


This excellent volume is unique in that it covers not only the basic techniques of computer
graphics and game development, but also provides a thorough and rigorous—yet very readable—
treatment of the underlying mathematics. Fledgling graphics and games developers will find it
a valuable introduction; experienced developers will find it an invaluable reference. Everything
is here, from the detailed numeric issues of IEEE floating point notation, to the correct way to
use quaternions and spherical linear interpolation to represent orientation, to the mathematics
of collision detection and rigid-body dynamics.
—David Luebke, University of Virginia,
co-author of Level of Detail for 3D Graphics

When it comes to software development for games or virtual reality, you cannot escape the math-
ematics. The best performance comes not from superfast processors and terabytes of memory,
but from well-chosen algorithms. With this in mind, the techniques most useful for developing
production-quality computer graphics for Hollywood blockbusters are not the best choice for
interactive applications. When rendering times are measured in milliseconds rather than hours,
you need an entirely different perspective.

Essential Mathematics for Games and Interactive Applications provides this perspective.
While the mathematics are rigorous and perhaps challenging at times, Van Verth and Bishop
provide the context for understanding the algorithms and data structures needed to bring games
and VR applications to life. This may not be the only book you will ever need for games and VR
software development, but it will certainly provide an excellent framework for developing robust
and fast applications.

—Ian Ashdown, President, ByHeart Consultants Limited

With Essential Mathematics for Games and Interactive Applications, Van Verth and Bishop have
provided invaluable assistance for professional game developers looking to shore up weaknesses
in their mathematical training. Even if you never intend to write a renderer or tune a physics
engine, this book provides the mathematical and conceptual grounding needed to understand
many of the key concepts in rendering, simulation, and animation.

—Dave Weinstein, Microsoft, Red Storm Entertainment

Geometry, trigonometry, linear algebra, and calculus are all essential tools for 3D graphics. Math-

ematics courses in these subjects cover too much ground, while at the same time glossing over the

bread-and-butter essentials for 3D graphics programmers. In Essential Mathematics for Games

and Interactive Applications, Van Verth and Bishop bring just the right level of mathematics out

of the trenches of professional game development. This book provides an accessible and solid

mathematical foundation for interactive graphics programmers. If you are working in the area
of 3D games, this book is a “must have.”

—Jonathan Cohen, Department of Computer Science,

Johns Hopkins University,

co-author of Level of Detail for 3D Graphics

It’s the book with all the math you need for games.
—Neil Kirby, Bell Labs

As games become ever more sophisticated, mathematics and technical programming skills
become increasingly important to have in your toolbox. Essential Math provides a solid foun-
dation in many critical areas. You will find many topics covered in detail: from linear algebra
to calculus, from physics to rasterization. Some of this will be review material, but you will
undoubtedly learn something new and, most importantly, something useful.

—FErin Catto, Blizzard Entertainment
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PREFACE

Writing a book is an adventure. To begin with, it is a toy and an amusement;
then it becomes a mistress, and then it becomes a master, and then a tyrant. The
last phase is that just as you are about to be reconciled to your servitude, you
kill the monster, and fling him out to the public. — Sir Winston Churchill

THE ADVENTURE BEGINS

As humorous as Churchill’s statement is, there is a certain amount of truth to it; writing
this book was indeed an adventure. There is something about the process of writing,
particularly a nonfiction work like this, that forces you to test and expand the limits
of your knowledge. We hope that you, the reader, benefit from our hard work.

How does a book like this come about? Many of Churchill’s books began with his
experience — particularly his experience as a world leader in wartime. This book had
a more mundane beginning: Two engineers at Red Storm Entertainment, separately,
asked Jim to teach them about vectors. These engineers were 2D game programmers,
and 3D was not new, but was starting to replace 2D at that point. Jim’s project was
in a crunch period, so he didn’t have time to do much about it until proposals were
requested for the annual Game Developers Conference. Remembering the engineers’
request, he thought back to the classic “Math for SIGGRAPH” course from SIGGRAPH
1989, which he had attended and enjoyed. Jim figured that a similar course, at that
time titled “Math for Game Programmers,” could help 2D programmers become 3D
programmers.

The course was accepted, and together with a co-speaker, Marcus Nordenstam,
Jim presented it at GDC 2000. The following years (2001-2002) Jim taught the course
alone, as Marcus had moved from the game industry to the film industry. The sub-
ject matter changed slightly as well, adding more advanced material such as curves,
collision detection, and basic physical simulation.

It was in 2002 that the seeds of what you hold in your hand were truly planted.
At GDC 2002, another GDC speaker, whose name, alas, is lost to time, recommended
that Jim turn his course into a book. This was an interesting idea, but how to get it
published? As it happened, Jim ran into Dave Eberly at SIGGRAPH 2002, and he was
looking for someone to write just that book for Morgan Kaufmann. At the same time,
Lars, who was working at Numeric Design Limited at the time, was presenting some

Xix
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of the basics of rendering on handheld devices as part of a SIGGRAPH course. Jim and
Lars discussed the fact that handheld 3D rendering had brought back some of the “lost
arts” of 3D programming, and that this might be included in a book on mathematics
for game programming.

Thus, a co-authorship was formed. Lars joined Jim in teaching the GDC 2003
version of what was now called “Essential Math for Game Programmers,” and simul-
taneously joined Jim to help with the book, helping to expand the topics covered to
include numerical representations. As we began to flesh out the latter chapters of the
outline, Lars was finding that the advent of programmable shaders on consumer 3D
hardware was bringing more and more low-level lighting, shading, and texturing ques-
tions into his office at NDL. Accordingly, the planned single chapter on “texturing and
antialiasing” became three, covering a wider selection of these rendering topics.

By early 2003, we were furiously typing the first full draft of the first edition of
this book, and by GDC 2004 the book was out. Having defeated the dragon, we retired
to our homes to live out the rest of our quiet little lives.

Or so we thought.

THE ADVENTURE CONTINUES

Response to the first edition was quite positive, and the book continued to sell well
beyond the initial release. Naturally, thoughts turned to what we could do to improve
the book beyond what we already created.

In reviewing the topic list, it was obvious what the most necessary change was.
Within a year or so of the publication of the first edition, programmable shading had
revolutionized the creation of 3D applications on game consoles and on PC. While the
first edition had provided readers with many of the fundamentals behind the mathe-
matics used in shaders, it stopped short of actually discussing them in detail. It was
clear that the second edition needed to embrace shaders completely, applying the
mathematics of the earlier chapters to an entirely new set of rendering content. So
the single biggest change in the second edition is a move to a purely shader-based
rendering pipeline.

We also sent the book to reviewers to ask them what they would like to see added.
The two most common requests were information about random numbers and the
addition of problems and exercises. So we are providing both. A brand new chapter
on probability and random numbers has been added, and problems and exercises for
each chapter have been added to the CD in the back of the book. In addition, the entire
book has been revised to add corrections and make the content flow better. We hope
you'll find our efforts worthwhile.

Both times, the experience was fascinating, sometimes frustrating, but ultimately
deeply rewarding. Hopefully, this fascination and respect for the material will be con-
veyed to you, the reader. The topics in this book can each take a lifetime to study to a
truly great depth; we hope you will be convinced to try just that, nonetheless!

Enjoy as you do so, as one of the few things more rewarding than programming
and seeing a correctly animated, simulated, and rendered scene on a screen is the
confidence of understanding 7ow and why everything worked. When something ina 3D
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system goes wrong (and it always does), the best programmers are never satisfied with
“I fixed it, but I'm not sure how;” without understanding, there can be no confidence in
the solution, and nothing new is learned. Such programmers are driven by the desire to
understand what went wrong, how to fix it, and learning from the experience. No other
tool in 3D programming is quite as important to this process than the mathematical
bases! behind it.

THOSE WHO HELPED Us ALONG THE ROAD

In a traditional adventure the protagonists are assisted by various characters that pass
in and out of the pages. Similarly, while this book bears the names of two people on
the cover, the material between its covers bears the mark of many, many more. We
would like to thank a few of them here.

The folks at our publisher, Elsevier, were extremely patient with both of us as we
made up for being more experienced this time around by being more busy and less
responsive! Chris Simpson, Laura Lewin, Georgia Kennedy, and Paul Gottehrer were
all patient, professional, and flexible when we most needed it.

In addition, credit is still due to the folks at Morgan Kaufmann who helped us
publish the first edition. Tim Cox, our editor, and Stacie Pierce and Richard Camp,
his assistants, as well as Troy Lilly (in production) were patient and helpful in the
daunting task of leading two first-time authors through the process. Special thanks
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INTRODUCTION

THE (CONTINUED) RISE OF 3D GAMES

Over the past decade or so (driven by increasingly powerful computer and video
game console hardware), three-dimensional (3D) games have expanded from custom-
hardware arcade machines to the realm of hardcore PC games, to consumer set-top
video game consoles, and even to handheld devices such as personal digital assistants
(PDAs) and cellular telephones. This explosion in popularity has lead to a corre-
sponding need for programmers with the ability to program these games. As a result,
programmers are entering the field of 3D games and graphics by teaching themselves
the basics, rather than a classic college-level graphics and mathematics education. At
the same time, many college students are looking to move directly from school into the
industry. These different groups of programmers each have their own set of skills and
needs in order to make the transition. While every programmer’s situation is different,
we describe here some of the more common situations.

Many existing, self-taught 3D game programmers have strong game experi-
ence and an excellent practical approach to programming, stressing visual results
and strong optimization skills that can be lacking in college-level computer science
programs. However, these programmers are sometimes less comfortable with the
conceptual mathematics that form the underlying basis of 3D graphics and games.
This can make developing, debugging, and optimizing these systems more of a
trial-and-error exercise than would be desired.

Programmers who are already established in other specializations in the game
industry, such as networking or user interfaces, are now finding that they want to
expand their abilities into core 3D programming. While having experience with a wide
range of game concepts, these programmers often need to learn or refresh the basic
mathematics behind 3D games before continuing on to learn the applications of the
principles of rendering and animation.

On the other hand, college students entering (or hoping to enter) the 3D games
industry often ask what material they need to know in order to be prepared to work on
these games. Younger students often ask what courses they should attend in order to
gain the most useful background for a programmer in the industry. Recent graduates,
on the other hand, often ask how their computer graphics knowledge best relates to
the way games are developed for today’s computers and game consoles.

We have designed this book to provide something for each of these groups
of readers. We attempt to provide readers with a conceptual understanding of the
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mathematics needed to create 3D games, as well as an understanding of how these
mathematical bases actually apply to games and graphics. The book provides not only
theoretical mathematical background, but also many examples of how these concepts
are used to affect how a game looks (how it is rendered) and plays (how objects move
and react to users). Each type of reader is likely to find sections of the book that, for
them, provide mainly refresher courses, a new understanding of the applications of
basic mathematical concepts, or even completely new information. The specific sec-
tions that fall into each category for a particular reader will, of course, depend on the
reader.

How To READ THIS BOOK

Perhaps the best way to discuss any reader’s approach to reading this book is to think
in terms of how a 3D game or other interactive application works at the highest level.
Most readers of this book likely intend to apply what they learn from it to create,
extend, or fix a 3D game or other 3D application. Each chapter in this book deals with
a different topic that has applicability to some or all of the major parts of a 3D game.

GAME ENGINES

An interactive 3D application such as a game requires quite a large amount of code
to do all of the many things asked of it. This includes representing the virtual world,
animating parts of it, drawing that virtual world, and dealing with user interaction in
a game-relevant manner. The bulk of the code required to implement these features is
generally known as a game engine. Game engines have evolved from small, simple, low-
level rendering systems in the early 1990s to massive and complex software systems in
modern games, capable of rendering detailed and expansive worlds, animating realistic
characters, and simulating complex physics. At their core, these game engines are
really implementations of the concepts discussed throughout this book.

Initially, game engines were custom affairs, written for a single use as a part of
the game itself, and thrown away after being used for that single game project. Today,
game developers have several options when considering an engine. They may pur-
chase a commercial engine from another company and use it unmodified for their
project. They may purchase an engine and modify it very heavily to customize their
application. Finally, they may write their own, although most programmers choose to
use such an internally developed engine for multiple games to offset the large cost of
creating the engine.

In any of these cases, the developer must still understand the basic concepts of
the game engine. Whether as a user, a modifier, or an author of a game engine, the
developer must understand at least a majority of the concepts presented in this book.
To better understand how the various chapters in this book surface in game engines,
we first present a common main loop as it might appear in a game engine:

1. Draw the current configuration of the game’s scene to the screen.

2. Animate the characters in the scene based on animator-created sequences (e.g.,
soccer players running downfield).
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3. Detect collisions between the characters and objects (e.g., the soccer ball
entering the goal or two players sliding into one another).

4. React to these collisions and basic forces such as gravity in the scene in a
physically correct manner (e.g., the soccer ball in flight).

All of these steps will need to be done for each frame to present the player with
a convincing game experience. Thus, the code to implement the steps above must be
correct and optimal.

CHAPTERS 1-5: THE BAsSICS

Perhaps the most core parts of any game engine are the low-level mathematical and
geometric representations and algorithms. The pieces of code will be used by each and
every step listed above. Chapter 1 provides the lowest-level basis for this. It discusses
the practicalities of representing real numbers on a computer, with a focus on the
issues most likely to affect the development of a 3D game engine for a PC, console, or
handheld device.

Chapter 2 provides a focused review of vectors and points, objects that are used
in all game engines to represent locations, directions, velocities, and other geometric
quantities in all aspects of a 3D application. Chapters 3 and 4 review the basics of
linear and affine algebra as they relate to orienting, moving, and distorting the objects
and spaces that make up a virtual world. Finally, Chapter 5 introduces the quaternion,
a very powerful nonmatrix representation of object orientation that will be pivotal to
the later chapters on animation and simulation.

Three-dimensional engine code that implements all of these fundamental objects
must be built carefully and with a good understanding of both the underlying mathe-
matics and programming issues. Otherwise, the game engine built on top of these basic
objects or functions will be based upon a poor foundation. Many game programmers’
multiday debugging sessions have ended with the realization that the complex bug
was rooted in an error in the engine’s basic mathematics code.

Some readers will have a passing familiarity with the topics in these chapters.
However, most readers will want to start with these chapters, as many of the topics
are covered in more conceptual detail than is often discussed in basic graphics texts.
Readers new to the material will want to read in detail, while those who already know
some linear algebra can use the chapters to fill in any missing background. All of these
chapters form a basis for the rest of the book, and an understanding of these topics,
whether existing or new, will be key to successful 3D programming.

CHAPTERS 6—9: RENDERING

Chapters 6-9 apply the foundational objects detailed in Chapters 1-5 to explain step 1
of the game engine main loop: the rendering or drawing pipeline, perhaps the best-
known part of any game engine. In some game engines, more time and effort is spent
designing, programming, and tuning the rendering pipeline than the rest of the engine
in its entirety. Chapter 6 describes the mathematics and geometry behind the virtual
cameras used to view the scene or game world. Chapter 7 describes the representation
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of color and the concept of shaders, which are short programs that allow modern
graphics hardware to draw the scene objects to the display device. Chapter 8 explains
how to use these programmable shaders to implement simple approximations of real-
world lighting. The rendering section concludes with Chapter 9, which details the
methods used by low-level rendering systems to draw to the screen. An understanding
of these details can allow programmers to create much more efficient and artifact-free
rendering code for their engines.

CHAPTERS 10—13: ANIMATION AND PHYsSICS

The game engine loop’s step 2, animating characters and other objects based on data
created by computer animators or motion-captured data, is introduced in Chapter 10.
This chapter discusses methods for smoothly animating the position, orientation, and
appearance of objects in the virtual game world. The importance of good, complex
character and object animation in modern engines continues to grow as new games
attempt to create smoother, more convincing representations of athletes, rock stars,
soldiers, and other human characters.

Chapter 11 covers another element for adding realism to games: random num-
bers. Everything up to this point has been carefully determined and planned by the
programmer or artist. Adding randomness adds the unexpected behavior that we see
in real life. Gunshots are not always exact, clouds are not perfectly spherical, and walls
are not pristine. This chapter discusses how to handle randomness in a game, and how
we can get effects such as those discussed above.

Step 3, detecting collisions, is discussed in Chapter 12. This chapter describes the
mathematics and programming behind detecting when two game objects touch, inter-
sect, or penetrate. Many genres of game have exacting requirements when it comes to
collision, be it a racing game, a sports title, or a military simulation.

Finally, step 4, reacting in a realistic manner to physical forces and collisions, is
covered in Chapter 13. This chapter describes how to make game objects behave and
react in physically convincing ways.

Put together, the chapters that form this book are designed to give a good basis
for the foundations of a game engine, details on the ways that engines represent and
draw their virtual worlds, and an introduction to making those worlds seem real and
active.

INTERACTIVE DEMO APPLICATIONS

Three-dimensional games and graphics are, by their nature, not only visual but
dynamic. While figures are indeed a welcome necessity in a book about 3D applica-
tions, interactive demos can be even more important. It is difficult to truly understand
such topics as lighting, quaternion interpolation, or physical simulation without
being able to see them work firsthand and to interact with these complex systems.
This book includes a CD-ROM of source code and demonstrations that are designed
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to illustrate the concepts in a way that is analogous to the static figures in the
book itself. Throughout the book, you will find references to interactive demos that
may be found on the CD-ROM. Whenever a topic is illustrated with an interactive
demo, a special icon like the one seen next to this paragraph will appear in the
margin.

SUPPORT LIBRARIES

In addition to the source code for each of the demos, the CD-ROM includes the sup-
porting libraries used to create the demos, with full source code. Often, code from
these supporting libraries is excerpted in the book itself in order to explain how the
particular concept is implemented. In such situations, an icon will appear in the mar-
gin to note where the library code may be found on the CD-ROM. This source code
is designed to allow readers to modify and experiment themselves, as a way of better
understanding the way the code works.

The source code is written entirely in C++, a language that is likely to be familiar
to most game developers. C++ was chosen because it is one of the most commonly
used languages in 3D game development and because vectors, matrices, quaternions,
and graphics algorithms decompose very well into C++ classes. In addition, C++’s
support of operator overloading means that the math library can be implemented
in a way that makes the code look very similar to the mathematical derivations in
the text. However, in some sections of the text, the class declarations as printed
in the book are not complete with respect to the code on the CD-ROM. Often,
class members that are not relevant to the particular discussion (especially mem-
ber variable accessor and “housekeeping” functions) have been omitted for clarity.
These other functions may be found in the full class declarations/definitions on the
CD-ROM.

Note that we have modified our mathematical notation slightly to allow our equa-
tions to be as compatible as possible with the code. Mathematicians normally start
indexing with 1, for example, P;, P,, ..., P,. This does not match how indexing is
done in C++: P[0] is the first element in the array P. To avoid this disconnect, in our
equations we will be using the convention that the starting element in a list is indexed
as 0; thus, Py, Py, ..., P,_1. This should allow for a direct translation from equation to
code.

MATH LIBRARIES

All of the demos use a shared core math library called IvMath, which includes C++
classes that implement vectors and matrices of different dimensions, along with a few
other basic mathematical objects discussed in the book. This library is designed to be
useful to readers beyond the examples supplied with the book, as the library includes
a wide range of functions and operators for each of these objects, some of which are
beyond the scope of the book’s demos.



XXVIil Introduction

The animation demos use a shared library called IvCurves, which includes classes
that implement spline curves, the basic objects used to animate position, IvCurves is
built upon IvMath, extending this basic functionality to include animation. As with
IvMath, the IvCurves library is likely to be useful beyond the scope of the book, as
these classes are flexible enough to be used (along with IvMath) in other applications.

Finally, the simulation demos use a shared library called IvColTision, which
implements basic object intersection (collision) data structures and algorithms. Build-
ing on the IvMath library, this set of classes and functions forms not only the basis for
the later demos in the book, but also is an excellent starting point for experimentation
with other forms of object collision and physics modeling.

ENGINE AND RENDERING LIBRARIES

In addition to the math libraries, the CD-ROM includes a set of classes that implement
a simple game like application framework, basic rendering, input handling, and timer
functionality. All of these functions are grouped under the heading of game engine
functionality, and are located in the IvEngine library. The engine’s rendering code
takes the form of a set of renderer-abstraction classes that simplify the interfaces
between the C++ classes in IvMath and the C-based, low-level rendering application
programmer interfaces (APIs). This code is included as a part of the rendering library
IvGraphics. It includes renderer setup, basic render-state management, and rendering
of simple geometric primitives, such as spheres, cubes, and boxes.

Furthermore, a set of basic classes that implement a simple hierarchial data struc-
ture called a scene graph are included in the library IvScene. The classes in IvScene
use and depend on the functionality of the IvCol1ision library. As a result, to avoid
unnecessary code dependencies, the scene graph classes were placed in their own
library, rather than in IvEngine.

Since this book focuses on the mathematics and concepts behind 3D games, we
chose not to center the discussion around a large-scale, general 3D rendering engine.
Doing so would introduce an extra layer of indirection that would not serve the concep-
tual requirements of the book. Valuable real estate in the rendering chapters would be
spent on background in the use of a particular engine — the one written for the book.
For an example and discussion of a full, hierarchical rendering engine, the reader is
encouraged to read David Eberly’s 3D Game Engine Design [25].

We have opted to implement our rendering system and examples using two stan-
dard SDKs: the multiplatform OpenGL [83] and the popular Direct3D DX9 [47]. We
also use the utility toolkits provided with these SDKs (OpenGL’s GLUT and Direct3D’s
D3DX) to implement cross-platform renderer setup and input handling, neither of
which are core topics of this book.

EXERCISES AND SUPPLEMENTARY MATERIAL

In addition to the sample code, we have included some useful reading material on the
CD-ROM for those who haven’t absorbed enough of our luminous prose. Each chapter
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has an associated set of exercises, ranging from easy to hard questions, that should
help those readers interested in testing their understanding of the material within.
Certain chapters also have supplemental material that unfortunately didn’t make its
way into the book proper due to space considerations. Those chapters have notes at
their end indicating that such material is available on the CD-ROM.

REFERENCES AND FURTHER READING

Hopefully, this book will leave readers with a desire to learn even more details and
the breadth of the mathematics involved in creating high-performance, high-quality
3D games. Wherever possible, we have included references to other books, articles,
papers, and websites that detail particular subtopics that fall outside the scope of this
book. The full set of references may be found at the back of the book.

We have attempted to include references that the vast majority of readers should
be able to locate. When possible, we have referenced recent and/or standard indus-
try texts and well-known conference proceedings. However, in some cases we have
included references to older magazine articles and technical reports when we found
those references to be particularly complete, seminal, or well written. In some cases,
older references can be easier for the less-experienced reader to understand, as they
often tend to assume less common knowledge when it comes to computer graphics
and game topics.

In the past, older magazine articles and technical reports were notoriously difficult
for the average reader to locate. However, the Internet and digital publishing have
made great strides toward reversing this trend. For example, the following sources
have made several classes of resources far more accessible:

® The magazine most commonly referenced in this book, Game Developer, offers
CD-ROMs that contain every issue of the magazine ever published. Copies of
these CD-ROMs are available from www.gdmag.com. Several other technical
magazines also offer such CD-ROMs.

m Technical societies are now placing major historical publications into their “dig-
ital libraries,” which are often made accessible to members. The Association
for Computing Machinery (ACM) has done this via their ACM Digital Library,
which is available to ACM members. As an example, the full text of the entire
collection of papers from all SIGGRAPH conferences (the conference proceed-
ings most frequently referenced in this book) is available electronically to ACM
SIGGRAPH members.

m Other papers and technical reports are often available on the Internet. The two
most common methods of finding these resources are via publication portals
such as Citeseer (www.citeseer.com) and via the authors’ personal homepages
(if they have them). Most of the technical reports referenced in this book are
available online from such sources. Owing to the dynamic nature of the Internet,
we suggest using a search engine if the publication portals do not succeed in
finding the desired article.
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For further reading, we suggest several books that cover topics related to this book
in much greater detail. In most cases they assume that the reader is familiar with the
concepts discussed in this book. David Eberly’s 3D Game Engine Design [25] discusses
the design and implementation of a full game engine, focusing mostly on graphics and
animation. Books by Gino van den Bergen [108] and Christer Ericson [32] cover topics
in interactive collision detection. Finally, Eberly [27] and Millington [76] provide a
more advanced discussion of a wide range of physical simulation topics.



REAL-WORLD
COMPUTER NUMBER
REPRESENTATION

1.1 INTRODUCTION

In this chapter we'll discuss what is perhaps the most fundamental basis
upon which three-dimensional (3D) graphics pipelines are built: computer
representation of numbers, particularly real numbers. While 3D programmers
often use the computer representations (approximations) of real numbers suc-
cessfully without any understanding of how they are implemented, this can
lead to subtle bugs and performance problems at inopportune stages in the
development of an application. Most basic undergraduate computer architec-
ture books [106] present the basics of integral data types (e.g., int and unsigned
int, short, etc. in C/C++), but give only brief introductions to floating-point
and other nonintegral number representations. Since the mathematics of 3D
graphics are generally real-valued (as we shall see from the ubiquity of R,
R?, and R? in the coming chapters), it is important for anyone in the field
to understand the features, limitations, and idiosyncracies of the computer
representation of these nonintegral types.

In this chapter we will discuss the major computer representation of
the real numbers, floating-point, along with the associated bitwise formats,
basic operations, features, and limitations. By design, we will transition
from general mathematical discussions of number representation toward
implementation-related topics of specific relevance to 3D graphics program-
mers. Most of the chapter will be spent on the ubiquitous Institute of
Electrical and Electronic Engineers (IEEE) floating-point numbers, espe-
cially discussions of floating-point limitations that often cause issues in
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3D pipelines. A brief case study of floating-point-related performance issues
in a real application is also presented.

We will assume that the reader is familiar with the basic concepts of
integer and whole-number representations on modern computers, including
signed representation via two’s complement, range, overflow, common stor-
age lengths (8,16, and 32 bits), standard C and C++ basic types (int, unsigned
int, short, etc.), and type conversion. For an introduction to these concepts
of binary number representation, we refer the reader to a basic computer
architecture text, such as Stallings [106], and to the C++ specification [30].

REPRESENTING REAL NUMBERS

Real numbers are, to most developers, the heart and soul of a 3D graphics
system. Most of the rest of the text is based upon real numbers and spaces
such as R? and R3. They are the most flexible and powerful of the number rep-
resentations on most computers and, not surprisingly, the most complicated
and problematic. We will present the methods that are used to represent real
numbers on computers today and will include numerous sections describing
common issues that arise from the use of these representations in real-world
applications.

The well-known issues relating to storage of integers (such as overflow)
remain pertinent issues with respect to real-number representation. However,
real-number representations add additional complexities that will result in
implementation trade-offs, subtle errors, and difficult-to-trace performance
issues that can easily confuse the programmer.

1.2.1 APPROXIMATIONS

While computer representations of whole numbers (unsigned int) and inte-
gers (int) are limited to a finite subset of their pure counterparts, in each case
the finite set is contiguous; that is, if i and i + 2 are both representable, then
i+ 1 is also representable. Inside the range defined by the minimum and max-
imum representable integer values, all integers can be represented exactly.
This is possible because any finitely bounded range of integers contains a
finite number of elements.

When dealing with real numbers, however, this is no longer true. A subset
of real numbers can have infinitely many elements even when bounded by
finite minimal and maximal values. As a result, no matter how tightly we
bound the range of real numbers (other than the trivial case of Ry = Rpax)
that we choose to represent, we will be unable to represent that subset of the
real numbers exactly. Issues of both range and precision will thus be constant
companions over the course of our discussion of real-number representations.
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In order to adequately understand the representations of real numbers, we
need to understand the concept of precision and error.

1.2.2 PRECISION AND ERROR

For any numerical representation system, we imagine a generic function
Rep(A), which returns the value in that system that is closest to the value
A. In a perfect representation system, Rep(A) = A for all values of A. When
representing real numbers on a computer, however, even limiting range to
finite extremes will not allow us to represent all numbers in the bounded
range exactly. Rep(A) will be a many-to-one mapping, with infinitely many
real numbers A mapping to each distinct value returned by Rep(A). For each
such distinct Rep(A), almost all values A that map to it will not be represented
exactly. In other words, for almost all real values A, Rep(A) # A. The obvious
result in such cases is that (Rep(A) — A) # 0. The representation in such a case
is an approximation of the actual value.

Making use of (Rep(A) — A), we can define several derived values that form
metrics of the error induced by representing A in the representation system.
Two such error metrics are called absolute error and relative error.

The simplest way to represent error is absolute error, which is defined as

AbsError = |Rep(A) — A|

This is simply the “number line” distance between the actual value and
its representation. While this value does correctly signify the difference
between the actual and representative values, it does not quantify another
important factor in representation error — the scale at which the error affects
computation.

To better understand this scale factor, imagine a system of measurement
that is accurate to within a kilometer. Such a system might be considered
suitably accurate for measuring the 149,597,871 km between Earth and the
sun. However, it likely would be woefully inaccurate at measuring the size
of an apple (0.00011 km), which would be rounded to 0 km! Intuitively, this
is obvious, but in both cases the absolute error of representation is less than
1 km. Clearly, absolute error is not sufficient in all cases.

Relative error takes the scale of the value being approximated into
account. It does so by dividing the absolute error by the actual value being
represented. Relative error is defined as

Rep(A) — A
RelError = ’L‘

A

As such, relative error is dimensionless; even if the values being approximated
have units (such as kilometers), the relative error has no units. Due to the
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division, relative error cannot be computed for a value that approximates
zero. It is a measure of the ratio of the error to the magnitude of the value
being approximated. Revisiting our previous example, the relative errors in
each case would be (approximately)

1km

RelErrorS,m = ‘m ~ 7 x 1079
0.00011 km
RelErrorApple = m =1.0

Clearly, relative error is a much more useful error metric in this case. The
Earth-sun distance error is tiny (compared to the distance being measured),
while the size of the apple was estimated so poorly that the error had the
same magnitude as the actual value. In the former case a relatively “exact”
representation was found, while in the latter case the representation is all
but useless.

FLOATING-POINT NUMBERS

1.3.1 REVIEW: SCIENTIFIC NOTATION

In order to better introduce floating-point numbers, it is instructive to review
the well-known standard representation for real numbers in science and
engineering: scientific notation. Computer floating-point is very much analo-

gous to scientific notation.
Scientific notation (in its strictest, so-called normalized form) consists of

two parts:

1. A decimal number, called the mantissa, such that

1.0 < |mantissa| < 10.0

2. An integer, called the exponent.

Together, the exponent and mantissa are combined to create the number

mantissa x 10¢<ponent



1.3 Floating-Point Numbers 5

Any decimal number can be represented in this notation (other than 0,
which is simply represented as 0.0), and the representation is unique for each
number. In other words, for two numbers written in this form of scientific
notation, the numbers are equal if and only if their mantissas and exponents
are equal. This uniqueness is a result of the requirements that the exponent
be an integer and that the mantissa be “normalized” (i.e., have magnitude in
the range [1.0, 10.0]). Examples of numbers written in scientific notation
include

102 = 1.02 x 10?
243,000 = 2.43 x 10°
—0.0034 = —34 x 1073

Examples of numbers that constitute incorrect scientific notation include

Incorrect = Correct
11.02 x 10> = 1.102 x 10*
092x102=92x 1073

1.3.2 A RESTRICTED SCIENTIFIC NOTATION

For the purpose of introducing the concept of finiteness of representation, we
will briefly discuss a contrived, restricted scientific notation. We extend the
rules for scientific notation:

1. The mantissa must be written with a single, nonzero integral digit.

2. The mantissa must be written with a fixed number of fractional digits
(we define this as M digits).

3. The exponent must be written with a fixed number of digits (we
define this as E digits).

4. The mantissa and the exponent each have individual signs.
For example, the following number is in a format with M =3, E = 2:
T2 x 10412

Limiting the number of digits allocated to the mantissa and exponent
means that any value that can be represented by this system can be represented
uniquely by six decimal digits and two signs. However, this also implies that
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there are a limited number of values that could ever be represented exactly
by this system, namely:

(exponents) x (mantissas) x (exponent signs) x (mantissa signs)
= (10%) x (9 x 10%) x (2) x (2)
= 3,600,000

Note that the leading digit of the mantissa must be nonzero (since the
mantissa is normalized), so that there are only nine choices for its value [1, 9],
leading to 9 x 10 x 10 x 10 = 9,000 possible mantissas.

This adds finiteness to both the range and precision of the notation. The
minimum and maximum exponents are

+(10F — 1) = £(10> — 1) = +99
The largest mantissa value is
10.0 — (107M) = 10.0 — (1073) = 10.0 — 0.001 = 9.999

Note that the smallest allowed nonzero mantissa value is still 1.000 due to
the requirement for normalization. This format has the following numerical
limitations:

Maximum representable value: 9.999 x 10%°
Minimum representable value: —9.999 x 10%°
Smallest positive value: 1.000 x 10~

While one would likely never use such a restricted form of scientific
notation in practice, it demonstrates the basic building blocks of binary
floating-point, the most commonly used computer representation of real
numbers in modern computers.

BINARY “SCIENTIFIC NOTATION”

There is no reason that scientific notation must be written in base-10.
In fact, in its most basic form, the real-number representation known as
floating-point is similar to a base-2 version of the restricted scientific notation
given previously. In base-2, our restricted scientific notation would become

SignM x mantissa x 25"E x exponent

where exponent is an E-bit integer, and SignM and SignE are independent bits
representing the signs of the mantissa and exponent, respectively.
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Mantissa is a bit more complicated. It is an M + 1-bit number whose most
significant bit is 1. Mantissa is actually a “fixed-point” number. Fixed-point
numbers are based on a very simple observation with respect to computer
representation of integers. In the standard binary representation, each bit
represents twice the value of the bit to its right, with the least significant
bit representing 1. The following diagram shows these powers of two for a
standard 8-bit unsigned value:

27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

Just as a decimal number can have a decimal point, which represents the
break between integral and fractional values, a binary value can have a binary
point, or more generally a radix point (a decimal number is referred to as radix
10, a binary number as radix 2). In the common integer number layout, we
can imagine the radix point being to the right of the last digit. However, it
does not have to be placed there. For example, let us place the radix point in
the middle of the number (between the fourth and fifth bits). The diagram
would then look like this:

23 | 22 | 21 [ 20 2-1 | 272 | 23 | 24

1 1
8 |4 |2 |1 .} &

I
o0 —

Now, the least significant bit represents 1/16. The basic idea behind fixed-
point is one of scaling. A fixed-point value is related to an integer with the
same bit pattern by an implicit scaling factor. This scaling factor is fixed for
a given fixed-point format and is the value of the least significant bit in the
representation. In the case of the preceding format, the scaling factor is 1/16.

The standard nomenclature for a fixed-point format is “A-dot-B,” where
A is the number of integral bits (to the left of the radix point) and B is
the number of fractional bits (to the right of the radix point). For example,
the 8-bit format in our example would be referred to as “4-dot-4.” As a further
example, regular 32-bit integers would be referred to as “32-dot-0” because
they have no fractional bits. More generally, the scaling factor for an A-dot-B
format is simply 27 2. Note that, as expected, the scaling factor for a 32-dot-0
format (integers) is 2° = 1. No matter what the format, the radix point is “fixed”
(orlocked) at B bits from the least significant bit; thus the name “fixed-point.”

Since the mantissa is a 1-dot-M fixed-point number, the leading bit rep-
resents the integer 1. As mentioned above, the leading bit in the mantissa is
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defined to be 1, so the resulting fixed-point mantissa is in the range

1
1.0 < mantissa < (2.0 — 2—M>
Put together, the format involves M + E + 3 bits (M + 1 for the mantissa, E
for the exponent, and two for the signs). Creating an example that is analogous
to the preceding decimal case, we analyze the case of M =3, E = 2:

Any value that can be represented by this system can be represented
uniquely by 8 bits. The number of values that ever could be represented exactly
by this system is

(exponents) x (mantissas) x (exponent signs) x (mantissa signs)
=23 x (1 x2%) x(2) x (2
=27 =128

This seems odd, as an 8-bit number should have 256 different values.
However, note that the leading bit of the mantissa must be 1, since the man-
tissa is normalized (and the only choices for a bit’s value are 0 and 1). This
effectively fixes one of the bits and cuts the number of possible values in
half. We shall see that the most common binary floating-point format takes
advantage of the fact that the integral bit of the mantissa is fixed at 1.

In this case, the minimum and maximum exponents are

+2fF - =2+2>-1) =43

The largest mantissa value is

20-2"M_20-2"3=1.3875

This format has the following numerical limitations:

Maximum representable value: 1.875 x 23 = 15
Minimum representable value: —1.875 x 23 = —15
Smallest positive value: 1.000 x 273 = 0.125

From the listed limits, it is quite clear that a floating-point format based
on this simple 8-bit binary notation would not be useful to most real-world
applications. However, it does introduce the basic concepts that are shared
by real floating-point representations. While there are countless possible
floating-point formats, the universal popularity of a single set of formats
(those described in the IEEE 754 specification [2]) makes it the obvious
choice for any discussion of the details of floating-point representation. In the
remainder of this chapter we will explain the major concepts of floating-point
representation as evidenced by the IEEE standard format.
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1.5 IEEE 754 FLOATING-POINT STANDARD

By the early to mid-1970s, scientists and engineers were using floating-
point very frequently to represent real numbers; at the time, higher-powered
computers even included special hardware to accelerate floating-point
calculations. However, these same scientists and engineers were finding the
lack of a floating-point standard to be problematic. Their complex (and
often very important) numerical simulations were producing different results,
depending only on the make and model of computer upon which the simula-
tion was run. Numerical code that had to run on multiple platforms became
riddled with platform-specific code to deal with the differences between
different floating-point processors and libraries.

In order for cross-platform numerical computing to become a reality, a
standard was needed. Over the course of the next decade, a draft standard
for floating-point formats and behaviors became the de facto standard on most
floating-point hardware. Once adopted, it became known as the IEEE 754
floating-point standard [2], and it forms the basis of almost every hardware
and software floating-point system on the market.

While the history of the standard is fascinating [62], this section will focus
on explaining part of the standard itself, as well as using the standard and
one of its specified formats to explain the concepts of modern floating-point
arithmetic.

1.5.1 BASIC REPRESENTATION

The IEEE standard specifies a 32-bit “single-precision” format for floating-
point numbers, as well as a 64-bit “double-precision” format. It is this single-
precision format that is of greatest interest for most games and interactive
applications and is thus the format that will form the basis of most of the
floating-point discussion in this text. The two formats are fundamentally
similar, so all of the concepts regarding single precision are applicable to
double-precision values as well.

The following diagram shows the basic memory layout of the IEEE single-
precision format, including the location and size of the three components of
any floating-point system: sign, exponent, and mantissa:

Sign | Exponent | Mantissa

1 bit 8 bits 23 bits

The sign in the IEEE floating-point format is represented as an explicit
bit (the high-order bit). Note that this is the sign of the number itself (the
mantissa), not the sign of the exponent. Differentiating between positive and
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negative exponents is handled in the exponent itself (and is discussed next).
The only difference between X and — X in IEEE floating-point is the high-order
bit. A sign bit of 0 indicates a positive number, and a sign bit of 1 indicates a
negative number.

This sign bit format allows for some efficiencies in creating a floating-
point math system either in hardware or software. To negate a floating-point
number, simply “flip” the sign bit, leaving the rest of the bits unchanged. To
compute the absolute value of a floating-point number, simply set the sign bit
to 0 and leave the other bits unchanged. In addition, the sign bits of the result
of a multiplication or division are simply the exclusive-OR of the sign bits of
the operands.

As will be seen, this explicit sign bit does lead to the existence of two
zero values, one positive and one negative. However, it also simplifies the
representation of the mantissa, which is represented as unsigned.

The exponent in this case is stored as a biased number. Biased numbers
represent both positive and negative integers (inside of a fixed range) as whole
numbers by adding a fixed, positive bias. To represent an integer I, we add
a positive bias B (that is constant for the biased format), storing the result
as the whole number (nonnegative integer) W. To decode the represented
value I from its biased representation W, the formula is simply

I=W-—-B
To encode an integer value, the formula is
W=1I+B
Clearly, the minimum integer value that can be represented is
I=0—-—B=-B
The maximal value that can be represented is related to the maximum whole

number that can be represented, W,,,,. For example, with an 8-bit biased
number, that value is

I=Wpax—B=02%—1)—B

Most frequently, the bias chosen is as close as possible to W,,../2, giving a
range that is equally distributed to about zero. Over the course of this chapter,
when we are referring to a biased number, the term value will refer to I, while
the term bits will refer to W.

Such is the case with the IEEE floating-point exponent, which uses 8 bits
of representation and a bias of 127. This would seem to lead to minimum and
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maximum exponents of —127 (= 0 — 127) and 128 (= 255 — 127), respectively.
However, for reasons that will be explained, the minimum and maximum
values (—127 and 128) are reserved for special cases, leading to an exponent
range of [—126, 127]. As a reference, these base-2 exponents correspond to
base-10 exponents of approximately [—37, 38].

The mantissa is normalized (in almost all cases), as in our discussion of
decimal scientific notation (where the units digit was required to have magni-
tude in the range [1, 9]). However, the meaning of “normalized” in the context
of a binary system means that the leading bit of the mantissa is always 1.
Unlike a decimal digit, a binary digit has only one nonzero value. To optimize
storage in the floating-point format, this leading bit is omitted, or hidden,
freeing all 23 explicit mantissa bits to represent fractional values (and thus
these explicit bits are often called the “fractional” mantissa bits). To decode
the entire mantissa into a rational number (ignoring for the moment the expo-
nent), assuming the fractional bits (as a 23-bit unsigned integer) are in F, the
conversion is

F
1.0+ 503

So, for example, the fractional mantissa bits
11100000000000000000000, = 73400329

become the rational number

7340032.0
1.0 + —Hom T 1.875

1.5.2 RANGE AND PRECISION

The range of single-precision floating-point is by definition symmetric, as the
system uses an explicit sign bit. With an explicit sign bit, every positive value
has a corresponding negative value. This leaves the questions of maximal
exponent and mantissa, which when combined will represent the explicit
values of greatest magnitude. In the previous section, we found that the max-
imum base-2 exponent in single precision floating-point is 127. The largest
mantissa would be equal to setting all 23 explicit fractional mantissa bits,
resulting (along with the implicit 1.0 from the hidden bit) in a mantissa of

23
1 1 1
1.0+Z§=1.o+1.0—273=2.0—273w2.0
i=1
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The minimum and maximum single-precision floating-point values are then

+ (2.0 —~ 2]73) x 2177 ~ £3.402823466 x 10

The precision of single-precision floating-point can be loosely approxi-
mated as follows: For a given normalized mantissa, the difference between it
and its nearest neighbor is 2723, To determine the actual spacing between
a floating-point number and its neighbor, the exponent must be known.
Given an exponent E, the difference between two neighboring single-precision
values is

8 =2F x 275 = 282

However, we note that in order to represent a value A in single precision,
we must find the exponent E 4 such that the mantissa is normalized (i.e., the
mantissa M4 is in the range 1.0 < M4 < 2.0), or

10<ﬂ<20
0=7% .

Multiplying through, we can bound |A| in terms of 2£4:

1.0 < Al 2.0

284 < 1Al <2B4 x 2.0
24 < 14| < 2Bt

As a result of this bound, we can roughly approximate the entire exponent
term 2£4 with |A| and substitute to find an approximation of the distance
between neighboring floating-point values around |A| (8,) as

E
5 _gean 2 1Al
I 723 923
From our initial discussion of absolute error, we use general bound on the

absolute error equal to half the distance between neighboring representation
values:

1 JAl 1 ]A]

2T\ T o,

This approximation shows that the absolute error of representation in a
floating-point number is directly proportional to the magnitude of the value
being represented. Having approximated the absolute error, we can
approximate the relative error as

AbsErrors |A| 1 3

~ — A6 10"
IA| 2 A 222 P

AbsErrora ~ 8 X

RelErrory =
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The relative error of representation is thus generally constant, regardless of
the magnitude of A.

1.5.3 ARITHMETIC OPERATIONS

In the next several sections we discuss the basic methods used to per-
form common arithmetic operations upon floating-point numbers. While few
users of floating-point will ever need to implement these operations at a bit-
wise level themselves, a basic understanding of the methods is a pivotal step
toward being able to understand the limitations of floating-point. The meth-
ods shown are designed for ease of understanding and do not represent the
actual, optimized algorithms that are implemented in hardware.

The IEEE standard specifies that the basic floating-point operations of
a compliant floating-point system must return values that are equivalent to
the result computed exactly and then rounded to the available precision. The
following sections are designed as an introduction to the basics of floating-
point operations and do not discuss the exact methods used for rounding the
results. At the end of the section, there is a discussion of the programmer-
selectable rounding modes specified by the IEEE standard.

The intervening sections include information regarding common issues
that arise from these operations, because each operation can produce prob-
lematic results in specific situations.

Addition and Subtraction

In order to add a pair of floating-point numbers, the mantissas of the two
addends first must be shifted such that their radix points are “lined up.” In a
floating-point number, the radix points are aligned if and only if their expo-
nents are equal. If we raise the exponent of a number by one, we must shift
its mantissa to the right by 1 bit. For simplicity, we will first discuss addition
of a pair of positive numbers. The standard floating-point addition method
works (basically) as follows to add two positive numbers A = Sy x My x 2E4
and B = Sp x Mp x 2E8, where S, = S = 1.0 due to the current assumption
that A and B are nonnegative.

1. Swap A and B if needed so that E4 > Ep.

2. Shift Mp to the right by E4 — Ep bits. If E4 # Ep, then this shifted Mp
will not be normalized, and Mg will be less than 1.0. This is needed to
align the radix points.

3. Compute M4 p by adding the shifted mantissas M4 and Mp directly.
4. Set Eqoyp = Ea.
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5. The resulting mantissa M4 g may not be normalized (it may have an
integral value of 2 or 3). If this is the case, shift M4, p to the right 1 bit
and add 1 to E44p.

Note that there are some interesting special cases implicit in this method.
For example, we are shifting the smaller number’s mantissa to the right to
align the radix points. If the two numbers differ in exponents by more than
the number of mantissa bits, then the smaller number will have all of its
mantissa shifted away, and the method will add zero to the larger value. This
is important to note, as it can lead to some very strange behavior in appli-
cations. Specifically, if an application repeatedly adds a small value to an
accumulator, as the accumulator grows, there will come a point at which
adding the small value to the accumulator will result in no change to the
accumulator’s value (the delta value being added will be shifted to zero each
iteration)!

Floating-point addition must take negative numbers into account as well.
There are three distinct cases here:

m Both operands positive. Add the two mantissas as is and set the result
sign to positive.

m Both operands negative. Add the two mantissas as is and set the result
sign to negative.

m One positive operand and one negative operand. Negate (2’s complement)
the mantissa of the negative number and add.

In the case of subtraction (or addition of numbers of opposite sign), the
result may have a magnitude that is significantly smaller than either of the
operands, including a result of zero. If this is the case, there may be consider-
able shifting required to reestablish the normalization of the result, shifting
the mantissa to the left (and shifting zeros into the lowest-precision bits) until
the integral bit is 1. This shifting can lead to precision issues (see Section 1.5.6,
Catastrophic Cancelation) and can even lead to nonzero numbers that cannot
be represented by the normalized format discussed so far (see Section 1.5.5,
Very Small Values).

We have purposefully omitted discussion of rounding, as rounding the
result of an addition is rather complex to compute quickly. This complexity is
due to the fact that one of the operands (the one with the smaller exponent)
may have bits that are shifted out of the operation, but must still be considered
to meet the IEEE standard of “exact result, then rounded.” If the method were
simply to ignore the shifted bits of the smaller operand, the result could be
incorrect. You may want to refer to Hennessy and Patterson [59] for details
on the floating-point addition algorithm.
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Multiplication

Multiplication is actually rather straightforward with IEEE floating-point
numbers. Once again, the three components that must be computed are the
sign, the exponent, and the mantissa. As in the previous section, we will give
the example of multiplying two floating-point numbers, A and B.

Owing to the fact that an explicit sign bit is used, the sign of the result may
be computed simply by computing the exclusive-OR of the sign bits, producing
a positive result if the signs are equal and a negative result otherwise. The
result of the multiplication algorithm is sign-invariant.

To compute the initial exponent (this initial estimate may need to be
adjusted at the end of the method if the initial mantissa of the result is not
normalized), we simply sum the exponents. However, since both E4 and Ep
contain a bias value of 127, the sum will contain a bias of 254. We must
subtract 127 from the result to reestablish the correct bias:

Esxp=Es+ Ep— 127

To compute the result’s mantissa, we multiply the normalized source
mantissas M4 and Mp as 1-dot-23 format fixed-point numbers. The method for
multiplying two X-dot-Y bit-format fixed-point numbers is to multiply them
using the standard integer multiplication method and then divide the result
by 2¥ (which can be done by shifting the result to the right by Y bits). For
1-dot-23 format source operands, this produces a (possibly unnormalized)
3-dot-46 result. Note from the format that the number of integral bits may
be 3, as the resulting mantissa could be rounded up to 4.0. Since the source
mantissas are normalized, the resulting mantissa (if it is not 0) must be >1.0,
leading to three possibilities for the mantissa M4 p: it may be normalized, it
may be too large by 1 bit, or it may be too large by 2 bits. In the latter two
cases, we add either 1 or 2 to Exp and shift M4 p to the right by 1 or 2 bits
until it is normalized.

Rounding Modes

The IEEE specification defines four rounding modes that an implementation
must support. These rounding modes are

Round toward 0.

Round toward —oo.

Round toward oo.

Round toward nearest.
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The specification defines these modes with specific references to bitwise
rounding methods that we will not discuss here, but the basic ideas are quite
simple. We break the mantissa into the part that can be represented (the
leading 1 along with the next 23 most significant bits), which we call M, and
the remaining lower-order bits, which we call R. Round toward 0 is also known
as chopping and is the simplest to understand; in this mode, M is used and R
is simply ignored or “chopped off.” Round toward +oco are modes that round
toward positive (co0) or negative (—oo) based on the sign of the result and
whether R = 0 or not, as shown in the following tables.

| Roundtowardoco |

R=0] R#0
M>0]| M | M+1
M<0| M M

| Round toward —oo |
R=0] R£0
M=>0 M M
M<0 M M+ 1

1.5.4 SPECIAL VALUES

One of the most important parts of the IEEE floating-point specification is its
definition of numerous special values. While these special values co-opt bit
patterns that would otherwise represent specific floating-point numbers, this
trade-off is accepted as worthwhile, owing to the nature and importance of
these special values.

Zero

The representation of 0.0 in floating-point is more complex than one might
think. Since the high-order bit of the mantissa is assumed to be 1 (and
has no explicit bit in the representation), it is not enough to simply set the
23 explicit mantissa bits to zero, as that would simply represent the number
1.0 x 2¢xponent=127 Tt js necessary to define zero explicitly, in this case as a num-
ber whose exponent bits are all 0 and whose explicit mantissa bits are 0. This
is sensible, as this value would otherwise represent the smallest possible nor-
malized value. Note that the exponent bits of 0 map to an exponent value of
—127, which is reserved for special values such as zero. All other numbers with
exponent value —127 (i.e., those with nonzero mantissa bits) are reserved for
a class of very small numbers called denormals, which will be described later.
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Another issue with respect to floating-point zero arises from the fact that
IEEE floating-point numbers have an explicit sign bit. The IEEE specifica-
tion defines both positive and negative 0, differentiated by only the sign bit.
To avoid very messy code, the specification does require that floating-point
comparisons of positive zero to negative zero return “equal.” However, the
bitwise representations are distinct, which means that applications should
never use bitwise equality tests with floating-point numbers! The bitwise
representations of both zeros are

0.0 0/00000000{00000000000000000000000
+0.0 =
S|Exponent Mantissa
0.0 1/00000000{00000000000000000000000
S|Exponent Mantissa

The standard does list the behavior of positive and negative zero explicitly,
including the definitions:

(+0) — (+0) = (+0)
—(+0) = (=0)

Also, the standard defines the sign of the result of a multiplication or
division operation as negative if and only if exactly one of the signs of the
operands is negative. This includes zeros. Thus,

(+0)(+0) = +0

(=0)(=0) =+0
(=0)(+0) = -0
(0P =-0
(+0)P =+0
(=O)N =40
(+0O)N = -0

where P> 0and N < 0.

Infinity

At the other end of the spectrum from zero, the standard also defines positive
infinity (00 5,) and negative infinity (—oo,), along with rules for the behavior
of these values. In a sense the infinities are not pure mathematical values.
Rather, they are used to represent values that fall outside of the range of valid
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exponents. For example, 1.0 x 103 is just within the range of single-precision
floating-point, but in single precision,
(1.0 x 10%)? = 1.0 x 107® ~ 0oy,

The behavior of infinity is defined by the standard as follows (the standard
covers many more cases, but these are representative):

oOfp — P =00p

P
=30
R fp
—-P
T _
X fp

where
0<P< 00 fp

The bitwise representations of 0o s, use the reserved exponent value 128
and all explicit mantissa bits zeros. The only difference between the represen-
tations of the two infinities is, of course, the sign bit. The representations are
diagrammed as follows:

011111111 | 00000000000000000000000

XOfp =
S | Exponent Mantissa
111111111 | 00000000000000000000000
—p =
S | Exponent Mantissa

Floating-point numbers with exponent values of 128 and nonzero
mantissa bits do not represent infinities. They represent the next class of
special values —nonnumerics.

Nonnumeric Values

All the following function call examples represent exceptional cases:

Function Call Issue

arcsine(2.0) Function not defined for argument.
sqrt(—1.0) Result is imaginary.
0.0/0.0 Result is indeterminate.

00 — 00 Result is indeterminate.
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In each of these cases, none of the floating-point values we have discussed
will accurately represent the situation. Here we need a value that indicates the
fact that the desired computation cannot be represented as a real number. The
IEEE specification includes a special pair of values for these cases, known
collectively as Not a Numbers (NaNs). There are two kinds of NaNs: quiet
(or silent) NaN (QNaN) and signaling NaN (SNaN). Compare the following
representations:

0| 11111111 | 1[22 low-order bits indeterminate]
QONaN =
S | Exponent Mantissa
0| 11111111 |0[22 low-order bits not all 0]
SNaN =

S | Exponent Mantissa

Quiet Not a Numbers (Kahan [62] simply calls them NaNs) represent inde-
terminate values and are quietly passed through later computations (generally
as QNaNs). They are not supposed to signal an exception, but rather allow
floating-point code to return the fact that the result of the desired operation
was indeterminate. Floating-point implementations (hardware or software)
will generate QNaNs in cases such as those in our comparison.

SNaNs represent unrecoverable mathematical errors and signal an excep-
tion. Most floating-point units (FPUs) are designed not to generate SNaNs —
the original idea was that authors of high-level software math packages could
generate them in terminal situations. In addition, compilers could (in debug-
ging builds) set all floating-point values to SNaN, ensuring an exception if
the programmer left the values uninitialized. The realities of compilers and
operating systems make SNaNs less interesting. There have been issues in
the support for SNaNs in current compilers [62], resulting in SNaNs being
encountered very rarely.

1.5.5 VERY SMALL VALUES

Normalized Mantissas and the “Hole at Zero”

One side effect of the normalized mantissa is very interesting behavior near
zero. To better understand this behavior, let us look at the smallest normalized
value (we will look at the positive case; the negative case is analogous) in
single-precision floating-point, which we will call F,,;,, - F;;in. This would have
an exponent of —126 and zeros in all explicit mantissa bits. The resulting
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mantissa would have only the implicit units bit set, leading to a value of
Fmin — 20 x 27126 — 27126

The largest value smaller than this in a normalized floating-point system
would be 0.0. However, the smallest value larger than F,;, would differ by
only 1 bit from F,,;, —the least significant mantissa bit would be set. This
value, which we will call F,,,;, would be simply:

Foom = (20 42723y 5 27126 — 9=126 4 5=149 _ b 4 =149

This leads to a rather interesting situation: The distance between F,,;, and
its nearest smaller neighbor (0.0) is 27120, This distance is much larger than
the distance between F,;, and its nearest larger neighbor, F,.;. The distance
between F,;, and F.y, is only

—149
Fuext — Fiin =2

In fact, F,,;, has a sequence of approximately 223 larger neighbors that are
each a distance of 27!*° from the previous. This leaves a large “hole” of num-
bers between 0.0 and F,;, that cannot be represented with nearly the accuracy
as the numbers slightly larger than F,,;,. This gap in the representation is often
referred to as the hole at zero. The operation of representing numbers in the
range (—Fyin, Fnin) With zero is often called flushing to zero.

One problem with flush-to-zero is that the subtraction of two numbers
that are not equal can result in zero. In other words, with flush-to-zero,

A—-B=0+ A=8B
How can this be? See the following example:
A=27126 4 (20 40724 073
B=2""0x "

Both of these are valid single-precision floating-point numbers. In fact, they
have equal exponents: —126. Clearly, they are also not equal floating-point
numbers: A’s mantissa has two additional 1 bits. However, their subtraction
produces:

A—B=(@27120 5 2042724273 — 27126 » (20))
=271 (2" + 272+ 27 - 2%)
=271 2724279
=27 x 2 +27h
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which would be returned as zero on a flush-to-zero floating-point system.
While this is a contrived example, it can be seen that any pair of nonequal
numbers whose difference has a magnitude less than 27!?® would demon-
strate this problem. There is a solution to this and other flush-to-zero issues,
however. The solution is known as gradual underflow, and it is discussed in
the next section.

Denormals and Gradual Underflow

The IEEE specification specifies behavior for very small numbers that avoids
this so-called hole at zero. The behavior is known as gradual underflow, and
this gradual underflow generates values called denormals, or denormalized
numbers.

The idea is quite simple. Rather than require every floating-point number
to be normalized, the specification reserves numbers with nonzero explicit
mantissa bits and an exponent of —127 for denormals. In a denormal, the
implicit high-order bit of the mantissa is 0. This allows numbers with magni-
tude smaller than 1.0 x 27!?° to be represented. In a denormal, the exponent
is assumed to be —126 (even though the actual bits would represent —127),
and the mantissa is in the range [2%, 1— %]. The smallest nonzero value that

can be represented with a denormal is 2723 x 27126 = 27149 filling in the “hole
at zero.” Note that all nonzero floating-point values are still unique, as the
specification only allows denormalized mantissas when the exponent is —126,
the minimum valid exponent.

As an historical note, gradual underflow and denormalized value handling
were perhaps the most hotly contested of all sections in the IEEE floating-
point specification. Flush-to-zero is much simpler to implement in hardware,
which also tends to mean that it performs faster and makes the hardware
cheaper to produce. When the IEEE floating-point standard was being for-
mulated in the late 1970s, several major computer manufacturers were using
the flush-to-zero method for dealing with underflow. Changing to the use of
gradual underflow required these manufacturers to design FPU hardware or
software that could handle the unnormalized mantissas that are generated
by denormalization. This would lead either to more complex FPU hardware
or a system that emulated some or all of the denormalized computations in
software or microcode. The former could make the FPUs more expensive
to produce, while the latter could lead to greatly decreased performance of
the floating-point system when denormals are generated. However, several
manufacturers showed that it could be implemented in floating-point hard-
ware, paving the way for this more accurate method to become part of the
de facto (and later, official) standard. However, performance of denormal-
ized values is still an issue, even today. We will discuss a real-world example
of denormal performance on a modern FPU in Section 1.6.2.
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1.5.6 CATASTROPHIC CANCELATION

We have used relative error as a metric of the validity of the floating-point
representation of a given number. As we have already seen, converting real
numbers A and B into the closest floating-point approximations A 5, and By,
generally results in some amount of relative representation error, which we
compute as:

A—A
RelErrp = ‘—fp
A
B—B
RelErrg = ‘—fp
B

These relative representation errors accurately represent how well A,
and B, represent A and B, but the result of adding or subtracting A 4, and By,
may contain a much greater level of relative error. The addition or subtraction
of a pair of floating-point numbers can lead to a result with magnitude much
smaller than either of the operands. Subtracting two nearly (but not exactly)
equal values will result in a value whose magnitude is much smaller than
either of the operands.

Recall that the last step in adding or subtracting two floating-point
numbers is to renormalize the result so that the leading mantissa bit is 1.
If the result of an addition or subtraction has much lower magnitude (smaller
exponent) than the operands, then there will be some number N of leading
mantissa bits that are all zero. The mantissa must be shifted left N bits so that
the leading bit is 1 (and the exponent decremented by N, of course), renormal-
izing the number. Zeros will be shifted into all of the N lowest-order (explicit)
mantissa bits. It is these zeros that are the cause of the error, that is, the zeros
that are shifted into the lower-order bits are not actual data. Thus, the N least
significant mantissa bits may all be wrong. This can greatly compound relative
error.

As an example, imagine that we are measuring the distances between
pairs of points on the real-number line. Each of these pairs might repre-
sent the observed positions of two characters A and B in a game at two
different times, r and r + 1. We will move each character by the same
amount 8 between r and ¢t + 1. Thus, A’=A + § and B'= B + §. If we use the
values

A=15
B =10’
§=15
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We can clearly see that in terms of real numbers,

A'=3.0
B’ =10,000,001.5

However, if we look at the single-precision floating-point representations,
we get

!/
fP == 30
/
B, = 10,000,002.0

A’ is represented exactly, but B’ is not, giving a relative error of repre-
sentation for B’fp of

0.5
RelErrg = 107

=5x1078

Quite a small relative error. However, if we compute the distances A’ — A
and B’ — B in floating-point, the story is very different:

‘= Ap=3.0-15 —15=3

'» — Bjp = 10,000,002.0 — 107 =2.0

In the case of A’ — A, we get the expected value, §. But in the case of B’ — B,
we get a relative error of

RelErr =
1.5

‘2.0 - 1.5 ‘
0.3
The resulting error is much larger in the B case, even though A’ — A =

B’ — B. What is happening here can be seen by looking at the bitwise repre-
sentations:

Exponent Mantissa Bits
B = 23 100110001001011010000000
B = 23 100110001001011010000010
B —-B = 23 000000000000000000000010
normalized = 1 100000000000000000000000
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In the case of B — B, almost all of the original mantissa bits in the
operands were canceled out in the subtraction, leaving the least significant
bits of the operands as the most significant bit of the result. Basically none
of the fractional bits of the resulting mantissa were actual data— the system
simply shifted in zeros. The precision of such a result is very low, indeed.
This is catastrophic cancelation; the significant bits are all canceled, causing
a catastrophically large growth in the representation error of the result.

The best way to handle catastrophic cancelation in a floating-point system
is to avoid it. Numerical methods that involve computing a small value as the
subtraction or addition of two potentially large values should be reformulated
to remove the operation. An example of a common numerical method that
uses such a subtraction is the well-known quadratic formula:

—B++Br—4AC
2A

Both of the subtractions in the numerator can involve large numbers whose
addition/subtraction can lead to small results. However, refactoring of the
formula can lead to better-conditioned results. The following revised version
of the quadratic formula can be used in cases where computation of one of
the two roots involves subtracting nearly equal values. The refactored formula
avoids cancelation by replacing the subtraction with an addition:

2C
—B¥ /B2 —4AC

Aroot that would be computed with a subtraction in the first (“classic”) version
of the quadratic formula may be computed with an addition in the second
version, and vice versa.

1.5.7 DOUBLE PRECISION

As mentioned, the IEEE 754 specification supports a 64-bit “double-precision”
floating-point value, known in C/C++ as the intrinsic double type. The format
is completely analogous to the single-precision format, with the following
bitwise layout:

Sign | Exponent | Mantissa

1bit| 11 bits 52 bits

Double-precision values have a range of approximately 103% and can rep-

resent values smaller than 10739, A programmer’s common response to the
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onset of precision or range issues is to switch the code to use double-precision
floating-point values in the offending section of code (or sometimes even
throughout the entire system). While double precision can solve almost all
range issues and many precision issues (though catastrophic cancelation can
still persist) in interactive 3D applications, there are several drawbacks that
should be considered prior to its use:

m Memory. Since double-precision values require twice the storage of sin-
gle precision values, memory requirements for an application can grow
quickly, especially if arrays of values must be stored as double precision.

m Performance. At least some of the operations on most hardware FPUs
are significantly slower when computing double-precision results. Addi-
tional expense can be incurred for conversion between single- and
double-precision values.

m Platform issues. Not all platforms (especially game-centric platforms)
support double precision.

REAL-WORLD FLOATING-POINT

While the TEEE floating-point specification does set the exact behavior for
a wide range of the possible cases that occur in real-world situations, in
real-world applications on real-world platforms, the specification cannot tell
the entire story. The following sections will discuss some issues that are of
particular interest to 3D game developers.

1.6.1 INTERNAL FPU PRECISION

Some readers will likely try some of the exceptional cases themselves in small
test applications. In doing so, they are likely to find surprising behavior in
many situations. For example, examine the following code:

main()

{
float fHuge = 1.0e30f; // valid single precision
fHuge *= 1.0e38f; // result = infinity
fHuge /= 1.0e38f; // 2777



26 Chapter 1 Real-World Computer Number Representation

Stepping in a debugger, the following will happen on many major
compilers and systems:

1. After the initial assignment, fHuge = 1.0e30, as expected.
2. After the multiplication, fHuge = oo, as expected.
3. After the division, fHuge = 1.0e30!

