


This excellent volume is unique in that it covers not only the basic techniques of computer
graphics and game development, but also provides a thorough and rigorous—yet very readable—
treatment of the underlying mathematics. Fledgling graphics and games developers will find it
a valuable introduction; experienced developers will find it an invaluable reference. Everything
is here, from the detailed numeric issues of IEEE floating point notation, to the correct way to
use quaternions and spherical linear interpolation to represent orientation, to the mathematics
of collision detection and rigid-body dynamics.

—David Luebke, University of Virginia,
co-author of Level of Detail for 3D Graphics

When it comes to software development for games or virtual reality, you cannot escape the math-
ematics. The best performance comes not from superfast processors and terabytes of memory,
but from well-chosen algorithms. With this in mind, the techniques most useful for developing
production-quality computer graphics for Hollywood blockbusters are not the best choice for
interactive applications. When rendering times are measured in milliseconds rather than hours,
you need an entirely different perspective.

Essential Mathematics for Games and Interactive Applications provides this perspective.
While the mathematics are rigorous and perhaps challenging at times, Van Verth and Bishop
provide the context for understanding the algorithms and data structures needed to bring games
and VR applications to life. This may not be the only book you will ever need for games and VR
software development, but it will certainly provide an excellent framework for developing robust
and fast applications.

—Ian Ashdown, President, ByHeart Consultants Limited

With Essential Mathematics for Games and Interactive Applications, Van Verth and Bishop have
provided invaluable assistance for professional game developers looking to shore up weaknesses
in their mathematical training. Even if you never intend to write a renderer or tune a physics
engine, this book provides the mathematical and conceptual grounding needed to understand
many of the key concepts in rendering, simulation, and animation.

—Dave Weinstein, Microsoft, Red Storm Entertainment

Geometry, trigonometry, linear algebra, and calculus are all essential tools for 3D graphics. Math-
ematics courses in these subjects cover too much ground, while at the same time glossing over the
bread-and-butter essentials for 3D graphics programmers. In Essential Mathematics for Games
and Interactive Applications, Van Verth and Bishop bring just the right level of mathematics out
of the trenches of professional game development. This book provides an accessible and solid
mathematical foundation for interactive graphics programmers. If you are working in the area
of 3D games, this book is a “must have.”

—Jonathan Cohen, Department of Computer Science,
Johns Hopkins University,

co-author of Level of Detail for 3D Graphics

It’s the book with all the math you need for games.

—Neil Kirby, Bell Labs

As games become ever more sophisticated, mathematics and technical programming skills
become increasingly important to have in your toolbox. Essential Math provides a solid foun-
dation in many critical areas. You will find many topics covered in detail: from linear algebra
to calculus, from physics to rasterization. Some of this will be review material, but you will
undoubtedly learn something new and, most importantly, something useful.

—Erin Catto, Blizzard Entertainment
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Preface

Writing a book is an adventure. To begin with, it is a toy and an amusement;
then it becomes a mistress, and then it becomes a master, and then a tyrant. The
last phase is that just as you are about to be reconciled to your servitude, you
kill the monster, and fling him out to the public. — Sir Winston Churchill

The Adventure Begins

As humorous as Churchill’s statement is, there is a certain amount of truth to it; writing
this book was indeed an adventure. There is something about the process of writing,
particularly a nonfiction work like this, that forces you to test and expand the limits
of your knowledge. We hope that you, the reader, benefit from our hard work.

How does a book like this come about? Many of Churchill’s books began with his
experience — particularly his experience as a world leader in wartime. This book had
a more mundane beginning: Two engineers at Red Storm Entertainment, separately,
asked Jim to teach them about vectors. These engineers were 2D game programmers,
and 3D was not new, but was starting to replace 2D at that point. Jim’s project was
in a crunch period, so he didn’t have time to do much about it until proposals were
requested for the annual Game Developers Conference. Remembering the engineers’
request, he thought back to the classic “Math for SIGGRAPH” course from SIGGRAPH
1989, which he had attended and enjoyed. Jim figured that a similar course, at that
time titled “Math for Game Programmers,” could help 2D programmers become 3D
programmers.

The course was accepted, and together with a co-speaker, Marcus Nordenstam,
Jim presented it at GDC 2000. The following years (2001–2002) Jim taught the course
alone, as Marcus had moved from the game industry to the film industry. The sub-
ject matter changed slightly as well, adding more advanced material such as curves,
collision detection, and basic physical simulation.

It was in 2002 that the seeds of what you hold in your hand were truly planted.
At GDC 2002, another GDC speaker, whose name, alas, is lost to time, recommended
that Jim turn his course into a book. This was an interesting idea, but how to get it
published? As it happened, Jim ran into Dave Eberly at SIGGRAPH 2002, and he was
looking for someone to write just that book for Morgan Kaufmann. At the same time,
Lars, who was working at Numeric Design Limited at the time, was presenting some

xix



xx Preface

of the basics of rendering on handheld devices as part of a SIGGRAPH course. Jim and
Lars discussed the fact that handheld 3D rendering had brought back some of the “lost
arts” of 3D programming, and that this might be included in a book on mathematics
for game programming.

Thus, a co-authorship was formed. Lars joined Jim in teaching the GDC 2003
version of what was now called “Essential Math for Game Programmers,” and simul-
taneously joined Jim to help with the book, helping to expand the topics covered to
include numerical representations. As we began to flesh out the latter chapters of the
outline, Lars was finding that the advent of programmable shaders on consumer 3D
hardware was bringing more and more low-level lighting, shading, and texturing ques-
tions into his office at NDL. Accordingly, the planned single chapter on “texturing and
antialiasing” became three, covering a wider selection of these rendering topics.

By early 2003, we were furiously typing the first full draft of the first edition of
this book, and by GDC 2004 the book was out. Having defeated the dragon, we retired
to our homes to live out the rest of our quiet little lives.

Or so we thought.

The Adventure Continues

Response to the first edition was quite positive, and the book continued to sell well
beyond the initial release. Naturally, thoughts turned to what we could do to improve
the book beyond what we already created.

In reviewing the topic list, it was obvious what the most necessary change was.
Within a year or so of the publication of the first edition, programmable shading had
revolutionized the creation of 3D applications on game consoles and on PC. While the
first edition had provided readers with many of the fundamentals behind the mathe-
matics used in shaders, it stopped short of actually discussing them in detail. It was
clear that the second edition needed to embrace shaders completely, applying the
mathematics of the earlier chapters to an entirely new set of rendering content. So
the single biggest change in the second edition is a move to a purely shader-based
rendering pipeline.

We also sent the book to reviewers to ask them what they would like to see added.
The two most common requests were information about random numbers and the
addition of problems and exercises. So we are providing both. A brand new chapter
on probability and random numbers has been added, and problems and exercises for
each chapter have been added to the CD in the back of the book. In addition, the entire
book has been revised to add corrections and make the content flow better. We hope
you’ll find our efforts worthwhile.

Both times, the experience was fascinating, sometimes frustrating, but ultimately
deeply rewarding. Hopefully, this fascination and respect for the material will be con-
veyed to you, the reader. The topics in this book can each take a lifetime to study to a
truly great depth; we hope you will be convinced to try just that, nonetheless!

Enjoy as you do so, as one of the few things more rewarding than programming
and seeing a correctly animated, simulated, and rendered scene on a screen is the
confidence of understanding how and why everything worked. When something in a 3D
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system goes wrong (and it always does), the best programmers are never satisfied with
“I fixed it, but I’m not sure how;” without understanding, there can be no confidence in
the solution, and nothing new is learned. Such programmers are driven by the desire to
understand what went wrong, how to fix it, and learning from the experience. No other
tool in 3D programming is quite as important to this process than the mathematical
bases1 behind it.

Those Who Helped Us Along the Road

In a traditional adventure the protagonists are assisted by various characters that pass
in and out of the pages. Similarly, while this book bears the names of two people on
the cover, the material between its covers bears the mark of many, many more. We
would like to thank a few of them here.

The folks at our publisher, Elsevier, were extremely patient with both of us as we
made up for being more experienced this time around by being more busy and less
responsive! Chris Simpson, Laura Lewin, Georgia Kennedy, and Paul Gottehrer were
all patient, professional, and flexible when we most needed it.

In addition, credit is still due to the folks at Morgan Kaufmann who helped us
publish the first edition. Tim Cox, our editor, and Stacie Pierce and Richard Camp,
his assistants, as well as Troy Lilly (in production) were patient and helpful in the
daunting task of leading two first-time authors through the process. Special thanks
are due to Dave Eberly, the series editor of our first edition, who read most of the
book several times and provided great encouragement (and the occasional scolding)
through the entire process, one he’s been through firsthand several times.

Our reviewers were top-notch. Together, Erin Catto and Chad Robertson reviewed
the entire second edition of the book. Robert Brown, Matthew McCallus, Greg Stel-
mack, and Melinda Theilbar were invaluable for their comments on the random
numbers chapter. Ian Ashdown, Steven Woodcock, John O’Brien, J.R. Parker, Neil
Kirby, John Funge, Michael van Lent, Peter Norvig, Tomas Akenine-Möller, Wes Hunt,
Peter Lipson, Jon McAllister, Travis Young, Clark Gibson, Joe Sauder, and Chris Stoy
each reviewed parts of the first edition or the proposals for them. Despite having tight
deadlines, they all provided page after page of useful feedback, keeping us honest and
helping us generate a better arc to the material. Several of them went well above and
beyond the call of duty, providing detailed comments and even re-reading sections of
the book that required significant changes. Finally, thanks also to Victor Brueggemann
and Garner Halloran, who asked Jim the questions that started this whole thing off
five years ago.

Jim and Lars would like to acknowledge the folks at their jobs at NVIDIA Corpo-
ration, who were very understanding with respect to the time-consuming process of
creating a book. Also, thanks to the talented engineers at this and previous companies
who provided the probing discussions and great questions that led to and continually
fed this book.

1. Vector or otherwise.
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In addition, Jim would like to thank Mur and Fiona, his wife and daughter, who
were willing to put up with this a second time after his long absences the first time
through; his sister, Liz, who provided illustrations for an early draft of this text; and
his parents, Jim and Pat, who gave him the resources to make it in the world and
introduced him to the world of computers so long ago.

Lars would like to thank Jen, his wife, who somehow had the courage to survive
a second edition of the book even after being promised that the first edition “was it;”
and his parents, Steve and Helene, who supported, nutured, and taught him so much
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The (Continued) Rise of 3D Games

Over the past decade or so (driven by increasingly powerful computer and video
game console hardware), three-dimensional (3D) games have expanded from custom-
hardware arcade machines to the realm of hardcore PC games, to consumer set-top
video game consoles, and even to handheld devices such as personal digital assistants
(PDAs) and cellular telephones. This explosion in popularity has lead to a corre-
sponding need for programmers with the ability to program these games. As a result,
programmers are entering the field of 3D games and graphics by teaching themselves
the basics, rather than a classic college-level graphics and mathematics education. At
the same time, many college students are looking to move directly from school into the
industry. These different groups of programmers each have their own set of skills and
needs in order to make the transition. While every programmer’s situation is different,
we describe here some of the more common situations.

Many existing, self-taught 3D game programmers have strong game experi-
ence and an excellent practical approach to programming, stressing visual results
and strong optimization skills that can be lacking in college-level computer science
programs. However, these programmers are sometimes less comfortable with the
conceptual mathematics that form the underlying basis of 3D graphics and games.
This can make developing, debugging, and optimizing these systems more of a
trial-and-error exercise than would be desired.

Programmers who are already established in other specializations in the game
industry, such as networking or user interfaces, are now finding that they want to
expand their abilities into core 3D programming. While having experience with a wide
range of game concepts, these programmers often need to learn or refresh the basic
mathematics behind 3D games before continuing on to learn the applications of the
principles of rendering and animation.

On the other hand, college students entering (or hoping to enter) the 3D games
industry often ask what material they need to know in order to be prepared to work on
these games. Younger students often ask what courses they should attend in order to
gain the most useful background for a programmer in the industry. Recent graduates,
on the other hand, often ask how their computer graphics knowledge best relates to
the way games are developed for today’s computers and game consoles.

We have designed this book to provide something for each of these groups
of readers. We attempt to provide readers with a conceptual understanding of the

xxiii
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mathematics needed to create 3D games, as well as an understanding of how these
mathematical bases actually apply to games and graphics. The book provides not only
theoretical mathematical background, but also many examples of how these concepts
are used to affect how a game looks (how it is rendered) and plays (how objects move
and react to users). Each type of reader is likely to find sections of the book that, for
them, provide mainly refresher courses, a new understanding of the applications of
basic mathematical concepts, or even completely new information. The specific sec-
tions that fall into each category for a particular reader will, of course, depend on the
reader.

How to Read This Book

Perhaps the best way to discuss any reader’s approach to reading this book is to think
in terms of how a 3D game or other interactive application works at the highest level.
Most readers of this book likely intend to apply what they learn from it to create,
extend, or fix a 3D game or other 3D application. Each chapter in this book deals with
a different topic that has applicability to some or all of the major parts of a 3D game.

Game Engines

An interactive 3D application such as a game requires quite a large amount of code
to do all of the many things asked of it. This includes representing the virtual world,
animating parts of it, drawing that virtual world, and dealing with user interaction in
a game-relevant manner. The bulk of the code required to implement these features is
generally known as a game engine. Game engines have evolved from small, simple, low-
level rendering systems in the early 1990s to massive and complex software systems in
modern games, capable of rendering detailed and expansive worlds, animating realistic
characters, and simulating complex physics. At their core, these game engines are
really implementations of the concepts discussed throughout this book.

Initially, game engines were custom affairs, written for a single use as a part of
the game itself, and thrown away after being used for that single game project. Today,
game developers have several options when considering an engine. They may pur-
chase a commercial engine from another company and use it unmodified for their
project. They may purchase an engine and modify it very heavily to customize their
application. Finally, they may write their own, although most programmers choose to
use such an internally developed engine for multiple games to offset the large cost of
creating the engine.

In any of these cases, the developer must still understand the basic concepts of
the game engine. Whether as a user, a modifier, or an author of a game engine, the
developer must understand at least a majority of the concepts presented in this book.
To better understand how the various chapters in this book surface in game engines,
we first present a common main loop as it might appear in a game engine:

1. Draw the current configuration of the game’s scene to the screen.

2. Animate the characters in the scene based on animator-created sequences (e.g.,
soccer players running downfield).
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3. Detect collisions between the characters and objects (e.g., the soccer ball
entering the goal or two players sliding into one another).

4. React to these collisions and basic forces such as gravity in the scene in a
physically correct manner (e.g., the soccer ball in flight).

All of these steps will need to be done for each frame to present the player with
a convincing game experience. Thus, the code to implement the steps above must be
correct and optimal.

Chapters 1–5: The Basics

Perhaps the most core parts of any game engine are the low-level mathematical and
geometric representations and algorithms. The pieces of code will be used by each and
every step listed above. Chapter 1 provides the lowest-level basis for this. It discusses
the practicalities of representing real numbers on a computer, with a focus on the
issues most likely to affect the development of a 3D game engine for a PC, console, or
handheld device.

Chapter 2 provides a focused review of vectors and points, objects that are used
in all game engines to represent locations, directions, velocities, and other geometric
quantities in all aspects of a 3D application. Chapters 3 and 4 review the basics of
linear and affine algebra as they relate to orienting, moving, and distorting the objects
and spaces that make up a virtual world. Finally, Chapter 5 introduces the quaternion,
a very powerful nonmatrix representation of object orientation that will be pivotal to
the later chapters on animation and simulation.

Three-dimensional engine code that implements all of these fundamental objects
must be built carefully and with a good understanding of both the underlying mathe-
matics and programming issues. Otherwise, the game engine built on top of these basic
objects or functions will be based upon a poor foundation. Many game programmers’
multiday debugging sessions have ended with the realization that the complex bug
was rooted in an error in the engine’s basic mathematics code.

Some readers will have a passing familiarity with the topics in these chapters.
However, most readers will want to start with these chapters, as many of the topics
are covered in more conceptual detail than is often discussed in basic graphics texts.
Readers new to the material will want to read in detail, while those who already know
some linear algebra can use the chapters to fill in any missing background. All of these
chapters form a basis for the rest of the book, and an understanding of these topics,
whether existing or new, will be key to successful 3D programming.

Chapters 6–9: Rendering

Chapters 6–9 apply the foundational objects detailed in Chapters 1–5 to explain step 1
of the game engine main loop: the rendering or drawing pipeline, perhaps the best-
known part of any game engine. In some game engines, more time and effort is spent
designing, programming, and tuning the rendering pipeline than the rest of the engine
in its entirety. Chapter 6 describes the mathematics and geometry behind the virtual
cameras used to view the scene or game world. Chapter 7 describes the representation
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of color and the concept of shaders, which are short programs that allow modern
graphics hardware to draw the scene objects to the display device. Chapter 8 explains
how to use these programmable shaders to implement simple approximations of real-
world lighting. The rendering section concludes with Chapter 9, which details the
methods used by low-level rendering systems to draw to the screen. An understanding
of these details can allow programmers to create much more efficient and artifact-free
rendering code for their engines.

Chapters 10–13: Animation and Physics

The game engine loop’s step 2, animating characters and other objects based on data
created by computer animators or motion-captured data, is introduced in Chapter 10.
This chapter discusses methods for smoothly animating the position, orientation, and
appearance of objects in the virtual game world. The importance of good, complex
character and object animation in modern engines continues to grow as new games
attempt to create smoother, more convincing representations of athletes, rock stars,
soldiers, and other human characters.

Chapter 11 covers another element for adding realism to games: random num-
bers. Everything up to this point has been carefully determined and planned by the
programmer or artist. Adding randomness adds the unexpected behavior that we see
in real life. Gunshots are not always exact, clouds are not perfectly spherical, and walls
are not pristine. This chapter discusses how to handle randomness in a game, and how
we can get effects such as those discussed above.

Step 3, detecting collisions, is discussed in Chapter 12. This chapter describes the
mathematics and programming behind detecting when two game objects touch, inter-
sect, or penetrate. Many genres of game have exacting requirements when it comes to
collision, be it a racing game, a sports title, or a military simulation.

Finally, step 4, reacting in a realistic manner to physical forces and collisions, is
covered in Chapter 13. This chapter describes how to make game objects behave and
react in physically convincing ways.

Put together, the chapters that form this book are designed to give a good basis
for the foundations of a game engine, details on the ways that engines represent and
draw their virtual worlds, and an introduction to making those worlds seem real and
active.

Interactive Demo Applications

Source Code

Demo

Name

Three-dimensional games and graphics are, by their nature, not only visual but
dynamic. While figures are indeed a welcome necessity in a book about 3D applica-
tions, interactive demos can be even more important. It is difficult to truly understand
such topics as lighting, quaternion interpolation, or physical simulation without
being able to see them work firsthand and to interact with these complex systems.
This book includes a CD-ROM of source code and demonstrations that are designed
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to illustrate the concepts in a way that is analogous to the static figures in the
book itself. Throughout the book, you will find references to interactive demos that
may be found on the CD-ROM. Whenever a topic is illustrated with an interactive
demo, a special icon like the one seen next to this paragraph will appear in the
margin.

Support Libraries

Source Code

Library

Name

In addition to the source code for each of the demos, the CD-ROM includes the sup-
porting libraries used to create the demos, with full source code. Often, code from
these supporting libraries is excerpted in the book itself in order to explain how the
particular concept is implemented. In such situations, an icon will appear in the mar-
gin to note where the library code may be found on the CD-ROM. This source code
is designed to allow readers to modify and experiment themselves, as a way of better
understanding the way the code works.

The source code is written entirely in C++, a language that is likely to be familiar
to most game developers. C++ was chosen because it is one of the most commonly
used languages in 3D game development and because vectors, matrices, quaternions,
and graphics algorithms decompose very well into C++ classes. In addition, C++’s
support of operator overloading means that the math library can be implemented
in a way that makes the code look very similar to the mathematical derivations in
the text. However, in some sections of the text, the class declarations as printed
in the book are not complete with respect to the code on the CD-ROM. Often,
class members that are not relevant to the particular discussion (especially mem-
ber variable accessor and “housekeeping” functions) have been omitted for clarity.
These other functions may be found in the full class declarations/definitions on the
CD-ROM.

Note that we have modified our mathematical notation slightly to allow our equa-
tions to be as compatible as possible with the code. Mathematicians normally start
indexing with 1, for example, P1, P2, . . . , Pn. This does not match how indexing is
done in C++: P[0] is the first element in the array P. To avoid this disconnect, in our
equations we will be using the convention that the starting element in a list is indexed
as 0; thus, P0, P1, . . . , Pn−1. This should allow for a direct translation from equation to
code.

Math Libraries

All of the demos use a shared core math library called IvMath, which includes C++
classes that implement vectors and matrices of different dimensions, along with a few
other basic mathematical objects discussed in the book. This library is designed to be
useful to readers beyond the examples supplied with the book, as the library includes
a wide range of functions and operators for each of these objects, some of which are
beyond the scope of the book’s demos.
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The animation demos use a shared library called IvCurves, which includes classes
that implement spline curves, the basic objects used to animate position, IvCurves is
built upon IvMath, extending this basic functionality to include animation. As with
IvMath, the IvCurves library is likely to be useful beyond the scope of the book, as
these classes are flexible enough to be used (along with IvMath) in other applications.

Finally, the simulation demos use a shared library called IvCollision, which
implements basic object intersection (collision) data structures and algorithms. Build-
ing on the IvMath library, this set of classes and functions forms not only the basis for
the later demos in the book, but also is an excellent starting point for experimentation
with other forms of object collision and physics modeling.

Engine and Rendering Libraries

In addition to the math libraries, the CD-ROM includes a set of classes that implement
a simple game like application framework, basic rendering, input handling, and timer
functionality. All of these functions are grouped under the heading of game engine
functionality, and are located in the IvEngine library. The engine’s rendering code
takes the form of a set of renderer-abstraction classes that simplify the interfaces
between the C++ classes in IvMath and the C-based, low-level rendering application
programmer interfaces (APIs). This code is included as a part of the rendering library
IvGraphics. It includes renderer setup, basic render-state management, and rendering
of simple geometric primitives, such as spheres, cubes, and boxes.

Furthermore, a set of basic classes that implement a simple hierarchial data struc-
ture called a scene graph are included in the library IvScene. The classes in IvScene
use and depend on the functionality of the IvCollision library. As a result, to avoid
unnecessary code dependencies, the scene graph classes were placed in their own
library, rather than in IvEngine.

Since this book focuses on the mathematics and concepts behind 3D games, we
chose not to center the discussion around a large-scale, general 3D rendering engine.
Doing so would introduce an extra layer of indirection that would not serve the concep-
tual requirements of the book. Valuable real estate in the rendering chapters would be
spent on background in the use of a particular engine — the one written for the book.
For an example and discussion of a full, hierarchical rendering engine, the reader is
encouraged to read David Eberly’s 3D Game Engine Design [25].

We have opted to implement our rendering system and examples using two stan-
dard SDKs: the multiplatform OpenGL [83] and the popular Direct3D DX9 [47]. We
also use the utility toolkits provided with these SDKs (OpenGL’s GLUT and Direct3D’s
D3DX) to implement cross-platform renderer setup and input handling, neither of
which are core topics of this book.

Exercises and Supplementary Material

In addition to the sample code, we have included some useful reading material on the
CD-ROM for those who haven’t absorbed enough of our luminous prose. Each chapter
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has an associated set of exercises, ranging from easy to hard questions, that should
help those readers interested in testing their understanding of the material within.
Certain chapters also have supplemental material that unfortunately didn’t make its
way into the book proper due to space considerations. Those chapters have notes at
their end indicating that such material is available on the CD-ROM.

References and Further Reading

Hopefully, this book will leave readers with a desire to learn even more details and
the breadth of the mathematics involved in creating high-performance, high-quality
3D games. Wherever possible, we have included references to other books, articles,
papers, and websites that detail particular subtopics that fall outside the scope of this
book. The full set of references may be found at the back of the book.

We have attempted to include references that the vast majority of readers should
be able to locate. When possible, we have referenced recent and/or standard indus-
try texts and well-known conference proceedings. However, in some cases we have
included references to older magazine articles and technical reports when we found
those references to be particularly complete, seminal, or well written. In some cases,
older references can be easier for the less-experienced reader to understand, as they
often tend to assume less common knowledge when it comes to computer graphics
and game topics.

In the past, older magazine articles and technical reports were notoriously difficult
for the average reader to locate. However, the Internet and digital publishing have
made great strides toward reversing this trend. For example, the following sources
have made several classes of resources far more accessible:

■ The magazine most commonly referenced in this book, Game Developer, offers
CD-ROMs that contain every issue of the magazine ever published. Copies of
these CD-ROMs are available from www.gdmag.com. Several other technical
magazines also offer such CD-ROMs.

■ Technical societies are now placing major historical publications into their “dig-
ital libraries,” which are often made accessible to members. The Association
for Computing Machinery (ACM) has done this via their ACM Digital Library,
which is available to ACM members. As an example, the full text of the entire
collection of papers from all SIGGRAPH conferences (the conference proceed-
ings most frequently referenced in this book) is available electronically to ACM
SIGGRAPH members.

■ Other papers and technical reports are often available on the Internet. The two
most common methods of finding these resources are via publication portals
such as Citeseer (www.citeseer.com) and via the authors’ personal homepages
(if they have them). Most of the technical reports referenced in this book are
available online from such sources. Owing to the dynamic nature of the Internet,
we suggest using a search engine if the publication portals do not succeed in
finding the desired article.
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For further reading, we suggest several books that cover topics related to this book
in much greater detail. In most cases they assume that the reader is familiar with the
concepts discussed in this book. David Eberly’s 3D Game Engine Design [25] discusses
the design and implementation of a full game engine, focusing mostly on graphics and
animation. Books by Gino van den Bergen [108] and Christer Ericson [32] cover topics
in interactive collision detection. Finally, Eberly [27] and Millington [76] provide a
more advanced discussion of a wide range of physical simulation topics.



Chapter1
Real-World
Computer Number
Representation

1.1 Introduction

In this chapter we’ll discuss what is perhaps the most fundamental basis
upon which three-dimensional (3D) graphics pipelines are built: computer
representation of numbers, particularly real numbers. While 3D programmers
often use the computer representations (approximations) of real numbers suc-
cessfully without any understanding of how they are implemented, this can
lead to subtle bugs and performance problems at inopportune stages in the
development of an application. Most basic undergraduate computer architec-
ture books [106] present the basics of integral data types (e.g., int and unsigned
int, short, etc. in C/C++), but give only brief introductions to floating-point
and other nonintegral number representations. Since the mathematics of 3D
graphics are generally real-valued (as we shall see from the ubiquity of R,
R

2, and R
3 in the coming chapters), it is important for anyone in the field

to understand the features, limitations, and idiosyncracies of the computer
representation of these nonintegral types.

In this chapter we will discuss the major computer representation of
the real numbers, floating-point, along with the associated bitwise formats,
basic operations, features, and limitations. By design, we will transition
from general mathematical discussions of number representation toward
implementation-related topics of specific relevance to 3D graphics program-
mers. Most of the chapter will be spent on the ubiquitous Institute of
Electrical and Electronic Engineers (IEEE) floating-point numbers, espe-
cially discussions of floating-point limitations that often cause issues in

1
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3D pipelines. A brief case study of floating-point-related performance issues
in a real application is also presented.

We will assume that the reader is familiar with the basic concepts of
integer and whole-number representations on modern computers, including
signed representation via two’s complement, range, overflow, common stor-
age lengths (8,16, and 32 bits), standard C and C++ basic types (int, unsigned
int, short, etc.), and type conversion. For an introduction to these concepts
of binary number representation, we refer the reader to a basic computer
architecture text, such as Stallings [106], and to the C++ specification [30].

1.2 Representing Real Numbers

Real numbers are, to most developers, the heart and soul of a 3D graphics
system. Most of the rest of the text is based upon real numbers and spaces
such as R

2 and R
3. They are the most flexible and powerful of the number rep-

resentations on most computers and, not surprisingly, the most complicated
and problematic. We will present the methods that are used to represent real
numbers on computers today and will include numerous sections describing
common issues that arise from the use of these representations in real-world
applications.

The well-known issues relating to storage of integers (such as overflow)
remain pertinent issues with respect to real-number representation. However,
real-number representations add additional complexities that will result in
implementation trade-offs, subtle errors, and difficult-to-trace performance
issues that can easily confuse the programmer.

1.2.1 Approximations

While computer representations of whole numbers (unsigned int) and inte-
gers (int) are limited to a finite subset of their pure counterparts, in each case
the finite set is contiguous; that is, if i and i + 2 are both representable, then
i+1 is also representable. Inside the range defined by the minimum and max-
imum representable integer values, all integers can be represented exactly.
This is possible because any finitely bounded range of integers contains a
finite number of elements.

When dealing with real numbers, however, this is no longer true. A subset
of real numbers can have infinitely many elements even when bounded by
finite minimal and maximal values. As a result, no matter how tightly we
bound the range of real numbers (other than the trivial case of Rmin = Rmax)
that we choose to represent, we will be unable to represent that subset of the
real numbers exactly. Issues of both range and precision will thus be constant
companions over the course of our discussion of real-number representations.
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In order to adequately understand the representations of real numbers, we
need to understand the concept of precision and error.

1.2.2 Precision and Error

For any numerical representation system, we imagine a generic function
Rep(A), which returns the value in that system that is closest to the value
A. In a perfect representation system, Rep(A) = A for all values of A. When
representing real numbers on a computer, however, even limiting range to
finite extremes will not allow us to represent all numbers in the bounded
range exactly. Rep(A) will be a many-to-one mapping, with infinitely many
real numbers A mapping to each distinct value returned by Rep(A). For each
such distinct Rep(A), almost all values A that map to it will not be represented
exactly. In other words, for almost all real values A, Rep(A) �= A. The obvious
result in such cases is that (Rep(A)−A) �= 0. The representation in such a case
is an approximation of the actual value.

Making use of (Rep(A)−A), we can define several derived values that form
metrics of the error induced by representing A in the representation system.
Two such error metrics are called absolute error and relative error.

The simplest way to represent error is absolute error, which is defined as

AbsError = |Rep(A) − A|
This is simply the “number line” distance between the actual value and
its representation. While this value does correctly signify the difference
between the actual and representative values, it does not quantify another
important factor in representation error — the scale at which the error affects
computation.

To better understand this scale factor, imagine a system of measurement
that is accurate to within a kilometer. Such a system might be considered
suitably accurate for measuring the 149,597,871 km between Earth and the
sun. However, it likely would be woefully inaccurate at measuring the size
of an apple (0.00011 km), which would be rounded to 0 km! Intuitively, this
is obvious, but in both cases the absolute error of representation is less than
1 km. Clearly, absolute error is not sufficient in all cases.

Relative error takes the scale of the value being approximated into
account. It does so by dividing the absolute error by the actual value being
represented. Relative error is defined as

RelError =
∣∣∣∣Rep(A) − A

A

∣∣∣∣
As such, relative error is dimensionless; even if the values being approximated
have units (such as kilometers), the relative error has no units. Due to the
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division, relative error cannot be computed for a value that approximates
zero. It is a measure of the ratio of the error to the magnitude of the value
being approximated. Revisiting our previous example, the relative errors in
each case would be (approximately)

RelErrorSun =
∣∣∣∣ 1 km
149,597,871 km

∣∣∣∣ ≈ 7 × 10−9

RelErrorApple =
∣∣∣∣0.00011 km
0.00011 km

∣∣∣∣ = 1.0

Clearly, relative error is a much more useful error metric in this case. The
Earth–sun distance error is tiny (compared to the distance being measured),
while the size of the apple was estimated so poorly that the error had the
same magnitude as the actual value. In the former case a relatively “exact”
representation was found, while in the latter case the representation is all
but useless.

1.3 Floating-Point Numbers

1.3.1 Review: Scientific Notation

In order to better introduce floating-point numbers, it is instructive to review
the well-known standard representation for real numbers in science and
engineering: scientific notation. Computer floating-point is very much analo-
gous to scientific notation.

Scientific notation (in its strictest, so-called normalized form) consists of
two parts:

1. A decimal number, called the mantissa, such that

1.0 ≤ |mantissa| < 10.0

2. An integer, called the exponent.

Together, the exponent and mantissa are combined to create the number

mantissa × 10exponent
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Any decimal number can be represented in this notation (other than 0,
which is simply represented as 0.0), and the representation is unique for each
number. In other words, for two numbers written in this form of scientific
notation, the numbers are equal if and only if their mantissas and exponents
are equal. This uniqueness is a result of the requirements that the exponent
be an integer and that the mantissa be “normalized” (i.e., have magnitude in
the range [1.0, 10.0]). Examples of numbers written in scientific notation
include

102 = 1.02 × 102

243,000 = 2.43 × 105

−0.0034 = −3.4 × 10−3

Examples of numbers that constitute incorrect scientific notation include

Incorrect = Correct

11.02 × 103 = 1.102 × 104

0.92 × 10−2 = 9.2 × 10−3

1.3.2 A Restricted Scientific Notation

For the purpose of introducing the concept of finiteness of representation, we
will briefly discuss a contrived, restricted scientific notation. We extend the
rules for scientific notation:

1. The mantissa must be written with a single, nonzero integral digit.

2. The mantissa must be written with a fixed number of fractional digits
(we define this as M digits).

3. The exponent must be written with a fixed number of digits (we
define this as E digits).

4. The mantissa and the exponent each have individual signs.

For example, the following number is in a format with M = 3, E = 2:

±1.1 2 3 × 10± 1 2

Limiting the number of digits allocated to the mantissa and exponent
means that any value that can be represented by this system can be represented
uniquely by six decimal digits and two signs. However, this also implies that
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there are a limited number of values that could ever be represented exactly
by this system, namely:

(exponents) × (mantissas) × (exponent signs) × (mantissa signs)

= (102) × (9 × 103) × (2) × (2)

= 3,600,000

Note that the leading digit of the mantissa must be nonzero (since the
mantissa is normalized), so that there are only nine choices for its value [1, 9],
leading to 9 × 10 × 10 × 10 = 9,000 possible mantissas.

This adds finiteness to both the range and precision of the notation. The
minimum and maximum exponents are

±(10E − 1) = ±(102 − 1) = ±99

The largest mantissa value is

10.0 − (10−M) = 10.0 − (10−3) = 10.0 − 0.001 = 9.999

Note that the smallest allowed nonzero mantissa value is still 1.000 due to
the requirement for normalization. This format has the following numerical
limitations:

Maximum representable value: 9.999 × 1099

Minimum representable value: −9.999 × 1099

Smallest positive value: 1.000 × 10−99

While one would likely never use such a restricted form of scientific
notation in practice, it demonstrates the basic building blocks of binary
floating-point, the most commonly used computer representation of real
numbers in modern computers.

1.4 Binary “Scientific Notation”

There is no reason that scientific notation must be written in base-10.
In fact, in its most basic form, the real-number representation known as
floating-point is similar to a base-2 version of the restricted scientific notation
given previously. In base-2, our restricted scientific notation would become

SignM × mantissa × 2SignE × exponent

where exponent is an E-bit integer, and SignM and SignE are independent bits
representing the signs of the mantissa and exponent, respectively.
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Mantissa is a bit more complicated. It is an M +1-bit number whose most
significant bit is 1. Mantissa is actually a “fixed-point” number. Fixed-point
numbers are based on a very simple observation with respect to computer
representation of integers. In the standard binary representation, each bit
represents twice the value of the bit to its right, with the least significant
bit representing 1. The following diagram shows these powers of two for a
standard 8-bit unsigned value:

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Just as a decimal number can have a decimal point, which represents the
break between integral and fractional values, a binary value can have a binary
point, or more generally a radix point (a decimal number is referred to as radix
10, a binary number as radix 2). In the common integer number layout, we
can imagine the radix point being to the right of the last digit. However, it
does not have to be placed there. For example, let us place the radix point in
the middle of the number (between the fourth and fifth bits). The diagram
would then look like this:

23 22 21 20 . 2−1 2−2 2−3 2−4

8 4 2 1 . 1
2

1
4

1
8

1
16

Now, the least significant bit represents 1/16. The basic idea behind fixed-
point is one of scaling. A fixed-point value is related to an integer with the
same bit pattern by an implicit scaling factor. This scaling factor is fixed for
a given fixed-point format and is the value of the least significant bit in the
representation. In the case of the preceding format, the scaling factor is 1/16.

The standard nomenclature for a fixed-point format is “A-dot-B,” where
A is the number of integral bits (to the left of the radix point) and B is
the number of fractional bits (to the right of the radix point). For example,
the 8-bit format in our example would be referred to as “4-dot-4.” As a further
example, regular 32-bit integers would be referred to as “32-dot-0” because
they have no fractional bits. More generally, the scaling factor for an A-dot-B
format is simply 2−B. Note that, as expected, the scaling factor for a 32-dot-0
format (integers) is 20 = 1. No matter what the format, the radix point is “fixed”
(or locked) at B bits from the least significant bit; thus the name “fixed-point.”

Since the mantissa is a 1-dot-M fixed-point number, the leading bit rep-
resents the integer 1. As mentioned above, the leading bit in the mantissa is
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defined to be 1, so the resulting fixed-point mantissa is in the range

1.0 ≤ mantissa ≤
(

2.0 − 1

2M

)
Put together, the format involves M +E+3 bits (M +1 for the mantissa, E

for the exponent, and two for the signs). Creating an example that is analogous
to the preceding decimal case, we analyze the case of M = 3, E = 2:

±1. 0 1 0 × 2
± 0 1

Any value that can be represented by this system can be represented
uniquely by 8 bits. The number of values that ever could be represented exactly
by this system is

(exponents) × (mantissas) × (exponent signs) × (mantissa signs)

= (22) × (1 × 23) × (2) × (2)

= 27 = 128

This seems odd, as an 8-bit number should have 256 different values.
However, note that the leading bit of the mantissa must be 1, since the man-
tissa is normalized (and the only choices for a bit’s value are 0 and 1). This
effectively fixes one of the bits and cuts the number of possible values in
half. We shall see that the most common binary floating-point format takes
advantage of the fact that the integral bit of the mantissa is fixed at 1.

In this case, the minimum and maximum exponents are

±(2E − 1) = ±(22 − 1) = ±3

The largest mantissa value is

2.0 − 2−M = 2.0 − 2−3 = 1.875

This format has the following numerical limitations:

Maximum representable value: 1.875 × 23 = 15
Minimum representable value: −1.875 × 23 = −15

Smallest positive value: 1.000 × 2−3 = 0.125

From the listed limits, it is quite clear that a floating-point format based
on this simple 8-bit binary notation would not be useful to most real-world
applications. However, it does introduce the basic concepts that are shared
by real floating-point representations. While there are countless possible
floating-point formats, the universal popularity of a single set of formats
(those described in the IEEE 754 specification [2]) makes it the obvious
choice for any discussion of the details of floating-point representation. In the
remainder of this chapter we will explain the major concepts of floating-point
representation as evidenced by the IEEE standard format.
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1.5 IEEE 754 Floating-Point Standard

By the early to mid-1970s, scientists and engineers were using floating-
point very frequently to represent real numbers; at the time, higher-powered
computers even included special hardware to accelerate floating-point
calculations. However, these same scientists and engineers were finding the
lack of a floating-point standard to be problematic. Their complex (and
often very important) numerical simulations were producing different results,
depending only on the make and model of computer upon which the simula-
tion was run. Numerical code that had to run on multiple platforms became
riddled with platform-specific code to deal with the differences between
different floating-point processors and libraries.

In order for cross-platform numerical computing to become a reality, a
standard was needed. Over the course of the next decade, a draft standard
for floating-point formats and behaviors became the de facto standard on most
floating-point hardware. Once adopted, it became known as the IEEE 754
floating-point standard [2], and it forms the basis of almost every hardware
and software floating-point system on the market.

While the history of the standard is fascinating [62], this section will focus
on explaining part of the standard itself, as well as using the standard and
one of its specified formats to explain the concepts of modern floating-point
arithmetic.

1.5.1 Basic Representation

The IEEE standard specifies a 32-bit “single-precision” format for floating-
point numbers, as well as a 64-bit “double-precision” format. It is this single-
precision format that is of greatest interest for most games and interactive
applications and is thus the format that will form the basis of most of the
floating-point discussion in this text. The two formats are fundamentally
similar, so all of the concepts regarding single precision are applicable to
double-precision values as well.

The following diagram shows the basic memory layout of the IEEE single-
precision format, including the location and size of the three components of
any floating-point system: sign, exponent, and mantissa:

Sign Exponent Mantissa

1 bit 8 bits 23 bits

The sign in the IEEE floating-point format is represented as an explicit
bit (the high-order bit). Note that this is the sign of the number itself (the
mantissa), not the sign of the exponent. Differentiating between positive and
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negative exponents is handled in the exponent itself (and is discussed next).
The only difference between X and −X in IEEE floating-point is the high-order
bit. A sign bit of 0 indicates a positive number, and a sign bit of 1 indicates a
negative number.

This sign bit format allows for some efficiencies in creating a floating-
point math system either in hardware or software. To negate a floating-point
number, simply “flip” the sign bit, leaving the rest of the bits unchanged. To
compute the absolute value of a floating-point number, simply set the sign bit
to 0 and leave the other bits unchanged. In addition, the sign bits of the result
of a multiplication or division are simply the exclusive-OR of the sign bits of
the operands.

As will be seen, this explicit sign bit does lead to the existence of two
zero values, one positive and one negative. However, it also simplifies the
representation of the mantissa, which is represented as unsigned.

The exponent in this case is stored as a biased number. Biased numbers
represent both positive and negative integers (inside of a fixed range) as whole
numbers by adding a fixed, positive bias. To represent an integer I, we add
a positive bias B (that is constant for the biased format), storing the result
as the whole number (nonnegative integer) W . To decode the represented
value I from its biased representation W , the formula is simply

I = W − B

To encode an integer value, the formula is

W = I + B

Clearly, the minimum integer value that can be represented is

I = 0 − B = −B

The maximal value that can be represented is related to the maximum whole
number that can be represented, Wmax. For example, with an 8-bit biased
number, that value is

I = Wmax − B = (28 − 1) − B

Most frequently, the bias chosen is as close as possible to Wmax/2, giving a
range that is equally distributed to about zero. Over the course of this chapter,
when we are referring to a biased number, the term value will refer to I, while
the term bits will refer to W .

Such is the case with the IEEE floating-point exponent, which uses 8 bits
of representation and a bias of 127. This would seem to lead to minimum and
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maximum exponents of −127 (= 0 − 127) and 128 (= 255 − 127), respectively.
However, for reasons that will be explained, the minimum and maximum
values (−127 and 128) are reserved for special cases, leading to an exponent
range of [−126, 127]. As a reference, these base-2 exponents correspond to
base-10 exponents of approximately [−37, 38].

The mantissa is normalized (in almost all cases), as in our discussion of
decimal scientific notation (where the units digit was required to have magni-
tude in the range [1, 9]). However, the meaning of “normalized” in the context
of a binary system means that the leading bit of the mantissa is always 1.
Unlike a decimal digit, a binary digit has only one nonzero value. To optimize
storage in the floating-point format, this leading bit is omitted, or hidden,
freeing all 23 explicit mantissa bits to represent fractional values (and thus
these explicit bits are often called the “fractional” mantissa bits). To decode
the entire mantissa into a rational number (ignoring for the moment the expo-
nent), assuming the fractional bits (as a 23-bit unsigned integer) are in F, the
conversion is

1.0 + F

2.023

So, for example, the fractional mantissa bits

111000000000000000000002 = 734003210

become the rational number

1.0 + 7340032.0

2.023
= 1.875

1.5.2 Range and Precision

The range of single-precision floating-point is by definition symmetric, as the
system uses an explicit sign bit. With an explicit sign bit, every positive value
has a corresponding negative value. This leaves the questions of maximal
exponent and mantissa, which when combined will represent the explicit
values of greatest magnitude. In the previous section, we found that the max-
imum base-2 exponent in single precision floating-point is 127. The largest
mantissa would be equal to setting all 23 explicit fractional mantissa bits,
resulting (along with the implicit 1.0 from the hidden bit) in a mantissa of

1.0 +
23∑
i=1

1

2i
= 1.0 + 1.0 − 1

223
= 2.0 − 1

223
≈ 2.0
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The minimum and maximum single-precision floating-point values are then

±
(

2.0 − 1

223

)
× 2127 ≈ ±3.402823466 × 1038

The precision of single-precision floating-point can be loosely approxi-
mated as follows: For a given normalized mantissa, the difference between it
and its nearest neighbor is 2−23. To determine the actual spacing between
a floating-point number and its neighbor, the exponent must be known.
Given an exponent E, the difference between two neighboring single-precision
values is

δfp = 2E × 2−23 = 2E−23

However, we note that in order to represent a value A in single precision,
we must find the exponent EA such that the mantissa is normalized (i.e., the
mantissa MA is in the range 1.0 ≤ MA < 2.0), or

1.0 ≤ |A|
2EA

< 2.0

Multiplying through, we can bound |A| in terms of 2EA :

1.0 ≤ |A|
2EA

< 2.0

2EA ≤ |A| < 2EA × 2.0

2EA ≤ |A| < 2EA+1

As a result of this bound, we can roughly approximate the entire exponent
term 2EA with |A| and substitute to find an approximation of the distance
between neighboring floating-point values around |A| (δfp) as

δfp = 2EA−23 = 2EA

223
≈ |A|

223

From our initial discussion of absolute error, we use general bound on the
absolute error equal to half the distance between neighboring representation
values:

AbsErrorA ≈ δfp × 1

2
= |A|

223
× 1

2
= |A|

224

This approximation shows that the absolute error of representation in a
floating-point number is directly proportional to the magnitude of the value
being represented. Having approximated the absolute error, we can
approximate the relative error as

RelErrorA = AbsErrorA

|A| ≈ |A|
224 × |A| = 1

224
≈ 6 × 10−8
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The relative error of representation is thus generally constant, regardless of
the magnitude of A.

