
0= (0, . . . , 0). For x= (x1, . . . , xn), the additive inverse is−x= (−x1, . . . ,−xn). Each
of the 10 axioms for a vector space must be verified. For example, the proof that axiom
3 is satisfied is given as:

x+ y = (x1, . . . , xn)+ (y1, . . . , yn) Definition of x and y

= (x1 + y1, . . . , xn+ yn) Definition of vector addition

= (y1 + x1, . . . , yn+ xn) Since real addition is commutative

= (y1, . . . , yn)+ (x1, . . . , xn) Definition of vector addition

= y+ x Definition of x and y

The verification of the other axioms is left as an exercise. ■

7.4 Vector Spaces 585

Example
7.20

Consider the set of all polynomials with real-valued coefficients,

V = IR[x]=
{

n∑
k=0

akxk : ak ∈ IR, n ∈W

}

where W= {0, 1, 2, . . .} is the set of whole numbers. Let p, q ∈ V where

p=
n∑

i=0

pi x
i and q =

m∑
i=0

qi x
i

In the following verifications, we can assume for the sake of argument that n ≥m.
Define vector equality by p= q when n =m and pk = qk for all k = 0, . . . , n.

Define vector addition, p+q, by

p+q=
m∑

i=0

(pi + qi)x
i +

n∑
i=m+1

pix
i

By convention, if in the summation S =∑U
i=L ti , the lower index L is larger than the

upper index U , then S = 0. Thus, in the above definition if n =m, in which case
m+ 1 > n, the second summation is zero. Finally, define scalar multiplication, cp for
c ∈ IR, by

cp=
n∑

i=0

cpix
i

For example, if p= p0+ p1x + p2x2 and q= q0+ q1x, then

p+q= (p0 + q0)+ (p1 + q1)x + p2x2 and cp= (cp0)+ (cp1)x + (cp2)x
2.

The triple (IR[x],+, ·) is a vector space. The additive identity is the zero polyno-
mial, which can be represented as 0= 0, where the right-hand side denotes a constant
polynomial (degree zero) whose only coefficient is the scalar zero. The additive inverse
for p=∑n

k=0 pk xk is

−p =
n∑

k=0

(−pk)x
k

Of course you need to verify the 10 axioms for a vector space. ■

Example
7.21

Define V = F(IR, IR) to be the set of all real-valued functions of a real-valued variable.
Two functions f (x) and g (x) are represented as the vectors f, g ∈ V . The vectors are
equal, denoted f= g, whenever

f (x)= g (x), for all x ∈ IR

586 Chapter 7 Linear Algebra

Define vector addition, f+ g, to be the usual addition of functions:

(f + g)(x) = f (x)+ g (x), for all x ∈ I

That is, the vector f+ g represents the function f + g . Note that the addition on the
left represents vector addition, whereas the addition on the right is real addition. Let
c ∈ IR and f ∈ V . Define scalar multiplication, c · f, to be the usual scalar multiplication
for functions:

(cf)(x) = c · f (x), for all x ∈ I

The scalar multiplication on the left is that for V , but the scalar multiplication on
the right is multiplication of real numbers. The triple (F(IR, IR),+, ·) is a vector
space. ■

(Example 7.21
continued)

Example
7.22

The final example is a strange one, but illustrates how abstract the concept of vector
space really is. Let V = (0,∞) denote the set of positive real numbers. Each positive
number x ∈ V is a vector. Define vector equality by x = y when x and y are equal as
real numbers. Define vector addition, denoted ⊕ because of its lack of resemblance to
real-valued addition, by x⊕ y = xy . That is, the vector addition of two positive num-
bers is defined to be their product! Define scalar multiplication, denoted ! because
of its lack of resemblance to real-valued multiplication, by c ! x = xc , where c is a
scalar and x is a vector. That is, scalar multiplication of a positive number by a real
number is defined to be the positive number raised to a power! Note that the additive
identity is the positive number 1, not the real number 0. The multiplicative identity is
the scalar 1 ∈ IR. The additive inverse of x is the reciprocal 1/x. The triple (V ,⊕,!)

is a vector space, albeit a strange one. ■

Some consequences of the axioms for a vector space are listed here.

1. The additive identity 0 is unique.

2. The additive inverse of x is unique.

3. For any x, 0x= 0.

4. For any c ∈ IR, c0= 0.

5. If−x is the additive inverse of x, then−x= (−1) · x.

6. If cx= 0, then either c = 0 or x= 0.

Proof of item 1 Suppose there are two additive identities, call them 01 and 02.
Then

01 = 01 + 02 Since 02 is an additive identity

= 02 Since 01 is an additive identity

so there can only be one additive identity.

7.4 Vector Spaces 587

Proof of item 2 Suppose x has two additive inverses, call them y and z. Then

z = z+ 0 Since 0 is the additive identity

= z+ (x+ y) Since y is an additive inverse for x

= (z+ x)+ y Since vector addition is associative

= (x+ z)+ y Since vector addition is commutative

= 0+ y Since z is an additive inverse for x

= y+ 0 Since vector addition is commutative

= y Since 0 is the additive identity

Therefore, x has only one additive inverse.

Proof of item 3 Let y be the additive inverse for 0x. Then

0x = (0+ 0)x Since 0 = 0 + 0

= 0x+ 0x By axiom 7

0x+ y = (0x+ 0x)+ y

= 0x+ (0x+ y) By axiom 2

0 = 0x+ 0 Since y is the additive inverse for 0x

= 0x Since 0 is the additive identity.

Proof of item 4 Let c ∈ IR and let y be the additive inverse for c0. Then

c0 = c(0+ 0) Since 0 is the additive identity

= c0+ c0 By axiom 8

c0+ y = (c0+ c0)+ y

= c0+ (c0+ y) By axiom 2

0 = c0+ 0 Since y is the additive inverse for c0

= c0 Since 0 is the additive identity

Proof of item 5

x+ (−1)x = 1x+ (−1)x By axiom 10

= [1+ (−1)]x By axiom 7

= 0x Since 1 + (–1) = 0

= 0 By Item 3 proved earlier

The vector (−1)x is the additive inverse of x. By item 2 shown previously, additive
inverses are unique; therefore, −x= (−1)x.

588 Chapter 7 Linear Algebra

Proof of item 6 If c = 0, then the conclusion is clearly true. If c �= 0, then

0 = cx By hypothesis

1

c
0 = 1

c
(cx)

0 = 1

c
(cx) By Item 4 proved earlier

=
(

1

c
c

)
x By axiom 9

= 1x
= x By axiom 10

so x= 0.

7.4.2 Linear Combinations, Spans, and Subspaces

Let xk ∈ V , a vector space, and let ck ∈ IR for k = 1, . . . , n. The expression

c1x1+ · · ·+ cnxn =
n∑

k=1

ckxk

is called a linear combination of the vectors.

Example
7.23

All vectors in IR2 can be written as a linear combination of the vectors (1, 1) and
(1,−1). To prove this, we verify that each vector (x, y) = c1(1, 1)+ c2(1,−1) for some
choice of c1, c2.

(x, y) = c1(1, 1)+ c2(1,−1)

= (c1, c1)+ (c2,−c2) By definition of scalar multiplication

= (c1 + c2, c1− c2) By definition of vector addition

Using the definition for vector equality, x = c1+ c2 and y = c1− c2. We have two
equations in the two unknowns c1, c2. Solve these to obtain c1 = x+y

2 and c2 = x−y
2 .

Thus,

(x, y) = x + y

2
(1, 1)+ x − y

2
(1,−1)

a unique representation of (x, y) as a linear combination of (1, 1) and (1,−1). ■

Let V be a vector space and let A ⊂ V . The span of A is the set

Span[A] =
{

n∑
k=1

ckxk : n > 0, ck ∈ IR, xk ∈ A

}

7.4 Vector Spaces 589

That is, the span is the set of all finite linear combinations of vectors in A. The sub-
set A need not be finite, and the number of terms in the sums can be arbitrarily
large. For example, in the last example all vectors (x, y) ∈ IR2 can be written as linear
combinations of (1, 1) and (1,−1), which implies IR2 = Span[(1, 1), (1,−1)].

A general result may be stated now. Let (V ,+, ·) be a vector space. Let A be a
nonempty subset of V . The triple (Span[A],+, ·) is also a vector space. To prove this,
we must verify the 10 axioms for a vector space.

1. Let x, y ∈ Span[A]. Then x=∑n
i=1 aixi and y=∑m

j=1 bj yj for some ai , bj ∈ IR

and for some xi , yj ∈ V . Thus, x+ y=∑n
i=1 aixi +∑m

j=1 bj yj =
∑n+m

k=1 ck zk ∈
Span[A] where

ck =
{

ak , 1≤ k ≤ n

bk−n, n+ 1≤ k ≤ n+m

}
, zk =

{
xk , 1≤ k ≤ n

yk−n , n+ 1 ≤ k ≤ n+m

}

2. Since+ is associative in V , it is associative in any subset of V . The set Span[A]
of linear combinations of elements in A ⊂ V must itself be a subset of V . Thus,
+ is associative in Span[A].

3. Since + is commutative in V , it is commutative in any subset of V . Thus, + is
commutative in Span[A].

4. If 0 is the additive identity in V , then we show also that 0 ∈ Span[A]. The set A �=
∅ implies Span[A] �= ∅. Let x ∈ Span[A]. Then x=∑n

i=1 aixi for some ai ∈ IR
and for some xi ∈ A. Moreover, x+ (−1)x =∑n

i=1[ai + (−1)ai]xi ∈ Span[A].
But 0= x+ (−1)x by an earlier result, so 0 ∈ Span[A].

5. Let x ∈ Span[A] ⊂ V . We need to show that −x ∈ Span[A]. Since x is in the
span, x=∑n

i=1 aixi for some ai ∈ IR and for some xi ∈ A. Then −x= (−1)x=∑n
i=1−aixi is a linear combination of elements of A, so−x ∈ Span[A].

6. Let c ∈ IR and x ∈ Span[A]. Then x=∑n
i=1 aixi for some ai ∈ IR and for some

xi ∈ A. But

cx = c
n∑

i=1
aixi

=
n∑

i=1
c(aixi) by axiom 8 for V

=
n∑

i=1
(cai)xi by axiom 9 for V

∈ Span[A]

7. Since scalar multiplication is distributive over real addition in V , it is distributive
in any subset of V . Thus, scalar multiplication is distributive over real addition
in Span[A].

590 Chapter 7 Linear Algebra

8. Since scalar multiplication is distributive over vector addition in V , it is distribu-
tive in any subset of V . Thus, scalar multiplication is distributive over vector
addition in Span[A].

9. Since scalar multiplication is associative in V , it is associative in any subset of V .
Thus, scalar multiplication is associative in Span[A].

10. Since 1 · x= x for all vectors in V , the same property is true in any subset. Thus,
1 · x= x for x ∈ Span[A].

If a nonempty subset S of a vector space V is itself a vector space, S is said to be a
subspace of V . For any given subset S, the 10 axioms for a vector space can be checked
to see if S is a subspace. However, an analysis of the proof that the span of a set is a
subspace shows that many of the vector space axioms are automatically satisfied just
because of the fact that you are working with a subset of V . As it turns out, to show
that S ⊂ V is a subspace, we need only verify closure under scalar multiplication and
vector addition. That is, S ⊂ V is a subspace if and only if ax+ by ∈ S for any a, b ∈ IR
and x, y ∈ S.

Example
7.24

Let V = IR3 and S = {(x1, x2, x3) : x1 = x2}. The subset S is a subspace. To verify, let
a, b ∈ IR and x, y ∈ S; then

ax+ by = a(x1, x2, x3)+ b(y1, y2, y3) Notation

= a(x1, x1, x3)+ b(y1, y1, y3) Since x, y ∈ S

= (ax1, ax1, ax3)+ (by1, by1, by3) Definition of scalar multiplication

= (ax1 + by1, ax1+ by1, ax3+ by3) Definition of vector addition

Since the first two components of the last vector in the displayed equation are equal,
that vector is in S. That is, ax+ by ∈S and S must be a subspace of V . ■

Example
7.25

Let V = IR2 and S = {(x1, x2) : x2 = x1+ 1}. The subset S is not a subspace for many
reasons, one of which is that (0, 0) �∈ S. ■

7.4.3 Linear Independence and Bases

Let V be a vector space. If possible, we would like to find sets A ⊂ V such that
Span[A] = V . For example, let V = IR2. If A = {(x, y) : x ≥ 0}, then it is easily shown
that Span[A] = IR2. If B = {(1, 1), (1,−1)}, then also Span[B]= IR2. In some sense, B
is a “smaller” set than A. Given a suitable definition for “smallness,” we want to find
the “smallest” sets A ⊂ V for which Span[A] = V . The following concept gives us a
handle on this. Let (V ,+, ·) be a vector space. The vectors x1, . . . , xn ∈ V . The vectors
are linearly dependent if

n∑
k=1

ck xk = c1x1+ · · ·+ cnxn = 0

7.4 Vector Spaces 591

for some set of scalars c1, . . . , cn which are not all zero. If there is no such set of scalars,
then the vectors are linearly independent. A set of vectors is said to be a linearly inde-
pendent set (linearly dependent set) if the vectors in that set are linearly independent
(linearly dependent).

Example
7.26

For V = IR3, the vectors x1 = (1, 0,−1), x2 = (2, 1, 0), x3 = (0, 0, 1), x= (−1, 1, 2) are
linearly dependent. Set:

(0, 0, 0) = c1(1, 0,−1)+ c2(2, 1, 0)+ c3(0, 0, 1)+ c4(−1, 1, 2)

= (c1 + 2c2− c4, c2+ c4,−c1+ c3+ 2c4)

This equation can be formulated as a linear system of equations,

⎡
⎣ 1 2 0 −1

0 1 0 1
−1 0 1 2

⎤
⎦
⎡
⎢⎢⎣

c1

c2

c3

c4

⎤
⎥⎥⎦=

⎡
⎣ 0

0
0

⎤
⎦

This system of three equations in four unknowns has infinitely many solutions. In
particular, it must have a nonzero solution. We could also solve the system:

A =
⎡
⎣ 1 2 0 −1

0 1 0 1
−1 0 1 2

⎤
⎦

∼
R1+R3 → R3

⎡
⎣1 2 0 −1

0 1 0 1
0 2 1 1

⎤
⎦

∼
−2R2 +R1 → R1

−2R2 +R3 → R3

⎡
⎣1 0 0 −3

0 1 0 1
0 0 1 −1

⎤
⎦

= Ar

The general solution is ⎡
⎢⎢⎣

c1

c2

c3

c4

⎤
⎥⎥⎦= c4

⎡
⎢⎢⎣

3
−1

1
1

⎤
⎥⎥⎦

Choose c4 = 1; then c1 = 3, c2 =−1, and c3 = 1. We can write

3(1, 0,−1)− 1(2, 1, 0)+ 1(0, 0, 1)+ 1(−1, 1, 2)= (0, 0, 0)

and the vectors are linearly dependent. ■

592 Chapter 7 Linear Algebra

Example
7.27

In V = IR2, the vectors (1, 1) and (1,−1) are linearly independent. Let c1(1, 1)+
c2(1,−1)= (0, 0). Then (c1+ c2, c1− c2)= (0, 0) and so c1 + c2 = 0, c1− c2 = 0. The
only solution to this system is c1 = c2 = 0, so the vectors are linearly independent. ■

Example
7.28

Let V = F(IR, IR) be the vector space of all real-valued functions whose domain is
the set of real numbers. The vectors f and g that represent the functions f (x)=
sinx and g (x) = cos x, respectively, are linearly independent. The vector h= c1f+
c2g represents the function h(x)= c1f (x)+ c2g (x). Setting h= 0 is equivalent to
requiring h(x)≡ 0; that is, h(x)= 0 is true for all values of x. In particular,
0 = h(0)= c1 sin(0)+ c2 cos(0)= c2 and 0 = h(π/2)= c1 sin(π/2)+ c2 cos(π/2)=
c1. Since both c1 = 0 and c2 = 0, the vectors f and g are linearly independent. ■

The following result is an important one. Let V be a vector space and let A = {xi ∈
V : i = 1, . . . , n} be a linearly independent set of vectors. Each vector x ∈ Span[A] has
a unique representation x=∑n

i=1 aixi . The proof of this result is by contradiction.
Suppose that there are two distinct representations x=∑n

i=1 aixi and x=∑n
i=1 bixi ,

where not all ai = bi . Subtract x from itself:

0= x− x=
n∑

i=1

aixi −
n∑

i=1

bixi =
n∑

i=1

(ai − bi)xi =
n∑

i=1

cixi

where ci = ai − bi . Because the vectors in A are linearly independent, all ci = 0, so
ai = bi for all i = 1, . . . , n, a contradiction to the assumption that not all ai = bi . Thus,
there can be only one representation of x. The value ai in the unique representation
are called the coefficients of x with respect to A.

Example
7.29

In an earlier example we had shown that IR2 = Span[{(1, 1), (1,−1)]}, where

x= (x1, x2)= x1+ x2

2
(1, 1)+ x1− x2

2
(1,−1)

The coefficients of x with respect to A = {(1, 1), (1,−1)} are x1+x2
2 and x1−x2

2 where
the order is important. ■

A couple of useful algorithms are provided for manipulating sets based on linear
independence or dependence.

Removing vectors from a linearly dependent set to obtain a linearly indepen-
dent set. Let x1, . . . , xn (n ≥ 2) be linearly dependent vectors; then

∑n
k=1 ckxk = 0 for

coefficients ck that are not all zero. Suppose that cm �= 0 for some index m. We can
solve for xm to obtain

xm =−
n∑

k = 1
k �=m

ck

cm
xk

Moreover,

Span[{x1, . . . , xn} \ {xm}]= Span[{x1, . . . , xn}]

7.4 Vector Spaces 593

because for any vector y which is a linear combination of the xk , just replace the xm

term by the relationship given above for xm as a linear combination of the other xk .
Inserting vectors into a linearly independent set to retain a linearly indepen-

dent set. Let A = {x1, . . . , xn} be a linearly independent set. Let y �∈ Span[A]; then A ∪
{y}, the union of A and the singleton set containing y, is also a linearly independent
set. Consider the linear combination

c0y+ c1x1 + · · ·cnxn = 0

If c0 �= 0, then we can solve the equation for y,

y=− c1

c0
x1− · · ·− cn

c0
xn ∈ Span[A]

a contradiction to the assumption that y �∈ Span[A]. It must be that c0 = 0. Con-
sequently, c1x1+ · · ·+ cnxn = 0. But the xk are linearly independent, so ck = 0 for
k = 1, . . . , n. We have shown that ck = 0 for k = 0, . . . , n, and so A∪ {y} is a linearly
independent set.

This leads us to an important concept in linear algebra. Let V be a vector space
with subset A ⊂ V . The set A is is said to be a basis for V if A is linearly independent
and Span[A] = V . The plural of the term basis is bases.

Example
7.30

Let V = IR2 with the usual vector addition and scalar multiplication. Accordingly,

1. {(1, 0), (0, 1)} is a basis for V . It is easy to show that the two vectors are linearly
independent. To show that they span V , note that

(x, y)= (x, 0)+ (0, y) = x(1, 0)+ y(0, 1)

2. {(1, 1), (1,−1), (0, 1)} is not a basis for V because the vectors are linearly depen-
dent:

1(1, 1)− 1(1,−1)− 2(0, 1) = (0, 0)

However, they do span V because

(x, y) = x + y − 2

2
(1, 1)+ x − y + 2

2
(1,−1)+ 2(0, 1)

3. {(0, 1)} is not a basis for V . The set is linearly independent. However, V �=
Span[{(0, 1)}] because (1, 0) ∈ V but (1, 0) �∈ Span[{(0, 1)}]. ■

The last example is designed to illustrate that, in fact, a basis for V is the smallest
set of vectors whose span is V . The term smallest in this sense is the number of vectors
in the set. Now it is the case that V can have many bases. For example, {(1, 0), (0, 1)}
and {(1, 1), (1,−1)} are bases for IR2. Note that the two bases have the same number
of elements. The number of elements of a set A, called the cardinality of the set, is
denoted by |A|. The properties in the following list are valid for a vector space V that

594 Chapter 7 Linear Algebra

has a basis B of cardinality |B| = n. The set A in the first three items is any subset
of V .

1. If |A| > n, then A is linearly dependent. The contrapositive of this statement is,
if A is linearly independent, then |A| ≤ n.

2. If Span[A] = V , then |A| ≥ n.

3. Every basis of V has cardinality n. The vector space is said to have dimension
dim(V) = n and is referred to as a finite dimensional vector space.

Proof of item 1 Let the known basis be B = {y1, . . . , yn}. Choose A = {x1, . . . ,
xn+1} to be a linearly independent set of n+ 1 vectors, so |A| = n+ 1. Since B is a
basis, each vector xi has a unique representation with respect to that basis,

xi =
n∑

j=1

cij yj

for 1≤ i ≤ n+ 1. To show that the xi are linearly dependent, show that there are
values di , not all zero, such that

∑n+1
i=1 dixi = 0:

0 =
n+1∑
i=1

di xi

=
n+1∑
i=1

di

(
n∑

j=1
cijyj

)

=
n+1∑
i=1

n∑
j=1

dicij yj

=
n∑

j=1

(
n+1∑
i=1

dicij

)
yj

Since the yj are linearly independent,
∑n+1

i=1 cijdi = 0 for 1≤ j ≤ n. But this is a sys-
tem of n equations in n+ 1 unknowns, so there must be a nonzero solution. That is,
there must be a solution for which not all di are zero. Indeed, the xi must be linearly
dependent and A is a linearly dependent set.

Proof of item 2 The proof is by contradiction. Suppose that A ⊂ V and V =
Span[A]. Assume that |A| =m < n, say A = {x1, . . . , xm}. Remove linearly depen-
dent vectors until we have a set A′ = {y1, . . . , y�} which is linearly independent and
for which V = Span[A′]. Because we have potentially removed vectors from the set,
� ≤m < n. The fact that A′ is a linearly independent set and the fact that the span of
A′ is V means that A′ is a basis for V with cardinality �. The basis B is a set whose
cardinality |B| = n > �, to which (by item 1), B must be a linearly dependent set, a
contradiction to B being a basis. The assumption |A| < n cannot be valid, so in fact
|A| ≥ n.

7.4 Vector Spaces 595

Proof of item 3 The basis B for V has cardinality n, the number mentioned in
the first two items. Let C be a basis for V . Since C is a linearly independent set, item
1 says that |C | ≤ n. Since V = Span[C], item 2 says that |C | ≥ n. The two conditions
require that |C | = n.

Example
7.31

Observe that dim(IRn)= n since a basis is given by {e1, . . . , en}, where ej is the n-tuple
whose jth component is 1, and all other components are 0. It is easy to verify that these
vectors are linearly independent. To see that they span IRn :

(x1, . . . , xn) = (x1, 0, . . . , 0)+ (0, x2, 0, . . . , 0)+ · · ·+ (0, . . . , 0, xn)

= x1(1, 0, . . . , 0)+ x2(0, 1, 0, . . . , 0)+ · · ·+ xn(0, . . . , 0, 1)

= x1e1+ x2e2+ · · ·+ xnen

=
n∑

i=1
xi ei

The basis of vectors {e1, . . . , en} is called the standard Euclidean basis for IRn .
The vector space IRn is an example of a finite dimensional vector space; that is,

dim(IRn) is a finite number. Not all vector spaces are finite dimensional. For example,
F(IR, IR), the set of all real-valued functions whose domain is the real numbers, is
infinite dimensional. ■

The remaining material in this section is restricted to the vector spaces IRn . The
concepts generalize to other vector spaces, but for the purposes of this book are not
necessary to investigate in detail.

7.4.4 Inner Products, Length, Orthogonality, and Projection

Let x= (x1, . . . , xn), y= (y1, . . . , yn) ∈ IRn. When they are represented as n× 1 column
vectors, the standard inner product of x and y is the real number,

〈x, y〉 = xTy=
n∑

i=1

xiyi (7.10)

The inner product satisfies the conditions 〈cx+ y, z〉 = c〈x, z〉+ 〈y, z〉 and 〈x, cy+
z〉 = c〈x, y〉+ 〈x, z〉. It is possible to define other inner products that satisfy the same
constraints, hence the use of the adjective standard in this definition. Treating x and y
as n-tuples, a common notation for the standard inner product is x · y, called the dot
product. The length of x is defined by

|x| = √x · x=
√√√√ n∑

i=1

x2
i (7.11)

The dot product is related to orthogonality of vectors. Two vectors x and y are
orthogonal (perpendicular) if and only if x · y= 0. To see that this is true, Figure 7.13
shows two orthogonal vectors drawn in the plane that they span.

596 Chapter 7 Linear Algebra

y

x
(a) (b)

y

x

Figure 7.13 (a) Two orthogonal vectors drawn in the plane spanned by them. (b) Two nonorthog-
onal vectors and the angle between them.

Applying the Pythagorean theorem,

|x|2+|y|2 = |x− y|2
= (x− y) · (x− y)

= (x · x)− (x · y)− (y · x)+ (y · y)

= |x|2+|y|2 − 2x · y

Subtracting |x|2+|y|2 from both sides and dividing by −2 yields x · y= 0. The
argument is reversible; the converse of the Pythagorean theorem is, if |x|2 +|y|2 =
|x− y|2, then the triangle must be a right triangle. Thus, x · y= 0 implies x and y are
orthogonal.

An alternative formulation for the standard inner product is in terms of the angle
θ between vectors x and y,

x · y= |x||y|cosθ (7.12)

Figure 7.13 shows a pair of vectors and the angle between them. The construction
of equation (7.12) uses the same geometry argument for a triangle having sides x,
y, and x− y, but now the law of cosines for a general triangle applies. In the special
case of a right triangle, θ = π/2 and cos(π/2)= 0, in which case xTy= 0 and the vec-
tors are orthogonal. Equation (7.10) defines the dot product in terms of coordinates,
but equation (7.12) is referred to as a coordinate-free description since the individual
coordinates of the vectors are not part of the equation.

The dot product is similarly related to projection of vectors. If u is a unit length
vector and v is any vector, the projection of v onto u is illustrated in Figure 7.14.

The left part of the figure motivates the algebraic construction. If θ is the angle
between v and u, then basic trigonometry tells us cosθ = L/|v|. Solving for L and
using |u| = 1, we have L = |v|cosθ = |v||u|cosθ = v · u. The projection of v onto u is

proj(v, u)= (v · u)u (7.13)

7.4 Vector Spaces 597

w v v v

Lu Lu

(L > 0) (L = 0) (L < 0)

u

(a) (b)

u u0

(c)

Figure 7.14 The projection of vectors onto a unit length vector u. (a) v projects to Lu with L > 0.
The angle θ between u and v is shown. The vector w is obtained as w= v− Lu and
is itself a projection. (b) v is perpendicular to u, so the projection onto u is the zero
vector 0. (c) The projection is Lu with L < 0.

As illustrated in two dimensions in Figure 7.14, the vector obtained by subtracting
the projection of v from itself is

w= v− (v · u)u (7.14)

and is necessarily orthogonal to u. The calculation is simple:

u · w= u · v− (v · u)u · u= u · v−u · v= 0

One last observation: The vector u was deemed to be unit length. Projection is still
well defined if the vector is not unit length. Let d be a non–unit-length vector in the
direction of u; then u = d/|d|. Replacing this in equation (7.13), but changing the
left-hand side argument from u to d to indicate the target of the projection is d,

proj(v, d)=
(

v · d

|d|
)

d

|d| =
(

v · d

d · d

)
d (7.15)

A set of nonzero vectors {x1, . . . , xm} consisting of mutually orthogonal vectors
(each pair is orthogonal) must be a linearly independent set. To see this:

0=
m∑

i=1

cixi

xT
j 0= xT

j

m∑
i=1

ci xi

0 =
m∑

i=1

cixj · xi Since inner product is distributive

= cj x
T
j xj Since xT

j xi = 0 for i �= j

598 Chapter 7 Linear Algebra

Since xj �= 0, xj · xj is not zero and it must be that cj = 0. The argument is valid for
every j = 1, . . . , m, so all cj are zero and the vectors are linearly independent. A set
of mutually orthogonal vectors is said to be an orthogonal set of vectors. Additionally,
if all the vectors in the set are unit length, the set is said to be an orthonormal set of
vectors.

It is always possible to construct an orthonormal set of vectors {u1, . . . , um} from
any linearly independent set of vectors, {v1, . . . , vm}. The process is referred to as
Gram–Schmidt orthonormalization.

Example
7.32

Consider v1 = (1, 2) and v2 = (−3, 0) in IR2. Figure 7.15 illustrates the process, one
based on projection of the input vectors. Choose

u1 = v1

|v1| =
(1, 2)√

5

so that u1 is a unit vector in the direction of v1. The component of v2 in the direction
of u1 can be removed, the remainder vector necessarily orthogonal to u1,

w2 = v2− (u1 · v2)u1 = 6

5
(−2, 1)

It is easily verified that u1 · w2 = 0. The remainder is not necessarily unit length, but
we can normalize it to obtain

u2 = w2

|w2| =
(−2, 1)√

5

The set {u1, u2} is orthonormal.

w2

u2

v2

u1

v1

Figure 7.15 Gram–Schmidt orthonormalization applied to two vectors in the plane. ■

7.4 Vector Spaces 599

Example
7.33

Let {v1, v2, v3} be a linearly independent set in IR3. Figure 7.16 illustrates a typical case.

v3

u3

u1
v1

v2
w2

u2

w3

Figure 7.16 Gram–Schmidt orthonormalization applied to three vectors in space.

Let u1, w2, and u2 be constructed as in the last example,

u1 = v1

|v1| , w2 = v2− (u1 · v2) , and u2 = w2

|w2|
The components of v3 in the directions of u1 and u2 can be removed, the remainder
vector necessarily orthogonal to both u1 and u2,

w3 = v3− (v3 · u1)u1− (v3 · u2)u2

It is easily verified that u1 · w3 = 0 and u2 · w3 = 0. The remainder is normalized to
obtain

u3 = w3

|w3|
The set {u1, u2, u3} is orthonormal. ■

The process for n vectors is iterative,

u1 = v1

|v1| and uj = vj −∑j−1
i=1

(
vj · ui

)
ui∣∣∣vj −∑j−1

i=1

(
vj · ui

)
ui

∣∣∣ , 2 ≤ j ≤ n (7.16)

The key idea, as shown in the examples, is that each new input vector from the original
linearly independent set has components removed in the direction of the already con-
structed vectors in the orthonormal set. The remainder is then normalized to produce
the next vector in the orthonormal set.

600 Chapter 7 Linear Algebra

7.4.5 Dot Product, Cross Product, and Triple Products

In the last section we defined the dot product of two vectors u and v and named it
u · v. We saw its relationship to projection of one vector onto another and found it
to be a useful concept for constructing an orthonormal set of vectors from a linearly
independent set of vectors.

Cross Product

In three dimensions we have another type of product between vectors u and v that
fits in naturally with the topics of the last section, namely, the cross product, a vector
we will denote by u× v. This vector is required to be perpendicular to each of its two
arguments, and its length is required to be the area of the parallelogram formed by its
arguments. Figure 7.17 illustrates the cross product.

Your intuition should tell you that there are infinitely many vectors that are per-
pendicular to both u and v, all such vectors lying on a normal line to the plane spanned
by u and v. Of these, only two have the required length. We need to make a selection
between the two. The standard convention uses what is called the right-hand rule. If
you place your right hand so the fingers point in the direction of u (the first argument)
as shown Figure 7.17(a), then rotate your fingers towards v (the second argument) so
that you make a closed fist, the cross product is selected to be that vector in which
direction your thumb points.

v

u × v

u
(a) (b)

v

u

|u|

Figure 7.17 (a) The cross product of u and v according to the right-hand rule. (b) The paral-
lelogram formed by u and v with angle θ and parallelogram base length and height
marked.

7.4 Vector Spaces 601

The area of the parallelogram is α = bh where b is the length of the base (the
length of u) and h is the height (the length of the projection of v onto a vector
perpendicular to u):

α = bh = |u||v| sin(θ) (7.17)

Let w be a unit-length vector perpendicular to both u and v and in the direction con-
sistent with the right-hand rule. The coordinate-free definition of the cross product
is therefore,

u× v= (|u||v| sin(θ)) w (7.18)

A coordinate-dependent definition can be constructed by solving a system of two
linear equations in three unknowns plus the length and direction constraints. Let
u× v= (x1, x2, x3). The orthogonality conditions are

0= u · (u× v)= (u1, u2, u3) · (x1, x2, x3)= u1x1+ u2x2 + u3x3

0= v · (u× v)= (v1, v2, v3) · (x1, x2, x3)= v1x1+ v2x2+ v3x3

We solve this system symbolically by choosing x3 to be the free parameter and solve
for x1 and x2 as basic parameters:

u1x1 + u2x2 =−u3x3

v1x1+ v2x2 =−v3x3

Multiplying the first equation by v2, the second equation by u2, and subtracting
second from first yields

(u1v2− u2v1)x1 = (u2v3− u3v2)x3

Multiplying the first equation by v1, the second equation by u1, and subtracting the
first from the second yields

(u1v2− u2v1)x2 = (u3v1− u1v3)x3

The term u1v2 − u2v1 appears on the left-hand side of both equations, so a con-
venient replacement for the free parameter is x3 = t(u1v2− u2v1), where t now is
the free variable. In terms of t , the two basic parameters are x1 = t(u2v3 − u3v2) and
x2 = t(u3v1− u1v3). Thus,

(x1, x2, x3)= t(u2v3− u3v2, u3v1 − u1v3, u1v2− u2v1)

602 Chapter 7 Linear Algebra

The value of t is determined by the length and direction constraints. In the enforce-
ment of the length constraint, we use equations (7.18) and (7.12):

|u× v|2 = |u|2|v|2 sin2 θ

= |u|2|v|2(1− cos2 θ)

= |u|2|v|2
(

1− (u · v)2

|u|2|v|2
)

= |u|2|v|2− (u · v)2

= (u2
1 + u2

2 + u2
3)(v

2
1 + v2

2 + v2
3)− (u1v1+ u2v2+ u3v3)

2

= (u2v3 − u3v2)
2 + (u3v1− u1v3)

2 + (u1v2− u2v1)
2

(7.19)

The last equality is obtained by quite a few algebraic manipulations, albeit simple
ones. From earlier,

|u× v|2 = |(x1, x2, x3)|2 = t 2 ((u2v3− u3v2)
2 + (u3v1− u1v3)

2 + (u1v2− u2v1)
2)

For the last two displayed equations to be equal we need t 2 = 1. The direction con-
straint narrows our final choice to t = 1. That is, the coordinate-dependent definition
for the cross product of two vectors is

u× v= (u2v3− u3v2, u3v1− u1v3, u1v2− u2v1) (7.20)

The coordinate-dependent and coordinate-free descriptions of the dot product are
equations (7.10) and (7.12), respectively. The coordinate-dependent and coordinate-
free descriptions of the cross product are equations (7.20) and (7.18), respectively.

There are a couple of important properties of the cross product of which to be
aware. First, the cross product is not commutative; in general u× v and v× u are not
the same vector. The two vectors, however, point in opposite directions. The cross
product is said to be anticommutative,

v× u=−u× v (7.21)

The geometric intuition for this identity is given in Figure 7.17. If you apply
the right-hand rule to v and u, in that order, you should get a vector that is oppo-
site in direction to u× v. Equation (7.21) is simple to verify algebraically by use of
equation (7.20). The other important property is that the cross product is a linear
transformation in each component (called a bilinear transformation). That is,

(cu+w)× v= c(u× v)+ (w× v) Linear in first component

u× (cv+w)= c(u× v)+ (u×w) Linear in second component
(7.22)

Exercise
7.4

Prove that the identities in equations (7.21) and (7.22) are true. ■

Exercise
7.5

If u+ v+w= 0, then u× v= v×w= w× u. What is the geometric interpretation
of this statement? ■

7.4 Vector Spaces 603

Triple Scalar Product

The cross product of two vectors v and w is a vector that can be dotted with a third
vector u to obtain a scalar, ν = u · v×w. No parentheses are needed about the cross
product portion. If you were to compute the dot product of u and v, the resulting
scalar cannot be crossed with w since we have defined no such operation between
scalars and vectors. The quantity u · v×w is referred to as the triple scalar product of
the three vectors. This quantity has an important geometric interpretation as a signed
volume of a parallelepiped. Figure 7.18 illustrates this where u forms an acute angle
with v×w.

The volume ν of the parallelepiped is the product area of the base α = |v||w| sinθ

as determined by equation (7.17) and the height h = |u|cosφ as determined by the
dot product between u and v×w,

ν = u · v×w= |v×w||u|cosφ

= (|v||w| sinθ)(|u|cosφ)= αh = |u||v||w| sinθ cos φ (7.23)

In the configuration of vectors in Figure 7.18, the volume is ν > 0. If u were to
form an obtuse angle with v×w, φ ∈ (π/2,π), then ν < 0 and |ν| is the volume. If
φ = π/2, then ν = 0 and the parallelepiped is degenerate (all three vectors are copla-
nar) and has volume zero. Thus, ν is referred to as a signed volume. Observe that
equation (7.23) is a coordinate-free description of the triple scalar product. The coor-
dinate-dependent formulas for dot product and cross product allow us to construct

u

�

�
v

v × w

0

w

h

Figure 7.18 A parallelepiped formed by vectors u, v, and w where u forms an acute angle with
v×w. The angle between v and w is θ and the angle between u and v×w is φ.

604 Chapter 7 Linear Algebra

a coordinate-dependent description of the triple scalar product,

u · v×w = (u1, u2, u3) · (v1, v2, v3)× (w1, w2, w3)

= u1(v2w3 − v3w2)+ u2(v3w1− v1w3)+ u3(v1w2− v2w1)
(7.24)

Exercise
7.6

Prove the following:

1. The identity in equation (7.24)

2. u× v · w= u · v×w

3. u · w× v=−u · v×w

4. If {u, v, w} is an orthonormal set of vectors, then |u · v×w| = 1 ■

Exercise
7.7

Let u, v, and w be linearly independent vectors.

1. Prove that any vector p has the representation,

p= (p · v×w)u+ (u · p×w)v+ (u · v× p)w

u · v×w

2. Prove that any vector p has the representation,

p= (w · p)u× v+ (u · p)v×w+ (v · p)w× u

u · v×w ■

Triple Vector Product

Another type of product of three vectors u, v, and w is the triple vector product
p= u× (v×w), itself a vector. For the sake of argument, let us assume that v×w
is not the zero vector (the two vectors are linearly independent). The cross product
of two vectors is perpendicular to each of those vectors. In our case, p must be per-
pendicular to v×w. But v×w is perpendicular to the plane spanned by v and w, so
p must lie in that plane. Figure 7.19 illustrates this.

Consequently, there must be scalars s and t such that u× (v×w)= sv+ t w. The
scalars can be computed in a coordinate-dependent manner, but the algebraic details
will be quite tedious. The following construction is coordinate-free.

Consider the special case

v× (v×w)= sv+ t w (7.25)

Dotting equation (7.25) with v and using the fact that v is perpendicular to the cross
product v×w, we have

0= v · v× (v×w)= (v · v)s + (v · w)t (7.26)

7.4 Vector Spaces 605

v3w
u

w

v

p5u3 (v3w)

Figure 7.19 The triple vector product p= u× (v×w). Note that p must lie in the plane spanned
by v and w.

Now dot equation (7.25) with w. The left-hand side is

w · v× (v×w) = (w× v) · (v×w)

= −(v×w) · (v×w) By equation (7.21)

= −|v×w|2

The second equation in s and t is

−|v×w|2 = (v · w)s + (w · w)t (7.27)

The equations (7.26) and (7.27) are a system of two linear equations in two
unknowns that can be written in matrix form as[

v · v v · w
v · w w · w

][
s
t

]
=
[

0
−|v×w|2

]

The matrix of coefficients on the right-hand side is inverted to produce the solution[
s
t

]
= 1

(v · v)(w · w)− (v · w)2

[
w · w −v · w
−v · w v · v

][
0

−|v×w|2
]
=
[

v · w
−v · v

]

where we have used the fact that |v×w|2 = (v · v)(w · w)− (v · w)2 from the deriva-
tion in equation (7.19). Therefore, we have the identity,

v× (v×w)= (v · w)v− (v · v)w (7.28)

This identity may be used to construct a formula for the general case. We need to
determine scalars s and t such that

u× (v×w)= sv+ t w (7.29)

606 Chapter 7 Linear Algebra

Dotting equation (7.29) with u produces

(u · v)s + (u · w)t = u · u× (v×w)= 0 (7.30)

Dotting equation (7.29) with v produces

(v · v)s + (v · w)t = u× (v×w) · v

= u · (v×w)× v By Exercise 7.6, item 2

= −u · v× (v×w) By equation (7.21)

= −u · ((v · w)v− (v · v)w) By equation (7.28)

= (v · v)(u · w)− (v · w)(u · v)

(7.31)

The equations (7.30) and (7.31) are a system of two linear equations in two
unknowns that can be written in matrix form as[

u · v u · w
v · v v · w

][
s
t

]
=
[

0
(v · v)(u · w)− (v · w)(u · v)

]

The matrix of coefficients on the right-hand side is inverted to produce the solution[
s
t

]
= 1

(u · v)(v · w)− (u · w)(v · v)

[
v · w −u · w
−v · v u · v

][
0

(v · v)(u · w)− (v · w)(u · v)

]

=
[

u · w
−u · v

]

Therefore, we have the identity,

u× (v×w)= (u · w)v− (u · v)w (7.32)

A similar formula is

(u× v)×w= (u · w)v− (v · w)u (7.33)

Equations (7.32) and (7.33) show that, in general, u× (v×w) �= (u× v)×w. That
is, the cross product operation is not associative.

Exercise
7.8

Prove the following:

1. The identity in equation (7.33)

2. (u× v) · (w× p)= (u · w)(v · p)− (u · p)(v · w)

3. (u× v)× (w× p)= (u× v · p)w− (u× v · w)p ■

7.4.6 Orthogonal Subspaces

Let U and V be subspaces of IRn. The subspaces are said to be orthogonal subspaces if
x · y= 0 for every x ∈U and for every y ∈ V .

7.4 Vector Spaces 607

Example
7.34

Let U = Span[(1, 1)] and V = Span[(1,−1)] in IR2. Geometrically, these sets are per-
pendicular lines in IR2 passing through the origin. A vector x ∈U is of the form
x= a(1, 1) and a vector y ∈ V is of the form y= b(1,−1). The inner product is
(a, a) · (b,−b)= ab− ab = 0, so U and V are orthogonal subspaces. ■

Example
7.35

Let U = Span[(1, 0, 0, 0), (1, 1, 0, 0)] and V = Span[(0, 0, 4, 5)]. Let x ∈U and y ∈ V ;
then

x= a

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦+ b

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

a+ b
b
0
0

⎤
⎥⎥⎦ , y= c

⎡
⎢⎢⎣

0
0
4
5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
4c
5c

⎤
⎥⎥⎦

and so

x · y= [a+ b b 0 0
]
⎡
⎢⎢⎣

0
0
4c
5c

⎤
⎥⎥⎦= (a+ b)(0)+ (b)(0)+ (0)(4c)+ (0)(5c) = 0

The subspaces are therefore orthogonal. ■

Given two subspaces U and V , some analysis of the subspaces is applied to verify
that they are (or are not) orthogonal subspaces. For example, U = Span[(1, 1, 0)] and
V = Span[(1,−1, 0)] are orthogonal subspaces since a general vector is U is (a, a, 0),
a general vector in V is (b,−b, 0), and (a, a, 0) · (b,−b, 0)= 0, regardless of choice
for a and b. Geometrically, the two subspaces are perpendicular lines containing the
origin. Vectors on the line representing V are perpendicular to any vector in U , but
there are other vectors perpendicular to those in U that are not in V . Specifically, the
plane containing the origin and having the normal vector (1, 1, 0) is a subspace W that
is orthogonal to U , and V is a strict subset of W . The general problem, then, is to find
the largest dimension subspace V of IRn that is orthogonal to a specified subspace U .
That subspace is called the orthogonal complement of U and is denoted by U⊥. The
formal set definition is

U⊥ = {x ∈ IRn : x · y= 0 for all y ∈ U } (7.34)

Figure 7.20 illustrates this concept for IR3.
Figure 7.20 suggests that the orthogonal complement of U⊥ is U itself; that is,

(U⊥)⊥ =U . This is true for finite dimensional vector spaces, but there are examples
of infinite dimensional vector spaces for which it is not true. The most you can say in
those spaces is that U ⊆ (U⊥)⊥, something that is easily verified just by the definition
of U⊥. For finite dimensional vector spaces, the proof that (U⊥)⊥ = U is presented
next.

Let us consider the trivial case first. If U = {0}, the subspace consisting of only
the zero vector, the orthogonal complement is U⊥ = IRn since every vector is trivially

608 Chapter 7 Linear Algebra

U⊥

U

0

Figure 7.20 A subspace U of IR3 and its orthogonal complement U⊥.

perpendicular to the zero vector. Conversely, the only vector perpendicular to all
vectors in IRn is the zero vector, so (U⊥)⊥ = (IRn)⊥ = {0} = U .

The nontrivial cases require a bit more work. Let U be a nontrivial subspace of
IRn . It has a basis A = {u1, . . . , um}, 1 < m < n, that is an orthonormal set of vectors.
Given any basis of U , it is always possible to construct an orthonormal one from it
using Gram–Schmidt orthonormalization. Let B be a basis for IRn . The set A can be
extended to a basis for IRn by attempting to insert, one at a time, the vectors from B
into A. The insertion of a vector is allowed only if the resulting set of vectors is linearly
independent. See the subsection on linear independence and bases to understand why
this algorithm works. Let the resulting basis for IRn be {u1, . . . , um , v1, . . . , vn−m}. Now
define:

wi = vi −
m∑

j=1

(
vi · uj

)
uj , 1 ≤ i ≤ n−m

The set C = {w1, . . . , wn−m} is linearly independent. To see this, set

0 =
n−m∑
i=1

ci wi

=
n−m∑
i=1

ci vi −
m∑

j=1

⎛
⎝n−m∑

i=1

ci

m∑
j=1

(
vi · uj

)⎞⎠uj

=
n−m∑
i=1

ci vi +
m∑

j=1

dj uj

7.4 Vector Spaces 609

where the last equality defines the coefficients dj . The right-hand side is a linear
combination of basis vectors for IRn , so all the ci and dj must be zero. Since all the
ci are zero, the set of wi vectors are in fact linearly independent. Moreover, observe
that

uk · wi = uk · vi −
m∑

j=1

(
vi · uj

)
uk · uj

= uk · vi −
m∑

j=1

(
vi · uj

){1, j = k
0, j �= k

}

= uk · vi −uk · vi

= 0

The n−m vectors in C are all orthogonal to the m vectors in A. The set C is therefore
a basis for U⊥. The construction applies equally to U⊥ to obtain a basis D of m
vectors for (U⊥)⊥. At this point we know that U ⊆ (U⊥)⊥ and that dim(U)=
m = dim((U⊥)⊥), the last condition disallowing proper containment; that is,
U = (U⊥)⊥.

7.4.7 The Fundamental Theorem of Linear Algebra

Let us revisit linear systems of equations. Given an n×m matrix A, there are four
subspaces associated with it: kernel(A), range(A), kernel(AT), and range(AT). Each
of these subspaces is discussed in this section.

Kernel of A

Define the kernel or nullspace of A to be the set

kernel(A) = {x ∈ IRm : Ax= 0}
This subset of IRm is a subspace. As discussed earlier we only need to verify that ax+
by ∈ kernel(A) for any a, b ∈ IR and any x, y ∈ kernel(A). This is the case since

A(ax+ by)= aAx+ bAy= a0+ b0= 0

If U = EA, where E is a product of elementary row matrices and U is upper eche-
lon, then Ax= 0 and U x= 0 have the same set of solutions. Therefore, kernel(A)=
kernel(U). A basis for kernel(A) is constructed by solving the system Ax= 0. If
r = rank(A), then dim(kernel(A)) =m− r .

610 Chapter 7 Linear Algebra

Example
7.36

Consider Ax= 0 where

A =
⎡
⎣1 3 2

2 6 9
3 9 8

⎤
⎦ ∼
−2R1+R2 → R2

−3R1+R3 → R3

⎡
⎣1 3 2

0 0 5
0 0 2

⎤
⎦ ∼

1

5
R2 → R2

⎡
⎣1 3 2

0 0 1
0 0 2

⎤
⎦

∼
−2R2 +R1 → R1

−2R2 +R3 → R3

⎡
⎣1 3 0

0 0 1
0 0 0

⎤
⎦= U

The basic variables are x1 and x3, and the only free variable is x2. The general
solution is

x=
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−3x2

x2

0

⎤
⎦= x2

⎡
⎣−3

1
0

⎤
⎦

so that kernel(A) = Span[(−3, 1, 0)] and dim(kernel(A)) = 1. ■

Example
7.37

Suppose A is a matrix such that its complete row-reduced form is

U =

⎡
⎢⎢⎣

1 2 −1 0 3 −1
0 0 0 1 2 −1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎦

The basic variables are x1 and x4, and the free variables are x2, x3, x5, and x6. The
general solution is

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2x2 + x3− 3x5 + x6

x2

x3

−2x5+ x6

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦
= x2

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ x3

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ x5

⎡
⎢⎢⎢⎢⎢⎢⎣

−3
0
0
−2

1
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ x6

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

The kernel is

kernel(A) = Span[(−2, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (−3, 0, 0,−2, 1, 0), (1, 0, 0,1, 0,1)]

with dim(kernel(A)) = 4. ■

Range of A

Let A be written as a block matrix of n× 1 column vectors,

A = [α1| · · ·|αm]

7.4 Vector Spaces 611

where αk = [aik] for 1≤ k ≤m. The expression Ax can be written as a linear
combination of these columns:

Ax =
m∑

k=1

aikxk = x1α1+ · · ·+ xmαm

Treating A as a function A : IRm → IRn, the range of the function is

range(A) = {y ∈ IRm : y= Ax for some x ∈ IRn} = Span[α1, . . . ,αm]

This subset of IRn is a subspace since the span of any subset is itself a subspace. The
columns of A are not required to be linearly independent, in which case they do not
form a basis for the range.

Suppose that U = EA where E is a product of elementary row matrices and U is
upper echelon. It is usually the case that range(A) �= range(U). However, if the pivot
elements of U are in columns k1, . . . , kr where r = rank(A), then the corresponding
columns of A form a basis for the range(A). That is,

range(A) = Span[αk1 , . . . ,αkr]

with dim(range(A)) = r . We prove this assertion. Write U in terms of its column
vectors, U = [u1| · · ·|um]. Construct the block matrices Ũ = [uk1 | · · ·|ukr] and Ã =
[αk1 | · · ·|αkr]. Note that

Ũ =
[

Ir×r

0(n−r)×r

]

where Ir×r is an identity matrix, r = rank(A), and 0(n−r)×r is a block matrix with all
zero entries. Also note that U = EA implies Ũ = EÃ.

Set
∑r

j=1 cjαkj = 0. To show linear independence, we need to show that the only

possibility is cj = 0 for all j = 1, . . . , r . But this equation is simply Ãc= 0 where c=
[cj] is an r × 1 column vector, so

0= Ãc= E−1Ũ c= E−1
[

Ir×r

0(n−r)×r

]
c

which implies [
Ir×r

0(n−r)×r

]
c= E0= 0

The only solution is c= 0, and so the vectors αk1 , . . . ,αkr are linearly independent.
Moreover, range(A) = Span[αk1 , . . . ,αkr]. The proof is as follows. Suppose

{αk1 , . . . ,αkr ,α�} is a linearly independent set for some � �∈ {k1, . . . , kr}; then
[Ã|α�]c= 0, where c is (r + 1)× 1, has the unique solution c= 0. Consequently,

0= E[Ã|α�]c= [EÃ|Eα�]c= [Ũ |b]c

612 Chapter 7 Linear Algebra

This row-reduced system has more unknowns than equations, so it has infinitely
many solutions c, a contradiction to the uniqueness c= 0. Therefore, {αk1 , . . . ,αkr } is
the maximal linearly independent set of columns of A and must form a basis for the
range of A.

Example
7.38

Consider the same matrix A as in the last example:

A =
⎡
⎣1 3 2

2 6 9
3 9 8

⎤
⎦ ∼

⎡
⎣1 3 0

0 0 1
0 0 0

⎤
⎦= U

Then

Ũ =
⎡
⎣1 0

0 1
0 0

⎤
⎦ , Ã =

⎡
⎣1 2

2 9
3 8

⎤
⎦

and

range(A) = Span[(1, 2, 3), (2, 9, 8)], range(U)= Span[(1, 0, 0), (0, 1, 0)]

Note that range(A) �= range(U). ■

Kernel of AT

As a function, AT : IRn → IRm since AT is an m× n matrix when A is an n×m matrix.
The kernel of AT is

kernel(AT)= {y ∈ IRm : ATy= 0}
and is a subspace of IRn . Construction of a basis is similar to that of kernel(A). Since
rank AT = rank(A) = r , dim(kernel(AT))= n− r .

Range of AT

Write AT as a block matrix of column vectors: AT = [β1| · · ·|βn] where β i is an m× 1
column vector for each i = 1, . . . , n. The range of the transpose is

range(AT)= Span[β1, . . . ,βn]

and is a subspace of IRm with dimension dim(range(AT))= r .
These four subspaces are related by the following theorem.

The Fundamental Theorem of Linear Algebra ■ If A is an n×m matrix with sub-
spaces kernel(A) and range(A), and if AT is the m× n transpose of A with subspaces
kernel(AT) and range(AT), then kernel(A) = range(AT)⊥ , kernel(A)⊥ = range(AT),
kernel(AT)= range(A)⊥ , and kernel(AT)⊥ = range(A).

7.4 Vector Spaces 613

Proof ■ Let us prove that kernel(A) = range(AT)⊥. To prove that kernel(A) ⊆ range(AT)⊥,
let x ∈ kernel(A) so that Ax= 0. For each y ∈ range(AT), y= ATz for some z ∈ IRn .
Consequently,

xTy= xT(ATz)= (xTAT)z = (Ax)Tz = 0Tz = 0

and so x is orthogonal to all vectors in range(AT). That is, x ∈ range(AT). ■

To prove that range(AT)⊥ ⊆ kernel(A), let x ∈ range(AT)⊥; then xTy= 0 for all
y ∈ range(AT). As z varies over all vectors in IRn, y= ATz varies over all vectors
in range(AT). Thus, 0= xT(ATz)= (Ax)Tz for all z ∈ IRn. In particular, the equa-
tion is true for the Euclidean basis vectors e1, . . . , en : (Ax)Tei = 0. In block matrix
form,

(Ax)T = [(Ax)Te1| · · ·|(Ax)Ten
]= [0 · · · 0]= 0T

so Ax= 0 and x ∈ kernel(A). The containment has been shown in both directions, so
kernel(A)= range(AT)⊥.

We proved earlier that (U⊥)⊥ = U . This result and the one of the previous
paragraph implies that range(AT)= (range(AT)⊥)⊥ = kernel(A)⊥ . The other two
subspace equalities are valid by replacing A with AT in the previous constructions.
Figure 7.21 illustrates the relationship between the four subspaces. They are drawn to
indicate the orthogonality to each other. Note that x= xk + xr since kernel(A) and
range(AT) are orthogonal subspaces.

0 0

xr

x

xk

Ax
range(AT)

kernel(A)

range(A)

kernel(AT)

Figure 7.21 The four fundamental subspaces.

614 Chapter 7 Linear Algebra

7.4.8 Projection and Least Squares

The projection p of a vector b ∈ IRn onto a line through the origin with direction
a (not necessarily unit length) is provided by equation (7.15). I will write this in a
different form by grouping together the terms involving a. This form appears strange
at first but is suggestive of what is to follow:

p= a
(

aTa
)−1

aTb (7.35)

The line is a one-dimensional subspace of IRn . The projection of b onto a higher
dimensional subspace S may be similarly constructed. In this context, projection of a
vector b onto a subspace S will amount to finding the point in S that is closest to b.
Figure 7.22 illustrates this for a two-dimensional subspace in IR3.

The quantity aTa appears in equation (7.35). For higher dimensional subspaces,
the analogous quantity is ATA, where A is a matrix.

The construction of a projection onto a subspace is motivated by attempting to
solve the system of linear equations Ax= b, where A is an n×m matrix, x is an m× 1
column matrix, and b is an n× 1 column matrix. A solution exists if and only if b ∈
range(A). If b is not in the range of A, an application might be satisfied with a vector
x that is “close enough”; that is, find an x so that Ax−b is as close to the zero vector
as possible. Rather than attempting to solve the linear system, we can instead try to
find x that minimizes the length |Ax−b|2. This is called the least squares problem.
“Least” refers to minimum, and “squares” refers to the distance-squared quantity to
be minimized. If the squared distance has a minimum of zero, any such x that attains
that minimum must be a solution to the linear system. If the minimum distance is
positive, the linear system has no solution, but the minimization problem always does.

Geometrically, the minimizing process amounts to finding the point p ∈ range(A)

that is closest to b. Such a point p always exists and is obtained by a projection onto
range(A). As shown in Figure 7.22, there is also always a point q ∈ range(A)⊥ =
kernel(AT) such that the distance from b to kernel(AT) is a minimum. The figure

S

b

p

0

Figure 7.22 The projection p ∈ S of b ∈ IR3, where S is a two-dimensional subspace of IR3 (a plane
through the origin).

7.4 Vector Spaces 615

should also make it clear that the quantity |Ax−b|2 is minimized if and only if Ax−
b ∈ kernel(AT). Since p ∈ range(A), there must be a vector x ∈ IRm such that p= Ax,
and Ax−b ∈ kernel(AT). Therefore, |Ax−b|2 is a minimum and AT(Ax−b)= 0.
The equations ATAx= ATb are called the normal equations corresponding to the
linear system Ax = b.

Solving the normal equations requires the following information. If A is an n×m
matrix, then ATA is symmetric and rank(ATA)= rank(A). The symmetry of ATA
follows from (ATA)T = AT(AT)T = ATA. The equality of the ranks is proved by show-
ing that kernel(A) = kernel(ATA). Let x ∈ kernel(A); then Ax= 0. Multiply by AT to
obtain

0= AT0= ATAx

which implies x ∈ kernel(ATA). Thus, kernel(A) ⊆ kernel(ATA). To show the subset
inclusion in the other direction, let x ∈ kernel(ATA); then ATAx= 0. Multiply by xT

to obtain

0= xT0= xTATAx= |Ax|2

The length of Ax is zero, so Ax= 0 is the only possibility. This implies x ∈ kernel(A),
so we have shown kernel(ATA) ⊆ kernel(A). The subset inclusion is true in both
directions, so kernel(A) = kernel(ATA). The equality of the ranks follows by a
direct application of the fundamental theorem of linear algebra. As we saw ear-
lier, dim(kernel(A))+ rank(A) =m. Similarly, dim(kernel(ATA))+ rank(ATA)=
m. Since dim(kernel(A)) = dim(kernel(ATA)), a subtraction of the two equations
leads to rank(A) = rank(ATA).

A consequence of this result is that if the columns of A are linearly independent,
then ATA is an invertible matrix. The linear independence of the columns means that
m = rank(A) = rank(ATA). The matrix ATA is an m×m matrix of full rank m, so
it must be invertible. In this case the normal equations have the unique solution x=
(ATA)−1ATb. Finally, the projection of b onto range(A) is

p= Ax= A
(
ATA

)−1
ATb (7.36)

Observe the similarity in form between this and equation (7.35). Also observe that
the matrix M = (ATA)−1AT has the property MA = I . It is called the left inverse of A,
but note that A is not a square matrix! The product P = AM = A(ATA)−1AT is not
generally the identity matrix. Geometrically, this is clear since p= Pb. And P cannot
be the identity when b �∈ range(A).

Let us take a closer look at the projection matrix P = A(AT A)−1AT. As shown
previously, the projection of b onto range(A) is p= Pb. If we attempt to project
p itself onto range(A), nothing should happen since p is already in the range.
That is,

Pb= p= Pp= P2b

616 Chapter 7 Linear Algebra

This equation suggests that P 2 = P , intuitively saying that projecting a second time
does not produce anything different from projecting once. We can verify the identity
using the definition of P :

P 2 = (A(AT A)−1AT)(A(AT A)−1AT)

= A(ATA)−1(ATA)(AT A)−1AT = A(AT A)−1AT = P

Also notice that

P T = (A(AT A)−1AT)T

= (AT)T((AT A)−1)TAT = A((AT A)T)−1AT = A(AT A)−1AT = P

so P is a symmetric matrix. Finally, Figure 7.22 suggests the following. Let Q be
the projection matrix onto kernel(AT). The subspaces range(A) and kernel(AT) are
orthogonal complements of each other. The sum of the projections onto those sub-
spaces should be the original vector. That is, b= Pb+Qb= (P +Q)b. This equation
is true for all vectors b, so it must be that P +Q = I , or Q = I −P . A projection
onto one subspace followed by a projection onto the orthogonal complement should
always produce the zero vector. Algebraically, we can see this is true: PQ = P(I −P)=
P −P2 = 0, which is the zero matrix.

So far all is well as long as the m×m matrix ATA is invertible, which is the case if
and only if rank(A) =m. What if r = rank(A) < m? The range of A is spanned by the
columns of A. Let the columns of A be denoted ci for 1≤ i ≤m. Reorder the columns
as cij for 1≤ ij ≤m, where the first r vectors are linearly independent (1 ≤ j ≤ r) and
the last m− r vectors are dependent on them (r < j ≤m). The left-hand side of the
equation Ax= b is expanded into a linear combination of the columns of A, then
reordered:

b= Ax=
m∑

i=1

xi ci =
r∑

j=1

xij cij +
m∑

j=r+1

xij cij

The dependent cij terms are written as linear combinations of the independent ones.
The linear combination of the dependent vectors becomes a linear combination
of the independent vectors and is folded into the already existing combination of
independent vectors:

b=
r∑

j=1

yij cij = Cy

where yij is a linear combination of xij and the xik where r < k ≤m. We now have a
linear system where the n× r matrix C has linearly independent columns. Moreover,
by the construction range(C)= range(A), and the projection p of b onto the range
of A is exactly the projection onto the range of C . Thus, the projection matrix is

P = C
(
C TC

)−1
C Tb

7.4 Vector Spaces 617

Since all we need is C , and not a vector y from the previous construction, it is enough
to identify the columns of A that form a basis for range(A) and use them to construct
C , then P .

7.4.9 Linear Transformations

The discussion of systems of linear equations naturally leads to the concept of a
matrix, whether it be the n×m coefficient matrix A of the system, the m× 1 col-
umn matrix x of the unknown variables, or the n× 1 column matrix of outputs b.
The definition for the product of matrices was motivated by solving linear systems
using elementary row operations that are represented by matrices. In this section we
will discover an approach to defining matrices and operations on them, one that is
more natural in the framework of vector spaces.

Let V and W be vector spaces. A function L : V →W is said to be a linear
transformation whenever

1. L(x+ y)= L(x)+ L(y) for all x, y ∈ V , and

2. L(cx)= cL(x) for all c ∈ IR and for all x ∈ V .

In words, the linear transformation of a sum of vectors is the sum of linear transfor-
mations of those vectors, and the linear transformation of a scalar multiple of a vector
is the scalar multiple of the linear transformation of that vector. The two conditions
can be summarized as a single condition, L(cx+ y)= cL(x)+ L(y) for all c ∈ IR and
for all x, y ∈ V . We will refer to V as the domain of L and W as the codomain of L. The
last term is used to avoid confusion in nomenclature. Sometimes W is said to be the
range of the function, but in our development we use the term range to refer to the set
of vectors in W that are obtained by applying the function to the domain vectors. In
many cases the range is a proper subset of W .

A couple of simple consequences of the definition: L(0)= 0 and L(−x)=−L(x).
The first identity follows from

L(0)= L(00)= (0)L(0)= 0

The first and third equalities are a consequence of the fact that the scalar zero
multiplied by any vector is the zero vector. The second equality is valid since L is
a linear transformation (item 2 in the definition). The second identity is proved
similarly:

L(−x)= L(−1x)= (−1)L(x)=−L(x)

In a finite dimensional vector space, if a vector is written as an n-tuple x=
(x1, . . . , xn), you would write L(x)= L((x1, . . . , xn)). In these specific cases the extra
parentheses are dropped for readability: L(x1, . . . , xn).

618 Chapter 7 Linear Algebra

Example
7.39

Define L : IR3 → IR2 by L(x1, x2, x3)= (x1+ x2, x1− 3x3). Let c ∈ IR, x= (x1, x2, x3),
and y= (y1, y2, y3); then

L(cx+ y) = L(c(x1, x2, x3)+ (y1, y2, y3))

= L(ax1 + by1, ax2+ by2, ax3+ by3)

= ((cx1 + y1)+ (cx2 + y2), (cx1 + y1)− 3(cx3 + y3))

= (c(x1 + x2)+ (y1 + y2), c(x1− 3x3)+ (y1 − 3y3))

= c(x1 + x2, x1− 3x3)+ (y1 + y2, y1− 3y3)

= cL(x)+ L(y)

so L is a linear transformation.
If {e1, e2, e3} is the standard Euclidean basis, then x= (x1, x2, x3)= x1e1+ x2e2+

x3e3 and

L(x)= L(x1e1+ x2e2 + x3e3)= x1L(e1)+ x2L(e2)+ x3L(e3)

since L is linear. Thus, L is determined completely by the values of L(ei) for 1≤ i ≤ 3.
As we will see, in general L is determined by its values for any specified basis.

In column vector form,

L(x)= L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠ = [x1+ x2

x1− 3x3

]
=
[

1 1 0
1 0 −3

]⎡⎣x1

x2

x3

⎤
⎦= Ax

The transformation L(x) is represented by a matrix multiplication Ax. Since the kth
column of A is Aek , L(ek) is the kth column of A:

L

⎛
⎝
⎡
⎣1

0
0

⎤
⎦
⎞
⎠= [1

1

]
, L

⎛
⎝
⎡
⎣0

1
0

⎤
⎦
⎞
⎠ = [1

0

]
, L

⎛
⎝
⎡
⎣0

0
1

⎤
⎦
⎞
⎠= [0

−3

]

This relationship naturally ties together linear transformations and matrices. ■

Example
7.40

Let P be the vector space of all polynomials with real coefficients. Define L : P → P
by L(p(x)) = p′(x). That is,

L

(
n∑

i=0

pi x
i

)
=

n∑
i=1

ipi x
i =

n−1∑
j=0

(j+ 1)pj+1xj

You should recognize L as differentiation of the polynomial p(x). Let p(x)=∑n
i=0 pixi and q(x) =∑m

i=0 qi xi , where n ≤m. If we define pi = 0 for i > n, then

7.4 Vector Spaces 619

p(x) =∑m
i=0 pixi so that the upper limits of summation on p(x) and q(x) are the

same. Let c ∈ IR; then

L(cp(x)+ q(x)) = L

(
c

m∑
i=0

pix
i +

m∑
i=0

qix
i

)

= L

(
m∑

i=0

(cpi + qi)x
i

)
Using vector space operations

=
m−1∑
j=0

(j + 1)(cpj+1 + qj+1)x
j Definition of L

= c
m−1∑
j=0

(j+ 1)pj x
j +

m−1∑
j=0

(j + 1)qj x
j Using vector space

operations

= cL
(
p(x)

)+ L
(
q(x)

)
Definition of L

This proves that L is a linear transformation. ■

The next result establishes for certain the relationship between linear transforma-
tions and matrices: L : IRm → IRn is a linear transformation if and only if L(x)= Ax
for some n×m matrix A = [aij]. The proof follows.

Define the function L(x)= Ax, where x is treated as an m× 1 column vector and
where L(x) is treated as an n× 1 column vector. For c ∈ IR and x, y ∈ IRm ,

L(cx+ y) = A(cx+ y) Definition of L

= A(cx)+Ay Matrix multiplication is distributive

= c(Ax)+Ay Property of matrix arithmetic

= cL(x)+ L(y) Definition of L

This proves that L is a linear transformation.
Conversely, let L : IRm → IRn be a linear transformation, where x and L(x) are

treated as column vectors. Let {e1, . . . , en} be the standard Euclidean basis for IRn ;
then L(ek) ∈ IRm for all k . As such, these vectors can be represented as

L(ek)=
⎡
⎢⎣

a1k
...

amk

⎤
⎥⎦

m×1

, k = 1, . . . , n

620 Chapter 7 Linear Algebra

If x=∑n
k=1 xk ek , then

L(x) = L

(
n∑

k=1

xk ek

)

=
n∑

k=1

xk L(ek) Since L is linear

=
n∑

k=1

xk

⎡
⎢⎣

a1k
...

amk

⎤
⎥⎦

=
n∑

k=1

⎡
⎢⎣

a1kxk
...

amkxk

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

a1kxk

...
n∑

k=1

amkxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Ax

The argument actually provides the construction of the n×m matrix A given L.

Example
7.41

Define L : IR2 → IR2 by L(x1, x2)= (3x1 + 6x2,−2x1 + x2). In column vector form,

L

([
1
0

])
=
[

3
−2

]
, L

([
0
1

])
=
[

6
1

]

and

L

([
x1

x2

])
=
[

3 6
−2 1

][
x1

x2

]
=
[

3x1+ 6x2

−2x1 + x2

]

The transformation has been written as L(x)= Ax, where

A = [L(e1) L(e2)]2×2 =
[

3 6
−2 1

]

7.4 Vector Spaces 621

This representation depends on our choice of the Euclidean basis for IR2. That is,[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
and

L

([
x1

x2

])
= (3x1+ 6x2)

[
1
0

]
+ (−2x1 + x2)

[
0
1

]
■

What happens if you use different bases? Let L : V →W be a linear transforma-
tion where V has basis F = {f1, . . . , fm} and W has basis G = {g1, . . . , gn}. Treating the
elements of V and W as column vectors, we can represent L by L(x)= Ax, where A
depends on the definition for L, the basis F for V , and the basis G for W . A vector x ∈
V is represented in the F basis as x=∑m

j=1 xj fj . Each vector L(fj) ∈W is represented

in the G basis as L(fj)=∑n
i=1 aij gi . The linear transformation is expanded as

L(x) = L

⎛
⎝ m∑

j=1

xj fj

⎞
⎠

=
m∑

j=1

xj L(fj)

=
m∑

j=1

xj

(
n∑

i=1

aijgi

)

=
n∑

i=1

⎛
⎝ m∑

j=1

aijxj

⎞
⎠gi

=
n∑

i=1

yi gi

where the last equality defines the yi =∑m
j=1 aijxj . The coefficient vector x, which is

m× 1, and the coefficient vector y, which is n× 1, are related by the matrix equation
y= Ax, where A = [aij] is an n×m matrix. This matrix represents the linear trans-
formation with respect to the chosen bases F and G. Different choices for bases will
lead to different matrices for A.

Example
7.42

Let L : IR2 → IR2 be given by L(x1, x2)= (3x1 + 6x2,−2x1+ x2)= (y1, y2). The stan-
dard Euclidean basis is E = {(1, 0), (0, 1)}. The matrix representation of L where E is
the basis used for both the domain and codomain is

yE =
[

3 6
−2 1

]
xE

622 Chapter 7 Linear Algebra

The notations xE and yE indicate that the vectors are to be represented in the basis E .
The input 2-tuple (x1 , x2) and output 2-tuple (y1 , y2) have the obvious representations
in E as

xE =
[

x1

x2

]
and yE =

[
y1

y2

]

Choose different bases, F = {f1, f2} = {(1, 1), (1,−1)} for the domain and G =
{g1, g2} = {(0, 1), (1, 0)} for the codomain. The representation of (x1, x2) in the F
basis is

xF = x1+ x2

2
(1, 1)+ x1− x2

2
(1,−1)= x1+ x2

2
f1+ x1− x2

2
f2

The representation of (y1, y2) in the G basis is

yG = y2(0, 1)+ y1(1, 0)= y2g1+ y1g2

The linear transformation applied to the F basis vectors has results written in the G
basis,

L(f1)= L(1, 1)= (9,−1)=−1(0, 1)+ 9(1, 0)=−g1+ 9g2

L(f2)= L(1,−1)= (−3,−3) =−3(0, 1)− 3(1, 0) =−3g1− 3g2

so the matrix, which represents L with respect to the bases F and G, is

A =
[−1 −3

9 −3

]

A quick verification shows

[
y2

y1

]
= yG = AxF =

[−1 −3
9 −3

]⎡⎢⎣
x1 + x2

2
x1 − x2

2

⎤
⎥⎦ =

[−2x1 + x2

3x1+ 6x2

]

and reproduces exactly the linear transformation (y1, y2)= (3x1 + 6x2,−2x1+ x2). ■

(Example 7.42
continued)

Example
7.43

Let Pn be the set of polynomials with real-valued coefficients and of degree at most n.
That is,

Pn =
{

n∑
i=0

aix
i : ai ∈ IR

}

Define L : P1 → P2 by

L(p(x)) =
x∫

0

p(t)dt

7.4 Vector Spaces 623

You should recognize this as the definite integral of the polynomial over the interval
[0, x] where the upper limit x is variable. Polynomials in P1 are of the form p(x)=
a0+ a1x and polynomials in P2 are of the form p(x) = b0+ b1x + b2x2. The linear
transformation can be restated as L(a0+ a1x)= a0x + (a1/2)x2. A basis for P1 is F =
{f1, f2} = {1, x} and a basis for P2 is G = {g1, g2, g2} = {1, x, x2}. Applying the linear
transformation to the F basis vectors produces

L(f1)= L(1)= x = 0 · 1+ 1 · x + 0 · x2 = g2

L(f2)= L(x)= 1

2
x2 = 0 · 1+ 0 · x + 1

2
· x2 = (1/2)g3

The matrix A that represents the linear transformation with respect to the bases F
and G is

A =
⎡
⎢⎣

0 0
1 0

0
1

2

⎤
⎥⎦

In terms of the polynomial coefficients, the application of the matrix is

A

[
a0

a1

]
=
⎡
⎢⎣

0
a0

a1

2

⎤
⎥⎦

■

Let L : V → V be a linear transformation where V is both the domain and
codomain and has dimension n. A matrix representation of L is an n× n matrix.
We have seen that the matrix representation depends on the bases selected for the
domain and codomain. If a basis F = {f1, . . . , fn} is chosen for domain and codomain
with corresponding matrix representation A, and a basis G = {g1, . . . , gn} is chosen
for domain and codomain with corresponding matrix representation B, the question
is how are A and B related? The key idea is change of basis, the process of representing
basis vectors in F in terms of the basis G. Each vector fj is represented in G as

fj =
n∑

i=1

cij gi , 1≤ j ≤ n

The matrix C = [cij] is called the change of basis matrix and itself represents a lin-
ear transformation from V to V . Figure 7.23 is a diagram that indicates how all the
matrices map V to itself. The bases are explicitly paired with V for clarity.

To get from (V , F) to (V , F) you can directly apply matrix A. Or you can go from
(V , F) to (V , G) by applying matrix C , then from (V , G) to (V , G) by applying matrix
B, then from (V , G) to (V , F) by applying the inverse matrix C−1. The two alternatives

624 Chapter 7 Linear Algebra

(V , F)
A→ (V , F)

C ↓ ↓ C

(V , G)
B→ (V , G)

Figure 7.23 A linear transformation from V to V with respect to two different bases (horizontal
arrows). The change of basis for V (vertical arrows).

suggest that A = C−1BC . This is in fact the case as the following algebraic construc-
tion shows. The inverse matrix C−1 has entries name dij . The basis vectors in G are
related to the basis vectors in F by

gi =
n∑

�=1

d�if�

The linear transformation is expanded as

L(fj) = L

(
n∑

k=1

ckj gk

)
Using the change of basis matrix C

=
n∑

k=1

ckjL(gk) Since L is linear

=
n∑

k=1

ckj

(
n∑

i=1

bikgi

)
Using the matrix B that represents L

=
n∑

i=1

n∑
k=1

bikckj gi

=
n∑

i=1

n∑
k=1

bikckj

(
n∑

�=1

d�i fi

)
Using the change of basis matrix C−1

=
n∑

�=1

(
n∑

i=1

n∑
k=1

d�ibikckj

)
f�

=
n∑

�=1

a�jfj Using the matrix A that represents L

so a�j =∑n
i=1

∑n
k=1 d�ibikckj . Using the definition of matrix multiplication, we have

A = C−1BC .
The relationship between A and B is called a similarity relationship. In general

if A and B are square matrices for which there exists an invertible matrix C with

7.4 Vector Spaces 625

A = C−1BC , then A and B are said to be similar. The importance of similarity of
matrices will become more apparent in Sections 7.5.2 and 7.5.3 on eigenvalues and
eigenvectors.

Example
7.44

Consider the linear transformation L : IR2 → IR2 defined by L(x1, x2)= (x1− 3x2,
x1 + x2). Two bases for IR2 are F = {(2, 1), (1,−1)}, and G = {(0, 1), (1, 0)}.

Compute the matrix A representing L : (IR2, F)→ (IR2, F). Solve

L(f1)= L(2, 1)= (−1, 3)= a11(2, 1)+ a21(1,−1)= a11f1+ a21f2

L(f2)= L(1,−1)= (4, 0)= a12(2, 1)+ a22(1,−1)= a12f1+ a22f2

The coefficients aij are solutions to[
2 1
1 −1

][
a11 a12

a21 a22

]
=
[−1 4

3 0

]

therefore,

A =
[

a11 a12

a21 a22

]
=
[

2 1
1 −1

]−1 [−1 4
3 0

]
=

⎡
⎢⎢⎣

2

3

4

3

−7

3

4

3

⎤
⎥⎥⎦

and

L(f1)= 2

3
f1− 7

3
f2, L(f2)= 4

3
f1+ 4

3
f2

Compute the matrix B representing L : (IR2, G)→ (IR2, G). Solve

L(g1)= L(0, 1)= (−3, 1)= b11(0, 1)+ b21(1, 0)= b11g1+ b21g2

L(g2)= L(1, 0)= (1, 1)= b12(0, 1)+ b22(1, 0)= b12g1+ b22g2

The coefficients bij are solutions to[
0 1
1 0

][
b11 b12

b21 b22

]
=
[−3 1

1 1

]
therefore,

B =
[

b11 b12

b21 b22

]
=
[

0 1
1 0

]−1[−3 1
1 1

]
=
[

1 1
−3 1

]

and

L(g1)= g1− 3g2, L(g2)= g1+ g2

Finally, compute the change of basis matrix C from

f1 = (2, 1)= c11(0, 1)+ c21(1, 0)= c11g1+ c21g2

f2 = (1,−1)= c12(0, 1)+ c22(1, 0)= c12g1+ c22g2

626 Chapter 7 Linear Algebra

the solution being

C =
[

1 −1
2 1

]
, C−1 = 1

3

[
1 1
−2 1

]

The similarity relationship between A and B is

C−1BC = 1

3

[
1 1
−2 1

][
1 1
−3 1

][
1 −1
2 1

]
= 1

3

[
2 4
−7 4

]
= A

■

(Example 7.44
continued)

There is one last topic on vector spaces to consider, finally. Composition of linear
transformations is the foundation for the definition of matrix multiplication. Let R :
IRn → IRp and S : IRm → IRn be linear transformations, say y= S(x) and z = R(y).
The composition is T = R ◦ S(x)= R(S(x)) and is a linear function T : IRm → IRp .
The circle symbol denotes composition of functions. To see that T is linear, let c ∈ IR
and x1, x2 ∈ IRm :

T (cx1+ x2) = R(S(cx1+ x2)) Definition of T

= R(cS(x1)+ S(x2)) S is linear

= cR(S(x1))+R(S(x2)) R is linear

= cT (x1)+T (x2) Definition of T

If A is a matrix representation of R and B is a matrix representation of S, with
respect to specified bases, of course, then what is the matrix representation of T with
respect to those same bases? The answer is simply put: R(y) is represented by z= Ay,
and S(x) is represented by y= Bx. The composition is z= Ay= A(Bx)= (AB)x =
Cx. The matrix representing T is C and is a product of A and B. Observe that A is
p× n, B is n×m, and C is p×m.

7.5 Advanced Topics

7.5.1 Determinants

A determinant is a scalar quantity associated with a square matrix and is encountered
frequently in applications. You are most likely familiar with the determinant formulas
for 2× 2 and 3× 3 matrices. I will take a closer look at these definitions and provide
a geometric interpretation for them.

Determinant of a 2 × 2 Matrix

The determinant for a 2× 2 matrix A is defined by

det(A) = det

[
a11 a12

a21 a22

]
= a11a22− a12a21 (7.37)

7.5 Advanced Topics 627

which is a simple enough formula to commit to memory. As it turns out, det(A) is
nonzero if and only if A is an invertible matrix. Formally, the inverse of A is the matrix,

A−1 = 1

a11a22− a12a21

[
a22 −a12

−a21 a11

]

Verify for yourself that AA−1 = A−1A = I , where I is the identity matrix. Observe that
the scalar before the matrix is the reciprocal of the determinant, 1/det(A), so clearly
the determinant must not be zero in order that A−1 exist. This algebraic require-
ment is perhaps unsatisfying to someone wanting a geometric understanding of the
problem. Let us go ahead and take a closer look.

Let ı = [1 0]T and j = [0 1]T be the standard basis vectors for IR2. These vectors
are transformed to Aı = [a11 a21]T and Aj = [a12 a22]T, the columns of the matrix
A. Figure 7.24 shows the unit-area square whose sides are determined by the basis
vectors and shows various possibilities for the transformed square.

(a) (b)

(c) (d)

A

A

A
A

A

A

Figure 7.24 (a) A unit-area square. (b) The parallelogram obtained by transforming the square
when the transformed basis vectors have the same order as the basis vectors. (c) The
parallelogram obtained by transforming the square when the transformed basis vec-
tors have the opposite order as the basis vectors. (d) The basis vectors mapped to
parallel vectors, in which case A is not invertible.

628 Chapter 7 Linear Algebra

Although Figure 7.24(d) shows Aı and Aj as nonzero vectors, either or both can
be the zero vector; that is, one or both columns of A can be the zero vector. It is
also possible that the transformed basis vectors are nonzero but point in opposite
directions.

Set u= Aı and v= Aj . The area of the parallelogram formed by u and v is α =
bh, where b is the base (the length of u) and where h is the height (the length of
the projection of v onto a vector perpendicular to u). We will do the calculations in
squared form, that is, α2 = b2h2. The squared base is just

b2 = |u|2

The squared height is calculated from the aforementioned projection that is
calculated using equation (7.15):

p= v− u · v

|u|2 u

The squared height is

h2 = |p|2 =
∣∣∣∣v− u · v

|u|2 u

∣∣∣∣2 = |v|2− 2(u · v)2

|u|2 + (u · v)2

|u|2 = |v|2− (u · v)2

|u|2

The squared area is

α2 = b2h2

= |u|2|p|2
= |u|2|v|2− (u · v)2

= (a2
11+ a2

21)(a
2
12+ a2

22)− (a11a12+ a21a22)
2

= a2
11a2

22+ a2
21a2

12− 2a11a12a21a22

= (a11a22− a12a21)
2

= (det(A))2

The area of the parallelogram is α = |det(A)|, the absolute value of the determinant
of the matrix. To distinguish between the two cases corresponding to Figure 7.24(b),
(c) we will use a signed area. Part (b) occurs when the order of the basis vectors is pre-
served; we will assign a positive area to that parallelogram. Part (c) occurs when the
order is switched; we will assign a negative area to that parallelogram. The signed area
formula (using the same variable name) is α = det(A). This equation captures all the
geometry in parts (a)–(c) of the figure, part (d) representing the case when the deter-
minant is zero. In this case, the parallelogram is degenerate and may be considered to
bound a region of zero area.

7.5 Advanced Topics 629

Determinant of a 3 × 3 Matrix

The determinant for a 3× 3 matrix is defined by

det(A) = det

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

= a11(a22a33− a23a32)+ a12(a23a31− a21a33)+ a13(a21a32− a22a31)

= a11a22a33+ a12a23a31+ a13a21a32− a13a22a31− a12a21a33− a11a23a32

(7.38)

This equation is more difficult to commit to memory than its 2× 2 counterpart. One
method that is taught to help remember the formula is the butterfly rule as shown in
Figure 7.25.

The matrix is written down and its first two columns are repeated after it. The
three terms along each directed arrow are multiplied together. The diagonals from
upper left to lower right are given a plus sign (use the product as is). The diagonals
from lower left to upper right are given a minus sign (negate the product before using
it). (Important note: The buttefly rule does not apply to larger matrices.)