This seems magical. How can the system divide the single value oo 5, and
get back the original number? A look at the assembly code gives a hint. The
basic steps the compiler generates are as follows:

1. Load 1.0e30 and 1.0e38 into the FPU.

2. Multiply the two loaded values and return oo, keeping the result in
the FPU as well.

3. Divide the previous result (still in the FPU) by 1.0e38 (still in the FPU),
returning the correct result.

The important item to note is that the result of each computation was
both returned and kept in the FPU for later computation. This step is where
the apparent “magic” occurs. The FPU (as per the IEEE standard) uses
high-precision (sometimes as long as 1ong double) registers in the FPU. The
conversion to single precision happens during the transfer of values from the
FPU into memory. While the returned value in fBig was indeed oo 5, the value
retained in the FPU was higher precision and was the correct value, 1.0e68.
When the division occurs, the result is correct, not oo .

However, an application cannot count on this result. If the FPU had
to flush the intermediate values out of its registers, then the result of the
three lines above would have been quite different. For example, if significant
floating-point work had to be computed between the above multiplication
and the final division, the FPU might have run out of registers and had to
evict the high-precision version of fHuge. This can lead to odd behavior differ-
ences, sometimes even between optimized and debugging builds of the same
source code.

1.6.2 PERFORMANCE

The IEEE floating-point standard specifies behavior for floating-point systems;
it does not specify information regarding performance. Just because a
floating-point implementation is correct does not mean that it is fast.
Furthermore, the speed of one floating-point operation (e.g., addition) does
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not imply much about the speed of another (e.g., square root). Finally, not all
input data are to be considered equal in terms of performance. The following
sections describe examples of some real-world performance pitfalls found in
floating-point implementations.

Performance of Denormalized Numbers

During the course of creating a demo for a major commercial 3D game engine,
one of the authors found that in some conditions, the performance of the
demo dropped almost instantaneously by as much as 20 percent. The code
was profiled and it was found that one section of animation code was suddenly
running 10 to 100 times slower than in the previous frames. An examination
of the offending code determined that it consisted of nothing more than basic
floating-point operations, specifically, multiplications and divisions. More-
over, there were no loops in the code, and the number of calls to the code was
not increasing. The code itself was simply taking 10 to 100 times longer to
execute.

Further experiments outside of the demo found that a fixed set of input
data (captured from tests of the demo) could always reproduce the problem.
The developers examined the code more closely and found that very small
nonzero values were creeping into the system. In fact, these numbers were
denormalized. Adjusting the numbers by hand even slightly outside of the
range of denormals and into normalized floating-point values instantly
returned the performance to the original levels. The immediate thought
was that exceptions were causing the problem. However, all floating-point
exceptions were disabled (masked) in the test application.

To verify the situation, the developers wrote an extremely simple test
application. Summarized, it was as follows:

float TestFunction(float fValue)
{

}

return fValue;

main()
{
int i;
float fTest;
// Start "normal" timer here
for (i = 0; i < 10000; i++)
{
// 1.0e-36f is normalized in single precision
fTest = TestFunction(1.0e-36f);
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// End "normal" timer here

// Start "denormal" timer here

for (i = 0; i < 10000; i++)

{
// 1.0e-40f is denormalized in single precision
fTest = TestFunction(1.0e-40f);

}

// End "denormal" timer here

Having verified that the assembly code generated by the optimizer did
indeed call the desired function the correct number of times with the desired
arguments, they found that the denormal loop took 30 times as long as the
normal loop (even with exceptions masked). A careful reading of Intel’s per-
formance recommendations [60] for the Pentium series of central processing
units (CPUs) found that any operation (including simply loading to a floating-
point register) that produced or accepted as an operand a denormal value was
run using so-called assist microcode, which is known to be much slower than
standard FPU instructions. Intel’s recommendation was for high-performance
code to manually clamp small values to zero as need be.

Intel had followed the TEEE 754 specification, but had made the design
decision to allow exceptional cases such as denormals to cause very signif-
icant performance degradation. An application that had not known of this
slowdown on the Pentium processor may have avoided manually clamping
small values to zero, out of fear of slowing the application down with extra
conditionals. However, armed with this processor-specific information, it was
much easier to justify clamping small numbers that were not already known
to be normal. The values in question were known to be normalized to be
between 0.0 and 1.0. As a result, it was more than safe to clamp small values
to zero.

Software Floating-Point Emulation

Applications should take extreme care on new platforms to determine whether
or not the platform supports hardware-assisted floating-point. In order to
ensure that code from other platforms ports and executes without major
rewriting, some compilers supply software floating-point emulation libraries
for platforms that do not support floating-point in hardware. This is espe-
cially common on popular embedded and handheld chip sets such as Intel’s
StrongARM and XScale processors [60]. These processors have no FPUs, but
C/C++ floating-point code compiled for these devices will generate valid,
working emulation code. The compilers will often do this silently, leaving the
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uninformed developer with a working program that exhibits horrible floating-
point performance, in some cases hundreds of times slower than could be
expected from a hardware FPU.

It’s worth reiterating that not all FPUs support both single and double
precision. Some major game consoles, for example, will generate FPU code
for single-precision values and emulation code for double-precision values.
As a result, careless use of double precision can lead to much slower code.
In fact, it is important to remember that double precision can be intro-
duced into an expression in subtle ways. For example, remember that in
C/C++, floating-point constants are double precision by default, so whenever
possible, explicitly specify constants as single precision, using the f suffix.
The difference between double- and single-precision performance can be as
simple as 1.0 instead of 1.0f.

1.6.3 IEEE SPECIFICATION COMPLIANCE

While major floating-point errors in modern processors are relatively rare
(even Intel was caught off guard by the magnitude of public reaction to what
it considered minor and rare errors in the floating-point divider on the orig-
inal Pentium chips), this does not mean that it is safe to assume that all
floating-point units in modern CPUs are always fully compliant to IEEE spec-
ifications and support both single and double precision. The greatest lurking
risk to modern developers assuming full IEEE compliance is conscious design
decisions, not errors on the part of hardware engineers. However, in most
cases, for the careful and attentive programmer, these new processors offer
the possibilities of great performance increases to 3D games.

As more and more FPUs are designed and built for multimedia and 3D
applications (rather than the historically important scientific computation
applications for which earlier FPUs were designed), manufacturers are start-
ing to deviate from the IEEE specification, optimizing for high performance
over accuracy. This is especially true with respect to the “exceptional” cases
in the spec, such as denormals, infinity, and Not a Numbers.

Hardware vendors make the argument that while these special values are
critically important to scientific applications, for 3D games and multimedia
they generally occur only in error cases that are best handled by avoiding
them in the first place.

Intel’s SSE

An important example of such design decisions involves Intel’s Streaming
SIMD Extensions (SSE) [60], a new coprocessor that was added to the
Pentium series with the advent of the Pentium III. The coprocessor is a
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special vector processor that can execute parallel math operations on four
floating-point values, packed into a 128-bit register. The SSE instructions
were specifically targeted at 3D games and multimedia, and this is evident
from even a cursory view of the design. Several design decisions related to the
special-purpose FPU merit mentioning here:

m The original SSE (Pentium III) instructions can only support 32-bit
floating-point values, not doubles.

m Denormal values can be (optionally) rounded to zero (flushed to zero),
disabling gradual underflow.

m Full IEEE 754 behavior can be supported as an option but at less than
peak performance.

3D-Specific FPUs

Other platforms have created graphics-centric FPUs. This 3D graphics focus
has given hardware designers the ability to optimize the floating-point behav-
ior of the FPUs very heavily. Unburdened by the need to support any
applications other than games, the designers of these FPUs have taken things
a step further than Intel’s SSE instructions by making the deviations from the
IEEE specification permanent, rather than optional.

AMD’s 3DNow! [1] extensions to its x86 platforms are one such example.
While leaving the main FPU unchanged, AMD added hardware to support up
to four floating-point instructions per clock cycle. As a further optimization,
3DNow! made some decisions that allow implementers (AMD and others) to
break from the IEEE specification, including:

m Cannot accept infinity or NaN as operands.

m Generates the maximal normal floating-point value on overflow, rather
than infinity.

m Flush-to-zero as the only form of underflow (no denormals).
m Single rounding mode (differs by implementation).

m No support for floating-point exceptions.

The 3D-centric vector FPUs in some current game consoles have taken
similar paths. These differences from the IEEE specification, while severe
from a scientific computing perspective, are rarely an issue in correct 3D
game code. The console processors that have these limitations are gener-
ally designed to allow games to implement geometry pipelines. In most 3D
game code, the engine programmer takes great pains to avoid exceptional



1.6 Real-World Floating-Point 31

conditions in the geometry pipelines. Thus, these hardware design decisions
tend to merely reflect the common practices of game programmers, rather
than adding new limitations upon them.

1.6.4 GRAPHICS PROCESSING UNITS AND
HALF-PRECISION FLOATING-POINT FORMATS

“Half-precision” or fpl6 floating-point numbers refer to a de facto standard
format for floating-point values that can fit in 16 bits of storage. While not
specified by the IEEE 754 specification and not supported by major CPUs,
fpl6 is a format with rapidly growing importance owing to its near ubig-
uity in modern graphics processing units (GPUs). Most current major GPUs
support 16-bit floating-point values in their geometry and pixel rendering
pipelines. Since GPUs often handle large amounts of parallel computations
on large datasets, minimizing memory usage and bus traffic is an important
performance consideration. Being half the size of single precision IEEE 754
floating-point numbers is a significant optimization.

Although fp16 is not currently a part of the IEEE floating-point standard,
the OpenGL and OpenGL ES API standards (or extensions to these standards)
[64] both define a format for them that has become basically universal. This
format consists of a sign bit, 5 bits of exponent, and 10 bits of mantissa.
It should be noted that some GPU vendors also briefly supported a 24-bit
floating-point format (sign bit, 7 bits of exponent, and 16 bits of mantissa),
but this format is somewhat less standard than the IEEE or fpl6 formats.

The exponent in an fp16 value varies between either [—14, 16] or [—14, 15],
depending on the implementation. The main difference between the two
implementations is the maximum exponent value; according to the OpenGL
(ES) specification, the format may either use the maximal exponent value of
31 (16 once unbiased) normally or it may reserve it for the fpl6 equivalent of
NaNs and INF. If IEEE-style specials are not supported by an implementation,
overflow cases that would have mapped to the special value INF are gener-
ally clamped to the maximal exponent and mantissa. This ambiguity in the
specification was in actuality a reflection of the state of GPUs at the time the
specification was created; GPUs implementing both behaviors existed.

In addition, the OpenGL specification of fpl6 values allows for either
denormals or flush-to-zero behavior when the exponent is 0 (—15 once
unbiased).

While support for both IEEE-style specials and denormals is becoming
very common on current GPU fpl6 support, it is not universal, especially if
your application must run on older GPUs as well. Applications need to be
mindful that very small and very large values may be handled differently on
different GPU platforms, not unlike the pre-IEEE 754 floating-point situation.
A discussion of how a real application had to deal with these differences in
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1.7

SOURCE CoDE
IvMath

exceptional behaviors may be found in “GPU Image Processing in Apple’s
Motion” in Pharr [92].

The reduced size of the fpl6 comes with significantly reduced precision
and range when compared to even a single-precision 32-bit floating-point
format. Assuming IEEE-style specials and denormals, the extrema of fp16 are:

Maximum representable value: 65,504
Smallest positive value: 272 2 3.0 x 1078
Largest consecutive integer: 2,048

These limits can be reached with surprising ease if one is not careful,
especially when considering the squaring of numbers. The square of any value
greater than around 255 will map to infinity when stored as an fp16. And if one
is using an fpl6 as a form of integer storage, repeated incrementation will fail
at a value that is well within common usage: 2,048. Above 2,048, odd integers
simply cannot be represented, with these holes in the set of integers getting
larger and larger as the value rises. Thus, fp16 values are not recommended for
counting items. Some of the issues associated with these reduced limits may
be found in the article “A Toolkit for Computation on GPUs” in Fernando [36].

How then are fpl6 values usable? The answer is one of real-world use
cases. fpl6 values are most frequently used on GPUs in shader code that gen-
erates the final color drawn to the screen. In these cases, color-related values
have historically been limited to values between 0.0 and 1.0. The ability to use
the much larger range afforded by fpl6 values is a relative luxury, and makes
such high-end rendering effects as bright light “blooming,” glare, and other
so-called high dynamic range (HDR) effects possible. The fp16 format is likely
to continue to be popular for some time in GPU code, even though newer GPUs
also support single-precision IEEE 754 32-bit floating-point values as well.

CODE

While this text’s companion CD-ROM and website do not include spe-
cific code that demonstrates the concepts in this chapter, source code that
deals with issues of floating-point representation may be found through-
out the math library IvMath. For example, the source code for IvMatrix33,
IvMatrix44, IvVector3, IvVector4, and IvQuat includes sections of code that
avoid denormalized numbers and comparisons to exact floating-point zero.

CPU chipset manufacturers Intel and AMD have been focused on
3D graphics and game performance and have made public many code
examples, presentations, and software libraries that detail how to write high-
performance floating-point code for their processors. Many of these resources
may be found on their developer websites ([1, 60]).
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1.8 CHAPTER SUMMARY

In this chapter we have discussed the details of how computers represent real
numbers. These representations have inherent limitations that any serious
programmer must understand in order to use them efficiently and cor-
rectly. Floating-point presents subtle limitations, especially issues of limited
precision. We have also discussed the basics of error metrics for number
representations.

Hopefully, this chapter has instilled two important pieces of informa-
tion in the reader. The first and most basic is an understanding of the inner
workings of the number systems that pervade 3D games. This should allow
the programmer to truly comprehend the reasons why the math-related code
behaves (or, more importantly, why it misbehaves) as it does. The second
piece of information is an appreciation of why one should pay attention to
the topic of floating-point representation in the first place —namely, to better
prepare the 3D game developer to do what is needed to do at some point in
the development of a game: optimize or fix a section of slow or incorrect math
code. Better yet, it can assist the developer to avoid writing this potentially
problematic code in the first place.

For further reading, Kahan'’s papers on the history and status of the IEEE
floating-point standard ([62] and related papers and lectures by Kahan, avail-
able from the same source) offer fascinating insights into the background
of modern floating-point computation. In addition, back issues of Game
Developer magazine (such as [57]) provide frequent discussion of number
representations as they relate to computer games.
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VECTORS AND
POINTS

2.1 INTRODUCTION

The two building blocks of most objects in our interactive digital world are
points and vectors. Points represent locations in space, which can be used
either as measurements on the surface of an object to approximate the object’s
shape (this approximation is called a model), or as simply the position of a
particular object. We can manipulate an object indirectly through its position
or by modifying its points directly. Vectors, on the other hand, represent the
difference or displacement between two points. Both have some very simple
properties that make them extremely useful throughout computer graphics
and simulation.

In this chapter we'll discuss the properties and representation of vectors
and points, as well as the relationship between them. We'll present how they
can be used to build up other familiar entities from geometry classes: in parti-
cular, lines, planes, and polygons. Because many problems in computer games
boil down to examples in applied algebra, having computer representations
of standard geometric objects built on basic primitives is extremely useful.

It is likely that the reader has a basic understanding of these entities from
basic math classes but the symbolic representations used by the mathemati-
cian may be unfamiliar or forgotten. We will review them in detail here.
We will also cover linear algebra concepts— properties of vectors in par-
ticular — that are essential for manipulating three-dimensional (3D) objects.
Without a thorough understanding of this fundamental material, any work in
programming 3D games and applications will be quite confusing.

35
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2.2 VECTORS

One might expect that we would cover points first since they are the building
blocks of our standard model, but in actuality the basic unit of most of the
mathematics we’ll discuss in this book is the vector. We'll begin by discussing
the vector as a geometric entity since that’s primarily how we’ll be using it,
and it’s more intuitive to think of it that way. From there we’ll present how
we can represent vectors algebraically and how that allows us to manipulate
them in the computer. We'll then move to discussing operations that we can
perform on vectors and how we can use them to solve certain problems in
3D programming. We'll conclude by formalizing our discussion of vectors by
presenting a set of vectors known as a vector space, as well as its algebraic
properties.

2.2.1 GEOMETRIC VECTORS

A geometric vector v is an entity with magnitude (also called length) and direc-
tion and is represented graphically as a line segment with an arrowhead on
one end (Figure 2.1). The length of the segment represents the magnitude of
the vector, and the arrowhead indicates its direction. A vector whose magni-
tude is 1 is a unit or normalized vector and is shown as V. The zero vector 0
has a magnitude of zero but no direction.

Note that a vector does not have a location. To make some geometric
calculations easier to understand, we may draw two vectors as if they were
attached or place a vector relative to a location in space. Despite this, it is
important to remember that two vectors with the same magnitude and direc-
tion are equal, no matter where they are drawn on a page. For example, in
Figure 2.1 the left-most and right-most vectors are equal.

In games we use vectors in one of two ways. The first is as a representation
of direction. For example, a vector may indicate direction toward an enemy,
toward a light, or perpendicular to a plane. The second meaning represents

] —

FIGURE 2.1 Vectors.
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change. If we have an object moving through space, we can assign a velocity
vector to the object, which represents a change in position. We can displace
the object by adding the velocity vector to the object’s location to get a new
location. Vectors also can be used to represent change in other vectors. For
example, we can modify our velocity vector by adding another to it; the second
vector is called acceleration.

We can perform arithmetic operations on vectors just as we can with real
numbers. One basic operation is addition. Geometrically, addition combines
two vectors together into a new vector. If we think of a vector as an agent
that changes position, then the new vector u = v + w combines the position-
changing effect of v and w into one entity.

As an example, in Figure 2.2 we have three locations P, Q, and R. There
is a vector v that represents the change in position or displacement from P to
Q and a vector w that represents the displacement from Q to R. If we want to
know the vector that represents the displacement from P to R, then we add v
and w to get the resulting vector u.

Figure 2.3 shows another approach, which is to treat the two vectors as
the sides of a parallelogram. In this case, the sum of the two vectors is the
long diagonal of the parallelogram. Subtraction, or v — w, is shown by the
other vector crossing the parallelogram. Remember that the difference vector
is drawn from the second vector head to the first vector head — the opposite
of what one might expect.

The algebraic rules for vector addition are very similar to real numbers:

v+ w = w+ v (commutative property).
u+ (v+ w) = (u+ v) + w (associative property).
v + 0 = v (additive identity).

B o=

For every v, there is a vector —v such that v + (—v) = 0 (additive
inverse).

)20 u %R

FIGURE 2.2 Vector addition.
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v

FIGURE 2.3 Vector addition and subtraction.

u+v+w

FIGURE 2.4 Associative property of vector addition.

We can verify this informally by drawing a few test cases. For example, if
we examine Figure 2.3 again, we can see that one path along the parallelogram
represents v + w and the other represents w + v. The resulting vector is the
same in both cases. Figure 2.4 presents the associative property in a similar
fashion.

The other basic operation is scalar multiplication, which changes the
length of a vector by multiplying it by a single real value, also known as a
scalar (Figure 2.5). Multiplying a vector by 2, for example, makes it twice as
long. Multiplying by a negative value changes the length and points the vector
in the opposite direction (the length remains nonnegative). Multiplying by 0
always produces the zero vector 0.

The algebraic rules for scalar multiplication should also look familiar:

5. (ab)v = a(bv) (associative property).

6. (a+ b)v =av + bv (distributive property).
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FIGURE 2.5 Scalar multiplication.

7. a(v+ w) = av + aw (distributive property).
8. 1. v = v (multiplicative identity).

As with the additive rules, diagrams can be created that provide a certain
amount of intuitive understanding.

2.2.2 LINEAR COMBINATIONS

Our definitions of vector addition and scalar multiplication can be used to
describe some special properties of vectors. Suppose we have a set § of n
vectors, where S = {vy,..., v,_1}. We can combine these to create a new
vector v using the function

Vv=agvo+aivi+- -+ ap-1Vp-1

for some arbitrary real scalars ag, ..., a,_1. This is known as a linear combi-
nation of all vectors v; in S.

If we take all the possible linear combinations of all vectors in S, then the
set T of vectors thus created is the span of §. We can also say that the set S
spans the set T. For example, vectors vg and v; in Figure 2.6 span the set of
vectors that lie on the surface of the page (assuming your book is held flat).

We can use linear combinations to define some properties of our initial
set S. Suppose we can find a single nonzero vector v; in § such that it’s equal
to a linear combination of other members of S. In other words,

Vi =aovo+ -+ a—1Vi-1 +aip1 Vi1 + -+ ap_1Vp-1

If such a v; exists, then we say that S is linearly dependent. If we can’t find any
such v;, then the vectors vy, ..., v,_1 are linearly independent. An example of a
linearly dependent set of vectors can be seen in Figure 2.7. Vector vy is equal
to the linear combination —1 - v{ +0- vy, or just —v;. Two linearly dependent
vectors v and w are said to be parallel; that is, w = av.
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Vi

Vo
FIGURE 2.6 Two vectors spanning a plane.
Yo
V2
D .
vy

FIGURE 2.7 Linearly dependent set of vectors.

2.2.3 VECTOR REPRESENTATION

In symbolic mathematics and (more important for our purposes) in the com-
puter, representing vectors graphically is not convenient. Instead we define a
set of linearly independent vectors known as a basis, and define our remaining
vectors in terms of those. So for example, for 3D space (formally represented
as R?) we can define three vectors i, j, and k. Their corresponding geomet-
ric representations can be seen in Figure 2.8. Note that these vectors are of
unit length and perpendicular to each other (we will define “perpendicular”
more formally when we discuss dot products). This is known as the standard
Euclidean basis. Using this basis, we can uniquely represent any vector v in
3D space by using the linear combination

v=xi+yj+zk

We can think of x, y, and z as the amounts we move in the i, j, and k directions,
from the tail of v to its tip (see Figure 2.8). Since the i, j, and k vectors are
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FIGURE 2.8 Standard 3D basis vectors.

known and fixed, we just store the x, y, and z values and use them to represent
our vector numerically. In this way a 3D vector v is represented by an ordered
triple (x, y, z). These are known as the vector components. Our basis vectors i,
j, and k will be represented with components (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively.

We can do the same for two-dimensional (2D) space, or R?, by using as
our basis {i, j}, where i = (1, 0) and j = (0, 1), and representing a 2D vector as
the ordered pair (x, y).

By doing this, we have also neatly solved the problem of representing
our geometric vectors algebraically. By using a standard basis, we can use
an ordered triple to represent the same concept as a line segment with an
arrowhead. And by setting a correspondence between our algebraic basis and
our geometric representation, we can guarantee that the ordered triple we
use in one circumstance will be the same as the one we use in the other.
Because of this, when working with vectors in R? and R3, we will use the two
representations interchangeably.

Using our new representation allows us to define addition and scalar mul-
tiplication algebraically. So, if we add two 3D vectors vy and v; together and
expand and rearrange terms, we get

Vo + vi = (xoi+ yoj + z0K) + (x1i+ y1j +z21K)
=xoi+x1i+ yoj + y1j +z0k +z1k
= (xo +x)i+ (yo+ yDJj+ (zo+z)k

If we remove i, j, and k to create ordered triples, we find that to add two
vectors we take each component in xyz order and add them:

(x0, Y0, 20) + (x1, y1, z1) = (x0 + x1, Yo + ¥1, 20 + 21) (2.1)
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Scalar multiplication works similarly:

av=a(xi+ yj+zk)
= a(xi) + a(yj) + a(zk)
= (ax)i+ (ay)j + (a2)k

And again, pulling out i, j, and k gives us
a(x, y, z) = (ax, ay, az) (2.2)

A more formal discussion of basis vectors can be found in Section 2.2.11.

2.2.4 BAsIC VECTOR CLASS IMPLEMENTATION

Now that we've presented an algebraic representation for vectors, we can talk

about how we will store them in the computer. In our case we’ll assume the

IvMath

standard basis and thus store the components x, y, and z.

IWector3

The following are some excerpts from the included C++ math library. For
a vector in R3, our bare-bones class definition is

class IvVector3
{
inTine IvVector3() {}
inline IvVector3( float xVal, float yVal, float zVal ) :
x( xval ),
y( yval ),
z( zVal )
{
}

inline ~IvVector3() {}

IvVector3( const IvVector3& vector );
IvVector3& operator=( const IvVector3& vector );
inline float GetX() { return x; }

inline float GetY() { return y; }

inline float GetZ() { return z; }

inline void SetX( float xVal ) { x = xVal; }
inline void SetY( float yVal ) { y = yVal; }
inline void SetZ( float zVal ) { z = zVal; }

private:
float x,y,z;

}
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We can observe a few things about this declaration. First, we declared our
member variables as a type float. This is the single-precision IEEE floating-
point representation for real numbers, as discussed in Chapter 1. While not
as precise as double-precision floating-point, it has the advantage of being
compact and compatible with standard representations on most graphics
hardware.

The second thing to notice is that, unlike the previous edition of this book,
we’re making our member variables private and only providing access through
inlined member functions. Again, as discussed in Chapter 1, most modern pro-
cessors have a platform-specific instruction set for vectors — for example, SSE
on Pentium and AMD processors, and VMX on the PowerPC, Xeon, and Cell
processors — which can perform several floating-point operations in parallel
and can lead to significantly faster code. By hiding the underlying data, it is
much easier to change and optimize the underlying representation without
modifying nonlibrary code. For clarity of code, we have chosen to not use
platform-specific operations, but still hide the data as part of good coding
practice.

In some cases, it is possible to write the class to allow public access to the
components of the platform-specific data. However, even then we recommend
using inlined member functions, as accessing the components in this way is
often an expensive operation. So, in general it is recommended that whenever
possible you modify the platform-specific data only through platform-specific
operations. Using member functions helps reinforce this good practice
as well.

The class has a default constructor and destructor, which do nothing.
The constructor could initialize the components to 0, but doing so takes time,
which adds up when we have large arrays of vectors (a common occurrence),
and in most cases we'll be setting the values to something else anyway. For
this purpose, there is an additional constructor that takes three floating-point
values and uses them to set the components. We can use the copy constructor
and assignment operator as well.

Now that we have the data set up for our class, we can add some operations
to it. The corresponding operator for vector addition is

IvVector3 operator+(const IvVector3& v0, const IvVector3& vl)

{
}

return IvVector3( v0.x + vl.x, vO.y + vl.y, v0.z + vl.z );

Scalar multiplication is also straightforward:

IvVector3
operator*( float a, const IvVector3& vector)
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return IvVector3( a*vector.x, a*vector.y, a*vector.z );

These methods are given friend access by the class to allow use of the
private member variables.

Similar operators for postmultiplication and division by a scalar are also
provided within the library; their declarations are:

IvVector3 operator*( const IvVector3& vector, float scalar );
IvVector3 operator/( const IvVector3d vector, float scalar );
IvVector3& operator*=( IvVector3& vector, float scalar );
IvVector3& operator/=( IvVector3& vector, float scalar );

Now that we have a numeric representation for vectors and have covered
the algebraic form of addition and scaling, we can add some new vector oper-
ations as well. As before, we'll focus primarily on the case of R3. Vectors in
R? and R* have similar properties; any exceptions will be discussed in the
particular parts.

2.2.5 VECTOR LENGTH

We have mentioned that a vector is an entity with length and direction but so
far haven't provided any means of measuring or comparing these quantities in
two vectors. We'll see shortly how the dot product provides a way to compare
vector directions. First, however, we'll consider how to measure a vector’s
magnitude.

There is a general class of size-measuring functions known as norms.
Anorm | v| is defined as a real-valued function on a vector v with the following
properties:

1. |lv >0, and | v] = 0 if and only if v = 0.
2. |lav| = lalllv]

3. v+ wil = vl + lTwll.

We use the |v| notation to distinguish a norm from the absolute value
function |a|.

An example of a norm is the Manhattan distance, also called the £; norm,
which is just the sum of the absolute values of the given vector’s components:

I¥lle, =) lvil
i
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One that we’ll use more often is the Euclidean norm, also known as the ¢,
norm or just length. If we give no indication of which type of norm we're
using, this is usually what we mean.

We derive the Euclidean norm as follows. Suppose we have a 2D vector
u = xi+ yj. Recall the Pythagorean theorem x> + y> = d>. Since x is the
distance along i and y is the distance along j, then the length d of u is

lul =d = /22 +?

as shown in Figure 2.9. A similar formula is used for a vector v = (x, y, z),
using the standard basis in R3:

vl = /x2 + y2 + 22 (2.3)

And the general form in R” with respect to the standard basis is

vl =\/v(2)+v%+~-+vﬁ_1

We've mentioned the use of unit length vectors as pure indicators of direc-
tion, for example, in determining viewing direction or relative location of
a light source. Often, though, the process we’ll use to generate our direction
vector will not automatically create one of unit length. To create a unit vector v
from a general vector v, we normalize v by multiplying it by 1 over its length, or

N v
V= ——

vl

This sets the length of the vector to ||v|| - 1/] v| or, as we desire, 1.

FIGURE 2.9 Length of 2D vector.
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Our implementations of length methods (for R3) are as follows:

float
IvVector3::Length() const

{
}

return IvSqrt( x*x + y*y + z*z );

float
IvVector3::LengthSquared() const

{
}
IvVector3&

IvVector3::Normalize()

{

return x*x + y*y + z*z;

float lengthsq = x*x + y*y + z*z;
ASSERT( !IsZero( lengthsq ) );
if ( IsZero( lengthsq ) )
{
x =y =12z=0.0f;
return *this;

}

float recip = IvInvSqrt( Tengthsq );
X *= recip;
y *= recip;
Z *= recip;

return *this;

Note that in addition to the mathematical operations we've just described,
we have defined a LengthSquared () method. Performing the square root can be
a costly operation, even on systems that have a special machine instruction to
compute it. Often we're only doing a comparison between lengths, so it is bet-
ter and certainly faster in those cases to compute and compare length squared
instead. Both length and length squared are increasing functions starting at
0, so the results will be the same.

The length methods also introduce some new functions that will be use-
ful to us throughout the math library. We use our own square root functions
IvSqrt() and IvInvSqrt() instead of sqrtf(). There are a number of rea-
sons for this choice. As mentioned, the standard library implementation of
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square root is often slow. Rather than use it, we can use an approximation
on some platforms, which is faster and accurate enough for our purpose. On
other platforms there are internal assembly instructions that are not used
by the standard library. In particular, there may be an instruction that per-
forms the inverse square root, which is faster than calculating the square
root and performing the floating-point divide. Defining our own layer of indi-
rection gives us flexibility and ensures that we can guarantee ourselves the
best performance.

2.2.6 DoT PRODUCT

Now that we've considered vector length, we can look at vector direction. The
function we will use for this is called the dot product, or less commonly, the
Euclidean inner product (see below for the formal definition of inner products).

It is probably the most useful vector operation for 3D games and applications.

Given two vectors v and w with an angle 6 between them, the dot product
v. wis defined as

vew = v][]|wl|cos® (2.4)
Using this equation, we can find a coordinate-dependent definition in R3 by
examining a triangle formed by v, w, and v — w (Figure 2.10). The Law of
Cosines (see Appendix A on the CD-ROM) gives us
v = wi? = [vI> + [ WII* = 2]l V]| w]| cos 6

We can rewrite this as

2 2 2
=2 villwlicos & = [|v — w|[* = [Iv[|" — [[w]|

FIGURE 2.10 Law of Cosines.
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Substituting in the definition of vector length in R? and expanding, we get

=2[ V| Wl cos 8 = (vy — w)? + (vy — wy)* + (v; — w,)?
—(v§+v§,+v§)—(w§+w§,+w§)
2| v[lllwll cos 0 = —2v,wy — 2vywy — 2V, W,

[vIIwll cos & = vywy + vywy + v w;

So, to compute the dot product in R3, multiply the vectors component-
wise, and then add:

Ve W = UyWx + VyWy + VW,

Note that for this definition to hold, vectors v and w need to be represented
with respect to the standard basis {i, j, k}. The general form for vectors v and
w in R”, again with respect to the standard basis, is

VW =10wo+ 01w + -+ Up—1Wp—1
For vectors u, v, w, and scalar a the following algebraic rules apply:
V.w= w- vV (symmetry).

. (u+v)-w=u-w+ v.w (additivity).

1
2
3. a(v-w) = (av) - w = v- (aw) (homogeneity).!
4. v.v >0 (positivity).

5

v.v=0if and only if v = 0 (definiteness).

Also note that we can relate the dot product to the length function by
noting that

vev=|v|? (2.5)

As mentioned, the dot product has many uses. By equation 2.4, if the
angle between two vectors v and w in standard Euclidean space is 90 degrees,
then v-w = 0. So, we define that two vectors v and w are perpendicular,
or orthogonal, when v-w = 0. Recall that we stated that our standard basis

1. Note that the leading scalar does not apply to both terms on the right-hand side; assuming
so is a common mistake.
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vectors for R? are orthogonal. We can now demonstrate this. For example,
taking i- j we get

i-j=(1,0,0)-(0,1,0)
=04+040
=0

It is possible, although not always recommended, to use equation 2.4 to
test whether two unit vectors v and w are pointing generally in the same
direction. If they are, cos is close to 1, so 1 — v w is close to 0 (we use this
formula to avoid problems with floating-point precision). Similarly, if 1+ V- w
is close to 0, they are pointing in opposite directions. Performing this test
only takes 6 floating-point addition and multiplication operations. However,
if v and w are not known to be normalized, then we need a different test:
[ vI> W]l — (v- w)2. This takes 18 operations.

Note that for unit vectors:

1—(V-W)2=1-cos’6
= sin? 6
and for nonunit vectors:

VI wI® — (v- w)? = | V][ w]*(1 — cos® 6)

2 2 a2
= [[vII7ll W] sin” 6

So assuming we use this, the method we use to test closeness to zero will have
to be different for both cases.

In any case, using dot product for this test is not really recommended
unless your vectors are prenormalized and speed is of the essence. As cos 6 gets
close to 0, it changes very little. Due to lack of floating-point precision, the set
of angles that might be considered “zero” is actually broader than one might
expect. As we will see, there is another method to test for parallel vectors that
is faster with nonunit vectors and has fewer problems with near-zero angles.

A more common use of the dot product is to test values of the angle
between two vectors. We know that if v. w > 0, then the angle is less than 90
degrees; if v.- w < 0, then the angle is greater than 90 degrees; and if v.- w = 0,
then the angle is exactly 90 degrees (Figure 2.11). As opposed to testing for
parallel vectors, this will work with vectors of any length.

For example, suppose that we have an artificial intelligence (AI) agent
that is looking for enemy agents in the game. The Al has a view vector v and a
vector t that points toward an object in our scene. If v. t < 0, then the object
is behind us and therefore not visible to our AI (Figure 2.12).
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wy-v>0

wi-v=0

w,v<0

FIGURE 2.11 Dot product as measurement of angle.

FIGURE 2.12 Measuring angle to target.

Equation 2.4 allows us to use the dot product in another manner. Sup-
pose we have two vectors v and w, where w # 0. We define the projection of
v onto w as

VW

projyv=—Sw
Y lwl?
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[l vl cos(6)/I| wll

FIGURE 2.13 Dot product as projection.

This gives the part of v that is parallel to w, which is the same as dropping a
perpendicular from the end of v onto w (Figure 2.13).

We can get the part of v that is perpendicular to w by subtracting the
projection:

Vew
perpy,v=v— ——Ww
v [l wil>

Both of these equations will be very useful to us. Note that if w is normalized,
then the projection simplifies to

projgv=(v.- w)w

The corresponding library implementation of dot product in R3 is as follows:

float
IvVector3::Dot( const IvVector3& other )
{

}

return x*other.x + y*other.y + z*other.z;

2.2.7 GRAM-SCHMIDT ORTHOGONALIZATION

The combination of dot product and normalization allows us to define a par-
ticularly useful class of vectors. If a set of vectors B are all unit vectors and
pairwise orthogonal, we say that they are orthonormal. Our standard basis
{i, j, k} is an example of an orthonormal set of vectors.
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In many cases we start with a general set of vectors and want to generate
the closest possible orthonormal one. One example of this is when we perform
operations on currently orthonormal vectors. Even if the pure mathemat-
ical result should not change their length or relative orientation, due to
floating-point precision problems the resulting vectors may be no longer
orthonormal. The process that allows us to create orthonormal vectors from
possibly nonorthonormal vectors is called Gram-Schmidt orthogonalization.

This works as follows. Suppose we have a set of nonorthogonal vec-
tors vo, ..., v,—1, and from them we want to create an orthonormal set
w0, ..., W,_1. We'll use the first vector from our original set as the starting
vector for our new set so

Wo = Vo

Now we want to create a vector orthogonal to wo, which points generally in
the direction of v;. We can do this by computing the projection of v; on wy,
which produces the component vector of v; parallel to wy. The remainder of
v will be orthogonal to wg, so

W] = V] — Projy, Vi
Vi Wo

=V———W
I woll?

0

We perform the same process for w,: We project v, on wy and w; to compute
the parallel components and then subtract those from v, to generate a vector
orthogonal to both wy and wy:

W2 = V2 — Projy, V2 — Projy, v2
Vo . Wy V. Wi

wo — w
[ woll? w1l

=Vv2 - 1

In general, we have
i-1

Wi =YV — E prOjoVi
j=0

i—1

Vi W;j
=Vi—) W
w112

J=0

Performing this for all n vectors will give us an orthogonal set of vectors. To
create an orthonormal set, we can either normalize the resulting w; vectors
at the end or normalize as we go, the latter of which simplifies the projection
calculation to (v; - W;) W;.
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2.2.8 CRoss PRoODUCT

Suppose we have two vectors v and w and want to find a new vector u
orthogonal to both. The operation that computes this is the cross product,
also known as the vector product. There are two possible choices for the
direction of the vector, each the negation of the other (Figure 2.14); the one
chosen is determined by the right-hand rule. Hold your right hand so that your
forefinger points forward, your middle finger points out to the left, and your
thumb points up. If you roughly align your forefinger with v, and your middle
finger with w, then the cross product will point in the direction of your thumb
(Figure 2.15). The length of the cross product is equal to the area of a par-
allelogram bordered by the two vectors (Figure 2.16). This can be computed
using the formula

v wi = [v]lw]sin6 (2.6)

FIGURE 2.14 Two directions of orthogonal 3D vectors.

FIGURE 2.15 Cross product direction.
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VXW

A\

w

FIGURE 2.16 Cross product length equals area of parallelogram.

where 0 is the angle between v and w. Note that the cross product is not
commutative, so order is important:

VX W=—(WXYV)
Also, if the two vectors are parallel, sin & = 0, so we end up with the zero vector.
It is a common mistake to believe that if v and w are unit vectors, the
cross product will also be a unit vector. A quick look at equation 2.6 shows
this is true only if sin§ is 1, in which case 6 is 90 degrees.
The formula for the cross product is

VX W= (Vyw; — WyVz, V;Wx — WVyx, UxWy — WxDy)

Certain processors can implement this as a two-step operation, by creating
two vectors and performing the subtraction in parallel:

VX W= (VyWy, V;Wy, VxWy) — (WyVz, WyVyx, Wxly)

For vectors u, v, w, and scalar a, the following algebraic rules apply:

VX W=—WX V.
ux (v+w) =(uxv)+(ux w).

(a4 vy xw=(ux w)+ (VX w).

1
2
3
4. a(vx w) = (av) X w=V X (aw).
5. vx0=0xv=0.

6

vx v=0.
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There are two common uses for the cross product. The first, and most
used, is to generate a vector orthogonal to two others. Suppose we have three
points P, 0, and R, and we want to generate a unit vector n that is orthogonal
to the plane formed by the three points (this is known as a normal vector).
Begin by computing v = (Q — P) and w = (R — P). Now we have a decision
to make. Computing v x w and normalizing will generate a normal in one
direction, whereas w x v and normalizing will generate one in the opposite
direction (Figure 2.17). Usually we'll set things up so that the normal points
from the inside toward the outside of our object.

Like the dot product, the cross product can also be used to determine if two
vectors are parallel by checking whether the resulting vector is close to the zero
vector. Deciding whether to use this test as opposed to the dot product depends
on what your data are. The cross product takes 9 operations. We can test for
zero by examining the dot product of the result with itself ((v x w) - (v x w)). If
it is close to 0, then we know the vectors are nearly parallel. The dot product
takes an additional 5 operations, or 14 total for our test. Recall that testing
for parallel vectors using the dot product of nonnormalized vectors takes 18
operations; in this case, the cross product test is faster.

The cross product of two vectors is defined only for vectors in R3. How-
ever, in R? we can define a similar operation on a single vector v, called the
perpendicular. This is represented as v'. The result of the perpendicular is the
vector rotated 90 degrees. As with the cross product, we have two choices: in
this case, counterclockwise or clockwise rotation. The standard definition is
to rotate counterclockwise (Figure 2.18), so if v = (x, y), v* = (=, x).

The perpendicular has similar properties to the cross product. First, it
produces a vector orthogonal to the original. Also, when used in combination
with the dot product in R? (also known as the perpendicular dot product),

L

voew=|v|[[lw]siné
W XV
Q
\'%
P~ w "R
VX W

FIGURE 2.17 Computing normal for triangle.
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FIGURE 2.18 Perpendicular vector.

where 0 is the signed angle between v and w. That is, if the shortest rotation
to get from v to w is in a clockwise direction, then 6 is negative. And similar
to the cross product, the absolute value of the perpendicular dot product is
equal to the area of a parallelogram bordered by the two vectors.

It is possible to take cross products in dimensions greater than three by
using n — 1 vectors to take an n-dimensional cross product, but in general they
won't be useful to us.

Our IvVector3 cross product method is

IvVector3
IvVector3::Cross( const IvVector3& other )
{
return IvVector3( y*other.z - other.y*z,
z*other.x - other.z*x,
x*other.y - other.x*y );

2.2.0 TRIPLE PRODUCTS

In R? there are two extensions of the two single operation products called
triple products. The first is the vector triple product, which returns a vector and
is computed as u x (v x w).

A special case is w x (v x w) (Figure 2.19). Examining this, v x w is per-
pendicular both to v and w. The result of w x (v x w) is a vector perpendicular
to both w and (v x w). Therefore, if we combine normalized versions of w,
(v x w), and w x (v x w), we have an orthonormal basis (all are perpendic-
ular and of unit length). This can be more efficient than Gram-Schmidt for
producing orthogonal vectors, but of course it only works in R3.

The second triple product is called the scalar triple product. Tt (naturally)
returns a scalar value, and its formula is u- (v x w). To understand this geo-
metrically, suppose we treat these three vectors as the edges of a slanted box,
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w X (Vv X W)

FIGURE 2.1Q The vector triple product.

A%

FIGURE 2.20 Scalar triple product equals volume of parallelopiped.

or parallelopiped (Figure 2.20). Then the area of the base equals ||v x w|, and
llu|l cos 6 gives the height of the box. So,

u-(vx w)=|ul]]vx w|cosé

or area times height equals the volume of the box.

In addition to computing volume, the scalar triple product can be used
to test the direction of the angle between two vectors v and w, relative to
a third vector u that is linearly independent to both. If u- (v x w) > 0, then
the shortest rotation from v to w is in a counterclockwise direction (assuming
our vectors are right-handed, as we will discuss shortly) around u. Similarly,
if u. (v x w) < 0, the shortest rotation is in a relative clockwise direction.

For example, suppose we have a tank with current velocity v and desired
direction d of travel. Our tank is oriented so that its current up direction
points along a vector u. We take the cross product v x d and dot it with u. If
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the result is positive, then we know that d lies to the left of v (counterclockwise
rotation), and we turn left. Similarly, if the value is less than zero, then we
know we must turn right to match d (Figures 2.21 and 2.22).

If we know that the tank is always oriented so that it lies on the xy plane,
we can simplify this considerably. Vectors v and d will always have z values
of 0, and u will always point in the same direction as the standard basis
vector k. In this case, the result of u- (v x d) is equal to the z value of v x d.
So the problem simplifies to taking the cross product of v and d and checking
the sign of the resulting z value to determine our turn direction.

Finally, we can use the scalar triple product to test whether ordered
vectors in R? are left-handed or right-handed. We can test this informally
for our standard basis by using the right-hand rule. Take your right hand
and point the thumb along k and your fingers along i. Now, rotating around
your thumb, sweep your fingers counterclockwise into j (Figure 2.23). This

vxd

u a

\'%

FIGURE 2.21 Scalar triple product indicates left turn.

u

vxd

FIGURE 2.22 Scalar triple product indicates right turn.
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FIGURE 2.273 Right-handed rotation.

90-degree rotation of i into j shows that the basis is right-handed. We can
do the same trick with the left hand rotating clockwise to show that a set of
vectors is left-handed.

Formally, if we have three vectors { vy, vi, v2}, then they are right-handed
if vo-(vi x v2) > 0, and left-handed if vy-(vi x v2) < 0. If vo - (v] x v2) =0,
we've got a problem — our vectors are linearly dependent.

While the scalar triple product only applies to vectors in R3, we can use the
perpendicular dot product to test vectors in R? for both turning direction and
right- or left-handedness. For example, if we have two basis vectors {vg, v1} in
R?, then they are right-handed if v3 - v; > 0 and left-handed if v - v; < 0.

For vectors u, v, and w in R3, the following algebraic rules regarding the
triple products apply:

1. ux(vxw=(u-w)v—(u-v)w.
2. (uxv)xw=u-wv—(v-wu.

3. u-(vxw=w-(uxv)=v-:(wxu.

2.2.10 REAL YVECTOR SPACES

Up to this point, we have only been considering geometric vectors in 2D and 3D
space and their representation using the standard Euclidean basis. However,
there is an abstraction that can be useful to us. A linear space, or vector space,
provides a formal means of encapsulating the concepts that we've just cov-
ered. This has a few advantages. First of all, since it is an abstraction, we can
use it for manipulating higher-dimensional vectors than we might be able to
conceive of geometrically. It also can be used for representing entities that
we wouldn’t normally consider as vectors but that follow the same algebraic
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rules, which can be quite powerful. Finally, there are certain properties of
vector spaces that will prove to be quite useful when we cover matrices and
linear transformations.

To simplify our approach, we are going to concentrate on a subset of
vector spaces known as real vector spaces, so called because their fundamental
components are drawn from R, the set of all real numbers. We usually say that
such a vector space V is over R. We also formally define an element of R in
this case as a scalar.

So what is a real vector space? One example of a real vector space is
simply R. At first glance it may be difficult to see the correspondence between
a real number and a vector, but as we’'ll see next, R does meet the criteria for
a vector space.

We've already seen another vector space: R?. As mentioned, we can
think of this as informally representing 2D space. Symbolically, this is
represented by

R* = {(x,y) | x,y € R}

In this context, the symbol | means “such that” and the symbol € means “is a

member of.” So we read this as “The set of all possible pairs (x, y), such that

x and y are members of the set of real numbers.” And as before, this is a set

of ordered pairs; (1.0, —0.5) is a different member of the set from (0.5, 1.0).
We define R? and R* similarly as follows:

R ={(x,y,2) | x,y,z € R}

R* = {(w, x,y,2) | w, x, 5,z € R}

Like R?, these are ordered lists, where two members with the same values
but differing orders are not the same. As we've seen, R? informally represents
positions in 3D space. Correspondingly, R* can be thought of as represent-
ing 4D space, which is difficult to visualize spatially? (hence our need for an
abstract representation), but is extremely useful for certain computer graphics
concepts.

We can extend our definitions to R”, a generalized n-dimensional space
over R:

Rn = {(x()s e a-xn—l) | xO, e 7-xn—1 € R}
The members of R” are referred to as an n-tuple.

Up until now we've been casually referring to these real-number spaces as
vector spaces. For them to be proper vector spaces and not just organized lists

2. Unless you are one of a particularly gifted pair of children [87].
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of numbers, we need to define two specific operations on the elements that
follow certain algebraic rules. The two operations should be familiar from our
discussion of geometric vectors: They are addition and scalar multiplication.
We'll define these operations so that the vector space V has closure with respect
to them; that is,

1. Forany uand vin V, u+ visin V (additive closure).

2. ForanyainR and vin V, av is in V (multiplicative closure).

So formally, we define a real vector space as a set V over R with closure
with respect to addition and scalar multiplication on its elements, where the
following properties hold:

Forallu, v, w, 0in Vand all ¢, b in R:

v+ w = w+ v (commutative property).
u+ (v+ w) = (u+ v) + w (associative property).

There exists an element 0 such that v + 0 = v (additive identity).

B o=

For every v, there is an element —v such that v + (—v) = 0 (additive
inverse).

(ab)v = a(bv) (associative property).
(a + b)v = av + bv (distributive property).
a(v + w) = av + aw (distributive property).

° N ow

1 - v = v (multiplicative identity).

These are exactly the properties we stated previously for vector addition and
scalar multiplication.
As an example, we can use our previous definition of addition in R?:

(x0, yo) + (x1, y1) = (x0 + x1, yo + y1)
and scalar multiplication:
a(xo, yo) = (axo, ayo)

Using these definitions and the preceding algebraic axioms, it can be shown
that R? is a vector space. Similar operations can be defined for R3 and R*, as
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well as for R itself. Generalized over R”, we have

u+v=(up,...,up—1)+ Vo, ..., V1)
= (uo +v0, - - - Up—1 + Vn—1)
and
av=a(vy, ..., Vy—_1)
= (avg, ..., avy_1)

Now suppose we have a subset W of a vector space V. We call W a subspace
if it is itself a vector space when using the same definition for addition and
multiplication operations. In order to show that a given subset W is a vector
space, we only need to show that closure under addition and scalar multipli-
cation holds; the rest of the properties are satisfied because W is a subset of
V. For example, the subset of all vectors in R? with z = 0 is a subspace, since

(x0, y0, 0) + (x1, ¥1, 0) = (x0 + x1, Yo + ¥1, 0)
a(xo, yo, 0) = (axo, ayo, 0)

The resulting vectors still lie in the subspace R3 with z = 0.

Note that any subspace must contain 0 in order to meet the conditions for
a vector space. So the subset of all vectors in R? with z = 1 is not a subspace
since 0 cannot be represented. And while R? is not a subspace of R? (since the
former is a set of pairs and the latter a set of triples), it can be embedded in
a subspace of R? by a mapping, for example, (x, y) — (x, y, 0).

It is important to understand that— despite the name —a vector space
does not necessarily have to be made up of geometric vectors. What we have
described is a series of sets of ordered lists, possibly with no relation to a
geometric construct. As we have seen, they can be related to the geometry,
but the term vector, when used in describing members of vector spaces, is an
abstract concept. As long as a set of elements can be shown to have the pre-
ceding arithmetic properties, we define it as a vector space and any element of
a vector space as a vector. It is perhaps more correct to say that the geometric
representations of 2D and 3D vectors that we use are visualizations that help
us better understand the abstract nature of R? and R3, rather than the other
way around.

2.2.11 BASIS VECTORS

Now suppose that for a given vector space V, we can find a set 8 of n linearly
independent vectors in V that span V. With this we can formally define 8 as
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a basis for V, and each element of B8 as a basis vector. So far we've shown
only the standard Euclidean basis, but other bases are possible for a given
vector space, and they will always have the same number of elements. We
formally define a vector space’s dimension as equal to the number of basis
vectors required to span it. So, for example, any basis for R? will contain
three basis vectors, and so it is (as we’d expect) a 3D space. Note that while the
standard Euclidean basis is orthonormal, this is not necessary. Basis vectors
can have nonunit length and be nonorthogonal. All that is required is that
they be linearly independent.

As mentioned, among the many bases for a vector space, we define one as
the standard basis. In general this is represented as {ey, ..., e,_1}, where

e = (1,0,...,0)
er=(0,1,...,0)

€1 = (01 0,..., 1)

One property of a basis 8 is that for every vector v in V, there is a unique
linear combination of the vectors in 8 that equal v. So, using a general basis
B ={bg, by, ..., b,_1}, thereis only onelist of coefficients ay, . . ., a,—1 such that

v=aobo+aib;+---+a,—1b,—1

This formally explains why, instead of using the full equation to represent v,
we can abbreviate it by using only the coefficients ay, ..., a,—1 and store them
in an ordered n-tuple as (ay, ..., a,—1). Note that the coefficient values will be
dependent on which basis we're using and will almost certainly be different
from basis to basis. The ordering of the basis vectors is important: A different
ordering will not necessarily generate the same coefficients for a given vector.
For most cases, though, we'll be assuming the standard basis, as we did above.

POINTS

Now that we have covered vectors and vector operations in some detail, we
turn our attention to a related entity: the point. While the reader probably
has some intuitive notion of what a point is, in this section we'll provide a
mathematical representation and discuss the relationship between vectors
and points. We'll also discuss some special operations that can be performed
on points and alternatives to the standard Cartesian coordinate system.
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Within this section it is also assumed that the reader has some general
sense of what lines and planes are. More information on these topics follows
in subsequent sections.

2.3.1 POINTS As GEOMETRY

Everyone who has been through a first-year geometry course should be
familiar with the notion of a point. Euclid describes the point in his work
Elements [33] as “that which has no part.” Points have also been presented as
the cross-section of a line, or the intersection of two lines. A less vague but
still not satisfactory definition is to describe them as an infinitely small entity
that has only the property of location. In games we use points for two primary
purposes: to represent the position of game objects and as the basic building
block of their geometric representation. Points are represented graphically by
a dot.

Euclid did not present a means for representing position numerically,
although later Greek mathematicians used latitude, longitude, and altitude.
The primary system we use now— Cartesian coordinates—was originally
published by Rene Descartes in his 1637 work La geometrie [24] and further
revised by Newton and Leibniz.

In this system we measure a point’s location relative to a special, anchored
point, called the origin, which is represented by the letter 0. In R? we infor-
mally define two perpendicular real-number lines or axes—known as the
x- and y-axes—that pass through the origin. We indicate the location of
a point P by a pair (x, y) in R?, where x is the distance from the point to
the y-axis, and y is the distance from the point to the x-axis. Another way to
think of it is that we count x units along the x-axis and then y units up paral-
lel to the y-axis to reach the point’s location. This combination of origin and
axes is called the Cartesian coordinate system (Figure 2.24).

For R? three perpendicular coordinate axes—x, y, and z—intersect at
the origin. There are corresponding coordinate planes xy, yz, and xz that also
intersect at the origin. Take the room you're sitting in as our space, with one
corner of the room as the origin, and think of the walls and floor as the three
coordinate planes (assume they extend infinitely). The edges where the walls
and floor join together correspond to the axes. We can think of a 3D position as
being a real-number triple (x, y, z) corresponding to the distance of the point
to the three planes, or counting along each axis as before.

In Figure 2.25 you can see an example of a 3D coordinate system. Here
the axis pointing up is called the z-axis, the one to the side is the y-axis, and
the one aimed slightly out of the page is the x-axis. Another system that is
commonly used in graphics books has the y-axis pointing up, the x-axis to the
right, and the z-axis out of the page (Figure 2.26). Some graphics developers
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FIGURE 2.24 Two-dimensional Cartesian coordinate system.
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FIGURE 2.25 Three-dimensional Cartesian coordinate system.

favor this because the x- and y-axes match the relative axes of the 2D screen,
but most of the time we'll be using the former convention for this book.
Both of the 3D coordinate systems we have described are right-handed.
As before, we can test this via the right-hand rule. This time point your thumb
along the z-axis, your fingers along the x-axis, and rotate counterclockwise
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FIGURE 2.26 Alternate 3D Cartesian coordinate system.

into the y-axis. As with left-handed bases, we can have left-handed coordinate
systems (and will be using them later in this book), but the majority of our
work will be done in a right-handed coordinate system because of convention.

2.3.2 AFFINE SPACES

We can provide a more formal definition of coordinate systems based on
what we already know of vectors and vector spaces. Before we can do so,
though, we need to define the relationship between vectors and points. Points
can be related to vectors by means of an affine space. An affine space consists
of a set of points W and a vector space V. The relation between the points and
vectors is defined using the following two operations: For every pair of points
P and Q in W, there is a unique vector v in V such that

v=Q-—-P

Correspondingly, for every point P in W and every vector v in V, there is
a unique point Q such that

OQ=P+v 2.7)
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This relationship can be seen in Figure 2.27. We can think of the vector v as
acting as a displacement between the two points P and Q. To determine the
displacement between two points, we subtract one from another. To displace
a point, we add a vector to it and that gives us a new point.

We can define a fixed-point O in W, known as the origin. Then using
equation 2.7, we can represent any point P in W as

P=0+v

or, expanding our vector using n basis vectors that span V:

P=0+apvo+aivi+--- 4 ay—1Vu—1 (2.8)
Using this, we can represent our point using an n-tuple (ag, ..., a,—1) just as
we do for vectors. The combination of the origin O and our basis vectors
(vo, ..., Vys—1) is known as a coordinate frame.

Note that we can use any point in W as our origin and—for an
n-dimensional affine space—any n linearly independent vectors as our
basis. Unlike the Cartesian axes, this basis does not have to be orthonormal,
but using an orthonormal basis (as with vectors) does make matching our
physical geometry with our abstract representation more straightforward.
Because of this, we will work with the standard origin (0,0, ..., 0), and the
standard basis {(1,0,...,0),(0,1,...,0),...,(0,0, ..., 1}. This is known as the
Cartesian frame.

In R? our Cartesian frame will be the origin O = (0, 0, 0) and the standard
ordered basis {i, j, k} as before. Our basis vectors will lie along the x-, y-, and
z-axes, respectively. By using this system, we can use the same triple (x, y, z)
to represent a point and the corresponding vector from the origin to the point
(Figure 2.28).

To compute the distance between two points we use the length of the
vector that is their difference. So, if we have two points Py = (x¢, yo, zo) and
Pi = (x1, y1, z1) in R3, the difference is

v =P — Py=(x1 — X0, Y1 — Y0, 21 — 20)

Q

P

FIGURE 2.27 Affine relationship between points and vectors.
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FIGURE 2.28 Relationship between points and vectors in Cartesian affine frame.

and the distance between them is

dist(P1, Po) = ol = y/ (x1 = 0% + (1 — 30 + (21 — 20)?

This is also known as the Euclidean distance. In the R3 Cartesian frame, the
distance between a point P = (x, y, z) and the origin is

dist(P, 0) = /x%2 + y2 + 72

2.3.3 AFFINE COMBINATIONS
So far the only operation that we've defined on points alone is subtraction,
which results in a vector. However, there is a limited addition operation that
we can perform on points that gives us a point as a result. It is known as an
affine combination, and has the form

P=ayPy+a P+ - +aPy (2.9)
where

a0+a]+...+ak=1 (2.10)

So, an affine combination of points is like a linear combination of vectors,
with the added restriction that all the coefficients need to add up to 1. We can
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show why this restriction allows us to perform this operation by rewriting
equation 2.10 as

a=1—a— - —a
and substituting into equation 2.9 to get

P=(0—-a — - —ay)Po+a1P1+---+arPx
= Py+ai(Py— Po) +--- +ax(Pr — Py) (2.11)

If we set u; = (P; — Py), up = (P, — Py), and so on, we can rewrite this as
P=Py+au +au+- - +apug

So, by restricting our coefficients in this manner, it allows us to rewrite the
affine combination as a point plus a linear combination of vectors, a perfectly
legal operation.

Looking back at our coordinate frame equation 2.8, we can see that it too is
an affine combination. Just as we use the coefficients in a linear combination
of basis vectors to represent a general vector, we can use the coefficients of an
affine combination of origin and basis vectors to represent a general point.

An affine combination spans an affine space, just as a linear combination
spans a vector space. If the vectors in equation 2.11 are linearly independent,
we can represent any point in the spanned affine space using the coefficients
of the affine combination, just as we did before with vectors. In this case,
we say that the points Py, Py, ..., P, are affinely independent, and the ordered
points are called a simplex. The coefficients are called barycentric coordinates.
For example, we can create an affine combination of a simplex made of three
affinely independent points Py, P;, and P,. The affine space spanned by the
affine combination agPy + a1 P; + a2 P; is a plane, and any point in the plane
can be specified by the coordinates (ag, a1, az).

We can further restrict the set of points spanned by the affine combina-
tion by considering properties of convex sets. A convex set of points is defined
such that a line drawn between any pair of points in the set remains within the
set (Figure 2.29). The convex hull of a set of points is the smallest convex set
that includes all the points. If we restrict our coefficients (ay, ..., a,—1) such
that 0 < ag,...,a,_1 < 1, then we have a convex combination, and the span
of the convex combination is the convex hull of the points. For example, the
convex combination of three affinely independent points spans a triangle. We
will discuss the usefulness of this in more detail when we cover triangles in
Section 2.6.

If the barycentric coordinates in a convex combination of n points are all
1/n, then the point produced is called the centroid, which is the mean of a set
of points.
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FIGURE 2.29 Convex versus nonconvex set of points.

2.3.4 POINT IMPLEMENTATION

coonee cooe Using the Cartesian frame and standard basis in R?, the x, y, and z values of a

point P in R3 match the x, y, and z values of the corresponding vector P — 0,
where O is the origin of the frame. This also means that we can use one class

IvWector3

to represent both, since one can be easily converted to the other. Because of
this, many math libraries don’t even bother implementing a point class and
just treat points as vectors.

Other libraries indicate the difference by treating them both as 4-tuples
and indicate a point as (x, y, z, 1) and a vector as (x, y, z, 0). In this system if
we subtract a point from a point, we automatically get a vector:

(x0, Y0, 20, 1) — (x1, y1, 21, 1) = (x0 — X1, yo — ¥1,20 — 21, 0)

Similarly, a point plus a vector produces a point:

(x0, Y0, 20, 1) + (x1, y1,21,0) = (x0 + x1, yo + ¥1, 20 + 21, D)

Even affine combinations give the expected results:
n—1 n—1 n—1 n—1 n—1
D aite, yiozio =D aixi, Y ayi, Y aizi, Y a;
i=0 i=0 i=0 i=0 i=0
n—1 n—1 n—1
= Zaixh Zaiyi, ZaiZi,l
i=0 i=0 i=0

OpenGL uses this form when specifying the difference between a point
light, which casts light rays in all directions from a given position, and
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a directional light, which only casts light rays in one direction. Both are
specified by a single call:

GLfloat 1ight position[] = {1.0, 1.0, 1.0, 0.0};
g]Lightfv(GL_LIGHTO, GL_POSITION, 11'ght_pos1't1'on);

If the final value of 1ight_positionis 0, then it is treated as a directional light;
otherwise, it is treated as a point light.

In our case, we will not be using a separate class for points. There would
be a certain amount of code duplication, since the IvPoint3 class would end
up being very similar to the IvVector3 class. Also to be considered is the per-
formance cost of converting points to vectors and back again. Further, to
maintain type correctness we may end up distorting equations unnecessar-
ily; this obfuscates the code and can lead to a loss in performance as well.
Finally, most production game engines don’'t make the distinction, and we
wish to remain compatible with the overall state of the industry.

Despite not making the distinction in the class structure, it is important
to remember that points and vectors are not the same. One has direction and
length and the other position, so not all operations apply to both. For example,
we can add two vectors together to get a new vector. As we've seen, adding two
points together is only allowed in certain circumstances. So, while we will be
using a single class, we will be maintaining mathematical correctness in the
text and writing the code to reflect this.

As mentioned, most of what we need for points is already in the IvVector3
class. The only additional code we'll have to implement is for distance and
distance squared operations:

float
Distance( const IvVector3& pointl,
const IvVector3& point2 )

{

float x = pointl.x - point2.x;
float y = pointl.y - point2.y;
float z = pointl.z - point2.z;

return IvSqrt( x*x + y*y + z*z );
1
float
DistanceSquared( const IvVector3& pointl,
const IvVector3& point2 )
{

float x = pointl.x - point2.x;
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float y = pointl.y - point2.y;
float z = pointl.z - point2.z;

return ( x*x + y*y + z*z );

2.3.5 POLAR AND SPHERICAL COORDINATES

Cartesian coordinates are not the only way of measuring location. We've
already mentioned latitude, longitude, and altitude, and there are other,
related systems. Take a point P in R? and compute the vector v = P — O.
We can specify the location of P using the distance r from P to the origin,
which is the length of v, and the angle 6 between v and the positive x-axis,
where 6 > 0 corresponds to a counterclockwise rotation from the axis. The
components (r, §) are known as polar coordinates.

It is easy to convert from polar to Cartesian coordinates. We begin by
forming a right triangle using the x-axis, a line from P to O, and the perpen-
dicular from P to the x-axis (Figure 2.30). The hypotenuse has the length r
and is 0 degrees from the x-axis. Using simple trigonometry, the lengths of the
other two sides of the triangle x and y can be computed as

x =rcosf (2.12)
y=rsinf
From Cartesian to polar coordinates, we reverse the process. It's easy

enough to generate r by computing the distance between P and O. Finding
0 is not as straightforward. The naive approach is to solve equation 2.12

Xx-axis

FIGURE 2.30 Relationship between polar and Cartesian coordinates.
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for 6, which gives us 8 = arccos(x/r). However, the acos() function under
C++ only returns an angle in the range of [0, 7), so we've lost the sign of the
angle. Since

y  rsin6
x - rcosf
sin 0
- cos 6
= tan 6

an alternate choice would be arctan(y/x), but this doesn’t handle the case when
x = 0. To manage this, C++ provides a library function called atan2 (), which
takes y and x as separate arguments and computes arctan(y/x). It has no prob-
lems with division by 0 and maintains the signed angle with a range of [—7, 7].
We'll represent the use of this function in our equations as arctan 2(y, x). The

final result is
r=/x2 4 y2

6 = arctan 2(y, x)

If r is 0, © may be set arbitrarily.