1.5.3 Arithmetic Operations

In the next several sections we discuss the basic methods used to per-
form common arithmetic operations upon floating-point numbers. While few
users of floating-point will ever need to implement these operations at a bit-
wise level themselves, a basic understanding of the methods is a pivotal step
toward being able to understand the limitations of floating-point. The meth-
ods shown are designed for ease of understanding and do not represent the
actual, optimized algorithms that are implemented in hardware.

The IEEE standard specifies that the basic floating-point operations of
a compliant floating-point system must return values that are equivalent to
the result computed exactly and then rounded to the available precision. The
following sections are designed as an introduction to the basics of floating-
point operations and do not discuss the exact methods used for rounding the
results. At the end of the section, there is a discussion of the programmer-
selectable rounding modes specified by the IEEE standard.

The intervening sections include information regarding common issues
that arise from these operations, because each operation can produce prob-
lematic results in specific situations.

Addition and Subtraction

In order to add a pair of floating-point numbers, the mantissas of the two
addends first must be shifted such that their radix points are “lined up.” In a
floating-point number, the radix points are aligned if and only if their expo-
nents are equal. If we raise the exponent of a number by one, we must shift
its mantissa to the right by 1 bit. For simplicity, we will first discuss addition
of a pair of positive numbers. The standard floating-point addition method
works (basically) as follows to add two positive numbers A = SA × MA × 2EA

and B = SB × MB × 2EB , where SA = SB = 1.0 due to the current assumption
that A and B are nonnegative.

1. Swap A and B if needed so that EA ≥ EB.

2. Shift MB to the right by EA − EB bits. If EA �= EB, then this shifted MB

will not be normalized, and MB will be less than 1.0. This is needed to
align the radix points.

3. Compute MA+B by adding the shifted mantissas MA and MB directly.

4. Set EA+B = EA.
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5. The resulting mantissa MA+B may not be normalized (it may have an
integral value of 2 or 3). If this is the case, shift MA+B to the right 1 bit
and add 1 to EA+B.

Note that there are some interesting special cases implicit in this method.
For example, we are shifting the smaller number’s mantissa to the right to
align the radix points. If the two numbers differ in exponents by more than
the number of mantissa bits, then the smaller number will have all of its
mantissa shifted away, and the method will add zero to the larger value. This
is important to note, as it can lead to some very strange behavior in appli-
cations. Specifically, if an application repeatedly adds a small value to an
accumulator, as the accumulator grows, there will come a point at which
adding the small value to the accumulator will result in no change to the
accumulator’s value (the delta value being added will be shifted to zero each
iteration)!

Floating-point addition must take negative numbers into account as well.
There are three distinct cases here:

■ Both operands positive. Add the two mantissas as is and set the result
sign to positive.

■ Both operands negative. Add the two mantissas as is and set the result
sign to negative.

■ One positive operand and one negative operand. Negate (2’s complement)
the mantissa of the negative number and add.

In the case of subtraction (or addition of numbers of opposite sign), the
result may have a magnitude that is significantly smaller than either of the
operands, including a result of zero. If this is the case, there may be consider-
able shifting required to reestablish the normalization of the result, shifting
the mantissa to the left (and shifting zeros into the lowest-precision bits) until
the integral bit is 1. This shifting can lead to precision issues (see Section 1.5.6,
Catastrophic Cancelation) and can even lead to nonzero numbers that cannot
be represented by the normalized format discussed so far (see Section 1.5.5,
Very Small Values).

We have purposefully omitted discussion of rounding, as rounding the
result of an addition is rather complex to compute quickly. This complexity is
due to the fact that one of the operands (the one with the smaller exponent)
may have bits that are shifted out of the operation, but must still be considered
to meet the IEEE standard of “exact result, then rounded.” If the method were
simply to ignore the shifted bits of the smaller operand, the result could be
incorrect. You may want to refer to Hennessy and Patterson [59] for details
on the floating-point addition algorithm.
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Multiplication

Multiplication is actually rather straightforward with IEEE floating-point
numbers. Once again, the three components that must be computed are the
sign, the exponent, and the mantissa. As in the previous section, we will give
the example of multiplying two floating-point numbers, A and B.

Owing to the fact that an explicit sign bit is used, the sign of the result may
be computed simply by computing the exclusive-OR of the sign bits, producing
a positive result if the signs are equal and a negative result otherwise. The
result of the multiplication algorithm is sign-invariant.

To compute the initial exponent (this initial estimate may need to be
adjusted at the end of the method if the initial mantissa of the result is not
normalized), we simply sum the exponents. However, since both EA and EB

contain a bias value of 127, the sum will contain a bias of 254. We must
subtract 127 from the result to reestablish the correct bias:

EA×B = EA + EB − 127

To compute the result’s mantissa, we multiply the normalized source
mantissas MA and MB as 1-dot-23 format fixed-point numbers. The method for
multiplying two X-dot-Y bit-format fixed-point numbers is to multiply them
using the standard integer multiplication method and then divide the result
by 2Y (which can be done by shifting the result to the right by Y bits). For
1-dot-23 format source operands, this produces a (possibly unnormalized)
3-dot-46 result. Note from the format that the number of integral bits may
be 3, as the resulting mantissa could be rounded up to 4.0. Since the source
mantissas are normalized, the resulting mantissa (if it is not 0) must be ≥1.0,
leading to three possibilities for the mantissa MA×B: it may be normalized, it
may be too large by 1 bit, or it may be too large by 2 bits. In the latter two
cases, we add either 1 or 2 to EA×B and shift MA×B to the right by 1 or 2 bits
until it is normalized.

Rounding Modes

The IEEE specification defines four rounding modes that an implementation
must support. These rounding modes are

■ Round toward 0.

■ Round toward −∞.

■ Round toward ∞.

■ Round toward nearest.
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The specification defines these modes with specific references to bitwise
rounding methods that we will not discuss here, but the basic ideas are quite
simple. We break the mantissa into the part that can be represented (the
leading 1 along with the next 23 most significant bits), which we call M, and
the remaining lower-order bits, which we call R. Round toward 0 is also known
as chopping and is the simplest to understand; in this mode, M is used and R

is simply ignored or “chopped off.” Round toward ±∞ are modes that round
toward positive (∞) or negative (−∞) based on the sign of the result and
whether R = 0 or not, as shown in the following tables.

Round toward ∞
R = 0 R �= 0

M ≥ 0 M M + 1
M < 0 M M

Round toward −∞
R = 0 R �= 0

M ≥ 0 M M

M < 0 M M + 1

1.5.4 Special Values

One of the most important parts of the IEEE floating-point specification is its
definition of numerous special values. While these special values co-opt bit
patterns that would otherwise represent specific floating-point numbers, this
trade-off is accepted as worthwhile, owing to the nature and importance of
these special values.

Zero

The representation of 0.0 in floating-point is more complex than one might
think. Since the high-order bit of the mantissa is assumed to be 1 (and
has no explicit bit in the representation), it is not enough to simply set the
23 explicit mantissa bits to zero, as that would simply represent the number
1.0×2exponent−127. It is necessary to define zero explicitly, in this case as a num-
ber whose exponent bits are all 0 and whose explicit mantissa bits are 0. This
is sensible, as this value would otherwise represent the smallest possible nor-
malized value. Note that the exponent bits of 0 map to an exponent value of
−127, which is reserved for special values such as zero. All other numbers with
exponent value −127 (i.e., those with nonzero mantissa bits) are reserved for
a class of very small numbers called denormals, which will be described later.
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Another issue with respect to floating-point zero arises from the fact that
IEEE floating-point numbers have an explicit sign bit. The IEEE specifica-
tion defines both positive and negative 0, differentiated by only the sign bit.
To avoid very messy code, the specification does require that floating-point
comparisons of positive zero to negative zero return “equal.” However, the
bitwise representations are distinct, which means that applications should
never use bitwise equality tests with floating-point numbers! The bitwise
representations of both zeros are

+0.0 = 0 00000000 00000000000000000000000

S Exponent Mantissa

−0.0 = 1 00000000 00000000000000000000000

S Exponent Mantissa

The standard does list the behavior of positive and negative zero explicitly,
including the definitions:

(+0) − (+0) = (+0)

−(+0) = (−0)

Also, the standard defines the sign of the result of a multiplication or
division operation as negative if and only if exactly one of the signs of the
operands is negative. This includes zeros. Thus,

(+0)(+0) = +0
(−0)(−0) = +0

(−0)(+0) = −0
(−0)P = −0
(+0)P = +0
(−0)N = +0
(+0)N = −0

where P > 0 and N < 0.

Infinity

At the other end of the spectrum from zero, the standard also defines positive
infinity (∞fp) and negative infinity (−∞fp), along with rules for the behavior
of these values. In a sense the infinities are not pure mathematical values.
Rather, they are used to represent values that fall outside of the range of valid
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exponents. For example, 1.0 × 1038 is just within the range of single-precision
floating-point, but in single precision,

(1.0 × 1038)2 = 1.0 × 1076 ≈ ∞fp

The behavior of infinity is defined by the standard as follows (the standard
covers many more cases, but these are representative):

∞fp − P = ∞fp

P

∞fp

= +0

−P

∞fp

= −0

where

0 <P < ∞fp

The bitwise representations of ±∞fp use the reserved exponent value 128
and all explicit mantissa bits zeros. The only difference between the represen-
tations of the two infinities is, of course, the sign bit. The representations are
diagrammed as follows:

∞fp = 0 11111111 00000000000000000000000

S Exponent Mantissa

−∞fp = 1 11111111 00000000000000000000000

S Exponent Mantissa

Floating-point numbers with exponent values of 128 and nonzero
mantissa bits do not represent infinities. They represent the next class of
special values — nonnumerics.

Nonnumeric Values

All the following function call examples represent exceptional cases:

Function Call Issue
arcsine(2.0) Function not defined for argument.
sqrt(−1.0) Result is imaginary.
0.0/0.0 Result is indeterminate.
∞ − ∞ Result is indeterminate.



1.5 IEEE 754 Floating-Point Standard 19

In each of these cases, none of the floating-point values we have discussed
will accurately represent the situation. Here we need a value that indicates the
fact that the desired computation cannot be represented as a real number. The
IEEE specification includes a special pair of values for these cases, known
collectively as Not a Numbers (NaNs). There are two kinds of NaNs: quiet
(or silent) NaN (QNaN) and signaling NaN (SNaN). Compare the following
representations:

QNaN = 0 11111111 1[22 low-order bits indeterminate]

S Exponent Mantissa

SNaN = 0 11111111 0[22 low-order bits not all 0]

S Exponent Mantissa

Quiet Not a Numbers (Kahan [62] simply calls them NaNs) represent inde-
terminate values and are quietly passed through later computations (generally
as QNaNs). They are not supposed to signal an exception, but rather allow
floating-point code to return the fact that the result of the desired operation
was indeterminate. Floating-point implementations (hardware or software)
will generate QNaNs in cases such as those in our comparison.

SNaNs represent unrecoverable mathematical errors and signal an excep-
tion. Most floating-point units (FPUs) are designed not to generate SNaNs —
the original idea was that authors of high-level software math packages could
generate them in terminal situations. In addition, compilers could (in debug-
ging builds) set all floating-point values to SNaN, ensuring an exception if
the programmer left the values uninitialized. The realities of compilers and
operating systems make SNaNs less interesting. There have been issues in
the support for SNaNs in current compilers [62], resulting in SNaNs being
encountered very rarely.

1.5.5 Very Small Values

Normalized Mantissas and the “Hole at Zero”

One side effect of the normalized mantissa is very interesting behavior near
zero. To better understand this behavior, let us look at the smallest normalized
value (we will look at the positive case; the negative case is analogous) in
single-precision floating-point, which we will call Fmin · Fmin. This would have
an exponent of −126 and zeros in all explicit mantissa bits. The resulting
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mantissa would have only the implicit units bit set, leading to a value of

Fmin = 20 × 2−126 = 2−126

The largest value smaller than this in a normalized floating-point system
would be 0.0. However, the smallest value larger than Fmin would differ by
only 1 bit from Fmin — the least significant mantissa bit would be set. This
value, which we will call Fnext , would be simply:

Fnext = (20 + 2−23) × 2−126 = 2−126 + 2−149 = Fmin + 2−149

This leads to a rather interesting situation: The distance between Fmin and
its nearest smaller neighbor (0.0) is 2−126. This distance is much larger than
the distance between Fmin and its nearest larger neighbor, Fnext . The distance
between Fmin and Fnext is only

Fnext − Fmin = 2−149

In fact, Fmin has a sequence of approximately 223 larger neighbors that are
each a distance of 2−149 from the previous. This leaves a large “hole” of num-
bers between 0.0 and Fmin that cannot be represented with nearly the accuracy
as the numbers slightly larger than Fmin. This gap in the representation is often
referred to as the hole at zero. The operation of representing numbers in the
range (−Fmin, Fmin) with zero is often called flushing to zero.

One problem with flush-to-zero is that the subtraction of two numbers
that are not equal can result in zero. In other words, with flush-to-zero,

A − B = 0 � A = B

How can this be? See the following example:

A = 2−126 × (20 + 2−2 + 2−3)

B = 2−126 × (20)

Both of these are valid single-precision floating-point numbers. In fact, they
have equal exponents: −126. Clearly, they are also not equal floating-point
numbers: A’s mantissa has two additional 1 bits. However, their subtraction
produces:

A − B = (2−126 × (20 + 2−2 + 2−3) − (2−126 × (20))

= 2−126 × ((20 + 2−2 + 2−3) − (20))

= 2−126 × (2−2 + 2−3)

= 2−128 × (20 + 2−1)
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which would be returned as zero on a flush-to-zero floating-point system.
While this is a contrived example, it can be seen that any pair of nonequal
numbers whose difference has a magnitude less than 2−126 would demon-
strate this problem. There is a solution to this and other flush-to-zero issues,
however. The solution is known as gradual underflow, and it is discussed in
the next section.

Denormals and Gradual Underflow

The IEEE specification specifies behavior for very small numbers that avoids
this so-called hole at zero. The behavior is known as gradual underflow, and
this gradual underflow generates values called denormals, or denormalized
numbers.

The idea is quite simple. Rather than require every floating-point number
to be normalized, the specification reserves numbers with nonzero explicit
mantissa bits and an exponent of −127 for denormals. In a denormal, the
implicit high-order bit of the mantissa is 0. This allows numbers with magni-
tude smaller than 1.0 × 2−126 to be represented. In a denormal, the exponent
is assumed to be −126 (even though the actual bits would represent −127),
and the mantissa is in the range [ 1

223 , 1 − 1
223 ]. The smallest nonzero value that

can be represented with a denormal is 2−23 × 2−126 = 2−149, filling in the “hole
at zero.” Note that all nonzero floating-point values are still unique, as the
specification only allows denormalized mantissas when the exponent is −126,
the minimum valid exponent.

As an historical note, gradual underflow and denormalized value handling
were perhaps the most hotly contested of all sections in the IEEE floating-
point specification. Flush-to-zero is much simpler to implement in hardware,
which also tends to mean that it performs faster and makes the hardware
cheaper to produce. When the IEEE floating-point standard was being for-
mulated in the late 1970s, several major computer manufacturers were using
the flush-to-zero method for dealing with underflow. Changing to the use of
gradual underflow required these manufacturers to design FPU hardware or
software that could handle the unnormalized mantissas that are generated
by denormalization. This would lead either to more complex FPU hardware
or a system that emulated some or all of the denormalized computations in
software or microcode. The former could make the FPUs more expensive
to produce, while the latter could lead to greatly decreased performance of
the floating-point system when denormals are generated. However, several
manufacturers showed that it could be implemented in floating-point hard-
ware, paving the way for this more accurate method to become part of the
de facto (and later, official) standard. However, performance of denormal-
ized values is still an issue, even today. We will discuss a real-world example
of denormal performance on a modern FPU in Section 1.6.2.
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1.5.6 Catastrophic Cancelation

We have used relative error as a metric of the validity of the floating-point
representation of a given number. As we have already seen, converting real
numbers A and B into the closest floating-point approximations Afp and Bfp

generally results in some amount of relative representation error, which we
compute as:

RelErrA =
∣∣∣∣A − Afp

A

∣∣∣∣
RelErrB =

∣∣∣∣B − Bfp

B

∣∣∣∣
These relative representation errors accurately represent how well Afp

and Bfp represent A and B, but the result of adding or subtracting Afp and Bfp

may contain a much greater level of relative error. The addition or subtraction
of a pair of floating-point numbers can lead to a result with magnitude much
smaller than either of the operands. Subtracting two nearly (but not exactly)
equal values will result in a value whose magnitude is much smaller than
either of the operands.

Recall that the last step in adding or subtracting two floating-point
numbers is to renormalize the result so that the leading mantissa bit is 1.
If the result of an addition or subtraction has much lower magnitude (smaller
exponent) than the operands, then there will be some number N of leading
mantissa bits that are all zero. The mantissa must be shifted left N bits so that
the leading bit is 1 (and the exponent decremented by N, of course), renormal-
izing the number. Zeros will be shifted into all of the N lowest-order (explicit)
mantissa bits. It is these zeros that are the cause of the error, that is, the zeros
that are shifted into the lower-order bits are not actual data. Thus, the N least
significant mantissa bits may all be wrong. This can greatly compound relative
error.

As an example, imagine that we are measuring the distances between
pairs of points on the real-number line. Each of these pairs might repre-
sent the observed positions of two characters A and B in a game at two
different times, t and t + 1. We will move each character by the same
amount δ between t and t + 1. Thus, A′ = A + δ and B′ = B + δ. If we use the
values

A = 1.5

B = 107

δ = 1.5
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We can clearly see that in terms of real numbers,

A′ = 3.0

B′ = 10,000,001.5

However, if we look at the single-precision floating-point representations,
we get

A′
fp = 3.0

B′
fp = 10,000,002.0

A′ is represented exactly, but B′ is not, giving a relative error of repre-
sentation for B′

fp of

RelErrB =
∣∣∣∣ 0.5

107

∣∣∣∣
= 5 × 10−8

Quite a small relative error. However, if we compute the distances A′ − A

and B′ − B in floating-point, the story is very different:

A′
fp − Afp = 3.0 − 1.5 = 1.5 = δ

B′
fp − Bfp = 10,000,002.0 − 107 = 2.0

In the case of A′ −A, we get the expected value, δ. But in the case of B′ −B,
we get a relative error of

RelErr =
∣∣∣∣2.0 − 1.5

1.5

∣∣∣∣
= 0.3

The resulting error is much larger in the B case, even though A′ − A =
B′ − B. What is happening here can be seen by looking at the bitwise repre-
sentations:

Exponent Mantissa Bits

B = 23 100110001001011010000000
B′ = 23 100110001001011010000010

B′ − B = 23 000000000000000000000010
normalized = 1 100000000000000000000000
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In the case of B′ − B, almost all of the original mantissa bits in the
operands were canceled out in the subtraction, leaving the least significant
bits of the operands as the most significant bit of the result. Basically none
of the fractional bits of the resulting mantissa were actual data — the system
simply shifted in zeros. The precision of such a result is very low, indeed.
This is catastrophic cancelation; the significant bits are all canceled, causing
a catastrophically large growth in the representation error of the result.

The best way to handle catastrophic cancelation in a floating-point system
is to avoid it. Numerical methods that involve computing a small value as the
subtraction or addition of two potentially large values should be reformulated
to remove the operation. An example of a common numerical method that
uses such a subtraction is the well-known quadratic formula:

−B ± √
B2 − 4AC

2A

Both of the subtractions in the numerator can involve large numbers whose
addition/subtraction can lead to small results. However, refactoring of the
formula can lead to better-conditioned results. The following revised version
of the quadratic formula can be used in cases where computation of one of
the two roots involves subtracting nearly equal values. The refactored formula
avoids cancelation by replacing the subtraction with an addition:

2C

−B ∓ √
B2 − 4AC

A root that would be computed with a subtraction in the first (“classic”) version
of the quadratic formula may be computed with an addition in the second
version, and vice versa.

1.5.7 Double Precision

As mentioned, the IEEE 754 specification supports a 64-bit “double-precision”
floating-point value, known in C/C++ as the intrinsic double type. The format
is completely analogous to the single-precision format, with the following
bitwise layout:

Sign Exponent Mantissa

1 bit 11 bits 52 bits

Double-precision values have a range of approximately 10308 and can rep-
resent values smaller than 10−308. A programmer’s common response to the



1.6 Real-World Floating-Point 25

onset of precision or range issues is to switch the code to use double-precision
floating-point values in the offending section of code (or sometimes even
throughout the entire system). While double precision can solve almost all
range issues and many precision issues (though catastrophic cancelation can
still persist) in interactive 3D applications, there are several drawbacks that
should be considered prior to its use:

■ Memory. Since double-precision values require twice the storage of sin-
gle precision values, memory requirements for an application can grow
quickly, especially if arrays of values must be stored as double precision.

■ Performance. At least some of the operations on most hardware FPUs
are significantly slower when computing double-precision results. Addi-
tional expense can be incurred for conversion between single- and
double-precision values.

■ Platform issues. Not all platforms (especially game-centric platforms)
support double precision.

1.6 Real-World Floating-Point

While the IEEE floating-point specification does set the exact behavior for
a wide range of the possible cases that occur in real-world situations, in
real-world applications on real-world platforms, the specification cannot tell
the entire story. The following sections will discuss some issues that are of
particular interest to 3D game developers.

1.6.1 Internal FPU Precision

Some readers will likely try some of the exceptional cases themselves in small
test applications. In doing so, they are likely to find surprising behavior in
many situations. For example, examine the following code:

main()
{

float fHuge = 1.0e30f; // valid single precision
fHuge *= 1.0e38f; // result = infinity
fHuge /= 1.0e38f; // ????

}
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Stepping in a debugger, the following will happen on many major
compilers and systems:

1. After the initial assignment, fHuge = 1.0e30, as expected.

2. After the multiplication, fHuge = ∞fp, as expected.

3. After the division, fHuge = 1.0e30!

This seems magical. How can the system divide the single value ∞fp and
get back the original number? A look at the assembly code gives a hint. The
basic steps the compiler generates are as follows:

1. Load 1.0e30 and 1.0e38 into the FPU.

2. Multiply the two loaded values and return ∞fp, keeping the result in
the FPU as well.

3. Divide the previous result (still in the FPU) by 1.0e38 (still in the FPU),
returning the correct result.

The important item to note is that the result of each computation was
both returned and kept in the FPU for later computation. This step is where
the apparent “magic” occurs. The FPU (as per the IEEE standard) uses
high-precision (sometimes as long as long double) registers in the FPU. The
conversion to single precision happens during the transfer of values from the
FPU into memory. While the returned value in fBig was indeed ∞fp, the value
retained in the FPU was higher precision and was the correct value, 1.0e68.
When the division occurs, the result is correct, not ∞fp.

However, an application cannot count on this result. If the FPU had
to flush the intermediate values out of its registers, then the result of the
three lines above would have been quite different. For example, if significant
floating-point work had to be computed between the above multiplication
and the final division, the FPU might have run out of registers and had to
evict the high-precision version of fHuge. This can lead to odd behavior differ-
ences, sometimes even between optimized and debugging builds of the same
source code.

1.6.2 Performance

The IEEE floating-point standard specifies behavior for floating-point systems;
it does not specify information regarding performance. Just because a
floating-point implementation is correct does not mean that it is fast.
Furthermore, the speed of one floating-point operation (e.g., addition) does
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not imply much about the speed of another (e.g., square root). Finally, not all
input data are to be considered equal in terms of performance. The following
sections describe examples of some real-world performance pitfalls found in
floating-point implementations.

Performance of Denormalized Numbers

During the course of creating a demo for a major commercial 3D game engine,
one of the authors found that in some conditions, the performance of the
demo dropped almost instantaneously by as much as 20 percent. The code
was profiled and it was found that one section of animation code was suddenly
running 10 to 100 times slower than in the previous frames. An examination
of the offending code determined that it consisted of nothing more than basic
floating-point operations, specifically, multiplications and divisions. More-
over, there were no loops in the code, and the number of calls to the code was
not increasing. The code itself was simply taking 10 to 100 times longer to
execute.

Further experiments outside of the demo found that a fixed set of input
data (captured from tests of the demo) could always reproduce the problem.
The developers examined the code more closely and found that very small
nonzero values were creeping into the system. In fact, these numbers were
denormalized. Adjusting the numbers by hand even slightly outside of the
range of denormals and into normalized floating-point values instantly
returned the performance to the original levels. The immediate thought
was that exceptions were causing the problem. However, all floating-point
exceptions were disabled (masked) in the test application.

To verify the situation, the developers wrote an extremely simple test
application. Summarized, it was as follows:

float TestFunction(float fValue)
{

return fValue;
}

main()
{

int i;
float fTest;
// Start "normal" timer here
for (i = 0; i < 10000; i++)
{

// 1.0e-36f is normalized in single precision
fTest = TestFunction(1.0e-36f);

}
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// End "normal" timer here
// Start "denormal" timer here
for (i = 0; i < 10000; i++)
{

// 1.0e-40f is denormalized in single precision
fTest = TestFunction(1.0e-40f);

}
// End "denormal" timer here

}

Having verified that the assembly code generated by the optimizer did
indeed call the desired function the correct number of times with the desired
arguments, they found that the denormal loop took 30 times as long as the
normal loop (even with exceptions masked). A careful reading of Intel’s per-
formance recommendations [60] for the Pentium series of central processing
units (CPUs) found that any operation (including simply loading to a floating-
point register) that produced or accepted as an operand a denormal value was
run using so-called assist microcode, which is known to be much slower than
standard FPU instructions. Intel’s recommendation was for high-performance
code to manually clamp small values to zero as need be.

Intel had followed the IEEE 754 specification, but had made the design
decision to allow exceptional cases such as denormals to cause very signif-
icant performance degradation. An application that had not known of this
slowdown on the Pentium processor may have avoided manually clamping
small values to zero, out of fear of slowing the application down with extra
conditionals. However, armed with this processor-specific information, it was
much easier to justify clamping small numbers that were not already known
to be normal. The values in question were known to be normalized to be
between 0.0 and 1.0. As a result, it was more than safe to clamp small values
to zero.

Software Floating-Point Emulation

Applications should take extreme care on new platforms to determine whether
or not the platform supports hardware-assisted floating-point. In order to
ensure that code from other platforms ports and executes without major
rewriting, some compilers supply software floating-point emulation libraries
for platforms that do not support floating-point in hardware. This is espe-
cially common on popular embedded and handheld chip sets such as Intel’s
StrongARM and XScale processors [60]. These processors have no FPUs, but
C/C++ floating-point code compiled for these devices will generate valid,
working emulation code. The compilers will often do this silently, leaving the
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uninformed developer with a working program that exhibits horrible floating-
point performance, in some cases hundreds of times slower than could be
expected from a hardware FPU.

It’s worth reiterating that not all FPUs support both single and double
precision. Some major game consoles, for example, will generate FPU code
for single-precision values and emulation code for double-precision values.
As a result, careless use of double precision can lead to much slower code.
In fact, it is important to remember that double precision can be intro-
duced into an expression in subtle ways. For example, remember that in
C/C++, floating-point constants are double precision by default, so whenever
possible, explicitly specify constants as single precision, using the f suffix.
The difference between double- and single-precision performance can be as
simple as 1.0 instead of 1.0f.

1.6.3 IEEE Specification Compliance

While major floating-point errors in modern processors are relatively rare
(even Intel was caught off guard by the magnitude of public reaction to what
it considered minor and rare errors in the floating-point divider on the orig-
inal Pentium chips), this does not mean that it is safe to assume that all
floating-point units in modern CPUs are always fully compliant to IEEE spec-
ifications and support both single and double precision. The greatest lurking
risk to modern developers assuming full IEEE compliance is conscious design
decisions, not errors on the part of hardware engineers. However, in most
cases, for the careful and attentive programmer, these new processors offer
the possibilities of great performance increases to 3D games.

As more and more FPUs are designed and built for multimedia and 3D
applications (rather than the historically important scientific computation
applications for which earlier FPUs were designed), manufacturers are start-
ing to deviate from the IEEE specification, optimizing for high performance
over accuracy. This is especially true with respect to the “exceptional” cases
in the spec, such as denormals, infinity, and Not a Numbers.

Hardware vendors make the argument that while these special values are
critically important to scientific applications, for 3D games and multimedia
they generally occur only in error cases that are best handled by avoiding
them in the first place.

Intel’s SSE

An important example of such design decisions involves Intel’s Streaming
SIMD Extensions (SSE) [60], a new coprocessor that was added to the
Pentium series with the advent of the Pentium III. The coprocessor is a
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special vector processor that can execute parallel math operations on four
floating-point values, packed into a 128-bit register. The SSE instructions
were specifically targeted at 3D games and multimedia, and this is evident
from even a cursory view of the design. Several design decisions related to the
special-purpose FPU merit mentioning here:

■ The original SSE (Pentium III) instructions can only support 32-bit
floating-point values, not doubles.

■ Denormal values can be (optionally) rounded to zero (flushed to zero),
disabling gradual underflow.

■ Full IEEE 754 behavior can be supported as an option but at less than
peak performance.

3D-Specific FPUs

Other platforms have created graphics-centric FPUs. This 3D graphics focus
has given hardware designers the ability to optimize the floating-point behav-
ior of the FPUs very heavily. Unburdened by the need to support any
applications other than games, the designers of these FPUs have taken things
a step further than Intel’s SSE instructions by making the deviations from the
IEEE specification permanent, rather than optional.

AMD’s 3DNow! [1] extensions to its x86 platforms are one such example.
While leaving the main FPU unchanged, AMD added hardware to support up
to four floating-point instructions per clock cycle. As a further optimization,
3DNow! made some decisions that allow implementers (AMD and others) to
break from the IEEE specification, including:

■ Cannot accept infinity or NaN as operands.

■ Generates the maximal normal floating-point value on overflow, rather
than infinity.

■ Flush-to-zero as the only form of underflow (no denormals).

■ Single rounding mode (differs by implementation).

■ No support for floating-point exceptions.

The 3D-centric vector FPUs in some current game consoles have taken
similar paths. These differences from the IEEE specification, while severe
from a scientific computing perspective, are rarely an issue in correct 3D
game code. The console processors that have these limitations are gener-
ally designed to allow games to implement geometry pipelines. In most 3D
game code, the engine programmer takes great pains to avoid exceptional
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conditions in the geometry pipelines. Thus, these hardware design decisions
tend to merely reflect the common practices of game programmers, rather
than adding new limitations upon them.

1.6.4 Graphics Processing Units and
Half-Precision Floating-Point Formats

“Half-precision” or fp16 floating-point numbers refer to a de facto standard
format for floating-point values that can fit in 16 bits of storage. While not
specified by the IEEE 754 specification and not supported by major CPUs,
fp16 is a format with rapidly growing importance owing to its near ubiq-
uity in modern graphics processing units (GPUs). Most current major GPUs
support 16-bit floating-point values in their geometry and pixel rendering
pipelines. Since GPUs often handle large amounts of parallel computations
on large datasets, minimizing memory usage and bus traffic is an important
performance consideration. Being half the size of single precision IEEE 754
floating-point numbers is a significant optimization.

Although fp16 is not currently a part of the IEEE floating-point standard,
the OpenGL and OpenGL ES API standards (or extensions to these standards)
[64] both define a format for them that has become basically universal. This
format consists of a sign bit, 5 bits of exponent, and 10 bits of mantissa.
It should be noted that some GPU vendors also briefly supported a 24-bit
floating-point format (sign bit, 7 bits of exponent, and 16 bits of mantissa),
but this format is somewhat less standard than the IEEE or fp16 formats.

The exponent in an fp16 value varies between either [−14, 16] or [−14, 15],
depending on the implementation. The main difference between the two
implementations is the maximum exponent value; according to the OpenGL
(ES) specification, the format may either use the maximal exponent value of
31 (16 once unbiased) normally or it may reserve it for the fp16 equivalent of
NaNs and INF. If IEEE-style specials are not supported by an implementation,
overflow cases that would have mapped to the special value INF are gener-
ally clamped to the maximal exponent and mantissa. This ambiguity in the
specification was in actuality a reflection of the state of GPUs at the time the
specification was created; GPUs implementing both behaviors existed.

In addition, the OpenGL specification of fp16 values allows for either
denormals or flush-to-zero behavior when the exponent is 0 (−15 once
unbiased).

While support for both IEEE-style specials and denormals is becoming
very common on current GPU fp16 support, it is not universal, especially if
your application must run on older GPUs as well. Applications need to be
mindful that very small and very large values may be handled differently on
different GPU platforms, not unlike the pre-IEEE 754 floating-point situation.
A discussion of how a real application had to deal with these differences in
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exceptional behaviors may be found in “GPU Image Processing in Apple’s
Motion” in Pharr [92].

The reduced size of the fp16 comes with significantly reduced precision
and range when compared to even a single-precision 32-bit floating-point
format. Assuming IEEE-style specials and denormals, the extrema of fp16 are:

Maximum representable value: 65,504
Smallest positive value: 2−25 ≈ 3.0 × 10−8

Largest consecutive integer: 2,048

These limits can be reached with surprising ease if one is not careful,
especially when considering the squaring of numbers. The square of any value
greater than around 255 will map to infinity when stored as an fp16. And if one
is using an fp16 as a form of integer storage, repeated incrementation will fail
at a value that is well within common usage: 2,048. Above 2,048, odd integers
simply cannot be represented, with these holes in the set of integers getting
larger and larger as the value rises. Thus, fp16 values are not recommended for
counting items. Some of the issues associated with these reduced limits may
be found in the article “A Toolkit for Computation on GPUs” in Fernando [36].

How then are fp16 values usable? The answer is one of real-world use
cases. fp16 values are most frequently used on GPUs in shader code that gen-
erates the final color drawn to the screen. In these cases, color-related values
have historically been limited to values between 0.0 and 1.0. The ability to use
the much larger range afforded by fp16 values is a relative luxury, and makes
such high-end rendering effects as bright light “blooming,” glare, and other
so-called high dynamic range (HDR) effects possible. The fp16 format is likely
to continue to be popular for some time in GPU code, even though newer GPUs
also support single-precision IEEE 754 32-bit floating-point values as well.

1.7 Code

Source Code

Library

IvMath

While this text’s companion CD-ROM and website do not include spe-
cific code that demonstrates the concepts in this chapter, source code that
deals with issues of floating-point representation may be found through-
out the math library IvMath. For example, the source code for IvMatrix33,
IvMatrix44, IvVector3, IvVector4, and IvQuat includes sections of code that
avoid denormalized numbers and comparisons to exact floating-point zero.

CPU chipset manufacturers Intel and AMD have been focused on
3D graphics and game performance and have made public many code
examples, presentations, and software libraries that detail how to write high-
performance floating-point code for their processors. Many of these resources
may be found on their developer websites ([1, 60]).
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1.8 Chapter Summary

In this chapter we have discussed the details of how computers represent real
numbers. These representations have inherent limitations that any serious
programmer must understand in order to use them efficiently and cor-
rectly. Floating-point presents subtle limitations, especially issues of limited
precision. We have also discussed the basics of error metrics for number
representations.

Hopefully, this chapter has instilled two important pieces of informa-
tion in the reader. The first and most basic is an understanding of the inner
workings of the number systems that pervade 3D games. This should allow
the programmer to truly comprehend the reasons why the math-related code
behaves (or, more importantly, why it misbehaves) as it does. The second
piece of information is an appreciation of why one should pay attention to
the topic of floating-point representation in the first place — namely, to better
prepare the 3D game developer to do what is needed to do at some point in
the development of a game: optimize or fix a section of slow or incorrect math
code. Better yet, it can assist the developer to avoid writing this potentially
problematic code in the first place.

For further reading, Kahan’s papers on the history and status of the IEEE
floating-point standard ([62] and related papers and lectures by Kahan, avail-
able from the same source) offer fascinating insights into the background
of modern floating-point computation. In addition, back issues of Game
Developer magazine (such as [57]) provide frequent discussion of number
representations as they relate to computer games.



This page intentionally left blank



Chapter2
Vectors and
Points

2.1 Introduction

The two building blocks of most objects in our interactive digital world are
points and vectors. Points represent locations in space, which can be used
either as measurements on the surface of an object to approximate the object’s
shape (this approximation is called a model), or as simply the position of a
particular object. We can manipulate an object indirectly through its position
or by modifying its points directly. Vectors, on the other hand, represent the
difference or displacement between two points. Both have some very simple
properties that make them extremely useful throughout computer graphics
and simulation.

In this chapter we’ll discuss the properties and representation of vectors
and points, as well as the relationship between them. We’ll present how they
can be used to build up other familiar entities from geometry classes: in parti-
cular, lines, planes, and polygons. Because many problems in computer games
boil down to examples in applied algebra, having computer representations
of standard geometric objects built on basic primitives is extremely useful.

It is likely that the reader has a basic understanding of these entities from
basic math classes but the symbolic representations used by the mathemati-
cian may be unfamiliar or forgotten. We will review them in detail here.
We will also cover linear algebra concepts — properties of vectors in par-
ticular — that are essential for manipulating three-dimensional (3D) objects.
Without a thorough understanding of this fundamental material, any work in
programming 3D games and applications will be quite confusing.

35
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2.2 Vectors

One might expect that we would cover points first since they are the building
blocks of our standard model, but in actuality the basic unit of most of the
mathematics we’ll discuss in this book is the vector. We’ll begin by discussing
the vector as a geometric entity since that’s primarily how we’ll be using it,
and it’s more intuitive to think of it that way. From there we’ll present how
we can represent vectors algebraically and how that allows us to manipulate
them in the computer. We’ll then move to discussing operations that we can
perform on vectors and how we can use them to solve certain problems in
3D programming. We’ll conclude by formalizing our discussion of vectors by
presenting a set of vectors known as a vector space, as well as its algebraic
properties.

2.2.1 Geometric Vectors

A geometric vector v is an entity with magnitude (also called length) and direc-
tion and is represented graphically as a line segment with an arrowhead on
one end (Figure 2.1). The length of the segment represents the magnitude of
the vector, and the arrowhead indicates its direction. A vector whose magni-
tude is 1 is a unit or normalized vector and is shown as v̂. The zero vector 0
has a magnitude of zero but no direction.

Note that a vector does not have a location. To make some geometric
calculations easier to understand, we may draw two vectors as if they were
attached or place a vector relative to a location in space. Despite this, it is
important to remember that two vectors with the same magnitude and direc-
tion are equal, no matter where they are drawn on a page. For example, in
Figure 2.1 the left-most and right-most vectors are equal.

In games we use vectors in one of two ways. The first is as a representation
of direction. For example, a vector may indicate direction toward an enemy,
toward a light, or perpendicular to a plane. The second meaning represents

Figure 2.1 Vectors.
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change. If we have an object moving through space, we can assign a velocity
vector to the object, which represents a change in position. We can displace
the object by adding the velocity vector to the object’s location to get a new
location. Vectors also can be used to represent change in other vectors. For
example, we can modify our velocity vector by adding another to it; the second
vector is called acceleration.

We can perform arithmetic operations on vectors just as we can with real
numbers. One basic operation is addition. Geometrically, addition combines
two vectors together into a new vector. If we think of a vector as an agent
that changes position, then the new vector u = v + w combines the position-
changing effect of v and w into one entity.

As an example, in Figure 2.2 we have three locations P , Q, and R. There
is a vector v that represents the change in position or displacement from P to
Q and a vector w that represents the displacement from Q to R. If we want to
know the vector that represents the displacement from P to R, then we add v
and w to get the resulting vector u.

Figure 2.3 shows another approach, which is to treat the two vectors as
the sides of a parallelogram. In this case, the sum of the two vectors is the
long diagonal of the parallelogram. Subtraction, or v − w, is shown by the
other vector crossing the parallelogram. Remember that the difference vector
is drawn from the second vector head to the first vector head — the opposite
of what one might expect.

The algebraic rules for vector addition are very similar to real numbers:

1. v + w = w + v (commutative property).

2. u + (v + w) = (u + v) + w (associative property).

3. v + 0 = v (additive identity).

4. For every v, there is a vector −v such that v + (−v) = 0 (additive
inverse).

Q

RP u

w
v

Figure 2.2 Vector addition.
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v

v

v2w
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Figure 2.3 Vector addition and subtraction.

u
w

v

u1v1w

v1wu1v

Figure 2.4 Associative property of vector addition.

We can verify this informally by drawing a few test cases. For example, if
we examine Figure 2.3 again, we can see that one path along the parallelogram
represents v + w and the other represents w + v. The resulting vector is the
same in both cases. Figure 2.4 presents the associative property in a similar
fashion.

The other basic operation is scalar multiplication, which changes the
length of a vector by multiplying it by a single real value, also known as a
scalar (Figure 2.5). Multiplying a vector by 2, for example, makes it twice as
long. Multiplying by a negative value changes the length and points the vector
in the opposite direction (the length remains nonnegative). Multiplying by 0
always produces the zero vector 0.

The algebraic rules for scalar multiplication should also look familiar:

5. (ab)v = a(bv) (associative property).

6. (a + b)v = av + bv (distributive property).
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Figure 2.5 Scalar multiplication.

7. a(v + w) = av + aw (distributive property).

8. 1 · v = v (multiplicative identity).

As with the additive rules, diagrams can be created that provide a certain
amount of intuitive understanding.

2.2.2 Linear Combinations

Our definitions of vector addition and scalar multiplication can be used to
describe some special properties of vectors. Suppose we have a set S of n

vectors, where S = {v0, . . . , vn−1}. We can combine these to create a new
vector v using the function

v = a0 v0 + a1 v1 + · · · + an−1 vn−1

for some arbitrary real scalars a0, . . . , an−1. This is known as a linear combi-
nation of all vectors vi in S.

If we take all the possible linear combinations of all vectors in S, then the
set T of vectors thus created is the span of S. We can also say that the set S

spans the set T . For example, vectors v0 and v1 in Figure 2.6 span the set of
vectors that lie on the surface of the page (assuming your book is held flat).

We can use linear combinations to define some properties of our initial
set S. Suppose we can find a single nonzero vector vi in S such that it’s equal
to a linear combination of other members of S. In other words,

vi = a0 v0 + · · · + ai−1 vi−1 + ai+1 vi+1 + · · · + an−1 vn−1

If such a vi exists, then we say that S is linearly dependent. If we can’t find any
such vi, then the vectors v0, . . . , vn−1 are linearly independent. An example of a
linearly dependent set of vectors can be seen in Figure 2.7. Vector v0 is equal
to the linear combination −1 · v1 + 0 · v2, or just −v1. Two linearly dependent
vectors v and w are said to be parallel; that is, w = av.
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v1

v0

Figure 2.6 Two vectors spanning a plane.

v1

v0

v2

Figure 2.7 Linearly dependent set of vectors.

2.2.3 Vector Representation

In symbolic mathematics and (more important for our purposes) in the com-
puter, representing vectors graphically is not convenient. Instead we define a
set of linearly independent vectors known as a basis, and define our remaining
vectors in terms of those. So for example, for 3D space (formally represented
as R

3) we can define three vectors i, j, and k. Their corresponding geomet-
ric representations can be seen in Figure 2.8. Note that these vectors are of
unit length and perpendicular to each other (we will define “perpendicular”
more formally when we discuss dot products). This is known as the standard
Euclidean basis. Using this basis, we can uniquely represent any vector v in
3D space by using the linear combination

v = x i + y j + zk

We can think of x, y, and z as the amounts we move in the i, j, and k directions,
from the tail of v to its tip (see Figure 2.8). Since the i, j, and k vectors are
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z

x
y

k

j

i

Figure 2.8 Standard 3D basis vectors.

known and fixed, we just store the x, y, and z values and use them to represent
our vector numerically. In this way a 3D vector v is represented by an ordered
triple (x, y, z). These are known as the vector components. Our basis vectors i,
j, and k will be represented with components (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively.

We can do the same for two-dimensional (2D) space, or R
2, by using as

our basis { i, j}, where i = (1, 0) and j = (0, 1), and representing a 2D vector as
the ordered pair (x, y).

By doing this, we have also neatly solved the problem of representing
our geometric vectors algebraically. By using a standard basis, we can use
an ordered triple to represent the same concept as a line segment with an
arrowhead. And by setting a correspondence between our algebraic basis and
our geometric representation, we can guarantee that the ordered triple we
use in one circumstance will be the same as the one we use in the other.
Because of this, when working with vectors in R

2 and R
3, we will use the two

representations interchangeably.
Using our new representation allows us to define addition and scalar mul-

tiplication algebraically. So, if we add two 3D vectors v0 and v1 together and
expand and rearrange terms, we get

v0 + v1 = (x0 i + y0 j + z0 k) + (x1 i + y1 j + z1 k)

= x0 i + x1 i + y0 j + y1 j + z0 k + z1 k

= (x0 + x1) i + (y0 + y1) j + (z0 + z1)k

If we remove i, j, and k to create ordered triples, we find that to add two
vectors we take each component in xyz order and add them:

(x0, y0, z0) + (x1, y1, z1) = (x0 + x1, y0 + y1, z0 + z1) (2.1)



42 Chapter 2 Vectors and Points

Scalar multiplication works similarly:

av = a(x i + y j + zk)

= a(x i) + a(y j) + a(zk)

= (ax) i + (ay) j + (az)k

And again, pulling out i, j, and k gives us

a(x, y, z) = (ax, ay, az) (2.2)

A more formal discussion of basis vectors can be found in Section 2.2.11.

2.2.4 Basic Vector Class Implementation

Source Code

Library

IvMath

Filename

IvVector3

Now that we’ve presented an algebraic representation for vectors, we can talk
about how we will store them in the computer. In our case we’ll assume the
standard basis and thus store the components x, y, and z.