The inverse of a 3× 3 matrix A is formally

A−1 = 1

det(A)

⎡
⎢⎣

a22a33− a23a32 a13a32− a12a33 a12a23− a13a22

a23a31− a21a33 a11a33− a13a31 a13a21− a11a23

a21a32− a22a31 a12a31− a11a32 a11a22− a12a21

⎤
⎥⎦

and may be verified by symbolically calculating AA−1 = A−1A = I , where I is the
identity matrix. As in the 2× 2 case, the scalar before the matrix is the reciprocal of
the determinant, 1/det(A), so the determinant must be nonzero for the inverse to
exist.

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

a1,3

a2,3

a3,3

a1,1

a2,1

a3,1

a1,2

2 2 2

1 1 1

a2,2

a3,2

Figure 7.25 An illustration of the butterfly rule for the determinant of a 3× 3 matrix.

630 Chapter 7 Linear Algebra

(a) (b)
A

k

Ak
A

Figure 7.26 (a) A unit-volume cube. (b) The parallelepiped obtained by transforming the cube
when the transformed basis vectors have the same order as the basis vectors.

The geometric interpretation of the determinant for a 3× 3 matrix is analogous
to that of the 2× 2 matrix. Let ı = [1 0 0]T, j = [0 1 0]T, and k = [0 0 1]T be the stan-
dard basis vectors for IR3. These vectors are transformed to Aı = [a11 a21 a31]T, Aj =
[a12 a22 a32]T, and Ak = [a13 a23 a33]T, the columns of the matrix A. Figure 7.26
shows a typical situation when the transformed vectors are linearly independent and
have the same ordering as the basis vectors.

The degenerate cases that have zero volume occur when all three transformed
vectors are coplanar or collinear. The signed volume ν of a parallelepiped formed
by Aı , Aj , and Ak is computed in a coordinate-dependent manner using equa-
tion (7.24):

ν = Aı · (Aj ×Ak)

= (a11, a21, a31) · (a12, a22, a32)× (a13, a23, a33)

= a11(a22a33− a23a32)+ a12(a23a31− a21a33)+ a13(a21a32− a22a31)

= det(A)

This is exactly the determinant as defined by equation (7.38).

Formal Construction of Determinant Functions

A general and formal construction of the determinant function is given next. First,
though, we need to define a few concepts. Let V and W be vector spaces. Recall
that a function L : V →W is a linear transformation if L(cx+ y)= cL(x)+ L(y) for
all c ∈ IR and for all x, y ∈ V . Define V n = {(x1, . . . , xn) : xj ∈ V for all j}, the set of
n-tuples of vectors from V . A function L : V n →W is a multilinear transformation if

7.5 Advanced Topics 631

it is linear with respect to each argument. That is, L(x1, . . . , xn) satisfies the conditions:

L(cx1+ y1, x2, . . . , xn)= cL(x1, x2, . . . , xn)+ L(y, x2, . . . , xn)

L(x1, cx2+ y2, . . . , xn)= cL(x1, x2, . . . , xn)+ L(x1, y2, . . . , xn)
...

L(x1, x2, . . . , cxn + yn)= cL(x1, x2, . . . , xn)+ L(x1, x2, . . . , yn)

You have already seen an example of a multilinear function, the dot product
L(x, y)= x · y.

Let S = {1, . . . , n}. A permutation on S is any one-to-one, onto function σ : S → S.
For example, if S = {1, 2, 3}, then σ(1) = 2, σ(2) = 1, and σ(3) = 3 defines a permu-
tation. Typically, we indicate the permutation by listing the elements of S and σ(S)

as n-tuples. In the last example, S = (1 2 3) and σ(S) = (2 1 3). A transposition is a
permutation that swaps two elements in S. The permutation σ in the last example is
a transposition since 1 and 2 were swapped. The permutation σ(1 2 3)= (3 1 2) is not
a transposition. However, a permutation can always be factored into a composition
of transpositions.

Example
7.45

Let S = (1 2 3 4 5) and define σ by σ(1 2 3 4 5)= (4 3 5 2 1). Begin swapping pairs of
numbers. The circle symbol denotes composition of functions.

(1 2 3 4 5) S

(4 2 3 1 5) Transpose 1, 4, τ1(S)

(4 3 2 1 5) Transpose 2, 3, τ2(τ1(S)) = τ2 ◦ τ1(S)

(4 3 2 5 1) Transpose 1, 5, τ3(τ2 ◦ τ1(S))= τ3 ◦ τ2 ◦ τ1(S)

(4 3 5 2 1) Transpose 2, 5, τ4(τ3 ◦ τ2 ◦ τ1(S)) = τ4 ◦ τ3 ◦ τ2 ◦ τ1(S)= σ(S)

Note that τ1(S)= (4 2 3 1 5), τ2(S)= (1 3 2 4 5), τ3(S) = (5 2 3 4 1), and τ4(S)=
(1 5 3 4 2). ■

The factorization of a permutation into transpositions is not unique. However, the
parity of the number of transpositions in the factorizations is. That is, if a permutation
can be factored into an even number of transpositions, then any other factorization
contains an even number of transposititions. We call such a permutation an even per-
mutation. A similar statement can be made for a permutation with an odd number of
transpositions in the factorization. We call such a permutation an odd permutation.

Let V be a vector space with dim(V) = n. A determinant function is any function
� : V n → IR such that:

1. � is a multilinear transformation; and

2. � is skew-symmetric with respect to all arguments. That is, given a permutation
σ on {1, . . . , n}, �

(
xσ(1), . . . , xσ(n)

)= εσ (x1, . . . , xn), where εσ = 1 if σ is even,
and εσ =−1 if σ is odd.

632 Chapter 7 Linear Algebra

We will work with V = IRn, so V n is the set of n-tuples of vectors in IRn . If we represent
the vectors as n× 1 row vectors, the n-tuple of rows may be represented as an n× n
matrix. In this framework the domain of a determinant function is the set of all n× n
matrices. When the argument is explicitly a matrix A, we will use det(A) to denote a
determinant. If we specify an additional constraint,

3. �(e1, . . . , en)= 1

where the ej are the standard Euclidean basis vectors, then the three conditions
uniquely determine �.

Assuming the three conditions, let us proceed to construct the determinant func-
tion. If {x1, . . . , xn} is a set of linearly dependent vectors, then �(x1, . . . , xn)= 0. For
simplicity, let xn be dependent on the other vectors in the set. That is, xn =∑n−1

i=1 cixi

for some coefficients ci that are not all zero; then

�(x1, . . . , xn)=�(x1, . . . ,
n−1∑
i=1

cixi)=
n−1∑
i=1

ci�(x1, . . . , xn−1, xi)

where the last equality is a consequence of � being a multilinear transformation.
Define (y1, . . . , yi , . . . , yn)= (x1, . . . , xi , . . . , xi). If σ is a transposition of i and n, then
σ is odd, and by condition 2 in the definition of a determinant function:

�(x1, . . . , xi , . . . , xi) = �(y1, . . . , yi , . . . , yn)

= −�(yσ(1) , . . . , yσ(i), . . . , yσ(n))

= −�(y1 , . . . , yn , . . . , yi)

= −�(x1 , . . . , xi , . . . , xi)

The only way a number can equal its negative is if that number is zero,
�(x1 , . . . , xi , . . . , xi)= 0. Replacing this in the summation expansion for �(x1, . . . , xn)

produces �(x1 , . . . , xn)= 0.
Let c ∈ IR and i �= j. Replace the jth argument xj in the determinant function by

cxi + xj ; then

�(x1, . . . , xi , . . . , cxi + xj , . . . , xn)=�(x1, . . . , xn)

That is, the determinant function does not change value. To see that this is true, use
the linearity in component i:

�(x1, . . . , xi , . . . , cxi+ xj , . . . , xn) = c�(x1, . . . , xi , . . . , xi , . . . , xn)

+�(x1, . . . , xi , . . . , xj , . . . , xn)

= c(0)+�(x1 , . . . , xi , . . . , xj , . . . , xn)

where the zero term is obtained by the argument of the previous paragraph.

7.5 Advanced Topics 633

We are now ready to construct the determinant function. Let e1, . . . , en be the
standard Euclidean basis vectors. Let xi =∑n

j=1 ajiej for 1≤ i ≤ n. Using linearity of
� a component at a time:

�(x1, . . . , xn) = �

⎛
⎝ n∑

j1=1

aj11ej1 ,
n∑

j2=1

aj22ej2 , . . . ,
n∑

jn=1

ajn1ejn

⎞
⎠

=
n∑

j1=1

aj11�

⎛
⎝ej1 ,

n∑
j2=1

aj22ej2 , . . . ,
n∑

jn=1

ajn1ejn

⎞
⎠

=
n∑

j1=1

n∑
j2=1

aj11aj22�

⎛
⎝ej1 , ej2 , . . . ,

n∑
jn=1

ajn1ejn

⎞
⎠

...

=
n∑

j1=1

n∑
j2=1

· · ·
n∑

jn=1

aj11aj22 · · ·ajnn�(ej1 , ej2 , . . . , ejn)

If ju = jv for some u �= v , then �(ej1 , . . . , eju , . . . , ejv , . . . , ejn)= 0 using the skew-
symmetry of �. Therefore, in the above summations, the only nonzero terms occur
when all components of the multi-index (j1, j2, . . . , jn) are distinct. Each such multi-
index is just a permutation of the numbers 1 through n. That is, (j1, j2, . . . , jn)=
σ(1, . . . , n) for some permutation σ . Consequently,

�(x1, . . . , xn) =
∑
σ

aσ(1)1aσ(2)2 · · ·aσ(n)n�
(
eσ(1), eσ(2), . . . , eσ(n)

)
=
∑
σ

εσ aσ(1)1aσ(2)2 · · ·aσ(n)n

where the summation is over all permutations σ (there are n! of them) and where we
have used condition 3 in the definition of the determinant function.

Example
7.46

Let n = 2. Let A be the block matrix whose first row is vector x1 and whose second
row is vector x2. There are only two permutations on {1, 2}, namely σ1(1, 2)= (1, 2)

and σ2(1, 2)= (2, 1) with εσ1 =+1 and εσ2 =−1. The determinant of A is

det(A) = �(x1, x2)

=
∑
σ

εσ aσ(1)1aσ(2)2

= (+1)aσ1(1)1aσ1(2)2+ (−1)aσ2 (1)1aσ2(2)2

= a11a22− a21a12

■

634 Chapter 7 Linear Algebra

Example
7.47

For n = 3, let A be a matrix whose rows are x1, x2, and x3. There are six permutations
on {1, 2, 3}, so

det(A) = �(x1, x2, x3)

=
∑
σ

εσ aσ(1)1aσ(2)2aσ(3)3

= a11a22a33+ a12a23a31+ a13a21a32− a31a22a13− a21a12a33− a11a32a23

■

Exercise
7.9

Compute the formal expression for the determinant when n = 4. ■

We now take a closer look at the determinant function in terms of its applica-
tion to matrices. Let A = [aij] be an n× n matrix. Let mij be the determinant of the
(n− 1)× (n− 1) matrix obtained from A by deleting row i and column j. The value
mij is called the minor of aij . The cofactor of aij is defined by cij = (−1)i+jmij .

Example
7.48

Let

A =
⎡
⎣−2 1 1

0 1 1
−3 0 6

⎤
⎦

The minors are

m11 = det

[
1 1
0 6

]
= 6, m12 = det

[
0 1
−3 6

]
= 3, m13 = det

[
0 1
−3 0

]
= 3

m21 = det

[
1 1
0 6

]
= 6, m22 = det

[−2 1
−3 6

]
=−9, m23 = det

[−2 1
−3 0

]
= 3

m31 = det

[
1 1
1 1

]
= 0, m32 = det

[−2 1
0 1

]
=−2, m33 = det

[−2 1
0 1

]
=−2

The matrix of minors is

M = [mij]=
⎡
⎣6 3 3

6 −9 3
0 −2 −2

⎤
⎦

To obtain the matrix of cofactors, the minors are multiplied by either 1 or −1
depending on whether i + j is even or odd. The matrix of cofactors is

C = [cij]=
⎡
⎢⎣+(6) −(3) +(3)

−(6) +(−9) −(3)

+(0) −(−2) +(−2)

⎤
⎥⎦=

⎡
⎢⎣ 6 −3 3

−6 −9 −3

0 2 −2

⎤
⎥⎦

■

7.5 Advanced Topics 635

The cofactor expansion of A by row k is
∑n

j=1 akjckj . The cofactor expansion of A

by column k is
∑n

i=1 aikcik . For an n× n matrix, there are 2n such summations to
compute; all summations have the same value det(A).

Example
7.49

Consider the matrix,

A =
⎡
⎣−2 1 1

0 1 1
−3 0 6

⎤
⎦

from the last example. Expanding by row 1:

detA = a11c11+ a12c12+ a13c13 = (−2)(6)+ (1)(−3)+ (1)(3) =−12

Expanding by column 2:

detA = a12c12+ a22c22+ a32c32 = (1)(−3)+ (1)(−9)+ (0)(2) =−12 ■

Example
7.50

Let us compute the determinant of the matrix:

A =

⎡
⎢⎢⎣
−5 0 1 6

2 −1 3 7
4 4 −5 −8
1 −1 6 2

⎤
⎥⎥⎦

Because any cofactor expansion will produce the determinant, you should choose to
expand by that row or column that contains the maximum number of zeros. In any
term aij cij where aij = 0, you do not need to compute cij . Expand by row 1:

det A =+(−5)det

⎡
⎣−1 3 7

4 −5 −8
−1 6 2

⎤
⎦+ (1)det

⎡
⎣2 −1 7

4 4 −8
1 −1 2

⎤
⎦− (6)det

⎡
⎣2 −1 3

4 4 −5
1 −1 6

⎤
⎦

=+(−5)(95)+ (1)(−40)− (6)(43) =−773 ■

We will now compute the number of arithmetic operations it takes to evaluate the
determinant of an n× n matrix by a row or column expansion. Let θn be the number
of such operations.

■ Case n = 1. For A = [a], there are no operations required. Therefore, θ1 = 0.

■ Case n = 2. For A = [aij], expanding by row 1 produces the quantity detA =
a11 det[a22]− a12 det[a21]. This requires 2 multiplications and 1 addition (sub-
traction). Therefore, θ2 = 2θ1+ 2+ 1 = 3.

■ Case n = 3. Expanding A by row 1 produces

det A = a11 det

[
a22 a23

a32 a33

]
− a12 det

[
a21 a23

a31 a33

]
+ a13 det

[
a21 a22

a31 a32

]
.

636 Chapter 7 Linear Algebra

Each 2× 2 matrix requires θ2 operations. Additionally, there are 3 multiplications
and 2 additions. Therefore, θ3 = 3θ2+ 3+ 2 = 14.

Inductively, the determinant of A reduces to a combination of n determinants of
(n− 1)× (n− 1) matrices. Each of these requires θn−1 operations. Additionally, there
are n multiplications and n− 1 additions. Therefore, θn = nθn−1 + 2n− 1 operations
are required. This is a first-order linear difference equation with initial data θ1 = 0
whose solution is (for n ≥ 2):

θn =
n−1∑
i=1

n!

(i + 1)!
(2i + 1) > n!

This is a lot of operations, even for values of n on the order of 10.

Exercise
7.10

An earlier exercise had you compute the formal expression for the determinant
when n = 4. Verify that θ4 = 63. Derive an alternate formula for n = 4 that uses 47
operations. ■

The determinant can be evaluated in a more reasonable amount of time by row-
reducing the matrix, as we will see later. Row reductions require on the order of n3

operations. For large n, this is much smaller than n!. A computer program written
to evaluate determinants should avoid cofactor expansion for large n. For small n the
overhead costs of Gaussian elimination may outweigh the costs of using a cofactor
expansion. The best advice is to profile the function to determine when to switch
between the two methods. On current hardware, cofactor expansion for n ≤ 4 appears
to be a reasonable choice.

Some properties of the determinant for a matrix A follow immediately from the
definition and constructions given previously. If any row of A has all zero entries, then
det(A) = 0. This is a consequence of the linearity in any component of the determi-
nant function. A linear transformation has the property L(0)= 0. The same is true for
a multilinear transformation that has a zero in any component. The proof is exactly
the same used for a linear transformation.

The determinants of elementary row operations are easy to construct. A swap of
two rows of A is equivalent to transposing two arguments in the determinant func-
tion. Condition 2 of the definition for a determinant function is that the function
is skew-symmetric with respect to its arguments; a transposition of two arguments
changes the sign of the determinant. If E is an elementary row matrix for swapping
two rows, then det(E)=−1. Multiplication of a row of A by a nonzero scalar c is
equivalent to replacing an argument of the determinant function with a scalar times
the original argument. By multilinearity, that scalar can be factored outside the func-
tion: �(. . . , cxj , . . .)= c�(. . . , xj , . . .). If E is an elementary row matrix that represents
multiplying a row by a nonzero scalar, then det(E)= c . Finally, if E is the elemen-
tary row matrix to add to row j a nonzero scalar multiple of row i, then det(E)= 1.
We proved this earlier when we showed that replacing argument xj by cxi + xj in
the determinant function � did not change the function’s value. An application of

7.5 Advanced Topics 637

two elementary row operations is equivalent to a composition of two linear functions
of the argument of the determinant function. The last section on transformations
showed us that composition of linear functions is represented by multiplication of
matrices of the functions involved in the composition. Therefore, if E1 and E2 are two
elementary row matrices, then

det(E1E2)= det(E1)det(E2)

That is, the determinant of a product is the product of the determinants.
Forward plus backward elimination of the n× n matrix A reduces that matrix to

an upper echelon matrix U that either is the identity I or is a matrix with at least one
row of zeros. The determinant of the identity is 1, just a restatement of condition 3 in
the definition for the determinant function. If U has a row of zeros, then det(U)= 0,
as proved earlier. Therefore, det(U) is 0 or 1. If E1 through Em are the elementary row
matrices used in the elimination, then

Em · · ·E1A =U

The determinant of a product was shown to be the product of the determinants, so

det(Em) · · ·det(E1)det(A) = det(U)

Because elementary row matrices all have nonzero determinants,

det(A) = det(U)

det(Em) · · ·det(E1)
(7.39)

The full elimination can be done with the order of n3 operations, clearly asymptoti-
cally better than cofactor expansion that uses the order of n! operations. Actually, we
need only apply forward elimination. The backward elimination is not necessary. For
an invertible matrix A, after forward elimination, the matrix U is upper triangular.
The determinant of such a matrix is just the product of its diagonal entries.

Exercise
7.11

Prove that the determinant of an upper triangular matrix is the product of its diagonal
entries. ■

Exercise
7.12

For an invertible matrix A, prove that det(A−1)= 1/det(A). ■

7.5.2 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors represent a topic vital to the study of difference and
differential equations and to the analysis of the stability of mathematical models that
describe physical phenomena. It is also a topic that many shy away from, but please
do not since you need it later!

Although we have been working with vector spaces IRn, the initial discussion here
will involve the vector space of n-tuples of complex numbers, Cn , whose scalar field is

638 Chapter 7 Linear Algebra

itself the set of complex numbers. Let A be an n× n matrix of complex-valued entries.
The scalar λ ∈ C is said to be an eigenvalue of A if there is a nonzero vector x such that
Ax = λx. In this case, x is said to be an eigenvector corresponding to λ. Geometrically,
an eigenvector is a vector that when transformed does not change direction. If λ �= 1,
the length changes, but if λ= 1, the eigenvector changes neither direction nor length.

Example
7.51

The number −1 is an eigenvalue for

A =
⎡
⎣−1 0 0

1 1 0
0 1 1

⎤
⎦

with a corresponding eigenvector x = (−4, 2,−1) (written as a 3-tuple). To verify this,

Ax =
⎡
⎣−1 0 0

1 1 0
0 1 1

⎤
⎦
⎡
⎣ −4

2
−1

⎤
⎦ =

⎡
⎣ 4
−2

1

⎤
⎦= (−1)

⎡
⎣−4

2
−1

⎤
⎦

■

Let λ be an eigenvalue of the n× n matrix A. The eigenspace of λ is the set

Sλ = {x ∈ Cn : Ax = λx}
This set is a subspace of Cn . The proof is simple. Let c ∈ C and let x, y ∈ Sλ. By
definition of Sλ, Ax = λx and Ay = λy. Applying A to the linear combination,

A(cx+ y)= cAx+Ay = cλx+λy= λ(cx+ y)

This shows that cx+ y ∈ Sλ, so Sλ is a subspace. An alternate proof is to note that
Sλ = kernel(A−λI). We had proved earlier that the kernel of a matrix is a subspace.

The method of construction of eigenvalues λ and eigenvectors x is as follows.
Observe that

Ax= λx⇔ Ax= λI x⇔ Ax−λI x= 0⇔ (A−λI)x= 0

We want nonzero solutions x to this homogeneous system of equations. The only way
this can happen is if (A−λI) is not invertible. For if it were invertible, then x= (A−
λI)−10= 0 is the only possible solution. An equivalent condition for (A−λI) not
to be invertible is that p(λ)= det(A−λI)= 0. This determinant is a polynomial in
λ of degree n since A is n× n. The eigenvalues are therefore roots of the polynomial
equation p(λ)= 0. The equation det(A−λI)= 0 is called the characteristic equation
for the matrix A.

The fundamental theorem of algebra states that every polynomial of degree n with
complex coefficients can be factored as

p(λ)=
k∏

i=1

(λ−λi)
mi

7.5 Advanced Topics 639

where λi , 1≤ i ≤ k , are the distinct roots of the equation p(λ)= 0 and where∑k
i=1 mi = n. For each root λi , solve the system (A−λi I)x= 0 to find the corre-

sponding eigenvectors.

Example
7.52

Find the eigenvalues and corresponding eigenspaces for

A =
[−2 0

1 4

]
.

Solve det(A−λI)= 0:

0= det(A−λI)= det

[−2−λ 0
1 4−λ

]
= (−2−λ)(4−λ).

The eigenvalues are the roots λ=−2, 4. For each eigenvalue solve the system (A−
λI)x= 0. Start with λ=−2 and solve (A+ 2I)x= 0:

A+ 2I =
[

0 0
1 6

]
∼
[

1 6
0 0

]

If x= (x1, x2), then x1 is basic and x2 is free with x1+ 6x2 = 0. Therefore, x=
x2(−6, 1) and S−2 = Span[(−6, 1)]. Now select λ= 4 and solve (A− 4I)x= 0:

A− 4I =
[−6 0

1 0

]
∼
[

1 0
0 0

]

If x= (x1, x2), then x1 is basic and x2 is free with x1 = 0. Therefore, x= x2(0, 1) and
S4 = Span[(0, 1)]. ■

Example
7.53

Find the eigenvalues and corresponding eigenspaces for

A =
⎡
⎣1 −1 4

3 2 −1
2 1 −1

⎤
⎦

Solve det(A−λI)= 0:

0 = det(A−λI)=
⎡
⎣1−λ −1 4

3 2−λ −1
2 1 −1−λ

⎤
⎦

=+(1−λ)det

[
2−λ −1

1 −1−λ

]
− (−1)det

[
3 −1
2 −1λ

]
+ (4)det

[
3 2−λ

2 1

]

= (1−λ)[(2−λ)(−1−λ)+ 1]+ [3(−1−λ)+ 2]+ 4[3− 2(2−λ)]

=−λ3 + 2λ2+ 5λ− 6

=−(λ+ 2)(λ− 1)(λ− 3)

640 Chapter 7 Linear Algebra

The eigenvalues are the roots λ=−2, 1, 3. For each eigenvalue, solve the system
(A−λI)x= 0. For λ=−2, solve (A+ 2I)x= 0:

A+ 2I =
⎡
⎣3 −1 4

3 4 −1
2 1 1

⎤
⎦∼

⎡
⎣1 0 1

0 1 −1
0 0 0

⎤
⎦

where the row operations are−R3 +R1 → R1, −3R1 +R2 → R2, −2R1+R3 → R3,
1

10 R2 → R2, −5R2 +R3 → R3, and 2R2+R1 → R1. If x= (x1, x2, x3), then the only
free variable is x3, so S−2 = Span[(−1, 1, 1)].

For λ= 1, solve (A− I)x= 0:

A− I =
⎡
⎣0 −1 4

3 1 −1
2 1 −2

⎤
⎦ ∼

⎡
⎣1 0 1

0 1 −4
0 0 0

⎤
⎦

where the row operations are −R3 +R2 → R2, R1 ↔ R2, −2R1 +R3 → R3, R2+
R3 → R3, and −R2 → R2. If x= (x1, x2, x3), then the only free variable is x3, so
S1 = Span[(−1, 4, 1)].

For λ= 3 solve (A− 3I)x= 0:

A− 3I =
⎡
⎣−2 −1 4

3 −1 −1
2 1 −4

⎤
⎦ ∼

⎡
⎣1 0 −1

0 1 −2
0 0 0

⎤
⎦

where the row operations are R1 +R2 → R2, R1+R3 → R3, R1 ↔ R2, 2R1+R2 →
R2,− 1

5 R2 → R2, and 2R2+R1 → R1. If x= (x1, x2, x3), then the only free variable is
x3, so S3 = Span[(1, 2, 1)]. ■

(Example 7.53
continued)

Example
7.54

This next example shows that the dimension of the eigenspace can be larger than
one. Let

A =
⎡
⎣1 −1 2

0 1 0
0 0 1

⎤
⎦

Solve det(A−λI)= 0:

det(A−λI)= det

⎡
⎣1−λ −1 2

0 1−λ 0
0 0 1−λ

⎤
⎦= (1−λ)3

so λ= 1 is the only eigenvalue. Solve (A− I)x= 0:

A− I =
⎡
⎣0 −1 2

0 0 0
0 0 0

⎤
⎦ ∼

⎡
⎣0 1 −2

0 0 0
0 0 0

⎤
⎦

If x= (x1, x2, x3), then x1 and x3 are free variables with x2− 2x3 = 0. Thus, x=
x1(1, 0, 0)+ x3(0, 2, 1) and S1 = Span[(1, 0, 0), (0, 2, 1)]. ■

7.5 Advanced Topics 641

Suppose that A is an n× n matrix with real-valued entries. If λ is an eigenvalue of
A that has a nonzero imaginary part and has corresponding eigenvector x, then λ̄, the
complex conjugate of λ, is also an eigenvalue of A and has corresponding eigenvector
x̄, the componentwise complex conjugate of vector x. Define the complex conjugate
of a matrix A = [aij] by Ā = [āij]; then the following sequence of steps is valid:

Ax = λx, Ax= λx, Āx̄= λ̄x̄, Ax̄= λ̄x̄

where we have used Ā = A since A has only real-valued entries. The last statement
indicates that λ̄ is an eigenvalue of A with a corresponding eigenvector x̄.

Example
7.55

Let

A =
[

cos θ − sinθ

sinθ cosθ

]

where θ is not an integer multiple of π . This matrix represents rotation of vec-
tors in the plane by θ radians (counterclockwise rotation when θ > 0). An intuitive
argument is that there should be no real-valued eigenvalues since any vector must
have its direction changed by the rotation. The algebraic construction is to solve
det(A−λI)= 0:

det(A−λI)=
[

cosθ −λ − sinθ

sinθ cos θ −λ

]
= (cos θ −λ)2 + sin2 θ = 0

so the eigenvalues are λ= cos θ ± i sinθ . For λ= cos θ + i sinθ , solve (A−λI)x= 0:

A−λI = sinθ

[−i −1
1 −i

]
∼ sinθ

[
1 −i
0 0

]

If x= (x1, x2), then x2 is the free parameter with x1− ix2 = 0. Therefore, x=
x2(i, 1) and Sλ = Span[(i, 1)] ⊂ C2. The other eigenvalue is the complex conjugate
λ̄= cos θ − i sinθ . The eigenvectors are x̄= x2(−i, 1) and the eigenspace is Sλ̄ =
Span[(−i, 1)]. ■

Let A be an n× n matrix with n linearly independent eigenvectors x1, . . . , xn .
If λ1, . . . ,λn are the corresponding eigenvalues, not necessarily distinct, and if S =
[x1 · · · xn], then P−1AP = Diag(λ1, . . . ,λn)=: D. The proof is as follows:

AP = A
[
x1 | · · ·| xn

]
Definition of S

= [Ax1 | · · ·| Axn
]

Distributive property of block multiplication

= [λ1x1 | · · ·| λnxn
]

Since λi are eigenvalues

= [x1 | · · ·| xn
]

Diag(λ1, . . . ,λn)

= PD

642 Chapter 7 Linear Algebra

Since the columns of P are the linearly independent eigenvectors of A, P must be
invertible; thus, AP = PD implies P−1AP = D. For example, we had

A =
[−2 0

1 4

]
, λ1 =−2, S−2 = Span[(−6, 1)], λ2 = 4, S4 = Span[(0, 1)]

Therefore,

P =
[−6 0

1 1

]
and P−1AP =Diag(−2, 4)

Recall from the section on linear transformations that the condition P−1AP = D
means that A and D are similar matrices. Not all n× n matrices have n linearly
independent eigenvectors. However, it might still be possible to find a similarity
transformation P−1AP =D where D is diagonal. If so, A is said to be diagonalizable.

A specific instance where A is diagonalizable is when it has n distinct eigenvalues
λ1 through λn . Let x1 through xn be corresponding eigenvectors. This set of eigenvec-
tors is linearly independent. The proof of this fact is by mathematical induction. The
first case is n = 2. Let c1x1+ c2x2 = 0. Multiply by A to obtain

0= A(c1x1+ c2x)= c1Ax1+ c2Ax2 = c1λ1x1 + c2λ2x2

Replace c2x2 =−c1x1 in this equation and group terms to obtain

c1(λ1 −λ2)x1 = 0

where x1 �= 0 since it is an eigenvector and λ1 �= λ2 by assumption, so c1 = 0. Replac-
ing in the original equation yields c2x2 = 0. Again, x2 �= 0 because it is an eigenvector,
so it must be that c1 = 0. Therefore, x1 and x2 are linearly independent.

The inductive hypothesis is that x1 through xk are linearly independent. We need
to use this to show that x1 through xk+1 are linearly independent. Let c1x1+ · · ·+
ck+1xk+1 = 0. Multiply by A to obtain

0= A(c1x1 + · · ·+ ck+1xk+1)= c1Ax1+ · · ·+ ck+1Axk+1

= c1λ1x1 + · · ·+ ck+1λk+1xk+1

Replace ck+1xk+1 =−c1x1− · · ·− ck xk in this equation and group terms to obtain

c1(λ1−λk+1)x1+ · · ·+ ck (λk −λk+1)xk = 0

By the inductive hypothesis, the k vectors in the linear combination are linearly
independent, so all the coefficients must be zero: ci(λi −λk+1)= 0. The eigenvalues
are distinct, so λi �= λk+1 for 1≤ i ≤ k , thus forcing ci = 0 for 1≤ i ≤ k . Replac-
ing in the origin equation yields ck+1xk+1 = 0. And, again, xk+1 �= 0 since it is an
eigenvector, so it must be that ck+1 = 0. Therefore, the vectors x1 through xk+1 are

7.5 Advanced Topics 643

linearly independent. The result is true for all n ≥ 2 by the principle of mathematical
induction.

Generally, two similar matrices A and B have the same characteristic polynomial,
so their eigenvalues are identical. Because the matrices are similar, B = P−1AP for
some invertible matrix P . The characteristic polynomial of B, det(B−λI)= 0 can be
manipulated as

0 = det(B−λI)

= det(P−1AP −λP−1IP)

= det(P−1(A−λI)P)

= det(P−1)det(A−λI)det(P)

= det(A−λI)

because det(P−1)det(P)= det(P−1P)= det(I)= 1. Although the eigenvalues are
the same for A and B, the corresponding eigenvectors are not necessarily the same,
but are related. Define y= P−1x where Ax= λx. Multiplying the eigensystem by P−1

and replacing x= Py leads to

By= P−1APy= λP−1Py= λy

The vector y= P−1x is an eigenvector for B corresponding to λ whenever x is an
eigenvector for A with respect to the same eigenvalue.

7.5.3 Eigendecomposition for Symmetric Matrices

A special class of matrices that arises most frequently in applications, especially
physics applications, is the class of n× n symmetric matrices with real-valued entries.
A symmetric matrix A satisfies the condition that AT = A. Within the class of
symmetric matrices are subclasses of importance.

■ If xTAx > 0 for all x �= 0, then A is said to be positive definite.

■ If xTAx ≥ 0 for all x �= 0, then A is said to be positive semidefinite or nonnegative
definite.

■ If xTAx < 0 for all x �= 0, then A is said to be negative definite.

■ If xTAx ≤ 0 for all x �= 0, then A is said to be negative semidefinite or nonpositive
definite.

The eigenvalues of a real-valued symmetric matrix must themselves be real-
valued, and the corresponding eigenvectors are naturally real-valued. If A were to

644 Chapter 7 Linear Algebra

have a possibly complex-valued eigenvector x, then x̄TAx must be real-valued. To
see this:

x̄TAx =
∑

i ,j

x̄i aijxj

=
∑
i=j

x̄i aijxj +
∑
i<j

x̄i aijxj +
∑
i>j

x̄iaijxj

=
∑

i

aii|xi|2+
∑
i<j

x̄iaijxj +
∑
j>i

x̄jajixi Interchange names on i and j

=
∑

i

aii|xi|2+
∑
i<j

x̄iaijxj +
∑
i<j

xiaij x̄j Since A is symmetric

=
∑

i

aii|xi|2+
∑
i<j

(
x̄iaijxj + xi aij x̄j

)
=
∑

i

aii|xi|2+
∑
i<j

2Re(x̄i aijxj) Re(z) denotes the real part of z

The right-hand side of the last equality is a real number, so x̄TAx is real-valued. Also,
x̄Tx= |x|2, another real number. Since x is an eigenvector, Ax = λx, where λ is the
corresponding eigenvalue. Thus, x̄TAx = λx̄Tx and

λ= x̄TAx

x̄Tx

The right-hand side is the ratio of real numbers, so it must be real-valued itself. That
is, the eigenvalue λ must be real. Moreover, since the eigenvalues are real, the nonzero
solutions to (A−λI)x= 0 must be real-valued.

Another interesting result for a real-valued symmetric matrix: If λ1 and λ2 are
distinct eigenvalues for A, then corresponding eigenvectors x1 and x2 are orthogonal.
The proof is straightforward:

λ1xT
1 x2 = (λ1x1)

Tx2

= (Ax1)
Tx2 x1 is an eigenvector for λ1

= xT
1ATx2

= xT
1Ax2 A is symmetric

= xT
1(λ2x2) Since x2 is an eigenvector for λ2

= λ2xT
1x2

But then (λ1 −λ2)xT
1x2 = 0 and λ1 �= λ2 imply that xT

1 x2 = 0. That is, x1 and x2 are
orthogonal.

We are now in a position to characterize the eigenvectors for a real-valued sym-
metric matrix A. The construction makes use of a more general result that applies to
square matrices. If A is a square matrix, there always exists an orthogonal matrix Q
such that QTAQ = U , where U is an upper triangular matrix. The diagonal entries of

7.5 Advanced Topics 645

U are necessarily the eigenvalues of A. The proof is as follows. Let λ1 be an eigenvalue
for A. There is at least one linearly independent eigenvector y1 corresponding to it.
Let x1 = y1/|y1| such that x1 is a unit-length eigenvector. Define the matrix,

Q1 = [x1|z2| · · ·|zn]

where {z2, . . . , zn} is an orthonormal basis for the orthogonal complement of
Span[x1]. The matrix Q1 is orthogonal by construction and

QT
1 AQ1 =

⎡
⎢⎢⎣

λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

⎤
⎥⎥⎦

The process is recursively applied to the lower right-hand corner submatrix to obtain
an orthogonal matrix P2 such that

Q2 =
[

1 0
0 P2

]
and QT

2

(
QT

1 AQ1
)

Q2 =

⎡
⎢⎢⎢⎢⎣

λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎦

At the last step of the reduction, we have Q =∏n
i=1 Qi and QTAQ =U , where U is

upper triangular and its diagonal entries are the eigenvalues of A.
The primary consequence of this result is that if A is symmetric and QTAQ =U ,

where Q is orthogonal and U is upper triangular, then in fact U must be a diag-
onal matrix. This follows from U T = (QTAQ)T =QTAT(QT)T =QTAQ = U , which
forces U to be symmetric. The only upper triangular symmetric matrices are the diag-
onal matrices. The diagonal entries of U are the eigenvalues of A and the columns of Q
are the corresponding eigenvectors. This means that an n× n real-valued symmetric
matrix always has n linearly independent eigenvectors.

Finally, an important classification for the ‘‘definite” matrices: The symmetric
matrix A is (positive, nonnegative, negative, nonpositive) definite if and only if its
eigenvalues are (positive, nonnegative, negative, nonpositive). Let us prove this for
the case of positive definite matrices. The other cases are similar.

■ (⇒): Let A be positive definite. Let λ be an eigenvalue for A with corresponding
eigenvector x; then Ax= λx, xTAx= xT(λx)= λxTx, and so λ= (xTAx)/(xTx).
But A is positive definite, so xTAx > 0. Moreover, xTx is the squared length of
x, so it is positive. Thus, λ= (xTAx)/(xTx) > 0. The argument works for every
eigenvalue of A.

■ (⇐): Let λ be an eigenvalue for A and assume that λ > 0. Then as in the first
part, 0 < λ= (xTAx)/(xTx), where x is a corresponding eigenvector. Therefore,
xTAx > 0 for every eigenvector of A. Since A is symmetric, it must have a set

646 Chapter 7 Linear Algebra

of linearly independent eigenvectors x1, . . . , xn given by the columns of Q in the
decomposition. Let x= a1x1+ · · ·anxn �= 0; then

xTAx =
(

n∑
i=1

aixi

)T

A

⎛
⎝ n∑

j=1

aj xj

⎞
⎠

=
(

n∑
i=1

aix
T
i

)⎛⎝ n∑
j=1

aiAxi

⎞
⎠

=
(

n∑
i=1

aix
T
i

)⎛⎝ n∑
j=1

λiaixi

⎞
⎠

=
∑

i ,j

λjaiaj x
T
i xj

=
∑

i

λia
2
i xi are orthonormal

> 0 since λi > 0 and x �= 0

Similar arguments apply to negative, nonpositive, or nonnegative definite matrices.
The eigenvalues of a symmetric matrix can be calculated directly by solving the

characteristic equation det(A−λI)= 0; however, for large n, root finding in this
manner is typically ill conditioned. A better approach reduces A to a tridiagonal
matrix T via a finite sequence of similarity transformations by orthogonal matrices
(i.e., Householder reduction) followed by an iterative reduction to a diagonal matrix
using the QR algorithm. In the second phase, the reductions involve more similar-
ity transformations by orthogonal matrices. In the end, A = RDR−1, where D is a
diagonal matrix whose diagonal entries are the eigenvalues of A, and R is an orthogo-
nal matrix whose columns are the corresponding linearly independent eigenvectors,
ordered according to the eigenvalue ordering on the diagonal of D.

7.5.4 S + N Decomposition

Given a square matrix A, we are going to show that it may be decomposed into a
sum A = S+N , where S is diagonalizable (the S comes from semisimple, a term that
is synonymous with diagonalizable) and N is nilpotent, a matrix for which N p = 0
for some p > 0, but N i �= 0 for 0 < i < p, and SN = NS. The decomposition allows
us to efficiently compute powers Ak that arise in solving linear difference equations
and to compute the exponential eA (a formal power series eA =∑k=0 Ak/k!) that
arise in solving linear differential equations. Both types of equations occur in physics
applications.

7.5 Advanced Topics 647

Let V be an n-dimensional vector space. Let V1, . . . , Vr be subspaces of V . V
is said to be the direct sum of the Vi if every x ∈ V can be written uniquely as
x=∑r

i=1 xi , where xi ∈ Vi . The notation for indicating that V is the direct sum of the
subspaces is

V = V1⊕ · · ·⊕Vr =
r⊕

i=1

Vi

We have already seen this concept in the section introducing orthogonal subspaces. If
U is an m-dimensional subspace of IRn and U⊥ is its (n−m)-dimensional orthogonal
complement, we proved that IRn = U ⊕U⊥ by constructing a basis of vectors, the first
m in U and the last n−m in U⊥. A special case comes from the fundamental theorem
of linear algebra. If A is an n×m matrix, then IRm = kernel(A)⊕ range(AT) and
IRm = kernel(AT)⊕ range(A). Let’s look at a last example. Let {f1, . . . , fn} be a basis
for IRn ; then IRn =⊕n

i=1 Span[fi] since every vector in IRn can be written uniquely as
a linear combination of basis vectors.

Linear transformations can be decomposed in a manner similar to the vector
space. Let L : V → V be a linear transformation. Let Li : Vi → Vi for 1≤ i ≤ r be
linear transformations. Define L(Vi)= {L(x) : x ∈ Vi}. L is said to be the direct sum
of the Li if

1. V =⊕r
i=1 Vi (V is the direct sum of the Vi);

2. L(Vi)⊆ Vi for all i (Vi is invariant under L); and

3. L(x)= Li(x) for x ∈ Vi (L restricted to the set Vi is just the transformation Li).

The notation for indicating L is a direct sum of the transformations is

L = L1⊕ · · ·⊕ Lr =
r⊕

i=1

Li

A direct sum of transformations is applied as follows:

L(x)=
(

r⊕
i=1

Li

)(
r∑

i=1

xi

)
=

r∑
i=1

Li(xi)

If Li is represented by the matrix Ai with respect to the basis βi for Vi , then the
union of the bases β =⋃r

i=1 βi is a basis for V and the diagonal block matrix A =
Diag(A1, . . . , Ar) represents L with respect to β.

Example
7.56

Let V = IR2 and L(x1, x2)= (−2x1, x1+ 4x2). The matrix that represents L with
respect to basis B1 = {(1, 0), (0, 1)} is

M =
[−2 0

1 4

]

648 Chapter 7 Linear Algebra

(Example 7.56
continued)

Another basis for V is B2 = {v1, v2}, where v1 = (−6, 1) and v2 = (0, 1). Note that v1 is
an eigenvector of M corresponding to the eigenvalue λ1 =−2 and v2 is an eigenvector
of A corresponding to the eigenvalue λ2 = 4. Let Vi = Span[vi] for each i, so IR2 =
Span[v1]⊕ Span[v2], a direct sum of the eigenspaces of M .

Define L1 : V1 → V1 by L1(αv1)=−2αv1. Since V1 is 1-dimensional, we can
think of L1 as L1(α)=−2α. Its matrix of representation is A1 = [−2]. Simi-
larly, define L2 : V2 → V2 by L2(βv2)= 4βv2. As a one-dimensional transformation,
L2(β) = 4β and the matrix representation is A2 = [4]. Observe that

L(α(−6, 1))= αL(−6, 1)= α(12,−2)=−2α(−6, 1)= L1(α(−6, 1))

L(β(0, 1)) = βL(0, 1)= β(0, 4)= 4β(0, 1)= L2(β(0, 1))

Consequently, L is the direct sum L = L1⊕ L2. The matrix representing L with respect
to the basis B2 is

A =Diag(A1, A2)=
[−2 0

0 4

]
■

The intent of the example is to show that the behavior of L is determined by
its behavior on certain special subspaces. In this particular case, the subspaces are
1-dimensional eigenspaces and L acts like the classic linear function f (x) = ax on
each eigenspace. In some cases it is possible to have eigenspaces of dimension larger
than 1, but the vector space V is a direct sum of eigenspaces. The representation of
L as a direct sum of transformations on the eigenspaces is constructed in a manner
similar to the example. In other cases, though, V is not a direct sum of eigenspaces,
but it is a direct sum of generalized eigenspaces.

Since a change of basis is a similarity transformation between two matrix repre-
sentations of a linear transformation L : V → V , the characteristic polynomials of
the matrix representations are the same (we proved this earlier), call it

p(λ)=
r∏

k=1

(λ−λk)
nk

where dim(V) =∑r
k=1 nk and where the λk are the distinct roots of the polynomial.

This allows us to refer to eigenvalues λk of L rather than having to explicitly asso-
ciate the eigenvalues with a specific matrix A that represents L. Similarly, we will
refer to the eigenspace of λk as the set kernel(L−λk I) without reference to a spe-
cific matrix A since L−λkI is itself a linear transformation with a kernel and a range.
The generalized eigenspace of L corresponding to λk is the set

Ek = kernel(L−λkI)nk

7.5 Advanced Topics 649

The sets Ek are invariant subspaces of L; that is, L(Ek)⊆ Ek . To see this, select y ∈
L(Ek); then y= L(x) for some x ∈ Ek . Also,

(L−λkI)nk (y) = (L−λk I)nk (L(x))

= ((L −λkI)nk ◦ L)(x) Definition of composition
= (L ◦ (L−λk I)nk)(x) L Commutes with itself
= L(L−λk I)nk)(x)) Definition of composition
= L(0) Since x ∈ Ek

= 0 L is a linear transformation

Thus, y ∈ Ek and so L(Ek)⊆ Ek .
The main result is now stated, without proof. Let L : V → V be a linear transfor-

mation. The vector space is a direct sum of the generalized eigenspaces, V =⊕r
k=1 Ek ,

where Ek is the generalized eigenspace of L with respect to eigenvalue λk . The proof
involves showing that (1) Ek has a basis of nk vectors and (2) eigenvectors correspond-
ing to distinct eigenvalues are linearly independent. If Lk is the restriction of L to Ek ,
a consequence of the direct sum decomposition and the result L(Ek)⊆ Ek (proved in
the last paragraph) is that L can be decomposed as L =⊕r

k=1 Lk .
The most important consequence of the direct sum decomposition is that there

are transformations S and N such that L = S+N (a sum of transformations), any
matrix representation of S is a diagonalizable matrix, any matrix representation of
N is a nilpotent matrix, and the order of composition of S and N is irrelevant:
SN = NS. To prove this, let us look at the special case when there is a single eigenvalue
λ1. The characteristic polynomial is p(λ)= (λ−λ1)

n . The generalized eigenspace is
E = kernel(L−λ1I)n. Define S = λ1I and N = L−λ1I . Clearly S ◦N = N ◦ S since
the identity transformation commutes with any transformation. E = kernel(N n)

implies N n = 0 since the only transformation which maps everything to 0 is the zero
transformation.

Let Lk be the restriction of L to Ek . Each Lk has characteristic polynomial (λ−
λk)

n
k (just the special case mentioned in the previous paragraph) so Lk = Sk +Nk ,

where Sk = λkI and Nk = Lk −λk I are defined on Ek with SkNk =Nk Sk . Define S =⊕r
k=1 Sk and N =⊕r

k=1 Nk . First,

L =
r⊕

k=1

Lk

=
r⊕

k=1

(Sk +Nk)

=
r⊕

k=1

Sk +
r⊕

k=1

Nk

= S+N

650 Chapter 7 Linear Algebra

so L = S+N as claimed. Second,

SN =
(

r⊕
k=1

Sk

)(
r⊕

k=1

Nk

)

=
r⊕

k=1

SkNk

=
r⊕

k=1

NkSk

=
(

r⊕
k=1

Nk

)(
r⊕

k=1

Sk

)

= NS

so SN = NS as claimed.

Example
7.57

Let L : IR3 → IR3 be defined by L(x1, x2, x3)= (x1 − x2 + 2x3, x2, x3). The matrix rep-
resenting L with respect to the Euclidean basis is

A =
⎡
⎣1 −1 2

0 1 0
0 0 1

⎤
⎦

The characteristic polynomial is p(λ)=−(λ− 1)3 , so

S = λI = I , N = A− I =
⎡
⎣0 −1 2

0 0 0
0 0 0

⎤
⎦

Note that N 2 = 0, so N is nilpotent. Clearly S is diagonalizable since it is already
diagonal. ■

Example
7.58

Let L : IR3 → IR3 be defined by L(x1, x2, x3)= (−x1 + x2 − 2x3,−x2+ 4x3, x3). The
matrix representing L with respect to the Euclidean basis is

A =
⎡
⎣−1 1 −2

0 −1 4
0 0 1

⎤
⎦

The characteristic polynomial is p(λ)=−(λ+ 1)2(λ− 1). The generalized eigen-
spaces are E1 = ker(A+ I)2 and E2 = ker(A− I). To construct these, row-reduce:

(A+ I)2 =
⎡
⎣0 0 0

0 0 8
0 0 4

⎤
⎦ ∼

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦

7.5 Advanced Topics 651

so that E1 = Span[(1, 0, 0), (0, 1, 0)]. Also,

A− I =
⎡
⎣−2 1 −2

0 −2 4
0 0 0

⎤
⎦ ∼

⎡
⎣1 0 0

0 1 −2
0 0 0

⎤
⎦

so that E2 = Span[(0, 2, 1)].
Restrict L to E1:

L(α(1, 0, 0)+β(0, 1, 0)) = αL(1, 0, 0)+βL(0, 1, 0)

= α(−1, 0, 0)+β(1,−1, 0)

= (β −α)(1, 0, 0)+ (−β)(0, 1, 0)

Therefore, L1(α,β)= (β −α,−β). Similarly, restrict L to E2:

L(γ (0, 2, 1)) = γ L(0, 2, 1)

= γ (0, 2, 1)

so L2(γ)= γ .
The matrix representing L1 with respect to the basis {(1, 0, 0), (0, 1, 0)} is

A1 =
[

L1(1, 0) L1(0, 1)
]= [−1 1

0 −1

]

and the matrix representing L2 with respect to the basis {(0, 2, 1)} is

A2 = [L2(1)] = [1]

We can write A1 = S1+N1, where

S1 =
[−1 0

0 −1

]
, N1 =

[
0 1
0 0

]

and A2 = S2+N2, where

S2 = [1], N2 = [0]

Therefore, L = L1⊕ L2 is represented by

B = Diag(A1, A2)=
⎡
⎣−1 1 0

0 −1 0
0 0 1

⎤
⎦ =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦+

⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ = S+N

The original matrix A and this matrix B are similar, B = P−1AP . The columns of the
matrix P consist of the generalized eigenvectors

P =
⎡
⎣1 0 0

0 1 2
0 0 1

⎤
⎦ , P−1 =

⎡
⎣1 0 0

0 1 −2
0 0 1

⎤
⎦

652 Chapter 7 Linear Algebra

The decomposition is not necessarily unique. For example, we could choose E1 =
Span[(1, 1, 0), (1,−1, 0)]; then

L(α(1, 1, 0)+β(1,−1, 0)) = α(0,−1, 0)+β(−2, 1, 0)

= −
(

α+β

2

)
(1, 1, 0)+ α− 3β

2
(1,−1, 0)

and

L1(α,β)=
(
−α+β

2
,
α− 3β

2

)

The matrix representing L1 with respect to this new basis is

A1 =

⎡
⎢⎢⎣
−1

2
−1

2
1

2
−3

2

⎤
⎥⎥⎦=

[−1 0
0 −1

]
+

⎡
⎢⎢⎣

1

2
−1

2
1

2

1

2

⎤
⎥⎥⎦= S1+N1

Finally,

B =Diag(A1, A2)= S+N =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦+

⎡
⎢⎢⎢⎢⎣

1

2
−1

2
0

1

2
−1

2
0

0 0 0

⎤
⎥⎥⎥⎥⎦

■

(Example 7.58
continued)

7.5.5 Applications

Three applications of interest regarding eigendecomposition are computing the pow-
ers of a matrix, computing the exponential of a matrix, and constructing the local
extrema of multivariate functions. We discuss each application in this section.

Powers of a Matrix

The decomposition of a matrix A = S+N where S is diagonalizable, N is nilpotent
with N p = 0 and N i �= 0 for i < p, and SN = NS allows us to efficiently evaluate
powers Aj for j ≥ 2. Because SN =NS, the binomial expansion formula applies to
(S +N) j . That is,

Aj = (S +N) j =
j∑

k=0

(
j
k

)
S j−kN k =

min(j,p−1)∑
k=0

(
j
k

)
S j−kN k (7.40)

7.5 Advanced Topics 653

The last equality follows because N k = 0 for k ≥ p. Since S is diagonalizable, S =
PDP−1 for some diagonal matrix D. The powers on S are efficiently computed as
S j−k = (PDP−1) j−k = PD j−k P−1.

Let us do an operation count to see why the right-hand side of equation (7.40) is
a more efficient way of computing Aj than the obvious iterative product. We will do
this in general for an n× n matrix. Let �j denote the number of operations needed
to compute Aj in the usual manner. The product A2 requires n multiplications and
n− 1 additions per entry. The matrix has n2 entries, so the total operations is given by
�2 = n2(2n− 1). For j > 2, Aj = A · Aj−1, so each additional multiplication requires
n2(2n− 1) operations. The total count is �j = (j − 1)n2(2n− 1) for j ≥ 2.

Define �j to be the number of operations needed to compute Aj using the S+N
decomposition. The simplest case is when A is already diagonalizable, A = PDP−1, so
that N = 0. The powers are Aj = PDj P−1. The product DP−1 requires n2 multipli-
cations. Once computed and cached, the next product is D2P−1 = D(DP−1), which
takes an additional n2 multiplications. Once Dj P−1 is computed in this manner, the
last multiplication on the left by P requires n2(2n− 1) operations. The total count is
�j = jn2 + n2(2n− 1). It is the case that �j ≥�j when j ≥ 1+ (2n− 1)/(2n− 2).

When N �= 0, the operation count increases as the power of nilpotency, p,
becomes large. Consider the case when N �= 0, but N 2 = 0; then

A j = S j + jS j−1N = PD jP−1+ jPD j−1P−1N = PD j−1(DP−1+ jP−1N)

PD j−1 requires (j− 1)n2 multiplications; DP−1 requires n2 multiplications; P−1N
requires n2(2n− 1) operations; the product j(P−1N) requires an additional n2

multiplications; the sum (DP−1)+ (jP−1N) requires n2 additions; and finally
(PDj−1)(DP−1+ jP−1N) uses n2(2n− 1) operations. The total count is �j = (j−
1)n2 + 2n2(2n+ 1). It is the case that �j ≥�j when j ≥ 1+ (2n+ 1)/(2n− 2). The
break-even point for j occurs when N 2 = 0 is larger than in the case N = 0.

As it turns out, the power of nilpotency p is bounded by the matrix size, p < n.
Even though Aj might be more cheaply computed for small j using the obvious
multiplication, as j becomes large the S+N decomposition will be cheaper.

Exponential of a Matrix

A system of ordinary differential equations with constant coefficients is of the form

dx

dt
= Ax, t ≥ 0, x(0)= x0

where A is an n× n matrix of constants and x0 is a specified initial condition. As we
will see, the solution is

x(t)= etAx0, t ≥ 0

654 Chapter 7 Linear Algebra

where etA is the power series for the function f (x) = ex formally evaluated with the
matrix argument tA. Recall that

ex =
∞∑

k=0

xk

k!

is a power series that converges for any real-valued x. Although not proved here, the
formal series

etA =
∞∑

k=0

t k

k!
Ak

also converges for any real-valued matrix A. We could use the A = S+N decompo-
sition to calculate Ak for each k , but we can actually do better. The exponential of a
matrix happens to satisfy the condition eA+B = eAeB whenever AB = BA. However,
do not make the mistake of using this formula when AB �= BA; the formula is not true
in these cases. Using A = S+N , the fact that SN = NS, and the exponential identity,

etA = et (S+N) = etS+tN = etSetN

The right-hand side requires evaluating the power series for ex twice. The power series
for etS is simplified by using the fact that S is diagonalizable, S = PDP−1. The series is

etS =
∞∑

k=0

t k

k!
Sk

=
∞∑

k=0

t k

k!
(PDP−1)k

=
∞∑

k=0

t k

k!
PDk P−1

= P

(∞∑
k=0

t k

k!
Dk

)
P−1

= PetDP−1

The diagonal matrix is D = Diag(d1, . . . , dn) and the exponential of tD is

etD = eDiag(td1,...,tdn) = Diag(etd1 , . . . , etdn)

The power series for etN is actually a finite sum since N p = 0 for some positive
power p. That is,

etN =
∞∑

k=0

t k

k!
N k =

p−1∑
k=0

t k

k!
N k

7.5 Advanced Topics 655

In summary, the exponential of A is

etA = PDiag(etd1 , . . . , etdn)P−1
p−1∑
k=0

t k

k!
N k (7.41)

Local Extrema of Multivariate Functions

Let y = f (x) for x ∈ IR, where f is twice differentiable for all x. The critical points for
f are those points x0 such that f ′(x0)= 0. At such a point, three possibilities occur for
the function as illustrated in Figure 7.27.

In studying calculus you discussed the concept of Taylor polynomials. If f is twice
differentiable at x0, then for x near x0,

f (x) = f (x0)+ f ′(x0)

1!
(x − x0)+ f ′′(x0)

2!
(x − x0)

2+R(x, x0)

where R is a remainder term such that

lim
x→x0

R(x, x0)

(x − x0)2

Suppose that f ′(x0)= 0; then

f (x)= f (x0)+ 1

2
(x − x0)

2

[
f ′′(x0)+ 2

R(x, x0)

(x − x0)2

]

where

lim
x→x0

[
f ′′(x0)+ 2

R(x, x0)

(x − x0)2

]
= f ′′(x0)

f (x0)

(a)

x0

f(x0)

(b)

x0

f (x0)

(c)

x0

Figure 7.27 Three graphs showing critical points. (a) f (x0) is a local minimum. (b) f (x0) is a local
minimum. (c) (x0, f (x0)) is a point of inflection for the graph of f .

656 Chapter 7 Linear Algebra

Consequently,

sign

[
f ′′(x0)+ 2

R(x, x0)

(x − x0)2

]
= sign f ′′(x0)

for x sufficiently close to x0, where

sign(x) =
⎧⎨
⎩

1, x > 0
0, x = 0
−1, x < 0

From the above we can develop the second derivative test: If f ′(x0)= 0, then

1. f (x0) is a local maximum if f ′′(x0) < 0

2. f (x0) is a local minimum if f ′′(x0) > 0

3. No conclusion can be made if f ′′(x0)= 0. A more detailed analysis is required to
understand the behavior of the graph of f at (x0, f (x0)).

The idea is that for x near x0, f ′′(x0) > 0 implies that f ′′(x0)+ 2R(x, x0)/(x − x0)
2 >

0, so f (x) ≥ f (x0) for x near x0. A similar argument holds if f ′′(x0) < 0 [f (x) ≤ f (x0)

for x near x0].
The concept of Taylor polynomials can be generalized to functions w = f (x),

where x ∈ IRn. We will look at the case n = 2. A function f (x1, x2) is differentiable
at (x1, x2) if the partial first derivatives,

fx1(x1, x2)= ∂f (x1, x2)

∂x1
and fx2(x1, x2)= ∂f (x1, x2)

∂x2

exist. Similarly, f (x1, x2) is twice differentiable at (x1, x2) if the partial second deriva-
tives,

fx1x1 =
∂2f

∂x2
1

, fx1x2 =
∂2f

∂x2∂x1
, fx2x1 =

∂2f

∂x1∂x2
, and fx2x2 =

∂2f

∂x2
2

exist.
Let x= (x1, x2) and x0 = (a, b). If f (x) is twice differentiable at x0, then

f (x)= f (x0)+Df (x0)(x− x0)+ D2f (x0)

2!
(x− x0)

2+R(x, x0)

where the implied operations are defined by

1. Df (x)=∇f (x)= (fx1 (x1, x2), fx2 (x1, x2)) (the gradient of f)

2. Df (x)y= yT∇f (x)=∑2
i=1 fxi yi

3. D2f (x)= [fxi xj]=
[

fx1x1 fx1x2

fx2x1 fx2x2

]

4. D2f (x)yz = yT D2f (x)z =∑2
i=1

∑2
j=1 fxi xj yizj

7.5 Advanced Topics 657

Generally,

Dn f (x)yn =
2∑

i1=1

· · ·
2∑

in=1

fxi1 ···xin
yi1 · · ·yin

The quantity R(x, x0) in the above Taylor polynomial expansion has the property

lim
x→x0

R(x, x0)

|x− x0|2
= 0

The second derivative test is the following. If Df (x0)= 0, then

1. f (x0) is a local maximum if D2f (x0)(x− x0)
2 < 0 for all x near x0

2. f (x0) is a local minimum if D2f (x0)(x− x0)
2 > 0 for all x near x0

3. No conclusion can be made otherwise without more information.

Using our results about the characterization of definite matrices, the second derivative
test may be rephrased as follows. If Df (x0)= 0, then

1. f (x0) is a local maximum if D2f (x0) is negative definite;

2. f (x0) is a local minimum if D2f (x0) is positive definite;

3. No conclusion can be made if D2f (x0) is neither positive definite nor negative
definite. A more detailed analysis is required to understand the behavior of the
graph of f at (x0, f(x0)).

Figure 7.28 shows a graph of f for various possibilities.

(a) (b) (c)

Figure 7.28 Three graphs showing critical points. (a) f (x0) is a local maximum. (b) f (x0) is a local
minimum. (c) (x0, f (x0)) is a saddle point on the graph of f . The tangent planes at
the graph points are shown in all three figures.

658 Chapter 7 Linear Algebra

Example
7.59

Consider f (x1, x2)= x4
1 + 4x2

1 x2+ x2
1 + 5x2

2 − 2x1x2; then

Df (x1, x2)= (4x3
1 + 8x1x2+ 2x1− 2x2, 4x2

1 + 10x2− 2x1)

and

D2f (x1, x2)=
[

12x2
1 + 8x2 + 2 8x1− 2

8x1− 2 10

]

Solve Df = (0, 0):

4x3
1 + 8x1x2+ 2x1 − 2x2 = 0

4x2
1 + 10x2− 2x1 = 0

The second equation implies x2 = x1−2x2
1

5 . Replacing in the first equation yields 0=
4
5 x1(x1+ 1)(x1 + 2). The critical points are (0, 0), (−1,−3/5), and (−2,−2).

■ Case 1: (0, 0)

D2f (0, 0)=
[

2 −2
−2 10

]

det(D2 f (0, 0)−λI)= λ2− 12λ+ 16= 0

so the eigenvalues are λ
.= 1.53, 0.76. Thus, D2f (0, 0) is positive definite and

f (0, 0)= 0 is a local minimum.

■ Case 2: (−1,−3/5)

D2f (−1,−3/5)=
[

46
5 −10

−10 10

]

det(D2f (−1,−3/5)−λI)= λ2− 96

5
λ− 8= 0

so the eigenvalues are λ
.= 19.61,−0.41. The second derivative test gives no

conclusions. Actually, the function has a saddle point at (−1,−3/5).

■ Case 3: (−2,−2)

D2f (−2,−2) =
[

34 −18
−18 10

]

det(D2f (−2,−2)−λI)= λ2− 44λ+ 16= 0

so the eigenvalues are λ
.= 43.63, 0.37. Thus, D2f (−2,−2) is positive definite and

f (−2,−2) = 0 is a local minimum.

Note that f (x1, x2)= (x1 − x2)
2 + (x2

1 + 2x2)
2, so 0 is the absolute minimum for

the function. ■

C h a p t e r 8
Affine Algebra

8.1 Introduction

As we saw earlier, linear algebra is the study of vectors and vector spaces. In two dimen-
sions, a vector was treated as a quantity with direction and magnitude. It does not
matter where you place the vector in the plane; it represents the same vector (see
Figure 7.4) since the directions and magnitudes are the same. In physics applications,
among others, the location of the vector, that is, where its initial point is, may very
well be significant. For example, if a particle has a certain velocity at a given instant,
the velocity vector necessarily applies to the position of the particle at that instant.
Similarly, the same force applied to two different positions on a rod have different
effects on the rod. The point of application of the force is relevant.

Clearly, there needs to be a distinction between points and vectors. This is the
essence of affine algebra. Let V be a vector space of dimension n. Let A be a set of ele-
ments that are called points. A is referred to as an n-dimensional affine space whenever
the following conditions are met:

1. For each ordered pair of points P ,Q ∈ A, there is a unique vector in V called the
difference vector and denoted by �(P ,Q).

2. For each point P ∈ A and v ∈ V , there is a unique point Q ∈ A such that
v=�(P ,Q).

3. For any three points P ,Q,R ∈ A, it must be that �(P ,Q)+�(Q,R) =
�(P ,R).

© 2010 by Elsevier Inc. All rights reserved. 659
DOI: 10.1016/B978-0-12-374903-1.00008-6

660 Chapter 8 Affine Algebra

v = D(P, Q)

P

Q

D(P, Q)

D(Q, R)

D(P, R)

P

Q R

(a) (b)

Figure 8.1 (a) A vector v connecting two points P and Q. (b) The sum of vectors, each vector
determined by two points.

Figure 8.1 illustrates these three items.
If P and Q are specified, v is uniquely determined (item 1). If P and v are

specified, Q is uniquely determined (item 2). Figure 8.1(b) illustrates item 3.
The formal definition for an affine space introduced the difference vector

�(P ,Q). Figure 8.1 gives you the geometric intuition about the difference, specifi-
cally that it appears to be a subtraction operation for two points. However, certain
consequences of the definition may be proved directly without having a concrete
formulation for an actual subtraction of points.

A few consequences of the definition for an affine algebra follow.

1. �(P ,P)= 0

2. �(Q,P)=−�(P ,Q)

3. If �(P1,Q1)=�(P2,Q2), then �(P1,P2)=�(Q1,Q2)

The first consequence follows immediately from item 3 in the definition where Q
is replaced by P , �(P ,P)+�(P ,R) =�(P ,R). The vector �(P ,R) is subtracted
from both sides to obtain �(P ,P) = 0.

The second consequence also follows from item 3 in the definition where R is
replaced by P , �(P ,Q)+�(Q,P) =�(P ,P) = 0. The last equality is what we just
proved in the previous paragraph. The first vector is subtracted from both sides to
obtain �(Q,P)=−�(P ,Q).

The third consequence is called the parallelogram law. Figure 8.2 illustrates.
Item 3 in the definition can be applied in two ways:

�(P1,P2)+�(P2 ,Q2)=�(P1,Q2) and �(P1,Q1)+�(Q1,Q2)=�(P1,Q2)

Subtracting these leads to

0=�(P1,P2)+�(P2 ,Q2)−�(P1 ,Q1)−�(Q1 ,Q2)=�(P1,P2)−�(Q1 ,Q2)

8.1 Introduction 661

D(Q 1, Q 2)

D(P 2, Q 2)

D(P 1, P 2)

D(P 1, Q 1)

P 1

P 2

Q 1
Q 2

Figure 8.2 The parallelogram law for affine algebra.

where the last equality is valid since we assumed �(P1,Q1)=�(P2,Q2). Therefore,
�(P1,P2)=�(Q1,Q2).

In the formal sense of affine algebra, points and vectors are distinct entities. We
have already used two different fonts to help distinguish between them: P is a point,
v is a vector. Even so, the following example shows how powerful the formal setting
is. Given a vector space V , the points may be defined as the elements of V themselves,
namely A = V . If P and Q are points, the corresponding vectors are labeled p and q.
Think of the vectors geometrically as P −O and Q−O, respectively, where O is the
origin. The difference vector of the points is �(P ,Q)= q−p, a subtraction of the
two vectors. The three items in the definition for affine space can be easily verified.
The example also shows that you must be steadfast in maintaining that points and
vectors are different abstract quantities, even if you happen to represent them in a
computer program in the same way, say as n-tuples of numbers.

Any further discussion of affine spaces in the abstract will continue to use the
notation �(P ,Q) for the vector difference of two points. However, in situations that
have a computational flavor, we will instead use the more intuitive notation Q−P
with the warning that the subtraction operator is a convenient notation that is not
necessarily indicative of the actual mechanism used to compute the vector difference
of two points in a particular application. We also use the suggestive notation Q=
P + v when v=�(P ,Q).

To avoid inadvertent confusion between points and vectors in a computer imple-
mentation, separate data structures for points and vectors are recommended. For
example, in C++ you can define the vector class by

template class <T real, int n> Vector
{
public:

// construction
Vector ();
Vector (const real tuple[n]);
Vector (const Vector& v);

662 Chapter 8 Affine Algebra

// tuple access as an array
operator const real* () const;
operator real* ();
real operator[] (int i) const;
real& operator[] (int i);

// assignment and comparison
Vector& operator= (const Vector& v);
bool operator== (const Vector& v) const;
bool operator!= (const Vector& v) const;

// arithmetic operations
Vector operator+ (const Vector& v) const;
Vector operator- (const Vector& v) const;
Vector operator* (real scalar) const;
Vector operator/ (real scalar) const;
Vector operator- () const;
friend Vector operator* (real scalar, const Vector& v);

private:
real m_tuple[n];

};

wherereal allows you to support both float anddouble and wheren is the dimension
of the underlying vector space. The point class is defined by

template class <T real, int n> Point
{
public:

// construction
Point ();
Point (const real tuple[n]);
Point (const Point& p);

// tuple access as an array
operator const real* () const;
operator real* ();
real operator[] (int i) const;
real& operator[] (int i);

// assignment and comparison
Point& operator= (const Point& p);
bool operator== (const Point& p) const;
bool operator!= (const Point& p) const;

// arithmetic operations
Point operator+ (const Vector& v) const;

8.2 Coordinate Systems 663

Vector operator- (const Point& p) const;

private:
real m_tuple[n];

};

Of course, these are just the basic operations, but other members can be added as
needed for your applications.

8.2 Coordinate Systems

Let A be an n-dimensional affine space. Let a fixed point O ∈ A be labeled as the
origin and let {v1, . . . , vn} be a basis for V . The set {O; v1, . . . , vn} is called an affine
coordinate system. Each point P ∈ A can be uniquely represented in the coordinate
system as follows. The difference P −O is a vector and can be represented uniquely
with respect to the basis for V ,

P −O =
n∑

i=1

aivi

or using our suggestive notation for sum of a point and a vector,

P =O+
n∑

i=1

aivi

The numbers (a1, . . . , an) are called the affine coordinates of P relative to the specified
coordinate system. The origin O has coordinates (0, . . . , 0). Figure 8.3 shows three
coordinate systems in the plane.

O 1

O 3

O 2

v1v2

w1

w2

u1

u2

Figure 8.3 Three coordinate systems in the plane. Observe that the vectors in the coordinate
system are not required to be unit length or perpendicular in pairs.

664 Chapter 8 Affine Algebra

A natural question is how to change coordinates from one system to another. Let
{O1; u1, . . . , un} and {O2; v1, . . . , vn} be two affine coordinate systems for A. A point
P ∈ A has affine coordinates (a1, . . . , an) and (b1, . . . , bn), respectively. The origin O2

has affine coordinates (c1, . . . , cn) in the first coordinate system. The relationship

P =O1+
n∑

i=1

aiui =O2+
n∑

i=1

bivi =O1+
n∑

i=1

ciui +
n∑

i=1

bivi

implies
n∑

i=1

bivi =
n∑

i=1

(ai − ci)ui

The two bases are related by a change of basis transformation, ui =∑n
j=1 mji vj for

1 ≤ i ≤ n, so
n∑

i=1

bivi =
n∑

i=1

(ai − ci)

n∑
j=1

mji vj

Renaming the index i to j on the left–hand side and rearranging terms on the right–
hand side,

n∑
j=1

bj vj =
n∑

j=1

(
n∑

i=1

mji(ai − ci)

)
vj

The uniqueness of the representation for a vector requires

bj =
n∑

i=1

mji(ai − ci), 1 ≤ j ≤ n

which is the desired relationship between the coordinate systems.

Example
8.1

Here are two coordinate systems in the plane, the ones shown in Figure 8.3. The origin
of the first is O1 = (−1, 2) and the basis vectors (coordinate axis directions) are u1 =
(1, 0) and u2 = (0, 1). The origin of the second is O2 = (2, 1) and the basis vectors are
v1 = (1, 1)/

√
2 and v2 = (−1, 1)/

√
2. Let us represent the origin of the second system

in terms of the first:

(3,−1)= (2, 1)− (−1, 2) =O2−O1 = c1u1+ c2u2 = c1(1, 0)+ c2(0, 1)= (c1, c2)

The change of basis matrix is determined by u1 =m11v1+m21v2 and u2 =m12v1+
m22v2. In block matrix form where the basis vectors are written as columns,[

1 0
0 1

]
= [u1 u2

]= [v1 v2
][m11 m12

m21 m22

]
= 1√

2

[
1 −1
1 1

][
m11 m12

m21 m22

]

The solution is [
m11 m12

m21 m22

]
= 1√

2

[
1 1
−1 1

]

8.3 Subspaces 665

If P =O1+ a1u1 + a2u2 =O2+ b1v1+ b2v2, then[
b1

b2

]
=
[

m11 m12

m21 m22

][
a1− c1

a2− c2

]
= 1√

2

[
a1+ a2− 2
−a1+ a2+ 4

]

The point (0, 0) is represented as O1+ (1)u1+ (−2)u2 in the first coordinate system.
Using the change of coordinate relationship above, verify that the representation in
the second coordinate system is O2+ (−3/

√
2)v1+ (1/

√
2)v2. Carefully sketch a

picture to convince yourself that the coordinates are accurate. ■

Exercise
8.1

How does the analysis of Example 8.1 change when you have the common origin
O1 =O2 = (0, 0)? In the first coordinate system, let R be the matrix that represents
a counterclockwise rotation about the origin by an angle π/4. What is the matrix R?
How is it related to the change of basis matrix? ■

Exercise
8.2

Repeat the construction in Example 8.1, but use the coordinate system {O3; w1, w2}
instead of {O2; v1, v2}, where O3 = (−2,−2), w1 = (1, 0), and w2 = (1, 1). ■

8.3 Subspaces

Let A be an affine space. An affine subspace of A is a set A1 ⊆ A such that V1 =
{�(P ,Q) ∈ V : P ,Q ∈ S} is a subspace of V . The geometric motivation for this def-
inition is quite simple. If V = IR3, the one-dimensional subspaces are lines through
the origin and the two-dimensional subspaces are planes through the origin. If A is
the set of points in space, the one-dimensional subspaces are lines (not necessarily
through the origin) and the two-dimensional subspaces are planes (not necessarily
through the origin). That is, the affine subspaces are just translations of the vector
subspaces.

Let A1 and A2 be affine subspaces of A with corresponding vector subspaces V1

and V2 of V , respectively. The subspaces are said to be parallel if V1 ⊆ V2 or if V2 ⊆ V1.
If it is the case that V1 ⊆ V2, then as sets either A1 and A2 are disjoint (A1 ∩A2 = ∅)
or A1 is contained in A2 (A1 ⊆ A2).

Example
8.2

Let A be the set of points in space and V = IR3. Let P = (0, 0, 1), u1 = (1, 0, 0), and
u2 = (0, 1, 0). Let Q= (0, 0, 2) and v1 = (1, 1, 0). The sets A1 = {P + s1u1+ s2u2 :
s1, s2 ∈ IR} and A2 = {Q+ t1v1 : t1 ∈ IR} are parallel, affine subspaces. In this case, A1

and A2 are disjoint. If instead A2 = {P + t1v1 : t1 ∈ IR}, A1 and A2 are still parallel
subspaces, but A2 is a proper subset of A1. ■

Exercise
8.3

Let A be the set of points in space and V = IR3. Let P = (0, 0, 0), u= (1, 0, 0), Q=
(0, 0, 1), and v= (0, 1, 0). Are the sets A1 = {P + su : s ∈ IR} and A2 = {Q+ t v : t ∈
IR} parallel subspaces? ■

666 Chapter 8 Affine Algebra

P 1

Q 1

P 2

Q 2
u

u

T(P 1)

T(P 2)

T(Q 1)

T(Q 2)

v

v

T

Figure 8.4 An illustration of condition 1 of the definition for affine transformation.

8.4 Transformations

Just as we defined linear transformations for vector spaces, we can define affine trans-
formations for affine spaces. Let A be an affine space with vector space V and vector
difference operator �A . Let B be an affine space with vector space W and vector dif-
ference operator �B . An affine transformation is a function T : A → B such that the
following are true:

1. �A(P1,Q1)=�A(P2,Q2) implies that �B (T (P1), T (Q1))=�B(T (P2),
T (Q2)).

2. The function L : V →W defined by L(�A(P ,Q)) =�B(T (P), T (Q)) is a linear
transformation.

Figure 8.4 illustrates condition 1 in the definition. Setting u=�A(P1,Q1) and v=
�B (T (P1), T (Q1)), in geometric terms the condition states that no matter what point
P is used as the initial point for u, the initial point for v must be T (P). Condition 2
just states that the vectors themselves must be transformed linearly.

If OA is selected as the origin for A and if OB = T (OA) is selected as the origin
for B, then the affine transformation is of the form

T (OA + x)= T (OA)+ L(x)=OB + L(x)

Consider the special case when the two affine spaces are the same B = A, W = V , and
�B =�A . Define OB −OA = b. The affine transformation is now of the form

T (OA + x)=OA +b+ L(x)

Thus, for a fixed origin OA and for a specific matrix representation M of the linear
transformation L, the induced action of the affine transformation on the vector space

8.5 Barycentric Coordinates 667

elements is

y=M x+b (8.1)

Hopefully this form should look familiar! If M is the identity matrix, then the affine
transformation is a translation by b. If M is an orthogonal matrix with determi-
nant 1 and b is the zero vector, the affine transformation is a pure rotation about
the origin. If M is an orthogonal matrix of determinant 1 and b is any vector, the
affine transformation is called a rigid motion, quite an important concept for physics
applications.

8.5 Barycentric Coordinates

The definition of an affine space allows for computing the difference of two points
and for computing the sum of a point and a vector. The latter operation is the natural
way you “move” from one point to another. The sum of two points is just not defined.
However, there is an operation on two points that does make intuitive sense, that of
a weighted average of two points. If P and Q are two points and v=Q−P , then
Q =P + v. For each t ∈ IR, the quantity t v is, of course, a vector, so P + t v is a point
itself. Using our suggestive notation for subtraction of points, we have

P + t v= P + t(Q−P)

It is an error to distribute the multiplication by t across the difference of points,
because the definition of affine algebra does not allow the operation of a scalar times
a point. That is, t(Q−P) is well defined since t is a scalar and Q−P is a vector, but
tQ− tP is ill-defined. But let’s go ahead and distribute anyway, then combine the P
terms to obtain

R= (1− t)P + tQ (8.2)

R is said to be a barycentric combination of P and Q with barycentric coordinates
1− t and t , respectively. Observe that the sum of the coordinates is 1, a necessity for
a pair of numbers to be barycentric coordinates. For t ∈ [0, 1], R is a point on the
line segment connecting P and Q. For t < 0, R is on the line through P and Q with
P between R and Q. Similarly, for t > 1, R is on the line with Q between R and P .
Figure 8.5 illustrates these cases.

To support barycentric combinations, the C++ template code for points has one
additional member function. The other two arithmetic operations are shown just for
comparison.

template class <T real, int n> Point
{
public:

// return_point = this + v

668 Chapter 8 Affine Algebra

P QR

P QR

P Q R

t e [0, 1]

t < 0

t > 1

Figure 8.5 Various barycentric combinations of two points P and Q.

Point operator+ (const Vector& v) const;

// return_vector = this - p
Vector operator- (const Point& p) const;

// return_point = (1 - t) * this + t * p,
// a barycentric combination
Point operator+ (real t, const Point& p) const;

}

8.5.1 Triangles

The concept of barycentric coordinates extends to three noncolinear pointsP , Q, and
R. The points, of course, form a triangle. Two vectors located atP are u =Q−P and
v=R−P . For any scalars s and t , su and t v are vectors and may be added to any
point to obtain another point. In particular,

P + su+ t v= P + s(Q−P)+ t(R−P)

is a point. Just as equation (8.2) was motivated by distributing the scalar product
across the differences and collected terms, we do the same here to obtain

B = (1− s − t)P + sQ+ tR (8.3)

B is said to be a barycentric combination of P , Q, and R with barycentric coordinates
c1 = 1− s − t , c2 = s, and c3 = t , respectively. As with a barycentric combination of
two points, the barycentric coordinates must sum to one: c1+ c2 + c3 = 1. The loca-
tion of B relative to the triangle formed by the three points is illustrated in Figure 8.6.

The signs of c1, c2, and c3 are listed as ordered triples. On a boundary between
two regions, not including the vertices, one of the ci is 0. At a vertex, two of the ci

are 0, the other coordinate necessarily 1. The coordinates cannot be simultaneously
negative since the sum of three negative numbers cannot be 1.

8.5 Barycentric Coordinates 669

P

R

Q

– – +

+ + +

+ + –
+ – – – + –

+ – + – + +

Figure 8.6 The triangle partitions the plane into seven regions. The signs of c1, c2, and c3 are
listed as ordered triples.

Exercise
8.4

Linear interpolation over a triangle. A real-valued function f (x, y), unknown to you,
has been sampled at three noncolinear points (xi , yi) with function values fi , 0 ≤
i ≤ 2. If you are given the information that f : IR2 → IR is an affine transformation,
construct an explicit formula for f . ■

8.5.2 Tetrahedra

The concept of barycentric coordinates also extends to four noncoplanar points Pi ,
0 ≤ i ≤ 3. The points form a tetrahedron. Using a construction similar to that for a
segment and a triangle, a barycentric combination of the points is

B = (1− c1 − c2− c3)P0+ c1P1+ c2P2+ c3P3 (8.4)

The values c0 = 1− c1− c2 − c3, c1, c2, and c3 are the barycentric coordinates of B
and they sum to 1. The tetrahedron partitions space into 15 regions, each region
labeled with an ordered quadruple of signs for the four coefficients. The only invalid
combination of signs is all negative since the sum of four negative numbers cannot
equal 1.

Exercise
8.5

Linear interpolation over a tetrahedron. A real-valued function f (x, y , z), unknown to
you, has been sampled at four noncoplanar points (xi , yi , zi) with function values fi ,
0 ≤ i ≤ 3. If you are given the information that f : IR3 → IR is a linear transformation,
construct an explicit formula for f . ■

670 Chapter 8 Affine Algebra

8.5.3 Simplices

We have seen barycentric coordinates relative to a segment, a triangle, and a tetrahe-
dron. The concept extends to affine spaces of n-tuples for any n ≥ 2. The name of the
object that generalizes triangle and tetrahedron is simplex (plural simplices). A sim-
plex is formed by n+ 1 points Pi , 0≤ i ≤ n, such that the set of vectors {Pi −P0}ni=1
are linearly independent. A barycentric combination of the points is

B =
n∑

i=0

ciPi (8.5)

and the ci are the barycentric coordinates of B with respect to the given points. As
before, the coefficients sum to 1,

∑n
i=0 ci = 1.

Although we tend to work in 2D or 3D, let us be abstract for a moment and ask the
same question we did for segments, triangles, and tetrahedra. A segment, a simplex
in IR, partitioned IR into three regions. A triangle, a simplex in IR2, partitioned IR2

into seven regions. A tetrahedron, a simplex in IR3, partitioned IR3 into 15 regions.
How many regions in IRn are obtained by a partitioning of a simplex? The sequence
with increasing dimension is 3, 7, 15, so you might guess that the answer is 2n+1 − 1.
This is correct. An intuitive reason is supported by looking at the signs of the n+ 1
coefficients. Each region is labeled with an ordered (n+ 1)-tuple of signs, each sign
positive or negative. There are two choices of sign for each of the n+ 1 components,
leading to 2n+1 possibilities. As in the cases we’ve already looked at, all negative signs
are not allowed since the sum would be negative and you cannot obtain a sum of 1.
This means only (2n+1 − 1) tuples of signs are possible.

A more geometric approach to counting the regions is based on an analysis of the
components of the simplices. A segment has two vertices. The interior of the segment
is formed by both vertices, so you can think of that region as occuring as the only
possibility when choosing two vertices from a set of two vertices. That is, the number
of interior regions is C(2, 2)= 1, where

C(n, k)= n!

k! (n− k)!

is the number of combinations of n items choosing k at a time. The segment has
two exterior regions, each formed by a single vertex. The number of such regions is
C(2, 1)= 2, because you have two vertices, but choose only one at a time. The total
number of regions in the partition of the line is C(2, 1)+C(2, 2)= 2+ 1= 3.

A triangle has three vertices. The interior is formed by choosing all three ver-
tices. The number of interior regions is C(3, 3)= 1. Figure 8.6 shows that each edge
has a corresponding exterior region. An edge is formed by two vertices and you have
three vertices to choose from. The total number of edges is C(3, 2)= 3. The figure
also shows that each vertex has a corresponding exterior region. The total number
of vertices is C(3, 1)= 3. The total number of regions in the partition of the plane is
C(3, 1)+C(3, 2)+C(3, 3)= 3+ 3+ 1= 7.