The system that extends this to three dimensions is called spherical coor-
dinates. In this system we call the distance from the point to the origin p
instead of r. We create a sphere of radius p centered on the origin and define
where the point lies on the sphere by two angles, ¢ and 0. If we take a vector
v from the origin to the point and project it down to the xy plane, 0 is the
angle between the x-axis and rotating counterclockwise around z. The other
quantity, ¢, measures the angle between v and the z-axis. The three values, p,
¢, and 0, represent the location of our point (Figure 2.31).

Spherical coordinates can be converted to Cartesian coordinates as
follows. Begin by building a right triangle as before, except with its hypotenuse
along p and base along the z-axis (Figure 2.32). The length z is then pcos ¢.
To compute x and y, we project the vector v down onto the xy plane, and
then use polar coordinates. The length r of the projected vector v’ is psin ¢, so
we have

x = psingcosd (2.13)
y = psin¢sind (2.14)
Z=pcos¢ (2.15)

To convert from Cartesian to spherical coordinates, we begin by comput-
ing p, which again is the distance from the point to the origin. To find ¢, we
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z-axis

x-axis

FIGURE 2.31 Spherical coordinates.

z-axis

x-axis

FIGURE 2.32 Relationship between spherical and Cartesian coordinates.

need to find the value of psin ¢. This is equal to the projected xy length r since

r= /x2+y2

= \/(p sin ¢ cos )2 + (p sin ¢ sin )2

= \/(psin§)2(cos? 6 + sin? 0)

= psin¢
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And since, as with polar coordinates,

r_ psing
z pcos ¢
= tan ¢

we can compute ¢ = arctan 2(r, z). Similarly, 0 = arctan 2(y, x). Summarizing:

p=+/x*+y*+72
¢ = arctan 2 (,/x2 +y2, Z)

0 = arctan 2(y, x)

2.4 LiNES
2.4.1 DEFINITION

As with the point, a line as a geometric concept should be familiar. Euclid
[33] defines a line as “breadthless length” and a straight line as that “which
lies evenly with the points on itself.” A straight line also has been referred
to as the shortest distance between two points, although in non-Euclidean
geometry this is not necessarily true.

From first-year algebra, we know that a line in R? is represented by the
formula

y=mx+b (2.16)

where m is the slope of the line (it describes how y changes with each step
of x), and b is the coordinate location where the line crosses the y-axis (called
the y-intercept). In this case, x varies over all values and y is represented in
terms of x. This general form works for all lines in R? except for those that
are vertical, since in that case the slope is infinite and the y-intercept is either
nonexistent or is all values along the y-axis.

Equation 2.16 has a few problems. First of all, as mentioned, we can’t
easily represent a vertical line — it has infinite slope. And, it isn’t obvious how
to transform this equation into one useful for three dimensions. We will need
a different representation.
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2.4.2 PARAMETERIZED LINES

One possible representation is known as a parametric equation. Instead of
representing the line as a single equation with a number of variables, each
coordinate value is calculated by a separate function. This allows us to use
one form for a line that is generalizable across all dimensions. As an example,
we will take equation 2.16 and parameterize it.

To compute the parametric equation for a line, we need two points on our
line. We can take the y-intercept (0, b) as one of our points, and then take one
step in the positive x direction, or (1, m + b), to get the other. Subtracting point
1 from point 2, we get a 2D vector d = (1, m), which is oriented in the same
direction as the line (Figure 2.33). If we take this vector and add all the possible
scalar multiples of it to the starting point (0, b), then the points generated will
lie along the line. We can express this in one of the following forms:

L) = Py+t(P1 — Py (2.17)
={1-0HPy+1tP; (2.18)
=Py+1td (2.19)

The variable ¢ in this case is called a parameter.

We started with a 2D example, but the formulas we just derived work
beyond two dimensions. As long as we have two points, we can just substitute
them into the preceding equations to represent a line. More formally, if we
examine equation 2.17, we see it matches equation 2.11. The affine combina-
tion of two unequal or noncoincident points span a line. Equation 2.19 makes
this even clearer. If we think of Py as our origin and d as a basis vector, they
span a 1D affine space, which is the line.

Since our line is spanned by an affine combination of our two points, the
logical next question is: What is spanned by the convex combination? The
convex combination requires that ¢t and (1 — ) lie between 0 and 1, which
holds only if ¢ lies in the interval [0, 1]. Clamping ¢ to this range gives us a line
segment (Figure 2.34). The edges of polygons are line segments, and we’ll also
be using line segments when we talk about bounding objects and collision
detection.

If we clamp 7 to only one end of the range, usually specifying that t > 0,
then we end up with a ray (Figure 2.35) that starts at Py and extends infinitely

FIGURE 2.33 Line.
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Py

FIGURE 2.34 Line segment.

FIGURE 2.35 Ray.

along the line in the direction of d. Rays are useful for intersection and visi-
bility tests. For example, Py may represent the position of a camera, and d is
the viewing direction.
Q. ... In code we'll be representing our lines, rays, and line segments as a point
on the line P and a vector d; so for example, the class definition for a line in

IvMath

R3 is
IvLine3

IvLineSegment3

IvRay3

class IvLine3

{
public:

IvLine3( const IvVector3& direction, const IvVector3& origin );

IvVector3 mDirection;
IvPoint3 mOrigin;

}s

2.4.3 GENERALIZED LINE EQUATION

There is another formulation of our 2D line that can be useful. Let’s start by
writing out the equations for both x and y in terms of

x = Py +td,
y = Py +1d,

Solving for ¢ in terms of x, we have

f— (x — Py)
_—dx
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Substituting this into the y equation, we get

(x — Py)
= dyT + Py

We can rewrite this as

:(y_Py)_(x_Px)

0
dy dy
= (—dy)x + (d)y + (dy Py — d. Py)
byt (2.20)
where
a=—d,
b=d,

¢ =dyP; —dyPy = —aP; — bP,

We can think of a and b as the components of a 2D vector n, which is
perpendicular to the direction vector d, and so is orthogonal to the direction
of the line (Figure 2.36). This gives us a way of testing where a 2D point lies
relative to a 2D line. If we substitute the coordinates of the point into the
x and y values of the equation, then a value of 0 indicates it’s on the line,
a positive value indicates that it’s on the side where the vector is pointing,
and a negative value indicates that it’s on the opposite side. If we normalize
our vector, we can use the value returned by the line equation to indicate the
distance from the point to the line.

To see why this is so, suppose we have a test point Q. We begin by con-
structing the vector between Q and our line point P, or Q — P. There are two
possibilities. If Q lies on the side of the line where n is pointing, then the
distance between Q and the line is

d=|Q — Pl|cosf

n=(a,b)

Py

FIGURE 2.36 Normal form of 2D line.
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where 0 is the angle between n and Q — P. But since n- (Q — P)=|n|
|Q — P| cos6, we can rewrite this as

,_n©Q-P
]

If Q is lying on the opposite side of the line, then we take the dot product with
the negative of n, so

_—n-(0-P

| —n|

_ n-(Q-P
I

Since d is always positive, we can just take the absolute value of n.(Q — P)
to get

_In-(Q- P

[

d (2.21)

If we know that n is normalized, we can drop the denominator. If Q = (x, y)
and (as we've stated) n = (a, b), we can expand our values to get

d=a(x — Py) +b(y — Py)
=ax+by—aP,—bP,
=ax+by+c

If our n is not normalized, then we need to remember to divide by ||n| to get
the correct distance.

2.4.4 COLLINEAR POINTS

Three or more points are said to be collinear if they all lie on a line. Another
way to think of this is that despite there being more than two points, the affine
space that they span is only one dimensional.

To determine whether three points Py, P;, and P, are collinear, we take
the cross product of P; — Py and P, — Py and test whether the result is close to
the zero vector. This is equivalent to testing whether basis vectors for the
affine space are parallel.
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2.5 PLANES

Euclid [33] defines a surface as “that which has length and breadth only,” and
a plane surface, or just a plane, as “a surface which lies evenly with the straight
lines on itself.” Another way of thinking of this is that a plane is created by
taking a straight line and sweeping each point on it along a second straight
line. It is a flat, limitless, infinitely thin surface.

2.5.1 PARAMETERIZED PLANES

As with lines, we can express a plane algebraically in a number of ways. The
first follows from our parameterized line. From basic geometry we know that
two noncoincident points form a line and three noncollinear points form
a plane. So, if we can parameterize a line as an affine combination of two
points, then it makes sense that we can parameterize a plane as an affine
combination of three points Py, P, and P, or

P, =0 —s—t)Py+ sP; +tP

Alternatively, we can represent this as an origin point plus the linear
combination of two vectors:

P(s, 1) = Py +s(P1 — Po) + (P, — Py)
= Py+su+1rv

As with the parameterized line equation, if our points are of higher dimen-
sion, we can create planes in higher dimensions from them. However, in most
cases our planes will be firmly entrenched in R3.

2.5.2 GENERALIZED PLANE EQUATION

We can define an alternate representation for a plane in R3, just as we did for
a line in R2. In this form a plane is defined as the set of points perpendicular
to a normal vector n = (a, b, ¢) that also contains the point Py = (xo, yo, zo) as
shown in Figure 2.37. If a point P lies on the plane, then the vector v= P — P,
also lies on the plane. For v and n to be orthogonal, then n- v = 0. Expanding
this gives us the normal-point form of the plane equation, or

a(x —x0) +b(y — yo) +c(z—2z0) =0
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————

P

FIGURE 2.37 Normal form of plane.

We can pull all the constants into one term to get

0 = ax + by 4 cz — (axo + byo + cz0)
=ax+by+cz+d

So, extending equation 2.20 to three dimensions gives us the equation for a
plane in R3.

This is the generalized plane equation. As with the generalized line equa-
tion, this equation can be used to test where a point lies relative to either side
of a plane. Again, comparable to the line equation, it can be proved that if
n is normalized, |ax + by + ¢z + d| returns the distance from the point to the
plane.

Testing points versus planes using the general plane equation happens
quite often. For example, to detect whether a point lies inside a convex poly-
hedron, you can do a plane test for every face of the polyhedron. Assuming
the plane normals point away from the center of the polyhedron, if the point
is on the negative side of all the planes then it lies inside. We may also use
planes as culling devices that cut our world into half-spaces. If an object lies
on one side of a plane, we consider it (say, for rendering purposes); otherwise,
we ignore it. The distance property can be used to test whether a sphere is
intersecting a plane. If the distance between the sphere’s center and the plane
is less than the sphere’s radius, then the sphere is intersecting the plane.

Given three points in R3, P, Q, and R, we generate the generalized plane
equation as follows. First we compute two vectors u and v, where

u=0Q0-"P

v=R—-P

Now we take the cross product of these two vectors to get the normal to the
plane:
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SOURCE CoDE
IvMath
IvPlane

2.6

SOURCE CoDE
IvMath
IvTriangle

We usually normalize n at this point so that we can take advantage of the
distance-measuring properties of the plane equation. This gives us our values
a, b, and c. Taking P as the point on the plane, we compute d by

d = —(aP, +bP, + cP)

We can also use this to convert our parameterized form to the generalized
form by starting with the cross product step.
Since we'll be working in R? most of the time and because of its useful

properties, we'll be using the generalized plane equation as the basis for our
class:

class IvPlane
{
public:
IvPlane( float a, float b, float c, float d );

IvVector3 mNormal;
float mOffset;
}s

And while we’ll be using this as our standard plane, from time to time we’ll
be making use of the parameterized form, so it’s good to keep it in mind.

2.5.3 COPLANAR POINTS

Four or more points are said to be coplanar if they all lie on a plane. Another
way to think of this is that despite the number of points being greater than
three, the affine space that they span is only two dimensional.

To determine whether four points Py, P;, P,,and P; are coplanar, we create
vectors Py — Py, P, — Py, and P3 — Py, and compute their triple scalar product. If
the result is near zero, then they may be coplanar, if they’re not collinear. To
determine if they are collinear, take the cross products (P — Py) x (P, — Py),
and (P; — Py) x (P3 — Py). If both results are near zero, then the points are
collinear instead.

POLYGONS AND TRIANGLES

The current class of graphics processors wants their geometric data in
primarily one form: points. However, having just a collection of points is
not enough. We need to organize these points into smaller groups, for both
rendering and computational purposes.
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A polygon is made up of a set of vertices (which are represented by points)
and edges (which are represented by line segments). The edges define how
the vertices are connected together. A convex polygon is one where the set
of points enclosed by the vertices and edges is a convex set; otherwise, it’s
a concave polygon.

The most commonly used polygons for storing geometric data are triangles
(three vertices) and guadrilaterals (four vertices). While some rendering sys-
tems accept quadrilaterals (also referred to as just guads) as data, most want
geometry grouped in triangles, so we'll follow that convention throughout
the remainder of the book. One advantage triangles have over quadrilater-
als is that three noncollinear vertices are guaranteed to be coplanar, so they
can be used to define a single plane. If the three vertices of a triangle are
collinear, then we have a degenerate triangle. Degenerate triangles can cause
problems on some hardware and with some geometric algorithms, so it’s good
to cull them by checking for collinearity of the triangle vertices by using the
technique described previously.

If the points are not collinear, then as we've stated, the three vertices Py,
Pi, and P, can be used to find the triangle’s incident plane. If we set u =
Py — Py and v = P, — Py, then we can define this via the parameterized plane
equation P(s,t) = Py + su + rv. Alternately, we can compute the generalized
plane equation by computing the cross product of u and v, normalizing to get
the normal f, and then computing d as described in Section 2.5.2.

It’s often necessary to test whether a 3D point lying on the triangle plane
is inside or outside of the triangle itself (Figure 2.38). We begin by computing
three vectors vy, vi, and v, where

vo= P — P
vi=P,— P
vw=Ph—-P
Py
VO P
Vi
Wo
V2 PO

Py

FIGURE 2.38 Point in triangle test.
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We take the cross product of vy and v, to get a normal vector n to the triangle.
We then compute three vectors from each vertex to the test point:

wo=P—-F
w; =P — P
w)=P— P

If the point lies inside the triangle, then the cross product of each v; with each
w; will point in the same direction as n, which we can test by using a dot
product. If the result is negative, then we know they’re pointing in opposite
directions, and the point lies outside. For example, in Figure 2.38, the normal
vector to the triangle, computed as vy x vj, points out of the page. But the
cross product vg x wo points into the page, so the point lies outside.

We can speed up this operation by projecting the point and triangle to
one of the xy, xz, or yz planes and treating it as a 2D problem. To improve
our accuracy, we'll choose the one that provides the maximum area for the
projection of the triangle. If we look at the normal n for the triangle, one of
the coordinate values (x, y, z) will have the maximum absolute value; that is,
the normal is pointing generally along that axis. If we drop that coordinate and
keep the other two, that will give us the maximum projected area. We can then
throw out a number of zero terms and end up with a considerably faster
test. This is equivalent to using the perpendicular dot product instead of the
cross product. More detail on this technique can be found in Section 12.3.5,
Triangles.

Another advantage that triangles have over quads is that (again, assuming
the vertices aren’t collinear) they are convex polygons. In particular, the con-
vex combination of the three triangle vertices spans all the points that make
up the triangle. Given a point P inside the triangle and on the triangle plane,
it is possible to compute its particular barycentric coordinates (s, 1), as used in
the parameterized plane equation P(s, f) = Py+su+tv. If we compute a vector
w = P — Py, then we can rewrite the plane equation as

P=PFPy+su+tv

W=su+1tv
If we take the cross product of v with w, we get

VX W=VX(su+tv)
=s(vxu) +tvxv)

=s(vxu



2.6 Polygons and Triangles 85

Taking the length of both sides gives
v > wil =I[sl[v>ul

The quantity ||v x u|| = ||u x v||. And since P is inside the triangle, we know
that to meet the requirements of a convex combination s > 0, so

Cvxwl
lu > v]

A similar construction finds that

_ llaxw
[w > v

Note that this is equivalent to computing the areas a and b of the two
subtriangles shown in Figure 2.39 and dividing by the total area of the
triangle ¢, so

b
s = -
C
a
t=—
C
where
1|| Il
a= —||uX Ww
2
1
b= Z|vxw|
2
1II I
c=—-|luxv
2

FIGURE 2.39 Computing barycentric coordinates for point in triangle.
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2.7

These simple examples are only a taste of how we can use triangles in
mathematical calculations. More details on the use and implementation of
triangles can be found throughout the text, particularly in Chapters 7 and 12.

CHAPTER SUMMARY

In this chapter, we have covered some basic geometric entities: vectors and
points. We have discussed linear and affine spaces, the relationships between
them, and how we can use affine combinations of vectors and points to define
other entities like lines and planes. We've also shown how we can use our
knowledge of affine spaces and vector properties to compute some simple tests
on triangles. These skills will prove useful to us throughout the remainder of
the text.

For those who are interested in reading further, Anton and Rorres [3] is
a standard reference for many first courses in linear algebra. Other texts with
slightly different approaches are Axler [4] and Friedberg et al. [39]. Informa-
tion on points and affine spaces can be found in Schneider and Eberly [100],
as well as in deRose [23].



MATRICES AND
LINEAR
TRANSFORMATIONS

3.1 INTRODUCTION

In the previous chapter we discussed vectors and points and some simple
operations we can apply to them. Now we’ll begin to expand our discussion
to cover specific functions that we can apply to vectors and points; functions
known as transformations. In this chapter we’ll discuss a class of transfor-
mations that we can apply to vectors called linear transformations. These
encompass nearly all of the common operations we might want to perform on
vectors and points, so understanding what they are and how to apply them is
important. We'll define these functions and how they are distinguished from
other, more general transformations.

Properties of linear transformations allow us to use a structure called a
matrix as a compact representation for transforming vectors. A matrix is a
simple two-dimensional (2D) array of values, but within it lies all the power
of a linear transformation. Through simple operations we can use the matrix
to apply linear transformations to vectors. We can also combine two transfor-
mation matrices to create a new one that has the same effect of the first two.
Using matrices effectively lies at the heart of the pipeline for manipulating
virtual objects and rendering them on the screen.

Matrices have other applications as well. Examining the structure of
a matrix can tell us something about the transformation it represents, for
example, whether it can be reversed, what that reverse transformation might
be, or whether it distorts the data that it is given. Matrices also can be used

87
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3.2

to solve systems of linear equations, which is useful to know for certain
algorithms in graphics and physical simulation. For all of these reasons,
matrices are primary data structures in graphics application programmer
interfaces (APIs).

MATRICES
3.2.1 INTRODUCTION TO MATRICES

A matrix is a rectangular, 2D array of values. Throughout this book, most of
the values we use will be real numbers, but they could be complex numbers or
even vectors. Each individual value in a matrix is called an element. Examples
of matrices are

10 0 2 1
A=|o0 1 0 B:[ggg _115] c=|o 2
00 1 6 3

A matrix is described as having m rows by n columns, or being an m x n
matrix. A row is a horizontal group of elements from left to right, while a
column is a vertical, top-to-bottom group. Matrix A in our example has 3 rows
and 3 columns and is a 3 x 3 matrix, whereas matrix C is a 3 x 2 matrix. Rows
are numbered 0 to m —1,! while columns are numbered 0 to n— 1. An individual
element of a matrix A is referenced as either (A); ; or just g; ;, where i is the
row number and j is the column. Looking at matrix B, element b; ¢ contains
the value 2 and element by,; equals 35.

If an individual matrix has an equal number of rows and columns, that is
if m = n, then it is called a square matrix. In our example, matrix A is square,
whereas matrices B and C are not.

If all elements of a matrix are zero, then it is called a zero matrix. We will
represent a matrix of this type as 0 and assume a matrix of the appropriate
size for the operation we are performing.

If two matrices have an equal number of rows and columns, then they
are said to be the same size. If they are the same size and their corresponding

1. As a reminder, mathematical convention starts with 1, but we're using 0 to be compatible
with C++.
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elements have the same values, then they are equal. Below, the two matrices
are the same size, but they are not equal.

0 1 0 0
3 2 |#£] 2 =3
0 -3 13

The set of elements where the row and column numbers are the same
(e.g., row 1, column 1) is called the main diagonal. In the next example the
main diagonal is in gray.

-5 0 1
0 206 0
U= 0 0 T3
0 0 0 1

The trace of a matrix is the sum of the main diagonal elements. In this
case the traceis3+2+1+1=7.

In matrix U, all elements below the diagonal are equal to 0. This is known
as an upper triangular matrix. Note that elements above the diagonal don’t
necessarily have to be nonzero in order for the matrix to be upper triangular,
nor does the matrix have to be square.

If elements above the diagonal are 0, then we have a lower triangular
matrix:

3000
2200
L= 0310
-6 1 0 1

Finally, if a square matrix has nondiagonal elements of zero, we call the
matrix a diagonal matrix:

S OO W
S OO
o= O O
- o o O

It follows that any diagonal matrix is both an upper triangular and lower
triangular matrix.
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3.2.2 SIMPLE OPERATIONS

Matrix Addition and Scalar Multiplication

We can add and scale matrices just as we can vectors. Adding two matrices
together:

S=A+B
is done componentwise like vectors, thus,
sij=aij+ b

Clearly, in order for this to work, A, B, and S must all be the same size (also
known as conformable for addition). Subtraction works similarly but as with
real numbers and vectors is not commutative.

To scale a matrix,

P=sA
each element is multiplied by the scalar, again like vectors:

pij=5$-aij

Matrix addition and scalar multiplication have their algebraic rules, which
should seem quite familiar at this point:

A+B=B+A.
A+B+C=A+B)+C
A+ 0=A.

A+ (-A)=0.

a(A + B) =aA + aB.
a(bA) = (ab)A.

(a+ b)A = aA + DA.
1A = A.

N o kW N

As we can see, these rules match the requirements for a vector space, and so
the set of matrices of a given size is also a vector space.
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Transpose

The transpose of a matrix A (represented by A”) interchanges the rows and
columns of A. It does this by exchanging elements across the matrix’s main
diagonal, so (AT); j = (A)ji. An example of this is

As we can see, the matrix does not have to be square, so an m x n matrix
becomes an n x m matrix. Also, the main diagonal doesn’t change, or is
invariant, since (AT),-,,- = (A);;.

A matrix where (A); j=(A);; (i.e., cross-diagonal entries are equal) is
called a symmetric matrix. All diagonal matrices are symmetric. Another
example of a symmetric matrix is

3 1 2 3
1 2 =5 0
2 =5 I -9
3 0 -9 1

The transpose of a symmetric matrix is the matrix again, since in this case
(AT) ;i = (A)j = (A) .

A matrix where (A); j= —(A);; (i.e., cross-diagonal entries are negated
and the diagonal is 0) is called a skew symmetric matrix. An example of a skew
symmetric matrix is

0 1 2
-1 0 =5
-2 5 0

The transpose of a skew symmetric matrix is the negation of the original
matrix, since in this case (AT)j,,- =A)j=—(A)j;.
Some useful algebraic rules involving the transpose are

1. (ADHT =A
2. (@AT) = aAT
3. A+B)T =AT +B7

where a is a scalar and A and B are conformable for addition.
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3.2.3 VECTOR REPRESENTATION

If a matrix has only one row or one column, then we have a row or column
matrix, respectively:

5
[05 025 1 —1] -3
6.9

These are often used to represent vectors. There is no particular standard as
to which one to use. For example, the OpenGL specification and its documen-
tation uses columns, whereas DirectX, by comparison, uses rows. In this text
we will assume that vectors are represented as column matrices (also known
as column vectors). First of all, most math texts use column vectors and we
wish to remain compatible. In addition, the classical presentation of quater-
nions (another means for performing some linear transformations) uses a
concatenation order consistent with the use of column matrices for vectors.
The choice to represent vectors as column matrices does have some effect
on how we construct and multiply our matrices, which we will discuss in more
detail in the following parts. In the cases where we do wish to indicate that a
vector is represented as a row matrix, we’ll display it with a transpose applied,

like b7.
3.2.4 BLOCK MATRICES

A matrix also can be represented by submatrices, rather than by individual
elements. This is also known as a block matrix. For example, the matrix

I
[SISHN
S W
— oo

also can be represented as

where
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and

(4]

We will sometimes use this to represent a matrix as a set of row or column
matrices. For example, if we have a matrix A

ap,0 do,1  4o.2
ao a1l a2

ao axl a2

we can represent its rows as three vectors

a) =[ aoo ao1 ao> ]
al =[ aio a1 a2 |
al =[ az0 a1 a2 |

and represent A as

Similarly, we can represent a matrix B with its columns as three vectors

bo=| bio

by =| b1

and subsequently B as
[bo b by]

As mentioned earlier, the transpose notation tells us whether we're using row
or column vectors.
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3.2.5 MATRIX PRODUCT

The primary operation we will apply to matrices is multiplication, also known
as the matrix product. The product is important to us because it allows us to
do two essential things. First, multiplying a matrix by a compatible vector
will transform the vector. Second, multiplying matrices together will create
a single matrix that performs their combined transformations. We'll discuss
exactly what is occurring when we discuss linear transformations below, but
for now we ll just define how to perform matrix multiplication.

As with real numbers, the product C of two matrices A and B is
represented as

C=AB

Computing the matrix product is not as simple as multiplying real numbers
but is not that bad if you understand the process. To calculate a given element
¢;,j in the product, we take the dot product of row i from A with column j
from B. We can express this symbolically as

n—1

Ci,j = Zai,kbk,j

k=0

As an example, we'll look at computing the first element of a 3 x 3 matrix:

aop,0 do,1 40,2 €0,0

bo,0
biog - - | =

ba o

To compute the value of ¢ o, we take the dot product of row 1 from A and
column 1 from B:

0,0 = a0,0bo,0 + ao,1b1,0 + ao,2b2,0
Expanding this for a 2 x 2 matrix:

aop,0  ao,1 boo bo1 | _ | ao0boo+ao1bro ao0bo1 +ao1bi1
aio ail bio b1 ai,0bo,0 +ai,1bro aiobo,1 +ai1b11

If we represent A as a collection of rows and B as a collection of columns,

then
al ag-by ap-b
T [bo bl] =
al a - bo ai - b1
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We can also multiply by using block matrices:
A B E F | | AE4+BG AF+BH
C D G H| | CE+DG CF+DH

Note that this is only allowable if the submatrices are conformable for addition
and multiplication.

There is a restriction on which matrices can be multiplied together; in
order to perform a dot product the two vectors have to have the same length.
So, to multiply together two matrices, the number of columns in the first
(i.e., the width of each row) has to be the same as the number of rows in
the second (i.e., the height of each column). Because of this restriction, only
square matrices can be multiplied by themselves.

As previously indicated, matrices can be used to transform vectors. We
do this by multiplying the matrix by a column matrix representing the vector
we wish to transform, or:

by ap,o ap,1 o dogp—1 X0
by aio al o alp—1 X1
bu—_1 Am-1,0 Am-1,1 -+ Gm—1n-1 Xp—1

We can represent this in matrix—vector notation as just
b =Ax

Note that in this case the number of columns in the matrix must match the
number of elements in the vector.

Column vectors aren’t the only possibility. We can also premultiply by a
vector by treating it as a row matrix:

ao,0 ao, 1 ao,n—1
alo ai,l e aln—1
[co c1 -+ cat]=[x0 x1 -+ xXm_1]
am—1,0 Am-1,1 - Am—1,n—1
or
' =xTA

And now note that in this case the number of rows in the matrix must match
the number of elements in the vector.
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In general, matrix multiplication is not commutative. As an example, if
we multiply a row matrix by a column matrix, we perform a dot product:

3

[1 z][ ) } —1-3+42-4=11

Because of this, you may often see a dot product represented as
a-b=2a’b

If we multiply them in the opposite order, we get a square matrix:

HIEEEHN

Even multiplication of square matrices is not necessarily commutative:
3.6 1 0] | 9 o
4 8 1 1| | 12 8
1 0 361 _[3 6
11 4 8| |7 14

Aside from the size restriction and not being commutative, the algebraic
rules for matrix multiplication are very similar to those for real numbers:

A(BC) = (AB)C
a(BC) = (aB)C
A(B+ C)=AB+ AC
(A4 B)C = AC + BC
(AB)T = BTAT

ik W e

where A, B, and C are matrices conformable for multiplication and a is a
scalar. Note that matrix multiplication is still associative (rules 1 and 2) and
distributive (rules 3 and 4).

3.2.6 IDENTITY MATRIX

We know that when we multiply a scalar or vector by 1, the result is the scalar
or vector again:
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Similarly, in matrix multiplication there is a special matrix known as the
identity matrix, represented by the letter I. Thus,

A-I=1-A=A

A particular identity matrix is a diagonal square matrix, where the
diagonal is all 1s:

1 0 0

0 1 0
I=

00 1

If a particular n x n identity matrix is needed, it is sometimes referred to
as I,. Take as an example I3:

1 0
Ii=| 0 1
00

—_— o O

Rather than referring to it in this way, we'll just use the term I to represent a
general identity matrix and assume it is the correct size in order to allow an
operation to proceed.

3.2.7 PERFORMING VECTOR OPERATIONS WITH
MATRICES

Recall that if we multiply a row vector by a column vector, it performs a dot
product:

wly = WxVx + WyVy + W0, = Vo W
And multiplying them in the opposite order produces a square matrix:
VW  UxWy  UyW;
T=vw =| vyw, vyw, vyw,

VWy U Wy VW

This square matrix T is known as the tensor product v ® w. We can use it to
rewrite vector expressions of the form (u- v)w as

(u-vyyw=(WwW® v)u
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In particular, we can rewrite a projection by a unit vector as
(u-HV=(V®Vu

This will prove useful to us in the next chapter.
We can also perform our other vector product, the cross product, through
a matrix multiplication. If we have two vectors v and w and we want to

compute v x w, we can replace v with a particular skew symmetric matrix,
represented as V:

0 —v vy
V= Vg 0 —vy
—vy Uy 0

Multiplying by w gives

0 —v vy Wy VyW; — Wy
v, 0 —vuy wy | =| vzwy — wyvy
vy vy O w; UxWy — WxVy

which is the formula for the cross product. This will also prove useful to us
in subsequent chapters.

3.2.8 IMPLEMENTATION

coonee e One might expect that the most natural data format for, say, a 3 x 3 matrix
would be

IvMatrix33
IvMatrix44

class IvMatrix33

{
}s

float mData[3][3];

However, the memory layout of such a matrix is not ideal for our purposes.
In C or C++, 2D arrays are stored in what is called row major order, meaning
that the matrix is stored in memory in a row-by-row order. If we use a one-
dimensional (1D) array as our member variable instead:

class IvMatrix33

{
}s

float mV[9];
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the index order for a 3 x 3 matrix is

AN W O
~N b=
[c IRV, T )

The indexing operator for a row major matrix (we have to use operator()
because operator[] only works for a single index) is

float&
IvMatrix33::operator() (unsigned int row, unsigned int col)

{

return mV[col + 3*row];
1

Why won’t this work? Well, in Direct3D matrices are expected to be used
with row vectors. And even in OpenGL, despite the fact that the documenta-
tion is written using column vectors, the internal representation premultiplies
the vectors; that is, it expects row vectors as well. Accordingly, since we're
using column vectors, we will need to transpose our matrices before we pass
them in as arguments to the graphics API. Doing this for every single matrix
takes time and is a bit of a nuisance to remember. Missing that one transpose
can make debugging your algorithm a longer process than it needs to be.

The solution is to pretranspose the matrix in the storage representation.
This is a format known as column major order and stores a matrix column by
column instead of row by row. Writing out our indices in column major order
gives us

0 3 6
1 4 7
2 5 8

Notice that the indices are the transpose of row major order. The indexing
operator becomes

float&
IvMatrix33::operator() (unsigned int row, unsigned int col)

{
}

return mV[row + 3*col];
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Alternatively, if we want to use 2D arrays:

float&
IvMatrix33::operator() (unsigned int row, unsigned int col)

{

return mV[col] [row];

}

Using column major format and column vectors, matrix—vector multipli-
cation becomes

IvVector3
IvMatrix33::operator*( const IvVector3& vector ) const

{

IvVector3 result;

result.x = mV[0]*vector.x + mV[3]*vector.y + mV[6]*vector.z;
result.y = mV[1]*vector.x + mV[4]*vector.y + mV[7]*vector.z;
result.z = mV[2]*vector.x + mV[5]*vector.y + mV[8]*vector.z;

return result;

}

and matrix-matrix multiplication is

IvMatrix33
IvMatrix33::operator*( const IvMatrix33& other ) const

{

IvMatrix33 result;

result.mV[0] = mV[0]*other.mV[0] + mV[3]*other.mV[1] + mV[6]*other.mV[2];
result.mV[1] = mV[1]*other.mV[0] + mV[4]*other.mV[1] + mV[7]*other.mV[2];
result.mV[2] = mV[2]*other.mV[0] + mV[5]*other.mV[1] + mV[8]*other.mV[2];

result.mV[3] = mV[0]*other.mV[3] + mV[3]*other.mV[4] + mV[6]*other.mV[5];
result.mV[4] = mV[1]*other.mV[3] + mV[4]*other.mV[4] + mV[7]*other.mV[5];
result.mV[5] = mV[2]*other.mV[3] + mV[5]*other.mV[4] + mV[8]*other.mV[5];

result.mV[6] = mV[0]*other.mV[6] + mV[3]*other.mV[7] + mV[6]*other.mV[8];
result.mV[7] = mV[1]*other.mV[6] + mV[4]*other.mV[7] + mV[7]*other.mV[8];
result.mV[8] = mV[2]*other.mV[6] + mV[5]*other.mV[7] + mV[8]*other.mV[8];

return result;
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Matrix addition is just

IvMatrix33
IvMatrix33::operator+( const IvMatrix33& other ) const

{

IvMatrix33 result;
for (int i = 0; i < 9; ++i)

{
}

return result;

result.mV[i] = mV[i]+other.mV[i];

Scalar multiplication of matrices is similar.

It is common practice to refer to a matrix intended to be used with row
vectors (i.e., its transformed basis vectors are stored as rows) as row major
order and, similarly, to a matrix intended to be used with column vectors as
column major order. This is incorrect terminology. Row and column major
order refer only to the storage format; namely, where an element ¢; ; will lie in
the 1D representation of the matrix. Whether your matrix library intends for
vectors to be pre- or postmultiplied should be independent of the underlying
storage.

LINEAR TRANSFORMATIONS

Now that we've discussed the structure and basic functionality of matrices,
we can discuss their purpose as an engine for performing linear transfor-
mations. Linear transformations are a very useful and important concept in
linear algebra. As one of a class of functions known as transformations, they
map vector spaces to vector spaces. This allows us to apply complex functions
to, or transform, vectors. Linear transformations perform this mapping while
also having the additional property of preserving linear combinations. We will
see how this permits us to describe a linear transformation in terms of how it
affects the basis vectors of a vector space. Later sections will show how this
in turn allows us to use matrices to represent linear transformations.

3.3.1 DEFINITIONS

Before we can begin to discuss transformations and linear transformations
in particular, we need to define a few terms. A relation maps a set X of val-
ues (known as the domain) to another set Y of values (known as the range).
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A function is a relation where every value in the first set maps to one and only
one value in the second set, for example, f(x)=sin x. An example of a relation
that is not a function is #./x, because there are two possible results for a
positive value of x, either positive or negative.

A function whose domain is an n-dimensional space and whose range is
an m-dimensional space is known as a transformation. A transformation that
maps from R” to R™ is expressed as 7 : R” — R™. If the domain and the range
of a transformation are equal (i.e., T : R" — R"), then the transformation is
sometimes called an operator.

An example of a transformation is the function

fe,y) =x"+2y
which maps from R? to R. Another example is
[,y =2 +2y+ 7

which maps from R? to R.
We can also map to a multidimensional space. For example, we could
define a transformation from R? to R? as follows:

J(a,b) = (fla. b), g(a, D)) (3.1)

A linear transformation T is a mapping between two vector spaces V and
W, where for all vin V and for all scalars a:

1. T(vo+ vi) = T(vg) + T(vy) for all vy, vi in V.
2. T(av) = aT(v) forall vin V.

To determine whether a transformation is linear, it is sufficient to show
that

Tax+y) =aT(x)+ T(y)

An example of a linear transformation is T(x) = kx, where k is any fixed scalar.
We can show this by

Jax+y) =k(ax+y)
=akx+ky

= aT(x) + T(y)
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On the other hand, the function g(x) = x? is not linear because, for a = 2,
x=1,and y = 1:

g2() + 1) = () + 1)?

=32=9
#2(g(D)) + g(1)
=201 +1*=3

As we might expect, the only operations possible in a linear function are
multiplication by a constant and addition.

3.3.2 NULL SPACE AND RANGE

We define the null space (or kernel) N(T) of a linear transformation 7 : V — W
as the set of all vectors in V that map to 0, or

N ={x]T(x) = 0}

The dimension of N(7T) is called the nullity of the transformation.
We formally define the range R(T) of a linear transformation 7 : V — W
as the set of all vectors in W that are mapped to by at least one vector in V, or

R(T) ={T(x)|x e V}

The dimension of R(7) is called the rank of the transformation.

The null space and range have two important properties. First of all, they
are both vector spaces, and in fact the null space is a subspace of V and the
range is a subspace of W. Second,

nullity(T) 4+ rank(T) = dim (V)

To get a better sense of this, let’s look at an example. Suppose we have the
linear transformation

T(a, b) = (a+ b, 0)

The resulting range space is of the form (x, 0), so it can be spanned by the
vector (1, 0) and has dimension 1. The transformation will produce the vector
(0, 0) only when a = —b. So the null space has a basis of (1, —1) and is also one
dimensional. As we expect, they add up to 2, the dimension of our original
vector space (Figure 3.1).
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Range (y=0)

>

FiIGURE 3.1 Range and null space for transformation T(a, b) = (a + b, 0).

3.3.3 LINEAR TRANSFORMATIONS AND BASIs
VECTORS

Using standard function notation to represent linear transformations (as in
equation 3.1) is not the most convenient or compact format, particularly for
transformations between higher-dimensional vector spaces. Let’s examine the
properties of vectors as they undergo a linear transformation and see how that
can lead us to a better representation.

Recall that we can represent any vector x in an n-dimensional vector
space V as

X=Xx0V0+X1V] + -+ Xp—1Vn—1

where {vg, vi,..., V,_1} is a basis for V.

Now suppose we have a linear transformation 7 : V — W that maps from
V to an m-dimensional vector space W. If we apply our transformation to our
arbitrary vector x, then we have

T(x) =T(xovo +x1VL + -+ + Xp—1Vn_1)
= x0T (vo) + x1T(v)) + - + x,—1T(Vp—1) (3.2)
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So, if we know how our linear transformation affects our basis for V, then
we can calculate the effect of the linear transformation for any arbitrary
vector in V.

There is still an open question: What are the components of each T(v;)
equal to? For a member v; of V’s basis, we can represent T(v;) in terms of the
basis {wg, w1, ..., w,,_1} for W, again as a linear combination:

T(vj) =ao jwo+aijwi+ -+ am_1,jWn-1
If {wo, ..., wy,_1} is the standard basis for W, this simplifies to
T(vj) = (ao,j,a1,j, - m-1,j) (3.3)

Combining equations 3.2 and 3.3 gives us

T(x) = x0(a0,0, a1,0, - - - » Am—1,0)
= 4x1(ao.1,a1,1, - - - » Am—-1,1) (3.4)
= +x3-1(A0,n-1,A1,n—15 - - - s A—1,n—1)

If we set b = T(x), then for a given component of b
bi =ajoxo+ai1x1+ -+ aip—1xn—1 (3.5)

Knowing this, we can precalculate and store the n transformed basis vec-
tors (ao,j, ai,j, ..., am—1,;) and use this formula at any time to transform a
general vector x.

Let’s look at an example taking a transformation from R? to R?, using the
standard basis for both vector spaces:

T(a,b) = (a+ b, b)
If we look at how this affects our standard basis for R?, we get

71,00 =(1+40,0)=(1,0)
JO,H=0+1,)=(1,1)

Transforming an arbitrary vector in R?, say (2, 3), we get

7(2,3) =27(1,0) +3T(0, 1)
=2(1,0)+3(1, 1)
=(5,3)

which is what we expect.
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It should be made clear that applying a linear transformation to a basis
does not produce the basis for the new vector space. It only shows where
the basis vectors end up in the new vector space—in our case in terms of
the standard basis. In fact, a transformed basis may be no longer linearly
independent. Take as another example

T(a,b) = (a+ b, 0)
Applying this to our standard basis for R?, we get

J(1,0)=(140,0)=(1,0)
70,1)=(0+1,00=(1,0)

The two resulting vectors are clearly linearly dependent.

These two examples illustrate one useful property. If the rank of a linear
transformation 7 equals the number of elements in a transformed basis 8,
then we can say that g is linearly independent. In fact, the rank is equal to the
number of linearly independent elements in 8, and those linearly independent
elements will span the range of 7.

3.3.4 MATRICES AND LINEAR TRANSFORMATIONS

Knowing that we can represent a linear transformation in terms of how the
basis vectors are transformed is a very powerful tool. As we will now see, it is
precisely this property of linear transformations that allows us to represent
them concisely by using a matrix.

Let’slook again at a matrix—vector multiplication with our terms expanded:

bo ap,o ap,1 -+ Aon—1 X0
by aio a1 - Aip-1 X1
bm—1 am—1,0 Am-1,1 *** Aam—1,n—1 Xn—1

Note that x has n components and the resulting vector b has m. In order
for the multiplication to proceed, matrix A must be m x n. This repre-
sents a transformation from an n-dimensional space V to an m-dimensional
space W.

To see how this operation performs a linear transformation, well use
the fact that we only need to know where the basis of a vector space V is
mapped to. Suppose that we know that our standard basis {eg, ef, ..., €,_1}
is transformed to {ag, a1, ..., a,_1} in W, again using the standard basis. We
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will store, in order, each of these transformed basis vectors as the columns
of A, or

A:[ao a; - an_l]

Using our matrix multiplication definition to compute the product of A
and a vector x in V, we see that the result for element i in b is

bi = ajoxo +aj1x1 + -+ i p—1Xn—1

This is exactly the same as equation 3.5. So, by setting up our matrix with the
transformed basis vectors in each column, we can use matrix multiplication
to perform linear transformations.

This provides an explanation for the properties of the identity matrix: It
maps the basis vectors of the domain to the same vectors in the range. Or to
put it another way: It performs a linear transformation that has no effect on
the source vector, also known as the identity transformation.

Recall that we can also premultiply by a vector by treating it as a row
matrix:

ap,0 aop, 1 T ag,n—1
ato at 1 t aln—1
[C() croc Cn—l] = [XO X1 - xm—l]
am—-1,0 Am—-1,1 -°° Am—1,n—1

In this case, the rows of A are acting as our transformed basis vectors, and the
number of components in x” must match the number of rows in our matrix.

At this point we can define some additional properties for matrices. The
column space of a matrix is the vector space spanned by the matrix’s column
vectors and is the range of the linear transformation performed by post-
multiplying by a column vector. Correspondingly, the row space is the vector
space spanned by the row vectors of the matrix and, as we'd expect, is the
range of the linear transformation performed by premultiplying by a row vec-
tor. As it happens, the dimensions of the row space and column space are
equal and that value is called the rank of the matrix. The matrix rank is equal
to the rank of the associated linear transformation.

The column space and row space are not necessarily the same vector
space. As an example, take the matrix

(=R
(=R
(=]
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When postmultiplied by a column vector, it maps a vector (x, y, z) in R to a
vector (y, z,0) on the xy plane. Premultiplying by a row vector, on the other
hand, maps (x, y, z) to (0, x, y) on the yz plane. They have the same dimension,
and hence the same rank, but they are not the same vector space.

This makes a certain amount of sense. When we multiply by a row vec-
tor, we use the row vectors of the matrix as our transformed basis instead
of the column vectors. To achieve the same result as the column vector
multiplication, we need to change our matrix’s column vectors to row vectors
by taking the transpose:

- O O

0 0
[x v ]| 1 0 |=[y z 0]
0 0

We can now see the purpose of the transpose: It exchanges a matrix’s row
space with its column space.

Like a linear transformation, a matrix also has a null space, which is all
vectors x in V such that

Ax=10

In the preceding example, the null space N is all vectors with zero y and z
components. As with linear transformations, dim(~N) + rank (A) = dim(V).

3.3.5 COMBINING LINEAR TRANSFORMATIONS

Suppose we have two transformations, § : U—V and T : V— W, and we
want to perform one after the other; namely, for a vector x, we want the
result T(8(x)). If we know that we are going to transform a large collection of
vectors by 8§ and the resulting vectors by T, it will be more efficient to find a
single transformation that generates the same result so that we only have to
transform the vectors once. This is known as the composition of 8§ and T and
is written as

(To8)(x) = T(8(x))

Composition (or alternatively, concatenation) of transformations is done via
generalized matrix multiplication.

Suppose that matrix A is the corresponding transformation matrix for
§ and B is the corresponding matrix for . Recall that in order to set up A
for vector transformation, we pretransform the standard basis vectors by 8§
and store them as the columns of A. Now we need to transform those vectors
again, this time by 7. We could either do this explicitly or use the fact that
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multiplying by B will transform vectors in V by 7. So we just multiply each
column of A by B and store the results, in order, as columns in a new matrix C:

C=BA

If U has dimension n, V has dimension m, and W has dimension [, then A will
be an m x n matrix and B will be an / x m matrix. Since the number of columns
in B matches the number of rows in A, the matrix product can proceed, as
we’'d expect. The result C will be an I x n matrix and will apply the transfor-
mation of A followed by the transformation of B in a single matrix-vector
multiplication.

This is the power of using matrices as a representation for linear
transformations. By continually concatenating matrices, we can use the result
to produce the effect of an entire series of transformations, in order, through
a single matrix multiplication. Note that the order does matter. The preceding
result C will perform the result of applying A followed by B. If we swap the
terms (assuming they're still conformable under multiplication),

D =AB

and matrix D will perform the result of applying B followed by A. This is almost
certainly not the same transformation.

For the discussion thus far, we have assumed that the resulting matrix
will be applied to a vector represented as a column matrix. It is good to be
aware that the choice of whether to represent a vector as a row matrix or
column matrix affects the order of multiplications when combining matrices.
Suppose we multiply a column vector u by three matrices, where the intended
transformation order is to apply My, then My, and finally Mj:

v= Mpu
w=Mv (3.6)
x = Myw

If we take equation 3.6 and substitute M;v for w and then Myu for v,
we get

X = MzM]V
= M>M;Mpu
=M.u
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3.4

Doing something similar for a row vector a’:

b? = a’'Ny
' =b'N,

d’ = ¢'N,

and substituting:

d’ = b'N|N,
=a’ NgN; N,

= aTNr

The order difference is quite clear. When using row vectors and
concatenating, matrix order follows the left to right progress used in English
text. Column vectors work right to left instead, which may not be as intuitive.
We will just need to be careful about our matrix order and transpose any
matrices that assume we're using row vectors.

There are two other ways to modify transformation matrices that aren’t
used as often. Instead of concatenating two transformations, we may want
to create a new one by adding two together: Q(x) = S(x) + T(x). This is eas-
ily done by adding the corresponding matrices together, so the matrix that
performs Q is C = A + B. Another means we might use for generating a
new transformation from an existing one is to scale it: R(x) = s - T(x). The
corresponding matrix is created by scaling the original matrix: D = sA.

This concludes our main discussion of linear transformations and matri-
ces. The remainder of the chapter will be concerned with other useful
properties of matrices: solving systems of linear equations, determinants, and
eigenvalues and eigenvectors.

SYSTEMS OF LINEAR EQUATIONS
3.4.1 DEFINITION
Other than performing linear transformations, another purpose of matrices

is to act as a mechanism for solving systems of linear equations. A general
system of m linear equations with n unknowns is represented as
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by = ap,0xo + ag,1x1 + -+ agn—1Xp—1

by =ajoxo+ai1x1 + -+ aa—1xn—1 (3.7)

bn—1 = am_1,0%0 + @m_1,1%1 + - - + Au_1,n—1Xn—1

The problem we are trying to solve is: Given agy,...,am-1,—1 and
bo, ...,bu—_1, what are the values of xo, ..., x,_1? For a given linear system,
the set of all possible solutions is called the solution set.

As an example, the system of equations

x0+2x1 =1

3xg—x1 =2

has the solution set {xg = 5/7, x; = 1/7}.
There may be more than one solution to the linear system. For example,
the plane equation

ax+by+cz=—d

has an infinite number of solutions: The solution set for this example is all the
points on the particular plane.

Alternatively, it may not be possible to find any solution to the linear
system. Suppose that we have the linear system

x0+x =1
xo+x1 =2

There are clearly no solutions for x and y. The solution set is the empty set.

Let’s reexamine equation 3.7. If we think of (xo, ..., x,—1) as elements of
an n-dimensional vector x and (b, ..., b,,—1) as elements of an m-dimensional
vector b, then this starts to look a lot like matrix multiplication. We can rewrite
this as

ao,o ap,1 -+ aon-1 X0 b
aio ail o alp-1 X1 b
am—1,0 Am—-1,1 -°° Am—1,n—1 Xn—1 bm—1

or our old friend
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The coefficients of the equation become the elements of matrix A, and
matrix multiplication encapsulates our entire linear system. Now the problem
becomes one of the form: Given A and b, what is x?

3.4.2 SOLVING LINEAR SYSTEMS

One case is very easy to solve. Suppose A looks like

I ap1 - aon-1
0 1 - ajp
0o 0 ... 1

This is equivalent to the linear system

bo = xo +ap1x1 + -+ aop—1Xn—1

by =x1+ -+ ain-1xn-1

bn—1 = xu—1

We see that we immediately have the solution to one unknown via x,,_; = b,,_;.
We can substitute this value into the previous m — 1 equations and possibly
solve for another x;. If so, we can substitute that x; into the remaining unsolved
equations and so on up the chain. If there is a single solution for the system of
equations, we will find it; otherwise, we will solve as many terms as possible
and derive a solution set for the remainder.

This matrix is said to be in row echelon form. The formal definition for
row echelon form is

1. If a row is entirely zeros, it will be below any nonzero rows of the
matrix; in other words, all zero rows will be at the bottom of the matrix.

2. The first nonzero element of a row (if any) will be 1 (called a leading 1).

3. Each leading 1 will be to the right of a leading 1 in any preceding row.

If the following additional condition is met, we say that the matrix is in reduced
row echelon form.

4. Each column with a leading 1 will be zero in the other rows.
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The process we've described gives us a clue about how to proceed in
solving general systems of linear equations. Suppose we can multiply both
sides of our equation by a series of matrices so that the left-hand side becomes
a matrix in row echelon form. Then we can use this in combination with the
right-hand side to give us the solution for our system of equations.

However, we need to use matrices that preserve the properties of the linear
system; the solution set for both systems of equations must remain equal. This
restricts us to those matrices that perform one of three transformations called
elementary row operations. These are

1. Multiply a row by a nonzero scalar.
2. Add a nonzero multiple of one row to another.

3. Swap two rows.

These three types of transformations maintain the solution set of the linear
system while allowing us to reduce it to a simpler problem. The matrices that
perform elementary row operations are called elementary matrices.

Some simple examples of elementary matrices include one that multiplies
row 2 by a scalar a:

1 0 0
0 a O
0 0 1

one that adds k times row 2 to row 1:

1 0

010

0 1
and one that swaps rows 2 and 3:

1 0

0 0 1

0 1

3.4.3 GAUSSIAN ELIMINATION

In practice we don’t solve linear systems through matrix multiplication.
Instead, it is more efficient to iteratively perform the operations directly on A
and b. The most basic method for solving linear systems is known as Gaussian



114 Chapter 3 Matrices and Linear Transformations

elimination, after Karl Friedrich Gauss, a prolific German mathematician of
the eighteenth and nineteenth centuries. It involves concatenating the matrix
A and vector b into a form called an augmented matrix and then performing a
series of elementary row operations on the augmented matrix, in a particular
order. This will either give us a solution to the system of linear equations or
tell us that computing a single solution is not possible; that is, either there is
no solution or an infinite number of solutions.

To create the augmented matrix, we take the original matrix A and
combine it with our constant vector b, for example,

1 2 313
4 5 6|2
7 8 9 |1

The vertical line within the matrix indicates the separation between A and b.
To this augmented matrix, we will directly apply one or more of our row
operations.

The process begins by looking at the first element in the first row. The
first step is called a pivoting step. At the very least we need to ensure that we
have a nonzero entry in the diagonal position, so if necessary we will swap
this row with one of the lower rows with a nonzero entry in the same column.
The element that we're swapping into place is called the pivor element, and
swapping two rows to move the pivot element into place is known as partial
pivoting. For better numerical precision, we usually go one step further and
swap with the row that contains the element of largest absolute value. If no
pivot element can be found, then there is no single solution and we abort.

Now let’s say that the current pivot element value is k. We scale the entry
row by 1/k to set the diagonal entry to 1. Finally, we set the column elements
below the diagonal entry to zero by adding appropriate multiples of the cur-
rent row. Then we move on to the next row and look at its diagonal entry.
At the end of this process, our matrix will be in row echelon form.

Let’s take a look at an example. Suppose we have the following system of
linear equations:

x =3y + z =5
2x -y 4+ 2z =5
3x +6y + 9z =3

The equivalent augmented matrix is

1 -3 1|5
2 -1 2|5
3 6 9 |3
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If we look at column 0, the maximal entry is 3, in row 2. So we begin by
swapping row 2 with row 0:

3 6 9 |3
2 -1 2|5
1 =3 1|5

1 2 3|1
2 -1 2|5
1 -3 1|5

Now we start clearing the lower entries. The first entry in row 1 is 2, so we
scale row 0 by —2 and add it to row 1:

1 2 311
0 -5 —4]|3
1 -3 115

We do the same for row 2, scaling by —1 and adding:

1 2 311
0 -5 —4|3
0 -5 2|4

We are done with row 0 and move on to row 1. Row 1, column 1, is the
maximal entry in the column, so we don’t need to swap rows. However, it isn’t
1, so we need to scale row 1 by —1/5:

1 2 3 1
0 1 4/5|-3/5
0 -5 -2 4

We now need to clear element 1 of row 2 by scaling row 1 by 5 and adding:

1 2 3 1
0 1 4/5|-3/5
00 2 1

Finally, we scale the bottom row by 1/2 to set the pivot element in the
row to 1:

3 1
4/5 | =3/5
1 1/2

S O =

2
1
0
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This matrix is now in row echelon form. We have two possibilities at this
point. We could clear the upper triangle of the matrix in a fashion similar to
how we cleared the lower triangle, but by working up from the bottom and
adding multiples of rows. The solution x to the linear system would end up
in the right-hand column. This is known as Gauss-Jordan elimination.

But let’s look at the linear system we have now:

x+2y+3z=1
y+4/5z=-3/5
z=1/2

As expected, we already have a known quantity: z. If we plug z into the second
equation, we can solve for y:

y=-3/5-4/5z (3.8)
= —3/5—4/5(1/2) (3.9)
- _ (3.10)

Once y is known, we can solve for x:

x=1-2y—3z (3.11)
=1-2(=1)—3(1/2) (3.12)
=3/2 (3.13)

So our final solution for x is (3/2, —1, 1/2).

This process of substituting known quantities into our equations is called
back substitution.

A summary of Gaussian elimination with back substitution follows:

for p=1tondo
// find the element with Targest absolute value in col p

// if max is zero, stop!
// if max element not in row p, swap rows

// set pivot element to 1
multiply row p by 1/A[p][p]

// clear lower column entries
for r = p+l to n do
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subtract row p times A[r,p] from current row,
so that element in pivot column becomes 0

// do backwards substitution
for row = n-1 to 1
for col = row+l to n
// subtract out known quantities
b[row] = b[row] - A[row][col]*b[col]

The pseudocode shows what may happen when we encounter a linear
system with no single solution. If we can’t swap a nonzero entry in the pivot
location, then there is a column that is all zeros. This is only possible if the
rank of the matrix (i.e., the number of linearly independent column vectors)
is less than the number of unknowns. In this case, there is no solution to the
linear system and we abort.

In general, we can state that if the rank of the coefficient matrix A equals
the rank of the augmented matrix Alb, then there will be at least one solution
to the linear system. If the two ranks are unequal, then there are no solutions.
There is a single solution only if the rank of A is equal to the minimum of the
number of rows or columns of A.

MATRIX INVERSE

This may seem like a lot of trouble to go to solve a simple equation like b = Ax.
If this were scalar math, we could simply divide both sides of the equation by
A to get

x = b/A
Unfortunately, matrices don’t have a division operation. However, we can use
an equivalent concept: the inverse.
3.5.1 DEFINITION
In scalar multiplication, the inverse is defined as the reciprocal:
1
x-—=1
x
or

x-x =1
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Correspondingly, for a given matrix A, we can define its inverse A~! as a
matrix such that

A-A =1
and
Al A=1

There are a few things that fall out from this definition. First of all, in order
for the first multiplication to occur, the number of rows in the inverse must
be the same as the number of columns in the original matrix. For the second
to occur, the converse is true. So, the matrix and its inverse must be square
and the same size. Since not all matrices are square, it’s clear that not every
matrix has an inverse.

Second, the inverse of the inverse returns the original matrix. Given

A A TH T =T

and

then
AH=A

Even if a matrix is square, there isn’t always an inverse. An extreme exam-
ple is the zero matrix. Any matrix multiplied by this gives the zero matrix, so
there is no matrix multiplication that will produce the identity. Another set of
examples is matrices that have a zero row or column vector. Multiplying by
such a row or column will return a dot product of zero, so you'll end up with
a zero row or column vector in the product as well —again, not the identity
matrix. In general, if the null space of the matrix is nonzero, then the matrix
is noninvertible; that is, the matrix is only invertible if the rank of the matrix
is equal to the number of rows and columns.

Given these identities, we can now solve for our preceding linear system.
Recall that the equation was
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If we multiply both sides by A~!, then

A 'Ax=A"1p
Ix=A"'b
x=A"lp

Therefore, if we could find the inverse of A, we could use it to solve for x. This
is not usually a good idea, computationally speaking. It's usually cheaper to
solve for x directly, rather than generating the inverse and then performing the
matrix multiplication. The latter can also lead to increased numerical error.
However, sometimes finding the inverse is a necessary evil.

The left-hand side of the above derivation shows us that we can think of
the inverse A~! as undoing the effect of A. If we start with Ax and premultiply
by A~!, we get back x, our original vector.

We can find the inverse of a matrix using Gaussian elimination to solve
for it column by column. Suppose we call the first column of A~! xy. We can
represent this as

X) = Al )

where, as we recall, ey = (1,0, ..., 0). Multiplying both sides by A gives
AX() = €
Finding the solution to this linear system gives us the first column of A~!. We

can do the same for the other columns, but using e, e, and so on. Instead of
solving these one at a time, though, it is more efficient to create an augmented

matrix with A and ey, ..., €,_1 as columns on the right, or just I. For example,
2 0 4 1 0 0
03 9]0 1 0
0 0 1 0 0 1

If we use Gauss-Jordan elimination to turn the left-hand side of the augmented
matrix into the identity matrix, then we will end up with the inverse (if any)
on the right-hand side. From here we perform our elementary row operations
as before. The maximal entry is already in the pivot point, so we scale the first
row by 1/2:
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The nonpivot entries in the first column are zero, so we move to the second
column. Scaling the second row by 1/3 to set the pivot point to 1 gives us

1 0 212 0 0
01 =3/ 0 1/3 0
00 1]0 0 1

Again, our nonpivot entries in the second column are 0, so we move to the
third column. Our pivot entry is 1, so we don’t need to scale. We add —2 times
the last row to the first row to clear that entry, then 3 times the last row to the
second row to clear that entry, and get

1 0 0{1/2 0 =2
O 1 o0 0 1/3 3
0 0 1| O 0 1

The inverse of our original matrix is now on the right-hand side of the
augmented matrix.

3.5.2 SIMPLE INVERSES

Gaussian elimination, while useful, is unnecessary for computing the inverse
of many of the matrices we will be using. The majority of matrices that we
will encounter in games and three-dimensional (3D) applications have simple
inverses, and knowing the form of the matrix can make computing the inverse
trivial.

One case is that of an orthogonal matrix, where the component row or
column vectors are orthonormal. Recall that this means that the vectors are
of unit length and perpendicular. If a matrix A is orthogonal, its inverse is the
transpose:

Al =AT
One example of an orthogonal matrix is

-1

S = O
=)
S O =
S = O

Another simple case is a diagonal matrix with nonzero elements in the
diagonal. The inverse of such a matrix is also diagonal, where the new diagonal
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elements are the reciprocal of the original diagonal elements, as shown by the
following:

-1

a 0 0 1/a 0O 0
0 b O =[0 1/b 0
0 0 ¢ 0 0 1/c

The third case is a modified identity matrix, where the diagonal is all 1s
but one column or row is nonzero. One such 3 x 3 matrix is

S O
S = O

by
y
1

For a matrix of this form, we simply negate the nonzero elements to invert it.
Using the previous example,
1o x7" 1 0 —x
01 y =0 1 —y
0 0 1 0 0 1
Finally, we can combine this knowledge to take advantage of an algebraic

property of matrices. If we have two square matrices A and B, both of which
are invertible, then

(AB)"! = B'A"!

So, if we know that our current matrix is the product of any of the cases we've
just discussed, we can easily compute its inverse using the preceding formula.
This will prove to be useful in subsequent chapters.

DETERMINANT

3.6.1 DEFINITION

The determinant is a scalar quantity created by evaluating the elements of
a square matrix. In real vector spaces, it acts as a general measure of how
vectors transformed by the matrix change in size. For example, if we take the
columns of a 2 x 2 matrix (i.e., the transformed basis vectors) and use them
as the sides of a parallelogram (Figure 3.2), then the absolute value of the
determinant is equal to the area of a parallelogram. For a 3 x 3 matrix, the
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absolute value of the determinant is equal to the volume of a parallelepiped
described by the three transformed basis vectors (Figure 3.3).

The sign of the determinant depends on whether or not we have switched
our ordered basis vectors from being relatively right-handed to being left-
handed. In Figure 3.2, the shortest angle from ag to a; is clockwise, so they
are left-handed. The determinant, therefore, is negative.

We represent the determinant in one of two ways, either det(A) or |A|.
The first is more often used with a symbol, and the second when showing the
elements of a matrix:

ag

a;

> i

FIGURE 3.2 Determinant of 2 x 2 matrix as area of parallelogram bounded by
transformed basis vectors ag and aj.

i

FIGURE 3.3 Determinant of 3 x 3 matrix as volume of parallelepiped bounded by
transformed basis vectors ag, aj, and aj.
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1 -3
det(A)=|2 -1 2
36

The diagrams showing area of a parallelogram and volume of a
parallelepiped should look familiar from our discussion of cross product and
triple scalar product. In fact, the cross product is sometimes represented as

i j k
VX W=| vy v, 1
wy wy wy

while the triple product is represented as

Uy Uy U
u-(VXW=| vy vy 1y
wy Wy W

Since det(AT) = det(A), this representation is equivalent.

3.6.2 COMPUTING THE DETERMINANT

There are a few ways of representing the determinant computation for a
specific matrix A. A standard recursive definition, choosing any row i, is

n
det(A) = ) " a; j(—=1)*7 det(A; ;)
j=1

Alternatively, we can expand by column j instead:

n
det(A) = ) a; j(—=1)7 det(A; ;)

i=1

In both cases, A; j is the submatrix formed by removing the ith row and jth
column from A. The base case is the determinant of a matrix with a single
element, which is the element itself.

The term det(A; ;) is also referred to as the minor of entry a; j, and the term
(—1)+) det(A; ;) is called the cofactor of entry a; ;.

The first formula tells us that for a given row i, we multiply each row
entry a; ; by the determinant of the submatrix formed by removing row i and
column j and either add or subtract it to the total depending on its position
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in the matrix. The second does the same but moves along column j instead of
row i.
Let’s compute an example determinant, expanding by row 0:

11 2
det 2 4 -3 =7
3 6 =5

The first element of row 0 is 1, and the submatrix with row 0 and column 0
removed is

4 -3

6 -5

The second element is also 1. However, we negate it since we are considering
row 0 and column 1: 0 + 1 = 1, which is odd. The submatrix is A with row 0
and column 1 removed:

2 =3

3 -5

The third element of the row is 2, with the submatrix

k]

We don’t negate it since we are considering row 0 and column 2: 0 +2 = 2,
which is even.
So, the determinant is

det(A):l-‘4 -3 ‘—1-‘ 2 -3

AR
6 =5 3 -5 36
=-1

In general, the determinant of a 2 x 2 matrix is

S

det ([ c fl i|) =a-det([d]) — b - det([c]) = ad — bc



3.6 Determinant 125

And the determinant of a 3 x 3 matrix is

)l (1)
eean([ 3 )

det

R ™R

or

alei — fh) — b(di — fg) + c(dh — eg)

There are some additional properties of the determinant that will be useful
to us. If we have two n x n matrices A and B, the following hold:

1. det(AB) = det(A)det(B).

2. det(A™h) = RTINS

We can look at the value of the determinant to tell us some features of our
matrix. First of all, as we have mentioned, any matrix that transforms our basis
vectors from right-handed to left-handed will have a negative determinant. If
the matrix is also orthogonal, we call a matrix of this type a reflection. We will
learn more about reflection matrices in the next chapter.

Then there are matrices that have a determinant of 1. The matrices we
will encounter most often with this property are orthogonal matrices, where
the handedness of the resulting basis stays the same (i.e., a right-handed basis
is transformed to a right-handed basis). Figure 3.4 provides an example. Our
transformed basis vectors are (—/2/2, v/2/2) and (+/2/2, ~/2/2). They remain
orthonormal, so their area is just the product of the lengths of the two vectors,
or 1 x 1 or 1. This type of matrix is called a rotation. As with reflections, we’ll
see more of rotations in the next chapter.