The following are some excerpts from the included C++ math library. For
a vector in R

3, our bare-bones class definition is

class IvVector3
{

inline IvVector3() {}
inline IvVector3( float xVal, float yVal, float zVal ) :

x( xVal ),
y( yVal ),
z( zVal )

{
}
inline ∼IvVector3() {}
IvVector3( const IvVector3& vector );
IvVector3& operator=( const IvVector3& vector );
inline float GetX() { return x; }
inline float GetY() { return y; }
inline float GetZ() { return z; }
inline void SetX( float xVal ) { x = xVal; }
inline void SetY( float yVal ) { y = yVal; }
inline void SetZ( float zVal ) { z = zVal; }
...

private:
float x,y,z;

}
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We can observe a few things about this declaration. First, we declared our
member variables as a type float. This is the single-precision IEEE floating-
point representation for real numbers, as discussed in Chapter 1. While not
as precise as double-precision floating-point, it has the advantage of being
compact and compatible with standard representations on most graphics
hardware.

The second thing to notice is that, unlike the previous edition of this book,
we’re making our member variables private and only providing access through
inlined member functions. Again, as discussed in Chapter 1, most modern pro-
cessors have a platform-specific instruction set for vectors — for example, SSE
on Pentium and AMD processors, and VMX on the PowerPC, Xeon, and Cell
processors — which can perform several floating-point operations in parallel
and can lead to significantly faster code. By hiding the underlying data, it is
much easier to change and optimize the underlying representation without
modifying nonlibrary code. For clarity of code, we have chosen to not use
platform-specific operations, but still hide the data as part of good coding
practice.

In some cases, it is possible to write the class to allow public access to the
components of the platform-specific data. However, even then we recommend
using inlined member functions, as accessing the components in this way is
often an expensive operation. So, in general it is recommended that whenever
possible you modify the platform-specific data only through platform-specific
operations. Using member functions helps reinforce this good practice
as well.

The class has a default constructor and destructor, which do nothing.
The constructor could initialize the components to 0, but doing so takes time,
which adds up when we have large arrays of vectors (a common occurrence),
and in most cases we’ll be setting the values to something else anyway. For
this purpose, there is an additional constructor that takes three floating-point
values and uses them to set the components. We can use the copy constructor
and assignment operator as well.

Now that we have the data set up for our class, we can add some operations
to it. The corresponding operator for vector addition is

IvVector3 operator+(const IvVector3& v0, const IvVector3& v1)
{

return IvVector3( v0.x + v1.x, v0.y + v1.y, v0.z + v1.z );
}

Scalar multiplication is also straightforward:

IvVector3
operator*( float a, const IvVector3& vector)
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{
return IvVector3( a*vector.x, a*vector.y, a*vector.z );

}

These methods are given friend access by the class to allow use of the
private member variables.

Similar operators for postmultiplication and division by a scalar are also
provided within the library; their declarations are:

IvVector3 operator*( const IvVector3& vector, float scalar );
IvVector3 operator/( const IvVector3& vector, float scalar );
IvVector3& operator*=( IvVector3& vector, float scalar );
IvVector3& operator/=( IvVector3& vector, float scalar );

Now that we have a numeric representation for vectors and have covered
the algebraic form of addition and scaling, we can add some new vector oper-
ations as well. As before, we’ll focus primarily on the case of R

3. Vectors in
R

2 and R
4 have similar properties; any exceptions will be discussed in the

particular parts.

2.2.5 Vector Length

We have mentioned that a vector is an entity with length and direction but so
far haven’t provided any means of measuring or comparing these quantities in
two vectors. We’ll see shortly how the dot product provides a way to compare
vector directions. First, however, we’ll consider how to measure a vector’s
magnitude.

There is a general class of size-measuring functions known as norms.
A norm ‖v‖ is defined as a real-valued function on a vector v with the following
properties:

1. ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0.

2. ‖av‖ = |a|‖v‖.

3. ‖v + w‖ ≤ ‖v‖ + ‖w‖.

We use the ‖v‖ notation to distinguish a norm from the absolute value
function |a|.

An example of a norm is the Manhattan distance, also called the �1 norm,
which is just the sum of the absolute values of the given vector’s components:

‖v‖�1 =
∑

i

|vi|
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One that we’ll use more often is the Euclidean norm, also known as the �2
norm or just length. If we give no indication of which type of norm we’re
using, this is usually what we mean.

We derive the Euclidean norm as follows. Suppose we have a 2D vector
u = x i + y j. Recall the Pythagorean theorem x2 + y2 = d2. Since x is the
distance along i and y is the distance along j, then the length d of u is

‖u‖ = d =
√

x2 + y2

as shown in Figure 2.9. A similar formula is used for a vector v = (x, y, z),
using the standard basis in R

3:

‖v‖ =
√

x2 + y2 + z2 (2.3)

And the general form in R
n with respect to the standard basis is

‖v‖ =
√

v2
0 + v2

1 + · · · + v2
n−1

We’ve mentioned the use of unit length vectors as pure indicators of direc-
tion, for example, in determining viewing direction or relative location of
a light source. Often, though, the process we’ll use to generate our direction
vector will not automatically create one of unit length. To create a unit vector v̂
from a general vector v, we normalize v by multiplying it by 1 over its length, or

v̂ = v
‖v‖

This sets the length of the vector to ‖v‖ · 1/‖v‖ or, as we desire, 1.

j

i

y

x2
1

y2

x

Figure 2.9 Length of 2D vector.
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Our implementations of length methods (for R
3) are as follows:

float
IvVector3::Length() const
{

return IvSqrt( x*x + y*y + z*z );
}

float
IvVector3::LengthSquared() const
{

return x*x + y*y + z*z;
}

IvVector3&
IvVector3::Normalize()
{

float lengthsq = x*x + y*y + z*z;
ASSERT( !IsZero( lengthsq ) );
if ( IsZero( lengthsq ) )
{

x = y = z = 0.0f;
return *this;

}

float recip = IvInvSqrt( lengthsq );
x *= recip;
y *= recip;
z *= recip;

return *this;
}

Note that in addition to the mathematical operations we’ve just described,
we have defined a LengthSquared() method. Performing the square root can be
a costly operation, even on systems that have a special machine instruction to
compute it. Often we’re only doing a comparison between lengths, so it is bet-
ter and certainly faster in those cases to compute and compare length squared
instead. Both length and length squared are increasing functions starting at
0, so the results will be the same.

The length methods also introduce some new functions that will be use-
ful to us throughout the math library. We use our own square root functions
IvSqrt() and IvInvSqrt() instead of sqrtf(). There are a number of rea-
sons for this choice. As mentioned, the standard library implementation of
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square root is often slow. Rather than use it, we can use an approximation
on some platforms, which is faster and accurate enough for our purpose. On
other platforms there are internal assembly instructions that are not used
by the standard library. In particular, there may be an instruction that per-
forms the inverse square root, which is faster than calculating the square
root and performing the floating-point divide. Defining our own layer of indi-
rection gives us flexibility and ensures that we can guarantee ourselves the
best performance.

2.2.6 Dot Product

Now that we’ve considered vector length, we can look at vector direction. The
function we will use for this is called the dot product, or less commonly, the
Euclidean inner product (see below for the formal definition of inner products).
It is probably the most useful vector operation for 3D games and applications.

Given two vectors v and w with an angle θ between them, the dot product
v · w is defined as

v · w = ‖v‖‖w‖ cos θ (2.4)

Using this equation, we can find a coordinate-dependent definition in R
3 by

examining a triangle formed by v, w, and v − w (Figure 2.10). The Law of
Cosines (see Appendix A on the CD-ROM) gives us

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos θ

We can rewrite this as

−2‖v‖‖w‖ cos θ = ‖v − w‖2 − ‖v‖2 − ‖w‖2

w

v

v2w

�

Figure 2.10 Law of Cosines.
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Substituting in the definition of vector length in R
3 and expanding, we get

−2‖v‖‖w‖ cos θ = (vx − wx)
2 + (vy − wy)

2 + (vz − wz)
2

− (v2
x + v2

y + v2
z) − (w2

x + w2
y + w2

z)

−2‖v‖‖w‖ cos θ = −2vxwx − 2vywy − 2vzwz

‖v‖‖w‖ cos θ = vxwx + vywy + vzwz

So, to compute the dot product in R
3, multiply the vectors component-

wise, and then add:

v · w = vxwx + vywy + vzwz

Note that for this definition to hold, vectors v and w need to be represented
with respect to the standard basis { i, j, k}. The general form for vectors v and
w in R

n, again with respect to the standard basis, is

v · w = v0w0 + v1w1 + · · · + vn−1wn−1

For vectors u, v, w, and scalar a the following algebraic rules apply:

1. v · w = w · v (symmetry).

2. (u + v) · w = u · w + v · w (additivity).

3. a(v · w) = (av) · w = v · (aw) (homogeneity).1

4. v · v ≥ 0 (positivity).

5. v · v = 0 if and only if v = 0 (definiteness).

Also note that we can relate the dot product to the length function by
noting that

v · v = ‖v‖2 (2.5)

As mentioned, the dot product has many uses. By equation 2.4, if the
angle between two vectors v and w in standard Euclidean space is 90 degrees,
then v · w = 0. So, we define that two vectors v and w are perpendicular,
or orthogonal, when v · w = 0. Recall that we stated that our standard basis

1. Note that the leading scalar does not apply to both terms on the right-hand side; assuming
so is a common mistake.
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vectors for R
3 are orthogonal. We can now demonstrate this. For example,

taking i · j we get

i · j = (1, 0, 0) · (0, 1, 0)

= 0 + 0 + 0

= 0

It is possible, although not always recommended, to use equation 2.4 to
test whether two unit vectors v̂ and ŵ are pointing generally in the same
direction. If they are, cos θ is close to 1, so 1 − v̂ · ŵ is close to 0 (we use this
formula to avoid problems with floating-point precision). Similarly, if 1+ v̂ · ŵ
is close to 0, they are pointing in opposite directions. Performing this test
only takes 6 floating-point addition and multiplication operations. However,
if v and w are not known to be normalized, then we need a different test:
‖v‖2‖w‖2 − (v · w)2. This takes 18 operations.

Note that for unit vectors:

1 − ( v̂ · ŵ)2 = 1 − cos2 θ

= sin2 θ

and for nonunit vectors:

‖v‖2‖w‖2 − (v · w)2 = ‖v‖2‖w‖2(1 − cos2 θ)

= ‖v‖2‖w‖2 sin2 θ

So assuming we use this, the method we use to test closeness to zero will have
to be different for both cases.

In any case, using dot product for this test is not really recommended
unless your vectors are prenormalized and speed is of the essence. As cos θ gets
close to 0, it changes very little. Due to lack of floating-point precision, the set
of angles that might be considered “zero” is actually broader than one might
expect. As we will see, there is another method to test for parallel vectors that
is faster with nonunit vectors and has fewer problems with near-zero angles.

A more common use of the dot product is to test values of the angle
between two vectors. We know that if v · w > 0, then the angle is less than 90
degrees; if v · w < 0, then the angle is greater than 90 degrees; and if v · w = 0,
then the angle is exactly 90 degrees (Figure 2.11). As opposed to testing for
parallel vectors, this will work with vectors of any length.

For example, suppose that we have an artificial intelligence (AI) agent
that is looking for enemy agents in the game. The AI has a view vector v and a
vector t that points toward an object in our scene. If v · t < 0, then the object
is behind us and therefore not visible to our AI (Figure 2.12).
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w2•v<0

v

w1•v50

w0•v>0

Figure 2.11 Dot product as measurement of angle.

t

v
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Figure 2.12 Measuring angle to target.

Equation 2.4 allows us to use the dot product in another manner. Sup-
pose we have two vectors v and w, where w �= 0. We define the projection of
v onto w as

projw v = v · w
‖w‖2

w
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w

v

�

Figure 2.13 Dot product as projection.

This gives the part of v that is parallel to w, which is the same as dropping a
perpendicular from the end of v onto w (Figure 2.13).

We can get the part of v that is perpendicular to w by subtracting the
projection:

perpw v = v − v · w
‖w‖2

w

Both of these equations will be very useful to us. Note that if w is normalized,
then the projection simplifies to

proj ŵ v = (v · ŵ)ŵ

The corresponding library implementation of dot product in R
3 is as follows:

float
IvVector3::Dot( const IvVector3& other )
{

return x*other.x + y*other.y + z*other.z;
}

2.2.7 Gram-Schmidt Orthogonalization

The combination of dot product and normalization allows us to define a par-
ticularly useful class of vectors. If a set of vectors β are all unit vectors and
pairwise orthogonal, we say that they are orthonormal. Our standard basis
{ i, j, k} is an example of an orthonormal set of vectors.
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In many cases we start with a general set of vectors and want to generate
the closest possible orthonormal one. One example of this is when we perform
operations on currently orthonormal vectors. Even if the pure mathemat-
ical result should not change their length or relative orientation, due to
floating-point precision problems the resulting vectors may be no longer
orthonormal. The process that allows us to create orthonormal vectors from
possibly nonorthonormal vectors is called Gram-Schmidt orthogonalization.

This works as follows. Suppose we have a set of nonorthogonal vec-
tors v0, . . . , vn−1, and from them we want to create an orthonormal set
w0, . . . , wn−1. We’ll use the first vector from our original set as the starting
vector for our new set so

w0 = v0

Now we want to create a vector orthogonal to w0, which points generally in
the direction of v1. We can do this by computing the projection of v1 on w0,
which produces the component vector of v1 parallel to w0. The remainder of
v1 will be orthogonal to w0, so

w1 = v1 − projw0
v1

= v1 − v1 · w0

‖w0‖2
w0

We perform the same process for w2: We project v2 on w0 and w1 to compute
the parallel components and then subtract those from v2 to generate a vector
orthogonal to both w0 and w1:

w2 = v2 − projw0
v2 − projw1

v2

= v2 − v2 · w0

‖w0‖2
w0 − v2 · w1

‖w1‖2
w1

In general, we have

wi = vi −
i−1∑
j=0

projwj
vi

= vi −
i−1∑
j=0

vi · wj

‖wj‖2
wj

Performing this for all n vectors will give us an orthogonal set of vectors. To
create an orthonormal set, we can either normalize the resulting wj vectors
at the end or normalize as we go, the latter of which simplifies the projection
calculation to (vi · ŵj) ŵj.
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2.2.8 Cross Product

Suppose we have two vectors v and w and want to find a new vector u
orthogonal to both. The operation that computes this is the cross product,
also known as the vector product. There are two possible choices for the
direction of the vector, each the negation of the other (Figure 2.14); the one
chosen is determined by the right-hand rule. Hold your right hand so that your
forefinger points forward, your middle finger points out to the left, and your
thumb points up. If you roughly align your forefinger with v, and your middle
finger with w, then the cross product will point in the direction of your thumb
(Figure 2.15). The length of the cross product is equal to the area of a par-
allelogram bordered by the two vectors (Figure 2.16). This can be computed
using the formula

‖v × w‖ = ‖v‖‖w‖ sin θ (2.6)

w

v

Figure 2.14 Two directions of orthogonal 3D vectors.

w

v

v 3 w

Figure 2.15 Cross product direction.
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w

v

v × w

Figure 2.16 Cross product length equals area of parallelogram.

where θ is the angle between v and w. Note that the cross product is not
commutative, so order is important:

v × w = −(w × v)

Also, if the two vectors are parallel, sin θ = 0, so we end up with the zero vector.
It is a common mistake to believe that if v and w are unit vectors, the

cross product will also be a unit vector. A quick look at equation 2.6 shows
this is true only if sin θ is 1, in which case θ is 90 degrees.

The formula for the cross product is

v × w = (vywz − wyvz, vzwx − wzvx, vxwy − wxvy)

Certain processors can implement this as a two-step operation, by creating
two vectors and performing the subtraction in parallel:

v × w = (vywz, vzwx, vxwy) − (wyvz, wzvx, wxvy)

For vectors u, v, w, and scalar a, the following algebraic rules apply:

1. v × w = −w × v.

2. u × (v + w) = (u × v) + (u × w).

3. (u + v) × w = (u × w) + (v × w).

4. a(v × w) = (av) × w = v × (aw).

5. v × 0 = 0 × v = 0.

6. v × v = 0.
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There are two common uses for the cross product. The first, and most
used, is to generate a vector orthogonal to two others. Suppose we have three
points P , Q, and R, and we want to generate a unit vector n that is orthogonal
to the plane formed by the three points (this is known as a normal vector).
Begin by computing v = (Q − P) and w = (R − P). Now we have a decision
to make. Computing v × w and normalizing will generate a normal in one
direction, whereas w × v and normalizing will generate one in the opposite
direction (Figure 2.17). Usually we’ll set things up so that the normal points
from the inside toward the outside of our object.

Like the dot product, the cross product can also be used to determine if two
vectors are parallel by checking whether the resulting vector is close to the zero
vector. Deciding whether to use this test as opposed to the dot product depends
on what your data are. The cross product takes 9 operations. We can test for
zero by examining the dot product of the result with itself ((v× w) · (v× w)). If
it is close to 0, then we know the vectors are nearly parallel. The dot product
takes an additional 5 operations, or 14 total for our test. Recall that testing
for parallel vectors using the dot product of nonnormalized vectors takes 18
operations; in this case, the cross product test is faster.

The cross product of two vectors is defined only for vectors in R
3. How-

ever, in R
2 we can define a similar operation on a single vector v, called the

perpendicular. This is represented as v⊥. The result of the perpendicular is the
vector rotated 90 degrees. As with the cross product, we have two choices: in
this case, counterclockwise or clockwise rotation. The standard definition is
to rotate counterclockwise (Figure 2.18), so if v = (x, y), v⊥ = (−y, x).

The perpendicular has similar properties to the cross product. First, it
produces a vector orthogonal to the original. Also, when used in combination
with the dot product in R

2 (also known as the perpendicular dot product),

v⊥ · w = ‖v‖‖w‖ sin θ

w

v

w 3 v

v 3 w

Q

RP

Figure 2.17 Computing normal for triangle.
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v' v

Figure 2.18 Perpendicular vector.

where θ is the signed angle between v and w. That is, if the shortest rotation
to get from v to w is in a clockwise direction, then θ is negative. And similar
to the cross product, the absolute value of the perpendicular dot product is
equal to the area of a parallelogram bordered by the two vectors.

It is possible to take cross products in dimensions greater than three by
using n−1 vectors to take an n-dimensional cross product, but in general they
won’t be useful to us.

Our IvVector3 cross product method is

IvVector3
IvVector3::Cross( const IvVector3& other )
{

return IvVector3( y*other.z - other.y*z,
z*other.x - other.z*x,
x*other.y - other.x*y );

}

2.2.9 Triple Products

In R
3 there are two extensions of the two single operation products called

triple products. The first is the vector triple product, which returns a vector and
is computed as u × (v × w).

A special case is w × (v × w) (Figure 2.19). Examining this, v × w is per-
pendicular both to v and w. The result of w× (v× w) is a vector perpendicular
to both w and (v × w). Therefore, if we combine normalized versions of w,
(v × w), and w × (v × w), we have an orthonormal basis (all are perpendic-
ular and of unit length). This can be more efficient than Gram-Schmidt for
producing orthogonal vectors, but of course it only works in R

3.
The second triple product is called the scalar triple product. It (naturally)

returns a scalar value, and its formula is u · (v × w). To understand this geo-
metrically, suppose we treat these three vectors as the edges of a slanted box,
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v 3 w

v
w 3 (v 3 w)

w

Figure 2.19 The vector triple product.

v 3 w

v

w

u

Figure 2.20 Scalar triple product equals volume of parallelopiped.

or parallelopiped (Figure 2.20). Then the area of the base equals ‖v × w‖, and
‖u‖ cos θ gives the height of the box. So,

u · (v × w) = ‖u‖‖v × w‖ cos θ

or area times height equals the volume of the box.
In addition to computing volume, the scalar triple product can be used

to test the direction of the angle between two vectors v and w, relative to
a third vector u that is linearly independent to both. If u · (v × w) > 0, then
the shortest rotation from v to w is in a counterclockwise direction (assuming
our vectors are right-handed, as we will discuss shortly) around u. Similarly,
if u · (v × w) < 0, the shortest rotation is in a relative clockwise direction.

For example, suppose we have a tank with current velocity v and desired
direction d of travel. Our tank is oriented so that its current up direction
points along a vector u. We take the cross product v × d and dot it with u. If
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the result is positive, then we know that d lies to the left of v (counterclockwise
rotation), and we turn left. Similarly, if the value is less than zero, then we
know we must turn right to match d (Figures 2.21 and 2.22).

If we know that the tank is always oriented so that it lies on the xy plane,
we can simplify this considerably. Vectors v and d will always have z values
of 0, and u will always point in the same direction as the standard basis
vector k. In this case, the result of u · (v × d) is equal to the z value of v × d.
So the problem simplifies to taking the cross product of v and d and checking
the sign of the resulting z value to determine our turn direction.

Finally, we can use the scalar triple product to test whether ordered
vectors in R

3 are left-handed or right-handed. We can test this informally
for our standard basis by using the right-hand rule. Take your right hand
and point the thumb along k and your fingers along i. Now, rotating around
your thumb, sweep your fingers counterclockwise into j (Figure 2.23). This

v 3 d

v

d

u

Figure 2.21 Scalar triple product indicates left turn.

v 3 d

v

d

u

Figure 2.22 Scalar triple product indicates right turn.
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i

k

j

Figure 2.23 Right-handed rotation.

90-degree rotation of i into j shows that the basis is right-handed. We can
do the same trick with the left hand rotating clockwise to show that a set of
vectors is left-handed.

Formally, if we have three vectors {v0, v1, v2}, then they are right-handed
if v0 · (v1 × v2) > 0, and left-handed if v0 · (v1 × v2) < 0. If v0 · (v1 × v2) = 0,
we’ve got a problem — our vectors are linearly dependent.

While the scalar triple product only applies to vectors in R
3, we can use the

perpendicular dot product to test vectors in R
2 for both turning direction and

right- or left-handedness. For example, if we have two basis vectors {v0, v1} in
R

2, then they are right-handed if v⊥
0 · v1 > 0 and left-handed if v⊥

0 · v1 < 0.
For vectors u, v, and w in R

3, the following algebraic rules regarding the
triple products apply:

1. u × (v × w) = (u · w)v − (u · v)w.

2. (u × v) × w = (u · w)v − (v · w)u.

3. u · (v × w) = w · (u × v) = v · (w × u).

2.2.10 Real Vector Spaces

Up to this point, we have only been considering geometric vectors in 2D and 3D
space and their representation using the standard Euclidean basis. However,
there is an abstraction that can be useful to us. A linear space, or vector space,
provides a formal means of encapsulating the concepts that we’ve just cov-
ered. This has a few advantages. First of all, since it is an abstraction, we can
use it for manipulating higher-dimensional vectors than we might be able to
conceive of geometrically. It also can be used for representing entities that
we wouldn’t normally consider as vectors but that follow the same algebraic
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rules, which can be quite powerful. Finally, there are certain properties of
vector spaces that will prove to be quite useful when we cover matrices and
linear transformations.

To simplify our approach, we are going to concentrate on a subset of
vector spaces known as real vector spaces, so called because their fundamental
components are drawn from R, the set of all real numbers. We usually say that
such a vector space V is over R. We also formally define an element of R in
this case as a scalar.

So what is a real vector space? One example of a real vector space is
simply R. At first glance it may be difficult to see the correspondence between
a real number and a vector, but as we’ll see next, R does meet the criteria for
a vector space.

We’ve already seen another vector space: R
2. As mentioned, we can

think of this as informally representing 2D space. Symbolically, this is
represented by

R
2 = {(x, y) | x, y ∈ R}

In this context, the symbol | means “such that” and the symbol ∈ means “is a
member of.” So we read this as “The set of all possible pairs (x, y), such that
x and y are members of the set of real numbers.” And as before, this is a set
of ordered pairs; (1.0, −0.5) is a different member of the set from (−0.5, 1.0).

We define R
3 and R

4 similarly as follows:

R
3 = {(x, y, z) | x, y, z ∈ R}

R
4 = {(w, x, y, z) | w, x, y, z ∈ R}

Like R
2, these are ordered lists, where two members with the same values

but differing orders are not the same. As we’ve seen, R
3 informally represents

positions in 3D space. Correspondingly, R
4 can be thought of as represent-

ing 4D space, which is difficult to visualize spatially2 (hence our need for an
abstract representation), but is extremely useful for certain computer graphics
concepts.

We can extend our definitions to R
n, a generalized n-dimensional space

over R:

R
n = {(x0, . . . , xn−1) | x0, . . . , xn−1 ∈ R}

The members of R
n are referred to as an n-tuple.

Up until now we’ve been casually referring to these real-number spaces as
vector spaces. For them to be proper vector spaces and not just organized lists

2. Unless you are one of a particularly gifted pair of children [87].
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of numbers, we need to define two specific operations on the elements that
follow certain algebraic rules. The two operations should be familiar from our
discussion of geometric vectors: They are addition and scalar multiplication.
We’ll define these operations so that the vector space V has closure with respect
to them; that is,

1. For any u and v in V , u + v is in V (additive closure).

2. For any a in R and v in V , av is in V (multiplicative closure).

So formally, we define a real vector space as a set V over R with closure
with respect to addition and scalar multiplication on its elements, where the
following properties hold:

For all u, v, w, 0 in V and all a, b in R:

1. v + w = w + v (commutative property).

2. u + (v + w) = (u + v) + w (associative property).

3. There exists an element 0 such that v + 0 = v (additive identity).

4. For every v, there is an element −v such that v + (−v) = 0 (additive
inverse).

5. (ab)v = a(bv) (associative property).

6. (a + b)v = av + bv (distributive property).

7. a(v + w) = av + aw (distributive property).

8. 1 · v = v (multiplicative identity).

These are exactly the properties we stated previously for vector addition and
scalar multiplication.

As an example, we can use our previous definition of addition in R
2:

(x0, y0) + (x1, y1) = (x0 + x1, y0 + y1)

and scalar multiplication:

a(x0, y0) = (ax0, ay0)

Using these definitions and the preceding algebraic axioms, it can be shown
that R

2 is a vector space. Similar operations can be defined for R
3 and R

4, as
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well as for R itself. Generalized over R
n, we have

u + v = (u0, . . . , un−1) + (v0, . . . , vn−1)

= (u0 + v0, . . . , un−1 + vn−1)

and

av = a(v0, . . . , vn−1)

= (av0, . . . , avn−1)

Now suppose we have a subset W of a vector space V . We call W a subspace
if it is itself a vector space when using the same definition for addition and
multiplication operations. In order to show that a given subset W is a vector
space, we only need to show that closure under addition and scalar multipli-
cation holds; the rest of the properties are satisfied because W is a subset of
V . For example, the subset of all vectors in R

3 with z = 0 is a subspace, since

(x0, y0, 0) + (x1, y1, 0) = (x0 + x1, y0 + y1, 0)

a(x0, y0, 0) = (ax0, ay0, 0)

The resulting vectors still lie in the subspace R
3 with z = 0.

Note that any subspace must contain 0 in order to meet the conditions for
a vector space. So the subset of all vectors in R

3 with z = 1 is not a subspace
since 0 cannot be represented. And while R

2 is not a subspace of R
3 (since the

former is a set of pairs and the latter a set of triples), it can be embedded in
a subspace of R

3 by a mapping, for example, (x, y) → (x, y, 0).
It is important to understand that — despite the name — a vector space

does not necessarily have to be made up of geometric vectors. What we have
described is a series of sets of ordered lists, possibly with no relation to a
geometric construct. As we have seen, they can be related to the geometry,
but the term vector, when used in describing members of vector spaces, is an
abstract concept. As long as a set of elements can be shown to have the pre-
ceding arithmetic properties, we define it as a vector space and any element of
a vector space as a vector. It is perhaps more correct to say that the geometric
representations of 2D and 3D vectors that we use are visualizations that help
us better understand the abstract nature of R

2 and R
3, rather than the other

way around.

2.2.11 Basis Vectors

Now suppose that for a given vector space V , we can find a set β of n linearly
independent vectors in V that span V . With this we can formally define β as
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a basis for V , and each element of β as a basis vector. So far we’ve shown
only the standard Euclidean basis, but other bases are possible for a given
vector space, and they will always have the same number of elements. We
formally define a vector space’s dimension as equal to the number of basis
vectors required to span it. So, for example, any basis for R

3 will contain
three basis vectors, and so it is (as we’d expect) a 3D space. Note that while the
standard Euclidean basis is orthonormal, this is not necessary. Basis vectors
can have nonunit length and be nonorthogonal. All that is required is that
they be linearly independent.

As mentioned, among the many bases for a vector space, we define one as
the standard basis. In general this is represented as {e0, . . . , en−1}, where

e0 = (1, 0, . . . , 0)

e1 = (0, 1, . . . , 0)

...

en−1 = (0, 0, . . . , 1)

One property of a basis β is that for every vector v in V , there is a unique
linear combination of the vectors in β that equal v. So, using a general basis
β = {b0, b1, . . . , bn−1}, there is only one list of coefficients a0, . . . , an−1 such that

v = a0 b0 + a1 b1 + · · · + an−1 bn−1

This formally explains why, instead of using the full equation to represent v,
we can abbreviate it by using only the coefficients a0, . . . , an−1 and store them
in an ordered n-tuple as (a0, . . . , an−1). Note that the coefficient values will be
dependent on which basis we’re using and will almost certainly be different
from basis to basis. The ordering of the basis vectors is important: A different
ordering will not necessarily generate the same coefficients for a given vector.
For most cases, though, we’ll be assuming the standard basis, as we did above.

2.3 Points

Now that we have covered vectors and vector operations in some detail, we
turn our attention to a related entity: the point. While the reader probably
has some intuitive notion of what a point is, in this section we’ll provide a
mathematical representation and discuss the relationship between vectors
and points. We’ll also discuss some special operations that can be performed
on points and alternatives to the standard Cartesian coordinate system.
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Within this section it is also assumed that the reader has some general
sense of what lines and planes are. More information on these topics follows
in subsequent sections.

2.3.1 Points as Geometry

Everyone who has been through a first-year geometry course should be
familiar with the notion of a point. Euclid describes the point in his work
Elements [33] as “that which has no part.” Points have also been presented as
the cross-section of a line, or the intersection of two lines. A less vague but
still not satisfactory definition is to describe them as an infinitely small entity
that has only the property of location. In games we use points for two primary
purposes: to represent the position of game objects and as the basic building
block of their geometric representation. Points are represented graphically by
a dot.

Euclid did not present a means for representing position numerically,
although later Greek mathematicians used latitude, longitude, and altitude.
The primary system we use now — Cartesian coordinates — was originally
published by Rene Descartes in his 1637 work La geometrie [24] and further
revised by Newton and Leibniz.

In this system we measure a point’s location relative to a special, anchored
point, called the origin, which is represented by the letter O. In R

2 we infor-
mally define two perpendicular real-number lines or axes — known as the
x- and y-axes — that pass through the origin. We indicate the location of
a point P by a pair (x, y) in R

2, where x is the distance from the point to
the y-axis, and y is the distance from the point to the x-axis. Another way to
think of it is that we count x units along the x-axis and then y units up paral-
lel to the y-axis to reach the point’s location. This combination of origin and
axes is called the Cartesian coordinate system (Figure 2.24).

For R
3 three perpendicular coordinate axes — x, y, and z — intersect at

the origin. There are corresponding coordinate planes xy, yz, and xz that also
intersect at the origin. Take the room you’re sitting in as our space, with one
corner of the room as the origin, and think of the walls and floor as the three
coordinate planes (assume they extend infinitely). The edges where the walls
and floor join together correspond to the axes. We can think of a 3D position as
being a real-number triple (x, y, z) corresponding to the distance of the point
to the three planes, or counting along each axis as before.

In Figure 2.25 you can see an example of a 3D coordinate system. Here
the axis pointing up is called the z-axis, the one to the side is the y-axis, and
the one aimed slightly out of the page is the x-axis. Another system that is
commonly used in graphics books has the y-axis pointing up, the x-axis to the
right, and the z-axis out of the page (Figure 2.26). Some graphics developers
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x-axis
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Figure 2.24 Two-dimensional Cartesian coordinate system.

z-axis

y-axis
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O

Figure 2.25 Three-dimensional Cartesian coordinate system.

favor this because the x- and y-axes match the relative axes of the 2D screen,
but most of the time we’ll be using the former convention for this book.

Both of the 3D coordinate systems we have described are right-handed.
As before, we can test this via the right-hand rule. This time point your thumb
along the z-axis, your fingers along the x-axis, and rotate counterclockwise
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y-axis

x-axis

z-axis

O

Figure 2.26 Alternate 3D Cartesian coordinate system.

into the y-axis. As with left-handed bases, we can have left-handed coordinate
systems (and will be using them later in this book), but the majority of our
work will be done in a right-handed coordinate system because of convention.

2.3.2 Affine Spaces

We can provide a more formal definition of coordinate systems based on
what we already know of vectors and vector spaces. Before we can do so,
though, we need to define the relationship between vectors and points. Points
can be related to vectors by means of an affine space. An affine space consists
of a set of points W and a vector space V . The relation between the points and
vectors is defined using the following two operations: For every pair of points
P and Q in W , there is a unique vector v in V such that

v = Q − P

Correspondingly, for every point P in W and every vector v in V , there is
a unique point Q such that

Q = P + v (2.7)
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This relationship can be seen in Figure 2.27. We can think of the vector v as
acting as a displacement between the two points P and Q. To determine the
displacement between two points, we subtract one from another. To displace
a point, we add a vector to it and that gives us a new point.

We can define a fixed-point O in W , known as the origin. Then using
equation 2.7, we can represent any point P in W as

P = O + v

or, expanding our vector using n basis vectors that span V :

P = O + a0 v0 + a1 v1 + · · · + an−1 vn−1 (2.8)

Using this, we can represent our point using an n-tuple (a0, . . . , an−1) just as
we do for vectors. The combination of the origin O and our basis vectors
(v0, . . . , vn−1) is known as a coordinate frame.

Note that we can use any point in W as our origin and — for an
n-dimensional affine space — any n linearly independent vectors as our
basis. Unlike the Cartesian axes, this basis does not have to be orthonormal,
but using an orthonormal basis (as with vectors) does make matching our
physical geometry with our abstract representation more straightforward.
Because of this, we will work with the standard origin (0, 0, . . . , 0), and the
standard basis {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}. This is known as the
Cartesian frame.

In R
3 our Cartesian frame will be the origin O = (0, 0, 0) and the standard

ordered basis { i, j, k} as before. Our basis vectors will lie along the x-, y-, and
z-axes, respectively. By using this system, we can use the same triple (x, y, z)

to represent a point and the corresponding vector from the origin to the point
(Figure 2.28).

To compute the distance between two points we use the length of the
vector that is their difference. So, if we have two points P0 = (x0, y0, z0) and
P1 = (x1, y1, z1) in R

3, the difference is

v = P1 − P0 = (x1 − x0, y1 − y0, z1 − z0)

P

Q

v

Figure 2.27 Affine relationship between points and vectors.
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Figure 2.28 Relationship between points and vectors in Cartesian affine frame.

and the distance between them is

dist(P1, P0) = ‖v‖ =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

This is also known as the Euclidean distance. In the R
3 Cartesian frame, the

distance between a point P = (x, y, z) and the origin is

dist(P, O) =
√

x2 + y2 + z2

2.3.3 Affine Combinations

So far the only operation that we’ve defined on points alone is subtraction,
which results in a vector. However, there is a limited addition operation that
we can perform on points that gives us a point as a result. It is known as an
affine combination, and has the form

P = a0P0 + a1P1 + · · · + akPk (2.9)

where

a0 + a1 + · · · + ak = 1 (2.10)

So, an affine combination of points is like a linear combination of vectors,
with the added restriction that all the coefficients need to add up to 1. We can
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show why this restriction allows us to perform this operation by rewriting
equation 2.10 as

a0 = 1 − a1 − · · · − ak

and substituting into equation 2.9 to get

P = (1 − a1 − · · · − ak)P0 + a1P1 + · · · + akPk

= P0 + a1(P1 − P0) + · · · + ak(Pk − P0) (2.11)

If we set u1 = (P1 − P0), u2 = (P2 − P0), and so on, we can rewrite this as

P = P0 + a1 u1 + a2 u2 + · · · + ak uk

So, by restricting our coefficients in this manner, it allows us to rewrite the
affine combination as a point plus a linear combination of vectors, a perfectly
legal operation.

Looking back at our coordinate frame equation 2.8, we can see that it too is
an affine combination. Just as we use the coefficients in a linear combination
of basis vectors to represent a general vector, we can use the coefficients of an
affine combination of origin and basis vectors to represent a general point.

An affine combination spans an affine space, just as a linear combination
spans a vector space. If the vectors in equation 2.11 are linearly independent,
we can represent any point in the spanned affine space using the coefficients
of the affine combination, just as we did before with vectors. In this case,
we say that the points P0, P1, . . . , Pk are affinely independent, and the ordered
points are called a simplex. The coefficients are called barycentric coordinates.
For example, we can create an affine combination of a simplex made of three
affinely independent points P0, P1, and P2. The affine space spanned by the
affine combination a0P0 + a1P1 + a2P2 is a plane, and any point in the plane
can be specified by the coordinates (a0, a1, a2).

We can further restrict the set of points spanned by the affine combina-
tion by considering properties of convex sets. A convex set of points is defined
such that a line drawn between any pair of points in the set remains within the
set (Figure 2.29). The convex hull of a set of points is the smallest convex set
that includes all the points. If we restrict our coefficients (a0, . . . , an−1) such
that 0 ≤ a0, . . . , an−1 ≤ 1, then we have a convex combination, and the span
of the convex combination is the convex hull of the points. For example, the
convex combination of three affinely independent points spans a triangle. We
will discuss the usefulness of this in more detail when we cover triangles in
Section 2.6.

If the barycentric coordinates in a convex combination of n points are all
1/n, then the point produced is called the centroid, which is the mean of a set
of points.
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Figure 2.29 Convex versus nonconvex set of points.

2.3.4 Point Implementation

Source Code

Library

IvMath

Filename

IvVector3

Using the Cartesian frame and standard basis in R
3, the x, y, and z values of a

point P in R
3 match the x, y, and z values of the corresponding vector P − O,

where O is the origin of the frame. This also means that we can use one class
to represent both, since one can be easily converted to the other. Because of
this, many math libraries don’t even bother implementing a point class and
just treat points as vectors.

Other libraries indicate the difference by treating them both as 4-tuples
and indicate a point as (x, y, z, 1) and a vector as (x, y, z, 0). In this system if
we subtract a point from a point, we automatically get a vector:

(x0, y0, z0, 1) − (x1, y1, z1, 1) = (x0 − x1, y0 − y1, z0 − z1, 0)

Similarly, a point plus a vector produces a point:

(x0, y0, z0, 1) + (x1, y1, z1, 0) = (x0 + x1, y0 + y1, z0 + z1, 1)

Even affine combinations give the expected results:

n−1∑
i=0

ai(xi, yi, zi, 1) =
(

n−1∑
i=0

aixi,

n−1∑
i=0

aiyi,

n−1∑
i=0

aizi,

n−1∑
i=0

ai

)

=
(

n−1∑
i=0

aixi,

n−1∑
i=0

aiyi,

n−1∑
i=0

aizi, 1

)

OpenGL uses this form when specifying the difference between a point
light, which casts light rays in all directions from a given position, and
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a directional light, which only casts light rays in one direction. Both are
specified by a single call:

GLfloat light_position[] = {1.0, 1.0, 1.0, 0.0};
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

If the final value of light_position is 0, then it is treated as a directional light;
otherwise, it is treated as a point light.

In our case, we will not be using a separate class for points. There would
be a certain amount of code duplication, since the IvPoint3 class would end
up being very similar to the IvVector3 class. Also to be considered is the per-
formance cost of converting points to vectors and back again. Further, to
maintain type correctness we may end up distorting equations unnecessar-
ily; this obfuscates the code and can lead to a loss in performance as well.
Finally, most production game engines don’t make the distinction, and we
wish to remain compatible with the overall state of the industry.

Despite not making the distinction in the class structure, it is important
to remember that points and vectors are not the same. One has direction and
length and the other position, so not all operations apply to both. For example,
we can add two vectors together to get a new vector. As we’ve seen, adding two
points together is only allowed in certain circumstances. So, while we will be
using a single class, we will be maintaining mathematical correctness in the
text and writing the code to reflect this.

As mentioned, most of what we need for points is already in the IvVector3
class. The only additional code we’ll have to implement is for distance and
distance squared operations:

float
Distance( const IvVector3& point1,

const IvVector3& point2 )
{

float x = point1.x - point2.x;
float y = point1.y - point2.y;
float z = point1.z - point2.z;

return IvSqrt( x*x + y*y + z*z );
}

float
DistanceSquared( const IvVector3& point1,

const IvVector3& point2 )
{

float x = point1.x - point2.x;
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float y = point1.y - point2.y;
float z = point1.z - point2.z;

return ( x*x + y*y + z*z );
}

2.3.5 Polar and Spherical Coordinates

Cartesian coordinates are not the only way of measuring location. We’ve
already mentioned latitude, longitude, and altitude, and there are other,
related systems. Take a point P in R

2 and compute the vector v = P − O.
We can specify the location of P using the distance r from P to the origin,
which is the length of v, and the angle θ between v and the positive x-axis,
where θ > 0 corresponds to a counterclockwise rotation from the axis. The
components (r, θ) are known as polar coordinates.

It is easy to convert from polar to Cartesian coordinates. We begin by
forming a right triangle using the x-axis, a line from P to O, and the perpen-
dicular from P to the x-axis (Figure 2.30). The hypotenuse has the length r

and is θ degrees from the x-axis. Using simple trigonometry, the lengths of the
other two sides of the triangle x and y can be computed as

x = r cos θ (2.12)

y = r sin θ

From Cartesian to polar coordinates, we reverse the process. It’s easy
enough to generate r by computing the distance between P and O. Finding
θ is not as straightforward. The naive approach is to solve equation 2.12

y-axis

x-axis

y

x

�

r

O

P

Figure 2.30 Relationship between polar and Cartesian coordinates.
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for θ, which gives us θ = arccos(x/r). However, the acos() function under
C++ only returns an angle in the range of [0, π), so we’ve lost the sign of the
angle. Since

y

x
= r sin θ

r cos θ

= sin θ

cos θ

= tan θ

an alternate choice would be arctan(y/x), but this doesn’t handle the case when
x = 0. To manage this, C++ provides a library function called atan2(), which
takes y and x as separate arguments and computes arctan(y/x). It has no prob-
lems with division by 0 and maintains the signed angle with a range of [−π, π].
We’ll represent the use of this function in our equations as arctan 2(y, x). The
final result is

r =
√

x2 + y2

θ = arctan 2(y, x)

If r is 0, θ may be set arbitrarily.
The system that extends this to three dimensions is called spherical coor-

dinates. In this system we call the distance from the point to the origin ρ

instead of r. We create a sphere of radius ρ centered on the origin and define
where the point lies on the sphere by two angles, φ and θ. If we take a vector
v from the origin to the point and project it down to the xy plane, θ is the
angle between the x-axis and rotating counterclockwise around z. The other
quantity, φ, measures the angle between v and the z-axis. The three values, ρ,
φ, and θ, represent the location of our point (Figure 2.31).

Spherical coordinates can be converted to Cartesian coordinates as
follows. Begin by building a right triangle as before, except with its hypotenuse
along ρ and base along the z-axis (Figure 2.32). The length z is then ρ cos φ.
To compute x and y, we project the vector v down onto the xy plane, and
then use polar coordinates. The length r of the projected vector v′ is ρ sin φ, so
we have

x = ρ sin φ cos θ (2.13)

y = ρ sin φ sin θ (2.14)

z = ρ cos φ (2.15)

To convert from Cartesian to spherical coordinates, we begin by comput-
ing ρ, which again is the distance from the point to the origin. To find φ, we
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Figure 2.31 Spherical coordinates.
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Figure 2.32 Relationship between spherical and Cartesian coordinates.

need to find the value of ρ sin φ. This is equal to the projected xy length r since

r =
√

x2 + y2

=
√

(ρ sin φ cos θ)2 + (ρ sin φ sin θ)2

=
√

(ρ sin φ)2(cos2 θ + sin2 θ)

= ρ sin φ
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And since, as with polar coordinates,

r

z
= ρ sin φ

ρ cos φ

= tan φ

we can compute φ = arctan 2(r, z). Similarly, θ = arctan 2(y, x). Summarizing:

ρ =
√

x2 + y2 + z2

φ = arctan 2

(√
x2 + y2, z

)
θ = arctan 2(y, x)

2.4 Lines

2.4.1 Definition

As with the point, a line as a geometric concept should be familiar. Euclid
[33] defines a line as “breadthless length” and a straight line as that “which
lies evenly with the points on itself.” A straight line also has been referred
to as the shortest distance between two points, although in non-Euclidean
geometry this is not necessarily true.

From first-year algebra, we know that a line in R
2 is represented by the

formula

y = mx + b (2.16)

where m is the slope of the line (it describes how y changes with each step
of x), and b is the coordinate location where the line crosses the y-axis (called
the y-intercept). In this case, x varies over all values and y is represented in
terms of x. This general form works for all lines in R

2 except for those that
are vertical, since in that case the slope is infinite and the y-intercept is either
nonexistent or is all values along the y-axis.

Equation 2.16 has a few problems. First of all, as mentioned, we can’t
easily represent a vertical line — it has infinite slope. And, it isn’t obvious how
to transform this equation into one useful for three dimensions. We will need
a different representation.
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2.4.2 Parameterized Lines

One possible representation is known as a parametric equation. Instead of
representing the line as a single equation with a number of variables, each
coordinate value is calculated by a separate function. This allows us to use
one form for a line that is generalizable across all dimensions. As an example,
we will take equation 2.16 and parameterize it.