8.5 Barycentric Coordinates 671

The same argument applies to a tetrahedron with four vertices. The interior is
formed by all four vertices; the number of interior regions is C(4, 4)= 1. A face is
formed by three vertices; there are C(4, 3)= 4 such possibilities. An edge is formed
by two vertices; there are C(4, 2)= 6 such possibilities. Finally, there are C(4, 1)= 4
vertices. An exterior region is associated with each vertex, each edge, and each face.
The total number of regions is C(4, 1)+C(4, 2)+C(4, 3)+C(4, 4)= 4+ 6+ 4+ 1.

Consider now the general case, a simplex formed by n+ 1 points. The compo-
nents, so to speak, of the simplex are classified by how many vertices form them.
If a component uses k vertices, let’s call that a k-vertex component. The interior of
the simplex is the only (n+ 1)-vertex component. Each k-vertex component where
1 ≤ k < n+ 1 has a single exterior region associated with it. The total number of
regions is therefore

C(n+ 1, n+ 1)+C(n+ 1, n)+ · · ·+C(n+ 1, 1)=
n+1∑
k=1

C(n+ 1, k)= 2n+1− 1

The term C(n, k) indicates the number of k-vertex components, the number of com-
binations of n vertices choosing k at a time. Where did that last equality come from?
Recall the binomial expansion for a power of a sum of two values:

(x + y)m = C(m, 0)xm +C(m, 1)xm−1y + · · ·+C(m, m− 1)xym−1 +C(m, m)ym

=
m∑

k=0

C(m, k)xm−k yk

Setting x = 1, y = 1, and m = n+ 1, we arrive at

2n+1 = (1+ 1)n+1 =
n+1∑
k=0

C(n+ 1, k)= 1+
n+1∑
k=1

C(n+ 1, k)

8.5.4 Length, Area, Volume, and Hypervolume

The constructions in this section are designed to show that the area of a triangle (sim-
plex in 2D) can be computed as a sum (in an integration sense) of lengths of line
segments (simplices in 1D). I also show that the volume of a tetrahedron (simplex
in 3D) can be computed as a sum of areas of triangles (simplices in 2D). These two
facts indicate the process is recursive in dimension. Intuitively, a simplex in 4D has a
“volume,” so to speak, that can be computed as a sum of volumes of tetrahedra (sim-
plices in 3D). Sometimes this is called a hypervolume, but that leads us to wanting
names for the similar concept in yet higher dimensions. I will use the term hypervol-
ume for any dimension and note that hypervolume in 1D is length, hypervolume in
2D is area, and hypervolume in 3D is volume. Given a simplex formed by points Pi

for 0≤ i ≤ n, the hypervolume is denoted H (P0, . . . ,Pn).

672 Chapter 8 Affine Algebra

Length of a Segment

A line segment with endpoints P0 and P1 is a simplex with two vertices. The length
of the simplex is |P1−P0|. Using our notation for hypervolume,

H (P0,P1)= |P1−P0| (8.6)

Area of a Triangle

Recall that the area of a triangle with base length b and height h is A = bh/2.
Figure 8.7(a) shows the standard drawing one normally uses to show b and h.
Figure 8.7(b) shows a triangle viewed as the union of line segments of varying lengths.
The drawing shows the bottom edge aligned with the x-axis, but the ensuing argu-
ments do not depend on this. The area of the triangle may be thought of as the sum
of the lengths of all the line segments in the union. This is an informal and math-
ematically nonrigorous view of the situation, but intuitively it works quite well. The
number of line segments is infinite, one segment per y-value in the interval [0, h]. The
sum cannot be computed in the usual sense. In this setting it becomes an integration
of the lengths as a function of y .

Select a value of y ∈ [0, h]. The line segment has two endpoints, one on the
triangle edge from P0 to P2 and one on the triangle edge from P1 to P2. The
fraction of the distance along each edge on which the endpoints lie is y/h ∈ [0, 1].
That is, the endpoints are the barycentric combinations (1− y/h)P0 + (y/h)P2

P 2

P 1P 0b

h

h

y

x

(a) (b)

Figure 8.7 (a) A triangle with base length b and height h marked. The area of the triangle is bh/2.
(b) A triangle viewed as a union of an infinite number of line segments of varying
lengths (only a few are shown). The area of the triangle is the sum of the lengths of
those line segments.

8.5 Barycentric Coordinates 673

and (1− y/h)P1+ (y/h)P2. The length of the segment is the length of the vector
connecting the endpoints,

v= ((1− y/h)P1 + (y/h)P2)− (1− y/h)P0 + (y/h)P2 = (1− y/h)(P1 −P0)

The length of the segment as a function of y is

L(y)= |v| = (1− y/h)|P1−P0| = (1− y/h)b

where b is the length of the base of the triangle. To “add” all the values L(y) for y ∈
[0, h] in order to obtain the area A, we need to integrate

A =
h∫

0

L(y)dy =
h∫

0

(1− y/h)b dy = b
−h(1− y/h)2

2

∣∣∣∣
h

0
= bh

2

In terms of our hypervolume notation,

H (P0,P1,P2)= h

2
H (P0,P1) (8.7)

where h = |P2−P0|cosθ with θ the angle as shown in Figure 8.7.
The height h also may be computed as the length of the projection ofP2 −P0 onto

the vertical axis. A convenient vector to use, whose direction is that of the vertical axis,
is the following. Let P1−P0 = v= (v1, v1). A perpendicular vector in the direction
of the positive vertical axis as shown in Figure 8.7 is−Perp(P0,P1) where

Perp(P0,P1)= (v2,−v1) (8.8)

is called the perp vector. You will notice that the perp vector itself is in the direction of
the negative vertical axis as shown in Figure 8.7. Using the coordinate-free definition
of dot product, equation (7.12),

(P2 −P0) · (−Perp(P0,P1))= |P2−P0||Perp(P0,P1)|cosθ = h|Perp(P0,P1)|
The perp vector has the same length as P1−P0, so the dot product in the previous
equation is twice the area of the triangle, bh. This gives us the nonrecursive formula
for the area of a triangle,

H (P0,P1,P2)=−1

2
(P2 −P0) · Perp(P0,P1) (8.9)

Volume of a Tetrahedron

The volume of a tetrahedron may be computed in the same intuitive way that was
used for the area of a triangle. LetPi , 0≤ i ≤ 3, denote the vertices of the tetrahedron.
The base of the tetrahedron will be selected as the triangle formed by Pi , 0≤ i ≤ 2.
The tetrahedron may be informally thought of as an infinite union of triangles that
are parallel to its base. Figure 8.8 shows a tetrahedron and one of its triangle slices.

674 Chapter 8 Affine Algebra

P 3

P 1

P 2P 0

h

z

Figure 8.8 A tetrahedron with base formed by P0, P1, and P2. A triangle slice parallel to the base
is shown. The direction perpendicular to the base is marked as the positive z-axis.

Select a value of z ∈ [0, h]. The corresponding triangle has three vertices, one on each
tetrahedron edge with endpoints Pi and P3 for 0≤ i ≤ 2. The fraction of the dis-
tance along each edge on which the endpoints lie is z/h ∈ [0, 1]. The endpoints are the
barycentric combinations Qi = (1− z/h)Pi + (z/h)P3 for 0≤ i ≤ 2. If A(z) denotes
the area of this triangle, the volume of the tetrahedron is

V =
h∫

0

A(z)dz

We would like to use equation (8.9) to compute A(z), but there is a problem. Even
though that equation is written in a coordinate-free manner, it is implicitly tied to 2D
points via the definition of the perp vector in equation (8.8) that requires points in
two dimensions. For the time being, let’s instead use the area formula from equation
(7.17). We will later return to the issue of the perp vector and provide a definition that
is valid in any dimension.

Set vi =Qi −Q0 = (1− z/h)(Pi −P0) for 1≤ i ≤ 2. The triangle slice is half of a
parallelogram formed by v1 and v2, so using equation (7.17) the area of the triangle is

A(z) = 1

2
|v1× v2| = (1− z/h)2

2
|(P1−P0)× (P2 −P0)| = (1− z/h)2b

where b is the area of the base of the tetrahedron. The volume of the tetrahedron is

V =
h∫

0

A(z)dz =
h∫

0

(1− z/h)2b dz = b
−h(1− z/h)3

3

∣∣∣∣
h

0
= bh

3

8.5 Barycentric Coordinates 675

In our hypervolume notation, the volume is

H (P0,P1,P2,P3)= h

3
H (P0,P1,P2) (8.10)

where h = |P3−P0|cosθ with θ the angle shown in Figure 8.8.
The height may also be computed as the length of the projection of P3−P0 onto

the vertical axis. We already know a vector with that direction, the cross product (P1 −
P0)× (P2−P0). Using equation (8.8) as motivation, define

Perp(P0,P1,P2)= (P1 −P0)× (P2 −P0) (8.11)

Using the coordinate-free definition of dot product, equation (7.12),

(P3−P0) · Perp(P0,P1,P2)= |P3−P0||Perp(P0,P1,P2)|cos θ

= h|Perp(P0,P1,P2)| = 2hb

where b is the area of the triangle base of the tetrahedron. Dividing by 6 we have a
nonrecursive formula for the volume,

H (P0,P1,P2,P3)= 1

6
(P3−P0) · Perp(P0,P1,P2) (8.12)

Hypervolume of a Simplex

Notice the strong similarities between equations (8.7) and (8.10) and between equa-
tions (8.9) and (8.12). The first pair of equations suggests that for a simplex formed
from n+ 1 points Pi , 0 ≤ i ≤ n, the recursive formula for the hypervolume is

H (P0, . . . ,Pn)= h

n
H (P0, . . . ,Pn−1) (8.13)

where h = |Pn−P0|cosθ with θ the angle between Pn −P0 and a vector that is
perpendicular to the base of the simplex. The base is itself a simplex but formed by
n points Pi for 0≤ i ≤ n− 1. As we saw in the cases n = 2 and n = 3, we want the
perpendicular vector chosen so that θ is an acute angle. In 2D we used−Perp(P0,P1)

and in 3D we used Perp(P0,P1,P2). This suggests that in general dimension n, we will
use a vector (−1)n+1Perp(P0, . . . ,Pn−1), where the perp vector Perp(P0, . . . ,Pn−1)

is appropriately defined. The second pair of equations suggests the nonrecursive
formula

H (P0, . . . ,Pn)= (−1)n+1

n!
(Pn −P1) · Perp(P0, . . . ,Pn−1) (8.14)

This leaves us with the task of finding a formula for Perp(P0, . . . ,Pn−1), hopefully
in a way that applies to any dimensional input points. We accomplish this last goal
by introducing an indexed quantity that stores information about permutations. In

676 Chapter 8 Affine Algebra

tensor calculus, this is called the Levi–Civita permutation tensor, but the name and
tensor calculus are not really important in our context.

Let’s look at the 2D problem first. The doubly-indexed quantity eij for 1≤ i ≤ 2
and 1≤ j ≤ 2 represents four numbers, each number in the set {−1, 0, 1}. The value is
0 if the two indices are the same: e11 = 0 and e22 = 0. The other values are e12 = 1 and
e21 =−1. The choice of 1 or−1 is based on whether the ordered index pair (i, j) is an
even or odd permutation of (1, 2). In the current case, (1, 2) is an even permutation
of (1, 2) (zero transpositions, zero is an even number) so e12 = 1. The pair (2, 1) is
an odd permutation of (1, 2) (one transposition, one is an odd number) so e21 =−1.
You should notice that eji =−eij . Treating eij as the elements of a 2× 2 matrix E , that
matrix is skew–symmetric: ET =−E .

The arguments of the area function and perp operation are points. Since the area
and perp vector are invariant under translations, we may as well replace the arguments

by vectors v(i) = Pi −P0 for i ≥ 1. In 2D, v(i) = (v(i)
1 , v(i)

2). Thus,

(u1, u2)= u = Perp(v(1))= (v(1)
2 ,−v(1)

1)= (e12v(1)
2 , e21v(1)

1)

In summation notation the components of u are

uj =
2∑

i=1

ejiv
(1)
i (8.15)

The area of the triangle is

H (v(1), v(2)) = −1

2
v(2) · Perp(v(1)) Using equation (8.9)

= −1

2

2∑
i=1

2∑
j=1

eji v
(2)
j v(1)

i Using equation (8.15)

= 1

2

2∑
i=1

2∑
j=1

eijv
(1)
i v(2)

j eij =−eji and swapping terms

(8.16)

In 3D the triply-indexed permutation tensor is eijk for 1≤ i ≤ 3, 1≤ j ≤ 3, and
1 ≤ k ≤ 3. Each value is in the set {−1, 0, 1}. If any pair of indices is the same, the
value is zero; for example, e111 = 0, e112 = 0, and e233 = 0 (there are 21 zero ele-
ments). Otherwise, eijk = 1 if (i, j, k) is an even permutation of (1, 2, 3) or eijk =−1
if (i, j, k) is an odd permutation of (1, 2, 3). Under these conditions only six elements
are nonzero: e123 = e231 = e312 = 1 and e132 = e321 = e213 =−1. As in the 2D case,
if a pair of indices is swapped, the sign is changed: ejik = eikj = ekji =−eijk . Define

v(i) = Pi −P0 = (v(i)
1 , v(i)

2 , v(i)
3), 1≤ i ≤ 3; then

(u1, u2, u3)= u

= Perp(v(1), v(2))

8.5 Barycentric Coordinates 677

= v(1)× v(2)

=
(

v(1)
2 v(2)

3 − v(1)
3 v(2)

2 , v(1)
3 v(2)

1 − v(1)
1 v(2)

3 , v(1)
1 v(2)

2 − v(1)
2 v(2)

1

)

=
(

e123v(1)
2 v(2)

3 + e132v(1)
3 v(2)

2 , e231v(1)
3 v(2)

1 + e213v(1)
1 v(2)

3 ,

e312v(1)
1 v(2)

2 + e321v(1)
2 v(2)

1

)

In summation notation the components of u are

uk =
3∑

i=1

3∑
j=1

ekijv
(1)
i v(2)

j (8.17)

The volume of the tetrahedron is

H (v(1), v(2), v(3))

= 1

6
v(3) · Perp(v(1), v(2)) Using equation (8.12)

= 1

6

3∑
i=1

3∑
j=1

3∑
k=1

ekijv
(3)
k v(1)

i v(2)
j Using equation (8.17)

= 1

6

3∑
i=1

3∑
j=1

3∑
k=1

−eikjv
(1)
i v(2)

j v(3)
k ekij =−eikj and swapping terms

= 1

6

3∑
i=1

3∑
j=1

3∑
k=1

eijkv(1)
i v(2)

j v(3)
k eikj =−eijk

(8.18)

The last couple of steps are just to swap the k into the last position. In 2D one swap
was required. In 3D two swaps were required.

The pattern holds for general dimension n. The permutation tensor is an
n–indexed quantity ei1···in that is zero if any pair of indices is repeated, is 1 if (i1, . . . , in)
is an even permutation of (1, . . . , n), or is −1 if (i1, . . . , in) is an odd permutation
of (1, . . . , n). Only n! values are nonzero where n! is the number of permutations
of n numbers. The vectors of interest are v(i) =Pi −P0 for 1≤ i ≤ n. The vector
(u1, . . . , un)= u= Perp(v(1), . . . , v(n)) has components

uj =
n∑

i1=1

· · ·
n∑

in−1=1

eini1···in−1 v(1)
i1
· · ·v(n−1)

in−1
(8.19)

678 Chapter 8 Affine Algebra

The hypervolume of the simplex is

H (v(1), . . . , v(n))

= (−1)n+1

n!
v(n) · Perp(v(1), . . . , v(n−1)) Using equation (8.14)

= (−1)n+1

n!

n∑
i1=1

· · ·
n∑

in=1

eini1···in−1 v(n)
in

v(1)
i1
· · ·v(n−1)

in−1
Using equation (8.19)

= 1

n!

n∑
i1=1

· · ·
n∑

in=1

eini1···in−1 v(1)
i1
· · ·v(n−1)

in−1
v(n)

in
(8.20)

The last equation is the result of swapping in with each of the n− 1 other indices.
Each swap introduces a factor of−1, so the total swaps introduces the factor (−1)n−1 .
Combining with the other sign factor (−1)n+1 results in a factor of (−1)n−1(−1n+1 =
(−1)2n = 1.

The final interesting observation is that the summations in the hypervolume equa-
tion (8.20) are just the determinant of a matrix. The n–indexed quantity ei1···in is the
same quantity as eσ introduced in the section on determinants. If the vectors v(i) are
written as the columns of an n× n, say [v(1) | · · · | v(n)], then the hypervolume of the
simplex is

H (v(1), . . . , v(n))= 1

n!
det
[

v(1) · · · v(n)
]

(8.21)

The formula was developed with a certain ordering in mind for the input vectors.
For general ordering, equation (8.21) can produce negative numbers, in which case
the formula generates the signed hypervolume. To be sure you have the nonnegative
hypervolume, just take the absolute value of the right-hand side of the equation.

C h a p t e r 9
Calculus

This appendix provides a brief summary of topics in calculus that you should be
familiar with in order to fully understand how to model a physical system and

implement the physical simulation on a computer. Calculus occurs in two flavors,
differential calculus and integral calculus. Both disciplines are founded on the concepts
of infinitesimal quantities and a limit, the measurement of what happens to a quantity
as one or more parameters are varied.

Calculus involves processing functions, the topic further subdivided based on the
number of independent and dependent variables. Univariate calculus studies func-
tions y = f (x), where x is an independent variable and y is the dependent variable.
Formally, the function is written as f : D→R, where D ⊂ IR is the domain of the
function and R ⊂ IR is the range of the function. To be somewhat loose with the
notation, an emphasis will be placed on the sets containing the domain and range
by writing f : IR→ IR. The domain and range are most likely proper subsets of IR, but
those will be known within the context of the problem at hand.

Multivariate calculus studies functions y = f (x1, . . . , xn), where x1 through xn are
n independent variables and y is a single dependent variable. The function may be
written as f : IRn → IR, where IRn denotes the set of n-tuples of real numbers. As indi-
cated in the last paragraph, the domain of f may be a proper subset of IRn and the
range of f may be a proper subset of IR.

The next natural extension is to study a collection of functions yi = fi(x1, . . . , xn)

for 1≤ i ≤m. We now have n independent variables and m dependent variables.
Using vector notation, let Y= (y1, . . . , ym), X = (x1, . . . , xn), and F= (f1, . . . , fm). The
function may be written as Y= F(X), or F : IRn → IRm . This coordinate-free represen-
tation looks just like the univariate case where n =m = 1. For physical applications

© 2010 by Elsevier Inc. All rights reserved. 679
DOI: 10.1016/B978-0-12-374903-1.00009-8

680 Chapter 9 Calculus

attention is focused on the case of n = 1 and m = 2 or m = 3. That is, yi = fi(t) for
all i with a single independent variable t (time). Extensive discussion of this case is
already a large portion of Chapter 2!

Section 9.1 is a summary of the key ideas for univariate calculus, whereas
Section 9.2 is a summary for multivariate calculus. Section 9.3 provides a few appli-
cations that are related to physical simulations. Optimization involves computing
maxima and minima of functions. Constrained optimization also involves comput-
ing maxima and minima, but with additional constraints related to the problem at
hand. This appendix will cover only equality constraints that can be solved using the
method of Lagrange multipliers. Inequality constraints are a bit more challenging, but
we actually talk about these in this book! See Chapter 14 for the details. The final
topic in Section 9.3 on applications section covers approximation of derivatives by
finite differences. This topic is relevant to constructing numerical methods for solving
differential equations.

9.1 Univariate Calculus

Differential calculus generalizes the idea of the rate of change of a quantity over a fixed
time interval to the limit of rate of change over time intervals of decreasing duration.
The prototypical example is a measurement of speed of an object traveling along a
straight line path. If the position of an object at an initial time tinitial is xinitial and
the position at a final time tfinal is xfinal, the average speed of the object on the time
interval is

saverage = xfinal− xinitial

tfinal− tinitial

The measurement is the difference of final and initial positions divided by the differ-
ence of final and initial times. As an average, the measurement does not give you
any information about the position or speed of the object at intermediate times.
It is simply a statistic that summarizes the behavior of the object on the given time
interval.

If we think of the position as a function of time, say x(t), the initial position of
the object at time t is xinitial= x(t), the final position at time t +�t for some �t > 0
is xfinal = x(t +�t), and the average speed is

saverage([t , t +�t]) = x(t +�t)− x(t)

�t

I have included the time interval on the left-hand side to stress over which time inter-
val the average is computed. Now suppose we are able to compute the position of
the object at any time. Consider how the average speed changes as we look at smaller

9.1 Univariate Calculus 681

and smaller time intervals; that is, we will choose smaller values of �t to make the
measurements. Example 9.1 illustrates.

Example
9.1

Suppose the position is measured as x(t) = t(1− t) for t ∈ [0, 1]. The initial position
is x(0)= 0 and the final position is x(1)= 0; that is, the object starts and ends at the
same position. The average speed for the time interval [0, 1] is saverage = 0. Although
you know the object is moving, it does begin and end at the same position. If you
looked at the object at the initial time, closed your eyes for one second, and then
opened them, you would see the object in the same position. In this sense an average
speed of zero is meaningful!

Now suppose that you opened your eyes after a half a second. The position of the
object is x(1/2)= 1/4 and the average speed on the time interval [0, 1/2] is saverage =
(1/4− 0)/(1/2− 0)= 1/2. In fact, you now know that the object has moved because
you kept your eyes closed for a shorter period of time. It has moved away from you,
so a nonzero average speed makes sense.

Table 9.1 displays average speed calculations on intervals [0,�t] of decreasing
duration.

Table 9.1 Average Speed Calculations on Intervals [0,�t] with Decreasing �t

�t x(�t) saverage

1 0 0

0.5 0.25 0.5

0.25 0.1875 0.75

0.125 0.109375 0.875

0.01 0.0099 0.99

0.001 0.000999 0.999

0.0001 0.00009999 0.9999

The pattern in our example is evident. As we make �t smaller, the average speed is
apparently getting closer to 1. ■

In Example 9.1, we say that in the limit as �t approaches zero, the average speed
approaches 1. At time zero, the value 1 is said to be the instantaneous speed of the
object. This measurement is only valid for time zero. At any other time we may
go through the same process to reach an instantaneous measurement as a limit of
average measurements. The instantaneous speed is referred to as the derivative of
position and is denoted by dx/dt or x ′(t). The former notation uses infinitesimals dx
and dt . Think of dx/dt intuitively as specifying a really small (infinitesimal) change
in position per really small (infinitesimal) change in time. Before we introduce the
formal construction of the derivative, let us take a closer look at what it means to be
a limit.

682 Chapter 9 Calculus

9.1.1 Limits

Given a univariate function f (x) that may be computed for values of x near a specified
value c , we can repeat the experiment of Example 9.1 by looking at how the function
values change for values of x closer and closer to c . If those function values appear to
be getting close to some number L, we may formally state this using limit notation:

lim
x→c

f (x)= L

The notation x → c means that you think of choosing x closer and closer to c , or
phrased mathematically: The limit as x approaches c of f (x) is L. The intuition for
what a limit is should come from our earlier example. A more formal presentation
uses the limit notation. The mathematicians say: For each ε > 0 you can find a δ > 0
such that |f (x)− L| < ε whenever |x − c |< δ. In less formal terms, think of ε as an
error tolerance that you select to be small. Your goal is to make the function val-
ues f (x) to be within this tolerance of the number L; that is, |f (x)− L| < ε is just
a requirement on how large the absolute error can be between the function values
and L. The allowable error is most likely not met by any value of x you so choose.
Rather, the error will cause you to constrain your attention to values of x close to c .
That is, as long as |x − c | is small enough (i.e., the absolute difference is smaller than
δ), then you will achieve your goal of bounding the function error.

Visually you can think of this process as “boxing the point (f (x), L)” in the xy-
plane. An example will illustrate this.

Example
9.2

Let f (x)= x2 + x and let c = 1. Table 9.2 shows various function values for x near c .

Table 9.2 Function Values for x Near c

x f (x)

0.9 1.71

0.99 1.9701

0.999 1.997001

1.001 2.003001

1.01 2.0301

1.1 2.31

The pattern shows that as x approaches 1, f (x) approaches 2. In our limit notation,

lim
x→1

(x2 + x)= 2

The graph of f (x) near x = 1 is shown in Figure 9.1

9.1 Univariate Calculus 683

y
y = f (x)

x

2 +

2 –
2

1 – 1 +1

Figure 9.1 The graph of f (x) = x2 + x for x near 1.

The point (c , L)= (1, 2) is “boxed” in by two pairs of parallel lines. You get to choose
ε > 0 and require the function values to be within that tolerance of L = 2. The hori-
zontal parallel lines provide two edges of the box. In order for you to be on the graph
of f (x) and within the horizontal strip, vertical bars must be drawn sufficiently close
to 1. If you find a pair of such bars, any pair closer to 1 will also work, but one pair
is all you need. This boxing process must succeed for any choice of ε, no matter
how small. Of course, the smaller you choose ε, the smaller you expect to have to
choose δ. ■

This process of boxing in (c , L) is made formal mathematically by actually con-
structing δ as a function of ε. We will not go into such a construction. The intuition
is what is important.

In Example 9.2 you might ask yourself why we bothered with the formalism in the
first place. Clearly, if you evaluate the function at x = 1, you get f (1)= 12+ 1= 2.
As it turns out, it is not always possible to evaluate f (x) to see what its limit is. For
example,

f (x)= sin(x)

x

is defined for all x �= 0. You cannot evaluate f (0) because the denominator is zero.
However, the limit as x approaches 0 does exist:

lim
x→0

sin(x)

x
= 1

684 Chapter 9 Calculus

Construct a table of numbers x and f (x) for x closer and closer to zero to see why this
is the case. The formal proof of the limit is provided in standard calculus textbooks
and requires some trigonometry, algebra, and a bit of patience to complete.

9.1.2 Limits of a Sequence

The concept of a limit was discussed in terms of a continuous variable x; that is, x
is a real-valued number that is allowed to approach some other real-valued number.
A similar concept exists for a limit of a sequence of numbers fn for n ≥ 1. The formal
notation for a sequence is {fn}∞n=1 to indicate that the index n is a positive integer and
is allowed to become increasingly large. For example, fn = 1/n denotes a sequence
of real numbers 1, 1/2, 1/3, and so on. You should notice that the numbers in this
sequence are decreasing in size as n increases. In fact, your intuition should tell you
that the numbers have a limiting value of zero.

Just as we had a formal notation for a limit of a function, we have one for a limit
of a sequence. The definitions are quite similar. We say that the limit of the sequence
{fn}∞n=1 as n increases without bound is L, denoted as

lim
n→∞ fn = L

when the following is true: For each ε > 0 you can find an integer N > 0 such that
|fn − L|< ε whenever n ≥ N . The intuition is similar to that of a function. Your goal
is to make the sequence values fn be within the error tolerance ε of the number L; that
is, |fn − L|< ε is just a requirement on how large the absolute error can be between
the sequence values and L. In order for this to happen, you most likely have to choose
n significantly large, the condition indicated by n ≥N . Generally, as you choose ε

smaller, the index N becomes larger. In our example of fn = 1/n, we believe that the
limit is L = 0. If you choose a small ε > 0, |fn− L| = |1/n|< ε happens whenever
n > 1/ε. You may choose N to be the smallest integer that is larger than 1/ε. Clearly,
the smaller you choose ε, the larger N is.

Limits of sequences are more commonly encountered when working with iter-
ative methods in computer science. Although we have not reached the point in
the appendix where we discuss derivatives, you no doubt are familiar with deriva-
tives since computational physics requires that you be so. An iterative method that
you most likely encountered is Newton’s method for estimating the root of a func-
tion F(x)= 0. An initial guess x0 is made for the root. The guess is refined by a
sequence

xn+1 = xn − F(xn)

F ′(xn)
, n ≥ 0

9.1 Univariate Calculus 685

where F ′(x) is the derivative of F(x). What you hope is that the limit

lim
n→∞xn = L

really is a root to F , namely F(L)= 0. In order to have a good estimate, you get to
choose how close to the root L you would like to be by selecting the error toler-
ance ε. The corresponding index N tells you how many times to apply the iteration
method before you can be confident that xN is an estimate that meets your tolerance
criterion.

9.1.3 Continuity

Example 9.2 illustrated the limit L = 2 of a function f (x)= x2+ x as x approaches
c = 1. As noted earlier, the function value f (1) and limit 2 are the same number. This
happens for most functions you tend to encounter in your applications. The property
has a special name. If

lim
x→c

f (x) = f (c)

then f is said to be continuous at x = c . The idea is shown in Figure 9.1. The graph of
f (x) at x = 1 is a solid curve; that is, the graph to the left of (1, f (1)) and the graph to
the right of (1, f (1)) both meet at the common point (1, f (1)).

The function f (x)= sin(x)/x is not continuous at x = 0 because the function is
not even defined there. However, if we extend the function as follows:

g (x) =
{

sin(x)
x , x �= 0

1, x = 0

The function g (x) is continuous at x = 0, because limx→0 g (x)= 1= g (0).
If limx→c f (x) = L exists and f (c) is defined, but f (c) �= L, the function f is said

to be discontinuous at c . For example, consider

f (x)=
⎧⎨
⎩

1, x > 0
0, x = 0
−1, x < 0

The graph of this function is shown in Figure 9.2.
The function is discontinuous at x = 0. In fact, no matter how we define f (0),

we cannot make this function continuous at zero because there is no way to make a
“solid” connection between the graph to the left of zero and the graph to the right of
zero.

686 Chapter 9 Calculus

y

0

0

1

–1

x

Figure 9.2 The graph of a function that is discontinuous at x = 0.

9.1.4 Differentiation

As motivation for the concept of derivative and differentiation, let us return to our
initial example of computing the instantaneous speed of an object whose position at
time t is x(t). By an intuitive limiting process, we computed this speed to be a limit
of average speeds of the form (x(t +�t)− x(t))/�t . In formal terms the limit is

x ′(t) = lim
�t→0

x(t +�t)− x(t)

�t

The function x ′(t) is referred to as the derivative of x(t). The derivative exists only
when the limit on the right-hand side of the definition exists.

The derivative has a geometric implication that is quite important. Consider the
position function in our ongoing example, x(t) = t(1− t) for t ∈ [0, 1]. Figure 9.3
shows the graph of the function.

The line containing (0, x(0)) and (t2, x(t2)) is called a secant line of the graph. The
average speed (x(t2)− x(0))/(t2 − 0) is the slope of the secant line. The line through
(0, x(0)) and (t1, x(t1)) is yet another secant line and has slope given by the average
speed (x(t1)− x(0))/(t1 − 0). As t1 is chosen to be closer and closer to zero, the limit
of the secant lines is the dark gray line shown in the figure. This is called the tangent
line of the graph at the point (0, x(0)). The derivative x ′(t) may therefore be viewed
as the slope of the tangent line to the graph at (t , x(t)).

In the example x(t) = t(1− t), we had a good guess at the instantaneous speed
at t = 0 by looking at the average speeds for values of t close to zero. This would
be quite a time-consuming process at other values of t . Instead, we can construct a

9.1 Univariate Calculus 687

x

t
t1 t2

Figure 9.3 The graph of x(t) = t(1− t) with two points marked at times t1 and t2. The light
gray lines connecting the origin (0, 0) to (t1, x(t1)) and (t2, x(t2)) are secant lines to
the graph. The dark gray line is the tangent line to the graph at (0, x(0)) = (0, 0).

general formula for the derivative by directly applying the limit definition.

x ′(t) = lim
�t→0

x(t +�t)− x(t)

�t

= lim
�t→0

(t +�t)(1− t −�t)− t(1− t)

�t

= lim
�t→0

(�t)(1− 2t)− (�t)2

�t

= lim
�t→0

(1− 2t −�t)

= 1− 2t

The last equality is valid since 1− 2t −�t is a continuous function of �t ; that is, we
can just evaluate the argument of the limit with �t = 0. Notice that x ′(0)= 1, but we
can evaluate x ′(t) at any other t of our choosing.

A function f with domain [a, b] is said to be differentiable at x ∈ (a, b) with
derivative,

f ′(x) = lim
h→0

f (x + h)− f (x)

h

as long as the limit on the right-hand side exists. For most functions we work with,
the derivative exists for all points in the domain, but sometimes we meet functions for
which this is not the case. The typical example is the function f (x) = |x|. The graph
consists of two rays, y = x for x ≥ 0 and y =−x for x < 0. The derivative for x > 0
is f ′(x) = 1 (the slope of the ray for x > 0). The derivative for x < 0 is f ′(x) =−1

688 Chapter 9 Calculus

Table 9.3 Derivatives of Some Common Functions

f (x) f ′(x) f (x) f ′(x)

xp pxp−1 cot(x) csc2(x)

sin(x) cos(x) exp(x) exp(x)

cos(x) −sin(x) ln(x)
1

x
tan(x) sec2(x)

(the slope of the ray for x < 0). However, f ′(0) is not defined, so f is not differentiable
at x = 0. The graph of f has a cusp, or kink, at the origin.

In a standard calculus course you will spend a lot of time constructing derivatives
for many functions that you will encounter in your applications. Table 9.3 provides
some common derivatives without going through the formal constructions here.

The function exp(x) is the natural exponential function and ln(x) is the natural
logarithm function. Derivatives of other functions can be found in calculus or other
reference books.

Also of use are some standard identities for working with derivatives. The product
rule is

d

dx

(
f (x)g (x)

) = f (x)g ′(x)+ f ′(x)g (x) (9.1)

The notation on the left-hand side indicates the derivative of the product of two func-
tions f (x) and g (x). The right-hand side is that derivative. For example, if f (x) = x2

and g (x)= sin(x), then

d

dx

(
x2 sin(x)

) = x2 cos(x)+ 2x sin(x)

The quotient rule is

d

dx

(
f (x)

g (x)

)
= f ′(x)g (x)− f (x)g ′(x)

(g (x))2
(9.2)

Using the same f and g as in the last example,

d

dx

(
x2

sin(x)

)
= 2x sin(x)− x2 cos(x)

sin2(x)

The chain rule tells you how to compute the derivative of a composition of two
functions, f (g (x)),

d

dx

(
f (g (x))

) = f ′(g (x))g ′(x) (9.3)

9.1 Univariate Calculus 689

You compute the derivative of f (y) with respect to its argument y , evaluate it at y =
g (x), then multiply by the derivative of g (x). Once again using the same f and g as
before, the composition is f (g (x)) = (sin(x))2 . The derivative is

d

dx
(sin(x))2 = 2(sin(x))cos(x)

9.1.5 L’Hôpital’s Rule

In some instances, a limit of a quotient of functions needs to be evaluated where
both numerator and denominator become zero at the target independent variable
value. A rule for evaluating such limits is L’Hôpital’s rule, named after Guillaume
François Antoine Marquis de L’Hôpital (in the 1600s) who wrote the first introductory
differential calculus text book in which the rule appeared.

Specifically, if f (x) and g (x) are continuous functions at x = c and f (c)=
g (c)= 0, an attempt to evaluate

lim
x→c

f (x)

g (x)

by direct substitution of x = c fails because the fraction 0/0 is an indeterminate form.
If the functions are differentiable at x = c and if g ′(c) �= 0, then the limit is, in fact,

lim
x→c

f (x)

g (x)
= lim

x→c

f ′(x)

g ′(x)
= f ′(c)

g ′(c)

For example,

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= cos(0)= 1

which is a result I stated earlier without proof.

9.1.6 Integration

The other flavor of calculus is integral calculus. The concept is motivated by the desire
to compute the area of an irregular-shaped region. We are familiar with area formulas
for standard geometric objects. The area of a square of width W and height H is A =
WH . The area of a circle of radius R is A = πR2. However, consider as an example the
following the region in the first quadrant of the xy-plane bounded by the x-axis and
the graph of y = x(1− x). The graph is a parabola. The natural approach to solving
this problem is to attempt to decompose it into regions for which we do know how to
compute the area. What is more natural than trying rectangles? Figure 9.4 shows an
attempt to fill the region with a few rectangles, all of whose bases are on the x-axis.

690 Chapter 9 Calculus

y

x

y

x

(a) (b)

Figure 9.4 An attempt to compute the area bounded by a parabola and the x-axis by filling it
with rectangles.

The problem, of course, is that no matter how many rectangles we select, we can-
not fill the region. However, the more rectangles we choose and the smaller their
widths, the more we can fill the bounded region. The sum of the areas of the rect-
angles in Figure 9.4(b) provides a better approximation to the true area than does the
sum of the areas of the rectangles in Figure 9.4(a).

Have we failed in the attempt? No, as long as we rely on our old friend the limit
to help us out. Intuitively, if we let the maximum width of the rectangles approach
zero, all the time requiring more rectangles, in a limiting sense we can fill the region
with rectangles. The classical argument from a physicist’s or engineer’s perspective
is to think of choosing a rectangle whose width is infinitesimal, call this width dx.
The rectangle is positioned at x on the axis. The height of the rectangle is just the
function value f (x). The rectangle has an infinitesimal area, dA= f (x)dx, which is
just the product of the (infinitesimal) width and height. Sum up all such rectangles as
x varies over the relevant domain to obtain the area of the region. The summation is
not finite, so to speak, so rather than using the standard capital sigma (�) to denote
the summation, historically a large S-shaped symbol was used (S for sum). In our
example the area is indicated by the notation,

A =
1∫

0

x(1− x)dx

The right-hand side is referred to as the definite integral of f (x)= x(1− x) on the
domain [0, 1]. For a function f (x) on a domain [a, b], the definite integral is

b∫
a

f (x)dx (9.4)

The function f (x) is referred to as the integrand of the definite integral.

9.1 Univariate Calculus 691

The process of computing the definite integrals is called integration. Our intu-
itive approach leads us to believe that the sum of the infinitesimal areas should be
the area of the bounded region, but to obtain the actual area we would need to pro-
vide more formal details on computing a general formula for the area. Once again
these are details you discuss in a standard calculus course. For our purposes, we just
need to know the end result, the mechanical means by which you integrate the func-
tion f (x). One of the most important results from calculus relates differentiation and
integration:

Fundamental Theorem of Calculus. If F(x) = ∫ x
a f (ξ)dξ is the definite integral

of f (ξ) on the interval [a,x], then F ′(x) = f (x). That is, the derivative of F(x) is
just the integrand f (x). The function F(x) is said to be an antiderivative of f (x).
The relationship is sometimes written concisely as

d

dx

x∫
a

f (ξ)dξ = f (x)

which says that the derivative is the inverse operation of integration.

The result is general knowledge for us, but historically differential calculus and
integral calculus were developed independently. Pierre de Fermat and René Descartes
worked on the aspects of computing tangent lines to graphs (differential calculus)
whereas Bonaventura Francesco Cavalieri and Christiaan Huygens worked on the
aspects of calculating areas (integral calculus), all of this in the 1600s. Also in the
1600s, Isaac Newton and Gottfried Wilhelm von Leibniz independently discovered
that, in fact, differentiation and integration were directly related, the result being the
fundamental theorem of calculus.

With the fundamental theorem at hand, let us revisit the problem of comput-
ing the area bounded by a parabola and the x-axis. We had stated this as a definite
integral, A = ∫ 1

0 x(1− x)dx. An antiderivative F(x) for f (x) = x(1− x) = x − x2 is
a function for which F ′(x) = f (x). Using our knowledge about derivatives of poly-
nomial terms, we can integrate a polynomial term in the reverse manner. That is, an
antiderivative of xp is xp+1/(p+ 1) as long as p �= −1. An antiderivative of x − x2

is therefore F(x)= x2/2− x3/3. The antiderivative mentioned in the fundamental
theorem has the property that F(a)= 0, but in general an antiderivative can be any
function for which F ′(x)= f (x). That is, the antiderivative is not unique. When we
choose one, we integrate by

b∫
a

f (x)dx = F(x)|ba = F(b)− F(a)

where the vertical bar in the middle expression is a notation that says to evalu-
ate F at the top number and subtract from it F evaluated at the bottom number.

692 Chapter 9 Calculus

The area of the bounded region is, therefore,

A =
1∫

0

x(1− x)dx = x2

2
− x3

3

∣∣∣∣
1

0
=
(

1

2
− 1

3

)
−
(

0

2
− 0

3

)
= 1

6

9.2 Multivariate Calculus

Multivariate calculus involves studying functions y = f (x1, . . . , xn) with n indepen-
dent variables x1 through xn and one dependent variable y . The heart of the topic
is once again limits, but the introduction of multiple independent variables makes it
somewhat more challenging and interesting. For the sake of making the constructions
look like the ones for univariate functions, define x= (x1, . . . , xn) and y = f (x).

9.2.1 Limits and Continuity

If we choose values of x close to a specified point c and if the corresponding function
values f (x) are close to a number L, we say that L is the limit of f (x) as x approaches
c. The formal notation is

lim
x→c

f (x)= L

The mathematical definition is just like the one for univariate functions. The limit
exists and is the value L if for each ε > 0, there is a δ > 0 such that |f (x)− L|< ε

whenever |x− c|< δ. The value ε may once again be viewed as an error tolerance. In
order to make f (x) differ from L by no more than the tolerance, we need to choose x
suitably close to c. The value δ tells you how close. Observe that |y| denotes the length
of the vector y. This definition applies for any number n ≥ 1 of independent variables,
so the univariate case n = 1 is automatically covered by the defintion.

The function f (x) is said to be continuous at c whenever f is defined at c, the limit
of f as x approaches c exists, and the limit is

lim
x→c

f (x)= f (c)

Many functions you will encounter in physical applications are continuous. For exam-
ple, polynomial functions are continuous at all points and the process of computing
the limit is simply one of evaluating the function.

9.2.2 Differentiation

A univariate function y = f (x) that is differentiable has derivative dy/dx = f ′(x),
a measure of instantaneous rate of change of f at the value x. We can make sim-
ilar measurements of instantaneous rates of change for a multivariate function

9.2 Multivariate Calculus 693

y = f (x1, . . . , xn) with respect to each independent variable. If xi is the independent
variable of interest, the rate of change is called the partial derivative of f with respect
to xi . Its definition is similar to the one for univariate functions,

∂f

∂xi
= lim

h→0

f (x1, . . . , xi + h, . . . , xn)− f (x1, . . . , xi , . . . , xn)

h

The term partial is used to indicate that the rate of change is with respect to only
one of the variables. The univariate differential operator was named d/dx and uses a
regular Roman letter d . The partial derivative operator is ∂/∂xi ; the symbol ∂ is used
to indicate that the setting involves multiple independent variables.

Example
9.3

When working with two independent variables, rather than indexing them, we some-
times use z = f (x, y). The partial derivatives are ∂f /∂x and ∂f /∂y . Consider z =
f (x, y) = x2y3. The partial derivatives are

∂f

∂x
= 2xy3,

∂f

∂y
= 3x2y2

Notice that in computing ∂f /∂x, the variable y was treated as a constant as far as x is
concerned. As a function of x alone, think of F(x)= cx2 (the constant c is y3) whose
derivative is F ′(x)= 2cx2. ■

All the derivative formulas that you know for univariate functions apply to mul-
tivariate functions. You simply treat the function as one that depends only on the
independent variable xi of interest, with all other xj(j �= i) treated as constants. The
product rule and quotient rule both apply to multivariate differentiation.

The Chain Rule

The chain rule, that differentiation rule that applies to composition of functions,
is more complicated when multiple independent variables are present. The issue is
that each independent variable may be a function of other variables; composition
can occur in multiple components. For example, consider the function g (y1, y2)=
f (x1(y1, y2), x2(y1, y2), x3(y1, y2)), where f is a function of three independent vari-
ables x1, x2, and x3, but each of these variables is a function of two other variables y1

and y2. The resulting composition is named g (y1, y2), a function of two independent
variables. We would like to see how g varies with respect to each of the indepen-
dent variables. As y1 varies, notice that each of the three components of f varies since
those components are compositions involving y1. You should expect that the rate of
change of g with respect to y1 involves the rates of change of f with respect to all of
its independent variables. In fact, the partial derivative of g with respect to y1 is

∂g

∂y1
= ∂f

∂x1

∂x1

∂y1
+ ∂f

∂x2

∂x2

∂y1
+ ∂f

∂x3

∂x3

∂y1

694 Chapter 9 Calculus

Each term in the summation on the right-hand side looks like the term you see in the
univariate version of the chain rule. Similarly, the partial derivative of g with respect
to y2 is

∂g

∂y2
= ∂f

∂x1

∂x1

∂y2
+ ∂f

∂x2

∂x2

∂y2
+ ∂f

∂x3

∂x3

∂y2

Generally, if f depends on n independent variables x1 through xn and each of the
xi depends on m independent variables y1 through ym , then the partial derivative of
f when viewed as a function of the yj is

∂

∂yj
f (x1, . . . , xn)=

n∑
i=1

∂f

∂xi

∂xi

∂yj

In the event that the xi depend only on another single variable t – say xi(t) are the
components as functions of t – then the notation changes slightly (but not the idea):

d

dt
f (x1, . . . , xn)=

n∑
i=1

∂f

∂xi

dxi

dt

The change is due to the fact that f viewed as a function of t alone is univariate, so
the d notation is used rather than ∂.

We used the chain rule many times in our coverage of Lagrangian dynamics to
compute the partial derivatives of the kinetic energy function.

Directional Derivatives

Consider a multivariate function f (x) where x ∈ IRn. The partial derivatives measure
rates of change with respect to each independent variable of the function. Effectively,
the rate of change is measured with respect to the direction vector associated with the
independent variable. For example, the function f (x1, x2) has partial derivatives,

∂f

∂x1
= lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

The measurements are made in the x1x2-plane in the direction (1, 0) associated with
x1. That is, the limit formula can be thought of as

∂f

∂x1
= lim

h→0

f ((x1 , x2)+ h(1, 0))− f ((x1, x2))

h

Similarly,

∂f

∂x2
= lim

h→0

f (x1, x2+ h)− f (x1, x2)

h
= lim

h→0

f ((x1, x2)+ h(0, 1))− f ((x1 , x2))

h

and the rate of change is measured in the direction (0, 1) associated with x2.

9.2 Multivariate Calculus 695

It is natural to ask how f changes in another unit-length direction (u1, u2). Using
the pattern you see in the partial derivatives, that rate of change should be as shown:

lim
h→0

f ((x1 , x2)+ h(u1, u2))− f ((x1, x2))

h

As it turns out, this quantity can be shown to be equal to

u1
∂f

∂x1
+ u2

∂f

∂x2

which is a weighted sum of the partial derivatives of f . The sum is called the directional
derivative of f in the specified direction. We can write this in a coordinate-free manner
by defining x= (x1, x2) and u= (u1, u2), and by defining the gradient of f to be the
vector of partial derivatives of f , namely

∇f =
(

∂f

∂x1
,
∂f

∂x2

)

The directional derivative at x in the direction u is u ·∇f (x). This form of the
directional derivative applies to any number of independent variables,

u ·∇f (x)=
n∑

i=1

ui
∂f

∂xi

Example
9.4

Let f (x, y)= x2y3. The directional derivative at (1, 2) in the direction (3/5, 4/5) is

(3/5, 4/5) · (2xy3, 3x2y2)
∣∣
(1,2)

= (3/5, 4/5) · (16, 12)= 19.2

The vertical bar notation means that you evaluate the variable terms on the right using
the specific point that occurs as a subscript on the bar. ■

The partial derivatives ∂f /∂x and ∂f /∂y of f (x, y) have a geometric interpreta-
tion, just as the ordinary derivative f ′(x) of f (x) did. In the univariate case, f ′(x)

is the slope of the tangent line to the graph of f (x) at x. That is, the tangent line at
(x, f (x)) has direction (1, f ′(x)). In the multivariate case, and assuming the function
is differentiable, the graph at (x, y , f (x, y)) has a tangent plane. If you walk in a spe-
cific direction in the xy-plane, there is a corresponding tangent line in the tangent
plane. If the planar direction is (1, 0), the corresponding tangent line has direction
(1, 0,∂f /∂x). If the direction is (0, 1), the tangent line has direction (0, 1,∂f /∂y).
Generally, the direction (u1, u2) in the xy-plane generates a tangent line whose
direction is (

u1, u2, u1
∂f

∂x
+ u2

∂f

∂y

)

In coordinate-free form, this vector is (u, u ·∇f). Given two linearly independent
tangent line directions, the tangent plane normal N must be the normalized cross

696 Chapter 9 Calculus

product of those directions. In particular, as long as ∇f �= 0, the tangent line direc-
tions corresponding to (1, 0) and (0, 1) are linearly independent and the tangent plane
normal is

N= (1, 0,∂f /∂x)× (0, 1,∂f /∂y)

|(1, 0,∂f /∂x)× (0, 1,∂f /∂y)| =
(−∂f /∂x,−∂f /∂y , 1)√

1+ (∂f /∂x)2 + (∂f /∂y)2

9.2.3 Integration

The motivation for the definite integral of a univariate function was based on com-
puting the area bounded by the graph of a function f (x) and the x-axis. A similar
motivation applies for multivariate functions. In particular, let us consider bivariate
functions f (x, y) that are nonnegative. Let D ⊂ IR2 be the domain of the function
whose boundary is a simple closed curve. The region R bounded by the graph of
z = f (x, y), the xy-plane, and the boundary of D extruded vertically, has a finite
volume. We can attempt to “fill” R with vertical rectangular solids whose bases are
axis-aligned in the xy-plane. Figure 9.5 shows the bases of some rectangular solids as
an attempt to fill the region.

Naturally, just as in the univariate case, we cannot fill R with a finite number
of rectangular solids because the graph of the function has variable slope. Moreover,
we cannot even fill D with rectangular bases because its shape is also not a union of
a finite number of rectangles. In a limiting sense, though, we can obtain better and
better approximations by using rectangles with smaller area bases and lots more of
them. From the infinitesimal perspective, if an axis-aligned rectangular base is chosen
to be very small, say of dimensions dx by dy , and placed at (x, y) ∈D, the height of
the rectangle is f (x, y). The infinitesimal volume covered by the rectangular solid is
the product of the infinitesimal area of the base, dx dy , with the height f (x, y), namely

y

x

D

Figure 9.5 Bases of some rectangular solids as an attempt to fill the domain D.

9.2 Multivariate Calculus 697

dV = f (x, y)dx dy . If we “add” these up for all (x, y) ∈D, we obtain the volume

V =
∫
D

f (x, y)dx dy

a multidimensional integral. The question is how do we make sense of this and evalu-
ate it. The answer is to use iterated integration by decomposing the domain so that we
can fix y , integrate with respect to x, then integrate with respect to y . When we use
iterated integrals, the integral sign in the last displayed equation is replaced by two
integral signs.

Example
9.5

Let us compute the volume of the solid bounded by the graph of f (x, y) = 4− x2 − y2

on the closed disk D, x2+ y2 ≤ 1. The volume is

V =
∫ ∫

D
4− x2 − y2dx dy

A fixed value of y in the domain corresponds to a horizontal line segment that touches
the left and right hemispheres of the disk. The x values on that segment vary from
−√1− y2 to

√
1− y2. The y values themselves vary from −1 to 1. The iterated

integral is

V =
1∫

−1

√
1−y 2∫

−
√

1−y 2

4− x2 − y2dx dy

Treating y as a constant, the ‘‘innermost integral” is evaluated.

V =
1∫

−1

⎛
⎜⎜⎝
√

1−y 2∫
−√1−y 2

4− x2− y2dx

⎞
⎟⎟⎠dy

=
1∫

−1

(4− y2)x − 1

3
x3

∣∣∣∣
√

1−y 2

−
√

1−y 2
dy

= 2

1∫
−1

(4− y2)

√
1− y2 − 1

3
(1− y2)3/2dy

The last integral is univariate. Although one is apparently taught in calculus courses
that closed-form antiderivatives are the goal, in practice that is typically not the case.
An integral of the type we now have can be approximated using numerical integration
algorithms. ■

698 Chapter 9 Calculus

The same iterated integration method applies in more dimensions. The technical
challenge in higher dimensions is invariably the decomposition of the domain of the
function in order to construct the limits of integration. However, numerical methods
do exist for numerical integration without having to formally decompose the domain.
These methods are discussed in standard numerical analysis textbooks such as [BF01].

Other examples of multivariate integrals are found in Section 2.5. Computing
centers of mass and inertia tensors are the main application of multivariate integration
in a physics simulation.

9.3 Applications

This section contains a few applications that are relevant to physical simulation. The
first section is on optimization of a function, the process of constructing minima
and/or maxima of the function. An illustrative example of optimization for a uni-
variate function is provided: determining whether or not an oriented bounding box
intersects a plane where the box is both translating and rotating in space. The speci-
fied time interval is [0, T]. The distance between the box and plane is time-varying,
say D(t). The box will intersect the plane if the minimum value of D(t) on [0, T] is
zero. An example for multivariate function is provided and arises in the problem of
computing the closest point on a triangle to a specified point.

Constrained optimization involves computing minima and/or maxima of a
function, but with additional constraints on the variables. Only equality constraints
are considered here. The method of solution uses Lagrange multipliers. An illus-
trative example of constrained optimization is provided: computing the distance
between two objects whose boundary surfaces are level surfaces, ellipsoids being the
prototypical case.

Finally, in constructing numerical methods for solving differential equations,
we need to approximate derivatives by finite differences. The numerical methods of
Chapter 13 all require such approximations. The last application discussed here is
about obtaining approximations of a specified order of error.

9.3.1 Optimization

The ideas for optimization are first summarized for univariate functions. The exten-
sion of the ideas to multivariate functions is then provided.

Univariate Functions

Let f (x) be a differentiable function with domain [a, b]. We wish to locate the value
xmin for which f (xmin) is a minimum. That is, f (xmin)≤ f (x) for all x ∈ [a, b]. Simi-
larly, we want to locate the value xmax for which f (x) is a maximum: f (x) ≤ f (xmax)

for all x ∈ [a, b]. A typical function with these values is shown in Figure 9.6.

9.3 Applications 699

y

x
a b = xmaxxloc xmin

min

max

[]

[

[

Figure 9.6 The graph of a function f (x) on its domain [a, b].

The function has a local maximum at xloc. Such a point has the property that
f (x) ≤ f (xloc) for all x nearby xloc. That is, the maximum value for the function is
only relevant in the locale near xloc. The function has a local minimum at xmin. Such a
point has the property that f (x) ≥ f (xmin) for all x nearby xmin. That is, the mini-
mum value for the function is only relevant in the locale near xmin. In this particu-
lar example the local minimum happens to be the global minimum for the function.
The global maximum for the function occurs at xmax = b, an endpoint of the domain
interval.

Generally, a global extremum (minimum or maximum) occurs at a point where the
derivative of the function exists and is zero, or where the derivative does not exist, or
at an endpoint of the interval. The process of function optimization involves locating
all such candidate points, evaluating the function at these points, and choosing the
optimum value. In Figure 9.6 we would find xloc and xmin as solutions to f ′(x)= 0
and we would look at x = a and x = b since they are the endpoints of the domain
interval. An analysis of f (a), f (b), f (xloc), and f (xmin) shows that fmin = f (xmin) and
fmax = f (b).

The technical challenge in computing global extrema is, of course, solving the
equation f ′(x) = 0 and/or determining where f ′(x) is undefined. Even when f (x) is
a polynomial, implementing fast and robust numerical methods to solve for zeros of
the derivative is sometimes difficult.

Example
9.6

Compute the global extrema of f (x)= x3− 2x2 − 4x − 5 on the interval [−1, 3].
The derivative of f is f ′(x) = 3x2 − 4x − 4. The roots to f ′(x)= 0 are computed
using the quadratic equation: x = 2 and x =−2/3. The function values that con-
tain the extrema are f (−1)=−4, f (3)=−8, f (2)=−13, and f (−2/3)=−95/27

.=
−3.518. The global minimum is fmin =−13 and the global maximum is fmax =
−95/27. ■

700 Chapter 9 Calculus

Example
9.7

An oriented bounding box (OBB) is translating and rotating through space. Its center
at time t is C(t). The box axis directions are U0(t), U1(t), and U2(t). The directions
are unit-length and mutually perpendicular. The extents (half-widths) along each axis
are e0, e1, and e2. Points in the OBB are

X(t) = C(t)+R(t)Y

where R(t) = [U0(t) |U1(t) |U2(t)] is a rotation matrix whose columns are the box
axis directions and where Y(t)= (y0, y1, y2) with |yi| ≤ ei for all i.

We are interested in when the OBB will first contact a stationary plane given by N ·
X = d , where N is a unit-length normal to the plane and X is any point on the plane.
At first time of contact, the distance between the OBB and the plane is a minimum.

At time zero, the OBB and plane are assumed not to be intersecting and the OBB
is on the side of the plane to which the normal points. The distance from the OBB to
the plane at time t is the distance between the plane and a corner of the OBB that is
closest to the plane. This corner has the property that its projection onto the normal
line sN is closer to the plane than are other corners (possibly two or more corners are
equally close). The projection of any OBB point X(t) is s(t)N, where

s(t)= N · X(t) =N · (C(t)+R(t)Y)

At first time of contact it is the case that s = d , the plane constant. The smallest s(t)
for all points occurs at one of the eight corners. These corners occur for one of the
eight possibilities Y= (±e0,±e1,±e2). The eight projection values are

s(t) =N · X(t)

=N · (C(t)± e0U0(t)± e1U1(t)± e2U2(t))

=N · C(t)± e0N · U0(t)± e1N · U1(t)± e2N · U2(t)

The closest corner occurs when s(t) is as small as possible, so

s(t)= N · C(t)− e0 |N · U0(t)| − e1 |N · U1(t)| − e2|N · U2(t)|
Because we required the OBB to be initially on the side of the plane to which N points,
it is the case that s(0) > d . If we define f (t)= (s(t)− d)2 and limit our collision
query to t ∈ [0, T] for some user–specified maximum time T > 0, we have reduced
the problem to calculating the minimum of f (t) on the interval [0, T] and testing if
that minimum is zero. The roots to f ′(t) = 0 occur when s(t)= d or when s ′(t)= 0.
The ease or difficulty with which we can solve this problem depends on the simplicity
or complexity of the translation C(t) and the orientation matrix R(t). ■

Multivariate Functions

Locating the global extrema of multivariate functions has similarities to the univari-
ate case but is geometrically more challenging. The abstract idea of the univariate
case extends naturally. A global extremum must occur either at a point where the
“derivative” is zero, a point where the “derivative” is undefined, or at a boundary

9.3 Applications 701

point of the domain. The “derivative” in the multivariate case is the gradient vector
of the function f (x), namely ∇f .

When we have n independent variables, the equation ∇f = 0 represents n equa-
tions in n unknowns. The equations are generally nonlinear, so numerical meth-
ods must be applied to solve them. The standard method is a multidimensional
Newton’s method. Once the solutions are found, they can be classified as maxima
points, minima points, or saddle points by using second-order partial derivatives. The
classification requires knowing about eigenvalues and eigenvectors and is covered in
detail in Section 7.5.2.

The analysis of the function f restricted to its boundary points can itself be com-
plicated depending on the function, but in fact the analysis is one of recursive descent
in dimension. Consider a bivariate function f (x, y) with an irregular-shaped domain
D in the xy-plane. Suppose that the boundary of D is a simple closed curve param-
eterized by (x(t), y(t)) for t ∈ [a, b]. The restriction of f to the boundary is g (t)=
f (x(t), y(t)). The global extrema of g (t) on [a, b] may be found. This is a one-
dimensionalproblem(oneindependent parameter t)whereas finding thepoints where
∇f = 0 is a two-dimensional problem (two independent variables x and y). Thus,
the analysis of the boundary is in fewer dimensions than that of the interior of D.

The recursive descent for a function f (x, y , z) is similar. Let D be the domain
of the function whose boundary is a simple closed surface. The candidate extrema
in the interior of D are obtained by solving ∇f = 0, a system of three equations in
three unknowns. The boundary surface can be parameterized by two variables, say
s and t , that parameterization being (x(s, t), y(s, t), z(s, t)). The parameter domain
is denoted P ; that is, each parameter pair (s, t) ∈ P . The function f restricted to the
boundary is g (s, t)= f (x(s, t), y(s, t), z(s, t)). We now need to compute the global
extrema of g (s, t) for (s, t) ∈ P . This is a two-dimensional problem whereas, the orig-
inal was in three dimensions. The two-dimensional problem involves determining
where ∇g = 0, a system of two equations in two unknowns. The global extrema of
g on the boundary of P (a curve) is performed by parameterizing the boundary by
a parameter r . The boundary curve is (s(r), t(r)) for r ∈ [a, b] and the restriction of
g to the boundary is h(r)= g (s(r), t(r)). The reduction in dimension has led us to a
one-dimensional problem.

Example
9.8

Compute the global minimum of f (s, t)= a00s2+ 2a01st + a11t 2 + 2b0s + 2b1t + c
for (s, t) in the triangular domain s ≥ 0, t ≥ 0, and s + t ≤ 1. We will assume that
a00 > 0 and a00a11− a2

01 > 0 so that the graph of f is a paraboloid opening upwards,
thus a global minimum exists.

The gradient of f is

∇f = 2(a00s + a01t + b0, a01s + a11t + b1)

The equation ∇f = 0 leads to two linear equations in the two unknowns s and t . The
solution is

s̄ = −a11b0+ a01b1

a00a11− a2
01

, t̄ = +a01b0− a00b1

a00a11− a2
01

702 Chapter 9 Calculus

If (s̄, t̄) is inside the triangular domain, then f (s̄, t̄) must be the global minimum since
the graph is a paraboloid opening upwards. If it is not in the triangular domain, then
we need to search for the minimum of f restricted to the boundary.

On the boundary s = 0 with t ∈ [0, 1], the function is g (t) = f (0, t)= a11t 2+
2b1t + c . The minimum of g occurs when g ′(t)= 0 or at t = 0 or t = 1. The equation
g ′(t) = 0 has solution

t̂ =− b1

a11

The candidate minima are g (0)= c , g (1) = a11+ 2b1+ c , and g (t̂).
On the boundary t = 0 with s ∈ [0, 1], the function is h(s)= f (s, 0)= a00s2+

2b0s + c . The minimum of h occurs when h′(s)= 0 or at s = 0 or s = 1. The equation
h′(s) = 0 has solution

ŝ =− b0

a00

The candidate minima are h(0)= c , h(1)= a00+ 2b0+ c , and h(ŝ).
Finally, on the boundary s+ t = 1 with s ∈ [0, 1], the function is p(s)=

f (s, 1− s)= (a00 − 2a01+ a11)s2+ 2(a01 − a11+ b0− b1)s + (a11 + 2b1+ c). The
minimum of p occurs when p′(s)= 0 or at s = 0 or s = 1. The equation p′(s)= 0
has solution

s̃ = −a01+ a11 − b0+ b1

a00− 2a01+ a11

The candidate minima are p(0)= a11+ 2b1+ c , p(1)= a00+ 2b0+ c , and p(s̃).
The global minimum is the smallest of g (0), g (1), g (t̂), h(1), h(ŝ), and p(s̃). Notice

that g (0) corresponds to f (0, 0), g (1) corresponds to f (0, 1), and h(1) corresponds to
f (1, 0), the function values at the vertices of the triangular domain. The values g (t̂),
h(ŝ), and p(s̃) correspond to local minima on the lines containing the edges of the
triangular domain.

By the way, this exact problem arises when computing the distance from a point
to a triangle in 2D or in 3D. The s and t values are the variables of the standard
parameterization for a triangle. The point (s, t) at which the global minimum of f
occurs corresponds to the closest point on the triangle to the specified point. ■

(Example 9.8
continued)

Exercise
9.1

Establish the connection just described in Example 9.8 between distance from point
to triangle and minimization of f (s, t).

9.3.2 Constrained Optimization

We have already seen that local extrema of multivariate functions f (x) occur when the
gradient is zero, ∇f (x)= 0. Sometimes an additional equality constraint is placed
on the independent variable, say g (x)= 0 for some multivariate function g . The

9.3 Applications 703

constraint causes dependencies within the set of independent variables, thus reducing
the number of independent ones.

Constrained optimization is the term used to refer to problems of this type.
A classical method for handling these is called the method of Lagrange multipliers.
The method involves introducing another parameter into the problem, call it λ, and
analyzing

h(x,λ)= f (x)+λg (x)

The constraint g = 0 generally causes a reduction from n independent variables to
n− 1. The introduction of λ raises this back to n independent variables. The function
h is optimized in the manner mentioned earlier, by determining those x and λ for
which the gradient of h is zero. Notice that the gradient of h has one more component
than the gradient of f . To stress this difference, we use the notation

∇h =
(

∂h

∂x
,
∂h

∂λ

)
= (∇f +λ∇g , g)

Setting ∇h = 0 leads to ∇f +λ∇g = 0 and g = 0. The second equation is just the
constraint with which we started. The first equation is solved by dotting with ∇g ,

λ=−∇f ·∇g

|∇g |2
assuming of course that ∇g is not identically the zero vector. Resubstituting this in
the first equation, we obtain

∇f − ∇f ·∇g

|∇g |2 ∇g = 0

This equation provides n equations in the n unknown variables x1 through xn and
may be solved by numerical methods for multidimensional root finding.

If m multiple constraints are specified, say gj (x)= 0 for 1≤ j ≤m, the same intro-
duction of parameters λj allows for a similar method of solution. The λj are called
Lagrange multipliers. The new function to optimize is

h(x,λ1, . . . ,λm)= f (x)+
m∑

j=1

gj (x)

The gradient of h is

∇h =
(

∂h

∂x
,

∂h

∂λ1
, . . . ,

∂h

∂λ1

)
=
⎛
⎝∇f +

m∑
j=1

λj∇gj , g1, . . . , gm

⎞
⎠

Setting the first component of the gradient vector to the zero vector yields

∇f +
m∑

j=1

λj∇gj = 0 (9.5)

704 Chapter 9 Calculus

Setting the other components to zero reproduces the constraints gj = 0 for all j. Dot-
ting equation (9.5) with ∇gi for 1 ≤ i ≤m gives us a set of m equations in the m
unknown Lagrange multipliers,

m∑
j=1

∇gi ·∇gjλj =−∇f ·∇gi

If A = [aij] is an m×m matrix with aij =∇gi ·∇gj , if B= [bi] is an m× 1 vector with
bi =−∇f ·∇gi , and if �= [λj], the system of equations is A�= B, a linear system
that can be solved whenever A is invertible: �= A−1B. The λj from the solution are
resubstituted into equation (9.5), thereby giving us a single vector-valued equation of
n equations in the n unknowns x1 through xn .

Example
9.9

Two ellipsoids are defined implicitly by the quadratic equations gj(x)= xTAj x+
bT

j x+ cj = 0, j = 1 and j = 2. The 3× 3 matrices Aj are positive definite (symmet-
ric with positive eigenvalues). Let us assume that the ellipsoids are separated, so the
distance between them is positive. How do we go about computing the distance?

Let x be a point on the first ellipsoid, so g1(x)= 0. Let y be a point on the second
ellipsoid, so g2(y)= 0. The squared distance between these two points is

f (x, y)= |x− y|2

We wish to select x and y that minimize f (x, y) subject to the constraints that g1(x)= 0
and g2(y)= 0. The number of independent variables is six, three for the first ellipsoid
and three for the second ellipsoid. Each constraint reduces the number of independent
variables by one, leaving us (implicitly) with four independent variables. This makes
sense in that x and y each lie on an ellipsoid, a two-dimensional surface. We have two
degrees of freedom for each point, a total of four degrees of freedom.

Using the method of Lagrange multipliers, define

h(x, y,λ1,λ2)= f (x, y)+λ1g1(x)+λ2g2(y)

= |x− y|2+λ1(xTA1x+bT
1 x+ c1)+λ2(yTA2y+bT

2 y+ c2)

Setting the gradient of h to zero yields four vector-valued equations

∂h/∂x= 2(x− y)+λ1(2A1x+b1)= 0

∂h/∂y= 2(y− x)+λ2(2A2y+b2)= 0
(9.6)

∂h/∂λ1 = xTA1x+bT
1x+ c1 = 0

∂h/∂λ2 = yTA2y+bT
2 y+ c2 = 0

The last two equations of equation (9.6) are just the original constraints. The first
two equations have a geometric interpretation. The minimum distance between the
ellipsoids is attained by points x on the first and y on the second and is the closest
pair of points, one point per ellipsoid. Sketch a picture to convince yourself that the
vector connecting these two, x− y, is perpendicular to both ellipsoids at the closest

9.3 Applications 705

points. The gradient vectors of the implicitly defined surfaces are perpendicular to
their respective surfaces. The gradient of the first ellipsoid is∇g1(x)= 2A1x+b1, the
gradient of the second is ∇g2(y)= 2A2y+b2. The vectors x− y and 2A1x+b1 are
parallel so some linear combination of the two vectors must be the zero vector. This is
exactly what the first equation in (9.6) says. The same argument applies to x− y and
2A2y+b2; the second equation of (9.6) says the two vectors are parallel.

The first two equations of (9.6) may be solved directly to obtain the Lagrange mul-
tipliers, then we resubstitute the multipliers into the equations to obtain the following
system of two equations in two vector-valued unknowns:

x− y− (x− y) · (2A1x+b1)

|2A1x+b1|2 (2A1x+b1)= 0

and

x− y− (x− y) · (2A2y+b2)

|2A2y+b2|2 (2A2y+b2)= 0

A multidimensional numerical root finder may be used to compute the solutions. ■

9.3.3 Derivative Approximations by Finite Differences

In numerical methods for solving ordinary differential equations of the type shown
in Chapter 13, and in numerical methods for solving partial differential equations, we
invariably need to use approximations to ordinary derivatives and to partial deriva-
tives in order to establish the iterative method itself. The following material shows
how to obtain such approximations.

Given a small value h > 0, the dth order derivative satisfies the following equation
where the integer order of error p > 0 may be selected as desired,

hd

d !
F (d)(x)+O(hd+p)=

imax∑
i=imin

Ci F(x + ih) (9.7)

for some choice of extreme indices imin and imax and for some choice of coefficients Ci .
The equation becomes an approximation by throwing away the O(hd+p) term. The
vector �C = (Cimin, . . . , Cimax) is called the template for the approximation. Approxima-
tions for the derivatives of multivariate functions are constructed as tensor products
of templates for univariate functions.

Derivatives of Univariate Functions

The following approximations are valid for the derivative of F(x). A forward difference
approximation is

F ′(x)= F(x + h)− F(x)

h
+O(h) (9.8)

706 Chapter 9 Calculus

a backward difference approximation is

F ′(x)= F(x)− F(x − h)

h
+O(h) (9.9)

and a centered difference approximation is

F ′(x)= F(x + h)− F(x − h)

2h
+O(h2) (9.10)

The approximations are obtained by throwing away the error terms indicated by the
O notation. The order of the error for each of these approximations is easily seen from
formal expansions as Taylor series about the value x,

F(x + h)= F(x)+ hF ′(x)+ h2

2!
F ′′(x)+ · · · =

∞∑
n=0

hn

n!
F (n)(x)

and

F(x − h)= F(x)− hF ′(x)+ h2

2!
F ′′(x)+ · · · =

∞∑
n=0

(−1)n hn

n!
F (n)(x)

where F (n)(x) denotes the nth order derivative of F . The first equation leads to the
forward difference F ′(x) = (F(x + h)− F(x))/h +O(h). The second equation leads
to the backward difference F ′(x)= (F(x)− F(x − h))/h+O(h). Both approxima-
tions have error O(h). The centered difference is obtained by subtracting the second
equation from the first to obtain (F(x + h)− F(x − h))/(2h)+O(h2).

Higher-order approximations to the first derivative can be obtained by using more
Taylor series, more terms in the Taylor series, and cleverly weighting the various
expansions in a sum. For example,

F(x + 2h)=
∞∑

n=0

(2h)n

n!
F (n)(x) and F(x − 2h)=

∞∑
n=0

(−1)n (2h)n

n!
F (n)(x)

lead to a forward difference approximation with second-order error,

F ′(x)= −F(x + 2h)+ 4F(x + h)− 3F(x)

2h
+O(h2) (9.11)

to a backward difference approximation with second-order error,

F ′(x) = 3F(x)− 4F(x − h)+ F(x − 2h)

2h
+O(h2) (9.12)

and to a centered difference approximation with fourth-order error,

F ′(x) = −F(x + 2h)+ 8F(x + h)− 8F(x − h)+ F(x − 2h)

12h
+O(h4) (9.13)

9.3 Applications 707

Higher-order derivatives can be approximated in the same way. For example, a
forward difference approximation to F ′′(x) is

F ′′(x)= F(x + 2h)− 2F(x + h)+ F(x)

h2
+O(h) (9.14)

and centered difference approximations are

F ′′(x) = F(x + h)− 2F(x)+ F(x − h)

h2
+O(h2) (9.15)

and

F ′′(x) = −F(x + 2h)+ 16F(x)− 30F(x)+ 16F(x − h)− F(x − 2h)

12h2
+O(h4)

(9.16)

Each of these formulas is easily verified by expanding the F(x + ih) terms in a
formal Taylor series and computing the weighted sums on the right-hand sides. How-
ever, of greater interest is to select the order of derivative d and the order of error p
and determine the weights Ci for the sum in equation (9.7). A formal Taylor series for
F(x + ih) is

F(x + ih)=
∞∑

n=0

in hn

n!
F (n)(x)

Replacing this in equation (9.7) yields

hd

d !
F (d)(x)+O(hd+p)=

imax∑
i=imin

Ci

∞∑
n=0

in hn

n!
F (n)(x)

=
∞∑

n=0

⎛
⎝ imax∑

i=imin

in Ci

⎞
⎠ hn

n!
F (n)(x)

=
d+p−1∑

n=0

⎛
⎝ imax∑

i=imin

inCi

⎞
⎠ hn

n!
F (n)(x)+O(hd+p)

Multiplying by d !/hd , the desired approximation is

F (d)(x) = d !

hd

d+p−1∑
n=0

⎛
⎝ imax∑

i=imin

inCi

⎞
⎠ hn

n!
F (n)(x)+O(hp) (9.17)

In order for equation (9.17) to be satisfied, it is necessary that

imax∑
i=imin

inCi =
{

0, 0 ≤ n ≤ d + p− 1 and n �= d
1, n = d

}
(9.18)

708 Chapter 9 Calculus

Table 9.4 Parameters for Various Finite Difference Approximations

Equation d p Approximation imin imax

(9.8) 1 1 forward 0 1

(9.9) 1 1 backward −1 0

(9.10) 1 2 centered −1 1

(9.11) 1 2 forward 0 2

(9.12) 1 2 backward −2 0

(9.13) 1 4 centered −2 2

(9.14) 2 1 forward 0 2

(9.15) 2 2 centered −1 1

(9.16) 2 4 centered −2 2

This is a set of d + p linear equations in imax− imin + 1 unknown. If we constrain the
number of unknowns to be d + p, the linear system has a unique solution. A forward
difference approximation occurs if we set imin = 0 and imax = d+ p− 1. A backward
difference approximation occurs if we set imax = 0 and imin =−(d + p− 1). A cen-
tered difference approximation occurs if we set imax =−imin = (d + p − 1)/2 where it
appears that d + p is necessarily an odd number. As it turns out, p can be chosen to
be even regardless of the parity of d and imax = &(d + p− 1)/2'.

Table 9.4 indicates the choices for d and p, the type of approximation (forward,
backward, or centered), and the corresponding equation number.

Example
9.10

Approximate F (3)(x) with a forward difference with error O(h), d = 3, and p = 1. We
need imin = 0 and imax = 3. The linear system from equation (9.18) is⎡

⎢⎢⎣
1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27

⎤
⎥⎥⎦
⎡
⎢⎢⎣

C0

C1

C2

C3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

and has solution (C0, C1, C2, C3)= (−1, 3,−3, 1)/6. Equation (9.17) becomes

F (3)(x) = −F(x)+ 3F(x + h)− 3F(x + 2h)+ F(x + 3h)

h3
+O(h)

Approximate F (3)(x) with a centered difference with error O(h2), so d = 3 and
p = 2. We need imax =−imin = 2. The linear system from equation (9.18) is⎡

⎢⎢⎢⎢⎣
1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C−2

C−1

C0

C1

C2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

9.3 Applications 709

and has solution (C−2, C−1, C0, C1, C2)= (−1, 2, 0,−2, 1)/12. Equation (9.17)
becomes

F (3)(x)= −F(x − 2h)+ 2F(x − h)− 2F(x + h)+ F(x + 2h)

2h3
+O(h2)

Finally, approximate with a centered difference with error O(h4), so d = 3 and
p = 4. We need imax =−imin = 3. The linear system from equation (9.18) is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3

9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27

81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243

729 64 1 0 1 64 729

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C−3

C−2

C−1

C0

C1

C2

C3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and has solution (C−3, C−2, C−1, C0, C1, C2, C3)= (1,−8, 13, 0,−13, 8,−1)/48. Equa-
tion (9.17) becomes

F (3)(x) = F(x − 3h)− 8F(x− 2h)+ 13F(x− h)− 13F(x+ h)+ 8F(x+ 2h)− F(x+ 3h)

8h3
+O(h4)

■

Example
9.11

Approximate F (4)(x) with a forward difference with error O(h), so d = 4 and p = 1.
We need imin = 0 and imax = 4. The linear system from equation (9.18) is⎡

⎢⎢⎢⎢⎣
1 1 1 1 1
0 1 2 3 4
0 1 4 9 16
0 1 8 27 64
0 1 16 81 256

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C0

C1

C2

C3

C4

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

and has solution (C0, C1, C2, C3, C4)= (1,−4, 6,−4, 1)/24. Equation (9.17) becomes

F (4)(x)= F(x)− 4F(x + h)+ 6F(x + 2h)− 4F(x + 3h)+ F(x + 4h)

h4
+O(h).

Approximate F (4)(x) with a centered difference with error O(h2), d = 4, and p =
2. We need imax =−imin = 2. The linear system from equation (9.18) is⎡

⎢⎢⎢⎢⎣
1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C−2

C−1

C0

C1

C2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

710 Chapter 9 Calculus

and has solution (C−2, C−1, C0, C1, C2)= (1,−4, 6,−4, 1)/24. Equation (9.17)
becomes

F (4)(x)= F(x − 2h)− 4F(x − h)+ 6F(x)− 4F(x + h)+ F(x + 2h)

h4
+O(h2)

Finally, approximate with a centered difference with error O(h4), d = 4, and
p = 4. We need imax =−imin = 3. The linear system from equation (9.18) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3

9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27

81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243

729 64 1 0 1 64 729

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C−3

C−2

C−1

C0

C1

C2

C3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and has solution (C−3, C−2, C−1, C0, C1, C2, C3)= (−1, 12,−39, 56,−39, 12,−1)/
144. Equation (9.17) becomes

F (4)(x)

= −F(x− 3h)+ 12F(x− 2h)− 39F(x− h)+ 56F(x)− 39F(x+ h)+ 12F(x+ 2h)− F(x+ 3h)

6h4

+O(h4)

■

(Example 9.11
continued)

Derivatives of Bivariate Functions

For functions with more variables, the partial derivatives can be approximated by
grouping together all of the same variables and applying the univariate approximation
for that group. For example, if F(x, y) is our function, then some partial derivative
approximations are

fx(x, y)
.= F(x + h, y)− F(x − h, y)

2h

fy (x, y)
.= F(x, y + k)− F(x, y − k)

2k

fxx (x, y)
.= F(x + h, y)− 2f (x, y)+ F(x − h, y)

h2

fyy(x, y)
.= F(x, y + k)− 2f (x, y)+ F(x, y − k)

k2

fxy (x, y)
.= F(x + h, y+ k)− F(x + h, y − k)− F(x − h, y + k)+ F(x − h, y − k)

4hk

9.3 Applications 711

Each of these can be verified in the limit: the x-derivatives by taking the limit as h
approaches zero, the y-derivatives by taking the limit as y approaches zero, and the
mixed second-order derivative by taking the limit as both h and k approach zero.

The derivatives Fx , Fy , Fxx , and Fyy just use the univariate approximation formu-
las. The mixed derivative requires slightly more work. The important observation is
that the approximation for Fxy is obtained by applying the x-derivative approximation
for Fx , then applying the y-derivative approximation to the previous approximation.
That is,

fxy (x, y)
.= F(x + h, y)− F(x − h, y)

2h

.=
F(x+h,y+k)−F(x−h,y+k)

2h − F(x+h,y−k)−F(x−h,y−k)

2h

2k

= F(x + h, y + k)− F(x + h, y − k)− F(x − h, y + k)+ F(x − h, y− k)

4hk

The approximation implied by equation (9.7) may be written as

hm

m!

dm

dxm
F(x)

.=
imax∑

i=imin

C (m)
i F(x + ih) (9.19)

The inclusion of the superscript on the C coefficients is to emphasize that those coeffi-
cients are constructed for each order m. For bivariate functions, we can use the natural
extension of equation (9.19) by applying the approximation in x first, then applying
the approximation in y to that approximation, just as in our example of Fxy .

kn

n!

∂n

∂yn

hm

m!

∂m

∂xm
F(x, y)

.= kn

n!

∂n

∂yn

imax∑
i=imin

C (m)
i F(x + ih, y)

.=
imax∑

i=imin

jmax∑
j=jmin

C (m)
i C (n)

j F(x + ih, y + jk) (9.20)

=
imax∑

i=imin

jmax∑
j=jmin

C (m,n)
i ,j F(x + ih, y + jk)

where the last equality defines

C (m,n)
i ,j = C (m)

i C (n)
j

The coefficients for the bivariate approximation are just the tensor product of the
coefficients for each of the univariate approximations.

712 Chapter 9 Calculus

Derivatives of Multivariate Functions

The approximation concept extends to any number of variables. Let (x1, . . . , xn) be
those variables and let F(x1, . . . , xn) be the function to approximate. The approxima-
tion is (

hm1
1

m1!

∂m1

∂xm1
1

· · · h
mn
n

mn !

∂mn

∂xmn
1

)
F(x1, . . . , xn)

(9.21)

.=
imax
1∑

i1=imin
1

· · ·
imax
n∑

in=imin
n

C (m1,...,mn)
(i1,...,in) F(x1+ i1h1, . . . , xn+ in hn)

where

C (m1,...,mn)
(i1,...,in) = C (m1)

i1
· · ·C (mn)

in

a tensor product of the coefficients of the n univariate approximations.

C h a p t e r 10
Quaternions

Quaternions are a powerful way to represent rotations within computer graph-
ics and physics applications. Unfortunately, the mathematical complexity of

quaternions seems to discourage some practitioners from any attempt at understand-
ing them. As an aid to such understanding, a section is provided that constructs a
matrix representing rotation about an arbitrary axis. The matrix is based on knowing
how to rotate about the z-axis and uses the concept of change of basis from linear
algebra. Afterwards, two sections are presented, each with a different view of what a
quaternion is. Section 10.2 is the classical approach that defines quaternions in terms
of symbols i, j, and k and shows how they are related to rotation. Section 10.3 moti-
vates the idea of a quaternion based solely on concepts from linear algebra. In this
setting a quaternion is a rotation matrix in 4D whose geometric actions are easy to
understand.

Section 10.4 discusses how to interpolate a sequence of quaternions. This is use-
ful for smooth animation and for smooth motion of objects. Section 10.5 discusses
how to differentiate a quaternion function of time, which is used in the differential
equations of motion.

10.1 Rotation Matrices

Let us review a concept that you are no doubt already familiar with, rotation in the
xy-plane. The rotation of the vector (x, y) about the origin by an angle θ > 0 is the
vector (x ′ , y ′) specified by

x ′ = cos(θ)x − sin(θ)y , y ′ = sin(θ)x + cos(θ)y

© 2010 by Elsevier Inc. All rights reserved. 713
DOI: 10.1016/B978-0-12-374903-1.00010-4

714 Chapter 10 Quaternions

The formula is derivable using a standard trigonometric construction. The direction
of rotation is counterclockwise about the origin. In vector-matrix form the equa-
tion is [

x ′
y ′
]
=
[

cos(θ) −sin(θ)

sin(θ) cos(θ)

][
x
y

]

If we now add a third dimension, the rotation of the vector (x, y , z) about the z-axis by
an angle θ > 0 is just a rotation of the (x, y) portion about the origin in the xy-plane.
The rotated vector (x ′ , y ′, z ′) is specified by⎡

⎣ x ′
y ′
z ′

⎤
⎦ =

⎡
⎣ cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦

Setting v= [x y z]T, v′ = [x ′ y ′ z ′]T, s = sin(θ), and c = cos(θ), the rotation is v′ =
R0v, where R0 is the rotation matrix,

R0 =
⎡
⎣ c −s 0

s c 0
0 0 1

⎤
⎦ (10.1)

The standard coordinate axis directions, represented as 3× 1 vectors, are ı = [1 0 0]T,
j = [0 1 0]T, and k = [0 0 1]T. Observe that

R0ı =
⎡
⎣ c

s
0

⎤
⎦ = cı+ sj , R0j =

⎡
⎣ −s

c
0

⎤
⎦=−sı + cj , R0k =

⎡
⎣ 0

0
1

⎤
⎦= k (10.2)

The vectors R0ı, R0j , and R0k are the columns of the rotation matrix R0.
The equation for rotation of a vector v ∈ IR3 by an angle θ > 0 about an axis with

unit-length direction d is derived next. Let a and b be vectors in the plane that con-
tains the origin and has normal d. Moreover, choose these vectors so that {a, b, d} is
a right-handed orthonormal set: each vector is unit length; the vectors are mutually
perpendicular; and a× b= d, b× d= a, and d× a= b. Figure 10.1 shows a typical
choice.