Finally, if the determinant is 0, then we know that the matrix has no
inverse. The obvious case is if the matrix has a row or column of all 0s. Look
again at our formula for the determinant. Suppose row i is all 0s. Multiplying
all the submatrices against this row and summing together will clearly give
us 0 as a result. The same is true for a zero column. The other and related
possibility is that we have a linearly dependent row or column vector. In
both cases the rank of the matrix is less than n — the size of the matrix —and
therefore the matrix does not have an inverse. So, if the determinant of a
matrix is 0, we know the matrix is not invertible.
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SOURCE CODE
IvMath
IvGaussianElim

a ag

Y
pie

FIGURE 3.4 Determinant of example 2 x 2 orthogonal matrix.

3.6.3 DETERMINANTS AND ELEMENTARY Row
OPERATIONS

For2 x 2 and 3 x 3 matrices, computing the determinant in this manner is
a simple process. However, for larger and larger matrices, our recursive
definition becomes unwieldy, and for large enough n, will take an unreason-
able amount of time to compute. In addition, computing the determinant in
this manner can lead to floating-point precision problems. Fortunately, there
is another way.

Suppose we have an upper triangular matrix U. The first part of the deter-
minant sum is ug,o fJo,o. The other terms, however, are 0, because the first
column with the first row removed is all 0s. So the determinant is just

det(U) = ug,0Uo,o

If we expand the recursion, we find that the determinant is the product of all
the diagonal elements, or

det(U) = up,ou1.1-- - tnn

As we did when solving linear systems, we can use Gaussian elimination
to change our matrix into row echelon form, which is an upper triangular
matrix. However, this assumes that elementary row operations have no effect
on the determinant, which is not the case. Let’s look at a few examples.



3.6 Determinant 127

Suppose we have the matrix

.

The determinant of this matrix is —2. If we multiply the first row by 1/2, we get

B

which has a determinant of —1. Multiplying a row by a scalar k multiplies the
determinant by k as well.
Now suppose we add two times the first row to the second one. We get

1 -2
1 -3
which also has a determinant of —1. Adding a multiple of one row to another

has no effect on the determinant.
Finally, we can swap row 1 with row 2:

1 -3

1 -2
which has a determinant of 1. Swapping two rows or two columns changes
the sign of the determinant.

The effect of elementary row operations on the determinant can be
summarized as follows:

Multiply row by k: Multiplies determinant by k
Add multiple of one row to another: No effect
Swap rows: Changes sign of determinant

Therefore, our approach for calculating the determinant for a general
matrix is this: As we perform Gaussian elimination, we keep a running product
p of any multiplies we do to create leading 1s and negate p for every row
swap. If we find a zero column when we look for a pivot element, we know
the determinant is 0 and return such.

Let’s suppose our final product is p. This represents what we’ve multiplied
the determinant of our original matrix by to get the determinant of the final
matrix A/, or

p- det(A) = det(A)
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SO

det(A) = % - det(A))

We know that the determinant of A’ is 1, since the diagonal of the row echelon
matrix is all 1s. So our final determinant is just 1/p. However, this is just the

product of the multiplies we do to create leading 1s, and —1 for every row
swap, or

1 1 1

= ... (—DF¥
P00 P1,1 DPn.n

where k is the number of row swaps. Then,

1/p = poopii--- Pun(=DF

So all we need to do is multiply our running product by each pivot element

and negate for each row swap. At the end of our Gaussian elimination process,
our running product will be the determinant we seek.

364 ADJOINT MATRIX AND INVERSE

woonce cone Recall that the cofactor of an entry g, ; is

IvMath
IvMatrix33

Cij = (=17 det(A; )

For an n x n matrix, we can construct a corresponding matrix where we replace
each element with its corresponding cofactor, or

Co.0 Co.1 Con—1
Cio Cii - Cipa
Co1,1 Cu12 Crn—1,n—-1

This is called the matrix of cofactors from A, and its transpose is the adjoint
matrix A*9,

Gabriel Cramer, a Swiss mathematician, showed that the inverse of a
matrix can be computed from the adjoint by

Al = !
det(A)

Aadj
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Many graphics engines use Cramer’s method to compute the inverse, and
for 3 x 3 and 4 x 4 matrices it's not a bad choice; for matrices of this size,
Cramer’s method is actually faster than Gaussian elimination. Because of
this, we have chosen to implement IvMatrix33::Inverse() using an efficient
form of Cramer’s method.

However, whether you're using Gaussian elimination or Cramer’s method,
you're probably doing more work than is necessary for the matrices we will
encounter. Most will be in one of the formats described in Section 3.5.2 or a
multiple of these matrix types. Using the process described in that section, you
can compute the inverse by decomposing the matrix into a set of these types,
inverting the simple matrices, and multiplying in reverse order to compute
the matrix. This is often faster than either Gaussian elimination or Cramer’s
method and can be more tolerant of floating-point errors because you can
find near-exact solutions for the simple matrices.

EIGENVALUES AND EIGENVECTORS
There are two more properties of a matrix that we can find useful in certain
circumstances: the eigenvalue and eigenvector. If we have an n x n matrix A,
then a nonzero vector x is called an eigenvector if there is some scalar value
A such that

AX = AX (3.14)

In this case, the value A is the eigenvalue associated with that eigenvector.
We can solve for the eigenvalues of a matrix by rewriting equation 3.14 as

Ax = AIx (3.15)
or
OI—A)x =0

It can be shown that there is a nonzero solution of this equation if and
only if

det(d —A) = 0
This is called the characteristic equation of A. Expanding this equation gives

us an n-degree polynomial of A, and solving for the roots of this equation will
give us the eigenvalues of the matrix.
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Now, for a given eigenvalue there will be an infinite number of associated
eigenvectors, all scalar multiples of each other. This is called the eigenspace
for that eigenvalue. To find the eigenspace for a particular eigenvector, we
simply substitute that eigenvalue into equation 3.15 and solve for x.

In practice, solving the characteristic equation becomes more and more
difficult the larger the matrix. However, there is a particular class of matrices
called real symmetric matrices, so called because they only have real elements
and are diagonally symmetric. Such matrices have a few nice properties. First
of all, their eigenvectors are orthogonal. Secondly, it is possible to find a matrix
R, such that R”AR is a diagonal matrix D. It turns out that the columns of R are
the eigenvectors of A, and the diagonal elements of D are the corresponding
eigenvectors. This process is called diagonalization.

There are a number of standard methods for finding R. One such is the
Jacobi method, which computes a series of matrices to iteratively diagonal-
ize A. These matrices are then concatenated to create R. The problem with
this method is that it is not always guaranteed to converge to a solution. An
alternative is the Householder-QR/QL method, which similarly computes a
series of matrices, but this time the end result is a tridiagonal matrix. From
this we can perform a series of steps that factor the matrix into an orthogonal
matrix Q and upper triangular matrix R (or an orthogonal matrix Q and a
lower triangular matrix L). This will eventually diagonalize the matrix, again
allowing us to compute the eigenvectors and eigenvalues. This can take more
steps than the Jacobi method, but is guaranteed to complete in a fixed amount
of time.

For 3 x 3 real symmetric matrices, Eberly [28] has a method that solves
for the roots of the characteristic equation. This is considerably more effi-
cient than the Householder method, and is relatively straightforward to
compute.

CHAPTER SUMMARY

In this chapter, we've discussed the general properties of linear transforma-
tions and how they are represented and performed by matrices. Matrices
also can be used to compute solutions to linear systems of equations by
using either Gaussian elimination or similar methods. We covered some basic
matrix properties, the concepts of matrix identity and inverse (and various
methods for calculating the latter), and the meaning and calculation of the
determinant. This lays the foundation for what we'll be discussing in the
next chapter: Using matrix transformations to manipulate models in a 3D
world.
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For those who are interested in reading further, Anton and Rorres [3]
is a standard reference for many first courses in linear algebra. Other texts
with slightly different approaches include Axler [4] and Friedberg et al. [39].
More information on Gaussian elimination and its extensions, such as LU
decomposition, can be found in Anton and Rorres [3] as well as in the Nuwmer-
ical Recipes series [96]. Finally, Blinn has an excellent article in his collection
Notation, Notation, Notation [9] on the geometry underlying 2 x 2 matrix
operations.
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CHAPTER

7

4.1

AFFINE
TRANSFORMATIONS

INTRODUCTION

Now that we've chosen a mathematically sound basis for representing
geometry in our game and discussed some aspects of matrix arithmetic, we
need to combine them into an efficient method for placing and moving virtual
objects or models. There are a few reasons we seek this efficiency. Suppose
we wish to build a core level in our game space, say the office of a computer
company. We could build all of our geometry in place and hard-code all of
the locations. However, if we have a number of objects that are duplicated
throughout the space — computers, desks, and chairs, for example — it would
be more memory-efficient to create one master copy of the geometry for each
type of object. Then, for each instance of a particular object, we can specify
just a position and orientation and let the rendering and simulation engine
handle the placement.

Another, more obvious reason is that objects in games generally move so
that setting them at a fixed location is not practical. We will need to have some
means to specify, for a model as a whole, its position and orientation in space.

There are a few characteristics we desire in our method. We want it to be
fast and work well with our existing data and math library. We want to be able
to concatenate a series of operations so we can perform them with a single
operation, just as we did with linear transformations. Since our objects consist
of collections of points, we need our method to work on points in an affine
space, but we'll still need to transform vectors as well. The specific method
we will use is called an affine transformation.

133
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4.2 AFFINE TRANSFORMATIONS
4.2.1 MATRIX DEFINITION

In the last chapter we discussed linear transformations, which map from
one vector space to another. We can apply such transformations to vectors
using matrix operations. There is a nearly equivalent set of transforma-
tions that map between affine spaces, which we can apply to points and
vectors in an affine space. These are known as affine transformations and
they too can be applied using matrix operations, albeit in a slightly different
form.

In the simplest terms, an affine transformation on a point can be repre-
sented by a matrix multiplication followed by a vector add, or,

Ax+y

where the matrix A is an m x n matrix, y is an m-vector, and x consists of the
point coordinates (xq, ..., X;,—1).
We can represent this process of transformation by using block matrices:

ERI A B

As we can see, in order to allow the multiplication to proceed, we'll represent
our point with a trailing 1 component. However, for the purposes of com-
putation, the vector 07, the 1 in the lower right-hand corner of the matrix,
and the trailing 1s in the points are unnecessary. They take up memory
and using the full matrix takes additional instructions to multiply by con-
stant values. Because of this, an affine transformation matrix is sometimes
represented in a form where these constant terms are implied, either as
an m x (n + 1) matrix or as the matrix multiplication plus vector add form
above.
If we subtract two points in an affine space, we get a vector:

[H]
]

As we can see, a vector is represented in an affine space with a trailing 0.
As previously noted in Chapter 2, this provides justification for some math
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libraries to use the trailing 1 on points and trailing 0 on vectors. If we multiply
a vector using this representation by our (m + 1) x (n + 1) matrix,

A y|[v] _|Av
o 2]
we see that the vector is affected by the upper left m x n matrix A, but not
the vector y. This has the same effect on the first n elements of v as multiply-
ing an n-dimensional vector by A, which is a linear transformation. So, this
representation allows us to use affine transformation matrices to apply linear
transformations on vectors in an affine space.

Suppose we wish to concatenate two affine transformations 8 and 7, where
the matrix representing 8 is
Ay
0" 1

and the matrix representing 7 is

As with linear transformations, to find the matrix that represents the
composition of § and T, we multiply the matrices together. This gives

R G

Finding the inverse for an affine transformation is equally as straight-
forward. Again, we can use a process similar to the one we used with linear
transformation matrices. Starting with

ERERIE

we multiply by both sides to remove the y component from the left-most
matrix:

—
=4
2y =
|
<
| I
— —
> =4
2> e
) — e
1 1
— —
> =4
2> e
— — e
[ I | I
| |
| Il
— —
= =
2, = 2, =
— | —_ |
< <
[ [
| —
=
2, =
—_ O
| I
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We then multiply by both sides to change the left-most matrix to the

identity:
A o
] -l 7]
—A

— <

—1 _
CRIEHE 03] w
1

Ay _TAT Al
[ 07 1 } - [ 0" 1 }
thereby giving us the inverse on the right-hand side.

When we're working in R3, A will be a 3 x 3 matrix and y will be a 3-vector;
hence the full affine matrix will be a 4 x 4 matrix. Most graphics libraries
expect transformations to be in the 4 x 4 matrix form, so if we do use the
more compact forms in our math library to save memory, we will still have
to expand them before rendering our objects. Because of this, we will use
the 4 x 4 form for our following discussions, with the understanding that
in our ultimate implementation we may choose one of the other forms for
efficiency’s sake.

4.2.2 FORMAL DEFINITION

While the definition above will work for most practical purposes, to truly
understand what our matrix form does requires some further explanation.
We'll begin by formally defining an affine transformation. Recall that linear
transformations preserve the linear operations of vector addition and scalar
multiplication. In other words, linear transformations map from one vector
space to another and preserve linear combinations. Thus, for a given linear
transformation 8:

Slagpvo +a1vi+ -+ ay—1Vp—1) = ao8(vo) + a18(vi) + - - + a,—18(v,—1)

Correspondingly, an affine transformation T maps between two affine spaces
A and B and preserves affine combinations. For scalars ay, . .., a,—1 and points
Py, ..., P,_1in A:

‘T(CIOPO + -t a1 Poy) = aOT(PO) + -+ an—l‘I(Pn—l)
whereag +--- +a,—1 = 1.
As with our test for linear transformations, to determine whether a given

transformation 7 is an affine transformation, it is sufficient to test a single
affine combination:

T(aoPo + a1 P1) = apT (Po) + a1 T(Py)

where ag +a; = 1.
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Affine transformations are particularly useful to us because they preserve
certain properties of geometry. First, they maintain collinearity, so points on
a line will remain collinear and points on a plane will remain coplanar when
transformed.

If we transform a line:

LtO)=(0—-1Py+1tP
JL@) =TI =Py +1Pr)
=0 -=0DT(Py) +tT(Pr)

the result is clearly still a line (assuming T(Py) and T(P;) aren’t coincident).
Similarly, if we transform a plane:

P(t) = (1 —s— )Py + sP; + tP
T(P() = T((1 — s — 1) Py + sP; + tP>)

=1 —-s—0T(Po) +sT(P1)+1tT(P)

the result is clearly a plane (assuming T(Pp), T(P;), and T(P;) aren’t collinear).

The second property of affine transformations is that they preserve relative
proportions. The point that lies at ¢ distance between Py and P; on the original
line will map to the point that lies at ¢ distance between T(P) and T(P;) on
the transformed line.

Note that while ratios of distances remain constant, angles and exact
distances don’t necessarily stay the same. The specific subset of affine trans-
formations that preserve these features are called rigid transformations; those
that don’t are called deformations. It should be no surprise that we find
rigid transformations useful. When transforming our models, in most cases
we don’t want them distorted unrecognizably. A bottle should maintain its
size and shape —it should look like a bottle no matter where we place it in
space. However, the deformations have their use as well. On occasion we may
want to make an object larger or smaller or reflect it across a plane, as in a
mirror.

To apply an affine transformation to a vector in an affine space, we can
apply it to the difference of two points that equal the vector, or

T =TP-0)=T(P)—-T(Q)

So, as we've seen above, an affine transformation that is applied to a vector
performs a linear transformation.
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4.2.3 FORMAL REPRESENTATION

Suppose we have an affine transformation that maps from affine space A to

affine space B, where the frame for A has basis vectors (vy,..., v,—1) and
origin O4, and the frame for B has basis vectors (wy, ..., w;;_1) and origin
Op. If we apply an affine transformation to a point P = (xg, ..., x,_1) in A,
this gives

T(P)=T(xoVo+ -+ Xn—1Vy—1 + O4)
= x0T (vo) + -+ X%, 1T(Vy—1) +T(O04)

As we did with linear transformations, we can express a given J(v) in terms
of B’s frame:

T(vj) =ao,jwo +ai,jwi + -+ am—1,jWm—1
Similarly, we can express T(0,4) in terms of B’s frame:
J(04) =yoWwo+ y1W1+ -+ ym—1Wn—1 + Op

Again, as we did with linear transformations, we can rewrite this as a matrix
product. However, unlike linear transformations, we write a mapping from
an n-dimensional affine space to an m-dimensional affine space as an (m + 1) x
(n + 1) matrix:

ap,o wo ap,1 wo e ag,n—1wo Yowo X0
ai,owi a1 wi apn—1wi Y1 W1 X1
An—1,0Wm—1 Am—1,1Wm—-1 - AGm—-1,n—1Wm—-1 Ym—1Wm—1 Xn—1
0 0 s 0 Op 1

The dimensions of our matrix now make sense. The n + 1 columns represent
the n transformed basis vectors plus the transformed origin. We need m + 1
rows since the frame of B has m basis vectors plus the origin Op.

We can pull out the frame terms to get

aop,o ao, 1 te ag,n—1 Yo X0
ato ar,i te aln—1 Y1 X1
[Wo wi -+ wu_1 Og]
adm—1,0 Am-1,1 -°° Am—1,n—1 Ym—1 Xn—1
0 0 0 1 1

So, similar to linear transformations, if we know how the affine transfor-
mation affects the frame for A, we can copy the transformed frame in terms



4.3

4.3 Standard Affine Transformations 1739

of the frame for B into the columns of a matrix and use matrix multiplication
to apply the affine transformation to an arbitrary point.

STANDARD AFFINE TRANSFORMATIONS

Now that we've defined affine transformations in general, we can discuss
some specific affine transformations that will prove useful when manipulat-
ing objects in our game. We'll cover these in terms of transformations from
R3 to R3, since they will be the most common uses. However, we can apply
similar principles to find transformations from R? to R? or even R* to R* if we
desire.

Since affine spaces A and B are the same in this case, to simplify things
we'll use the same frame for each one: the standard Cartesian frame of
,j, k, 0).

4.3.1 TRANSLATION

The most basic affine transformation is translation. For a single point, it’s the
same as adding a vector t to it, and when applied to an entire set of points it
has the effect of moving them rigidly through space (Figure 4.1). Since all the
points are shifted equally in space, the size and shape of the object will not
change, so this is a rigid transformation.

“ []

|

r=-i
|

y

FIGURE 4.1 Translation.
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We can determine the matrix for a translation by computing the transfor-
mation for each of the frame elements. For the origin O, this is

TJO)=t+0
=ti+tj+1,k+0

For a given basis vector, we can find two points P and Q that define the
vector and compute the transformation of their difference. For example,
for i

T(i) = T(P - Q)
= T(P) - T(Q)
= (t+P) = (t+0)
=P—-0Q
=i

The same holds true for j and Kk, so translation has no effect on the basis
vectors in our frame. We end up with a 4 x 4 matrix:

1 0 0 1
01 0 1
0 0 1 ¢t
0 0 0 1

Or, in block form:

It
el 1]

Translation only affects points. To see why, suppose we have a vector v,
which equals the displacement between two points P and Q; thatis, v= P—Q.
If we translate P — Q, we get

trans(P — Q) = (P+t) — (Q + t)
=(P-0)+(t—19

=V

This fits with our geometric notion that points have position and hence can
be translated in space, while vectors do not and cannot.



4.3 Standard Affine Transformations 141

We can use equation 4.3 to compute the inverse translation trans-

formation:
! = [ IO‘T1 —Il—lt ] 44)
_ [ OIT _1t } (4.5)
=T_; (4.6)

So, the inverse of a given translation negates the original translation vector
to displace the point back to its original position.

4.3.2 ROTATION

The other common rigid transformation is rotation. If we consider the rotation
of a vector, we are rigidly changing its direction around an axis without chang-
ing its length. In R?, this is the same as replacing a vector with the one that’s
0 degrees counterclockwise (Figure 4.2).

In R3, we usually talk about an axis of rotation. In his rotation theorem,
Euler showed that when applying a rotation in three-dimensional (3D) space,
there is a linear set of points (i.e., a line) that does not change. This is called
the axis of rotation, and the amount we rotate around this axis is the angle of
rotation. A helpful mnemonic is the right-hand rule: If you point your right
thumb in the direction of the axis vector, the curl of your fingers represents
the direction of positive rotation (Figure 4.3).

For a given point, we rotate it by moving it along a planar arc a constant
distance from another point, known as the center of rotation (Figure 4.4). This

FIGURE 4.2 Rotation of vector in R2.
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FIGURE 4.3 Axis and plane of rotation.

FIGURE 4.4 Rotation of point in R?.

center of rotation is commonly defined as the origin of the current frame
(we'll refer to this as a pure rotation) but can be any arbitrary point. We can
think of this as defining a vector v from the center of rotation to the point to
be rotated, rotating v, and then adding the result to the center of rotation to
compute the new position of the point. For now we’ll only cover pure rota-
tions; applying general affine transformations about an arbitrary center will
be discussed later.

To keep things simple, we'll begin with rotations around one of the three
frame axes, with a center of rotation equal to the origin. The following system
of equations rotates a vector or point counterclockwise (assuming the axis is
pointing at us) around k, or the z-axis (Figure 4.5¢):

x' = xcosf — ysinf
y = xsinf + ycos 6 4.7

Z =2



4.3 Standard Affine Transformations 1473

[P _————

(a) (b)

[P

()

FIGURE 4.5 (a) x-axis rotation, (b) y-axis rotation, and (c) z-axis rotation.

Figure 4.6 shows why this works. Since we're rotating around the z-axis, no
z values will change, so we will consider only how the rotation affects the xy
values of the points. The starting position of the point is (x, y), and we want to
rotate that 6 degrees counterclockwise. Handling this in Cartesian coordinates
can be problematic, but this is one case where polar coordinates are useful.
Recall that a point P in polar coordinates has representation (r, ¢), where
r is the distance from the origin and ¢! is the counterclockwise angle from
the x-axis. We can think of this as rotating an r length radius lying along the
x-axis by ¢ degrees. If we rotate this a further 6 degrees, the end of the radius

1. We're using ¢ for polar coordinates in this case to distinguish it from the rotation angle 6.
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(', ¥")

(x, )

¢

FIGURE 4.6 Rotation in xy plane.

will be at (r, ¢ + 0) (in polar coordinates). Converting to Cartesian coordinates,
the final point will lie at

x =rcos(¢p +6)
y' =rsin(¢ + )

Using trigonometric identities, this becomes

x = rcos¢cosh — rsin¢sin 0

y = rcos¢sinf + rsin ¢ cos 6
But r cos ¢ = x, and rsin ¢ = y, so we can substitute and get

x' = xcosf — ysinf

y = xsinf 4 ycos

We can derive similar equations for rotation around the x-axis
(Figure 4.5a):

X =x
y = ycosf — zsinf
7 = ysinf + zcos6

and rotation around the y-axis (Figure 4.5b):

x' = zsin6 + xcos 6
/

y =Yy

7 =zcos® — xsinf
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To create the corresponding transformation, we need to determine how
the frame elements are transformed. The frame’s origin will not change since
it’s our center of rotation, so y = 0. Therefore, our primary concern will be
the contents of the 3 x 3 matrix A.

For this matrix, we need to compute where i, j, and k will go. For example,
for rotations around the z-axis we can transform i to get

x' = (1)cosh — (0)sin6 = cos b
y = (1)sin@ + (0) cos @ = sinf

=0

Transforming j and k similarly and copying the results into the columns of
a 3 x 3 matrix gives

cosf —sinf O
R, = | sinf cosf6 O
0 0 1

Similar matrices can be created for rotation around the x-axis:

1 0 0
R,=] 0 cosf —sinf
0 sinf cosé

and around the y-axis:

cosf 0O sinéb
0 1 0
—sinf® 0 cosé

R,

One thing to note about these matrices is that their determinants are
equal to 1, and they are all orthogonal. For example, look at the component
3-vectors of the z-axis rotation matrix. We have (cos 9, sin 8, 0), (— sin 8, cos 6, 0),
and (0, 0, 1). The first two lie on the xy plane and so are perpendicular to the
third, and they are perpendicular to each other. All three are unit length and
so form an orthonormal basis.

The product of two orthogonal matrices is also an orthogonal matrix,
thus the product of a series of pure rotation matrices is also a rotation matrix.
For example, by concatenating matrices that rotate around the z-axis, then the
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y-axis, and then the x-axis, we can create one form of a generalized rotation

matrix:
CyCz —CySz Sy
R.R\R; = SxSyCz + CxSz  —SxSySz+ CxCz —SxCy (4.8)
—CxSyCz + SxSz  CxSySz + SxCz CxCy
where

Cx =cosb, Sx=sinb,
Cy =cosfy Sy=sinb,

Cz=cosf; Sz=sinb;

Recall that the inverse of an orthogonal matrix is its transpose. Because
pure rotation matrices are orthogonal, the inverse of any rotation matrix is
also its transpose. Therefore, the inverse of the z-axis rotation, centered on
the origin, is

cosf sinf O
RZ_l = | —sinf cosf® O
0 0 1

This follows if we think of the inverse transformation as “undoing” the
original transformation. If you substitute —@ for 6 in the original matrix and
replace cos(—6) with cos 8 and sin(—8) with — sin 6, then we have:

cos(—60) —sin(—0) O cosf sinf O
sin(—f) cos(—=f#) O [ =] —sinf cosf O
0 0 1 0 0 1

which, as we can see, results in the immediately preceding inverse matrix.

Now that we have looked at rotations around the coordinate axes, we
will consider rotations around an arbitrary axis. The formula for a rotation
of a vector v by an angle 6 around a general axis T is derived as follows.
We begin by breaking v into two parts: the part parallel with ¥ and the
part perpendicular to it, which lies on the plane of rotation (Figure 4.7a).
Recall from Chapter 1 that the parallel part v; is the projection of v
onto r, or

vy =(v-DF (4.9)
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(b)

FIGURE 4.7 (a) General rotation, showing axis of rotation and rotation plane, and
(b) general rotation, showing vectors on rotation plane.
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The perpendicular part is what remains of v after we subtract the parallel

part, or
Vi =v—(Vv-D)T (4.10)

To properly compute the effect of rotation, we need to create a two-
dimensional (2D) basis on the plane of rotation (Figure 4.7b). We'll use v
as our first basis vector, and we’ll need a vector w perpendicular to it for our
second basis vector. We can take the cross product with t for this:

W=FXV =FxV (4.11)

In the standard basis for R?, if we rotate the vector i = (1, 0) by 6, we get
the vector (cos 6, sin §). Equivalently,

Ri = (cosO)i—+ (sinh)j

If we use v, and w as the 2D basis for the rotation plane, we can find the
rotation of v by 0 in a similar manner:

Rv, = (cosO) v, + (sinf)w (4.12)

The parallel part of v doesn’t change with the rotation, so the final result of
rotating v around t by 0 is
Rv = RV” + Rv |
= Rv| + (cosO) vy + (sinf)w
= (v.-D)r+cosf[v— (v:T)T] +sinO(r x v)
=c0sOV+[1 —cosO)(v-T)T +sinO(r x v) (4.13)
This is one form of what is known as the Rodrigues formula.

The projection (v- F)t can be replaced by the tensor product (t ® t)v.
Similarly, the cross product ¥ x v can be replaced by a multiplication by
a skew symmetric matrix Fv. This gives

Rv=cosOv+ (1 —cosO)(F® T)v + sin OFv
=[cosOI + (1 — cos ) (T ® T) + sin OF]v
Expanding the terms, we end up with a matrix:
x> +c Xy — sz txz+ sy

Riyy=| mxy+sz n?+c tyz—sx
Ixz — sy tyz+sx 12+ ¢
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where
r=(x,y2
c =cosf
s =sin6
t=1-—cosf

As we can see, there is a wide variety of choices for the 3 x 3 matrix A,
depending on what sort of rotation we wish to perform. The full affine matrix
for rotation around the origin is

Lo ]

where R is one of the rotation matrices just given. For example, the affine
matrix for rotation around the x-axis is

1 0 0
R 0| | 0 cos§ —sind
of 1| | O sind cosf
0 0 0

- o O O

This is also an orthogonal matrix and its inverse is the transpose, as before.

Finally, when discussing rotations one has to be careful to distinguish
rotation from orientation, which is to rotation as position is to translation.
If we consider the representation of a point in an affine space,

P=v+0

then we can think of the origin as a reference position and the vector v as
a translation that relates our position to the reference. We can represent
our position as just the components of the translation. Similarly, we can
define a reference orientation ¢, and any orientation €2 is related to it by a
rotation, or

Q = RpQ

Just as we might use the components of the vector v to represent our position,
we can use the rotation Ry to represent our orientation. To change our ori-
entation, we apply an additional rotation, just as we might add a translation
vector to change our position:

Q' =RiQ

In this case, our final orientation, using the rotation component, is

RiRy
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Remember that the order of concatenation matters, because matrix multipli-
cation — particularly for rotation matrices — is not a commutative operation.

4.3.3 SCALING

The remaining affine transformations that we will cover are deformations,
since they don’t preserve exact lengths or angles. The first is scaling, which
can be thought of as corresponding to our other basic vector operation, scalar
multiplication; however, it is not quite the same. Scalar multiplication of a
vector has only one multiplicative factor and changes a vector’s length equally
in all directions. We can also multiply a vector by a negative scalar. In compar-
ison, scaling as it is commonly used in computer graphics applies a possibly
different but positive factor to each basis vector in our frame.? If all the factors
are equal, then it is called uniform scaling and is— for vectors in the affine
space — equivalent to scalar multiplication by a single positive scalar. Other-
wise, it is called nonuniform scaling. Full nonuniform scaling can be applied
differently in each axis direction, so we can scale by 2 in z to make an object
twice as tall, but 1/2 in x and y to make it half as wide.

A point doesn’t have a length per se, so instead we change its relative dist-
ance from another point C;, known as the center of scaling. We can consider
this as scaling the vector from the center of scaling to our point P. For a set of
points, this will end up scaling their distance relative to each other, but still
maintaining the same relative shape (Figure 4.8).

For now we'll consider only scaling around the origin, so C;= 0O and y = 0.
For the upper 3 x 3 matrix A, we again need to determine how the frame basis
vectors change, which is defined as

T3) = ai
T(j) =bj
T(K) = ck

where q, b, ¢ > 0 and are the scale factors in the x, y, z directions, respectively.
Writing these transformed basis vectors as the columns of A, we get an affine
matrix of

Sabc =

(=N e}
oS0 OO
— o O O

S O O

2. We'll consider negative factors when we discuss reflections in the following section.
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\
=

FIGURE 48 Nonuniform scaling.

This is a diagonal matrix, with the positive scale factors lying along the
diagonal, so the inverse is

l/a 0 0 0
o o 1 0 0
Sae =S111=1| o /e 0

0 0 0 1

4.3.4 REFLECTION

The reflection transformation symmetrically maps an object across a plane
or through a point. One possible reflection is (Figure 4.9a)

X =—x
/_
y =y
/

Z =z

This reflects across the yz plane and gives an effect like a standard mirror
(mirrors don’t swap left to right, they swap front to back). If we want to reflect
across the xz plane instead, we would use (Figure 4.9b)

X =x
/

y =-y
!
7=z
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y y
(a) (b)

FIGURE 4.9 (a)yz reflection, and (b) xz reflection.

As one might expect, we can create a planar reflection that reflects across
a general plane, defined by a normal h and a point on the plane Py. For now
we'll consider only planes that pass through the origin. If we have a vec-
tor v in our affine space, we can break it into two parts relative to the plane
normal: the orthogonal part v, which will remain unchanged, and paral-
lel part vj, which will be reflected to the other side of the plane to become
—v|. The transformed vector will be the sum of v, and the reflected —v
(Figure 4.10).

To compute v, we merely have to take the projection of v against the
plane normal f, or

v = (v-f)h (4.14)
Subtracting this from v, we can compute v, :
Vi =V—=Yy| (415)

We know that the transformed vector will be v, — vj. Substituting
equations 4.15 and 4.14 into this gives us

‘T(V)Z Vi —V|
= V—2V||
=v-—2(v-n)n

From Chapter 2, we know that we can perform the projection of v on i by
multiplying by the tensor product matrix n ® n, so this becomes

T(v)y=v—-2(n® n)v
=[I-2(h® n)]v



4.3 Standard Affine Transformations 1573

FIGURE 4.10 General reflection.

Thus, the linear transformation part A of our affine transformation is
[I —2(n ® n)]. Writing this as a block matrix, we get:
I-2(h@n 0
"= 0’ 1
While in the real world we usually see planar reflections, in our vir-
tual world we can also compute a reflection through a point. The following
performs a reflection through the origin (Figure 4.11):

/

X = —X
’
y ==y
’
 =—Z

The corresponding block matrix is

10
o=l o V]

Reflections are a symmetric operation; that is, the reflection of a reflection
returns the original point or vector. Because of this, the inverse of a reflection
matrix is the matrix itself.

As an aside, we would (incorrectly) expect that if we can reflect through
a plane and a point, we can reflect through a line. The system

!
X = —X

~

<
|
|

<
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y

FIGURE 4.11 Point reflection.

appears to reflect through the z-axis, giving a “funhouse mirror” effect, where
right and left are swapped (if y is left, it becomes —y in the reflection, and so
ends up on the right side). However, if we examine the transformation closely,
we see that while it does perform the desired effect, this is actually a rotation of
180 degrees around the z-axis. While both pure rotations and pure reflections
through the origin are orthogonal matrices, we can distinguish between them
by noting that reflection matrices have a determinant of —1, while rotation
matrices have a determinant of 1.

4.3.5 SHEAR

The final affine transformation that we will cover is shear. Because it affects
the angles of objects it is not used all that often, but it comes up particularly
when discussing oblique projections. An axis-aligned shear provides a shift in
one or two axes proportional to the component in a third axis. Transforming
a square to a rhombus or a cube to a rhomboid solid is a shear transformation
(Figure 4.12).

There are a number of ways of specifying shear [82, 100]. In our case,
we will define a shear plane, with normal f, that does not change due to the
transformation. We define an orthogonal shear vector s, which indicates how
planes parallel to the shear plane will be transformed. Points on the plane 1
unit of distance from the shear plane, in the direction of the plane normal, will
be displaced by s. Points on the plane 2 unit of distance from the shear plane
will be displaced by 2s, and so on. In general, if we take a point P and define
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~C

y

FIGURE 4.12 z-shear on square.

it as Py + v, where Py is a point on the shear plane, then P will be displaced
by (- v)s.

The simplest case is when we apply shear perpendicular to one of the
main coordinate axes. For example, if we take the yz plane as our shear plane,
our normal is i and the shear plane passes through the origin 0. We know
from this that O will not change with the transformation, so our translation
vector y is 0. As before, to find A we need to figure out how the transformation
affects our basis vectors. If we define jas P; — O, then

T =T —T(O)
But P; and O lie on the shear plane, so
J(H)=P—-0
=]
The same is true for the basis vector k. For i, we can define it as Py — O.
We know that Py is distance 1 from the shear plane, so it will become

Py + s, so

T(i) = T(Po) —T(0)
=Py+s—-0
=i+s
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The vector s in this case is orthogonal to i, therefore it is of the form (0, a, b),
so our transformed basis vector will be (1, a, b). Our final matrix A is

H, =

S =
S = O
—_ o O

We can go through a similar process to get shear by the y-axis:

1 ¢ O
H=| 010
0 d 1
and shear by the z-axis:
1 0 e
H=|01 f
0 0 1

For shearing by a general plane through the origin, we already have the
formula for the displacement: (fi- v)s. We can rewrite this as a tensor product
to get (h ® s)v. Because this is merely the displacement, we need to include
the original point, and thus our origin-centered general shear matrix is simply
I+ 0 ® s. Our final shear matrix is

I+s@n 0
Hf‘l,szl: OT 1i|

The inverse shear transformation is shear in the opposite direction, so the
corresponding matrix is

436 APPLYING AN AFFINE TRANSFORMATION
AROUND AN ARBITRARY POINT

Up to this point, we have been assuming that our affine transformations
are applied around the origin of the frame. For example, when discussing
rotation we treated the origin as our center of rotation. Similarly, our shear
planes were assumed to pass through the origin. This doesn’t necessarily have
to be the case.
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FIGURE 4.173 Rotation of origin around arbitrary center.

Let’s look at a particular example — the rotation of a point around an
arbitrary center of rotation C—and determine how this transformation
affects the origin of our frame. If we look at Figure 4.13, we see the situation.
We have a point C and our origin 0. We want to rotate the difference vector
v = 0 — C between the two points by matrix R and determine where the result-
ing point T7(0), or C + T(v), will be. From that we can compute the difference
vector y = T(0) — O. From Figure 4.13, we can see that y = T(v) — v, so we
can reduce this as follows:

y=T(v)—v
=Rv-—v
=R-=-Dv
It’s usually more convenient to write this in terms of the vector dual to C,
which is x = C — O = —v, so this becomes
y=—(R-Dx
=I-R)x

We can achieve the same result by translating our center C to the frame origin
by —x, performing our origin-centered rotation, and then translating back by x:

I x R 0 I —x
Me=1or 1 }[ of 1 }[ of 1 }

[ R x I —x
B ! 0" 1
[ R d-R)x
Lo 1

Notice that the upper left-hand block R is not affected by this process.
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The same construction can be used for all affine transformations that use
a center of transformation: rotation, scale, reflection, and shear. The excep-
tion is translation, since such an operation has no effect: P — x+t+x= P+ t.
But for the others, using a point C = (x,1) as our arbitrary center of
transformation gives
MC=[ (z)sT a lA)x]

where A is the upper 3 x 3 matrix of an origin-centered transformation. The
corresponding inverse is

_ A7l I-A"DHx
I _
M. _[ 0" 1

4.3.7 TRANSFORMING PLANE NORMALS

As we saw in the previous section, if we want to transform a line or plane
represented in parametric form, we transform the points in the affine
combination. For example,

J(P(0) = (A —s—=0T(Py) +sT(P1) +1T(P2)

But suppose we have a plane represented using the generalized plane
equation. One way of considering this is as a plane normal (a, b, ¢) and a point
on the plane Py. We could transform these and try to use the resulting vector
and point to build the new plane. However, if we apply an affine transform to
the plane normal (a, b, ¢) directly, we may end up performing a deformation.
Since angles aren’t preserved under deformations, the resulting normal may
no longer be orthogonal to the points in the plane.

The correct approach is as follows. We can represent the generalized plane
equation as the product of a row matrix and column matrix, or

ax+by+cz+d=[a b ¢ d]

—_— e =

=n'P

Now P is clearly a point, and n is the vector of coefficients for the plane.
For points that lie on the plane,

n’P=0
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If we transform all the points on the plane by some matrix M, then to
maintain the relationship between n’” and P, we'll have to transform n by
some unknown matrix Q, or

Q' (MP) =0
This can be rewritten as

n"Q"MP =0

One possible solution for this is if

I=Q'™™
Solving for Q gives
T
Q= (M)
So, the transformed plane coefficients become
T
n = (Mfl) n

The same approach will work if we're transforming the plane normal and
point as described earlier. We transform the point Py by M and the normal by
™MHT.

In many cases the inverse matrix M~! may not exist. So, if we're just
transforming a normal vector (a, b, ¢), we can use a different method. Instead
of M~!, we use the adjoint matrix from Cramer’s rule. Normally we couldn’t
proceed at this point: If the inverse doesn’t exist, we end up dividing by a
zero determinant. However, even when the inverse exists, the division by the
determinant is a scale factor. So, we can ignore it in all cases and just use the
adjoint matrix directly, because we're going to normalize the resulting vector

anyway.
USING AFFINE TRANSFORMATIONS
4.4.1 MANIPULATION OF GAME OBJECTS
The primary use of affine transformations is for the manipulation of objects

in our game world. Suppose, from our earlier hypothetical, we have an
office environment that is acting as our game space. The artists could build
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the basic level —the walls, the floor, the ceilings, and so forth—as a single set
of triangles with coordinates defined to place them exactly where we might
want them in the world. However, suppose we have a single desk model that
we want to duplicate and place in various locations in the level. The artist
could build a new version of the desk for each location in the core level geom-
etry, but that would involve unnecessarily duplicating all the memory needed
for the model. Instead, we could have one version, or master, of the desk model
and then set a series of transformations that indicate where in the level each
copy, or instance, of the desk should be placed [108].

Before we can begin to discuss how we specify these transformations and
what they might mean, we need to define the two different coordinate frames
we are working in: the local coordinate frame and the world coordinate frame.

Local and World Coordinate Frames

When artists create an object or we create an object directly in a program,
the coordinates of the points that make up that object are defined in that
particular object’s local frame. This is also commonly known as local space.
In addition, often the frame is named after the object itself, so you might also
see terms like model space or camera space.

The orientation of the basis vectors in the Icoal frame is usually set so
that the engineers know which part of the object is the front, which is the top,
and which is the side. This allows us to orient the object correctly relative to
the rest of the world and to translate it in the correct direction if we want to
move it forward. The convention that we will be using in this book is one where
the x-axis points along the forward direction of the object, the y-axis points
toward the left of the object, and the z-axis points out the top of the object
(Figure 4.14). Another common convention is to use the y-axis for up, the z-axis
for forward, and the x-axis for either out to the left or to the right, depending
on whether we want to work in a right-handed or left-handed frame.

FIGURE 4.14 Local object frame.
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Typically, the origin of the frame is placed in a position convenient for
the game, either at the center of the object or at the bottom of the object. The
first is useful when we want to rotate objects around their centers, the second
for placement on the ground.

When constructing our world, we define a specific coordinate frame, or
world frame, also known as world space. The world frame acts as a common
reference among all the objects, much as the origin acts as a common ref-
erence among points. Ultimately, in order to render, simulate, or otherwise
interact with objects, we will need to transform their local coordinates into
the world frame.

When an artist builds the level geometry, the coordinates are usually set
in the world frame. Orientation of the level relative to our world frame is set
by convention. Knowing which direction is “up” is important in a 3D game;
in our case, we'll be using the z-axis, but the y-axis is also commonly used.
Aligning the level to the other two axes (in our case, x and y) is arbitrary, but
if our level is either gridlike or box-shaped, it is usually convenient to orient
the grid lines or box sides to these remaining axes.

Positioning the level relative to the origin of the frame is also arbitrary but
is usually set so that the origin lies in the center of a box defining our maximum
play area. This helps avoid precision problems, since floating-point precision
is centered around 0 (see Chapter 1). For example, we might have a 300-meter
by 300-meter play area, so that in the xy directions the origin will lie directly
in the center. While we can set things so that the origin is centered in z as well,
we may want to adjust that depending on our application. If our game mainly
takes place on a flat play area, such as in an arena fighting game, we might set
the floor so that it lies at the origin; this will make it simple to place objects
and characters exactly at floor level. In a submarine game, we might place sea
level at the origin; negative z lies under the waterline and positive z above.

Placing Objects

If we were to use the objects’ local coordinates directly in the world frame,
they would end up interpenetrating and centered around the world origin.
To avoid that situation, we apply affine transformations to each object to
place them at their own specific position and orientation in the world. For
each object, this is known as their particular local-to-world transformation.
We often display the relative position and orientation of a particular object in
the world by drawing its frame relative to the world frame (Figure 4.15). The
local-to-world transformation, or world transformation for short, describes
this relative relationship: The column vectors of the local-to-world matrix A
describe where the local frame’s basis vectors will lie relative to the world
space basis, and the vector y describes where the local frame’s origin lies
relative to the world origin.
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FIGURE 4.15 Local-to-world transformation.

The most commonly used affine transformations for object placement are
translation, rotation, and scaling. Translation and rotation are convenient
for two reasons. First, they correspond naturally to two of the character-
istics we want to control in our objects: position and orientation. Second,
they are rigid transformations, meaning they don'’t affect the size or shape
of our object, which is generally the desired effect. Scaling is a deformation
but is commonly useful to change the size of objects. For example, if two
artists build two objects but fail to agree on a relative measure of size, you
might end up with a table bigger than a room, if placed directly in the level.
Rather than have the artist redo the model, we can use scaling to make it
appear smaller. Scaling is also useful in fantastical games to either shrink a
character to fit in a small space or grow a character to be more imposing.
However, for most games you can actually get away without using scaling
at all.

To create the final world transformation, we’ll be concatenating a
sequence of these translation, rotation, and scaling transformations together.
However, remember that concatenation of transformations is not commu-
tative. So, the order in which we apply our transformations affects the
final result, sometimes in surprising ways. One basic example is transform-
ing the point (0, 0, 0). A pure rotation around the origin has no effect on
(0, 0, 0), so rotating by 90 degrees around z and then translating by (z, t,, ;)
will just act as a translation, and we end up with (z,1,,1,). Translating
the point first will transform it to (z,1,,t,), so in this case a subsequent
rotation of 90 degrees around z will have an effect, with the final result



of (—ty,1,,1;). As another example, look at Figure 4.16(a), which shows a
rotation and translation. Figure 4.16(b) shows the equivalent translation and
rotation.

Scaling and rotation are also noncommutative. If we first scale (1, 0, 0) by
(s, sy, 57), we get the point (s, 0, 0). Rotating this by 90 degrees around z, we
end up with (0, s,, 0). Reversing the transformation order, if we rotate (1, 0, 0)
by 90 degrees around z, we get the point (0, 1, 0). Scaling this by (s, sy, 5;), we
get the point (0, sy, 0). Note that in the second case we rotated our object so
that our original x-axis lies along the y-axis and then applied our scale, giving
us the unexpected result. Figures 4.17(a) and 4.17(b) show another example

of this applied to an object.

(a)

FIGURE 4. 16 (a) Rotation, then translation and (b) translation, then rotation.

(a)

|
-
N

4.4 Using Affine Transformations

(b)
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(b)

FIGURE 4.17 (a) Scale, then rotation and (b) rotation, then scale.
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The final combination is scaling and translation. Again, this is not
commutative. Remember that pure scaling is applied from the origin of the
frame. If we translate an object from the origin and then scale, there will be
additional scaling done to the translation of the object. So, for example, if
we scale (1, 1, 1) by (sy, 5y, 5;) and then translate by (,, 1,, ,), we end up with
(tx + Sx, ty + sy, 1 + 57). If instead we translate first, we get (¢, + 1,1, + 1,2, + 1),
and then scaling gives us (syfx + sy, syty + 5y, ;1. + 5;). Another example can be
seen in Figures 4.18(a) and 4.18(b).

Generally, the desired order we wish to use for these transforms is to
scale first, then rotate, then translate. Scaling first gives us the scaling along
the axes we expect. We can then rotate around the origin of the frame,
and then translate it into place. This gives us the following multiplication
order:

M = TRS

4.4.2 MATRIX DECOMPOSITION

It is sometimes useful to break an affine transformation matrix into its com-
ponent basic affine transformations. This is called matrix decomposition. We
performed one such decomposition when we pulled the translation infor-
mation out of the matrix, effectively representing our transformation as the
product of two matrices:

A y| [T vy A 0

o 1 |7 o 1 o7 1
Suppose we continue the process and break down A into the product of
more basic affine transformations. For example, if we're using only scaling,

/ v
(@) (b)

FIGURE 4. 18 (a) Scale, then translation and (b) translation, then scale.
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rotation, and translation, it would be ideal if we could break A into the product
of a scaling and rotation matrix. If we know for a fact that A is the product
of only a scaling and rotation matrix, in the order RS, we can multiply it out
to get

rilr ri2 ris 0 Sx 0 0 O Sxr11 Syrlz S$7r13 0
1 Iy 13 0 0 sy 0 O | | sxr21 Syroa sz23 0
r31 13 1z 0 0 0 s; O | | sar31 sy szr33 0

0 0 0 1 0O 0 0 1 0 0 0 1

In this case, the lengths of the first three column vectors will give our three
scale factors sy, sy, and s.. To get the rotation matrix, all we need to do is
normalize those three vectors.

Unfortunately, it isn’t always that simple. As we’ll see in Section 4.5,
often we’ll be concatenating a series of TRS transformations to get something

like
M =T,R,S, ---TiR1S1ToRoSo

In this case, even ignoring the translations, it is impossible to decompose
M into the form RS. As a quick example, suppose that all these transforma-
tions with the exception of S; and Ry are the identity transformation. This
simplifies to

M = SRy

Now suppose S; scales by 2 along y and by 1 along x and z, and R rotates by 60
degrees around z. Figure 4.19 shows how this affects a square on the xy plane.
The sides of the transformed square are no longer perpendicular. Somehow,
we have ended up applying a shear within our transformation, and clearly we
cannot represent this by a simple concatenation RS.

One solution is to decompose the matrix using a technique known as
singular value decomposition, or simply SVD. Assuming no translation, the
matrix M can be represented by three matrices L, D, and R, where L and
R are orthogonal matrices, D is a diagonal matrix with nonnegative entries,
and

M =LDR
An alternative formulation to this is polar decomposition, which breaks
the nontranslational part of the matrix into two pieces: an orthogonal matrix

Q and a stretch matrix S, where

S = UTKU
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FIGURE 4.19 Effect of rotation, then scale.

Matrix U in this case is another orthogonal matrix, and K is a diagonal matrix.
The stretch matrix combines the scale-plus-shear effect we saw in our exam-
ple: It rotates the frame to an orientation, scales along the axes, and then
rotates back. Using this, a general affine matrix can be broken into four
transformations:

M = TRNS

where T is a translation matrix, Q has been separated into a rotation matrix
R and a reflection matrix N = +1I, and S is the preceding stretch matrix.

Performing either SVD or polar decomposition is out of the purview of
this text. As we'll see, there are ways to avoid matrix decomposition at the cost
of some conversion before we send our models down the graphics pipeline.
However, at times we may get a matrix of unknown structure from a library
module that we don’t control. For example, we could be using a commercial
physics engine or writing a plug-in for a 3D modeling package such as Max
or Maya. Most of the time a function is provided that will decompose such
matrices for us, but this isn’t always the case. For those times and for those
who are interested in pursuing this topic, more information on decomposi-
tions can be found in Goldman [42], Golub and Van Loan [44], and Shoemake
and Duff [105].

4.4.3 AVOIDING MATRIX DECOMPOSITION

In the preceding section we made no assumptions about the values for our
scaling factors. Now let’s assume that they are equal; that is, each scaling
matrix performs a uniform scale. Looking at just the rotation and scaling
transformations, we have

M =R,S,---RiS1RySy
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Since each scaling transformation is uniformly scaling, we can simplify this to
M= R,,an s Rlo‘lR()(T()
Using matrix algebra, we can shuffle terms to get

M =R, ---RiRgpoy - -- 0100
= Ro
=RS

where R is a rotation matrix and S is a uniform scaling matrix. So, if we use
uniform scaling, we can in fact decompose our matrix into a rotation and
scaling matrix, as we just did.

However, even in this case the decomposition takes three square roots
and nine scaling operations to perform. This leads to an alternate approach to
handling transformations. Instead of storing transformations for our objects
as a single 4 x 4 or even 3 x 4 matrix, we will break out the individual parts:
a scale factor s, a 3 x 3 rotation matrix R, and a translation vector t. To apply
this transformation to a point P, we use

T(P) = [ SRX1+t }

Note the similarity to equation 4.1. We've replaced A with sR and y with t. In
practice we ignore the trailing 1.

Concatenating transformations in matrix format is as simple as
performing a multiplication. Concatenating in our alternate format is a lit-
tle less straightforward but is not difficult and actually takes fewer operations
on a standard floating-point processor:

s’ = 8150
R' =R Ry (4.16)
=t +s1Rity

Computing the new scale and rotation makes a certain amount of sense, but
it may not be clear why we don’t add the two translations together to get the
new translation. If we multiply the two transforms in matrix format, we have
the following order:

M=T,R;SToRpSy
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But since Ty is applied after Ry and Sy, they have no effect on it. So, if we
want to find how the translation changes, we drop them:

M’ = T R;S; Ty

Multiplying this out in block format gives us
M = [T 4 R 0 siI 0 I ¢t
! 0" 1 0" 1 0" 1
_ Ry t; s1I s1ty
“Lor o o7 1

[ siRy siRito + ¢
o’ 1

We can see that the right-hand column vector y is equal to equation 4.16. To
get the final translation we need to apply the second scale and rotation before
adding the second translation. Another way of thinking of this is that we need
to scale and rotate the first translation vector into the frame of the second
translation vector before they can be combined together.

There are a few advantages to this alternate format. First of all, it’s
clear what each part does—the scale and rotation aren’t combined into a
single 3 x 3 matrix. Because of this, it’s also easier to change individual
elements. We can update rotation, scale through a simple multiplication,
or even just set them directly. Surprisingly, on a serial processor concate-
nation is also cheaper. It takes 48 multiplications and 32 adds to do a
traditional matrix multiplication, but only 40 multiplications and 27 adds
to perform our alternate concatenation. This advantage disappears when
using vector processor operations, however. In that case, it's much easier to
parallelize the matrix multiplication (16 operations on some systems), and
the cost of scaling and rotating the translation vector becomes more of an
issue.

Even with serial processors our alternate format does have one main dis-
advantage, which is that we need to create a 4 x 4 matrix to be sent to the
graphics application programming interface (API). Based on our previous
explorations of the transformation matrix, we can create a matrix from our
alternate format quite quickly; scale the three columns of the rotation matrix;
and then copy it and the translation vector into our 4 x 4:

$70,0 Sro,1  Sr0,2  Ix
SrL,0  Sri1 St Iy
S0 Sr21 S22 I

0 0 0 1
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Which representation is better? It depends on your application. If all you
wish to do is an initial scale and then apply sequences of rotations and trans-
lations, the 4 x 4 matrix format works fine and will be faster on a vector
processor. If, on the other hand, you wish to make changes to scale as well,
using the alternate format should at least be considered. And, as we'll see, if
we wish to use a rotation representation other than a matrix, the alternate
formation is almost certainly the way to go.

OBJECT HIERARCHIES

In describing object transformations, we have considered them as transform-
ing from the object’s local frame (or local space) to a world frame (or world
space). However, it is possible to define an object’s transformation as being
relative to another object’s space instead. We could carry this out for a num-
ber of steps, thereby creating a hierarchy of objects, with world space as the
root and each object’s local space as a node in a tree (Figure 4.20).

For example, suppose we wish to attach an arm to a body. The body is built
with its origin relative to its center. The arm has its origin at the shoulder joint
location because that will be our center of rotation. If we were to place them
in the world using the same transformation, the arm would end up inside
the body instead of at the shoulder. We want to find the transformation that
modifies the arm’s world transformation so that it matches the movement of
the body and still remains at the shoulder. The way to do this is to define
a transformation for the arm relative to the body’s local space. If we combine
this with the transformation for the body, this should place the arm in the
correct place in world space relative to the body, no matter its position and
orientation.

FIGURE 4.20 Hierarchy of frames.
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The idea is to transform the arm to body space (Figure 4.21(a)) and then
continue the transform into world space (Figure 4.21(b)). In this case, for
each stage of transformation we perform the order as scale, rotate, and then
translate. In matrix format the world transformation for the arm would be

W= Tbodbeody SbodyTarm Raurm Sarm
As we've indicated, the body and arm are treated as two separate objects, each

with its own transformations, placed in a hierarchy. The body transforma-
tion is relative to world space, and the arm transformation is relative to the

(a)

(b)

FIGURE 4.21 (a) Mapping arm to body’s local space and (b) mapping body and arm
to world space.
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body’s space. When rendering, for example, we begin by drawing the body
with its world transformation and then drawing the arm with the concate-
nation of the body’s transformation and the arm’s transformation. By doing
this, we can change them independently — rotating the arm around the shoul-
der, for example, without affecting the body at all. Similar techniques can be
used to create deeper hierarchies, for example, a turret that rotates on top
of a tank chassis, with a gun barrel that elevates up and down relative to the
turret.

One way of coding this is to create separate objects, each of which handles
all the work of grabbing the transformation from the parent objects and com-
bining to get the final display transform. The problem with this approach is
that it generates a lot of duplicated code. Using the tank example, the code
necessary for handling the hierarchy for the turret is going to be almost iden-
tical to that for the barrel. What is usually done is to design a data structure
that handles the generalized case of a hierarchy of frames and use that to
manage our hierarchical objects. We've implemented an example using one
such data structure called a scene graph. More detail about this example and
scene graphs in general can be found on the CD-ROM.

CHAPTER SUMMARY

In this chapter we've discussed the general properties of affine transforma-
tions, how they map between affine spaces, and how they can be repre-
sented and performed by matrices at one dimension higher than the affine
spaces involved. We've covered the basic affine transformations as used in
interactive applications and how to combine three of them —scaling,
rotation, and translation — to manipulate our objects within our world. While
it may be desirable to separate a given affine transformation back into scaling,
rotation, and translation components, we have seen that it is not always pos-
sible when using nonuniform scaling. Separating components in this manner
may not be efficient, so we have presented an alternative affine transforma-
tion representation with the three components separated. Finally, we have
discussed how to construct transformations relative to other objects, which
allows us to create jointed, hierarchical structures.

For those interested in reading further, information on affine algebra
can be found in Schneider and Eberly [100], as well as in deRose [23]. The
standard affine transformations are described in most graphics textbooks,
such as Moéller and Haines [82] and Foley et al. [38]. Further details on hierar-
chical transformation management and scene graph construction and usage
can be found in Eberly [25].
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5.1

ORIENTATION
REPRESENTATION

INTRODUCTION

In the previous chapter we discussed various types of affine transformations
and how they can be represented by a matrix. In this chapter we will focus
specifically on orientation and the rotation transformation. We'll look at four
different orientation formats and compare them on the basis of the following
criteria:

m Represents orientation/rotation with a small number of values.
m Can be concatenated efficiently to form new orientations/rotations.

m Rotates points and vectors efficiently.

The first item is important if memory usage is an issue, either because we are
working with a memory-limited machine such as a console, or because we
want to store a large number of transformations, such as in animation data.
In either case, any reduction in representation size means that we have freed-
up memory that can be used for more animations, for more animation frames
(leading to a smoother result), or for some other aspect of the game. Rotating
points and vectors efficiently may seem like an obvious requirement, but one
that merits mentioning; not all representations are good at this. Similarly, for
some representations concatenation is not possible.

There are two other criteria we might consider for an orientation format
that we will not discuss here: how well the representation can be interpolated

173
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5.2

53

and how suitable it is for numeric integration in physics. Both of these topics
will be discussed in Chapters 10 and 13, respectively.

As we'll see, there is no one choice that meets all of our requirements;
each has its strengths and weaknesses in each area, depending on our imple-
mentation needs.

ROTATION MATRICES

Since we have been using matrices as our primary orientation/rotation
representation, it is natural to begin our discussion with them.

For our first desired property, memory usage, matrices do not fare well.
Euler’s rotation theorem states that the minimum number of values needed
to represent a rotation in three dimensions is three. The smallest possible
rotation matrix requires nine values, or three orthonormal basis vectors. It
is possible to compress a rotation matrix, but in most cases this is not done
unless we're sending data across a network. Even then it is better to convert to
one of the more compact representations that we will present in the following
sections, rather than compress the matrix.

However, for the second two properties, matrices do quite well. Concate-
nation is done through a matrix-matrix multiplication, and rotating a vector is
done through a matrix-vector multiplication. Both of these are reasonably effi-
cient on a standard floating-point processor. But on a processor that supports
SSE or Altivec instructions, which can perform matrix and vector operations
in parallel, both of these operations can be performed even faster. Most graph-
ics hardware has built-in circuitry that performs similarly. And as we've seen,
4 x 4 matrices can be useful for more than just rotation. Because of all these
reasons, matrices continue to be useful despite their memory footprint.

FIXED AND EULER ANGLES
5.3.1 DEFINITION

We've just stated that the minimum number of values needed to represent a
rotation in three-dimensional (3D) space is three. As it happens, these three
values can be the angles of three sequential rotations around a set of orthog-
onal axes. In Chapter 4, we used this as one means of building a generalized
rotation matrix. Our chosen sequence of axes in this case was z-y-x, so the
values (0, 7/4, 7/2) represent a rotation of 0 radians around the z-axis, fol-
lowed by a rotation of 7/4 radians (or 45 degrees) around the y-axis, and
concluding with a rotation of /2 radians (90 degrees) around the x-axis.
Angles can be less than 0 or greater than 27, to represent reversed rotations
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FIGURE 5.1 Order and direction of rotation for z-y-x fixed angles.

and multiple rotations around a given axis. Note that we are using radians
rather than degrees to represent our angles; either convention is acceptable,
but the trigonometric functions used in C or C++ expect radians.

The order we've given is somewhat arbitrary, as there is no standard order
that is used for the three axes. We could have used the sequence x-y-z or z-x-y
just as well. We can even duplicate one axis, so long as it is not the same axis
in a row, so y-z-y is a valid sequence, while an axis rotation sequence such as
z-y-y is not permitted. This is because duplicating an axis is redundant and
doesn’t add an additional degree of freedom.

These rotations are performed around either the world axes or the object’s
model axes. When the angles represent world axis rotations, they are usually
called fixed angles (Figure 5.1). The most convenient way to use fixed angles
is to create an x-, y-, or z-rotation matrix for each angle and apply it in turn to
our set of vertices. So an x-y-x fixed-angle representation can be concatenated
into a single matrix R = R,R R, in matrix form.

A sequence of model axis rotations, in turn, is said to consist of Euler
angles.! The three Euler angles are commonly known as roll, pitch, and
heading, after the three axes in a ship or an airplane. Heading is also some-
times referred to as yaw. Roll represents rotation around the forward axis,
pitch rotation around a side axis, and heading rotation around the up axis

1. Just to be confusing, sometimes (a sequence of) rotations around world space axes are also
referred to as Euler angles. Hopefully context will tell you which one the author means.
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QD Yaw

Pitch

Roll

FIGURE 5.2 Roll, pitch, and rotations relative to model coordinate axes.

(Figure 5.2). Whether a given roll, pitch, or heading rotation is around x, y, or z
depends on how we've defined our coordinate frame. Suppose we are using
a coordinate system where the z-axis represents up, the x-axis represents for-
ward, and the y-axis represents left. Then heading is rotation around the z-axis,
pitch is rotation around the y-axis, and roll is rotation around the x-axis. They
are commonly applied in the order roll-pitch-heading, so the corresponding
Euler angles for our case are x-y-z.

To create a rotation matrix that applies Euler angles, we concatenate in
the reverse order of fixed angles. To see why, let’s take our set of x-y-z Euler
angles. We begin by applying the R, matrix, to give us a rotation around x.
We then want to apply a rotation around the object’s initial model y-axis.
However, because of the x rotation, the y-axis has been transformed to a new
orientation. So, if we concatenate as we normally would, our rotation will
be about the transformed y-axis, which is not what we want. To avoid this,
we transform by R, first, then by R,, giving R;R,. The same is true for the
z rotation: We need to rotate around z first to ensure we rotate around the
original model z-axis, not the transformed one. The resulting matrix is

REuier = Ry Ry RZ

So x-y-z Euler angles are the same as z-y-x fixed angles.
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5.3.2 FORMAT CONVERSION

By concatenating three general axis rotation matrices and expanding out the
terms, we can create a generalized rotation matrix. The particular matrix will
depend on which axis rotations we're using and whether they are fixed or
Euler angles. For z-y-x fixed angles or x-y-z Euler angles, the matrix looks like

CyCz —CySz Sy
R=RR\R; = SxSyCz + CxSz  —SxSySz+ CxCz —SxCy
—CxSyCz + $x8z CxSySz + SxCz CxCy

where

Cx =cosf, Sx=sin0,
Cy =cosf, Sy=sin0,

Cz =cosf; Sz=sinb,

This should look familiar from Chapter 4.

When possible, we can save some instructions by computing each sine
and cosine using a single sincos() call. This function is not supported on
all processors, or even in all math libraries, so we have provided a wrapper
function IvSinCosf() (accessible by including IvMath.h) that will calculate it
depending on the platform.

We can convert from a matrix back to a possible set of fixed angles by
inverting this process. Note that since we’ll be using inverse trigonometric
functions there are multiple resulting angles. We'll also be taking a square
root, the result of which could be positive or negative. Hence, there are
multiple possibilities of Euler or fixed angles for a given matrix— the best
we can do is find one. Assuming we’re using z-y-x fixed angles, we can see
that sin6, is equal to Rpy. Finding cos6, can be done by using the identity

cosfy = /1 — sin® 6. The rest falls out from dividing quantities out of the first
row and last column of the matrix, so

sin 9y = R()2

cosfy = /1 —sin* 6,

sin 6, = —Rj2/ cos 6,
cos 0, = R/ cos ),
sin6, = —Rg1/ cos 6y

cos 0; = Rop/ cos 0y
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Note that we have no idea whether cos 6, should be positive or negative, so
we assume that it’s positive. Also, if cos, = 0, then the x and z axes have
become aligned (see Section 5.3.5) and we can’t distinguish between rotations
around x and rotations around z. One possibility is to assume that rotation
around z is 0, so

sinf, =0
cosf, =1
sin 0, = Ry
cosf;, = Ry

Calling arctan2() for each sin/cos pair will return a possible angle in radians,
generally in the range [—7, 7]. Note that we have lost one of the few benefits
of fixed and Euler angles, which is that they can represent multiple rotations
around an axis by using angles greater than 27 radians, or 360 degrees. We
have also lost any notion of “negative” rotation.