To compute the parametric equation for a line, we need two points on our
line. We can take the y-intercept (0, b) as one of our points, and then take one
step in the positive x direction, or (1, m + b), to get the other. Subtracting point
1 from point 2, we get a 2D vector d = (1, m), which is oriented in the same
direction as the line (Figure 2.33). If we take this vector and add all the possible
scalar multiples of it to the starting point (0, b), then the points generated will
lie along the line. We can express this in one of the following forms:

L(t) = P0 + t(P1 − P0) (2.17)

= (1 − t)P0 + tP1 (2.18)

= P0 + t d (2.19)

The variable t in this case is called a parameter.
We started with a 2D example, but the formulas we just derived work

beyond two dimensions. As long as we have two points, we can just substitute
them into the preceding equations to represent a line. More formally, if we
examine equation 2.17, we see it matches equation 2.11. The affine combina-
tion of two unequal or noncoincident points span a line. Equation 2.19 makes
this even clearer. If we think of P0 as our origin and d as a basis vector, they
span a 1D affine space, which is the line.

Since our line is spanned by an affine combination of our two points, the
logical next question is: What is spanned by the convex combination? The
convex combination requires that t and (1 − t) lie between 0 and 1, which
holds only if t lies in the interval [0, 1]. Clamping t to this range gives us a line
segment (Figure 2.34). The edges of polygons are line segments, and we’ll also
be using line segments when we talk about bounding objects and collision
detection.

If we clamp t to only one end of the range, usually specifying that t ≥ 0,
then we end up with a ray (Figure 2.35) that starts at P0 and extends infinitely

d

P0

P1

Figure 2.33 Line.
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d

P0

P1

Figure 2.34 Line segment.

d

P0

P1

Figure 2.35 Ray.

along the line in the direction of d. Rays are useful for intersection and visi-
bility tests. For example, P0 may represent the position of a camera, and d is
the viewing direction.

Source Code

Library

IvMath

Filename

IvLine3
IvLineSegment3
IvRay3

In code we’ll be representing our lines, rays, and line segments as a point
on the line P and a vector d; so for example, the class definition for a line in
R

3 is

class IvLine3
{
public:

IvLine3( const IvVector3& direction, const IvVector3& origin );

IvVector3 mDirection;
IvPoint3 mOrigin;

};

2.4.3 Generalized Line Equation

There is another formulation of our 2D line that can be useful. Let’s start by
writing out the equations for both x and y in terms of t:

x = Px + tdx

y = Py + tdy

Solving for t in terms of x, we have

t = (x − Px)

dx
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Substituting this into the y equation, we get

y = dy

(x − Px)

dx

+ Py

We can rewrite this as

0 = (y − Py)

dy

− (x − Px)

dx

= (−dy)x + (dx)y + (dyPx − dxPy)

= ax + by + c (2.20)

where

a = −dy

b = dx

c = dyPx − dxPy = −aPx − bPy

We can think of a and b as the components of a 2D vector n, which is
perpendicular to the direction vector d, and so is orthogonal to the direction
of the line (Figure 2.36). This gives us a way of testing where a 2D point lies
relative to a 2D line. If we substitute the coordinates of the point into the
x and y values of the equation, then a value of 0 indicates it’s on the line,
a positive value indicates that it’s on the side where the vector is pointing,
and a negative value indicates that it’s on the opposite side. If we normalize
our vector, we can use the value returned by the line equation to indicate the
distance from the point to the line.

To see why this is so, suppose we have a test point Q. We begin by con-
structing the vector between Q and our line point P , or Q − P . There are two
possibilities. If Q lies on the side of the line where n is pointing, then the
distance between Q and the line is

d = ‖Q − P‖ cos θ

n 5 (a, b)

P0

Figure 2.36 Normal form of 2D line.
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where θ is the angle between n and Q − P . But since n · (Q − P) = ‖n‖
‖Q − P‖ cos θ, we can rewrite this as

d = n · (Q − P)

‖n‖

If Q is lying on the opposite side of the line, then we take the dot product with
the negative of n, so

d = −n · (Q − P)

‖ − n‖
= − n · (Q − P)

‖n‖

Since d is always positive, we can just take the absolute value of n · (Q − P)

to get

d = |n · (Q − P)|
‖n‖ (2.21)

If we know that n is normalized, we can drop the denominator. If Q = (x, y)

and (as we’ve stated) n = (a, b), we can expand our values to get

d = a(x − Px) + b(y − Py)

= ax + by − aPx − bPy

= ax + by + c

If our n is not normalized, then we need to remember to divide by ‖n‖ to get
the correct distance.

2.4.4 Collinear Points

Three or more points are said to be collinear if they all lie on a line. Another
way to think of this is that despite there being more than two points, the affine
space that they span is only one dimensional.

To determine whether three points P0, P1, and P2 are collinear, we take
the cross product of P1 −P0 and P2 −P0 and test whether the result is close to
the zero vector. This is equivalent to testing whether basis vectors for the
affine space are parallel.
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2.5 Planes

Euclid [33] defines a surface as “that which has length and breadth only,” and
a plane surface, or just a plane, as “a surface which lies evenly with the straight
lines on itself.” Another way of thinking of this is that a plane is created by
taking a straight line and sweeping each point on it along a second straight
line. It is a flat, limitless, infinitely thin surface.

2.5.1 Parameterized Planes

As with lines, we can express a plane algebraically in a number of ways. The
first follows from our parameterized line. From basic geometry we know that
two noncoincident points form a line and three noncollinear points form
a plane. So, if we can parameterize a line as an affine combination of two
points, then it makes sense that we can parameterize a plane as an affine
combination of three points P0, P1, and P2, or

P(s, t) = (1 − s − t)P0 + sP1 + tP2

Alternatively, we can represent this as an origin point plus the linear
combination of two vectors:

P(s, t) = P0 + s(P1 − P0) + t(P2 − P0)

= P0 + su + t v

As with the parameterized line equation, if our points are of higher dimen-
sion, we can create planes in higher dimensions from them. However, in most
cases our planes will be firmly entrenched in R

3.

2.5.2 Generalized Plane Equation

We can define an alternate representation for a plane in R
3, just as we did for

a line in R
2. In this form a plane is defined as the set of points perpendicular

to a normal vector n = (a, b, c) that also contains the point P0 = (x0, y0, z0) as
shown in Figure 2.37. If a point P lies on the plane, then the vector v = P −P0
also lies on the plane. For v and n to be orthogonal, then n · v = 0. Expanding
this gives us the normal-point form of the plane equation, or

a(x − x0) + b(y − y0) + c(z − z0) = 0
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n 5 (a, b, c)

P0

Figure 2.37 Normal form of plane.

We can pull all the constants into one term to get

0 = ax + by + cz − (ax0 + by0 + cz0)

= ax + by + cz + d

So, extending equation 2.20 to three dimensions gives us the equation for a
plane in R

3.
This is the generalized plane equation. As with the generalized line equa-

tion, this equation can be used to test where a point lies relative to either side
of a plane. Again, comparable to the line equation, it can be proved that if
n is normalized, |ax + by + cz + d| returns the distance from the point to the
plane.

Testing points versus planes using the general plane equation happens
quite often. For example, to detect whether a point lies inside a convex poly-
hedron, you can do a plane test for every face of the polyhedron. Assuming
the plane normals point away from the center of the polyhedron, if the point
is on the negative side of all the planes then it lies inside. We may also use
planes as culling devices that cut our world into half-spaces. If an object lies
on one side of a plane, we consider it (say, for rendering purposes); otherwise,
we ignore it. The distance property can be used to test whether a sphere is
intersecting a plane. If the distance between the sphere’s center and the plane
is less than the sphere’s radius, then the sphere is intersecting the plane.

Given three points in R
3, P , Q, and R, we generate the generalized plane

equation as follows. First we compute two vectors u and v, where

u = Q − P

v = R − P

Now we take the cross product of these two vectors to get the normal to the
plane:

n = u × v
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We usually normalize n at this point so that we can take advantage of the
distance-measuring properties of the plane equation. This gives us our values
a, b, and c. Taking P as the point on the plane, we compute d by

d = −(aPx + bPy + cPz)

We can also use this to convert our parameterized form to the generalized
form by starting with the cross product step.

Source Code

Library

IvMath

Filename

IvPlane

Since we’ll be working in R
3 most of the time and because of its useful

properties, we’ll be using the generalized plane equation as the basis for our
class:

class IvPlane
{
public:

IvPlane( float a, float b, float c, float d );

IvVector3 mNormal;
float mOffset;

};

And while we’ll be using this as our standard plane, from time to time we’ll
be making use of the parameterized form, so it’s good to keep it in mind.

2.5.3 Coplanar Points

Four or more points are said to be coplanar if they all lie on a plane. Another
way to think of this is that despite the number of points being greater than
three, the affine space that they span is only two dimensional.

To determine whether four points P0, P1, P2, and P3 are coplanar, we create
vectors P1 −P0, P2 −P0, and P3 −P0, and compute their triple scalar product. If
the result is near zero, then they may be coplanar, if they’re not collinear. To
determine if they are collinear, take the cross products (P1 − P0) × (P2 − P0),
and (P1 − P0) × (P3 − P0). If both results are near zero, then the points are
collinear instead.

Source Code

Library

IvMath

Filename

IvTriangle

2.6 Polygons and Triangles

The current class of graphics processors wants their geometric data in
primarily one form: points. However, having just a collection of points is
not enough. We need to organize these points into smaller groups, for both
rendering and computational purposes.
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A polygon is made up of a set of vertices (which are represented by points)
and edges (which are represented by line segments). The edges define how
the vertices are connected together. A convex polygon is one where the set
of points enclosed by the vertices and edges is a convex set; otherwise, it’s
a concave polygon.

The most commonly used polygons for storing geometric data are triangles
(three vertices) and quadrilaterals (four vertices). While some rendering sys-
tems accept quadrilaterals (also referred to as just quads) as data, most want
geometry grouped in triangles, so we’ll follow that convention throughout
the remainder of the book. One advantage triangles have over quadrilater-
als is that three noncollinear vertices are guaranteed to be coplanar, so they
can be used to define a single plane. If the three vertices of a triangle are
collinear, then we have a degenerate triangle. Degenerate triangles can cause
problems on some hardware and with some geometric algorithms, so it’s good
to cull them by checking for collinearity of the triangle vertices by using the
technique described previously.

If the points are not collinear, then as we’ve stated, the three vertices P0,
P1, and P2 can be used to find the triangle’s incident plane. If we set u =
P1 − P0 and v = P2 − P0, then we can define this via the parameterized plane
equation P(s, t) = P0 + su + t v. Alternately, we can compute the generalized
plane equation by computing the cross product of u and v, normalizing to get
the normal n̂, and then computing d as described in Section 2.5.2.

It’s often necessary to test whether a 3D point lying on the triangle plane
is inside or outside of the triangle itself (Figure 2.38). We begin by computing
three vectors v0, v1, and v2, where

v0 = P1 − P0

v1 = P2 − P1

v2 = P0 − P2

P1

P2

P0

Pv0

v2

v1

w0

Figure 2.38 Point in triangle test.
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We take the cross product of v0 and v1 to get a normal vector n to the triangle.
We then compute three vectors from each vertex to the test point:

w0 = P − P0

w1 = P − P1

w2 = P − P2

If the point lies inside the triangle, then the cross product of each vi with each
wi will point in the same direction as n, which we can test by using a dot
product. If the result is negative, then we know they’re pointing in opposite
directions, and the point lies outside. For example, in Figure 2.38, the normal
vector to the triangle, computed as v0 × v1, points out of the page. But the
cross product v0 × w0 points into the page, so the point lies outside.

We can speed up this operation by projecting the point and triangle to
one of the xy, xz, or yz planes and treating it as a 2D problem. To improve
our accuracy, we’ll choose the one that provides the maximum area for the
projection of the triangle. If we look at the normal n for the triangle, one of
the coordinate values (x, y, z) will have the maximum absolute value; that is,
the normal is pointing generally along that axis. If we drop that coordinate and
keep the other two, that will give us the maximum projected area. We can then
throw out a number of zero terms and end up with a considerably faster
test. This is equivalent to using the perpendicular dot product instead of the
cross product. More detail on this technique can be found in Section 12.3.5,
Triangles.

Another advantage that triangles have over quads is that (again, assuming
the vertices aren’t collinear) they are convex polygons. In particular, the con-
vex combination of the three triangle vertices spans all the points that make
up the triangle. Given a point P inside the triangle and on the triangle plane,
it is possible to compute its particular barycentric coordinates (s, t), as used in
the parameterized plane equation P(s, t) = P0 +su+ t v. If we compute a vector
w = P − P0, then we can rewrite the plane equation as

P = P0 + su + t v

w = su + t v

If we take the cross product of v with w, we get

v × w = v × (su + t v)

= s(v × u) + t(v × v)

= s(v × u)
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Taking the length of both sides gives

‖v × w‖ = |s|‖v × u‖

The quantity ‖v × u‖ = ‖u × v‖. And since P is inside the triangle, we know
that to meet the requirements of a convex combination s ≥ 0, so

s = ‖v × w‖
‖u × v‖

A similar construction finds that

t = ‖u × w‖
‖u × v‖

Note that this is equivalent to computing the areas a and b of the two
subtriangles shown in Figure 2.39 and dividing by the total area of the
triangle c, so

s = b

c

t = a

c

where

a = 1

2
‖u × w‖

b = 1

2
‖v × w‖

c = 1

2
‖u × v‖

P1

P0 P2v

w
u P

a

b

Figure 2.39 Computing barycentric coordinates for point in triangle.
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These simple examples are only a taste of how we can use triangles in
mathematical calculations. More details on the use and implementation of
triangles can be found throughout the text, particularly in Chapters 7 and 12.

2.7 Chapter Summary

In this chapter, we have covered some basic geometric entities: vectors and
points. We have discussed linear and affine spaces, the relationships between
them, and how we can use affine combinations of vectors and points to define
other entities like lines and planes. We’ve also shown how we can use our
knowledge of affine spaces and vector properties to compute some simple tests
on triangles. These skills will prove useful to us throughout the remainder of
the text.

For those who are interested in reading further, Anton and Rorres [3] is
a standard reference for many first courses in linear algebra. Other texts with
slightly different approaches are Axler [4] and Friedberg et al. [39]. Informa-
tion on points and affine spaces can be found in Schneider and Eberly [100],
as well as in deRose [23].



Chapter3
Matrices and
Linear
Transformations

3.1 Introduction

In the previous chapter we discussed vectors and points and some simple
operations we can apply to them. Now we’ll begin to expand our discussion
to cover specific functions that we can apply to vectors and points; functions
known as transformations. In this chapter we’ll discuss a class of transfor-
mations that we can apply to vectors called linear transformations. These
encompass nearly all of the common operations we might want to perform on
vectors and points, so understanding what they are and how to apply them is
important. We’ll define these functions and how they are distinguished from
other, more general transformations.

Properties of linear transformations allow us to use a structure called a
matrix as a compact representation for transforming vectors. A matrix is a
simple two-dimensional (2D) array of values, but within it lies all the power
of a linear transformation. Through simple operations we can use the matrix
to apply linear transformations to vectors. We can also combine two transfor-
mation matrices to create a new one that has the same effect of the first two.
Using matrices effectively lies at the heart of the pipeline for manipulating
virtual objects and rendering them on the screen.

Matrices have other applications as well. Examining the structure of
a matrix can tell us something about the transformation it represents, for
example, whether it can be reversed, what that reverse transformation might
be, or whether it distorts the data that it is given. Matrices also can be used

87
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to solve systems of linear equations, which is useful to know for certain
algorithms in graphics and physical simulation. For all of these reasons,
matrices are primary data structures in graphics application programmer
interfaces (APIs).

3.2 Matrices

3.2.1 Introduction to Matrices

A matrix is a rectangular, 2D array of values. Throughout this book, most of
the values we use will be real numbers, but they could be complex numbers or
even vectors. Each individual value in a matrix is called an element. Examples
of matrices are

A =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦ B =
[

0 35 −15
2 52 1

]
C =

⎡⎣ 2 −1
0 2
6 3

⎤⎦

A matrix is described as having m rows by n columns, or being an m × n

matrix. A row is a horizontal group of elements from left to right, while a
column is a vertical, top-to-bottom group. Matrix A in our example has 3 rows
and 3 columns and is a 3 × 3 matrix, whereas matrix C is a 3 × 2 matrix. Rows
are numbered 0 to m−1,1 while columns are numbered 0 to n−1. An individual
element of a matrix A is referenced as either (A)i,j or just ai,j, where i is the
row number and j is the column. Looking at matrix B, element b1,0 contains
the value 2 and element b0,1 equals 35.

If an individual matrix has an equal number of rows and columns, that is
if m = n, then it is called a square matrix. In our example, matrix A is square,
whereas matrices B and C are not.

If all elements of a matrix are zero, then it is called a zero matrix. We will
represent a matrix of this type as 0 and assume a matrix of the appropriate
size for the operation we are performing.

If two matrices have an equal number of rows and columns, then they
are said to be the same size. If they are the same size and their corresponding

1. As a reminder, mathematical convention starts with 1, but we’re using 0 to be compatible
with C++.
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elements have the same values, then they are equal. Below, the two matrices
are the same size, but they are not equal.

⎡⎣ 0 1
3 2
0 −3

⎤⎦ �=
⎡⎣ 0 0

2 −3
1 3

⎤⎦
The set of elements where the row and column numbers are the same

(e.g., row 1, column 1) is called the main diagonal. In the next example the
main diagonal is in gray.

U =

⎡⎢⎢⎣
3 −5 0 1
0 2 6 0
0 0 1 −8
0 0 0 1

⎤⎥⎥⎦
The trace of a matrix is the sum of the main diagonal elements. In this

case the trace is 3 + 2 + 1 + 1 = 7.
In matrix U, all elements below the diagonal are equal to 0. This is known

as an upper triangular matrix. Note that elements above the diagonal don’t
necessarily have to be nonzero in order for the matrix to be upper triangular,
nor does the matrix have to be square.

If elements above the diagonal are 0, then we have a lower triangular
matrix:

L =

⎡⎢⎢⎣
3 0 0 0
2 2 0 0
0 3 1 0

−6 1 0 1

⎤⎥⎥⎦
Finally, if a square matrix has nondiagonal elements of zero, we call the

matrix a diagonal matrix:

D =

⎡⎢⎢⎣
3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
It follows that any diagonal matrix is both an upper triangular and lower
triangular matrix.
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3.2.2 Simple Operations

Matrix Addition and Scalar Multiplication

We can add and scale matrices just as we can vectors. Adding two matrices
together:

S = A + B

is done componentwise like vectors, thus,

si,j = ai,j + bi,j

Clearly, in order for this to work, A, B, and S must all be the same size (also
known as conformable for addition). Subtraction works similarly but as with
real numbers and vectors is not commutative.

To scale a matrix,

P = sA

each element is multiplied by the scalar, again like vectors:

pi,j = s · ai,j

Matrix addition and scalar multiplication have their algebraic rules, which
should seem quite familiar at this point:

1. A + B = B + A.

2. A + (B + C) = (A + B) + C.

3. A + 0 = A.

4. A + (−A) = 0.

5. a(A + B) = aA + aB.

6. a(bA) = (ab)A.

7. (a + b)A = aA + bA.

8. 1A = A.

As we can see, these rules match the requirements for a vector space, and so
the set of matrices of a given size is also a vector space.
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Transpose

The transpose of a matrix A (represented by AT ) interchanges the rows and
columns of A. It does this by exchanging elements across the matrix’s main
diagonal, so (AT )i,j = (A)j,i. An example of this is

⎡⎣ 2 −1
0 2
6 3

⎤⎦ =
[

2 0 6
−1 2 3

]

As we can see, the matrix does not have to be square, so an m × n matrix
becomes an n × m matrix. Also, the main diagonal doesn’t change, or is
invariant, since (AT )i,i = (A)i,i.

A matrix where (A)i,j = (A)j,i (i.e., cross-diagonal entries are equal) is
called a symmetric matrix. All diagonal matrices are symmetric. Another
example of a symmetric matrix is⎡⎢⎢⎣

3 1 2 3
1 2 −5 0
2 −5 1 −9
3 0 −9 1

⎤⎥⎥⎦
The transpose of a symmetric matrix is the matrix again, since in this case
(AT )j,i = (A)i,j = (A)j,i.

A matrix where (A)i,j = −(A)j,i (i.e., cross-diagonal entries are negated
and the diagonal is 0) is called a skew symmetric matrix. An example of a skew
symmetric matrix is ⎡⎣ 0 1 2

−1 0 −5
−2 5 0

⎤⎦
The transpose of a skew symmetric matrix is the negation of the original
matrix, since in this case (AT )j,i = (A)i,j = −(A)j,i.

Some useful algebraic rules involving the transpose are

1. (AT )T = A

2. (aAT ) = aAT

3. (A + B)T = AT + BT

where a is a scalar and A and B are conformable for addition.
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3.2.3 Vector Representation

If a matrix has only one row or one column, then we have a row or column
matrix, respectively:

[
0.5 0.25 1 −1

] ⎡⎣ 5
−3
6.9

⎤⎦
These are often used to represent vectors. There is no particular standard as
to which one to use. For example, the OpenGL specification and its documen-
tation uses columns, whereas DirectX, by comparison, uses rows. In this text
we will assume that vectors are represented as column matrices (also known
as column vectors). First of all, most math texts use column vectors and we
wish to remain compatible. In addition, the classical presentation of quater-
nions (another means for performing some linear transformations) uses a
concatenation order consistent with the use of column matrices for vectors.

The choice to represent vectors as column matrices does have some effect
on how we construct and multiply our matrices, which we will discuss in more
detail in the following parts. In the cases where we do wish to indicate that a
vector is represented as a row matrix, we’ll display it with a transpose applied,
like bT .

3.2.4 Block Matrices

A matrix also can be represented by submatrices, rather than by individual
elements. This is also known as a block matrix. For example, the matrix

⎡⎣ 2 3 0
−3 2 0

0 0 1

⎤⎦
also can be represented as

[
A 0
0T 1

]

where

A =
[

2 3
−3 2

]



3.2 Matrices 93

and

0 =
[

0
0

]
We will sometimes use this to represent a matrix as a set of row or column

matrices. For example, if we have a matrix A⎡⎣ a0,0 a0,1 a0,2
a1,0 a1,1 a1,2
a2,0 a2,1 a2,2

⎤⎦
we can represent its rows as three vectors

aT
0 = [

a0,0 a0,1 a0,2
]

aT
1 = [

a1,0 a1,1 a1,2
]

aT
2 = [

a2,0 a2,1 a2,2
]

and represent A as ⎡⎢⎣ aT
0

aT
1

aT
2

⎤⎥⎦
Similarly, we can represent a matrix B with its columns as three vectors

b0 =
⎡⎣ b0,0

b1,0
b2,0

⎤⎦
b1 =

⎡⎣ b0,1
b1,1
b2,1

⎤⎦
b2 =

⎡⎣ b0,2
b1,2
b2,2

⎤⎦
and subsequently B as [

b0 b1 b2
]

As mentioned earlier, the transpose notation tells us whether we’re using row
or column vectors.
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3.2.5 Matrix Product

The primary operation we will apply to matrices is multiplication, also known
as the matrix product. The product is important to us because it allows us to
do two essential things. First, multiplying a matrix by a compatible vector
will transform the vector. Second, multiplying matrices together will create
a single matrix that performs their combined transformations. We’ll discuss
exactly what is occurring when we discuss linear transformations below, but
for now we ’ll just define how to perform matrix multiplication.

As with real numbers, the product C of two matrices A and B is
represented as

C = AB

Computing the matrix product is not as simple as multiplying real numbers
but is not that bad if you understand the process. To calculate a given element
ci,j in the product, we take the dot product of row i from A with column j

from B. We can express this symbolically as

ci,j =
n−1∑
k=0

ai,kbk,j

As an example, we’ll look at computing the first element of a 3 × 3 matrix:⎡⎢⎢⎣
a0,0 a0,1 a0,2
...

...
...

...
...

...

⎤⎥⎥⎦
⎡⎣ b0,0 · · · · · ·

b1,0 · · · · · ·
b2,0 · · · · · ·

⎤⎦ =

⎡⎢⎢⎣
c0,0 · · · · · ·
...

. . .
...

... · · · . . .

⎤⎥⎥⎦
To compute the value of c0,0, we take the dot product of row 1 from A and
column 1 from B:

c0,0 = a0,0b0,0 + a0,1b1,0 + a0,2b2,0

Expanding this for a 2 × 2 matrix:[
a0,0 a0,1
a1,0 a1,1

] [
b0,0 b0,1
b1,0 b1,1

]
=

[
a0,0b0,0 + a0,1b1,0 a0,0b0,1 + a0,1b1,1
a1,0b0,0 + a1,1b1,0 a1,0b0,1 + a1,1b1,1

]
If we represent A as a collection of rows and B as a collection of columns,
then [

aT
0

aT
1

] [
b0 b1

] =
[

a0 · b0 a0 · b1

a1 · b0 a1 · b1

]
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We can also multiply by using block matrices:[
A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]
Note that this is only allowable if the submatrices are conformable for addition
and multiplication.

There is a restriction on which matrices can be multiplied together; in
order to perform a dot product the two vectors have to have the same length.
So, to multiply together two matrices, the number of columns in the first
(i.e., the width of each row) has to be the same as the number of rows in
the second (i.e., the height of each column). Because of this restriction, only
square matrices can be multiplied by themselves.

As previously indicated, matrices can be used to transform vectors. We
do this by multiplying the matrix by a column matrix representing the vector
we wish to transform, or:⎡⎢⎢⎢⎣

b0
b1
...

bm−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a0,0 a0,1 · · · a0,n−1
a1,0 a1,1 · · · a1,n−1
...

...
. . .

...

am−1,0 am−1,1 · · · am−1,n−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0
x1
...

xn−1

⎤⎥⎥⎥⎦
We can represent this in matrix–vector notation as just

b = Ax

Note that in this case the number of columns in the matrix must match the
number of elements in the vector.

Column vectors aren’t the only possibility. We can also premultiply by a
vector by treating it as a row matrix:

[
c0 c1 · · · cn−1

] = [
x0 x1 · · · xm−1

]
⎡⎢⎢⎢⎣

a0,0 a0,1 · · · a0,n−1
a1,0 a1,1 · · · a1,n−1
...

...
. . .

...

am−1,0 am−1,1 · · · am−1,n−1

⎤⎥⎥⎥⎦
or

cT = xT A

And now note that in this case the number of rows in the matrix must match
the number of elements in the vector.
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In general, matrix multiplication is not commutative. As an example, if
we multiply a row matrix by a column matrix, we perform a dot product:

[
1 2

] [ 3
4

]
= 1 · 3 + 2 · 4 = 11

Because of this, you may often see a dot product represented as

a · b = aT b

If we multiply them in the opposite order, we get a square matrix:[
3
4

] [
1 2

] =
[

3 6
4 8

]
Even multiplication of square matrices is not necessarily commutative:[

3 6
4 8

] [
1 0
1 1

]
=

[
9 6

12 8

]
[

1 0
1 1

] [
3 6
4 8

]
=

[
3 6
7 14

]

Aside from the size restriction and not being commutative, the algebraic
rules for matrix multiplication are very similar to those for real numbers:

1. A(BC) = (AB)C

2. a(BC) = (aB)C

3. A(B + C) = AB + AC

4. (A + B)C = AC + BC

5. (AB)T = BT AT

where A, B, and C are matrices conformable for multiplication and a is a
scalar. Note that matrix multiplication is still associative (rules 1 and 2) and
distributive (rules 3 and 4).

3.2.6 Identity Matrix

We know that when we multiply a scalar or vector by 1, the result is the scalar
or vector again:

1 · x = x
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Similarly, in matrix multiplication there is a special matrix known as the
identity matrix, represented by the letter I. Thus,

A · I = I · A = A

A particular identity matrix is a diagonal square matrix, where the
diagonal is all 1s:

I =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎦
If a particular n × n identity matrix is needed, it is sometimes referred to
as In. Take as an example I3:

I3 =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦
Rather than referring to it in this way, we’ll just use the term I to represent a
general identity matrix and assume it is the correct size in order to allow an
operation to proceed.

3.2.7 Performing Vector Operations with
Matrices

Recall that if we multiply a row vector by a column vector, it performs a dot
product:

wT v = wxvx + wyvy + wzvz = v · w

And multiplying them in the opposite order produces a square matrix:

T = v wT =
⎡⎣ vxwx vxwy vxwz

vywx vywy vywz

vzwx vzwy vzwz

⎤⎦
This square matrix T is known as the tensor product v ⊗ w. We can use it to
rewrite vector expressions of the form (u · v)w as

(u · v)w = (w ⊗ v)u
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In particular, we can rewrite a projection by a unit vector as

(u · v̂) v̂ = ( v̂ ⊗ v̂)u

This will prove useful to us in the next chapter.
We can also perform our other vector product, the cross product, through

a matrix multiplication. If we have two vectors v and w and we want to
compute v × w, we can replace v with a particular skew symmetric matrix,
represented as ṽ:

ṽ =
⎡⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤⎦
Multiplying by w gives⎡⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤⎦⎡⎣ wx

wy

wz

⎤⎦ =
⎡⎣ vywz − wyvz

vzwx − wzvx

vxwy − wxvy

⎤⎦
which is the formula for the cross product. This will also prove useful to us
in subsequent chapters.

3.2.8 Implementation

Source Code

Library

IvMath

Filename

IvMatrix33
IvMatrix44

One might expect that the most natural data format for, say, a 3 × 3 matrix
would be

class IvMatrix33
{

float mData[3][3];
};

However, the memory layout of such a matrix is not ideal for our purposes.
In C or C++, 2D arrays are stored in what is called row major order, meaning
that the matrix is stored in memory in a row-by-row order. If we use a one-
dimensional (1D) array as our member variable instead:

class IvMatrix33
{

float mV[9];
};
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the index order for a 3 × 3 matrix is

⎡⎣ 0 1 2
3 4 5
6 7 8

⎤⎦

The indexing operator for a row major matrix (we have to use operator()
because operator[] only works for a single index) is

float&
IvMatrix33::operator()(unsigned int row, unsigned int col)
{

return mV[col + 3*row];
}

Why won’t this work? Well, in Direct3D matrices are expected to be used
with row vectors. And even in OpenGL, despite the fact that the documenta-
tion is written using column vectors, the internal representation premultiplies
the vectors; that is, it expects row vectors as well. Accordingly, since we’re
using column vectors, we will need to transpose our matrices before we pass
them in as arguments to the graphics API. Doing this for every single matrix
takes time and is a bit of a nuisance to remember. Missing that one transpose
can make debugging your algorithm a longer process than it needs to be.

The solution is to pretranspose the matrix in the storage representation.
This is a format known as column major order and stores a matrix column by
column instead of row by row. Writing out our indices in column major order
gives us ⎡⎣ 0 3 6

1 4 7
2 5 8

⎤⎦
Notice that the indices are the transpose of row major order. The indexing
operator becomes

float&
IvMatrix33::operator()(unsigned int row, unsigned int col)
{

return mV[row + 3*col];
}
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Alternatively, if we want to use 2D arrays:

float&
IvMatrix33::operator()(unsigned int row, unsigned int col)
{

return mV[col][row];
}

Using column major format and column vectors, matrix–vector multipli-
cation becomes

IvVector3
IvMatrix33::operator*( const IvVector3& vector ) const
{

IvVector3 result;

result.x = mV[0]*vector.x + mV[3]*vector.y + mV[6]*vector.z;
result.y = mV[1]*vector.x + mV[4]*vector.y + mV[7]*vector.z;
result.z = mV[2]*vector.x + mV[5]*vector.y + mV[8]*vector.z;

return result;
}

and matrix–matrix multiplication is

IvMatrix33
IvMatrix33::operator*( const IvMatrix33& other ) const
{

IvMatrix33 result;

result.mV[0] = mV[0]*other.mV[0] + mV[3]*other.mV[1] + mV[6]*other.mV[2];
result.mV[1] = mV[1]*other.mV[0] + mV[4]*other.mV[1] + mV[7]*other.mV[2];
result.mV[2] = mV[2]*other.mV[0] + mV[5]*other.mV[1] + mV[8]*other.mV[2];

result.mV[3] = mV[0]*other.mV[3] + mV[3]*other.mV[4] + mV[6]*other.mV[5];
result.mV[4] = mV[1]*other.mV[3] + mV[4]*other.mV[4] + mV[7]*other.mV[5];
result.mV[5] = mV[2]*other.mV[3] + mV[5]*other.mV[4] + mV[8]*other.mV[5];

result.mV[6] = mV[0]*other.mV[6] + mV[3]*other.mV[7] + mV[6]*other.mV[8];
result.mV[7] = mV[1]*other.mV[6] + mV[4]*other.mV[7] + mV[7]*other.mV[8];
result.mV[8] = mV[2]*other.mV[6] + mV[5]*other.mV[7] + mV[8]*other.mV[8];

return result;
}
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Matrix addition is just

IvMatrix33
IvMatrix33::operator+( const IvMatrix33& other ) const
{

IvMatrix33 result;
for (int i = 0; i < 9; ++i)
{

result.mV[i] = mV[i]+other.mV[i];
}
return result;

}

Scalar multiplication of matrices is similar.
It is common practice to refer to a matrix intended to be used with row

vectors (i.e., its transformed basis vectors are stored as rows) as row major
order and, similarly, to a matrix intended to be used with column vectors as
column major order. This is incorrect terminology. Row and column major
order refer only to the storage format; namely, where an element ai,j will lie in
the 1D representation of the matrix. Whether your matrix library intends for
vectors to be pre- or postmultiplied should be independent of the underlying
storage.

3.3 Linear Transformations

Now that we’ve discussed the structure and basic functionality of matrices,
we can discuss their purpose as an engine for performing linear transfor-
mations. Linear transformations are a very useful and important concept in
linear algebra. As one of a class of functions known as transformations, they
map vector spaces to vector spaces. This allows us to apply complex functions
to, or transform, vectors. Linear transformations perform this mapping while
also having the additional property of preserving linear combinations. We will
see how this permits us to describe a linear transformation in terms of how it
affects the basis vectors of a vector space. Later sections will show how this
in turn allows us to use matrices to represent linear transformations.

3.3.1 Definitions

Before we can begin to discuss transformations and linear transformations
in particular, we need to define a few terms. A relation maps a set X of val-
ues (known as the domain) to another set Y of values (known as the range).
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A function is a relation where every value in the first set maps to one and only
one value in the second set, for example, f(x)= sin x. An example of a relation
that is not a function is ±√

x, because there are two possible results for a
positive value of x, either positive or negative.

A function whose domain is an n-dimensional space and whose range is
an m-dimensional space is known as a transformation. A transformation that
maps from R

n to R
m is expressed as T : R

n → R
m. If the domain and the range

of a transformation are equal (i.e., T : R
n → R

n), then the transformation is
sometimes called an operator.

An example of a transformation is the function

f(x, y) = x2 + 2y

which maps from R
2 to R. Another example is

f(x, y, z) = x2 + 2y + √
z

which maps from R
3 to R.

We can also map to a multidimensional space. For example, we could
define a transformation from R

2 to R
2 as follows:

T(a, b) = (f(a, b), g(a, b)) (3.1)

A linear transformation T is a mapping between two vector spaces V and
W , where for all v in V and for all scalars a:

1. T(v0 + v1) = T(v0) + T(v1) for all v0, v1 in V .

2. T(av) = aT(v) for all v in V .

To determine whether a transformation is linear, it is sufficient to show
that

T(ax + y) = aT(x) + T(y)

An example of a linear transformation is T(x) = kx, where k is any fixed scalar.
We can show this by

T(ax + y) = k(ax + y)

= akx + ky

= aT(x) + T(y)
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On the other hand, the function g(x) = x2 is not linear because, for a = 2,
x = 1, and y = 1:

g(2(1) + 1) = (2(1) + 1)2

= 32 = 9

�= 2(g(1)) + g(1)

= 2(12) + 12 = 3

As we might expect, the only operations possible in a linear function are
multiplication by a constant and addition.

3.3.2 Null Space and Range

We define the null space (or kernel) N(T) of a linear transformation T : V → W

as the set of all vectors in V that map to 0, or

N(T) = {x | T(x) = 0}

The dimension of N(T) is called the nullity of the transformation.
We formally define the range R(T) of a linear transformation T : V → W

as the set of all vectors in W that are mapped to by at least one vector in V , or

R(T) = {T(x)|x ∈ V }

The dimension of R(T) is called the rank of the transformation.
The null space and range have two important properties. First of all, they

are both vector spaces, and in fact the null space is a subspace of V and the
range is a subspace of W . Second,

nullity(T) + rank(T) = dim(V)

To get a better sense of this, let’s look at an example. Suppose we have the
linear transformation

T(a, b) = (a + b, 0)

The resulting range space is of the form (x, 0), so it can be spanned by the
vector (1, 0) and has dimension 1. The transformation will produce the vector
(0, 0) only when a = −b. So the null space has a basis of (1, −1) and is also one
dimensional. As we expect, they add up to 2, the dimension of our original
vector space (Figure 3.1).
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Range (y=0)

Null space (y=
�

x)

Figure 3.1 Range and null space for transformation T(a, b) = (a + b, 0).

3.3.3 Linear Transformations and Basis
Vectors

Using standard function notation to represent linear transformations (as in
equation 3.1) is not the most convenient or compact format, particularly for
transformations between higher-dimensional vector spaces. Let’s examine the
properties of vectors as they undergo a linear transformation and see how that
can lead us to a better representation.

Recall that we can represent any vector x in an n-dimensional vector
space V as

x = x0 v0 + x1 v1 + · · · + xn−1 vn−1

where {v0, v1, . . . , vn−1} is a basis for V .
Now suppose we have a linear transformation T : V → W that maps from

V to an m-dimensional vector space W . If we apply our transformation to our
arbitrary vector x, then we have

T(x) = T(x0 v0 + x1 v1 + · · · + xn−1 vn−1)

= x0T(v0) + x1T(v1) + · · · + xn−1T(vn−1) (3.2)



3.3 Linear Transformations 105

So, if we know how our linear transformation affects our basis for V , then
we can calculate the effect of the linear transformation for any arbitrary
vector in V .

There is still an open question: What are the components of each T(vj)

equal to? For a member vj of V ’s basis, we can represent T(vj) in terms of the
basis {w0, w1, . . . , wm−1} for W , again as a linear combination:

T(vj) = a0,j w0 + a1,j w1 + · · · + am−1,j wm−1

If {w0, . . . , wm−1} is the standard basis for W , this simplifies to

T(vj) = (a0,j, a1,j, . . . , am−1,j) (3.3)

Combining equations 3.2 and 3.3 gives us

T(x) = x0(a0,0, a1,0, . . . , am−1,0)

= +x1(a0,1, a1,1, . . . , am−1,1) (3.4)

= · · ·
= +xn−1(a0,n−1, a1,n−1, . . . , am−1,n−1)

If we set b = T(x), then for a given component of b

bi = ai,0x0 + ai,1x1 + · · · + ai,n−1xn−1 (3.5)

Knowing this, we can precalculate and store the n transformed basis vec-
tors (a0,j, a1,j, . . . , am−1,j) and use this formula at any time to transform a
general vector x.

Let’s look at an example taking a transformation from R
2 to R

2, using the
standard basis for both vector spaces:

T(a, b) = (a + b, b)

If we look at how this affects our standard basis for R
2, we get

T(1, 0) = (1 + 0, 0) = (1, 0)

T(0, 1) = (0 + 1, 1) = (1, 1)

Transforming an arbitrary vector in R
2, say (2, 3), we get

T(2, 3) = 2T(1, 0) + 3T(0, 1)

= 2(1, 0) + 3(1, 1)

= (5, 3)

which is what we expect.
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It should be made clear that applying a linear transformation to a basis
does not produce the basis for the new vector space. It only shows where
the basis vectors end up in the new vector space — in our case in terms of
the standard basis. In fact, a transformed basis may be no longer linearly
independent. Take as another example

T(a, b) = (a + b, 0)

Applying this to our standard basis for R
2, we get

T(1, 0) = (1 + 0, 0) = (1, 0)

T(0, 1) = (0 + 1, 0) = (1, 0)

The two resulting vectors are clearly linearly dependent.
These two examples illustrate one useful property. If the rank of a linear

transformation T equals the number of elements in a transformed basis β,
then we can say that β is linearly independent. In fact, the rank is equal to the
number of linearly independent elements in β, and those linearly independent
elements will span the range of T.

3.3.4 Matrices and Linear Transformations

Knowing that we can represent a linear transformation in terms of how the
basis vectors are transformed is a very powerful tool. As we will now see, it is
precisely this property of linear transformations that allows us to represent
them concisely by using a matrix.

Let’s look again at a matrix–vector multiplication with our terms expanded:⎡⎢⎢⎢⎣
b0
b1
...

bm−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a0,0 a0,1 · · · a0,n−1
a1,0 a1,1 · · · a1,n−1
...

...
. . .

...

am−1,0 am−1,1 · · · am−1,n−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0
x1
...

xn−1

⎤⎥⎥⎥⎦
Note that x has n components and the resulting vector b has m. In order
for the multiplication to proceed, matrix A must be m × n. This repre-
sents a transformation from an n-dimensional space V to an m-dimensional
space W .

To see how this operation performs a linear transformation, we’ll use
the fact that we only need to know where the basis of a vector space V is
mapped to. Suppose that we know that our standard basis {e0, e1, . . . , en−1}
is transformed to {a0, a1, . . . , an−1} in W , again using the standard basis. We
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will store, in order, each of these transformed basis vectors as the columns
of A, or

A = [
a0 a1 · · · an−1

]
Using our matrix multiplication definition to compute the product of A

and a vector x in V , we see that the result for element i in b is

bi = ai,0x0 + ai,1x1 + · · · + ai,n−1xn−1

This is exactly the same as equation 3.5. So, by setting up our matrix with the
transformed basis vectors in each column, we can use matrix multiplication
to perform linear transformations.

This provides an explanation for the properties of the identity matrix: It
maps the basis vectors of the domain to the same vectors in the range. Or to
put it another way: It performs a linear transformation that has no effect on
the source vector, also known as the identity transformation.

Recall that we can also premultiply by a vector by treating it as a row
matrix:

[
c0 c1 · · · cn−1

] = [
x0 x1 · · · xm−1

]
⎡⎢⎢⎢⎣

a0,0 a0,1 · · · a0,n−1
a1,0 a1,1 · · · a1,n−1
...

...
. . .

...

am−1,0 am−1,1 · · · am−1,n−1

⎤⎥⎥⎥⎦
In this case, the rows of A are acting as our transformed basis vectors, and the
number of components in xT must match the number of rows in our matrix.

At this point we can define some additional properties for matrices. The
column space of a matrix is the vector space spanned by the matrix’s column
vectors and is the range of the linear transformation performed by post-
multiplying by a column vector. Correspondingly, the row space is the vector
space spanned by the row vectors of the matrix and, as we’d expect, is the
range of the linear transformation performed by premultiplying by a row vec-
tor. As it happens, the dimensions of the row space and column space are
equal and that value is called the rank of the matrix. The matrix rank is equal
to the rank of the associated linear transformation.

The column space and row space are not necessarily the same vector
space. As an example, take the matrix⎡⎣ 0 1 0

0 0 1
0 0 0

⎤⎦



108 Chapter 3 Matrices and Linear Transformations

When postmultiplied by a column vector, it maps a vector (x, y, z) in R
3 to a

vector (y, z, 0) on the xy plane. Premultiplying by a row vector, on the other
hand, maps (x, y, z) to (0, x, y) on the yz plane. They have the same dimension,
and hence the same rank, but they are not the same vector space.

This makes a certain amount of sense. When we multiply by a row vec-
tor, we use the row vectors of the matrix as our transformed basis instead
of the column vectors. To achieve the same result as the column vector
multiplication, we need to change our matrix’s column vectors to row vectors
by taking the transpose:

[
x y z

]⎡⎣ 0 0 0
1 0 0
0 1 0

⎤⎦ = [
y z 0

]
We can now see the purpose of the transpose: It exchanges a matrix’s row
space with its column space.

Like a linear transformation, a matrix also has a null space, which is all
vectors x in V such that

Ax = 0

In the preceding example, the null space N is all vectors with zero y and z

components. As with linear transformations, dim(N) + rank (A) = dim(V ).

3.3.5 Combining Linear Transformations

Suppose we have two transformations, S : U → V and T : V → W , and we
want to perform one after the other; namely, for a vector x, we want the
result T(S(x)). If we know that we are going to transform a large collection of
vectors by S and the resulting vectors by T, it will be more efficient to find a
single transformation that generates the same result so that we only have to
transform the vectors once. This is known as the composition of S and T and
is written as

(T ◦ S)(x) = T(S(x))

Composition (or alternatively, concatenation) of transformations is done via
generalized matrix multiplication.

Suppose that matrix A is the corresponding transformation matrix for
S and B is the corresponding matrix for T. Recall that in order to set up A
for vector transformation, we pretransform the standard basis vectors by S

and store them as the columns of A. Now we need to transform those vectors
again, this time by T. We could either do this explicitly or use the fact that
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multiplying by B will transform vectors in V by T. So we just multiply each
column of A by B and store the results, in order, as columns in a new matrix C:

C = BA

If U has dimension n, V has dimension m, and W has dimension l, then A will
be an m×n matrix and B will be an l×m matrix. Since the number of columns
in B matches the number of rows in A, the matrix product can proceed, as
we’d expect. The result C will be an l × n matrix and will apply the transfor-
mation of A followed by the transformation of B in a single matrix–vector
multiplication.

This is the power of using matrices as a representation for linear
transformations. By continually concatenating matrices, we can use the result
to produce the effect of an entire series of transformations, in order, through
a single matrix multiplication. Note that the order does matter. The preceding
result C will perform the result of applying A followed by B. If we swap the
terms (assuming they’re still conformable under multiplication),

D = AB

and matrix D will perform the result of applying B followed byA. This is almost
certainly not the same transformation.