The orthonormal set of vectors may be used as a basis for IR3, both as domain and
range of the rotational transformation. The matrix R0 in equation (10.1) represents
the rotation in this basis. A matrix R1 that represents the rotation in the standard basis
will transform a, b, and d as

R1a= ca+ sb, R1b=−sa+ cb, R1d= d (10.3)

The similarity between equations (10.3) and equations (10.2) is no coincidence. The
equations in (10.2) may be collected into a single equation using the convenient

10.1 Rotation Matrices 715

d

a

0 b

Figure 10.1 A right-handed orthonormal set of vectors. A rotation is desired about d by the angle
θ > 0.

bookkeeping that block matrices provide,

R1
[

a b d
]= [ca+ sb −sa+ cb d

]= [a b d
]⎡⎣ c −s 0

s c 0
0 0 1

⎤
⎦

The matrix P = [a | b | d] is itself a rotation since {a, b, d} is a right-handed orthonor-
mal set, so its inverse is just its transpose. The last displayed equation is R1P = PR0.
Solving for R1 = PR0P T, we have

R1 =
[

a b d
]⎡⎣ c −s 0

s c 0
0 0 1

⎤
⎦[a b d

]T

= [a b d
]⎡⎣ c −s 0

s c 0
0 0 1

⎤
⎦
⎡
⎢⎣

aT

bT

dT

⎤
⎥⎦

= [a b d
]⎡⎢⎣ caT− sbT

saT+ cbT

dT

⎤
⎥⎦

= a(caT− sbT)+b(saT+ cbT)+ddT

= c(aaT+bbT)+ s(baT− abT)+ddT

(10.4)

Keep in mind that aaT is the product of a 3× 1 matrix and a 1× 3 matrix, the result
being a 3× 3 matrix. This is not the same as aTa, a product of a 1× 3 matrix and
a 3× 1 matrix, the result being a 1× 1 matrix (a scalar). Similarly, bbT, ddT, baT,

716 Chapter 10 Quaternions

and abT are 3× 3 matrices. From a computational perspective, R1 is easily computed
from equation (10.4), but requires selecting a and b for the specified axis direction d.
Your intuition, though, should tell you that the rotation about the axis is indepen-
dent of which pair of orthonormal vectors you choose in the plane. The following
construction shows how to remove the dependence.

The representation of v in the basis {a, b, d} is

v= (a · v)a+ (b · v)b+ (d · v)d= αa+βb+ δd (10.5)

where the last equality defines α, β, and δ as the dot products of the basis vectors
with v. This renaming is done for simplicity of notation in the ensuing constructions.
A couple of vector quantities of interest are

d× v= d× (αa+βb+ δd)= αd× a+βd× b+ δd× d=−βa+αb (10.6)

and

d× (d× v)= d× (αb−βa)= αd× b−βd× a=−αa−βb (10.7)

The cross product d× v can be written as a matrix multiplied by a vector:

d× v=
⎡
⎣ d1

d2

d3

⎤
⎦×

⎡
⎣ v1

v2

v3

⎤
⎦

=
⎡
⎣ d2v3− d3v2

d3v1− d1v3

d1v2− d2v1

⎤
⎦

=
⎡
⎣ 0 −d3 d2

d3 0 −d1

−d2 d1 0

⎤
⎦
⎡
⎣ v1

v2

v3

⎤
⎦

= Dv

(10.8)

where the last equality defines the 3× 3 matrix D. This matrix is skew-symmetric
since DT =−D. The cross product d× (d× v) is written as a matrix multiplied by a
vector by applying equation (10.8) twice:

d× (d× v)= D(d× v)=D(Dv)=D2v (10.9)

We now take a closer look at the vectors v= I v, d× v=Dv and d× (d× v)=D2v
to determine how a, b, and their various products are related to the matrices I , D,
and D2.

10.1 Rotation Matrices 717

First, observe that equation (10.5) may be manipulated as

I v= v

= (a · v)a+ (b · v)b+ (d · v)d

= a(aTv)+b(bTv)+d(dTv)

= (aaT+bbT+ddT)v

The equation is true for all vectors v, so

I = aaT+bbT+ddT (10.10)

Second, equations (10.5), (10.6), and (10.8) imply the relationship

Dv = d× v

= αb−βa

= (a · v)b− (b · v)a

= b(aTv)− a(bTv)

= (baT− abT)v

This equation is true for all vectors v, so

D = baT− abT (10.11)

Third, equations (10.5), (10.7), and (10.9) imply the relationship

D2v= d× (d× v)

=−αa−βb

= (d · v)d− v

= d(dTv)− v

= (ddT− I)v

This equation is true for all vectors v, so

D2 = ddT− I (10.12)

Combining these relationships with equation (10.4),

R1 = c(aaT+bbT)+ s(baT− abT)+ddT Restatement of equation (10.4)

= c(I −ddT)+ s(baT− abT)+ddT By equation (10.10)

= c(I −ddT)+ sD+ddT By equation (10.11)

= I + sD + (1− c)(ddT− I)

= I + sD + (1− c)D2 By equation (10.12)
(10.13)

718 Chapter 10 Quaternions

This equation provides the rotation matrix R1 in terms of the unit-length axis direc-
tion d stored as the matrix D and the angle θ occurring in s = sin(θ) and c = cos(θ).
The application of the rotation matrix to a vector is

R1v= (I + sD + (1− c)D2)v

= I v+ sDv+ (1− c)D2v

= v+ sd× v+ (1− c)d× (d× v)

(10.14)

Make sure you understand the constructions used to obtain equations (10.4) and
(10.13). The same idea is used in Section 10.3 to motivate how a quaternion is related
to a rotation matrix in four dimensions.

10.2 The Classical Approach

A quaternion is specified by the abstract quantity q = w + xi + yj+ zk , where w, x, y ,
and z are real numbers. This quantity can be thought of as a vector (w, x, y , z) ∈ IR4. As
it turns out, the quaternions that are related to rotations are unit-length quaternions,
those quaternions for which the length of (w, x, y , z) is 1. As vectors in IR4, the unit-
length quaternions are located on the hypersphere of radius 1, given algebraically as
w2 + x2 + y2 + z2 = 1. Many practitioners use the term quaternion in place of unit-
length quaternion. In this section I will use quaternion to mean any quantity of the
form w + xi + yj+ zk and unit-length quaternion when I intend the vector (w, x, y , z)

to have length 1.

10.2.1 Algebraic Operations

Addition of two quaternions is defined by

q0+ q1 = (w0 + x0i + y0j + z0k)+ (w1 + x1i+ y1j+ z1k)

= (w0 +w1)+ (x0 + x1)i + (y0 + y1)j + (z0 + z1)k
(10.15)

Scalar multiplication of a quaternion by a real number c is defined by

cq = c(w + xi+ yj + zk)= (cw)+ (cx)i + (cy)j + (cz)k (10.16)

The subtraction operation is defined as a consequence of these two definitions,
q0 − q1 = q0 + (−1)q1 .

Multiplications are allowed between quaternions. The symbols i, j, and k have
multiplicative properties similar to pure imaginary numbers: i2 =−1, j2 =−1, and
k2 =−1. They also have multiplicative properties that are superficially similar to cross
products of the 3D vectors ı, j , and k: ij =−ji = k , jk =−kj = i, and ki =−ik = j.
Observe that ij �= ji, so multiplication is not a commutative operation. The analogy
to cross products is not fully valid, though. Multiplication is associative; for example,

10.2 The Classical Approach 719

(ij)k =−1 = i(jk), but the cross product operation is not associative. Generally, the
product of quaternions is defined by allowing the distributive law to apply and by
using the various product formulas for the i, j, and k terms:

q0q1 = (w0 + x0i + y0j + z0k)(w1 + x1i + y1j + z1k)

= (w0w1− x0x1− y0y1− z0z1)

+ (w0x1+w1x0+ y0z1− z0y1)i

+ (w0y1+w1y0+ z0x1− x0z1)j

+ (w0z1+w1z0 + x0y1− y0x1)k

(10.17)

As noted multiplication is not generally commutative. The product in the other order
obtained from equation (10.17) by interchanging the 0 and 1 subscripts is

q1q0 = (w1 + x1i + y1j + z1k)(w0 + x0i + y0j + z0k)

= (w0w1− x0x1− y0y1− z0z1)

+ (w0x1+w1x0+ y1z0− y0z1)i
+ (w0y1+w1y0+ z1x0− z0x1)j
+ (w0z1+w1z0 + x1y0− x0y1)k

(10.18)

The w-components of q0q1 and q1q0 are the same. On the other hand, the last two
terms of each of the the i-, j-, and k-components in the second equation of 10.18
are opposite in sign to their counterparts in the first equation. Those terms should
remind you of the components of a cross product. Symbolically, equations (10.17)
and (10.18) are different, but it is possible for some quaternions (but not all) that
q0q1 = q1q0. For this to happen we need

(x0, y0, z0)× (x1, y1, z1)= (y0z1 − y1z0, z0x1− z1x0, x0y1 − y0x1)

= (y1z0 − y0z1, z1x0− z0x1, x1y0 − x0y1)

= (x1, y1, z1)× (x0, y0, z0)

The only way the two cross products can be the same for a pair of vectors is if they
are parallel. In summary, q0q1 = q1q0 if and only if (x1, y1, z1)= t(x0, y0, z0) for some
real-valued scalar t .

The complex number ζ = w + xi has real part w and imaginary part x. I refer to xi
as the imaginary portion of ζ . To allow a closer parallel between properties of quater-
nions and properties of complex numbers, a quaternion may be written as q = w+ v̂ ,
where v̂ = xi+ yj+ zk . The separation of quaternions into two portions allows us to
think of w as the real part of q and v̂ as the imaginary portion of q. The conjugate
of ζ is defined as ζ̄ = w − xi; that is, the sign of the imaginary portion is changed.
A consequence is that ζ ζ̄ = w2 + x2. The right-hand side is called the norm of ζ and
is denoted N (ζ)= ζ ζ̄ . As long as N (ζ) �= 0, the multiplicative inverse of ζ exists and
is ζ−1 = ζ̄ /N (ζ). If N (ζ) = 1, the complex number is said to be unit length. Similar
definitions apply to a quaternion q = w + v̂ . The conjugate is

q∗ = w − v̂ (10.19)

720 Chapter 10 Quaternions

For historical reasons and reasons of mathematical nomenclature, a superscript aster-
isk is used to denote the conjugate rather than an overline bar as is done for complex
numbers. The norm of q is N (q)= qq∗ = w2 + x2 + y2 + z2 and the length of q is nat-
urally defined as the square root of the norm, L(q)=√N (q). If L(q)= 1, q is said to
be unit length. As long as N (q) �= 0, the inverse of q is q−1 = q∗/N (q). If L(q)= 1, the
the inverse and conjugate are the same, q−1 = q∗. For purposes of rotations the norm,
length, and inverse do not play a role, so I mention them here merely for completeness.

The polar form of a unit-length complex number is ζ = cos φ+ i sinφ. A unit-
length quaternion has a similar representation,

q = cosφ+ d̂ sinφ (10.20)

where d̂ = xi+ yj + zk and x2+ y2 + z2 = 1. Note the similarity in form to ζ . The

imaginary number i has the property i2 =−1. The imaginary portion d̂ has the simi-
lar property d̂2 =−1. The polar form is important in understanding how unit-length
quaternions are related to rotations, the topic of the Section 10.2.2.

The representation of any quaternion as q = w+ v̂ may be viewed in a sense as
a coordinate-free description. We may identify v̂ = xi+ yj + zk with the vector v=
(x, y , z). This allows us to define two operations on the imaginary portions based on
how those operations apply to vectors. The dot product of v̂0 and v̂1 is denoted v̂0 · v̂1

and defined to be the real-valued vector dot product v0 · v1. The cross product of v̂0

and v̂1 is denoted v̂0 × v̂1, another quaternion with zero w component. Its x, y , and
z values are the components of the vector cross product v0 × v1. In this formulation,
the product of two quaternions is

(w0 + v̂0)(w1 + v̂1)= (w0w1− v̂0 · v̂1)+w0 v̂1+w1 v̂0+ v̂0 × v̂1 (10.21)

We will make use of this identity in the next section. Other identities are provided:

1. (q∗)∗ = q

2. (pq)∗ = q∗p∗

3. If d̂ = xi+ yj+ zk with x2 + y2 + z2 = 1, then d̂2 =−1

4. (w0 + v̂0)(w1 + v̂1)= (w1 + v̂1)(w0 + v̂0) if and only if v̂0× v̂1 = 0

I leave the proofs of these as an exercise.

10.2.2 Relationship of Quaternions to Rotations

A vector v is to be rotated about an axis with unit-length direction d by an angle θ .
The sense of the rotation is counterclockwise: If you look at the origin of a plane
perpendicular to d, your view direction is −d, and θ > 0, then any vector in that
plane is rotated counterclockwise about the origin. Let u be the rotation of v about
axis d by angle θ . Figure 10.1 illustrates the rotation.

10.2 The Classical Approach 721

The quaternions d̂ , v̂ , and û are those identified with the vectors d, v, and u. Define

the quaternion q = γ +σ d̂ , where γ = cos(θ/2) and σ = sin(θ/2). The quaternion
û = qv̂q∗ has zero w-component; the left-hand side is written as if there is no
w-component, but we do need to verify this. The vector u turns out to be the rotation
of v. The formal calculations are shown:

qv̂q∗ = (γ +σ d̂)(0+ v̂)(γ −σ d̂) Definition of q and q∗

= (−σ d̂ · v̂ + γ v̂ +σ d̂ × v̂)(γ −σ d̂) Using equation (10.21)

= [(−σ d̂ · v̂)(γ)− (γ v̂ +σ d̂ × v̂)(−σ d̂)]

+ (γ)(γ v̂ +σ d̂ × v̂)+ (−σ d̂ · v̂)(−σ d̂) Using equation (10.21)

+ (γ v̂ +σ d̂ × v̂)× (−σ d̂)

= γ 2v̂ +σ 2(d̂ · v̂)d̂ + 2σγ d̂ × v̂+σ 2d̂ × (d̂ × v̂)

The last equality uses the facts that (d̂ × v̂) · d̂ = 0, v̂ × d̂ =−d̂ × v̂ and d̂ × (d̂×
v̂)=−(d̂ × v̂)× d̂ , the same identities that the vector counterparts of d̂ and v̂ satisfy.
Continuing with the calculations:

qv̂q∗ = (1−σ 2)v̂ + 2σγ d̂ × v̂ +σ 2[(d̂ · v̂)d̂ + d̂ × (d̂ × v̂)]

= v̂ + 2σγ d̂ × v̂ +σ 2[(d̂ · v̂)d̂ − v̂ + d̂ × (d̂ × v̂)]

An identity from vector algebra is d× (d× v)= (d · v)d− (d · d)v = (d · v)d− v,
the last equality a consequence of d being unit length. The quaternion counterpart
satisfies the same identity, so

qv̂q∗ = v̂ + 2σγ d̂ × v̂ + 2σ 2d̂ × (d̂× v̂)

Recall also the trigonometric identities sinθ = 2 sin(θ/2)cos(θ/2)= 2σγ and 1−
cos θ = 2 sin2(θ/2)= 2σ 2, so we finally arrive at

qv̂q∗ = v̂ + (sinθ)d̂ × v̂+ (1− cos θ)d̂ × (d̂× v̂) (10.22)

This is the quaternion counterpart of equation (10.14), the general rotation of v about
an axis d by an angle θ . The vector u corresponding to û = qv̂q∗ is therefore the
rotation of v.

The rotation matrix R corresponding to the quaternion q may be obtained by
symbolically computing the right-hand side of û = qv̂q∗ and factoring the coefficients
of the i-, j-, and k-terms to obtain u = Rv, where

R =
⎡
⎣ 1− 2y2− 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2− 2y2

⎤
⎦ (10.23)

Composition of rotations is easily stated in terms of quaternion algebra. If p and q
are unit-length quaternions that represent rotations, and if v̂ is the quaternion iden-
tified with vector v, then the rotation represented by q is accomplished by û = qv̂q∗

722 Chapter 10 Quaternions

as shown earlier. The vector u identified with û is further modified by the rotation
represented by p:

pûp∗ = p(qv̂q∗)p∗

= (pq)v̂ (q∗p∗) Quaternion multiplication is associative

= (pq)v̂ (pq)∗ Property of conjugation

This equation shows that the composite rotation is represented by the quaternion
product pq.

10.3 A Linear Algebraic Approach

The classical approach of the last section is unappealing to those who are new to the
topic because it neither appeals to the geometric nature of quaternions nor indicates
what reasoning led to the definitions in the first place. This section provides a geo-
metric understanding of quaternions, one that is based only on concepts of linear
algebra. Instead of analyzing a rotation in three dimensions, we analyze it in a four-
dimensional setting. A unit-length quaternion is shown to correspond to a rotation
matrix in 4D and a transformation equation analogous to equation (10.22) is con-
structed. The construction is motivated by a change of basis, the same motivation
used in the construction of equations (10.4) and (10.13).

Let us return to the standard basis {ı ,j , k} and the rotation matrix R0 from equa-
tion (10.1) that represents rotation about the z-axis by angle θ . Instead of viewing the
rotation as an operation on vectors v= (x, y , z) ∈ IR3, let us look at it as an operation
on vectors ṽ= (x, y , z , w) ∈ IR4. The inclusion of the fourth component gives us an
additional degree of freedom that allows the creation of a more efficient representa-
tion of rotations than what is possible in three dimensions. By efficient, I mean in the
sense of a computer implementation. The 4D representation requires less memory
than its 3D counterpart. Composition of rotations in 3D involves multiplication of
rotation matrices. Composition using the 4D representation can be computed faster
than its 3D counterpart.

A natural choice for representing the rotation in 4D is

R0 =

⎡
⎢⎢⎣

c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦=

[
R0 0

0T 1

]
=
[

Rxy 0

0T I

]
(10.24)

where the first equality defines a 2× 2 block matrix whose upper-left block is the
3× 3 rotation matrix, whose upper-right block is the 3× 1 zero vector, whose lower-
left block is the 1× 3 zero vectors, and whose lower-right block is the scalar 1. The
second equality defines a 2× 2 block matrix where each block is itself a 2× 2 matrix.
The matrix Rxy is just the rotation within the xy-plane, the matrices 0 and 0T have
all zeros, and I is the 2× 2 identity matrix. The vector (x, y , z , w) is transformed to

10.3 A Linear Algebraic Approach 723

(cx − sy , sx + cy , z , w). The next step, a strange thing to do at first glance, is the key
observation in the construction. The rotation by angle θ within the xy-plane can be
thought of as a composition of two rotations, each by angle θ/2:

Rxy =
[

c −s
s c

]
=
[

γ −σ

σ γ

][
γ −σ

σ γ

]
= H 2

where σ = sin(θ/2), γ = cos(θ/2), and H is the rotation matrix for the half-angle
θ/2 that controls the rotation in the xy-plane. The matrix in equation (10.24) may be
factored into

R0 =
[

H 0

0T I

][
H 0

0T I

]

Although certainly the simplest factorization you might think of, the identity
matrix I that keeps z and w fixed during the rotations can be replaced by H and H T.
That is, we actually can allow z and w to change during each half-angle rotation in
the xy-plane as long as we make sure z returns to its original value after both operations.
The corresponding factorization is

R0 =
[

H 0

0T H

][
H 0

0T H T

]
=: Q0Q0 (10.25)

where the last equality defines the matrices Q0 and Q0, themselves rotations in 4D. In
summary, the half-angle rotation H is applied twice to (x, y) to obtain the full-angle
rotation in the xy-plane. The inverse half-angle rotation H T is applied to (z , w), a
rotation within the zw-plane, but that rotation is undone by H in the second oper-
ation, the end result being that (z , w) is unchanged by the composition. Figure 10.2
illustrates this.

What does this really gain us? For the 3D rotation matrix R0 we have a loss rather
than a gain. The 3D matrix requires storing two precomputed numbers, s and c . The
zeros and one are in known positions and do not need to be stored in general memory.
The application of R to (x, y , z) is computed as Rxy (x, y) since z is unchanged. This
requires a product of a 2× 2 matrix and a 2× 1 vector that uses 6 operations (4 mul-
tiplications and 2 additions). The 4D matrix requires storing σ and γ – no change in
memory requirements. However, the blind application of the right-hand-side matri-
ces in equation (10.25) leads to computing terms H (x, y), H (H (x, y)), H T(z , w), and
H (H T(z , w)) for a total of 24 operations. We could be clever and realize that (z , w)

will not change, but that still leaves us with computing H (x, y) and H (H (x, y)) for
a total of 12 operations. Being even more clever, we realize that H 2 = Rxy and just
compute Rxy (x, y). This just brings us full circle with no gain.

The real gain occurs by constructing a 4D rotation matrix R1 that corresponds
to the general 3D rotation matrix R1 constructed by equations (10.4) and (10.13).
We need to “lift” all our basis vectors into IR4 by appending a zero w-component.
These vectors will be written as block matrices to preserve the notion of the first three

724 Chapter 10 Quaternions

y

x

w

z

y

x

w

z

/2

/2

y

x

w

z

0

0

0

Figure 10.2 A 3D rotation about the z-axis that is represented as the product of two 4D rotations.

components living in IR3. Additional vectors are defined to allow us to have a standard
basis and an alternate basis for IR4. The standard basis is {ı̃, j̃ , k̃, �̃}, where

ı̃ =
[

ı

0

]
, j̃ =

[
j

0

]
, k̃ =

[
k
0

]
, �̃=

[
0
1

]
(10.26)

The alternate basis is {ã, b̃, d̃, �̃}, where

ã =
[

a
0

]
, b̃=

[
b
0

]
, d̃=

[
d
0

]
(10.27)

The construction in equation (10.4) is mimicked by choosing P = [ã | b̃ | d̃ | �̃] and
computing

R1 =PR0PT = PQ0Q0PT = (PQ0PT)(PQ0PT)=: Q1Q1

where the last equality definesQ1 andQ1. The matrixQ0 represents a general 4D rota-
tion with respect to the alternate basis. The matrix Q1 represents the same rotation,

10.3 A Linear Algebraic Approach 725

but with respect to the standard basis and is obtained by

Q1 = PQ0PT

= [ã b̃ d̃ �̃
]
⎡
⎢⎢⎣

γ −σ 0 0
σ γ 0 0
0 0 γ σ

0 0 −σ γ

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

ãT

b̃
T

d̃
T

�̃
T

⎤
⎥⎥⎥⎥⎦

= γ
(

ããT+ b̃b̃
T+ d̃d̃

T+ �̃�̃
T
)
+σ

(
b̃ãT− ãb̃

T+ d̃�̃
T− �̃d̃

T
)

(10.28)

A construction analogous to the one that produced equation (10.10) may be used
to obtain

I = ããT+ b̃b̃
T+ d̃d̃

T+ �̃�̃
T

(10.29)

where I is the 4× 4 identity matrix. The equation (10.11) extends to four dimen-
sions as

b̃ãT− ãb̃
T =

[
b
0

][
aT 0

]−[a
0

][
bT 0

]= [baT− abT 0

0T 0

]
=
[

D 0

0T 0

]

It is easy to verify that

d̃�̃
T− �̃d̃

T =
[

0 d

−dT 0

]

The two matrices may be added to form a new matrix,

D =
[

D d

−dT 0

]
= b̃ãT− ãb̃

T+ d̃�̃
T− �̃d̃

T
(10.30)

Equations (10.29) and (10.30) are replaced in equation (10.28) leading to the
representation:

Q1 = γ I+σD =
[

γ I +σD σd

−σdT γ

]
(10.31)

where I is the 3× 3 identity and D is the skew-symmetric matrix defined in the last
section. A similar construction leads to

Q1 =
[

γ I +σD −σd

σdT γ

]
(10.32)

A quick calculation that uses equation (10.13) will verify that

R1 =Q1Q1 =
[

γ I +σD −σd

σdT γ

][
γ I +σD σd

−σdT γ

]
=
[

R1 0

0T 1

]

726 Chapter 10 Quaternions

The application to a vector v ∈ IR3 is to apply R1 as shown:

[
v′
0

]
=R1

[
v
0

]

The 3D result is v′ = R1v.
The matrix Q1 has a special form:

Q1 =

⎡
⎢⎢⎣

γ −σd3 σd2 σd1

σd3 γ −σd1 σd2

−σd2 σd1 γ σd3

−σd1 −σd2 −σd3 γ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

w −z y x
z w −x y

−y x w z
−x −y −z w

⎤
⎥⎥⎦ (10.33)

where the last equality defines x = σd1, y = σd2, z = σd3, and w = γ . The names x,
y , z , and w of these quantites are not to be confused with the names of the variable
components for vectors in IR4. I use these names because that is the standard choice
for the components of a quaternion to which Q1 happens to be related. Although Q1

has 16 entries, only four of them are unique – the last column values. Moreover, Q1

uses those same four values. The 4× 4 matrix Q requires less storage than the nine
values for a 3× 3 rotation matrix.

One issue that has not yet been addressed is composition of rotations. Let us do
so now. Let R=QQ and S =PP be two of our 4D rotations that correspond to 3D
rotation matrices R and S, respectively. The composition in the 4D setting is

SR = (PP) (QQ)= P (PQ)Q= P (QP)Q= (PQ)(PQ)

The astute reader will say, Wait a moment, and remind me that matrix multiplica-
tion is generally not commutative, so how can we switch the order in PQ=QP? As
it turns out, the matrices P and Q do commute. This can be verified with a moderate
amount of symbolic manipulation. What this means is that we can store Q to repre-
sent R, store P to represent S, and compute the product PQ and store to represent
the composition SR. If Q is stored as the 4-tuple (x0, y0, z0, w0) and P is stored as
the 4-tuple (x1, y1, z1, w1), we need compute only the unique values in PQ, call them
(x2, y2, z2, w2). We can do this by computing P times the last column of Q, the result
being the last column of P :

⎡
⎢⎢⎣

x2

y2

z2

w2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1 −z1 y1 x1

z1 w1 −x1 y1

−y1 x1 w1 z1

−x1 −y1 −z1 w1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x0

y0

z0

w0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

w1x0− z1y0+ y1z0+ x1w0

z1x0+w1y0− x1z0 + y1w0

−y1x0+ x1y0+w1z0+ z1w0

−x1x0− y1y0− z1z0+w1w0

⎤
⎥⎥⎦

The product PQ effectively represents the composition of the 3D rotations. Notice
that the right-hand side values in the equation are those of equation (10.18), the

10.4 Interpolation of Quaternions 727

definition for quaternion multiplication, when computing q1q0 = (w1 + x1i + y1j+
z1k)(w0 + x0i+ y0j+ z0k). To rotate a vector using R =QQ,

ũ =
[

u
0

]
=QQ

[
v
0

]
=QQṽ.

This is the matrix equivalent of equation (10.22).

10.4 Interpolation of Quaternions

An application that benefits from a quaternion representation of rotation is keyframe
animation. The rotational keyframes must be interpolated to produce reasonable
in-between rotations. The quaternions representing the rotations can themselves be
interpolated in a natural manner, as described in this section.

10.4.1 Spherical Linear Interpolation

The 4-tuple (x, y , z , w) that represents the matrix Q was already shown to be unit
length when viewed as a vector in IR4. That means it is a point on the hypersphere
of radius 1 that is centered at the origin of IR4. This is just a fancy way of stating the
geometry associated with the algebraic equation x2+ y2 + z2+w2 = 1.

A standard problem in computer graphics and animation is to interpolate two
3D rotation matrices R0 and R1 for various choices of t ∈ [0, 1]. The interpolant is
denoted R(t), a rotation matrix itself, and it is required that R(0) = R0 and R(1)= R1.
The 4-tuple representations of the rotation matrices and the corresponding hyper-
sphere geometry allow for a simple yet elegant interpolation called spherical linear
interpolation, or slerp for short. If qi = (xi , yi , zi , wi) are the 4-tuple representations
for Ri (i = 0, 1) and if q(t) is the 4-tuple representing R(t), then a reasonable geo-
metric condition to impose is that q(t) lie on the hyperspherical arc connecting q0
and q1. Moreover, the angle between q(t) and q0 should be proportional to the angle
φ between q0 and q1 with constant of proportionality t . Figure 10.3 illustrates this by
showing the plane spanned by q0 and q1 and the circular arc connecting them within
that plane.

The angle φ ∈ (0,π) between q0 and q1 is indirectly obtained by a dot prod-
uct, cos(φ)= q0 · q1. The interpolant is required to be of the form q(t)= c0(t)q0+
c1(t)q1 for some to-be-determined coefficient functions c0(t) and c1(t). Construc-
tion of q(t) uses only trigonometry and solving two equations in two unknowns. As t
uniformly varies between 0 and 1, the values q(t) are required to uniformly vary along
the circular arc from q0 to q1. That is, the angle between q(t) and q0 is tφ and the
angle between q(t) and q1 is (1− t)φ. Dotting the equation for q(t) with q0 yields

cos(tφ) = c0(t)+ cos(φ)c1(t)

728 Chapter 10 Quaternions

q1

0

q0

q(t)

(1 – t)

Figure 10.3 Illustration of the spherical linear interpolation, or slerp, of two vectors.

and dotting the equation with q1 yields

cos((1− t)φ) = cos(φ)c0(t)+ c1(t)

These are two equations in the two unknowns c0 and c1. The solution for c0 is

c0(t) = cos(tφ)− cos(φ)cos((1− t)φ)

1− cos2(φ)
= sin((1− t)φ)

sin(φ)

The last equality is obtained by applying double-angle formulas for sine and cosine.
By symmetry, c1(t)= c0(1− t). Or solve the equations for

c1(t)= cos((1− t)φ)− cos(φ)cos(tφ)

1− cos2(φ)
= sin(tφ)

sin(φ)

The spherical linear interpolation is

slerp(t ; q0, q1)=
sin((1− t)φ)q0+ sin(tφ)q1

sinφ
(10.34)

for 0≤ t ≤ 1. It is easy to verify that slerp(0; q0, q1)= q0 and slerp(1; q0, q1)= q1.
Using trigonometry applied directly to equation (10.34), you can also verify that
|slerp(t ; q0, q1)| = 1 for all t .

The derivative of slerp with respect to time is

slerp′(t ; q0, q1)=
−φ cos((1− t)φ)q0+φ cos(tφ)q1

sinφ
(10.35)

It is easy to verify that slerp′(0; q0, q1)= φ(−(cos φ)q0 +q1)/ sinφ, and
slerp′(1; q0, q1)= φ(−q0+ (cos φ)q1)/ sinφ. Using trigonometry applied directly

10.4 Interpolation of Quaternions 729

to equation (10.35), you can also verify that |slerp′(t ; q0, q1)| = φ for all t . The
derivative vector has constant length, so a uniform sampling of t produces a uniform
sampling of points on the circular arc.

If you were to specify a unit-length vector T that is tangent to the unit hyper-
sphere at a point q on the hypersphere, and if you specify an angular speed φ, a circular
arc starting at q in the direction of T is

p(t)= cos(tφ)q+ sin(tφ)T (10.36)

for t ≥ 0. In terms of the slerp function, q is the starting point q0, φ is the angle
between q0 and the ending point q1, and T= slerp′(0; q0, q1)/φ.

10.4.2 Spherical Quadratic Interpolation

In many applications there is a need for higher-order interpolation than what slerp
provides. This section introduces spherical quadratic interpolation as an iteration of
slerp operations to produce a higher-order result. The motivation for this comes from
quadratic interpolation of four points in the plane that form a convex quadrilateral,
call the points vi for 0≤ i ≤ 3. Figure 10.4 shows a typical configuration.

Bilinear interpolation is used to generate points inside the quadrilateral. To rep-
resent the linear interpolation, or lerp, of the two input vectors, we use the notation

v1

v0 v3

v2

p

(1 – t)v1 + tv2

(1 – s)v3 + sv2

(1 – t)v0 + tv3

(1 – s)v0 + sv1

p = (1 – s)[(1 – t)v0 + tv3] + s[(1 – t)v1 + tv2]
 = (1 – t)[(1 – s)v0 + sv1] + t[(1 – s)v3 + sv2]

Figure 10.4 Four points forming a convex quadrilateral. Any interior point of the quadrilateral
can be generated using bilinear interpolation with parameters s and t . The curve
connecting v0 and v3 indicates that we want a particular function s = f (t) with
f (0)= f (1)= 0.

730 Chapter 10 Quaternions

lerp(r ; a, b)= (1− r)a+ rb for r ∈ [0, 1]. The bottom and top edges are linearly
interpolated using parameter t ∈ [0, 1]. The interpolated point for the bottom edge is

u0 = (1− t)v0+ t v3 = lerp(t ; v0, v3)

and the interpolated point for the top edge is

u1 = (1− t)v1+ t v2 = lerp(t ; v1, v2)

The line segment connecting u0 and u1 can be itself generated by linear interpolation
of the endpoints using parameter s ∈ [0, 1]. Such points are of the form,

p= (1− s)u0+ su1

= (1− s)[(1− t)v0+ t v3]+ s[(1− t)v1+ t v2]

= lerp(s; lerp(t ; v0, v3), lerp(t ; v1, v2))

We want a curve that connects the initial point v0 and the final point v3. This
requires imposing a functional constraint s = f (t) for some function f . It is neces-
sary that f (t) ∈ [0, 1] since s ∈ [0, 1]. For the curve to contain the initial point and
final point, we need f (0)= 0 and f (1)= 0, respectively. The function f (t) should
also be symmetric about the t -interval midpoint 1/2 so that the curve generated by
the ordered input points and the curve generated by the reverse-ordered input points
are the same. The constraint is therefore f (1− t) = f (t) for all t ∈ [0, 1]. The simplest
function to use that satisfies the constraints is the quadratic f (t)= ct(1− t) for some
c ≤ 4; the bound on c guarantees f (t) ≤ 1. Although there are many choices for c , a
natural one is c = 2 so that at the midpoint t = 1/2, the interpolation produces the
average of the four points. The curve is given parametrically as

p(t) = quad(t ; v0, v1, v2, v3)= lerp(2t(1− t); lerp(t ; v0, v3), lerp(t ; v1, v2)) (10.37)

A couple of observations are in order. First, as a function of s and t the interpo-
lation scheme is bilinear. The coefficients of the input points are quadratic functions,
hence the name quadratic interpolation. However, once the constraint s = 2t(1− t) is
imposed, the coefficients are cubic polynomials in t , so the name “quadratic inter-
polation” is a misnomer. Second, equation (10.37) is not the cubic Bézier curve
corresponding to four control points. The Bézier curve is

b(t) = (1− t)3v0+ 3(1− t)2 t v1+ 3(1− t)t 2v2+ t 3v3

= lerp(t ; lerp(t ; lerp(t ; v0, v1), lerp(t ; v1, v2)),

lerp(t ; lerp(t ; v1, v2), lerp(t ; v2, v3)))

The coefficient of v0 in equation (10.37) is (1− 2t(1− t))(1− t) and is not the
same as the coefficient of v0 in b(t), namely (1− t)3 . The Bézier curve has end tan-
gents b′(0)= 3(v1− v0) and b′(1)= 3(v3− v2). The quadratic interpolation curve
has end tangents p′(0)= (v3− v0)+ 2(v1− v0) and p′(1)= (v3− v0)− 2(v2− v3).

10.5 Derivatives of Time-Varying Quaternions 731

Using the analogy of the iterated lerp function to define the quad function, we
define the squad function of quaternions as

squad(t ; q0, q1, q2, q3)= slerp(2t(1− t); slerp(t , q0, q3), slerp(t , q1, q2)) (10.38)

You may verify that squad(0; q0, q1, q2, q3)= q0 and squad(1; q0, q1, q2, q3)= q3.

10.5 Derivatives of Time-Varying
Quaternions

In equation (6.68) of Section 6.5 we stated that the derivative of a time-varying
quaternion q(t) is

dq(t)

dt
= 1

2
ω(t)q(t)

where ω(t) is the quaternion representation of the angular velocity vector w(t)=
(w1 , w2, w3). As such, ω(t) = w1i +w2j+w3k ; that is, ω(t) has zero real part. It is
not necessary that ω(t) be a unit-length quaternion since we know that the angular
velocity w(t) is not necessarily a unit-length vector.

The derivative formula is proved according to the following construction that is
a slightly more formal and detailed version of what occurs in the fine book [Kui99].
Let q(t) = cos(θ(t)/2)+ u(t) sin(θ(t)/2), where u = u1i + u2j+ u3k with u2

1 + u2
2 +

u2
3 = 1. The rotation angle for q(t) is θ and the rotation axis has unit-length direc-

tion u = (u1, u2, u3). The quaternions q(t + h) and q(t) are both unit length, so the
product q(t + h)q−1(t) is unit length; write it as

q(t + h)q−1(t)= p(t , h)= cos(α(t , h)/2)+ v(t , h) sin(α(t , h)/2) (10.39)

where v = v1i+ v2j+ v3k with v2
1 + v2

2 + v2
3 = 1. The quaternion p(t , h) has angle

of rotation α(t , h) and rotation axis direction v= (v1, v2, v3). When h = 0 the left-
hand side is q(t)q−1(t)= 1, so α(t , 0)= 0. Multiplying equation (10.39) by q(t),
subtracting q(t), and dividing by h leads to

q(t + h)− q(t)

h
= cos(α(t , h)/2)− 1+ v(t , h) sin(α(t , h)/2)

h
q(t)

Taking the limit as h goes to zero:

dq

dt
= lim

h→0

q(t + h)− q(t)

h

= lim
h→0

(
cos(α(t , h)/2)− 1+ v(t , h) sin(α(t , h)/2)

h
q(t)

)

=
(

lim
h→0

cos(α(t , h)/2)− 1

h
+ v(t , 0) lim

h→0

sin(α(t , h)/2)

h

)
q(t)

732 Chapter 10 Quaternions

=
(

lim
h→0

−(αh(t , h)/2) sin(α(t , h)/2)

1
+u(t) lim

h→0

(αh(t , h)/2)cos(α(t , h)/2)

1

)
q(t)

= (αh(t , 0)/2)u(t)q(t)

where the next to last equality uses L’Hôpital’s rule and αh(t , h)= ∂α(t , h)/∂h. So we
have

dq

dt
= 1

2
(αh(t , 0)u(t))q(t) = 1

2
ωq (10.40)

Alternatively, we can use the approach taken in [DKL98]. Specify q(t)= γ +σu,
where γ = cos(θ(t)/2), σ = sin(θ(t)/2), and u = u(t) has zero real part and its
corresponding vector u is unit length. Differentiating directly with respect to t :

dq

dt
=−(θ̇ /2)σ +σ u̇ + (θ̇/2)γ u

= (θ̇/2)(γ u−σ)+σ u̇

= (θ̇/2)uq+σ u̇

= 1

2

(
θ̇u+ 2σ u̇q−1)q

Since u · u= 1, the derivative u̇ satisfies u · u̇= 0; that is, u̇ is perpendicular to u.
Consider:

u̇q−1 = u̇(γ −σu)

= γ u̇−σ u̇u

= γ u̇−σ(−u̇ · u+ u̇× u) By equation (10.21)

= γ u̇−σ(u̇ × u) Since u̇ and u are perpendicular as vectors

= 0+ (γ u̇−σ(u̇ × u))

The last equality stresses the fact that the real part is zero. This is true since u̇ and
u̇× u both have zero real parts. The derivative of q(t) is therefore,

dq

dt
= 1

2
(θ̇u+ 2σγ u̇− 2σ 2u̇× u)q

= 1

2
(θ̇u+ sin(θ)u̇ + (cos(θ)− 1)u̇ × u)q

= 1

2
ωq

(10.41)

Notice that u, u̇, and u̇× u in the term for angular velocity form an orthonormal set
as vectors. Compare this to equation (2.40) to see, indeed, that the quaternion ω(t)
does correspond to the angular velocity vector w(t).

Yet another approach is given in [KKS96] and uses logarithmic and exponential
maps. However, this complicated approach is unnecessary as evidenced by the sim-
plicity of the preceding proofs.

C h a p t e r 11
Differential

Equations

This chapter is a brief summary of the basic concepts you need for working with
ordinary differential equations. The modifier ordinary refers to equations that

involve functions of a single independent variable. Rates of change of functions of
multiple independent variables fall under the topic of partial differential equations,
something we will not cover here. Thus, I will refer to ordinary differential equations
in this chapter only by the term differential equations. A very good undergraduate
textbook on the topic of ordinary differential equations is [Bra84] and it emphasizes
an applied approach of the flavor of the problems in this book. A graduate textbook
that is oriented towards physical applications and covers the advanced mathematical
topics you need to fully understand the analysis of the physical models is [HS74].

Since our applications have time-varying quantities in physical simulations, the
independent variable in the differential equations is always time t . The derivatives of
dependent variables will use the dot notation. For example, if x(t) is a function of
t , the first derivative with respect to t is denoted ẋ(t) and the second derivative is
denoted ẍ(t).

11.1 First-Order Equations

A first-order differential equation of a real-valued function x(t) of the independent
variable t is

ẋ = f (t , x) (11.1)

© 2010 by Elsevier Inc. All rights reserved. 733
DOI: 10.1016/B978-0-12-374903-1.00011-6

734 Chapter 11 Differential Equations

The function f (t , x) is a known quantity. The left-hand side of the equation is the
formal expression for the first derivative of x with respect to t , which measures the
rate of change of x over time. The right-hand side is what we wish the rate of change
to be. For the sake of illustration, suppose that x(t) measures the position of an object
moving along a straight line. The velocity of the object is ẋ(t) and the acceleration is
ẍ(t). Equation (11.1) is what we want the velocity to be. Knowing the velocity ẋ(t) at
any time t , our goal is to determine what the position x(t) is at any time. In a sense
we want to integrate the velocity to obtain position.

An instinctive method for solving for position is the following. If we were to spec-
ify an initial position x(0), equation (11.1) tells us immediately that the initial velocity
is ẋ(0)= f (0, x(0)). We can differentiate equation (11.1) with respect to t and apply
the chain rule from calculus to obtain

ẍ(t) = ft (t , x)+ fx (t , x) ẋ(t)

where ft = ∂f /∂t and fx = ∂f /∂x. The initial acceleration is therefore ẍ(0) =
ft (0, x(0))+ fx (0, x(0))ẋ (0). Assuming that f (t , x) is differentiable of all orders, we
could continue differentiating and evaluating to obtain the value of every derivative
of x(t). If x(n)(t) denotes the nth derivative of x(t), then we can compute the initial
values of all derivatives x(n)(0). If you recall from calculus, the formal Taylor series of
x(t) expanded about t = 0 is

x(t)=
∞∑

n=0

x(n)(0)

n!
t n

If we can compute all the derivatives of x(t) at time 0, it appears that we have an
expression for x(t). I used the term formal. The right-hand side is an infinite sum.
As you are aware, such a sum does not necessarily have a value. The general topic in
calculus is convergence (or divergence) of the series. Moreover, not all functions have a
Taylor series representation. Functions that do and for which the series converges for
some interval of t are called analytic functions.

Unfortunately, the reality is that the Taylor series approach is not useful, espe-
cially for a computer application. We do not have the luxury of computing an infinite
number of derivatives! At any rate, the process would require some general expression
for partial derivatives of f (t , x). Since f arises in our physical applications as applied
forces, we might not even know a formula for it. In most cases f (t , x) itself is not an
analytic function which means, most likely, that x(t) is not representable as a Taylor
series. What we need to do instead is numerically solve the equation. That is the topic
of Chapter 13. We will look at a few relevant concepts for differential equations before
pursuing numerical methods for solving them.

An initial value problem for a first-order differential equation is of the form,

ẋ = f (t , x), t ≥ t0, x(t0)= x0 (11.2)

11.1 First-Order Equations 735

The differential equation is specified together with a selected initial time t0 and initial
function value x0 = x(t0). These are the types of problems we will see in practice.
Some initial value problems can be solved in closed form. For example, consider

ẋ = f (t), t ≥ t0, x(t0)= x0

where f (t) depends only on time. Formally we can write the solution as an integral,

x(t) = x0+
t∫

t0

f (τ)dτ

If a closed-form exists for
∫

f (t)dt , we can immediately write down the solution
for x(t). For example, if f (t)= t p , a polynomial term, then

∫
f (t)dt = t p+1/(p+ 1).

The solution to the differential equation is then x(t) = x0+ (t p+1 − t p+1
0)/(p+ 1).

In many cases, though, we do not have a closed-form for
∫

f (t)dt . The integral itself
must be evaluated numerically using a standard numerical integrator.

Another type of problem that can be solved in closed form, so to speak, is a first-
order linear differential equation. This is of the form,

ẋ = a(t)x + b(t), t ≥ t0, x(t0)= x0 (11.3)

where a(t) and b(t) are known functions of time. If b(t)= 0 for all t , the equation
ẋ = a(t)x is said to be homogeneous. The formal solution is

x(t) = x0 + exp

⎛
⎝ t∫

t0

a(τ)dτ

⎞
⎠
⎡
⎣x0+

t∫
t0

exp

⎛
⎝−

s∫
t0

a(τ)dτ

⎞
⎠b(s)ds

⎤
⎦

If we can integrate the various integrals in this equation in closed form, we can easily
evaluate x(t). If not, numerical integrators are required. The homogeneous equation
(11.3) can be solved in closed form when the coefficient a(t) is a constant for all time.
That is, ẋ = ax for some constant a with x(t0)= x0 has the solution,

x(t) = ea(t−t0)x0 (11.4)

as you can well verify.
Another special type of equation is a separable equation. These are of the form,

dx/dt = ẋ = f (t)/g (x), t ≥ t0, x(t0)= x0

The variables may be separated and placed on different sides of the equation,
g (x)dx = f (t)dt , then integrated:

x∫
x0

g (ξ)dξ =
t∫

t0

f (τ)dτ

736 Chapter 11 Differential Equations

The same issue occurs regarding closed formulas for the integrals. If we do not have
closed formulas, we must resort to numerical integration to estimate a solution.
Even if we do have closed formulas, there is still a potential problem. If G(x) is an
antiderivative of g (x), that is dG/dx = g , and if F(t) is an antiderivative of f (t), so
that dF/dt = f , then the separated and integrated equation becomes G(x)−G(x0)=
F(t)− F(t0). To solve explicitly for x, we need to be able to invert the function G(x);
that is, x = G−1(F(t)− F(t0)+G(x0)). The inversion might not be possible in closed
form, and once again you must resort to numerical techniques. We already saw an
application of separable equations to solving the simple pendulum problem, Exam-
ple 3.4. The separation was not for numerically solving the angle as a function of
time; rather, it was to determine an estimate for the period of the pendulum.

The existence of closed formulas for the integrals or for inverse functions might be
of pedagogic importance in a class on differential equations but not so in applications.
The numerical differential equation solvers work directly with f (t , x) in the equation
and only require evaluations of that function.

11.2 Existence, Uniqueness, and
Continuous Dependence

Perhaps you might object to the title of this section – just like a mathematician to cloud
the issue with facts! There is a good chance that the tutorials you find about physics
simulations using differential equations of motion do not discuss the topic mentioned
in the section title. Our interest is in numerically solving the initial value problem
of equation (11.2). You can apply your favorite numerical solver to the differential
equations of your application. A computer is quite happy to produce output without
any thought, so to speak. The fundamental question on computer output: Can you
trust it?

In the case of the initial value problem, in order for you to trust your output you
really should be assured that the problem has a solution. This is the existence ques-
tion about the initial value problem. Does there exist a solution to the problem? If
there is a solution, your chances of finding it with a computer have just improved. If
there is no solution, your output is useless. Better to do some type of analysis before
implementing the problem or running a program to solve the problem. To make an
analogy, consider solving a linear system of equations Ax= b, where the n× n coef-
ficient matrix A and the n× 1 vector b are inputs into the program. The output must
be the solution x, an n× 1 vector. Well, it is quite possible that the linear system does
not have a solution. Your linear system solver must be prepared to inform you that
is the case. If you implemented Gaussian elimination to row-reduce the augmented
matrix [A | b] to upper echelon form H = [U |c], where U is upper triangular, there
is no solution to the system when the rank(U) < rank(H). The consequence of not
trapping the rank condition is that you most likely will generate an exception due to
division by zero.

11.2 Existence, Uniqueness, and Continuous Dependence 737

Even if there is a solution, you still might not be able to trust the output of the
program. What if there are multiple solutions to the same initial value problem? This
is the uniqueness question about the initial value problem. Using our analogy of linear
systems, it is possible that Ax= b has multiple solutions. In fact, the theory says that
if it has two solutions, it must have infinitely many solutions. This happens when
rank(U)= rank(H) < n. An algorithm based on Gaussian elimination can trap this,
report that there are multiple solutions, and terminate. However, your application
might want to know more information. For example, the output might be a basis for
the affine space of solutions. In the case of differential equations, if the initial value
problem has multiple solutions, the physical modeling is more than likely in error.
We expect that the modeling produces equations of motion for which there exists a
unique solution.

Although I will not delve into the gory mathematical details, you can find in
[Bra84], as well as in any other textbook on differential equations, the following the-
orem regarding existence and uniqueness of a solution to the initial value problem
11.2 of equation (11.2).

Theorem ■ Let f (t , x) and fx(t , x) be continuous in the rectangle R defined by t0 ≤
t ≤ t0+ a and |x − x0| ≤ b for some positive constants a and b. Let M =
max(t ,x)∈R |f (t , x)|, a bound on the absolute value of f (t , x) on the rectangle.
Define α =min(a, b/M). The initial value problem ẋ = f (t , x) with x(t0)= x0

has a unique solution x(t) defined for t0 ≤ t ≤ t0 +α. ■

The bound M is guaranteed because a continuous function on a closed and bounded
rectangle must have a minimum and a maximum, a standard result from calculus.
The proof is not important to us, but the result is. As long as our function f (t , x)

has a continuous derivative in x in a small region about the initial point (t0, x0), we
have a unique solution. In fact, weaker conditions on f than having a continuous x-
derivative still lead to existence-uniqueness results. But for all practical purposes the
types of functions you expect to occur in the equations of motion will have continuous
derivatives.

If your application “switches on and off” input forces and torques, you do not
even have a continuous function. The theory of differential equations will provide you
with yet more tools on showing existence and uniqueness, so feel free to investigate
this topic in detail. A field of particular interest is control theory, by which you try
to select f (t , x) to force the solution x(t) to behave in certain ways. For example, a
pendulum with a metal end is swinging between two electric magnets. The magnets
are either on or off; you get to choose their on/off status over time in order to get the
pendulum to stop in the minimum amount of time.

The third portion of the section title is about continuous dependence of the solu-
tion on the input parameters. If there exists a unique solution for each choice of initial
values (t0 , x0), we can write the solution to indicate its dependence on the values:
x(t ; t0 , x0). Our concern is that this function is continuous in t0 and x0. Why should

738 Chapter 11 Differential Equations

we care? Think about it from the perspective of numerical round-off errors. If a small
change in the input x0 results in a very large change in the solution near initial time,
we have an ill-conditioned problem whose numerical errors can propagate and lead to
significantly incorrect outputs. In the applications we encounter with physical simula-
tion, invariably we do have continuous dependence, so we will not concern ourselves
at the moment with theoretical results.

11.3 Second-Order Equations

A second-order differential equation of a real-valued function x(t) of the independent
variable t is

ẍ = f (t , x, ẋ) (11.5)

The function f (t , x, ẋ) is a known quantity. The left-hand side of the equation is the
formal expression for the second derivative of x with respect to t . For physical applica-
tions where x(t) measures position, the second derivative measures acceleration, the
rate of change of velocity ẋ(t). The right-hand side is what we wish the rate of change
to be. From this second-derivative information we wish to construct x(t) itself. The
initial value problem for the second-order equation is

ẍ = f (t , x, ẋ), t ≥ t0, x(t0)= x0, ẋ(t0)= ẋ0 (11.6)

where t0, x0, and ẋ0 are user-supplied inputs.
The initial value problem for a second-order linear differential equation is

ẍ = a(t)ẋ + b(t)x + c(t), t ≥ t0, x(t0)= x0, ẋ(t0)= ẋ0 (11.7)

The homogeneous equation is the case c(t)= 0 for all t . Additionally, the equation
with constant coefficients is

ẍ = aẋ + bx, t ≥ t0, x(t0)= x0, ẋ(t0)= ẋ0

From the classical theory, at least one solution is of the form x(t) = ert for a constant
r that is possibly complex-valued. To determine r , compute the derivatives ẋ(t)= rert

and ẍ(t) = r 2ert and substitute into the equation to obtain

0 = ẍ − aẋ − bx = r 2ert − arert − bert = (r 2− ar − b)ert

For this equation to be true for all t , we need r 2− ar − b = 0, a quadratic equation in
r . If the equation has two distinct real roots r1 and r2, both er1t and er2t are solutions
to the differential equation. The solution to the initial value problem is

x(t) = r2x0− ẋ0

r2− r1
er1(t−t0)− r1x0− ẋ0

r2− r1
er2(t−t0) (11.8)

11.3 Second-Order Equations 739

This equation is valid even if the roots are distinct, complex-valued numbers. How-
ever, the coefficients are then complex-valued and the exponential functions have
powers that are complex-valued. If the roots are α± ıβ, where β �= 0, then Euler’s
identity eiθ = cos θ + ı sinθ) yields

e(α+ıβ)t = eαt (cos(βt)+ ı sin(βt))

Some complex arithmetic applied to our solution in order to rearrange it into only
real-valued expressions leads to

x(t) =
(

x0 cos(β(t − t0))+ ẋ0−αx0

β
sin(β(t − t0))

)
eα(t−t0) (11.9)

Finally, the quadratic equation can have a repeated real root r = a/2 (when b =
−a2/4). The theory shows that two solutions to the differential equation are ert and
tert . The solution to the initial value problem is

x(t) = (x0+ (ẋ0 − rx0)(t − t0)) er(t−t0) (11.10)

An understanding of this example is important for higher-order linear equa-
tions with constant coefficients. In particular, the relationship between the roots of
the quadratic equation r 2− ar − b = 0 and the types of solutions to the differential
equation, namely ert , eαt cos(βt), eαt sin(βt), and tert , is important.

The theory of differential equations includes analysis of second-order equations
in the form of equation (11.6). From our perspective we want only to solve the initial
value problem numerically. We can do so by formulating the second-order equation
as two first-order equations. If we define v(t)= ẋ, then v̇ = ẍ = f (t , x, ẋ)= f (t , x, v).
The first-order system of equations with initial conditions corresponding to equation
(11.6) is [

ẋ
v̇

]
=
[

v
f (t , x, v)

]
, t ≥ t0,

[
x(t0)

v(t0)

]
=
[

x0

ẋ0

]
(11.11)

To be suggestive of the form of equation (11.2), define y= [x v]T, g(t , y)=
[v f (t , x, v)]T, and y0 = [x0 ẋ0]T. The initial value problem for the first-order
system is

ẏ= g(t , y), t ≥ t0, y(t0)= y0 (11.12)

The importance of maintaining the form of the equation has to do with developing
numerical methods for solving it. Methods that apply to equation (11.2) naturally
extend to systems in the form of equation (11.12). The repackaging also applies to a
system of n second-order equations to generate a first-order system of 2n equations.
This latter case is exactly what we do in our physical simulations. For instance, see
Example 3.10.

740 Chapter 11 Differential Equations

11.4 General-Order Differential Equations

The nth order differential equation of a real-valued function x(t) of the independent
variable t is

x(n) = f (t , x, x(1), . . . , x(n−1)) (11.13)

where x(k)(t) denotes the kth order derivative of x(t). The function f (t , y1, . . . , yn) is
a known quantity. The left-hand side of the equation is the formal expression for the
nth order derivative of x with respect to t . The right-hand side is what we wish that
derivative to be. We wish to construct x(t) itself from the equation. The initial value
problem for the nth order equation is

x(n) = f (t , x, x(1), . . . , x(n−1)), t ≥ t0, x(k)(t0)= x(k)
0 , 0≤ k ≤ n− 1 (11.14)

where t0 and x(k)
0 for 0≤ k ≤ n− 1 are user-supplied inputs.

The initial value problem for an nth order linear differential equation is

x(n) =
n−1∑
k=0

ak (t)x
(k) + b(t), t ≥ t0, x(k)(t0)= x(k)

0 , 0≤ k ≤ n− 1 (11.15)

The homogeneous equation is the case b(t)= 0 for all t . Additionally, the equa-
tion with constant coefficients is

x(n) =
n−1∑
k=0

akx(k), t ≥ t0, x(k)(t0)= x(k)
0 , 0≤ k ≤ n− 1 (11.16)

for some constants ak for 0≤ k ≤ n− 1. Using the second-order linear equation with
constant coefficients as the model, we expect a general solution of the form x(t) = ert .
The derivatives are x(k)(t) = r kert . Substituting into the differential equation leads to

0 = x(n) −
n−1∑
k=0

ak x = r nert −
n−1∑
k=0

akr kert =
(

r n−
n−1∑
k=0

akr k

)
ert = p(r)ert

where p(r) is a polynomial of degree n and is called the characteristic polynomial for
the differential equation. The only way to make p(r)ert = 0 for all t is if p(r)= 0.
Thus, r must be a root of a polynomial. The fundamental theorem of algebra states
that p(r) is factorable into

p(r)=
d∏

j=1

(r − rj)
mj

where r1 through rd are the distinct roots, mj is the multiplicity of root rj , and∑d
j=1 mj = n. We know that the ak are real-valued, so if a nonreal root occurs, say

11.5 Systems of Linear Differential Equations 741

r = α+ ıβ for β �= 0, then its conjugate r̄ = α− ıβ is also a root. The values r and
r̄ are considered to be distinct roots, of course. Thus, nonreal roots occur in pairs.
If rj is a real-valued root, the contribution to the solution of the differential equa-
tion is the set of functions t �erj t for 0≤ � < mj . If rj = αj + ıβj is a nonreal root,
the contribution of rj and r̄j to the solution of the differential equation is the set of
functions t �eαj t cos(βj t) and t �eαj t sin(βj t) for 0≤ � < mj . If the real-valued roots
are indexed by 1 ≤ j ≤ J0 and the complex-valued roots have indices J0 < j ≤ d , the
general solution to the initial value problem is of the form,

x(t) =
J0∑

j=1

mj−1∑
�=0

C�,j t
�erj t +

d∑
j=J0+1

mj−1∑
�=0

[
D�,j cos(βj t)+E�,j sin(βj t)

]
t �eαj t (11.17)

where the n constants C�,j , D�,j , and E�,j are determined by the initial conditions of
the problem.

Just as we converted the second-order equation to a first-order system, we may
convert the nth order equation to a system. Define yk(t)= x(k−1)(t) for 1≤ k ≤ n.
Differentiating the equation we obtain

ẏk(t)= dx(k−1)(t)

dt
= x(k)(t) = yk+1(t)

The last equation is

ẏn(t) = yn+1(t)= x(n)(t)= f (t , x, x(1) , . . . , x(n−1))= f (t , y1, . . . , yn)

In vector form, define y= [y1 · · ·yn]T, g(t , y)= [y2 · · ·yn f (t , y1, . . . , tn)]T, and y0 =
[x0 x(1)

0 · · · x(n−1)
0]T. The initial value problem for the first-order system is

ẏ= g(t , y), t ≥ t0, y(t0)= y0 (11.18)

which is identical to equation (11.12) except for the dimension of y. Thus, numerical
solvers for first-order systems are all that we need to solve nth order equations.

11.5 Systems of Linear Differential
Equations

We have already observed that an nth order differential equation can be reformulated
as a system of n first-order equations. This applies to linear differential equations,
of course. A special case of interest, both generally and for physical applications, is
the nth order linear equation with constant coefficients. These equations arise in the
stability analysis of the differential equation, a topic discussed in Section 11.6.

The nth order homogeneous linear equation with constant coefficients is equa-
tion (11.16) and has general solution given by equation (11.17). We can reformulate

742 Chapter 11 Differential Equations

the equation and its solution in vector-matrix form. Recall that we defined an n×
1 vector y whose components are yk(t)= x(k−1)(t) for 1 ≤ k ≤ n. The system of
equations is

ẏ= Ay, t ≥ t0, y(t0)= y0 (11.19)

where A is an n× n matrix of constants and where y0 is the vector of initial conditions
for the original equation. The matrix A is specifically

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
a0 a1 a2 · · · an−2 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The solution to the system of equations may be written as

y(t)= eA(t−t0)y0 (11.20)

where eA(t−t0) is formally the exponential of a matrix power. Of course we need to
define what this means. Notice the similarity of this solution to the one for a single
first-order, linear, constant coefficient, homogeneous equation (11.4).

Recall that the Taylor series for the exponential function is

ex =
∞∑

k=0

xk

k!

and that it converges for any real-valued input x. If we formally replace x by an n× n
matrix of constants A, we have an expression for exponentiating a matrix:

eA =
∞∑

k=0

Ak

k!

An advanced course on matrix analysis covers the topic of convergence of such a series;
for example, see [HJ85]. The series does in fact converge for any matrix. The practical
issue, though, is evaluating the series in order to compute the differential equation
solution in equation (11.20). Since we already know the format of the general solution
for the nth order equation with constant coefficients, equation (11.17), we expect
that evaluation of the exponential eA(t−t0) to depend somehow on the roots of the
characteristic polynomial p(r)= r n−∑n−1

k=0 akr k .
The characteristic polynomial does, in fact, show up in the problem. From linear

algebra, the characteristic equation of a square matrix A is defined to be det(rI −A)

= 0. The determinant is indeed the characteristic polynomial p(r)= det(rI −A).
A fact well known in linear algebra is the Cayley–Hamilton theorem that states

11.5 Systems of Linear Differential Equations 743

p(A) = 0, whereby you replace r formally by the matrix A in the characteristic
polynomial. In our case we obtain the equation,

An =
n−1∑
k=0

akAk

The nth power of A is decomposed into a linear combination of smaller powers of
the matrix. The ramification for evaluating eA is that the term An in the power series
formula can be replaced by a linear combination of smaller powers. The next term is

An+1 = A ·An

= A
n−1∑
k=0

akAk

= A
(
a0I + a1A+ · · ·+ an−1An−1)

= a0I + a1A2 + · · ·+ an−1An

= a0I + a1A2 + · · ·+ an−1

n−1∑
k=0

akAk

=
n−1∑
k=0

bkAk

where the constants bk are computed by grouping together like powers of A. We can
repeat this procedure to obtain

An+m =
n−1∑
k=0

cm,kAk

for any m ≥ 0. When m = 0 we have c0,k = ak and when m = 1 we have c1,k = bk from
the formula we derived for An+1. Replacing in the power series:

∞∑
k=0

Ak

k!
=

n−1∑
k=0

Ak

k!
+

∞∑
k=n

Ak

k!

=
n−1∑
k=0

Ak

k!
+

∞∑
m=0

An+m

(n+m)!

=
n−1∑
k=0

Ak

k!
+

∞∑
m=0

n−1∑
k=0

cm,k

(n+m)!
Ak

744 Chapter 11 Differential Equations

=
n−1∑
k=0

Ak

k!
+

n−1∑
k=0

(∞∑
m=0

cm,k

(n+m)!

)
Ak

=
n−1∑
k=0

(
1

k!
+

∞∑
m=0

cm,k

(n+m)!

)
Ak

=
n−1∑
k=0

dkAk

where the last equation defines dk =
∑∞

m=0 cm,k/(n+m)! Thus, the infinite sum is
replaced by a finite sum of the powers Ak with k < n. Unfortunately, this does not
help us reach our final goal of computability because the dk are still infinite sums.

Well, it takes quite a bit more of the power of linear algebra to get us to our
goal. We need to be able to decompose A in such a way as to make the computa-
tion of eA a reasonable endeavor. The motivation comes from diagonalizable matrices.
The matrix A is diagonalizable if there exists a diagonal matrix D and an invertible
matrix P such that A = PDP−1. Powers of such matrices are easy to compute. For
example,

A2 = (PDP−1)(PDP−1)= PD(P−1P)DP−1 = PDIDP−1 = PD2P−1

The square of a diagonal matrix D = Diag(d1, . . . , dn) is D2 =Diag(d2
1 , . . . , d2

n).
Repeating the process we see that

Ak = (PDP−1)k = PDk P−1

where Dk = Diag(dk
1 , . . . , dk

n). The exponential matrix is

eA =
∞∑

k=0

Ak

k!
=

∞∑
k=0

PDk P−1

k!
= P

(∞∑
k=0

Dk

k!

)
P−1 = P Diag(ed1 , . . . , edn)P−1

A special case where A is diagonalizable is when it is a symmetric matrix. The
factorization is A = RDRT, where the columns of R are eigenvectors of A and the
diagonal entries of D are eigenvalues. Not all matrices are diagonalizable, so what to
do? A handful of decomposition formulas can help you compute eA , some good for
mathematical reasons and others good for numerical reasons. Your best bet numer-
ically is to use what is called the S plus N decomposition. The mathematical details
of the decomposition are presented in [HS74]. A square matrix A with real-valued
entries can always be decomposed as A = S+N , where S is a semisimple matrix
and where N is a nilpotent matrix. A real-valued matrix N is said to be nilpotent
if N p = 0 for some power p > 0, but N k �= 0 for powers 1≤ k < p. A real-valued
matrix S is said to be semisimple if, as an operator on n-tuples of complex number,

11.5 Systems of Linear Differential Equations 745

it is diagonalizable. If we were to attempt to use the diagonalizability of S directly,
we would have S = PDP−1 for a diagonal matrix D and an invertible matrix P . The
problem is that D can have nonreal diagonal terms (complex conjugate roots of the
characteristic equation) and P can have nonreal terms. To avoid the nonreal values we
need to factor S = PEP−1, where P is a real-valued invertible matrix and where E is of
the form,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

. . .
rJ0 [

αJ0+1 −βJ0+1

βJ0+1 αJ0+1

]
. . . [

αd −βd

βd αd

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.21)

where the distinct real-valued roots of the characteristic equation are rj for 1≤ j ≤ J0

and the distinct nonreal roots are rj = αj ± ıβj for J0 < j ≤ d . The factorization S =
PEP−1 is always possible for a semisimple matrix.

First, it is important to know that the properties of the exponential function of
a matrix are not always the same as for real numbers. If a and b are real numbers,
then ea+b = eaeb = ebea = eb+a . If A and B are matrices, generally eA+B �= eAeB

and generally eAeB �= eBeA . The failure for equality of eAeB and eBeA should be
intuitive; you are already aware that matrix multiplication is not commutative. The
failure for equality of eA+B and eAeB is not obvious. Now these terms are equal under
very special conditions, in particular when the input matrices themselves commute,
AB = BA.

The decomposition A = S+N has the property that SN =NS, so in fact we can
write eA = eS+N = eSeN . Since S is semisimple, it is factorable as S = PEP−1 where
P is invertible and E is a matrix of the form in equation (11.21). Since N is nilpotent,
the infinite sum of eN is really a finite one because N k = 0 for k ≥ p,

eN =
∞∑

k=0

N k

k!
=

p−1∑
k=0

N k

k!

Combining these leads to a concise formula for eA ,

eA = eSeN = PeEP−1
p−1∑
k=0

N k

k!

746 Chapter 11 Differential Equations

when D = Diag(d1, . . . , dn). The only remaining computation is eE , a matrix which is
shown to be

eE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

er1

. . .
erJ0

eαJ0+1

[
cos(βJ0+1) −sin(βJ0+1)

sin(βJ0+1) cos(βJ0+1)

]
. . .

eαd

[
cos(βd) −sin(βd)

sin(βd) cos(βd)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.22)

The solution to the linear system of differential equations in equation (11.20) is,
therefore,

y(t) = eA(t−t0)y0 =
⎛
⎝P eE(t−t0)P−1

p−1∑
k=0

N k(t − t0)
k

k!

⎞
⎠y0 (11.23)

The bulk of the work in computing the solution is therefore in numerically computing
the decomposition A = S+N and factoring S = PEP−1.

11.6 Equilibria and Stability

An intuitive description of the concepts of equilibria and stability of solutions comes
from the simple pendulum problem of Example 3.4. The differential equation that
models the motion of the pendulum relative to the vertical, and measured in terms of
the angle θ(t) formed with the vertical, is

θ̈ + g

L
sinθ = 0, t ≥ 0, θ(0) = θ0, θ̇ (0)= θ̇0

If we were to let the pendulum hang straight down and not give it an initial push,
it would remain in the vertical position forever. The initial conditions for this config-
uration are θ0 = 0 and θ̇0 = 0. The solution to the differential equation is θ(t) ≡ 0,
where the three-barred symbol denotes “equal for all t .” This solution is referred to as
an equilibrium solution. Moreover, the solution is stable in the sense that if you were
to just slightly push the pendulum, the motion is about the equilibrium solution and
remains so for all time.

11.6 Equilibria and Stability 747

Now suppose you were to position the pendulum so that it was vertically upward
and had no initial velocity. The initial conditions are θ0 = π and θ̇0. Observe that
θ(t) ≡ π is a solution to the differential equation with the specified initial conditions.
This solution is also an equilibrium solution, but it is unstable in the sense that if you
were to just slightly push the pendulum, the motion would take the pendulum far
away from θ0 = π .

We can write the simple pendulum model as a system of equations of the form of
equation (11.18) by defining y1 = θ(t), y2 = θ̇ (t), y(t) = [y1 y2]T, y0 = [θ0 θ̇0], and
g(t , y)= [y2 − (g/L) siny1]T, namely

ẏ= g(t , y)

In this form the equilibrium solutions are y≡ (0, 0) and y≡ (π , 0).
In general, an equilibrium solution to equation (11.18) is y(t) ≡ y0, where

g(t , y0)≡ 0. Just as in the pendulum problem we want to know if we start the sys-
tem near an equilibrium solution, will it remain nearby for all time (stable)? Or will it
immediately move away from the equilibrium (unstable)? To answer this question we
need a formal definition for stability. The definition is more general in that it may be
applied to any solution of the differential equation, not just to an equilibrium solu-
tion. The intuitive concept is that a solution is stable when other solutions nearby at
initial time tend to stay nearby for all time.

The classical stability results are developed for autonomous systems of equations.
These are differential equations where the right-hand side does not explicitly depend
on t ; that is, the differential equation is ẏ= g(y).

Definition ■ Let y= φ(t) be a solution to ẏ= g(y). The solution is stable if every solu-
tion ψ(t) of the differential equation that is close to φ(t) at initial time t = 0
remains close for all future time. In mathematical terms, this is reminiscient of
the definition for a limit: For each choice of ε > 0 there is a δ > 0 such that
|ψ(t)−φ(t)| < ε whenever |ψ(0)−φ(0)| < δ.

If at least one solution ψ(t) does not remain close, then φ(t) is said to be
unstable. ■

For a stable solution the ε-δ definition says that you select the maximum amount of
error ε you can tolerate between ψ(t) and φ(t). The value δ, which depends on your
choice of ε, tells you how close to φ(0) you have to start in order to stay within that
error.

11.6.1 Stability for Constant-Coefficient Linear Systems

The stability of solutions for constant-coefficient linear systems ẏ= Ay is completely
determinable. The motivation for the general results is provided by the following
example.

748 Chapter 11 Differential Equations

Consider a second-order equation with characteristic polynomial r 2− ar −
b = 0. Suppose that the polynomial has two distinct real-valued roots r1 and r2. The
solution to the initial value problem is listed in equation (11.8). Generally,

x(t) = C1er1t +C2er2t

An equilibrium solution is φ(t) ≡ 0. In order for x(t) to remain close to φ(t) for
all time, we need to understand what happens to x(t) as t becomes large (as t →∞ in
the mathematical vernacular). The behavior of x(t) for large t is dependent, of course,
on the behavior of its components er1t and er2t . If r1 < 0 and r2 < 0, both exponen-
tials decay to zero, in which case limt→∞ x(t) = 0. In fact, x(t) remains “close” to
zero. However, if r1 > 0, the exponential term er1t becomes unbounded regardless of
the value of r2 and x(t) does not stay close to zero. The same instability occurs if r2 > 0
regardless of the value of r1. That brings us to the case of r1 = 0 and r2 < 0 (or simi-
larly, r1 < 0 and r2 = 0). The solution is x(t) = C1+C2er2t and the limiting behavior
is limt→∞ x(t) = C1. The solution remains close to zero but does not approach zero
when C1 �= 0. Being stable does not require the limit to be zero, only that you stay
close for all time. Thus, the equilibrium solution is stable when r1 ≤ 0 and r2 ≤ 0 but
unstable when either r1 > 0 or r2 > 0.

If the roots of the characteristic equation are α± ıβ, where β �= 0, the initial value
problem has a solution provided by equation (11.9). Generally,

x(t) = (C1 cos(βt)+C2 sin(βt))eαt

The graph of this function has sinusoidal oscillations, but the amplitude is exponen-
tial. If α < 0, then the amplitude decays to zero over time. That is, limt→∞ x(t)= 0.
The equilibrium solution φ(t)≡ 0 is stable in this case. If α > 0, the oscillations
are unbounded and the equilibrium solution is unstable. If α = 0, the function x(t)
remains bounded for all time, which means it remains close to the zero solution
(“close” in the sense that it does not move unboundedly away from the zero solution).
The equilibrium solution is stable when α ≤ 0, but unstable when α > 0.

Another case occurs when the characteristic polynomial has a repeated real
root r = a/2. Equation (11.10) provides the solution to the initial value problem.
Generally,

x(t) = (C1+C2t)ert

If r < 0, the solution decays to zero; the equilibrium solution is stable. If r > 0, the
solution becomes unbounded; the equilibrium solution is unstable. If r = 0, x(t)
still becomes unbounded (generally for any nonzero C2) and the equilibrium solu-
tion is unstable. This behavior is slightly different than the previous cases when a
root was zero or the real part of a root was zero: The equilibrium solution is stable
when r < 0 but unstable when r ≥ 0. The general stability result is listed next without
proof.

11.6 Equilibria and Stability 749

Theorem ■ Consider the constant-coefficient linear equation ẏ= Ay.

1. Every solution is stable if all the eigenvalues of A have negative real parts.

2. Every solution is unstable if at least one eigenvalue of A has positive real part.

3. Suppose that the eigenvalues of A all have real parts that are zero or negative. List
those eigenvalues with zero real part as rj = ıβj for 1≤ j ≤ � and let the multi-
plicity of rj relative to the characteristic equation be mj . Every solution is stable if
A has mj linearly independent eigenvectors for each rj . Otherwise, every solution
is unstable. ■

The first two conditions of the theorem are clearly illustrated by our example for
a second-order equation, when the characteristic roots are distinct. The third con-
dition was illustrated regardless of whether the characteristic roots are repeated or
distinct. In the case of two distinct real roots, when r1 = 0 and r2 < 0 we had stability.
The matrix A has an eigenvalue r = 0 of multiplicity 1 and one linearly independent
eigenvector to go with it. In the case of two distinct nonreal roots, when α = 0 we had
stability. Each nonreal root is an eigenvalue of A with multiplicity 1, each eigenvalue
having one linearly independent eigenvector to go with it. In the case of a repeated real
root, the matrix A has an eigenvalue r = a/2 of multiplicity 2, but only one linearly
independent eigenvector (1, a/2), so the equilibrium solution is unstable.

Notice that when all the eigenvalues of A have negative real parts, the limit of any
solution x(t) as t approaches infinity is 0. Thus, the equilibrium solution φ(t)≡ 0
is stable. The limit being zero is quite a strong condition. In this case we say that the
zero solution is asymptotically stable. The concept applies to any solution:

Definition ■ Let y= φ(t) be a solution to ẏ= g(y). The solution is asymptotically stable
if it is stable and if every solution ψ(t) that is close to φ(t) at initial time t = 0
approaches φ(t) as t approaches infinity. ■

11.6.2 Stability for General Autonomous Systems

This last section shows the stability properties for constant-coefficient, linear sys-
tems of equations. Other than the mass–spring systems, our physics applications were
invariably nonlinear. We would still like to know the stability of the physical systems
at equilibrium points. Consider the general autonomous system,

ẏ= Ay+ g(y)

where A is an n× n matrix of constants and where g(y) is an n× 1 vector for which
g(y)/‖y‖ is continuous and which is zero when y is zero. The norm of the vector is the
max norm, ‖y‖ =max{|y1|, . . . , |yn|}, and is not the length of the vector. The stability
analysis is summarized by the following.

750 Chapter 11 Differential Equations

Theorem ■ Consider the equilibrium solution y(t) ≡ 0 of ẏ= Ay+ g(y), where
g(y)/‖y‖ is continuous and limy→0 g(y)/‖y‖ = 0.

1. The equilibrium solution is asymptotically stable if all the eigenvalues of A have
negative real parts.

2. The equilibrium solution is unstable if at least one eigenvalue of A has positive
real part.

3. The stability of the equilibrium solution cannot be determined from the stability
of the equilibrium solution for the linear system ẏ= Ay when all the eigenval-
ues of A have real parts zero or negative with at least one eigenvalue having real
part zero. ■

The classical way this result is applied to a general autonomous system ẏ= f(y),
where f(0)= 0, is to use Taylor’s theorem with remainder from calculus to write

f(y)= f(0)+Ay+ g(y)= Ay+ g(y)

where A is the matrix of first-order partial derivatives of f(y) evaluated at zero and
g(y) is the remainder term of second- and higher-order expressions.

The three conditions of the theorem mimic those shown in the theorem for sta-
bility of linear systems with constant matrix A. The last condition is problematic. In
the case of linear systems, having some eigenvalues with negative real parts and the
rest with zero real parts puts you on the border of stability versus unstability. This is
a particular problem in the numerical solution of differential equations. If you have a
physical model for which theoretically there is a zero eigenvalue of the linearized sys-
tem, numerical error can make it appear as if the model actually has a small positive
eigenvalue, causing the numerical solution to behave erratically.

As an example consider the damped, simple pendulum problem. The equation of
motion is θ̈ + (g/L) sinθ =−c θ̇ , c > 0, where the right-hand side represents viscous
friction at the pendulum joint. Setting y1 = θ , y2 = θ̇ , y= [y1 y2]T, and

f(y)=
[

f1(y1, y2)

f2(y1, y2)

]
=
⎡
⎣ y2

− g

L
siny1− cy2

⎤
⎦

the system that models the pendulum is ẏ= f(y), where f(0)= 0. The linearized
system is ẏ= Ay, where

A =

⎡
⎢⎢⎣

∂f1(y1, y2)

∂y1

∂f1(y1, y2)

∂y2

∂f2(y1, y2)

∂y1

∂f2(y1, y2)

∂y2

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
(y1,y2)=(0,0)

=
[

0 1

− g

L
−c

]

The eigenvalues are r = (−c ±√c2− 4g/L)/2. If c > 0 and c2 ≥ 4g/L, the eigen-
values are negative real numbers and we have asymptotic stability of y≡ 0. What

11.6 Equilibria and Stability 751

this means physically is that if you start the pendulum nearly vertical and give it a
small velocity, it will move to the vertical position and stop without oscillating about
the vertical position (strong damping). If c > 0 and c2 < 4g/L, the eigenvalues are
complex-valued with nonzero imaginary parts and negative real parts. If you start the
pendulum nearly vertical and give it a small velocity, it will oscillate about the vertical
position and eventually stop in the vertical position (weak damping). If you remove
the damping so that c = 0, the eigenvalues are ±ıβ for a value β �= 0. The theorem
does not provide us any information on the stability in this case. A more detailed
analysis will show that the zero solution is stable, but not asymptotically stable. That
is, if you start the pendulum in a nearly vertical position and give it a small velocity,
it will oscillate about the vertical forever (never stopping).

If you have shied away from eigenvalues and eigenvectors, change your ways! The
eigendecomposition of a matrix is related to solving linear systems of differential
equations that in turn occur as part of a physical simulation. And you want to pro-
gram physics in a game environment, do you not? We did not avoid eigenvalues and
eigenvectors in the regular chapters of this book, but one topic I intentionally avoided
was choosing a differential equation solver for the equations of motion of a physical
model. Part of the decision process involves choosing a step size for the numerical
solver. This choice depends on the physical stability of equilibria of the system, an
analysis that requires eigendecomposition. The choice also depends on the numeri-
cal stability of the solver. The relationship between physical stability and numerical
stability is discussed in the next chapter.

This page intentionally left blank

C h a p t e r 12
Ordinary

Difference
Equations

12.1 Definitions

Let {yk }∞k=0 be a sequence of numbers whose terms are dependent based on the
equation,

yk+n = f (k , yk , yk+1, . . . , yk+n−1) (12.1)

for some function f , for some n > 0, and for all k ≥ 0. The equation is called an explicit
nth-order difference equation. The first n sequence terms y0 through yn−1 are called the
initial values for the difference equation. Once selected, the next term is determined
from the previous terms by yn = f (0, y0, . . . , yn−1). The terms y1 through yn may in
turn be used to construct yn+1. The process is repeated as often as an application
requires. The adjective explicit refers to the explicit occurrence of the next term yk+n

on the left-hand side of the equation. An implicit nth-order difference equation is

F(k , yk , . . . , yk+n)= 0 (12.2)

For all practical purposes, the function is assumed to be differentiable in its last com-
ponent with ∂F/∂yk+n �= 0 for any generated sequence. If it is possible to solve the
implicit equation in closed form for yk+n , then the solution is an explicit equation.

© 2010 by Elsevier Inc. All rights reserved. 753
DOI: 10.1016/B978-0-12-374903-1.00012-8

754 Chapter 12 Ordinary Difference Equations

In many cases it is not possible to solve in closed form, so yk+n must be calculated by
some numerical method.

If the function in the definition for an explicit difference equation does not have
a k-component, that is yk+n = f (yk , . . . , yk+n−1), then the equation is said to be
autonomous. The autonomous implicit difference equation is F(yk , . . . , yk+n)= 0.

In some applications, the behavior of yk in the limit as k becomes infinite is impor-
tant to know. The possibilities are that the limit is a finite number, is infinite (+∞ or
−∞), or does not exist.

Example
12.1

The equation yk+1 = y2
k , y0 ≥ 0, is an explicit, autonomous, first-order difference

equation. It is of the form yk+1 = f (yk), where f (u)= u2. In this example we can
construct a general formula. The first few terms of the sequence are

y1 = y2
0 , y2 = y2

1 =
(
y2

0

)2 = y4
0 , y3 = y2

2 =
(
y4

0

)2 = y8
0 , . . . , yk = y2k

0

A check to make sure we observed the correct pattern:

yk+1 = y2k+1

0 =
(

y2k

0

)2 = y2
k ,

and in fact we do have a solution. If y0 = 0, all terms in the sequence are zero. If
y0 = 1, all terms in the sequence are 1. For 0 < y0 < 1, the sequence terms decrease in
size and limk→∞yk = 0. For y0 > 1, the sequence terms increase in size and limk→∞
yk =+∞. ■

Example
12.2

The equation y3
k+1+ (k + 1)y2

k − 1= 0 is an implicit, nonautonomous, first-order

difference equation. It is of the form F(k , yk , yk+1)= 0, where F(k , u, v)= v3+ (k +
1)u2− 1. This equation may be solved explicitly as

yk+1 =
(
1− (k + 1)y2

k

)1/3

A few iterations are shown:

y1 =
(
1− y2

0

)1/3

y2 =
(
1− 2y2

1

)1/3 =
(

1− 2
(
1− y2

0

)2/3
)1/3

y3 =
(
1− 3y2

2

)1/3 =
(

1− 3
(

1− 2
(
1− y2

0

)2/3
)2/3

)1/3

A general solution for this example is intractable, but it can be shown that the limiting
behavior is limk→∞yk =−∞. ■

Example
12.3

The equation yk+2+ exp(−yk+2)− yk+1− yk = 0 is an autonomous, implicit,
second-order difference equation. The initial values are y0 and y1. It is not possi-
ble to explicitly solve for yk+2. Define g (x) = x + exp(−x)− c , where c = yk+1+ yk .