5.3.3 CONCATENATION

Clearly, fixed and Euler angles meet our first criteria for a good orientation
representation: They use the minimum number of values. However, they don’t
really meet the remainder of our requirements. First of all, they don’t concate-
nate well. Adding angles doesn’t work: Applying (7/2, 7/2, 7/2) twice doesn’t
end up at the same orientation as (7, 7, 7). The most straightforward method
for concatenating two Euler or fixed-angle triples is to convert each sequence
of angles to a matrix, concatenate the matrix, and then convert the matrix
back to Euler or fixed angles. This will take a large number of operations, and
will only give an approximate result, due to the ill-formed nature of the matrix
to fixed and Euler conversion.

5.3.4 VECTOR ROTATION

Euler and fixed angles also aren’t the most efficient method for rotating
vectors. Recall that to rotate a vector around z uses the formula

R (x,y,0) = (xcosf — ysinf, xsin 0 + y cos 0)

Using the angles directly means that for each axis, we compute a sine and
cosine and then apply the preceding formula. Even if we cache the sine and
cosine values for a set of vectors, this ends up being more expensive than
the cost of a matrix multiplication. Therefore, when rotating multiple vectors
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(in general the break-even point is five vectors), it's more efficient to convert
to matrix format.

5.3.5 OTHER ISSUES

As if all of these disadvantages are not enough, the fatal blow is that in cer-
tain cases fixed or Euler angles can lose one degree of freedom. We can think
of this as a mathematical form of gimbal lock. In aeronautic navigational
systems, there is often a set of gyroscopes, or gimbals, that control the orien-
tation of an airplane or rocket. Gimbal lock is a mechanical failure where one
gimbal is rotated to the end of its physical range and it can’t be rotated any
further, thereby losing one degree of freedom. While in the virtual world,
we don’t have mechanical gyroscopes to worry about, a similar situation
can arise.

Suppose we are using x-y-z fixed angles and we consider the case where,
no matter what we use for the x and z angles, we will always rotate around
the y-axis by 90 degrees. This rotates the original world x-axis — the axis we
first rotate around — to be aligned with the world negative z-axis (Figure 5.3).
Now any rotation we do with 6, will subtract from any rotation to which we
have applied 6. The combination of x and z rotations can be represented
by one value 6, — 6., applied as the initial x-axis rotation. For example, in
Figure 5.4, applying the fixed angles (7/2, /2, 7/2) gets us back to our original
(0, /2, 0). Instead of using (6, /2, 6,), we could just as well use (0, —0,, 7/2, 0)

Z World z
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FIGURE 5.3 Demonstration of mathematical gimbal lock. A rotation of 90 degrees
around y will lead to the local x-axis aligning with the —z world axis, and a loss of a
degree of freedom.
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¥R

FiGURE 5.4 Effect of gimbal lock. Rotating the box around the world x-axis, then
the world y-axis, then the world z-axis ends up having the same effect as rotating the
box around just the y-axis.

or (0, /2, 0, — 0;). Another way to think of this is: Were this in matrix form we
would not be able to extract unique values for 6, and 6,. We have effectively
lost one degree of freedom.

To try this for yourself, take an object whose orientation can be clearly
distinguished, like a book or CD case. From your point of view, rotate the
object clockwise 90 degrees around an axis pointing forward (roll). Now
rotate the new top of the object away from you by 90 degrees (pitch). Now
rotate the object counterclockwise 90 degrees around an axis pointing up
(heading). The result is the same as pitching the object downward 90 degrees
(see Figure 5.4).

Still, in some cases fixed or Euler angles do provide an intuitive represen-
tation for orientation. For example, in a hierarchical system it is very intuitive
to define rotations at each joint as a set of Euler angles and to constrain certain
axes to remain fixed. An elbow or knee joint, for instance, could be consid-
ered a set of Euler angles with two constraints and only one axis available
for applying rotation. It’s also easy to set a range of angles so that the joint
doesn’t bend too far one way or the other. However, these limited advantages
are not enough to outweigh the problems with fixed and Euler angles. So in
most cases, fixed and Euler angles are used as a means to semi-intuitively set
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other representations (being aware of the dangers of gimbal lock, of course),
and our library will be no exception.

AXIS—ANGLE REPRESENTATION
5.4.1 DEFINITION

Recall from Chapter 4 that we can represent a general rotation in R? by an
axis of rotation, and the amount we rotate around this axis by an angle of
rotation. Therefore, we can represent rotations in two parts: a 3-vector r that
lies along the axis of rotation, and a scalar 0 that corresponds to a counter-
clockwise rotation around the axis, if the axis is pointing toward us. Usually, a
normalized vector T is used instead, which constrains the four values to three
degrees of freedom, corresponding to the three degrees of freedom necessary
for 3D rotations.

Generating the axis-angle rotation that takes us from one normalized
vector v to another vector w is straightforward (Figure 5.5). The angle of
rotation is the angle between the two vectors:

0 = arccos(V - W) (5.1)

The two vectors lie in the plane of rotation, and so the axis of rotation is
perpendicular to both of them:

r=vxw (5.2)

Normalizing r gives us . Near-parallel vectors may cause us some problems
either because the dot product is near 0, or normalizing the cross product

FIGURE 5.5 Axis-angle representation. Rotation by r by angle 6 rotates v into w.
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ends up dividing by a near-zero value. In those cases, we set 6 to 0 and T to
any arbitrary, normalized vector.

5.4.2 FORMAT CONVERSION

To convert an axis—angle represention to a matrix, we can use the derivation
from Chapter 4:

x> +c Xy — sz txz+ sy
Riyy=| txy+sz n?+c tyz—sx (5.3)
Ixz — sy tyz +sx 12> +¢

where
r=(x,2)
c =cosf
s =sinf
t=1-—cosf

Converting from a matrix to the axis—angle format has similar issues
as the fixed-angle format, since opposing vectors r and —f can be used to
generate the same rotation by rotating in opposite directions, and multiple
angles (0 and 27, for example) applied to the same axis can rotate to the same
orientation. The following method is from Eberly [26].

We begin by computing the angle. The sum of the diagonal elements, or
trace of a rotation matrix R, is equal to 2cosf + 1, where 6 is our angle of
rotation. This gives us an easy method for computing 6:

6 = arccos <%(trace(R) — 1))

There are three possibilities for 0. If 6 is 0, then we can use any arbitrary unit
vector as our axis. If 6 lies in the range (0, 7), then we can compute the axis
by using the formula

R —R” = 25sin6S (5.4)
where S is a skew symmetric matrix of the form
0 —z y

S = Z 0 —x
-y X 0
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The values x, y, and z in this case are the components of our axis vector t. We
can compute r as (Ry; — Rz, Rop — R0, R1o — Ro1), and normalize to get T.

If 6 equals 7, then R — R” = 0, which doesn’t help us at all. In this case,
we can use another formulation for the rotation matrix, which only holds if
0=m:

1 —2y* — 272 2xy 2xz
R=1+28= 2xy 1 —2x2 — 272 2yz
2xz 2yz 1 —2x% —2y?

The idea is that we can use the diagonal elements to compute the three axis
values. By subtracting appropriately, we can solve for one term, and then
use that value to solve for the other two. For example, Ryg — Rj1 — Ry + 1
expands to
Ro—Rii—Rn+1=1-2y>-222—1+2x2 4222 —1+2x2+2y° + 1

= 4x2

So,

1
X = Ex/Roo —Rii—Rn+1 (5.5)

and consequently,

_ Roi
T
I

2x

To avoid problems with numeric precision and square roots of negative
numbers, we'll choose the largest diagonal element as the term that we'll solve
for. So, if Ryg is the largest diagonal element, we'll use the preceding equations.
If Ry; is the largest, then

1

y= E/Rn — Ropo — R +1
Rot

2y

Ria

2y
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Finally, if Ry, is the largest element we use

1
Z=§\/R22—R00—R11+1

Ro2
X =—
2z
_ R
y= 2z

5.4.3 CONCATENATION

Concatenating two axis-angle representations is not straightforward. One
method is to convert them to two matrices or two quaternions (see below),
multiply, and then convert back to the axis—angle format. As one can easily
see, this is more expensive than just concatenating two matrices. Because of
this, one doesn’t often perform this operation on axis—angle representations.

5.4.4 VECTOR ROTATION

For the rotation of a vector v by the axis—angle representation (F, ), we can
use the Rodrigues formula that we derived in Chapter 4:

Rv =cosOv+[1—cosO](v-T)T +sinO(F x V)

If we precompute cosd and sin 6 and reuse intermediary values, we can com-
pute this relatively efficiently. We can improve this slightly by using the
identity

rx(rxv)=(v.-Dr—(r-r)v

=(v-DFr—v
and substituting to get an alternate Rodrigues formula:
Rv=v+(1—-cosO[F x (F x V)] +sinO(F x v)

In both these cases, the trade-off is whether to store the results of the transcen-
dental functions and thereby use more memory, or compute them every time
and lose speed. The answer will depend on the needs of the implementation.

When rotating two or more vectors, it is more efficient to convert the
axis—angle format to a matrix and then multiply. The break-even point is two
vectors, so if you're only transforming one vector, don’t bother converting;
otherwise, use a matrix.
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5.4.5 AXISTANGLE SUMMARY

While being a useful way of thinking about rotation, the axis—angle format
still has some problems. Concatenating two axis—angle representations is
extremely expensive. And unless we store two additional values, rotating vec-
tors requires computing transcendental functions, which is not very efficient
either. Our next representation encapsulates some of the useful properties
of the axis-angle format, while providing a more efficient method for con-
catenation. It precomputes the transcendental functions and uses them to
rotate vectors in nearly equivalent time to the axis—angle method. Because of
this, we have not explicitly provided an implementation in our library for the
axis—angle format.

QUATERNIONS
5.5.1 DEFINITION

The final orientation representation we’ll consider could be considered a
variant of the axis—angle representation, and in fact when using it for rota-
tion it's often simplest to think of it that way. It is called the quaternion
and was created by the Irish mathematician Sir William Hamilton [52]
in the nineteenth century and introduced to computer graphics by
Ken Shoemake [103] in the 1980s. Quaternions require only four values, they
don’t have problems of gimbal lock, the mathematics for concatenation are
relatively simple, and if properly constructed they can be used to rotate vectors
in a reasonably efficient manner.
Hamilton’s general formula for a quaternion q is as follows:

q=w+xi+ yj+ zk

The quantities i, j, and k can be thought of as the standard basis for all
quaternions, so it is common to write a quaternion as just

q=(w,x,y,2)

The xi+ yj+ zk part of the quaternion is akin to a vector in R3, so a quaternion
also can be written as

q=(w, V)

where w is called the scalar part and v is called the vector part.
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Frequently, well want to use vectors in combination with quaternions.
To do so, we'll zero out the scalar part and set the vector part equal to our
original vector. So, the quaternion corresponding to a vector u is

qu = 0, w

Other than terminology, we aren’t that concerned about Hamilton’s inten-
tions for generalized quaternions, because we are only going to consider a
specialized case discovered by Arthur Cayley [18]. In particular, he showed
that quaternions can be used to describe pure rotations. Later on, Courant and
Hilbert [21] determined the relationship between normalized quaternions and
the axis—angle representation.

5.5.2 QUATERNIONS AS ROTATIONS

While any quaternion can be used to represent rotation (as we will see later),
we will be primarily using unit quaternions, where

w2+V-V=1

There are three reasons for this. First of all, it makes the calculations for
rotation and conversions more efficient. Secondly, it manages floating-point
error. By normalizing, our data will lie in the range [—1, 1], and floating-point
values in that range have a high degree of relative precision. Finally, it provides
anatural correspondence between an axis—angle rotation and a quaternion. In
a unit quaternion, w can be thought of as representing the angle of rotation 6.
More specifically, w = cos(6/2). The vector v represents the axis of rotation, but
normalized and scaled by sin(6/2). So, v = sin(6/2) . For example, suppose we
wanted to rotate by 90 degrees around the z-axis. Our axis is (0, 0, 1) and half
our angle is /4 (in radians). The corresponding quaternion components are

T V2
u):COS(Z)I—2

x:O-sin(%):O
y=0~sin<%)=0
z=1-sin(%)=g

giving us a final quaternion of
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So, why reformat our previously simple axis and angle to this somewhat
strange representation? As we'll see shortly, precooking the data in this way
allows us to rotate vectors and concatenate with ease.

Our class implementation for quaternions looks like

class IvQuat
{
public:
// constructor/destructor
inTine IvQuat() {}
inline IvQuat( float w, float x, float y, float z )
{ w(_w), x(_x), y(_y), z(_2)

}

IvQuat(const IvVector3& axis, float angle);
explicit IvQuat(const IvVector3& vector);
inline ~IvQuat() {}

// member variables
float x, y, z, w;

}s

Much of this follows from what we've already discussed. We can set our
quaternion values directly, use an axis—angle format, or explicitly use a vector.
Recall that in this last case, we use the vector to set our x, y, and z terms, and
set w to 0.

5.5.3 ADDITION AND SCALAR MULTIPLICATION

Like vectors, quaternions can be scaled and added componentwise. For both
operations a quaternion acts just like a 4-vector, so

(w1, x1, y1, 21) + (w2, X2, y2, 22) = (W1 + w2, X1 + X2, ¥1 + ¥2, 21 + 22)

a(w, x, y, z) = (aw, ax, ay, az)

The algebraic rules for addition and scalar multiplication that apply to vec-
tors and matrices apply here, so like them, the set of all quaternions is also a
vector space. However, the set of unit quaternions is not, since neither opera-
tion maintains unit length. Therefore, if we use one of these operations, we'll
need to normalize afterwards. In general, however, we will not be using these
operations except in special cases.
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>

A%

Y _f.

FIGURE 5.6 Comparing rotation performed by a normalized quaternion (left) with
its negation (right).

5.5.4 NEGATION

Negation is a subset of scale, but it’s worth discussing separately. One would
expect that negating a quaternion would produce a quaternion that applies a
rotation in the opposite direction — it would be the inverse. However, while
it does rotate in the opposite direction, it also rotates around the negative
axis. The end result is that a vector rotated by either quaternion ends up
in the same place, but if one quaternion rotates by 6 radians around F, its
negation rotates 2z — 6 radians around —t. Figure 5.6 shows what this looks
like on the rotation plane. The negated quaternion can be thought of as “taking
the other way around,” but both quaternions rotate the vector to the same
orientation. This will cause some issues when blending between quaternions
but can be handled by adjusting our values appropriately, which we’ll discuss
in Chapter 10. Otherwise, we can use q and —q interchangeably.

5.5.5 MAGNITUDE AND NORMALIZATION

As we've implied, we will be normalizing quaternions, and will do so as if we
were using 4-vectors. The magnitude of a quaternion is therefore as follows:

lall = /@2 + 22 452 + 22

A normalized quaternion q is

>
Il

lqll
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Since we're assuming that our quaternions are normalized, we'll forgo the use
of the notation q to keep our equations from being too cluttered.

5.5.6 DOT PRODUCT

The dot product of two quaternions should also look familiar:
q; - 42 = wiwz +X1X2 + y1y2 + 2122

As with vectors, this is still equal to the cosine of the angle between the
quaternions, except that our angle is in four dimensions instead of the usual
three. What this gives us is a way of measuring how different two quater-
nions are. If q, - q, is close to 1 (assuming that they’re normalized), then they
apply very similar rotations. Also, since we know that the negation of a quater-
nion performs the same rotation as the original, if the dot product is close to
—1 the two still apply very similar rotations. So parallel normalized quater-
nions (|q; - q,| ~ 1) are similar. Correspondingly, orthogonal normalized
quaternions (q; - q, = 0) produce extremely different rotations.

5.5.7 FORMAT CONVERSION

Converting from axis—angle format to a quaternion requires multiplying the
angle by one-half, computing the sine and cosine of that result, and scaling
the normalized axis vector by the sine. To convert back, we take the arccos of
w to get half the angle, and then use v 1 — w? to get the length of v so we can
normalize it. The full conversion is

6 = 2 arccos(w)

Vil = V1 —w?

r=v/|v|

Converting a normalized quaternion to a 3 x 3 rotation matrix takes the
following form:

1 —2y> =222 2xy—2uwz 2x7 + 2wy
Mg=| 2xy+2wz 1-2x>-272 2yz—2uwx (5.6)
2xz — 2wy 2yz + 2wx 1 —2x2 —2y?
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If the quaternion is not normalized, we need to scale the matrix by

1
w? +x2 + y? + 22

To compute this on a serial processor we can make use of the fact that there
are a lot of duplicated terms. The following is derived from Shoemake [104]:

IvMatrix33&
IvMatrix33::Rotation( const IvQuat& q )
{

float s, xs, ys, zS, WX, Wy, Wz, XX, XY, XZ, YY, Yz, 2Z;

// if q is normalized, s = 2.0f
s = 2.0f/( q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w );

XS = S$*Q.X; ys = s*q.y; zs = s$*q.z;
WX = g.W*Xs; wy = g.w*ys; wz = q.w*zs;

XX = Q.X*XS3 Xy = q.x*ys; Xz = q.Xx*zs;
yy = q.y*ys; yz = q.y*zs; zz = q.z*zs;
mV[0] = 1.0f - (yy + zz);

mV[3] = xy - wz;
mV[6] = xz + wy;

mV[1l] = xy + wz;
mV[4] = 1.0f - (xx + zz);
mV[7] = yz - wx;

mV[2] = xz - wy;
mV[5] = yz + wx;
mv[8] = 1.0f - (xx + yy):

return *this;

} // End of Rotation()

If we have a parallel vector processor that can perform fast matrix
multiplication, another way of doing this is to generate two 4 x 4 matrices
and multiply them together:

w -z y X w -z y —x
M, = zZ w —x 'y z w —x -y
-y X w z -y x w —z
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If the quaternion is normalized, the product will be the homogeneous rotation
matrix corresponding to the quaternion.

To convert a matrix to a quaternion, we can use an approach that is similar
to our matrix to axis—angle conversion. Recall that the trace of a rotation
matrix is 2 cos 8 + 1, where 6 is our angle of rotation. Also, from equation 5.4,
we know that the vector r = (Ry; — Ry2, Ro2 — Rag, Rio — Ro1) will have length
2sin 6. If we add 1 to the trace and use these as the scalar and vector parts,
respectively, of a quaternion, we get

q=(2cosf+2,2sin0r) (5.7)

Surprisingly, all we need to do now is normalize to get the final result. To see
why, suppose we started with a quaternion

q; = (cos 6, sinOT)

This is close to what we need, which is
R ( 6 .6 ?
= (cos —, sin — T
q; 3 )

To get from q; to q,, let’s consider two vectors. If we have a vector wy and
a vector w| rotated 6 degrees from wy, then to find the vector v; that lies
between them on the rotation plane (i.e., the vector rotated 6/2 degrees from
W), we just need to compute (wi + w;)/2. If we want a normalized vector, we
can skip the division by two and just do the normalize step.

So to do the same with quaternions, we take as our q, the quaternion (1, 0),
which represents no rotation. If we add that to q; and normalize, that will
give us our desired result. That boils down to adding 1 to w and normalizing.
Equation 5.7 is just that scaled by 2; the scaling factor drops out nicely when
we normalize.

If the trace of the matrix is less than zero, then this will not work. We'll
need to use an approach similar to when we extracted the axis from a rotation
matrix. By taking the largest diagonal element and subtracting the elements
from it, we can derive an equation to solve for a single axis component
(e.g., equation 5.5). Using that value as before, we can then compute the other
quaternion components from the elements of the matrix.

So, if the largest diagonal element is Ry, then

1
X=§\/R00—R11—R22+1

Ro1 + Ryo
y=——-——
4x
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. Roz + Rao
4x

Ry; — Ri2

w=—-=
4x

We can simplify this by noting that

4x? = Rop — Ri1 — Rop + 1

4x>  Roo— Rii — Rn +1
4x 4x
Roo — Ri1 — R +1
4x

X =

Substituting this formula for x, we now see that all of the components are
scaled by 1/4x. We can accomplish the same thing by taking the numerators

X =Roo— Ri1 — Rp +1

¥y = Ro1 + Rio
Z= Rpx + Ry
w= Ry — Ry

and normalizing.
Similarly, if the largest diagonal element is R|j, we start with
y=Ri1 — Roo — Rz + 1
X = Ro1 + Rio
Z=Rip+ Ry
w = Roz — Rao

and normalize.
And, if the largest diagonal element is R;;, we take

2= Ry — Roo — Ri1 +1

X = Ro2 + Ryo
y =Ry + Rp2
w = R1o — Ro1

and normalize.
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Converting from a fixed-angle format to a quaternion requires creating a
quaternion for each rotation around a coordinate axis, and then concatenating
them together. For the z-y-x fixed-angle format, the result is

0, 0y 0, .6 . 0y . 0,
W = COS — COS —= COS — — sin — sin — sin —
2 2 2 2 2 2

0y 6 0 0 0
X = SiN — COS = COS — + COS — $in — sin —
2 2 2 2 2 2

O . 0Oy 0, . By Oy . 6,
Yy = €0S — sin == cOSs — — sin — cos — sin —
2 2 2 2 2 2

0 0 0 0 0 0
Z = COS — COS = sin — + sin — sin = cos —
2 2 2 2 2 2

Converting a quaternion to fixed or Euler angles is, quite frankly, an awful
thing to do. If it’s truly necessary (e.g., for an interface), the simplest method
is to convert the quaternion to a matrix, and extract the Euler angles from the
matrix.

5.5.8 CONCATENATION

As with matrices, if we wish to concatenate the transformations performed
by two quaternions, we multiply them together to get a new quaternion.
Expanding out the terms of the multiplication produces the following result:

(w2 + x2i + y2j + 22k) (w1 + x1i + y1j + z1k)
= waw) + wax1i + wayi1j+ wezik
+X2w1i+X2xli2+X2y1ij+)€221ik (5.8)
+ yawij + yaxiji + yay1 j* + 221 jk
+ zowik + zox1ki + z2y1kj + 2221 k>
We define the products of the i, j, and k quantities as follows:
j=k jk=i ki=j
ji=—k ki=—i ik=—j

and

Note that order does matter.
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We can use these properties and well-known vector operations to simplify
the product to

q - q; = (Wiw2 — Vi * V2, W1 V2 + w2V + V2 X Vi)

Note that we've expressed this in a right-to-left order, like our matrices. This is
because the rotation defined by q; will be applied first, followed by the rotation
defined by q,. We'll see this more clearly when we look at how we use quater-
nions to transform vectors. Also note the cross product; due to this, quaternion
multiplication is also not commutative. This is what we expect with rotations;
applying two rotations in one order does not necessarily provide the same
result as applying them in the reverse order.

Multiplying two normalized quaternions does produce a normalized
quaternion. However, due to floating-point error, it is wise to renormalize the
result —if not after every multiplication, at least often and definitely before
using the quaternion to rotate vectors.

A straightforward implementation of quaternion multiplication might
look like

IvQuat operator*(IvQuat q2, IvQuat ql)

{
IvVector3 v1(ql.x, ql.y, ql.z);
IvVector3 v2(g2.x, q2.y, q2.z);

float w = ql.w*q2.w - v1.Dot(v2);
IvVector3 v = ql.w*v2 + g2.w*vl + v2.Cross(vl);

IvQuat q(w, v);

return q;

Alternatively, we can unroll the operations to get

IvQuat operator*(IvQuat g2, IvQuat ql)
{

w = g2.w*ql.w - g2.x*ql.x
- q2.y*ql.y - gq2.z*ql.z;
x =q2.y* ql.z - q2.z*ql.y
+ g2.w*ql.x + gql.w*q2.x;
y = q2.z*ql.x - gq2.x*ql.z

+ g2.w*ql.y + ql.w*q2.y;
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Z = q2-x*q1°.y - q2.y*q1.X
+ g2.w*ql.z + ql.w*q2.z;
return IvQuat(w,x,y,z);

Note that on a scalar processor that concatenating two quaternions can
actually be faster than multiplying two matrices together.

An example of concatenating quaternions is the conversion from z-y-x
fixed-angle format to a quaternion. The corresponding quaternions for each
axis are

% 0,sin2.0
= | cos =, 0, sin =,
U 2y

0 0
q, = <cos Ex sin ?x 0, 0)

Multiplying these together in the order q, q, q, gives the result in Section 5.5.7.

5.5.9 IDENTITY AND INVERSE

As with matrix products, there is an identity quaternion and, subsequently,
there are multiplicative inverses. As we've mentioned, the identity quaternion
is (1, 0, 0, 0), or (1, 0). Multiplying this by any quaternion q = (w, v) gives

q-1,0=0-w—0-v,1v+w0+vx0)

= (w, V)

In this case, multiplication is commutative, so q - (1, 0) = (1, 0) - q = q.

As with matrices, the inverse q~! of a quaternion q is one such that
q!q = qq7! = (1, 0). If we consider a quaternion as rotating 6 degrees
counterclockwise around an axis F, then to undo the rotation we should
rotate 6 degrees clockwise around the same axis. This is the same as rotat-
ing —0 degrees counterclockwise: To create the inverse we negate the angle

(Figure 5.7(a)). So, if
_ o\ .. [0
(w, v) = (cos <§> , Isin <§)>
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-

(a)

>

(b)

A

Y-r

FIGURE 5.7 (a) Relationship between quaternion and its inverse. Inverse rotates
around the same axis but negative angle. (b) Rotation direction around axis by negative
angle is the same as rotation direction around negative axis by positive angle.

then

_ <cos (g)  —#sin (g)) (5.9)

(w7 V)_l = (w7 _V)

At first glance, negating the vector part of the quaternion (also known as the
conjugate) to reverse the rotation is counterintuitive. But after some thought
this still makes sense geometrically. A clockwise rotation around an axis turns
in the same direction as a counterclockwise rotation around the negative of
the axis (Figure 5.7(b)).
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Equation 5.9 only holds if our quaternion is normalized. While in most
cases it should be since we're trying to maintain unit quaternions, if it is not
then we need to scale by one over the length squared, or

L
- w.-v (5.10)
LR PTER

Avoiding the floating-point divide in this case is another good reason to keep
our quaternions normalized.

Equation 5.10 may make more sense if we consider the inverse of a
quaternion sq (i.e., a nonunit quaternion with magnitude s):

G~ = (sw, v)~!

1

= s—zs(w, —-V)
1

= _(wﬂ _V)
S
1, _

= —q 1
S

It bears repeating that the negative of a quaternion, where both w and v are
negated, is not the same as the inverse. When applied to vectors, the negative
actually rotates the vector to the same orientation but going the other way
around the axis.

5.5.10 VECTOR ROTATION

If gr is used to concatenate two quaternions q and r, then for a vector p we
might expect qp to rotate the vector by the quaternion, just as it does for
a matrix. Unfortunately for intuition, this is not the case. For one thing, the
result of this multiplication is not a vector (w will not be 0). The actual formula
for rotating a vector by a quaternion is

qu: qpq_l (511)

It may look like the effect of the operation is to perform the rotation and then
undo it, but this is not the case. Remember that quaternion multiplication is
not commutative, so if q is not the identity:

apq ' #qq 'p=p

We can use our rotation formula for axis and angle to show that
equation 5.11 does rotate a vector. We begin by breaking it out into its
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component vector operations. Assuming that our quaternion is normalized,
if we expand the full multiplication and combine terms, we get

Rqp = Qu* — D)p+2(V-p)V+2w(Vv x p) (5.12)

Substituting cos(8/2) for w, and tsin(8/2) for v, we get

= (2e0 () 1) + (s (2) ) o ()
w2 (5) (ran (5) <)

Reducing terms and using the appropriate trigonometric identities, we end

up with
2 9) ) (9)) ) (9) .. ~
Rq(p) = (cos (—2 —sin” (3 p + 2sin > (*-pt

0 0\ . .
+2cos <§) sin <§> (Fxp) (5.13)

=cosOp+[1 —cosO](t- p)T + sinO(T x p)

We see that equation 4.13 is equal to equation 5.13, so our quaternion
multiplication — odd as it may look — does rotate a vector around an axis by
a given angle.

In our code, we won’t want to use the qpq~' form, since performing both
quaternion multiplications isn’t very efficient. Instead, we'll use equation 5.12:

IvVector3
IvQuat::Rotate( const IvVector3& vector ) const

{
ASSERT( IsUnit() );

float vMult = 2.0f*(x*vector.x + y*vector.y + z*vector.z);
float crossMult = 2.0f*w;
float pMult = crossMult*w - 1.0f;

return IvVector3( pMult*vector.x + vMult*x + crossMult*(y*vector.z - z*vector.y),
pMult*vector.y + vMult*y + crossMult*(z*vector.x - x*vector.z),

pMult*vector.z + vMult*z + crossMult*(x*vector.y - y*vector.x) );

} // End of IvQuat::Rotate()

The operation count is more than that of matrix multiplication, but
comparable to Rodrigues’ formula for axis-angle representation.
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An alternate version,
Rqp= (V- P)V+ w’p+2w(v x p) + v x (VX p)

is useful for processors that have fast cross product operations.

Neither of these formulas is as efficient as matrix multiplication, but for
a single vector it is more efficient to perform these operations rather than
convert the quaternion to a matrix and then multiply. However, if we need to
rotate multiple vectors by the same quaternion, matrix conversion becomes
worthwhile.

To see how concatenation of rotations works, suppose we apply a rotation
from one quaternion followed by a second rotation from another quaternion.
We can rearrange parentheses to get

'= (qr)p(qn) !

a(rpr-')q”
As we see, concatenated quaternions will apply their rotation, one after the
other. The order is right to left, as we have stated.

If we substitute —q in place of q in equation 5.11, we can see in another
way how negating the quaternion doesn’t affect rotation. By equation 5.10,
(—@~'=-q7', 50

R_q(p)=—ap(—@)~"

= qpq "

The two negatives cancel, and we're back with our familiar result.
Similarly, if q is a nonunit quaternion, we can show that the same result
occurs as if the quaternion were normalized:

1
PPy~ = (@P(< ah

5.5.11 SHORTEST PATH OF ROTATION

As with the axis—angle format, it is often useful to create a quaternion that
rotates a vector v; into another vector v,, although in this case we'll use a
different approach discussed by Baker and Norel [5] that also avoids some
issues with numerical error when v; and v, are nearly collinear.
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Transform

We begin by taking the dot product and cross product of the two vectors:

vi - v2 = [[vi[[]lv2]l cos &
vi X V2 = ||vi[[[| v2|l sin OF

where Tt is our normalized rotation axis. Using these as the scalar and vector
parts, respectively, of a quaternion and normalizing gives us

q; = (cosd, sinOT)

This should look familiar from our previous discussion of matrix to quater-
nion conversion. As before, if we add 1 to w,

q;, = (cosf + 1, sin O1)

and normalize, we get
i = 0 . 0 P
= (cos —, sin — I
1 2%

Note that we haven’t handled the case where the two vectors are parallel.
In this case, there are an infinite number of possible rotation axes, and hence
an infinite number of possible quaternions. A stop-gap solution is to pick one
by taking the cross product between one of the vectors and a known vector
such as i or j. While this will work, it may lead to discontinuities — something
we'll discuss in Chapter 10 when we cover interpolation.

5.5.12 QUATERNIONS AND TRANSFORMATIONS

While quaternions are good for rotations, they don’t help us much when per-
forming translation and scale. Fortunately, we already have a transformation
format that quaternions fit right into. Recall that in Chapter 4, instead of using
a generalized 4 x 4 matrix for affine transformations, we used a single scale
factor s, a 3 x 3 rotation matrix R, and a translation vector t. Our formula for
transformation was

p'=R@sp) +t

We can easily replace our matrix R with an equivalent quaternion r, which
gives us

p=ripr i+t
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Concatenation using the quaternion is similar to concatenation with our
original separated format, except that we replace multiplication by the rota-
tion matrix with quaternion operations:

’
s = 5150
r =riro

t' =1t +r (Slto)l‘l_1

Again, to add the translations, we first need to scale ty by s; and then rotate
by the quaternion ry.

As with lone quaternions, concatenation on a serial processor can be much
cheaper in this format than using a 4 x 4 matrix. However, transformation of
points is more expensive. As was the case with simple rotation, for multiple
points it will be better to convert the quaternion to a matrix and transform
them that way.

CHAPTER SUMMARY

In this chapter we've discussed four different representations for orientation
and rotation: matrices, fixed and Euler angles, axis and angle, and quater-
nions. In the introduction we gave three criteria for our format: It may be
informative to compare them along with their usefulness in interpolation.

As far as size, matrices are the worst at nine values, and fixed and Euler
angles are the best at three values. However, quaternions and axis—angle rep-
resentation are close to fixed and Euler angles at four values, and they avoid
the problems engendered by gimbal lock.

For concatenation, quaternions take the fewest number of operations,
followed closely by matrices, and then by axis-angle and fixed and Euler
representations. The last two are hampered by not having low-cost meth-
ods for direct concatenation and so the majority of their expense is tied up in
converting to a more favorable format.

When transforming vectors, matrices are the clear winner. Assuming
precached sine and cosine data, fixed and Euler angles are close behind, while
axis—angle representation and quaternions take a bit longer. However, if we
don’t precache our data, the sine and cosine computations will probably take
longer, and quaternions come in second.

Finally, it is worth noting that due to floating-point error, the numbers rep-
resenting our orientation may drift. The axis—angle and fixed and Euler angle
formats do not provide an intuitive method for correcting for this. On the other
hand, matrices can use Gram-Schmidt orthonormalization and quaternions
can perform a normalization step. Quaternions are a clear winner here as
normalizing four values is a relatively inexpensive operation.
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For further reading about quaternions, the best place to start is with
the writings of Shoemake, in particular [103]. Hamilton’s original series of
articles on quaternions [52] are in the public domain and can be found
by searching online. Courant and Hilbert [21] cover applications of quater-
nions, in particular to represent rotations. Finally, Eberly has an article [26]
comparing orientation formats, and an entire chapter in his latest book [27]
on quaternions, with additional material by Shoemake.



CHAPTER

£ VIEWING AND
' PROJECTION

6.1 INTRODUCTION

In previous chapters we've discussed how to represent objects, basic transfor-
mations we can apply to these objects, and how we can use these transforma-
tions to move and manipulate our objects within our virtual world. With that
background in place, we can begin to discuss the mathematics underlying the
techniques we use to display our game objects on a monitor or other visual
display medium.

It doesn’t take much justification to understand why we might want to
view the game world — after all, games are primarily a visual media. Other sen-
sory outputs are of course possible, particularly sound and haptic (or touch)
feedback. Both have become more sophisticated and in their own way pro-
vide another representation of the relative three-dimensional (3D) position
and orientation of game objects. But in the current market, when we think of
games, we first think of what we can see.

To achieve this, we'll be using a continuation of our transformation pro-
cess known as the graphics pipeline. Figure 6.1 shows the situation. We already
have a transformation that takes our model from its local space to world space.
At each stage of the graphics pipeline, we continue to concatenate matrices to
this matrix. Our goal is to build a single matrix to transform the points in our
object from their local configuration to a two-dimensional (2D) representation
suitable for displaying.

The first part of the display process involves setting up a virtual viewer
or camera, which allows us to control which objects lie in our current view.
As we'll see, this camera is just like any other object in the game; we can

203
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View > Projection > Fmsu.lm —> Screen
Clipping

\

FIGURE 6.1 The graphics pipeline.

set the camera’s position and orientation based on an affine transformation.
Inverting this transformation is the first stage of our pipeline: It allows us to
transform objects in the world frame into the point of view of the camera
object.

From there we will want to build and concatenate a matrix that transforms
our objects in view into coordinates so they can be represented in an image.
This flattening or projection takes many forms, and we’ll discuss several of
the most commonly used projections. In particular, we'll derive perspective
projection, which most closely mimics our viewpoint of the real world.

At this point, it is usually convenient to cull out any objects that will not
be visible on our screen, and possibly cut, or clip, others that intersect the
screen boundaries. This will make our final rendering process much faster.

The final stage is to transform our projected coordinates and stretch and
translate them to fit a specific portion of the screen, known as the viewport.
This is known as the screen transformation.

In addition, we'll cover how to reverse this process so we can take a mouse
click on our 2D screen and use it to select objects in our 3D world. This
process, known as picking, can be useful when building an interface with 3D
elements. For example, selecting units in a 3D real-time strategy game is done
via picking.

As with other chapters, we’'ll be discussing how to implement these trans-
formations in production code. Because our primary platform is OpenGL, for
the most part we'll be focusing on its pipeline and how it handles the viewing
and projective transformations. However, we will also cover the cases where
it may differ from graphics APIs, particularly Direct3D.

One final note before we begin: There is no standard representation for this
process. In other books you may find these stages broken up in different ways,
depending on the rendering system the authors are trying to present. However,
the ultimate goal is the same: Take an object in the world and transform it
from a viewer’s perspective onto a 2D medium.
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6.2 VIEwW FRAME AND VIEW TRANSFORMATION
6.2.1 DEFINING A VIRTUAL CAMERA

In order to render objects in the world, we need to represent the notion of a
viewer. This could be the main character’s viewpoint in a first-person shooter,
or an over-the-shoulder view in a third-person adventure game, or a zoomed-
out wide shot in a strategy game. We may want to control properties of our
viewer to simulate a virtual camera, for example, we may want to create
an in-game scripted sequence where we pan across a screen or follow a set
path through a space. We encapsulate these properties into a single entity,
commonly called the camera.

For now, we'll consider only the most basic properties of the camera
needed for rendering. We are trying to answer two questions [8]: Where am I?
Where am I looking? We can think of this as someone taking an actual camera,
placing it on a tripod, and aiming it at an object of interest.

The answer to the first question is the camera’s position, E, which is var-
iously called the eyepoint, the view position, or the view space origin. As we
mentioned, this could be the main character’s eye position, a location over
his shoulder, or a spot pulled back from the action. While this position can
be placed relative to another object’s location, it is usually cleaner and easier
to manage if we represent it in the world frame.

A partial answer to the second question is a vector called the view direc-
tion vector, or Vg, which points along the facing direction for the camera.
This could be a vector from the camera position to an object or point of inter-
est, a vector indicating the direction the main character is facing, or a fixed
direction if we're trying to simulate a top-down view for a strategy game.
For the purposes of setting up the camera, this is also specified in the world
frame.

Having a single view direction vector is not enough to specify our orien-
tation, since there are an infinite number of rotations around that vector. To
constrain our possibilities down to one, we specify a second vector orthogonal
to the first, called the view up vector, or v,,. This indicates the direction out
of the top of the camera. From these two we can take the cross product to
get the view side vector, or v;4., which usually points out toward the camera’s
right. Normalizing these three vectors and adding the view position gives us
an orthonormal basis and an origin, or an affine frame. This is the camera’s
local frame, also known as the view frame, (Figure 6.2).

The three view vectors specify where the view orientation is relative to the
world frame. However, we also need to define where these vectors are from the
perspective of the camera. The standard order used by most viewing systems
is to make the camera’s y-axis represent the view up vector in the camera’s
local space, and the camera’s x-axis represent the corresponding view side
vector. This aligns our camera’s local coordinates so that x values vary left
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view up
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view direction

view side

FIGURE 0.2 View frame relative to the world frame.

and right along the plane of the screen and y values vary up and down, which
is very intuitive.

The remaining question is what to do with z and the view direction. In
most systems, the z-axis is treated as the camera-relative view direction vector
(Figure 6.3(a)). This has a nice intuitive feel: As objects in front of the viewer
move farther away, their z values relative to the camera will increase. The
value of z can act as a measure of the distance between the object and the
camera, which we can use for hidden object removal. Note, however, that this
is a left-handed system, as (Vsige X Vup) * Vair < 0.

OpenGL does not follow the standard model; instead, it chooses a slightly
different approach. It maintains a right-handed system where the camera-
relative view direction is aligned with the negative z-axis (Figure 6.3(b)). So
in this case, the farther away the object is, its —z coordinate gets larger relative
to the camera. This is not as convenient for distance calculations, but it does
allow us to remain in a right-handed coordinate system. This avoids having to
worry about reflections when transforming from the world frame to the view
frame, as we'll see below.

6.2.2 CONSTRUCTING THE VIEW-TO-WORLD
TRANSFORMATION

Now that we have a way of representing and setting camera position and
orientation, what do we do with it? The first step in the rendering process
is to move all of the objects in our world so that they are no longer rela-
tive to the world frame, but are relative to the camera’s view. Essentially,
we want to transform the objects from the world frame to the view frame.
This gives us a sense of what we can see from our camera position. In the
view frame, those objects along the line of the view direction vector (i.e., the
—z-axis in the case of OpenGL) are in front of the camera and so will most
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FIGURE 6.3 (a) Standard view frame axes. (b) OpenGL view frame axes.

likely be visible in our scene. Those on the other side of the plane formed
by the view position, the view side vector, and the view up vector are behind
the camera, and therefore not visible. In order to achieve this situation, we
need to create a transformation from world space to view space, known as the
world-to-view transformation, or more simply, the view transformation. We
can represent this transformation as Myorid—s view-

However, rather than building this transformation directly, we usually
find it easier to build M, ;rl dsviewr OF Muiew s woria, first, and then invert to get
our final world-to-view frame transformation. In order to build this, we’ll
make use of the principles we introduced in Chapter 4. If we look again
at Figure 6.2, we note that we have an affine frame —the view frame—
represented in terms of the world frame.

We can use this information to define the transformation from the view
frame to the world frame as a 4 x 4 affine matrix. The origin E of the view
frame is translated to the view position, so the translation vector y is equal to
E — 0. We'll abbreviate this as v,,,. Similarly, the view vectors represent how
the standard basis vectors in view space are transformed into world space and
become columns in the upper left 3 x 3 matrix A. To build A, however, we need
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to define which standard basis vector in the view frame maps to a particular
view vector in the world frame.

Recall that in the standard case, the camera’s local x-axis represents Vg,
the y-axis represents V,,, and the z-axis represents V4. This mapping indi-
cates which columns the view vectors should be placed in, and the view
position translation vector takes its familiar place in the right-most column.
The corresponding transformation matrix is

A:[ Vside i'up Vair Vpos ] (6.1)

Note that in this case we are mapping from a left-handed view frame to the
right-handed world frame, so the upper 3 x 3 is not a pure rotation but a
rotation concatenated with a reflection.

For OpenGL, the only change is that we want to look down the —z-axis.
This is the same as the z-axis mapping to the negative view direction vector.
So, the corresponding matrix is

A =[ Q'sia'e Q'up _Qldir Vpos ] (62)

In this case, since we are mapping from a right-handed frame to a right-
handed frame, no reflection is necessary, and the upper 3 x 3 matrix is a pure
rotation. Not having a reflection can actually be a benefit, particularly with
some culling methods.

6.2.3 CONTROLLING THE CAMERA

It’'s not enough that we have a transformation for our camera that encapsu-
lates position and orientation. More often we’ll want to move it around the
world. Positioning our camera is a simple enough matter of translating the
view position, but controlling view orientation is another problem. One way
is to specify the view vectors directly and build the matrix as described. This
assumes, of course, that we already have a set of orthogonal vectors we want
to use for our viewing system.

The more usual case is that we only know the view direction. For exam-
ple, suppose we want to continually focus on a particular object in the world
(known as the look-at object). We can construct the view direction by sub-
tracting the view position from the object’s position. But whether we have a
given view direction or we generate it from the look-at object, we still need
two other orthogonal vectors to properly construct an orthogonal basis. We
can calculate them by using one additional piece of information: the world
up vector. This is a fixed vector representing the “up” direction in the world
frame. In our case, we'll use the z-axis basis vector k (Figure 6.4), although in
general, any vector that we care to call “up” will do. For example, suppose we
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had a mission on a boat at sea and wanted to give the impression that the boat
was rolling from side to side, without affecting the simulation. One method is
to change the world up vector over time, oscillating between two keeled-over
orientations, and use that to calculate your camera orientation.

For now, however, we'll use k as our world up vector. Our goal is to
compute orthonormal vectors in the world frame corresponding to our view
vectors, such that one of them is our view direction vector vy, and our view
up vector V,,, matches the world up vector as closely as possible. Recall that we
can use Gram-Schmidt orthogonalization to create orthogonal vectors from
a set of nonorthogonal vectors, so

Vup = k— (k- Q'dir)edir

Normalizing gives us ¥,,. We can take the cross product to get the view side
vector:

Vside = Vdir X Vup

We don’t need to normalize in this case because the two vector arguments
are orthonormal. The resulting vectors can be placed as columns in the
transformation matrix as before.

One problem may arise if we are not careful: What if v,4;, and k are parallel?
If they are equal, we end up with

Vup = k — (k- V4ir) Vair
=k—-1- Q’dir
=0
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If they point in opposite directions we get

Vup = K — (k- Vair) Vair
—k— (=) Var
=0

Clearly, neither case will lead to an orthonormal basis.

The recovery procedure is to pick an alternative vector that we know is
not parallel, such as i or j. This will lead to what seems like an instantaneous
rotation around the z-axis. To understand this, raise your head upward until
you are looking at the ceiling. If you keep going, you'll end up looking at the
wall behind you, but upside down. To maintain the view looking right-side
up, you'd have to rotate your head 180 degrees around your view direction
(don’t try this at home). This is not a very pleasing result, so avoid aligning
the view direction with the world up vector whenever possible.

There is a third possibility for controlling camera orientation. Suppose we
want to treat our camera just like a normal object and specify a rotation matrix
and translation vector. To do this we'll need to specify a starting orientation
for our camera and then apply our rotation matrix to find our camera’s final
orientation, after which we can apply our translation. Which orientation is
chosen is somewhat arbitrary, but some are more intuitive and convenient
than others. In our case, we’ll say that in our default orientation the camera
has an initial view direction along the world x-axis, an initial view up along the
world z-axis, and an initial view side along the —y-axis. This aligns the view
up vector with the world up vector, and using the x-axis as the view direction
fits the convention we set for objects’ local space in Chapter 4.

Substituting these values into the view-to-world matrix for the standard
left-handed view frame (equation 6.1) gives

Q=

SO = O O
— o o O

1
0
0
0

SO = O

The equivalent matrix for the right-handed OpenGL view frame (using
equation 6.2) is

Szogl =

—_
o= O O
- o O O

-1

0

0

0 0

Whichever system we are using, after this we apply our rotation to orient
our frame in the direction we wish and, finally, the translation for the view
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position. If the three column vectors in our rotation matrix are u, v, and w,
then for OpenGL the final transformation matrix is

Myiew—sworta = TR ogl
Tk v u v w 0 —-j k —-i 0
L0 0 0 1 0 0 0 1 0 0 0 1
I A Al S /PR
Lo o0 o0 1

6.2.4 CONSTRUCTING THE WORLD-TO-VIEW
TRANSFORMATION

Using the techniques in the previous two sections, now we can create a trans-
formation that takes us from view space to world space. To create the reverse
operator, we need only to invert the transformation. Since we know that it is
an affine transformation, we can invert it as

R —Rlv
Mworld—)view :[ OT ( | pos) j|

where R is the upper 3 x 3 block of our view-to-world transformation. And
since Ris the product of either a reflection and rotation matrix (in the standard
case) or two rotations (in the OpenGL case), it is an orthogonal matrix, so we
can compute its inverse by taking the transpose:

RT  —(RTv,
Mworld—)view :|: OT ( 1 pos) i|

- . In practice, this transformation is usually calculated directly, rather than

taking the inverse of an existing transformation. For example, OpenGL has
a utility call gluLookAt () that computes the view transformation assuming
a view position, desired view position, and world up vector. One possible
implementation is as follows.

void LookAt( const IvVector3& eye,
const IvVector3& lookAt,
const IvVector3& up )
{
// compute view vectors
IvVector3 viewDir = TookAt - eye;
IvVector3 viewSide;
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IvVector3 viewUp;

viewDir.Normalize();

viewUp = up - up.Dot(viewDir)*viewDir;
viewUp.Normalize();

viewSide = viewDir.Cross(viewUp);

// now set up matrices

// build transposed rotation matrix
IvMatrix33 rotate;

rotate.SetRows( viewSide, viewUp, -viewDir );

// transform translation
IvVector3 eyelnv = -(rotate*eye);

// build 4x4 matrix
IvMatrix44 matrix;
matrix.Rotation(rotate);
matrix(0,3) = eyelnv.x;
matrix(1,3) = eyelnv.y;
matrix(2,3) = eyelnv.z;

// set view to world transformation
::SetViewTransform( matrix.mV );
}

Note that we use the method IvMatrix33:SetRows () to set the transformed
basis vectors since we're setting up the inverse matrix, namely, the transpose.
There is also no recovery code if the view direction and world up vectors
are collinear —it is assumed that any external routine will ensure this does
not happen. The renderer method : :SetViewTransform() stores the calculated
view transformation and is discussed in more detail in Section 6.7.

PROJECTIVE TRANSFORMATION

6.3.1 DEFINITION

Now that we have a method for controlling our view position and orientation,
and for transforming our objects into the view frame, we can look at the second
stage of the graphics pipeline: taking our 3D space and transforming it into a
form suitable for display on a 2D medium. This process of transforming from
R? to R? is called projection.
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We've already seen one example of projection: using the dot product to
project one vector onto another. In our current case, we want to project the
points that make up the vertices of an object onto a plane, called the pro-
jection plane or the view plane. We do this by following a line of projection
through each point and determining where it hits the plane. These lines could
be perpendicular to the plane, but as we'll see, they don’t have to be.

To understand how this works, we’ll look at a very old form of optical
projection known as the camera obscura (Latin for “dark room”). Suppose one
enters a darkened room on a sunny day, and there is a small hole allowing
a fraction of sunlight to enter the room. This light will be projected onto the
opposite wall of the room, displaying an image of the world outside, albeit
upside down and flipped left to right (Figure 6.5). This is the same principle
that allows a pinhole camera to work; the hole is acting like the focal point
of a lens. In this case, all the lines of projection pass through a single center
of projection. We can determine where a point will project to on the plane by
constructing a line through both the original point and the center of projection
and calculating where it will intersect the plane of projection. The virtual film
in this case is a rectangle on the view plane, known as the view window. This
will eventually get mapped to our display.

This sort of projection is known as perspective projection. Note that this
relates to our perceived view in the real world. As an object moves farther
away, its corresponding projection will shrink on the projection plane. Sim-
ilarly, lines that are parallel in view space will appear to converge as their
extreme points move farther away from the view position. This gives us a
result consistent with our expected view in the real world. If we stand on
some railroad tracks and look down a straight section, the rails will converge
in the distance, and the ties will appear to shrink in size and become closer
together. In most cases, since we are rendering real-world scenes — or at least,
scenes that we want to be perceived as real world — this will be the projection
we will use.

FiGURE 6.5 Camera obscura.
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There is, of course, one minor problem: The projected image is upside
down and backwards. One possibility is just to flip the image when we display
it on our medium. This is what happens with a camera: The image is captured
on film upside down, but we can just rotate the negative or print to view it
properly. This is not usually done in graphics. Instead, the projection plane
is moved to the other side of the center of projection, which is now treated
as our view position (Figure 6.6). As we'll see, the mathematics for projection
in this case are quite simple, and the objects located in the forward direction
of our view will end up being projected right-side up. The objects behind the
view will end up projecting upside down, but (a) we don’t want to render them
anyway, and (b) as we'll see, there are ways of handling this situation.

An alternate type of projection is parallel projection, which can be thought
of as a perspective projection where the center of projection is infinitely dis-
tant. In this case, the lines of projection do not converge; they always remain
parallel (Figure 6.7), hence the name. The placement of the view position and
view plane is irrelevant in this case, but we place them in the same relative
location to maintain continuity with perspective projection.

Parallel projection produces a very odd view if used for a scene: Objects
remain the same size no matter how distant they are, and parallel lines remain
parallel. Parallel projections are usually used for computer-assisted design
(CAD) programs, where maintaining parallel lines is important. They are also
useful for rendering 2D elements like interfaces; no matter how far from the
eye a model is placed, it always will be the same size, presumably the size we

expect.

FiIcurE 6.6 Perspective projection.

FiGURE 6.7 Orthographic parallel projection.
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A parallel projection where the lines of projection are perpendicular to
the view plane is called an orthographic projection. By contrast, if they are
not perpendicular to the view plane, this is known as an oblique projection
(Figure 6.8). Two common oblique projections are the cavalier projection,
where the projection angle is 45 degrees, and the cabinet projection, where the
projection angle is cot~!' (1/2). When using cavalier projections, projected lines
have the same length as the original lines, so there is no perceived foreshort-
ening. This is useful when printing blueprints, for example, as any line can be
measured to find the exact length of material needed to build the object. With
cabinet projections, lines perpendicular to the projection plane foreshorten
to half their length (hence the cot~!(1/2)), which gives a more realistic look
without sacrificing the need for parallel lines.

We can also have oblique perspective projections where the line from the
center of the view window to the center of projection is not perpendicular to
the view plane. For example, suppose we need to render a mirror. To do so,
we'll render the space using a plane reflection transformation and clip it to
the boundary of the mirror. The plane of the mirror is our projection plane,
but it may be at an angle to our view direction (Figure 6.9). For now, we'll
concentrate on constructing projective transformations perpendicular to the
projection plane and examine these special cases later.

As a side note, oblique projections can occur in the real world. The classic
pictures we see of tall buildings, shot from the ground but with parallel sides,
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FiIGURE 6.8 Oblique parallel projection.

FicURE 6.9 Oblique perspective projection.
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are done with a “view camera.” This device has an accordion-pleated hood
that allows the photographer to bend and tilt the lens up while keeping the
film parallel to the side of the building. Ansel Adams also used such a camera
to capture some of his famous landscape photographs.

6.3.2 NORMALIZED DEVICE COORDINATES

Before we begin projecting, our objects have passed through the view stage of
the pipeline and so are in view frame coordinates. We will be projecting from
this space in R? to the view plane, which is in R?. In order to accomplish this,
it will be helpful to define a frame for the space of the view plane. We'll use as
our origin the center of the view window, and create basis vectors that align
with the sides of the view window, with magnitudes of half the width and
height of the window, respectively (Figure 6.10(a)). Within this frame, our
view window is transformed into a square two units wide and centered at the
origin, bounded by the x = 1, x = —1, y = 1, and y = —1 lines (Figure 6.10(b)).

Using this as our frame provides a certain amount of flexibility when map-
ping to devices of varying size. Rather than transform directly to our screen
area, which could be of variable width and height, we use this normalized
form as an intermediate step to simplify our calculations and then do the
screen conversion as our final step. Because of this, coordinates in this frame
are known as normalized device coordinates.

To take advantage of the normalized device coordinate frame, or NDC
space, we'll want to create our projection so that it always gives us the —1
to 1 behavior, regardless of the exact view configuration. This helps us to
compartmentalize the process of projection (just as the view matrix did for
viewing). When we’re done projecting, we'll stretch and translate our NDC
values to match the width and height of our display.

To simplify this mapping to the NDC frame, we will begin by using a view
window in the view frame with a height of two units. This means that for the
case of a centered view window, xy coordinates on the view plane will be equal
to the projected coordinates in the NDC frame. In this way we can consider
the projection as related to the view plane in view coordinates and not worry
about a subsequent transformation.

6.3.3 VIEW FRUSTUM

The question remains: How do we determine what will lie within our view win-
dow? We could, naively, project all of the objects in the world to the view plane
and then, when converting them to pixels, ignore those pixels that lie outside
of the view window. However, for a large number of objects this would be
very inefficient. It would be better to constrain our space to a convex volume,
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view window

(a)

(b)

FicURE 6.10 (a) NDC frame in view window, and (b) view window after NDC
transformation.

specified by a set of six planes. Anything inside these planes will be rendered;
everything outside them will be ignored. This volume is known as the view
frustum, or view volume.

To constrain what we render in the view frame xy directions, we specify
four planes aligned with the edges of the view window. For perspective projec-
tion each plane is specified by the view position and two adjacent vertices of
the view window (Figure 6.11), producing a semi-infinite pyramid. The angle
between the upper plane and the lower plane is called the vertical field of view.

There is a relationship between field of view, view window size, and view
plane distance: Given two, we can easily find the third. For example, we can fix
the view window size, adjust the field of view, and then compute the distance
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field of view

view window

z-axis X-axis

FIGURE 6.11 Perspective view frustum (right-handed system).

to the view plane. As the field of view gets larger, the distance to the view
plane needs to get smaller to maintain the view window size. Similarly, a
small field of view will lead to a longer view plane distance. Alternatively, we
can set the distance to the view plane to a fixed value and use the field of view
to determine the size of our view window. The larger the field of view, the
larger the window and the more objects are visible in our scene. This gives us
a primitive method for creating telephoto (narrow field of view) or wide-angle
(wide field of view) lenses. We will discuss the relationship among these three
quantities in more detail when we cover perspective projection.

In our case, the view window size is fixed, so when adjusting our field of
view, we will move the view plane relative to the center of projection. This
continues to match our camera analogy: The film size is fixed and the lens
moves in and out to create a telephoto or wide-angle effect.

Usually the field of view chosen needs to match the display medium, as the
user perceives it, as much as possible. For a standard monitor placed about
three feet away, the monitor only covers about a 25- to 30-degree field of view
from the perspective of the user, so we would expect that we would use a
field of view of that size in the game. However, this constrains the amount
we can see in the game to a narrow area, which feels unnatural because we’re
used to a 180-degree field of view in the real world. The usual compromise
is to set the field of view to the range of 60-90 degrees. The distortion is not
that perceptible and it allows the user to see more of the game world. If the
monitor were stretched to cover more of your personal field of view, as in
a widescreen monitor or some virtual reality systems, a larger field of view
would be appropriate. And of course, if the desired effect is of a telephoto or
wide-angle lens, a narrower or wider field of view, respectively, is appropriate.
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For parallel projection, the xy culling planes are parallel to the direction of
projection, so opposite planes are parallel and we end up with a parallelopiped
that is open at two ends (Figure 6.12). There is no concept of field of view in
this case.

In both cases, to complete a closed view frustum we also define two planes
that constrain objects in the view frame z-direction: the near and far planes
(Figure 6.13). With perspective projection it may not be obvious why we need
a near plane, since the xy planes converge at the center of projection, closing
the viewing region at that end. However, as we will see when we start talking
about the perspective transformation, rendering objects at the view frame
origin (which in our case is the same as the center of projection) can lead to a
possible division by zero. This would adversely affect our rendering process.
We could also, like some viewing systems, use the view plane as the near plane,
but not doing so allows us a little more flexibility.

In some sense, the far plane is optional. Since we don’t have an infinite
number of objects or an infinite amount of game space, we could forego using
the far plane and just render everything within the five other planes. However,
the far plane is useful for culling objects and area from our rendering process,
so having a far plane is good for efficiency’s sake. It is also extremely important
in the hidden surface removal method of z-buffering; the distance between the
near and far planes is a factor in determining the precision we can expect in
our z values. We'll discuss this in more detail in Chapter 9.

view window

FIGURE 6.12 Parallel view frustum (right-handed system).
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far plane

view window  ¢ar plane

FIGURE 6.173 View frustum with near plane and far plane.

6.3.4 HOMOGENEOUS COORDINATES

There is one more topic we need to cover before we can start discussing
projection. Previously we stated that a point in R? can be represented by
(x, y, z, 1) without explaining much about what that might mean. This rep-
resentation is part of a more general representation for points known as
homogeneous coordinates, which prove useful to us when handling perspec-
tive projections. In general, homogeneous coordinates work as follows: If we
have a “standard” representation in n-dimensional space, then we can rep-
resent the same point in a (n + 1)-dimensional space by scaling the original
coordinates by a single value and then adding the scalar to the end as our final
coordinate. Since we can choose from an infinite number of scalars, a single
point in R"” will be represented by an infinite number of points in the (n + 1)-
dimensional space. This (n + 1)-dimensional space is called a real projective
space or RP". In computer graphics parlance, the real projective space RP? is
also often called homogeneous space.

Suppose we start with a point (x, y, z) in R3, and we want to map it to
a point (¥, ¥, 7/, w) in homogeneous space. We pick a scalar for our fourth
element w, and scale the other elements by it, to get (xw, yw, zw, w). As we
might expect, our standard value for w will be 1, so (x, y, z) maps to (x, y, z, 1).
To map back to 3D space, divide the first three coordinates by w, so (¥, ', 7/, w)
goes to (x'/w, y'/w, 7’/w). Since our standard value for w is just 1, we could
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just drop the w: (x',y,7, 1) — (¥, ¥, 7). However, in the cases that we'll be
concerned with next, we need to perform the division by w.

What happens when w = 0? In this case, a point in RP? doesn’t represent
a point in R3, but a vector. We can think of this as a “point at infinity.” While
we will try to avoid cases where w = 0, they do creep in, so checking for this
before performing the homogeneous division is often wise.

6.3.5 PERSPECTIVE PROJECTION

Since this is the most common projective transform we’ll encounter,
we'll begin by constructing the mathematics necessary for the perspective
projection. To simplify things, let’s take a 2D view of the situation on the yz
plane and ignore the near and far planes for now (Figure 6.14). We have the
y-axis pointing up, as in the view frame, and the projection direction along
the negative z-axis as it would be in OpenGL. The point on the left represents
our center of projection, and the vertical line our view plane. The diagonal
lines represent our y culling planes.

Suppose we have a point P, in view coordinates that lies on one of the
view frustum planes, and we want to find the corresponding point P, that lies
on the view plane. Finding the y coordinate of P is simple: We follow the line
of projection along the plane until we hit the top of the view window. Since
the height of the view window is 2 and is centered on 0, the y coordinate of P
is half the height of the view window, or 1. The z coordinate will be negative
since we're looking along the negative z-axis and will have a magnitude equal
to the distance d from the view position to the projection plane. So, the z
coordinate will be —d.

y-axis

eyepoint

projection plane

FIGURE 6. 14 Perspective projection construction.
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But how do we compute d? As we see, the cross section of the y view
frustum planes are represented as lines from the center of projection through
the extents of the view window (1,d) and (-1, d). The angle between these
lines is our field of view 6 ,,. We'll simplify things by considering only the area
that lies above the negative z-axis; this bisects our field of view to an angle
of 0,,/2. If we look at the triangle bounded by the negative z-axis, the cross
section of the upper view frustum plane, and the cross section of the projection
plane, we can use trigonometry to compute d. Since we know the distance
between the negative z-axis and the extreme point P; is 1, we can say that

1
7= tan (6 fop/2)

Rewriting this in terms of d, we get

1
tan (gf%)
0
= cot( f"”)
2

So for this fixed-view window size, as long as we know the angle of field
of view, we can compute the distance d, and vice versa.

This gives the coordinates for any point that lies on the upper y view
frustum plane; in this 2D cross section they all project down to a single point
(1, —d). Similarly, points that lie on the lower y frustum plane will project to
(=1, —d). But suppose we have a general point (y,, z,) in view space. We know
that its projection will lie on the view plane as well, so its z,4. coordinate will
be —d. But how do we find y,4.?

We can compute this by using similar triangles (Figure 6.15). If we have
a point (yy, zy), the length of the sides of the corresponding right triangle
in our diagram are y, and —z, (since we're looking down the —z-axis, any
visible z, is negative, so we need to negate it to get a positive value). The
length of sides of the right triangle for the projected point are y,4- and d.
By similar triangles (both have the same angles), we get

d =

Ynde _ v
d —Z
Solving for y,4., we get
dyy
Ynde =
7w

This gives us the coordinate in the y direction. If our view region was
square, then we could use the same formula for the x direction. Most, however,
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projection plane

FIGURE 0.15 Perspective projection similar triangles.

are rectangular to match the relative dimensions of a computer monitor or
other viewing device. We must correct for this by the aspect ratio of the view
region. The aspect ratio « is defined as

Wy
a=—
hy
where w, and &, are the width and height of the view rectangle, respectively.
We're going to assume that the NDC view window height remains at 2 and
correct the NDC view width by the aspect ratio. This gives us a formula for
similar triangles of

AXpde Yo
d —Z
Solving for x,4.:
dx,
Xnde =
—az,

So, our final projection transformation equations are

dx,
Xnde = —

—azy

dyy
Ynde =

—Zv
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The first thing to notice is that we are dividing by a z coordinate, so we
will not be able to represent the entire transformation by a matrix opera-
tion, since it is neither linear nor affine. However, it does have some affine
elements —scaling by d and d/a, for example —which can be performed by
a transformation matrix. This is where the conversion from homogeneous
space comes in. Recall that to transform from R P? to R? we need to divide the
other coordinates by the w value. If we can set up our matrix to map —z, to
our w value, we can take advantage of the homogeneous divide to handle the
nonlinear part of our transformation. We can write the situation before the
homogeneous divide as a series of linear equations:

d

X = =x

a

y =dy

/:dZ
/

w = —z

and treat this as a four-dimensional (4D) linear transformation. Looking at
our basis vectors, ¢y will map to (d/a, 0, 0, 0), e; to (0,d, 0, 0), e to (0,0, d, —1),
and e3 to (0, 0,0, 0), since w is not used in any of the equations.

Based on this, our homogeneous perspective matrix is

QU OO

d/a
0
0
0

(=N )
S O OO

-1

As expected, our transformed w value no longer will be 1. Also note that the
right-most column of this matrix is all zeros, which means that this matrix
has no inverse. This is to be expected, since we are losing one dimension of
information. Individual points in view space that lie along the same line of
projection will project to a single point in NDC space. Given only the points
in NDC space, it would be impossible to reconstruct their original positions
in view space.

Let’s see how this matrix works in practice. If we multiply it by a generic
point in view space, we get

dla 0 0 0 Xy dxy/a
0 4 0 0 Yo | dyy
0 0 4 0 v | dzy
0 0 -1 0 1 —Zy
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Dividing out the w (also called the reciprocal divide), we get

dx,
Xnde = —

—azy

dyy
Ynde =

—Z4
Znde = —d

which is what we expect.