For the discussion thus far, we have assumed that the resulting matrix
will be applied to a vector represented as a column matrix. It is good to be
aware that the choice of whether to represent a vector as a row matrix or
column matrix affects the order of multiplications when combining matrices.
Suppose we multiply a column vector u by three matrices, where the intended
transformation order is to apply M0, then M1, and finally M2:

v = M0 u

w = M1 v (3.6)

x = M2 w

If we take equation 3.6 and substitute M1 v for w and then M0 u for v,
we get

x = M2 M1 v

= M2 M1 M0 u

= Mc u
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Doing something similar for a row vector aT :

bT = aT N0

cT = bT N1

dT = cT N2

and substituting:

dT = bT N1 N2

= aT N0 N1 N2

= aT Nr

The order difference is quite clear. When using row vectors and
concatenating, matrix order follows the left to right progress used in English
text. Column vectors work right to left instead, which may not be as intuitive.
We will just need to be careful about our matrix order and transpose any
matrices that assume we’re using row vectors.

There are two other ways to modify transformation matrices that aren’t
used as often. Instead of concatenating two transformations, we may want
to create a new one by adding two together: Q(x) = S(x) + T(x). This is eas-
ily done by adding the corresponding matrices together, so the matrix that
performs Q is C = A + B. Another means we might use for generating a
new transformation from an existing one is to scale it: R(x) = s · T(x). The
corresponding matrix is created by scaling the original matrix: D = sA.

This concludes our main discussion of linear transformations and matri-
ces. The remainder of the chapter will be concerned with other useful
properties of matrices: solving systems of linear equations, determinants, and
eigenvalues and eigenvectors.

3.4 Systems of Linear Equations

3.4.1 Definition

Other than performing linear transformations, another purpose of matrices
is to act as a mechanism for solving systems of linear equations. A general
system of m linear equations with n unknowns is represented as
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b0 = a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1

b1 = a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 (3.7)

...
...

bm−1 = am−1,0x0 + am−1,1x1 + · · · + am−1,n−1xn−1

The problem we are trying to solve is: Given a0,0, . . . , am−1,n−1 and
b0, . . . , bm−1, what are the values of x0, . . . , xn−1? For a given linear system,
the set of all possible solutions is called the solution set.

As an example, the system of equations

x0 + 2x1 = 1

3x0 − x1 = 2

has the solution set {x0 = 5/7, x1 = 1/7}.
There may be more than one solution to the linear system. For example,

the plane equation

ax + by + cz = −d

has an infinite number of solutions: The solution set for this example is all the
points on the particular plane.

Alternatively, it may not be possible to find any solution to the linear
system. Suppose that we have the linear system

x0 + x1 = 1
x0 + x1 = 2

There are clearly no solutions for x and y. The solution set is the empty set.
Let’s reexamine equation 3.7. If we think of (x0, . . . , xn−1) as elements of

an n-dimensional vector x and (b0, . . . , bm−1) as elements of an m-dimensional
vector b, then this starts to look a lot like matrix multiplication. We can rewrite
this as ⎡⎢⎢⎢⎣

a0,0 a0,1 · · · a0,n−1
a1,0 a1,1 · · · a1,n−1
...

...
. . .

...

am−1,0 am−1,1 · · · am−1,n−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0
x1
...

xn−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b0
b1
...

bm−1

⎤⎥⎥⎥⎦
or our old friend

Ax = b



112 Chapter 3 Matrices and Linear Transformations

The coefficients of the equation become the elements of matrix A, and
matrix multiplication encapsulates our entire linear system. Now the problem
becomes one of the form: Given A and b, what is x?

3.4.2 Solving Linear Systems

One case is very easy to solve. Suppose A looks like⎡⎢⎢⎢⎣
1 a0,1 · · · a0,n−1
0 1 · · · a1,n−1
...

...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎦
This is equivalent to the linear system

b0 = x0 + a0,1x1 + · · · + a0,n−1xn−1

b1 = x1 + · · · + a1,n−1xn−1

...
...

bm−1 = xn−1

We see that we immediately have the solution to one unknown via xn−1 = bm−1.
We can substitute this value into the previous m − 1 equations and possibly
solve for another xi. If so, we can substitute that xi into the remaining unsolved
equations and so on up the chain. If there is a single solution for the system of
equations, we will find it; otherwise, we will solve as many terms as possible
and derive a solution set for the remainder.

This matrix is said to be in row echelon form. The formal definition for
row echelon form is

1. If a row is entirely zeros, it will be below any nonzero rows of the
matrix; in other words, all zero rows will be at the bottom of the matrix.

2. The first nonzero element of a row (if any) will be 1 (called a leading 1).

3. Each leading 1 will be to the right of a leading 1 in any preceding row.

If the following additional condition is met, we say that the matrix is in reduced
row echelon form.

4. Each column with a leading 1 will be zero in the other rows.
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The process we’ve described gives us a clue about how to proceed in
solving general systems of linear equations. Suppose we can multiply both
sides of our equation by a series of matrices so that the left-hand side becomes
a matrix in row echelon form. Then we can use this in combination with the
right-hand side to give us the solution for our system of equations.

However, we need to use matrices that preserve the properties of the linear
system; the solution set for both systems of equations must remain equal. This
restricts us to those matrices that perform one of three transformations called
elementary row operations. These are

1. Multiply a row by a nonzero scalar.

2. Add a nonzero multiple of one row to another.

3. Swap two rows.

These three types of transformations maintain the solution set of the linear
system while allowing us to reduce it to a simpler problem. The matrices that
perform elementary row operations are called elementary matrices.

Some simple examples of elementary matrices include one that multiplies
row 2 by a scalar a: ⎡⎣ 1 0 0

0 a 0
0 0 1

⎤⎦
one that adds k times row 2 to row 1:⎡⎣ 1 k 0

0 1 0
0 0 1

⎤⎦
and one that swaps rows 2 and 3:⎡⎣ 1 0 0

0 0 1
0 1 0

⎤⎦

3.4.3 Gaussian Elimination
Source Code

Library

IvMath

Filename

IvGaussianElim

In practice we don’t solve linear systems through matrix multiplication.
Instead, it is more efficient to iteratively perform the operations directly on A
and b. The most basic method for solving linear systems is known as Gaussian
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elimination, after Karl Friedrich Gauss, a prolific German mathematician of
the eighteenth and nineteenth centuries. It involves concatenating the matrix
A and vector b into a form called an augmented matrix and then performing a
series of elementary row operations on the augmented matrix, in a particular
order. This will either give us a solution to the system of linear equations or
tell us that computing a single solution is not possible; that is, either there is
no solution or an infinite number of solutions.

To create the augmented matrix, we take the original matrix A and
combine it with our constant vector b, for example,⎡⎣ 1 2 3

4 5 6
7 8 9

∣∣∣∣∣∣
3
2
1

⎤⎦
The vertical line within the matrix indicates the separation between A and b.
To this augmented matrix, we will directly apply one or more of our row
operations.

The process begins by looking at the first element in the first row. The
first step is called a pivoting step. At the very least we need to ensure that we
have a nonzero entry in the diagonal position, so if necessary we will swap
this row with one of the lower rows with a nonzero entry in the same column.
The element that we’re swapping into place is called the pivot element, and
swapping two rows to move the pivot element into place is known as partial
pivoting. For better numerical precision, we usually go one step further and
swap with the row that contains the element of largest absolute value. If no
pivot element can be found, then there is no single solution and we abort.

Now let’s say that the current pivot element value is k. We scale the entry
row by 1/k to set the diagonal entry to 1. Finally, we set the column elements
below the diagonal entry to zero by adding appropriate multiples of the cur-
rent row. Then we move on to the next row and look at its diagonal entry.
At the end of this process, our matrix will be in row echelon form.

Let’s take a look at an example. Suppose we have the following system of
linear equations:

x −3y + z = 5
2x −y + 2z = 5
3x +6y + 9z = 3

The equivalent augmented matrix is⎡⎣ 1 −3 1
2 −1 2
3 6 9

∣∣∣∣∣∣
5
5
3

⎤⎦
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If we look at column 0, the maximal entry is 3, in row 2. So we begin by
swapping row 2 with row 0: ⎡⎣ 3 6 9

2 −1 2
1 −3 1

∣∣∣∣∣∣
3
5
5

⎤⎦
We scale the new row 0 by 1/3 to set the pivot element to 1:⎡⎣ 1 2 3

2 −1 2
1 −3 1

∣∣∣∣∣∣
1
5
5

⎤⎦
Now we start clearing the lower entries. The first entry in row 1 is 2, so we
scale row 0 by −2 and add it to row 1:⎡⎣ 1 2 3 1

0 −5 −4 3
1 −3 1 5

⎤⎦
We do the same for row 2, scaling by −1 and adding:⎡⎣ 1 2 3 1

0 −5 −4 3
0 −5 −2 4

⎤⎦
We are done with row 0 and move on to row 1. Row 1, column 1, is the

maximal entry in the column, so we don’t need to swap rows. However, it isn’t
1, so we need to scale row 1 by −1/5:⎡⎣ 1 2 3 1

0 1 4/5 −3/5
0 −5 −2 4

⎤⎦
We now need to clear element 1 of row 2 by scaling row 1 by 5 and adding:⎡⎣ 1 2 3 1

0 1 4/5 −3/5
0 0 2 1

⎤⎦
Finally, we scale the bottom row by 1/2 to set the pivot element in the
row to 1: ⎡⎣ 1 2 3 1

0 1 4/5 −3/5
0 0 1 1/2

⎤⎦
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This matrix is now in row echelon form. We have two possibilities at this
point. We could clear the upper triangle of the matrix in a fashion similar to
how we cleared the lower triangle, but by working up from the bottom and
adding multiples of rows. The solution x to the linear system would end up
in the right-hand column. This is known as Gauss-Jordan elimination.

But let’s look at the linear system we have now:

x + 2y + 3z = 1

y + 4/5z = −3/5

z = 1/2

As expected, we already have a known quantity: z. If we plug z into the second
equation, we can solve for y:

y = −3/5 − 4/5z (3.8)

= −3/5 − 4/5(1/2) (3.9)

= −1 (3.10)

Once y is known, we can solve for x:

x = 1 − 2y − 3z (3.11)

= 1 − 2(−1) − 3(1/2) (3.12)

= 3/2 (3.13)

So our final solution for x is (3/2, −1, 1/2).
This process of substituting known quantities into our equations is called

back substitution.
A summary of Gaussian elimination with back substitution follows:

for p = 1 to n do
// find the element with largest absolute value in col p

// if max is zero, stop!

// if max element not in row p, swap rows

// set pivot element to 1
multiply row p by 1/A[p][p]

// clear lower column entries
for r = p+1 to n do
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subtract row p times A[r,p] from current row,
so that element in pivot column becomes 0

// do backwards substitution
for row = n-1 to 1

for col = row+1 to n
// subtract out known quantities
b[row] = b[row] - A[row][col]*b[col]

The pseudocode shows what may happen when we encounter a linear
system with no single solution. If we can’t swap a nonzero entry in the pivot
location, then there is a column that is all zeros. This is only possible if the
rank of the matrix (i.e., the number of linearly independent column vectors)
is less than the number of unknowns. In this case, there is no solution to the
linear system and we abort.

In general, we can state that if the rank of the coefficient matrix A equals
the rank of the augmented matrix A|b, then there will be at least one solution
to the linear system. If the two ranks are unequal, then there are no solutions.
There is a single solution only if the rank of A is equal to the minimum of the
number of rows or columns of A.

3.5 Matrix Inverse

This may seem like a lot of trouble to go to solve a simple equation like b = Ax.
If this were scalar math, we could simply divide both sides of the equation by
A to get

x = b/A

Unfortunately, matrices don’t have a division operation. However, we can use
an equivalent concept: the inverse.

3.5.1 Definition

In scalar multiplication, the inverse is defined as the reciprocal:

x · 1

x
= 1

or

x · x−1 = 1
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Correspondingly, for a given matrix A, we can define its inverse A−1 as a
matrix such that

A · A−1 = I

and

A−1 · A = I

There are a few things that fall out from this definition. First of all, in order
for the first multiplication to occur, the number of rows in the inverse must
be the same as the number of columns in the original matrix. For the second
to occur, the converse is true. So, the matrix and its inverse must be square
and the same size. Since not all matrices are square, it’s clear that not every
matrix has an inverse.

Second, the inverse of the inverse returns the original matrix. Given

A−1 · (A−1)−1 = I

and

A−1 · A = I

then

(A−1)−1 = A

Even if a matrix is square, there isn’t always an inverse. An extreme exam-
ple is the zero matrix. Any matrix multiplied by this gives the zero matrix, so
there is no matrix multiplication that will produce the identity. Another set of
examples is matrices that have a zero row or column vector. Multiplying by
such a row or column will return a dot product of zero, so you’ll end up with
a zero row or column vector in the product as well — again, not the identity
matrix. In general, if the null space of the matrix is nonzero, then the matrix
is noninvertible; that is, the matrix is only invertible if the rank of the matrix
is equal to the number of rows and columns.

Given these identities, we can now solve for our preceding linear system.
Recall that the equation was

Ax = b
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If we multiply both sides by A−1, then

A−1Ax = A−1 b

Ix = A−1 b

x = A−1 b

Therefore, if we could find the inverse of A, we could use it to solve for x. This
is not usually a good idea, computationally speaking. It’s usually cheaper to
solve for x directly, rather than generating the inverse and then performing the
matrix multiplication. The latter can also lead to increased numerical error.
However, sometimes finding the inverse is a necessary evil.

The left-hand side of the above derivation shows us that we can think of
the inverse A−1 as undoing the effect of A. If we start with Ax and premultiply
by A−1, we get back x, our original vector.

We can find the inverse of a matrix using Gaussian elimination to solve
for it column by column. Suppose we call the first column of A−1 x0. We can
represent this as

x0 = A−1 e0

where, as we recall, e0 = (1, 0, . . . , 0). Multiplying both sides by A gives

Ax0 = e0

Finding the solution to this linear system gives us the first column of A−1. We
can do the same for the other columns, but using e1, e2, and so on. Instead of
solving these one at a time, though, it is more efficient to create an augmented
matrix with A and e0, . . . , en−1 as columns on the right, or just I. For example,⎡⎣ 2 0 4

0 3 −9
0 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤⎦
If we use Gauss-Jordan elimination to turn the left-hand side of the augmented
matrix into the identity matrix, then we will end up with the inverse (if any)
on the right-hand side. From here we perform our elementary row operations
as before. The maximal entry is already in the pivot point, so we scale the first
row by 1/2: ⎡⎣ 1 0 2 1/2 0 0

0 3 −9 0 1 0
0 0 1 0 0 1

⎤⎦
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The nonpivot entries in the first column are zero, so we move to the second
column. Scaling the second row by 1/3 to set the pivot point to 1 gives us⎡⎣ 1 0 2 1/2 0 0

0 1 −3 0 1/3 0
0 0 1 0 0 1

⎤⎦
Again, our nonpivot entries in the second column are 0, so we move to the
third column. Our pivot entry is 1, so we don’t need to scale. We add −2 times
the last row to the first row to clear that entry, then 3 times the last row to the
second row to clear that entry, and get

⎡⎣ 1 0 0 1/2 0 −2

0 1 0 0 1/3 3
0 0 1 0 0 1

⎤⎦
The inverse of our original matrix is now on the right-hand side of the
augmented matrix.

3.5.2 Simple Inverses

Gaussian elimination, while useful, is unnecessary for computing the inverse
of many of the matrices we will be using. The majority of matrices that we
will encounter in games and three-dimensional (3D) applications have simple
inverses, and knowing the form of the matrix can make computing the inverse
trivial.

One case is that of an orthogonal matrix, where the component row or
column vectors are orthonormal. Recall that this means that the vectors are
of unit length and perpendicular. If a matrix A is orthogonal, its inverse is the
transpose:

A−1 = AT

One example of an orthogonal matrix is

⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦−1

=
⎡⎣ 0 1 0

0 0 1
1 0 0

⎤⎦
Another simple case is a diagonal matrix with nonzero elements in the

diagonal. The inverse of such a matrix is also diagonal, where the new diagonal
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elements are the reciprocal of the original diagonal elements, as shown by the
following: ⎡⎣ a 0 0

0 b 0
0 0 c

⎤⎦−1

=
⎡⎣ 1/a 0 0

0 1/b 0
0 0 1/c

⎤⎦
The third case is a modified identity matrix, where the diagonal is all 1s

but one column or row is nonzero. One such 3 × 3 matrix is⎡⎣ 1 0 x

0 1 y

0 0 1

⎤⎦
For a matrix of this form, we simply negate the nonzero elements to invert it.
Using the previous example,⎡⎣ 1 0 x

0 1 y

0 0 1

⎤⎦−1

=
⎡⎣ 1 0 −x

0 1 −y

0 0 1

⎤⎦
Finally, we can combine this knowledge to take advantage of an algebraic

property of matrices. If we have two square matrices A and B, both of which
are invertible, then

(AB)−1 = B−1A−1

So, if we know that our current matrix is the product of any of the cases we’ve
just discussed, we can easily compute its inverse using the preceding formula.
This will prove to be useful in subsequent chapters.

3.6 Determinant

3.6.1 Definition

The determinant is a scalar quantity created by evaluating the elements of
a square matrix. In real vector spaces, it acts as a general measure of how
vectors transformed by the matrix change in size. For example, if we take the
columns of a 2 × 2 matrix (i.e., the transformed basis vectors) and use them
as the sides of a parallelogram (Figure 3.2), then the absolute value of the
determinant is equal to the area of a parallelogram. For a 3 × 3 matrix, the



122 Chapter 3 Matrices and Linear Transformations

absolute value of the determinant is equal to the volume of a parallelepiped
described by the three transformed basis vectors (Figure 3.3).

The sign of the determinant depends on whether or not we have switched
our ordered basis vectors from being relatively right-handed to being left-
handed. In Figure 3.2, the shortest angle from a0 to a1 is clockwise, so they
are left-handed. The determinant, therefore, is negative.

We represent the determinant in one of two ways, either det(A) or |A|.
The first is more often used with a symbol, and the second when showing the
elements of a matrix:

j

i

a0

a1

Figure 3.2 Determinant of 2 × 2 matrix as area of parallelogram bounded by
transformed basis vectors a0 and a1.

ji

a0

a1

a2

k

Figure 3.3 Determinant of 3 × 3 matrix as volume of parallelepiped bounded by
transformed basis vectors a0, a1, and a2.
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det(A) =
∣∣∣∣∣∣

1 −3 1
2 −1 2
3 6 9

∣∣∣∣∣∣
The diagrams showing area of a parallelogram and volume of a

parallelepiped should look familiar from our discussion of cross product and
triple scalar product. In fact, the cross product is sometimes represented as

v × w =
∣∣∣∣∣∣

i j k
vx vy vz

wx wy wz

∣∣∣∣∣∣
while the triple product is represented as

u · (v × w) =
∣∣∣∣∣∣

ux uy uz

vx vy vz

wx wy wz

∣∣∣∣∣∣
Since det(AT ) = det(A), this representation is equivalent.

3.6.2 Computing the Determinant

There are a few ways of representing the determinant computation for a
specific matrix A. A standard recursive definition, choosing any row i, is

det(A) =
n∑

j=1

ai,j(−1)(i+j) det(Ãi,j)

Alternatively, we can expand by column j instead:

det(A) =
n∑

i=1

ai,j(−1)(i+j) det(Ãi,j)

In both cases, Ãi,j is the submatrix formed by removing the ith row and jth
column from A. The base case is the determinant of a matrix with a single
element, which is the element itself.

The term det(Ãi,j) is also referred to as the minor of entry ai,j, and the term
(−1)(i+j) det(Ãi,j) is called the cofactor of entry ai,j.

The first formula tells us that for a given row i, we multiply each row
entry ai,j by the determinant of the submatrix formed by removing row i and
column j and either add or subtract it to the total depending on its position
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in the matrix. The second does the same but moves along column j instead of
row i.

Let’s compute an example determinant, expanding by row 0:

det

⎛⎝⎡⎣ 1 1 2
2 4 −3
3 6 −5

⎤⎦⎞⎠ = ?

The first element of row 0 is 1, and the submatrix with row 0 and column 0
removed is

[
4 −3
6 −5

]

The second element is also 1. However, we negate it since we are considering
row 0 and column 1: 0 + 1 = 1, which is odd. The submatrix is A with row 0
and column 1 removed:

[
2 −3
3 −5

]

The third element of the row is 2, with the submatrix

[
2 4
3 6

]

We don’t negate it since we are considering row 0 and column 2: 0 + 2 = 2,
which is even.

So, the determinant is

det(A) = 1 ·
∣∣∣∣ 4 −3

6 −5

∣∣∣∣ − 1 ·
∣∣∣∣ 2 −3

3 −5

∣∣∣∣ + 2 ·
∣∣∣∣ 2 4

3 6

∣∣∣∣
= −1

In general, the determinant of a 2 × 2 matrix is

det

([
a b

c d

])
= a · det([d]) − b · det([c]) = ad − bc
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And the determinant of a 3 × 3 matrix is

det

⎛⎝⎡⎣ a b c

d e f

g h i

⎤⎦⎞⎠ = a·det

([
e f

h i

])
− b·det

([
d f

g i

])

+ c·det

([
d e

g h

])
or

a(ei − fh) − b(di − fg) + c(dh − eg)

There are some additional properties of the determinant that will be useful
to us. If we have two n × n matrices A and B, the following hold:

1. det(AB) = det(A)det(B).

2. det(A−1) = 1

det(A)
.

We can look at the value of the determinant to tell us some features of our
matrix. First of all, as we have mentioned, any matrix that transforms our basis
vectors from right-handed to left-handed will have a negative determinant. If
the matrix is also orthogonal, we call a matrix of this type a reflection. We will
learn more about reflection matrices in the next chapter.

Then there are matrices that have a determinant of 1. The matrices we
will encounter most often with this property are orthogonal matrices, where
the handedness of the resulting basis stays the same (i.e., a right-handed basis
is transformed to a right-handed basis). Figure 3.4 provides an example. Our
transformed basis vectors are (−√

2/2,
√

2/2) and (
√

2/2,
√

2/2). They remain
orthonormal, so their area is just the product of the lengths of the two vectors,
or 1 × 1 or 1. This type of matrix is called a rotation. As with reflections, we’ll
see more of rotations in the next chapter.

Finally, if the determinant is 0, then we know that the matrix has no
inverse. The obvious case is if the matrix has a row or column of all 0s. Look
again at our formula for the determinant. Suppose row i is all 0s. Multiplying
all the submatrices against this row and summing together will clearly give
us 0 as a result. The same is true for a zero column. The other and related
possibility is that we have a linearly dependent row or column vector. In
both cases the rank of the matrix is less than n — the size of the matrix — and
therefore the matrix does not have an inverse. So, if the determinant of a
matrix is 0, we know the matrix is not invertible.
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j

i

a0a1

Figure 3.4 Determinant of example 2 × 2 orthogonal matrix.

3.6.3 Determinants and Elementary Row
Operations

Source Code

Library

IvMath

Filename

IvGaussianElim

For 2 × 2 and 3 × 3 matrices, computing the determinant in this manner is
a simple process. However, for larger and larger matrices, our recursive
definition becomes unwieldy, and for large enough n, will take an unreason-
able amount of time to compute. In addition, computing the determinant in
this manner can lead to floating-point precision problems. Fortunately, there
is another way.

Suppose we have an upper triangular matrix U. The first part of the deter-
minant sum is u0,0 Ũ0,0. The other terms, however, are 0, because the first
column with the first row removed is all 0s. So the determinant is just

det(U) = u0,0 Ũ0,0

If we expand the recursion, we find that the determinant is the product of all
the diagonal elements, or

det(U) = u0,0u1,1 . . . unn

As we did when solving linear systems, we can use Gaussian elimination
to change our matrix into row echelon form, which is an upper triangular
matrix. However, this assumes that elementary row operations have no effect
on the determinant, which is not the case. Let’s look at a few examples.
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Suppose we have the matrix[
2 −4

−1 1

]
The determinant of this matrix is −2. If we multiply the first row by 1/2, we get[

1 −2
−1 1

]
which has a determinant of −1. Multiplying a row by a scalar k multiplies the
determinant by k as well.

Now suppose we add two times the first row to the second one. We get[
1 −2
1 −3

]
which also has a determinant of −1. Adding a multiple of one row to another
has no effect on the determinant.

Finally, we can swap row 1 with row 2:[
1 −3
1 −2

]
which has a determinant of 1. Swapping two rows or two columns changes
the sign of the determinant.

The effect of elementary row operations on the determinant can be
summarized as follows:

Multiply row by k: Multiplies determinant by k

Add multiple of one row to another: No effect

Swap rows: Changes sign of determinant

Therefore, our approach for calculating the determinant for a general
matrix is this: As we perform Gaussian elimination, we keep a running product
p of any multiplies we do to create leading 1s and negate p for every row
swap. If we find a zero column when we look for a pivot element, we know
the determinant is 0 and return such.

Let’s suppose our final product is p. This represents what we’ve multiplied
the determinant of our original matrix by to get the determinant of the final
matrix A′, or

p · det(A) = det(A′)
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so

det(A) = 1

p
· det(A′)

We know that the determinant of A′ is 1, since the diagonal of the row echelon
matrix is all 1s. So our final determinant is just 1/p. However, this is just the
product of the multiplies we do to create leading 1s, and −1 for every row
swap, or

p = 1

p0,0

1

p1,1
. . .

1

pn,n

(−1)k

where k is the number of row swaps. Then,

1/p = p0,0p1,1 . . . pn,n(−1)k

So all we need to do is multiply our running product by each pivot element
and negate for each row swap. At the end of our Gaussian elimination process,
our running product will be the determinant we seek.

3.6.4 Adjoint Matrix and Inverse

Source Code

Library

IvMath

Filename

IvMatrix33

Recall that the cofactor of an entry ai,j is

Ci,j = (−1)(i+j) det(Ãi,j)

For an n×n matrix, we can construct a corresponding matrix where we replace
each element with its corresponding cofactor, or⎡⎢⎢⎢⎣

C0,0 C0,1 · · · C0,n−1
C1,0 C1,1 · · · C1,n−1

...
...

. . .
...

Cn−1,1 Cn−1,2 · · · Cn−1,n−1

⎤⎥⎥⎥⎦
This is called the matrix of cofactors from A, and its transpose is the adjoint
matrix Aadj.

Gabriel Cramer, a Swiss mathematician, showed that the inverse of a
matrix can be computed from the adjoint by

A−1 = 1

det(A)
Aadj
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Many graphics engines use Cramer’s method to compute the inverse, and
for 3 × 3 and 4 × 4 matrices it’s not a bad choice; for matrices of this size,
Cramer’s method is actually faster than Gaussian elimination. Because of
this, we have chosen to implement IvMatrix33::Inverse() using an efficient
form of Cramer’s method.

However, whether you’re using Gaussian elimination or Cramer’s method,
you’re probably doing more work than is necessary for the matrices we will
encounter. Most will be in one of the formats described in Section 3.5.2 or a
multiple of these matrix types. Using the process described in that section, you
can compute the inverse by decomposing the matrix into a set of these types,
inverting the simple matrices, and multiplying in reverse order to compute
the matrix. This is often faster than either Gaussian elimination or Cramer’s
method and can be more tolerant of floating-point errors because you can
find near-exact solutions for the simple matrices.

3.7 Eigenvalues and Eigenvectors

There are two more properties of a matrix that we can find useful in certain
circumstances: the eigenvalue and eigenvector. If we have an n × n matrix A,
then a nonzero vector x is called an eigenvector if there is some scalar value
λ such that

Ax = λx (3.14)

In this case, the value λ is the eigenvalue associated with that eigenvector.
We can solve for the eigenvalues of a matrix by rewriting equation 3.14 as

Ax = λIx (3.15)

or

(λI − A)x = 0

It can be shown that there is a nonzero solution of this equation if and
only if

det(λI − A) = 0

This is called the characteristic equation of A. Expanding this equation gives
us an n-degree polynomial of λ, and solving for the roots of this equation will
give us the eigenvalues of the matrix.
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Now, for a given eigenvalue there will be an infinite number of associated
eigenvectors, all scalar multiples of each other. This is called the eigenspace
for that eigenvalue. To find the eigenspace for a particular eigenvector, we
simply substitute that eigenvalue into equation 3.15 and solve for x.

In practice, solving the characteristic equation becomes more and more
difficult the larger the matrix. However, there is a particular class of matrices
called real symmetric matrices, so called because they only have real elements
and are diagonally symmetric. Such matrices have a few nice properties. First
of all, their eigenvectors are orthogonal. Secondly, it is possible to find a matrix
R, such that RTAR is a diagonal matrix D. It turns out that the columns of R are
the eigenvectors of A, and the diagonal elements of D are the corresponding
eigenvectors. This process is called diagonalization.

There are a number of standard methods for finding R. One such is the
Jacobi method, which computes a series of matrices to iteratively diagonal-
ize A. These matrices are then concatenated to create R. The problem with
this method is that it is not always guaranteed to converge to a solution. An
alternative is the Householder-QR/QL method, which similarly computes a
series of matrices, but this time the end result is a tridiagonal matrix. From
this we can perform a series of steps that factor the matrix into an orthogonal
matrix Q and upper triangular matrix R (or an orthogonal matrix Q and a
lower triangular matrix L). This will eventually diagonalize the matrix, again
allowing us to compute the eigenvectors and eigenvalues. This can take more
steps than the Jacobi method, but is guaranteed to complete in a fixed amount
of time.

For 3 × 3 real symmetric matrices, Eberly [28] has a method that solves
for the roots of the characteristic equation. This is considerably more effi-
cient than the Householder method, and is relatively straightforward to
compute.

3.8 Chapter Summary

In this chapter, we’ve discussed the general properties of linear transforma-
tions and how they are represented and performed by matrices. Matrices
also can be used to compute solutions to linear systems of equations by
using either Gaussian elimination or similar methods. We covered some basic
matrix properties, the concepts of matrix identity and inverse (and various
methods for calculating the latter), and the meaning and calculation of the
determinant. This lays the foundation for what we’ll be discussing in the
next chapter: Using matrix transformations to manipulate models in a 3D
world.
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For those who are interested in reading further, Anton and Rorres [3]
is a standard reference for many first courses in linear algebra. Other texts
with slightly different approaches include Axler [4] and Friedberg et al. [39].
More information on Gaussian elimination and its extensions, such as LU
decomposition, can be found in Anton and Rorres [3] as well as in the Numer-
ical Recipes series [96]. Finally, Blinn has an excellent article in his collection
Notation, Notation, Notation [9] on the geometry underlying 2 × 2 matrix
operations.
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Chapter4
Affine
Transformations

4.1 Introduction

Now that we’ve chosen a mathematically sound basis for representing
geometry in our game and discussed some aspects of matrix arithmetic, we
need to combine them into an efficient method for placing and moving virtual
objects or models. There are a few reasons we seek this efficiency. Suppose
we wish to build a core level in our game space, say the office of a computer
company. We could build all of our geometry in place and hard-code all of
the locations. However, if we have a number of objects that are duplicated
throughout the space — computers, desks, and chairs, for example — it would
be more memory-efficient to create one master copy of the geometry for each
type of object. Then, for each instance of a particular object, we can specify
just a position and orientation and let the rendering and simulation engine
handle the placement.

Another, more obvious reason is that objects in games generally move so
that setting them at a fixed location is not practical. We will need to have some
means to specify, for a model as a whole, its position and orientation in space.

There are a few characteristics we desire in our method. We want it to be
fast and work well with our existing data and math library. We want to be able
to concatenate a series of operations so we can perform them with a single
operation, just as we did with linear transformations. Since our objects consist
of collections of points, we need our method to work on points in an affine
space, but we’ll still need to transform vectors as well. The specific method
we will use is called an affine transformation.

133
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4.2 Affine Transformations

4.2.1 Matrix Definition

In the last chapter we discussed linear transformations, which map from
one vector space to another. We can apply such transformations to vectors
using matrix operations. There is a nearly equivalent set of transforma-
tions that map between affine spaces, which we can apply to points and
vectors in an affine space. These are known as affine transformations and
they too can be applied using matrix operations, albeit in a slightly different
form.

In the simplest terms, an affine transformation on a point can be repre-
sented by a matrix multiplication followed by a vector add, or,

Ax + y

where the matrix A is an m × n matrix, y is an m-vector, and x consists of the
point coordinates (x0, . . . , xn−1).

We can represent this process of transformation by using block matrices:[
A y
0T 1

] [
x
1

]
=

[
Ax + y

1

]
(4.1)

As we can see, in order to allow the multiplication to proceed, we’ll represent
our point with a trailing 1 component. However, for the purposes of com-
putation, the vector 0T , the 1 in the lower right-hand corner of the matrix,
and the trailing 1s in the points are unnecessary. They take up memory
and using the full matrix takes additional instructions to multiply by con-
stant values. Because of this, an affine transformation matrix is sometimes
represented in a form where these constant terms are implied, either as
an m × (n + 1) matrix or as the matrix multiplication plus vector add form
above.

If we subtract two points in an affine space, we get a vector:

v = P0 − P1

=
[

x0
1

]
−

[
x1
1

]
=

[
x0 − x1

0

]
As we can see, a vector is represented in an affine space with a trailing 0.
As previously noted in Chapter 2, this provides justification for some math
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libraries to use the trailing 1 on points and trailing 0 on vectors. If we multiply
a vector using this representation by our (m + 1) × (n + 1) matrix,[

A y
0T 1

] [
v
0

]
=

[
Av
0

]
we see that the vector is affected by the upper left m × n matrix A, but not
the vector y. This has the same effect on the first n elements of v as multiply-
ing an n-dimensional vector by A, which is a linear transformation. So, this
representation allows us to use affine transformation matrices to apply linear
transformations on vectors in an affine space.

Suppose we wish to concatenate two affine transformations S and T, where
the matrix representing S is [

A y
0T 1

]
and the matrix representing T is [

B z
0T 1

]
As with linear transformations, to find the matrix that represents the
composition of S and T, we multiply the matrices together. This gives[

A y
0T 1

] [
B z
0T 1

]
=

[
AB Az + y
0T 1

]
(4.2)

Finding the inverse for an affine transformation is equally as straight-
forward. Again, we can use a process similar to the one we used with linear
transformation matrices. Starting with[

A y
0T 1

] [
A y
0T 1

]−1

=
[

I 0
0T 1

]
we multiply by both sides to remove the y component from the left-most
matrix:[

I −y
0T 1

] [
A y
0T 1

] [
A y
0T 1

]−1

=
[

I −y
0T 1

] [
I 0

0T 1

]
[

A 0
0T 1

] [
A y
0T 1

]−1

=
[

I −y
0T 1

]
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We then multiply by both sides to change the left-most matrix to the
identity:[

A−1 0
0T 1

] [
A 0
0T 1

] [
A y
0T 1

]−1

=
[

A−1 0
0T 1

] [
I −y

0T 1

]
(4.3)

[
A y
0T 1

]−1

=
[

A−1 −A−1 y
0T 1

]
thereby giving us the inverse on the right-hand side.

When we’re working in R
3, A will be a 3×3 matrix and y will be a 3-vector;

hence the full affine matrix will be a 4 × 4 matrix. Most graphics libraries
expect transformations to be in the 4 × 4 matrix form, so if we do use the
more compact forms in our math library to save memory, we will still have
to expand them before rendering our objects. Because of this, we will use
the 4 × 4 form for our following discussions, with the understanding that
in our ultimate implementation we may choose one of the other forms for
efficiency’s sake.

4.2.2 Formal Definition

While the definition above will work for most practical purposes, to truly
understand what our matrix form does requires some further explanation.
We’ll begin by formally defining an affine transformation. Recall that linear
transformations preserve the linear operations of vector addition and scalar
multiplication. In other words, linear transformations map from one vector
space to another and preserve linear combinations. Thus, for a given linear
transformation S:

S(a0 v0 + a1 v1 + · · · + an−1 vn−1) = a0S(v0) + a1S(v1) + · · · + an−1S(vn−1)

Correspondingly, an affine transformation T maps between two affine spaces
A and B and preserves affine combinations. For scalars a0, . . . , an−1 and points
P0, . . . , Pn−1 in A:

T(a0P0 + · · · + an−1Pn−1) = a0T(P0) + · · · + an−1T(Pn−1)

where a0 + · · · + an−1 = 1.
As with our test for linear transformations, to determine whether a given

transformation T is an affine transformation, it is sufficient to test a single
affine combination:

T(a0P0 + a1P1) = a0T(P0) + a1T(P1)

where a0 + a1 = 1.
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Affine transformations are particularly useful to us because they preserve
certain properties of geometry. First, they maintain collinearity, so points on
a line will remain collinear and points on a plane will remain coplanar when
transformed.

If we transform a line:

L(t) = (1 − t)P0 + tP1

T(L(t)) = T((1 − t)P0 + tP1)

= (1 − t)T(P0) + tT(P1)

the result is clearly still a line (assuming T(P0) and T(P1) aren’t coincident).
Similarly, if we transform a plane:

P(t) = (1 − s − t)P0 + sP1 + tP2

T(P(t)) = T((1 − s − t)P0 + sP1 + tP2)

= (1 − s − t)T(P0) + s T(P1) + t T(P2)

the result is clearly a plane (assuming T(P0), T(P1), and T(P2) aren’t collinear).
The second property of affine transformations is that they preserve relative

proportions. The point that lies at t distance between P0 and P1 on the original
line will map to the point that lies at t distance between T(P0) and T(P1) on
the transformed line.

Note that while ratios of distances remain constant, angles and exact
distances don’t necessarily stay the same. The specific subset of affine trans-
formations that preserve these features are called rigid transformations; those
that don’t are called deformations. It should be no surprise that we find
rigid transformations useful. When transforming our models, in most cases
we don’t want them distorted unrecognizably. A bottle should maintain its
size and shape — it should look like a bottle no matter where we place it in
space. However, the deformations have their use as well. On occasion we may
want to make an object larger or smaller or reflect it across a plane, as in a
mirror.

To apply an affine transformation to a vector in an affine space, we can
apply it to the difference of two points that equal the vector, or

T(v) = T(P − Q) = T(P) − T(Q)

So, as we’ve seen above, an affine transformation that is applied to a vector
performs a linear transformation.
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4.2.3 Formal Representation

Suppose we have an affine transformation that maps from affine space A to
affine space B, where the frame for A has basis vectors (v0, . . . , vn−1) and
origin OA, and the frame for B has basis vectors (w0, . . . , wm−1) and origin
OB. If we apply an affine transformation to a point P = (x0, . . . , xn−1) in A,
this gives

T(P ) = T(x0 v0 + · · · + xn−1 vn−1 + OA)

= x0T(v0) + · · · + xn−1T(vn−1) + T(OA)

As we did with linear transformations, we can express a given T(v) in terms
of B’s frame:

T(vj) = a0,j w0 + a1,j w1 + · · · + am−1,j wm−1

Similarly, we can express T(OA) in terms of B’s frame:

T(OA) = y0 w0 + y1 w1 + · · · + ym−1 wm−1 + OB

Again, as we did with linear transformations, we can rewrite this as a matrix
product. However, unlike linear transformations, we write a mapping from
an n-dimensional affine space to an m-dimensional affine space as an (m + 1)×
(n + 1) matrix:⎡⎢⎢⎢⎢⎢⎣

a0,0 w0 a0,1 w0 · · · a0,n−1 w0 y0 w0
a1,0 w1 a1,1 w1 · · · a1,n−1 w1 y1 w1

...
...

. . .
...

...

am−1,0 wm−1 am−1,1 wm−1 · · · am−1,n−1 wm−1 ym−1 wm−1
0 0 · · · 0 OB

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x0
x1
...

xn−1
1

⎤⎥⎥⎥⎥⎥⎦
The dimensions of our matrix now make sense. The n + 1 columns represent
the n transformed basis vectors plus the transformed origin. We need m + 1
rows since the frame of B has m basis vectors plus the origin OB.

We can pull out the frame terms to get

[
w0 w1 · · · wm−1 OB

]
⎡⎢⎢⎢⎢⎢⎣

a0,0 a0,1 · · · a0,n−1 y0
a1,0 a1,1 · · · a1,n−1 y1
...

...
. . .

...
...

am−1,0 am−1,1 · · · am−1,n−1 ym−1
0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x0
x1
...

xn−1
1

⎤⎥⎥⎥⎥⎥⎦
So, similar to linear transformations, if we know how the affine transfor-

mation affects the frame for A, we can copy the transformed frame in terms
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of the frame for B into the columns of a matrix and use matrix multiplication
to apply the affine transformation to an arbitrary point.

4.3 Standard Affine Transformations

Now that we’ve defined affine transformations in general, we can discuss
some specific affine transformations that will prove useful when manipulat-
ing objects in our game. We’ll cover these in terms of transformations from
R

3 to R
3, since they will be the most common uses. However, we can apply

similar principles to find transformations from R
2 to R

2 or even R
4 to R

4 if we
desire.

Since affine spaces A and B are the same in this case, to simplify things
we’ll use the same frame for each one: the standard Cartesian frame of
( i, j, k, O).

4.3.1 Translation

The most basic affine transformation is translation. For a single point, it’s the
same as adding a vector t to it, and when applied to an entire set of points it
has the effect of moving them rigidly through space (Figure 4.1). Since all the
points are shifted equally in space, the size and shape of the object will not
change, so this is a rigid transformation.

z

x

y

Figure 4.1 Translation.
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We can determine the matrix for a translation by computing the transfor-
mation for each of the frame elements. For the origin O, this is

T(O) = t + O

= tx i + ty j + tz k + O

For a given basis vector, we can find two points P and Q that define the
vector and compute the transformation of their difference. For example,
for i:

T( i) = T(P − Q)

= T(P) − T(Q)

= ( t + P) − ( t + Q)

= P − Q

= i

The same holds true for j and k, so translation has no effect on the basis
vectors in our frame. We end up with a 4 × 4 matrix:⎡⎢⎢⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤⎥⎥⎦
Or, in block form:

Tt =
[

I t
0T 1

]
Translation only affects points. To see why, suppose we have a vector v,

which equals the displacement between two points P and Q; that is, v = P−Q.
If we translate P − Q, we get

trans(P − Q) = (P + t) − (Q + t)

= (P − Q) + ( t − t)

= v

This fits with our geometric notion that points have position and hence can
be translated in space, while vectors do not and cannot.
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We can use equation 4.3 to compute the inverse translation trans-
formation:

T−1
t =

[
I−1 −I−1 t
0T 1

]
(4.4)

=
[

I − t
0T 1

]
(4.5)

= T− t (4.6)

So, the inverse of a given translation negates the original translation vector
to displace the point back to its original position.

4.3.2 Rotation

The other common rigid transformation is rotation. If we consider the rotation
of a vector, we are rigidly changing its direction around an axis without chang-
ing its length. In R

2, this is the same as replacing a vector with the one that’s
θ degrees counterclockwise (Figure 4.2).

In R
3, we usually talk about an axis of rotation. In his rotation theorem,

Euler showed that when applying a rotation in three-dimensional (3D) space,
there is a linear set of points (i.e., a line) that does not change. This is called
the axis of rotation, and the amount we rotate around this axis is the angle of
rotation. A helpful mnemonic is the right-hand rule: If you point your right
thumb in the direction of the axis vector, the curl of your fingers represents
the direction of positive rotation (Figure 4.3).

For a given point, we rotate it by moving it along a planar arc a constant
distance from another point, known as the center of rotation (Figure 4.4). This

x

y

h

v'

v

Figure 4.2 Rotation of vector in R2.
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Figure 4.3 Axis and plane of rotation.

x

y

h

P'

P

Figure 4.4 Rotation of point in R2.

center of rotation is commonly defined as the origin of the current frame
(we’ll refer to this as a pure rotation) but can be any arbitrary point. We can
think of this as defining a vector v from the center of rotation to the point to
be rotated, rotating v, and then adding the result to the center of rotation to
compute the new position of the point. For now we’ll only cover pure rota-
tions; applying general affine transformations about an arbitrary center will
be discussed later.

To keep things simple, we’ll begin with rotations around one of the three
frame axes, with a center of rotation equal to the origin. The following system
of equations rotates a vector or point counterclockwise (assuming the axis is
pointing at us) around k, or the z-axis (Figure 4.5c):

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ (4.7)

z′ = z
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Figure 4.5 (a) x-axis rotation, (b) y-axis rotation, and (c) z-axis rotation.

Figure 4.6 shows why this works. Since we’re rotating around the z-axis, no
z values will change, so we will consider only how the rotation affects the xy

values of the points. The starting position of the point is (x, y), and we want to
rotate that θ degrees counterclockwise. Handling this in Cartesian coordinates
can be problematic, but this is one case where polar coordinates are useful.

Recall that a point P in polar coordinates has representation (r, φ), where
r is the distance from the origin and φ1 is the counterclockwise angle from
the x-axis. We can think of this as rotating an r length radius lying along the
x-axis by φ degrees. If we rotate this a further θ degrees, the end of the radius

1. We’re using φ for polar coordinates in this case to distinguish it from the rotation angle θ.
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(x', y')

(x, y)

�

�

r

Figure 4.6 Rotation in xy plane.

will be at (r, φ + θ) (in polar coordinates). Converting to Cartesian coordinates,
the final point will lie at

x′ = r cos(φ + θ)

y′ = r sin(φ + θ)

Using trigonometric identities, this becomes

x′ = r cos φ cos θ − r sin φ sin θ

y′ = r cos φ sin θ + r sin φ cos θ

But r cos φ = x, and r sin φ = y, so we can substitute and get

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

We can derive similar equations for rotation around the x-axis
(Figure 4.5a):

x′ = x

y′ = y cos θ − z sin θ

z′ = y sin θ + z cos θ

and rotation around the y-axis (Figure 4.5b):

x′ = z sin θ + x cos θ

y′ = y

z′ = z cos θ − x sin θ
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To create the corresponding transformation, we need to determine how
the frame elements are transformed. The frame’s origin will not change since
it’s our center of rotation, so y = 0. Therefore, our primary concern will be
the contents of the 3 × 3 matrix A.