12.1 Definitions 755

The value yk+2 is a root to g (x) = 0. First, g (x)= 0 might not have roots. The first and
second derivatives are g ′(x)= 1− exp(−x) and g ′′(x)= exp(−x). The first deriva-
tive is zero when x = 0. The second derivative is always positive. These conditions
imply that g (x) has a global minimum at x = 0, so g (x) ≥ g (0)= 1− c . If c < 1, then
g (x) > 0 for all x, which means g has no roots. In order to have a next (real-valued)
term yk+2 in the sequence, it is necessary that yk+1+ yk ≥ 1. If this constraint is met,
then g (0) < 0. Because g (0) is a global minimum and g ′′(x) > 0, there are exactly two
roots to g (x)= 0. We will always choose the positive one.

Let’s look at constructing y2 when the initial values satisfy the constraint c = y1+
y0 ≥ 1. We must solve g (x) = 0 for its positive root. Newton’s method can be applied
to approximate the root. For x ≥ 0, define h(x)= x − c . A quick sketch of the graph
shows that the h(x) < g (x), so the positive root must be in (0, c) since h(c)= 0. We
may as well choose the initial guess for Newton’s method to be x0 = c . The other
iterates are

xj+1 = xj − g (xj)

g ′(xj)
, j ≥ 0

This is yet another ordinary difference equation, an autonomous and first-order one.
A few iterates xj are generated until some stopping condition is met, usually a com-
bination of making sure g (xj) is close to zero and |xj+1− xj | is close to zero. The
last iterate is the number used for y2. The iterate y3 can now be computed in a sim-
ilar manner as long as c = y2+ y1 ≥ 1. Assuming yk+1+ yk ≥ 1 at each step of the
process, the limit as k becomes infinite exists, call it L, and it must be a solution to
0= L+ exp(−L)− 2L (replace the yk , yk+1, and yk+2 terms in the difference equa-
tion by L). This simplifies to exp(−L)= L. The equation cannot be solved in closed
form. A numerical construction leads to the approximation L

.= 0.567143. Observe
that when the yk terms are close to L, yk+1+ yk will in fact be larger than 1 (the sum
is approximately 1.134286). ■

Example
12.4

Compute an approximation to 1/
√

x for x > 0. Let y = 1/
√

x. Equivalently, x =
1/y2. We may formulate the problem in terms of root finding. For a specified
x, define g (y) = 1/y2− x. The root to g (y) = 0 is the number 1/sqrtx. Applying
Newton’s method, let y0 be some initial guess to the root. The other iterates are deter-
mined by

yk+1 = yk − g (yk)

g ′(yk)
= yk −

1
y 2

k
− x

− 2
y 3

k

= yk(3− xy2
k)

2

Once again we have an autonomous, first-order, explicit difference equation. The
number of iterations to produce a reasonable approximation to 1/

√
x depends on

how good an initial guess you choose. Suppose that x is written as x = (1+m)2e ,
where 0 ≤m < 1; then 1/

√
x = 1/

√
1+m2−e/2. This reduces the problem to com-

puting 1/
√

z for 0≤ z < 2, where z = 1+m. Now we need to select a good initial

756 Chapter 12 Ordinary Difference Equations

guess. One way to do this is to approximate the function R(m) = 1/
√

1+m for
m ∈ [0, 1] by a straight line L(m) and use L(m) as the approximation to R(m). One
such line is L(m)= 0.966215− 0.25m.

To illustrate, let m = 0.5. Using a hand calculator, 1/
√

1+m = 1/
√

1.5
.=

0.81649658. The initial guess is y0 = L(0.5)= 0.841215. A couple of iterations of
Newton’s method are shown next:

y1 = y0(3− (1+m)y2
0)

2
= 0.81536277, y2 = y1(3− (1+m)y2

1)

2
= 0.81649422

One iteration is a reasonable approximation. Two iterations is a really good approxi-
mation. ■

(Example 12.4
continued)

12.2 Linear Equations

A restricted class of explicit difference equations is the set of nth-order linear difference
equations,

a(n)

k yk+n+ a(n−1)

k yk+n−1 + · · ·+ a(1)

k yk+1+ a(0)

k yk = bk , k ≥ 0 (12.3)

where the a(m)
k and bk coefficients are known sequences. The initial values for the

equation are y0 through yn . The order of the equation is degenerate if a(n)

k = 0 for

some k . In many applications we have a(n)
k �= 0 for all k . In this case the equation

(12.3) is of the form

yk+n+ a(n−1)

k yk+n−1+ · · ·+ a(1)

k yk+1+ a(0)

k yk = bk , k ≥ 0 (12.4)

which will be used in the remainder of this section. The linear difference equation is
homogeneous if bk = 0 for all k ; otherwise, it is nonhomogeneous. The theory of linear
difference equations is analogous to the theory of ordinary differential equations as
the following sections will show.

12.2.1 First-Order Linear Equations

The first-order linear equation is

yk+1+ ak yk = bk , k ≥ 0 (12.5)

The initial value y0 and the coefficient sequences ak and bk are known quantities.
The homogeneous equation sets bk = 0 for all k . The homogeneous solution is pre-

sented here with hk denoting the sequence. The equation is rewritten as hk+1 =−ak hk

for k ≥ 0 with h0 = y0. The first few iterations are

h1 =−a0h0 =−a0y0, h2 =−a1h1 = a1a0y0, h3 =−a2h2 =−a2a1a0y0

12.2 Linear Equations 757

The observed pattern of terms leads to

hk =
(

k−1∏
i=0

(−ai)

)
y0, k ≥ 0 (12.6)

where the “capital pi” symbol (�) denotes a product of terms, analogous to “capital
sigma” (�) denoting a sum of terms. The convention for products is

∏u
i=� Ti = 1

whenever u < �. A similar convention for sums is
∑u

i=� Ti = 0 whenever u < �.
A particular solution is a sequence pk such that pk+1 + akpk = bk for k ≥ 0, but

with initial value p0 = 0. This equation can also be solved by iterating and observing
the pattern:

p1 = b0− a0p0 = b0, p2 = b1− a1p1 = b1− a1b0,

p3 = b2− a2p2 = b2− a2b1+ a2a1b0

The observed pattern of terms leads to

pk =
k∑

i=1

⎛
⎝k−1∏

j=i

(−aj)

⎞
⎠bi , k ≥ 0 (12.7)

The general solution to equation (12.5) is the sum of the homogeneous solution
(12.6) and particular solution (12.7):

yk = hk + pk , k ≥ 0 (12.8)

12.2.2 Second-Order Linear Equations

The second-order linear equation is

yk+2+ ak yk+1+ bkyk = ck , k ≥ 0 (12.9)

where y0 and y1 are known initial values. The coefficient sequences ak , bk , and ck are
known quantities. Establishing a pattern for the solution by writing down the first
few iterates is difficult at best, although it can be done as we will see in the section on
systems of equations.

For now, let us take a look at the homogeneous equation where ck = 0 for all k . The
homogeneous solution hk can be written as two other solutions uk and vk , where the
second sequence is not a constant multiplied by the first. In this sense the sequences
uk and vk are linearly independent. Any linear combination of the sequences is also
a homogeneous solution, so hk = αuk +βvk , where α and β are chosen so that y0 =
h0 = αu0+βv0 and y1 = h1 = αu1+βv1.

Define �k = ukvk+1 − uk+1vk . This quantity is analogous to the Wronskian of
two linearly independent solutions to a second-order linear differential equation.
The initial value is �0 = u0v1− u1v0. We know that uk+2+ ak uk+1+ bkuk = 0 and

758 Chapter 12 Ordinary Difference Equations

vk+2 + akvk+1+ bkvk = 0. Multiplying the first equation by vk+1, the second equa-
tion by uk+1, and subtracting produces

0 = (uk+2vk+1− uk+1vk+2)+ bk (uk vk+1− uk+1vk)=−�k+1 + bk�k

which is a first-order equation whose solution is

�k =
k−1∏
i=0

bk , k ≥ 1, �0 = u0v1− u1v0

If we happen to know in advance the solution uk , we can determine vk from the first-
order equation in the v-terms:

ukvk+1− uk+1vk =
k−1∏
i=0

bk

Another method for obtaining one homogeneous solution from another is reduc-
tion of order. If uk is a known homogeneous solution, we attempt a solution of the
form vk = λk uk . Replacing this in the homogeneous equation yields

0= vk+2+ akvk+1+ bk vk

= λk+2uk+2+ akλk+1uk+1+ bkλkuk

= λk+2uk+2+λk+1(−uk+2 − bkuk)+ bkλkuk

= uk+2(λk+2−λk+1)− bk uk(λk+1 −λk)

= uk+2Dk+1− bk ukDk

where Dk = λk+1−λk . The term Dk satisfies a first-order linear equation which we
know how to solve,

λk+1−λk = Dk =
k−1∏
i=0

biui

ui+2

Summing over k and canceling all the common terms on the left,

λn −λ0 =
n−1∑
k=0

k−1∏
i=0

biui

ui+2

The value λ0 is chosen so that the solutions uk and vk are linearly independent.
Now let us try to construct a particular solution pk whose initial values are

p0 = p1 = 0. The method shown here is analogous to the variation of parameters that
is used for second-order linear differential equations. Let uk and vk be linearly inde-
pendent solutions to the homogeneous equation. Assume that a particular solution is

12.3 Constant Coefficient Equations 759

of the form pk = dkuk + ekvk . The initial values for pk require d0 = d1 = e0 = e1 = 0.
Replacing this in equation (12.9) yields

ck = pk+2+ akpk+1+ bk pk

= (dk+2uk+2+ ek+2vk+2)+ ak(dk+1uk+1+ ek+1vk+1)+ bk (dk uk + ek vk)

= (dk+2uk+2+ ek+2vk+2)− dk+1(uk+2 + bkuk)− ek+1(vk+2 + bkvk)

+ bk(dk uk + ek vk)

= [uk+2(dk+2− dk+1)+ vk+2(ek+2 − ek+1)]− bk [uk(dk+1− dk)+ vk (ek+1− ek)]

As in the variation of parameters for ordinary differential equations, an arbitrary
equation may be selected to relate the parameters dk and ek . The simplest is to require
uk (dk+1− dk)+ vk (ek+1 − ek)= 0. The previously displayed equation reduces to
uk+2(dk+2 − dk+1)+ vk+2(ek+2− ek+1)= 0. Incrementing the index k by 1 in the
arbitrary equation and defining Dk = dk+2− dk+1 and Ek = ek+2− ek+1, the two
equations are written as the system,[

uk+1 vk+1

uk+2 vk+2

][
Dk

Ek

]
=
[

0
ck

]
, k ≥ 0

The solution follows where �k = uk vk+1− uk+1vk :[
dk+2− dk+1

ek+2− ek+1

]
=
[

Dk

Ek

]
= 1

�k+1

[−ck vk+1

ckuk+1

]

Summing over k , canceling all the common terms on the left, and using d1 = e1 = 0,
we obtain

dk =−
k−2∑
i=0

civi+1

�i+1
, ek =

k−2∑
i=0

ci ui+1

�i+1

and

pk =
k−2∑
i=0

ci(ui vk − uk vi)

uivi+1− ui+1vi
, k ≥ 2, p0 = p1 = 0 (12.10)

12.3 Constant Coefficient Equations

For the general linear difference equation, obtaining closed-form homogeneous solu-
tions can be difficult, if not impossible. A special class of linear equations includes
those whose coefficient sequences are all constants:

yk+n + an−1yk+n−1+ · · ·+ a1yk+1+ a0yk = 0 (12.11)

760 Chapter 12 Ordinary Difference Equations

where the aj are constant and a0 �= 0. We attempt a solution of the form yk = r k, where

r �= 0 is a constant. Replacing this in equation (12.11) and dividing by r k leads to

r n+ an−1r n−1+ · · ·+ a1r + a0 = 0

This is a polynomial equation, say p(r)= 0, whose roots may be found in closed-form
for 1≤ n ≤ 4 or by numerical root finding for any n.

Let r1 through r� be the distinct roots of p(r). Let each root rj have multiplicity
mj . That is, the polynomial is factored into

p(r)=
�∏

j=1

(r − rj)
mj

Necessarily, n =∑�
j=1 mj . If r is a real-valued root with multiplicity m, then by the

construction, r k is a solution to the difference equation. However, there are m linearly
independent solutions to the difference equation corresponding to r :

r k , kr k, k2r k , . . . , km−1r k

If r is a complex-valued root with nonzero imaginary part, say r = α+βi with β �= 0,
and if r has multiplicity m, then the conjugate r̄ is also a root with multiplicity m.
There are 2m linearly independent solutions corresponding to r and r̄ . In complex-
valued form, these are

r k , kr k, . . . , km−1r k ; r̄ k, kr̄ k, . . .km−1r̄ k

Using the polar representation r = ρ(cos θ + i sinθ), the real-valued form for the
solutions are generated from kt r k and kt r̄ j by taking combinations kt(r k + r̄ k)/2 and
kt (r k − r̄ k)/(2i). These are

ktρk cos(kθ), kt ρk sin(kθ), 0≤ t ≤m− 1

When a root r has multiplicity m > 1, the question is how did we arrive at the
solutions kt r k for t > 0? The answer is variation of parameters, a method discussed
earlier in this section. As an example, consider the fourth-order equation,

yk+4− 3yk+3 − 6yk+2+ 28yk+1− 24 = 0

The polynomial equation obtained by trying a solution yk = r k is p(r)= r 4− 3r 3−
6r 2+ 28r − 24− 0. The polynomial factors into p(r)= (r − 2)3(r + 3). The root
r = 2 has multiplicity 3, and the root r =−3 has multiplicity 1. Two linearly indepen-
dent solutions to the difference equation are yk = 2k and yk = (−3)k . Since r = 2 has
multiplicity larger than one, attempt a reduction by yk = ak2k for some sequence ak .

12.3 Constant Coefficient Equations 761

Replacing this in the difference equation yields

0= yk+4− 3yk+3− 6yk+2 + 28yk+1− 24

= ak+42k+4− 3ak+32k+3− 6ak+22k+2+ 28ak+12k+1− 24ak 2k

= 8 · 2k(2ak+4− 3ak+3− 3ak+2+ 7ak+1− 3ak)

Consequently, the ak satisfy yet another fourth-order constant coefficient equation,

2ak+4− 3ak+3− 3ak+2+ 7ak+1 − 3ak = 0

An important observation is that the sum of the coefficients is zero. This allows the
following reduction:

0 = 2ak+4− 3ak+3− 3ak+2+ 7ak+1− 3ak

= 2(ak+4− ak+3)− ak+3− 3ak+2+ 7ak+1− 3ak

= 2(ak+4− ak+3)− (ak+3 − ak+2)− 4ak+2+ 7ak+1− 3ak

= 2(ak+4− ak+3)− (ak+3 − ak+2)− 4(ak+2 − ak+1)+ 3ak+1− 3ak

= 2(ak+4− ak+3)− (ak+3 − ak+2)− 4(ak+2 − ak+1)+ 3(ak+1 − ak)

Define bk = ak+1− ak . The previous equation is restated as

2bk+3− bk+2− 4bk+1+ 3bk = 0

This is a third-order equation, a reduction in order by one from the original equa-
tion. The sum of the coefficients in this equation is also zero, allowing yet another
reduction:

0 = 2bk+3− bk+2− 4bk+1+ 3bk

= 2(bk+3− bk+2)+ bk+2 − 4bk+1+ 3bk

= 2(bk+3− bk+2)+ (bk+2 − bk+1)− 3bk+1 + 3bk

= 2(bk+3− bk+2)+ (bk+2 − bk+1)− 3(bk+1 − bk)

Define ck = bk+1− bk . The previous equation is restated as

2ck+2+ ck+1− 3ck = 0

The order has been reduced by one again. The sum of the coefficients in this equation
is zero, allowing yet one more reduction:

0= 2ck+2+ ck+1− 3ck

= 2(ck+2− ck+1)+ 3(ck+1 − ck)

Define dk = ck+1− ck . The previous equation is restated as

2dk+1+ 3dk = 0

762 Chapter 12 Ordinary Difference Equations

The general solution is dk = d0(−3/2)k , but as it turns out, we need consider only
the instance when d0 = 0, in which case dk = 0 for all k . Backtracking, we now know
that ck+1− ck = dk = 0. The ck must be constant, so choose ck = c0 �= 0 for all k .
Backtracking again, bk+1− bk = ck = c0. Summing over k and canceling terms lead
to bk = b0+∑k−1

i=0 c0 = b0+ c0k . Backtracking for the last time, ak+1− ak = bk =
b0+ c0k . Summing over k and canceling terms lead to

ak = a0+
k−1∑
i=0

(b0+ c0i)= a0+ b0k+ c0(k − 1)k/2= α+βk + γ k2

for appropriately selected values α, β, and γ . The choice of α = 1 and β = γ = 0 leads
to ak = 1 and the already known solution 2k . The choice of β = 1 and α = γ = 0 leads
to ak = k and a new solution k2k . The choice of γ = 1 and α = β = 0 leads to ak = k2

and a new solution k22k .

12.4 Systems of Equations

Equation (12.1) provides a relationship between the terms of a single sequence. Some
applications might involve multiple sequences that are interrelated. For example, two
sequences {xk }∞k=0 and {xk }∞k=0 might be interrelated by

xk+n = f0(k , xk , . . . , xk+n−1, yk, . . . , yk+n−1)

yk+n = f1(k , xk , . . . , xk+n−1, yk, . . . , yk+n−1)

for some n > 0, for all k ≥ 0, and for some specified functions f0 and f1. The initial
values are x0 through xn−1 and y0 through yn−1. The pair of equations is evaluated
to obtain the next terms xn and yn , which in turn can be used to generate subsequent
terms. The pair of relationships is an example of a system of difference equations. The
system in the example can be written in vector form. Define:

uk =
[

xk

yk

]
and f(k , (s0, t0), . . . , (sn−1, tn−1))=

[
f0(k , s0, . . . , sn−1, t0, . . . , tn−1)

f1(k , s0, . . . , sn−1, t0, . . . , tn−1)

]

In terms of these quantities, the system is

uk+n = f(k , uk , . . . , uk+n−1), k ≥ 0

with initial values u0 through un−1. Systems may contain explicit equations (as in our
example), implicit equations, or a mixture of both.

12.4 Systems of Equations 763

A convenient use for a system of equations is in solving the nth-order linear
equation (12.4). Define the vector sequence:

uk =

⎡
⎢⎢⎢⎢⎢⎣

u(0)

k

u(1)
k
...

u(n−1)

k

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

yk

yk+1
...

yk+n−1

⎤
⎥⎥⎥⎦

Increasing the index by 1,

uk+1 =

⎡
⎢⎢⎢⎣

yk+1

yk+2
...

yk+n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

yk+1

yk+2
...

bk − a(n−1)
k yk+n−1− · · ·− a(0)

k yk

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

u(1)

k

u(2)
k
...

bk − a(n−1)

k u(n−1)

k − · · ·− a(0)

k u(0)

k

⎤
⎥⎥⎥⎥⎥⎦

In matrix form, the system is

uk+1+Ak uk = Bk , k ≥ 0 (12.12)

where u0 is a known quantity and where Ak is an n× n matrix and Bk is an n× 1
vector given by

Ak =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

a(0)
k a(1)

k a(2)
k · · · a(n−1)

k

⎤
⎥⎥⎥⎥⎥⎦ and Bk =

⎡
⎢⎢⎢⎣

0
0
...

bk

⎤
⎥⎥⎥⎦

Equation (12.12) has exactly the form of equation (12.5) and can be solved symboli-
cally in the same way. The homogeneous solution is

hk =
(

k−1∏
i=0

(−Ai)

)
u0, k ≥ 0 (12.13)

764 Chapter 12 Ordinary Difference Equations

The particular solution is

pk =
k∑

i=1

⎛
⎝k−1∏

j=i

(−Aj)

⎞
⎠Bi , k ≥ 0 (12.14)

The general solution to equation (12.12) is the sum of the homogeneous solution
(12.13) and particular solution (12.14),

uk = hk +pk , k ≥ 0 (12.15)

C h a p t e r 13
Numerical

Methods

This chapter is the most fitting one for a computer implementation of a physical
simulation. The focus of the book has been on understanding the basic concepts

of physics, modeling a physical system, and deriving the equations of motion for that
system. The physical simulation itself requires us to implement methods that numer-
ically solve the differential equations that we derive. Many choices exist for numerical
solvers. Each choice has its trade-offs to consider, the usual one being an exchange of
speed for accuracy and/or stability. We want the solver to be fast, accurate, and robust.
In most cases it is not possible to obtain all three simultaneously. A variety of algo-
rithms for numerically solving differential equations are provided here, some to give
you a flavor of the ideas even if they are not the best choices for a real application. The
issue of stability is revisited, as promised in the chapter on differential equations.

To keep the discussion simple, let us look at a single first-order differential
equation with initial conditions,

ẋ = f (t , x), t ≥ t0, x(t0)= x0 (13.1)

The methods presented here extend easily to vector-valued functions that we
encounter in the physics applications. Much of the analysis depends on looking at
the derivatives of x(t). In particular, recall the following result from calculus:

Taylor’s Theorem ■ If x(t) and its derivatives x(k)(t) for 1≤ k ≤ n are continuous on
the closed interval [t0, t1] and x(n)(t) is differentiable on the open interval (t0, t1),

© 2010 by Elsevier Inc. All rights reserved. 765
DOI: 10.1016/B978-0-12-374903-1.00013-X

766 Chapter 13 Numerical Methods

then there exists t̄ ∈ [t0, t1] such that

x(t1)=
n∑

k=0

x(k)(t0)

k!
(t1 − t0)

k + x(n+1)(t̄)

(n+ 1)!
(t1− t0)

n+1

■

By convention x(0)(t) = x(t). The polynomial Pn(t)=∑n
k=0 x(k)(t0)(t − t0)

k/k! is
called the Taylor polynomial of degree n and may be used to approximate x(t). The
remainder term is Rn(t)= x(n+1)(t̄)(t − t0)

n+1/(n+ 1)! In practice we estimate a
bound M for which |x(n+1)(t)| ≤M for all t ∈ [t0, t1], thus leading to a bound on
the total error |Rn(t)| ≤M(t1 − t0)

n+1/(n+ 1)! for t ∈ [t0, t1].

13.1 Euler’s Method

No discussion of numerical methods is complete without mentioning Euler’s method,
a very simple and popular method for solving differential equations. Its attraction is
its simplicity. Its downfall is its large amount of truncation error compared to other
methods and its lack of stability and accuracy for many practical examples.

Euler’s method is a matter of using Taylor’s theorem with n = 2 on the interval
[ti , ti+1], where h = ti+1− ti > 0. Using dot notation, since we only have a couple of
derivatives to look at,

x(ti+1)= x(ti)+ ẋ(ti)h+ ẍ(t̄)
h2

2
= x(ti)+ hf (ti , x(ti))+ ẍ(t̄)

h2

2

for some t̄ ∈ [ti , ti+1]. Observe that we replaced ẋ(ti) by f (ti , x(ti)) since we know that
x(t) is a solution to the differential equation (13.1). Define xi = x(ti) for all i; keep
in mind that xi refers to the exact value of the solution to the differential equation at
time ti . Discarding the remainder term and using yi to denote the approximation to
xi , we obtain Euler’s method,

yi+1 = yi + hf (ti , yi), i ≥ 0, y0 = x0 (13.2)

Certainly this is an easy method to implement. The important question, though, is
how well yi approximates xi for large i. In particular we would like to know a bound
on the error term |xi − yi |.

In Chapter 11, “Differential Equations,” we mentioned an existence and unique-
ness theorem whose hypotheses included the continuity of the partial derivative
fx (t , x) on a rectangle containing the initial point (t0, x0). This condition implies

|f (t , x)− f (t , x̄)| ≤ L|x − x̄|
for some constant L > 0 and for any (t , x) and (t , x̄) in the rectangle. Let us assume
that there is a value M > 0 for which |ẍ(t)| ≤M for all t of interest in our differential

13.1 Euler’s Method 767

equation solving. We can use these facts to obtain an upper bound on the error term
|xi − yi|. Specifically,

|xi+1− yi+1| =
∣∣∣∣xi + hf (ti , xi)+ ẍ(t̄)

h2

2
− yi − hf (ti , yi)

∣∣∣∣
≤ |xi − yi | + h|f (ti , xi)− f (ti , yi)| +Mh2/2

≤ |xi − yi | + L|xi − yi | +Mh2/2

= (1+ Lh)|xi − yi| +Mh2/2

Define ei = |xi − yi |. The preceding inequality is of the form ei+1 ≤ (1+ Lh)ei + c for
c > 0. We know that e0 = 0. The inequality for i = 1 is

e1 ≤ (1+ Lh)e0 + c = c

The inequality for i = 2 is

e2 ≤ (1+ Lh)e1+ c ≤ (1+ Lh)c + c = ((1+ Lh)+ 1)c

For i = 3 the inequality is

e3 ≤ (1+ Lh)e2+ c ≤ (1+ Lh)((1+ Lh)+ 1)c = ((1+ Lh)2 + (1+ Lh)+ 1)c

You should recognize the pattern and deduce that in general,

ei ≤ c
i−1∑
j=0

(1+ Lh)j

= Mh2

2

(1+ Lh)i − 1

Lh

≤ Mh2

2

eiLh − 1

Lh
(13.3)

= M(eL(ti−t0)− 1)

2L
h

≤ Kh

for i ≥ 1. We have used the fact that (1+ x)p ≤ epx for x ≥ 0 and p > 0. We also
used ti = t0+ ih. The final bound K is a constant that absorbs M and L, and uses
the fact that exp(L(ti − t0)) is bounded when we are solving the differential equation
on an already specified interval [t0, T], namely exp(L(ti − t0)) ≤ exp(L(T − t0)). The
bound K is independent of h; the smaller h is, the more iterations it takes to get to
time T , but K is independent of this process.

What we have shown is that the amount of error ei between the true value of the
iterate xi and the approximate value yi is bounded by ei ≤ Kh for some constant K .
If you were to halve the step size, you would expect only half the error and a better

768 Chapter 13 Numerical Methods

approximation. However, it takes you twice as many steps to reach the maximum
time T . This is one of the promised trade-offs you have to decide on: smaller errors
in exchange for more computing time.

The analysis that led to the inequality of equation (13.3) is based on truncation
error in the mathematical formulation. That is, we discarded the remainder term from
Taylor’s theorem and argued how much error occurs in the iterates. As you are well
aware, a full numerical analysis of the problem must also deal with errors introduced
by a floating point number system. In particular, when you compute yi + hf (ti , yi)

using floating point arithmetic, a small round-off error will occur. If δi+1 is the round-
off error that occurs when computing yi+1, we can formulate yet another equation for
determining the actual floating point values obtained from Euler’s method:

zi+1 = zi + hf (ti , zi)+ δi+1

The iterate zi is the floating point number that occurs when trying to compute the
theoretical value yi . An argument similar to the one used in the truncation error can
be applied to estimate the error |xi − zi |. Specifically,

|xi+1− zi+1| =
∣∣∣∣xi + hf (ti , xi)+ ẍ(t̄)

h2

2
− zi − hf (ti , zi)− δi+1

∣∣∣∣
≤ (1+ Lh)|xi − zi | + Mh2

2
+ δ

where δ is an upper bound on all the |δi| values. Define ε = |xi − zi |. In this case ε0 is
not necessarily zero since the floating point representation z0 for x0 might not be an
exact representation. The inequality for i = 1 is

ε1 ≤ (1+ Lh)ε0+ (Mh2/2+ δ)

The inequality for i = 2 is

ε2 ≤ (1+ Lh)ε1+ δ ≤ (1+ Lh)2ε0+ ((1+ Lh)+ 1)(Mh2/2+ δ)

For i = 3 the inequality is

ε3 ≤ (1+ Lh)ε2+ δ ≤ (1+ Lh)3ε0+ ((1+ Lh)2 + (1+ Lh)+ 1)(Mh2/2+ δ)

The pattern leads to the closed form,

εi ≤ (1+ Lh)iε0+
(

Mh2

2
+ δ

) i−1∑
j=0

(1+ Lh) j

≤ ε0eL(T−t0)+ eL(T−t0)− 1

L

(
Mh

2
+ δ

h

)
(13.4)

= K0+K1h+K2
1

h

for i ≥ 1 and for some constants K0, K1, and K2.

13.2 Higher-Order Taylor Methods 769

The inequality of equation (13.4) differs from that of equation (13.3) in that a
term 1/h occurs in equation (13.4). The general folklore of numerical differential
equation solvers is that to get a better approximation you choose a smaller step size.
This analysis shows that in fact this is not always true. Inequality (13.4) shows that
as you let h approach zero, the error can become unbounded. Please keep in mind
that the bound we produced using the inequality is exactly that – a bound. The actual
error can be less; but then again, it might reach the upper bound. Also notice that
(Mh/2+ δ/h) has a global minimum at h =√2δ/M . This choice of h produces the
smallest error bound. For an actual floating point number system, the chances are that√

2δ/M is sufficiently small that you would never decrease h to such a small number
in your numerical solver.

The analysis of this section was quite lengthy, but I include it to let you know
that this is what numerical analysis of an algorithm is all about. You have errors due
to mathematical approximations in the algorithms and errors due to representation
in a floating point number system. In order to have some assurance of the accuracy
of the output of the computer, you might consider doing analyses of this type
yourself.

13.2 Higher-Order Taylor Methods

Euler’s method is the algorithm obtained by using the first-degree Taylor polynomial
of x(t) to approximate x(t + h). Higher-order approximations may be used, the class
of such algorithms called higher-order Taylor methods. For example, Taylor’s theorem
when using a second-degree polynomial is

x(ti+1)= x(ti)+ hẋ(ti)+ h2

2
ẍ(ti)+ h3

6
x(3)(t̄)

where h = ti+1− ti and for some t̄ ∈ [ti , ti+1]. We know that ẋ(t)= f (t , x(t)) since
x(t) is a solution to the differential equation. An expression for ẍ(t) is obtained by
differentiating the differential equation and using the chain rule from calculus,

ẍ(t)= d

dt
f (t , x(t)) = ft (t , x(t))+ fx (t , x(t))ẋ (t)= ft (t , x(t))+ fx (t , x(t))f (t , x(t))

where ft = ∂f /∂t and fx = ∂f /∂x. The numerical method for degree n = 2 is

yi+1 = yi + hf (ti , yi)+ h2

2

(
ft (ti , yi)+ fx (ti , yi)f (ti , yi)

)
, i ≥ 0, y0 = x0 (13.5)

Euler’s method is a Taylor method of degree 1 and has approximation error bound
Kh for some constant K . The degree n Taylor method can be shown to have an error
bound Khn for some constant K , so generally you expect more accuracy than Euler’s
method for a given step size h.

770 Chapter 13 Numerical Methods

The technical problem with Taylor methods is that you need to formally compute
the partial derivatives of f (t , x). In many applications such as our physics exam-
ples where f represents external forces and torques, we do not have the luxury
of computing derivatives since we do not know ahead of time a closed form for f
itself.

13.3 Methods via an Integral Formulation

The initial value problem of equation (13.1) may be formally integrated to obtain

x(ti+1)= x(ti)+
ti+1∫
ti

f (t , x(t))dt (13.6)

Define φ(t)= f (t , x(t)); for the sake of illustration, suppose that φ(t) > 0. The inte-
gral of equation (13.6) represents the area bounded by the graph of φ(t), the t -axis,
and the vertical lines t = ti and t = ti+1. Figure 13.1(a) illustrates.

Figure 13.1(b) shows an approximation of the area by a rectangle,

ti+1∫
ti

f (t , x(t))dt =
ti+1∫
ti

φ(t)dt
.= (ti+1− ti)φ(ti)= (ti+1− ti)f (ti , xi)

(a) (b) (c)

ti + 1ti

t t t

Figure 13.1 (a) Area under a curve. (b) Approximation of the area by a rectangle (leads to Euler’s
method). (c) Approximation of the area by a trapezoid (leads to the modified Euler
method).

13.3 Methods via an Integral Formulation 771

If xi = x(ti), yi is an approximation to xi , and h = ti+1− ti , then substituting the
integral approximation into equation (13.6) produces Euler’s method: yi+1 = yi +
hf (ti , yi).

Figure 13.1(c) shows an approximation of the area by a trapezoid,

ti+1∫
ti

f (t , x(t))dt
.= (ti+1− ti)

f (ti , xi)+ f (ti+1, xi+1)

2

This leads to a numerical algorithm for approximations yi to xi ,

yi+1 = yi + h

2
(f (ti , yi)+ f (ti+1, yi+1)), i ≥ 0, y0 = x0 (13.7)

Unfortunately, we cannot immediately use this equation since the quantity we wish
to determine, yi+1, occurs on both the left and right sides of the equality. One mod-
ification to remedy this is to use an Euler step for the term on the right, yi+1 =
yi + hf (ti , yi):

yi+1 = yi + h

2
(f (ti , yi)+ f (ti + h, yi + hf (ti , yi))) (13.8)

This is referred to as the modified Euler’s method and is an explicit method, because
yi+1 is defined explicitly in terms of the quantities ti and yi computed at the previous
time.

The method in equation (13.9) is referred to as an implicit method since yi+1 is
defined implicitly by the equation. Implicit equations can use Newton’s method for
root finding to determine the unknown quantity. In our example, if we define

g (z) =
(

xi + h

2
f (ti , xi)

)
+ h

2
f (ti + h, z)− z

then yi+1 is a root of g (z)= 0; that is, g (yi+1)= 0. A reasonable starting guess for z
is z0 = yi . The Newton iterates are

zj+1 = zj − g (zj)

g ′(zj)
, j ≥ 0

You may well compute iterates until you are assured of convergence to a root that
is used for yi+1. An alternative that uses a bounded amount of time is just to iterate
once and use that as your choice for yi+1, in which case

yi+1 = yi − (h/2)(f (ti + h, yi)+ f (ti , yi))

(h/2)fx(ti + h, yi)− 1
(13.9)

This does require knowing the partial derivative fx(t , x) so that you may evaluate it.

772 Chapter 13 Numerical Methods

An implicit method that occurs in a simpler manner is to think of Euler’s method
as an algorithm that uses a forward difference to approximate the first derivative of
x(t). That is,

ẋ(ti)= lim
h→0

x(ti + h)− x(ti)

h
.= x(ti + h)− x(ti)

h
= xi+1− xi

h

Choosing yi as the approximation to xi and substituting into the differential equation
leads to the approximation (yi+1− yi)/h = f (ti , yi) or yi+1 = yi + hf (ti , yi), which
is Euler’s method. If we were to use a backward difference to approximate the first
derivative:

ẋ(ti+1)= lim
h→0

x(ti+1)− x(ti+1 − h)

h
.= x(ti+1)− x(ti+1 − h)

h
= xi+1− xi

h

then substituting into the differential equation and multiplying by h leads to an
implicit Euler’s method,

yi+1 = yi + hf (ti+1, yi+1) (13.10)

The equation is implicit since xi+1 occurs on both sides of the equality. Just as
we tried earlier, define g (z)= yi + hf (ti + h, z)− z and compute yi+1 as a root of
g (z) = 0. Using Newton’s method with an initial iterate z0 = xi and iterating only
once, we have

yi+1 = yi − hf (ti + h, yi)

hfx(ti + h, yi)− 1
(13.11)

This also requires knowing the partial derivative fx(t , x) in order that you may
evaluate it.

13.4 Runge–Kutta Methods

The Taylor methods of Section 13.2 have high-order truncation errors, a good thing
for an algorithm, but the methods require that you compute partial derivatives of
f (t , x). Runge–Kutta methods are designed to have the same high-order truncation
error, yet use only evaluations of the function f (t , x). The derivations require the
extension of Taylor’s theorem to bivariate functions.

Taylor’s Theorem ■ Let f (t , x) and its partial derivatives of orders 1 through n+ 1 be
continuous on a rectangular domain D. Let (t0, x0) ∈ D. For every (t , x) ∈ D,
there is a t̄ ∈ [t0, t] and a x̄ ∈ [x0, x] such that f (t , x)= Pn(t , x)+Rn (t , x), where

Pn(t , x)=
n∑

j=0

1

j!

j∑
i=0

(
j
i

)
∂ i f (t0, x0)

∂t j−i∂xi
(t − t0)

j−i(x − x0)
i

13.4 Runge–Kutta Methods 773

is the Taylor polynomial of degree n and where

Rn(t , x) =
n+1∑
i=0

(
n+ 1

i

)
∂n+1f (t̄ , x̄)

∂t n+1−i∂xi
(t − t0)

n+1−i(x − x0)
i

is the remainder term. ■

The Taylor polynomial you see quite often in practice is the one that includes the first-
and second-order partial derivatives:

P2(t , x) = f (t0, x0)+ ft (t0, x0)(t − t0)+ fx (t0, x0)(x − x0)

+ 1

2
ftt (t0, x0)(t − t0)

2+ ftx (t0, x0)(t − t0)(x − x0)+ 1

2
fxx(t0, x0)(x − x0)

2

= f (t0, x0)+Df (t0, x0)
T

[
t − t0

x − x0

]

+ 1

2

[
t − t0 x − x0

]
D2f (t0, x0)

[
t − t0

x − x0

]

where Df (t , x) is called the gradient of f (t , x) (a list of the first-order partial deriva-
tives) and D2f (t , x) is called the Hessian matrix of f (t , x) (a list of the second-order
partial derivatives).

13.4.1 Second-Order Methods

The application of Taylor’s theorem to the solution x(t) produces the equation

x(t + h)= x(t)+ hẋ(t)+ h2

2 ẍ(t)+R(t) for a remainder R(t) that is of order O(h3).
Using ẋ = f (t , x) and ẍ = ft + ffx as we did in deriving Taylor’s method in equation
(13.5), we have

x(t + h)= x(t)+ hf (t , x)+ h2

2

(
ft (t , x)+ f (t , x)fx (t , x)

)+R(t) (13.12)

As indicated, the equation requires evaluating the first-order partial derivatives of f .
What we would like to do instead is replace the derivative evaluations by function
evaluations. This is possible through an approximation that will change the remainder
term R. Specifically, we want to obtain a formal expression,

x(t + h)= x(t)+ haf (t + b, x(t)+ c)+ R̄(t)

for some choice of a, b, and c and a remainder R̄(t) that is of order O(h3). Using
Taylor’s theorem for bivariate functions, we have

af (t + b, x+ c)= af (t , x)+ abft (t , x)+ acfx (t , x)c + S(t)

774 Chapter 13 Numerical Methods

where S(t) is O(h2). The right-hand side appears to be of the form shown in equation
(13.12). Matching terms we obtain a = 1, ab = h/2, and ac = (h/2)f . The error terms
match up as R(t) = hS(t)+ R̄(t). Consequently, a = 1, b = h/2, and c = hf /2, so
that

x(t + h)= x(t)+ hf

(
t + h

2
, x(t)+ h

2
f (t , x(t))

)
+R(t)

This suggests a numerical method for solving the differential equation,

yi+1 = yi + hf

(
ti + h

2
, yi + h

2
f (ti , yi)

)
(13.13)

and is called the midpoint method.
The midpoint method occurred as a result of using a Taylor polynomial of degree 1

to approximate x(t). The numerical method has error of order O(h2). The hope is that
an approximation using a Taylor polynomial of degree 2 will lead to a method whose
error is of order O(h3). As it turns out, we can use the same method of construction
but only obtain O(h2) methods. From Taylor’s theorem,

x(t + h)= x(t)+ hf (t , x)+ h2

2

d

dt
f (t , x)+ h3

6

d2

dt 2
f (t , x)+R(t)

= x(t)+ hf + h2

2
(ft + ffx)+ h3

6
(ftt + 2fftx + f 2fxx (13.14)

+ fx(ft + ffx))+R(t)

where R(t) is of order O(h4). To replace the derivative evaluations by function
evaluations, we postulate a formal expression,

x(t + h)= x(t)+ h(a1f (t , x(t))+ a2 f (t + b, x(t)+ c))+ R̄ (t)

for some choice of a1, a2, b2, and c2 and a remainder R̄(t) that is of order O(h4). Using
Taylor’s theorem to expand the expression involving the functions,

a1f (t , x)+ a2f (t + b, x + c)= a1f + a2(bft + cfx + (b2/2)ftt + bcftx

+ (c2/2)fxx)+ S(t)

where S(t) is of order O(h3). The right-hand side is almost of the form in equation
(13.14), except there is no subexpression involving fx(ft + ffx). Regardless, let us try
to match as many terms as possible. We can match the f , ft , and fx terms: a1+ a2 = 1,
a2b = h/2, and a2c = hf /2. The remaining matches overconstrain the problem. This,
and the inability to match the term fx(ft + ffx), means that those terms must become
part of the remainder S(t), forcing it to be of order O(h2) instead.

Our matched terms involve four parameters but only three equations. This gives
us some flexibility in choosing them. One choice is a1 = a2 = 1/2, b = h, and c = hf ,

13.4 Runge–Kutta Methods 775

leading to the numerical method,

yi+1 = yi + h

2
(f (ti , yi)+ f (ti + h, yi + hf (ti , yi))) (13.15)

You will notice that this is the modified Euler method (13.8) derived by other means.
Another choice of parameters is a1 = 1/4, a2 = 3/4, b = 2h/3, and c = 2hf /3, leading
to the numerical method,

yi+1 = yi + h

4

(
f (ti , yi)+ 3f

(
ti + 2

3
h, yi+ 2

3
hf (ti , yi)

))
(13.16)

This is referred to as Heun’s method.

13.4.2 Third-Order Methods

The inability to match some of the higher-order terms had to do with choosing an
expression with a singly nested evaluation of f . That is, we have attempted to replace
derivative evaluations by function evaluations using a term of the form f (t +α, x+
βf (t , x)). We can actually match the higher-order terms if we include a doubly nested
term,

f (t +α1, x +β1f (t +α2, x +β2f (t , x)))

The method of construction is to expand this using Taylor’s theorem. The algebraic
details are tedious because you have to first expand f (t +α2, x +β2f), substitute it in
the second component of the outermost f , and expand that. A symbolic mathematics
package is quite useful here, not that Runge and Kutta could have benefited, because
their development of the ideas was in about 1900!

A couple of numerical methods of third-order that are obtainable from this
construction are

k1 = hf (ti , yi) No nesting

k2 = hf

(
ti + h

2
, yi + k1

2

)
Singly nested

k3 = hf (ti + h, yi − k1+ 2k2) Doubly nested

yi+1 = yi + 1

6
(k1+ 2k2+ k3)

(13.17)

776 Chapter 13 Numerical Methods

which for lack of a proper name we will call the RK3a method, and

k1 = hf (ti , yi)

k2 = hf

(
ti + h

3
, yi + k1

3

)

k3 = hf

(
ti + 2h

3
, yi + 2k2

3

)
yi+1 = yi + 1

4
(k1 + 3k3)

(13.18)

which we will call the RK3b method.

13.4.3 Fourth-Order Method

To obtain a fourth-order method, the Taylor polynomial used to approximate x(t) is

x(t + h)
.= x(t)+ hf + h2

2

df

dt
+ h3

6

d2f

dt 2
+ h4

24

d3f

dt 3

The symbolic expansion of d3f /dt 3 is quite complicated. The replacement of deriva-
tive evaluations by function evaluations uses a matching scheme by postulating a
combination of function terms, one term with no nesting, one singly nested term,
one doubly nested term, and one triply nested term. The details of matching are not
shown here as they are quite complicated. The resulting numerical method is

k1 = hf (ti , yi) No nesting

k2 = hf

(
ti + h

2
, yi + k1

2

)
Singly nested

k3 = hf

(
ti + h

2
, yi + k2

2

)
Doubly nested

k4 = hf (ti + h, yi + k3) Triply nested

yi+1 = yi + 1

6
(k1 + 2k2+ 2k3+ k4)

(13.19)

and is known as a Runge–Kutta fourth-order method (or the RK4a method). I specifi-
cally used the article a, not the. Other fourth-order methods are possible, just like the
midpoint, modified Euler, and Heun methods were different second-order methods.
A concise summary of many of these methods may be found in [AS65, Section 25.5].

13.5 Multistep Methods 777

Two of these are

k1 = hf (ti , yi)

k2 = hf

(
ti + h

3
, yi + k1

3

)

k3 = hf

(
ti + 2h

3
, yi − k1

3
+ k2

)
(13.20)

k4 = hf (ti + h, yi + k1− k2+ k3)

yi+1 = yi + 1

8
(k1 + 3k2+ 3k3+ k4)

which I will refer to as the RK4b method. The other is

k1 = hf (ti , yi)

k2 = hf

(
ti + h

2
, yi + k1

2

)

k3 = hf

(
ti + h

2
, yi +

(
−1

2
+
√

1

2

)
k1+

(
1−

√
1

2

)
k2

)
(13.21)

k4 = hf

(
ti + h, yi −

√
1

2
k2+

(
1+

√
1

2

)
k3

)

yi+1 = yi + 1

6

(
k1+ 2

(
1−

√
1

2

)
k2+ 2

(
1+

√
1

2

)
k3+ k4

)

which is known as Gill’s method.

13.5 Multistep Methods

The methods previously discussed in this chapter are referred to as 1-step meth-
ods. Each numerical method computes yi+1 using information only about yi . Euler’s
method is an explicit 1-step method, yi+1 = yi + hf (ti , yi). We also mentioned the
implicit Euler’s method – a 1-step method, yi+1 = yi + hf (ti+1, yi+1) – that requires
root finding to solve for yi+1. Multistep methods are a generalization of these two
equations. An m-step method generates the iterate yi+1 from the previous iterates yi

through yi−(m−1). The general method is summarized by

yi+1 =
m−1∑
j=0

ajyi−j + h
m∑

j=0

bj f (ti+1−j , yi+1−j), i ≥m− 1 (13.22)

778 Chapter 13 Numerical Methods

where the method is implicit if b0 �= 0 (yi+1 occurs on the right-hand side) or explicit
if b0 = 0 (yi+1 does not occur on the right-hand side). Initial conditions are required
to start the iteration and must include known values for y0 through ym−1. In practice
you typically know only y0 at time t0. The other iterates can be generated by using a
one-step method, a bootstrapping process of sorts.

The differential equation in its integral form is mentioned in equation (13.6). For
f > 0 the motivation for numerical methods was to approximate the area under the
curve φ(t)= f (t , x(t)) for ti ≤ t ≤ ti+1. Multistep methods are derivable in a similar
manner. The approximation by the area of a rectangle is equivalent to approximating
φ(t) by a constant function P(t)= φ(ti) and integrating. The approximation by the
area of a trapezoid is equivalent to approximating φ(t) by a linear function P(t)=
φ(ti)+ (φ(ti+1)−φ(ti)(t − ti)/(ti+1− ti) but led to an implicit method because of
the occurrence of the future value φ(ti+1). We may approximate φ(t) by a polynomial
P(t) of higher degree and obtain either explicit or implicit methods.

The explicit m-step method using the higher-degree approximation is to choose
P(t) as the interpolating polynomial of degree m− 1 of the iterates (tj , yj) for i −m+
1 ≤ j ≤ i. If we set t = ti + sh, where s is a continuous variable and fi = f (ti , yi), the
polynomial is

P(t)= fi + s∇fi + s(s + 1)

2
∇2fi + · · ·+ s(s + 1) · · ·(s +m− 2)

(m− 1)!
∇m−1fi

where ∇ j fi terms are backward differences defined by ∇fi = fi − fi−1, and ∇k+1fi =
∇(∇k fi) for k ≥ 1. The numerical method obtained by integrating P(t) and using it as
an approximation to the integral is referred to as the Adams-Bashforth m-step method.
The local truncation error is O(hm). Some special cases are shown:

yi+1 = yi + hfi , Euler’s method

yi+1 = yi + h(3fi − fi−1)

2
2-step method

yi+1 = yi + h(23fi − 16fi−1+ 5fi−2)

12
3-step method

yi+1 = yi + h(55fi − 59fi−1+ 37fi−2− 9fi−3)

24
4-step method

yi+1 = yi + h(1901fi − 2774fi−1+ 2616fi−2− 1274fi−3+ 251fi−4)

720
5-step method

(13.23)

The derivation of the two-step method uses P(t)= fi + s(fi − fi−1) and

ti+1∫
ti

P(t)dt = h

1∫
0

fi + s(fi − fi−1)ds = h(fi + (fi − fi−1)/2)= (h/2)(3fi − fi−1)

13.6 Predictor–Corrector Methods 779

A small observation: The coefficients of the f -terms add up to the denominator of the
h-term.

In the Adams-Bashforth explicit solver the polynomial P(t) interpolates the
iterates occuring at times t ≤ ti . The values of P(t) for t ∈ [ti , ti+1] are extrapo-
lated. In a sense the solver predicts the value yi+1 by this extrapolation. An implicit
solver is obtained by interpolating the iterates at times t ≤ ti+1. For example, if a
2-step implicit method interpolates (ti−1, fi−1), (ti , fi), and (ti+1, fi+1) by a quadratic
polynomial,

P(t)= fi +
(

fi+1− fi−1

2h

)
(t − ti)+

(
fi+1− 2fi + fi−1

2h2

)
(t − ti)

2

The integral is

ti+1∫
ti

P(t)dt = h

12
(5fi+1+ 8fi − fi−1)

The implicit solver is yi+1 = yi + (h/12)(5fi+1+ 8fi − fi−1). The m-step implicit
method obtained in this manner is referred to as the Adams–Moulton m-step method.
In general the local truncation error of an m-step implicit method is O(hm+1), one
degree larger than for an m-step explicit method. As a rule of thumb you get better
accuracy with the implicit method, but the cost is that you have to solve the implicit
equation for yi+1. Some special cases are shown:

yi+1 = yi + h(fi+1+ fi) Trapezoid method
(13.7)

yi+1 = yi + h(5fi+1+ 8fi − fi−1)

12
2-step method

yi+1 = yi + h(9fi+1+ 19fi − 5fi−1+ fi−2)

24
3-step method

yi+1 = yi + h(251fi+1+ 646fi − 264fi−1+ 106fi−2− 19fi−3)

720
4-step method

(13.24)

13.6 Predictor–Corrector Methods

The Adams–Bashforth m-step solver is an explicit method that interpolates the iter-
ates through time ti with a polynomial and integrates the polynomial on [ti , ti+1]. As
such we are using the polynomial to extrapolate the behavior for times t ≥ ti . The
resulting approximation is used to generate the iterate yi+1. The Adams–Moulton
m-step solver is an implicit method that interpolates the iterates through time ti+1

780 Chapter 13 Numerical Methods

with a polynomial and integrates the polynomial on [ti , ti+1]. We are using the
polynomial to interpolate the behavior for times t ≥ ti , but since we do not know
yi+1 we obtain the implicit behavior. Rather than solve the implicit equation via a
root finder or fixed point iteration, something not guaranteed to be stable or robust,
we use the two methods together. The pair forms what is called a predictor-corrector
method. The explicit method is used to predict the value of yi+1. This value is used on
the right-hand side of the implicit equation to correct the value. The left-hand side
of the implicit equation is the corrected value. Of course, you may iterate the cor-
rector portion of the system by taking the left-hand side value and feeding it back to
the right-hand side, effectively implementing a fixed-point iteration that hopefully
converges.

13.7 Extrapolation Methods

In this section we look at the prospect of applying extrapolation methods to increase
the accuracy of our approximations to the solutions of differential equations. The
basic approach will be to compute three approximations to x(t) using different step
sizes whose ratios in pairs are integers; each approximation will require a different
number of iterations. The approximations are all O(h2) but can be combined to
produce an approximation that is O(h6).

13.7.1 Richardson Extrapolation

Accurate approximations may be obtained from low-order formulas using a method
called Richardson extrapolation [RG27]. Let Q be an unknown quantity which is
approximated by A(h). Think of A(h) as a black-box process that can approximate
Q depending on some parameter h that you may choose as you like. For our purposes
h is the step size in the differential equation solver. Suppose that the approximation
is of the following form for some constant c1:

Q = A(h)+ c1h2+O(h4)= A(h)+O(h2)

We can generate another approximation with the process by selecting h/2 instead,
namely

Q = A(h/2)+ c1h2/4+O(h4)= A(h/2)+O(h2)

In practice, of course, we would use A(h) or A(h/2) as the approximation since we
do not know what c1 is; after all, A represents a black-box process. The two approx-
imations can be combined to eliminate the quadratic term in h, even though we do

13.7 Extrapolation Methods 781

not know c1. Specifically, another approximation for the quantity is

Q = 1

3

(
4(A(h/2)+ c1h2/4+O(h4))− (A(h)+ c1 h2+O(h4))

)
= 4A(h/2)−A(h)

3
+O(h4)

That is, the value (4A(h/2)−A(h))/3 is an approximation for Q, but the surpris-
ing conclusion is that the error is O(h4) rather than O(h2) of the two original
approximations.

Define A1(h)= A(h) and A2(h)= (4A(h/2)−A(h))/3. We have seen that Q =
A2(h)+O(h4). If additionally we know that

Q = A2(h)+ c2h4+O(h6)

we can repeat the process. Using half the input parameter, we have another approxi-
mation,

Q = A2(h/2)+ c2h4/16+O(h6)

The two approximations combine to produce

Q = 16A2(h/2)−A2(h)

15
+O(h6)

with yet another increase in the order of the error. Define A3(h)= (16A2(h/2)−
A2(h))/15. Assuming more structure in the error terms so that powers ck h2k appear
for constants ck , further repetitions lead to the approximation,

Q = Ak (h)+O(h2k), Ak (h)= 4k−1Ak−1(h/2)−Ak−1(h)

4k−1− 1

13.7.2 Application to Differential Equations

Let us look at the application of a slight variation of the Richardson extrapolation to
numerical methods for differential equations. The method is attributed to [Gra65].
The differential equation is ẋ = f (t , x). Suppose we have a numerical method of the
form,

yi+1 = yi + hφ(ti , yi , h)

Let A(t , h) denote the process of solving the numerical method to approximate y(t).
As long as the approximation is of the form

x(t) = A(t , h)+
n∑

k=1

ck(t)h
2k +O(h2n+2)

782 Chapter 13 Numerical Methods

where the ck(t) are independent of h, we can use extrapolation to produce a high-
order approximation from low-order ones. Choose a value h > 0 and choose three
step sizes hj = h/qj , 0 ≤ j ≤ 2, where the qj are positive integers. We solve the numer-
ical method for these step sizes. The approximation using hj requires qj steps. The
actual solutions are

x(t)= A(t , hj)+ c1(t)h
2
j + c2(t)h

4
j +O(h6)

= A(t , hj)+ c1(t)

q2
j

h2+ c2(t)

q4
j

h4+O(h6)

for 0≤ j ≤ 2.
Define Aj,0 = A(t , hj) for 0≤ j ≤ 2. We can combine the first two equations for

x(t) to eliminate the h2 term:

x(t) = q2
1A1,0− q2

0 A0,0

q2
1 − q2

0

− c2(t)

q2
0q2

1

h4+O(h6)= A1,1− c2(t)

q2
0q2

1

h4+O(h6)

where the last equality defines A1,1. We can also combine the last two equations to
eliminate the h2 term:

x(t) = q2
2A2,0− q2

1 A1,0

q2
2 − q2

1

− c2(t)

q2
1q2

2

h4+O(h6)= A2,1− c2(t)

q2
1q2

2

h4+O(h6)

where the last equality defines A2,1. Both combined equations have error terms of
O(h4), whereas the original ones had error terms of O(h2). Combining the combined
equations to eliminate the h4 term,

x(t)= q2
2 A1,1− q2

0 A2,1

q2
2 − q2

0

+O(h6)= A2,2+O(h6)

where the last equality defines A2,2, a quantity that approximates x(t) with error term
O(h6) rather than the errors O(h2) that occurred in the initial approximations. You
may view this construction as building a table of approximations,

A0,0

A1,0 A1,1

A2,0 A2,1 A2,2

where an entry Ai ,j is obtained by combining Ai ,j−1 and Ai−1,j−1 in the appropriate
manner. The first column represents different O(h2) approximations to the solu-
tion, the second column represents O(h4) approximations, and the third column
represents an O(h6) approximation.

Although the presentation here uses three approximations of O(h2) to construct
an approximation of O(h6), it is clear that the ideas easily extend to using m approx-
imations of O(h2) generated from step sizes hj = h/qj for m distinct integers qj in

13.7 Extrapolation Methods 783

order to obtain a final approximation of O(h2m). The table of approximations is

A0,0

A1,0 A1,1

A2,0 A2,1 A2,2
...

...
...

. . .
Am−1,0 Am−1,1 Am−1,2 · · · Am−1,m−1

(13.25)

where the entries in column j represent approximations of order O(h2(j+1)).

13.7.3 Polynomial Interpolation and Extrapolation

Given points (ti , yi) for 0≤ i ≤ n, the interpolating polynomial of degree n is
Lagrange polynomial,

P(t)=
n∑

i=0

yi

⎛
⎜⎜⎝

n∏
j = 1

j �= i

(t − tj)

⎞
⎟⎟⎠

Direct evaluation of the right-hand side is not the recommended way to compute
P(t) on a computer. A more robust method uses a recursion formula for Lagrange
polynomials, called Neville’s method. For i ≥ j define Pi ,j(t) to be the interpolating
polynomial of degree j of (tk , yk), where i − j ≤ k ≤ i. The recursion is started by
Pi ,0 = yi for 0 ≤ i ≤ n and the recursion itself is

Pi ,j(t) = (t − ti−j)Pi ,j−1(t)− (t − ti)Pi−1,j−1(t)

ti − ti−j
(13.26)

for 1≤ j ≤ n and j ≤ i ≤ n. The resulting values can be stored in a table identical to
the format shown in equation (13.25) with Pi ,j as the general term rather than Ai ,j .
This is no coincidence! The construction is in essence a Richardson extrapolation.

The diagonal term Pi ,i is determined by the inputs (tj , yj) for 0≤ j ≤ i. An appli-
cation might want to add new points to the system and continuing evaluation until
the diagonal terms do not change significantly. That is, the application supplies an
error tolerance ε > 0 and requires a stopping condition |Pi ,i−Pi−1,i−1|< ε. If the
condition is met, Pi ,i is the output of the method. If the condition is not met, the
application provides another data point (ti+1, yi+1) and evaluates another row in
the table.

13.7.4 Rational Polynomial Interpolation and Extrapolation

A set of points (ti , yi) for 0≤ i ≤ n can be interpolated by rational polynomials rather
than by polynomials. The idea is that some functions are not well interpolated by

784 Chapter 13 Numerical Methods

polynomials but do have reasonable approximations by rational polynomials. The
form of the interpolating rational polynomial is chosen to be

R(t)=
∑dp

i=0 pi t i∑dq

i=0 qi t i

where the degrees of the polynomials satisfy dp + dq = n. The coefficients allow us
one arbitrary choice, so we set q0 = 1. If we choose any other nonzero value for q0, we
can always divide the coefficients in both numerator and denominator by q0 so that
in fact the constant term of the denominator becomes 1.

Bulirsch and Stoer developed an algorithm for interpolating and extrapolating
rational polynomials that is similar to the algorithm for polynomial interpolation and
extrapolation [BS64]. If n is even, the degrees of the numerator and denominator
are equal, dp = dq = n/2. If n is odd, the denominator is one degree larger than the
numerator, dp = &n/2' and dq = dp + 1. The recursion is started with Ri ,0 = yi for
0 ≤ i ≤ n and the recursion itself is

Ri ,j(t)= Ri ,j−1(t)+ Ri ,j−1(t)−Ri−1,j−1(t)(
t−ti−j

t−ti

)(
1− Ri,j−1(t)−Ri−1,j−1(t)

Ri,j−1(t)−Ri−1,j−2(t)

)
− 1

(13.27)

for 1≤ j ≤ n and j ≤ i ≤ n. In evaluating the recursion, it is understood that Ri ,j = 0
whenever i < j.

Just as for polynomials, the diagonal term Ri ,i is determined by the inputs (tj , yj)

for 0 ≤ j ≤ i. The application supplies an error tolerance ε > 0 and requires a stop-
ping condition |Ri ,i−Ri−1,i−1|< ε. If the condition is met, Ri ,i is the output of the
method. If the condition is not met, the application provides another data point
(ti+1, yi+1) and evaluates another row in the table.

13.7.5 Modified Midpoint Method

The modified midpoint method is a numerical method for solving a differential
equation that takes a large step in time to produce an approximation. If yi is an
approximation to x(ti), we wish to approximate x(ti +H) using n substeps, each
of size h =H/n. The approximation is denoted yi+n to reflect the fact that we are
approximating x(ti + nh)= x(ti+n).

The process is initialized with z0 = yi . The first iterate is generated by Euler’s
method,

z1 = z0+ hf (ti , z0)

Other iterates are generated by

zj+1 = zj−1+ 2hf (t + jh, zj), 1≤ j ≤ n− 1

13.8 Verlet Integration 785

The final approximation is

yi+n = 1

2
(zn + zn−1 + hf (t + nh, zn))

This process is part of the Bulirsch–Stoer numerical method for solving a differential
equation, as we will see in the next section.

13.7.6 Bulirsch–Stoer Method

The Bulirsch–Stoer method [BS64] is designed to obtain highly accurate solutions
to a differential equation for which f (t , x) is smooth and to do so with a minimal
amount of computation. The idea is analogous to the method we discussed in an
earlier section that uses polynomial extrapolation to improve the order of the error
term. The final, highly accurate approximation was generated by combining the low
accuracy approximations in the appropriate manner. The Bulirsch–Stoer method uses
the modified midpoint method for solving the differential equation for a sequence
of decreasing step sizes and uses rational polynomial extrapolation to improve the
accuracy.

A step size H > 0 is chosen and the equation is solved three times using the modi-
fied midpoint method with substep counts of q0 = 2, q1 = 4, and q2 = 6. These values
are used to construct a table of rational polynomial approximations, the table of the
form in equation (13.25) and consisting of three rows. The differential equation is
solved again by the modified midpoint method using substep counts generated by
qj = 2qj−2 for j ≥ 3. For each numerical solution, the rational polynomial approxima-
tion table has a new row added and a comparison is made between the new diagonal
term Ri ,i and the old one Ri−1,i−1, as mentioned in Section 13.7.4 on rational poly-
nomial interpolation and extrapolation. If the difference is suitably small, the value
Ri ,i is used as the approximation to x(t +H). If not, the next substep count is used
and the process is repeated.

13.8 Verlet Integration

A numerical method that has its origins in molecular dynamics is due to Verlet
[Ver67]. The method and its variations were made popular in the game program-
ming industry through the work of Thomas Jakobsen [Jak01]. The scheme is based
on Taylor’s theorem using

x(t + h)= x(t)+ ẋ(t)h + 1

2
ẍ(t)h2 + 1

6
x(3)(t)h3 +O(h4)

x(t − h)= x(t)− ẋ(t)h + 1

2
ẍ(t)h2 − 1

6
x(3)(t)h3 +O(h4)

786 Chapter 13 Numerical Methods

The first expansion is forward in time, the second backward in time. Summing these
and keeping only the x(t + h) term on the left-hand side leads to

x(t + h)= 2x(t)− x(t − h)+ ẍ(t)h2 +O(h4)

The velocity terms cancel as well as the third-order terms, leaving an approximation
error on the order of O(h4). Assuming the physical system is modeled by Newton’s
second law of motion, ẍ= F(t , x, ẋ)/m, the iteration scheme is

yi+1 = 2yi − yi−1+
h2

m
F(ti , yi , ẏi), i ≥ 1 (13.28)

The iterate yi is an approximation to the position x(ti) and ẏi is an approximation to
the velocity ẋ(ti). In this most general form of the force function, the general iteration
scheme requires estimates of the velocity.

One of the main advantages of the Verlet approach is that the difference method
is reversible in time, something that a differential equation for a physical model sat-
isfies when the force is conservative. The reversibility shows up in that we could just
have easily solved for yi−1 = 2yi − yi+1+ h2F(ti , yi , ẏi)/m and iterate to approximate
position backward in time. The implication of reversibility in time is that the method
maintains conservation of energy, at least when treating the quantities in the equation
as true real numbers. On a computer, numerical round-off errors can cause an appar-
ent change in energy. Another advantage is that only one evaluation of F is required
per time step, as compared to the multiple evaluations in methods such as the ones of
Runge–Kutta type. The computational time is minimized to some extent. The disad-
vantage of the Verlet method is that it is not as accurate as other methods. Variations
on the method were developed in attempts to maintain the advantages of reversibility
in time and minimum computational time but improve accuracy. We will discuss a
few of these variations later in this section.

13.8.1 Forces Without a Velocity Component

In its original formulation, the force is assumed to depend only on time and position,
F(t , x). This rules out frictional forces, of course, which depend on velocity. Moreover,
in nearly all applications you see to molecular dynamics, the force is conservative,
F(x)=−∇V (x), where V is the potential energy function. The iteration scheme in
this restricted case is a two-step method and requires two initial positional conditions.
The initial value problem for the second-order differential equation has one positional
condition y0 and one velocity condition ẏ0. The second positional condition can be
generated with an Euler step:

y0, ẏ0 are specified

y1 = y0+ hẏ0

yi+1 = 2yi − yi−1+
h2

m
F(ti , yi), i ≥ 1

(13.29)

This fits the mold of an explicit two-step method of the form in equation (13.22).

13.8 Verlet Integration 787

Notice that the method does not calculate velocity explicitly. The new position is
computed from the previous two steps and the force on the particle. If an estimate of
velocity is required by your application, you have a couple of possibilities. One is to use
the previous two positions and select ẏi+1 = (yi − yi−1)/h, an O(h) approximation.
The other possibility is to use a centered difference ẏi = (yi+1− yi−1)/(2h), an O(h2)

approximation at the same cost of calculation as the O(h) one. The trade-off, though,
is that you have to wait until the (i + 1)-th time step to estimate the velocity at the ith
time step.

13.8.2 Forces with a Velocity Component

If frictional forces are part of the physical model and/or if you need to compute the
velocity for the purposes of computing the energy of the system, then the velocity
approximations must be generated. The force is of the form F(t , x, ẋ). An application
using forces of this type does need approximations to the velocity at each time step in
order to evaluate the force function. A few variations are possible.

Using our suggestion for estimating velocity when the force does not have a
velocity component, an explicit method is provided by

y0, ẏ0 are specified

y1 = y0+ hẏ0

ẏi =
1

h
(yi − yi−1), i ≥ 1

yi+1 = 2yi − yi−1+
h2

m
F(ti , yi , ẏi), i ≥ 1

(13.30)

The ẏi term must be evaluated first, then used in the evaluation of yi+1. Notice that
ẏ1 = ẏ0, so effectively the explicit method assumes no change in velocity over the first
time step.

The other suggestion for estimating velocity when the force does not have a
velocity component leads to an implicit method:

y0, ẏ0 are specified

y1 = y0+ hẏ0

ẏi =
1

2h
(yi+1− yi−1), i ≥ 1

yi+1 = 2yi − yi−1+
h2

m
F(ti , yi , ẏi), i ≥ 1

(13.31)

As with any implicit method, you must decide how to solve for the implicit quan-
tity yi+1. A fixed point iteration or Newton’s method each requires a force-function
evaluation per iteration, something that would negate the advantage of minimum

788 Chapter 13 Numerical Methods

computational time in the Verlet method. A cheaper alternative is to use a predictor-
corrector approach where you predict ẏi = (yi − yi−1)/h, use it to compute yi+1 from
the other difference equation, then correct the value with ẏi = (yi+1− yi−1)/(2h).

13.8.3 Simulating Drag in the System

The iteration of the Verlet equation can be modified to simulate drag in the system.
The difference equation is rewritten as

yi+1 = yi + (yi − yi−1)+
h2

m
F(t , yi , ẏi)

The term yi − yi−1 is related to an estimate of velocity. Drag is introduced by including
a drag coefficient δ ∈ [0, 1],

yi+1 = yi + (1− δ)(yi − yi−1)+
h2

m
F(t , yi , ẏi)

A reasonable requirement is that you choose δ to be a small positive number, say on
the order of 10−2.

13.8.4 Leapfrog Method

The velocity estimates in the standard Verlet approach might not be as accurate as an
application requires. The estimate ẏi = (yi − yi−1)/h is O(h) and the estimate ẏi =
(yi+1− yi)/(2h) is O(h2). The leapfrog method is designed to improve on the velocity
estimates.

Let us take a different look at the velocity by using Taylor’s theorem:

ẋ(t + h)= ẋ(t)+ hẍ(t)+ h2

2
x(3)(t)+ h3

6
x(4)(t)+ h4

24
x(5)(t)+O(h5)

ẋ(t − h)= ẋ(t)− hẍ(t)+ h2

2
x(3)(t)− h3

6
x(4)(t)+ h4

24
x(5)(t)+O(h5)

Subtracting leads to

ẋ(t + h)= ẋ(t − h)+ 2hẍ(t)+ h3

3
x(4)(t)+O(h5)= ẋ(t − h)+ 2hẍ(t)+O(h3)

This represents a time step of h. If we were to use half the step h/2, the equation
becomes

ẋ(t +h/2)= ẋ(t − h/2)+hẍ(t)+ h3

24
x(4)(t)+O(h5)= ẋ(t − h/2)+ hẍ(t)+O(h3)

The order term is O(h3) in either case, and the third-order term includes x(4)(t)
in both cases. By using only a half step, the second equation produces a coefficient of

13.8 Verlet Integration 789

h3/24, which is 1/8 of the coefficient generated by the full step h. The intuitive appeal
is that the error generated by the second equation is less than that of the first, so the
velocity estimates should be better than with the straightforward Verlet method.

We need to estimate the position as well, but our goal is to approximate the
positions using the full step h. The previous paragraph tells us how to estimate the
velocities for half steps h/2. The leapfrog method interleaves the velocity and posi-
tion iteration. The informal manner in which you normally see the leapfrog method
stated is

v(t + h/2)= v(t − h/2)+ ha(t)

x(t + h)= x(t)+ hv(t + h/2)

where x(t) is position, v(t) is velocity, and a(t) is acceleration given by F/m. The
velocity is updated on the time interval [t − h/2, t + h/2] by using the acceleration
computation at the midpoint t of the interval. The position is updated on the time
interval [t , t + h] by using the velocity estimate at the midpoint of the interval, t +
h/2. As with any second-order differential equation, the initial conditions x(0) and
v(0) must be specified. The leapfrog method requires v(h/2), not v(0), to approximate
the first position x(h)= x(0)= hv(h/2). We may not use v(h/2)= v(−h/2)+ ha(0)

since we have no information about the velocity at negative times. Instead, we should
estimate v(h/2)= v(0)+ (h/2)a(0), an Euler iterate for the half-step h/2.

The implicit assumption in this formulation is that the force F is a function of
time t and position x(t) only. If the force were also to depend on velocity v(t), then
the velocity approximations involve times t − h/2, t , and t + h/2, thereby requiring
velocity estimates at all times t + ih/2 for i ≥ 0. In this setting, the method is no longer
the one intended by leapfrog, yet is still a valid numerical method.

When the force is of the form F(t , x), the formulation of the difference equations
in the style to which we have become accustomed is shown next, where ti = ih/2 and
initial time is 0.

y0, ẏ0 are specified

ẏ1 = ẏ0+
h

m
F(0, y0)

ẏi+1 = ẏi−1+
h

m
F(ti , yi), i ≥ 1

yi+2 = yi + hẏi+1, i ≥ 0

(13.32)

Notice the “leapfrog” behavior in that the velocity iterates are computed for the odd
indices and the position iterates are computed for the even indices. When the force is
of the form F(t , x, ẋ), the formulation is in terms of an explicit two-step solver. The
step size H = h/2, where h is the original step size and ti = iH where initial time is 0.

y0, ẏ0 are specified

y1 = y0+H ẏ0

790 Chapter 13 Numerical Methods

ẏ1 = ẏ0+
H

m
F(0, y0, ẏ0)

yi+2 = yi + 2H ẏi+1, i ≥ 0 (13.33)

ẏi+2 = ẏi +
2H

m
F(ti+1, yi+1, ẏi+1), i ≥ 0

An Euler step is also needed to estimate y1. The position and velocity iterates are
computed for all indices, so no leap-frogging going on here.

The general rule of thumb on the advantages of the leapfrog over the standard
Verlet method is that the position and velocity estimates are better but come at the
cost of slightly more computation time.

13.8.5 Velocity Verlet Method

Another variation on the Verlet method is called the velocity Verlet method. The veloc-
ity estimate is produced using an integral formulation of the same type that led to
equation (13.7), using dv/dt = a(t) and an integration:

v(t + h)= v(t)+
t+h∫
t

a(τ)dτ
.= v(t)+ h

2
(a(t)+ a(t + h))

This provides a slightly better estimate than what the leapfrog method used. Specifi-
cally, Taylor’s theorem gives us

v(t + h)− v(t − h)− 2ha(t) = h3

6
ä(t)+O(h5)

Taylor expansions for velocity and acceleration are

v(t + h)= v(t)+ ha(t)+ h2

2
ȧ(t)+ h3

6
ä(t)+O(h4)

a(t + h)= a(t)+ hȧ(t)+ h2

2
ä(t)+O(h4)

so that

v(t + h)− v(t)− (h/2)(a(t)+ a(t + h))=−h3

12
ä(t)+O(h4)

The velocity in the leapfrog method is

v(t + h)= v(t − h)+ 2ha(t)+ h3

6
ä(t)+O(h5)

13.8 Verlet Integration 791

and the velocity using the velocity Verlet method is

v(t + h)= v(t)+ h

2
(a(t)+ a(t + h))− h3

12
ä(t)+O(h4)

All other things being equal, you expect the latter velocity estimate to have about
half the error of the former since the coefficient of the h3 term is half that in the other
expression. The price for less error, though, is more computational time. The leapfrog
method uses one evaluation of acceleration whereas the velocity Verlet method
uses two evaluations. But the comparison is not quite fair. The leapfrog computes
velocity on every other time step. The velocity Verlet method computes velocity on
each time step. If you need the velocity information in the leapfrog method, such as
in the implicit scheme of equation (13.33), then both methods use the same num-
ber of acceleration evaluations. The velocity Verlet produces a better estimate for the
same cost.

The position in the velocity Verlet method is estimated from Taylor’s theorem.
The numerical method stated in the manner in which it normally is found in the
literature is

x(t + h)= x(t)+ hv(t)+ h2

2
a(t)

v(t + h)= v(t)+ h

2
(a(t)+ a(t + h))

Once again the implicit assumption is that the force is of the form F(t , x) with
no explicit dependence on velocity. The idea of the iteration is that x(t), v(t), and
a(t)= F(t , x(t))/m are known. The next position x(t + h) is calculated from the first
difference equation. This value is used to compute a(t + h)= F(t + h, x(t + h))/m
and is substituted into the second difference equation to obtain the next velocity v(t +
h). Many literature sources describe the process with one intermediate step. First,
x(t + h) is computed. Second, the velocity for a half-step is computed, v(t + h/2)=
v(t)+ (h/2)a(t). Third, a(t + h)= F(t + h, x(t + h))/m is computed. Fourth, the
velocity for the full-step is computed, v(t + h)= v(t + h/2)+ (h/2)a(t + h). How-
ever, it is not necessary to do so in an implementation unless for some reason you
need estimates of the velocities at the half-steps. In our standard formulation, the
numerical method is

y0, ẏ0 are specified

yi+1 = yi + hẏi +
h2

2m
F(ti , yi), i ≥ 0 (13.34)

ẏi+1 = ẏi +
h

2m

(
F(ti , yi)+F(ti+1, yi+1)

)
, i ≥ 0

The yi+1 term must be computed first since it is used in the equation to produce ẏi+1.

792 Chapter 13 Numerical Methods

When the force is of the form F(t , x, ẋ), the numerical method becomes implicit:

y0, ẏ0 are specified

yi+1 = yi + hẏi +
h2

2m
F(ti , yi , ẏi), i ≥ 0 (13.35)

ẏi+1 = ẏi +
h

2m

(
F(ti , yi , ẏi)+F(ti+1, yi+1, ẏi+1)

)
, i ≥ 0

The implicitness is because ẏi+1 occurs on both sides of the last difference equation.
As always, a predictor-corrector method could be used. For example, you could pre-
dict ẏi+1 = (yi+1− yi)/h and substitute in the right-hand side of the last difference
equation to obtain the correction for ẏi+1.

The velocity Verlet method gives you the best estimates of velocity of all the Verlet-
style methods, but the cost is additional function evaluations. It is a one-step method,
whereas the other explicit Verlet methods are two-step methods.

13.8.6 Gear’s Fifth-Order Predictor-Corrector Method

A method that is sometimes used as an alternative to the velocity Verlet method is
called Gear’s fifth-order predictor-corrector method [Gea71]. The prediction portion of
the algorithm is based once again on Taylor’s Theorem,

x(t+h)= x(t)+hx(1)(t)+ h2

2!
x(2)(t)+ h3

3!
x(3)(t)+ h4

4!
x(4)(t)+ h5

5!
x(5)(t)+O(h6)

x(1)(t + h)= x(1)(t)+ hx(2)(t)+ h2

2!
x(3)(t)+ h3

3!
x(4)(t)+ h4

4!
x(5)(t)+O(h5)

x(2)(t + h)= x(2)(t)+ hx(3)(t)+ h2

2!
x(4)(t)+ h3

3!
x(5)(t)+O(h4)

x(3)(t + h)= x(3)(t)+ hx(4)(t)+ h2

2!
x(5)(t)+O(h3)

x(4)(t + h)= x(4)(t)+ hx(5)(t)+O(h2)

x(5)(t + h)= x(5)(t)+O(h)

Subscripting the predicted values with p and the corrected values with c , the matrix
form of the prediction step is

13.8 Verlet Integration 793

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp(t + h)

hx(1)
p (t + h)

h2

2!
x(2)

p (t + h)

h3

3!
x(3)

p (t + h)

h4

4!
x(4)

p (t + h)

h5

5!
x(5)

p (t + h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(t)

hx(1)
c (t)

h2

2!
x(2)

c (t)

h3

3!
x(3)

c (t)

h4

4!
x(4)

c (t)

h5

5!
x(5)

c (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the nonzero entries of the columns of the 6× 6 matrix are the rows of
Pascal’s triangle. The predicted values are used to evaluate the force function and
obtain a corrected second-derivative,

x(2)
c (t + h)= 1

m
F(t + h, xp(t + h), ẋp(t + h))

Define:

�= h2

2!

(
x(2)

c (t + h)− x(2)
p (t + h)

)
The corrected values are⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(t + h)

hx(1)
c (t + h)

h2

2!
x(2)

c (t + h)

h3

3!
x(3)

c (t + h)

h4

4!
x(4)

c (t + h)

h5

5!
x(5)

c (t + h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp(t + h)

hx(1)
p (t + h)

h2

2!
x(2)

p (t + h)

h3

3!
x(3)

p (t + h)

h4

4!
x(4)

p (t + h)

h5

5!
x(5)

p (t + h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

251/360

1

11/18

1/6

1/60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where λ= 3/16 if the force is of the form F(t , x) or λ= 3/20 if the force is of the form
F(t , x, ẋ). Starting the iteration does require that estimates be made for the second-
and higher-order derivatives at initial time.

Compared to the velocity Verlet method, the Gear method will require more
memory usage, potentially of importance if your physical system has a large number

794 Chapter 13 Numerical Methods

of rigid bodies. The trade-off, though, is that the Gear method makes one function
evaluation per time step, whereas the velocity Verlet method uses two function eval-
uations. Thus, we have the classic space versus time trade-off. Experience in the
molecular dynamics field has shown that the velocity estimates from the velocity
Verlet method tend to degenerate over time faster than those computed in the Gear
method. The Gear method also has a higher degree of energy conservation with a
larger time step compared to the velocity Verlet method. However, the Gear method
is not reversible in time as are the Verlet methods.

Finally, if you should want to choose variable step sizes for the Verlet methods
rather than fixed step sizes, see [HOS99].

13.9 Numerical Stability and Its
Relationship to Physical Stability

Stability of solutions to a system of differential equations was discussed in
Section 11.6. The intuitive description is that a solution φ(t) is stable if each solu-
tion ψ(t) that starts out close to φ(t) remains close to it for all time. In effect this
is a statement about the continuous dependence of a solution on its initial condi-
tions. If ẋ= f(t , x) is the system of differential equations with initial data x(t0)= x0,
the solution is denoted x(t ; x0). If we compare solutions x(t ; x0+ δ) and x(t ; x0),
where δ is a nonzero vector of small length, we want to know about the differ-
ences |x(t ; x0 + δ)− x(t ; x0)| as time t increases. We do know that |x(t0; x0 + δ)−
x(t0; x0)| = |(x0+ δ)− x0| = |δ|, which is small. The question is whether or not the
differences remain bounded or become unbounded with increasing time. I will refer
to this measure of stability as physical stability since the differential equations are
obtained as the equations of motion for a physical system.

Our earlier discussion involved understanding the stability of linear systems ẋ=
Ax for which A has constant entries. As we saw, the stability is directly related to the
signs on the real parts of the eigenvalues of A. If all eigenvalues have negative real
parts, the system is stable. If at least one eigenvalue has positive real part, the system is
unstable. If all eigenvalues have negative or zero real parts with at least one eigenvalue
having zero real part, the stability depends on the dimension of the eigenspace of the
eigenvalue.

We then used our knowledge of linear stability to determine the stability prop-
erties of equilibrium solutions to nonlinear autonomous systems ẋ= f(x). For the
sake of argument, let us assume that the equilibrium solution of interest is x(t) ≡ 0.
If this were not the case and x(t)≡ x0 �= 0 were an equilibrium solution, we could
always transform the system to one that does have a zero equilibrium solution by
y= x− x0 and F(y)= f(y+ x0), so ẏ= F(y) has the equilibrium solution y(t) ≡ 0.
Taylor’s theorem allows us to write

f(x)= Ax+R(x)

13.9 Numerical Stability and Its Relationship to Physical Stability 795

where A is the matrix of first-order derivatives of the components of f that are
evaluated at 0. The remainder R consists of quadratic and higher-order terms. The
linearized system is ẋ= Ax. If the eigenvalues of A all have negative real parts, then
the equilibrium solution of the physical system is stable. If at least one eigenvalue has
positive real part, the equilibrium solution is unstable. No immediate conclusions can
be drawn when the eigenvalues have negative or zero real parts with at least one having
zero real part.

This result addresses the physical stability of the equilibrium solution. However,
we will solve ẋ= f(x) using a numerical method. It is important that the approxima-
tions generated by the method are themselves close to the true solution. The concept
of closeness in this context is referred to as numerical stability. In general, to obtain
numerical stability, you will need to carefully choose your step size h in the numerical
solvers. The end result of our discussion will be that you can do this safely only by
understanding the relationship between numerical stability and physical stability.

13.9.1 Stability for Single-Step Methods

Three concepts are of interest: consistency, convergence, and stability. Recall that the
local truncation error refers to the terms we discard when generating a numerical
method from something such as a Taylor expansion. For example, Euler’s method
arose from Taylor’s theorem in representing a solution to ẋ = f (t , x) as

x(ti+1)= x(ti)+ hẋ(ti)+ h2

2
ẍ(t̄i)= x(ti)+ hf (ti , x(ti))+ h2

2
ẍ(t̄i)

where t̄i ∈ [ti , ti+1], but whose value is generally unknown to us. We discarded the
second-order term to obtain the numerical method,

yi+1 = yi + hf (ti , yi)

where yi is the approximation to x(ti). The discarded term is the local truncation error
for Euler’s method and is of order O(h2). As we make h small, the local truncation
error for a single iteration is small. If we can make the local truncation errors become
small for n iterations, that is a good thing for our numerical method. This leads us to
the definition that follows.

Definition ■ Let τi denote the local truncation error at the ith step of the numerical
method. The method is said to be consistent with the differential equation it
approximates if

lim
h→0

max
1≤i≤n

|τi | = 0

Intuitively, this says that for very small step sizes, the local truncation error made
at any time t is very small. ■

According to this definition, Euler’s method is consistent.

796 Chapter 13 Numerical Methods

In general having very small local truncation errors at any time is not enough
to guarantee that yi is a good approximation to x(ti). We need a definition about
closeness.

Definition ■ A numerical method is said to be convergent with respect to the differential
equation if

lim
h→0

max
1≤i≤n

|x(ti)− yi | = 0

Intuitively, this says that for very small step sizes, the maximum error at any time
t between the approximation and the true solution is very small. ■

Our derivation that led to the inequality of equation (13.3) shows that Euler’s method
is convergent.

Our last definition is about stability itself.

Definition ■ A numerical method is said to be stable if small changes in the initial data
for the differential equation produce correspondingly small changes in the sub-
sequent approximations. In formal terms, let x0 and x1 be two initial values for
the differential equation. Let yi be the approximation to x(ti ; x0) and let ȳi be the
approximation to x(ti ; x1). For each ε > 0, there is a δ > 0 sufficiently small so
that |yi − ȳi|< ε whenever |x1− x0|< δ. ■

This definition is a statement about continuous dependence of solutions on the
initial data. The relationship between consistency, convergence, and stability for a
one-step numerical method is summarized by the following result.