So far, we have dealt with projecting x and y and completely ignored z. In
the preceding derivation all z values map to —d, the negative of the distance
to the projection plane. While losing a dimension makes sense conceptually
(we are projecting from a 3D space down to a 2D plane, after all), for practical
reasons it is better to keep some measure of our z values around for z-buffering
and other depth comparisons (discussed in more detail in Chapter 9). Just as
we're mapping our x and y values within the view window to an interval of
[—1, 1], we'll do the same for our z values within the near plane and far plane
positions. We'll specify the near and far values n and f relative to the view
position, so points lying on the near plane have a z, value of —n, which maps
to a zu4. value of —1. Those points lying on the far plane have a z,, value of —f
and will map to 1 (Figure 6.16).

We'll derive our equation for z,4. in a slightly different way than our xy
coordinates. There are two parts to mapping the interval [—n, —f] to [—1, 1].
The first is scaling the interval to a width of 2, and the second is transla-
ting it to [—1, 1]. Ordinarily, this would be a straightforward linear process,
however, we also have to contend with the final w divide. Instead, we’ll create

y-axis
A

—z-axis

-z, = —near -z, = —far
Znde = ~1 Znde = 1

Ficure 6.16 Perspective projection: z values.
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a perspective matrix with unknowns for the scaling and translation factors
and use the fact that we know the final values for —n and —f to solve for the
unknowns. Our starting perspective matrix, then, is

d/a

coa o
>0 O
oo o

0
0
0 -1

where A and B are our unknown scale and translation factors, respectively. If
we multiply this by a point (0, 0, —n) on our near plane, we get

dla 0 0 0 0 0
0 d 0 0 0o | _ 0
0 0 A B -n || —An+B
0O 0 -1 0 1 n
Dividing out the w gives

B
Znde = —A+ —
n

We know that any point on the near plane maps to a normalized device
coordinate of —1, so we can substitute —1 for z,4. and solve for B, which
gives us

B=(A—-1n (6.3)

Now we'll substitute equation 6.3 into our original matrix and multiply by a
point (0, 0, — /) on the far plane:

dla 0 0 0 0 0
0 d 0 0 0o | _ 0
0 0 A (A—Dn —f 17| “Af+@A=1n
0 0 -1 0 1 f

This gives us a z,4. of

n
Znde = —A+ (A — 1)?

B ) r

n n
(G-1)-7
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Setting z,4 to 1 and solving for A, we get

A<£—1>=£+1
f f

s

]

_n+f

n—f

If we substitute this into equation 6.3, we get

So, our final perspective matrix is

d
4 9 o
0 d 0
Mpersp = 0 o ™ML 2nf
n—, n—f
0 0 -1 0

The matrix that we have generated is the same one produced by an OpenGL
call: gluPerspective(). This function takes the field of view,! aspect ratio, and
near and far plane settings, builds the perspective matrix, and multiplies it by
the current matrix.

Itis important to be aware that this matrix will not work for all viewing sys-
tems. For one thing, for most other viewing systems (i.e., other than OpenGL),
our view frame looks down the positive z-axis, so this affects both our xy and z
transformations. For example, in this case we have mapped [—n, — f]to [—1, 1].
With the standard system we would want to begin by mapping [n, f] to the
NDC z range. In addition, this range is not always set to [—1, 1]. Direct3D, for
one, has a default mapping of to [0, 1] in the z direction.

1. Recall that our value d is generated from the field of view by d = cot(6 f5/2).
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Using the standard view frame and this mapping gives us a perspective
transformation matrix of

M,p3p =

S O ORI

S O o

- O O
()

This matrix can be derived using the same principles described above.

When setting up a perspective matrix, it is good to be aware of the issues
involved in rasterizing z values. In particular, to maintain z precision keep the
near and far planes as close together as possible. More details on managing
perspective z precision can be found in Chapter 9.

6.3.6 OBLIQUE PERSPECTIVE

The matrix we constructed in the previous section is an example of a standard
perspective matrix, where the direction of projection through the center of the
view window is perpendicular to the view plane. A more general example of
perspective is generated by the OpenGL g1Frustum() call. This call takes six
parameters: the near and far z distances, as before, and four values that define
our view window on the near z plane: the x interval [/, ] (left, right) and the
y interval [b, 1] (bottom, top). Figure 6.17(a) shows how this looks in R?, and
Figure 6.17(b) shows the cross section on the yz plane. As we can see, these
values need not be centered around the z-axis, so we can use them to generate
an oblique projection.

To derive this matrix, once again we begin by considering similar triangles
in the y direction. Remember that given a point (y,, —z,), we project to a point
on the view plane (dy,/—z,, —d), where d is the distance to the projection.
However, since we're using our near plane as our projection plane, this is just
(nyy/—zy, —n). The projection remains the same, we're just moving the window
of projected points that lie within our view frustum.

With our previous derivation, we could stop at this point because our view
window on the projection plane was already in the interval [—1, 1]. However,
our new view window lies in the interval [, r]. We'll have to adjust our values
to properly end up in NDC space. The first step is to translate the center of
the window, located at (r + b) /2, to the origin. Applying this translation to the
current projected y coordinate gives us

, (b
V=y-—
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We now need to scale to change our interval from a magnitude of (t — b)
to a magnitude of 2 by using a scale factor 2/(¢t — b):

2y 2(t + b)

Ynde = E 20— b) (6.4)

If we substitute ny,/—z, for y and simplify, we get

.
__ —% 2(t+b)
Inde = = T T 24— b)

2n

(left,top, —near)

A

(left,bottom, —near) (right, top, —near)

(right,bottom, —near)

(a)
y-axis
A
(top, —near)
eyepoint (bottom, —near)
—near —z-axis

near plane

(b)

FIGURE 6.17 (a) View window for g1Frustum, 3D view. (b) View window for
g1Frustum, cross section.
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A similar process gives us the following for the x direction:
1 2n r+1
— Xy + v
—zy \r — 1 r—1

We can use the same A and B from our original perspective matrix, so our
final projection matrix is

Xnde =

2 [
= 0 g
2, t+b

Moy, = 0 =% = O

oblpersp = nf
0 0 n+f

n—=f n—T

0 0 -1 0

A casual inspection of this matrix gives some sense of what’s going on here.

We have a scale in the x, y, and z directions, which provides the mapping to the

interval [—1, 1]. In addition, we have a translation in the z direction to align

our interval properly. However, in the x and y directions, we are performing

a z-shear to align the interval, which provides us with the oblique projection.
The equivalent Direct3D matrix is

2, r+l
- 0 =m0
2 +b
M I ==
opD3D = f nf
0 0 f—n T f—n
0 0 1 0

As unusual as it might appear, there are a number of applications of
oblique perspective projection in real-time graphics. First of all, it can be
used in mirrors: We treat the mirror as our view window, the mirror plane as
our view plane, and the viewer’s location as our view position. If we apply a
plane reflection to all of our objects, flipping them around the mirror plane,
and then render with the appropriate visual effects, we will end up with a
result in the view window that emulates a mirror.

Another application is stereo. By using a single view plane and view
window, but separate view positions for each eye that are offset from the
standard center of projection, we get slightly different projections of the world.
By using either a red-blue system to color each view differently, or some sort of
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goggle system that displays the left and right views in each eye appropriately,
we can provide a good approximation of stereo vision. We have included an
example of this on the CD-ROM.

Finally, this can be used for a system called fishtank VR. Normally we
think of VR as a helmet attached to someone’s head with a display for each
eye. However, by attaching a tracking device to a viewer’s head we can use
a single display and create an illusion that we are looking through a window
into a world on the other side. This is much the same principle as the mirror:
The display is our view window and the tracked location of the eye is our view
position. Add stereo and this gives a very pleasing effect.

6.3.7 ORTHOGRAPHIC PARALLEL PROJECTION

After considering perspective projection in two forms, orthographic projec-
tion is much easier. Examine Figure 6.18, which shows a side view of our
projection space as before, with the lines of projection passing through the
view plane and the near and far planes shown as vertical lines. This time the
lines of projection are parallel to each other (hence this is a parallel projection)
and parallel to the z-axis (hence an orthographic projection).

We can use this to help us generate the matrix for the OpenGL g10rtho()
call. Like g1Frustum(), this call takes six parameters: the near and far z dis-
tances, and four values [, r, b, and ¢ that define our view window on the near
z plane. As before, the near plane is our projection plane, so a point (yy, zy)
projects to a point (y,, —n). Note that since this is a parallel projection, there is
no division by z or scale by d; we just use the y value directly. Like g1Frustum()
we now need to consider only values between ¢ and » and scale and translate

y-axis
(top, —near)
A
1
eyepoint \i
T —z-axis
(bottom, —near)
near plane far plane

FIGURE 6.18 Orthographic projection construction.



232

SOURCE CODE
Oblique

Chapter 6 Viewing and Projection

them to the interval [—1, 1]. Substituting y, into our range transformation
equation 6.4, we get

2yy t+b
Ynde = —b (—b

A similar process gives us the equation for x,,4.. We can do the same for z,,4., but
since our viewable z values are negative and our values for n and f are positive,
we need to negate our z value and then perform the range transformation. The
result of all three equations is

2 +
= 0 0 -0
2 +b
Mo | O = 0 -
ortho =— 2 f+n
0 0 ~7= T
0 0 0 1

There are a few things we can notice about this matrix. First of all, multiply-
ing by this matrix gives us a w value of 1, so we don’t need to perform the
homogeneous division. This means that our z values will remain linear; that
is, they will not compress as they approach the far plane. This gives us better
z resolution at far distances than the perspective matrices. It also means that
this is a linear transformation matrix and possibly invertible.

Secondly, in the x and y directions, what was previously a z-shear in the
oblique perspective matrix has become a translation. Before, we had to use
shear, because for a given point the displacement was dependent on the dis-
tance from the view position. Because the lines of projection are now parallel,
all points displace equally, so only a translation is necessary.

The Direct3D equivalent matrix is

2

+1
= 00 =5
0 2 0 _ b
MorthoD3D = i=b 1 t;b
0 0 =
0 0 0 1

6.3.8 OBLIQUE PARALLEL PROJECTION

While most of the time we’ll want to use orthographic projection, we may
from time to time need an oblique parallel projection. For example, suppose
for part of our interface we wish to render our world as a set of schematics
or display particular objects with a 2D CAD/CAM feel. This set of projections
will achieve our goal.



6.3 Projective Transformation 27373

Neither OpenGL nor Direct3D has a particular routine that handles
oblique parallel projections, so we'll derive one ourselves. We will give our
projection a slight oblique angle (cot~!(1/2), which is about 63.4 degrees),
which gives a 3D look without perspective. More extreme angles in x and y
tend to look strangely flat.

Figure 6.19 is another example of our familiar cross section, this time
showing the lines of projection for our oblique projection. As we can see, we
move one unit in the y direction for every two units we move in the z direction.
Using the formula of tan(0) = opposite/adjacent, we get

2
tan(f) = —
1
t(6) !
co ==
2

1

6 =cot™! =

which confirms the expected value for our oblique angle.

As before, we'll consider the yz case first and extrapolate to x. Moving
one unit in y and two units in —z gives us the vector (1, —2), so the formula
for the line of projection for a given point P is

L) = P+1(1,-2)

We're only interested in where this line crosses the near plane, or where

P,—2t=—n

y-axis

eyepoint

\ —C
\
\
\
\
\
\ )
\
\
\
\
]/

projection plane

FicUuRE 6.19 Example of oblique parallel projection.
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Solving for ¢, we get
1
t= 5(’1 + P)
Plugging this into the formula for the y coordinate of L(z), we get
, 1
y =Py+§(”+Pz)

Finally, we can plug this into our range transformation equation 6.4 as
before to get

I:yv+%(n+2v)i| t+b
t—>b t—b

Ynde = 2

2y _t+b+zv+n
t—b t—b>b t—>b

Once again, we examine our transformation equation more carefully. This
is the same as the orthographic transformation we had before, with an addi-
tional z-shear, as we’d expect for an oblique projection. In this case, the shear
plane is the near plane rather than the xy plane, so we add an additional factor
of % to take this into account.

A similar process can be used for x. Since the oblique projection has a
z-shear, z is not affected and so,
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64 CULLING AND CLIPPING

6.4.1 WHY CULL OR CLIP?

We will now take a detour from discussing the transformation aspect of
our pipeline to discuss a process that often happens at this point in many
renderers. In order to improve rendering, both for speed and appearance’s
sake, it is necessary to cull and clip objects. Culling is the process of remov-
ing objects from consideration for some process, whether it be rendering,
simulation, or collision detection. In this case, that means we want to
ignore any models or whole pieces of geometry that lie outside of the view
frustum, since they will never end up being projected to the view window.
In Figure 6.20, the lighter objects lie outside of the view frustum and so
will be culled for rendering.

Clipping is the process of cutting geometry to match a boundary, whether
it be a polygon or, in our case, a plane. Vertices that lie outside the bound-
ary will be removed and new ones generated for each edge that crosses the
boundary. For example, in Figure 6.21 we see a cube being clipped by a plane,
showing the extra vertices created where each edge intersects the plane. We'll
use this for any models that cross the view frustum, cutting the geometry
so that it fits within the frustum. We can think of this as slicing a piece of
geometry off for every frustum plane.

Why should we want to use either of these for rendering? For one thing,
it is more efficient to remove any data that will not ultimately end up on the
screen. While copying the transformed object to the frame buffer (a process
called rasterization) is almost always done in hardware and thus is fast, it is
not free. Anywhere we can avoid unnecessary work is good.

But even if we had infinite rasterization power, we would still want to
cull and clip when performing perspective projection. Figure 6.22 shows one

FIGURE 6.20 View frustum culling.
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FIGURE 6.21 View frustum clipping.

y-axis
A

projection plane

FIGURE 6.22 Projection of objects behind the eye.

example why. Recall that we finessed the problem of the camera obscura
inverting images by moving the view plane in front of the center of projec-
tion. However, we still have the same problem if an object is behind the view
position; it will end up projected upside down. The solution is to cull objects
that lie behind the view position.

Figure 6.23(a) shows another example. Suppose we have a polygon edge
'PQ that crosses the z = 0 plane. Endpoint P projects to a point P’ on the view
plane, and Q to Q’. With the correct projection, the intermediate points of the
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FiGURE 6.23 (a) Projection of line segment crossing behind view point. (b) Incor-
rect line segment rendering based on projected endpoints. (c) Line segment rendering
when clipped to near plane.

line segment should start at the middle of the view, move up, and wrap around
to reemerge at the bottom of the view. In practice, however, the rasterizing
hardware has only the two projected vertices as input. It will take the vertices
and render the shortest line segment between them (Figure 6.23(b)). If we
clip the line segment to only the section that is viewable and then project the
endpoints (Figure 6.23(c)), we end with only a portion of the line segment,
but at least it is from the correct projection.

There is also the problem of vertices that lie on the z = 0 plane. When
transformed to homogeneous space by the perspective matrix, a point



238 Chapter 6 Viewing and Projection

(x,y,0,1) will become (¥, y’,7’,0). The resulting transformation into NDC
space will be a division by 0, which is not valid.

To avoid all of these issues, at the very least we need to set a near plane
that lies in front of the eye so that the view position itself does not lie within
the view frustum. We first cull any objects that lie on the same side of the
near plane as the view position. We then clip any objects that cross the near
plane. This avoids both the potential of dividing by 0 (although it is sometimes
prudent to check for it anyway, at least in a debug build) and trying to render
any line segments passing through infinity.

While clipping to a near plane is a bare minimum, clipping to the
top, bottom, left, and right planes is useful as well. While the windowing
hardware will usually ignore any pixels that lie outside of a window’s visible
region (this is commonly known as scissoring), it is faster if we can avoid
unnecessary rasterization. Also, if we want to set a viewport that covers a
subrectangle of a window, not clipping to the border of the viewport may
lead to spurious geometry being drawn (although most hardware allows
for adjustable scissoring regions; in particular, OpenGL and D3D provide
interfaces to set this).

Finally, some hardware has a limited range for screen space positions, for
example, 0 to 4095. The viewable area might lie in the center of this range, say
from a minimum point of (1728, 1808) to a maximum point of (2688, 2288).
The area outside of the viewable area is known as the guard band — anything
rendered to this will be ignored, since it won’t be displayed. In some cases we
can avoid clipping in x and y, since we can just render objects whose screen
space projection lies within the guard band and know that they will be handled
automatically by the hardware. This can improve performance considerably,
since clipping can be quite expensive. However, it’s not entirely free. Values
that lie outside the maximum range for the guard band will wrap around.
So, a vertex that would normally project to coordinates that should lie off the
screen, say (6096, 6096), will wrap to (2000, 2000) —right in the middle of
the viewable area. Unfortunately, the only way to solve this problem is what
we were trying to avoid in the first place: clipping in the x and y directions.
However, now our clip window encompasses the much larger guard band
area, so using the guard band can still reduce the amount of clipping that we
have to do overall.

6.4.2 CULLING

A naive method of culling a model against the view frustum is to test each
of its vertices against each of the frustum planes in turn. We designate the
plane normal for each plane as pointing toward the inside half-space. If for
one plane ax + by + cz +d < 0 for every vertex P = (x, y, z), then the model
lies outside of the frustum and we can ignore it. Conversely, if for all the
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frustum planes and all the vertices ax + by + cz +d > 0, then we know the
model lies entirely inside the frustum and we don’t need to worry about
clipping it.

While this will work, for models with large numbers of vertices this
becomes expensive, probably outweighing any savings we might gain by not
rendering the objects. Instead, culling is usually done by approximating the
object with a convex bounding volume, such as a sphere, that contains all of
the vertices for the object. Rather than test each vertex against the planes, we
test only the bounding object. Since it is a convex object and all the vertices
are contained within it, we know that if the bounding object lies outside of
the view frustum, all of the model’s vertices must lie outside as well. More
information on computing bounding objects and testing them against planes
can be found in Chapter 12.

Bounding objects are usually placed in the world frame to aid with colli-
sion detection, so culling is often done in the world frame as well. This requires
storing a representation of each frustum plane in world coordinates, but the
additional 24 values required is worth the speedup gained. We can find each x
or y clipping plane in the view frame by using the view position and two cor-
ners of the view window to generate the plane. The two z planes (in OpenGL)
are z = —near and z = — far, respectively. Transforming them to the world
frame is a simple case of using the technique for transforming plane normals,
as described in Chapter 4.

While view frustum culling can remove a large number of objects from
consideration, it’s not the only culling method. In Chapter 7 we'll discuss
backface culling, which allows us to determine which polygons are pointing
away from the camera so we can ignore them. There also are a large number
of culling methods that break up the scene in order to cull objects that aren’t
visible. This can help with interior levels, so you don’t render rooms that may
be within the view frustum but not visible because they're blocked by a wall.
Such methods are out of the purview of this book but are described in detail
in many of the references cited in the following sections.

6.4.3 GENERAL PLANE CLIPPING

To clip polygons, we first need to know how to clip a polygon edge (i.e., a line
segment) to a plane. As we'll see, the problem of clipping a polygon to a plane
degenerates to handling this case. Suppose we have a line segment PQ, with
endpoints P and Q, that crosses a plane. We'll say that P is inside our clip
space and Q is outside. Our clipped line segment will be PR, where R is the
intersection of the line segment and the plane (Figure 6.24).

To find R, we take the line equation P + 1(Q — P), plug it into our plane
equation ax + by + ¢z +d = 0, and solve for ¢. To simplify the equations,
we'll define v = Q — P. Substituting the parameterized line coordinates for
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P
FiGURE 6.24 Clipping edge to plane.

x, y, and z, we get

0 =a(Px + tvy) + b(Py +tvy) +c(P; +1tv,) +d
aPy + tavy + bPy + thvy + cP; + tcv, +d
aPy +bPy+ cP; +d +t(avy + bvy + cvy)
—aPy —bPy,—cP, —d

avy + bvy + cv,

And now, substituting in Q — P for v:

o (@Py+bPy+cP, +d)
"~ (@Py+bPy+cP,+d)— (aQy+bQy+cQ, +d)

We can use Blinn’s notation [7], slightly modified, to simplify this to

e BCP
- BCP - BCQ

where BCP is the result from the plane equation (the boundary coordinate)
when we test P against the plane, and BCQ is the result when we test Q against
the plane. The resulting clip point R is

R=P+ BCP (Q—P)
- BCP — BCQ
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FicURE 6.25 Four possible cases of clipping an edge against a plane.

To clip a polygon to a plane, we need to clip each edge in turn. A standard
method for doing this is to use the Sutherland-Hodgeman algorithm [109].
We first test each edge against the plane. Depending on what the result is,
we output particular vertices for the clipped polygon. There are four possi-
ble cases for an edge from P to Q (Figure 6.25). If both are inside, then we
output P. The vertex Q will be output when we consider it as the start of the
next edge. If both are outside, we output nothing. If P is inside and Q is out-
side, then we compute R, the clip point, and output P and R. If P is outside
and Q is inside, then we compute R and output just R— as before, Q will be
output as the start of the next edge. The sequence of vertices generated as
output will be the vertices of our clipped polygon.

We now have enough information to build a class for clipping vertices,
which we'll call IvClipper. We can define this as

class IvClipper

{

public:
IvClipper()
{

1
~IvClipper();

mFirstVertex = true;
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void ClipVertex( const IvVector3& end )

inline void StartClip() { mFirstVertex = true; }
inline void SetPlane( const IvPlane& plane ) {mPlane = plane;}

private:
IvPlane mPlane; // current clipping plane
IvVector3 mStart; // current edge start vertex
float mBCStart; // current edge start boundary condition
bool mStartInside; // whether current start vertex is inside
bool mFirstVertex; // whether expected vertex is start vertex

}s

Note that IvCTipper::ClipVertex() takes only one argument: the end ver-
tex of the edge. If we send the vertex pair for each edge down to the clipper,
we'll end up duplicating computations. For example, if we clip Py and Py,
and then P; and P,, we have to determine whether P; is inside or outside
twice. Rather than do that, we'll feed each vertex in order to the clipper. By
storing the previous vertex (mStart) and its plane test information (mBCStart)
in our IvClipper class, we need to calculate data only for the current vertex.
Of course, we'll need to prime the pipeline by sending in the first vertex, not
treating it as part of an edge, and just storing its boundary information.

Using this, clipping an edge based on the current vertex might look like
the following code.

void IvClipper::ClipVertex( const IvVector3& end )
{
float BCend = mPlane.Test(end);
bool endInside = ( BCend >= 0 );
if (!mFirstVertex)
{
// if one of the points is inside
if ( mStartInside || endInside )
{
// if the start is inside, just output it
if (mStartInside)
Output( mStart );
// if one of them is outside, output clip point
if ( !'(mStartInside && endInside) )
{
if (endInside)

{
float t = BCend/(BCend - mBCStart);
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Output( end - t*(end - mStart) );

}

else

{
float t = mBCStart/(mBCStart - BCend);
Output( mStart + t*(end - mStart) );

}

}

mStart = end;

mBCStart = BCend;
mStartInside = endInside;
mFirstVertex = false;

Note that we generate r in the same direction for both clipping cases — from
inside to outside. Polygons will often share edges. If we were to clip the same
edge for two neighboring polygons in different directions, we may end up
with two slightly different points due to floating-point error. This will lead
to visible cracks in our geometry, which is not desirable. Interpolating from
inside to outside for both cases avoids this situation.

To clip against the view frustum, or any other convex volume, we need to
clip against each frustum plane. The output from clipping against one plane
becomes the input for clipping against the next, creating a clipping pipeline.
In practice, we don’t store the entire clipped polygon, but pass each output
vertex down as we generate it. The current output vertex and the previous one
are treated as the edge to be clipped by the next plane. The Output () call above
becomes a ClipVertex() for the next stage.

Note that we have only generated new positions at the clip boundary.
There are other parameters that we can associate with an edge vertex, such as
colors, normals, and texture coordinates (we'll discuss exactly what these are
in Chapters 7-9). These will have to be clipped against the boundary as well.
We use the same r value when clipping these parameters, so the clip part of
our previous algorithm might become as follows.

// if one of them is outside, output clip vertex
if ( !'(mStartInside &% endInside) )

{

clipPosition = startPosition + t*(endPosition - startPosition);
clipColor = startColor + t*(endColor - startColor);
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clipTexture = startTexture + t*(endTexture - startTexture);
// Output new clip vertex

This is only one example of a clipping algorithm. In most cases, it won't be
necessary to write any code to do clipping. The hardware will handle any clip-
ping that needs to be done for rendering. However, for those who have the need
or interest, other examples of clipping algorithms are the Liang-Barsky [68],
Cohen-Sutherland (found in Foley et al. [38] as well as other graphics texts),
and Cyrus-Beck [22] methods. Blinn [8] describes an algorithm for lines that
combines many of the features from the previously mentioned techniques;
with minor modifications it can be made to work with polygons.

6.4.4 HOMOGENEOUS CLIPPING

In the presentation above, we clip against a general plane. When projecting,
however, Blinn and Newell [7] noted that we can simplify our clipping by
taking advantage of some properties of our projected points prior to the divi-
sion by w. Recall that after the division by w, the visible points will have
normalized device coordinates lying in the interval [—1, 1], or

—1<x/w<l1

—l=yw=<l

—-1<z/w<1

Multiplying these equations by w provides the intervals prior to the w division:

In other words, the visible points are bounded by the six planes:

w=Xx
w=—X
w=y
w=—y
w=7z

w=—7
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Instead of clipping our points against general planes in the world frame
or view frame, we can clip our points against these simplified planes in RP3
space. For example, the plane test for w = x is w — x. The full set of plane tests
for a point P are

BCP_,=w+x
BCP, = w—x
BCP_y=w+y
BCPy=w—y
BCP_,=w+z
BCP, =w—z

The previous clipping algorithm can be used, with these plane tests replacing
the IvPTane: :Test() call. While these tests are cheaper to compute in software,
their great advantage is that since they don’t vary with the projection, they
can be built directly into hardware, making the clipping process very fast.
Because of this, OpenGL clips at two separate stages in the viewing pipeline.
After a point is transformed into the view frame, it is clipped against any
user-defined clipping planes set by the g1ClippingPlane() call. Then the point
is multiplied by the projection matrix, clipped in homogeneous space, and
finally the coordinates are divided by w to place the clipped point in the NDC
frame.

There is one wrinkle to homogeneous clipping, however. Figure 6.26
shows the visible region for the x coordinate in homogeneous space. However,

Xx-axis

FiGURE 6.26 Homogeneous clip regions for NDC interval [—1,1].
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our plane tests will clip to the upper triangle region of that hourglass
shape — any points that lie in the lower region will be inadvertently removed.
With the projections that we have defined, this will happen only if we use a
negative value for the w value of our points. And since we've chosen 1 as the
standard w value for points, this shouldn’t happen. However, if you do have
points that for some reason have negative w values, Blinn [8] recommends the
following procedure: transform, clip, and render your points normally; then
multiply your projection matrix by —1; and then transform, clip, and render
again.

SCREEN TRANSFORMATION

Now that we've covered viewing, projection, and clipping, our final step in
transforming our object in preparation for rendering is to map its geometric
data from the NDC frame to the screen or device frame. This could represent
a mapping to the full display, a window within the display, or an offscreen
pixel buffer.

Remember that our coordinates in the NDC frame range from a lower
left corner of (-1, —1) to an upper right corner of (1, 1). Real device space
coordinates usually range from an upper left corner (0,0) to a lower right
corner (wy, hy), where wy (screen width) and &, (screen height) are usually
not the same. In addition, in screen space the y-axis is commonly flipped so
that y values increase as we move down the screen. Some windowing sys-
tems allow you to use the standard y direction, but we'll assume the default
(Figure 6.27).

FiIGURE 6.27 View window in standard screen space frame.
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Ficure 6.28 Mapping NDC space to screen space.

What we'll need to do is map our NDC area to our screen area
(Figure 6.28). This consists of scaling it to the same size as the screen, flipping
our y direction, and then translating it so that the upper left corner becomes
the origin.

Let’s begin by considering only the y direction, because it has the special
case of the axis flip. The first step is scaling it. The NDC window is two units
high, whereas the screen space window is &g high, so we divide by 2 to scale
the NDC window to unit height, and then multiply by %, to scale to screen
height:

s
y 2}’ndc

Since we're still centered around the origin, we can do the axis flip by just
negating:

h

-5
- ) Yndc

/"

Finally, we need to translate downwards (which is now the positive y
direction) to map the top of the screen to the origin. Since we're already
centered on the origin, we need to translate only half the screen height, so

h, h
Vs = __Y)’ndc + =

2 2
Another way of thinking of the translation is that we want to map the
extreme point —/,/2 to 0, so we need to add h,/2.
A similar process, without the axis flip, gives us our x transformation:
wg wg

Xy = 7xndc + 7
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This assumes that we want to cover the entire screen with our view
window. In some cases, for example in a split-screen console game, we want
to cover only a portion of the screen. Again, we'll have a width and height of
our screen space area, wy and &g, but now we’ll have a different upper left cor-
ner position for our area: (sy, sy). The first part of the process is the same; we
scale the NDC window to our screen space window and flip the y-axis. Now,
however, we want to map (—wy/2, —h,/2) to (sy, sy), instead of (0, 0). The final
translation will be (wy/2 + sy, hs/2 + s,). This gives us our generalized screen
transformation in xy as

w w
Xs = Tsxndc + 75 + 8x (6.5)
h h,
Vs = _?Syndc + Eg + sy (6.6)

Our z coordinate is a special case. As mentioned, we'll want to use z for
depth testing, which means that we’d really prefer it to range from 0 to d;,
where d; is usually 1. This mapping from [—1, 1] to [0, dy] is

d d
Zs= ?Sanc + 5 (6.7)

We can, of course, express this as a matrix:

=0 0 FA4sy
hs hs
Mndc—>screen = 0 2 2 2 Z »
0 0 5 3
0 0 0 1

6.5.1 PIXEL ASPECT RATIO

Recall that in our projection matrices, we represented the shape of our view
window by setting an aspect ratio a. Most of the time it is expected that the
value of a chosen in the projection will match the aspect ratio wg/h; of the
final screen transformation. Otherwise, the resulting image will be distorted.
For example, if we use a square aspect ratio (a = 1.0) for the projection and
a standard aspect ratio of 4:3 for the screen transformation, the image will
appear compressed in the y direction. If your image does not quite look right,
it is good practice to ensure that these two values are the same.

An exception to this practice arises when your final display has a different
aspect ratio than the offscreen buffers that you're using for rendering. For
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example, NTSC televisions have 448 scan lines, with 640 analog pixels per
scan line, so it is common practice to render to a 640 x 448 area and then send
that to the NTSC converter to be displayed. Using the offscreen buffer size
would give an aspect ratio of 10:7. But the actual television screen has a 4:3
aspect ratio, so the resulting image will be distorted, producing stretching in
the y direction. The solution is to set a = 4/3 despite the aspect ratio of the
offscreen buffer. The image in the offscreen buffer will be compressed in the
y direction, but then will be proportionally stretched in the y direction when
the image is displayed on the television, thereby producing the correct result.

PICKING

Now that we understand the mathematics necessary for transforming an
object from world coordinates to screen coordinates, we can consider the
opposite case. In our game we may have enemy objects that we’ll want to
target. The interface we have chosen involves tracking them with our mouse
and then clicking on the screen. The problem is: How do we take our click
location and use that to detect which object we've selected (if any)? We need
a method that takes our 2D screen coordinates and turns them into a form
that we can use to detect object intersection in 3D game space. Effectively we
are running our pipeline backwards, from the screen transformation to the
projection to the viewing transformation (clipping is ignored as we're already
within the boundary of our view window).

For the purposes of discussion, we'll assume that we are using the basic
OpenGL perspective matrix. Similar derivations can be created using other
projections. Figure 6.29 is yet another cross section showing our problem.
Once again, we have our view frustum, with our top and bottom clipping
planes, our projection plane, and our near and far planes. Point P, indicates
our click location on the projection plane. If we draw a ray (known as a pick
ray) from the view position through P;, we pass through every point that lies
underneath our click location. So to determine which object we have clicked
on, we need only generate this point on the projection plane, create the specific
ray, and then test each object for intersection with the ray. The closest object
to the eye will be the object we're seeking.

To generate our point on the projection plane, we'll have to find a method
for going backwards from screen space into view space. To do this we’ll have
to find a means to “invert” our projection. Matrix inversion seems like the
solution, but it is not the way to go. The standard projection matrix has zeros
in the right-most column, so it’s not invertible. But even using the z-depth
projection matrix doesn’t help us, because (a) the reciprocal divide makes the
process nonlinear, and (b) in any case, our click point doesn’t have a z value
to plug into the inversion.
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Instead, we begin by transforming our screen space point (x;, ys) to an
NDC space point (xn4c, Ynde). Since our NDC to screen space transform is affine,
this is easy enough: We need only invert our previous equations 6.5 and 6.6.
That gives us

2(x5 — Syx)
Xnde = -1
Wy
2(ys — sy)
Ynde = _% +1
s

Now the tricky part. We need to transform our point in the NDC frame to
the view frame. We'll begin by computing our z, value. Looking at Figure 6.29
again, this is straightforward enough. We’'ll assume that our point lies on the
projection plane so the z value is just the z location of the plane or —d. This
leaves our x and y coordinates to be transformed. Again, since our view region
covers a rectangle defined by the range [—a, a] (recall that a is our aspect ratio)
in the x direction and the range [—1, 1] in the y direction, we only need to scale
to get the final point. The view window in the NDC frame ranges from [—1, 1]
in y, so no scale is needed in the y direction and we scale by « in the x direction.
Our final screen space to view space equations are

2a
Xy = —(x5—5y) — 1
Wy
2
yo=——0s—sy)+1
h
Ty = _d

-
)

—3

\/

projection plane

FiGure 6.29 Pick ray.
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Since this is a system of linear equations, we can express this as a 3 x 3
matrix:

2 2
Xy w_fj 0 _w_(zsx -1 Xs
yv = 0 _l,% /,%Sy + l )’s
2 0 0 —d 1

From here we have a choice. We can try to detect intersection with an
object in the view frame, we can detect in the world frame, or we can detect
in the object’s local frame. The first involves transforming every object into
the view frame and then testing against our pick ray. The second involves
transforming our pick ray into the world frame and testing against the world
coordinates of each object. For simulation and culling purposes, often we're
already pregenerating our world location and bounding information. So, if
were only concerned with testing for intersection against bounding infor-
mation, it can be more efficient to go with testing in world space. However,
usually we test in local space so we can check for intersection within the frame
of the stored model vertices. Transforming these vertices into the world frame
or the view frame every time we did picking could be prohibitively expensive.

In order to test in the model’s local space, we'll have to transform our
view space point by the inverse of the viewing transformation. Unlike the
perspective transformation, however, this inverse is much easier to compute.
Recall that since the view transformation is an affine matrix, we can invert
it to get the view-to-world matrix My;ew—s worid- SO, multiplying My;ew—s worid by
our click point in the view frame gives us our point in world coordinates:

Py, = Mview—>world - Py

We can transform this and our view position E from world coordinates into
model coordinates by multiplying by the inverse of the model-to-world matrix:

Py = Myorid—model * Pw

E; = Mwurld—>m0del -E
Then, the formula for our pick ray in model space is
R() = E; + (P — E))

We can now use this ray in combination with our objects to find the
particular one the user has clicked on. Chapter 12 discusses how to determine
intersection between a ray and an object and other intersection problems.
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6.7

SOURCE CODE
IvEngine
IvGLHelp

MANAGEMENT OF VIEWING
TRANSFORMATIONS

Up to this point we have presented a set of transformations and corresponding
matrices without giving some sense of how they would fit into a game engine.
While the thrust of this book is not about writing renderers, we can still pro-
vide a general sense of how some renderers and application programming
interfaces (APIs) manage these matrices, and how to set transformations for
a standard API.

The view, projection, and screen transformations change only if the
camera is moved. As this happens rarely, these matrices are usually computed
once, stored, and then concatenated with the new world transformation every
time a new object instance is rendered. How this is handled depends on the
API used. The most direct approach is to concatenate the newly set world
transform matrix with the others, creating a single transformation all the way
from model space to prehomogeneous divide screen space:

Minodel— screen = Mude—s screen * Mprojection * Myorid— view * Mmodel— world

Multiplying by this single matrix and then performing three homogeneous
divisions per vertex generates the screen coordinates for the object. This is
extremely efficient, but ignores any clipping we might need to do. In this case,
we can concatenate up to homogeneous space, also known as clip space:

Mmodel%clip = Mprojection * Myorid— view * Mmodel— world

Then we transform our vertices by this matrix, clip against the view frustum,
perform the homogeneous divide, and either calculate the screen coordinates
using equations 6.5-6.7 or multiply by the NDC to screen matrix, as before.

With more complex renderers, we end up separating the transformations
further. For example, OpenGL handles lighting and some clipping prior to
projection, so it has separate GL_MODELVIEW and GL_PROJECTION matrix stacks,
to which the appropriate matrices have to be concatenated. The vertices are
transformed by the top matrix in the GL_MODELVIEW stack, lighting and user-
defined clipping are computed, and then the vertices are transformed by the
top matrix in the GL_PROJECTION matrix. The resulting vertices are clipped in
homogeneous space, the reciprocal divide is performed as before, and finally
they are transformed to screen space.

In our program, we can set the view and projection matrices in OpenGL by
the following code.

IvMatrix44 projection, viewTransform;

// compute projection and view transformation
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// set in OpenGL
gIMatrixMode (GL_PROJECTION) ;
glLoadMatrix( projection );

gIMatrixMode (GL _MODELVIEW);
gllLoadMatrix( viewTransform );

And when we render an object, concatenating the world matrix can be
done by the following code.

gIMatrixMode (GL _MODELVIEW);

// push copy of view matrix to top of stack
gTPushMatrix();

// multiply by world matrix
gTMultMatrix( worldTransform );

// render

// pop to view matrix
g1PopMatrix();

The push/pop calls provide a means for storing the view transformation
without reloading it into the stack. The call g1PushMatrix() copies the current
matrix —in this case, the view matrix — to a new entry on the top of the stack.
The subsequent gTMultMatrix() will postmultiply the world matrix by the copy
of the view matrix at the top of the stack. The resulting local-to-view matrix will
be used to transform the vertices of our object. Finally, g1PopMatrix () removes
the current matrix from the top of the stack, restoring the view transformation
as the top matrix. The effect is to save the view transformation, multiply by
the world transformation and use the result to transform the vertices, and
then restore the original view transformation.

Direct3D takes this one step further and manages storage of the view
transformation by having three separate matrices: one each for the pro-
jective, view, and world transformations. These can be set by using the
IDirect3DDevice*::SetTransform() method, and any concatenation is handled
internally to the API.

This leaves the NDC to screen space transformation. Usually the graphics
API will not require a matrix but will perform this operation directly. In the xy
directions the user is only expected to provide the dimensions and position of
the screen window area, also known as the viewport. In OpenGL this is set by
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6.8

using the call g1Viewport (). For the z direction, OpenGL provides a function
gl1DepthRange (), which maps [—1, 1] to [near, far], where the defaults for near
and far are 0 and 1, respectively. Similar methods are available for other APIs.

In our case, we have decided not to overly complicate things and are
providing simple convenience routines in the IvRenderer class:

IvSetWorldMatrix()
IvSetViewMatrix()
IvSetProjectionMatrix()
IvSetViewport ()

that act as wrappers for the OpenGL and D3D calls described.

CHAPTER SUMMARY

Manipulating objects in the world frame is only useful if we have appropri-
ate techniques for presenting that data. In this chapter we have discussed
the viewing, projection, and screen transformations necessary for rendering
objects on a screen or image. While we have focused on OpenGL as our render-
ing API, the same principles apply to Direct3D or any other rendering system.
We transform the world to the perspective of a virtual viewer, project it to a
view plane, and then scale and translate the result to fit our final display. We
also covered how to reverse those transformations to allow one to select an
object in view or world space by clicking on the screen. In the following chap-
ters we will discuss how to use the data generated by these transformations
to actually set pixels on the screen.

For those who are interested in reading further, most graphics text-
books —such as Moller and Haines [82] and Foley and van Dam [38]—
describe the graphics pipeline in great detail. In addition, one of Blinn’s
collections [8] is almost entirely dedicated to this subject. Various culling
techniques are discussed in Moller and Haines [82] as well as Eberly [25].
Finally, the OpenGL Programming Guide [85] discusses the particular
implementation of the graphics pipeline used in OpenGL.



GEOMETRY AND
PROGRAMMABLE
SHADING

/.1 INTRODUCTION

Having discussed in detail in the preceding chapters how to represent,
transform, view, and animate geometry, the next three chapters form a
sequence that describes the second half of the rendering pipeline. The second
half of the rendering pipeline is specifically focused on visual matters: the
representation, computation, and usage of color.

This chapter will discuss how we connect the points we have been trans-
forming and projecting to form solid surfaces, as well as the extra information
we use to represent the unique appearance of each surface. All visual repre-
sentations of geometry require the computation of colors; this chapter will
discuss the data structures used to store colors and perform basic color
computations.

Having shown how to build these renderable surface objects and described
the methods of storing and computing colors, we will then lay out the foun-
dations of the rest of the rendering section: the programmable shading and
rasterization pipeline. Note that this chapter, unlike the others in the ren-
dering section, is by comparison devoid of pure mathematics. This chapter
serves to lay out the fundamental pipeline within which the mathematical
work is done: the rendering pipeline. The stages of the framework described
in this chapter will be detailed in the later chapters (and to some degree
in the previous viewing chapter), where the fascinating mathematical issues

255
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that arise within them can be explored. By its nature, this chapter focuses
on the framework itself, the rendering pipeline, and its two most interesting
components, the programmable vertex and fragment shader units.

We will also introduce some of the simpler methods of using this pro-
grammable pipeline to render colored geometry by introducing the basics
of a common high-level shading language, OpenGL’s GLSL. Common inputs
and outputs to and from the shading pipeline will be discussed, concluding in
a detailed introduction to the most complex and powerful of programmable
shader source values — image-based texturing. However, this chapterincludes
only the most basic of programmable shaders, seeking mainly to introduce
the rendering pipeline itself.

In Chapter 8, Lighting, we will simultaneously explain the mathemat-
ics of real-time light simulation for rendering while demonstrating how to
use the programmable shading pipeline to implement dynamic coloring of
surfaces. In this chapter we will mix geometric intuitions, the basics of
light-related physics, and simulated lighting equations and common approx-
imations thereof with a discussion of more advanced uses of programmable
shading.

As the concluding chapter in this sequence, Chapter 9 covers details of the
final step in the overall rendering pipeline —rasterization, or the method of
determining how to draw the colored surfaces as pixels on the display device.
This will complete the discussion of the rendering pipeline.

In each section in these chapters we will relate the basic programming
concepts, data structures, and functions that affect the creation, render-
ing, and coloring of geometry. As we move from geometry representation
through shading, lighting, and rasterization, implementation information will
become increasingly frequent, as the implementation of the final stages of
the rendering pipeline is very much system-dependent. While we will select
a particular rendering application programming interface (API) (the book’s
basic Iv engine) and shading language (OpenGL’s GLSL), the basic rendering
concepts discussed will apply to most rendering systems.

As a note, we use the phrase implementation to refer to the underlying
software or “driver” that maps our application calls to a given standard ren-
dering API such as OpenGL or Direct3D into commands for a particular piece
of graphics hardware (a graphics processing unit, or GPU, a term coined to
recognize the CPU-like rising complexity and performance of modern graph-
ics hardware). OpenGL and Direct3D implementations for a particular piece
of graphics hardware are generally supplied with the device by the hardware
vendor. A low-level hardware driver is not something that users of these APIs
will have to write or even use directly. In fact, the main purpose of OpenGL
and other such APIs is to provide a standard interface on top of these widely
varying hardware/software three-dimensional (3D) systems. To avoid dou-
bling the amount of implementation-related text in these chapters, most of
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the code examples in this and the following rendering chapters will describe
the book’s Iv rendering APIs, supplied as full source code on the book’s
accompanying CD-ROM. Interested readers may look at the implementations
of the referenced Iv functions to see how each operation can be written in
OpenGL or Direct3D.

COLOR REPRESENTATION
7.2.1 RGB COLOR MODEL

To represent color, we will use the additive RGB (red, green, blue) color model
that is almost universal in real-time 3D systems. Approximating the physiol-
ogy of the human visual system (which is tuned to perceive color based on
three primitives that are close to these red, green, and blue colors), the RGB
system is used in all common display devices used by real-time 3D graphics
systems. Color cathode ray tubes (or CRTs, such as traditional televisions
and computer monitors), flat-panel liquid crystal displays (LCDs), plasma
displays, and video projector systems are all based upon the additive RGB
system. While some colors cannot be accurately displayed using the RGB
model, it does support a very wide range of colors, as proven by the remark-
able color range and accuracy of modern television and computer displays.
For a detailed discussion of color vision and the basis of the RGB color model,
see Malacara [70].

The RGB color model involves mixing different amounts of three pre-
defined primary colors of light. These carefully defined primary colors are
each named by the colors that most closely match them: red, green, and blue.
By mixing independently controlled levels of these three colors of light, a
wide range of brightnesses, tones, and shades may be created. In the next few
sections we will define much more specifically how we build and represent
colors using this method.

7.2.2 COLORS AS “VECTORS”

The levels of each of the three primary colors are independent. In a sense, this
is similar to a subset of R?, but with a “basis” consisting of the red, green, and
blue “axes,” or components. While these can be thought of as a “basis” for our
display device’s color space, they are not a basis in any true sense for color in
general. The behavior of colors does not always map directly into the concept
of a real vector space. However, many of the concepts of real vector spaces
are useful in describing color representation and operations.
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Our colors will be represented by 3-vectors, with the following basis
vectors:

(1,0,0) — red
(0,1,0) — green
0,0,1) — blue

Often, as a form of shorthand, we will refer to the red component of a color ¢
as ¢, and to the green and blue components as ¢, and ¢;, respectively.

7.2.3 COLOR RANGE LIMITATION

The theoretical RGB color space is semi-infinite in all three axes. There is an
absolute zero value for each component, bounding the negative directions,
but the positive directions are (theoretically) unbounded. Throughout much
of the discussions of coloring, lighting, and shading, we will implicitly assume
(or actually declare in the shading language) that the colors are nonnegative
real values, potentially represented in the shading system as floating-point
numbers.

However, the reality of physical display devices imposes severe limitations
on the final output color space. When limited to the colors that can be
represented by a specific display device, the RGB color space is not infinite in
any direction. Real display devices, such as CRTs (standard “tube” monitors),
LCD panel displays, and video projectors all have limits of both brightness
and darkness in each color component; these are basic physical limitations of
the technologies that these displays use to emit light. For details on the func-
tionality and limitations of display device hardware, Hearn and Baker [54]
detail many popular display devices.

Displays have minimum and maximum brightnesses in each of their three
color axes, defining the range of colors that they can display. This range is
generally known as a display device’s gamut. The minimum of all color com-
ponents combine to the device’s darkest “black,” and the maximum of all
color components combine to the device’s brightest “white.” While it might
be possible to create extrema that are not pure black and pure white, these
are unlikely to be useful in a general display device.

Every display device is likely to have different exact values for its extrema,
so it is convenient to use a standard color space for all devices as sort of
“normalized device colors.” This color space is built such that

(0,0, 0) — darkest black
(1,1, 1) — brightest white
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In the rest of this chapter and the following chapter we will work in these
normalized color coordinates. This space defines an RGB “color cube,” with
black at the origin, white at (1, 1, 1), gray levels down the main diagonal
between them (a, a, a), and the other six corners representing pure, maximal
red (1,0, 0), green (0, 1, 0), blue (0,0, 1), cyan (0, 1, 1), magenta (1,0, 1), and
yellow (1, 1, 0).

The following sections will describe some of the vector operations (and
vectorlike operations) we will apply to colors, as well as discussions of
how these abstract color vectors map onto their final destinations, namely
hardware display devices.

7.2.4 OPERATIONS ON COLORS

Adding RGB colors is done using vector addition; the colors are added compo-
nentwise. Adding two colors has the same effect as combining the light from
two colored light sources, for example, adding red (r = (1,0, 0)) and green
(g = (0, 1, 0)) gives yellow:

r+g=(1,0,00+(0,1,00=(,1,0)

The operation of adding colors will be used through our lighting computations
to represent the addition of light from multiple light sources and to add the
multiple forms of light that each source can apply to a surface.

Scalar multiplication of RGB colors (s¢) is computed in the same way
as with vectors, multiplying the scalar times each component, and is ubiqui-
tous in lighting and other color computations. It has the result of increasing
(s > 1.0) or decreasing (s < 1.0) the luminance of the color by the amount of
the scalar factor. Scalar multiplication is most frequently used to represent
light attenuation due to various physical and geometric lighting properties.

One important vector operation that is used somewhat rarely with colors
is vector length. While it might seem that vector length would be an excel-
lent (if expensive) way to compute the luminance of a color, the nature of
human color perception does not match the Euclidean norm of the linear RGB
color space. Luminance is a “norm” that is affected by human physiology. The
human eye is most sensitive to green, less to red, and least sensitive to blue.
As a result, the equal weighting given to all components by the Euclidean
norm means that blue contributes to the Euclidean norm far more than it
contributes to luminance.

Although there are numerous methods used to compute the luminance
of RGB colors as displayed on a screen, a common method for modern CRT
screens (assuming nonnegative color components) is

luminance(c) = 0.2125¢, + 0.7154¢, + 0.0721 ¢,
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Or basically, the dot product of the color with a “luminance reference color.”
The three color-space transformation coefficients used to scale the color com-
ponents are basically constant for modern, standard CRT screens but do not
necessarily apply to television screens, which use a different set of luminance
conversions. Discussion of these may be found in Poynton [94]. Note that
luminance is not equivalent to perceived brightness. The luminance as we've
computed it is linear with respect to the source linear RGB values. Brightness
as perceived by the human visual system is nonlinear and subject to the over-
all brightness of the viewing environment, as well as the viewer’s adaptation
to it. See Cornsweet [20] for a related discussion of the physiology of human
visual perception.

An operation that is rarely applied to geometric vectors but is used
very frequently with colors is componentwise multiplication. Component-
wise multiplication takes two colors as operands and produces another color
as its result. We will represent the operation of componentwise multipli-

cation of colors as “.,” or in shorthand by placing the colors next to one
another (as we would multiply scalars), and the operation is defined as
follows:

a-b = ab = (a/b,, a,bg, a;by)

This operation is often used to represent the filtering of one color of light
through an object of another color. In such a situation, one operand is
assumed to be the light color, while the other operand is assumed to be the
amount of light of each component that is passed by the filter. Another use
of componentwise color multiplication is to represent the reflection of light
from a surface —one color represents the incoming light and the other rep-
resents the amount of each component that the given surface reflects (the
surface’s reflectivity). We will use this frequently in Chapter 8 when com-
puting lighting. For example, a color ¢ and a filter (or surface) f = (1,0, 0),
results in

cf =(c,0,0)
or the equivalent of a pure red filter; only the red component of the light

was passed, while all other light was blocked. This operation will be used
constantly in color lighting computations.

7.2.5 ALPHA VALUES

Frequently, RGB colors are augmented with a fourth component, called alpha.
Such colors are often written as RGBA colors. Unlike the other three com-
ponents, the alpha component does not represent a specific color basis, but
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rather defines how the combined color interacts with other colors. The most
frequent use of the alpha component is an opacity value, which defines how
much of the surface’s color is controlled by the surface itself and how much
is controlled by the colors of objects that are behind the given surface. When
alpha is at its maximum (we will define this as 1.0), then the color of the
surface is independent of any objects behind it. The red, green, and blue com-
ponents of the surface color may be used directly, for example, in representing
a solid concrete wall. At its minimum (0.0), the RGB color of the surface is
ignored and the object is invisible, as with a pane of clear glass for instance.
At an intermediate alpha value, such as 0.5, the colors of the two objects are
blended together; in the case of alpha equaling 0.5, the resulting color will be
the componentwise average of the colors of the surface and the object behind
the surface.

For the most part, alpha will be treated like any other color component
until rasterization. We will discuss the uses of the alpha value (known as alpha
blending) in Chapter 9 on rasterization. In a few cases, rendering APIs handle
alpha a little differently from other color components (mention will be made
of these situations as needed).

Remapping Colors into the Unit Cube

soonee cooe  Although devices cannot display colors outside of the range defined by their
e, (0,0,0)...(1, 1, 1) cube, colors outside of this cube are often seen during
intermediate color computations such as lighting. In fact, the very nature
of lighting can lead to final colors with components outside of the (1,1, 1)
limit. During lighting computations, these are generally allowed, but prior to
assigning final colors to the screen, all colors must be within the normalized
cube. This requires either the hardware, the device driver software, or the
application to somehow remap or limit the values of colors so that they fall
within the unit cube.
The simplest and easiest method is to clamp the color on a per-component
basis:

safe(c) = (clamp(c¢,), clamp(cg), clamp(cp))
where
clamp(x) = max(min(x, 1.0), 0.0)

However, it should be noted that such an operation can cause significant
perceptual changes to the color. For example, the color (1.0, 1.0,10.0) is
predominantly blue, but its clamped version is pure white (1.0, 1.0, 1.0). In
general, clamping a color can lead to the color becoming less saturated, or
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less colorful. While this might seem unsatisfactory, it actually can be bene-
ficial in some forms of simulated lighting, as it tends to make overly bright
objects appear to “wash out,” an effect that can perceptually appear rather
natural under the right circumstances.

Another, more computationally expensive method is to rescale all three
color components of any color with a component greater than 1.0 such that
the maximal component is 1.0. This may be written as

(max(cy, 0), max(cg, 0), max(cp, 0))

safe(c) =

ma'x(crs Cg, Cb! 1)

Note the appearance of 1 in the max function in the denominator to ensure
that colors already in the unit cube will not change —it will never increase
the color components. While this method does tend to avoid changing the
overall saturation of the color, it can produce some unexpected results. The
most common issue is that extremely bright colors that are scaled back into
range can actually end up appearing darker than colors that did not require
scaling. For example, comparing the two colors a= (1, 1,0) and b= (10, 5, 0),
we find that after scaling, b= (1, 0.5, 0), which is significantly darker than a.

Scaling works best when it is applied equally (or at least coherently) to
all colors in a scene, not to each color individually. There are numerous
methods for this, but one such method involves finding the maximum color
component of any object in the scene, and scaling all colors equally such
that this maximum maps to 1.0. This is somewhat similar to a camera’s auto-
exposure system. By scaling the entire scene by a single scalar, color ratios
between objects in the scene are preserved. Figure 7.1 shows two different
color-range limitation methods for the same source image. In Figure 7.1(a),
we clamp the values that are too large to display. Note that this results in
a loss of image detail in the brightest sections of the image, which become
pure white. In Figure 7.1(b), we rescale all of the colors in the image based
on the maximum value method described above. The details in the brightest
areas of the screen are retained. However, even this method is not perfect. The
rescaling of the colors does sacrifice some detail in the darker shadows of the
image.

A more advanced method known generally as tone mapping remaps
regions of an image differently; a very bright section of the scene may be dark-
ened to fit the range (e.g., a bright, cloud-streaked sky), while the shadowed
sections of the image actually may be scaled to be brighter so that details are
not lost in the shadows. The scaling may be different for different sections of
the image, but the remapping is done in a regionally coherent method so that
the relative brightness of related objects are reasonable. Regionally coherent
means that we take the brightness of the region surrounding any point on the
screen and try to keep the relative bright-dark relationships. A common trick
in a daytime image of buildings and sky would be to darken the sky to fit in
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FIGURE 7.1 Color-range limitation methods: (a) image colors clamped, and
(b) image colors rescaled.

range and brighten the buildings to be less in shadow. While we are applying
different scalings to different parts of the image (darkening to the sky and
brightening to the buildings), the relative brightnesses within the buildings’
region of the image are kept intact, and the relative brightnesses within the
sky’s regions of the image are kept intact. Thus, the sky and the buildings
each look like what we’d expect, but the overall image fits within the limited
brightness range.

These techniques are often used in high dynamic range (HDR) render-
ing, in which wide orders of magnitude exist in the computed lighting,
but are then mapped down to the unit cube in a manner that forms a
vibrant image. Figure 7.2 shows the same image for Figure 7.1, but tone-
mapped to retain details in both the shadows and highlights. The shadowed
and highlighted areas are processed independently to avoid losing detail in
either.

HDR rendering is growing in popularity in 3D games and other applica-
tions as GPU feature sets and performance have improved. Many examples of
HDR rendering may be found at the developers’ websites of the major GPU
vendors [1, 84].
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FIGURE 7.2 A tonemapped image.

7.2.6 COLOR STORAGE FORMATS

A wide range of color storage formats are used by modern rendering systems,
both floating point and fixed point (as well as one or two hybrid formats).
Common RGBA color formats include:

Single-precision floating-point components (128 bits for RGBA color).
Half-precision floating-point components (64 bits for RGBA color).
16-bit unsigned integer components (64 bits for RGBA color).

8-bit unsigned integer components (32 bits for RGBA color).

Shared exponent extended-range formats. In the most common of these
formats, red, green, and blue represent 0-dot-8 fixed-point mantissas,
while a final 8-bit shared exponent is used to scale all three components.
This is not as flexible as a floating-point value per color component
(since all components share a single exponent), but it can represent a
huge dynamic range of colors using only 32 bits for an RGB color.
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In general, the floating-point formats are used as would be expected
(in fact, on modern systems, the single-precision floating-point colors are
now IEEE 754 compliant, making them useful for noncolor computations as
well). However, the integer formats have a special mapping in most graphics
systems. An integer value of zero maps to zero, but the maximal value maps
to 1.0. Thus, the integer formats are slightly different than those seen in any
fixed-point format.

While a wide range of color formats are available to applications, a small
subset of them cover most use cases. Internal to the programmable render-
ing pipeline, floating-point values are the most popular intermediate result
formats. However, floating-point values are not the most popular format for
shading output, the values that are stored in the frame buffer or other image
buffer. Perhaps the most popular format for final color storage is unsigned
8-bit values per component, leading to 3 bytes per RGB color, a system known
as 24-bit color, or in some cases, by the misnomer “true color.” With an alpha
value, the format becomes 32 bits per pixel, which aligns well on modern
32- and 64-bit CPU architectures. Another common format is to use 5 bits
each for red and blue and 6 bits for green, a format that requires 16 bits per
pixel. This system, which sometimes goes by the name high color, is interest-
ing in that it includes different amounts of precision for green than for red
or blue. As we've discussed, the human eye is most sensitive to green, so the
additional bit in the 16-bit format is assigned to it. However, the number of
pure gray values in this format is still 23 = 32, since the additional bit of preci-
sion in green must be zero for all grays (or else the system risks having some
slightly green-tinted gray values).

The historical reasons for using these lower-precision formats are storage
space requirements, computational expense, and the fact that display devices
often have the ability to display only 5-8 bits of precision per component.
Even 32 bits per pixel requires one-quarter the amount of storage that is
needed for floating-point RGBA values. Using full floating-point numbers for
output colors (the colors that are drawn to the output LCD or CRT screen)
is actually overkill, due to the limitations of current display device color res-
olution. For example, current CRTs and LCD displays have dynamic ranges
(the ratio of luminance between the brightest and darkest levels that can be
displayed by the devices) of between 200:1 and 500:1. These ratios mean that
current display devices cannot deliver anywhere near the eye’s full range of
perceived brightness or darkness. There are display technologies that can rep-
resent more than 24-bit color, but these are still the exception, rather than the
rule. As these display devices become more common, device-level color rep-
resentations will require more bits per component in order to avoid wasting
the added precision available from these new displays.

Research has shown that the human visual system (depending on lighting
conditions, etc.) can perceive between 1 million and 7 million colors, which
leads to the (erroneous) theory that 24-bit color display systems, with their
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2% ~ 16.7 million colors, are more than sufficient. While it is true that the
number of different color “names” in a 24-bit system (where a color is “named”
by its 24-bit RGB triple) is a greater number than the human visual system can
discern, this does not take into account the fact that the colors being generated
on current display devices do not map directly to the 1-7 million colors that
can be discerned by the human visual system. Current display devices cannot
display the entire range of colors that the human eye can discern. In addition,
in some color ranges, different 24-bit color “names” appear the same to the
human visual system (the colors are closer to one another than the human
eye’s just noticeable difference, or IND). In other words, 24-bit color wastes
precision in some ranges, while lacking sufficient precision in others. Current
24-bit “true color” display systems are not sufficient to cover the entire range
of human vision, either in range or in precision. Having said this, current
display devices are still quite convincing to the human eye and will continue
to improve.

POINTS AND VERTICES

So far, we have discussed points as our sole geometry representation. As we
begin to abstract to the higherlevel of a surface, points will become insufficient
for representing the attributes of an object or for that matter the object itself.
The first step in the move toward a way of defining an object’s surface is to
associate additional data with each point. Combined together (often into a
single data structure), each point and its additional information form what
is often called a vertex. In a sense, a vertex is a “heavy point”: a point with
additional information that defines some properties of the surface around it.

7.3.1 PER-VERTEX ATTRIBUTES

Within a vertex, the most basic value is the position of the vertex, generally
a 3D point that we will refer to as Py in later sections.

Other than vertex position, perhaps the most basic of the “standard” vertex
attributes are colors. Common additions to a vertex data structure, vertex
colors are used in many different ways when drawing geometry. Much of the
remainder of this chapter will discuss the various ways that per-vertex colors
can be assigned to geometry, as well as the different ways that these vertex
colors are used to draw geometry to the screen. We will generally refer to the
vertex color as Cy (and will sometimes specifically refer to the vertex alpha as
Ay, even though it is technically a component of the overall color).

Another data element that can add useful information to a vertex is a
vertex normal. This is a unit-length 3-vector that defines the “orientation” of
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the surface in an infinitely small neighborhood of the vertex. If we assume that
the surface passing through the vertex is locally planar (at least in an infinitely
small neighborhood of the vertex), the surface normal is the normal vector to
this plane (recall the discussion of plane normal vectors from Chapter 2). In
most cases, this vector is defined in the same space as the vertices, generally
model (a.k.a. object) space. As will be seen later, the normal vector is a
pivotal component in lighting computations. We will generally refer to the
normal as ny.

A vertex attribute that we will use frequently later in this chapter is a
texture coordinate. This will be discussed in detail in the sections in this
chapter on texturing and in parts of the following two chapters; basically, a
set of texture coordinates is a real-valued 2-vector (most frequently, although
they also may be scalars or 3-vectors) per vertex that defines the position
of the vertex within a smooth parameterization of the overall surface. These
are used to map two-dimensional (2D) images onto the surface in a shading
process known as texturing. A vertex may have more than one set of tex-
ture coordinates, representing the mapping of the vertex in several different
parameterizations.

Finally, owing to the general and extensible nature of programmable
shading, an object’s vertices may have other sets of per-vertex attributes.
Most common are additional values similar to the ones listed above; per-
vertex color values, per-vertex directional vectors of some sort, or per-vertex
texture coordinates. However, other programmable shaders could require a
wealth of different vertex attributes; most shading systems support scalar ver-
tex attributes as well as generic 2D, 3D, and 4D vectors. The meaning of these
vectors are dependent upon the shading program itself.

7.3.2 AN OBJECT’S VERTICES

For any geometric object, its set of vertices can be represented as an array
of structures. Each array element contains the value for each of the vertex
attributes supported by the object. Note that for a given object, all of the ver-
tices in the array have the same type of structure. If one vertex has a particular
attribute, they all will contain that attribute (likely with a different value). An
example of the vertex structure for an object with position values, a color, and
one set of texture coordinates is shown below.

struct IvTCPVertex

{
IvVector2 texturecoord;
IvColor color;
IvVector3 position;

}s
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A smaller, simpler vertex with just position and normal might be as
follows:

struct IvNPVertex

{
IvVector3 normal;
IvVector3 position;

}s

Along with the C or C++ representation of a vertex, an application must be
able to communicate to the rendering API how the vertices are laid out. Each
rendering API uses its own system, but two different methods are common;
the simpler (but less flexible) method is for the API to expose some fixed set
of supported vertex formats explicitly and use an enumerated type label to
represent each of these formats. All of an application’s geometry must be for-
matted to fit within the fixed set of supported vertex formats in this case.
The more general system is for an API to allow the application to specify
the type (float, etc.); usage (position, color, etc.); dimension (1D, 2D, etc.);
and stride (bytes between the attribute for one vertex and the next) of each
active attribute. This system is far more flexible, but can greatly increase the
complexity of the rendering API implementation. The latter is common in
modern graphics APIs, such as Direct3D’s DX9 and OpenGL. The former
method is used in Iv for the purposes of simplicity and ease of cross-platform
support. Iv uses the following enumeration to define the vertex formats it
supports:

enum IvVertexFormat

{

kCPFormat, // color, position

kNPFormat, // normal, position

kTCPFormat, // texture coord, color, position
kCNPFormat, // color, normal, position
kTNPFormat // texture coord, normal, position

}s

This enumeration is used in various places in the Iv rendering engine
to declare the format of a given vertex or array of vertices to the
system.

Some rendering APIs allow for the vertex attributes to be “non-
interleaved”; that is, the application keeps independent packed arrays of each
vertex attribute. This so-called “structure of arrays” format is generally less
popular in modern APIs, as the interleaved formats provide better cache
coherence —in an interleaved format, accessing one attribute in a vertex is
likely to load the entire vertex into cache. There is one notable exception: If
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some of an object’s vertex attributes are computed on the host CPU, it may
make sense to keep them in their own array, while leaving the constant vertex
attributes in another fully interleaved vertex array. This allows the dynamic
data to be modified without touching or retransferring the static data to device
memory. We will assume an interleaved vertex format for the remainder of
the rendering discussions.