For this matrix, we need to compute where i, j, and k will go. For example,
for rotations around the z-axis we can transform i to get

x′ = (1) cos θ − (0) sin θ = cos θ

y′ = (1) sin θ + (0) cos θ = sin θ

z′ = 0

Transforming j and k similarly and copying the results into the columns of
a 3 × 3 matrix gives

Rz =
⎡⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤⎦
Similar matrices can be created for rotation around the x-axis:

Rx =
⎡⎣ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤⎦
and around the y-axis:

Ry =
⎡⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤⎦
One thing to note about these matrices is that their determinants are

equal to 1, and they are all orthogonal. For example, look at the component
3-vectors of the z-axis rotation matrix. We have (cos θ, sin θ, 0), (− sin θ, cos θ, 0),
and (0, 0, 1). The first two lie on the xy plane and so are perpendicular to the
third, and they are perpendicular to each other. All three are unit length and
so form an orthonormal basis.

The product of two orthogonal matrices is also an orthogonal matrix,
thus the product of a series of pure rotation matrices is also a rotation matrix.
For example, by concatenating matrices that rotate around the z-axis, then the
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y-axis, and then the x-axis, we can create one form of a generalized rotation
matrix:

RxRyRz =
⎡⎢⎣ CyCz −CySz Sy

SxSyCz + CxSz −SxSySz + CxCz −SxCy

−CxSyCz + SxSz CxSySz + SxCz CxCy

⎤⎥⎦ (4.8)

where

Cx = cos θx Sx = sin θx

Cy = cos θy Sy = sin θy

Cz = cos θz Sz = sin θz

Recall that the inverse of an orthogonal matrix is its transpose. Because
pure rotation matrices are orthogonal, the inverse of any rotation matrix is
also its transpose. Therefore, the inverse of the z-axis rotation, centered on
the origin, is

R−1
z =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦
This follows if we think of the inverse transformation as “undoing” the

original transformation. If you substitute −θ for θ in the original matrix and
replace cos(−θ) with cos θ and sin(−θ) with − sin θ, then we have:

⎡⎣ cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1

⎤⎦ =
⎡⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤⎦
which, as we can see, results in the immediately preceding inverse matrix.

Now that we have looked at rotations around the coordinate axes, we
will consider rotations around an arbitrary axis. The formula for a rotation
of a vector v by an angle θ around a general axis r̂ is derived as follows.
We begin by breaking v into two parts: the part parallel with r̂ and the
part perpendicular to it, which lies on the plane of rotation (Figure 4.7a).
Recall from Chapter 1 that the parallel part v‖ is the projection of v
onto r̂, or

v‖ = (v · r̂) r̂ (4.9)
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Figure 4.7 (a) General rotation, showing axis of rotation and rotation plane, and
(b) general rotation, showing vectors on rotation plane.
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The perpendicular part is what remains of v after we subtract the parallel

part, or

v⊥ = v − (v · r̂) r̂ (4.10)

To properly compute the effect of rotation, we need to create a two-
dimensional (2D) basis on the plane of rotation (Figure 4.7b). We’ll use v⊥
as our first basis vector, and we’ll need a vector w perpendicular to it for our
second basis vector. We can take the cross product with r̂ for this:

w = r̂ × v⊥ = r̂ × v (4.11)

In the standard basis for R
2, if we rotate the vector i = (1, 0) by θ, we get

the vector (cos θ, sin θ). Equivalently,

R i = (cos θ) i + (sin θ) j

If we use v⊥ and w as the 2D basis for the rotation plane, we can find the
rotation of v⊥ by θ in a similar manner:

Rv⊥ = (cos θ)v⊥ + (sin θ)w (4.12)

The parallel part of v doesn’t change with the rotation, so the final result of
rotating v around r̂ by θ is

Rv = Rv‖ + Rv⊥
= Rv‖ + (cos θ)v⊥ + (sin θ)w

= (v · r̂) r̂ + cos θ[v − (v · r̂) r̂] + sin θ( r̂ × v)

= cos θv + [1 − cos θ](v · r̂) r̂ + sin θ( r̂ × v) (4.13)

This is one form of what is known as the Rodrigues formula.
The projection (v · r̂) r̂ can be replaced by the tensor product ( r̂ ⊗ r̂)v.

Similarly, the cross product r̂ × v can be replaced by a multiplication by
a skew symmetric matrix r̃v. This gives

Rv = cos θv + (1 − cos θ)( r̂ ⊗ r̂)v + sin θr̃v

= [cos θI + (1 − cos θ)( r̂ ⊗ r̂) + sin θr̃]v

Expanding the terms, we end up with a matrix:

Rr̂θ =
⎡⎣ tx2 + c txy − sz txz + sy

txy + sz ty2 + c tyz − sx

txz − sy tyz + sx tz2 + c

⎤⎦
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where

r̂ = (x, y, z)

c = cos θ

s = sin θ

t = 1 − cos θ

As we can see, there is a wide variety of choices for the 3 × 3 matrix A,
depending on what sort of rotation we wish to perform. The full affine matrix
for rotation around the origin is [

R 0
0T 1

]
where R is one of the rotation matrices just given. For example, the affine
matrix for rotation around the x-axis is[

Rx 0

0T 1

]
=

⎡⎢⎢⎣
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤⎥⎥⎦
This is also an orthogonal matrix and its inverse is the transpose, as before.

Finally, when discussing rotations one has to be careful to distinguish
rotation from orientation, which is to rotation as position is to translation.
If we consider the representation of a point in an affine space,

P = v + O

then we can think of the origin as a reference position and the vector v as
a translation that relates our position to the reference. We can represent
our position as just the components of the translation. Similarly, we can
define a reference orientation 
0, and any orientation 
 is related to it by a
rotation, or


 = R0
0

Just as we might use the components of the vector v to represent our position,
we can use the rotation R0 to represent our orientation. To change our ori-
entation, we apply an additional rotation, just as we might add a translation
vector to change our position:


′ = R1


In this case, our final orientation, using the rotation component, is

R1R0
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Remember that the order of concatenation matters, because matrix multipli-
cation — particularly for rotation matrices — is not a commutative operation.

4.3.3 Scaling

The remaining affine transformations that we will cover are deformations,
since they don’t preserve exact lengths or angles. The first is scaling, which
can be thought of as corresponding to our other basic vector operation, scalar
multiplication; however, it is not quite the same. Scalar multiplication of a
vector has only one multiplicative factor and changes a vector’s length equally
in all directions. We can also multiply a vector by a negative scalar. In compar-
ison, scaling as it is commonly used in computer graphics applies a possibly
different but positive factor to each basis vector in our frame.2 If all the factors
are equal, then it is called uniform scaling and is — for vectors in the affine
space — equivalent to scalar multiplication by a single positive scalar. Other-
wise, it is called nonuniform scaling. Full nonuniform scaling can be applied
differently in each axis direction, so we can scale by 2 in z to make an object
twice as tall, but 1/2 in x and y to make it half as wide.

A point doesn’t have a length per se, so instead we change its relative dist-
ance from another point Cs, known as the center of scaling. We can consider
this as scaling the vector from the center of scaling to our point P . For a set of
points, this will end up scaling their distance relative to each other, but still
maintaining the same relative shape (Figure 4.8).

For now we’ll consider only scaling around the origin, so Cs = O and y = 0.
For the upper 3×3 matrix A, we again need to determine how the frame basis
vectors change, which is defined as

T( i) = a i

T( j) = b j

T(k) = ck

where a, b, c > 0 and are the scale factors in the x, y, z directions, respectively.
Writing these transformed basis vectors as the columns of A, we get an affine
matrix of

Sabc =

⎡⎢⎢⎣
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1

⎤⎥⎥⎦
2. We’ll consider negative factors when we discuss reflections in the following section.
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Figure 4.8 Nonuniform scaling.

This is a diagonal matrix, with the positive scale factors lying along the
diagonal, so the inverse is

S−1
abc = S 1

a
1
b

1
c

=

⎡⎢⎢⎣
1/a 0 0 0
0 1/b 0 0
0 0 1/c 0
0 0 0 1

⎤⎥⎥⎦

4.3.4 Reflection

The reflection transformation symmetrically maps an object across a plane
or through a point. One possible reflection is (Figure 4.9a)

x′ = −x

y′ = y

z′ = z

This reflects across the yz plane and gives an effect like a standard mirror
(mirrors don’t swap left to right, they swap front to back). If we want to reflect
across the xz plane instead, we would use (Figure 4.9b)

x′ = x

y′ = −y

z′ = z
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Figure 4.9 (a) yz reflection, and (b) xz reflection.

As one might expect, we can create a planar reflection that reflects across
a general plane, defined by a normal n̂ and a point on the plane P0. For now
we’ll consider only planes that pass through the origin. If we have a vec-
tor v in our affine space, we can break it into two parts relative to the plane
normal: the orthogonal part v⊥, which will remain unchanged, and paral-
lel part v‖, which will be reflected to the other side of the plane to become
−v‖. The transformed vector will be the sum of v⊥ and the reflected −v‖
(Figure 4.10).

To compute v‖, we merely have to take the projection of v against the
plane normal n̂, or

v‖ = (v · n̂) n̂ (4.14)

Subtracting this from v, we can compute v⊥:

v⊥ = v − v‖ (4.15)

We know that the transformed vector will be v⊥ − v‖. Substituting
equations 4.15 and 4.14 into this gives us

T(v) = v⊥ − v‖
= v − 2v‖
= v − 2(v · n̂) n̂

From Chapter 2, we know that we can perform the projection of v on n̂ by
multiplying by the tensor product matrix n̂ ⊗ n̂, so this becomes

T(v) = v − 2( n̂ ⊗ n̂)v

= [I − 2( n̂ ⊗ n̂)]v
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Thus, the linear transformation part A of our affine transformation is
[I − 2( n̂ ⊗ n̂)]. Writing this as a block matrix, we get:

Fn =
[

I − 2( n̂ ⊗ n̂) 0
0T 1

]
While in the real world we usually see planar reflections, in our vir-

tual world we can also compute a reflection through a point. The following
performs a reflection through the origin (Figure 4.11):

x′ = −x

y′ = −y

z′ = −z

The corresponding block matrix is

FO =
[ −I 0

0T 1

]
Reflections are a symmetric operation; that is, the reflection of a reflection

returns the original point or vector. Because of this, the inverse of a reflection
matrix is the matrix itself.

As an aside, we would (incorrectly) expect that if we can reflect through
a plane and a point, we can reflect through a line. The system

x′ = −x

y′ = −y

z′ = z
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Figure 4.11 Point reflection.

appears to reflect through the z-axis, giving a “funhouse mirror” effect, where
right and left are swapped (if y is left, it becomes −y in the reflection, and so
ends up on the right side). However, if we examine the transformation closely,
we see that while it does perform the desired effect, this is actually a rotation of
180 degrees around the z-axis. While both pure rotations and pure reflections
through the origin are orthogonal matrices, we can distinguish between them
by noting that reflection matrices have a determinant of −1, while rotation
matrices have a determinant of 1.

4.3.5 Shear

The final affine transformation that we will cover is shear. Because it affects
the angles of objects it is not used all that often, but it comes up particularly
when discussing oblique projections. An axis-aligned shear provides a shift in
one or two axes proportional to the component in a third axis. Transforming
a square to a rhombus or a cube to a rhomboid solid is a shear transformation
(Figure 4.12).

There are a number of ways of specifying shear [82, 100]. In our case,
we will define a shear plane, with normal n̂, that does not change due to the
transformation. We define an orthogonal shear vector s, which indicates how
planes parallel to the shear plane will be transformed. Points on the plane 1
unit of distance from the shear plane, in the direction of the plane normal, will
be displaced by s. Points on the plane 2 unit of distance from the shear plane
will be displaced by 2s, and so on. In general, if we take a point P and define
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Figure 4.12 z-shear on square.

it as P0 + v, where P0 is a point on the shear plane, then P will be displaced
by ( n̂ · v)s.

The simplest case is when we apply shear perpendicular to one of the
main coordinate axes. For example, if we take the yz plane as our shear plane,
our normal is i and the shear plane passes through the origin O. We know
from this that O will not change with the transformation, so our translation
vector y is 0. As before, to find A we need to figure out how the transformation
affects our basis vectors. If we define j as P1 − O, then

T( j) = T(P1) − T(O)

But P1 and O lie on the shear plane, so

T( j) = P1 − O

= j

The same is true for the basis vector k. For i, we can define it as P0 − O.
We know that P0 is distance 1 from the shear plane, so it will become
P0 + s, so

T( i) = T(P0) − T(O)

= P0 + s − O

= i + s
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The vector s in this case is orthogonal to i, therefore it is of the form (0, a, b),
so our transformed basis vector will be (1, a, b). Our final matrix A is

Hx =
⎡⎣ 1 0 0

a 1 0
b 0 1

⎤⎦
We can go through a similar process to get shear by the y-axis:

Hy =
⎡⎣ 1 c 0

0 1 0
0 d 1

⎤⎦
and shear by the z-axis:

Hz =
⎡⎣ 1 0 e

0 1 f

0 0 1

⎤⎦
For shearing by a general plane through the origin, we already have the

formula for the displacement: ( n̂ · v)s. We can rewrite this as a tensor product
to get ( n̂ ⊗ s)v. Because this is merely the displacement, we need to include
the original point, and thus our origin-centered general shear matrix is simply
I + n̂ ⊗ s. Our final shear matrix is

Hn̂, s =
[

I + s ⊗ n̂ 0
0T 1

]
The inverse shear transformation is shear in the opposite direction, so the

corresponding matrix is

H−1
n̂, s =

[
I − s ⊗ n̂ 0

0T 1

]
= Hn̂,− s

4.3.6 Applying an Affine Transformation
Around an Arbitrary Point

Up to this point, we have been assuming that our affine transformations
are applied around the origin of the frame. For example, when discussing
rotation we treated the origin as our center of rotation. Similarly, our shear
planes were assumed to pass through the origin. This doesn’t necessarily have
to be the case.
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Figure 4.13 Rotation of origin around arbitrary center.

Let’s look at a particular example — the rotation of a point around an
arbitrary center of rotation C — and determine how this transformation
affects the origin of our frame. If we look at Figure 4.13, we see the situation.
We have a point C and our origin O. We want to rotate the difference vector
v = O − C between the two points by matrix R and determine where the result-
ing point T(O), or C + T(v), will be. From that we can compute the difference
vector y = T(O) − O. From Figure 4.13, we can see that y = T(v) − v, so we
can reduce this as follows:

y = T(v) − v

= Rv − v

= (R − I)v

It’s usually more convenient to write this in terms of the vector dual to C,
which is x = C − O = −v, so this becomes

y = −(R − I)x

= (I − R)x

We can achieve the same result by translating our center C to the frame origin
by−x, performing our origin-centered rotation, and then translating back by x:

Mc =
[

I x
0T 1

] [
R 0
0T 1

] [
I −x

0T 1

]

=
[

R x
0T 1

] [
I −x

0T 1

]

=
[

R (I − R)x
0T 1

]
Notice that the upper left-hand block R is not affected by this process.
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The same construction can be used for all affine transformations that use
a center of transformation: rotation, scale, reflection, and shear. The excep-
tion is translation, since such an operation has no effect: P − x + t + x = P + t.
But for the others, using a point C = (x, 1) as our arbitrary center of
transformation gives

Mc =
[

A (I − A)x
0T 1

]
where A is the upper 3 × 3 matrix of an origin-centered transformation. The
corresponding inverse is

M−1
c =

[
A−1 (I − A−1)x
0T 1

]

4.3.7 Transforming Plane Normals

As we saw in the previous section, if we want to transform a line or plane
represented in parametric form, we transform the points in the affine
combination. For example,

T(P(t)) = (1 − s − t)T(P0) + sT(P1) + tT(P2)

But suppose we have a plane represented using the generalized plane
equation. One way of considering this is as a plane normal (a, b, c) and a point
on the plane P0. We could transform these and try to use the resulting vector
and point to build the new plane. However, if we apply an affine transform to
the plane normal (a, b, c) directly, we may end up performing a deformation.
Since angles aren’t preserved under deformations, the resulting normal may
no longer be orthogonal to the points in the plane.

The correct approach is as follows. We can represent the generalized plane
equation as the product of a row matrix and column matrix, or

ax + by + cz + d = [
a b c d

]⎡⎢⎢⎣
x

y

z

1

⎤⎥⎥⎦
= nT P

Now P is clearly a point, and n is the vector of coefficients for the plane.
For points that lie on the plane,

nT P = 0
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If we transform all the points on the plane by some matrix M, then to
maintain the relationship between nT and P , we’ll have to transform n by
some unknown matrix Q, or

(Qn)T (MP) = 0

This can be rewritten as

nT QT MP = 0

One possible solution for this is if

I = QT M

Solving for Q gives

Q =
(

M−1
)T

So, the transformed plane coefficients become

n′ =
(

M−1
)T

n

The same approach will work if we’re transforming the plane normal and
point as described earlier. We transform the point P0 by M and the normal by
(M−1)T .

In many cases the inverse matrix M−1 may not exist. So, if we’re just
transforming a normal vector (a, b, c), we can use a different method. Instead
of M−1, we use the adjoint matrix from Cramer’s rule. Normally we couldn’t
proceed at this point: If the inverse doesn’t exist, we end up dividing by a
zero determinant. However, even when the inverse exists, the division by the
determinant is a scale factor. So, we can ignore it in all cases and just use the
adjoint matrix directly, because we’re going to normalize the resulting vector
anyway.

4.4 Using Affine Transformations

4.4.1 Manipulation of Game Objects

The primary use of affine transformations is for the manipulation of objects
in our game world. Suppose, from our earlier hypothetical, we have an
office environment that is acting as our game space. The artists could build
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the basic level — the walls, the floor, the ceilings, and so forth — as a single set
of triangles with coordinates defined to place them exactly where we might
want them in the world. However, suppose we have a single desk model that
we want to duplicate and place in various locations in the level. The artist
could build a new version of the desk for each location in the core level geom-
etry, but that would involve unnecessarily duplicating all the memory needed
for the model. Instead, we could have one version, or master, of the desk model
and then set a series of transformations that indicate where in the level each
copy, or instance, of the desk should be placed [108].

Before we can begin to discuss how we specify these transformations and
what they might mean, we need to define the two different coordinate frames
we are working in: the local coordinate frame and the world coordinate frame.

Local and World Coordinate Frames

When artists create an object or we create an object directly in a program,
the coordinates of the points that make up that object are defined in that
particular object’s local frame. This is also commonly known as local space.
In addition, often the frame is named after the object itself, so you might also
see terms like model space or camera space.

The orientation of the basis vectors in the lcoal frame is usually set so
that the engineers know which part of the object is the front, which is the top,
and which is the side. This allows us to orient the object correctly relative to
the rest of the world and to translate it in the correct direction if we want to
move it forward. The convention that we will be using in this book is one where
the x-axis points along the forward direction of the object, the y-axis points
toward the left of the object, and the z-axis points out the top of the object
(Figure 4.14). Another common convention is to use the y-axis for up, the z-axis
for forward, and the x-axis for either out to the left or to the right, depending
on whether we want to work in a right-handed or left-handed frame.

z

x

y

Figure 4.14 Local object frame.
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Typically, the origin of the frame is placed in a position convenient for
the game, either at the center of the object or at the bottom of the object. The
first is useful when we want to rotate objects around their centers, the second
for placement on the ground.

When constructing our world, we define a specific coordinate frame, or
world frame, also known as world space. The world frame acts as a common
reference among all the objects, much as the origin acts as a common ref-
erence among points. Ultimately, in order to render, simulate, or otherwise
interact with objects, we will need to transform their local coordinates into
the world frame.

When an artist builds the level geometry, the coordinates are usually set
in the world frame. Orientation of the level relative to our world frame is set
by convention. Knowing which direction is “up” is important in a 3D game;
in our case, we’ll be using the z-axis, but the y-axis is also commonly used.
Aligning the level to the other two axes (in our case, x and y) is arbitrary, but
if our level is either gridlike or box-shaped, it is usually convenient to orient
the grid lines or box sides to these remaining axes.

Positioning the level relative to the origin of the frame is also arbitrary but
is usually set so that the origin lies in the center of a box defining our maximum
play area. This helps avoid precision problems, since floating-point precision
is centered around 0 (see Chapter 1). For example, we might have a 300-meter
by 300-meter play area, so that in the xy directions the origin will lie directly
in the center. While we can set things so that the origin is centered in z as well,
we may want to adjust that depending on our application. If our game mainly
takes place on a flat play area, such as in an arena fighting game, we might set
the floor so that it lies at the origin; this will make it simple to place objects
and characters exactly at floor level. In a submarine game, we might place sea
level at the origin; negative z lies under the waterline and positive z above.

Placing Objects

If we were to use the objects’ local coordinates directly in the world frame,
they would end up interpenetrating and centered around the world origin.
To avoid that situation, we apply affine transformations to each object to
place them at their own specific position and orientation in the world. For
each object, this is known as their particular local-to-world transformation.
We often display the relative position and orientation of a particular object in
the world by drawing its frame relative to the world frame (Figure 4.15). The
local-to-world transformation, or world transformation for short, describes
this relative relationship: The column vectors of the local-to-world matrix A
describe where the local frame’s basis vectors will lie relative to the world
space basis, and the vector y describes where the local frame’s origin lies
relative to the world origin.
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Figure 4.15 Local-to-world transformation.

The most commonly used affine transformations for object placement are
translation, rotation, and scaling. Translation and rotation are convenient
for two reasons. First, they correspond naturally to two of the character-
istics we want to control in our objects: position and orientation. Second,
they are rigid transformations, meaning they don’t affect the size or shape
of our object, which is generally the desired effect. Scaling is a deformation
but is commonly useful to change the size of objects. For example, if two
artists build two objects but fail to agree on a relative measure of size, you
might end up with a table bigger than a room, if placed directly in the level.
Rather than have the artist redo the model, we can use scaling to make it
appear smaller. Scaling is also useful in fantastical games to either shrink a
character to fit in a small space or grow a character to be more imposing.
However, for most games you can actually get away without using scaling
at all.
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To create the final world transformation, we’ll be concatenating a
sequence of these translation, rotation, and scaling transformations together.
However, remember that concatenation of transformations is not commu-
tative. So, the order in which we apply our transformations affects the
final result, sometimes in surprising ways. One basic example is transform-
ing the point (0, 0, 0). A pure rotation around the origin has no effect on
(0, 0, 0), so rotating by 90 degrees around z and then translating by (tx, ty, tz)

will just act as a translation, and we end up with (tx, ty, tz). Translating
the point first will transform it to (tx, ty, tz), so in this case a subsequent
rotation of 90 degrees around z will have an effect, with the final result
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of (−ty, tx, tz). As another example, look at Figure 4.16(a), which shows a
rotation and translation. Figure 4.16(b) shows the equivalent translation and
rotation.

Scaling and rotation are also noncommutative. If we first scale (1, 0, 0) by
(sx, sy, sz), we get the point (sx, 0, 0). Rotating this by 90 degrees around z, we
end up with (0, sx, 0). Reversing the transformation order, if we rotate (1, 0, 0)
by 90 degrees around z, we get the point (0, 1, 0). Scaling this by (sx, sy, sz), we
get the point (0, sy, 0). Note that in the second case we rotated our object so
that our original x-axis lies along the y-axis and then applied our scale, giving
us the unexpected result. Figures 4.17(a) and 4.17(b) show another example
of this applied to an object.

(a) (b)

Figure 4.16 (a) Rotation, then translation and (b) translation, then rotation.

(a) (b)

Figure 4.17 (a) Scale, then rotation and (b) rotation, then scale.
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The final combination is scaling and translation. Again, this is not
commutative. Remember that pure scaling is applied from the origin of the
frame. If we translate an object from the origin and then scale, there will be
additional scaling done to the translation of the object. So, for example, if
we scale (1, 1, 1) by (sx, sy, sz) and then translate by (tx, ty, tz), we end up with
(tx + sx, ty + sy, tz + sz). If instead we translate first, we get (tx + 1, ty + 1, tz + 1),
and then scaling gives us (sxtx + sx, syty + sy, sztz + sz). Another example can be
seen in Figures 4.18(a) and 4.18(b).

Generally, the desired order we wish to use for these transforms is to
scale first, then rotate, then translate. Scaling first gives us the scaling along
the axes we expect. We can then rotate around the origin of the frame,
and then translate it into place. This gives us the following multiplication
order:

M = TRS

4.4.2 Matrix Decomposition

It is sometimes useful to break an affine transformation matrix into its com-
ponent basic affine transformations. This is called matrix decomposition. We
performed one such decomposition when we pulled the translation infor-
mation out of the matrix, effectively representing our transformation as the
product of two matrices:[

A y
0T 1

]
=

[
I y

0T 1

] [
A 0
0T 1

]
Suppose we continue the process and break down A into the product of

more basic affine transformations. For example, if we’re using only scaling,

(a) (b)

Figure 4.18 (a) Scale, then translation and (b) translation, then scale.
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rotation, and translation, it would be ideal if we could break A into the product
of a scaling and rotation matrix. If we know for a fact that A is the product
of only a scaling and rotation matrix, in the order RS, we can multiply it out
to get⎡⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
sxr11 syr12 szr13 0
sxr21 syr22 szr23 0
sxr31 syr32 szr33 0

0 0 0 1

⎤⎥⎥⎦
In this case, the lengths of the first three column vectors will give our three
scale factors sx, sy, and sz. To get the rotation matrix, all we need to do is
normalize those three vectors.

Unfortunately, it isn’t always that simple. As we’ll see in Section 4.5,
often we’ll be concatenating a series of TRS transformations to get something
like

M = TnRnSn · · ·T1R1S1T0R0S0

In this case, even ignoring the translations, it is impossible to decompose
M into the form RS. As a quick example, suppose that all these transforma-
tions with the exception of S1 and R0 are the identity transformation. This
simplifies to

M = S1R0

Now suppose S1 scales by 2 along y and by 1 along x and z, and R0 rotates by 60
degrees around z. Figure 4.19 shows how this affects a square on the xy plane.
The sides of the transformed square are no longer perpendicular. Somehow,
we have ended up applying a shear within our transformation, and clearly we
cannot represent this by a simple concatenation RS.

One solution is to decompose the matrix using a technique known as
singular value decomposition, or simply SVD. Assuming no translation, the
matrix M can be represented by three matrices L, D, and R, where L and
R are orthogonal matrices, D is a diagonal matrix with nonnegative entries,
and

M = LDR

An alternative formulation to this is polar decomposition, which breaks
the nontranslational part of the matrix into two pieces: an orthogonal matrix
Q and a stretch matrix S, where

S = UT KU
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y

x

Figure 4.19 Effect of rotation, then scale.

Matrix U in this case is another orthogonal matrix, and K is a diagonal matrix.
The stretch matrix combines the scale-plus-shear effect we saw in our exam-
ple: It rotates the frame to an orientation, scales along the axes, and then
rotates back. Using this, a general affine matrix can be broken into four
transformations:

M = TRNS

where T is a translation matrix, Q has been separated into a rotation matrix
R and a reflection matrix N = ±I, and S is the preceding stretch matrix.

Performing either SVD or polar decomposition is out of the purview of
this text. As we’ll see, there are ways to avoid matrix decomposition at the cost
of some conversion before we send our models down the graphics pipeline.
However, at times we may get a matrix of unknown structure from a library
module that we don’t control. For example, we could be using a commercial
physics engine or writing a plug-in for a 3D modeling package such as Max
or Maya. Most of the time a function is provided that will decompose such
matrices for us, but this isn’t always the case. For those times and for those
who are interested in pursuing this topic, more information on decomposi-
tions can be found in Goldman [42], Golub and Van Loan [44], and Shoemake
and Duff [105].

4.4.3 Avoiding Matrix Decomposition
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In the preceding section we made no assumptions about the values for our
scaling factors. Now let’s assume that they are equal; that is, each scaling
matrix performs a uniform scale. Looking at just the rotation and scaling
transformations, we have

M = RnSn · · · R1S1R0S0



4.4 Using Affine Transformations 167

Since each scaling transformation is uniformly scaling, we can simplify this to

M = Rnσn · · · R1σ1R0σ0

Using matrix algebra, we can shuffle terms to get

M = Rn · · · R1R0σn · · · σ1σ0

= Rσ

= RS

where R is a rotation matrix and S is a uniform scaling matrix. So, if we use
uniform scaling, we can in fact decompose our matrix into a rotation and
scaling matrix, as we just did.
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Demo
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However, even in this case the decomposition takes three square roots
and nine scaling operations to perform. This leads to an alternate approach to
handling transformations. Instead of storing transformations for our objects
as a single 4 × 4 or even 3 × 4 matrix, we will break out the individual parts:
a scale factor s, a 3 × 3 rotation matrix R, and a translation vector t. To apply
this transformation to a point P , we use

T(P) =
[

sRx + t
1

]

Note the similarity to equation 4.1. We’ve replaced A with sR and y with t. In
practice we ignore the trailing 1.

Concatenating transformations in matrix format is as simple as
performing a multiplication. Concatenating in our alternate format is a lit-
tle less straightforward but is not difficult and actually takes fewer operations
on a standard floating-point processor:

s′ = s1s0
R′ = R1 R0
t′ = t1 + s1 R1 t0

(4.16)

Computing the new scale and rotation makes a certain amount of sense, but
it may not be clear why we don’t add the two translations together to get the
new translation. If we multiply the two transforms in matrix format, we have
the following order:

M = T1 R1 S1 T0 R0 S0
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But since T0 is applied after R0 and S0, they have no effect on it. So, if we
want to find how the translation changes, we drop them:

M′ = T1 R1 S1 T0

Multiplying this out in block format gives us

M′ =
[

I t1

0T 1

] [
R1 0
0T 1

] [
s1I 0
0T 1

] [
I t0

0T 1

]
=

[
R1 t1

0T 1

] [
s1I s1 t0

0T 1

]
=

[
s1R1 s1R1 t0 + t1

0T 1

]
We can see that the right-hand column vector y is equal to equation 4.16. To
get the final translation we need to apply the second scale and rotation before
adding the second translation. Another way of thinking of this is that we need
to scale and rotate the first translation vector into the frame of the second
translation vector before they can be combined together.

There are a few advantages to this alternate format. First of all, it’s
clear what each part does — the scale and rotation aren’t combined into a
single 3 × 3 matrix. Because of this, it’s also easier to change individual
elements. We can update rotation, scale through a simple multiplication,
or even just set them directly. Surprisingly, on a serial processor concate-
nation is also cheaper. It takes 48 multiplications and 32 adds to do a
traditional matrix multiplication, but only 40 multiplications and 27 adds
to perform our alternate concatenation. This advantage disappears when
using vector processor operations, however. In that case, it’s much easier to
parallelize the matrix multiplication (16 operations on some systems), and
the cost of scaling and rotating the translation vector becomes more of an
issue.

Even with serial processors our alternate format does have one main dis-
advantage, which is that we need to create a 4 × 4 matrix to be sent to the
graphics application programming interface (API). Based on our previous
explorations of the transformation matrix, we can create a matrix from our
alternate format quite quickly; scale the three columns of the rotation matrix;
and then copy it and the translation vector into our 4 × 4:⎡⎢⎢⎣

sr0,0 sr0,1 sr0,2 tx
sr1,0 sr1,1 sr1,2 ty
sr2,0 sr2,1 sr2,2 tz

0 0 0 1

⎤⎥⎥⎦
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Which representation is better? It depends on your application. If all you
wish to do is an initial scale and then apply sequences of rotations and trans-
lations, the 4 × 4 matrix format works fine and will be faster on a vector
processor. If, on the other hand, you wish to make changes to scale as well,
using the alternate format should at least be considered. And, as we’ll see, if
we wish to use a rotation representation other than a matrix, the alternate
formation is almost certainly the way to go.

4.5 Object Hierarchies

In describing object transformations, we have considered them as transform-
ing from the object’s local frame (or local space) to a world frame (or world
space). However, it is possible to define an object’s transformation as being
relative to another object’s space instead. We could carry this out for a num-
ber of steps, thereby creating a hierarchy of objects, with world space as the
root and each object’s local space as a node in a tree (Figure 4.20).

For example, suppose we wish to attach an arm to a body. The body is built
with its origin relative to its center. The arm has its origin at the shoulder joint
location because that will be our center of rotation. If we were to place them
in the world using the same transformation, the arm would end up inside
the body instead of at the shoulder. We want to find the transformation that
modifies the arm’s world transformation so that it matches the movement of
the body and still remains at the shoulder. The way to do this is to define
a transformation for the arm relative to the body’s local space. If we combine
this with the transformation for the body, this should place the arm in the
correct place in world space relative to the body, no matter its position and
orientation.

Figure 4.20 Hierarchy of frames.
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The idea is to transform the arm to body space (Figure 4.21(a)) and then
continue the transform into world space (Figure 4.21(b)). In this case, for
each stage of transformation we perform the order as scale, rotate, and then
translate. In matrix format the world transformation for the arm would be

W = TbodyRbodySbodyTarmRarmSarm

As we’ve indicated, the body and arm are treated as two separate objects, each
with its own transformations, placed in a hierarchy. The body transforma-
tion is relative to world space, and the arm transformation is relative to the

(a)

(b)

Figure 4.21 (a) Mapping arm to body’s local space and (b) mapping body and arm
to world space.
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body’s space. When rendering, for example, we begin by drawing the body
with its world transformation and then drawing the arm with the concate-
nation of the body’s transformation and the arm’s transformation. By doing
this, we can change them independently — rotating the arm around the shoul-
der, for example, without affecting the body at all. Similar techniques can be
used to create deeper hierarchies, for example, a turret that rotates on top
of a tank chassis, with a gun barrel that elevates up and down relative to the
turret.

One way of coding this is to create separate objects, each of which handles
all the work of grabbing the transformation from the parent objects and com-
bining to get the final display transform. The problem with this approach is
that it generates a lot of duplicated code. Using the tank example, the code
necessary for handling the hierarchy for the turret is going to be almost iden-
tical to that for the barrel. What is usually done is to design a data structure
that handles the generalized case of a hierarchy of frames and use that to
manage our hierarchical objects. We’ve implemented an example using one
such data structure called a scene graph. More detail about this example and
scene graphs in general can be found on the CD-ROM.
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4.6 Chapter Summary

In this chapter we’ve discussed the general properties of affine transforma-
tions, how they map between affine spaces, and how they can be repre-
sented and performed by matrices at one dimension higher than the affine
spaces involved. We’ve covered the basic affine transformations as used in
interactive applications and how to combine three of them — scaling,
rotation, and translation — to manipulate our objects within our world. While
it may be desirable to separate a given affine transformation back into scaling,
rotation, and translation components, we have seen that it is not always pos-
sible when using nonuniform scaling. Separating components in this manner
may not be efficient, so we have presented an alternative affine transforma-
tion representation with the three components separated. Finally, we have
discussed how to construct transformations relative to other objects, which
allows us to create jointed, hierarchical structures.

For those interested in reading further, information on affine algebra
can be found in Schneider and Eberly [100], as well as in deRose [23]. The
standard affine transformations are described in most graphics textbooks,
such as Möller and Haines [82] and Foley et al. [38]. Further details on hierar-
chical transformation management and scene graph construction and usage
can be found in Eberly [25].
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Chapter5
Orientation
Representation

5.1 Introduction

In the previous chapter we discussed various types of affine transformations
and how they can be represented by a matrix. In this chapter we will focus
specifically on orientation and the rotation transformation. We’ll look at four
different orientation formats and compare them on the basis of the following
criteria:

■ Represents orientation/rotation with a small number of values.

■ Can be concatenated efficiently to form new orientations/rotations.

■ Rotates points and vectors efficiently.

The first item is important if memory usage is an issue, either because we are
working with a memory-limited machine such as a console, or because we
want to store a large number of transformations, such as in animation data.
In either case, any reduction in representation size means that we have freed-
up memory that can be used for more animations, for more animation frames
(leading to a smoother result), or for some other aspect of the game. Rotating
points and vectors efficiently may seem like an obvious requirement, but one
that merits mentioning; not all representations are good at this. Similarly, for
some representations concatenation is not possible.

There are two other criteria we might consider for an orientation format
that we will not discuss here: how well the representation can be interpolated
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and how suitable it is for numeric integration in physics. Both of these topics
will be discussed in Chapters 10 and 13, respectively.

As we’ll see, there is no one choice that meets all of our requirements;
each has its strengths and weaknesses in each area, depending on our imple-
mentation needs.

5.2 Rotation Matrices

Since we have been using matrices as our primary orientation/rotation
representation, it is natural to begin our discussion with them.

For our first desired property, memory usage, matrices do not fare well.
Euler’s rotation theorem states that the minimum number of values needed
to represent a rotation in three dimensions is three. The smallest possible
rotation matrix requires nine values, or three orthonormal basis vectors. It
is possible to compress a rotation matrix, but in most cases this is not done
unless we’re sending data across a network. Even then it is better to convert to
one of the more compact representations that we will present in the following
sections, rather than compress the matrix.

However, for the second two properties, matrices do quite well. Concate-
nation is done through a matrix-matrix multiplication, and rotating a vector is
done through a matrix-vector multiplication. Both of these are reasonably effi-
cient on a standard floating-point processor. But on a processor that supports
SSE or Altivec instructions, which can perform matrix and vector operations
in parallel, both of these operations can be performed even faster. Most graph-
ics hardware has built-in circuitry that performs similarly. And as we’ve seen,
4 × 4 matrices can be useful for more than just rotation. Because of all these
reasons, matrices continue to be useful despite their memory footprint.

5.3 Fixed and Euler Angles

5.3.1 Definition

We’ve just stated that the minimum number of values needed to represent a
rotation in three-dimensional (3D) space is three. As it happens, these three
values can be the angles of three sequential rotations around a set of orthog-
onal axes. In Chapter 4, we used this as one means of building a generalized
rotation matrix. Our chosen sequence of axes in this case was z-y-x, so the
values (0, π/4, π/2) represent a rotation of 0 radians around the z-axis, fol-
lowed by a rotation of π/4 radians (or 45 degrees) around the y-axis, and
concluding with a rotation of π/2 radians (90 degrees) around the x-axis.
Angles can be less than 0 or greater than 2π, to represent reversed rotations
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Figure 5.1 Order and direction of rotation for z-y-x fixed angles.

and multiple rotations around a given axis. Note that we are using radians
rather than degrees to represent our angles; either convention is acceptable,
but the trigonometric functions used in C or C++ expect radians.

The order we’ve given is somewhat arbitrary, as there is no standard order
that is used for the three axes. We could have used the sequence x-y-z or z-x-y
just as well. We can even duplicate one axis, so long as it is not the same axis
in a row, so y-z-y is a valid sequence, while an axis rotation sequence such as
z-y-y is not permitted. This is because duplicating an axis is redundant and
doesn’t add an additional degree of freedom.

These rotations are performed around either the world axes or the object’s
model axes. When the angles represent world axis rotations, they are usually
called fixed angles (Figure 5.1). The most convenient way to use fixed angles
is to create an x-, y-, or z-rotation matrix for each angle and apply it in turn to
our set of vertices. So an x-y-x fixed-angle representation can be concatenated
into a single matrix R = Rx Ry Rx in matrix form.

A sequence of model axis rotations, in turn, is said to consist of Euler
angles.1 The three Euler angles are commonly known as roll, pitch, and
heading, after the three axes in a ship or an airplane. Heading is also some-
times referred to as yaw. Roll represents rotation around the forward axis,
pitch rotation around a side axis, and heading rotation around the up axis

1. Just to be confusing, sometimes (a sequence of ) rotations around world space axes are also
referred to as Euler angles. Hopefully context will tell you which one the author means.
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Figure 5.2 Roll, pitch, and rotations relative to model coordinate axes.

(Figure 5.2). Whether a given roll, pitch, or heading rotation is around x, y, or z

depends on how we’ve defined our coordinate frame. Suppose we are using
a coordinate system where the z-axis represents up, the x-axis represents for-
ward, and the y-axis represents left. Then heading is rotation around the z-axis,
pitch is rotation around the y-axis, and roll is rotation around the x-axis. They
are commonly applied in the order roll-pitch-heading, so the corresponding
Euler angles for our case are x-y-z.

To create a rotation matrix that applies Euler angles, we concatenate in
the reverse order of fixed angles. To see why, let’s take our set of x-y-z Euler
angles. We begin by applying the Rx matrix, to give us a rotation around x.
We then want to apply a rotation around the object’s initial model y-axis.
However, because of the x rotation, the y-axis has been transformed to a new
orientation. So, if we concatenate as we normally would, our rotation will
be about the transformed y-axis, which is not what we want. To avoid this,
we transform by Ry first, then by Rx, giving Rx Ry. The same is true for the
z rotation: We need to rotate around z first to ensure we rotate around the
original model z-axis, not the transformed one. The resulting matrix is

REuler = Rx Ry Rz

So x-y-z Euler angles are the same as z-y-x fixed angles.
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5.3.2 Format Conversion

By concatenating three general axis rotation matrices and expanding out the
terms, we can create a generalized rotation matrix. The particular matrix will
depend on which axis rotations we’re using and whether they are fixed or
Euler angles. For z-y-x fixed angles or x-y-z Euler angles, the matrix looks like

R = RxRyRz =
⎡⎣ CyCz −CySz Sy

SxSyCz + CxSz −SxSySz + CxCz −SxCy

−CxSyCz + SxSz CxSySz + SxCz CxCy

⎤⎦
where

Cx = cos θx Sx = sin θx

Cy = cos θy Sy = sin θy

Cz = cos θz Sz = sin θz

This should look familiar from Chapter 4.
When possible, we can save some instructions by computing each sine

and cosine using a single sincos() call. This function is not supported on
all processors, or even in all math libraries, so we have provided a wrapper
function IvSinCosf() (accessible by including IvMath.h) that will calculate it
depending on the platform.

We can convert from a matrix back to a possible set of fixed angles by
inverting this process. Note that since we’ll be using inverse trigonometric
functions there are multiple resulting angles. We’ll also be taking a square
root, the result of which could be positive or negative. Hence, there are
multiple possibilities of Euler or fixed angles for a given matrix — the best
we can do is find one. Assuming we’re using z-y-x fixed angles, we can see
that sin θy is equal to R02. Finding cos θy can be done by using the identity

cos θy =
√

1 − sin2 θy. The rest falls out from dividing quantities out of the first
row and last column of the matrix, so

sin θy = R02

cos θy =
√

1 − sin2 θy

sin θx = −R12/ cos θy

cos θx = R22/ cos θy

sin θz = −R01/ cos θy

cos θz = R00/ cos θy
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Note that we have no idea whether cos θy should be positive or negative, so
we assume that it’s positive. Also, if cos θy = 0, then the x and z axes have
become aligned (see Section 5.3.5) and we can’t distinguish between rotations
around x and rotations around z. One possibility is to assume that rotation
around z is 0, so

sin θz = 0

cos θz = 1

sin θx = R21

cos θx = R11

Calling arctan2() for each sin/cos pair will return a possible angle in radians,
generally in the range [−π, π]. Note that we have lost one of the few benefits
of fixed and Euler angles, which is that they can represent multiple rotations
around an axis by using angles greater than 2π radians, or 360 degrees. We
have also lost any notion of “negative” rotation.

5.3.3 Concatenation

Clearly, fixed and Euler angles meet our first criteria for a good orientation
representation: They use the minimum number of values. However, they don’t
really meet the remainder of our requirements. First of all, they don’t concate-
nate well. Adding angles doesn’t work: Applying (π/2, π/2, π/2) twice doesn’t
end up at the same orientation as (π, π, π). The most straightforward method
for concatenating two Euler or fixed-angle triples is to convert each sequence
of angles to a matrix, concatenate the matrix, and then convert the matrix
back to Euler or fixed angles. This will take a large number of operations, and
will only give an approximate result, due to the ill-formed nature of the matrix
to fixed and Euler conversion.

5.3.4 Vector Rotation

Euler and fixed angles also aren’t the most efficient method for rotating
vectors. Recall that to rotate a vector around z uses the formula

Rz(x, y, θ) = (x cos θ − y sin θ, x sin θ + y cos θ)

Using the angles directly means that for each axis, we compute a sine and
cosine and then apply the preceding formula. Even if we cache the sine and
cosine values for a set of vectors, this ends up being more expensive than
the cost of a matrix multiplication. Therefore, when rotating multiple vectors
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(in general the break-even point is five vectors), it’s more efficient to convert
to matrix format.

5.3.5 Other Issues

As if all of these disadvantages are not enough, the fatal blow is that in cer-
tain cases fixed or Euler angles can lose one degree of freedom. We can think
of this as a mathematical form of gimbal lock. In aeronautic navigational
systems, there is often a set of gyroscopes, or gimbals, that control the orien-
tation of an airplane or rocket. Gimbal lock is a mechanical failure where one
gimbal is rotated to the end of its physical range and it can’t be rotated any
further, thereby losing one degree of freedom. While in the virtual world,
we don’t have mechanical gyroscopes to worry about, a similar situation
can arise.

Suppose we are using x-y-z fixed angles and we consider the case where,
no matter what we use for the x and z angles, we will always rotate around
the y-axis by 90 degrees. This rotates the original world x-axis — the axis we
first rotate around — to be aligned with the world negative z-axis (Figure 5.3).
Now any rotation we do with θz will subtract from any rotation to which we
have applied θx. The combination of x and z rotations can be represented
by one value θx − θz, applied as the initial x-axis rotation. For example, in
Figure 5.4, applying the fixed angles (π/2, π/2, π/2) gets us back to our original
(0, π/2, 0). Instead of using (θx, π/2, θz), we could just as well use (θx−θz, π/2, 0)

x

z

y

x

World z

y

z

Figure 5.3 Demonstration of mathematical gimbal lock. A rotation of 90 degrees
around y will lead to the local x-axis aligning with the −z world axis, and a loss of a
degree of freedom.
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x

z

y

Figure 5.4 Effect of gimbal lock. Rotating the box around the world x-axis, then
the world y-axis, then the world z-axis ends up having the same effect as rotating the
box around just the y-axis.

or (0, π/2, θz −θx). Another way to think of this is: Were this in matrix form we
would not be able to extract unique values for θx and θz. We have effectively
lost one degree of freedom.

To try this for yourself, take an object whose orientation can be clearly
distinguished, like a book or CD case. From your point of view, rotate the
object clockwise 90 degrees around an axis pointing forward (roll). Now
rotate the new top of the object away from you by 90 degrees (pitch). Now
rotate the object counterclockwise 90 degrees around an axis pointing up
(heading). The result is the same as pitching the object downward 90 degrees
(see Figure 5.4).