Theorem ■ Consider the initial value problem ẋ = f (t , x) for t ∈ [t0, t0+α] with initial
data x(t0)= x0. Let a numerical method for the equation be of the form y0 = x0

and yi+1 = yi + hφ(ti , yi , h) for i ≥ 0. If there is a value h0 > 0 such that φ(t , y , h)

is continuous on the domain,

D = {(t , y , h) : t ∈ [t0, t0 +α], y ∈ IR, h ∈ [0, h0]}
and if there exists a constant L > 0 such that

|φ(t , y , h)−φ(t , ȳ , h)| ≤ L|y − ȳ|
for all (t , y , h), (t , ȳ , h)∈ D, which is called a Lipschitz condition.

1. The numerical method is stable.

2. The method is convergent if and only if it is consistent; that is, if and only if
φ(t , x, 0)= f (t , x, 0) for all t ∈ [t0, t0+α].

13.9 Numerical Stability and Its Relationship to Physical Stability 797

3. If the local truncation errors are bounded by |τi | ≤ T (h) for some function
B(h) independent of i and for h ∈ [0, h0], then |x(ti)− yi | ≤ B(h)exp(L(ti −
t0))/L. ■

The condition in item 2 of the conclusion is easily verified for all the single-step
numerical methods we have encountered. Notice that for Euler’s method, φ(t , y , 0)=
f (t , y). The same is true for the Runge–Kutta methods. Item 3 of the conclusion gives
us an upper bound on the error of the approximation and looks similar to what we
derived for Euler’s method.

13.9.2 Stability for Multistep Methods

A stability result for multistep methods is only slightly more complicated than the one
for single-step methods. The general multistep method can be formulated as

yi+1 =
m−1∑
j=0

ajyi−j + hF(ti , h, yi+1, yi , . . . , yi+1−m), i ≥ 0

with start-up conditions yi = bi for selected constants bi with 0≤ i ≤m− 1. Since
we started with a differential equation with initial condition x(t0)= x0, we choose
y0 = x0. The other start-up values are generated by some single-step method. The pro-
totypical explicit method is Adams–Bashforth and the prototypical implicit method
is Adams–Moulton.

The concepts of convergence and stability are the same as for single-step methods,
but consistency requires there be a slight bit more to it. The local truncation errors
for a multistep method are of the form,

τi+1 =
x(ti+1)−∑m−1

j=0 x(ti−j)

h
− F(ti , h, x(ti+1), . . . , x(ti+1−m))

The analysis of the algorithm for the m-step Adams–Bashforth method will show
that the local truncation error is τi+1 = O(hm). The m-step Adams–Moulton method
has local truncation error of τi+1 =O(hm+1). The definition for consistency of a
multistep method includes the same condition we used for single-step methods,

lim
h→0

max
1≤i≤n

|τi | = 0

so the local truncation errors go to zero as the step size becomes small but, in addi-
tion we need to make sure that the local truncation errors for the start-up conditions
become small, also.

lim
h→0

max
1≤i≤m−1

|x(ti)− bi | = 0

798 Chapter 13 Numerical Methods

The result for multistep methods that is the analogy of the one for single-step
methods follows.

Theorem ■ Consider the initial value problem ẋ = f (t , x) for t ∈ [t0, t0+α] with initial
data x(t0)= x0. Consider a multistep method of the form yi+1 =∑m−1

j=0 ajyi−j +
hF(ti , h, yi+1, yi , . . . , yi+1−m) with start-up conditions y0 = x0 and yi = bi for
specified constants bi with 1≤ i ≤m− 1. Suppose that F ≡ 0 whenever f ≡ 0.
Suppose that F satisfies a Lipschitz condition,

|F(ti , h, yi+1, . . . , yi+1−m)− F(ti , h, ȳi+1, . . . , ȳi+1−m| ≤ L
m∑

j=0

|yi+1−j − ȳi+1−j|

for each i with m− 1 ≤ i ≤ n. Define the polynomial p(λ)= λm −∑m−1
j=0 ajλ

m−1−j .

1. The numerical method is stable if and only if all roots of p(λ)= 0 satisfy |λ| ≤
1 and any root such that |λ| = 1 must be a simple root (multiplicity is 1).

2. If the numerical method is consistent with the differential equation, the
method is stable if and only if it is convergent. ■

The important aspect of this theorem for practical purposes is the analysis of the
roots of p(λ). Note that the roots can be nonreal. Also note that p(1)= 0 because
of the way the aj were defined for multistep methods. Thus, λ= 1 is always a root
and has magnitude |λ| = 1. If λ= 1 is the only root of magnitude 1, all other roots
satisfying |λ|< 1, then the numerical method is said to be strongly stable. If more than
one root has magnitude one, the others satisfying |λ|< 1, the numerical method is
said to be weakly stable. If any root has magnitude |λ|> 1, the numerical method is
said to be unstable.

13.9.3 Choosing a Stable Step Size

In fact, we can go one step further. The analysis of the roots of p(λ) when using the
linearized equation instead of the original f(x) allows us to decide what step sizes h
lead to stability, an important issue for solving the equations on a computer. More
details can be found in Chapter 5 of [BF01], although they are listed in the section
on stiff equations. A presentation of the material in the context of game development
may also be found in [Rho01].

Assuming an equilibrium solution of x(t) ≡ 0, the linearized equation is ẋ= Ax,
where A is an n× n matrix of constants occurring in the expansion f(x)= Ax+R. Let
us assume that the eigenvalues of A all have negative real parts so that the equilibrium
solution is physically stable. For each eigenvalue λ, consider what is called the modal
equation, ẋ= λx. An m-step method (m ≥ 1) is applied to the modal equation. The
resulting difference equation is linear and has a characteristic polynomial of the type

13.9 Numerical Stability and Its Relationship to Physical Stability 799

p(z) whose coefficients involve the eigenvalue λ and the step size h. This polynomial
includes the linear contribution from the function F in the multistep method. The
conditions of |z | ≤ 1 for all roots and unit-magnitude roots being simple are required
for a stable method. These in turn impose conditions on how we can choose h.

The best way to illustrate this is with an example. We will once again revisit the
simple pendulum problem of Example 3.4.

Example
13.1

The equation of motion for a simple pendulum with viscous friction at the joint is

θ̈ + bθ̇ + c sin(θ) = 0, t ≥ 0, θ(0)= θ0, θ̇ (0)= θ̇0

where b ≥ 0 represents the coefficient of viscous friction (b = 0 for a frictionless joint)
and c = g/L > 0, where g is the gravitational constant and L is the length of the pen-
dulum rod. The angle θ(t) is measured from the vertical position. The initial angle
is θ0 and the initial angular speed is θ̇0. We may write this equation as a first-order
system ẋ= f(t , x) by defining

x=
[

x1

x2

]
=
[

θ

θ̇

]
, f(t , x)=

[
f1
f2

]
=
[

θ̇

−bθ̇ − c sin(θ)

]
=
[

x2

−bx2− c sin(x1)

]

In fact the system is autonomous since f does not depend explicitly on t , only on x1

and x2. The first-derivative matrix is

Df(x)=

⎡
⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎥⎥⎦=

[
0 1

−c cos(x1) −b

]

The equilibrium solutions of the system are x0(t)≡ (0, 0) and x1(t) ≡ (π , 0). The first
equilibrium solution corresponds to the pendulum hanging vertically downward with
no angular speed. Physically you expect this to be stable. If you move the pendulum
slightly, you expect it to stay near the vertical. The second solution corresponds to the
pendulum positioned vertically upward with no angular speed. Physically you expect
this to be unstable because any slight movement of the pendulum will cause it to fall
downward. Let us see what the mathematical model has to say about this.

The first-derivative matrix at the first equilibrium solution is

Df(0, 0)=
[

0 1
−c −b

]

and has the characteristic equation λ2+ bλ+ c = 0. For the case of viscous friction
where b > 0, the roots are

λ= −b±√b2− 4c

2

800 Chapter 13 Numerical Methods

(Example 13.1
continued)

Both roots are negative real numbers when b2 ≥ 4c or are complex numbers with
negative real parts when b2 < 4c . In either case the real parts are both negative, so
(0, 0) is a stable equilibrium solution. For the case of no friction where b = 0, the
roots are

λ= 0± ci

Both roots are complex-valued with zero real parts. Each root is an eigenvalue of
Df(0, 0) with one linearly independent eigenvector. According to our theorem on
stability of linear systems, the equilibrium solution is stable. Thus, the equilibrium
solution (0, 0) is stable for any b ≥ 0, so the mathematical model appears to be a
reasonable match to what we expect physically.

The first-derivative matrix at the second equilibrium solution is

Df(π , 0)=
[

0 1
c −b

]

and has the characteristic equation λ2+ bλ− c = 0. The roots are

λ= −b±√b2+ 4c

2

Regardless of b = 0 or b > 0, both roots are real-valued with one negative and one
positive. The second equilibrium solution is therefore unstable, once again showing
that the mathematical model exhibits properties that we expect in the physical system.

Before doing the analysis for numerical stability, let us try four different numerical
methods for the simple pendulum problem where b = 0, c = 1, θ0 = 0.1, θ̇0 = 1.0,
and h = 0.1. The experiments generate n = 256 iterates. The test driver is

double c = 1.0f; // global constant used by numerical methods
void SolveSystem (double* (*NumericalMethod)(double,double,double,int))
{

int n = 256;
double theta0 = 0.1, dtheta0 = 1.0, h = 0.1;
double theta* = NumericalMethod(theta0,dtheta0,h,n);
// plot the output...

}

Explicit Euler’s Method The numerical method is

yi+1 = yi + hf(ti , yi)

with initial data y0 = (θ0, θ̇0). Pseudocode for generating the iterates is

double* ExplicitEuler (double theta0, double dtheta0, double h, int n)
{

double* theta = new double[n];
for (int i = 0; i < n; i++)

13.9 Numerical Stability and Its Relationship to Physical Stability 801

{
double theta1 = theta0 + h * dtheta0;
double dtheta1 = dtheta0 - h * c * sin(theta0);
theta[i] = theta1;
theta0 = theta1;
dtheta0 = dtheta1;

}
return theta;

}

Figure 13.2 shows a plot of the output of the numerical method.

2.14

1.55

1.13

–1.32

–1.81

–2.57

t
3.22

6.76
10.45 18.79

24.1614.40

Figure 13.2 The explicit Euler’s method applied to the simple pendulum problem. The image
shows a plot of the pendulum angles over time.

Observe that the angles are becoming unbounded over time, contrary to how the
physical solution should behave. The true solution should be periodic, implying that
the maximum angles are all the same and the minimum angles are all the same. Also,
the time between two consecutive zeros should be a constant. The results should make
you question whether choosing Euler’s method without analysis was a good thing
to do.

Implicit Euler’s Method The numerical method is

yi+1 = yi + hf
(
ti+1, yi+1

)

802 Chapter 13 Numerical Methods

(Example 13.1
continued)

with initial data y0 = (θ0, θ̇0). The iterate yi+1 appears on both sides of the equation.
For the simple pendulum, yi = (θi , θ̇i) and the iteration scheme is

θi+1 = θi + hθ̇i+1, θ̇i+1 = θ̇i − hc sin(θi+1)

My implementation combines these into a single equation,

θi+1+ h2c sin(θi+1)− θi − hθ̇i = 0

and applies Newton’s method to g (z)= z + h2c sin(z)− θi − hθ̇i with initial guess
z0 = θi and

zm+1 = zm − g (zm)

g ′(zm)
, m ≥ 0

where g ′(z)= 1+ h2c cos(z). The final iterate zM is chosen to be the value θi+1.
Pseudocode for generating the differential equation iterates is

double* ImplicitEuler (double theta0, double dtheta0, double h,
int n)

{
const int maxIterations = 32;
double* theta = new double[n];
for (int i = 0; i < n; i++)
{

double theta1 = theta0;
for (int j = 0; j < maxIterations; j++)
{

double g = theta1 + h * h * c * sin(theta1) - theta0
- h * dtheta0;

double gder = 1.0 + h * h * c * cos(theta1);
theta1 -= g / gder;

}
double dtheta1 = dtheta0 - h * c * sin(theta1);
theta[i] = theta1;
theta0 = theta1;
dtheta0 = dtheta1;

}
return theta;

}

For simplicity, no convergence or stopping criterion is used in the inner loop that
constructs the Newton’s iterates; the loop just runs a fixed number of times. A more
sophisticated loop with an eye towards minimizing inner loop cycles may certainly be
tried. Figure 13.3 shows a plot of the output of the numerical method.

13.9 Numerical Stability and Its Relationship to Physical Stability 803

0.98
0.72
0.52
0.38

–0.33
–0.45
–0.61
–0.84

t
16.13 22.51

19.3312.93
9.703.15

6.45

Figure 13.3 The implicit Euler method applied to the simple pendulum problem. The image
shows a plot of the pendulum angles over time.

Now the angles are dampened over time, contrary to how the physical solution should
behave, although in this case someone observing the numerical pendulum behavior
might think the physical system had friction at the joint causing the oscillations to
dampen. The time between two consecutive zeros in Euler’s method was significantly
increasing over time. In the implicit Euler method, the time between zeros is only
gradually decreasing.

Runge–Kutta Fourth-Order Method The numerical method is

k1 = hf(ti , yi)

k2 = hf(ti + h/2, yi + k1/2)

k3 = hf(ti + h/2, yi + k2/2)

k4 = hf(ti + h, yi + k3)

yi+1 = yi + (k1 + 2k2 + 2k3+ k4)/6

with initial data y0 = (θ0, θ̇0). Pseudocode for generating the iterates is

double* RungeKutta (double theta0, double dtheta0, double h, int n)
{

double* theta = new double[n];
for (int i = 0; i < n; i++)
{

double K1theta = h * dtheta0;
double K1dtheta = -h * c * sin(theta0);
double theta1 = theta0 + 0.5 * K1theta;
double dtheta1 = dtheta0 + 0.5 * K1dtheta;
double K2theta = h * dtheta1;
double K2dtheta = -h * c * sin(theta1);

804 Chapter 13 Numerical Methods

(Example 13.1
continued)

theta1 = theta0 + 0.5 * K2theta;
dtheta1 = dtheta0 + 0.5 * K2dtheta;
double K3theta = h * dtheta1;
double K3dtheta = -h * c * sin(theta1);
theta1 = theta0 + K3theta;
dtheta1 = dtheta0 + K3dtheta;
double K4theta = h * dtheta1;
double K4dtheta = -h * c * sin(theta1);
theta1 = theta0 + (K1theta + 2.0 * K2theta

+ 2.0 * K3theta + K4theta) / 6.0;
dtheta1 = dtheta0 + (K1dtheta + 2.0 * K2dtheta

+ 2.0 * K3dtheta + K4dtheta) / 6.0;
theta[i] = theta1;
theta0 = theta1;
dtheta0 = dtheta1;

}
return theta;

}

Figure 13.4 shows a plot of the output of the numerical method.

1.05

–1.05

t
16.67 23.42

20.0513.30
9.923.18

6.55

Figure 13.4 The Runge–Kutta fourth-order method applied to the simple pendulum problem.
The image shows a plot of the pendulum angles over time.

The results appear to indicate that this method is stable. The zeros of θ(t) are evenly
spaced, and the four maximum values, in order of increasing time, are 1.05289,
1.05117, 1.05285, and 1.05249. The four minimum values are −1.05232, −1.05291,
−1.05221, and−1.05293.

Leapfrog Method This is a two-step method,

yi+2 = yi + 2hf(ti , yi+1)

13.9 Numerical Stability and Its Relationship to Physical Stability 805

where the initial data is y0 and the first iterate is generated by an Euler step, y1 =
y0+ hf(t0, y0). Pseudocode for generating the iterates is

double* Leapfrog (double theta0, double dtheta0, double h, int n)
{

double* theta = new double[n];

// generate first iterate with Euler’s to start up the process
double theta1 = theta0 + h * dtheta0;
double dtheta1 = dtheta0 - h * c * sin(theta0);
theta[0] = theta1;

for (int i = 1; i < n; i++)
{

double theta2 = theta0 + 2.0 * h * dtheta1;
double dtheta2 = dtheta0 - 2.0 * h * c * sin(theta1);
theta[i] = theta2;
theta0 = theta1;
dtheta0 = dtheta1;
theta1 = theta2;
dtheta1 = dtheta2;

}
return theta;

}

Figure 13.5 shows a plot of the output of the numerical method.

1.05

–1.05

t
16.65 23.39

20.0213.29
9.923.18

6.54

Figure 13.5 The leapfrog method applied to the simple pendulum problem. The image shows a
plot of the pendulum angles over time.

The results appear to indicate that this method is stable. The zeros of θ(t) are evenly
spaced, and the four maximum values, in order of increasing time, are 1.05816,

806 Chapter 13 Numerical Methods

(Example 13.1
continued)

1.05079, 1.05582, and 1.05810. The four minimum values are −1.05750, −1.05410,
−1.05730, and−1.05820.

We now analyze the numerical stability of the four methods for the physically
stable equilibrium solution (0, 0) when b = 0 and c = 1. The eigenvalues of Df(0, 0)

are λ=±i. The modal equation is ẋ= λx. We apply the numerical methods using
f(t , x)= λx.

Explicit Euler’s Method The application to the modal equation is

yi+1 = yi + hλyi = (1+ hλ)yi

The characteristic polynomial equation p(z)= 0 of a linear difference equation is
obtained by subtracting all terms to the left-hand side of the equation and formally
replacing yi+j by zj for j ≥ 0. In this case the characteristic polynomial is

p(z)= z − (1+ hλ)

and has the single root z = 1+ hλ. For stability we need |z | ≤ 1, so |1+ hλ| ≤ 1. This
is an inequality that defines a set of points in the complex plane. We can plot the set
in terms of the complex variable hλ. Figure 13.6 shows the region for |1+ hλ| ≤ 1.

Im(h�)

Re(h�)

Figure 13.6 The region of stability for the explicit Euler method is shown in gray.

Regardless of choice of h > 0, hλ=±hi is never inside the gray region. The explicit
Euler’s method is not stable for the simple pendulum problem for any choice of h and
cannot be used to obtain good approximations.

Implicit Euler’s Method The application to the modal equation is

yi+1 = yi + hλyi+1

13.9 Numerical Stability and Its Relationship to Physical Stability 807

The characteristic polynomial is

p(z)= (1− hλ)z − 1

and has the single root z = 1/(1− hλ). For stability we need |z | ≤ 1, so |1− hλ| ≥ 1.
Figure 13.7 shows the region of stability.

Im(h�)

Re(h�)

Figure 13.7 The region of stability for the implicit Euler method is shown in gray.

Regardless of choice of h > 0, hλ=±hi is always inside the gray region. The implicit
Euler method is always stable for the simple pendulum problem for any choice of h.
However, the approximations are not accurate over time.

Runge–Kutta Fourth-Order Method The application to the modal equa-
tion is

k1 = hλyi

k2 = hλ(1+ hλ/2)yi

k3 = hλ(1+ (hλ/2)(1+ hλ/2))yi

k4 = hλ(1+ hλ(1+ (hλ/2)(1+ hλ/2)))yi

These combine to form

yi+1 =
[

1+ (hλ)+ 1

2
(hλ)2+ 1

6
(hλ)3 + 1

24
(hλ)4

]
yi = q(hλ)yi

where the last equality defines the fourth-degree polynomial q(hλ). The characteristic
polynomial is

p(z)= z − q(hλ)

808 Chapter 13 Numerical Methods

(Example 13.1
continued)

and has a single root z = q(hλ). For stability we need |q(hλ)| ≤ 1. Figure 13.8 shows
the region of stability.

Im(h�)

Re(h�)

Figure 13.8 The region of stability for the Runge–Kutta fourth-order method is shown in gray.

Although Figure 13.8 does not show this, the right boundary of the gray region is
slightly to the right of the imaginary axis, except at the origin, which is a point on the
boundary. An evaluation at h = 0.1 for either eigenvalue ±i shows that |q(±0.1ı)| .=
0.999999986 < 1. Thus, the Runge–Kutta method is stable for the simple pendulum
problem and it turns out to be accurate over time.

Leapfrog Method The application to the modal equation is

yi+2 = yi + 2hλyi+1

The characteristic polynomial is

p(z)= z2 − 2hλz− 1

and has two roots z = hλ±√1+ (hλ)2. For stability we need two conditions satis-
fied, |hλ+√1+ (hλ)2| ≤ 1 and |hλ−√1+ (hλ)2| ≤ 1. Figure 13.9 shows the region
of stability. The region consists of the line segment z = wi, where |w| ≤ 1. In our case
z =±0.1i, so the leapfrog method is stable for the simple pendulum problem with
our chosen step size.

13.10 Stiff Equations 809

Im(h�)

Re(h�)

Figure 13.9 The region of stability for the leapfrog method is shown in black and consists of a line
segment on the imaginary axis. ■

13.10 Stiff Equations

When dealing with a system of differential equations, numerical stability is clearly
important in order that the output of the numerical method be meaningful. A some-
what related problem that can also occur is the problem of stiffness. These types of
problems arise when the differential equation has two or more functional terms that
have widely different scales. If the solution relevant to the application is the one that
yields a steady state, a transient term that rapidly decays to zero can affect the cal-
culations and generate significant error. The prototypical behavior is illustrated by
a second-order linear equation or, equivalently, a system of two first-order linear
equations.

Example
13.2

Consider the second-order equation,

ẍ = c2x, t ≥ 0, x(0)= x0, ẋ(0)= ẋ0

where c > 0 is a constant. The solution is

x(t) =
(

cx0 + ẋ0

2c

)
ect +

(
cx0− ẋ0

2c

)
e−ct

A physical application will no doubt be interested only in the steady state solution
that has the decaying term e−ct . We can make this happen by choosing the initial
conditions so that ẋ0 =−cx0. The solution for such conditions is

x(t) = x0e−ct

810 Chapter 13 Numerical Methods

(Example 13.2
continued)

and has the property limt→∞ x(t) = 0. Choosing c2 = 2, x0 = 1, ẋ0 =−
√

2, and
h = 0.01, the Runge–Kutta fourth-order method produces iterates as shown in
Figure 13.10.

t = 18.1t = 0

x(t)

1

++

t = 18.1t = 0

x(t)

1

++

(a)

(b)

Figure 13.10 (a) An approximation to x(t) using the Runge–Kutta fourth-order method. (b) The
graph of the actual solution x0e−ct .

As you can see, the approximation appears to be stable and accurate for quite some
time, but then becomes unbounded. Two problems are occurring here. The first is
that we cannot exactly represent c =√2 on the computer, so our theoretical require-
ment of cx0+ ẋ0 = 0 cannot be enforced. Numerical errors cause cx0+ ẋ0 = ε for a
very small value of ε �= 0. This causes the functional term ect to influence the approx-
imations and cause the unbounded behavior as shown in Figure 13.10. Even if we
could represent the initial data exactly, the numerical method still introduces errors,
both local truncation errors and round-off errors. This, too, causes ect to affect the
solution eventually. Consequently, this problem is stiff. ■

You might be tempted to conclude that the problem occurs only because of
the occurrence of a positive eigenvalue c > 0 and a negative one −c < 0. However,

13.10 Stiff Equations 811

even if the theoretical solution has two negative eigenvalues, stiffness can occur. The
following example from [BF01] illustrates this.

Example
13.3

Consider the first-order linear system,

ẋ = 9x + 24y + 5 cos(t)− 1

3
sin(t)

ẏ =−24x − 51y − 9 cos(t)+ 1

3
sin(t)

with initial data x(0) = 4/3 and y(0) = 2/3. The solution is

x(t)= 2e−3t − e−39t + 1

3
cos(t)

y(t)=−e−3t + 2e−39t − 1

3
cos(t)

The homogeneous linear system is physically stable about the equilibrium solution
(0, 0) since the eigenvalues of the first-derivative matrix are λ=−3 and λ=−39.
The Runge–Kutta fourth-order method was used to numerically solve this problem
with step sizes of h = 0.1 and h = 0.05. Table 13.1 shows the iterates for times between
0 and 1. It also shows the actual values.

Table 13.1 The Actual and Approximate Values for the Solution to the System of Equations

t x(t) y(t) xi yi xi yi

h = 0.05 h = 0.1

0.1 1.793063 −1.032002 1.712221 −0.870315 −2.645182 7.844543
0.2 1.423902 −0.874681 1.414072 −0.855015 −18.451691 38.876595
0.3 1.131577 −0.724999 1.130526 −0.722892 −87.473297 176.484833
0.4 0.909409 −0.608214 0.909278 −0.607948 −394.077576 789.365967
0.5 0.738788 −0.515658 0.738752 −0.515581 −1760.050049 3521.062256
0.6 0.605710 −0.440411 0.605684 −0.440356 −7848.706055 15698.184570
0.7 0.499860 −0.377404 0.499837 −0.377355 −34990.457031 69981.546875
0.8 0.413671 −0.322953 0.413650 −0.322908 −155983.609375 311967.750000
0.9 0.341614 −0.274409 0.341595 −0.274368 −695351.062500 1390702.750000
1.0 0.279675 −0.229888 0.279658 −0.229852 −3099763.500000 6199527.500000

As you can see, the method appears to be stable when h = 0.05 but not when h =
0.1. The differences in behavior for the two step sizes is explained by something we
already talked about: determining if the chosen step sizeputs us in theregion of stability
associated with the numerical method. The region of stability for the Runge–Kutta

812 Chapter 13 Numerical Methods

(Example 13.3
continued)

fourth-order (RK4) method is shown in Figure 13.8. The eigenvalues for the current
problem are λ1 =−3 and λ2 =−39. For step size h = 0.1, hλ1 =−0.3 is in the region
of stability, but hλ2 =−3.9 is outside the region (to the left of it). However, when h =
0.05, both hλ1 =−0.15 and hλ2 =−1.95 are inside the region, so the RK4 method is
stable. Our experiments agree with this analysis. ■

As the last example shows, the analysis of numerical stability for the linearized
system is important for choosing a step size for which the method is stable and, hope-
fully, that avoids the problems of stiffness. Numerical methods that lead to as large a
region of stability as possible are clearly desirable. Of course, since the physical stabil-
ity requires eigenvalues with negative real parts and since the step sizes are positive, the
only relevant portion of the region of stability is that part in the left half of the complex
plane. For example, the region of stability for the implicit Euler’s method includes the
entire left half of the complex plane. In general, if the region of stability for a numer-
ical method includes the entire left half of the complex plane, the method is called
A-stable. Another example of an A-stable method is the trapezoid method listed in
equation (13.7). This happens to be the only multistep method that is A-stable.

Although I have not discussed the topic here, the numerical methods of this chap-
ter all use fixed-size steps. A class of numerical methods that might be important to
you are those involving variable-size steps. It is not clear if variable step sizes gain you
much in a real-time physics simulation, but if you do decide to use such a method,
you need to balance the desire to choose large steps against the need to retain stability
and avoid stiffness. Error monitoring is implemented in methods using variable step
sizes in order to allow you to decide that the local truncation errors warrant choosing
a larger step size. However, that larger step could take you outside the region of sta-
bility. Your implementation should additionally determine, if possible, whether the
desired larger step size keeps you in the region of stability.

C h a p t e r 14
Linear

Complementarity
and Mathematical

Programming

The collision response system of a generic physics engine described in Chapter 6
enforces nonpenetration constraints among all the rigid bodies participating in

a physical simulation. When a set of rigid bodies collides simultaneously, the system
must guarantee that the velocities and accelerations of the objects do not cause a pair
of rigid bodies to start to interpenetrate at a contact point. The mathematical model
that arises from the nonpenetration constraints requires us to solve a couple of prob-
lems in the form of what is called a linear complementarity problem (LCP), which we
discussed briefly in Chapter 6. As it turns out, calculation of distances between con-
vex polygons or convex polyhedra can be formulated as an LCP. The applications to
nonpenetration and to distance calculations are presented at the end of this chapter.
The first part of the chapter is devoted to showing how you can solve an LCP.

The Lemke algorithm is a pivoting method for solving an LCP and is motivated by
the classical linear programming problem. We discuss this problem first as well as how
you go about solving it. Convex quadratic programming is also solvable by converting
to an LCP. The typical convex quadratic functions you encounter are squared distance
functions that arise when attempting to compute the separation distance between
two convex objects. Linear and quadratic programming are special cases of what is

© 2010 by Elsevier Inc. All rights reserved. 813
DOI: 10.1016/B978-0-12-374903-1.00014-1

814 Chapter 14 Linear Complementarity and Mathematical Programming

known as mathematical programming, a term not to be confused with programming
mathematical algorithms.

Source Code
LCPSolver

Applications are provided at the end of the chapter for computing distance
between a point and a convex polygon, distance between a point and a convex poly-
hedron, distance between two convex polygons, and distance between two convex
polyhedra. The application to computing contact forces in order to enforce nonpene-
tration constraints in the collision response system is also summarized, although you
will need to read Chapter 6 to see exactly how the LCP formulation is derived. Source
code is provided on the CD-ROM for solving the LCP problem and is based on the
algorithm discussed in this chapter, using both direct numerical calculations in the
pivoting scheme and using symbolic manipulations to handle degenerate behavior in
the system.

14.1 Linear Programming

The topic of linear programming has to do with maximizing a linear function subject to
a set of linear inequality contraints. Let us first look at the problem in two dimensions
to obtain some intuition about how to solve such problems in higher dimensions.

14.1.1 A Two-Dimensional Example

Consider the problem of maximizing the linear function f (x1, x2)= x1+ x2 subject
to the linear inequality constraints x1 ≥ 0, x2 ≥ 0, 2x1+ x2 ≤ 2, and x1 + 2x2 ≤ 3.
Figure 14.1 shows two ways of visualizing the problem.

The four inequality constraints define a convex quadrilateral in the plane.
Figure 14.1(a) shows four level curves f (x1, x2)= c in the quadrilateral: c = 1/3,
c = 2/3, c = 1, and c = 3/2. The largest value of c for any level curve in the quadrilat-
eral is c = 5/3 and occurs at the vertex (1/3, 4/3). Figure 14.1(b) shows the graph of
x3 = f (x1, x2), a plane in three dimensions. The point on the portion of the plane over
the quadrilateral domain with largest x3 value occurs at (x1, x2, x3)= (1/3, 4/3, 5/3).

The example shows that the maximization problem has two important aspects.
The first aspect is determining the region defined by the linear inequality constraints.
Each constraint defines a half plane. Points satisfying two constraints must be in the
intersection of the half planes implied by the constraints. Generally, the intersection
of the half planes of all the constraints is either the empty set, in which case the maxi-
mization problem has no solution, or a convex set that is possibly unbounded. In most
applications the constraints are set up to generate a bounded convex set. Because the
boundary of the convex sets is generated by the lines corresponding to equality in the
linear inequality constraints, a bounded convex set must be a solid convex polygon.
An unbounded convex set has a boundary consisting of linear components (lines,
rays, or line segments). Figure 14.2 illustrates various cases.

14.1 Linear Programming 815

(a)

x2

x1 + 2x2 = 3

2x1 + x2 = 2

x1

(0, 3/2) (1/3, 4/3)

(0, 0) (1, 0)

1

2/3

1/3

3/2

(b)

x1

x2

1

0

3/2

5/3
(1/3, 4/3, 5/3)

x3

Figure 14.1 (a) Various level curves f (x1, x2)= c (straight lines) superimposed on the quadrilat-
eral region implied by the constraints. (b) The graph of x3 = f (x1, x2) (a plane) over
the quadrilateral region. The x3 values at four points on the plane are shown.

The second important aspect is locating the maximum of the linear function when
restricted to the convex domain. Figure 14.1 suggests that the maximum of f (x)occurs
at a vertex x on the convex polygon boundary. This is a correct observation. If f hap-
pened to be constant, the maximum is that constant and occurs at every point in
the domain, and so at a vertex. If f is not identically a constant, at a point y in the

x1ù0, x2ù0, x1 + x2ø –1 x1ù0, x2ù0, x1 + x2ù1 x1ù0, x2ù0, x1 + x2ø1

(a) Empty set (b) Unbounded (c) Bounded

Figure 14.2 (a) Constraints with no solution. The hash marks indicate on which side of the
lines the half planes occur. (b) Constraints defining an unbounded convex set.
(c) Constraints defining a bounded convex set.

816 Chapter 14 Linear Complementarity and Mathematical Programming

interior of the polygon the gradient d= ∇f (y) is in the direction of largest increase
of f . The function g (t) = f (y+ t d) is strictly increasing in t , so the function value at
y is smaller than function values at points nearby on the ray y+ εd. This means f (y)

cannot be a maximum for f . The same argument applies on the convex polygon itself
to show that the maximum must occur at a vertex. If f is identically a constant on an
edge, the maximum along the edge is that constant and occurs at every point of the
edge, and so at a vertex. If the function values along an edge are strictly monotone,
the maximum must occur at one of the edge endpoints.

In order to simplify our discussions from here on, let us assume that the con-
straints force generates a nonempty bounded convex set. For most physics appli-
cations this is a reasonable assumption to make since the constraints are naturally
formed based on physical information that indicates a solution is to be expected.

14.1.2 Solution by Pairwise Intersections

We have already argued that f (x1, x2) must attain its maximum at a vertex of the
bounded convex polygonal domain. A natural approach to finding the maximum is
to construct all the vertices, evaluate f at each, then select the maximum of these
values. Each vertex occurs as the intersection of two lines determined by inequal-
ity constraints, so we proceed by solving all possible systems of two equations in two
unknowns. In our ongoing example, we have four inequality constraints. If we choose
two at a time, the total number of systems is six. The systems and solutions are listed
in Table 14.1.

You probably already noticed that the systems produce six points, yet the convex
domain shown in Figure 14.1 has only four vertices. Two of the points produced by the
system are not in the convex domain. We need to eliminate those points by testing all
inequality constraints. Any point not satisfying one of the constraints is discarded.
In the presence of a floating point number system, you need to be careful about
this step, perhaps by introducing an error tolerance when making the comparison
of the constraint. In the example, the point (0, 2) is discarded because it fails to sat-
isfy x1+ 2x2 ≤ 3. The point (3, 0) is discarded because it fails to satisfy 2x1 + x2 ≤ 2.

Table 14.1 Solving All Possible Systems of Two
Equations in Two Unknowns

System Solution

x1 = 0, x1 = 0 (0, 0)
x1 = 0, 2x1+ x2 = 2 (0, 2)
x1 = 0, x1 + 2x2 = 3 (0, 3/2)
x2 = 0, 2x1+ x2 = 2 (1, 0)
x2 = 0, x1 + 2x2 = 3 (3, 0)
2x1 + x2 = 2, x1+ 2x2 = 3 (1/3, 4/3)

14.1 Linear Programming 817

The function is evaluated at the remaining 4 points: f (0, 0)= 0, f (0, 3/2)= 3/2,
f (1, 0)= 1, and f (1/3, 4/3)= 5/3. The maximum is 5/3 and occurs at the vertex
(1/3, 4/3).

If m constraints are specified, (ai , bi) · (x1, x2) ≤ ci for 1≤ i ≤m, the number of
linear systems to solve is the number of ways of choosing two items from a set of m,
namely m!/(2! (m− 2)!)=m(m− 1)/2. For a large number of constraints, the com-
putational effort will be quite large. Each point (x1, x2) obtained as the solution of a
system of equations is tested by (ai , bi) · (x1, x2)≤ ci . If this inequality is false, the
point is discarded. The function f (x1, x2) is evaluated at the remaining points and the
maximum is selected. Figure 14.3 shows two possible scenarios for constraints.

Figure 14.3(a) has five inequality constraints. The line of each constraint is drawn
and the light gray segment is attached to each point to the side corresponding to the
half plane represented by the constraint. All 10 intersections of pairs of lines are shown
as black dots of which five are vertices of the convex domain. Each constraint con-
tributes an edge to the domain. The right of the figure has six inequality constraints.
The 15 intersections of pairs of lines are shown as black dots of which only four are ver-
tices of the convex domain. Only four constraints contribute to edges of the domain.
The other two are redundant constraints in the sense that if you were to ignore those
constraints, the convex domain is unaffected and the optimization of the objective
function produces the same result. Notice that redundant constraints jointly generate
nine of the 30 pairwise intersections. Had these constraints not occurred, we would
have to solve only six linear systems.

(a) (b)

Figure 14.3 (a) All five constraints are relevant to forming the convex domain. (b) Two of the
six constraints are redundant, because only four of the constraints form the convex
domain.

818 Chapter 14 Linear Complementarity and Mathematical Programming

Given m constraints, the pairwise intersection method of the last section requires
solving on the order of m2 linear systems. Effectively this is an exhaustive search for
a vertex of the convex domain that produces the maximum function value. In the
general dimensional case when you have n independent variables x1 through xn and
m > n constraints, the exhaustive search for a vertex of the convex domain requires
solving all possible combinations of m equations choosing n at a time for a total of
m!/(n! (m− 2)!). This can be quite an expensive endeavor. The exhaustive search
turns out to be suboptimal. A better method that uses a smart search is the sim-
plex method invented by Dantzig [Dan63]. We will take a look at this for the general
dimensional case.

14.1.3 Statement of the General Problem

Stated in its most general terms for x ∈ IRn , the linear programming problem is about
maximizing the linear function f (x)= cTx subject to the n nonnegativity constraints
x ≥ 0 and the m linear inequality constraints Ax ≤ b. The m× n matrix A, the n× 1
column vector c, and the m× 1 column matrix b are all application-specified values.
The inequality notation for vectors is shorthand to denote that the inequality holds
for each pair of components, that is, (u1, . . . , uk) ≥ (v1, . . . , vk) if and only if ui ≥ vi for
1 ≤ i ≤ k . The function f is called the objective function. Any vector that satisfies the
inequality constraints is called a feasible vector. A feasible vector that maximizes the
objective function is called an optimal feasible vector ; there may be more than one such
vector. The constraints trim IRn to a convex domain (possibly empty or nonempty and
possibly unbounded). Each vertex of the domain is a solution to exactly n of the n+m
constraints and is called a feasible basis vector. Using our motivation in two dimen-
sions, the feasible basis vectors are the only feasible vectors that need to be searched for
optimality.

The method of solution requires two changes to the constraints Ax ≤ b. We are
interested in constructing feasible basis vectors which, by definition, are the vertices
of the convex domain. These vectors occur as solutions to constraints where the
inequality has been replaced by equality. This suggests that we eliminate inequal-
ities in the first place. The first change is therefore to introduce new nonnega-
tive variables called slack variables; these take up the slack, so to speak, between
the two sides of the inequalities. For a constraint a1x1+ · · ·+ anxn ≤ b, the slack
is s = b− a1x1− · · ·− anxn ≥ 0. The single inequality constraint is replaced by a
new equality constraint a1x1 + · · ·anxn + s = b and a new nonnegativity constraint
s ≥ 0. In total m slack variables are introduced, si for 1≤ i ≤m, and stored in the
m× 1 column vector s. In matrix notation, the constraints Ax ≤ b and x≥ 0 are
transformed to

Ax+ s= b, x≥ 0, s ≥ 0 (14.1)

14.1 Linear Programming 819

where the zero vectors are of the appropriate size in their respective contexts. This
form of the linear programming problem is called the normal form. The pair (x, s) has
n+m components, so is a vector in IRn+m . Each equation in Ax+ s = b represents a
hyperplane in IRn+m . These bound a convex domain in IRn+m whose vertices we must
search. A vertex (x, s) of interest is one for which x maximizes the objective function.
The s component of that solution is simply discarded.

A search of the vertices implied by the normal-form constraints, equation (14.1),
will involve starting at one vertex, then visiting another vertex whose objective
function value is larger than that of the current vertex. This requires finding an
initial vertex to start the search. To support this, the second change is to intro-
duce more new nonnegative variables called artificial variables. For an equality
constraint a1x1 + · · ·+ · · ·anxn + s = b where s is the appropriate slack variable,
an artificial variable will be set to the difference of the two sides of the equation.
We require that the right-hand side be nonnegative. If b ≥ 0, the new variable w
is set to w = b− a1x1− · · ·− anxn − s ≥ 0. If b < 0, a multiplication by −1 must
occur first, w =−b+ a1x1 + · · ·anxn+ s ≥ 0. In total, m artificial variables are intro-
duced, wi for 1 ≤ i ≤m, and stored in the m× 1 column vector w. In matrix
notation,

w= D(b−Ax− s), x ≥ 0, s≥ 0, w≥ 0 (14.2)

where D = Diag(d1, . . . , dm) with di = 1 if bi ≥ 0 or di =−1 if bi < 0. The linear pro-
gramming problem in this form is called the restricted normal form. We associate an
auxiliary objective function with the constraints of equation (14.2),

g (w)=−
m∑

i=1

wi =
m∑

i=1

di

⎛
⎝ n∑

j=1

ajixj − bi + si

⎞
⎠

Since wi ≥ 0 for all i, g (w) ≤ 0. The goal is to maximize g (w). If the maximum
occurs at w �= 0, then it is not possible to construct a pair (x, s) that solves the lin-
ear system in the constraints (14.1). In this case, the original linear programming
problem has no solution because the inequality constraints are inconsistent. How-
ever, if the maximum does occur at w= 0, we will have found a pair (x, s) that is the
initial vertex to start a search in the normal-form problem to maximize the original
objective function. The search for a maximum of g will always start with x= 0 and
s = 0. In this case the initial artificial variables are w= Db ≥ 0.

The normal form and restricted normal form can be solved with the same meth-
ods. The simplex method refers to the two-phase process of solving the restricted
normal form in optimizing the auxiliary objective function to find an initial feasible
basis vector, then solving the normal form in optimizing the objective function, the
search starting at the feasible vector found in the first phase. The method is illustrated
in Example 14.1.

820 Chapter 14 Linear Complementarity and Mathematical Programming

Example
14.1

The objective function is f (x1, x2)= x1+ x2 and is to be maximized with respect
to the constraints x1 ≥ 0, x2 ≥ 0, −x1 + x2 ≤ 2, 2x1− x2 ≤ −1, and 3x1 + x2 ≤ 3.
Figure 14.4 shows the convex domain implied by the constraints.

2x1– x2#– 1 3x1 + x2#3

(0, 1)

(0, 2)
(1/4, 9/4)

(2/5, 9/5)

x1$0

x2$0

–x1 + x2#2

Figure 14.4 The convex domain implied by the two nonnegativity constraints and three linear
inequality constraints of the example.

To convert to normal form requires three slack variables, s1, s2, and s3:

−x1 + x2+ s1 = 2

2x1− x2+ s2 =−1

3x1+ x2+ s3 = 3

To convert to restricted normal form requires three artificial variables, w1, w2,
and w3:

w1 = 2+ x1 − x2− s1

w2 = 1+ 2x1 − x2+ s2

w3 = 3− 3x1 − x2− s3

The auxiliary objective function is g =−(w1 +w2 +w3)=−6+ 3x2 + s1− s2 + s3.
As mentioned earlier, the search for a maximum of g always starts with (x1, x2)=
(0, 0) and (s1, s2, s3)= (0, 0, 0), in which case (w1, w2, w3)= (2, 1, 3) are the initial
artificial variables and g =−6. The goal is to modify the variables to increase g to
zero.

The classic method of setup involves storing the various coefficients and constants
in a tableau. Table 14.2 shows the tableau for this example.

14.1 Linear Programming 821

Table 14.2 Tableau of Coefficients and Constants (Example 14.1)

Value x1 x2 s1 s2 s3

g −6 0 3 1 −1 1

w1 2 1 −1 −1 0 0
w2 1 2 −1 0 1 0
w3 3 −3 −1 0 0 −1

The value column initially contains the constant terms in the equations for g , w1, w2,
and w3 and represents the fact that we will always be thinking of the variables in the
other columns as being zero. The entries in the other column are the coefficients of
those variables in the auxiliary objective function g and in the equality constraints.

Let us analyze the coefficients in the g -row after the value column. The x1 coeffi-
cient is zero since x1 does not occur in that function. No matter how you modify x1, g
will not change, so we may ignore x1 at this step of the process. The x2 coefficient is 3,
a positive number. If we increase the value of x2 from its current value of zero, g will
also increase, thereby giving us a chance to force it to become zero. The column entry
for x2 in the w1-row tells us how w1 depends on x2. The coefficient is −1, a negative
number, so any increase in x2 will result in a decrease in w1. Since we require w1 ≥ 0,
we cannot increase x2 by an arbitrary amount. In fact, the most we can increase is to
x2 = 2, in which case w1 = 0.

Similarly in the w2-row and w3-row, the coefficients are negative, which means
that an increase in x2 will result in decreases in w2 and w3. As we increase x2, all
the wi will decrease simultaneously. When the first wi value reaches zero, we can
no longer increase x2. Of course, if the coefficient of x2 in a z-equation is positive,
there is no limit on increasing x2, so we need consider only z-equations for which
the x2 coefficient is negative. The maximum value to which we can increase x2 is the
minimum of the negatives of the ratios of the constant terms and the coefficients.
In our current case the ratios for the w1-row, w2-row, and w3-row are 2 =−(2/(−1),
1=−(1/(−1)), and 1 =−(3/(−3)), respectively. The w2-row limits the increase of
x2 to 1.

Once the row corresponding to the limiting increase is identified, the next step is
to make the row variable (basic variable) a column variable (nonbasic variable) and
vice versa. In our example we solve for x2 in the w2 equation to obtain

x2 = 1−w2+ 2x1 + s2

This equation is substituted into the x2 terms in the g equation and the other equality
constraints:

g =−6+ 3x2 + s1 − s2 + s3 =−3− 3w2 + 6x1 + s1+ 2s2 + s3

w1 = 2+ x1 − x2− s1 = 1− x1+w2 − s1 − s2

w3 = 2− 5x1 +w2 − s2− s3

822 Chapter 14 Linear Complementarity and Mathematical Programming

(Example 14.1
continued)

The tableau is updated in Table 14.3 by swapping the row variable w2 with the column
variable x2,

Table 14.3 Updated Tableau: Exchanging w2 with x2

Value x1 w2 s1 s2 s3

g −3 6 −3 1 2 1

w1 1 −1 1 −1 −1 0
x2 1 2 −1 0 1 0
w3 2 −5 1 0 −1 −1

The invariant in this process is that the resulting tableau represent a linear program-
ming problem in restricted normal form.

We repeat the process. The column variables are thought of as having value zero.
The x1 coefficient in the g -row is positive, so an increase in x1 results in an increase
in g . The x1 coefficients in the w1-row and w3-row are negative, so w1 and w3 will
decrease when x1 is increased. The limiting factor is the minimum of the ratios 1=
−(1/(−1)) and 2/5− (2/(−5)); that is, w3 will reach zero before w1 does. We now
need to exchange x1 and w3 by solving for

x1 = 1

5
(2+w2 −w3 − s2− s3)

and substituting in the g equation and the other constraints:

g =−3+ 6x1− 3w2 + s2 + 2s2 + s3 =−3

5
− 6

5
w3− 9

5
w2 + s1 + 4

5
s2− 1

5
s3

w1 = 1− x1+w2 − s1 − s2 = 3

5
+ 1

5
w3 + 4

5
w2 − s1− 4

5
s2+ 1

5
s3

x2 = 1+ 2x1−w2 + s2 = 9

5
− 2

5
w3− 3

5
w2 + 3

5
s2 − 2

5
s3

Table 14.4 shows the updated tableau.

Table 14.4 Updated Tableau: Exchanging x1 with w3

Value w3 w2 s1 s2 s3

g −3

5
−6

5
−9

5
1

4

5
−1

5

w1
3

5

1

5

4

5
−1 −4

5

1

5

x2
9

5
−2

5
−3

5
0

3

5
−2

5

x1
2

5
−1

5

1

5
0 −1

5
−1

5

14.1 Linear Programming 823

And yet one more repetition of the process. The coefficient of s1 in the g -row is
positive, so an increase in s1 results in an increase in g . Note that in this step we are
increasing a slack variable, not one of the original variables, to increase the auxiliary
objective function. The only negative coefficient in the s1 column is in the w1 row,
so we may increase s1 until w1 is zero. We exchange w1 and s1 by solving for

s1 = 3

5
+ 1

5
w3 + 4

5
w2−w1 − 4

5
s2 + 1

5
s3

and substituting in the g equation and the other constraints:

g = −3

5
− 6

5
w3− 9

5
w2 + s1 + 4

5
s2− 1

5
s3 = 0−w1 −w2 −w3

x2 = 9

5
− 2

5
w3 − 3

5
w2 + 3

5
s2− 2

5
s3

x1 = 2

5
− 1

5
w3 + 1

5
w2 − 1

5
s2− 1

5
s3

Table 14.5 shows the updated tableau.

Table 14.5 Updated Tableau: Exchanging w1 with s1

Value w3 w2 w1 s2 s3

g 0 −1 −1 −1 0 0

s1
3

5

1

5

4

5
−1 −4

5

1

5

x2
9

5
−2

5
−3

5
0

3

5
−2

5

x1
2

5
−1

5

1

5
0 −1

5
−1

5

The current value of g is zero and none of the coefficients in the g row is positive, so it
is no longer possible to increase any of the nonbasic variables s2, s3, w1, w2, or w3 and
obtain an increase in g . That is, g does have a maximum of zero and is obtained when
s2 = s3 = w1 = w2 = w3 = 0. The basic variables are x1, x2, and s1 and have values
x1 = 2/5, x2 = 9/5, and s1 = 3/5. The vector (x1, x2, s1, s2, s3)= (2/5, 9/5, 3/5, 0, 0) is
a feasible basis vector for the normal form, equation (14.1), and is the starting point
for the search to maximize f (x1, x2)= x1+ x2. Just to verify, replace the feasible vector
in the constraints as in equation (14.2), written as Ax+ s−b:

−x1+ x2 + s1− 2 =−2/5+ 9/5+ 3/5− 2= 0
2x1− x2+ s2 + 1= 4/5− 9/5+ 1= 0
3x1+ x2+ s3 − 3= 6/5+ 9/5− 3= 0

824 Chapter 14 Linear Complementarity and Mathematical Programming

(Example 14.1
continued)

The slack variable s1 is positive, but the other two are zero. In terms of what is shown
in Figure 14.4, (x1, x2)= (2/5, 9/5) is a vertex of the convex domain and is the inter-
section of 2x1− x2 =−1 and 3x1+ x2 = 3 (slack variables s2 = s3 = 0). That vertex
is not on the other line, but −x1 + x2 < 2 (slack variable s1 > 0).

Now we are ready to maximize f . The artificial variables wi are no longer needed,
so the tableau no longer contains them. The tableau also contains a row representing f
since the auxiliary function g is no longer needed. In terms of the nonbasic variables,

f = x1+ x2 =
(

2

5
− 1

5
s2− 1

5
s3

)
+
(

9

5
+ 3

5
s2− 2

5
s3

)
= 11

5
+ 2

5
s2− 3

5
s3

and the initial tableau is shown in Table 14.6.

Table 14.6 Maximizing f

Value s2 s3

f
11

5

2

5
−3

5

x1
2

5
−1

5
−1

5

x2
9

5

3

5
−2

5

s1
3

5
−4

5

1

5

and s2 and s3 are nonbasic variables whose initial values are zero. The coefficient of
s2 in the f -row is positive, so an increase in s2 leads to an increase in f . The negative
coefficients in the s2 column are in the x1-row and s1-row. The limiting increase is the
minimum of 2=−((2/5)/(−1/5)) and 3/4=−((3/5)/(−4/5)), so the s1 variable
decreases to zero before x1 does. Exchange s1 and s2 by solving for

s2 = 1

4
(3− 5s1 + s3)

and substituting in the f equation and the other constraints:

f = 11

5
+ 2

5
s2− 3

5
= 5

2
− 1

2
s1 − 1

2
s3

x1 = 2

5
− 1

5
s2 − 1

5
s3 = 1

4
+ 1

4
s1 − 1

4
s3

x2 = 9

5
+ 3

5
s2 − 2

5
s3 = 9

4
− 3

4
s1 − 1

4
s3

Table 14.7 shows the updated tableau.

14.1 Linear Programming 825

Table 14.7 Maximizing f : Exchanging s1 with s2

Value s1 s3

f
5

2
−1

2
−1

2

x1
1

4

1

4
−1

4

x2
9

4
−3

4
−1

4

s2
3

4
−5

4

1

4

The coefficients of the nonbasic variables in the f -row are all negative, so no
amount of increasing those variables will increase f . Thus, f has a maximum of
5/2 and it occurs when s1 = s3 = 0. Consequently, the basic variables are x1 = 1/4,
x2 = 9/4, and s2 = 3/4. The pair (x1, x2)= (1/4, 9/4) is another vertex of the convex
domain shown in Figure 14.4. The slack variables s1 and s3 are both zero, therefore
that vertex is generated as the intersection of the lines corresponding to−x1+ x2 = 2
and 3x1+ x2 = 3. The slack variable s2 > 0, so the vertex is not on the line of the other
constraint; that is, 2x1 − x2 <−1. ■

As is true in most algorithms, you have to deal with degenerate cases. The con-
stant terms in the value column are constrained to be nonnegative, but in the previous
example were always positive. If a zero constant term is encountered, the correspond-
ing basic variable is zero whenever all the nonbasic variables are zero. The vector of
basic and nonbasic variables in this case is referred to as a degenerate feasible vector.
As suggested in [PFTV88], the zero constant term must be handled by exchanging
the basic variable in that row with a nonbasic variable in a column, sometimes having
to make several such exchanges. In fact, the description in [PFTV88] is incomplete
because there are three types of degeneracies that can occur. We will discuss these in
Section 14.2 showing that the linear programming problem is a special case of the lin-
ear complementarity problem (LCP). The method of solution of an LCP is well suited
for dealing with the degeneracies.

14.1.4 The Dual Problem

The linear programming problem has an associated problem called the dual prob-
lem. In this context the original problem is referred to as the primal problem. The
motivation for the dual problem is provided by Example 14.1. We wanted to max-
imize f (x1, x2)= x1 + x2 subject to the nonnegativity constraints x1 ≥ 0 and x2 ≥ 0
and the linear inequality constraints −x1 + x2 ≤ 2, 2x1− x2 ≤ −1 and 3x1 + x2 ≤ 3.
The simplex method was used to show that the maximum of f is 5/2 and occurs at

826 Chapter 14 Linear Complementarity and Mathematical Programming

(x1, x2)= (1/4, 9/4). Before proceeding with the simplex method, we can in fact use
the linear inequality constraints to obtain upper bounds on the maximum of f . For
example,

f = x1 + x2 ≤ 3x1+ x2 ≤ 3

This guarantees that max(f) ≤ 3. We can also use combinations of constraints to
obtain upper bounds:

f = x1+ x2 = 3(−x1 + x2)+ 2(2x1 − x2) ≤ 3(2)+ 2(−1) = 4

This bound leads to max(f) ≤ 4, not as good a bound as the previous case but still a
bound. Another possibility is

f = x1+ x2 ≤ 4x1+ x2 = 1(−x1 + x2)+ 1(2x1 − x2)+ 1(3x1 + x2)

≤ 1(2)+ 1(−1)+ 1(3) = 4

again concluding that max(f)≤ 4. Yet one more possibility is

f = x1+ x2 = 1

2
(−x1 + x2)+ 1

2
(3x1 + x2) ≤ 1

2
(2)+ 1

2
(3) = 5

2

We conclude that max(f)≤ 5/2 but in fact got lucky in that the upper bound really
happens to be the maximum value of f .

Perhaps we can choose just the right multipliers for the linear inequality con-
straints so that we will indeed obtain the maximum value for f . In the example let
y1 ≥ 0, y2 ≥ 0, and y3 ≥ 0 be the multipliers for the constraints; that is,

y1(−x1 + x2) ≤ 2y1, y2(2x1 − x2)≤ −y2, y3(3x1+ x2) ≤ 3y3

The constraints are combined to form the following.

2y1− y2+ 3y3 ≥ y1(−x1 + x2)+ y2(2x1− x2)+ y3(3x1+ x2)

= (−y1 + 2y2+ 3y3)x1+ (y1 − y2 + y3)x2

≥ x1+ x2 = f

The last inequality is what we want to be true, so we have to choose y1 ≥ 0, y2 ≥
0, and y3 ≥ 0 to make that happen. Specifically, choose −y1+ 2y2 + 3y3 ≥ 1 and
y1 − y2+ y3 ≥ 1. Our goal is to make the quantity 2y1− y2 + 3y3 as small as possible.
That is, we want to minimize g (y1, y2, y3)= 2y1− y2 + 3y3 subject to the nonneg-
ativity constraints y1 ≥ 0, y2 ≥ 0, and y3 ≥ 0 and the linear inequality constraints
−y1 + 2y2+ 3y3 ≥ 1 and y1− y2 + y3 ≥ 1. You will notice that this is nearly identical
in structure to the original problem with the exceptions that we are now minimizing
a function and have instead greater-or-equal constraints. This problem is referred to
as the dual problem for the original problem.

In general, and using vector notation, the primal problem is

Maximize f (x)= cTx subject to x ≥ 0 and Ax ≤ b (14.3)

14.1 Linear Programming 827

The dual problem is

Minimize g (y)= bTy subject to y ≥ 0 and ATy≥ c (14.4)

You should convince yourself from the previous example of why AT, b, and c show
up as they do in the general definition for the dual problem. The dual problem may
be solved with the simplex method by introducing slack and artificial variables. Of
course the process requires you to decrease the objective function values rather than
increase as the primal problem requires.

A few relationships hold between the primal and dual problems. These are referred
to as weak duality, unboundedness property, and strong duality.

Weak Duality Principle

If x is a feasible vector for the primal problem and if y is a feasible vector for the dual
problem, then f (x) ≤ g (y).

The proof is simple. Since x is a feasible vector for the primal problem, we know
that it satisfies the constraints Ax ≤ b. The components of the vectors Ax and b must
be ordered by the inequality, so the transposition of the vectors satisfies the same
ordering:

xTAT = (Ax)T ≤ bT

The y components are nonnegative, so multiplying the previous equation by y
does not change the direction of inequality,

xTATy ≤ bTy

Also, y is a feasible vector for the dual problem so we know that it satisfies the con-
straints c≤ ATy. Since x has nonnegative components, multiplying by x does not
change the direction of the inequality,

xTc≤ xTATy

Combining this with the previous displayed equation yields

f (x)= cTx= xTc≤ xTATy ≤ bTy= g (y)

and the proof is complete.

Unboundedness Property

A linear programming problem is said to have an unbounded solution if you can make
the objective function arbitrarily large. Figure 14.2(b) shows a domain for which the

828 Chapter 14 Linear Complementarity and Mathematical Programming

objective function f (x) can be made as large as you like by choosing values of x far
away from the origin. The unboundedness property is stated in three ways:

1. If the primal problem has an unbounded solution, then the dual problem has no
solution and is said to be infeasible.

2. If the dual problem has an unbounded solution, then the primal problem is
infeasible.

3. The primal problem has a finite optimal solution if and only if the dual problem
has a finite optimal solution.

These results are direct consequences of the weak duality principle. For exam-
ple, if the primal problem has an unbounded solution, then you can force f (x) to be
arbitrarily large by choosing appropriate feasible vectors. You can visualize this in 2D
by sketching a convex domain for f . One of the boundary components will be a ray.
Choose x along that ray with increasing length to force the corresponding f values to
become large. Given that you can do this, and given f (x) ≤ g (y) for a feasible solu-
tion y, you would also force g to become arbitrarily large. This cannot happen, so
there is no such feasible vector y and the dual problem cannot be solved.

Strong Duality Principle

If x is a feasible vector for the primal problem and y is a feasible vector for the dual
problem, then these vectors optimize f and g if and only if f (x)= g (y).

Let us assume that x is a feasible vector for the primal problem, y is a feasible vector
for the dual problem, and f (x)= g (y). From the weak duality principle we know that
f (u) ≤ g (v) for any feasible vectors u and v. Thus, max(f) ≤min(g). The fact that
equality occurs in f (x)= g (y) guarantees that max(f)= f (x) and min(g) = g (y).

The proof in the other direction is more complicated and is not proved here. The
essence is that in constructing the optimal solution for the primal problem using the
simplex method, the details of the construction also allow you to construct the opti-
mal solution for the dual problem with the same function value as that of the primal
solution.

14.2 The Linear Complementarity Problem

In the last section we saw a brief overview of the linear programming problem and
introduced the concepts of primal problem and dual problem. The strong duality
principle states that you can optimize the primal problem or optimize the dual prob-
lem to arrive at the same optimum value. An important consequence of this principle
is called complementary slackness. The vector of slack variables for the primal problem
is s = b−Ax ≥ 0. The vector of slack variables for the dual problem is u = ATy− c.
Complementary slackness presents the following challenge. If x= (x1, . . . , xn) is a

14.2 The Linear Complementarity Problem 829

feasible vector for the primal problem and y= (y1, . . . , ym) is a feasible vector for the
dual problem, then these vectors optimize f and g if and only if both of the following
apply:

1. Either xj = 0 or uj = 0.

2. Either yi = 0 or si = 0.

In vector notation we write these conditions as x ◦ u= 0 and y ◦ s= 0, where the
circle operator defines a new vector whose components are the products of the com-
ponents from the input vectors, u ◦ v= (u1, . . . , uk) ◦ (v1, . . . , vk)= (u1v1, . . . , ukvk).

The primal and dual problems combined fit the format for a more general prob-
lem (which we discussed briefly in Chapter 6) called the linear complementarity
problem (LCP): Given a k× 1 vector q and a k× k matrix M , construct k× 1 vectors
w and z such that

w = q+M z, w ◦ z= 0, w≥ 0, and z≥ 0 (14.5)

The variables wi and zi are said to be complementary. The reduction of the primal and
dual problems to this form is straightforward. The various quantities in the LCP are
written in block matrix form as

q =
[−c

b

]
, M =

[
0 AT

−A 0

]
, w=

[
u
s

]
, and z =

[
x
y

]
(14.6)

Make sure you understand the difference in formulations for the linear program-
ming problem and the linear complementarity problem. In the former problem your
goal is to optimize a function based on various constraints. In the latter your goal is
to satisfy the complementarity condition w ◦ z= 0.

14.2.1 The Lemke Algorithm

The simplex method may be used to solve an LCP. Although the tableau method works
fine, a modern approach uses slightly different terminology which we introduce here.
The presentation here is based on Joel Friedman’s nicely written online summary of
LCP and MP [Fri98]. The equation w= q+M z is considered to be a dictionary for
the basic variables w defined in terms of the nonbasic variables z. The analogy to a
dictionary makes sense since each wi is a new “word” whose definition is provided in
terms of already defined “words,” zj . If q ≥ 0, the dictionary is said to be feasible. In
this case, the LCP has a trivial solution of w= q and z = 0.

If the dictionary is not feasible, then a two-phase algorithm called the Lemke algo-
rithm [CPS92] is applied. The first phase of the algorithm adds an auxiliary variable
z0 ≥ 0 by modifying the dictionary to

w= q+M z+ z01

830 Chapter 14 Linear Complementarity and Mathematical Programming

where 1 is the appropriately sized vector whose components are all one. An exchange
is made, much like that in the tableau method, between z0 and some basic variable wi .
That is, z0 enters the dictionary and wi leaves the dictionary. Not just any exchange will
do; we need an exchange that will make the modified dictionary feasible.

The second phase of the Lemke algorithm is designed to obtain a dictionary such
that both of two conditions hold:

1. z0 is nonbasic.

2. For each i either zi or wi is nonbasic.

Note that z0 is nonbasic to start, enters the dictionary in the first phase, and
eventually leaves the dictionary to once again become nonbasic. When z0 leaves the
dictionary, we know that as a nonbasic variable it is thought of as z0 = 0 (just like
in the tableau method) and the modified dictionary w = q+M z+ z01 is restored to
the original one w= q+M z. The condition that zi or wi is nonbasic for each i ≥ 1
means that either zi = 0 or wi = 0; that is, w ◦ z= 0 and we have solved the LCP.
A dictionary that satisfies conditions 1 and 2 is said to be a terminal dictionary. If the
dictionary satisfies only condition 2, it is said to be a balanced dictionary. The first
phase produces a balanced dictionary, but since z0 is in the dictionary, the dictionary
is nonterminal. The procedure to reach a terminal dictionary is iterative, each iter-
ation designed so that a nonbasic variable enters the dictionary and a basic variable
leaves the dictionary. The invariant of each iteration is that the dictionary remain fea-
sible and balanced. To guarantee this happens and (hopefully) avoid returning to the
same dictionary twice (a cycle so to speak), if a variable has just left the dictionary, then
its complementary variable must enter the dictionary on the next iteration (a variable
cannot leave on one iteration and enter on the next iteration and vice versa).

The Lemke algorithm is illustrated with a simple linear programming problem in
Example 14.2.

Example
14.2

Maximize f (x1, x2)= 2x1+ x2 with respect to the constraints x1 ≥ 0, x2 ≥ 0, and x1+
x2 ≤ 3. The vectors and matrices implied by this are

A = [1 1
]

, b= [3] , and c=
[

2
1

]

Equation (14.6) makes the conversion to an LCP:

q=
⎡
⎣−2
−1

3

⎤
⎦ , M =

⎡
⎣ 0 0 1

0 0 1
−1 −1 0

⎤
⎦ , w=

⎡
⎣u1

u2

s1

⎤
⎦ =

⎡
⎣w1

w2

w3

⎤
⎦ and

z=
⎡
⎣x1

x2

y1

⎤
⎦ =

⎡
⎣z1

z2

z3

⎤
⎦

14.2 The Linear Complementarity Problem 831

The initial dictionary with auxiliary variable z0 is

w1 =−2+ z0 + z3

w2 =−1+ z0 + z3

w3 = 3+ z0 − z1 − z2

The first phase involves moving z0 to the dictionary. To obtain a feasible dictionary,
we need consider only solving for z0 in an equation that has a negative constant term.
Moreover, that constant term should be the largest in magnitude so that, when substi-
tuting the new z0 equation into the other equations, all constant terms are guaranteed
to be nonnegative. In this example the first equation is the one to use. We solve for z0

(so w1 leaves the dictionary) and substitute that expression into the other equations:

z0 = 2+w1 − z3

w2 = 1+w1

w3 = 5+w1 − z1 − z2− z3

The new constant vector is (2, 1, 5)≥ (0, 0, 0), so we have a feasible dictionary. Since
the zi are nonbasic for all i ≥ 1, we have a balanced dictionary. The dictionary is not
terminal, because z0 is still in it.

The second phase is now initiated. The variable w1 just left the dictionary, so its
complementary variable z1 must now enter the dictionary. The only way this can hap-
pen is by solving the w3 equation for z1. The other two equations have no z1 terms in
them, so no substitution by the newly formed z1 equation is necessary:

z0 = 2+w1 − z3

w2 = 1+w1

z1 = 5+w1 −w3 − z2 − z3

The variable w3 left the dictionary, so its complementary variable z3 must enter
the dictionary. We have two equations involving z3. Just as in the tableau method, we
should choose the one that limits an increase in z3 so that the constant terms in the
other equations remain nonnegative. The first equation is limiting since the ratio of
constant term and negative z3 coefficient is 2, whereas the ratio in the last equation
is 5. Solving for z3 and substituting in any other equations containing z3:

z3 = 2+w1 − z0

w2 = 1+w1

z1 = 3−w3 + z0− z2

Because z0 has left the dictionary to return as a nonbasic variable, the process is com-
plete. The dictionary is terminal. The solution to the LCP is z0 = z2 = w1 = w3 = 0
(nonbasic variables are zero) and z3 = 2, w2 = 1, and z1 = 3. In vector form w=
(0, 1, 0) and z = (3, 0, 2). As required, w ◦ z= (0, 0, 0). ■

Now we look at a more complicated problem in the context of the LCP, Exam-
ple 14.1 solved earlier in this chapter.

832 Chapter 14 Linear Complementarity and Mathematical Programming

Example
14.3

We want to maximize f (x1, x2)= x1+ x2 with respect to the constraints x1 ≥ 0, x2 ≥
0, −x1 + x2 ≤ 2, 2x1− x2 ≤−1, and 3x1+ x2 ≤ 3. The vectors and matrices implied
by this are

A =
⎡
⎣−1 1

2 −1
3 1

⎤
⎦ , b=

⎡
⎣ 2
−1

3

⎤
⎦ , and c=

[
1
1

]

Equation (14.6) makes the conversion to an LCP:

q =

⎡
⎢⎢⎢⎢⎣
−1
−1

2
−1

3

⎤
⎥⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎢⎣

0 0 −1 2 3
0 0 1 −1 1
1 −1 0 0 0
−2 1 0 0 0
−3 −1 0 0 0

⎤
⎥⎥⎥⎥⎦ , w=

⎡
⎢⎢⎢⎢⎣

u1

u2

s1

s2

s3

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

⎤
⎥⎥⎥⎥⎦ and

z =

⎡
⎢⎢⎢⎢⎣

x1

x2

y1

y2

y3

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

z1

z2

z3

z4

z5

⎤
⎥⎥⎥⎥⎦

The initial dictionary with auxiliary variable z0 is

w1 =−1+ z0 − z3 + 2z4 + 3z5

w2 =−1+ z0 + z3 − z4 + z5

w3 = 2+ z0 + z1 − z2

w4 =−1+ z0 − 2z1 + z2

w5 = 3+ z0 − 3z1 − z2

The first phase involves moving z0 to the dictionary. We do so using the first equa-
tion, solve for z0 (so w1 leaves the dictionary), and substitute that expression into the
other equations:

z0 = 1+w1 + z3 − 2z4 − 3z5

w2 = 0+w1 + 2z3 − 3z4 − 2z5

w3 = 3+w1 + z1 − z2 + z3 − 2z4− 3z5

w4 = 0+w1 − 2z1 + z2 + z3− 2z4 − 3z5

w5 = 4+w1 − 3z1 − z2 + z3− 2z4 − 3z5

The new constant vector is (1, 0, 3, 0, 4)≥ (0, 0, 0, 0, 0), so we have a feasible dictionary.
Since all zi for i ≥ 1 are nonbasic, we have a balanced dictionary. The dictionary is
not terminal since z0 is still in it. The tableau method requires extra care when any of
the constant terms becomes zero. The Lemke algorithm is itself not exempt from the
potential problems of zero constants as we will see.

14.2 The Linear Complementarity Problem 833

The second phase is now initiated. The variable w1 just left the dictionary, so its
complementary variable z1 must now enter the dictionary. We have three equations
involving z1 from which to choose one to solve for z1, but only two have negative coef-
ficients for z1, the w4 and w5 equations. The limiting value for the ratio of the constant
term and the negative of the z1 coefficient comes from the w4 equation, a ratio of 0
as compared to the ratio 4/3 for the w5 equation. Solving the w4 equation for z1 and
substituting into other equations:

z0 = 1+w1 + z3− 2z4 − 3z5

w2 = 0+w1 + 2z3− 3z4 − 2z5

w3 = 3+ 3

2
w1 − 1

2
w4− 1

2
z2+ 3

2
z3 − 3z4 − 9

2
z5

z1 = 0+ 1

2
w1 − 1

2
w4+ 1

2
z2+ 1

2
z3 − z4 − 3

2
z5

w5 = 4− 1

2
w1 + 3

2
w4− 5

2
z2− 1

2
z3 + z4 + 3

2
z5

The variable w4 left the dictionary, so its complementary variable z4 must enter the
dictionary, all the while maintaining a feasible, balanced dictionary. Four equations
contain z4 with a negative coefficient. Two of the equations lead to a limiting ratio of
zero. Choosing the w2 equation, solving for z4, and substituting in other equations:

z0 = 1+ 1

3
w1 + 2

3
w2 − 1

3
z3 − 5

3
z5

z4 = 0+ 1

3
w1 − 1

3
w2 + 2

3
z3 − 2

3
z5

w3 = 3+ 1

2
w1 +w2 − 1

2
w4 − 1

2
z2− 1

2
z3− 5

2
z5

z1 = 0+ 1

6
w1 + 1

3
w2 − 1

2
w4 + 1

2
z2− 1

6
z3− 5

6
z5

w5 = 4− 1

6
w1 − 1

3
w2 + 3

2
w4 − 5

2
z2+ 1

6
z3+ 5

6
z5

The variable w2 left the dictionary, so z2 must enter the dictionary. As before we
need to maintain a feasible and balanced dictionary. Two equations contain z2 with
a negative coefficient, the w5 equation providing a limiting ratio of 8/5 whereas the
w3 equation has a ratio of 6. Solving the w5 equation for z2 and substituting in other
equations:

z0 = 1+ 1

3
w1 + 2

3
w2− 1

3
z3− 5

3
z5

z4 = 0+ 1

3
w1 − 1

3
w2+ 2

3
z3− 2

3
z5

w3 = 11

5
+ 8

15
w1+ 16

15
w2− 4

5
w4 + 1

5
w5 − 8

15
z3− 8

3
z5

834 Chapter 14 Linear Complementarity and Mathematical Programming

(Example 14.3
continued) z1 = 4

5
+ 2

15
w1+ 4

15
w2 − 1

5
w4 − 3

15
w5− 2

15
z3 − 2

3
z5

z2 = 8

5
− 1

15
w1− 2

15
w2 + 3

5
w4 − 2

5
w5+ 1

15
z3 + 1

3
z5

The variable w5 left the dictionary, so z5 must enter the dictionary. Four equations
contain z5 with a negative coefficient. The limiting equation is the z4 equation with
a ratio of zero and must be solved for z5. In doing so, we are now in a predicament.
The variable z4 leaves the dictionary and on the next step w4 must enter the dictionary.
But an earlier step saw us removing w4 from the dictionary and adding z4. Continuing
along our present path, we will undo all the work we have done only to arrive back at
the start. What we have is a cycle in the processing. This occurred due to the presence
of a zero constant term. The problem occurred in the first phase; to move z0 into the
dictionary, we had multiple choices for the leaving variable, either choice forcing an
equation to have a zero constant term. ■

With our last example in mind, now is a good time to mention two potential
problems that might be encountered when using the Lemke algorithm:

1. Cycling due to degeneracies.

2. The variable complementary to the leaving variable cannot enter the dictionary.

The term degeneracy refers to a constant term becoming zero. As we saw in Exam-
ple 14.3, a zero constant term arises when there are multiple choices for the leaving
variable. Cycling refers to removing a variable from the dictionary that was inserted at
an earlier step. In Example 14.3, the cycling occurs because of a degeneracy – a con-
stant term became zero. As it turns out, if we can modify the algorithm to prevent
degeneracies, no cycling can occur.

14.2.2 Zero Constant Terms

The classical method for handling degeneracies is to apply a perturbation to the con-
stant terms. The kth constant term is modified (perturbed) by a power εk for some
small ε ∈ (0, 1). The value of ε is made so that the choice of leaving variable is unam-
biguous, thus never forcing zero constant terms to occur. The perturbed problem is
solved using the Lemke algorithm. The final solution will be a continuous function
of ε, so we can evaluate the solution at ε = 0 (formally, take the limit as ε approaches
zero) to obtain the solution to the original problem.

Example
14.4

Maximize f (x1, x2)= x1+ x2 subject to the constraints x1 ≥ 0, x2 ≥ 0, and x1 + x2 ≤
2. The vectors and matrices implied by this are

A = [1 1
]

, b= [2] , and c=
[

1
1

]

14.2 The Linear Complementarity Problem 835

Equation (14.6) makes the conversion to an LCP:

q =
⎡
⎣−1
−1

2

⎤
⎦ , M =

⎡
⎣ 0 0 1

0 0 1
−1 −1 0

⎤
⎦ , w =

⎡
⎣u1

u2

s1

⎤
⎦=

⎡
⎣w1

w2

w3

⎤
⎦

z =
⎡
⎣x1

x2

y1

⎤
⎦=

⎡
⎣z1

z2

z3

⎤
⎦

The initial dictionary with auxiliary variable z0 is

w1 =−1+ z0 + z3

w2 =−1+ z0 + z3

w3 = 2+ z0 − z1 − z2

The limiting equations for moving z0 to the dictionary are the w1 and w2 equations,
an ambiguous choice. Solving the first leads to z0 = 1− z3 +w1. Replacing it in the
second produces w2 = 0+w1, a degeneracy.

Instead, add powers of a small number ε ∈ (0, 1) to the constant terms:

w1 = (−1+ ε)+ z0 + z3

w2 = (−1+ ε2)+ z0 + z3

w3 = (2+ ε3)+ z0 − z1 − z2

Because ε2 < ε, we are forced to use the w2 equation to solve for z0. Do so and
substitute in the other equations:

w1 = (ε− ε2)+w2

z0 = (1− ε2)+w2 − z3

w3 = (3+ ε3 − ε2)+w2 − z1 − z2− z3

Observe that the constant terms are all positive for small ε. The variable w2 left the
dictionary, so z2 must now enter the dictionary. The only equation containing z2 is
the w3 equation:

w1 = (ε− ε2)+w2

z0 = (1− ε2)+w2 − z3

z2 = (3+ ε3 − ε2)+w2 −w3 − z1 − z3

The variable w3 left the dictionary, so z3 must enter the dictionary. For small, posi-
tive ε, 1− ε2 is smaller than 3+ ε3− ε2, so the limiting equation is the z0 equation.
Solve for z3 and substitute in other equations,

w1 = (ε− ε2)+w2

z3 = (1− ε2)+w2 − z0

z2 = (2+ ε3)−w3 + z0 − z1

836 Chapter 14 Linear Complementarity and Mathematical Programming

(Example 14.4
continued)

Because z0 has left the dictionary, the process ends and the dictionary is terminal. The
solution to the LCP is w= (w1, w2, w3)= (ε− ε2, 0, 0) and z= (z1, z2, z3)= (0, 2+
ε3, 1− ε2). Clearly, w ◦ z= (0, 0, 0). This argument applies for arbitrarily small ε, so
we may take the limit as ε approaches zero to obtain w= (0, 0, 0) and z= (0, 2, 1).
Because x1 = z1 = 0 and x2 = z2 = 2, the solution to the original linear programming
problem is max(f)= f (0, 2)= 2. ■

In order to evaluate the perturbed solution at ε = 0, a numerical implementation
of the Lemke algorithm must allow for the inclusion of ε symbolically. This can be
done by maintaining a data structure that implements a polynomial in ε (stored as an
array of coefficients), one structure for each equation in the dictionary. The constant
term of the polynomial is the constant term of the equation. The higher-order poly-
nomial terms represent the perturbation of the constant term. The implementation
also maintains a variable that represents the current value of ε so that the perturbed
constant term in the equation can be computed by evaluating the corresponding poly-
nomial at ε. When a terminal dictionary is found, the solution to the original problem
is obtained by setting the nonbasic variables to zero and the basic variables to the
constant terms of the polynomials.

If no degeneracies occur during the algorithm, there can be no cycling. The proof
of this uses an analogy – referred to as the museum principle in [Fri98] – to visiting a
finite collection of rooms that have the following properties:

1. Each room is labeled “stop” or “continue.”

2. All “continue” rooms have one or two doors.

3. If you reach a “stop” room, then your visiting stops.

4. If you reach a “continue” room with one door, then your visiting stops.

5. If you reach a “continue” room with two doors, then your visiting continues, but
you must leave the room through the other door from which you entered.

The museum principle states that you will never enter a room twice; that is, your
path of visitation does not have a cycle. This principle may be used to show that the
second phase of the Lemke algorithm, in the absence of degeneracies, has no cycles
and terminates in a finite number of steps.

The analogy is as follows. The feasible, balanced dictionaries are the rooms. Each
door corresponds to the act of one variable entering the dictionary and another leav-
ing. A room is labeled “stop” if it is a terminal dictionary. All other rooms are labeled
“continue.” Each “continue” room corresponds to a feasible, balanced dictionary with
z0 as a basic variable. The dictionary has exactly one pair of complementary vari-
ables, both of which are nonbasic. The “continue” room has at most two doors; each
of the complementary variables can enter the dictionary in at most one way. Finally,
the first phase of the Lemke algorithm produces a “continue” room that has exactly
one door, and this is the room in which you start the visitation. To see that there is
only one door, consider that z0 enters the dictionary and a basic variable wi leaves

14.2 The Linear Complementarity Problem 837

the dictionary, the choice of wi made so that the constant terms of the equations are
nonnegative. Because we have assumed that there are no degeneracies, there can be
only one such wi . The corresponding equation is solved for z0 and the wi term shows
up as a nonbasic variable that has a positive coefficient (with value 1). Substituting
the z0 into all other equations, wi shows up with a positive coefficient (with value 1)
in every case. Because all the wi coefficients are positive and the constant terms are
nonnegative, wi cannot reenter the dictionary. For if you were to solve for wi , the con-
stant term on the right-hand side would be a negative number, contradicting the fact
the invariant of each step is that the dictionary is feasible. Thus, there is no door in
which wi can enter the room, in which case the room has one door (corresponding to
zi entering the dictionary). The rooms satisfy the conditions of the museum principle
and the Lemke algorthm cannot cycle.

14.2.3 The Complementary Variable Cannot Leave the Dictionary

Degeneracies are one problem with the method of solving an LCP, but the pertur-
bation method discussed earlier circumvents the problems. Another problem with
the method is that at some point the variable complementary to the leaving variable
cannot enter the dictionary, in which case you cannot proceed with the algorithm.

Example
14.5

Maximize f (x1, x2)= 2x1+ x2 subject to the constraints x1 ≥ 0, x2 ≥ 0, and −x1−
x2 ≤−1. The initial dictionary with auxiliary variable z0 is

w1 =−2+ z0 − z3

w2 =−1+ z0 − z3

w3 =−1+ z0 + z1 + z2

The first phase is to move z0 into the dictionary by solving the first equation, z0 =
2+w1 + z3, and substituting into the other equations,

z0 = 2+w1 + z3

w2 = 1+w1

w3 = 1+w1 + z1 + z2+ z3

The variable w1 left the dictionary, so z1 must enter it. The only equation containing
z1 is the last, but the coefficient of z1 is positive. In solving for z1 we would obtain a
negative constant term, violating the feasibility of the dictionary. Therefore, z1 cannot
enter the dictionary. ■

A sketch of the convex domain defined by the constraints shows us what the prob-
lem is. The domain is unbounded, so in fact f is unbounded and has no maximum.
The linear programming problem has no solution. Some general statements can be
made about the matrix M in the LCP regarding the inability for the complementary
variable to enter the dictionary.

838 Chapter 14 Linear Complementarity and Mathematical Programming

First, some definitions. The matrix M is said to be copositive if xTM x ≥ 0 for all
x ≥ 0. M is said to be copositive-plus if (1) it is copositive and (2) x ≥ 0, M x≥ 0, and
xTM x= 0 imply (M +M T)x= 0. Recall from linear algebra that a matrix M is said
to be positive-semidefinite if M is symmetric and xTM x ≥ 0 for all x. In contrast, a
copositive matrix is not required to be symmetric and the vectors for which we require
xTM x ≥ 0 are only those whose components are all nonnegative.

A simple fact to verify is that the matrix M that comes from complementary slack-
ness and is shown in equation (14.6) is copositive. For any skew-symmetric matrix M ,
it is the case that zTM z= 0. Setting M = [mij] and z = [zi]:

zTM z=
n∑

i=1

n∑
j=1

zimijzj

=
∑
i<j

zi mijzj +
∑
i=j

zi mijzj +
∑
i>j

zi mijzj

=
∑
i<j

zi mijzj + 0−
∑
i>j

zi mji zj skew-symmetry means mij =−mji

=
∑
i<j

zi mijzj + 0−
∑
j>i

zi mijzj swapping names i and j in the last
summation

= 0

This is true for all z, so is true for z ≥ 0. Thus, a skew-symmetric matrix is copositive.
M in equation (14.6) is skew-symmetric, therefore copositive.

The main result of this section is the following:

Let M be copositive. If the Lemke algorithm reaches the stage where a complemen-
tary variable cannot leave the dictionary, then the linear complementarity problem
has no solution.

The proof is somewhat tedious and not presented here. The consequence of the
linear complementarity problem regarding a numerical implementation is that when
you reach a stage where the complementary variable cannot leave the solution, the
program terminates and reports to the caller that the LCP has no solution.

14.3 Mathematical Programming

Now that we have a good understanding of linear programming, I will briefly discuss
a generalization called mathematical programming (MP). The goal is to minimize f (x)

subject to the constraints g(x) ≤ 0 where f : IRn → IR, the objective function, and g :
IRn → IRm , the constraining functions, are arbitrary functions. The convention used
in the mathematical programming is that the objective function is to be minimized.
If an application requires maximizing f , you can minimize instead the function −f .