Vertex Buffers

Programmable shaders and graphics rendering pipelines implemented
entirely in dedicated hardware have made it increasingly important for as
much rendering-related data as possible to be available to the GPU in device-
local memory, rather than system memory. Modern graphics APIs all include
the concept of a vertex buffer or vertex buffer object, an opaque handle that
represents source vertex data resident in GPU memory.

In order to use vertex buffers to render an object, an application must
make calls to the rendering API to allocate enough storage for the object’s
array of vertices in GPU memory. Then, some method is used to trans-
fer the vertex array from system memory to GPU memory. Having trans-
ferred the data, the application can then use the opaque handle to render
the geometry at peak performance. Note that once vertex array data are
in GPU memory, it is usually computationally expensive to modify them.
Thus, vertex buffers are most frequently used for data that the CPU does
not need to modify on a per-frame basis. Over time, as programmable
shaders have become more and more powerful, there have been fewer and
fewer (if any) per-vertex operations that need to be done on the CPU,
thus making it more easily possible to put all vertex data in static vertex
buffers.

A common vertex buffer creation sequence in many APIs is to create
the vertex buffer, passing in the vertex format and number of vertices, but
no data. The resulting vertex buffer is then “locked,” which returns a sys-
tem memory pointer that can be filled with vertex array data. Finally, the
buffer is “unlocked,” which releases access to the system memory pointer and
(if needed) transfers the vertex data to GPU-accessible memory. In Iv, the
sequence is as follows:

IvResourceManager& manager;

/] ...

// Create a vertex buffer with 1024 vertices
// Each vertex has a color and position
IvVertexBuffer* buffer

= manager.CreateVertexBuffer(kCPFormat, 1024);
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// Lock the vertex buffer and cast to the correct
// vertex format
IvCPVertex* verts

= (IvCPVertex*)buffer->BeginLoadData();

// Loop over all 1024 vertices in verts and
// fill in the data...

// Unlock the buffer, so it can be used
buffer->EndLoadData();

The vertex buffer is now filled with data and ready to be used to render.

SURFACE REPRESENTATION

In this section we will discuss another important concept used to represent
and render objects in real-time 3D graphics: the concept of a surface and the
most common representation of surfaces in interactive 3D systems, sets of
triangles. These concepts will allow us to build realistic-looking objects from
the sets of vertices that we have discussed thus far.

In Chapter 2 we introduced the concept of a triangle, a subset of a
plane defined by the convex combination of three noncollinear points. In this
chapter we will build upon this foundation and make frequent use of triangles,
the normal vector to a triangle, and barycentric coordinates. A quick review
of the sections of Chapter 2 covering these topics is recommended.

While most of the remainder of this chapter focuses only on the assign-
ment of colors to objects for the purposes of rendering, the object and surface
representations we will discuss are useful for far more than just rendering.
Collision detection, picking, and even artificial intelligence all make use of
these representations.

7-4.1 VERTICES AND SURFACE AMBIGUITY

Unstructured collections of vertices (sometimes called point clouds) generally
cannot represent a surface unambiguously. For example, draw a set of ten or
so dots representing points on a piece of paper. There are numerous ways one
could connect these 2D points into a closed curve (a 1D “surface”) or even
into several smaller curves. This is true even if the vertices include normal
vectors, as these normal vectors only define the orientation of the surface in
an infinitely small neighborhood of the vertex. Without additional structure,
either implicit or explicit, a finite set of points rarely defines an unambiguous
surface.
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A cloud of points that is infinitely dense on the desired surface can
represent that surface. Obviously, such a directly stored collection of unstruc-
tured points would be far too large to render in real time (or even store) on
a computer. We need a method of representing an infinitely dense surface of
points that requires only a finite amount of representational data.

There are numerous methods of representing surfaces, depending on the
intended use. Our requirements are that we can make direct use of the con-
veniently defined vertices that our geometry pipeline generates, and that the
representation we use is efficient to render. As it turns out, we have already
been introduced to such a representation in one of the earliest sections of the
book: planar triangles.

7.4.2 TRIANGLES

The most common method used to represent 3D surfaces in real-time graphics
systems is simple, scalable, requires little additional information beyond the
existing vertices, and allows for direct rendering algorithms; it is the approx-
imation of surfaces with triangles, or tessellation. Tessellation refers not only
to the process that generates a set of triangles from a surface but also to the
triangles and vertices that result.

Triangles, each represented and defined by only three points (vertices)
on the surface, are connected point to point and edge to edge to create
a piecewise flat (“faceted”) approximation of the surface. By varying the
number and density of the vertices (and thus the triangles) used to rep-
resent a surface, an application may make any desired trade-off between
compactness/rendering speed and accuracy of representation. Represent-
ing a surface with more and more vertices and triangles will result in
smaller triangles and a smoother surface, but will add rendering expense and
storage overhead owing to the increased amount of data representing the
surface.

One concept that we will use frequently with triangles is that of barycen-
tric coordinates. From the discussion in Chapter 2, we know that any pointina
triangle may be represented by an element of R? (s, 7) such that 0.0 < 5,7 < 1.0.
These coordinates uniquely define each point on a nondegenerate triangle
(i.e., a triangle with nonzero area). We will often use barycentric coordi-
nates as the domain when mapping functions defined across triangles, such
as color.

7.4.3 CONNECTING VERTICES INTO TRIANGLES

To create a surface representation from the set of vertices on the surface, we
will simply “connect the dots.” That is, we will generate additional information
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(a) (b)

(0,1,2),(0,2,3),(0,3,4),(0,4,5),(0,5,6),(0,6,1)
(c)

FIGURE 7.3 A hexagonal configuration of triangles: (a) configuration, (b) seven
shared vertices, and (c) index list for shared vertices.

for rendering that joins sets of three vertices by spanning them with a triangle.
As an example, Figure 7.3(a) depicts a fan-shaped arrangement of six triangles
(defining a hexagon) that meet in a single point. The vertex array for this
geometry is an array of seven vertices; six around the edge and one in the
center. Figure 7.3(b) shows these seven vertices, numbered with their array
indices in the vertex array. However, this array alone does not define any
information about the triangles in the object.

Indexed geometry, or indexed triangle lists, bridge this gap. It defines
an object with two arrays: the vertex array we have already discussed, and
a second array of integral values for the triangle connectivities, called the
index (or element) array. The index array is an array of integers that represent
indices (offsets) into the vertex array; there are three times as many indices in
the index array as there are triangles in the object. Each set of three adjacent
indices represents a triangle. The indices are used to look up vertices in the
vertex array; the three vertices are joined into a triangle. Figure 7.3(c) shows
the index list for the hexagon example.

Note the several benefits of indexed geometry. First, vertices can be reused
in as many triangles as desired simply by using the same index value several
times in the index array. This is shown clearly by the hexagon example. One
of the vertices (the central vertex) appears in every single triangle! If we had
to duplicate a vertex each time it was used in a triangle, the memory require-
ments would be much higher, since even small vertex structures take more
space than an index value. Index values are generally 16- or 32-bit unsigned
integers. A 16-bit index value can represent a surface made up of up to 65,536
vertices, more than enough for the objects in many applications, while a
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32-bit index array can represent a surface with more than 4 billion vertices
(essentially unlimited).

Most rendering APIs support a wide range of indexed geometry. Indexed
triangle lists, such as the ones we've just introduced, are simple to understand
but are not as optimal as other representations. The most popular of these
more optimal representations are triangle strips, or tristrips. In a triangle
strip, the first three vertex indices represent a triangle, just as they do in a
triangle list. However, in a triangle strip, each additional vertex (the fourth,
fifth, etc.) generates another triangle —each index generates a triangle out
of itself and the two indices that preceded it (e.g., 0-1-2, 1-2-3, 2-3-4, ...).
This forms a ladderlike strip of triangles (note that each triangle is assumed
to have the reverse orientation of the previous triangle — counterclockwise,
then clockwise, then counterclockwise again, etc.). Then, too, whereas trian-
gle lists require 3T indices to generate T triangles, triangle strips require only
T +2 indices to generate T triangles. An example of the difference between the
size of index arrays for triangle lists and triangle strips is shown in Figure 7.4.
Much research has gone into generating optimal strips by maximizing the
number of triangles while minimizing the number of strips, since there is
a two-vertex “overhead” to generate the first triangle in a strip. The longer
the strip, the lower the average number of indices required per strip. Most
consumer 3D hardware that is available today renders triangle strips at peak
performance, because each new triangle reuses two previous vertices, requir-
ing only one new vertex (and in the case of indexed primitives, one new index)
per triangle. This minimizes transform work on the GPU, as well as potential
“traffic” over the bus that connects the CPU to the GPU.

1 3 5 7 9

Index array for triangle list:
0,1,2,1,3,2,2,3,4,3,5,4,4,5,6,5,7,6, 6,7,8,7,9,8
(24 indices)

Index array for triangle strip:
0,1,2,3,4,5,6,7,8,9
(10 indices)

FIGURE 7.4 The same object as a triangle list and a triangle strip.
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Indexed rendering is not the only way to render triangle lists, strips, etc.
The other common method is nonindexed geometry, and is equivalent to
dereferencing the index list into an array of vertex structures. In other words, a
nonindexed triangle list with T triangles would use no index list, but would use
a vertex array with 3T vertices. Any vertices that were shared in the indexed
case must be duplicated in the nonindexed case. This is generally subopti-
mal, since there is no vertex reuse. In this book we will discuss only indexed
geometry.

Index Buffers

Most GPUs can link vertices and indices into triangles without any CPU inter-
vention. Thus, it is useful to be able to place index arrays into GPU-accessible
memory. These objects are called index buffers, and they are directly analo-
gous to the vertex buffers discussed previously. The only difference is that
the format of an index buffer is far more limited; in Iv, only 32-bit indices
are supported and are assumed. Iv code to create and fill an index buffer is
shown below.

IvResourceManager& manager;

/] ...
// Create an index buffer with 999 indices
// With triangle Tists, this would be 333 triangles
IvindexBuffer* buffer = manager.CreateIndexBuffer(999);

// Lock the index buffer and cast to the correct
// index format
unsigned int* indices

= (unsigned int*)buffer->BeginLoadData();

// Loop over all 999 indices and fill in the data...
/] .

// Unlock the buffer, so it can be used
buffer->EndLoadData();

7.4.4 DRAWING GEOMETRY

coosee cooe. The final step toward rendering geometry from an application point of view
is to pass the required information into the rendering API to initiate the draw
operation. Submitting geometry to the rendering API generally takes the form
of a draw call. APIs differ on which subset of the geometry information is
passed to the draw call and which is set as the current state beforehand, but

the basic pieces of information that define the inputs to the draw call include
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at least the array of vertices, array of indices, type of primitive (list, strip,
etc.), and rendering state defining the appearance of the object. Some APIs
may also require the application to specify the location of each component
(normal, position, etc.) within the vertex structure. The Iv rendering engine
sets up the geometry and connectivity, and renders in a single call, as follows:

IvRenderer& renderer;
IvVertexBuffer* vertexBuffer;
IvIindexBuffer* indexBuffer;

/] ...

renderer.Draw(kTriangleListPrim, vertexBuffer, indexBuffer);

Note the enumerated type used to specify the primitive. In this case, we
are drawing an indexed triangle list (kTriangleListPrim), but we could have
specified a triangle strip (kTriangleStripPrim) or other primitive as listed in
IvPrimType, assuming that the index data were valid for that type of prim-
itive (each primitive type uses its index list a little differently, as discussed
previously).

Once the geometry is submitted for rendering, the work really begins for
the implementation and 3D hardware itself. The implementation passes the
object geometry through the rendering pipeline and finally (if the geometry is
visible) onto the screen. The following sections will detail the most common
structure of the rendering pipeline in modern graphics APIs.

RENDERING PIPELINE

The basic rendering pipeline is shown in Figure 7.5. The flow is quite simple
and will be the basis for much of the discussion in this chapter. Some of the
items in the diagram will not yet be familiar. In the remainder of this chapter
we will fill in these details. The flows are as follows:

1. Primitive Processing. The pipeline starts with the triangle indices,
which determine on a triangle-by-triangle basis which vertices in the
array are required to define each triangle.

2. Per-Vertex Operations. All required vertices (which contain surface
positions in model space along with the additional vertex attributes)
are processed as follows:

(a) The positions are transformed into homogeneous space using
the model view and projection matrices.



276 Chapter 7 Geometry and Programmable Shading

Index and Vertex Arrays I::ﬂ Primitive Processing ‘
llRequired Source Vertices

Vertex Uniform Values I:ﬂ Per-Vertex Operations ‘
Transformed and Shaded Verticles
Index Array :ﬂ Triangle Assembly ‘
l Triangles (Shaded Vertex Triples)

View Frustum [y Triangle Clipping

l Clipped Triangles (Shaded Vertex Triples)

Viewport ::jViewport Transform‘
ﬂScreen-space Triangles (Shaded Vertex Triples)

’ Fragment Generation ‘

Unshaded Fragments

Fragment Uniform Values :ﬂ Fragment Processing ‘

Shaded Fragments
Blending Information I:ﬂ Output Processing ‘

Rendered Image Colors

FIGURE 7.5 Details of the rendering pipeline.

(b) Additional per-vertex items such as lit vertex colors are com-
puted based on the positions, normals, etc.

3. Triangle Assembly. The transformed vertices are grouped into triples
representing the triangles to be rendered.

4. Triangle Clipping. Each homogeneous-space triangle is clipped
and/or culled as required to fall within the view rectangle.

5. Viewport Transform. The resulting clipped triangles are transformed
into screen space.

6. Fragment Generation. Triangles are “sampled,” generating pixel-
aligned samples, called fragments.

7. Fragment Processing. The final color and other properties of the
surface are computed for each fragment.

8. Output Processing. The final fragments are combined with those from
other objects that are a part of the scene to generate the final rendered
image.
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The rendering section of this book covers all of these steps in vari-
ous levels of detail. In this chapter we have already discussed the basics of
indexed triangle primitives (primitive processing and triangle assembly). In
Chapter 6 we discussed projection of vertices (per-vertex operations), clipping
and culling (triangle clipping), and transformation into screen space (view-
port transform). In this chapter we will provide an overview of other per-vertex
operations and fragment processing. In Chapter 8, Lighting, we will provide
details on how light-surface interaction can be simulated in per-vertex oper-
ations and fragment processing. Finally, the details of how fragments are
generated and processed (fragment generation and processing), as well as how
they are output to the device (output processing), are discussed in Chapter 9,
Rasterization.

7.5.1 FIXED-FUNCTION VERSUS PROGRAMMABLE
PIPELINES

The above pipeline has been common to rendering systems and APIs for
over a decade. Initially, the major rendering APIs such as OpenGL 1.x (and
OpenGL ES 1.x) and Direct3D’s DX3 through DX7 implemented each stage
with basically fixed functionality, modified only by a limited number of set-
tings and switches. As features multiplied in commercial 3D systems, the
switches and settings became more and more complex and often began to
interact in confusing ways. The APIs became bloated and complicated, even
though they were still unable to represent the full flexibility of the new
hardware.

As a result, starting with APIs like OpenGL 2.0 and Direct3D’s DX8,
graphics systems have added flexibility. While the classic fixed-function
pipelines were still available to applications, the APIs included new inter-
faces that allowed several of the most important fixed-function stages to be
replaced with application-provided “shader” code. The major stages that were
replaced with programmability were the per-vertex operations and fragment
processing. Rather than use a growing number of prespecified switches and
controls, these APIs added programmable shaders, which replaced the fixed-
function stages with application-supplied simple programs that turned the
inputs of the stages into the desired application outputs quite directly. In fact,
Direct3D’s DX 10 and the mobile 3D API OpenGL ES 2.0 (along with other APIs
of that generation) eschew the fixed-function pipeline entirely; only shaders
are supported.

While each API used its own programming languages for these shaders,
they all progressed in similar manners. The initial shading languages
were similar to CPU assembly code: low-level instructions requiring the
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programmer to assign inputs, outputs, and temporaries to a limited set of
available registers. These were difficult to program and often included confus-
ing limitations. However, as the 3D rendering hardware became more capable,
the register sets and instructions became more powerful and general. This led
to the true real-time shading revolution.

Hardware vendors and graphics API vendors began to design and stan-
dardize high-level shading languages. The three major high-level shading
languages used for interactive 3D graphics are NVIDIA’s Cg (C for graphics)
[35], Microsoft’s HLSL (high-level shading language), and OpenGL’s GLSL
(GL shading language) [99]. While each of these languages has significant
differences, they are all remarkably similar. They all have the basic feel of
C or C++, and thus switching between them is generally quite easy. Since
OpenGL’s GLSL is widely available, is supported by both OpenGL 2.0 and
OpenGL ES 2.0 (the latter with some limitations, known as GLSL-E), and is
quite clean, we will use it exclusively for in-text shading language examples.
However, the other shading languages are capable of the same operations in
relatively similar ways.

The remainder of this book will deal exclusively with shader-based
pipelines. For the examples we will use, shaders are more illustrative and
simpler. As we shall see in the lighting chapter (Chapter 8), high-level shading
languages make it possible to directly translate shading and lighting equa-
tions into shader code. This is the additional value of shaders; while they
make complex effects possible, they also make simple shading equations quite
efficient by avoiding all of the conditionals and flag-checking required by a
fixed-function pipeline’s settings.

SHADERS

7.6.1 USING SHADERS TO MOVE FROM VERTEX TO
TRIANGLE TO FRAGMENT

Vertex shaders (VS) and fragment shaders (FS, also known in some APIs as
pixel shaders) are, at their core function, very similar. They each take input
values that represent a single entity, and output values that define additional
properties of that entity. In the case of a vertex shader, the entity in question
is a vertex, or source surface position and additional attributes as discussed
previously in this chapter. In the case of a fragment shader, the entity is a “frag-
ment” or sample representing an infinitesimally small region of the surface
being rendered. In Chapter 9 on rasterization, we will see that there is actually
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a much more precise definition of a fragment, but for now, the basic concept
is that it is a sample somewhere on the surface of the object, generally at a
point in the interior of one of the triangles, not coincident with any single
vertex defining the surface.

The “one in, one out” nature of both types of shader is an inherent limita-
tion that is simplifying yet at times frustrating. A vertex shader has access to
the attributes of the current vertex only. It has no knowledge of surface conti-
nuity and cannot access other vertex array elements. Similarly, the fragment
shader receives and can write to only the properties of the current fragment
and cannot change the screen-space position of that fragment. It cannot access
neighboring fragments or the source vertices of the triangle that contains
the fragment. The sole deviation from this standard is that in many shading
systems, the fragment shader can generate one or zero fragments. In other
words, the fragment shader can choose to “kill” the current fragment, leav-
ing a hole in the surface. This is useful for creating intra triangle cutouts to
the surface.

Looking at the pipeline depicted in Figure 7.5 in reverse, from a single-
shaded fragment backwards gives an understanding of the overall pipeline
as a function. If viewed in reverse (bottom to top), Figure 7.5 can demon-
strate this. Starting from the end, the final, shaded fragment was computed
in the fragment shader based on input values that are interpolated to the
fragment’s position within the triangle that contains it. This containing tri-
angle is based upon three transformed and processed vertices that were
each individually output from the vertex shader. These vertices were pro-
vided, along with the triangle connectivity, as a part of the geometry object
being drawn. Thus, the entire shading pipeline is, in a sense, one long
function.

7.6.2 SHADER INPUT AND OUTPUT VALUES

Both vertex and fragment shaders receive their inputs in roughly the same
types, the most common being floating-point scalars (float in GLSL); vec-
tors (vec2, vec3, and vec4 in GLSL); matrices (mat2, mat3, mat4, etc. in GLSL);
and arrays of each of these types of values. Colors are an extremely common
type passed in to both forms of shaders and are generally represented in the
shaders as floating-point 4-vectors, just as discussed in the introductory mate-
rial in this chapter (although they are accessed in the shader as v.r, v.g, etc.,
instead of v.x, v.y, etc.). Integers and associated vectors and arrays are often
supported as well.

One additional type of input to a shader is a texture sampler, which rep-
resents image-based lookup within the shader. This is an extremely powerful
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shader input and will garner its own section later in this chapter and in
the chapters to come. While some modern graphics systems and APIs allow
samplers as inputs to both vertex and fragment shaders, this is not universal,
and for the purposes of this book, we will discuss them as inputs to fragment
shaders, where they are universally supported.

7.6.3 SHADER OPERATIONS AND LANGUAGE
CONSTRUCTS

The set of shader operations in modern shading languages is generally the
same in both vertex and fragment shaders. The operations and functions are
too broad to list here, but include the most common infix operations (addi-
tion, subtraction, multiplication, division, negation) for scalar, vector, and
matrix types and the sensible mixing thereof. A wide range of standard math-
ematical functions are also available, such as dot and cross products, vector
normalization, trigonometric functions, etc.

Functions, procedures, conditionals, and loops are also provided in
the high-level shading languages. However, since shaders are in essence
SIMD (single instruction multiple data) systems, looping and branching can
be expensive, especially on older hardware. However, the overall shading
languages are exceedingly powerful.

VERTEX SHADERS
7.7.1 VERTEX SHADER INPUTS

Vertex and fragment shaders do have slightly different sources of input, owing
to their different locations in the rendering pipeline. Vertex shaders receive
three basic sources of input: per-vertex attributes, per-object uniforms, and
global constants. The first two can be thought of as properties of the geometry
object being rendered, while the lattermost are properties and limits of the
rendering hardware.

The per-vertex attributes are the elements of the object’s vertex structure
described above and will likely differ from vertex to vertex. Some per-vertex
attributes are standard and are accessed via standard variables in the vertex
shader. These are generally the attributes that carry over from the original
fixed-function pipeline: position, surface normal, surface color, and texture
coordinates. Others are application-specific and are custom to the shader;
the high-level shading languages support this. We will focus on the standard
attributes in this book, specifically, those in GLSL.
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Note that in moving to a completely shader-based pipeline, OpenGL
ES 2.0’s GLSL-E shading language has far fewer standard, predefined vertex
shader attributes and vertex/fragment uniforms than are available in the
otherwise similar desktop OpenGL GLSL shading language. For example,
since there is no concept of a model view matrix in OpenGL ES 2.0, there
is no corresponding standard uniform. Instead, applications must pass any
needed matrices via custom uniforms. Desktop OpenGL’s GLSL, on the other
hand, makes the model view matrix and many others available to the shading
language via standard uniforms such as g1 _ModelViewProjectionMatrix. We
will make use of this feature of desktop GLSL in our examples.

In DirectX, Microsoft merges these approaches to some degree. While
HLSL does not define fixed-function-related uniforms in the shading language
itself, an additional “effects” system that D3D layers on top of the basic
shaders allows for named uniforms to be linked to “semantics.” These seman-
tics make it possible for a general engine to automatically map the model
view and projection matrices (among others) to be desired uniform decla-
rations in the shader without having to explicitly query the named uniform
in each shader. These are known collectively as “Standard Annotations and
Semantics.”

The per-object uniforms can be thought of as global variables and are
the same value (or “uniform”) across the entire object being drawn. As with
attributes, some uniforms are standard and are automatically supplied by the
system to every shader; common examples include the model view and pro-
jection matrices. Other uniforms are application-specific and are custom to
the shader. These must be explicitly set in the rendering API by the applica-
tion. Once again, we will focus on the system-provided attributes available
in GLSL.

The constants are provided by the rendering API and represent hard-
ware limits that may be of use to shaders attempting to deal with running
on different platforms. Constants are just that— constant over all rendered
objects.

7.7.2 VERTEX SHADER OUTPUTS

One required vertex shader output value is the homogeneous (postprojection
transform) vertex position. It must be written by all vertex shaders. The pro-
jected positions are required in order to generate screen-space triangles from
which fragment samples can be generated.

Vertex shaders provide their other output values by writing to so-called
“varying” variables. Standard (or built-in) varying values differ by API and
shading language. Additional, custom varying values may be declared by a
shader as well, although platforms may differ in the limited number of custom
varying parameters that can be declared by a shader.
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7.7.3 BAsSIC VERTEX SHADERS

The simplest vertex shader simply transforms the incoming model-space
vertex by the model view and projection matrix, and places the result in the
required output register, as follows:

// GLSL
void main()

{
}

gl Position = gl ModelViewProjectionMatrix * gl Vertex;

This shader uses nothing but built-in vertex attributes, uniforms, and
varying variables, and thus requires no declarations at all. It transforms
a floating-point 4-vector (vec4) by a floating-point 4 x 4 matrix (mat4) and
assigns the result to a 4-vector. However, this simple vertex shader provides no
additional information about the surface—no normals, colors, or additional
attributes. In general, we will use more complex vertex shaders.

7.7-4 LINKING VERTEX AND FRAGMENT SHADERS

As described above, the triangle assembly stage takes sets of three processed
vertices and generates triangles in screen space. Fragments on the surface
of these triangles are generated, and the fragment shader is invoked upon
each of these fragments. The connection between vertices and fragments is
basically unbounded. Three vertices generate a triangle, but that triangle may
generate many fragments (as will be discussed in Chapter 9). Or, the triangle
may generate no fragments at all (e.g., if the triangle is outside of the view
rectangle).

In defining the output values and types in its varying parameters, the
vertex shader also provides one-half of the interface between itself and the
fragment shader. In fact, vertex and fragment shaders can be written indepen-
dently and need not map one-to-one with each other. As long as the varying
values required by a fragment shader are all supplied by a given vertex shader
(even if some of the vertex shader’s varyings are unused in the fragment
shader), those two shaders may be “linked” at runtime and used together.
This ability to reuse a vertex or fragment shader with more than one of the
other type of shader cuts down on the number of shaders that needs to be
written, avoiding a combinatorial explosion.

Real applications like large-scale 3D games often spend a lot of develop-
ment time having to manage the many different shaders and shading paths
that exist in a complex rendering engine. Some applications use very large
shaders that include all of the possible cases, branching between the various
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cases using conditionals in the shader code. This can lead to large, complex
shaders with a lot of conditionals whose results will differ only at the per-
object level, a potentially wasteful option. Other applications generate shader
source code in the application itself, as needed, compiling their shaders at
runtime. This can be problematic as well, as the shader compilation takes
significant CPU cycles and can stall the application visibly. Finally, some
applications use a hybrid approach, generating the required shaders offline
and keeping them in a lookup table, loading the required shader based on the
object being rendered.

FRAGMENT SHADERS

7.8.1 FRAGMENT SHADER INPUTS

Unlike vertex shaders, which are invoked on application-supplied vertices,
fragment shaders are invoked on dynamically generated fragments. Thus,
there is no concept of per-fragment attributes being passed into the fragment
shader by the application. Varying values passed on from the vertex shader
are the only unique per-fragment values.

Shader-custom varying values written by a vertex shader are simply inter-
polated and provided to the linked fragment shader. They must be declared in
the fragment shader using the same name and type as they were declared in
the vertex shader, so they can be linked together. Some of the built-in varying
values written by a shader are provided in a similarly direct manner. How-
ever, others are provided in a somewhat different manner as is appropriate
to the primitive and value. For example, in GLSL, the linked built-in varying
values for vertex shader position output (which is specified in homogeneous
coordinates) and the fragment shader’s built-in fragment coordinate (which
is in a window-relative coordinate) are in different spaces. Also, while the
vertex shader includes predefined output varying variables for both front and
back surface colors, the fragment shader is only given one of this set of colors,
depending on whether the current fragment being shaded represents the front
or back side of the surface.

Fragment shaders support constants and uniforms. A set of fragment
shader-relevant constants may be provided by the implementation. In addi-
tion, fragment shaders can access uniform values in the same way they are
accessed in vertex shaders. Fragment shaders also support an extremely pow-
erful type of uniform value: texture image samplers (as mentioned above,
some implementations support texture samplers in vertex shaders as well,
but these are not as ubiquitous). These types of uniforms are so useful that
we will dedicate entire sections to them in several of the rendering chapters.



284 Chapter 7 Geometry and Programmable Shading

SOURCE CODE
DEMO

BasicShaders

7.8.2 FRAGMENT SHADER OUTPUTS

The basic goal of the fragment shader is to compute the color of the current
fragment. The entire pipeline, in essence, comes down to this single output
value per fragment. The fragment shader cannot change the other values of
the fragment, such as the position of the fragment, which remains locked
in screen space. However, some shading systems do allow for a fragment to
cancel itself, causing that fragment to go no further in the rendering pipeline.
This is useful for “cutout” effects and performance optimizations.

Each shading language defines a built-in variable into which the final
color must be written; in GLSL, this variable is g1_FragColor. An extremely
basic shader that takes an application-set per-object color and applies it to
the entire surface is shown below.

// GLSL
uniform vec4 objectColor;

void main()

{
}

gl FragColor = objectColor;

The fragment shader above is compatible with the simple vertex shader
above—the two could be linked and used together.

Note that in the latest shading systems, a shader may output more than
one color or value per fragment. This functionality is known as multiple render
targets (MRTs) and will not be discussed in this text, as it does not directly
affect the basic pipeline or mathematics of the system. However, the tech-
nique is extremely powerful and allows for many high-end rendering effects
to be done efficiently. For details and examples of the use of MRTs, see
Gray [48].

7.8.3 COMPILING, LINKING, AND USING SHADERS

Programmable shaders are analogous to many other computer programs.
They are written in a high-level language (GLSL, in our case), built from
multiple source files or sections (a vertex shader and a fragment shader), com-
piled into “machine language” (the GPU’s microcode), and linked (the vertex
shader together with the fragment shader). The resulting program then can
be used.

This implies several stages. The first stage, compilation, can be done
at runtime in the application, or may be done as an offline process. The
availability of runtime compilation is dependent upon the platform. OpenGL
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drivers include a GLSL compiler. Direct3D ships a runtime compiler as an
independent library. OpenGL ES does not require that a platform provide a
runtime compiler. However, we will assume the availability of a runtime com-
piler in our Iv code examples. In either case, the source vertex and fragment
shaders must be compiled into compiled shader objects. If there are syntax
errors in the source files, the compilation will fail.

A pair of compiled shaders (a vertex shader and a fragment shader) must
then be linked into an overall shader or program. Most platforms support
performing this step at runtime. Linking can fail if the vertex shader does not
declare all of the varying parameters that the fragment shader requires.

For details of how OpenGL and Direct3D implement shader compila-
tion and linking, see the source code for Iv. Depending on the rendering
API, some or all of these steps may be grouped into fewer function calls.
In order to compile and link source shaders into a program in Iv, the steps
are shown below. Iv supports loading and compiling shaders from text file
or from string. The latter case is useful for simple shaders, as they can be
simply compiled into the application itself as a static string, per the following
code:

// Shader compilation code
IvShaderProgram* LoadProgram(IvResourceManager& manager)
{
IvVertexShader* vertexShader
= manager.CreateVertexShaderFromFile("vert.txt");
IvFragmentShader* fragmentShader
= manager.CreateFragmentShaderFromFile("frag.txt");

IvShaderProgram* program
= manager.CreateShaderProgram(vertexShader, fragmentShader);

return program;

}

The resulting program object then must be set as the current shading pro-
gram before an object can be rendered using it. In Iv, the code to set the
current shading program is as follows. Other APIs use similar function calls,
as follows:

IvResourceManager& manager; IvRenderer& renderer;
IvShaderProgram* program;

/] ...

// Shader apply code
renderer.SetShaderProgram( program );
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7.8.4 SETTING UNIFORM VALUES

As mentioned previously, uniform shader parameters form the most
immediate application-to-shader communication. These values provide the
“global” variables required inside of a shader and can be set on a per-object
basis. Since they cannot be set during the course of a draw call, there is no
way to change uniforms at a finer grain than the per-object level. Only per-
vertex attributes (in the vertex shader) and varyings (in the fragment shader)
will differ at that fine-grained level.

The first step in being able to set a uniform value for a shader is to query
the uniform value by name from the application. Rendering APIs that support
high-level shading languages also support some method of mapping string
names for uniforms into the uniforms themselves. The exact method differs
from API to API. However, querying by string can be expensive and should not
be done every time an application needs to access a uniform in a shader. As
a result, the rendering APIs can, given a string name and a shading program
object, return a “handle” or pointer to an object that represents the uniform.
While the initial lookup still requires a string match, the returned handle
allows the uniform to be changed later without a string lookup each time. In
Iv, the query function is as follows:

IvShaderProgram* program;

/] ...

IvUniform* uniform = program->GetUniform("myShaderUniformName");

The handle variable uniform now represents that uniform in that shader from
this point onward. Note that uniforms are in the scope of a given shading
program. Thus, if you need to set a uniform in multiple shading programs,
you will need to query the handles and set the values independently for each
shading program, even if the uniform has the same name in all of the programs.
Although the application will generally know the type of the uniform already
(since the application developer likely wrote the shader code), rendering APIs
make it possible to retrieve the type (float; integer; Boolean; 2-, 3-, and 4-
vectors of each; and float matrices) and array count (one or more of each
type) for a uniform. Finally, the rendering API will include functions to set
(and perhaps get) the values of each uniform. Iv code that demonstrates
querying the type and count of a uniform as well as setting the value is as
follows. The code below queries a handle for a uniform that is known to
be a two-element array of 4D vectors, perhaps representing a pair of basis
vectors.

IvUniform* uniform;

/] ...



7-9

7.9 Basic Coloring Methods 287

IvUniformType uniformType = uniform->GetType();
unsigned int uniformCount = uniform->GetCount();

// We're expecting an array of two float vector-4's
if ((uniformType == kFloat4Uniform) &&
(uniformCount == 2))

{
// Set the vectors to the Z and X axes
uniform->SetValue(IvVector4(0, 0, 1, 0), 0);
uniform->SetValue(IvVector4(1l, 0, 0, 0), 1);

}

These interfaces make it possible to pass a wide range of data items down
from the application code to a shader. We will use uniforms extensively in
Chapter 8 as we discuss lighting. Uniforms will form the basis of how we
pass information regarding the number, type, and configuration of lights and
surfaces to the shaders that will actually compute the lit colors.

BAsSIC COLORING METHODS

The following sections describe a range of simple methods to assign colors
to surface geometry. Note that the cases described below are designed to
best explain how to pass the desired colors to the fragment shader and are
overly simplified. These basic methods can be (and will be in later sections
and chapters) used to pass other noncolor values into the fragment shader
for more complex shading. However, this initial discussion will focus sim-
ply on passing different forms of color values to the fragment shader, which
will in turn simply write the color value being discussed directly as its
output.

The simplest and generally highest-performing methods of coloring geo-
metry are to use constant colors. Constant colors involve “passing through”
colors that were assigned to the geometry prior to rendering. These colors may
have been generated by having an artist assign colors to every surface during
content creation time. Alternatively, an offline process may have been used
to generate static colors for all geometry. With these static colors assigned,
there is relatively little that must be done to select the correct color for a given
fragment. Constant colors mean that for a given piece of geometry, the color at
a fixed point on the surface will never change. No environmental information
like dynamic lighting will be factored into the final color.

The following examples will show simple cases of constant color. These
will serve as building blocks for later dynamic coloring methods, such as
lighting.
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SOURCE CoDE
UniformColors

SOURCE CoDE
VertexColors

7.9.1 PER-OBJECT COLORS

The simplest form of useful coloring is to assign a single color per object.
Constant coloring of an entire object is of very limited use, since the entire
object will appear to be flat, with no color variation. At best, only the filled
outline of the object will be visible against the backdrop. As a result, except in
some special cases, per-object color is rarely used as the final shading function
for an object.

Per-object color requires no special work in the vertex shader (other than
basic projection). The vertex/fragment shader pair below implements per-
object colors. The application need only specify the desired color by setting
the color into the named uniform objectColor. The objectColor uniform must
be declared in the fragment shader and the application must set its value for
the current object prior to rendering the object; it is not a built-in uniform.

// GLSL
void main() // vertex shader

gl _Position = gl _ModelViewProjectionMatrix * gl_Vertex;

}

// GLSL
uniform vec4 objectColor;

void main() // fragment shader

{
}

gl _FragColor = objectColor;

7.9.2 PER-VERTEX COLORS

Many of the surfaces approximated by tessellated objects are smooth, mean-
ing that the goal of coloring these surfaces is to emphasize the smoothness
of the original surface, not the artifacts of its approximation with flat tri-
angles. This fact makes flat shading a very poor choice for many tessellated
objects. A shading method that can generate the appearance of a smooth
surface is needed. Per-vertex coloring, along with a method called Gouraud
shading (after its inventor, Henri Gouraud) does this. Gouraud shading is
based on the existence of some form of per-vertex colors, assigning a color to
any point on a triangle by linearly interpolating the three vertex colors over the
surface of the triangle. As with the other shading methods we have discussed,
Gouraud shading is independent of the source of these per-vertex colors; the
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vertex colors may be assigned explicitly by the application, or generated on-
the-fly via per-vertex lighting or other vertex shader. This linear interpolation
is both simple and smooth and can be expressed as a mapping of barycentric
coordinates (s, #) as follows:

Color(0, T, (s,1) =sCy1 +1tCya + (1 —s —1)Cy3

Examining the terms of the equation, it can be seen that Gouraud shad-
ing is simply an affine transformation from barycentric coordinates (as
homogeneous points) in the triangle to RGB color space.

An important feature of per-vertex smooth colors is that color disconti-
nuities can be avoided at triangle edges, making the piecewise-flat tessellated
surface appear smooth. Internal to each triangle, the colors are interpolated
smoothly. At triangle edges, color discontinuities can be avoided by ensuring
that the two vertices defining a shared edge in one triangle have the same color
as the matching pair of vertices in the other triangle. It can be easily shown
that at a shared edge between two triangles, the color of the third vertex in
each triangle (the vertices that are not an endpoint of the shared edge) does
not factor into the color along that shared edge. As a result, there will be no
color discontinuities across triangle boundaries, as long as the shared ver-
tices between any pair of triangles are the same in both triangles. In fact, with
fully shared, indexed geometry, this happens automatically (since colocated
vertices are shared via indexing). Figure 7.6 allows a comparison of geometry
drawn with per-face colors and with per-vertex colors.

Per-vertex colors are generated in the vertex shader, either through com-
putation, direct use of per-vertex attributes, or a combination of both. In the
fragment shader, the built-in vertex color-varying value (which has been inter-
polated to the correct value for the fragment using Gouraud interpolation) is
used directly.

FIGURE 7.6 (a) Flat (per-face) and (b) Gouraud (per-vertex) shading.
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SOURCE CODE
SharpEdges

// GLSL
void main() // vertex shader

{
gl Position = gl _ModelViewProjectionMatrix * gl _Vertex;
gl _FrontColor = g1 BackColor = g1 Color;

}

// GLSL
void main() // fragment shader

{
}

gl _FragColor = g1 Color;

7.9.3 PER-TRIANGLE COLORS

Rounding out the “primitive-level” coloring methods is per-triangle coloring.
This method simply assigns a color to each triangle. This is also known as
faceted, or flat, shading, because the resulting geometry appears planar on a
per-triangle basis. Technically, this requires adding a color attribute for each
triangle. However, explicit per-triangle attributes are not supported in most
current rendering systems. As a result, in order to support per-triangle colors,
rendering APIs tend to allow for a mode in which the color value computed for
one of a triangle’s vertices is used as the varying value for the entire triangle,
with no interpolation.

There are two common ways of specifying flat shading in programmable
shading APIs. A shader-external render-state setting may be used to place the
rendering pipeline in flat-shaded mode. This is the method used by Iv, enabled
via the IvRenderer function SetShadeMode. The single argument to this function
sets the shading mode: kF1atShadeMode sets flat shading and kSmoothShadeMode
sets Gouraud shading. Having placed the system into flat-shaded mode, the
triangle assembly stage will automatically duplicate the vertex color-varying
value(s) from one of the triangle’s vertices to the other two, causing all frag-
ments for that triangle to receive the same color(s). The other method of
specifying per-triangle constant colors is built into the shading language itself,
whereby a varying value is declared in the shader with a “flat”’-type modifier.
Varying values declared as “flat” will not be interpolated before being passed
down to the fragment shader.

7.9.4 SHARP EDGES AND VERTEX COLORS

Many objects that we render will contain a mixture of smooth surfaces and
sharp edges. One need only look at the outlines of a modern automobile to
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see this mixture of sloping surfaces (a rounded fender) and hard creases (the
sharp edge of a wheelwell). Such an object cannot be drawn using per-triangle
colors, as per-triangle colors will correctly represent the sharp edges, but will
not be able to represent the smooth sections. In these kinds of objects, some
sharp geometric edges in the tessellation really do represent the original sur-
face accurately, while other sharp edges are designed to be interpolated across
to approximate a smooth section of surface.

In addition, the edge between two triangles may mark the boundary
between two different colors on the surface of the object, such as an object
with stripes painted upon it. In this context, a “sharp” edge is not necessarily
a geometric property. It is nothing more than an edge that is shared by two
adjacent triangles where the triangle colors on either side of the edge are dif-
ferent. This produces a visible, sharp line between the two triangles where the
color changes.

In these situations, we must use per-vertex interpolated colors. However,
interpolating smoothly across all triangle boundaries is not the desired behav-
ior with a smooth/sharp object. The vertices along a sharp edge need to
have different colors in the two triangles abutting the edge. In general, when
Gouraud shading is used, these situations require coincident vertices to be
duplicated, so that the two coincident copies of the vertex can have different
colors. Figure 7.7 provides an example of a cube drawn with entirely shared
vertices and with duplicated vertices to allow per-vertex, per-face colors. Note
that the cube is not flat-shaded in either case — there are still color gradients
across each face. The example with duplicated vertices and sharp shading
edges looks more like a cube.

7.9.5 MORE ABOUT BASIC SHADING

For far more details on the rendering of flat- versus smooth- (or Gouraud)
shaded triangles, see Chapter 9. Both flat and Gouraud shading are used to

FIGURE 7.7 Sharp vertex discontinuities: (a) shared vertices lead to smooth-shaded
edges, and (b) duplicated vertices allow the creation of sharp-shaded edges.
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interpolate colors generated by dynamic lighting. For a detailed discussion of
dynamic lighting, see Chapter 8.

7.9.6 LIMITATIONS OF BASIC SHADING METHODS

Real-world surfaces often have detail at many scales. The shading/coloring
methods described so far require that the fragment shader compute a final
color based solely on sources assigned at tessellation-level features, either
per-triangle or pervertex. While this works well for surfaces whose colors
change at geometric boundaries, many surfaces do not fit this restriction
very well, making flat shading and Gouraud shading ineffective at best. While
programmable shaders can be used to compute very complex coloring func-
tions that change at a much higher frequency than per-vertex or per-triangle
methods, doing so based only on these gross-scale inputs can be difficult and
inefficient.

For example, imagine a flat sheet of paper with text written on it. The flat,
rectangular sheet of paper itself can be represented by as few as two triangles.
However, in order to use Gouraud shading (or even more complex fragment
shading based on Gouraud-interpolated sources) to represent the text, the
piece of paper would have to be subdivided into triangles at the edges of
every character written on it. None of these boundaries represents geometric
features, but rather are needed only to allow the color to change from white
(the paper’s color) to black (the color of the ink). Each character could easily
require hundreds of vertices to represent the fine stroke details. This could
lead to a simple, flat piece of paper requiring tens of thousands of vertices.
Clearly, we require a shading method that is capable of representing detail at
a finer scale than the level of tessellation.

TEXTURE MAPPING
7.10.1 INTRODUCTION

One method of adding detail to a rendered image without increasing geo-
metric complexity is called texture mapping, or more specifically image-based
texture mapping. The physical analogy for texture mapping is to imagine wrap-
ping a flat, paper photograph onto the surface of a geometric object. While
the overall shape of the object remains unchanged, the overall surface detail is
increased greatly by the image that has been wrapped around it. From some
distance away, it can be difficult to even distinguish what pieces of visual
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detail are the shape of the object and which are simply features of the image
applied to the surface.

A real-world physical analogy to this is theatrical set construction. Often,
details in the set will be painted on planar pieces of canvas, stretched over
a wooden frame (i.e.,“flats”), rather than built out of actual, 3D wood, brick,
or the like. With the right lighting and positioning, these painted flats can
appear as very convincing replicas of their real, 3D counterparts. This is
the exact idea behind texturing—using a 2D, detailed image placed upon
a simple 3D geometry to create the illusion of a complex, detailed, fully
3D object.

An example of a good use of texturing is a rendering of a stucco wall; such
a wall appears flat from any significant distance, but a closer look shows that
it consists of many small bumps and sharp cracks. While each of these bumps
could be modeled with geometry, this is likely to be expensive and unlikely
to be necessary when the object is viewed from a distance. In a 3D computer
graphics scene, such a stucco wall will be most frequently represented by a flat
plane of triangles, covered with a detailed image of the bumpy features of lit
stucco.

The fact that texture mapping can reduce the problem of generating
and rendering complex 3D objects into the problem of generating and ren-
dering simpler 3D objects covered with 2D paintings or photographs has
made texture mapping very popular in real-time 3D. This, in turn, has led
to the method being implemented in display hardware, making it even less
expensive computationally. The following sections will introduce and detail
some of the concepts behind texture mapping, some mathematical bases
underlying them, and basics of how texture mapping can be used in 3D
applications.

7.10.2 SHADING VIA IMAGE LOOKUP

The real power of texturing lies in the fact that it uses a dense plane of sam-
ples (an image) as its means of generating color. In a sense, texturing can be
thought of as a powerful, general function that maps 2-vectors (the texture
coordinates) into a vector-valued output (most frequently an RGBA color). To
the shader it is basically irrelevant how the function is computed. Rather than
directly interpolating colors that are stored in the vertices, the interpolated
per-vertex texture coordinate values serve only to describe how an image is
mapped to the triangle. While the mapping from the surface into the space of
the image is linear, the lookup of the image value is not. By adding this level
of indirection between the per-vertex values and the final colors, texturing can
create the appearance of a very complex shading function that is actually no
more than a lookup into a table of samples.
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The process of texturing involves defining three basic mappings:

1. To map all points on a surface (smoothly in most neighborhoods) into
a 2D (or in some cases, 1D or 3D) domain.

2. To map points in this (possibly unbounded) domain into a unit square
(or unit interval, cube, etc.).

3. To map points in this unit square to color values.

The first stage will be done using a modification of the method we used
for colors with Gouraud shading, an affine mapping. The second stage will
involve methods such as min, max, and modulus. The final stage is the most
unique to texturing and involves mapping points in the unit square into an
image. We will begin our discussion with a definition of texture images.

7.10.3 TEXTURE IMAGES

The most common form of texture images (or textures, as they are generally
known) are 2D, rectangular arrays of color values. Every texture has a width
(the number of color samples in the horizontal direction) and a height (the
number of samples in the vertical direction). Textures are similar to almost
any other digital image, including the screen, which is also a 2D array of colors.
Just as the screen has pixels (for picture elements), textures have texels (texture
elements). While some graphics systems allow 1D textures (linear arrays of
texels) and even 3D textures (cubes or rectangular parallelepipeds of texels),
by far the most common and most useful are 2D, image-based textures. Our
discussion of texturing will focus entirely on 2D textures.

We can refer to the position of a given texel via a 2D value (x, y) in texel
units. (Note that these coordinates are (column, row), the reverse of how we
generally refer to matrix elements in our row-major matrix organization.)
Figure 7.8 shows an example of a common mapping of texel coordinates into
a texture. Note that while the left to right increasing mapping of x is universal
in graphics systems, the mapping of y is not; top to bottom is used in Direct3D,
and bottom to top is used in OpenGL.

As with most other features, while there are minor differences between
the rendering APIs regarding how to specify texture images, all of the APIs
require the same basic information:

m The per-texel color storage format of the incoming texture data.
m The width and height of the image in texels.

® An array of width x height color values for the image data.
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FIGURE 7.8 Texel-space coordinates in an image.

Put together, these define the image data and their basic interpretation in the
same way that an array of vertices, the vertex format information, and the
vertex count define vertex geometry to the rendering pipeline. As with vertex
arrays, the array of texel data can be quite sizable. In fact, texture image data
are one of the single-largest consumers of memory-related resources.

Rendering APIs generally include the notion of an opaque handle to a
device-resident copy of a texture. For peak performance on most systems,
texture image data need to reside in GPU device memory. Thus, in a process
analogous to vertex buffer objects, rendering APIs include the ability to trans-
fer a texture’s image data to the device memory once. The opaque handle then
can be used to reference the texture in later drawing calls, using the already-
resident copy of the texture image data in GPU memory. In Iv, we use an
object to wrap all of this state: IvTexture, which represents the texture image
itself and the texture sampler state. Like most other resources (e.g., vertex and
index buffers), IvTexture objects are created via the IvResourceManager object,
as follows:



296 Chapter 7 Geometry and Programmable Shading

IvResourceManager* managers;

/] ...

{
const unsigned int width = 256;

const unsigned int height = 512;
IvTexture* texture = manager->CreateTexture(kRGBA32TexFmt,
width, height);

/] ...

The preceeding code creates a texture object with a 32-bit-per-texel RGBA
texture image that has a width of 256 texels and a height of 512 texels. Note
that while this function allocates the texture, it does not fill it with image
data. In order to fill the texture with texel data, we must “lock” the texture
and write the data to the allocated memory in a manner analogous to the way
we initialized vertex arrays. The code to fill an RGBA texture with bright red
texels is as follows:

IvTexture* texture;

/] ...

{
const unsigned int width = texture->GetWidth();
const unsigned int height = texture->GetHeight();

IvTexColorRGBA* texels = texture->BeginLoadData();
for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {
IvTexColorRGBA& texel = texels[x + y * width];

texel.r = 255;
texel.g = 0;
texel.b = 0;

texel.a = 255;

/1

texture->EndLoadData();
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7.10.4 TEXTURE SAMPLERS

Textures appear in the shading language in the form of a texture sampler
object. Texture samplers are passed to a fragment shader as a uniform value
(which is a handle that represents the sampler). The same sampler can be
used multiple times in the same shader, passing different texture coordinates
to each lookup. So, a shader can sample a texture at multiple locations when
computing a single fragment. This is an extremely powerful technique that
is used in many advanced shaders. From within a shader, a texture sampler
is a sort of “function object” that can be evaluated as needed, each time with
unique inputs.

Texture Samplers in Application Code

At the application C or C++ level, there is considerably more to a texture
sampler. A texture sampler at the API level includes at least the following
information:

m The texture image data.

m Settings that control how the texture coordinates are mapped into the
image.

m Settings that control how the resulting image sample is to be post-
processed before returning it to the shader.

All of these settings are passed into the rendering API by the application
prior to using the texture sampler in a shader. As with other shader uniforms,
we must include application C or C++ code to link a value to the named
uniform; in this case, the uniform value represents a texture image handle.
We will cover each of these steps in the following sections.

The book’s rendering API uses the IvTexture object to represent texture
samplers and all of their related rendering state. The code examples in the
following section below all describe the IvTexture interfaces.

TEXTURE COORDINATES

While textures can be indexed by 2D vectors of nonnegative integers on
a per-texel basis (texel coordinates), textures are normally addressed in a
more general, texel-independent manner. The texels in a texture are most
often addressed via width- and height-independent U and V values. These
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U=0.0,V=1.0 U=1.0,V=1.0

U=0.0,V=0.0 U=1.0,V=0.0

FIGURE 7.9 Mapping U and V coordinates into an image.

2D real-valued coordinates are mapped in the same way as texel coordi-
nates, except for the fact that U and V are normalized, covering the entire
texture with the 0-to-1 interval. Figure 7.9 depicts the common mapping of
UV coordinates into a texture. These normalized UV coordinates have the
advantage that they are completely independent of the height and width of
the texture, meaning that the texture resolution can change without having
to change the mapping values. Almost all texturing systems use these normal-
ized UV coordinates at the application and shading language level, and as a
result, they are often referred to by the generic term of texture coordinates, or
texture UVs.

7.11.1 MAPPING TEXTURE COORDINATES ONTO
OBJECTS

The texture coordinates defined at the three vertices of a triangle define
an affine mapping from barycentric coordinates to UV space. Given the
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barycentric coordinates of a point in a triangle, the texture coordinates may
be computed as

v (vv1 —vy3) (vy2 —vy3) vy3

[ u }:[ (uvi —uy3) (uy2 —uy3) uys i| i
1

Although there is a wide range of methods used to map textures onto triangles
(i.e., to assign texture coordinates to the vertices), a common goal is to avoid
“distorting” the texture. In order to discuss texture distortion, we need to
define the U and V basis vectors in UV space. If we think of the U and V vectors
as 2-vectors rather than the “pointlike” texture coordinates themselves, then
we compute the basis vectors as

e, =(1,0) - (0,0)
e, =(0,1)— (0,0

The e, vector defines the mapping of the horizontal dimension of the texture
(and its length defines the size of the mapped texture in that dimension), while
the e, vector does the same for the vertical dimension of the texture.

If we want to avoid distorting a texture when mapping it to a surface,
we must ensure that the affine mapping of a texture onto a triangle involves
rigid transforms only. In other words, we must ensure that these texture-
space basis vectors map to vectors in object space that are perpendicular
and of equal length. We define ObjectSpace() as the mapping of a vector in
texture space to the surface of the geometry object. In order to avoid dis-
torting the texture on the surface, ObjectSpace() should obey the following
guidelines:

ObjectSpace(e,) - ObjectSpace(e,) =0
|ObjectSpace(e,)| = |ObjectSpace(ey)|

In terms of an affine transformation, the first constraint ensures that the tex-
ture is not sheared on the triangle (i.e., perpendicular lines in the texture
image will map to perpendicular lines in the plane of the triangle), while the
second constraint ensures that the texture is scaled in a uniform manner (i.e.,
squares in the texture will map to squares, not rectangles, in the plane of the
triangle). Figure 7.10 shows examples of texture-to-triangle mappings that do
not satisfy these constraints.

Note that these constraints are by no means a requirement — many cases
of texturing will stray from them, through either artistic desire or the sim-
ple mathematical inability to satisfy them in a given situation. However, the
degree that these constraints do hold true for the texture coordinates on a
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Original texture / -

Non-perpendicular

Skewed mappings

FIGURE 7.10 Examples of “skewed” texture coordinates.

triangle give some measure of how closely the texturing across the triangle
will reflect the original planar form of the texture image.

7.11.2 GENERATING TEXTURE COORDINATES

Texture coordinates are often generated for an object by some form of pro-
jection of the object-space vertex positions in R? into the per-vertex texture
coordinates in R2. All texture coordinate generation —in fact, all 2D textur-
ing —is a type of projection. For example, imagine the cartographic problem
of drawing a flat map of Earth. This problem is directly analogous to map-
ping a 2D texture onto a spherical object. The process cannot be done without
distortion of the texture image. Any 2D texturing of a sphere is an exercise in
matching a projection/“unwrapping” of the sphere onto a rectangular image
(or several images) and the creation of 2D images that take this mapping into
account. For example, a common, simple mapping of a texture onto a sphere
is to use U and V as longitude and latitude, respectively, in the texture image.
This leads to discontinuities at the poles, where more and more texels are
mapped over smaller and smaller surface areas as we approach the poles.

The artist must take this into account when creating the texture image.
Except for purely planar mappings (such as the wall of a building), most
texturing work done by an artist is an artistic cycle between generating texture
coordinates upon the object and painting textures that are distorted correctly
to map in the desired way to those coordinates.
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7.11.3 TEXTURE COORDINATE DISCONTINUITIES

As was the case with per-vertex colors, there are situations that require
shared, collocated vertices to be duplicated in order to allow the vertices
to have different texture coordinates. These situations are less common
than in the case of per-vertex colors, due to the indirection that textur-
ing allows. Pieces of geometry with smoothly mapped texture coordinates
can still allow color discontinuities on a per-sample level by painting the
color discontinuities into the texture. Normally, the reason for duplicating
collocated vertices in order to split the texture coordinates has to do with
topology.

For example, imagine applying a texture as the label for a model of a
tin can. For simplicity, we shall ignore the top and bottom of the can and
simply wrap the texture as one would a physical label. The issue occurs at
the texture’s seam. Figure 7.11 shows a tin can modeled as an eight-sided
cylinder containing 16 shared vertices—8 on the top and 8 on the bottom.
The mapping in the vertical direction of the can (and the label) is simple, as
shown in the figure. The bottom 8 vertices set V =0.0 and the top 8 vertices set
V =1.0. So far, there is no problem. However, problems arise in the assignment
of U. Figure 7.12 shows an obvious mapping of U to both the top and bottom
vertices — U starts at 0.0 and increases linearly around the can until the eighth
vertex, where it is 0.875, or 1.0 — 0.125.

U=0.0 U=0.875

U=0.125 U=0.75
V=1
U=0.25 U=0.625
U=0.5 Nutrition
U=0.375+—"_ Facts
and

Other
information

Shared vertex UVs Texture image

FIGURE 7.11 Texturing a can with completely shared vertices.
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FIGURE 7.12 Shared vertices can cause texture coordinate problems.

The problem is between the eighth vertex and the first vertex. The first
vertex was originally assigned a U value of 0.0, but at the end of our cir-
cuit around the can, we would also like to assign it a texture coordinate of
1.0, which is not possible for a single vertex. If we leave the can as is, most
of it will look perfectly correct, as we see in the front view of Figure 7.12.
However, looking at the back view in Figure 7.12, we can see that the face
between the eighth and first vertex will contain a squashed version of almost
the entire texture, in reverse! Clearly, this is not what we want (unless we can
always hide the seam). The answer is to duplicate the first vertex, assigning
the copy associated with the first face U=0.0 and the copy associated with
the eighth face U = 1.0. This is shown in Figure 7.13 and looks correct from all
angles.

7.11.4 MAPPING OUTSIDE THE UNIT SQUARE

So far, our discussion has been limited to texture coordinates within the unit
square, 0.0 < u and v < 1.0. However, there are interesting options available if
we allow texture coordinates to fall outside of this range. In order for this to
work, we need to define how texture coordinates map to texels in the texture
when the coordinates are less than 0.0 or greater than 1.0. These operations
are per sample, not per vertex, as we shall discuss.
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FIGURE 7.13 Duplicated vertices used to solve texturing issues.

The most common method of mapping unbounded texture coordinates
into the texture is known as texture wrapping, texture repeating, or texture tiling.
The wrapping of a component u of a texture coordinate is defined as

wrap(u) = u — |u]

The result of this mapping is that multiple “copies” of the texture “tile” the
surface. Wrapping must be computed using the per sample, not per-vertex,
method. Figure 7.14 shows a square whose vertex texture coordinates are all
outside of the unit square, with a texture applied via per-sample wrapping.
Clearly, this is a very different result than if we had simply applied the wrap-
ping function to each of the vertices, which can be seen in Figure 7.15. In
most cases, per-vertex wrapping produces incorrect results.

Wrapping is often used to create the effect of a tile floor, paneled walls,
and many other effects where obvious repetition of a texture is required.
However, in other cases wrapping is used to create a more subtle effect,
where the edges of each copy of the texture are not quite as obvious. In
order to make the edges of the wrapping less apparent, texture images must
be created in such a way that the matching edges of the texture image are
equal.
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(-1,2) 2,2)

FIGURE 7.14 An example of texture wrapping.

Wrapping creates a toroidal mapping of the texture, as tiling matches the
bottom edge of the texture with the top edge of the neighboring copy (and vice
versa), and the left edge of the texture with the right edge of the neighboring
copy (and vice versa). This is equivalent to rolling the texture into a tube
(matching the top and bottom edges), and then bringing together the ends
of the tube, matching the seams. Figure 7.16 shows this toroidal matching
of texture edges. In order to avoid the sharp discontinuities at the texture
repetition boundaries, the texture must be painted or captured in such a way
that it has “toroidal topology”; that is, the neighborhood of its top edge is equal
to the neighborhood of its bottom edge, and the neighborhood of its left edge
must match the neighborhood of its right edge. Also, the neighborhood of the
four corners must be all equal, as they come together in a point in the mapping.
This can be a tricky process for complex textures, and various algorithms have
been built to try to create toroidal textures automatically. However, the most
common method is still to have an experienced artist create the texture by
hand to be toroidal.

The other common method used to map unbounded texture coordinates
is called texture clamping, and is defined as

clamp(u) = max(min(u, 1.0), 0.0)

Clamping has the effect of simply stretching the border texels (left, right, top,
and bottom edge texels) out across the entire section of the triangle that falls
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Per-vertex wrapping
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FIGURE 7.15 Computing texture wrapping.

outside of the unit square. An example of the same square we’ve discussed,
but with texture clamping instead of wrapping, is shown in Figure 7.17. Note
that clamping the vertex texture coordinates is very different from texture
clamping. An example of the difference between these two operations is shown
in Figure 7.18. Texture clamping must be computed per sample and has no
effect on any sample that would be in the unit square. Per-vertex coordinate
clamping, on the other hand, affects the entire mapping to the triangle, as
seen in the lower-right corner of Figure 7.18.
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FIGURE 7.16 Toroidal matching of texture edges when wrapping.

(-1,2) (2,2)

Texture image
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FIGURE 7.17 An example of texture clamping.
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FIGURE 7. 18 Computing texture clamping.

Clamping is useful when the texture image consists of a section of detail
on a solid-colored background. Rather than wasting large expanses of texels
and placing a small copy of the detailed section in the center of the texture,
the detail can be spread over the entire texture but leaving the edges of the
texture as the background color.

On many systems clamping and wrapping can be set independently for the
two dimensions of the texture. For example, say we wanted to create the effect
of a road: black asphalt with a thin set of lines down the center of the road.
Figure 7.19 shows how this effect can be created with a very small texture
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FIGURE 7.19 Mixing clamping and wrapping in a useful manner.

by clamping the U dimension of the texture (to allow the lines to stay in the
middle of the road with black expanses on either side) and wrapping in the V
dimension (to allow the road to repeat off into the distance).

Most rendering APIs (including the book’s Iv interfaces) support both
clamping and wrapping independently in U and V. In Iv, the functions
to control texture coordinate “addressing” are SetAddressingU and SetAd-
dressingV. The road example above would be set up as follows using these
interfaces:

IvTexture* texture;

/] ...
{

texture->SetAddressingU(kClampTexAddr);
texture->SetAddressingV (kWrapTexAddr);

/] ...
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7.11.5 TEXTURE SAMPLERS IN SHADER CODE

Using a texture sampler in shader code is quite simple. As mentioned in
section 7.10.4 a fragment shader simply uses a declared texture sampler as an
argument to a lookup function. The following shader code declares a texture
sampler and uses it along with a set of texture coordinates to determine the
fragment color:

// GLSL varying vec2 texCoords;
void main() // vertex shader

// Grab the first set of texture coordinates

// and pass them on

texCoords = g1 MultiTexCoord0;

gl Position = g1 ModelViewProjectionMatrix * g1 Vertex;

}

// GLSL - fragment shader
uniform sampler2D texture;
varying vec2 texCoords;

void main()

{

// Sample the texture represented by "texture"
// at the location "texCoords"
gl FragColor = texture2D (texture, texCoords);

}

This is a simple example: The value passed in for the texture coordinate
could be computed by other means, either in the vertex shader (and then
interpolated automatically as a varying value into the fragment shader), or it
could even have been computed in the fragment shader. However, applica-
tions should take care to remember that the vertex and fragment shaders are
invoked at different frequencies. When possible, it is generally better to put
computations that can be done in the vertex shader in the vertex shader. If
a computation can be done in either the vertex or fragment shader with no
difference in visual outcome, it may increase performance to have the shader
units compute these values only at each vertex.

THE STEPS OF TEXTURING

Unlike basic, per-vertex (Gouraud) shading, texturing adds several levels of
indirection between the values defined at the vertices (the UV values) and
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the final sample colors. This is at once the very power of the method and
its most confusing aspect. This indirection means that the colors applied to
a triangle by texturing can approximate an extremely complex function, far
more complex and detailed than the planar function implied by Gouraud
shading. However, it also means that there are far more stages in the method
whereupon things can go awry. This section aims to pull together all of the pre-
vious texturing discussion into a simple, step-by-step pipeline. Understanding
this basic pipeline is key to developing and debugging texturing use in any
application.

7.12.1 OTHER FORMS OF TEXTURE COORDINATES

Real-valued, normalized texture coordinates would seew to add a continuity
that does not actually exist across the domain of an image, which is a discrete
set of color values. For example, in C or C++ one does not access an array
with a floating-point value —the index must first be rounded to an integer
value. For the purposes of the initial discussion of texturing, we will leave the
details of how real-valued texture coordinates map to texture colors somewhat
vague. This is actually a rather broad topic and will be discussed in detail in
Chapter 9. Initially, it is easiest to think of the texture coordinate as referring
to the color of the closest texel. For example, given our assumption, a texture
coordinate of (0.5, 0.5) in a texture with width and height equal to 128 texels
would map to texel (64, 64). This is referred to as nearest-neighbor texture
mapping. While this is the simplest method of mapping real-valued texture
coordinates into a texture, it is not necessarily the most commonly used in
modern applications. We shall discuss more powerful and complex techniques
in Chapter 9, but nearest-neighbor mapping is sufficient for the purposes of
the initial discussion of texturing.

While normalized texture coordinates are the coordinates that most
graphics systems use at the application and shading language level, they are
not very useful at all when actually rendering with textures at the lowest level,
where we are much more concerned with the texels themselves. We will use
them very rarely in the following low-level rendering discussions. We notate
normalized texture coordinates simply as (u, v).