Still, in some cases fixed or Euler angles do provide an intuitive represen-
tation for orientation. For example, in a hierarchical system it is very intuitive
to define rotations at each joint as a set of Euler angles and to constrain certain
axes to remain fixed. An elbow or knee joint, for instance, could be consid-
ered a set of Euler angles with two constraints and only one axis available
for applying rotation. It’s also easy to set a range of angles so that the joint
doesn’t bend too far one way or the other. However, these limited advantages
are not enough to outweigh the problems with fixed and Euler angles. So in
most cases, fixed and Euler angles are used as a means to semi-intuitively set



5.4 Axis–Angle Representation 181

other representations (being aware of the dangers of gimbal lock, of course),
and our library will be no exception.

5.4 Axis–Angle Representation

5.4.1 Definition

Recall from Chapter 4 that we can represent a general rotation in R
3 by an

axis of rotation, and the amount we rotate around this axis by an angle of
rotation. Therefore, we can represent rotations in two parts: a 3-vector r that
lies along the axis of rotation, and a scalar θ that corresponds to a counter-
clockwise rotation around the axis, if the axis is pointing toward us. Usually, a
normalized vector r̂ is used instead, which constrains the four values to three
degrees of freedom, corresponding to the three degrees of freedom necessary
for 3D rotations.

Generating the axis–angle rotation that takes us from one normalized
vector v̂ to another vector ŵ is straightforward (Figure 5.5). The angle of
rotation is the angle between the two vectors:

θ = arccos( v̂ · ŵ) (5.1)

The two vectors lie in the plane of rotation, and so the axis of rotation is
perpendicular to both of them:

r = v̂ × ŵ (5.2)

Normalizing r gives us r̂. Near-parallel vectors may cause us some problems
either because the dot product is near 0, or normalizing the cross product

r̂

ŵ

v̂

Figure 5.5 Axis–angle representation. Rotation by r by angle θ rotates v into w.



182 Chapter 5 Orientation Representation

ends up dividing by a near-zero value. In those cases, we set θ to 0 and r̂ to
any arbitrary, normalized vector.

5.4.2 Format Conversion

To convert an axis–angle represention to a matrix, we can use the derivation
from Chapter 4:

Rr̂θ =
⎡⎣ tx2 + c txy − sz txz + sy

txy + sz ty2 + c tyz − sx

txz − sy tyz + sx tz2 + c

⎤⎦ (5.3)

where

r̂ = (x, y, z)

c = cos θ

s = sin θ

t = 1 − cos θ

Converting from a matrix to the axis–angle format has similar issues
as the fixed-angle format, since opposing vectors r̂ and − r̂ can be used to
generate the same rotation by rotating in opposite directions, and multiple
angles (0 and 2π, for example) applied to the same axis can rotate to the same
orientation. The following method is from Eberly [26].

We begin by computing the angle. The sum of the diagonal elements, or
trace of a rotation matrix R, is equal to 2 cos θ + 1, where θ is our angle of
rotation. This gives us an easy method for computing θ:

θ = arccos

(
1

2
(trace(R) − 1)

)
There are three possibilities for θ. If θ is 0, then we can use any arbitrary unit
vector as our axis. If θ lies in the range (0, π), then we can compute the axis
by using the formula

R − RT = 2 sin θS (5.4)

where S is a skew symmetric matrix of the form

S =
⎡⎣ 0 −z y

z 0 −x

−y x 0

⎤⎦
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The values x, y, and z in this case are the components of our axis vector r̂. We
can compute r as (R21 − R12, R02 − R20, R10 − R01), and normalize to get r̂.

If θ equals π, then R − RT = 0, which doesn’t help us at all. In this case,
we can use another formulation for the rotation matrix, which only holds if
θ = π:

R = I + 2S2 =
⎡⎢⎣ 1 − 2y2 − 2z2 2xy 2xz

2xy 1 − 2x2 − 2z2 2yz

2xz 2yz 1 − 2x2 − 2y2

⎤⎥⎦
The idea is that we can use the diagonal elements to compute the three axis
values. By subtracting appropriately, we can solve for one term, and then
use that value to solve for the other two. For example, R00 − R11 − R22 + 1
expands to

R00 − R11 − R22 + 1 = 1 − 2y2 − 2z2 − 1 + 2x2 + 2z2 − 1 + 2x2 + 2y2 + 1

= 4x2

So,

x = 1

2

√
R00 − R11 − R22 + 1 (5.5)

and consequently,

y = R01

2x

z = R02

2x

To avoid problems with numeric precision and square roots of negative
numbers, we’ll choose the largest diagonal element as the term that we’ll solve
for. So, if R00 is the largest diagonal element, we’ll use the preceding equations.
If R11 is the largest, then

y = 1

2

√
R11 − R00 − R22 + 1

x = R01

2y

z = R12

2y
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Finally, if R22 is the largest element we use

z = 1

2

√
R22 − R00 − R11 + 1

x = R02

2z

y = R12

2z

5.4.3 Concatenation

Concatenating two axis–angle representations is not straightforward. One
method is to convert them to two matrices or two quaternions (see below),
multiply, and then convert back to the axis–angle format. As one can easily
see, this is more expensive than just concatenating two matrices. Because of
this, one doesn’t often perform this operation on axis–angle representations.

5.4.4 Vector Rotation

For the rotation of a vector v by the axis–angle representation ( r̂, θ), we can
use the Rodrigues formula that we derived in Chapter 4:

Rv = cos θv + [1 − cos θ](v · r̂) r̂ + sin θ( r̂ × v)

If we precompute cos θ and sin θ and reuse intermediary values, we can com-
pute this relatively efficiently. We can improve this slightly by using the
identity

r̂ × ( r̂ × v) = (v · r̂) r̂ − ( r̂ · r̂)v

= (v · r̂) r̂ − v

and substituting to get an alternate Rodrigues formula:

Rv = v + (1 − cos θ)[ r̂ × ( r̂ × v)] + sin θ( r̂ × v)

In both these cases, the trade-off is whether to store the results of the transcen-
dental functions and thereby use more memory, or compute them every time
and lose speed. The answer will depend on the needs of the implementation.

When rotating two or more vectors, it is more efficient to convert the
axis–angle format to a matrix and then multiply. The break-even point is two
vectors, so if you’re only transforming one vector, don’t bother converting;
otherwise, use a matrix.
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5.4.5 Axis–Angle Summary

While being a useful way of thinking about rotation, the axis–angle format
still has some problems. Concatenating two axis–angle representations is
extremely expensive. And unless we store two additional values, rotating vec-
tors requires computing transcendental functions, which is not very efficient
either. Our next representation encapsulates some of the useful properties
of the axis–angle format, while providing a more efficient method for con-
catenation. It precomputes the transcendental functions and uses them to
rotate vectors in nearly equivalent time to the axis–angle method. Because of
this, we have not explicitly provided an implementation in our library for the
axis–angle format.

5.5 Quaternions

5.5.1 Definition

Source Code

Library

IvMath

Filename

IvQuat

The final orientation representation we’ll consider could be considered a
variant of the axis–angle representation, and in fact when using it for rota-
tion it’s often simplest to think of it that way. It is called the quaternion
and was created by the Irish mathematician Sir William Hamilton [52]
in the nineteenth century and introduced to computer graphics by
Ken Shoemake [103] in the 1980s. Quaternions require only four values, they
don’t have problems of gimbal lock, the mathematics for concatenation are
relatively simple, and if properly constructed they can be used to rotate vectors
in a reasonably efficient manner.

Hamilton’s general formula for a quaternion q is as follows:

q = w + xi + yj + zk

The quantities i, j, and k can be thought of as the standard basis for all
quaternions, so it is common to write a quaternion as just

q = (w, x, y, z)

The xi+yj+zk part of the quaternion is akin to a vector in R
3, so a quaternion

also can be written as

q = (w, v)

where w is called the scalar part and v is called the vector part.
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Frequently, we’ll want to use vectors in combination with quaternions.
To do so, we’ll zero out the scalar part and set the vector part equal to our
original vector. So, the quaternion corresponding to a vector u is

qu = (0, u)

Other than terminology, we aren’t that concerned about Hamilton’s inten-
tions for generalized quaternions, because we are only going to consider a
specialized case discovered by Arthur Cayley [18]. In particular, he showed
that quaternions can be used to describe pure rotations. Later on, Courant and
Hilbert [21] determined the relationship between normalized quaternions and
the axis–angle representation.

5.5.2 Quaternions as Rotations

While any quaternion can be used to represent rotation (as we will see later),
we will be primarily using unit quaternions, where

w2 + v · v = 1

There are three reasons for this. First of all, it makes the calculations for
rotation and conversions more efficient. Secondly, it manages floating-point
error. By normalizing, our data will lie in the range [−1, 1], and floating-point
values in that range have a high degree of relative precision. Finally, it provides
a natural correspondence between an axis–angle rotation and a quaternion. In
a unit quaternion, w can be thought of as representing the angle of rotation θ.
More specifically, w = cos(θ/2). The vector v represents the axis of rotation, but
normalized and scaled by sin(θ/2). So, v = sin(θ/2) r̂. For example, suppose we
wanted to rotate by 90 degrees around the z-axis. Our axis is (0, 0, 1) and half
our angle is π/4 (in radians). The corresponding quaternion components are

w = cos
(π

4

)
=

√
2

2

x = 0 · sin
(π

4

)
= 0

y = 0 · sin
(π

4

)
= 0

z = 1 · sin
(π

4

)
=

√
2

2

giving us a final quaternion of

q =
(√

2

2
, 0, 0,

√
2

2

)
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So, why reformat our previously simple axis and angle to this somewhat
strange representation? As we’ll see shortly, precooking the data in this way
allows us to rotate vectors and concatenate with ease.

Our class implementation for quaternions looks like

class IvQuat
{
public:

// constructor/destructor
inline IvQuat() {}
inline IvQuat( float_w, float _x, float _y, float _z ) :

w(_w), x(_x), y(_y), z(_z)
{
}
IvQuat(const IvVector3& axis, float angle);
explicit IvQuat(const IvVector3& vector);
inline ∼IvQuat() {}

// member variables
float x, y, z, w;

};

Much of this follows from what we’ve already discussed. We can set our
quaternion values directly, use an axis–angle format, or explicitly use a vector.
Recall that in this last case, we use the vector to set our x, y, and z terms, and
set w to 0.

5.5.3 Addition and Scalar Multiplication

Like vectors, quaternions can be scaled and added componentwise. For both
operations a quaternion acts just like a 4-vector, so

(w1, x1, y1, z1) + (w2, x2, y2, z2) = (w1 + w2, x1 + x2, y1 + y2, z1 + z2)

a(w, x, y, z) = (aw, ax, ay, az)

The algebraic rules for addition and scalar multiplication that apply to vec-
tors and matrices apply here, so like them, the set of all quaternions is also a
vector space. However, the set of unit quaternions is not, since neither opera-
tion maintains unit length. Therefore, if we use one of these operations, we’ll
need to normalize afterwards. In general, however, we will not be using these
operations except in special cases.
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r

w

v

w

v

ˆ

 2π–θ

–r̂

Figure 5.6 Comparing rotation performed by a normalized quaternion (left) with
its negation (right).

5.5.4 Negation

Negation is a subset of scale, but it’s worth discussing separately. One would
expect that negating a quaternion would produce a quaternion that applies a
rotation in the opposite direction — it would be the inverse. However, while
it does rotate in the opposite direction, it also rotates around the negative
axis. The end result is that a vector rotated by either quaternion ends up
in the same place, but if one quaternion rotates by θ radians around r̂, its
negation rotates 2π − θ radians around − r̂. Figure 5.6 shows what this looks
like on the rotation plane. The negated quaternion can be thought of as “taking
the other way around,” but both quaternions rotate the vector to the same
orientation. This will cause some issues when blending between quaternions
but can be handled by adjusting our values appropriately, which we’ll discuss
in Chapter 10. Otherwise, we can use q and −q interchangeably.

5.5.5 Magnitude and Normalization

As we’ve implied, we will be normalizing quaternions, and will do so as if we
were using 4-vectors. The magnitude of a quaternion is therefore as follows:

‖q‖ =
√

(w2 + x2 + y2 + z2)

A normalized quaternion q̂ is

q̂ = q
‖q‖
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Since we’re assuming that our quaternions are normalized, we’ll forgo the use
of the notation q̂ to keep our equations from being too cluttered.

5.5.6 Dot Product

The dot product of two quaternions should also look familiar:

q1 · q2 = w1w2 + x1x2 + y1y2 + z1z2

As with vectors, this is still equal to the cosine of the angle between the
quaternions, except that our angle is in four dimensions instead of the usual
three. What this gives us is a way of measuring how different two quater-
nions are. If q1 · q2 is close to 1 (assuming that they’re normalized), then they
apply very similar rotations. Also, since we know that the negation of a quater-
nion performs the same rotation as the original, if the dot product is close to
−1 the two still apply very similar rotations. So parallel normalized quater-
nions (|q1 · q2| ≈ 1) are similar. Correspondingly, orthogonal normalized
quaternions (q1 · q2 = 0) produce extremely different rotations.

5.5.7 Format Conversion

Converting from axis–angle format to a quaternion requires multiplying the
angle by one-half, computing the sine and cosine of that result, and scaling
the normalized axis vector by the sine. To convert back, we take the arccos of
w to get half the angle, and then use

√
1 − w2 to get the length of v so we can

normalize it. The full conversion is

θ = 2 arccos(w)

‖v‖ =
√

1 − w2

r̂ = v/‖v‖

Converting a normalized quaternion to a 3 × 3 rotation matrix takes the
following form:

Mq =
⎡⎣1 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2

⎤⎦ (5.6)
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If the quaternion is not normalized, we need to scale the matrix by

1

w2 + x2 + y2 + z2

To compute this on a serial processor we can make use of the fact that there
are a lot of duplicated terms. The following is derived from Shoemake [104]:

IvMatrix33&
IvMatrix33::Rotation( const IvQuat& q )
{

float s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;

// if q is normalized, s = 2.0f
s = 2.0f/( q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w );

xs = s*q.x; ys = s*q.y; zs = s*q.z;
wx = q.w*xs; wy = q.w*ys; wz = q.w*zs;
xx = q.x*xs; xy = q.x*ys; xz = q.x*zs;
yy = q.y*ys; yz = q.y*zs; zz = q.z*zs;

mV[0] = 1.0f - (yy + zz);
mV[3] = xy - wz;
mV[6] = xz + wy;

mV[1] = xy + wz;
mV[4] = 1.0f - (xx + zz);
mV[7] = yz - wx;

mV[2] = xz - wy;
mV[5] = yz + wx;
mV[8] = 1.0f - (xx + yy);

return *this;

} // End of Rotation()

If we have a parallel vector processor that can perform fast matrix
multiplication, another way of doing this is to generate two 4 × 4 matrices
and multiply them together:

Mq =

⎡⎢⎢⎣
w −z y x

z w −x y

−y x w z

−x −y −z w

⎤⎥⎥⎦
⎡⎢⎢⎣

w −z y −x

z w −x −y

−y x w −z

x y z w

⎤⎥⎥⎦
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If the quaternion is normalized, the product will be the homogeneous rotation
matrix corresponding to the quaternion.

To convert a matrix to a quaternion, we can use an approach that is similar
to our matrix to axis–angle conversion. Recall that the trace of a rotation
matrix is 2 cos θ + 1, where θ is our angle of rotation. Also, from equation 5.4,
we know that the vector r = (R21 − R12, R02 − R20, R10 − R01) will have length
2 sin θ. If we add 1 to the trace and use these as the scalar and vector parts,
respectively, of a quaternion, we get

q̂ = (2 cos θ + 2, 2 sin θ r̂) (5.7)

Surprisingly, all we need to do now is normalize to get the final result. To see
why, suppose we started with a quaternion

q̂1 = (cos θ, sin θ r̂)

This is close to what we need, which is

q̂h = (cos
θ

2
, sin

θ

2
r̂)

To get from q̂1 to q̂h, let’s consider two vectors. If we have a vector w0 and
a vector w1 rotated θ degrees from w0, then to find the vector vh that lies
between them on the rotation plane (i.e., the vector rotated θ/2 degrees from
w0), we just need to compute (w1 + w2)/2. If we want a normalized vector, we
can skip the division by two and just do the normalize step.

So to do the same with quaternions, we take as our q0 the quaternion (1, 0),
which represents no rotation. If we add that to q1 and normalize, that will
give us our desired result. That boils down to adding 1 to w and normalizing.
Equation 5.7 is just that scaled by 2; the scaling factor drops out nicely when
we normalize.

If the trace of the matrix is less than zero, then this will not work. We’ll
need to use an approach similar to when we extracted the axis from a rotation
matrix. By taking the largest diagonal element and subtracting the elements
from it, we can derive an equation to solve for a single axis component
(e.g., equation 5.5). Using that value as before, we can then compute the other
quaternion components from the elements of the matrix.

So, if the largest diagonal element is R00, then

x = 1

2

√
R00 − R11 − R22 + 1

y = R01 + R10

4x
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z = R02 + R20

4x

w = R21 − R12

4x

We can simplify this by noting that

4x2 = R00 − R11 − R22 + 1

4x2

4x
= R00 − R11 − R22 + 1

4x

x = R00 − R11 − R22 + 1

4x

Substituting this formula for x, we now see that all of the components are
scaled by 1/4x. We can accomplish the same thing by taking the numerators

x = R00 − R11 − R22 + 1

y = R01 + R10

z = R02 + R20

w = R21 − R12

and normalizing.
Similarly, if the largest diagonal element is R11, we start with

y = R11 − R00 − R22 + 1

x = R01 + R10

z = R12 + R21

w = R02 − R20

and normalize.
And, if the largest diagonal element is R22, we take

z = R22 − R00 − R11 + 1

x = R02 + R20

y = R21 + R12

w = R10 − R01

and normalize.
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Converting from a fixed-angle format to a quaternion requires creating a
quaternion for each rotation around a coordinate axis, and then concatenating
them together. For the z-y-x fixed-angle format, the result is

w = cos
θx

2
cos

θy

2
cos

θz

2
− sin

θx

2
sin

θy

2
sin

θz

2

x = sin
θx

2
cos

θy

2
cos

θz

2
+ cos

θx

2
sin

θy

2
sin

θz

2

y = cos
θx

2
sin

θy

2
cos

θz

2
− sin

θx

2
cos

θy

2
sin

θz

2

z = cos
θx

2
cos

θy

2
sin

θz

2
+ sin

θx

2
sin

θy

2
cos

θz

2

Converting a quaternion to fixed or Euler angles is, quite frankly, an awful
thing to do. If it’s truly necessary (e.g., for an interface), the simplest method
is to convert the quaternion to a matrix, and extract the Euler angles from the
matrix.

5.5.8 Concatenation

As with matrices, if we wish to concatenate the transformations performed
by two quaternions, we multiply them together to get a new quaternion.
Expanding out the terms of the multiplication produces the following result:

(w2 + x2 i + y2 j + z2k)(w1 + x1 i + y1 j + z1k)

= w2w1 + w2x1 i + w2y1 j + w2z1k

+ x2w1 i + x2x1 i2 + x2y1 ij + x2z1 ik (5.8)

+ y2w1 j + y2x1 ji + y2y1 j2 + y2z1 jk

+ z2w1k + z2x1ki + z2y1kj + z2z1k2

We define the products of the i, j, and k quantities as follows:

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

and

i2 = j2 = k2 = i jk = −1

Note that order does matter.
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We can use these properties and well-known vector operations to simplify
the product to

q2 · q1 = (w1w2 − v1 · v2, w1 v2 + w2 v1 + v2 × v1)

Note that we’ve expressed this in a right-to-left order, like our matrices. This is
because the rotation defined by q1 will be applied first, followed by the rotation
defined by q2. We’ll see this more clearly when we look at how we use quater-
nions to transform vectors. Also note the cross product; due to this, quaternion
multiplication is also not commutative. This is what we expect with rotations;
applying two rotations in one order does not necessarily provide the same
result as applying them in the reverse order.

Multiplying two normalized quaternions does produce a normalized
quaternion. However, due to floating-point error, it is wise to renormalize the
result — if not after every multiplication, at least often and definitely before
using the quaternion to rotate vectors.

A straightforward implementation of quaternion multiplication might
look like

IvQuat operator*(IvQuat q2, IvQuat q1)
{

IvVector3 v1(q1.x, q1.y, q1.z);
IvVector3 v2(q2.x, q2.y, q2.z);

float w = q1.w*q2.w - v1.Dot(v2);
IvVector3 v = q1.w*v2 + q2.w*v1 + v2.Cross(v1);
IvQuat q(w, v);

return q;
}

Alternatively, we can unroll the operations to get

IvQuat operator*(IvQuat q2, IvQuat q1)
{

w = q2.w*q1.w - q2.x*q1.x
- q2.y*q1.y - q2.z*q1.z;

x = q2.y* q1.z - q2.z*q1.y
+ q2.w*q1.x + q1.w*q2.x;

y = q2.z*q1.x - q2.x*q1.z
+ q2.w*q1.y + q1.w*q2.y;
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z = q2.x*q1.y - q2.y*q1.x
+ q2.w*q1.z + q1.w*q2.z;

return IvQuat(w,x,y,z);
}

Note that on a scalar processor that concatenating two quaternions can
actually be faster than multiplying two matrices together.

An example of concatenating quaternions is the conversion from z-y-x
fixed-angle format to a quaternion. The corresponding quaternions for each
axis are

qz =
(

cos
θz

2
, 0, 0, sin

θz

2

)

qy =
(

cos
θy

2
, 0, sin

θy

2
, 0

)

qx =
(

cos
θx

2
, sin

θx

2
, 0, 0

)
Multiplying these together in the order qx qy qz gives the result in Section 5.5.7.

5.5.9 Identity and Inverse

As with matrix products, there is an identity quaternion and, subsequently,
there are multiplicative inverses. As we’ve mentioned, the identity quaternion
is (1, 0, 0, 0), or (1, 0). Multiplying this by any quaternion q = (w, v) gives

q · (1, 0) = (1 · w − 0 · v, 1v + w0 + v × 0)

= (w, v)

In this case, multiplication is commutative, so q · (1, 0) = (1, 0) · q = q.
As with matrices, the inverse q−1 of a quaternion q is one such that

q−1 q = qq−1 = (1, 0). If we consider a quaternion as rotating θ degrees
counterclockwise around an axis r̂, then to undo the rotation we should
rotate θ degrees clockwise around the same axis. This is the same as rotat-
ing −θ degrees counterclockwise: To create the inverse we negate the angle
(Figure 5.7(a)). So, if

(w, v) =
(

cos

(
θ

2

)
, r̂ sin

(
θ

2

))
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Figure 5.7 (a) Relationship between quaternion and its inverse. Inverse rotates
around the same axis but negative angle. (b) Rotation direction around axis by negative
angle is the same as rotation direction around negative axis by positive angle.

then

(w, v)−1 =
(

cos

(
−θ

2

)
, r̂ sin

(
−θ

2

))
=

(
cos

(
θ

2

)
, − r̂ sin

(
θ

2

))
(w, v)−1 = (w, −v)

(5.9)

At first glance, negating the vector part of the quaternion (also known as the
conjugate) to reverse the rotation is counterintuitive. But after some thought
this still makes sense geometrically. A clockwise rotation around an axis turns
in the same direction as a counterclockwise rotation around the negative of
the axis (Figure 5.7(b)).
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Equation 5.9 only holds if our quaternion is normalized. While in most
cases it should be since we’re trying to maintain unit quaternions, if it is not
then we need to scale by one over the length squared, or

q−1 = 1

‖q‖2
(w, −v) (5.10)

Avoiding the floating-point divide in this case is another good reason to keep
our quaternions normalized.

Equation 5.10 may make more sense if we consider the inverse of a
quaternion s q̂ (i.e., a nonunit quaternion with magnitude s):

(s q̂)−1 = (s(w, v))−1

= 1

s2
s(w, −v)

= 1

s
(w, −v)

= 1

s
q̂−1

It bears repeating that the negative of a quaternion, where both w and v are
negated, is not the same as the inverse. When applied to vectors, the negative
actually rotates the vector to the same orientation but going the other way
around the axis.

5.5.10 Vector Rotation

If qr is used to concatenate two quaternions q and r, then for a vector p we
might expect qp to rotate the vector by the quaternion, just as it does for
a matrix. Unfortunately for intuition, this is not the case. For one thing, the
result of this multiplication is not a vector (w will not be 0). The actual formula
for rotating a vector by a quaternion is

Rq p = qpq−1 (5.11)

It may look like the effect of the operation is to perform the rotation and then
undo it, but this is not the case. Remember that quaternion multiplication is
not commutative, so if q is not the identity:

qpq−1 �= qq−1 p = p

We can use our rotation formula for axis and angle to show that
equation 5.11 does rotate a vector. We begin by breaking it out into its
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component vector operations. Assuming that our quaternion is normalized,
if we expand the full multiplication and combine terms, we get

Rq p = (2w2 − 1)p + 2(v · p)v + 2w(v × p) (5.12)

Substituting cos(θ/2) for w, and r̂ sin(θ/2) for v, we get

Rq (p) =
(

2 cos2
(

θ

2

)
− 1

)
p +

(
r̂ sin

(
θ

2

)
· p

)
r̂ sin

(
θ

2

)
+ 2 cos

(
θ

2

)(
r̂ sin

(
θ

2

)
× p

)
Reducing terms and using the appropriate trigonometric identities, we end
up with

Rq(p) =
(

cos2
(

θ

2

)
− sin2

(
θ

2

))
p + 2 sin2

(
θ

2

)
( r̂ · p) r̂

+2 cos

(
θ

2

)
sin

(
θ

2

)
( r̂ × p)

= cos θp + [1 − cos θ]( r̂ · p) r̂ + sin θ( r̂ × p)

(5.13)

We see that equation 4.13 is equal to equation 5.13, so our quaternion
multiplication — odd as it may look — does rotate a vector around an axis by
a given angle.

In our code, we won’t want to use the qpq−1 form, since performing both
quaternion multiplications isn’t very efficient. Instead, we’ll use equation 5.12:

IvVector3
IvQuat::Rotate( const IvVector3& vector ) const
{

ASSERT( IsUnit() );

float vMult = 2.0f*(x*vector.x + y*vector.y + z*vector.z);
float crossMult = 2.0f*w;
float pMult = crossMult*w - 1.0f;

return IvVector3( pMult*vector.x + vMult*x + crossMult*(y*vector.z - z*vector.y),
pMult*vector.y + vMult*y + crossMult*(z*vector.x - x*vector.z),
pMult*vector.z + vMult*z + crossMult*(x*vector.y - y*vector.x) );

} // End of IvQuat::Rotate()

The operation count is more than that of matrix multiplication, but
comparable to Rodrigues’ formula for axis–angle representation.
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An alternate version,

Rq p = (v · p)v + w2 p + 2w(v × p) + v × (v × p)

is useful for processors that have fast cross product operations.
Neither of these formulas is as efficient as matrix multiplication, but for

a single vector it is more efficient to perform these operations rather than
convert the quaternion to a matrix and then multiply. However, if we need to
rotate multiple vectors by the same quaternion, matrix conversion becomes
worthwhile.

To see how concatenation of rotations works, suppose we apply a rotation
from one quaternion followed by a second rotation from another quaternion.
We can rearrange parentheses to get

q(rpr−1)q−1 = (qr)p(qr)−1

As we see, concatenated quaternions will apply their rotation, one after the
other. The order is right to left, as we have stated.

If we substitute −q in place of q in equation 5.11, we can see in another
way how negating the quaternion doesn’t affect rotation. By equation 5.10,
(−q)−1 = −q−1, so

R−q(p) = −qp(−q)−1

= qpq−1

The two negatives cancel, and we’re back with our familiar result.
Similarly, if q is a nonunit quaternion, we can show that the same result

occurs as if the quaternion were normalized:

(s q̂)p(s q̂)−1 = (s q̂)p(
1

s
q̂−1

)

= s
1

s
q̂pq̂−1

= q̂pq̂−1

5.5.11 Shortest Path of Rotation

As with the axis–angle format, it is often useful to create a quaternion that
rotates a vector v1 into another vector v2, although in this case we’ll use a
different approach discussed by Baker and Norel [5] that also avoids some
issues with numerical error when v1 and v2 are nearly collinear.
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We begin by taking the dot product and cross product of the two vectors:

v1 · v2 = ‖v1‖‖v2‖ cos θ

v1 × v2 = ‖v1‖‖v2‖ sin θ r̂

where r̂ is our normalized rotation axis. Using these as the scalar and vector
parts, respectively, of a quaternion and normalizing gives us

q̂1 = (cos θ, sin θ r̂)

This should look familiar from our previous discussion of matrix to quater-
nion conversion. As before, if we add 1 to w,

q̂h = (cos θ + 1, sin θ r̂)

and normalize, we get

q̂ = (cos
θ

2
, sin

θ

2
r̂)

Note that we haven’t handled the case where the two vectors are parallel.
In this case, there are an infinite number of possible rotation axes, and hence
an infinite number of possible quaternions. A stop-gap solution is to pick one
by taking the cross product between one of the vectors and a known vector
such as i or j. While this will work, it may lead to discontinuities — something
we’ll discuss in Chapter 10 when we cover interpolation.

5.5.12 Quaternions and Transformations
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Transform

While quaternions are good for rotations, they don’t help us much when per-
forming translation and scale. Fortunately, we already have a transformation
format that quaternions fit right into. Recall that in Chapter 4, instead of using
a generalized 4 × 4 matrix for affine transformations, we used a single scale
factor s, a 3 × 3 rotation matrix R, and a translation vector t. Our formula for
transformation was

p′ = R(sp) + t

We can easily replace our matrix R with an equivalent quaternion r, which
gives us

p′ = r(sp)r−1 + t
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Concatenation using the quaternion is similar to concatenation with our
original separated format, except that we replace multiplication by the rota-
tion matrix with quaternion operations:

s′ = s1s0

r′ = r1 r0

t′ = t1 + r1(s1 t0)r−1
1

Again, to add the translations, we first need to scale t0 by s1 and then rotate
by the quaternion r1.

As with lone quaternions, concatenation on a serial processor can be much
cheaper in this format than using a 4 × 4 matrix. However, transformation of
points is more expensive. As was the case with simple rotation, for multiple
points it will be better to convert the quaternion to a matrix and transform
them that way.

5.6 Chapter Summary

In this chapter we’ve discussed four different representations for orientation
and rotation: matrices, fixed and Euler angles, axis and angle, and quater-
nions. In the introduction we gave three criteria for our format: It may be
informative to compare them along with their usefulness in interpolation.

As far as size, matrices are the worst at nine values, and fixed and Euler
angles are the best at three values. However, quaternions and axis–angle rep-
resentation are close to fixed and Euler angles at four values, and they avoid
the problems engendered by gimbal lock.

For concatenation, quaternions take the fewest number of operations,
followed closely by matrices, and then by axis–angle and fixed and Euler
representations. The last two are hampered by not having low-cost meth-
ods for direct concatenation and so the majority of their expense is tied up in
converting to a more favorable format.

When transforming vectors, matrices are the clear winner. Assuming
precached sine and cosine data, fixed and Euler angles are close behind, while
axis–angle representation and quaternions take a bit longer. However, if we
don’t precache our data, the sine and cosine computations will probably take
longer, and quaternions come in second.

Finally, it is worth noting that due to floating-point error, the numbers rep-
resenting our orientation may drift. The axis–angle and fixed and Euler angle
formats do not provide an intuitive method for correcting for this. On the other
hand, matrices can use Gram-Schmidt orthonormalization and quaternions
can perform a normalization step. Quaternions are a clear winner here as
normalizing four values is a relatively inexpensive operation.
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For further reading about quaternions, the best place to start is with
the writings of Shoemake, in particular [103]. Hamilton’s original series of
articles on quaternions [52] are in the public domain and can be found
by searching online. Courant and Hilbert [21] cover applications of quater-
nions, in particular to represent rotations. Finally, Eberly has an article [26]
comparing orientation formats, and an entire chapter in his latest book [27]
on quaternions, with additional material by Shoemake.



Chapter6
Viewing and
Projection

6.1 Introduction

In previous chapters we’ve discussed how to represent objects, basic transfor-
mations we can apply to these objects, and how we can use these transforma-
tions to move and manipulate our objects within our virtual world. With that
background in place, we can begin to discuss the mathematics underlying the
techniques we use to display our game objects on a monitor or other visual
display medium.

It doesn’t take much justification to understand why we might want to
view the game world — after all, games are primarily a visual media. Other sen-
sory outputs are of course possible, particularly sound and haptic (or touch)
feedback. Both have become more sophisticated and in their own way pro-
vide another representation of the relative three-dimensional (3D) position
and orientation of game objects. But in the current market, when we think of
games, we first think of what we can see.

To achieve this, we’ll be using a continuation of our transformation pro-
cess known as the graphics pipeline. Figure 6.1 shows the situation. We already
have a transformation that takes our model from its local space to world space.
At each stage of the graphics pipeline, we continue to concatenate matrices to
this matrix. Our goal is to build a single matrix to transform the points in our
object from their local configuration to a two-dimensional (2D) representation
suitable for displaying.

The first part of the display process involves setting up a virtual viewer
or camera, which allows us to control which objects lie in our current view.
As we’ll see, this camera is just like any other object in the game; we can

203
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Model World

View Projection
Frustum
Clipping

Screen

Figure 6.1 The graphics pipeline.

set the camera’s position and orientation based on an affine transformation.
Inverting this transformation is the first stage of our pipeline: It allows us to
transform objects in the world frame into the point of view of the camera
object.

From there we will want to build and concatenate a matrix that transforms
our objects in view into coordinates so they can be represented in an image.
This flattening or projection takes many forms, and we’ll discuss several of
the most commonly used projections. In particular, we’ll derive perspective
projection, which most closely mimics our viewpoint of the real world.

At this point, it is usually convenient to cull out any objects that will not
be visible on our screen, and possibly cut, or clip, others that intersect the
screen boundaries. This will make our final rendering process much faster.

The final stage is to transform our projected coordinates and stretch and
translate them to fit a specific portion of the screen, known as the viewport.
This is known as the screen transformation.

In addition, we’ll cover how to reverse this process so we can take a mouse
click on our 2D screen and use it to select objects in our 3D world. This
process, known as picking, can be useful when building an interface with 3D
elements. For example, selecting units in a 3D real-time strategy game is done
via picking.

As with other chapters, we’ll be discussing how to implement these trans-
formations in production code. Because our primary platform is OpenGL, for
the most part we’ll be focusing on its pipeline and how it handles the viewing
and projective transformations. However, we will also cover the cases where
it may differ from graphics APIs, particularly Direct3D.

One final note before we begin: There is no standard representation for this
process. In other books you may find these stages broken up in different ways,
depending on the rendering system the authors are trying to present. However,
the ultimate goal is the same: Take an object in the world and transform it
from a viewer’s perspective onto a 2D medium.
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6.2 View Frame and View Transformation

6.2.1 Defining a Virtual Camera

In order to render objects in the world, we need to represent the notion of a
viewer. This could be the main character’s viewpoint in a first-person shooter,
or an over-the-shoulder view in a third-person adventure game, or a zoomed-
out wide shot in a strategy game. We may want to control properties of our
viewer to simulate a virtual camera, for example, we may want to create
an in-game scripted sequence where we pan across a screen or follow a set
path through a space. We encapsulate these properties into a single entity,
commonly called the camera.

For now, we’ll consider only the most basic properties of the camera
needed for rendering. We are trying to answer two questions [8]: Where am I?
Where am I looking? We can think of this as someone taking an actual camera,
placing it on a tripod, and aiming it at an object of interest.

The answer to the first question is the camera’s position, E, which is var-
iously called the eyepoint, the view position, or the view space origin. As we
mentioned, this could be the main character’s eye position, a location over
his shoulder, or a spot pulled back from the action. While this position can
be placed relative to another object’s location, it is usually cleaner and easier
to manage if we represent it in the world frame.

A partial answer to the second question is a vector called the view direc-
tion vector, or vdir, which points along the facing direction for the camera.
This could be a vector from the camera position to an object or point of inter-
est, a vector indicating the direction the main character is facing, or a fixed
direction if we’re trying to simulate a top-down view for a strategy game.
For the purposes of setting up the camera, this is also specified in the world
frame.

Having a single view direction vector is not enough to specify our orien-
tation, since there are an infinite number of rotations around that vector. To
constrain our possibilities down to one, we specify a second vector orthogonal
to the first, called the view up vector, or vup. This indicates the direction out
of the top of the camera. From these two we can take the cross product to
get the view side vector, or vside, which usually points out toward the camera’s
right. Normalizing these three vectors and adding the view position gives us
an orthonormal basis and an origin, or an affine frame. This is the camera’s
local frame, also known as the view frame, (Figure 6.2).

The three view vectors specify where the view orientation is relative to the
world frame. However, we also need to define where these vectors are from the
perspective of the camera. The standard order used by most viewing systems
is to make the camera’s y-axis represent the view up vector in the camera’s
local space, and the camera’s x-axis represent the corresponding view side
vector. This aligns our camera’s local coordinates so that x values vary left
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Figure 6.2 View frame relative to the world frame.

and right along the plane of the screen and y values vary up and down, which
is very intuitive.

The remaining question is what to do with z and the view direction. In
most systems, the z-axis is treated as the camera-relative view direction vector
(Figure 6.3(a)). This has a nice intuitive feel: As objects in front of the viewer
move farther away, their z values relative to the camera will increase. The
value of z can act as a measure of the distance between the object and the
camera, which we can use for hidden object removal. Note, however, that this
is a left-handed system, as ( v̂side × v̂up) · v̂dir < 0.

OpenGL does not follow the standard model; instead, it chooses a slightly
different approach. It maintains a right-handed system where the camera-
relative view direction is aligned with the negative z-axis (Figure 6.3(b)). So
in this case, the farther away the object is, its −z coordinate gets larger relative
to the camera. This is not as convenient for distance calculations, but it does
allow us to remain in a right-handed coordinate system. This avoids having to
worry about reflections when transforming from the world frame to the view
frame, as we’ll see below.

6.2.2 Constructing the View-to-World
Transformation

Now that we have a way of representing and setting camera position and
orientation, what do we do with it? The first step in the rendering process
is to move all of the objects in our world so that they are no longer rela-
tive to the world frame, but are relative to the camera’s view. Essentially,
we want to transform the objects from the world frame to the view frame.
This gives us a sense of what we can see from our camera position. In the
view frame, those objects along the line of the view direction vector (i.e., the
−z-axis in the case of OpenGL) are in front of the camera and so will most
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Figure 6.3 (a) Standard view frame axes. (b) OpenGL view frame axes.

likely be visible in our scene. Those on the other side of the plane formed
by the view position, the view side vector, and the view up vector are behind
the camera, and therefore not visible. In order to achieve this situation, we
need to create a transformation from world space to view space, known as the
world-to-view transformation, or more simply, the view transformation. We
can represent this transformation as Mworld→view.

However, rather than building this transformation directly, we usually
find it easier to build M−1

world→view, or Mview→world , first, and then invert to get
our final world-to-view frame transformation. In order to build this, we’ll
make use of the principles we introduced in Chapter 4. If we look again
at Figure 6.2, we note that we have an affine frame — the view frame —
represented in terms of the world frame.

We can use this information to define the transformation from the view
frame to the world frame as a 4 × 4 affine matrix. The origin E of the view
frame is translated to the view position, so the translation vector y is equal to
E − O. We’ll abbreviate this as vpos. Similarly, the view vectors represent how
the standard basis vectors in view space are transformed into world space and
become columns in the upper left 3×3 matrix A. To build A, however, we need
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to define which standard basis vector in the view frame maps to a particular
view vector in the world frame.

Recall that in the standard case, the camera’s local x-axis represents v̂side,
the y-axis represents v̂up, and the z-axis represents v̂dir. This mapping indi-
cates which columns the view vectors should be placed in, and the view
position translation vector takes its familiar place in the right-most column.
The corresponding transformation matrix is

A = [
v̂side v̂up v̂dir vpos

]
(6.1)

Note that in this case we are mapping from a left-handed view frame to the
right-handed world frame, so the upper 3 × 3 is not a pure rotation but a
rotation concatenated with a reflection.

For OpenGL, the only change is that we want to look down the −z-axis.
This is the same as the z-axis mapping to the negative view direction vector.
So, the corresponding matrix is

A = [
v̂side v̂up − v̂dir vpos

]
(6.2)

In this case, since we are mapping from a right-handed frame to a right-
handed frame, no reflection is necessary, and the upper 3 × 3 matrix is a pure
rotation. Not having a reflection can actually be a benefit, particularly with
some culling methods.

6.2.3 Controlling the Camera

It’s not enough that we have a transformation for our camera that encapsu-
lates position and orientation. More often we’ll want to move it around the
world. Positioning our camera is a simple enough matter of translating the
view position, but controlling view orientation is another problem. One way
is to specify the view vectors directly and build the matrix as described. This
assumes, of course, that we already have a set of orthogonal vectors we want
to use for our viewing system.

Source Code

Demo

LookAt

The more usual case is that we only know the view direction. For exam-
ple, suppose we want to continually focus on a particular object in the world
(known as the look-at object). We can construct the view direction by sub-
tracting the view position from the object’s position. But whether we have a
given view direction or we generate it from the look-at object, we still need
two other orthogonal vectors to properly construct an orthogonal basis. We
can calculate them by using one additional piece of information: the world
up vector. This is a fixed vector representing the “up” direction in the world
frame. In our case, we’ll use the z-axis basis vector k (Figure 6.4), although in
general, any vector that we care to call “up” will do. For example, suppose we
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Figure 6.4 Look-at representation.

had a mission on a boat at sea and wanted to give the impression that the boat
was rolling from side to side, without affecting the simulation. One method is
to change the world up vector over time, oscillating between two keeled-over
orientations, and use that to calculate your camera orientation.

For now, however, we’ll use k as our world up vector. Our goal is to
compute orthonormal vectors in the world frame corresponding to our view
vectors, such that one of them is our view direction vector v̂dir, and our view
up vector v̂up matches the world up vector as closely as possible. Recall that we
can use Gram-Schmidt orthogonalization to create orthogonal vectors from
a set of nonorthogonal vectors, so

vup = k − (k · v̂dir) v̂dir

Normalizing gives us v̂up. We can take the cross product to get the view side
vector:

v̂side = v̂dir × v̂up

We don’t need to normalize in this case because the two vector arguments
are orthonormal. The resulting vectors can be placed as columns in the
transformation matrix as before.

One problem may arise if we are not careful: What if v̂dir and k are parallel?
If they are equal, we end up with

vup = k − (k · v̂dir) v̂dir

= k − 1 · v̂dir

= 0
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If they point in opposite directions we get

vup = k − (k · v̂dir) v̂dir

= k − (−1) · v̂dir

= 0

Clearly, neither case will lead to an orthonormal basis.
The recovery procedure is to pick an alternative vector that we know is

not parallel, such as i or j. This will lead to what seems like an instantaneous
rotation around the z-axis. To understand this, raise your head upward until
you are looking at the ceiling. If you keep going, you’ll end up looking at the
wall behind you, but upside down. To maintain the view looking right-side
up, you’d have to rotate your head 180 degrees around your view direction
(don’t try this at home). This is not a very pleasing result, so avoid aligning
the view direction with the world up vector whenever possible.
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There is a third possibility for controlling camera orientation. Suppose we
want to treat our camera just like a normal object and specify a rotation matrix
and translation vector. To do this we’ll need to specify a starting orientation 


for our camera and then apply our rotation matrix to find our camera’s final
orientation, after which we can apply our translation. Which orientation is
chosen is somewhat arbitrary, but some are more intuitive and convenient
than others. In our case, we’ll say that in our default orientation the camera
has an initial view direction along the world x-axis, an initial view up along the
world z-axis, and an initial view side along the −y-axis. This aligns the view
up vector with the world up vector, and using the x-axis as the view direction
fits the convention we set for objects’ local space in Chapter 4.

Substituting these values into the view-to-world matrix for the standard
left-handed view frame (equation 6.1) gives

�s =

⎡⎢⎢⎣
0 0 1 0

−1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
The equivalent matrix for the right-handed OpenGL view frame (using

equation 6.2) is

� ogl =

⎡⎢⎢⎣
0 0 −1 0

−1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
Whichever system we are using, after this we apply our rotation to orient

our frame in the direction we wish and, finally, the translation for the view
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position. If the three column vectors in our rotation matrix are u, v, and w,
then for OpenGL the final transformation matrix is

Mview→world = TR� ogl

=
[

i j k vpos

0 0 0 1

] [
u v w 0
0 0 0 1

] [ − j k − i 0
0 0 0 1

]
=

[ −v w −u vpos

0 0 0 1

]

6.2.4 Constructing the World-to-View
Transformation

Using the techniques in the previous two sections, now we can create a trans-
formation that takes us from view space to world space. To create the reverse
operator, we need only to invert the transformation. Since we know that it is
an affine transformation, we can invert it as

Mworld→view =
[

R−1 −(R−1 vpos)

0T 1

]
where R is the upper 3 × 3 block of our view-to-world transformation. And
since R is the product of either a reflection and rotation matrix (in the standard
case) or two rotations (in the OpenGL case), it is an orthogonal matrix, so we
can compute its inverse by taking the transpose:

Mworld→view =
[

RT −(RT vpos)

0T 1

]
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In practice, this transformation is usually calculated directly, rather than
taking the inverse of an existing transformation. For example, OpenGL has
a utility call gluLookAt() that computes the view transformation assuming
a view position, desired view position, and world up vector. One possible
implementation is as follows.

void LookAt( const IvVector3& eye,
const IvVector3& lookAt,
const IvVector3& up )

{
// compute view vectors
IvVector3 viewDir = lookAt - eye;
IvVector3 viewSide;
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IvVector3 viewUp;
viewDir.Normalize();
viewUp = up - up.Dot(viewDir)*viewDir;
viewUp.Normalize();
viewSide = viewDir.Cross(viewUp);

// now set up matrices
// build transposed rotation matrix
IvMatrix33 rotate;
rotate.SetRows( viewSide, viewUp, -viewDir );

// transform translation

IvVector3 eyeInv = -(rotate*eye);

// build 4x4 matrix
IvMatrix44 matrix;
matrix.Rotation(rotate);
matrix(0,3) = eyeInv.x;
matrix(1,3) = eyeInv.y;
matrix(2,3) = eyeInv.z;

// set view to world transformation
::SetViewTransform( matrix.mV );

}

Note that we use the method IvMatrix33:SetRows() to set the transformed
basis vectors since we’re setting up the inverse matrix, namely, the transpose.
There is also no recovery code if the view direction and world up vectors
are collinear — it is assumed that any external routine will ensure this does
not happen. The renderer method ::SetViewTransform() stores the calculated
view transformation and is discussed in more detail in Section 6.7.