14.3 Mathematical Programming 839

Here is some further terminology that will be used later. A point x satisfying the
constraints g(x) ≤ 0 is said to be a feasible point. If gi(x)= 0 for some i, we say that gi

is active at x.

Example
14.6

The linear programming problem can be rephrased as a mathematical programming
problem. The original problem is to maximize cTx subject to x≥ 0 and Ax ≤ b. As a
mathematical programming problem, the objective function is f (x)=−cTx, we want
to minimize f , and the constraints are combined into g(x) ≤ 0 as

g(x)=
[

Ax−b
−x

]

In this case f is a linear function and g is an affine function. ■

Example
14.7

You are given a set of points {(xi , yi)}ni=1 with at least three noncollinear points. Let
(x0, y0) be the average of the points. Compute the minimum area, axis-aligned ellipse
centered at the average that contains all the points.

The average is (x0, y0)= (
∑n

i=1(xi , yi))/n. The axis-aligned ellipse centered at the
average is of the form, (

x − x0

a

)2

+
(

y − y0

b

)2

= 1

where a > 0 and b > 0 are the half-lengths of the ellipse axes. The area of the
ellipse is

A= πab.

We want to minimize the area and have all points contained in the ellipse. The
containment leads to the constraints,(

xi − x0

a

)2

+
(

yi − y0

b

)2

≤ 1, 1≤ i ≤ n

In terms of the notation of mathematical programming, the variables are a and b,
the objective function is f (a, b)= πab, and the constraint functions are g(a, b)=
(g1(a, b), . . . , gn(a, b), gn+1(a, b), gn+2(a, b)), where gi(a, b)= ((xi − x0)/a)2 + ((yi −
y0)/b)2 − 1, gn+1(a, b)=−a, and gn+2(a, b)=−b. Both f and g are nonlinear
functions.

The problem can be equivalently formulated in a manner that makes g an affine
function, potentially making the solution a bit easier to construct. Instead of variables
a and b, let us choose u = 1/a2 and v = 1/b2. The constraint functions are gi(u, v)=
(xi − x0)

2u+ (yi − y0)
2v − 1 for 1≤ i ≤ n, gn+1(u, v)=−u, and gn+2(u, v)=−v ,

all affine functions of u and v . The objective function is f (u, v)= π/
√

uv. The
uv-domain implied by g(u, v)≤ 0 is a bounded region whose boundary is a convex
polygon. The graph of f is shown in Figure 14.5. Even though f is nonlinear, the figure
should convince you that the minimum must occur on the polygon boundary (not
necessarily at a vertex). ■

840 Chapter 14 Linear Complementarity and Mathematical Programming

f

v

u

Figure 14.5 Graph of f (u, v)= π/
√

uv in the first quadrant.

Two categories of mathematical programming problems are of interest to us. The
first is called quadratic programming. The objective function has a quadratic term
in addition to the linear term that appears in the linear programming problem. The
constant term is omitted here since f can be minimized without it, then that constant
is added back in to the result. The function is

f (x)= xTSx− cTx (14.7)

where S is a symmetric matrix. The constraint functions are still of the form used in
linear programming, g(x)= (Ax−b,−x)≤ 0.

The second category is convex programming and involves objective functions that
are convex functions. A function f (x) is said to be convex if its domain is a convex set
and if

f ((1− t)x+ t y) ≤ (1− t)f (x)+ tf (y) (14.8)

for all t ∈ [0, 1] and for all x and y in the domain of the function. Since the domain
of f is a convex set, (1− t)x+ t y is guaranteed to be in the domain for any t ∈ [0, 1].
Thus, the left-hand side of the inequality equation (14.8) is well defined since the
input to f is in its domain. Figure 14.6 illustrates the graphs of a convex function and
a nonconvex function of one variable.

14.3 Mathematical Programming 841

(a) (b)

f (x2)

(1– t) f (x1) + t f (x2)

f (x1)

f (x)

Graph is convex Graph is not convex

x = (1– t) x1 + tx2

x1 x2

f (x)

x

f (x)

x

Figure 14.6 (a) The graph of a convex function. Any line segment connecting two graph points
is always above the graph. (b) The graph of a nonconvex function. The line segment
connecting two graph points is not always above the graph.

Visually, convexity means that any line segment connecting two points on the
graph of the function must always lie above the graph. If f (x) has a continuous
second-order derivative, it is a convex function when f ′′(x) ≥ 0. Figure 14.7 illustrates
the graph of a convex function of two variables.

A line segment connecting any two points on the graph of the function must
always lie above the graph. Generally, if f (x) for x ∈ IRn has continuous second-order
partial derivatives, it is a convex function when the matrix of second-order partial
derivatives is positive-semidefinite (the eigenvalues are all nonnegative).

In Example 14.7, the second formulation of the problem that has affine constraints
in u and v is both a quadratic programming and a convex programming problem.
That is, the objective function is a convex and quadratic function and the constraints
are affine.

14.3.1 Karush–Kuhn–Tucker Conditions

In calculus we have the concept of a local minimum of a function. If f (x) is the func-
tion and x0 is a point for which f (x) ≥ f (x0) for all x sufficiently close to x0, then x0

is referred to as a local minimum for f . In mathematical programming a similar con-
cept can be defined. A point x0 is a constrained local minimum if f (x) ≥ f (x0) for all
feasible x sufficiently close to x0. That is, x must be close to x0 and g(x)≤ 0. We will
assume from here on that both f and g are differentiable functions. The constraint

842 Chapter 14 Linear Complementarity and Mathematical Programming

f (x2, y2)
(1– t) f (x1, y1) + tf (x2, y2)

f (x1, y1)

f (x, y)

z

x

y

(x, y) = (1– t)(x1, y1) + t(x2, y2)(x1, y1)
(x2, y2)

Figure 14.7 The graph of a convex function f (x, y).

function is stored as an m× 1 column vector. The gradient of f (x), denoted ∇f (x), is
stored as a 1× n row vector. The derivative matrix of g(x), denoted Dg(x), is stored
as an m× n matrix. The ith row corresponds to the gradient of the ith component,
∇gi(x).

An important result for mathematical programming is stated here without proof:
If x0 is a constrained local minimum for the MP problem, then there exists nonneg-
ative ui for 0≤ i ≤m, such that

u0∇f (x0)+
m∑

i=1

ui∇gi(xi)= 0 (14.9)

and such that ui = 0 whenever gi(xi) < 0. The left-hand side of equation (14.9) is
effectively a summation over active constraints since the ui are zero for inactive
constraints. If the constraints of the MP problem are allowed to include equality con-
straints, equation (14.9) is still valid, except that the ui for an equality constraint is
allowed to be negative. By making this minor adjustment, the generalized result stated
above includes the classical theory of Lagrange multipliers. One final observation: If
u0 = 0, equation (14.9) contains information only about the constraint functions and
nothing about f . In most applications of interest, information about f allows us to
choose u0 = 1.

A feasible x that satisfies equation (14.9) with u0 = 1, the other ui as specified in
that equation, is said to be a Karush–Kuhn–Tucker point, or KKT point for short. The
conditions for being a KKT point are summarized in vector notation:

g(x) ≤ 0, ∇f (x)+uTDg(x)= 0 for a u≥ 0, and u ◦ g(x)= 0 (14.10)

14.3 Mathematical Programming 843

where u is the m× 1 vector whose components are u1 through um mentioned in equa-
tion (14.9). Notice that the last expression of equation (14.10) is a complementarity
condition.

Recall from calculus that the candidates for minimizing a differentiable function
f (x) on an interval [a, b] are those points for which f ′(x)= 0 and the endpoints x = a
and x = b. These points were named critical points. For a multivariate differentiable
function f (x) defined on a closed and bounded domain, the critical points are those
for which ∇f (x)= 0 and boundary points of the domain. The KKT points are the
analogy of critical points in the realm of mathematical programming. Specifically,
a constrained local minimum of the MP problem must be a KKT point when the
constraints are any of the following types:

1. The constraint function is affine, g(x)=M x+ t for a matrix M and vector t.

2. The constraint components gi(x) are convex functions and there is at least one
feasible x at which all constraints are inactive.

3. For any feasible x, the vectors ∇gi(x) are linearly independent.

Example
14.8

The linear programming problem is to minimize f (x)=−cTx subject to g(x)=
(Ax−b,−x) ≤ 0. The three KKT conditions for this problem are as follows.

The first condition is g(x) ≤ 0, which simply states that x is feasible.
The second condition is

0=∇f (x)+uTDg(x)=−cT+uT

[
A
−I

]

where I is the identity matrix of the appropriate size. Partitioning u into two blocks
of the appropriate sizes, u = (ud , us), the last displayed equation is equivalent to

us =−c+ATud

That is, us are the slack variables for the primal problem and ud are the regular
variables for the dual problem. The condition u≥ 0 is a statement of dual feasibility.
Using the same block decomposition of u as just described, the third condition is

0= u ◦ g(x)= (ud , us) ◦ (Ax−b,−x)

or ud ◦ (Ax−b)= 0 and us ◦ x= 0, just statements of complementary slackness. ■

14.3.2 Convex Quadratic Programming

The quadratic programming problem is to minimize f (x)= xTSx− cTx+K for a
constant symmetric matrix S, a constant vector c, and a constant scalar K , subject
to g(x)= (Ax−b,−x) ≤ 0. We additionally want f to be a convex function; it is
sufficient to require S to be positive-semidefinite.

844 Chapter 14 Linear Complementarity and Mathematical Programming

The first KKT condition is a statement of feasibility: Ax ≤ b and x≥ 0. The second
KKT condition is

0= ∇f (x)+uTDg(x)= 2xTS− cT+uT

[
A
−I

]

Using the decomposition of u= (ud , u2) as in the linear programming problem, the
last equation implies

us =−c+ 2Sx+ATud (14.11)

and is called the dual slack equation. The third KKT condition is the same as in the
linear programming problem,

ud ◦ (Ax−b)= 0 and us ◦ x= 0 (14.12)

and is called complementary slackness.
These conditions allow us to reformulate the quadratic programming problem as

a linear complementarity problem,

w= q+M z, w ◦ z= 0, w≥ 0, z≥ 0

where

xs = b−Ax, q=
[−c

b

]
, M =

[
2S AT

−A 0

]
, w=

[
us

xs

]
, z=

[
x

ud

]

The matrix M is copositive. To see this,

zTM z= zT

[
2S 0

0 0

]
z+ zT

[
0 AT

−A 0

]
z= zT

[
2S 0

0 0

]
z

where the last equality is valid since the matrix involving just A and −A is skew-
symmetric, causing its quadratic form to be zero. The last matrix in the equations
is positive-semidefinite since S is positive-semidefinite. The lower right-hand zero
block only introduces zero eigenvalues in the larger matrix. As a result, M is also
copositive-plus, which means that the Lemke algorithm may be applied, using a per-
turbation if necessary to eliminate degeneracies, and allowing for proper termination
either because a solution is found or because a complementary variable could not
leave the dictionary, in which case f has no minimum.

Because the linear complementarity problem is just a reformulated set of KKT
conditions, any solution to it must be a KKT point. The additional assumption of
convexity allows us to use the following result: If f and g1 through gm are convex
functions, then any KKT point for the MP problem must be a global minimum.

In summary, the solution to a convex, quadratic programming problem may
be constructed by solving the corresponding linear complementarity problem using
the Lemke algorithm. That algorithm will properly terminate and produce either a

14.3 Mathematical Programming 845

minimum for f or indicate that f has no minimum. Since f is convex and the affine
constraints are convex, the minimum found by the algorithm must be the global
minimum of f .

Example
14.9

A solid triangle has vertices (0, 0), (1, 0), and (0, 1). Compute the closest triangle point
to (1, 2). A sketch of the triangle and point will convince you that the closest point
is on the edge connecting (1, 0) and (0, 1). Although you can use a simple geomet-
ric argument to construct the closest point, we will solve this as a convex quadratic
programming problem.

We must minimize the squared distance (x1 − 1)2 + (x2 − 2)2 = x2
1 + x2

2 − 2x1−
4x2+ 5, where (x1, x2) is any point in the solid triangle. We can ignore the constant
term and equivalently minimize f (x1, x2)= x2

1 + x2
2 − 2x1 − 4x2. The interior of the

triangle is the intersection of half planes: x1 ≥ 0, x2 ≥ 0 and x1+ x2 ≤ 1. The quantites
of interest in the quadratic programming problem are

S =
[

1 0
0 1

]
, c=

[
2
4

]
, A = [1 1

]
, and b= [1]

The quantities of interest in the linear complementarity problem are

M =
⎡
⎣ 2 0 1

0 2 1
−1 −1 0

⎤
⎦ and q=

⎡
⎣−2
−4
1

⎤
⎦

The initial modified dictionary is

w1 =−2+ z0 + 2z1 + z3

w2 =−4+ z0 + 2z2 + z3

w3 = 1+ z0 − z1 − z2

In the first phase, z0 enters the dictionary and w2 leaves the dictionary,

w1 = 2+w2 + 2z1 − 2z2

z0 = 4+w2 − 2z2 − z3

w3 = 5+w2 − z1 − 3z2− z3

Because w2 left the dictionary, z2 must enter it. The limiting equation is the w1

equation, so solve that equation for z2 and substitute in the others:

z2 = 1− 1

2
w1+ 1

2
w2 + z1

z0 = 2+w1− 2z1 − z3

w3 = 2+ 3

2
w1− 1

2
w2 − 4z1 − z3

846 Chapter 14 Linear Complementarity and Mathematical Programming

(Example 14.9
continued)

Because w1 left the dictionary, z1 must enter it. The limiting equation is the w3

equation, so solve that equation for z1 and substitute in the others:

z2 = 3

2
− 1

8
w1 + 3

8
w2 − 1

4
w3− 1

4
z3

z0 = 1+ 1

4
w1 + 1

4
w2 + 1

2
w3 − 1

2
z3

z1 = 1

2
+ 3

8
w1 − 1

8
w2 − 1

4
w3− 1

4
z3

Finally, w3 left, so z3 must enter. Two equations are limiting, the z0 and z1 equations.
No need to apply a perturbation here. We know that cycling should not occur, so solve
the z0 equation for z3 and substitute:

z2 = 1− 1

4
w1 + 1

4
w2 − 1

2
w3 + 1

2
z0

z3 = 2+ 1

2
w1 + 1

2
w2 +w3 − 2z0

z1 = 0+ 1

4
w1 − 1

4
w2 − 1

2
w3 + 1

2
z0

The solution is w= (w1, w2, w3)= (0, 0, 0) and z= (z1, z2, z3)= (0, 1, 2). In terms of
the original variables, x1 = z1 = 0 and x2 = z2 = 1. The closest point on the triangle
to (1, 2) is the vertex (0, 1). ■

14.3.3 General Duality Theory

The linear programming problem was referred to as the primal problem. We discov-
ered an equivalent problem, called the dual problem. The mathematical program-
ming problem has a similar concept of duality. The primal MP problem is

Minimize f (x) subject to g(x) ≤ 0

Define h(x, u)= f (x)+uTg(x). Notice that the (row) vector of derivatives of L
with respect to x, denoted ∂h/∂x, is ∂h/∂x= ∇f (x)+uTDg(x), exactly the expres-
sion that appears in the second KKT condition. Define the Lagrangian function,

L(u)= min
x∈IRn

h(x, u)

The dual MP problem is

Maximize L(u) subject to u ≥ 0

If min(f) is the minimum of the primal problem and max(L) is the maxi-
mum of the dual problem, then it is the case that max(L) ≤min(f). The difference

14.4 Applications 847

min(f)−max(L) is called the duality gap. For the linear programming problem we
saw that the duality gap is zero.

We had used the terminology that x is feasible if g(x) ≤ 0. Similarly, we say that u
is feasible for the dual problem if u≥ 0. Results similar to the Strong Duality principle
for linear programming are the following:

1. If there are feasible vectors x and u such that L(u)= f (x), then x is an optimal
solution to the primal problem.

2. If there are feasible vectors x and u such that f (x)+uTg(x)= L(u) and u◦ g(x)=
0, then x is an optimal solution to the primal problem.

In either case, the duality gap is zero.

14.4 Applications

A few applications of LCP methods are presented here. The first subsection includes
distance calculations between a point and a convex polygon, a point and a convex
polyhedron, two convex polygons, and two convex polyhedra. The second subsection
is a brief summary of how one goes about computing impulsive forces and resting
contact forces at points of contact between two rigid bodies represented as convex
polyhedra.

14.4.1 Distance Calculations

The origin of the coordinate system in any of these applications is always chosen to
be 0. The distinction between point and vector is not necessary in this situation, so all
quantities are typeset using vector notation.

Distance Between Point and Convex Polygon

Let Vi for 0 ≤ i ≤ n− 1 be the counterclockwise-ordered vertices for a convex poly-
gon. The vertices may occur anywhere in the plane, but to support distance calcula-
tions using LCP methods, we require that all the vertices lie in the first quadrant. If
the polygon is not in the first quadrant, it is always possible to place it there by a trans-
lation of all vertices. Let P be a point that is outside the polygon. We wish to compute
the distance between the point and the polygon.

In order to apply LCP methods to solve this problem, we need to formulate
it in terms of convex quadratic programming as discussed in Section 14.3.2. The
objective function must be of the form f (x)= xTSx− cTx+K , where S is a positive-
semidefinite matrix. The constraints are of the form Ax ≤ b and x≥ 0. The objective
function is simple enough to construct. The vector x is a point that is inside the

848 Chapter 14 Linear Complementarity and Mathematical Programming

polygon (includes points on the boundary). We want to choose x to minimize the
squared distance,

f (x)= |x−P|2 = xTI x− 2PTx+|P|2

where I is the 2× 2 identity matrix. Clearly we should choose S = I , which is positive-
definite, c= 2P, and K = |P|2. Since the polygon vertices are in the first quadrant,
we know that x ≥ 0.

The remaining constraints occur because x must be inside the polygon. If Ni is
an outer normal to the polygon edge with direction Vi+1−Vi , then x is inside the
polygon whenever Ni · (x−Vi) ≤ 0 for all i. The matrix A in the constraints is created
by selecting row i to be NT

i . The vector b in the constraints is created by selecting row
i to be Ni · Vi .

The conversion to an LCP of the form w= q+M z with w ≥ 0, z≥ 0, and w ◦
z=0 was discussed earlier. We choose inputs,

M =
[

2S AT

−A 0

]
, q=

[−c
b

]

The output w is not important for this application, but the other output is z =
[x |ud]T. We need only the first block x of the output, which corresponds to the closest
point of the polygon to P.

Pseudocode for computing the distance from P to the polygon is listed below. The
convex polygon object has an array of vertices denoted vertex.

double Distance (vector P, ConvexPolygon C)
{

int n = C.vertex.size();

// translate to first quadrant (if necessary)
vector min = C.vertex[0];
for (i = 1; i < n; i++)
{

if (C.vertex[i].x < min.x)
min.x = C.vertex[i].x;

if (C.vertex[i].y < min.y)
min.y = C.vertex[i].y;

}
if (min.x < 0 || min.y < 0)
{

P -= min;
for (i = 0; i < n; i++)

C.vertex[i] -= min;
}

// compute coefficients of objective function
matrix S[2][2] = identity_2; // the 2-by-2 identity matrix
vector c = 2.0*P;

14.4 Applications 849

// double K = Dot(P,P); not needed in the code

// compute constraint matrix and vector
matrix A[n][2];
vector b[n];
for (i0 = n-1, i1 = 0; i1 < n; i0 = i1++)
{

vector normal = Perp(C.vertex[i1]-C.vertex[i0]);
A[i1][0] = normal.x;
A[i1][1] = normal.y;
b[i1] = Dot(normal,C.vertex[i0]);

}

// compute inputs for LCP solver
matrix M[n+2][n+2] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+2] = Block(-c,b);

// compute outputs
vector w[n+2], z[n+2];
LCPSolver(M,q,w,z);

// compute closest point and distance to P
vector closest(z[0],z[1]);
return sqrt(Dot(closest-P,closest-P));

}

// The parameter names match those in the section discussing LCP
// where w = q + Mz. The inputs are the matrix M and the vector
// q. The outputs are the vectors w and z.
void LCPSolver (Matrix M, Vector q, Vector& w, Vector& z);

The function Perp takes a vector (x, y) and returns (y ,−x). We also assume an
implementation of an LCP solver of the form shown in the pseudocode. An actual
implementation for an LCP solver is on the CD-ROM.

Distance Between Point and Convex Polyhedron

This problem is nearly identical in formulation to the one for computing the distance
from a point to a convex polygon. The convex polyhedron must be translated to the
first octant if it is not already located there. The polyhedron is made up of a collection
of n faces. The only information we need from the polyhedron for the setup is for face
i, a vertex Vi , and an outer normal Fi for that face. If the query point is P, the objec-
tive function is still f (x)= |x−P|2 = xTI x− 2PTx+|P|2, where x is a point inside
the polyhedron. Because we have required the polyhedron to be in the first octant,
we know that x≥ 0. The constraint matrix A is n× 3 with the transpose of the face
normal NT

i as its ith row. The constraint vector b is n× 1 with ith row given by Ni · Vi .

850 Chapter 14 Linear Complementarity and Mathematical Programming

The conversion to an LCP of the form w=q+M z with w≥ 0, z≥ 0, and w◦ z=0
was discussed earlier. We choose inputs,

M =
[

2S AT

−A 0

]
, q=

[−c
b

]

The output w is not important for this application, but the other output is z =
[x |ud]T. We need only the first block x of the output, which corresponds to the closest
point of the polygon to P.

Pseudocode for computing the distance from P to the polyhedron follows. The
convex polyhedron object is assumed to have any data structures and methods that
are necessary to support the calculations.

double Distance (vector P, ConvexPolyhedron C)
{

int nv = C.vertex.size();

// translate to first octant (if necessary)
vector min = C.vertex[0];
for (i = 1; i < nv; i++)
{

if (C.vertex[i].x < min.x)
min.x = C.vertex[i].x;

if (C.vertex[i].y < min.y)
min.y = C.vertex[i].y;

if (C.vertex[i].z < min.z)
min.y = C.vertex[i].y;

}
if (min.x < 0 || min.y < 0)
{

P -= min;
for (i = 0; i < nv; i++)

C.vertex[i] -= min;
}

// compute coefficients of objective function
matrix S[3][3] = identity_3; // the 3-by-3 identity matrix
vector c = 2.0*P;
// double K = Dot(P,P); not needed in the code

// compute constraint matrix and vector
int n = C.face.size();
matrix A[n][3];
vector b[n];
for (i = 0; i < n; i++)
{

A[i][0] = C.face[i].normal.x;
A[i][1] = C.face[i].normal.y;

14.4 Applications 851

A[i][2] = C.face[i].normal.z;
b[i] = Dot(C.face[i].normal,C.face[i].vertex);

}

// compute inputs for LCP solver
matrix M[n+3][n+3] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+3] = Block(-c,b);

// compute outputs
vector w[n+3], z[n+3];
LCPSolver(M,q,w,z);

// compute closest point and distance to P
vector closest(z[0],z[1],z[2]);
return sqrt(Dot(closest-P,closest-P));

}

As you can see, the structure of the code is nearly identical to that for convex
polygons.

Distance Between Convex Polygons

Two convex polygons are specified, the first C0 with vertices V(0)
i for 0≤ i < n0 and

the second C1 with vertices V(1)
i for 0≤ i < n1. Both sequences of vertices are coun-

terclockwise ordered. As we had arranged in the point-object calculators discussed
previously, a translation is applied (if necessary) to place both polygons in the first
quadrant. Let P0 denote a point inside C0 and let P1 denote a point inside C1. We want
to choose one point in each polygon to minimize the squared distance |P0−P1|2.
The setup to solve this using LCP methods is similar to that for computing distance
between a point and a convex polygon, except that the unknown vector x will be
4-dimensional. The unknown vector and the objective function are

x=
[

P0

P1

]
, f (x)= |P0−P1|2 =

[
PT

0 PT
1

][I −I
−I I

][
P0

P1

]
= xTSx

where I is the 2× 2 identity matrix. The matrix S is 4× 4, has diagonal blocks I
and off-diagonal blocks −I . S is positive-semidefinite since it is symmetric and its
eigenvalues are λ= 0 and λ= 2, both nonnegative numbers.

Since the polygons are in the first quadrant, both P0 ≥ 0 and P1 ≥ 0 and the non-
negativity constraint x ≥ 0 are satisfied. The other constraints arise from requiring

the points be in their convex polygons. Let N
(j)
i denote outer normals for polygon Cj

for the edge of direction V
(j)
i+1−V

(j)
i . The point containment imposes the constraints,

N(j)
i · (Pj −V(j)

i)≤ 0

852 Chapter 14 Linear Complementarity and Mathematical Programming

for 0≤ i < nj . The constraint matrix A is (n0 + n1)× 4 and is a block diagonal matrix
A = Diag(A0, A1), where Aj is nj × 2. The ith row of Aj is the transposed normal vector

N
(j)
i . The constraint vector b is (n0 + n1)× 1 and consists of two blocks bj of size

nj × 1. The ith row of bj is N
(j)
i · V

(j)
i . As before the inputs to the LCP solver are

M =
[

2S AT

−A 0

]
, q=

[
0
b

]

but in this case c= 0. The output z = [x |∗]T where the first block produces a pair of
closest points on the polygons.

The pseudocode is similar yet again to what we had before.

double Distance (ConvexPolygon C0, ConvexPolygon C1)
{

int n0 = C0.vertex.size(), n1 = C1.vertex.size();

// translate to first quadrant (if necessary)
vector min = C0.vertex[0];
for (i = 1; i < n0; i++)
{

if (C0.vertex[i].x < min.x)
min.x = C0.vertex[i].x;

if (C0.vertex[i].y < min.y)
min.y = C0.vertex[i].y;

}
for (i = 0; i < n1; i++)
{

if (C1.vertex[i].x < min.x)
min.x = C1.vertex[i].x;

if (C1.vertex[i].y < min.y)
min.y = C1.vertex[i].y;

}
if (min.x < 0 || min.y < 0)
{

for (i = 0; i < n0; i++)
C0.vertex[i] -= min;

for (i = 0; i < n1; i++)
C1.vertex[i] -= min;

}

// Compute coefficients of objective function, identity_2 is the
// 2-by-2 identity matrix.
matrix S[4][4] = Block(identity_2,-identity_2,

-identity_2,identity_2);
vector c = zero_4; // the 4-by-1 zero vector
// double K = 0; not needed in the code

14.4 Applications 853

// compute constraint matrix and vector
matrix A0[n0][2], A1[n1][2];
vector b0[n0], b1[n1];
for (i0 = n0-1, i1 = 0; i1 < n0; i0 = i1++)
{

vector normal = Perp(C0.vertex[i1]-C0.vertex[i0]);
A0[i1][0] = normal.x;
A0[i1][1] = normal.y;
b0[i1] = Dot(normal,C0.vertex[i0]);

}
for (i0 = n1-1, i1 = 0; i1 < n0; i0 = i1++)
{

vector normal = Perp(C1.vertex[i1]-C1.vertex[i0]);
A1[i1][0] = normal.x;
A1[i1][1] = normal.y;
b1[i1] = Dot(normal,C1.vertex[i0]);

}
matrix A[n0+n1][4] = BlockDiagonal(A0,A1);
vector b[n0+n1] = Block(b0,b1);

// compute inputs for LCP solver
int n = n0+n1;
matrix M[n+4][n+4] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+4] = Block(-c,b);

// compute outputs
vector w[n+4], z[n+4];
LCPSolver(M,q,w,z);

// compute closest points P0 in C0 and P1 in C1 and
// distance |P0-P1|
vector P0(z[0],z[1]), P1(z[2],z[3]);
return sqrt(Dot(P0-P1,P0-P1));

}

Distance Between Convex Polyhedra

The LCP formulation is similar to the previous ones. The convex polyhedra are C0

and C1. A translation must be applied to make sure both polyhedra are in the first
octant. Let the number of faces of Cj be denoted nj . The outer-pointing normal

for face i is N(j)
i and a vertex on the face for use in constraints is V(j)

i . The goal is
to find points Pj ∈ Cj that minimize |P0−P1|. The construction parallels that of
distance between convex polygons. The unknown vector is xT = [PT

0 |PT
1] and is six-

dimensional. The objective function is f (x)= xTSx, where S is a 6× 6 matrix whose
diagonal blocks are the 3× 3 identity matrix I and whose off-diagonal blocks are−I .

854 Chapter 14 Linear Complementarity and Mathematical Programming

The eigenvalues of S are 0 and 2, so S is positive-semidefinite. The constraint matrix
A is (n0+ n1)× 6 and the constraint vector b is (n0+ n1)× 1, both constructed
similarly to what was done for convex polygons. Pseudocode is

double Distance (ConvexPolyhedron C0, ConvexPolyhedron C1)
{

int nv0 = C0.vertex.size(), nv1 = C1.vertex.size();

// translate to first octant (if necessary)
vector min = C0.vertex[0];
for (i = 1; i < nv0; i++)
{

if (C0.vertex[i].x < min.x)
min.x = C0.vertex[i].x;

if (C0.vertex[i].y < min.y)
min.y = C0.vertex[i].y;

}
for (i = 0; i < nv1; i++)
{

if (C1.vertex[i].x < min.x)
min.x = C1.vertex[i].x;

if (C1.vertex[i].y < min.y)
min.y = C1.vertex[i].y;

}
if (min.x < 0 || min.y < 0)
{

for (i = 0; i < nv0; i++)
C0.vertex[i] -= min;

for (i = 0; i < nv1; i++)
C1.vertex[i] -= min;

}

// Compute coefficients of objective function, identity_3 is the
// 3-by-3 identity matrix.
matrix S[6][6] = Block(identity_3,-identity_3,

-identity_3,identity_3);
vector c = zero_6; // the 6-by-1 zero vector
// double K = 0; not needed in the code

// compute constraint matrix and vector
int n0 = C0.face.size(), n1 = C1.face.size();
matrix A0[n0][2], A1[n1][2];
vector b0[n0], b1[n1];
for (i0 = n0-1, i1 = 0; i1 < n0; i0 = i1++)
{

vector normal = C0.face[i].normal;
A0[i1][0] = normal.x;
A0[i1][1] = normal.y;

14.4 Applications 855

A0[i1][2] = normal.z;
b0[i1] = Dot(normal,C0.face[i].vertex);

}
for (i0 = n1-1, i1 = 0; i1 < n0; i0 = i1++)
{

vector normal = C1.face[i].normal;
A1[i1][0] = normal.x;
A1[i1][1] = normal.y;
A1[i1][2] = normal.z;
b1[i1] = Dot(normal,C1.face[i].vertex);

}
matrix A[n0+n1][6] = BlockDiagonal(A0,A1);
vector b[n0+n1] = Block(b0,b1);

// compute inputs for LCP solver
int n = n0+n1;
matrix M[n+6][n+6] = Block(2*S,Transpose(A),-A,zero_nxn);
vector q[n+6] = Block(-c,b);

// compute outputs
vector w[n+6], z[n+6];
LCPSolver(M,q,w,z);

// compute closest points P0 in C0 and P1 in C1 and
// distance |P0-P1|
vector P0(z[0],z[1],z[2]), P1(z[3],z[4],z[5]);
return sqrt(Dot(P0-P1,P0-P1));

}

Once again we have assumed that the data members and methods of the class for
the convex polyhedron have enough structure to support the queries required in the
distance calculator.

14.4.2 Contact Forces

The derivation of contact forces for colliding rigid bodies is presented in detail
in Section 6.6. The impulsive force construction to modify the linear and angu-
lar velocities simultaneously for all contact points was formulated as the following
abstract problem: Minimize |Af+b|2 subject to the constraints f ≥ 0, Af+b ≥ 0,
and Af+b ≤ c, where A is a known n× n matrix and b and c are known n× 1 vec-
tors. The impulse magnitudes f are required by the collision response system. The

postimpulse velocities ḋ
+ = Af+b are also required, but can be computed once f

is known. The quadratic function expands to fT(ATA)f+ (2bTA)f+|b|2. This is a
classical problem of quadratic programming that can be formulated as a LCP.

To see this, Section 14.3.2 lists a variable x, a quadratic function xTSx− cTx+K ,
where S is a constant positive-definite symmetric matrix, c is a constant vector, and

856 Chapter 14 Linear Complementarity and Mathematical Programming

K is a constant scalar. The section also mentions constraints x ≥ 0 and Ax ≤ b, where
A is a constants matrix and b is a constant vector. Please observe that the A, b, and
c of the problems stated on page 496 are not the same as those of Section 14.3.2. To
make clear the differences, the variables of Section 6.6.2 remain the same, namely,
A, b, and c. Rename the variables of Section 14.3.2 to A0, b0, and c0. The formu-
lation of the problem of Section 6.6.2 as an LCP is as follows. Define S = ATA,
c0 =−2bTA, and K = |b|2. The constraints of Section 6.6.2 are restated as−Ax ≤ b
and Ax ≤ c−b. The constraint matrix of Section 14.3.2 is A0 = {{−A}, {A}}, where
the bracket notation means that A0 is a 2× 1 block matrix whose block of the first row
is−A and whose block of the second row is A. The constraint vector of Section 14.3.2
is b0 = {{b}, {c−b}}, also a 2× 1 block matrix whose block of the first row is b and
whose block of the second row is c−b.

The resting contact force construction to prevent the rigid bodies from interpen-
etrating was formulated as equation (6.103), d̈= Ag+ ḃ. The outer normals at the n
contact points are as before. The resting contact forces are postulated as gi Ni , where
gi ≥ 0 is required to satisfy the nonpenetration constraints. The force magnitudes are
stored as a vector g≥ 0. The acceleration of the first body in the direction Ni has mag-
nitude d̈i . The magnitudes are stored as a vector d̈. The nonpenetration constraint
requires that d̈≥ 0. The matrix A is the same one used for impulsive force calcula-
tions. The vector b is defined by equation (6.104). We also had a complementarity
condition d̈ ◦ g= 0. Once again an LCP solver can be applied, where M = A, q = b,
w = d̈, and z= g. The outputs d̈ and g are what the collision response system needs
to adjust the forces and torques that are used by the differential equation solver to
update the rigid body states. Pseudocode for both of these problems is presented in
Section 6.6 immediately following their derivations.

Bibliography

[Ani97] M. Anitescu. Modeling Rigid Multi Body Dynamics with Contact and Friction.
Doctoral dissertation, University of Iowa, Iowa City, Iowa, 1997.

[AP97] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementarity problems. Nonlinear
Dynamics, 14:231–247, 1997.

[Arv91] J. Arvo, editor. Graphics Gems II. Academic Press, San Diego, CA, 1991.

[AS65] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York,
NY, 1965.

[Bar84] A. Barr. Global and local deformations of solid primitives. Proceedings of
SIGGRAPH 1984, pages 21–30, 1984.

[Bar94] D. Baraff. Fast contact force computation for nonpenetrating rigid bodies.
Proceedings of SIGGRAPH 1994, pages 23–34, 1994.

[Bar01] D. Baraff. Physically based modeling: Rigid body simulation. http://www
.pixar.com/companyinfo/research/pbm2001/notesg.pdf, 2001.

[Bau72] J. Baumgarte. Stabilization of constraints and integrals of motion in dynam-
ical systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16,
1972.

[BF01] R. L. Burden and J. D. Faires. Numerical Analysis, 7th edition. Brooks/Cole,
Belmont, CA, 2001.

[Bra84] M. Braun. Differential Equations and Their Applications, volume 15 of Applied
Mathematical Sciences. Springer-Verlag, Heidelberg, Germany, 1984.

[BS64] R. Bulirsch and J. Stoer. Fehlerabschätzungen und extrapolation mit ratio-
nalen Funktionen bei Verfahren von Richardson-typus. Numerische Mathematik,
6:413–427, 1964.

[BS99] M. Buck and E. Schömer. Interactive rigid body manipulation with obstacle
contacts. http://www.mpi-sb.mpg.de/∼ schoemer/publications/JVCA98.pdf, 1999.

[Cam97] S. Cameron. Enhancing GJK: Computing minimum and penetration dis-
tances between convex polyhedra. Proceedings of the IEEE Conference on Robotics
and Automation, pages 591–596, 1997.

[Cat05] E. Catto. Iterative dynamics with temporal coherence. http://www
.continuousphysics.com/ftp/pub/test/physics/papers/iterativeDynamics.pdf, 2005.

© 2010 by Elsevier Inc. All rights reserved. 857
DOI: 10.1016/B978-0-12-374903-1.00015-3

858 Bibliography

[CBP05] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based viscoelastic fluid simu-
lation. In Symposium on Computer Animation 2005, pages 219–228, July 2005.

[CC86] S. Cameron and R.K. Culley. Determining the minimum translational dis-
tance between convex polyhedra. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 591–596, 1986.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: An interac-
tive and exact collision detection system for large-scaled environments. Proceed-
ings of ACM International 3D Graphics Conference, pages 189–196, 1995.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[Coq90] S. Coquillart. Extended free form deformation: A sculpturing tool for 3D
geometric design. Proceedings of SIGGRAPH 1990, pages 187–193, 1990.

[CPS92] R. W. Cottle, J. -S. Pang, and R. E. Stone. The Linear Complementarity
Problem. Academic Press, San Diego, CA, 1992.

[CRE01] E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Modeling with Splines:
An Introduction. A. K. Peters, Natick, MA, 2001.

[CW96] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. Proceedings of ACM Symposium on Virtual Reality Software and
Technology, pages 125–131, 1996.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ, 1963.

[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of prepro-
cessed polyhedra–a unified approach. In Proceedings of the 17th International
Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes
in Computer Science, volume 443, pages 400–413, Heidelberg, Germany, 1990.
Springer-Verlag.

[DKL98] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, animation
and interpolation. 103 pages, http://citeseer.nj.nec.com/dam98quaternions.html,
1998.

[DZ91] M. J. Dehaemer and M. J. Zyda. Simplification of objects rendered by
polygonal approximations. Computer & Graphics, 15(2):175–184, 1991.

[Ebe07] D. H. Eberly. 3D Game Engine Design. Morgan Kaufmann, San Francisco,
CA, 2nd edition, 2007.

[Ede87] H. Edelsbrunner. Algorithms in Computational Geometry. Springer-Verlag,
Heidelberg, Germany, 1987.

[EL00] S. Ehmann and M. C. Lin. Accelerated proximity queries between convex
polyhedra using multi-level Voronoi marching. Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems 2000, 2000.

Bibliography 859

[EL01] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between poly-
hedra using surface decomposition. In Computer Graphics Forum (Proceedings of
Eurographics 2001), page 11 pages, 2001.

[EM85] H. Edelsbrunner and H. A. Maurer. Finding extreme points in three dimen-
sions and solving the post-office problem in the plane. Information Processing
Letters, 21:39–47, 1985.

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of
complex water surfaces. In Proceedings of SIGGRAPH 2002, pages 243–255, 2002.

[Eri03] C. Ericson. Real Time Collision Detection. Morgan Kaufmann, San Francisco,
CA, 2003.

[Far90] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, San Diego, CA, 1990.

[Far99] G. Farin. NURBS: From Projective Geometry to Practical Use. A. K. Peters,
Natick, MA, 1999.

[Fau96] F. Faure. An energy-based approach for contact force computation. In Com-
puter Graphics Forum (Proceedings of Eurographics 1996), volume 16, pages
357–366, 1996.

[FF01] N. Foster and R. Fedkiw. Practical animation of liquids. In Proceedings of
SIGGRAPH 2001, pages 23–30, 2001.

[Fri98] J. Friedman. Linear complementarity and mathematical (non-linear) pro-
gramming. http://www.math.ubc.ca/∼ jf/courses/340/pap.pdf, April 1998.

[FSJ01] R. Fedkiw, J. Stam, and H.W. Jensen. Visualization of smoke. In Proceedings
of SIGGRAPH 2001, pages 15–22, 2001.

[GAM03] Geometric Algorithms for Modeling, Motion, and Animation).
http://www.cs.unc.edu/∼geom, 2003.

[Gea71] C. W. Gear. Numerical Initial-Value Problems in Ordinary Differential
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[GF90] E. G. Gilbert and C. -P. Foo. Computing the distance between general convex
objects in three-dimensional space. IEEE Transactions on Robotics and Automation,
6(1):53–61, 1990.

[GH97] M. Garland and P. Heckbert. Surface simplification using quadric error
metrics. Proceedings of SIGGRAPH 1997, pages 209–216, 1997.

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for com-
puting the distance between complex objects in three-dimensional space. IEEE
Journal of Robotics and Automation, 4(2):193–203, 1988.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A hierarchical structure
for rapid interference detection. Proceedings of SIGGRAPH 1996, pages 171–180,
1996.

860 Bibliography

[GP89] J. Griessmair and W. Purgathofer. Deformation of solids with trivariate
B-splines. In Proceedings of Eurographics 1989, pages 134–148, 1989.

[GPS02] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics, 3rd Edition.
Addison-Wesley, San Francisco, CA, 2002.

[Gra65] W. B. Gragg. On extrapolation algorithms for ordinary initial-value prob-
lems. SIAM Journal on Numerical Analysis, 2:384–403, 1965.

[GV91] G. Vanecek, Jr. Brep-index: A multi-dimensional space partitioning tree. In
ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD Applica-
tions, pages 35–44, 1991.

[Har08] M. Harris. Cuda fluid simulation in nvidia physx. http://sa08.idav.ucdavis
.edu/CUDA_physx_fluids.Harris.pdf, 2008.

[HDD+93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. Proceedings of SIGGRAPH 1993, pages 19–26, 1993.

[Hec98] C. Hecker. Rigid body dynamics. http://www.d6.com/users/checker/
dynamics.htm, 1998.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, England, 1985.

[HKK07] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydro-
dynamics on GPUs. In Proc. of Computer Graphics International, pages 63–70,
2007.

[HKL+99] G. Hotz, A. Kerzmann, C. Lennerz, R. Schmid, E. Schmer, and T. Warken.
Calculation of contact forces. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology 1999, pages 180–181, 1999.

[HLC+97] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-
COLLIDE: Accelerated collision detection for VRML. Proceedings of VRML 1997,
page 7 pages, 1997.

[HML99] G. Hirota, R. Maheshwari, and M. C. Lin. Fast volume-preserving free form
deformation using multi-level optimization. ACM Solid Modeling 1999, pages
234–245, 1999.

[HOS99] D. J. Hardy, D. I. Okunbor, and R. D. Skeel. Symplectic variable step-
size integration for N-body problems. Applied Numerical Mathematics, 29:19–30,
1999.

[HS74] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and
Linear Algebra. Academic Press, San Diego, CA, 1974.

[Hub96] P. M. Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics, 15(3):179–210, 1996.

[IZLM01] K. E. Hoff III, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple
2D geometric proximity queries using graphics hardware. Proceedings of ACM
Symposium on Interactive 3D Graphics, 2001.

Bibliography 861

[IZLM02] K. E. Hoff III, A. Zaferakis, M. Lin, and D. Manocha. Fast 3D geometric
proximity queries between rigid and deformable models using graphics hard-
ware acceleration. Technical Report TR02-004, Department of Computer Science,
University of North Carolina, 2002.

[Jak01] T. Jakobsen. Advanced character physics. In Game Developers Conference
Proceedings 2001, pages 383–401, San Francisco, CA, 2001. CMP Media, Inc.

[JBD09] J. K. Johnson, D. Bickson, and D. Dolev. Fixing convergence of gaussian
belief propagation. CoRR, abs/0901.4192, 2009.

[Kir83] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12:28–35, 1983.

[KKS96] M. -J. Kim, M. -S. Kim, and S. Y. Shin. A compact differential formula for
the first derivative of a unit quaternion curve. The Journal of Visualization and
Computer Animation, 7(1):43–58, 1996.

[KLM02] Y. J. Kim, M. C. Lin, and D. Manocha. DEEP: Dual-space expansion for
estimating penetration depth between convex polytopes. Proceedings of the IEEE
International Conference on Robotics and Automation, page 6 pages, 2002.

[Kui99] J. B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applications
to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton, NJ,
1999.

[LC87] W. E. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. Proceedings of SIGGRAPH 1987, pages 163–169, 1987.

[LC91] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calcula-
tion. In Proceedings of IEEE International Conference on Robotics and Automation,
pages 1008–1014, 1991.

[Lev00] R. Levine. Collision of moving objects. On the game developer algorithms
list at http://www.sourceforce.net, November 2000.

[LGLM99] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, Department of
Computer Science, University of North Carolina, 1999.

[Lin93] M. C. Lin. Efficient Collision Detection for Animation and Robotics. Doctoral
dissertation, University of California at Berkeley, Berkeley, California, 1993.

[MCG03] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation
for interactive applications. In Proceedings of SIGGRAPH 2003, pages 154–159,
2003.

[MHHR06] M. Müller, B. Heidelberger, M. Hennex, and J. Ratcliff. Position based
dynamics. In Proceedings of Virtual Reality Interactions and Physical Simulations
(VRIPhys), pages 71–80, 2006.

[Mir96a] B. Mirtich. Fast and accurate computation of polyhedral mass properties.
Journal of Graphics Tools, 1(2):31–50, 1996.

862 Bibliography

[Mir96b] B. Mirtich. Impulse-based dynamic simulation of rigid body systems. Doc-
toral dissertation, University of California at Berkeley, Berkeley, California, 1996.

[Mir98] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM
Transactions on Graphics, 17(3):177–208, 1998.

[Mon92] J. J. Monaghan. Smoothed particle hydrodynamics. Review of Astronomy
and Astrophysics, 30:543–574, 1992.

[Mül08] M. Müller. Hierarchical position based dynamics. In Proceedings of Virtual
Reality Interactions and Physical Simulations (VRIPhys), 2008.

[NFJ02] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Physically based modeling and
animation of fire. In Proceedings of SIGGRAPH 2002, pages 721–728, 2002.

[OF03] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, New York, NY, 2003.

[O’R98] J. O’Rourke. Computational Geometry in C, 2nd ed. Cambridge University
Press, Cambridge, England, 1998.

[PFTV88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, England, 1988.

[Pir] H. Pirzadeh. Rotating calipers home page. http://www.cs.mcgill.ca/orm/rotcal
.html.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, Heidelberg, Germany, 1985.

[RG27] L. F. Richardson and J. A. Gaunt. The deferred approach to the limit.
Philosophical Transactions of the Royal Society of London, 226A:299–361, 1927.

[Rho01] G. S. Rhodes. Stable rigid-body physics. In Game Developers Conference
Proceedings 2001, pages 651–669, San Francisco, CA, 2001. CMP Media, Inc.

[RKC00] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the prob-
lem of collision detection for rigid polyhedral objects. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 3733–3738, 2000.

[RKC01] S. Redon, A. Kheddar, and S. Coquillart. Contact: arbitrary in-between
motions for continuous collision detection. In Proceedings of the 10th IEEE Inter-
national Workshop on Robot-Human Interactive Communication, page 6 pages,
2001.

[RKC02a] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detec-
tion between rigid bodies. In Proceedings of Eurographics 2002, page 9 pages,
2002.

[RKC02b] S. Redon, A. Kheddar, and S. Coquillart. Gauss’ least constraints principle
and rigid body simulations. In Proceedings of IEEE International Conference on
Robotics and Automation, page 6 pages, 2002.

Bibliography 863

[Rog01] D. F. Rogers. An Introduction to NURBS with Historical Perspective. Morgan
Kaufmann, San Francisco, CA, 2001.

[SB08] H. Schechter and R. Bridson. Evolving sub-grid turbulence for smoke ani-
mation. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer
Animation, 2008.

[SE02] P. J. Schneider and D. H. Eberly. Geometric Tools for Computer Graphics.
Morgan Kaufmann, San Francisco, CA, 2002.

[Set99] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, Cambridge, England, 1999.

[SP86] T. Sederberg and S. Parry. Free-form deformation of solid geometric models.
Proceedings of SIGGRAPH 1986, pages 151–160, 1986.

[SP09] B. Solenthaler and R. Pajarola. Predictive-corrective incompressible SPH. In
Proceedings of SIGGRAPH 2009, pages 1–6, 2009.

[SRF05] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke,
water and explosions. In Proceedings of SIGGRAPH 2005, pages 910–914, 2005.

[SSW99] E. Schömer, J. Sellen, and M. Welsch. Exact geometric collision detection.
http://www.mpi-sb.mpg.de/∼ schoemer/publications/EGCD.pdf, 1999.

[ST99] E. Schömer and C. Tiel. Efficient collision detection for moving polyhedra.
http://www.mpi-sb.mpg.de/∼ schoemer/publications/ECDFMP.pdf, 1999.

[Sta03] J. Stam. Real-Time Fluid Dynamics for Games. In Proceedings of the Game
Developer Conference, March 2003, March 2003.

[Str88] G. Strang. Linear Algebra and its Applications, 3rd edition. International
Thomson Publishing, 1988.

[SZL92] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. Proceedings of SIGGRAPH 1992, pages 65–70, 1992.

[Tur92] G. Turk. Re-tiling of polygonal surfaces. Proceedings of SIGGRAPH 1992,
pages 55–64, 1992.

[vdB97] G. van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. Journal of Graphics Tools, 2(4):1–13, 1997.

[vdB99] G. van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects. Journal of Graphics Tools, 4(2):7–25, 1999.

[vdB01a] G. van den Bergen. Physical behavior and resting contacts with fric-
tion. Post to the USENET news group comp.games.development.programming.
algorithms, August 2001.

[vdB01b] G. van den Bergen. Proximity queries and penetration depth computation
on 3D game objects. In Proceedings of the Game Developers Conference 2001, pages
821–837, 2001.

864 Bibliography

[vdB01c] G. van den Bergen. SOLID: Software library for interference detection.
http://www.win.tue.nl/ gino/solid/, 2001.

[vdB03] G. van den Bergen. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann Publishers, San Francisco, CA, 2003.

[Ver67] L. Verlet. Computer experiments on classical fluids. I. Thermodynamic
properties of Lennard-Jones molecules. Physical Review, 159:98–103, 1967.

[Ves04] M. Vesterlund. Simulation and rendering of a viscous fluid using smoothed
particle hydrodynamics. http://www.cs.umu.se/education/examina/Rapporter
/MarcusVesterlund.pdf, December 2004.

[Wel67] D. A. Wells. Lagrangian Dynamics. Schaum’s Outline Series. McGraw-Hill,
New York, 1967.

[Wit97] A. Witkin. Physically based modeling: Principles and practice, constrained
dynamics. In SIGGRAPH 1997 Course Notes, 1997.

[WLML99] A. Wilson, E. Larsen, D. Manocha, and M. Lin. Partitioning and handling
massive models for interactive collision detection. In Computer Graphics Forum
(Proceedings of Eurographics 1999), volume 18, pages 319–329, 1999.

[YOH00] G. Yngve, J. O’Brien, and J. Hodgins. Animating explosions. In Proceedings
of SIGGRAPH 2000, pages 29–36, 2000.

[ZSP08] Y. Zhang, B. Solenthaler, and R. Pajarola. Adaptive sampling and rendering
of fluids on the GPU. In IEEE / EG Symposium on Point-Based Graphics, 2008.

Index

A
AABBs, See Axis-aligned bounding boxes
Absolute value signs, 379, 381
Acceleration, 16

angular, 25
centripetal, 17, 25
drag, 30
given contact force, 501
normal, 17
tangential, 17, 25

Acceleration-based constrained motion, 10,
473–512

collision points, 474–475
illustrative implementation, 502–509
impulses, 476–478
Lagrangian dynamics, 509–512
multiple contact points, 483–491
simultaneous processing of contact points,

491–497
velocity, 476

Active intervals, 305, See also Intersecting
intervals

Adams-Bashforth explicit solver, 779
Adams-Bashforth m-step method, 778, 797
Adams-Moulton m-step method, 779, 797
Addition, 546

of quaternions, 718
of vectors, 580f, 583, 585, 586

Additive identity, 539, 580, 585, 589
of vector(s), 581f

Additive inverse, 539, 587
Adjacent indices, 165
AdjustVelocity, 270, 278
Advection

density update by, 285
velocity update by, 285

Advection team, 257–260
Affine algebra, 659–678

barycentric coordinates, 667–678
coordinate system, 663–665
definition for, 660
parallelogram law for, 661
subspaces, 665
transformations, 666–667

Affine coordinate systems, 663–665
Affine coordinates, 663
Affine function, 839
Affine transformation, 211
AGEIA Technologies, 5

Algebra
affine, 659–678
fundamental theorem of, 609–613, 638
linear, 539–658
vectors, 721

Algebraic operations, quaternion, 718–720
Algorithm

bisection, 400
broad-phase, 296
conditionally stable, 254
Fluid2Da, 274
Fluid3Da, 274, 287
Fluid3Db, 287
GJK, 9, 299, 349, 459–464, 534
Lemke, 512, 813, 829–834, 836, 844
Lin-Canny, 464
Marching Cubes, 199–201, 206, 207
Marching Squares, 202
medium-phase, 297
Mirtich, 77
multifunction evaluation, 472
narrow-phase, 297
pseudocode for cylinders, 384
QR, 646
single-stage update, 289
sweep, 305
Taylor’s theorem, 792
time-stepping, 526
transport, 258

Alternate basis, 724
Alternating-direction implicit method, 255
AMD Athlon XP 2800, 420
Analytic functions, 734
Angular acceleration, 25
Angular momentum, 41–42, 90

angular velocity and, 466
conservation of, 42, 237–238
in unconstrained motion, 470
simultaneous updates of, 494
vector, 151

Angular speed, 25
Angular velocity, 25, 520

angular momentum and, 466
boxes moving with, 453–456
determining, 468
for body A, 488
for body B, 488
impulse equation for, 492
in body coordinates, 149, 150
in unconstrained motion, 470

© 2010 by Elsevier Inc. All rights reserved. 865
DOI: 10.1016/B978-0-12-374903-1.00016-5

866 Index

Angular velocity (continued)
in world coordinates, 149
OBBs moving with, 537
of bodies about center of mass, 476
of disks, 128
of pipes, 128
of rigid bodies, 148
of tops, 150
postimpulse, 480
preimpulse, 480
world coordinates of, 126–127

Anticommutative cross product, 602
Antisymmetry, 218
Applied force, 78, 468, 469
Approximation, 391
Arbitrary configurations, mass-spring systems,

165
Arbitrary equations, 759
Arc(s)

bisector, 419
order of, 419
sets of, 416

Arc-arc intersection, 419
Arc-length parameterization, 487–488
Area(s)

approximation of, by rectangles, 770f
bounded by parabola, 690f
infinitesimal, 87–88, 690
of trapezoids, 778
of triangles, 672–673
signed, 628
squared, 628
under curves, 770f
unit, of squares, 627f

Array index, 75
Array inputs, update function with, 319
Artificial variables, 819, 820
Associative, 539, 564, 589
Associative property, 540
A-stable method, 812
Asymptotic sense, 400
Asymptotic stability, 749
Asynchronous sorting function, 333
Augmented matrix, 548, 549, 557, 561
Autonomous implicit difference equations, 754
Autonomous ordinary difference equations,

755
Autonomous systems of equations, 747
Auxiliary objective function, 819, 820
Auxiliary variables, 829

in initial dictionary, 831, 832, 837
Averaging property, of delta function, 487
Axioms, 541
Axis-aligned bounding boxes (AABBs), 298

colliding with sloped plane, 483f

culling, using a specialized processor,
335–349

culling, using separate core of CPU, 330–335
culling with, 304–349
endpoints and, 321–323
enumerations and, 321–323
intersecting intervals, 304–312
masks and, 321–323
overlap test for, 319
in single-threaded environment, 320–330

Axis-aligned ellipse, 359–361, 360f, 361f,
371–372, 839

Axis-aligned rectangles, 313f, 316
AxisAlignedBox, 302

B
Back substitution, 542, 544, 545, 550, 551
Backward difference approximation, 706, 708
Backward substitution, 567
Bacon, Roger, 6
Balanced dictionary, 830–832
Balls, 104–106

bouncing, 211
Baraff approach, 473
Baraff, David, 10, 295
Barycentric combination, 667

of simplices, 670–671
of tetrahedra, 669
of two points, 668f

Barycentric coordinates
affine algebra and, 667–678
hypervolume, 671–678
length, 671–678
of simplices, 670–671
tetrahedron, 669
triangles, 668–669
volume, 671–678

Bases of tetrahedrons, 674f
Basic variables, 552, 821
Basis, 593

alternate, 724
change, 623
different, 621
Euclidean, 650
of rectangular solids, 696f
standard, 724
standard Euclidean, 595
vector spaces, 590–595

Basis functions, 195
B-spline, 168, 170
data, 174

Basis vectors, 624
feasible, 818, 823
in block matrix, 664–665

Index 867

BasisFunction class, 173, 183
Bernstein polynomials, 183, 192
Bézier curve, 730
Bézier rectongle patch, 192
Bézier volume patch, 192
Bias, constraint, 526, 529
Bilinear interpolation, 201, 258, 729
Bilinear transformation, 602
Binary space partitioning node (BSP node),

404, 418
Binary space partitioning tree (BSP tree), 403,

404f, 413
external queries, 420t
for children of root, 416f
for spherical dual, 419
generating, 416
root of, 415f

Binning, 302
Binomial vectors, 21
Bisection, 387, 390

algorithm, 400
approach, 421
method, 392, 401

Bisectors
arcs, 419
choice of, 419
convex polygon with, 418f

Bitmap pixels, 258
Bivariate approximation, 711
Bivariate functions, 701, 772

derivatives of, 710–711
Taylor’s theorem for, 773

Black box, 425, 780
Black vector, 425
Blobs, gelatinous, 167
Block decomposition, 843
Block diagonal matrix, 852
Block matrix, 570–571, 610, 633

2× 1, 856
2× 2, 722
basis vectors in, 664–665
constructing, 611

Boards
generalized force of, 145
kinetic energy of, 144
on rough planes, 143–145

Body axes, 27
Body coordinates, 27

angular velocity in, 149, 150
body observer and, 28
for rigid bodies, 148
frame, 467
world observer and, 28

Body map, 527

Body observer, 27
body coordinate system as seen by, 28

Body origin, 27
Book, resting on table, 511f
Bookkeeping, 548
Boolean conditions, 293
Boolean operations, 426
Boolean return value, 325

BoxManager and, 328–329
Boolean value, 377, 395
Boolean variables, 331
Booster rockets, 92
Bouncing balls, 211
BouncingBall, 210
Boundaries, moving, 293
Boundary cell, 293
Boundary conditions, 267–268

Dirichlet, 221, 247, 250, 267, 272
insulated, 271
mixed, 272, 276
Neumann, 221, 248, 272, 276

Boundary points, 700–701
Boundary update function, 253, 269, 279
Boundary value problems, 222, 269
BoundaryFunctions, 250, 253, 262, 268

rhoBF, 265
uBF, 265
vBF, 266

BoundaryType, 250
Bounded convex sets, constraints defining,

815f
Bounded regions, 839
Bounding intervals, 173
Bounding spheres, 299

culling with, 299–304
Bounding volumes (BVs), 298
Box(es), See also Axis-aligned bounding boxes;

Oriented bounding boxes
axes, 451
black, 425, 780
colliding contact, 485
collision, with edge-face contact, 510–511
collision, with face-face contact, 510–511
intersecting, 316–320
moving, 453–456
moving with angular velocity, 453–456
moving with constant linear velocity,

453–459
nonoverlapping, 320
on rough planes, 146–147
overlapping, 320
sloped plane and, 485
stationary, 425

BOX_DMA_TAG, 337, 347

868 Index

BoxManager, 317
Boolean return value in, 328–329
client of, 326
CPU implementation, 345–349
culling system, 323–330
overlap test, 328
overlapping, 342
SPU implementation of, 335
SPU manager, 338

BoxManagerCPU, 345
BoxState, 340, 345
Branch penalties, 546
Bridgman, P. W., 6
Broad-phase algorithm, 296
Broad-phase collision culling, 9
Broderbund, 4
BSP node, See Binary space partitioning node
B-spline basis functions, 168

recursive dependencies for, 170
B-spline curves, 168–176

closing, 175
evaluation, 169–174
open, nonuniform, closed, 176
open, nonuniform, not closed, 176
open, uniform, closed, 176
open, uniform, not closed, 176
periodic, closed, 176
periodic, not closed, 176

B-spline surfaces, 179–181
evaluation, 181

B-spline volume, 194
function, 196

BSplineSurface class, 173
BSPNode, 406
BSPTree node, 408
Bulirsch-Stoer method, 785
Bulk modulus, 157–158
Bullet Physics Engine, 5
Butterfly rule, 629
BVs, See Bounding volumes

C
C++, 507
Cache misses, 546
Calculus, 679–712

applications, 698–712
constrained optimization, 702–705
differential, 679
fundamental theorem of, 691
integral, 679
multivariate, 679, 692–698
optimization, 698–702
univariate, 679, 680–691
vector, 214–230

Candidate minima, 702

Capsules, test-intersection query, 350–353
Cardinality, 593–594
Cartesian coordinates, 88

planar motion in, 15–18
spatial motion in, 19–22

Cavalieri, Bonaventura Francesco, 691
Cayley-Hamilton theorem, 742–743
Center of mass, 42–54, 120–122, 147

angular velocity of bodies about, 476
velocity of, 126, 465–466

Center points, OBB with, 446f
Centered difference approximation, 706, 708
Centers of mass, linear momentum of, 494
Central axis, helix, 191
Central processing units (CPUs), 4

BoxManager and, 345–349
memory, 336f
relationships among, 336f

Centripetal acceleration, 17, 25
Chain rule, 102, 365, 366, 515, 526, 688, 769

in multivariate calculus, 693–694
Change of basis, 623

matrix, 623
Characteristic equation, 638
Characteristic polynomials, 740, 743, 748
Chutes, 108
Circle

ellipses moving towards, 367f
transformed configuration of, 360f, 361f
unit, 403f

Classic linear function, 648
Classical tube surface, 189
Client code, of culling system, 334
Closed curves

control point deformation, 175
line segment deformation in, 181

Closed tube surface, 191
Closest point, 362
Cloth

as rectangular array of springs, 163
wind and, 163

Codomain, 617, 621
Coefficient(s)

drag, 788
matrix of, 562, 605–606
negative, 821, 834
of friction, 136
of kinetic friction, 35
of nonbasic variables, 825
of restitution, 480
of static friction, 35
real-valued, 585, 622
vector, 621
velocity, 263

Index 869

Cofactors
expansion, 635, 636
matrix of, 634

Coherence, 300
spatial, 300
temporal, 300–301

Coincident lines, 553f
Coincident planes, 555f
Colliding contact, 473, 474

collision response for, 475–497
contact force and, 499–500
of box edge with sloped plane, 485
order of operations for handling, 502
points of, 491
pseudocode for processing, 481

Collins, Steven, 5
Collision culling, See Culling
Collision detection, 296, 496–497, 502

constant linear velocity, 421–444
convex polyhedra separation, 435–436
edge-edge contact, 427
GJK algorithm, 459–464
implementation and timing, 420–421
method of separating axes, 394–395
separation of convex polygons, 422–426
stationary objects, 396–421
vertex-edge contact, 427
vertex-vertex contact, 427
with convex polyhedra, 390–464

Collision points, 474–475, 493
processing, 484

Collision response, 296, 855
for colliding contact, 475–497
for resting contact, 498–502
function, 503

Collision system, 302, 489
intersection detection in, 391

CollisionGroup, 535
Column matrix, 548, 562

n× 1, 617
Column variables, 821,822
Column vector, m× 1, 819, 842
Commutative operations, 539, 564, 589
Commutative property, 540
Complementary slackness, 828, 838, 843, 844
Complementary variables, 829

in dictionary, 831, 833
leaving dictionary, 837–838
pairs of, 836

Complete sets, 541
Complex numbers, 541

imaginary part of, 719
product of, 546
real part of, 719

Complex-valued roots, 760

Compressible flow, 292
Compressible fluids, 292
Computation by direct parameterization of

triangles, 72–74
Compute function, 173
ComputeClosestPoint, 368, 370, 374
ComputeContact, 369, 374
ComputeInterval, 409, 411, 423, 425, 428,

438, 454
ComputeLPCMatrix, 504
ComputePreImpulseVelocity, 505
ComputeRestingContactVector, 505
Concurrent forces, 38
Conditionally stable algorithms, 254
Conjugate gradient method, 389, 561
Conservation laws, 237–246

of mass, 238–242
of momentum, 242–246

Conservation of energy, 292
Conservation of volume, 542
Conservative forces, 80–84

Lagrangian equations of motion and,
129–135

Consistency
in numerical methods, 795
of Euler’s method, 795

Constant angular velocity, 457–459
Constant coefficient equations, 759–762
Constant density, 288f
Constant linear velocity, 113f, 133, 350,

454–456
boxes moving with, 453–454
objects moving with, 421–444

Constant scalar, 856
Constant vectors, 87, 832, 856
Constant-coefficient linear systems, stability

for, 747–749
Constants matrix, 856
Constrained local minimum, 841
Constrained motion, 297
Constrained optimization, 702–705
Constraining forces, 99, 159

determining, 109–111
Constraining functions, 838
Constrain(s)

matric, 849, 852
vector, 849

Constraint force, 514, 515, 816
computing, 518–519, 525

Constraint(s)
bias, 526, 529
components, 843
defining bounded convex sets, 815f
defining unbounded convex set, 815f
equality, 680, 821

870 Index

Constraint(s) (continued)
first derivative of, 513, 515–516, 520
function, 839, 843
functions, 530, 839
in forming convex domain, 817f
inequality, 528–529, 680, 817
linear inequality, 820f, 826
matrix, 849, 852
nonnegativity, 820f, 825
nonpenetration, 473, 534
normal-form, 819
on particles, 512–515
on rigid bodies, 519–522
on rigid body system, 522–525
redundant, 817
second derivative of, 513, 517–518, 521–522
specified, 817
velocity, 533

Construction of inverses, 570–572
Contact caching scheme, 526, 532
Contact force, 855–856

accelerations given, 501
choosing, 501
colliding contact and, 499–500
computation of, 499
resting, 856

Contact forces, 473, 495
exerting, 499

Contact manifold, 296
Contact model, 529
Contact points, 368, 496–497

edge-edge intersection, 499
finite set of, 489
multiple, 483–491
reporting, 393
rigid bodies, 529f
simultaneous processing of, 491–497
vertex-face intersection, 499, 502

Contact set, 296
convex polygons for, 426–435
for convex polyhedra, 436–444
reduced, 475f

Contact space formulation, 534
Contact time, computing, 364–368
Continuity

multivariate calculus, 692
univariate calculus, 685

Continuous dependence
initial conditions and, 794
of differential equations, 736–738

Continuous functions, 198, 239
Continuous mass, 44–45

balancing, on a plane, 47
in three dimensions, 50–54
in two dimensions, 46–50

Continuous material, 14
particle systems, 27–30

Continuous variables, 206, 684
Continuum of mass, 14

equations of motion for, 118–128
Contradiction, 594
Control point deformation, 168–192

B-spline curves, 168–176
closed curves, 175
evolution and, 179, 180
initial, 179
local control, 175
modifying, 176
NURBS curves and, 178
water drops and, 190

Control theory, 737
Control weights, 177, 183
Convergence, 734, 795

in numerical methods, 796
Convex domain, 816, 828

constraints, 817f
implied by nonnegativity constraints, 820
sketch of, 837

Convex function, 363, 382, 384, 840
graphs of, 841f, 842f

Convex objects
nonintersecting, 395f
projection methods, 377

Convex polygons
as stationary objects, 396–408
boundary, 815
contact set for, 426–435
distance between, 851–853
distance between points and, 847–849
edge-edge contact in, 397f
intersecting, 397f, 432
nonintersecting, 397f
object, 848
planar, 408
pseudocode for intersecting, 422
separation of, 422–426
spherical, 417
vertex-edge contact in, 397f
vertex-vertex contact in, 397f
with bisectors, 418f

Convex polyhedra, 300, 376, 377, 408–414
collision detection with, 390–464
contact set for, 436–444
distance between, 853–855
distance between points and, 849–851
edge-edge, 409
edge-edge contact, 436–437
edge-vertex, 409
edge-vertex contact, 436–437
external query for, 414–420

Index 871

face-edge, 409
face-edge contact, 436–437
face-face, 409
face-face contact, 436–437
face-vertex, 409
face-vertex contact, 436–437
nonpenetration of, 390
point-in spherical-polygon test, 417f
pseudocode for, 456
separation of, 435–436
spherical duals of, 414
stationary, 421
TestIntersection for, 454
vertex-vertex, 409
vertex-vertex contact, 436–437

Convex programming, 840
Convex quadratic function, 496
Convex quadratic programming, 843–846
Convex quadratic programming problem,

493, 813
Convex quadrilateral, 729f

points forming, 729f
Convex set, 394f
Convexity, 364
ConvexPolygon, 399, 404
ConvexPolyhedron, 410, 438
Coordinate axis directions, 16, 664
Coordinate axis stress vectors, 244
Coordinate system, 16

affine algebra, 663–665
in planes, 663f

Coordinate-dependent definition, 601, 602
Coordinate-dependent formulas, 603
Coordinate-free description, 596, 602, 603,

674, 675, 720
Coordinate-free expression, 517
Copositive matrix, 838, 844
Copositive skew-symmetric matrix, 838
CopyArray function, 256
Corners, 276
Cosine, 449

law of, 596
Coulumb’s friction law, 531, 535
Coupled system of second-order differential

equations, 107
Couples, 37
CPUs, See Central processing units
Crank-Nicholson scheme, 255
Cray, Seymour, 3
CreateEvent, 332
CreateThread, 332
Critical points, 655, 657f

KKT, 843
Cross product, 720

anticommutative, 602

operation, 606
vector spaces, 600–606

Cubes, See also Marching Cubes algorithm
gelatinous, 166
transforming, into parallelpiped, 630f
unit-volume, 630f

Cubic polynomials, 730
Culling, 298–349

AABB, 304–349
AABB, using specialized processor, 335–349
AABB, with separate core of CPU, 330–335
BoxManager, 323–330
client code and, 334
endpoints and, 321–323
enumerations and, 321–323
intersecting intervals, 304–312
masks and, 321–323
OBB, 445
occlusion, 510
sphere-based, 301, 303
with bounding spheres, 299–304

Curl
free, 224
operator, 218
vector calculus, 217–218
vector fields and, 226–227

Current r-interval, directions along, 390
Current-generation processors, 546
Curve(s), 7, See also Isocurve extraction

area under, 770f
B-spline, 168–176
Bézier, 730
binomials, 189
closed, 175, 181
geodesic, 3
level, 815f
linearly interpolating pairs of points on, 187
motion on, 100–102
NURBS, 177–179
particles constrained to, 514–515
pseudocode for, points, 172
surfaces built from, 184–192
torsion of, 21

Curve mass, 14, 118
in three dimensions, 53–55

Cusp, 688
Cycling, 846
Cylinders

axis directions, 380
axis perpendiculars, 380–382
nonintersection of convex objects by

projection methods, 377
parallel, 384
projection of, 378–379
pseudocode for algorithm, 384

872 Index

Cylinders (continued)
representation of, 376–377
separating axis for, 378–379
separation by projection onto a line,

377–378
separation tests involving cylinder axis

directions, 380
separation tests involving cylinder axis

perpendiculars, 380–382
separation tests involving other directions,

382–384
surfaces, 186
test-intersection query, 376–390
walls, 376

Cylindrical coordinates, spatial motion in,
22–23

D
d × v matrix, 716
D’Alembert’s equation, 100, 102
DEC Gigi, 2
Decomposition of space, 301f
DEEP (Dual-space Expansion for Estimating

Penetration depth between convex
polytopes), 536

Definite integral, 623, 690
Definite matrices, 645
Deformable bodies, 8, 155–212

elasticity and, 156–158
mass-spring systems and, 158–167
strain and, 156–158
stress and, 156–158

Deformation tensor, 233
Degenerate feasible vectors, 825
Delta function, 485–486

averaging property of, 487
Density

constant, 288f
constant along flow lines, 242
diffusion, 284
dissipation, 291–292
equation, 247–249
evolved, 288f
initialization of, 280
sink, 275f
sources, 283
source-sink function, 292
total, update, 261–263
update, 266, 281, 283, 284
update by advection, 285

Dependent vectors, 616
Derivative(s), 131, 363

approximations, by finite differences,
705–710

directional, 214–215, 694–696

first, of constraint, 513
first-order, 383
first-order partial, 516, 750, 773
first-order time, 523
higher-order, 707
multivariate functions, 712
normal vector, 498
of bivariate functions, 710–711
of common functions, 688f
of univariate functions, 705–710
operators, 517
partial, 693, 695
positional, 110
relevant, 110, 113, 127, 133, 139
second test, 656, 657
second, matrix, 384
second, of constraint, 513
second-order, 383
second-order partial, 521, 773, 841
second-order time, 523
spatial, 249
t , 356
time, 249, 521, 523
total, 111, 214–215
total time, 112
X, 356

Derived state variables, 471
Descartes, Rene, 6, 691
DestroyEvent function, 332
Destructor, 346
Determinants, 626–637

functions, 630–637
of 2× 2 matrix, 626–628
of 3× 3 matrix, 629–630

Diagonal entries, 564
Diagonal matrix, 119, 360, 564, 573, 645, 654

block, 852
n×m matrix, 564

Diagonalizable matrix, 649, 744
Dictionary, 829

balanced, 830, 831
complementary variables in, 831, 833
complementary variables leaving, 837–838
entering, 830
feasible, 831
initial, 831, 832
initial modified, 845
leaving, 830
terminal, 830, 832

Difference, 581
Minkowski, 459
vectors, 659

Difference approximation
backward, 706, 708
centered, 706, 708

Index 873

finite, 708t
forward, 705–706, 708, 709

Difference equations, 753–764
autonomous implicit, 754
constant coefficient, 759–762
explicit, 754
first-order linear, 756–757
homogeneous linear, 756
linear, 756–759
nonhomogeneous linear, 756
nth order, 753
nth order linear, 763
second-order, 754–755
second-order linear, 757–759
systems of, 762–764

Differentiable, 687
Differential calculus, 679
Differential equations, 2, 10–11, 89, 152,

733–751, 767
constant-coefficient, 747–749
continuous dependence of, 736–738
equilibria, 746–751
existence of, 736–738
extrapolation methods and, 781–783
first-order, 733–738
first-order linear, 735
first-order nonlinear, 90
first-order systems of, 739
general-order, 740–741
hyperbolic, 257
integration of, 574
nonlinear, 90
nonlinear system of, 469
nth order, 740
of motion, 713
ordinary, 733
orientation, 520
parabolic partial, 247
partial, 733
pseudocode for generating, 802
Runge-Kutta fourth order, 471
Runge-Kutta methods for, 507
second-order, 90, 107, 738–739
second-order linear, 124, 135
second-order linear systems of, 117
second-order system of ordinary, 91
solutions, 736
solver, 856
solvers, 465
solving, 97, 136
stability, 746–751
systems of, 108, 465
systems of linear, 741–746
unique solutions to, 737
uniqueness of, 736–738

Differentiating equation, 498
Differentiation, 102

univariate calculus, 686–689
vector field decomposition and, 225

Diffusion, 216
density, 284
term, 249–257
times, 291
velocity, 284

Dirac delta function, 222
Direct memory access (DMA), 335
Direct sums, 647

decomposition, 649
Direct test, 364–365
Directional derivative

multivariate calculus, 694–696
vector calculus, 214–215

Dirichlet boundary conditions, 221, 247, 250,
267, 272

Discontinuous functions, 685
graphs, 686f

Discrete mass
balancing, 43
in one dimension, 43–44
in three dimensions, 50
in two dimensions, 45–46

Disjoint lines, 553f
Disjoint planes, 554
Disk Operating System (DOS), 2
Disks

angular velocity of, 128
on rough inclined plane, 128

Disk-shaped body, deformations of, 198
Displacement, infinitesimal, 100
Dissipation

of density, 291–292
of velocity, 291–292

Dissipative forces, 34–36
Lagrangian equations of motion and,

135–147
Distance calculations, 847–855

between convex polygons, 851–853
between convex polyhedra, 853–855
between point and convex polyhedra,

849–851
Distance functions

between point and convex polygon, 847–849
parallelogram-parallelogram, 351
segment-parallelogram, 351

Distributions, 222
Distributive property, 540
Divergence, 734
Divergence theorem, 67, 239

of stress, 245
vector calculus and, 215–217, 220–221
vector fields and, 226–227

874 Index

Diving boards, 129–130
Divisions, avoiding, 547
DMA, See Direct memory access
Dobkin-Kirkpatrick hierarchy, 411, 413,

414, 418
DoCollisionResponse, 503
DoImpulse function, 506
Domain, 617, 621, 679

convex, 816, 817f, 828, 837
triangular, 702
unbounded, 837

DOS, See Disk Operating System
Dot equation, 605
Dot notation, 766
Dot product, 720

vector spaces, 600–606
Double integral, 118
Double pendulum, 118, 131
Drag

acceleration, 30
coefficient, 788
simulation of, 788
velocity, 29

Dual problem, 825–828
finite optimal solution to, 828
infeasible, 828
unboundedness property, 827–828
weak duality principle, 827

Dual slack equation, 844
Duality

gap, 847
general, theory, 846–847
strong, 828
weak, 827, 828

Dual-space Expansion for Estimating
Penetration depth between convex
polytopes, See DEEP

Dynamic(s), 7, 86
friction, 510
Lagrangian, 8, 77, 85–86, 98–135, 474,

509–512, 694
Newtonian, 86–98
viscosity, 245, 246

Dynamically equivalent, 121

E
Ear-clipping-based mesh construction,

208–212
Earth

motion of, 86–87
orbit of, 88
radius of, 91
rockets leaving, 92
world coordinate system and, 90–91

Edge(s)
moments of inertia for, 62
products of inertia for, 62

Edge mesh
extracted, 208f
triangle removal in, 209

Edge-edge contact
collision detection, 427
convex polygons, 397f
convex polyhedra, 436–437
for moving triangles, 432f
intersection calculator pseudocode, 433

Edge-edge intersection, 475
contact points, 499
predicted, 426f

Edge-face contact, box collision with, 510–511
Edge-face intersection, 465, 475, 511
Edge-interior point, 461
Edge-interior voxels, 276
Edge-vertex contact

convex polyhedra, 436–437
intersection calculator pseudocode, 433

Eigendecomposition
applications of, 652–658
for symmetric matrices, 643–646
of matrices, 751

Eigenspaces, 638, 794
generalized, 648
one-dimensional, 648

Eigensystems, 643
Eigenvalues, 59, 625, 637–643, 749, 794

positive, 810
row operations, 640

Eigenvectors, 625, 637–643, 649
generalized, 651
linearly independent, 641, 645, 646, 749

Elasticity, deformable bodies and, 156–158
Elementary row matrices, 565–567, 572

3× 3, 566, 569
inverses of, 569
order of operations, 567

Elementary row operations, 548–552
interchanging rows, 549
multiplying rows, 549

Ellipses, 88–89
axes, 839
axis-aligned, 359–361, 360f, 361f, 371–372,

839
configuration at contact time, 359, 359f
intersection of, 357f
moving, 358–359
points, 366
stationary, 357–358
sweeping regions bound by parallel lines,

365f

Index 875

Ellipsoids
defined, 704
distance between, 704
moving, 371–376
stationary, 357–358
test-intersection query, 353–376

Elliptical paraboloids, 105, 108
Empty sets, 814
Endpoints, 310

arrays, 325
class, 322
culling, 321–323
initializing, 341
ordering, 340
sorting of, 317
SPU, 339

Energy, 77–84, 104
conservation of, 292
kinetic, 78–80, 102, 104, 106, 113, 116–117,

119, 123, 139, 144, 478f, 479, 491, 492,
694

potential, 80–84, 90, 130, 786
total potential, 130
work, 78–80

Enumerations, culling, 321–323
Equalities, 366

vector, 584–586
Equality constraints, 680, 821
Equations, See also Differential equations

arbitrary, 759
autonomous implicit difference, 754
autonomous ordinary difference, 755
autonomous systems of, 747
characteristic, 638
constant coefficient, 759–762
coupled system of second-order differential,

107
D’Alembert’s, 100, 102
density, 247–249
difference, 753–764
differentiating, 498
dot, 606
dual slack, 844
Euler’s, of motion, 8, 59, 147–154
explicit difference, 754
finite-difference, 268, 289
first, of motion, 93–94
first-order differential, 733–738
first-order linear difference, 756–757
first-order linear differential, 735
first-order ordinary difference, 755
first-order systems of differential, 739
fourth-order, 760
Frenet-Serret, 22
general-order differential, 740–741

hyperbolic differential, 257
impulse, 492
Lagrangian, of motion, 99, 100–147, 511
Laplace’s, 213, 221–224
limiting, 845
linear, 542–561, 701–702, 756–759
linear difference, 756–759
linear systems of differential, 117
modal, 798, 806–808
Navier-Stokes, 9, 213, 244, 258, 263
Newton’s, of motion, 524
nonhomogeneous linear difference, 756
nonlinear systems of differential, 469
nonsquare systems of, 552
normal, 615
nth order differential, 740
nth order difference, 753
nth order linear difference, 763–764
of motion, 31, 750
ordinary difference, 755
ordinary differential, 91, 733
orientation differential, 520
parabolic partial differential, 247
partial differential, 733
Poisson’s, 213, 221–224, 267, 269, 279, 294
polynomial, 356, 760, 806
quadratic, 201
Runge-Kutta fourth order differential, 471
second-order difference, 754–755
second-order differential, 90, 107, 738–739
second-order linear difference, 757–759
second-order linear differential, 124
second-order linear systems of differential,

117
second-order system of ordinary

differential, 91
separating, 458
solving all possible systems of, 816t
stiff, 809–812, 811t
system of, 465
systems of difference, 762–764
systems of linear, 542–561
systems of linear differential, 741–746
third-order, 761
two, in two unknowns, 545–548
velocity, 263–270
w4, 833

Equilibrium, 38–40
differential equations, 746–751
solution, 746–749
stable solution, 750
unstable solution, 750

Erdos, Paul, 6
Ethernet, 6
Euclidean basis, 650

876 Index

Euclidean basis vectors, 613, 618, 632
standard, 633

Euler step, 786, 790
Euler’s equations of motion, 8, 59, 147–154
Euler’s identity, 739
Euler’s method, 509, 530, 766–769

consistency of, 795
explicit, 800, 801f, 806–807
floating point values obtained from, 768
implicit, 772, 777, 806–807
modified, 770f, 771, 775

Even permutation, 631
EVENT_DMA_TAG, 337, 347
Evolved density, 288f
Existence, of differential equations, 736–738
Explicit difference equation, 754
Explicit Euler’s method, 800, 806–807

region of stability for, 806f
simple pendulum and, 801f

Explicit method, 255
Explicit multistep method, 778
Exponential function, 742

properties of, 745
Exponential of matrices, 653–655
Extended free form deformation, 196
External force, 30, 500

on body, 524
sum of, 244

External queries
BSP tree, 420t
for convex polyhedron, 414–420

External torque, 501
Externally applied force, 507
Extrapolation, 779, 780–785

Bulirsch-Stoer method, 785
polynomial, 783
rational polynomial, 783–784
Richardson, 780–781

Extrapolation methods, differential equation
and, 781–783

F
Face-edge contact, convex polyhedra, 436–437
Face-face contact

box collision with, 510–511
convex polyhedra, 436–437

Face-face intersection, 442, 465, 511
Face-interior boundary values, 276
Face-interior voxels, 276
Faces

moments of inertia for, 63
products of inertia for, 63

Face-vertex contact, convex polyhedra,
436–437

Factorizations, 384

Feasible, 829
Feasible basis vector, 818, 823
Feasible dictionary, 831
Feasible points, 839
Feasible vector, 818, 823, 828

optimal, 818
Feasible vectors, degenerate, 825
Fermat, Pierre de, 691
Fields, 541–542

finite, 584
FindContact, 370, 374
Find-intersection query, 296, 377

geometric, 391
FindIntersection, 432, 440

pseudocode, 431
Finite differences, 705–710

derivative approximations by, 705–711
parameters for, 708t

Finite dimensional vector space, 594, 607, 617
Finite element methods, 247
Finite field, 584
Finite linear combinations, 589
Finite optimal solution, to dual problem, 828
Finite point set, 475
Finite sets, of contact points, 489
Finite-difference equations, 268, 289
Finite-difference scheme, 255
First derivative of constraint, 513, 515–516,

520
First quadrant, 840f
First-derivative matrix, 799–800
First-order derivatives, 383
First-order differential equation, 733–738

initial value problem, 734–735
linear, 735

First-order finite difference approximation,
532

First-order linear difference equations,
756–757

general solutions, 757
homogeneous solution to, 756–757
in v-terms, 758
particular solutions, 757