The next form of coordinates is often referred to as fexel coordinates. Like
texture coordinates, texel coordinates are represented as real-valued num-
bers. However, unlike texture coordinates, texel coordinates are dependent
upon the width (wrexsre) and height (Azexnre) of the texture image being used.
We will notate texel coordinates as (usexel, Viexer)- The mapping from (u, v) to
(sexel, Vrexel) 1S

1 1
(Urexel> Viexel) = (’4 * Weexture — zs Ve Neexture — 5
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FIGURE 7.20 Texel coordinates and texel centers.

The shift of 1/2 may seem odd, but Figure 7.20 shows why this is necessary.
Texel coordinates are relative to the texel centers. A texture coordinate of
zero is on the boundary between two repetitions of a texture. Since the texel
centers are at the middle of a texel, a texture coordinate that falls on an integer
value is really halfway between the center of the last texel of one repetition
of the texture and the center of the first texel in the next repetition. So a
texture coordinate of 0 is equivalent to a fexel coordinate of —0.5. See [77]
(the section “Directly Mapping Texels to Pixels”) for details of one common
graphics system’s texture coordinate to texel mapping.

7.12.2 FROM TEXTURE COORDINATES TO A TEXTURE
SAMPLE COLOR

Texturing is a function that maps per-vertex 2-vectors (the texture coordi-
nates), a texture image, and a group of settings into a per-sample color. The
top-level stages are as follows:

1. Map the barycentric s and ¢ values into # and v values using the
affine mapping defined by the three triangle-vertex texture coordinates:

(u1,v1), (u2, v2), and (u3, v3):

[u]z[(ul—l@ (up — u3) us] i
v (vi —v3) (v2—wv3) 3 |



312 Chapter 7 Geometry and Programmable Shading

2. Using the texture coordinate mapping mode (either clamping or
wrapping), map the U and V values into the unit square:

Uunit, Vunit = wrap(u), wrap(v)
or,
Uynits Yunit = damp(u)» ClamP(U)

3. Using the width and height of the texture image in texels, map the U
and V values into integral texel coordinates via simple scaling:

Utexel> Viexel = |Uynir X Width ], |Vynir ¥ height]

4. Using the texture image, map the texel coordinates into colors using
image lookup:

Cr = Image(Usexel, Viexel)

These steps compose to create the mapping from a point on a given triangle
to a color value. The following inputs must be configured, regardless of the
specific graphics system:

m The texture coordinate being sampled (from interpolated vertex
attributes, interpolated from a computation in the vertex shader, or
computed in the fragment shader).

m The texture image to be applied.

m The coordinate mapping mode.

7-13 LIMITATIONS OF STATIC SHADING

The shaders shown in this chapter are about as simple as shaders can possibly
be. They project geometry to the screen and directly apply previously assigned
vertex colors and textures to a surface. All of the methods described thus far
assign colors that do not change for any given sample point at runtime. In
other words, no matter what occurs in the scene, a fixed point on a given
surface will always return the same color.

Real-world scenes are dynamic, with colors that change in reaction to
changes in lighting, position, and even to the surfaces themselves. Any shad-
ing method that relies entirely on values that are fixed over both time and
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scene conditions will be unable to create truly convincing, dynamic worlds.
Methods that can represent real-world lighting and the dynamic nature of
moving objects are needed.

Programmable shading is tailor-made for these kinds of applications.
A very popular method of achieving these goals is to use a simple, fast
approximation of real-world lighting written into vertex and fragment
shaders. The next chapter will discuss in detail many aspects of how lighting
can be approximated in real-time 3D systems. The chapter will detail more
and more complex shaders, adding increasing realism to the rendered scene.
The shaders presented will use dynamic inputs, per-vertex and per-pixel math,
and textures to simulate the dynamic and complex nature of real-world light-
ing. Shaders provide an excellent medium for explaining the mathematics
of lighting, since in many cases, the mathematical formulae can be directly
reflected in shader code. Finally, we will discuss the benefits and issues of
computing lighting in the vertex or fragment shaders.

CHAPTER SUMMARY

In this chapter we have discussed the basics of procedural shading and the
most common inputs to the procedural shading pipeline. These techniques
and concepts lay the foundation for the next two chapters, which will dis-
cuss popular shading techniques for assigning colors to geometry (dynamic
lighting), as well as a detailed discussion of the low-level mathematical issues
in computing these colors for display (rasterization). While we have already
discussed the basics of the extremely popular shading method known as tex-
turing, this chapter is not the last time we shall mention it. Both of the
following two chapters will discuss the ways that texturing affects other stages
in the rendering pipeline.

For further reading, popular graphics texts such as Foley et al. [38] detail
other aspects of shading, including methods used for high-end offline ren-
dering, which are exactly the kinds of methods that are now starting to be
implemented as pixel and vertex shaders in real-time hardware. Shader books
such as Engel [31] and Pharr [92] also discuss and provide examples of spe-
cific programmable shaders that implement high-end shading methods and
can serve as springboards for further experimentation.
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CHAPTER
LIGHTING

8.1 INTRODUCTION

Much of the way we perceive the world visually is based on the way objects
in the world react to the light around them. This is especially true when the
lighting around us is changing or the lights or objects are moving. Given these
facts, it is not surprising that one of the most common uses of programmable
shading is to simulate the appearance of real-world lighting.

The coloring methods we have discussed so far have used colors that are
statically assigned at content creation time (by the artist) or at the start of the
application. These colors do not change on a frame-to-frame basis. At best,
these colors represent a “snapshot” of the scene lighting at a given moment
for a given configuration of objects. Even if we only intend to model scenes
where the lights and objects remain static, these static colors cannot repre-
sent the view-dependent nature of lighting with respect to shiny or glossy
surfaces.

Clearly, we need a dynamic method of rendering lighting in real time.
At the highest level, this requires two basic items: a mathematical model for
computing the colors generated by lighting and a high-performance method of
implementing this model. We have already introduced the latter requirement;
programmable shading pipelines were designed specifically with geometric
and color computations (such as lighting) in mind. In this chapter we will
greatly expand upon the basic shaders, data sources, and shader syntax that
were introduced in Chapter 7. However, we must first address the other
requirement — the mathematical model we will use to represent lighting.

The following sections will discuss the details of a popular set of meth-
ods for approximating lighting for real-time rendering, as well as examples
of how these methods can be implemented as shaders. While we will use
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8.2

shaders to implement them, the lighting model we will discuss is based
upon the long-standing OpenGL fixed-function lighting pipeline (introduced
in OpenGL 1.x). At the end of the chapter we will introduce several more
advanced lighting techniques that take advantage of the unique abilities of
programmable shaders.

We will refer to fixed-function lighting pipelines in many places in this
chapter. Fixed-function lighting pipelines were the methods used in ren-
dering application programming interfaces (APIs) to represent lighting cal-
culations prior to the availability of programmable shaders. They are called
fixed-function pipelines because the only options available to users of these
pipelines were to change the values of predefined colors and settings. The
pipelines implemented a basically fixed-structure lighting equation and pre-
sented a limited, fixed set of options to the application programmer. No other
modifications to the lighting pipeline (and thus the lighting equation or rep-
resentation) were available. Shaders make it possible to implement the exact
lighting methods desired by the particular application.

BASICS OF LIGHT APPROXIMATION

The physical properties of light are incredibly complex. Even relatively simple
scenes never could be rendered realistically without “cheating.” In a sense, all
of computer graphics is little more than cheating— finding the cheapest-to-
compute approximation for a given situation that will still result in a realistic
image. Even non-real-time, photorealistic renderings are only approximations
of reality, trading off accuracy for ease and speed of computation.

Real-time renderings are even more superficial approximations. Light in
the real world reflects, scatters, refracts, and otherwise bounces around the
environment. Historically, real-time three-dimensional (3D) lighting often
modeled only direct lighting, the light that comes along an unobstructed
path from light source to surface. Worse yet, many legacy real-time lighting
systems (such as OpenGL and Direct3D’s fixed-function lighting pipelines)
do not support automatic shadowing. Shadowing involves computing light-
blocking effects from objects located between the object being lit and the light
source. These are ignored in the name of efficiency. However, despite these
limitations, even basic lighting can have a tremendous impact on the overall
impression of a rendered 3D scene.

Lighting in real-time 3D generally involves data from at least three
different sources: the surface configuration (vertex position, normal vector),
surface material (how the surface reacts to light), and light emitter properties
(the way the light sources emit light). We will discuss each of these sources in
terms of how they affect the lighting of an object and will then discuss how
these values are passed to the shaders we will be constructing. All of the shader
concepts from Chapter 7 (vertex and fragment shading, attributes, uniforms
and varying, etc.) will be pivotal in our creation of a lighting system.
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8.2.1 MEASURING LIGHT

In order to understand the mathematics of lighting, even the simplified,
nonphysical approximation used by most real-time 3D systems, it is help-
ful to know more about how light is actually measured. The simplest way to
appreciate how we measure light is in terms of an idealized lightbulb and
an idealized surface being lit by that bulb. To explain both the brightness
and luminance (these are actually two different concepts; we will define them
in the following section) of a lit surface, we need to measure and track the
following path from end to end:

m The amount of light generated by the bulb.
m The amount of light reaching the surface from the bulb.

m The amount of light reaching the viewer from the surface.

Each of these is measured and quantified differently. First, we need a way of
measuring the amount of light being generated by the lightbulb. Lightbulbs
are generally rated according to several different criteria. The number most
people think of with respect to lightbulbs is wattage. For example, we think of
a 100-watt lightbulb as being much brighter than a 25-watt lightbulb, and this
is generally true when comparing bulbs of the same kind. Wattage in this case
is a measure of the electrical power consumed by the bulb in order to create
light. It is not a direct measure of the amount of light actually generated by
the bulb. In other words, two lightbulbs may consume the same wattage (say,
100 watts) but produce different amounts of light —one type of bulb simply
may be more efficient at converting electricity to light. So what is the measure
of light output from the bulb?

Overall light output from a light source is a measure of power: light energy
per unit time. This quantity is called luminous flux. The unit of luminous flux
is the lumen. The luminous flux from a lightbulb is measured in lumens, a
quantity that is generally listed on boxes of commercially available lightbulbs,
near the wattage rating. However, lumens are not how we measure the amount
of light that is incident upon a surface.

There are several different ways of measuring the light incident upon a
surface. The one that will be of greatest interest to us is illuminance. Illumi-
nance is a measure of the amount of luminous flux falling on a given area of
surface. Illuminance is also called luminous flux density, as it is the amount of
luminous flux per unit area. It is measured in units of lux, which are defined
as lumens per meter squared. Illuminance is an important quantity because
it measures not only the light power (in lumens), but also the area over which
this power is distributed (in square meters). Given a fixed amount of luminous
flux, increasing the surface area over which it is distributed will decrease the
illuminance proportionally. We will see this property again later, when we



318 Chapter 8 Lighting

discuss the illuminance from a point light source. Illuminance in this case
is only the light incident upon a surface, not the amount reflected from the
surface.

Light reflection from a surface depends on a lot of properties of the surface
and the geometric configuration. We will cover approximations of reflection
later in this chapter. However, the final step in our list of lighting measure-
ments is to define how we measure the reflected light reaching the viewer from
the surface. The quantity used to measure this is luminance, which is defined
as illuminance per unit solid angle. Luminance thus takes into account how
the reflected light is spread directionally. The unit of luminance is the nit, and
this value is the closest of those we have discussed to representing “bright-
ness.” However, brightness is a perceived value and is not linear with respect to
luminance, due to the response curve of the human visual system. For details
of the relationship between brightness and luminance, see Cornsweet [20].

The preceding quantities are photometric; that is, they are weighted by the
human eye’s response to different wavelengths of light. The field of radiome-
try studies the measurement of analogous quantities that do not include this
physiological weighting. The radiometric equivalent of illuminance is irradi-
ance (measured in watts per meter squared), and the equivalent of luminance
is radiance. These radiometric units and quantities are relevant to anyone
working with computer graphics, as they are commonly seen in the field of
non-real-time rendering, especially in techniques known collectively as global
illumination (see Cohen and Wallace [19]).

8.2.2 LIGHT As A RAY

Our discussion of light sources will treat light from a light source as a collection
of rays, or in some cases simply as vectors. These rays represent infinitely nar-
row “shafts” of light. This representation of light will make it much simpler to
approximate light-surface interaction. Our light rays will often have RGB (red,
green, blue) colors or scalars associated with them that represent the intensity
(and in the case of RGB values, the color) of the light incident upon a surface.
While this value is often described in rendering literature as “brightness” or
even “luminance,” these terms are descriptive rather than physically based. In
fact, these intensity values are more closely related to and roughly approximate
the illuminance incident upon the given surface from the light source.

A SIMPLE APPROXIMATION OF LIGHTING

For the purposes of introducing a real-time lighting equation, we will
start by discussing an approximation that is based on OpenGL'’s original
fixed-function lighting model (or pipeline); Direct3D’s original fixed-function
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lighting pipeline was similar. Initially, we will speak in terms of lighting a
“sample”: a generic point in space that may represent a vertex in a tessellation
or a fragment in a triangle. We will attempt to avoid the concepts of vertices
and fragments during this initial discussion, preferring to refer to a general
point on a surface, along with a local surface normal and a surface material.
(As will be detailed later, a surface material contains all of the information
needed to determine how an object’s surface reacts to lighting.) Once we have
introduced the concepts, however, we will discuss how vertex and fragment
shaders can be used to implement this model, along with the trade-offs of
implementing it in one shading unit or another. As already mentioned, this
simple lighting model does not accurately represent the real world —there
are many simplifications required for real-time lighting performance.

While OpenGL and Direct3D (prior to DX10) support fixed-function light-
ing pipelines, and can even pass light and material information down to the
shaders from these existing fixed-function interfaces, we will avoid using any
parts of the OpenGL fixed-function interfaces. We will instead use custom
uniforms for passing down this information to the shader. This allows our
discussion to be more easily applied to Direct3D’s HLSL shaders (whose fixed-
function interfaces differ from OpenGL) and OpenGL ES’s GLSL-E (which
does not include any fixed-function pipeline).

TYPES OF LIGHT SOURCES

The next few sections will discuss the common types of light sources that
appear in real-time 3D systems. Each section will open with a general dis-
cussion of a given light source, followed by coverage in mathematical terms,
and close with the specifics of implementation in shader code (along with
a description of the accompanying C code to feed the required data to the
shader). The discussion will progress (roughly) from the simplest (and least
computationally expensive) light sources to the most complex. Initially, we
will look at one light source at a time, but will later discuss how to implement
multiple simultaneous light sources.

For each type of light source, we will be computing two important values:
the unit vector L (here, we break with our notational convention of lowercase
vectors in order to make the equations more readable) and the scalar i, . The
vector L is the light direction vector — it points from the current surface sample
point Py toward the source of the light.

The scalar iy, is the light intensity value, which is a rough approximation
of the illuminance from the light source at the given surface location Py. With
some types of lights, there will be per-light runing values that adjust the func-
tion that defines iy . In addition, in each of the final lighting term equations,
we will also multiply i;, by RGB colors that adjust this overall light intensity
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value. These color terms are of the form L 4, L p, and so on. They will be defined
per light and per lighting component and will (in a sense) approximate a scale
factor upon the overall luminous flux from the light source.

The values L and i; do not take any information about the surface orien-
tation or material itself into account, only the relative positions of the light
source and the sample point with respect to each other. Discussion of the
contribution of surface orientation (i.e., the surface normal) will be taken up
later, as each type of light and component of the lighting equation will be
handled differently and independent of the particular light source type.

8.4.1 DIRECTIONAL LIGHTS

cooree cone A directional light source (also known as an infinite light source) is similar to
rrm,: Lhe light of the Sun as seen from Earth. Relative to the size of the Earth, the
Sun seems almost infinitely far away, meaning that the rays of light reach-
ing Earth from the Sun are basically parallel to one another, independent of
position on Earth. Consider the source and the light it produces as a single
vector. A directional light is defined by a point at infinity, Pr. The light source
direction is produced by turning the point into a unit vector (by subtracting

the position of the origin and normalizing the result):

Pr—0

L=—""—
|PL — O]

Figure 8.1 shows the basic geometry of a directional light. Note that the light
rays are the negative (reverse) of the light direction vector L, since L points
from the surface to the light source.

anitely distant)

>

Light rays

FIGURE 8.1 The basic geometry of a directional light.
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The value i; for a directional light is constant for all sample positions:
ir =1

Since both i; and light vector L are constant for a given light (and indepen-
dent of the sample point Py), directional lights are the least computationally
expensive type of light source. Neither L nor i; needs to be recomputed for
each sample. As a result, we will pass both of these values to the shader (ver-
tex or fragment) as uniforms and use them directly. We define a standard
structure in GLSL code to hold the i; and 1. values.

struct TightSampleValues {
vec3 L;
float iL;

}s

And we define a function for each type of light that will return this
structure.

// GLSL Code

// normalized vector with z ==
uniform vec4 dirLightPosition;
uniform float dirLightIntensity;

// Later, in the code, we can use these values directly...
TightSampleValues computeDirLightValues()

lightSampleValues values;
values.L = dirLightPosition.xyz;
values.iL = dirLightIntensity;
return values;

8.4.2 POINT LIGHTS

counee cooe. A point or positional light source (also known as a local light source to dif-

ferentiate it from an infinite source) is similar to a bare lightbulb, hanging in
space. It illuminates equally in all directions. A point light source is defined
by its location, the point P . The light source direction produced is

Py, — Py

L=—=- "7
|PL — Pyl
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\PL@

Light rays

FIGURE 8.2 The basic geometry of a point light.

This is the normalized vector that is the difference from the sample position
to the light source position. It is not constant per-sample, but rather forms a
vector field that points toward P, from all points in space. This normalization
operation is one factor that often makes point lights more computationally
expensive than directional lights. While this is not a prohibitively expensive
operation to compute once per light, we must compute the subtraction of two
points and normalize the result to compute this light vector for each lighting
sample (generally per vertex for each light) for every frame. Figure 8.2 shows
the basic geometry of a point light.

We specify the location of a point light in the same space as the vertices
(normally view space, for reasons that will be discussed later in this section)
using a 4-vector with a nonzero w coordinate. The position of the light can
be passed down as a uniform to the shader, but note that we cannot use that
position directly as L. We must compute the value of L per sample using
the position of the current sample, which we will define to be the 4-vector
surfacePosition. In a vertex shader, this would be the vertex position attribute
transformed into view space, while in the fragment shader, it would be an
interpolated varying value representing the surface position in view space at
the sample.

// GLSL Code
uniform vec4 pointLightPosition; // position with w == 1

// Later, in the code, we must compute L per sample...
// as described above, surfacePosition is passed in from a
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// per-vertex attribute or a per-sample varying value
TightSampleValues computePointLightValues(in vec4 surfacePosition)
{

lightSampleValues values;

values.L = normalize(pointLightPosition - surfacePosition).xyz;

// we will add the computation of values.iL later

return values;

Unlike a directional light, a point light has a nonconstant function defin-
ing i;. This nonconstant intensity function approximates a basic physical
property of light known as the inverse-square law: Our idealized point light
source radiates a constant amount of luminous flux, which we call I, at all
times. In addition, this light power is evenly distributed in all directions from
the point source’s location. Thus, any cone-shaped subset (a solid angle) of
the light coming from the point source represents a constant fraction of this
luminous flux (we will call this I.,,.). An example of this conical subset of the
sphere is shown in Figure 8.3.

Illuminance (the photometric value most closely related to our i) is mea-
sured as luminous flux per unit area. If we intersect the cone of light with a
plane perpendicular to the cone, the intersection forms a disc (see Figure 8.3).
This disc is the surface area illuminated by the cone of light. If we assume
that this plane is at a distance dist from the light center and the radius of
the resulting disc is r, then the area of the disc is 7r%. The illuminance Eg
(in the literature, illuminance is generally represented with the letter E) is
proportional to

power Teone
l0'd

Edist = 2
area r

However, at a distance of 2dist, then the radius of the disc is 2r (see Figure 8.3).
The resulting radius is 7(2r)2, giving an illuminance E,g proportional to

oo A Leone _ Leone . Egist
2dist 7(2r)2  4mr? 4

Doubling the distance divides (or attenuates) the illuminance by a factor of
four, because the same amount of light energy is spread over four times the
surface area. This is known as the inverse-square law (or more generally as
distance attenuation), and it states that for a point source, the illuminance
decreases with the square of the distance from the source. As an example
of a practical application, the inverse-square law is the reason why a candle
can illuminate a small room that is otherwise completely unlit but will not
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FIGURE 8.3 The inverse-square law.

illuminate an entire stadium. In both cases, the candle provides the same
amount of luminous flux. However, the actual surface areas that must be
illuminated in the two cases are vastly different due to distance.

The inverse-square law results in a basic iy, for a point light equal to

1
© dist?

ir

where

dist = |P;. — Py|

which is the distance between the light position and the sample position.
While exact inverse-square law attenuation is physically correct, it does
not always work well artistically or perceptually. As a result, OpenGL and
most other fixed-function and shader-based lighting pipelines support a more
general distance attenuation function for point lights: a general quadratic.
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Under such a system, the function i; for a point light is

1
ke + kidist + kydist?

ir

The distance attenuation constants k., k;, and k, are defined per light and
determine the shape of that light’s attenuation curve. Figure 8.4 is a visual

Constant

Linear

Quadratic

FIGURE 84 Distance attenuation.
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example of constant, linear, and quadratic attenuation curves. The spheres in
each row increase in distance linearly from left to right.

Generally, dist should be computed in “eye” or camera coordinates (post—
model view transform); this specification of the space used is important, as
there may be scaling differences between model space, world space, and cam-
era space, which would change the scale of the attenuation. Most importantly,
model-space scaling differs per object, meaning the different objects whose
model transforms have different scale would be affected differently by dis-
tance attenuation. This would not look correct. Distance attenuation must
occur in a space that uses the same scale factor for all objects in a scene. The
three distance attenuation values can be passed down as a single 3-vector uni-
form, with the x, y, and z components containing k., k;, and k,, respectively.
Since the attenuation must be computed per sample and involves the length
of the P, — Py vector, we merge the i; shader code into the previous L shader
code as follows:

// GLSL Code

uniform vec4 pointLightPosition; // position with w == 1
uniform float pointLightIntensity;

uniform vec3 pointLightAttenuation; // (k c, k 1, k q)

lTightSampleValues computePointLightValues(in vec4 surfacePosition)
{

lightSampleValues values;

values.L = pointLightPosition.xyz - surfacePosition.xyz;

float dist = length(values.L);

values.L = values.L / dist; // normalize

// Dot computes the 3-term attenuation in one operation
// kc*1.0+ k1 *dist+ k. qg*dist * dist
float distAtten = dot(pointLightAttenuation,

vec3(1.0, dist, dist*dist));
values.iL = pointLightIntensity / distAtten;

return values;

The attenuation of a point light’s intensity by this quadratic can be com-
putationally expensive, as it must be recomputed per sample. In order to
increase performance on some systems, shaders sometimes leave out one or
more terms of the distance attenuation equation entirely.



SOURCE CODE
SpotLight

8.4 Types of Light Sources 327

8.4.3 SPOTLIGHTS

A spotlight is like a point light source with the ability to limit its light to
a cone-shaped region of the world. The behavior is similar to a theatrical
spotlight with the ability to focus its light on a specific part of the scene.

In addition to the position P, that defined a point light source, a spotlight
is defined by a direction vector d, a scalar cone angle 6, and a scalar exponent s.
These additional values define the direction of the cone and the behavior of
the light source as the sample point moves away from the central axis of the
cone. The infinite cone of light generated by the spotlight has its apex at the
light center Pr, an axis d (pointing toward the base of the cone), and a half
angle of . Figure 8.5 illustrates this configuration. The exponent s is not a
part of the geometric cone; as will be seen shortly, it is used to attenuate the
light within the cone itself.

(o

FIGURE 8.5 The basic geometry of a spotlight.
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The light vector is equivalent to that of a point light source:

. P-P
[= L=V
|PL — Py|

For a spotlight, i; is based on the point light function but adds an addi-
tional term to represent the focused, conical nature of the light emitted by a
spotlight:

. spot
ke + kudist + kydist?

iL

where

{(—Il-d)f, if (L. d) > cosf
spot = .
0, otherwise

As can be seen, the spot term is 0 when the sample point is outside of the
cone. The spot term makes use of the fact that the light vector and the cone
vector are normalized, causing (—L - d) to be equal to the cosine of the angle
between the vectors. We must negate L because it points toward the light,
while the cone direction vector d points away from the light. Computing the
cone term first can allow for performance improvements by skipping the rest
of the light calculations if the sample point is outside of the cone. In fact,
some graphics systems even check the bounding volume of an object against
the light cone, avoiding any spotlight computation on a per-sample basis if
the object is entirely outside of the light cone.

Inside of the cone, the light is attenuated via a function that does not
represent any physical property but is designed to allow artistic adjustment.
The light’s i; function reaches its maximum inside the cone when the vertex
is along the ray formed by the light location P, and the direction d, and
decreases as the vertex moves toward the edge of the cone. The dot product
is used again, meaning that i; falls off proportionally to

cos® w

where w is the angle between the cone direction vector and the vector between
the sample position and the light location (Py — P.). As a result, the light need
not attenuate smoothly to the cone edge — there may be a sharp drop toiy =0
right at the cone edge. Adjusting the s value will change the rate at which iy
falls to 0 inside the cone as the sample position moves off axis.

The multiplication of the spor term with the distance attenuation term
means that the spotlight will attenuate over distance within the cone. In this
way, it acts exactly like a point light with an added conic focus. The fact that
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both of these expensive attenuation terms must be recomputed per sample
makes the spotlight the most computationally expensive type of standard light
in most systems. When possible, applications attempt to minimize the number
of simultaneous spotlights (or even avoid their use altogether).

Spotlights with circular attenuation patterns are not universal. Another
popular type of spotlight (see Warn [116]) models the so-called barn door
spotlights that are used in theater, film, and television. However, because
of these additional computational expenses, conical spotlights are by far the
more common form in real-time graphics systems.

As described previously, L for a spotlight is computed as for a point light.
In addition, the computation of iy is similar, adding an additional term for
the spotlight angle attenuation. The spotlight-specific attenuation requires
several new uniform values per light, specifically:

m spotLightDir: Aunit-length 3-vector representing the spotlight direction.
m spotLightAngleCos: The cosine of the half-angle of the spotlight’s cone.

m spotLightExponent: The exponent used to adjust the cone attenuation.

These values and the previous formulae are then folded into the earlier
shader code for a point light, giving the following computations:

// GLSL Code

uniform vec4 spotLightPosition; // position with w ==
uniform float spotLightIntensity;

uniform vec3 spotLightAttenuation; // (k_c, k 1, k q)
uniform vec3 spotLightDir; // unit-length

uniform float spotLightAngleCos;

uniform float spotLightExponent;

TightSampleValues computeSpotLightValues(in vec4 surfacePosition)
{

lightSampleValues values;

values.L = spotlLightPosition.xyz - surfacePosition.xyz;

float dist = Tength(values.L);

values.L = values.L / dist; // normalize

// Dot computes the 3-term attenuation in one operation
// kc* 1.0+ k1 *dist+ k g * dist * dist
float distAtten = dot(spotLightAttenuation,

vec3(1.0, dist, dist*dist));

float spotAtten = dot(-spotLightDir, values.L);
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spotAtten = (spotAtten > spotLightAngleCos)
? pow(spotAtten, spotLightExponent)
: 0.0;

values.iL = spotLightIntensity * spotAtten / distAtten;

return values;

8.4.4 OTHER TYPES OF LIGHT SOURCES

The light sources above are only a few of the most basic that are seen in
modern lighting pipelines, although they serve the purpose of introducing
shader-based lighting quite well. There are many other forms of lights that
are used in shader-based pipelines. We will discuss several of these at a high
level and provide more detailed references in the advanced lighting sections
at the end of the chapter.

One thing all of the light sources in the previous sections have in common
is that a single vector can represent the direct lighting from each source at a
particular sample on a surface. The lights described thus far are either infinitely
distant or emit from a single point. Lights in the real world very often emit
light not from a single point, but from a larger area. For example, the diffused
fluorescent light fixtures that are ubiquitous in office buildings appear to emit
light from a large, rectangular surface. There are two basic effects produced
by these area light sources that are not represented by any of our lights above:
a solid angle of incoming light upon the surface, and soft shadows.

One aspect of area light sources is that the direct lighting from them that
is incident upon a single point on a surface comes from multiple directions.
In fact, the light from an area light source on a surface point forms a com-
plex, roughly cone-shaped volume whose apex is at the surface point being
lit. Unless the area of the light source is large relative to its distance to the
surface, the effect of this light coming from a range of directions can be very
subtle. As the ratio of the area of the light source to the distance to the object
(the projected size of the light source from the point of view of the surface
point) goes down, the effect can rapidly converge to look like the single-vector
cases we describe above.

The main interest in area light sources has to do with occlusion of the
light from them, namely the soft-edged shadows that this partial occlusion
produces. This effect can be very significant, even if the area of the light source
is quite small. Soft-edged shadows occur at shadow boundaries, where the
point in partial shadow is illuminated by part of the area light source but not
all of it. The shadow becomes progressively darker as the given surface point
can “see” less and less of the area light source. This soft shadow region (called
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the penumbra, as opposed to the fully shadowed region, called the umbra)
is highly prized in non-real-time, photorealistic renderings for the realistic
quality it lends to the results.

Soft shadows and other area light effects are not generally supported in
low-level, real-time 3D graphics software development kits (SDKs) (including
OpenGL). However, high-level rendering engines based upon programmable
shaders are implementing these effects in a number of ways in modern appli-
cations. The advanced lighting sections at the end of this chapter describe
and reference a few of these methods. However, our introduction will con-
tinue to discuss the light incident upon a surface from a given light source
with a single vector.

SURFACE MATERIALS AND LIGHT
INTERACTION

Having discussed the various ways in which the light sources in our model gen-
erate light incident upon a surface, we must complete the model by discussing
how this incoming light (our approximation of illuminance) is converted (or
reflected) into outgoing light (our approximation of luminance) as seen by
the viewer or camera. This section will discuss a common real-time model of
light-surface reflection.

In the presence of lighting, there is more to surface appearance than a
single color. Surfaces respond differently to light, depending upon their com-
position, for example, unfinished wood, plastic, or metal. Gold-colored plastic,
gold-stained wood, and actual gold all respond differently to light, even if they
are all the same basic color. Most real-time 3D lighting models take these
differences into account with the concept of a material.

A material describes the behavior of an object with respect to light. In our
real-time rendering model, a material describes the way a surface generates or
responds to four different categories of light: emitted light, ambient light, dif-
fuse light, and specular light. Each of these forms of light is an approximation
of real-world light, and, put together, they can serve well at differentiating not
only the colors of surfaces but also the apparent compositions (shiny versus
matte, plastic versus metal, etc.). Each of the four categories of approximated
light will be individually discussed.

As with the rest of the chapter, the focus will be on a lighting model
similar to the one that is used by OpenGL and Direct3D’s fixed-function
pipelines. Most of these concepts carry over to other common low-level, real-
time 3D SDKs as well, even if the methods of declaring these values and the
exact interaction semantics might differ slightly from API to API. We will
represent the surface material properties of an object using shader uniform
values.
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8.6

For our lighting model, we will define four colors for each material and
one color for each lighting component. These will be defined in each of the
following sections.

We will define only one color and one vector for each light: the color of the
light, a 3-vector uniform 1ightColor, and a vector whose components repre-
sent scalar scaling values of that color per lighting component. This 3-vector
will store the scaling factor for each applicable lighting category in a different
vector component. We will call this uniform 3-vector 11ghtAmbDiffSpec.

CATEGORIES OF LIGHT
8.6.1 EMISSION

Emission, or emissive light, is the light produced by the surface itself, in the
absence of any light sources. Put simply, it is the color and intensity with
which the object “glows.” Because this is purely a surface-based property,
only surface materials (not lights) contain emissive colors. The emissive color
of a material is written as Mg. One approximation that is made in real-time
systems is the (sometimes confusing) fact that this “emitted” light does not
illuminate the surfaces of any other objects. In fact, another common (and
perhaps more descriptive) term used for emission is self-illumination. The fact
that emissive objects do not illuminate one another avoids the need for the
graphics systems to take other objects into account when computing the light
at a given point.

We will store the emissive color of an object’s material (Mg) in the 3-vector
shader uniform value materialEmissive.

8.6.2 AMBIENT

Ambient light is the term used in real-time lighting as an umbrella under
which all forms of indirect lighting are grouped and approximated. Indirect
lighting is light that is incident upon a surface not via a direct ray from light to
surface, but rather via some other, more complex path. In the real world, light
can be scattered by particles in the air, and light can “bounce” multiple times
around a scene prior to reaching a given surface. Accounting for these multiple
bounces and random scattering effects is very difficult if not impossible to do
in a real-time rendering system, so most systems use a per-light, per-material
constant for all ambient light.

A light’'s ambient color represents the color and intensity of the light from
a given source that is to be scattered through the scene. The ambient material
color represents how much of the overall ambient light the particular surface
reflects.
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Ambient light has no direction associated with it. However, most lighting
models do attenuate the ambient light from each source based on the light’s
intensity function at the given point, i, . As a result, point and spotlights do not
produce equal amounts of ambient light throughout the scene. This tends to
localize the ambient contribution of point and spotlights spatially and keeps
ambient light from overwhelming a scene. The overall ambient term for a
given light and material is thus

Cap=iLLaMy

where L4 is the light’s ambient color, and M, is the material’s ambient color.
Figure 8.6 provides a visual example of a sphere lit by purely ambient light.
Without any ambient lighting, most scenes will require the addition of many
lights to avoid dark areas, leading to decreased performance. Adding some
ambient light allows specific light sources to be used more artistically, to
highlight parts of the scene that can benefit from the added dimension of

FIGURE 8.6 Sphere lit by ambient light.
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dynamic lighting. However, adding too much ambient light can lead to the
scene looking “flat,” as the ambient lighting dominates the coloring.

We will store the ambient color of an object’s material in the 3-vector
shader uniform value materialAmbientColor. We will compute the ambient
component of a light by multiplying a scalar ambient light factor, 1ightAmb-
DiffSpec.x (we store the ambient scaling factor in the x component of the
vector), times the light color, giving (TightColor * TightAmbDiffSpec.x). The
shader code to compute the ambient component is as follows:

// GLSL Code

uniform vec3 materialAmbientColor;
uniform vec3 1lightAmbDiffSpec;
uniform vec3 lightColor;

vec3 computeAmbientComponent(in TightSampleValues 1ight)

{
return light.iL * (TightColor * 1lightAmbDiffSpec.x)
* materialAmbientColor;

8.6.3 DIFFUSE

Diffuse lighting, unlike the previously discussed emissive and ambient terms,
represents direct lighting. The diffuse term is dependent on the lighting inci-
dent upon a point on a surface from each single light via the direct path. As
such, diffuse lighting is dependent on material colors, light colors, iy, and the
vectors L and .

The diffuse lighting term treats the surface as a pure diffuse (or matte)
surface, sometimes called a Lambertian reflector. These surfaces have the prop-
erty that their luminance is independent of view direction. In other words,
like our earlier approximation terms, emissive and ambient, the diffuse term
is not view-dependent. The luminance is dependent on only the incident
illuminance.

The illuminance incident upon a surface is proportional to the luminous
flux incident upon the surface, divided by the surface area over which it is
distributed. In our earlier discussion of illuminance, we assumed (implicitly)
that the surface in question was perpendicular to the light direction. If we
define an infinitesimally narrow ray of light with direction L to have luminous
flux I and cross-sectional area a (Figure 8.7), then the illuminance E incident
upon a surface whose normal f = L is

1
E x —
da

However, if n#L (ie., the surface is not perpendicular to the ray of
light), then the configuration is as shown in Figure 8.8. The surface area
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MM,

da

FIGURE 8.7 A shaft of light striking a perpendicular surface.

intersected by the (now oblique) ray of light is represented by é4’. From basic
trigonometry and Figure 8.8, we can see that

da
sin($ — 6)
da

8a' =
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I,

da’

FIGURE 8.8 The same shaft of light at a glancing angle.

Note that if we evaluate for the original special case h = L, theresultis E/ = E,
as expected. Thus, the reflected diffuse luminance is proportional to (L - ).
Figure 8.9 provides a visual example of a sphere lit by a single light source
that involves only diffuse lighting.

Generally, both the material and the light include diffuse color values (Mp
and L p, respectively). The resulting diffuse color for a point on a surface and
a light is then equal to

Cp = ipmax(0, L. n)LpMp

Note the max() function that clamps the result to 0. If the light source is behind
the surface (i.e., L- i < 0), then we assume that the back side of the surface
obscures the light (self-shadowing), and no diffuse lighting occurs.

We will store the diffuse color of an object’s material in the 4-vector
shader uniform value materialDiffuseColor. The diffuse material color is a
4-vector because it includes the alpha component of the surface as a whole.
We will compute the diffuse component of a light by multiplying a scalar
ambient light factor, 1ightAmbDiffSpec.y (we store the diffuse scaling factor
in the y component of the vector), times the light color, giving (1ightColor *
1ightAmbDiffSpec.y).

The shader code to compute the diffuse component is as follows. Note
that adding the suffix .rgb to the end of a 4-vector creates a 3-vector out
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FIGURE 8.9 Sphere lit by diffuse light.

of the red, green, and blue components of the 4-vector. We assume that the
surface normal vector at the sample point, i, is passed into the function. This
value may either be a per-vertex attribute in the vertex shader, an interpolated
varying value in the fragment shader, or perhaps even computed in either
shader. The source of the normal is unimportant to this calculation.

// GLSL Code

uniform vec3 materialDiffuseColor;
uniform vec3 TightAmbDiffSpec;
uniform vec3 TightColor;

// surfaceNormal is assumed to be unit-length
vec3 computeDiffuseComponent(in vec3 surfaceNormal,
in lightSampleValues 1ight)
{
return Tight.iL * (TightColor * 1lightAmbDiffSpec.y)
* materialDiffuseColor.rgb
* max(0.0, dot(surfaceNormal, Tight.L));
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8.6.4 SPECULAR

A perfectly smooth mirror reflects all of the light from a given direction
L out along a single direction, the reflection direction . While few sur-
faces approach completely mirrorlike behavior, most surfaces have at least
some mirrorlike component to their lighting behavior. As a surface becomes
rougher (at a microscopic scale), it no longer reflects all light from L out along
a single direction t, but rather in a distribution of directions centered about
t. This tight (but smoothly attenuating) distribution around t is often called a
specular highlight and is often seen in the real world. A classic example is the
bright white “highlight” reflections seen on smooth, rounded plastic objects.
The specular component of real-time lighting is an entirely empirical approx-
imation of this reflection distribution, specifically designed to generate these
highlights.

Because specular reflection represents mirrorlike behavior, the intensity
of the term is dependent on the relative directions of the light (L), the surface
normal (n), and the viewer (¥). Prior to discussing the specular term itself,
we must introduce the concept of the light reflection vector . Computing
the reflection of a light vector L about a plane normal f involves negating
the component of L that is perpendicular to n. We do this by represent-
ing L as the weighted sum of f and a unit vector p that is perpendicular
to @ (but in the plane defined by f and L) as follows and as depicted in
Figure 8.10:

L=10la+1,p

The reflection of L about f is then

>

FIGURE 8.10 The relationship between the surface normal, light direction, and the
reflection vector.



8.6 Categories of Light 339

We know that the component of L in the direction of f (/) is the projection
of L onto n, or

I, =L-f

Now we can compute [, p by substitution of our value for /,:

= (L-t)a—1p
= (L-n)f— (L—(L-f)h)
=(L-tyd— L+ (L-d)h
=2(L-f)d— L

Computing the view vector involves having access to the camera location,
so we can compute the normalized vector from the current sample location
to the camera center. In an earlier section, camera (or “eye”) space was men-
tioned as a common space in which we could compute our lighting. If we
assume that the surface sample location is in camera space, this simplifies
the process, because the center of the camera is the origin of view space.
Thus, the view vector is then the origin minus the surface sample location;
that is, the zero vector minus the sample location. Thus, in camera space, the
view vector is simply the negative of the sample position treated as a vector
and normalized.

The specular term itself is designed specifically to create an intensity dis-
tribution that reaches its maximum when the view vector v is equal to T;
that is, when the viewer is looking directly at the reflection of the light vector.
The intensity distribution falls off toward zero rapidly as the angle between the
two vectors increases, with a “shininess” control that adjusts how rapidly the
intensity attenuates. The term is based on the following formula:

(i— . {,)mxh[nc — (COS Q)mshine

where 6 is the angle between t and v. The shininess factor mg;,, controls the
size of the highlight; a smaller value of mg,;,. leads to a larger, more diffuse
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highlight, which makes the surface appear more dull and matte, whereas a
larger value of mg,. leads to a smaller, more intense highlight, which makes
the surface appear shiny. This shininess factor is considered a property of the
surface material and represents how smooth the surface appears. Generally,
the complete specular term includes a specular color defined on the material
(Ms), which allows the highlights to be tinted a given color. The specular
light color is often set to the diffuse color of the light, since a colored light
generally creates a colored highlight. In practice, however, the specular color
of the material is more flexible. Plastic and clear-coated surfaces (such as
those covered with clear varnish), whatever their diffuse color, tend to have
white highlights, while metallic surfaces tend to have tinted highlights. For a
more detailed discussion of this and several other (more advanced) specular
reflection methods, see Chapter 16 of Foley et al. [38].

A visual example of a sphere lit from a single light source providing only
specular light is shown in Figure 8.11. The complete specular lighting term is

c irmax(0, (£ ¥))"shine LgMg, if L-f >0
5= 0, otherwise
Note that, as with the diffuse term, a self-shadowing conditional is applied,
(L - n > 0). However, unlike the diffuse case, we must make this term explicit,
as the specular term is not directly dependent upon L - fi. Simply clamping the
specular term to be greater than 0 could allow objects whose normals point
away from the light to generate highlights, which is not correct. In other
words, it is possible for ¥- v > 0, even if L-f<0.

In our pipeline, both materials and lights have specular components but
only materials have specular exponents, as the specular exponent represents
the shininess of a particular surface. We will store the specular color of an
object’s material in the 3-vector shader uniform value materialSpecularColor.
The specular exponent material property is the scalar shader uniform materi-
alSpecularkxp. As previously noted for ambient and diffuse lighting, we will
compute the specular component of a light by multiplying a scalar ambient
light factor, 1ightAmbDiffSpec.z, times the light color, giving (TightColor *
TightAmbDiffSpec.z).

The shader code to compute the specular component is as follows:

// GLSL Code

uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform vec3 1ightAmbDiffSpec;
uniform vec3 lightColor;

vec3 computeSpecularComponent(in vec3 surfaceNormal,
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in vec4 surfacePosition,
in lightSampleValues Tight)

vec3 viewVector = normalize(-surfacePosition.xyz);
vec3 reflectionVector

= 2.0 * dot(light.L, surfaceNormal) * surfaceNormal
- Tight.L;

return (dot(surfaceNormal, light.L) <= 0.0)
? vec3(0.0,0.0,0.0)
: (Tight.iL * (1ightColor * 1ightAmbDiffSpec.z)
* materialSpecularColor
* pow(max(0.0, dot(reflectionVector, viewVector)),
materialSpecularExp));

FIGURE 8.11 Sphere lit by specular light.
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Infinite Viewer Approximation

One of the primary reasons that the specular term is the most expensive
component of lighting is the fact that a normalized view and reflection vector
must be computed for each sample, requiring at least one normalization per
sample, per light. However, there is another method of approximating spec-
ular reflection that can avoid this expense in common cases. This method is
based on a slightly different approximation to the specular highlight geome-
try, along with an assumption that the viewer is “at infinity” (at least for the
purposes of specular lighting).

Rather than computing ¥ directly, the OpenGL method uses what is known
as a halfway vector. The halfway vector is the vector that is the normalized
sum of L and ¥:

=
<>

+
_l’_

h=

=
<>

The resulting vector bisects the angle between L and . This halfway vector
is equivalent to the surface normal f that would generate t such that t = V.
In other words, given fixed light and view directions, h is the surface nor-
mal that would produce the maximum specular intensity. So, the highlight is
brightest when i = h. Figure 8.12 is a visual representation of the configura-
tion, including the surface orientation of maximum specular reflection. The
resulting (modified) specular term is

0, otherwise

v

c {iLmax(O, (h- f))"shine LgMg, if L+f>0
S pr—

>

<>

Surface orientation resulting
in maximum specular
reflection (defined by h)

FIGURE 8.12 The specular halfway vector.
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By itself, this new method of computing the specular highlight would
not appear to be any better than the reflection vector system. However, if we
assume that the viewer is at infinity, then we can use a constant view vector
for all vertices, generally the camera’s view direction. This is analogous to the
difference between a point light and a directional (infinite) light. Thanks to
the fact that the halfway vector is based only on the view vector and the light
vector, the infinite viewer assumption can reap great benefits when used with
directional lights. Note that in this case, both I. and ¥ are constant across all
samples, meaning that the halfway vector h is also constant. Used together,
these facts mean that specular lighting can be computed very quickly if direc-
tional lights are used exclusively and the infinite viewer assumption is enabled.
The halfway vector then can be computed once per object and passed down
as a shader uniform, as follows:

// GLSL Code

uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform vec3 1ightAmbDiffSpec;
uniform vec3 TightColor;

uniform vec3 TightHalfway;

vec3 computeSpecularComponent(in vec3 surfaceNormal,
in lightSampleValues Tight)
{

return (dot(surfaceNormal, light.L) <= 0.0)
? vec3(0.0,0.0,0.0)
: (Tight.iL * (1lightColor * 1ightAmbDiffSpec.z)
* materialSpecularColor
* pow(max (0.0, dot(surfaceNormal, TightHalfway)),
materialSpecularkxp));

8.7 COMBINED LIGHTING EQUATION

Having covered materials, lighting components, and light sources, we now
have enough information to evaluate our full lighting model for a given light
at a given point.
Cy = Emissive
+ (Ambient + Diffuse + Specular) 8.1)
= Mg+ (Ca+Cp +Cs) '

Ay = Maipha
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where the results are

1. Cy, the computed, lit RGB color of the sample.
2. Ay, the alpha component of the RGBA color of the sample.
The intermediate, per-light values used to compute the results are

3. Ca, the ambient light term, which is equal to

Cp=1irMsLy

4. Cp, the diffuse light term, which is equal to

Cp = irMpLp(max(0, L - i)
5. Cg, the specular light term, which is equal to

max(0, (h+ f))mshine . if L+fi> 0

Cs=1irMsL
§ T ILTSES 0, otherwise

The shader code to compute this, based upon the shader functions already
defined previously, is as follows:

// GLSL Code

vec3 computeLitColor(in TightSampleValues Tight,
in vec4 surfacePosition,
in vec3 surfaceNormal)
{
return computeAmbientComponent(1ight)
+ computeDiffuseComponent (surfaceNormal, Tight)
+ computeSpecularComponent (surfaceNormal,
surfacePositon,
light);
}

/] ...

uniform vec3 materialEmissiveColor;
uniform vec4 materialDiffuseColor;

vec4 finalColor;
finalColor.rgb = materialEmissiveColor

+ computeLitColor(light, pos, normal);
finalColor.a = materialDiffuseColor.a;
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QD . ... For a visual example of all of these components combined, see the lit
sphere in Figure 8.13.

Most interesting scenes will contain more than a single light source. Thus,

the lighting model and the code must take this into account. When lighting

a given point, the contributions from each component of each active light L

are summed to form the final lighting equation, which is detailed as follows:

Cy = Emissive + Ambient

lights
+ Z (Per-light Ambient + Per-light Diffuse + Per-light Specular)
L
lights
=Mg+ Y (Ca+Cp+Cs) (8.2)
L
Ay = Maipha

The combined lighting equation 8.2 brings together all of the properties
discussed in the previous sections. In order to implement this equation in

FIGURE 8.173 Spherelit by a combination of ambient, diffuse, and specular lighting.
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shader code, we need to compute i; and L per active light. The shader code
for computing these values required source data for each light. In addition, the
type of data required differed by light type. The former issue can be solved
by passing arrays of uniforms for each value required by a light type. The
elements of the arrays represent the values for each light, indexed by a loop
variable. For example, if we assume that all of our lights are directional, the
code to compute the lighting for up to eight lights might be as follows:

// GLSL Code

uniform vec3 materialEmissiveColor;
uniform vec3 materialAmbientColor;
uniform vec4 materialDiffuseColor;
uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform int dirLightCount;

uniform vec4 dirLightPosition[8];
uniform float dirLightIntensity[8];
uniform vec3 lightAmbDiffSpec[8];
uniform vec3 lightColor[8];

TightSampleValues computeDirLightValues(in int 1)
{

lightSampleValues values;

values.L = dirLightPosition[i];

values.iL = dirLightIntensity[i];

return values;

}

vec3 computeAmbientComponent (in TightSampleValues 1light,
in int i)
{

return light.iL * (TightColor[i] * TightAmbDiffSpec[i].x)
* materialAmbientColor;

}

vec3 computeDiffuseComponent(in vec3 surfaceNormal,
in TightSampleValues 1light,
in int i)
{
return light.iL * (TightColor[i] * TightAmbDiffSpec[i].y)
* materialDiffuseColor.rgb
* max(0.0, dot(surfaceNormal, light.L));
}

vec3 computeSpecularComponent(in vec3 surfaceNormal,
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in vec4 surfacePositon,
in lightSampleValues light,
in int 1)

vec3 viewVector = normalize(-surfacePosition.xyz);
vec3 reflectionVector
= 2.0 * dot(light.L, surfaceNormal) * surfaceNormal

- light.L;
return (dot(surfaceNormal, light.L) <= 0.0)

? vec3(0.0,0.0,0.0)

: (light.iL * (TightColor[i] * TightAmbDiffSpec[i].z)
* materialSpecularColor
* pow(max(0.0, dot(reflectionVector, viewVector)),
materialSpecularkxp));

}

vec3 computeLitColor(in lightSampleValues light,
in vec4 surfacePosition,
in vec3 surfaceNormal, in int i)

return computeAmbientComponent(1ight, i)
+ computeDiffuseComponent (surfaceNormal, light, 1)
+ computeSpecularComponent (surfaceNormal,
surfacePositon,
Tight, i);

int i;
vecd finalColor;
finalColor.rgh = materialEmissiveColor;
finalColor.a = materialDiffuseColor.a;
for (i = 0; i < dirLightCount; i++)
{
lightSampleValues light = computeDirLightValues(i);
finalColor.rgh + =
computeLitColor(light, i, pos, normal);

The code becomes even more complex when we must consider different
types of light sources. One approach to this is to use independent arrays for
each type of light and iterate over each array independently. The complexity of
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8.8

these approaches and the number of uniforms that must be sent to the shader
can be prohibitive for some systems. As a result, it is common for rendering
engines to either generate specific shaders for the lighting cases they know
they need, or else generate custom shader source code in the engine itself,
compiling these shaders at runtime as they are required.

Clearly, many different values and components must come together to
light even a single sample. This fact can make lighting complicated and dif-
ficult to use at first. A completely black rendered image or a flat-colored
resulting object can be the result of many possible errors. However, an under-
standing of the lighting pipeline can make it much easier to determine which
features to disable or change in order to debug lighting issues.

LIGHTING AND SHADING

Thus far, our lighting discussion has focused on computing color at a generic
point on a surface, given a location, surface normal, view vector, and surface
material. We have specifically avoided specifying whether these code snippets
in our shader code examples are to be vertex or fragment shaders. Another
aspect of lighting that is just as important as the basic lighting equation is
the question of when and how to evaluate that equation to completely light a
surface. Furthermore, if we do not choose to evaluate the full lighting equa-
tion at every sample point on the surface, how do we interpolate or reuse
the explicitly lit sample points to compute reasonable colors for these other
samples.

Ultimately, a triangle in view is drawn to the screen by coloring the screen
pixels covered by that triangle (as will be discussed in more detail in Chap-
ter 9). Any lighting system must be teamed with a shading method that can
quickly compute colors for each and every pixel covered by the triangle. These
shading methods determine when to invoke the shader to compute the light-
ing and when to simply reuse or interpolate already computed lighting results
from other samples. In most cases, this is a performance versus visual accu-
racy trade-off, since it is normally more expensive computationally to evaluate
the shader than it is to reuse or interpolate already computed lighting results.

The sheer number of pixels that must be drawn per frame requires that
low- to mid-end graphics systems forego computing more expensive lighting
equations for each pixel in favor of another method. For example, a sphere
that covers 50 percent of a mid-sized 1,280 x 1,024 pixel screen will require
the shading system to compute colors for over a half million pixels, regardless
of the tessellation. Next, we will discuss some of the more popular methods.
Some of these methods will be familiar, as they are simply the shading meth-
ods discussed in Chapter 7, using results of the lighting equation as source
colors.
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8.8.1 FLAT-SHADED LIGHTING

Historically, the simplest shading method applied to lighting was per-triangle,
flat shading. This method involved evaluating the lighting equation once per
triangle and using the resulting color as the constant triangle color. This color
is assigned to every pixel covered by the triangle. In older, fixed-function sys-
tems, this was the highest-performance lighting/shading combination, owing
to two facts: the more expensive lighting equation needed only to be evaluated
once per triangle, and a single color could be used for all pixels in the triangle.
Figure 8.14 shows an example of a sphere lit and shaded using per-triangle
lighting and flat shading.

To evaluate the lighting equation for a triangle, we need a sample location
and surface normal. The surface normal used is generally the triangle face
normal (discussed in Chapter 2), as it accurately represents the plane of the
triangle. However, the issue of sample position is more problematic. No single
point can accurately represent the lighting across an entire triangle (except in
special cases); for example, in the presence of a point light, different points
on the triangle should be attenuated differently, according to their distance

FIGURE 8. 14 Sphere lit and shaded by per-triangle lighting and flat shading.
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from the light. While the centroid of the triangle is a reasonable choice, the
fact that it must be computed specifically for lighting makes it less desirable.
For reasons of efficiency (and often to match with the graphics system), the
most common sample point for flat shading is one of the triangle vertices, as
the vertices already exist in the desired space. This can lead to artifacts, since
a triangle’s vertices are (by definition) at the edge of the area of the triangle.
Flat-shaded lighting does not match quite as well with modern programmable
shading pipelines, and the simplicity of the resulting lighting has meant that
it is of somewhat limited interest in modern rendering systems.

8.8.2 PER-VERTEX LIGHTING

Flat-shaded lighting suffers from the basic flaws and limitations of flat shading
itself; the faceted appearance of the resulting geometry tends to highlight
rather than hide the piecewise triangular approximation. In the presence of
specular lighting, the tessellation is even more pronounced, causing entire
triangles to be lit with bright highlights. With moving lights or geometry, this
can cause gemstonelike “flashing” of the facets. For smooth surfaces such as
the sphere in Figure 8.14 this faceting is often unacceptable.

The next logical step is to use per-vertex lighting with Gouraud interpo-
lation of the resulting color values. The lighting equation is evaluated in the
vertex shader, and the resulting color is passed as an interpolated varying
color to the simple fragment shader. The fragment shader can be extremely
simple, doing nothing more than assigning the interpolated varying color as
the final fragment color.

Generating a single lit color that is shared by all colocated vertices leads to
smooth lighting across surface boundaries. Even if colocated vertices are not
shared (i.e., each triangle has its own copy of its three vertices), simply setting
the normals to be the same in all copies of a vertex will cause all copies to
be lit the same way. Figure 8.15 shows an example of a sphere lit and shaded
using per-vertex lighting and Gouraud shading.

Per-vertex lighting only requires evaluating the lighting equation once per
vertex. In the presence of well-optimized vertex sharing (where there are more
triangles than vertices), per-vertex lighting can actually require fewer lighting
equation evaluations than does true per-triangle flat shading. The interpola-
tion method used to compute the per-fragment varying values (Gouraud) is
more expensive computationally than the trivial one used for flat shading,
since it must interpolate between the three vertex colors on a per-pixel basis.
However, modern shading hardware is heavily tuned for this form of vary-
ing value interpolation, so the resulting performance of per-vertex lighting is
generally close to peak.

Gouraud-shaded lighting is a vertex-centric method — the surface posi-
tions and normals are used only at the vertices, with the triangles serving
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FIGURE 8.15 Sphere lit and shaded by per-vertex lighting and Gouraud shading.

only as areas for interpolation. This shift to vertices as localized surface
representations lends focus to the fact that we will need smooth surface
normals at each vertex. The next section will discuss several methods for
generating these vertex normals.

Generating Vertex Normals

In order to generate smooth lighting that represents a surface at each vertex,
we need to generate a single normal that represents the surface at each vertex,
not at each triangle. There are several common methods used to generate these
per-vertex surface normals at content creation time or at load time, depending
upon the source of the geometry data.

When possible, the best way to generate smooth normals during the cre-
ation of a tessellation is to use analytically computed normals based on the
surface being approximated by triangles. For example, if the set of triangles
represent a sphere centered at the origin, then for any vertex at location Py,
the surface normal is simply

Py —0

=V
[Py — O
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This is the vertex position, treated as a vector (thus the subtraction of
the zero point) and normalized. Analytical normals can create very realistic
impressions of the original surface, as the surface normals are pivotal to
the overall lighting impression. Examples of surfaces for which analyti-
cal normals are available include implicit surfaces and parametric surface
representations, which generally include analytically defined normal vectors
at every point in their domain.

In the more common case, the mesh of triangles exists by itself, with no
available method of computing exact surface normals for the surface being
approximated. In this case, the normals must be generated from the trian-
gles themselves. While this is unlikely to produce optimal results in all cases,
simple methods can generate normals that tend to create the impression of a
smooth surface and remove the appearance of faceting.

One of the most popular algorithms for generating normals from triangles
takes the mean of all of the face normals for the triangles that use the given
vertex. Figure 8.16 demonstrates a two-dimensional (2D) example of averag-
ing triangle normal vectors. The algorithm may be pseudo-coded as follows:

for each vertex V
{
vector V.N = (0,0,0);
for each triangle T that uses V
{
vector F =
V.N += F;
} V.N.Normalize();

TriangleNormal(T);

\ /

Triangles (side view)

True triangle normals T Averaged vertex normals

FiIGURE 8.16 Averaging triangle normal vectors.
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Basically, the algorithm sums the normals of all of the faces that are
incident upon the current vertex and then renormalizes the resulting summed
vector. Since this algorithm is (in a sense) a mean-based algorithm, it can be
affected by tessellation. Triangles are not weighted by area or other such fac-
tors, meaning that the face normal of each triangle incident upon the vertex
has an equal “vote” in the makeup of the final vertex normal. While the method
is far from perfect, any vertex normal generated from triangles will by its
nature be an approximation. In most cases, the averaging algorithm generates
convincing normals. Note that in cases where there is no fast (i.e., constant-
time) method of retrieving the set of triangles that use a given vertex (e.g., if
only the OpenGL/Direct3D-style index lists are available), the algorithm may
be turned “inside out” as follows:

for each vertex V

{
}

for each triangle T

{

V.N = (0,0,0);

// V1, V2, V3 are the vertices used by the triangle
vector F = TriangleNormal(T);

V1.N += F;
V2.N += F;
V3.N += F;

}

for each vertex V

{
}

V.N.Normalize();

Basically, this version of the algorithm uses the vertex normals as “accumu-
lators,” looping over the triangles, adding each triangle’s face normal to the
vertex normals of the three vertices in that triangle. Finally, having accumu-
lated the input from all triangles, the algorithm goes back and normalizes each
final vertex normal. Both algorithms will result in the same vertex normals, but
each works well with different vertex/triangle data structure organizations.

Sharp Edges

As with Gouraud shading based on fixed colors, Gouraud-shaded lighting with
vertices shared between triangles generates smooth triangle boundaries by
default. In order to represent a sharp edge, vertices along a physical crease in
the geometry must be duplicated so that the vertices can represent the surface
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SOURCE CODE
PerFragmentLighting

normals on either side of the crease. By having different surface normals in
copies of colocated vertices, the triangles on either side of an edge can be lit
according to the correct local surface orientation. For example, at each vertex
of a cube, there will be three vertices, each one with a normal of a different
face orientation, as we see in Figure 8.17.

8.8.3 PER-FRAGMENT LIGHTING

There are significant limitations to per-vertex lighting. Specifically, the fact
that the lighting equation is evaluated only at the vertices can lead to artifacts.
Even a cursory evaluation of the lighting equation shows that it is highly non-
linear. However, Gouraud shading interpolates linearly across polygons. Any
nonlinearities in the lighting across the interior of the triangle will be lost com-
pletely. These artifacts are not as noticeable with diffuse and ambient lighting
as they are with specular lighting, because diffuse and ambient lighting are
closer to linear functions than is specular lighting (owing at least partially to

FIGURE 8.17 One corner of a faceted cube.
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the nonlinearity of the specular exponent term and to the rapid changes in
the specular halfway vector h with changes in viewer location).

For example, let us examine the specular lighting term for the sur-
face shown in Figure 8.18. We draw the 2D case, in which the triangle is
represented by a line segment. In this situation, the vertex normals all point
outward from the center of the triangle, meaning that the triangle is repre-
senting a somewhat curved (domed) surface. The point light source and the
viewer are located at the same position in space, meaning that the view vec-
tor ¥, the light vector L, and the resulting halfway vector h will all be equal for
all points in space. The light and viewer are directly above the center of the tri-
angle. Because of this, the specular components computed at the two vertices
will be quite dark (note the specular halfway vectors shown in Figure 8.18 are
almost perpendicular to the normals at the vertices). Linearly interpolating
between these two dark specular vertex colors will result in a polygon that is
relatively dark.

However, if we look at the geometry that is being approximated by these
normals (a domed surface as in Figure 8.18), we can see that in this configura-
tion the interpolated normal at the center of the triangle would point straight
up at the viewer and light. If we were to evaluate the lighting equation at a

Viewer A @ Point light

Approximated
(smooth) surface
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FIGURE 8.18 Gouraud shading can miss specular highlights.
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FIGURE 8.19 Phong shading of the same configuration.

point near the center of the triangle in this case, we would find an extremely
bright specular highlight there. The specular lighting across the surface of
this triangle is highly nonlinear, and the maximum is internal to the trian-
gle. Even more problematic is the case in which the surface is moving over
time. In rendered images where the highlight happens to line up with a vertex,
there will be a bright, linearly interpolated highlight at the vertex. However,
as the surface moves so that the highlight falls between vertices, the high-
light will disappear completely. This is a very fundamental problem with
approximating a complex function with a piecewise linear representation. The
accuracy of the result is dependent upon the number of linear segments used
to approximate the function. In our case, this is equivalent to the density of the
tessellation.

If we want to increase the accuracy of lighting on a general vertex-lit
surface, we must subdivide the surface to increase the density of vertices
(and thus lighting samples). However, this is an expensive process, and we
may not know a priori which sections of the surface will require significant
tessellation. Dependent upon the particular view at runtime, almost any tes-
sellation may be either overly dense or too coarse. In order to create a more
general, high-quality lighting method, we must find another way around this
problem.

So far, the methods we have discussed for lighting have all evaluated the
lighting equation once per basic geometric object, such as per vertex or per
triangle. Phong shading (named after its inventor, Bui Phong Tuong [93])
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works by evaluating the lighting equation once for each fragment covered by
the triangle. The difference between Gouraud and Phong shading may be seen
in Figures 8.18 and 8.19. For each sample across the surface of a triangle, the
vertex normals, positions, reflection, and view vectors are interpolated, and
the interpolated values are used to evaluate the lighting equation. However,
since triangles tend to cover more than 1-3 pixels, such a lighting method will
result in far more lighting computations per triangle than do per-triangle or
per-vertex methods.

Per-fragment lighting changes the balance of the work to be done in the
vertex and fragment shaders. Instead of computing the lighting in the vertex
shader, per-pixel lighting uses the vertex shader only to set up the source val-
ues (surface position, surface normal, view vector) and pass them down as
varying values to the fragment shader. As always, the varying values are inter-
polated using Gouraud interpolation and passed to each invocation of the
fragment shaders. These interpolated values now represent smoothly inter-
polated position and normal vectors for the surface being represented. It is
these values that are used as sources to the lighting computations, evaluated
in the fragment shader.

There are several issues that make Phong shading more computationally
expensive than per-vertex lighting. The first of these is the actual normal vector
interpolation, since basic barycentric interpolation of the three vertex normals
will almost never result in a normalized vector. As a result, the interpolated
normal vector will have to be renormalized per fragment, which is much more
frequently than per vertex.

Furthermore, the full lighting equation must be evaluated per sample
once the interpolated normal is computed and renormalized. Not only
is this operation expensive, it is not a fixed amount of computation. As
we saw above, in a general engine, the complexity of the lighting equa-
tion is dependent on the number of lights and numerous graphics engine
settings. This resulted in Phong shading being rather unpopular in game-
centric consumer 3D hardware prior to the advent of pixel and vertex
shaders.

An example of a vertex shader passing down the required camera-space
positions and normals is as follows:

// GLSL
varying vec4 TightingPosition;
varying vec3 lightingNormal;

void main()

{
// The position and normal for Tighting
// must be in camera space, not homogeneous space
TightingPosition = gl ModelViewMatrix * g1 Vertex;
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8.9
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TightingNormal = g1 NormalMatrix * g1 Normal;

gl Position = 