First-order linear differential equations, 735
First-order linear system, 811
First-order ordinary difference equations, 755
First-order partial derivatives, 516, 750, 773
First-order systems of differential equations,

with initial conditions, 739
First-order time derivatives, 523
Fixed axis, motion about, 24–25
Fixed frame vectors, 92
Floating point box values, 345
Floating point numbers, 428

system, 769

Index 877

Floating point stalls, 546
Floating point units, 546
Floating point values, obtained from Euler’s

method, 768
Flow line, 241

density along, 242
Fluid(s), 213–294

compressible, 292
incompressible, 240
multiple, 293
obstacles in, region, 293
simulation, 293–294

Fluid flow
advection term, 257–260
density equation, 247–249
diffusion term, 247–257
implementing models for, 247–274
simplified 3D model for, 274–290
simplified model for, 246–247
source-sink term, 260–261
total density update, 261–263
variations of simplified model,

290–294
Fluid2Da algorithm, 274
Fluid3Da algorithm, 287
Fluid3Db algorithm, 287
Force(s), 30–40, 472

applied, 78, 468, 469
concurrent, 38
conservative, 80–84, 129–135
constraining, 99, 109–111, 159
constraint, 514, 515, 816
contact, 473, 495, 499, 501, 855–856
dissipative, 34–36, 135–137
external, 30, 244, 500, 524
externally applied, 507
frictional, 135, 137, 142, 787
function, 787, 793
generalized, 101, 110, 113, 121, 124, 127,

139, 143, 145
gravitational, 32–33, 83, 87–88, 93, 105, 111,

116, 121, 130
impulsive, 469, 473, 478, 480, 484
inertial, 246
infinitesimal, 120
inverse-square, 216
moment of, 36
normal, 35
random, 166
reactive, 99
repulsive, 499
resolution of, 500
spring, 33–34
viscous, 36
wind as, 109, 161

with velocity component, 787–788
without velocity component, 786–787

Force-function evaluation, 787
Formal notation, 684
Formal Taylor series, 707
Formula, rotation, 148, 149
Formulas

coordinate-dependent, 603
Mirtich’s, 74–75

Fortran, 1
Forward difference approximation, 705–706,

708, 709
Forward elimination, 556, 557

costs, 550
first step of, 550
in systems of linear equations, 542–544

Forward transport method, 258, 259f
Foucault pendulum, 92
Fourth-order equation, 760
Fourth-order error, 706
Fourth-order Runge-Kutta method, 776–777
Free index, 243
Free variables, 552
Free-form deformation, 8, 192–196

extended, 196
initial configuration, 197
of disk-shaped bodies, 198
time interval of, 210

Freely spinning top, 150–154
Frenet frame, 189
Frenet-Serret equations, 22
Friction, 34–35

coefficient of, 136
Coulumb’s law, 531, 535
dynamic, 510
kinetic, 35, 136
model, 526, 531
static, 35, 510
viscous, 799

Frictional force, 135, 137, 787
on rods, 142

Friedman, Joel, 829
Frustum, view, 299f
Full pivoting, 558
Function(s)

affine, 839
analytic, 734
asynchronous sorting, 333
auxiliary objective, 819, 820
B-spline basis, 168, 170
B-spline volume, 196
basis, 168, 170, 173, 195
bivariate, 701, 710–711, 772, 773
boundary update, 253, 269, 270
call, 393

878 Index

Function(s) (continued)
classic linear, 648
collision response, 503
Compute, 173
constraining, 838
constraint, 530, 839, 843
continuous, 198, 239
convex, 363, 382, 384, 840, 841f, 842f
convex quadratic, 496
CopyArray, 256
delta, 485–487
derivatives of, 688t
DestroyEvent, 332
determinants, 630–637
Dirac delta, 222
discontinuous, 685, 686f
distance, 351, 847–849
DoImpulse, 506
error, 682
exponential, 742, 745
force, 787, 793
GetKey, 173
global, 251, 276–277
graphs, 699f
harmonic, 221
impulsive, 493–494
initialization, 252
initial-value, 248, 249
Lagrangian, 129, 846
linear, 778, 839
main update, 341
m_torque, 508
Move, 325–326
m_force, 508
multivariate, 655–658, 712
nonconvex, 841f
nonstatic, 471
objective, 818–820, 838, 851, 853
optimizing, 703
parallelogram-parallelogram distance, 351
Perp, 405, 849
position, 112
potential energy, 786
quadratic, 354
range of, 617
real-valued, 585
scalar-valued, 218
segment-parallelogram distance, 351
segment-segment distance, 351
SeparatedByOtherDirections, 389
source-sink, 238
squad, 731
strictly convex, 381
trigonometric, 117, 152
univariate, 698–700, 705–710

update, 252, 253, 259, 311, 315, 319, 326,
341, 342

values, 682t
volume, 194, 196

Fundamental subspaces, 613f
Fundamental theorem of algebra, 609–613, 638

kernel of A, 609–610
kernel of AT, 612
range of A, 610–612
range of AT, 612

Fundamental theorem of calculus, 691
Fundamental theorem of vector calculus, 224,

229–230

G
Game logic tick, 297
Game loop, 297
GAMMA Research Group (Geometric

Algorithms for Modeling, Motion, and
Animation), 536

Gases, 213–294
Gates, William H., 3
Gauss’ principle of least constraints, 534
Gauss-Seidel method, 255, 256, 258, 268, 519,

531, 560–561
projected, 529

Gaussian blurring, 263
Gaussian elimination, 548–552, 550, 556,

636, 736
total cost for, 552

Gear’s fifth-order predictor-corrector method,
792–794

Gelatinous blobs, random forces and, 167
Gelatinous cubes, random forces and, 166
General autonomous systems, 749–751
General duality theory, 846–847
General solutions, first-order linear difference

equations, 757
General system, 82
General-order differential equations, 740–741
Generalized cylinder surfaces, 186–187

obtaining, by linearly interpolating points
on curves, 187

skirts modeled by, 188
Generalized eigenspaces, 648
Generalized eigenvectors, 651
Generalized force, 101, 110, 113, 121, 127, 139

of boards, 145
for pulleys, 124
on rods, 143

Geodesic curves, 3
Geometric Algorithms for Modeling, Motion,

and Animation, See GAMMA Research
Group

Geometry of linear systems, 552–555

Index 879

GetExtremeIndex, 408, 427
GetIntersection, 393
GetKey function, 174
GetLargeIndependentSet, 412
GetMaximumIndependentSet, 412
GetMiddleIndex, 401
GetNormal, 402, 410
GetVertex, 396, 402
Gilbert, E. G., 459
Gill’s method, 777
GJK algorithm, 9, 299, 349, 534

alternatives to, 464
collision detection, 459–464
first iteration of, 462f
fourth iteration of, 463f
second iteration of, 462f
set operations, 459–461
third iteration of, 463f

Global extremum, 699
Global functions, 251, 276–277
Global minimum, 699, 702
Global values, 276
Global variables, 251
GPUs, See Graphics processing units
Gradient, 214–215, 701, 773

defining, 695
vector, 361, 703

Gram-Schmidt orthonormalization, 468, 598,
599f, 608

Graphics processing units (GPUs), 4
Graphs, 683f

convex function of, 841f, 842f
cusp in, 688
kink in, 688
left-most branch of, 363f
of critical points, 655f
of discontinuous functions, 686f
of functions, 699f
possibilities for, 367f

Gravitational constant, 133
Gravitational forces, 32–33, 83, 86–87, 93, 105,

111, 121, 136
on mass, 116

Gravity, 482f
Green’s theorem, 67, 213

vector calculus, 221–224
Greystone Technology, 4
G-row, 823

H
Half-steps, 791
Handheld calculators, 1
Hardy, G. H., 7
Harmonic function, 221
Havok.com, 5

Helix, central axis as, 191
Helmholtz decomposition, 213, 229, 267
Hemicircles, 381
Hemispheres, 382

root of, 415
Hessian matrix, 518, 522, 773
Hessian tensor, 518, 531
Heun’s method, 775
Higher-order derivatives, 707
Higher-order polynomials, 836
Higher-order Taylor methods, 769–770
Hollerith cards, 1
Homogeneous linear difference equations, 756
Homogeneous solutions, 735, 756–757

nth order linear difference equation,
763–764

reduction of order and, 758
Hooke’s Law, 34, 104, 156, 160, 162, 164
Hygens, Christiaan, 691
Hyperbolic differential equation, 257
Hyperbolic isocurves, 204
Hypervolume

barycentric coordinates, 671–678
of simplex, 675–678
signed, 678

I
I-COLLIDE, 464, 536–537
Identities, 102

additive, 539, 580, 581f, 585, 589
Euler’s, 739
multiplicative, 539, 586
trigonometric, 131, 458, 721
vector algebra, 721
verifying, 616

Identity matrix, 236, 378, 564, 843
2× 2, 848, 851
3× 3, 853
4× 4, 725

I-loop, 272
Implicit equations, Newton’s method for, 771
Implicit Euler’s method, 772, 777, 812

modal equation and, 806–807
region of stability for, 808f
simple pendulum and, 803f

Implicit method, 255, 771, 787
alternating-direction, 255

Implicit multistep methods, 778
Implicit surface deformation, 196–212, 211
Implicit test, 364
Implied motion, 490
Improper integrals, 97
Impulse equation

for angular velocity, 492
for linear velocity, 492

880 Index

Impulses
acceleration-based constrained motion,

476–478
at spatial points, 486

Impulsive forces, 473, 478, 480
causing postimpulse velocity, 490
processing, 484

Impulsive functions, 493, 494
Inclined plane, 35, 137

rough, 128
Incompressible fluids, 240
Indeterminate form, 689
Indices

adjacent, 165
for overlapping intervals, 306–309
free, 243
modular, 402
permutation vector of, 557
positional, 234
tensor component, 234
vector, 415
vertex, 415

Inductive hypothesis, 642
Inequalities, 767, 768

constraints, 817
equations, 840

Inequality constraints, 528–529, 680
linear, 820f

Inertia, 30
moments of, 55–64
principal directions of, 59
products of, 55–64
tensor, 58

Inertia tensor, 466
definition of, 467
in world coordinates, 466–467
measuring, 467
recomputing, 467

Inertia tensor of solid polyhedron, 64–77
computation by direct parameterization of

triangles, 72–74
computation by reduction to line integrals,

67–72
pseudocode for, 75–77
reduction of volume integrals, 65–66

Inertial coordinates, 31, 99
Inertial force, 246
Inertial frame, 31
Inertial torque, 525
Infinite masses, 167, 481
Infinite principal moments, 481
Infinite sum, 744
Infinitesimal areas, 87–88, 690
Infinitesimal displacement, 100
Infinitesimal forces, 120

Infinitesimal mass, 238
Infinitesimal strain tensor, 233
Infinitesimal volume, 238, 696
Infinitesimal width, 690
Infinitesimals, 681
Initial angular speed, 799
Initial conditions, 247

continuous dependence and, 794
Initial density, 275, 288f
Initial dictionary, 831

auxiliary variables in, 831, 832, 837
Initial modified dictionary, 845
Initial points, 730
Initial tableau, 824
Initial value problem

first-order differential equation, 734–735
second-order differential equations, 738

Initial-value function, 248
in lattice of points, 249

Initialization function, 252
Inner products, vector spaces, 595–599
Innermost integrals, 697
Input parameter, 781
INSERT_EVENT, 322
InsertFeature, 444
Insertion sort, 310

nonoverlapping boxes in, 320
overlapping boxes in, 320

InsertMoveQueue, 347
Instantaneous speed, 681
Insulated boundary conditions, 271
Integers, 539
Integrals

calculus, 679, 689
definite, 623, 690
double, 118
formation of, via numerical methods,

770–772
improper, 97
innermost, 697
line, 67–72, 219
projection, 71
single, 118
surface, 219–220
triple, 118
volume, 65–66, 220–221

Integrand, 97
Integration, iterated, 697
Interior points, 159
Internal reaction force, 524
Internal values, 508
Interpolation

polynomial, 783
rational polynomial, 783–784

Intersecting boxes, 316–320

Index 881

Intersecting convex polygons, 397f
Intersecting intervals, 304–312
Intersecting rectangles, 312–316
Intersection

arc-arc, 419
edge-edge, 426f, 475
edge-face, 511
face-face, 442, 511
in collision system, 391
not predicted, 426f
OBB, pseudocode, 448–449
pseudocode for, 422
vertex-edge, 511
vertex-face, 475, 502
vertex-vertex, 426f

Intersection calculator pseudocode, 441
Interval radii, 449
IntervalManager, 307
Intervals

x , 312, 313
y , 312, 313
active, 305
bounding, 173
intersecting, 304–312
moving projected, 457f
nonoverlapping, 309
overlapping, 306–309
parameter, 176
projected, 457f
projection, 447f, 457f
stationary projected, 457f
time, 210, 392
values, 455

Invariant, 647
subspaces, 649

Inverse
additive, 539, 587
construction of, 570–572
elementary row matrix, 569
left, 615
matrix, 467, 567–569
Moore-Penrose, 519
multiplicative, 539
of rotation matrix, 715
of square matrices, 568
properties of, 569–570

Inverse-square force, 216
Invertible matrix, 637
Irrational numbers, 540
Irreducibly diagonally dominant, 560
Isocurve extraction

hyperbolic, 204
in 2D images, 201–206

Isosceles triangles, 120
Isosurface extraction, in 3D images, 206–212

Isosurfaces, 199
Iterated integration, 697
Iteration scheme, 786
Iterative method, 519

for solving linear systems, 558–561

J
Jacobi method, 560
Jacobian matrix, 516, 520, 522, 526
Jakobsen, Thomas, 785
Jerk, 22
Jittering, 5
J -loop, 272
Johnson, D. W., 459
Juxtaposed matrices, 562

K
Karush-Kuhn-Tucker conditions (KKT),

841–843
critical points, 843
reformulated set of, 844

Keerthi, S. S., 459
Kepler’s laws, 32, 88–89, 132–133

defined, 86–87
first, 87–88
third, 89–90

Kepler, Johann, 86
Kernel, 609–610
Keyframe animation, 727
Kilogram, 30
Kinematics, 13, 476

viscosity, 246
Kinetic energy, 78–80, 102, 104, 106, 113, 694

computing, 119
for systems, 116–117
gaining, 491
in special cases, 119
loss of, 479
measurement of, 80
of boards, 144
of first mass, 123
relevant derivatives of, 123, 139

Kinetic friction, 136
coefficient of, 35

Kinetic norm, 534
Kink, 688
Knot vectors, 168

and parameter intervals, 176
periodic, 171
types of, 169

Knots, 168
nonuniform, 169
uniform, 169

882 Index

L
l’Hôpital’s rule, 485, 732

in univariate calculus, 689
Lagrange multipliers, 354, 358, 698

classical theory of, 842
method of, 703, 704

Lagrangian dynamics, 7, 77, 85, 86, 98–135,
474, 694

acceleration-based constrained motion,
509–512

Lagrangian equations of motion, 99, 100–147,
511

conservative forces in, 129–135
dissipative forces and, 135–147
for continuum of mass, 118–128
for particles, 100–111
for systems of particles, 115–118
interpretation of, 114–115
time-varying frames or constants, 114–115

Lagrangian function, 129, 846
Laminator, 14
Laplace’s equation, 213

vector calculus, 221–224
Laplacian, vector calculus and, 215–217
Lattice cells update function for, 259
Lattice of points, 248f

initial-value function in, 249
Law(s)

conservation, 237–246
Coulumb’s friction, 531, 535
Hooke’s, 34, 104, 156, 160, 162, 164
Kepler’s, 32, 86–90, 132–133
of cosines, 596
parallelogram, 660, 661

LCP, See Linear complementarity problem
LDU decomposition, 573, 578
Leaf node, 404, 408
Leapfrog method, 788–790, 804–806

modal equation and, 808
region of stability for, 809f

Leary, Timothy, 3
Least squares, vector spaces, 614–617
Left inverse, 615
Leibniz, Gottfried Wilhelm von, 691
Lemke algorithm, 512, 813, 830, 838

illustration of, 830
LCP and, 829–834, 844
museum principle and, 836
numerical implementation of, 836
zero constants and, 832

Length
barycentric coordinates, 671–678
unit, 720
vector spaces, 595–599

Level curves, 815f

Level set extraction, 199–201
Level surface, 200, 215
Levi-Civita permutation tensor, 676
Levine, Ron, 421
Limiting equation, 845
Limiting factor, 822
Limiting ratios, 833
Limits

in univariate calculus, 682–684
multivariate calculus, 692
of sequences, 684–685

Lin-Canny algorithm, 464
Line integrals, 219

computation by reduction to, 67–72
vector calculus, 219

Line segments, 488–489
deformation of, into closed curve, 181

Line(s)
coincident, 553f
disjoint, 553f
flow, 241, 242
integrals, 67–72, 219
nonparallel, 553f
parallel, 365f, 553f, 683
projection of cylinders onto, 378
secant, 686
separating, 377, 394
tangent, 686, 695

Linear algebra, 539–658
quaternions and, 722–727

Linear chains, 162
rope modeled as, 161

Linear combinations
finite, 589
of smaller powers, 743
vector spaces, 588–590

Linear complementarity problem (LCP), 11,
496–497, 501–502, 534, 813, 828–838

conversion to, 830, 832, 835, 848
inputs to, 852
Lemke algorithm, 829–834, 844
quantities of interest in, 845
solution to, 831
solver, 502, 512, 849
zero constant terms, 835–837

Linear difference equations, 756–759
nth order, 763
first-order, 756–757
homogeneous, 756
nonhomogeneous, 756
second-order, 757–759

Linear differential equations
constant-coefficient, 747–749
second-order, 124, 135, 576
systems of, 741–746

Index 883

Linear equations, 701–702
difference, 756–759
first-order difference, 756–759
systems of, 542–559

Linear function, 778, 839
Linear independence

demonstrating, 611
vector spaces, 590–595

Linear inequality constraints, 820f, 826
Linear interpolation

over tetrahedron, 669f
over triangles, 669

Linear momentum, 31, 40–41
conservation of, 41
in unconstrained motion, 470
of centers of mass, 494

Linear programming (LP), 11, 814–828
dual problem, 825–828
general problem, 818–825
normal form, 819
pairwise intersections, 816–818
restricted normal form, 819
two-dimensional example, 814–816

Linear systems of differential equations, 117
Linear transformations, 617–626

matrices and, 618
properties of, 636

Linear translation, 232
Linear velocity

for body A, 488
for body B, 488
impulse equation for, 492
in unconstrained motion, 470
OBBs moving with, 537
preimpulse, 506

Linearized system, 795
Linearly dependent sets, See also Vector(s)

removing vectors from, 592
Linearly dependent vectors, 590
Linearly independent eigenvectors, 641, 645,

646, 749
Linearly independent sets, 591, 593, 604.

See also Vector(s)
Linearly independent solutions

of second-order linear differential
equations, 757

Wronskian of, 757
Linearly independent vectors, 593, 611
Linking steps, 411
Linux, 5
Lipschitz conditions, 798
Local control, 169

control point deformation, 175
Local coordinate frame, 121
Local maximum, 699

Local minimum, 699
constrained, 841

Local state arrays, 251
Local truncation error, 795
Lookup tables, 315, 318

initializing, 341
Move function and, 325–326

Lower echelon matrix, 565
Lower triangular matrix, 565, 574, 578
LP, See Linear programming
LU decomposition, 572–578

M
m× 1 column vector, 819, 842
m× 1 vector, 704
m×m matrix, 563, 704

invertible, 616
m× p matrix, 563
m_force, 508
M_torque function, 508
Macintosh, 5
Main update function, 341
Marching Cubes algorithm, 199–201, 206

consequences of, 200
single triangle mesh, 207
table lookup of, 201

Marching Squares algorithm, 202
MASK_INDEX0, 322
MASK_INDEX1, 322
Masks, culling, 321–323
MASPAR, 3
Mass matrix, 58
Mass objects, represented as mass-spring

systems, 159
Mass tensor of solid polyhedron, 64, 77

computation by direct parameterization of
triangles, 72–74

computation by reduction to line integrals,
67–72

pseudocode for, 75–77
reduction of volume integrals, 65–66

Mass(es), 30
ball, 104–106
beads of, 102
center of, 120–122, 126, 147, 465–466, 494
conservation of, 238–242
continuum of, 14, 118–128
curve, 14, 118
discrete, 43–46, 50
distribution, 142
gravitational forces on, 116
infinite, 167, 481
infinitesimal, 238
kinetic energy of, 123
matrices, 58

884 Index

Mass(es) (continued)
one-dimensional array of, 158–160
planar, 122
point, 122
rigid body, 471
surface, 14, 118, 219
three-dimensional array of, 164–165
two-dimensional array of, 160–164
volume, 14, 50–52, 118, 164

Mass-spring systems, 158–167
arbitrary configurations, 165
mass objects represented as, 159
one-dimensional array of masses, 158–160
surface mass represented as, 162
three-dimensional array of masses, 164–165
two-dimensional array of masses, 160–164
volume mass represented as, 164

Massless rods, 138
Matching terms, 774
Material derivative operator, 241
Mathematica, 73, 75, 384
Mathematical programming (MP), 11, 814,

838–856
convex quadratic, 843–846
general duality theory, 846
KKT conditions, 841–843

Matrices, 561–578
1× 1, 715
1× 3, 715
2× 1 block, 856
2× 2 identity, 848, 851
2× 2 zero, 568, 626–628
3× 1, 715
3× 3, 629–630
3× 3 elementary row, 566, 569
3× 3 identity, 853
3× 3 rotation, 726
4× 4 identity, 725
6× 6, 793
d × v , 716
m× 1 column vector, 819, 842
m× 1, 704
m×m, matrix 563, 704
invertible, 616
m× p, matrix 563
n× 1 column, 617
n×m, 563–564, 565, 612, 620, 647
n×n, 563, 568, 577, 634, 641, 645
n× p, 563
3× 3 identity, 525
3D rotation, 723, 724
4D rotation, 723, 724
augmented, 548, 549, 557, 561
block, 570–571, 610, 611, 633, 664–665, 722,

856

block diagonal, 852
change of basis, 623
column, 548, 562, 617
constants, 856
constraint, 849, 852
copositive, 838, 844
copositive skew-symmetric, 838
diagonal, 119, 360, 564, 573, 645, 654, 852
diagonalizable, 649, 744
eigendecomposition of, 751
exponential of, 653–655
first-derivative, 799–800
Hessian, 518, 522, 773
identity, 236, 378, 564, 725, 843, 848, 851,

853
invertible, 637
Jacobian, 516, 520, 523, 526
lower echelon, 565
lower triangular, 565, 574, 578
LU decomposition, 572–578
mass, 58
nilpotent, 744
noninvertible, 568
of coefficients, 562, 605–606
of cofactors, 634
orientation, 466
permutation, 573
powers of, 652–653
projection, 379
properties of inverses, 569–570
rank of, 552
real-valued symmetric, 643–644
rotation, 26, 360, 454, 468, 520, 713–718,

723, 724, 726
rotation of, 91
second derivative, 384
semisimple, 744
skew-symmetric, 231, 522, 565, 636, 725,

838
special, 564–565
symmetric, 616, 643–644
upper echelon, 565, 573, 574, 637
upper triangular, 565, 578, 637, 644
zero, 568, 616

Matrix multiplication, 564, 626, 726, 745
Matrix notation, 496, 501
Matrix representation, 626
MAX_EVENTS, 326, 327, 334
Maximum independent set, 411
Measure theory, 223
Medium-phase algorithm, 297
Medium-phase collision culling, 9
mEndpoints, 307
Mesh construction, ear-clipping-based,

208–212

Index 885

Mesh vertex, 194, 195
positions, 195

Metcalfe, Bob, 6
Method of Langrange multipliers, 703
Method of separating axes, 9, 299, 349,

393–394
Middle index, 400
Midpoint method, 774

modified, 784–785
Midpoint Runge-Kutta method, 774
Minkowski difference, 459
Minkowski sum, 459
Mirtich algorithm, implementing, 77
Mirtich’s formulas, 74–75
Mirtich, Brian, 10, 295
Mixed boundary conditions, 272, 276
Mixed linear complementarity problem

(MLCP), 533
MLCP, See Mixed linear complementarity

problem
MLookup, 308
MNumevents, 326
MNumMoveQueue, 347, 348
Modal equation, 798

implicit Euler’s method and, 806–807
leapfrog method and, 808
Runge-Kutta fourth order method and,

807–808
Modified Euler’s method, 770f, 771, 775
Modified midpoint method, 784, 785
Modified signs, 205
Modulus

bulk, 157–158
shear, 157
Young’s, 157

Moment of force, 36
Moments of inertia, 55–64

for edges, 62
for faces, 63
in one dimension, 55
in three dimension, 56–64
in two dimension, 56
principal, 59
for vertices, 61

Momentum, 40–54
angular, 41–42, 90, 151, 236–237, 466, 470,

494
conservation of, 242–246
linear, 31, 40–41, 470, 494

Moore–Penrose inverse, 519
Motion

acceleration-based constrained, 473–512
constrained, 297
differential equation of, 713
equations of, 31, 750

Euler’s equations of, 8, 59, 147–154
first equation of, 93–94
implied, 490
Lagrangian equations of, 100–147, 511
Newton’s equations of, 524
Newton’s laws of, 7, 13, 30–31, 99, 115, 120,

465, 533, 786
of Earth, 86–87
of particles, 90–91
on curves, 100–102
on surfaces, 102–109
path of, 86, 108
planar, 15–19
plane of, 87–88
rigid, 667
rigid body, 85–154
second equation of, 94
space, 534
Sun and, 86–87
third equation of, 94
unconstrained, 465–473
velocity-based constrained, 10, 512–533

Move function, lookup tables and, 325–326
MoveBoxes, 324, 347, 348
Moving axis, motion about, 26–27
Moving boundaries, 293
Moving boxes, with constant linear and

angular velocity, 453–459
Moving ellipses

computing closest point, 362
computing negative root, 362–364
configuration at contact time, 359
contact time, 364–368
intersection of, 358–359
reduction to circle and axis-aligned ellipse,

359–361
source code, 368–371

Moving ellipsoids, 371–376
source code, 372–376

Moving frame, 16
Moving objects, with constant linear velocity,

421–444
Moving projected intervals, 457f
MP, See Mathematical programming
MSG_SHARED_BOX_HEAP_ADDRESS, 338
MSG_SHARED_EVENT_HEAP_ADDRESS, 338
MSG_TERMINATE, 338, 339, 348
MSG_UPDATE_BEGIN, 348
MTerminate, 331
MType, 320
Multi-index, 633
Multifunction evaluation algorithm, 472
Multilinear transformation, 630–631
Multiple contact points, 483–491
Multiple fluids, 293

886 Index

Multiplication, 546
matrix, 564, 626, 726, 745
scalar, 583, 584

Multiplicative identity, 539, 586
Multiplicative inverse, 539
Multistep methods, 11

Adams-Bashforth, 778, 797
Adams-Moulton, 779, 797
explicit, 778
implicit, 778
numerical methods, 777–779
stability for, 797–798

Multivariate calculus, 679, 692–698
chain rule in, 693–694
continuity, 692
differentiation, 692–696
directional derivative, 694–696
integration, 696–698
limits, 692

Multivariate functions, 655–658
derivatives, 712
optimization and, 700–702

MUpdateAsynchronousEndEvent, 331
MUpdateBegin, 332
Museum principle, 836, 837
Mutually orthogonal vectors, 597
MXLookup, 317
MYLookup, 317
MZLookup, 317

N
n× 1 column matrix, 617
n×m matrix, 563, 612, 647

construction of, 620
diagonal entries of, 564
diagonal matrix of, 564
lower echelon, 565
lower triangular, 565
upper echelon, 565
upper triangular, 565

n×n matrix, 563, 568, 577, 634
symmetric, 645
with real-valued entries, 641

n× p matrix, 563
Narrow-phase algorithm, 297
Navier-Stokes equation, 9, 213, 244, 258

simplified, 263
NCP, See Nonlinear complementarity

problems
n-dimensional affine space, 659
NEG_INFINITY, 337, 340, 346
Negation of sets, 459
Negative coefficients, 821, 834
Negative constant term, 837

Negative definite symmetric matrices, 643
Negative root, computing, 362–364
Negative semidefinite symmetric matrices, 643
Negative vertical axis, 673
Nested polytope, 411, 413
NetImmerse, 4
Neumann boundary conditions, 221, 247,

272, 276
in i-loop, 272

Neumann boundary value problem, 223
Neville’s method, 783
Newton Game Dynamics, 5
Newton’s equations of motion, 524
Newton’s iterates, 771, 802
Newton’s laws of motion, 7, 13, 30–31, 120

first, 31
second, 31, 99, 115, 465, 533, 786
third, 31

Newton’s method, 364, 367, 372, 755, 802
implicit equations and, 771

Newton, Isaac, 691
Newtonian dynamics, 86–98, 465
Nilpotent, 650, 653

matrix, 744
NoIntersect, 423, 428, 436, 438–439

input to, 455
pseudocode for, 456

Non-unit-length vector, 597
Nonbasic variables, 821, 824

coefficients of, 825
Nonconvex function, graph of, 841f
Nonconvex set, 394f
Nonhomogeneous linear difference equations,

756
Noninertial frame, 31, 99
Nonintersecting convex objects, 395f
Nonintersecting convex polygons, 397f
Nonintersection, of convex objects, 377
Noninvertible matrix, 568
Nonlinear complementarity problems (NCP),

534
Nonlinear differential equations, first-order, 90
Nonlinear system of differential equations, 469
Nonnegative definite symmetric matrices, 643
Nonnegativity constraints, 825

convex domain implied by, 820f
Nonoverlapping boxes, in insertion sort, 320
Nonoverlapping intervals, 309
Nonparallel lines, 553f
Nonparallel planes, 554
Nonpenetration constraints, 473, 534
Nonpenetration of polyhedra, 390
Nonpositive definite symmetric matrices, 643
Nonrational uniform B-spline (NURBS), 8,

156, 168, 169

Index 887

curves, 177–179
encapsulating, 183
rectangle surface patch, 182
surfaces, 182–184
with control points, 177

Nonsquare systems of equations, 552
Nonstatic functions, 471
Nonuniform knots, 169
Nonuniform scaling, 211
Nonzero linear velocities, 453
Nonzero scalars, 553, 636
Nonzero solutions, 638
Nonzero values, 172
Nonzero velocity, 490
Norm, 720
Normal acceleration, 17
Normal equations, 615
Normal force, 35
Normal form, 819

restricted, 819
Normal stresses, 233
Normal vector derivative, 498
Normal-form constraints, 819
Normalized projections, 381
Normals, pseudocode generating, 185
North Pole, 92
N th order difference equation, 753

implicit, 753
N th order differential equation, 740
N th order linear difference equation

homogeneous solution, 763–764
vector sequence in, 763

Nullspace, 609
NUM_ENDPOINTS, 340
Numbers

complex, 541, 546, 719
irrational, 540
rational, 540
real, 540
systems, 539–542

Numerical Design Ltd., 4
Numerical issues, 556–558
Numerical methods, 766–812

Bulirsch-Stoer method, 785
consistency in, 795
convergence in, 796
definition, 796
Euler’s, 766–769
extrapolation, 780–785
higher-order Taylor, 769–770
in standard formulation, 791
modified midpoint, 784–785
multistep, 777–779
output of, 805f
polynomial extrapolation, 783

polynomial interpolation, 783
predictor-corrector, 779–780
rational polynomial extrapolation, 783–784
rational polynomial interpolation, 783–784
stability in, 796
stiff equations, 809–812
strongly stable, 798
unstable, 798
Verlet integration, 785–794
via integral formation, 770–772
weakly stable, 798

Numerical stability, 254
physical stability and, 794–809
Runge-Kutta fourth order method and, 803,

804
NURBS, See Nonrational uniform B-spline
NVIDIA Corporation, 5, 290
NVIDIA GeForce 9600 GT graphics card, 274

O
O(h2) approximations, 782
O(h6) approximations, 782
OBBs, See Oriented bounding boxes
Objective function, 818, 820, 838, 851, 853

auxiliary, 819, 820
Occlusion culling, 510
Odd permutation, 631
Olson, Ken, 1
One-dimensional array of masses, 158–160
One-dimensional eigenspaces, 648
One-dimensional subspaces, 665
Open Dynamics Engine, 5
Operators

curl, 218
derivative, 517
material derivative, 241
splitting method, 255
univariate differential, 693

Optimal feasible vector, 818
Optimization

calculus, 698–702
constrained, 702–705
multivariate functions in, 700–702
univariate functions, 698–700

Orbit, of Earth, 88
Ordinary difference equations, 755

autonomous, 755
first-order, 755

Ordinary differential equations, 733
second-order system of, 91

Ordinary differentiation, 111
Orientation differential equation, 520
Orientation matrix, 466, 700

888 Index

Oriented bounding boxes (OBBs), 349,
445–453, 535

culling in, 445
moving with angular velocity, 537
moving with linear velocity, 537
normal, 448
potential separating directions for, 449t
projection intervals of, 447f
pseudocode for intersection of, 448–449
rotating, 537
univariate functions and, 700
with center point, 446f

Orthogonal camera, 421
Orthogonal complement, 607

subspaces and, 608f
Orthogonal sets, 598
Orthogonal subspaces, 606–609, 647
Orthogonality, vector spaces, 595–599
Orthonormal basis, 384, 645
Orthonormal sets, 189, 598

of vectors, 714f
right-handed, of vectors, 715f

Orthonormalization, 468
Gram–Schmidt, 468, 598, 599f, 608

Overlap processing, 342
Overlap set update, 328
Overlap test, 316

BoxManager, 328
for AABBs, 319
per-dimension, 328

Overlapping boxes, in insertion sort, 320
Overlapping intervals, indices for, 306–319

P
Pairwise intersections, in linear programming,

816–818
Parabola, 477

area bounded by, 690f
Parabolic partial differential equations, 247
Paraboloids, elliptical, 105, 108
Parallel cylinders, 385
Parallel integers, 546
Parallel lines, 553f

boxing in by, 683
ellipses sweeping regions bounded by, 365f

Parallel planes, 554, 555
Parallel subspaces, 665
Parallelepiped, 603f

transforming cubes into, 630f
Parallelogram, 350

transforming square and, 627f
vectors and, 582f

Parallelogram law, 660
for affine algebra, 661

Parallelogram-parallelogram distance
function, 351

Parameter intervals, 176
Parameter points, 389
Partial derivatives, 693, 695

first-order, 516, 750, 773
second-order, 521, 773, 841
vector of, 695

Partial differential equations, 733
Particle systems, 14

and continuous materials, 27–30
constraints on, 515–519
equations of motions for, 115–118

Particle(s)
constrained to curves, 514–515
constrained to surface, 513
constraint on, 512–515
Lagrangian equations of motion for,

100–111
multiple, on rough plane, 140–141
on rough planes, 137–138
single, 14–27
two, on rough planes, 138–140
velocity of, 477
vortex, 291

Particular solutions, first-order linear
difference equations, 757

Partitioning, 395
Pascal’s triangle, 793
Pascals, 157
Pendulum

angles, 805f
double, 118, 131
Foucault, 92–95
model, 747
plot of, 803f
simple, 96–99, 101, 110, 112, 750, 801f, 803f
triangle, 121

Per-dimension overlap test, 328
Per-dimension update, 326–327
Periodic knot vector, 171
Permutation, 631, 633

even, 631
odd, 631
tensor, 677
triply-indexed, tensor, 676

Permutation matrix, 573
Permutation tensor, 235
Permutation vector, 557
Perp function, 405, 849
Perp vector, 673
Perturbation method, 837, 846
Physical realism, 5
Physical stability, numerical stability and,

794–809

Index 889

Physics engines, 5, 295–538
Physics tick, 297–298, 334

resolve constraints, 470
PhysX, 5
Picasso, Pablo, 2
Pipes, 126

angular velocity of, 128
PIVOT (Proximity Information from VOronoi

Techniques), 536
Pivots, 549

full, 558
Pixels

ambiguous, 203
bitmap, 258
sign configurations of, 202
superimposition of, 204
vertex-edge table for, 205

Planar bodies, 198
Planar convex polygons, 408
Planar lamina, 14
Planar mass, 122
Planar motion

in Cartesian coordinates, 15–18
in polar coordinates, 18–20

Planar polygons, 201
Plane(s)

coincident, 555f
coordinate systems in, 663f
disjoint, 554
half, 815f
inclined, 35, 128, 137
nonparallel, 554
parallel, 554, 555
rough, 137–147
sloped, 482f, 483f, 485
tangent, 695

Playstation, 3, 5
Point(s)

barycentric combination of, 668f
boundary, 700–701
center, 446f
closest, 362
collision, 474–475, 493
contact, 368, 393, 494f, 502, 529f
critical, 655, 657, 843
distance between convex polygons and,

847–849
distance between convex polyhedra,

849–851
edge-interior, 461
ellipse, 366
feasible, 839
forming convex quadrilateral, 729f
interior, 159
lattice of, 248f

linearly interpolating pairs of points on, 187
multiple contact, 483–491
of colliding contact, 491
parameter, 389
saddle, 658
singleton, 461
spatial, 486
vectors and, 659

Point-in-spherical-polygon test, 417, 419
Point-mass objects, 122
Poisson’s equation, 213, 267, 269, 294

solving, 279
vector calculus, 221–224

Polar coordinates
coordinate form, 89
frame, 18
planar motion in, 18–19f

Polar dual, of polygon, 403f
Polar representation, 760
Pollutants, 258n
Polygon(s), See also Convex polygons;

Sub polygon
counterclockwise ordering of, 431
edge-normal direction of, 398f
edges, 418f
intersecting convex, 397f
nonintersecting, 397f
planar, 201
planar convex, 408
polar dual, 403f
separation of, 398f
soups, 536

Polynomial(s), 650
Bernstein, 183, 192
characteristic, 740, 743, 748
cubic, 730
definite integral of, 623
extrapolation, 783
generation of, by vector fields, 66
higher-order, 836
interpolation, 783
quadratic, 356, 384
quartic, 182, 356
rational, 783–784
Taylor, 655–657, 773
vector space of, 618

Polynomial equations, 356
characteristic, 806
obtaining, 760

Polynomial function, 70
Polytope, 390

moving, 392
nested, 411, 413
stationary, 391
velocities of, 393

890 Index

Portal systems, 510
POS_INFINITY, 337, 340, 346
Position function, 112
Position-based constrained motion, 10
Positional derivatives, 110
Positional indices, 234
Positive definite, 560, 855
Positive definite symmetric matrices, 643
Positive semidefinite, 844
Positive semidefinite symmetric matrices, 643
Positivity, 364, 366
Postimpulse angular velocity, 480, 482
Postimpulse configuration, 482f
Postimpulse velocity, 479f, 483, 491–492

computing, 484
impulsive forces causing, 490
in sequential processing, 497
vector, 478

Postimpulse world velocity, 492
Potential energy, 80–84, 90

function, 786
total, 130

Potential intersection, 349
Potential normals, 20
Potential separating directions, for OBBs, 449t
Powell’s direction, 389
Power series, 654
Powers of matrices, 652–653
Predictor-corrector method, Gear’s fifth-order,

792–794
Predictor-corrector methods, 779–780
Preimpulse angular velocity, 480
Preimpulse configuration, 482f
Preimpulse linear velocity, 506
Preimpulse velocity, 478f, 491–492, 496
Preimpulse world velocity, 492, 493
Pressure, 157

on boundary, 243
separate, team, 291

Primal MP problem, 847
Primal problem, 825, 826

infeasible, 828
slack variables for, 843

Primary state, 471
Prince of Persia 3D, 4
Principal directions of inertia, 59
Principal moments of inertia, 59
ProcessCollidingContact, 481
ProcessEvents, 324, 347
Producer-consumer model, 321
Product(s)

cross, 600–606, 720
dot, 600–606, 720
inner, 595–599
rule, 239, 240, 498, 688

triple, 600–606
triple scalar, 603–604
triple vector, 604–606, 605f

Products of inertia, 55–64
for edges, 62
for faces, 63
for vertices, 61

Project-All, timing for, 420t
Projected Gauss–Seidel iterations, 529
Projected intervals

moving, 457f
stationary, 457f

Projection, 395
normalized, 381
of cylinders onto lines, 378
onto range, 614
vector spaces, 595–599, 614–617

Projection integrals, 71
Projection intervals, 427

of OBBs, 447f
separation of, 447

Projection matrix, 379, 615
Projection methods, nonintersection of convex

objects by, 377
ProjInfoobjects, 428, 437–439
Property

associative, 540
averaging, 487
commutative, 540
distributive, 540
selection, 485, 486
substitution, 222
unboundedness, 827–828

Proximity Information from VOronoi
Techniques, See PIVOT

Pseudocode, 75–77, 171, 260, 396, 404, 425,
547

convex polyhedra for, 456
differential equation for, 802
edge–edge contact intersection calculator,

433
FindIntersection, 431
for algorithm, 384–390
for computing curve points, 172
for computing distance, 848, 850
for convex polygon intersection, 422
for generating iterates, 803, 805
for inertia tensor of solid polyhedron, 75–77
for insertion sort, 309
for mass tensor of solid polyhedron, 75–77
for OBB intersection, 448–449
for processing point of colliding contact, 481

Index 891

for test-intersection query, 454–455
generating triangles, 185
generating vertices, 185
implementing, 77
intersection calculator, 441
interval values in, 455
normals, 185
overlapping, 349–350
simulation portion of, 269–270, 277–278
uniform texture coordinates, 185
vertex–edge contact intersection calculator,

433
vertex–vertex contact intersection

calculator, 433
Pulleys, 123

generalized forces for, 124
spring system, 125
systems of, 125

Pure strain, 232

Q
Q-COLLIDE, 537
QR algorithm, 646
Quadratic equation, 201
Quadratic functions, 354, 855
Quadratic interpolation, spherical, 729–731
Quadratic polynomial, 356, 384
Quadratic programming, 840

quantities of interest, 845
Quadrilaterals, convex, 729f
Quantities of interest

in linear complementarity problem, 845
in quadratic programming, 845

Quartic polynomials, 182, 356
Quaternions, 10, 467, 713–732

addition of, 718
algebraic operations and, 718–720
classical approach, 718–722
equation of motion, 521
interpolating, 713, 727–731
linear algebra and, 722–727
rotation matrix and, 713–718
rotations and, 720–722
scalar multiplication of, 718
spherical linear, 727–729
spherical linear interpolation of, 727–729
spherical quadratic interpolation of,

729–731
squad function of, 731
subtraction of, 718

Quotient rule, 498, 688

R
R-Plus, 4
Radeon 9700, 5

Random forces
gelatinous blobs and, 167
gelatinous cubes and, 166

RAPID (Robust and Accurate Polygon
Interface Detection), 536

Rate of change, 88
Rational numbers, 539–540
Rational polynomial

extrapolation, 783–784
interpolation, 783–784

Reactive force, 99
Real numbers, 540
Real-valued coefficients, 585, 622
Real-valued entries

n× n matrix with, 641
Real-valued functions, 585
Real-valued matrices, 654
Real-valued symmetric matrix, 643–644
Receive port, relationships among, 336f
ReceiveMessageFromSPU, 346
Rectangle surface patch, 179–180

NURBS, 182
RectangleManager, 313, 314
Rectangles

approximation of area by, 770f
axis-aligned, 313f, 316
consisting of triangles, 184
intersecting, 312–316
traveling downwards, 489f

Rectangular array, of springs, 163
Rectangular solids, bases of, 696f
Recursions, 168
Recursive descent in dimension, 701
Reduced contact set, 475f
Reduction of order, 758
Reduction of volume integrals, 65–66
Redundant constraints, 817
Reference system, 82
Region of stability

explicit Euler’s method, 806f
implicit Euler’s method, 807f
leapfrog method, 809f
Runge-Kutta fourth order method, 808f

Relative velocity, 480, 491
at resting contact, 498

Relevant derivatives, 110, 113, 127, 133
of kinetic energy, 123, 139

Remainder term, 766
Repeated real root, 739
Reported intersections, 306
Repulsive forces, 499
Resolution of forces, 500
Resting contact, 474

collision response for, 498–502
relative velocity at, 498

892 Index

Restricted normal form, 819
ResumeThread, 332
Return value, 303
Reverse-ordered input, 730
Revolution surfaces, 187

water drops modeled as control points of,
190

Richardson extrapolation, 780–781
variation of, 781

Ridges, 3
Right-hand rule, 600
Right-handed orthonormal basis, 381
Rigid bodies, 13

angular velocity of, 148
body coordinates for, 148
classification, 14–15
collection of, 496
constraint on, 519–522
contact points, 529f
equations of motion, 523–525f
mass, 471
points of contact, 494f
simultaneous processing in, 497
solid, 465
states, 855–856
world coordinates for, 148

Rigid body kinematics, 15–30
single particle, 15–27

Rigid body motion, 85–154
Rigid body system, constraint on, 522–525
Rigid motion, 667
RigidBody class, 470, 481
RK3a method, 776
RK3b method, 776
RK4a method, 777, 812
RK4b method, 776, 777
Robust and Accurate Polygon Interface

Detection, See RAPID
Rods, 113, 128–129

frictional force on, 142
generalized force on, 143
massless, 138
on rough planes, 142–143

Rooms, properties of, 836
Root finding, 755
Ropes, as linear chains of springs, 161
Rotating calipers, 464
Rotation, 667

angle, 731
axis, 731
composition of, 721, 722
quaternions relationship to, 720–722

Rotation formula, 148, 149
Rotation matrix, 26, 91, 360, 454, 468, 520

3× 3, 726

3D, 723
4D, 723, 724
inverse of, 715
quaternions and, 713–718
transpose of, 715

Rough planes, 137–138
boards on, 143–145
multiple particles on, 140–141
solid boxes on, 146–147
thin rods on, 142–143
two particles on, 138–140

Row operations, in eigenvalues, 640
Row-reducing, 571, 610
Runge–Kutta fourth order solver, 472
Runge–Kutta method, 11, 98, 454, 772–777,

786, 797
for differential equations, 507

Runge–Kutta solver, 508
fourth order, 472

Runge-Kutta fourth order, 471
Runge-Kutta fourth order differential

equation, 471
Runge-Kutta fourth order method, 803, 810

approximation to, 810f
leapfrog method, 804–805
modal equation and, 807–808f
numerical stability and, 804
region of stability for, 808f
fourth-order, 776–777
mid point, 774
second-order, 773–775
Taylor’s theorem, 772–773
third-order, 775–776

S
S+N decomposition, 646–652
Saddle points, 658
Scalar multiples, of vectors, 582f
Scalar multiplication, 583, 585, 586, 589

of quaternions, 718
of vectors, 584

Scalar potential, vector field decomposition,
224–226

Scalar-valued functions, 218
Schaum’s Outline Series, 86
Secant line, 686
Second derivative of constraint, 513, 517–518,

521–522
Second derivative test, 656, 657
Second-derivative matrix, 384
Second-order derivatives, 383
Second-order difference equation, 754–755

Index 893

Second-order differential equations, 90,
738–739

coupled systems of, 107
initial value problem, 738

Second-order error, 706
Second-order linear difference equations,

757–759
general solutions, 757–759
variation of parameters, 758

Second-order linear differential equations,
124, 135, 576

Wronskian of linearly independent
solutions, 757

Second-order linear systems of differential
equations, 117

Second-order partial derivatives, 521, 773, 841
Second-order Runge-Kutta methods, 773–775
Second-order system of ordinary differential

equations, 91
Second-order time derivatives, 523
Secondary state, 471
Segment, length of, 672
Segment-parallelogram distance function, 351
Segment-segment distance function, 351
Selection property, of delta function, 485–486
Semi-implicit Euler, 532
Semi-Langrangian method, 258
Semisimple matrix, 744
Send queue, relationships among, 336f
Separate pressure team, 291
Separated variables, 735
SeparatedByCylinderPerpendiculars,385, 386
SeparatedByOtherDirections function, 389
SeparatedCylinders, 385
Separating axis, 377, 394, 398, 435

for two cylinders, 378–379
Separating direction, 377, 395
Separating equation, 458
Separating line, 377, 394
Separation tests, 385

involving cylinder axis directions, 380
involving cylinder axis perpendiculars,

380–382
involving other directions, 382–384

Sequential processing, postimpulse velocities
in, 497

Set operations, GJK algorithm, 459–461
Set(s)

bounded convex, 815f
cardinality of, 593–594
complete, 541
contact, 296, 426–444
convex, 394f
empty, 814
finite, 489

finite point, 475
linearly dependent, 592
linearly independent, 591, 593, 604
maximum independent, 411
negation of, 459
nonconvex, 394f
of arcs, 416
orthogonal, 598
orthonormal, 189, 598, 714, 715f
overlap, 328
reduced contact, 475f
triangles and, 460
unbounded convex, 815f

Set_bnd, 271
SetRhoBoundary, 271
SetState, member function, 471
SetUBoundary, 271, 273
SetVBoundary, 273
Shear modulus, 157
Shear stresses, 233
Sign changes, 202
Sign configurations, 202
Signed area, 628
Signed hypervolume, 678
Signed volume, 603
Similarity relationship, 624
Simple pendulum, 96–99, 101, 110, 112

equation of motion, 750
explicit Euler’s method and, 801f
implicit Euler’s method and, 803f
model, 747

Simplex method, 818
Simplex vertices, 463, 464f
Simplices

barycentric coordinates of, 670–671
hypervolume of, 675–678

Simultaneous processing
of contact points, 491–497
rigid bodies in, 497

Simultaneously diagonalizable, 236
Single integral, 118
Single particles, 14

rigid body kinematics, 15–27
Single-stage update algorithm, 289
Single-step methods, 11

stability for, 795–797
Single-threaded environment, AABBs in,

320–330
Singleton point, 461
Sinks, 238
Sinusoidal oscillations, 748
Sinusoidal terms, 136
Skew-symmetric matrix, 231, 522, 636, 724

copositive, 838
square, 565

894 Index

Skirts
modeling by generalized cylinder surface,

188
wind on, 188

Slack variables, 818, 820
for primal problem, 843
increasing, 823
positive, 824

Slerp, See Spherical linear interpolation
Slide rule, 1
Slipping objects, 535
Sloped plane

axis-aligned box colliding with, 483f
colliding contact of box edge with, 485
square traveling towards, 482f

Smoothed particle hydrodynamics (SPH), 294
Solid rigid bodies, 465
Solids, 14
Source code, 368–371

moving ellipsoids, 372–376
density, 292

Source-sink function, 238
Source-sink term, 260–261
SourceForge, 421
Sources, 238
Spans, vector spaces, 588–590
Sparse linear systems, 558
Sparse matrices, 516

data structure for, 527–528
spatial, motion, 19–24

Spatial coherence, 300
Spatial derivatives, 249
Spatial motion

in Cartesian coordinates, 19–22
in cylindrical coordinates, 22–23
in spherical coordinates, 23–24

Spatial points, 486
Specialized boundary handling, 270–274
Specialized processing unit (SPU)

AABB culling using, 335–349
BoxManager implementation, 335
endpoint class, 339
implementation, 335–343
memory, 336f
relationships among, 336f

Speed, 19
calculations, 681t
initial angular, 799
instantaneous, 681

Sphere class, 302
Sphere-based culling, 301, 303
Spheres, test-intersection query, 349
Spherical bodies, 210
Spherical coordinates, 23–24
Spherical duals

BSP tree for, 419
of convex polyhedra, 414
of tetrahedrons, 414f
with spherical convex polygons, 417

Spherical faces, 416
Spherical linear interpolation (slerp)

illustration of, 728f
of quaternions, 727–729

Spherical quadratic interpolation, of
quaternions, 729–731

Splitting method, 558–559
Spring forces, 33–34
SPU, See Specialized processing unit
SpuConnect, 346
SpuSendMessage, 348
Squad function, 731
Square brackets, 73
Square matrices, 564

diagonal, 564
inverse of, 568
skew-symmetric, 565
symmetric, 565

Square root, 96
Squared area, 628
Squared base, 628
Squared height, 628
Squares

transforming parallelograms into, 627f
traveling towards sloped plane, 482f
unit-area, 627f

Stability
asymptotic, 749
conditional, 254
definition of, 747
differential equations, 746–751
for constant-coefficient linear systems,

747–749
for general autonomous systems, 749–751
for multistep methods, 797–798
for single-step methods, 795–797
in numerical methods, 796
numerical, 254, 794–809
of solutions, 747
physical, 794–809
region of, for explicit Euler method, 806f
region of, for implicit Euler method, 807f
region of, for leapfrog method, 809f
region of, for Runge-Kutta fourth order

method, 808f
step size, 798–808

Standard basis, 724
Standard coordinate axis directions, 714
Standard Euclidean basis, 595
State variables, 471

Index 895

State vector, 465, 468, 469
blocks of values in, 469

Static friction, 35, 510
coefficient of, 35

Stationary
ellipsoids, 358

Stationary box, 425
Stationary ellipses, 353–356

test-intersection query for, 353–356
Stationary objects

collision detection, 396–421
convex polygons and, 396–408

Stationary polytope, 391
Stationary projected intervals, 457f
Sticking objects, 535
Stiff equations, 809–812

systems of, 811t
Stiffness, 11, 809
Stoke’s theorem, 67, 213

vector calculus and, 219–220
Strain

deformable bodies and, 156–158
fluids and, 230–237
gases and, 230–237
pure, 232
stress and, 236–237
tensor, 230–233

Stress
deformable bodies and, 156–158
divergence of, 245
fluids and, 230–237
gases and, 230–237
normal, 233
shear, 233
simultaneously diagonalizable, 236
strain and, 236–237
tensor, 233–236, 245

Strictly convex functions, 381
Strictly diagonally dominant, 560
Strong duality principle, 828
Subpolygon, 418
Subsectors, 404f
Subspaces

affine algebra, 665
fundamental, 613f
invariant, 649
one-dimensional, 665
orthogonal, 606–609, 647
orthogonal complement and, 608
parallel, 665
two-dimensional, 614f, 665
vector spaces, 588–590

Substitution property, 222

Subtraction, 539
of quaternions, 718
of vectors, 580–581

Successive over-relaxation, 561
Suggestive notation, 661
Sum(s)

direct, 647, 649
infinite, 744
Minkowski, 459
of external force, 244
of transformations, 649
telescoping, 551

Summation, 690
Summation notation, 563, 676–677
Sun

Earth’s orbit and, 88
motion and, 86–87

Surface integrals, vector calculus, 219–220
Surface mass, 14, 118, 219

as mass-spring system, 162
in three dimensions, 52–53

Surface(s)
B-spline, 179–181
built from curves, 184–192
classical tube, 189
closed tube, 191
control point, 190
cylinder, 186
generalized cylinder, 186–188
integrals, 219–220
level, 200, 215
NURBS, 182–184
particle constrained to, 513
revolution, 187, 190
tube, 189–193

SwapBuffers, 277
Sweep algorithm, 305
SWIFT (Speedy Walking via Improved Feature

Testing), 536
Symmetric control points, 183
Symmetric matrices, 744

n× n, 645
eigendecomposition for, 643–646
negative definite, 643
negative semidefinite, 643
nonnegative definite, 643
nonpositive definite, 643
positive definite, 643
positive semidefinite, 643
real-valued, 643–644

Symmetric matrix, 616
Symmetric weights, 183
Synergistic processing units, 349
Systems of difference equations, 762–764

896 Index

Systems of linear differential equations,
741–746

stability for constant-coefficient, 747–749
Systems of linear equations

forward elimination in, 542–559
geometry of, 552–555
iterative methods for solving, 558–561
nonsquare, 552
numerical issues, 556–558
two equations in two unknowns, 545–548

Systems of stiff equations, solutions of, 811t

T
T -derivative, 356
T -interval midpoint, 730
Tableau, 820

method, 832
updated, 822–824

Table-based mesh selection, 206–208
Tangent line, 686, 695
Tangent plane, 695
Tangential acceleration, 17, 25
Tangential component, 535
Taylor expansions, 790
Taylor methods, higher-order, 769–770
Taylor polynomials, 655–657, 773, 774

of degree n, 766
Taylor series, 706, 734

for exponential functions, 742
formal, 707

Taylor’s theorem, 765, 768, 785, 788, 794
algorithms based on, 792
for bivariate functions, 72, 773

Telekinesys, 5
Telescoping sum, 551
Temperature, 292
Templates, 705
Temporal coherence, 300–301, 309
Tensor component indices, 234
Tensor index notation, 527
Tensors

permutation, 235
strain, 230–233
stress, 233–236

Terminal dictionary, 830, 832
Test driver, 800
Test-intersection query, 296, 297, 349–390

capsules, 350–353
cylinders, 376–377
ellipsoids, 353–376
geometric, 391
moving ellipses, 358–371
moving ellipsoids, 371–376
pseudocode for, 454–455

spheres, 349
stationary ellipses, 353–356
stationary ellipsoids, 357–358

TestIntersection, 302, 398, 401, 408, 422,
427, 435, 437

for convex polyhedra, 454
formulation, 430
rewriting, 439

Tetrahedron, 234, 414f
barycentric combination of, 669
barycentric coordinates, 669
base of, 674f
linear interpolation over, 669
spherical duals of, 414f
vertex of, 671
volume of, 673–675, 677

Theorem
Cayley–Hamilton, 742–743
divergence, 67, 215–217, 220–221, 226–227,

239, 244
fundamental, of algebra, 609–613
fundamental, of calculus, 691
fundamental, of vector calculus, 224,

229–230
Green’s, 67, 213, 221–224
Stoke’s, 67
Stoke’s theorem, 213, 219–220
Taylor’s, 765, 768, 773, 785, 788, 792, 794

Third-order equations, 761
Third-order Runge-Kutta methods, 775–776
Three-dimensional array of masses, 164–165
Time derivatives, 249, 516, 521

first-order, 523
second-order, 523

Time intervals, 392
of free-form deformation, 210

Time step, 392
Time stepping, velocity-based constrained

motion, 531–532
Time-stepping algorithm, 526
Time-varying constraints, 111–114
Time-varying deformations, 199
Time-varying frames, 111–114
Tmax, 75
Tokamak Open Source Physics Engine, 5
Tops

angular velocity of, 150
freely spinning, 150, 154

Torque, 36–37, 151, 154, 472
external, 501
inertial, 525
resolution, 500

Torsion of curves, 21
Total density update, 261–263

Index 897

Total derivative, 111, 214–215
time, 112
vector calculus, 214–215

Total potential energy, 130
Transfer of axes, 64
Transformations, affine, 666–667
Translation, 667
Transport algorithm, 258
Transpose, 564

range of, 612
Transposition, 631
Trapezoids, area of, 778
Triangle mesh, 192

in Marching Cubes algorithm, 207
Triangle(s)

area of, 672–673
barycentric coordinates, 668–669
base length, 672
computation by direct parameterization of,

72–74
edge–edge contact for, 432f
isosceles, 120
linear interpolation over, 669f
moving, 432f
Pascal’s, 793
pendulum, 121
pseudocode generating, 185
rectangles consisting of, 184
removal, 209
sets and, 460
solid, 845
uvw, 182

Triangular domain, 702
Triangulation, 411
Tridiagonal, 577
Trigonometric functions, 117, 152
Trigonometric identities, 131, 458, 721
Triple integral, 118
Triple products, vector spaces, 600–606
Triple scalar product, 603–604
Triple vector product, 604–606f
Triply indexed tensor, 521, 523

permutation, 676
Tube surfaces, 189–192

closed, 191
wriggling snake as, 193

Turbo Pascal, 2
Twice differentiable, 656
Two-body problem, 132–134
Two-dimensional array of masses, 160–163
Two-dimensional linear programming,

814–816
Two-dimensional subspaces, 614f, 665
TYPE_MAXIMUM, 322, 337

U
Umbrella parents, 413
Unbounded convex set, constraints defining,

815f
Unbounded domains, 837
Unboundedness property, dual problem,

827–828
Unconstrained motion, 465–473
Uniform knots, 169
Uniform random number generator, 275f
Uniform texture coordinates, pseudocode

generating, 185
Unique representations, 592
Uniqueness, of differential equations, 736–738
Unit circle, 403f
Unit disk, splitting, 404f
Unit length, 720
Unit-area square, 627f
Unit-length direction, 695
Unit-length tangent vector, 514–515
Unit-length vector, 731
Unit-length vector perpendicular, 601
Unit-volume cube, 630f
Univariate calculus, 679–691

continuity, 685
differentiation, 686–689
integration, 689–692
l’Hôspital’s rule, 689
limits, 682–684

Univariate differential operator, 693
Univariate functions

derivatives of, 705–710
global extremum, 699
global minimum, 699
local maximum, 699
local minimum, 699
OBBs and, 700
optimization, 698–700

Universal gravitational constant, 32
Unknown vector, 851
Unknowns, two equations in two, 545–548
Unstable solutions, 747
Update function, 252, 311, 315, 326

boundary, 253
for lattice cells, 259
main, 341
per dimension, 342
with array inputs, 319

Update phase, 310
UpdateAdvection, 270, 278
UpdateAsynchronous, 331
UpdateBoundary, 256
Updated tableau, 822t–824
UpdateDensityAdvection, 285
UpdateDensityBoundary, 281

898 Index

UpdateDensityDiffusion, 284
UpdateDensitySource, 283
UpdateSource, 260
UpdateVelocityAdvection, 286
UpdateVelocityBoundary, 281
UpdateVelocityDiffusion, 278
UpdateVelocitySource, 278, 283
Upper echelon matrix, 565, 573, 574, 637
Upper triangular matrix, 565, 578, 637, 644
Usenet groups, 10, 535
User-specified maximum time, 702
User-supplied inputs, 740
uvw-triangle, 182

V
V-Clip, 464
V-COLLIDE, 536–537
V -terms, first-order linear difference

equations, 758
Van den Bergen, Gino, 459, 535
Variables, 822

artificial, 819, 820
auxiliary, 829, 831
basic, 610, 821
changes of, 360
column, 821
complementary, 829, 831, 833, 836–838
continuous, 206, 684
derived state, 471
free, 552, 610
nonbasic, 821, 824, 825
real-valued, 585
separated, 735
slack, 818, 820, 823, 824, 843
state, 471

Variation of parameters, 758
VAX 730, 2
Vector calculus, 214–230

curl and, 217–218
directional derivative, 214–215
divergence and, 215–217, 220–221
fundamental theorem of, 224, 229–230
gradient, 214–215
Green’s theorem, 221–224
Laplace’s equation, 221–224
Laplacian and, 215–217
line integrals, 219
Poisson’s equation, 221–224
product rule of, 498
quotient rule of, 498
Stoke’s theorem and, 219–220
vector field decomposition and, 224–230
vector fields and, 215–217
volume integrals, 220–221

Vector field decomposition
curl and, 226–227
differentiation and, 225
divergence and, 226–227
scalar potential, 224–226
vector calculus and, 224–230
vector potential and, 227–229

Vector fields, 66
curl and, 226–227
divergence and, 226–227
flow lines of, 241
vector calculus and, 215–217

Vector potential, vector field decomposition
and, 227–229

Vector(s), 579, See also Eigenvectors
1× n row, 842
m× 1 column, 819, 842
addition of, 580, 583–586
additive identity of, 581f
algebra, 721
angular momentum, 151
basis, 624, 664
binormal, 21
black, 425
class, 661
coefficient, 621
connecting points, 660f
constant, 87, 832, 856
constraint, 849
coordinate axis stress, 244
definition of, space, 583–588
degenerate feasible, 825
dependent, 616
difference, 659
direction of, 578
equality, 584–586
Euclidean basis, 613, 618, 632, 633
feasible, 818, 823, 828
feasible basis, 818, 823
finite dimensional, space, 594, 617
fixed frame, 92
form, 245
gradient, 361, 703
indices, 415
inserting, 593
knot, 168
linear combination of, 616
linearly dependent, 590
linearly independent, 593, 611
magnitude of, 578
mutually orthogonal, 597
non-unit-length, 597
notation, 496, 501, 826, 847
of partial derivatives, 695
optimal feasible, 818

Index 899

orthonormal set of, 714
parallelograms and, 582f
periodic knot, 171
permutation, 557
perp, 673
perpendicular, 379
points and, 659
postimpulse velocity, 478
removing, from linearly dependent sets, 592
right-handed orthonormal set of, 715f
scalar multiples of, 582f
scalar multiplication of, 584
spaces, 578–626
state, 465, 468, 469
subtraction of, 580–581
unit-length, 731
unknown, 851
velocity, 111

Velocity, 93, See also Angular velocity
acceleration-based constrained motion, 476
adjustment of, 278
center of mass, 126, 465–466
constant angular, 457–459
constant linear, 113, 133, 350, 421–444,

453–456
constraint, 533
diffusion, 284
dissipation, 291–292
divergence of, 278
drag, 29
equations, 263–270
fields, 267
for half-steps, 791
initialization of, 280
linear, 470, 488, 492, 506, 537
linear preimpulse, 506
nonzero, 490
nonzero linear, 453
of particles, 477
of polytopes, 393
postimpulse, 478f, 483, 484, 490, 491–492,

497
postimpulse angular, 480
postimpulse world, 492
preimpulse, 478f, 491–492, 496
preimpulse angular, 480
preimpulse world, 492, 493
relative, 480, 491, 498
sources, 283
update, 266, 283, 284
update by advection, 285
vector, 111
Verlet method, 790–792
world, 118–119, 492

Velocity component
forces with, 787–788
forces without, 786–787

Velocity equations, 263–270
Velocity-based constrained motion, 10,

512–533
constraint bias, 529
contact caching scheme, 532
contact model, 529
friction model, 531
inequality constraints, 528–529
time stepping, 531–532
variations on, 525–533

Verlet integration, 785–794
forces with velocity component, 787–788
forces without velocity component, 786–787
leapfrog method, 788–790
simulating drag in system, 788

Verlet method, 791, 794
velocity, 790–792

Vertex, 500
nm, 461
indices, 415
of tetrahedrons, 671
simplex, 463, 464f

Vertex–edge contact
collision detection, 427

Vertex–edge intersection, 511
Vertex–face intersection, 475, 476

contact points, 498, 502
Vertex–vertex contact

collision detection, 427
convex polyhedra, 436–437
intersection calculator pseudocode, 433

Vertex–vertex intersection, 426f
Vertex-edge contact

convex polygons in, 397f
Vertex-edge table, 165, 203

for pixels, 205
Vertical asymptotes, 204
Vertical axis, 105
Vertical bar notation, 695
Vertical edges, 172
Vertices

moments of inertia, 61
products of inertia, 61
pseudocode generating, 185

View frustum, 299f
Virtual work, 514
Viscosity, 34, 36

coefficient, 263
dynamic, 245, 246
kinematic, 246

Viscous forces, 36
Viscous friction, 799

900 Index

Volume
barycentric coordinates, 671–678
conservation of, 542
evaluation, 194
infinitesimal, 238, 696
of tetrahedron, 673–675, 677

Volume function, 194
B-spline, 196

Volume integrals
reduction of, 65–66
vector calculus, 220–221

Volume mass, 14, 118
as mass-spring systems, 164
in three dimensions, 50–52

Vortex particles, 291
Vorticity confinement, 291
Voxels, 207

ambiguity for, 207
corners, 276
edge interior, 276
extracted edge mesh, 208f
face-interior, 276
sharing faces, 207

W
W1-row, 822
W2-row, 821
W3-row, 821, 822
W4 equation, 833
WaitForObjectToSignal, 333
WaitForUpdateEnd, 331, 333, 347
Water drops, as control point surface of

revolution, 190
Watson, Thomas J., 2
Weak damping, 751
Weak duality principle, 827, 828
Weight, 33
WhichSide, 399
Wild Magic code, 368, 535
Wild Magic Files, 350
Wind, 109, 161

cloth and, 163
on skirts, 188

Wire, 14
Work energy, 78–80
World coordinates, 27

angular velocity in, 149
for rigid bodies, 148
inertia tensor in, 466–467
of angular velocity, 126–127
system, 90–91

World observer, 27
body coordinates as seen by, 28

World velocity, 118–120
postimpulse, 492
preimpulse, 492, 493

Wriggling snake, 192, 193
tube surface as, 193

Wronskian, of linearly independent solutions,
757

X
Xbox 360, 335
X-derivative, 356
X -dimension, 315
X -intervals, 312, 313f
XS-G, 4

Y
Y -dimension, 315
Y -intervals, 312, 313f
Young’s modulus, 157

Z
Z-offset texture, 289
Zero constants

Lemke algorithm and, 832
terms, 835–837

Zero matrix, 616
2× 2, 568

Zero vector yields, 703
Zero-indexed entries, 427

1× 1 matrix, 715
1× 3 matrix, 715
1× n row vector, 842
2× 1 block matrix, 856
2× 2 block matrix, 722
2× 2 identity matrix, 848, 851
2× 2 zero matrix, 568

determinants of, 626–628
3× 1 matrix, 715
3× 3 elementary row matrix, 566, 569
3× 3 identity matrix, 853
3× 3 matrix, determinants of, 629–630
4× 4 identity matrix, 725
6× 6 matrix, 793
2D images, isocurve extraction in, 201–206
3× 3 identity matrix, 525
3× 3 rotation matrix, 726
3Com Corporation, 6
3D images, isosurface extraction in, 206–212
3D rotation matrix, 723, 724
4D rotation matrix, 723, 724

Color Plate 3.3 The Foucault pendulum. The figures show the path of the pendulum tip in the horizon-
tal plane. New points on the path are colored white, but the intensity of the older points along the path
gradually decreases.

Color Plate 3.7 A ball rolling down a hill. Image (b) shows the path of the center of the ball as it rolls
down the hill. The ball rotates at a speed commensurate with its downhill velocity.

Color Plate 3.14 A mass pulley spring system shown at two different times. The spring expands and
compresses and the pulley disk rotates during the simulation. The system stops when a mass reaches the
center line of the pulley or the ground.

Color Plate 3.25 Two snapshots of a freely spinning top. The black line is the vertical axis. The white line
is the axis of the top.

Color Plate 4.2 A rope modeled as a linear chain of springs. Image (a) shows the rope at rest with only
gravity acting on it. Image (b) shows the rope subject to a wind force whose direction changes by small
random amounts.

Color Plate 4.4 A cloth modeled as a rectangular array of springs. Wind forces make the cloth flap
about. Notice that the cloth in image (b) is stretched in the vertical direction. The stretching occurs while
the gravitational and spring forces balance out in the vertical direction during the initial portion of the
simulation.

Color Plate 4.6 A gelatinous cube that is oscillating because of random forces. The cube is modeled by a
three-dimensional array of mass connected by springs.

Color Plate 4.7 A gelatinous blob that is oscillating because of small, random forces. This blob has the
masses located at the vertices of an icosahedron with additional masses of infinite weight to help stabilize
the oscillations. The springs connecting the blob to the infinite masses are shown in white.

Color Plate 4.15 A skirt modeled by a generalized cylinder surface. Wind-like forces are acting on the
skirt and are applied in the radial direction. Image (a) shows the skirt after wind is blowing it about. Image
(b) shows a wireframe view of the skirt so that you can see it consists of two closed curve boundaries and
is tessellated between.

Color Plate 4.17 A water drop modeled as a control point surface of revolution. The surface dynamically
changes to show the water drop forming, separating from the main body of water, then falling to the floor.
The evolution is from left to right and top to bottom.

Color Plate 4.18 A closed tube surface whose central axis is a helix.

Color Plate 4.19 A wriggling snake modeled as a tube surface whose central curve is a control point
curve.

Color Plate 4.20 Free-form deformation. Image (a) shows the initial configuration where all control
points are rectangularly aligned. Image (b) shows that some control points have been moved and the surface
is deformed. The control point shown in red in (b) is the point at which the mouse was clicked on and
moved.

Color Plate 4.29 A bouncing ball with deformation based on implicit surfaces. Image (a) shows the
bouncing ball with only the implicit surface deformation. Image (b) shows an additional deformation of
nonuniform scaling by applying an affine transformation.

Color Plate 5.4 Image (a) [upper left]: The initial density is generated by a uniform random number
generator. Image (b) [upper right]: The evolved density after a small period of time. The only force is
due to a spike of wind moving from the left-center of the grid. The bright blob-like region is a density
source. The dark blob-like region is a density sink. Image (c) [lower left]: Starting from the random initial
density, eight vortices were added to the grid. They are shown in white in the equivalent gray-scale image
of Figure 5.4; the direction of rotation is indicated by the arrows. You can see the swirl-like effects of the
vortices. Image (d) [lower right]: The grid of image (c) is allowed to evolve further. The density source and
sink are more pronounced, and the density is starting to become more homogeneous in regions centered
at the vortices.

Color Plate 5.5 Image (a) [upper left]: The initial density is a spherical blob of constant density. Image
(b) [upper right]: The evolved density after a small period of time. The only force is due to a spike of wind
moving from the right-center of the grid; the scene has been rotated slightly so you can see the portion
of the sphere on which the wind interacted first. There are no density sources or sinks. You can see the
material being pushed out of the sphere by the wind. Image (c) [lower left]: Eight vortices were added to
the grid, which causes the density to swirl around a bit. The scene was rotated so you can see the tunnel
carved out by the wind. Image (d) [lower right]: The lower-left grid is allowed to evolve further.

Color Plate 5.6 Image (a) [top] shows the initial 128 × 128 × 64 gray scale image (a CT image). The
boundary voxels are drawn in light gray. The z = 0 slice is the upper left tile. The z = 63 slice is the lower
right tile. Image (b) [bottom] shows the 3D image after a number of blurring operations.

	Front Cover
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Trademarks
	Figures
	Tables
	Preface to theSecond Edition
	Preface to theFirst Edition
	About the CD-ROM
	Chapter 1.Introduction
	1.1 A Brief History of the World
	1.2 A Summary of the Topics
	1.3 Examples and Exercises

	Chapter 2.Basic Concepts from Physics
	2.1 Rigid Body Classification
	2.2 Rigid Body Kinematics
	2.2.1 Single Particle
	2.2.2 Particle Systems and Continuous Materials

	2.3 Newton’s Laws
	2.4 Forces
	2.4.1 Gravitational Forces
	2.4.2 Spring Forces
	2.4.3 Friction and Other Dissipative Forces
	2.4.4 Torque
	2.4.5 Equilibrium

	2.5 Momenta
	2.5.1 Linear Momentum
	2.5.2 Angular Momentum
	2.5.3 Center of Mass
	2.5.4 Moments and Products of Inertia
	2.5.5 Mass and Inertia Tensor of a Solid Polyhedron

	2.6 Energy
	2.6.1 Work and Kinetic Energy
	2.6.2 Conservative Forces and Potential Energy

	Chapter 3. Rigid Body Motion
	3.1 Newtonian Dynamics
	3.2 Lagrangian Dynamics
	3.2.1 Equations of Motion for a Particle
	3.2.2 Time-Varying Frames or Constraints
	3.2.3 Interpretation of the Equations of Motion
	3.2.4 Equations of Motion for a System of Particles
	3.2.5 Equations of Motion for a Continuum of Mass
	3.2.6 Examples with Conservative Forces
	3.2.7 Examples with Dissipative Forces

	3.3 Euler’s Equations of Motion

	Chapter 4.Deformable Bodies
	4.1 Elasticity, Stress, and Strain
	4.2 Mass–Spring Systems
	4.2.1 One-Dimensional Array of Masses
	4.2.2 Two-Dimensional Array of Masses
	4.2.3 Three-Dimensional Array of Masses
	4.2.4 Arbitrary Configurations

	4.3 Control Point Deformation
	4.3.1 B-Spline Curves
	4.3.2 NURBS Curves
	4.3.3 B-Spline Surfaces
	4.3.4 NURBS Surfaces
	4.3.5 Surfaces Built from Curves

	4.4 Free-Form Deformation
	4.5 Implicit Surface Deformation
	4.5.1 Level Set Extraction
	4.5.2 Isocurve Extraction in 2D Images
	4.5.3 Isosurface Extraction in 3D Images

	Chapter 5.Fluids and Gases
	5.1 Vector Calculus
	5.1.1 Gradient, Directional Derivative, and Total Derivative
	5.1.2 Vector Fields, Divergence, and Laplacian
	5.1.3 Curl
	5.1.4 Line Integrals
	5.1.5 Surface Integrals and Stokes’ Theorem
	5.1.6 Volume Integrals and the Divergence Theorem
	5.1.7 Green’s Theorem, Laplace’s Equation, and Poisson’sEquation
	5.1.8 Vector Field Decomposition

	5.2 Strain and Stress
	5.2.1 Strain Tensor
	5.2.2 Stress Tensor
	5.2.3 The Relationship Between Strain and Stress

	5.3 Conservation Laws
	5.3.1 Conservation of Mass
	5.3.2 Conservation of Momentum

	5.4 A Simplified Model for Fluid Flow
	5.5 Implementing the Simplified 2D Model
	5.5.1 The Density Equation
	5.5.2 The Diffusion Term
	5.5.3 The Advection Term
	5.5.4 The Source–Sink Term
	5.5.5 The Total Density Update
	5.5.6 The Velocity Equations
	5.5.7 Specialized Boundary Handling

	5.6 Implementing the Simplified 3D Model
	5.7 Variations of the Simplified Model
	5.7.1 Vorticity Confinement and Vortex Particles
	5.7.2 Separate Pressure Term
	5.7.3 Omit Diffusion Terms
	5.7.4 Density and Velocity Dissipation
	5.7.5 Include Temperature
	5.7.6 Compressible Flow
	5.7.7 Obstacles in the Fluid Region
	5.7.8 Moving Boundaries and Multiple Fluids
	5.7.9 Finding Papers on Fluid Simulation

	Chapter 6.Physics Engines
	6.1 The Physics Tick
	6.2 Collision Culling
	6.2.1 Culling with Bounding Spheres
	6.2.2 Culling with Axis-Aligned Bounding Boxes
	6.2.3 AABB Culling in a Single-Threaded Environment
	6.2.4 AABB Culling Using a Separate Core of a CPU
	6.2.5 AABB Culling Using a Specialized Processor

	6.3 Test-Intersection Queries
	6.3.1 Spheres
	6.3.2 Capsules
	6.3.3 Ellipsoids
	6.3.4 Cylinders

	6.4 Collision Detection with ConvexPolyhedra
	6.4.1 The Method of Separating Axes
	6.4.2 Stationary Objects
	6.4.3 Objects Moving with Constant Linear Velocity
	6.4.4 Oriented Bounding Boxes
	6.4.5 Boxes Moving with Constant Linear and Angular Velocity
	6.4.6 GJK Algorithm

	6.5 Unconstrained Motion
	6.6 Acceleration-Based ConstrainedMotion
	6.6.1 Collision Points
	6.6.2 Collision Response for Colliding Contact
	6.6.3 Collision Response for Resting Contact
	6.6.4 An Illustrative Implementation
	6.6.5 Lagrangian Dynamics

	6.7 Velocity-Based Constrained Motion
	6.7.1 Constraint on a Particle
	6.7.2 Constraints on a Particle System
	6.7.3 Constraint on a Rigid Body
	6.7.4 Constraints on a Rigid Body System
	6.7.5 Comments and Variations on the Algorithm

	6.8 Variations

	Chpater7. Linear Algebra
	7.1 A Review of Number Systems
	7.1.1 The Integers
	7.1.2 The Rational Numbers
	7.1.3 The Real Numbers
	7.1.4 The Complex Numbers
	7.1.5 Fields

	7.2 Systems of Linear Equations
	7.2.1 A Closer Look at Two Equations in Two Unknowns
	7.2.2 Gaussian Elimination and Elementary Row Operations
	7.2.3 Nonsquare Systems of Equations
	7.2.4 The Geometry of Linear Systems
	7.2.5 Numerical Issues
	7.2.6 Iterative Methods for Solving Linear Systems

	7.3 Matrices
	7.3.1 Some Special Matrices
	7.3.2 Elementary Row Matrices
	7.3.3 Inverse Matrices
	7.3.4 Properties of Inverses
	7.3.5 Construction of Inverses
	7.3.6 LU Decomposition

	7.4 Vector Spaces
	7.4.1 Definition of a Vector Space
	7.4.2 Linear Combinations, Spans, and Subspaces
	7.4.3 Linear Independence and Bases
	7.4.4 Inner Products, Length, Orthogonality, and Projection
	7.4.5 Dot Product, Cross Product, and Triple Products
	7.4.6 Orthogonal Subspaces
	7.4.7 The Fundamental Theorem of Linear Algebra
	7.4.8 Projection and Least Squares
	7.4.9 Linear Transformations

	7.5 Advanced Topics
	7.5.1 Determinants
	7.5.2 Eigenvalues and Eigenvectors
	7.5.3 Eigendecomposition for Symmetric Matrices
	7.5.4 S + N Decomposition
	7.5.5 Applications

	Chapter 8.Affine Algebra
	8.1 Introduction
	8.2 Coordinate Systems
	8.3 Subspaces
	8.4 Transformations
	8.5 Barycentric Coordinates
	8.5.1 Triangles
	8.5.2 Tetrahedra
	8.5.3 Simplices
	8.5.4 Length, Area, Volume, and Hypervolume

	Chapter 9.Calculus
	9.1 Univariate Calculus
	9.1.1 Limits
	9.1.2 Limits of a Sequence
	9.1.3 Continuity
	9.1.4 Differentiation
	9.1.5 L’Hôpital’s Rule
	9.1.6 Integration

	9.2 Multivariate Calculus
	9.2.1 Limits and Continuity
	9.2.2 Differentiation
	9.2.3 Integration

	9.3 Applications
	9.3.1 Optimization
	9.3.2 Constrained Optimization
	9.3.3 Derivative Approximations by Finite Differences

	Chapter 10.Quaternions
	10.1 Rotation Matrices
	10.2 The Classical Approach
	10.2.1 Algebraic Operations
	10.2.2 Relationship of Quaternions to Rotations

	10.3 A Linear Algebraic Approach
	10.4 Interpolation of Quaternions
	10.4.1 Spherical Linear Interpolation
	10.4.2 Spherical Quadratic Interpolation

	10.5 Derivatives of Time-VaryingQuaternions

	Chapter 11. DifferentialEquations
	11.1 First-Order Equations
	11.2 Existence, Uniqueness, andContinuous Dependence
	11.3 Second-Order Equations
	11.4 General-Order Differential Equations
	11.5 Systems of Linear DifferentialEquations
	11.6 Equilibria and Stability
	11.6.1 Stability for Constant-Coefficient Linear Systems
	11.6.2 Stability for General Autonomous Systems

	Chapter 12.Ordinary Difference Equations
	12.1 Definitions
	12.2 Linear Equations
	12.2.1 First-Order Linear Equations
	12.2.2 Second-Order Linear Equations

	12.3 Constant Coefficient Equations
	12.4 Systems of Equations

	Chapter 13.Numerical Methods
	13.1 Euler’s Method
	13.2 Higher-Order Taylor Methods
	13.3 Methods via an Integral Formulation
	13.4 Runge–Kutta Methods
	13.4.1 Second-Order Methods
	13.4.2 Third-Order Methods
	13.4.3 Fourth-Order Method

	13.5 Multistep Methods
	13.6 Predictor–Corrector Methods
	13.7 Extrapolation Methods
	13.7.1 Richardson Extrapolation
	13.7.2 Application to Differential Equations
	13.7.3 Polynomial Interpolation and Extrapolation
	13.7.4 Rational Polynomial Interpolation and Extrapolation
	13.7.5 Modified Midpoint Method
	13.7.6 Bulirsch–Stoer Method

	13.8 Verlet Integration
	13.8.1 Forces Without a Velocity Component
	13.8.2 Forces with a Velocity Component
	13.8.3 Simulating Drag in the System
	13.8.4 Leapfrog Method
	13.8.5 Velocity Verlet Method
	13.8.6 Gear’s Fifth-Order Predictor-Corrector Method

	13.9 Numerical Stability and ItsRelationship to Physical Stability
	13.9.1 Stability for Single-Step Methods
	13.9.2 Stability for Multistep Methods
	13.9.3 Choosing a Stable Step Size

	13.10 Stiff Equations

	Chapter 14. Linear Complementarity and MathematicalProgramming
	14.1 Linear Programming
	14.1.1 A Two-Dimensional Example
	14.1.2 Solution by Pairwise Intersections
	14.1.3 Statement of the General Problem
	14.1.4 The Dual Problem

	14.2 The Linear Complementarity Problem
	14.2.1 The Lemke Algorithm
	14.2.2 Zero Constant Terms
	14.2.3 The Complementary Variable Cannot Leave the Dictionary

	14.3 Mathematical Programming
	14.3.1 Karush–Kuhn–Tucker Conditions
	14.3.2 Convex Quadratic Programming
	14.3.3 General Duality Theory

	14.4 Applications
	14.4.1 Distance Calculations
	14.4.2 Contact Forces

	Bibliography
	Index
	Color Plates