6.3 Projective Transformation

6.3.1 Definition

Now that we have a method for controlling our view position and orientation,
and for transforming our objects into the view frame, we can look at the second
stage of the graphics pipeline: taking our 3D space and transforming it into a
form suitable for display on a 2D medium. This process of transforming from
R

3 to R
2 is called projection.
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We’ve already seen one example of projection: using the dot product to
project one vector onto another. In our current case, we want to project the
points that make up the vertices of an object onto a plane, called the pro-
jection plane or the view plane. We do this by following a line of projection
through each point and determining where it hits the plane. These lines could
be perpendicular to the plane, but as we’ll see, they don’t have to be.

To understand how this works, we’ll look at a very old form of optical
projection known as the camera obscura (Latin for “dark room”). Suppose one
enters a darkened room on a sunny day, and there is a small hole allowing
a fraction of sunlight to enter the room. This light will be projected onto the
opposite wall of the room, displaying an image of the world outside, albeit
upside down and flipped left to right (Figure 6.5). This is the same principle
that allows a pinhole camera to work; the hole is acting like the focal point
of a lens. In this case, all the lines of projection pass through a single center
of projection. We can determine where a point will project to on the plane by
constructing a line through both the original point and the center of projection
and calculating where it will intersect the plane of projection. The virtual film
in this case is a rectangle on the view plane, known as the view window. This
will eventually get mapped to our display.

This sort of projection is known as perspective projection. Note that this
relates to our perceived view in the real world. As an object moves farther
away, its corresponding projection will shrink on the projection plane. Sim-
ilarly, lines that are parallel in view space will appear to converge as their
extreme points move farther away from the view position. This gives us a
result consistent with our expected view in the real world. If we stand on
some railroad tracks and look down a straight section, the rails will converge
in the distance, and the ties will appear to shrink in size and become closer
together. In most cases, since we are rendering real-world scenes — or at least,
scenes that we want to be perceived as real world — this will be the projection
we will use.

Figure 6.5 Camera obscura.
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There is, of course, one minor problem: The projected image is upside
down and backwards. One possibility is just to flip the image when we display
it on our medium. This is what happens with a camera: The image is captured
on film upside down, but we can just rotate the negative or print to view it
properly. This is not usually done in graphics. Instead, the projection plane
is moved to the other side of the center of projection, which is now treated
as our view position (Figure 6.6). As we’ll see, the mathematics for projection
in this case are quite simple, and the objects located in the forward direction
of our view will end up being projected right-side up. The objects behind the
view will end up projecting upside down, but (a) we don’t want to render them
anyway, and (b) as we’ll see, there are ways of handling this situation.

An alternate type of projection is parallel projection, which can be thought
of as a perspective projection where the center of projection is infinitely dis-
tant. In this case, the lines of projection do not converge; they always remain
parallel (Figure 6.7), hence the name. The placement of the view position and
view plane is irrelevant in this case, but we place them in the same relative
location to maintain continuity with perspective projection.

Parallel projection produces a very odd view if used for a scene: Objects
remain the same size no matter how distant they are, and parallel lines remain
parallel. Parallel projections are usually used for computer-assisted design
(CAD) programs, where maintaining parallel lines is important. They are also
useful for rendering 2D elements like interfaces; no matter how far from the
eye a model is placed, it always will be the same size, presumably the size we
expect.

Figure 6.6 Perspective projection.

Figure 6.7 Orthographic parallel projection.
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A parallel projection where the lines of projection are perpendicular to
the view plane is called an orthographic projection. By contrast, if they are
not perpendicular to the view plane, this is known as an oblique projection
(Figure 6.8). Two common oblique projections are the cavalier projection,
where the projection angle is 45 degrees, and the cabinet projection, where the
projection angle is cot−1(1/2). When using cavalier projections, projected lines
have the same length as the original lines, so there is no perceived foreshort-
ening. This is useful when printing blueprints, for example, as any line can be
measured to find the exact length of material needed to build the object. With
cabinet projections, lines perpendicular to the projection plane foreshorten
to half their length (hence the cot−1(1/2)), which gives a more realistic look
without sacrificing the need for parallel lines.

We can also have oblique perspective projections where the line from the
center of the view window to the center of projection is not perpendicular to
the view plane. For example, suppose we need to render a mirror. To do so,
we’ll render the space using a plane reflection transformation and clip it to
the boundary of the mirror. The plane of the mirror is our projection plane,
but it may be at an angle to our view direction (Figure 6.9). For now, we’ll
concentrate on constructing projective transformations perpendicular to the
projection plane and examine these special cases later.

As a side note, oblique projections can occur in the real world. The classic
pictures we see of tall buildings, shot from the ground but with parallel sides,

Figure 6.8 Oblique parallel projection.

Figure 6.9 Oblique perspective projection.
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are done with a “view camera.” This device has an accordion-pleated hood
that allows the photographer to bend and tilt the lens up while keeping the
film parallel to the side of the building. Ansel Adams also used such a camera
to capture some of his famous landscape photographs.

6.3.2 Normalized Device Coordinates

Before we begin projecting, our objects have passed through the view stage of
the pipeline and so are in view frame coordinates. We will be projecting from
this space in R

3 to the view plane, which is in R
2. In order to accomplish this,

it will be helpful to define a frame for the space of the view plane. We’ll use as
our origin the center of the view window, and create basis vectors that align
with the sides of the view window, with magnitudes of half the width and
height of the window, respectively (Figure 6.10(a)). Within this frame, our
view window is transformed into a square two units wide and centered at the
origin, bounded by the x = 1, x = −1, y = 1, and y = −1 lines (Figure 6.10(b)).

Using this as our frame provides a certain amount of flexibility when map-
ping to devices of varying size. Rather than transform directly to our screen
area, which could be of variable width and height, we use this normalized
form as an intermediate step to simplify our calculations and then do the
screen conversion as our final step. Because of this, coordinates in this frame
are known as normalized device coordinates.

To take advantage of the normalized device coordinate frame, or NDC
space, we’ll want to create our projection so that it always gives us the −1
to 1 behavior, regardless of the exact view configuration. This helps us to
compartmentalize the process of projection (just as the view matrix did for
viewing). When we’re done projecting, we’ll stretch and translate our NDC
values to match the width and height of our display.

To simplify this mapping to the NDC frame, we will begin by using a view
window in the view frame with a height of two units. This means that for the
case of a centered view window, xy coordinates on the view plane will be equal
to the projected coordinates in the NDC frame. In this way we can consider
the projection as related to the view plane in view coordinates and not worry
about a subsequent transformation.

6.3.3 View Frustum

The question remains: How do we determine what will lie within our view win-
dow? We could, naively, project all of the objects in the world to the view plane
and then, when converting them to pixels, ignore those pixels that lie outside
of the view window. However, for a large number of objects this would be
very inefficient. It would be better to constrain our space to a convex volume,
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view window
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Figure 6.10 (a) NDC frame in view window, and (b) view window after NDC
transformation.

specified by a set of six planes. Anything inside these planes will be rendered;
everything outside them will be ignored. This volume is known as the view
frustum, or view volume.

To constrain what we render in the view frame xy directions, we specify
four planes aligned with the edges of the view window. For perspective projec-
tion each plane is specified by the view position and two adjacent vertices of
the view window (Figure 6.11), producing a semi-infinite pyramid. The angle
between the upper plane and the lower plane is called the vertical field of view.

There is a relationship between field of view, view window size, and view
plane distance: Given two, we can easily find the third. For example, we can fix
the view window size, adjust the field of view, and then compute the distance
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y-axis

field of view

view window

Figure 6.11 Perspective view frustum (right-handed system).

to the view plane. As the field of view gets larger, the distance to the view
plane needs to get smaller to maintain the view window size. Similarly, a
small field of view will lead to a longer view plane distance. Alternatively, we
can set the distance to the view plane to a fixed value and use the field of view
to determine the size of our view window. The larger the field of view, the
larger the window and the more objects are visible in our scene. This gives us
a primitive method for creating telephoto (narrow field of view) or wide-angle
(wide field of view) lenses. We will discuss the relationship among these three
quantities in more detail when we cover perspective projection.

In our case, the view window size is fixed, so when adjusting our field of
view, we will move the view plane relative to the center of projection. This
continues to match our camera analogy: The film size is fixed and the lens
moves in and out to create a telephoto or wide-angle effect.

Usually the field of view chosen needs to match the display medium, as the
user perceives it, as much as possible. For a standard monitor placed about
three feet away, the monitor only covers about a 25- to 30-degree field of view
from the perspective of the user, so we would expect that we would use a
field of view of that size in the game. However, this constrains the amount
we can see in the game to a narrow area, which feels unnatural because we’re
used to a 180-degree field of view in the real world. The usual compromise
is to set the field of view to the range of 60–90 degrees. The distortion is not
that perceptible and it allows the user to see more of the game world. If the
monitor were stretched to cover more of your personal field of view, as in
a widescreen monitor or some virtual reality systems, a larger field of view
would be appropriate. And of course, if the desired effect is of a telephoto or
wide-angle lens, a narrower or wider field of view, respectively, is appropriate.
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For parallel projection, the xy culling planes are parallel to the direction of
projection, so opposite planes are parallel and we end up with a parallelopiped
that is open at two ends (Figure 6.12). There is no concept of field of view in
this case.

In both cases, to complete a closed view frustum we also define two planes
that constrain objects in the view frame z-direction: the near and far planes
(Figure 6.13). With perspective projection it may not be obvious why we need
a near plane, since the xy planes converge at the center of projection, closing
the viewing region at that end. However, as we will see when we start talking
about the perspective transformation, rendering objects at the view frame
origin (which in our case is the same as the center of projection) can lead to a
possible division by zero. This would adversely affect our rendering process.
We could also, like some viewing systems, use the view plane as the near plane,
but not doing so allows us a little more flexibility.

In some sense, the far plane is optional. Since we don’t have an infinite
number of objects or an infinite amount of game space, we could forego using
the far plane and just render everything within the five other planes. However,
the far plane is useful for culling objects and area from our rendering process,
so having a far plane is good for efficiency’s sake. It is also extremely important
in the hidden surface removal method of z-buffering; the distance between the
near and far planes is a factor in determining the precision we can expect in
our z values. We’ll discuss this in more detail in Chapter 9.

x-axisz-axis

y-axis

view window

Figure 6.12 Parallel view frustum (right-handed system).
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far plane
near planeview window

Figure 6.13 View frustum with near plane and far plane.

6.3.4 Homogeneous Coordinates

There is one more topic we need to cover before we can start discussing
projection. Previously we stated that a point in R

3 can be represented by
(x, y, z, 1) without explaining much about what that might mean. This rep-
resentation is part of a more general representation for points known as
homogeneous coordinates, which prove useful to us when handling perspec-
tive projections. In general, homogeneous coordinates work as follows: If we
have a “standard” representation in n-dimensional space, then we can rep-
resent the same point in a (n + 1)–dimensional space by scaling the original
coordinates by a single value and then adding the scalar to the end as our final
coordinate. Since we can choose from an infinite number of scalars, a single
point in R

n will be represented by an infinite number of points in the (n + 1)–
dimensional space. This (n + 1)–dimensional space is called a real projective
space or RPn. In computer graphics parlance, the real projective space RP3 is
also often called homogeneous space.

Suppose we start with a point (x, y, z) in R
3, and we want to map it to

a point (x′, y′, z′, w) in homogeneous space. We pick a scalar for our fourth
element w, and scale the other elements by it, to get (xw, yw, zw, w). As we
might expect, our standard value for w will be 1, so (x, y, z) maps to (x, y, z, 1).
To map back to 3D space, divide the first three coordinates by w, so (x′, y′, z′, w)

goes to (x′/w, y′/w, z′/w). Since our standard value for w is just 1, we could
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just drop the w: (x′, y′, z′, 1) → (x′, y′, z′). However, in the cases that we’ll be
concerned with next, we need to perform the division by w.

What happens when w = 0? In this case, a point in RP3 doesn’t represent
a point in R

3, but a vector. We can think of this as a “point at infinity.” While
we will try to avoid cases where w = 0, they do creep in, so checking for this
before performing the homogeneous division is often wise.

6.3.5 Perspective Projection

Source Code

Demo

Perspective

Since this is the most common projective transform we’ll encounter,
we’ll begin by constructing the mathematics necessary for the perspective
projection. To simplify things, let’s take a 2D view of the situation on the yz

plane and ignore the near and far planes for now (Figure 6.14). We have the
y-axis pointing up, as in the view frame, and the projection direction along
the negative z-axis as it would be in OpenGL. The point on the left represents
our center of projection, and the vertical line our view plane. The diagonal
lines represent our y culling planes.

Suppose we have a point Pv in view coordinates that lies on one of the
view frustum planes, and we want to find the corresponding point Ps that lies
on the view plane. Finding the y coordinate of Ps is simple: We follow the line
of projection along the plane until we hit the top of the view window. Since
the height of the view window is 2 and is centered on 0, the y coordinate of Ps

is half the height of the view window, or 1. The z coordinate will be negative
since we’re looking along the negative z-axis and will have a magnitude equal
to the distance d from the view position to the projection plane. So, the z

coordinate will be −d.

y-axis

–z-axis
d

Ps

Pv

/2
1eyepoint

projection plane

�

Figure 6.14 Perspective projection construction.
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But how do we compute d? As we see, the cross section of the y view
frustum planes are represented as lines from the center of projection through
the extents of the view window (1, d ) and (−1, d ). The angle between these
lines is our field of view θfov. We’ll simplify things by considering only the area
that lies above the negative z-axis; this bisects our field of view to an angle
of θfov/2. If we look at the triangle bounded by the negative z-axis, the cross
section of the upper view frustum plane, and the cross section of the projection
plane, we can use trigonometry to compute d. Since we know the distance
between the negative z-axis and the extreme point Ps is 1, we can say that

1

d
= tan(θfov/2)

Rewriting this in terms of d, we get

d = 1

tan
(

θfov

2

)
= cot

(
θfov

2

)
So for this fixed-view window size, as long as we know the angle of field

of view, we can compute the distance d, and vice versa.
This gives the coordinates for any point that lies on the upper y view

frustum plane; in this 2D cross section they all project down to a single point
(1, −d ). Similarly, points that lie on the lower y frustum plane will project to
(−1, −d ). But suppose we have a general point (yv, zv) in view space. We know
that its projection will lie on the view plane as well, so its zndc coordinate will
be −d. But how do we find yndc?

We can compute this by using similar triangles (Figure 6.15). If we have
a point (yv, zv), the length of the sides of the corresponding right triangle
in our diagram are yv and −zv (since we’re looking down the −z-axis, any
visible zv is negative, so we need to negate it to get a positive value). The
length of sides of the right triangle for the projected point are yndc and d.
By similar triangles (both have the same angles), we get

yndc

d
= yv

−zv

Solving for yndc, we get

yndc = dyv

−zv

This gives us the coordinate in the y direction. If our view region was
square, then we could use the same formula for the x direction. Most, however,
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y-axis

projection plane

–z-axisd
–zv

(yndc, –d)

(yv, zv)

Figure 6.15 Perspective projection similar triangles.

are rectangular to match the relative dimensions of a computer monitor or
other viewing device. We must correct for this by the aspect ratio of the view
region. The aspect ratio a is defined as

a = wv

hv

where wv and hv are the width and height of the view rectangle, respectively.
We’re going to assume that the NDC view window height remains at 2 and
correct the NDC view width by the aspect ratio. This gives us a formula for
similar triangles of

axndc

d
= xv

−zv

Solving for xndc:

xndc = dxv

−azv

So, our final projection transformation equations are

xndc = dxv

−azv

yndc = dyv

−zv
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The first thing to notice is that we are dividing by a z coordinate, so we
will not be able to represent the entire transformation by a matrix opera-
tion, since it is neither linear nor affine. However, it does have some affine
elements — scaling by d and d/a, for example — which can be performed by
a transformation matrix. This is where the conversion from homogeneous
space comes in. Recall that to transform from RP3 to R

3 we need to divide the
other coordinates by the w value. If we can set up our matrix to map −zv to
our w value, we can take advantage of the homogeneous divide to handle the
nonlinear part of our transformation. We can write the situation before the
homogeneous divide as a series of linear equations:

x′ = d

a
x

y′ = dy

z′ = dz

w′ = −z

and treat this as a four-dimensional (4D) linear transformation. Looking at
our basis vectors, e0 will map to (d/a, 0, 0, 0), e1 to (0, d, 0, 0), e2 to (0, 0, d, −1),
and e3 to (0, 0, 0, 0), since w is not used in any of the equations.

Based on this, our homogeneous perspective matrix is

⎡⎢⎢⎣
d/a 0 0 0
0 d 0 0
0 0 d 0
0 0 −1 0

⎤⎥⎥⎦
As expected, our transformed w value no longer will be 1. Also note that the
right-most column of this matrix is all zeros, which means that this matrix
has no inverse. This is to be expected, since we are losing one dimension of
information. Individual points in view space that lie along the same line of
projection will project to a single point in NDC space. Given only the points
in NDC space, it would be impossible to reconstruct their original positions
in view space.

Let’s see how this matrix works in practice. If we multiply it by a generic
point in view space, we get

⎡⎢⎢⎣
d/a 0 0 0
0 d 0 0
0 0 d 0
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

xv

yv

zv

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
dxv/a

dyv

dzv

−zv

⎤⎥⎥⎦
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Dividing out the w (also called the reciprocal divide), we get

xndc = dxv

−azv

yndc = dyv

−zv

zndc = −d

which is what we expect.
So far, we have dealt with projecting x and y and completely ignored z. In

the preceding derivation all z values map to −d, the negative of the distance
to the projection plane. While losing a dimension makes sense conceptually
(we are projecting from a 3D space down to a 2D plane, after all), for practical
reasons it is better to keep some measure of our z values around for z-buffering
and other depth comparisons (discussed in more detail in Chapter 9). Just as
we’re mapping our x and y values within the view window to an interval of
[−1, 1], we’ll do the same for our z values within the near plane and far plane
positions. We’ll specify the near and far values n and f relative to the view
position, so points lying on the near plane have a zv value of −n, which maps
to a zndc value of −1. Those points lying on the far plane have a zv value of −f

and will map to 1 (Figure 6.16).
We’ll derive our equation for zndc in a slightly different way than our xy

coordinates. There are two parts to mapping the interval [−n, −f ] to [−1, 1].
The first is scaling the interval to a width of 2, and the second is transla-
ting it to [−1, 1]. Ordinarily, this would be a straightforward linear process,
however, we also have to contend with the final w divide. Instead, we’ll create

y-axis

–z-axis

 –zv 5 2near
zndc 5 21

 –zv 5 2far
zndc 5 1

Figure 6.16 Perspective projection: z values.
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a perspective matrix with unknowns for the scaling and translation factors
and use the fact that we know the final values for −n and −f to solve for the
unknowns. Our starting perspective matrix, then, is⎡⎢⎢⎣

d/a 0 0 0
0 d 0 0
0 0 A B

0 0 −1 0

⎤⎥⎥⎦
where A and B are our unknown scale and translation factors, respectively. If
we multiply this by a point (0, 0, −n) on our near plane, we get⎡⎢⎢⎣

d/a 0 0 0
0 d 0 0
0 0 A B

0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0

−n

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0

−An + B

n

⎤⎥⎥⎦
Dividing out the w gives

zndc = −A + B

n

We know that any point on the near plane maps to a normalized device
coordinate of −1, so we can substitute −1 for zndc and solve for B, which
gives us

B = (A − 1)n (6.3)

Now we’ll substitute equation 6.3 into our original matrix and multiply by a
point (0, 0, −f ) on the far plane:⎡⎢⎢⎣

d/a 0 0 0
0 d 0 0
0 0 A (A − 1)n

0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0

−f

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0

−Af + (A − 1)n

f

⎤⎥⎥⎦
This gives us a zndc of

zndc = −A + (A − 1)
n

f

= −A + A

(
n

f

)
− n

f

= A

(
n

f
− 1

)
− n

f
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Setting zndc to 1 and solving for A, we get

A

(
n

f
− 1

)
− n

f
= 1

A

(
n

f
− 1

)
= n

f
+ 1

A =
n
f

+ 1
n
f

− 1

= n + f

n − f

If we substitute this into equation 6.3, we get

B = 2nf

n − f

So, our final perspective matrix is

Mpersp =

⎡⎢⎢⎢⎣
d
a

0 0 0

0 d 0 0

0 0 n+f
n−f

2nf
n−f

0 0 −1 0

⎤⎥⎥⎥⎦

The matrix that we have generated is the same one produced by an OpenGL
call: gluPerspective(). This function takes the field of view,1 aspect ratio, and
near and far plane settings, builds the perspective matrix, and multiplies it by
the current matrix.

It is important to be aware that this matrix will not work for all viewing sys-
tems. For one thing, for most other viewing systems (i.e., other than OpenGL),
our view frame looks down the positive z-axis, so this affects both our xy and z

transformations. For example, in this case we have mapped [−n, −f ] to [−1, 1].
With the standard system we would want to begin by mapping [n, f ] to the
NDC z range. In addition, this range is not always set to [−1, 1]. Direct3D, for
one, has a default mapping of to [0, 1] in the z direction.

1. Recall that our value d is generated from the field of view by d = cot(θfov/2).
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Using the standard view frame and this mapping gives us a perspective
transformation matrix of

MpD3D =

⎡⎢⎢⎢⎣
d
a

0 0 0

0 d 0 0

0 0 f
f−n

− nf
f−n

0 0 1 0

⎤⎥⎥⎥⎦
This matrix can be derived using the same principles described above.

When setting up a perspective matrix, it is good to be aware of the issues
involved in rasterizing z values. In particular, to maintain z precision keep the
near and far planes as close together as possible. More details on managing
perspective z precision can be found in Chapter 9.

6.3.6 Oblique Perspective

Source Code

Demo

Stereo

The matrix we constructed in the previous section is an example of a standard
perspective matrix, where the direction of projection through the center of the
view window is perpendicular to the view plane. A more general example of
perspective is generated by the OpenGL glFrustum() call. This call takes six
parameters: the near and far z distances, as before, and four values that define
our view window on the near z plane: the x interval [l, r] (left, right) and the
y interval [b, t] (bottom, top). Figure 6.17(a) shows how this looks in R

3, and
Figure 6.17(b) shows the cross section on the yz plane. As we can see, these
values need not be centered around the z-axis, so we can use them to generate
an oblique projection.

To derive this matrix, once again we begin by considering similar triangles
in the y direction. Remember that given a point (yv, −zv), we project to a point
on the view plane (dyv/−zv, −d), where d is the distance to the projection.
However, since we’re using our near plane as our projection plane, this is just
(nyv/−zv, −n). The projection remains the same, we’re just moving the window
of projected points that lie within our view frustum.

With our previous derivation, we could stop at this point because our view
window on the projection plane was already in the interval [−1, 1]. However,
our new view window lies in the interval [b, t]. We’ll have to adjust our values
to properly end up in NDC space. The first step is to translate the center of
the window, located at (t + b)/2, to the origin. Applying this translation to the
current projected y coordinate gives us

y′ = y − (t + b)

2
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We now need to scale to change our interval from a magnitude of (t − b)

to a magnitude of 2 by using a scale factor 2/(t − b):

yndc = 2y

t − b
− 2(t + b)

2(t − b)
(6.4)

If we substitute nyv/−zv for y and simplify, we get

yndc =
2n

yv

−zv

t − b
− 2(t + b)

2(t − b)

(left,top, –near)

(right,top, –near)

(right,bottom, –near)

(a)

(left,bottom, –near)

y-axis

eyepoint

near plane

–z-axis–near

(top, –near)

(bottom, –near)

(b)

Figure 6.17 (a) View window for glFrustum, 3D view. (b) View window for
glFrustum, cross section.
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=
2n

yv

−zv

t − b
−

(t + b)
−zv

−zv

t − b

= 1

−zv

(
2n

t − b
yv + t + b

t − b
zv

)
A similar process gives us the following for the x direction:

xndc = 1

−zv

(
2n

r − l
xv + r + l

r − l
zv

)
We can use the same A and B from our original perspective matrix, so our
final projection matrix is

Moblpersp =

⎡⎢⎢⎢⎢⎣
2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 n+f
n−f

2nf
n−f

0 0 −1 0

⎤⎥⎥⎥⎥⎦
A casual inspection of this matrix gives some sense of what’s going on here.
We have a scale in the x, y, and z directions, which provides the mapping to the
interval [−1, 1]. In addition, we have a translation in the z direction to align
our interval properly. However, in the x and y directions, we are performing
a z-shear to align the interval, which provides us with the oblique projection.

The equivalent Direct3D matrix is

MopD3D =

⎡⎢⎢⎢⎢⎣
2n
r−l

0 − r+l
r−l

0

0 2n
t−b

− t+b
t−b

0

0 0 f
f−n

− nf
f−n

0 0 1 0

⎤⎥⎥⎥⎥⎦
As unusual as it might appear, there are a number of applications of

oblique perspective projection in real-time graphics. First of all, it can be
used in mirrors: We treat the mirror as our view window, the mirror plane as
our view plane, and the viewer’s location as our view position. If we apply a
plane reflection to all of our objects, flipping them around the mirror plane,
and then render with the appropriate visual effects, we will end up with a
result in the view window that emulates a mirror.

Another application is stereo. By using a single view plane and view
window, but separate view positions for each eye that are offset from the
standard center of projection, we get slightly different projections of the world.
By using either a red-blue system to color each view differently, or some sort of
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goggle system that displays the left and right views in each eye appropriately,
we can provide a good approximation of stereo vision. We have included an
example of this on the CD-ROM.

Finally, this can be used for a system called fishtank VR. Normally we
think of VR as a helmet attached to someone’s head with a display for each
eye. However, by attaching a tracking device to a viewer’s head we can use
a single display and create an illusion that we are looking through a window
into a world on the other side. This is much the same principle as the mirror:
The display is our view window and the tracked location of the eye is our view
position. Add stereo and this gives a very pleasing effect.

6.3.7 Orthographic Parallel Projection

Source Code

Demo

Orthographic

After considering perspective projection in two forms, orthographic projec-
tion is much easier. Examine Figure 6.18, which shows a side view of our
projection space as before, with the lines of projection passing through the
view plane and the near and far planes shown as vertical lines. This time the
lines of projection are parallel to each other (hence this is a parallel projection)
and parallel to the z-axis (hence an orthographic projection).

We can use this to help us generate the matrix for the OpenGL glOrtho()
call. Like glFrustum(), this call takes six parameters: the near and far z dis-
tances, and four values l, r, b, and t that define our view window on the near
z plane. As before, the near plane is our projection plane, so a point (yv, zv)

projects to a point (yv, −n). Note that since this is a parallel projection, there is
no division by z or scale by d; we just use the y value directly. Like glFrustum()
we now need to consider only values between t and b and scale and translate

y-axis

eyepoint

near plane

1

far plane

–z-axis

(top, –near)

(bottom, –near)

Figure 6.18 Orthographic projection construction.
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them to the interval [−1, 1]. Substituting yv into our range transformation
equation 6.4, we get

yndc = 2yv

t − b
− t + b

t − b

A similar process gives us the equation for xndc. We can do the same for zndc, but
since our viewable z values are negative and our values for n and f are positive,
we need to negate our z value and then perform the range transformation. The
result of all three equations is

Mortho =

⎡⎢⎢⎢⎢⎣
2

r−l
0 0 − r+l

r−l

0 2
t−b

0 − t+b
t−b

0 0 − 2
f−n

−f+n
f−n

0 0 0 1

⎤⎥⎥⎥⎥⎦
There are a few things we can notice about this matrix. First of all, multiply-
ing by this matrix gives us a w value of 1, so we don’t need to perform the
homogeneous division. This means that our z values will remain linear; that
is, they will not compress as they approach the far plane. This gives us better
z resolution at far distances than the perspective matrices. It also means that
this is a linear transformation matrix and possibly invertible.

Secondly, in the x and y directions, what was previously a z-shear in the
oblique perspective matrix has become a translation. Before, we had to use
shear, because for a given point the displacement was dependent on the dis-
tance from the view position. Because the lines of projection are now parallel,
all points displace equally, so only a translation is necessary.

The Direct3D equivalent matrix is

MorthoD3D =

⎡⎢⎢⎢⎢⎣
2

r−l
0 0 − r+l

r−l

0 2
t−b

0 − t+b
t−b

0 0 1
f−n

− n
f−n

0 0 0 1

⎤⎥⎥⎥⎥⎦

6.3.8 Oblique Parallel Projection

Source Code

Demo

Oblique

While most of the time we’ll want to use orthographic projection, we may
from time to time need an oblique parallel projection. For example, suppose
for part of our interface we wish to render our world as a set of schematics
or display particular objects with a 2D CAD/CAM feel. This set of projections
will achieve our goal.
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Neither OpenGL nor Direct3D has a particular routine that handles
oblique parallel projections, so we’ll derive one ourselves. We will give our
projection a slight oblique angle (cot−1(1/2), which is about 63.4 degrees),
which gives a 3D look without perspective. More extreme angles in x and y

tend to look strangely flat.
Figure 6.19 is another example of our familiar cross section, this time

showing the lines of projection for our oblique projection. As we can see, we
move one unit in the y direction for every two units we move in the z direction.
Using the formula of tan(θ) = opposite/adjacent, we get

tan(θ) = 2

1

cot(θ) = 1

2

θ = cot−1 1

2

which confirms the expected value for our oblique angle.
As before, we’ll consider the yz case first and extrapolate to x. Moving

one unit in y and two units in −z gives us the vector (1, −2), so the formula
for the line of projection for a given point P is

L(t) = P + t(1, −2)

We’re only interested in where this line crosses the near plane, or where

Pz − 2t = −n

y-axis

eyepoint
�

projection plane

1

2

–z-axis

Figure 6.19 Example of oblique parallel projection.
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Solving for t, we get

t = 1

2
(n + Pz)

Plugging this into the formula for the y coordinate of L(t), we get

y′ = Py + 1

2
(n + Pz)

Finally, we can plug this into our range transformation equation 6.4 as
before to get

yndc = 2

[
yv + 1

2 (n + zv)
]

t − b
− t + b

t − b

= 2yv

t − b
− t + b

t − b
+ zv + n

t − b

Once again, we examine our transformation equation more carefully. This
is the same as the orthographic transformation we had before, with an addi-
tional z-shear, as we’d expect for an oblique projection. In this case, the shear
plane is the near plane rather than the xy plane, so we add an additional factor
of n

t−b
to take this into account.

A similar process can be used for x. Since the oblique projection has a
z-shear, z is not affected and so,

Mobl =

⎡⎢⎢⎢⎢⎣
2

r−l
0 1

r−l
− r+l−n

r−l

0 2
t−b

1
t−b

− t+b−n
t−b

0 0 − 2
f−n

−n+f
f−n

0 0 0 1

⎤⎥⎥⎥⎥⎦
The Direct3D equivalent matrix is

MoblD3D =

⎡⎢⎢⎢⎢⎣
2

r−l
0 − 1

r−l
− r+l−n

r−l

0 2
t−b

− 1
t−b

− t+b−n
t−b

0 0 1
f−n

− n
f−n

0 0 0 1

⎤⎥⎥⎥⎥⎦
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6.4 Culling and Clipping

6.4.1 Why Cull or Clip?

We will now take a detour from discussing the transformation aspect of
our pipeline to discuss a process that often happens at this point in many
renderers. In order to improve rendering, both for speed and appearance’s
sake, it is necessary to cull and clip objects. Culling is the process of remov-
ing objects from consideration for some process, whether it be rendering,
simulation, or collision detection. In this case, that means we want to
ignore any models or whole pieces of geometry that lie outside of the view
frustum, since they will never end up being projected to the view window.
In Figure 6.20, the lighter objects lie outside of the view frustum and so
will be culled for rendering.

Clipping is the process of cutting geometry to match a boundary, whether
it be a polygon or, in our case, a plane. Vertices that lie outside the bound-
ary will be removed and new ones generated for each edge that crosses the
boundary. For example, in Figure 6.21 we see a cube being clipped by a plane,
showing the extra vertices created where each edge intersects the plane. We’ll
use this for any models that cross the view frustum, cutting the geometry
so that it fits within the frustum. We can think of this as slicing a piece of
geometry off for every frustum plane.

Why should we want to use either of these for rendering? For one thing,
it is more efficient to remove any data that will not ultimately end up on the
screen. While copying the transformed object to the frame buffer (a process
called rasterization) is almost always done in hardware and thus is fast, it is
not free. Anywhere we can avoid unnecessary work is good.

But even if we had infinite rasterization power, we would still want to
cull and clip when performing perspective projection. Figure 6.22 shows one

Figure 6.20 View frustum culling.
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Figure 6.21 View frustum clipping.

y-axis

projection plane

–z-axis

Figure 6.22 Projection of objects behind the eye.

example why. Recall that we finessed the problem of the camera obscura
inverting images by moving the view plane in front of the center of projec-
tion. However, we still have the same problem if an object is behind the view
position; it will end up projected upside down. The solution is to cull objects
that lie behind the view position.

Figure 6.23(a) shows another example. Suppose we have a polygon edge
PQ that crosses the z = 0 plane. Endpoint P projects to a point P ′ on the view
plane, and Q to Q′. With the correct projection, the intermediate points of the
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projection plane
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eye

(a)

projection plane
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(b)

projection plane
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P
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Pclip

Q9
Q

eye
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Figure 6.23 (a) Projection of line segment crossing behind view point. (b) Incor-
rect line segment rendering based on projected endpoints. (c) Line segment rendering
when clipped to near plane.

line segment should start at the middle of the view, move up, and wrap around
to reemerge at the bottom of the view. In practice, however, the rasterizing
hardware has only the two projected vertices as input. It will take the vertices
and render the shortest line segment between them (Figure 6.23(b)). If we
clip the line segment to only the section that is viewable and then project the
endpoints (Figure 6.23(c)), we end with only a portion of the line segment,
but at least it is from the correct projection.

There is also the problem of vertices that lie on the z = 0 plane. When
transformed to homogeneous space by the perspective matrix, a point
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(x, y, 0, 1) will become (x′, y′, z′, 0). The resulting transformation into NDC
space will be a division by 0, which is not valid.

To avoid all of these issues, at the very least we need to set a near plane
that lies in front of the eye so that the view position itself does not lie within
the view frustum. We first cull any objects that lie on the same side of the
near plane as the view position. We then clip any objects that cross the near
plane. This avoids both the potential of dividing by 0 (although it is sometimes
prudent to check for it anyway, at least in a debug build) and trying to render
any line segments passing through infinity.

While clipping to a near plane is a bare minimum, clipping to the
top, bottom, left, and right planes is useful as well. While the windowing
hardware will usually ignore any pixels that lie outside of a window’s visible
region (this is commonly known as scissoring), it is faster if we can avoid
unnecessary rasterization. Also, if we want to set a viewport that covers a
subrectangle of a window, not clipping to the border of the viewport may
lead to spurious geometry being drawn (although most hardware allows
for adjustable scissoring regions; in particular, OpenGL and D3D provide
interfaces to set this).

Finally, some hardware has a limited range for screen space positions, for
example, 0 to 4095. The viewable area might lie in the center of this range, say
from a minimum point of (1728, 1808) to a maximum point of (2688, 2288).
The area outside of the viewable area is known as the guard band — anything
rendered to this will be ignored, since it won’t be displayed. In some cases we
can avoid clipping in x and y, since we can just render objects whose screen
space projection lies within the guard band and know that they will be handled
automatically by the hardware. This can improve performance considerably,
since clipping can be quite expensive. However, it’s not entirely free. Values
that lie outside the maximum range for the guard band will wrap around.
So, a vertex that would normally project to coordinates that should lie off the
screen, say (6096, 6096), will wrap to (2000, 2000) — right in the middle of
the viewable area. Unfortunately, the only way to solve this problem is what
we were trying to avoid in the first place: clipping in the x and y directions.
However, now our clip window encompasses the much larger guard band
area, so using the guard band can still reduce the amount of clipping that we
have to do overall.

6.4.2 Culling

A naive method of culling a model against the view frustum is to test each
of its vertices against each of the frustum planes in turn. We designate the
plane normal for each plane as pointing toward the inside half-space. If for
one plane ax + by + cz + d < 0 for every vertex P = (x, y, z), then the model
lies outside of the frustum and we can ignore it. Conversely, if for all the
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frustum planes and all the vertices ax + by + cz + d > 0, then we know the
model lies entirely inside the frustum and we don’t need to worry about
clipping it.

While this will work, for models with large numbers of vertices this
becomes expensive, probably outweighing any savings we might gain by not
rendering the objects. Instead, culling is usually done by approximating the
object with a convex bounding volume, such as a sphere, that contains all of
the vertices for the object. Rather than test each vertex against the planes, we
test only the bounding object. Since it is a convex object and all the vertices
are contained within it, we know that if the bounding object lies outside of
the view frustum, all of the model’s vertices must lie outside as well. More
information on computing bounding objects and testing them against planes
can be found in Chapter 12.

Bounding objects are usually placed in the world frame to aid with colli-
sion detection, so culling is often done in the world frame as well. This requires
storing a representation of each frustum plane in world coordinates, but the
additional 24 values required is worth the speedup gained. We can find each x

or y clipping plane in the view frame by using the view position and two cor-
ners of the view window to generate the plane. The two z planes (in OpenGL)
are z = −near and z = −far, respectively. Transforming them to the world
frame is a simple case of using the technique for transforming plane normals,
as described in Chapter 4.

While view frustum culling can remove a large number of objects from
consideration, it’s not the only culling method. In Chapter 7 we’ll discuss
backface culling, which allows us to determine which polygons are pointing
away from the camera so we can ignore them. There also are a large number
of culling methods that break up the scene in order to cull objects that aren’t
visible. This can help with interior levels, so you don’t render rooms that may
be within the view frustum but not visible because they’re blocked by a wall.
Such methods are out of the purview of this book but are described in detail
in many of the references cited in the following sections.

6.4.3 General Plane Clipping

Source Code

Demo

Clipping

To clip polygons, we first need to know how to clip a polygon edge (i.e., a line
segment) to a plane. As we’ll see, the problem of clipping a polygon to a plane
degenerates to handling this case. Suppose we have a line segment PQ, with
endpoints P and Q, that crosses a plane. We’ll say that P is inside our clip
space and Q is outside. Our clipped line segment will be PR, where R is the
intersection of the line segment and the plane (Figure 6.24).

To find R, we take the line equation P + t(Q − P), plug it into our plane
equation ax + by + cz + d = 0, and solve for t. To simplify the equations,
we’ll define v = Q − P . Substituting the parameterized line coordinates for
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Q

R

P

Figure 6.24 Clipping edge to plane.

x, y, and z, we get

0 = a(Px + tvx) + b(Py + tvy) + c(Pz + tvz) + d

= aPx + tavx + bPy + tbvy + cPz + tcvz + d

= aPx + bPy + cPz + d + t(avx + bvy + cvz)

t = −aPx − bPy − cPz − d

avx + bvy + cvz

And now, substituting in Q − P for v:

t = (aPx + bPy + cPz + d )

(aPx + bPy + cPz + d ) − (aQx + bQy + cQz + d )

We can use Blinn’s notation [7], slightly modified, to simplify this to

t = BCP

BCP − BCQ

where BCP is the result from the plane equation (the boundary coordinate)
when we test P against the plane, and BCQ is the result when we test Q against
the plane. The resulting clip point R is

R = P + BCP

BCP − BCQ
(Q − P)



6.4 Culling and Clipping 241
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Figure 6.25 Four possible cases of clipping an edge against a plane.

To clip a polygon to a plane, we need to clip each edge in turn. A standard
method for doing this is to use the Sutherland-Hodgeman algorithm [109].
We first test each edge against the plane. Depending on what the result is,
we output particular vertices for the clipped polygon. There are four possi-
ble cases for an edge from P to Q (Figure 6.25). If both are inside, then we
output P . The vertex Q will be output when we consider it as the start of the
next edge. If both are outside, we output nothing. If P is inside and Q is out-
side, then we compute R, the clip point, and output P and R. If P is outside
and Q is inside, then we compute R and output just R — as before, Q will be
output as the start of the next edge. The sequence of vertices generated as
output will be the vertices of our clipped polygon.

We now have enough information to build a class for clipping vertices,
which we’ll call IvClipper. We can define this as

class IvClipper
{
public:

IvClipper()
{

mFirstVertex = true;
}
∼IvClipper();
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void ClipVertex( const IvVector3& end )

inline void StartClip() { mFirstVertex = true; }
inline void SetPlane( const IvPlane& plane ) { mPlane = plane; }

private:
IvPlane mPlane; // current clipping plane
IvVector3 mStart; // current edge start vertex
float mBCStart; // current edge start boundary condition
bool mStartInside; // whether current start vertex is inside
bool mFirstVertex; // whether expected vertex is start vertex

};

Note that IvClipper::ClipVertex() takes only one argument: the end ver-
tex of the edge. If we send the vertex pair for each edge down to the clipper,
we’ll end up duplicating computations. For example, if we clip P0 and P1,
and then P1 and P2, we have to determine whether P1 is inside or outside
twice. Rather than do that, we’ll feed each vertex in order to the clipper. By
storing the previous vertex (mStart) and its plane test information (mBCStart)
in our IvClipper class, we need to calculate data only for the current vertex.
Of course, we’ll need to prime the pipeline by sending in the first vertex, not
treating it as part of an edge, and just storing its boundary information.

Using this, clipping an edge based on the current vertex might look like
the following code.

void IvClipper::ClipVertex( const IvVector3& end )
{

float BCend = mPlane.Test(end);
bool endInside = ( BCend >= 0 );
if (!mFirstVertex)
{

// if one of the points is inside
if ( mStartInside || endInside )
{

// if the start is inside, just output it
if (mStartInside)

Output( mStart );
// if one of them is outside, output clip point
if ( !(mStartInside && endInside) )
{

if (endInside)
{

float t = BCend/(BCend - mBCStart);



6.4 Culling and Clipping 243

Output( end - t*(end - mStart) );
}
else
{

float t = mBCStart/(mBCStart - BCend);
Output( mStart + t*(end - mStart) );

}
}

}
}

mStart = end;
mBCStart = BCend;
mStartInside = endInside;
mFirstVertex = false;

}

Note that we generate t in the same direction for both clipping cases — from
inside to outside. Polygons will often share edges. If we were to clip the same
edge for two neighboring polygons in different directions, we may end up
with two slightly different points due to floating-point error. This will lead
to visible cracks in our geometry, which is not desirable. Interpolating from
inside to outside for both cases avoids this situation.

To clip against the view frustum, or any other convex volume, we need to
clip against each frustum plane. The output from clipping against one plane
becomes the input for clipping against the next, creating a clipping pipeline.
In practice, we don’t store the entire clipped polygon, but pass each output
vertex down as we generate it. The current output vertex and the previous one
are treated as the edge to be clipped by the next plane. The Output() call above
becomes a ClipVertex() for the next stage.

Note that we have only generated new positions at the clip boundary.
There are other parameters that we can associate with an edge vertex, such as
colors, normals, and texture coordinates (we’ll discuss exactly what these are
in Chapters 7–9). These will have to be clipped against the boundary as well.
We use the same t value when clipping these parameters, so the clip part of
our previous algorithm might become as follows.

// if one of them is outside, output clip vertex
if ( !(mStartInside && endInside) )
{

...
clipPosition = startPosition + t*(endPosition - startPosition);
clipColor = startColor + t*(endColor - startColor);
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clipTexture = startTexture + t*(endTexture - startTexture);
// Output new clip vertex

}

This is only one example of a clipping algorithm. In most cases, it won’t be
necessary to write any code to do clipping. The hardware will handle any clip-
ping that needs to be done for rendering. However, for those who have the need
or interest, other examples of clipping algorithms are the Liang-Barsky [68],
Cohen-Sutherland (found in Foley et al. [38] as well as other graphics texts),
and Cyrus-Beck [22] methods. Blinn [8] describes an algorithm for lines that
combines many of the features from the previously mentioned techniques;
with minor modifications it can be made to work with polygons.

6.4.4 Homogeneous Clipping

In the presentation above, we clip against a general plane. When projecting,
however, Blinn and Newell [7] noted that we can simplify our clipping by
taking advantage of some properties of our projected points prior to the divi-
sion by w. Recall that after the division by w, the visible points will have
normalized device coordinates lying in the interval [−1, 1], or

−1 ≤ x/w ≤ 1

−1 ≤ y/w ≤ 1

−1 ≤ z/w ≤ 1

Multiplying these equations by w provides the intervals prior to the w division:

−w ≤ x ≤ w

−w ≤ y ≤ w

−w ≤ z ≤ w

In other words, the visible points are bounded by the six planes:

w = x

w = −x

w = y

w = −y

w = z

w = −z
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Instead of clipping our points against general planes in the world frame
or view frame, we can clip our points against these simplified planes in RP3

space. For example, the plane test for w = x is w− x. The full set of plane tests
for a point P are

BCP−x = w + x

BCPx = w − x

BCP−y = w + y

BCPy = w − y

BCP−z = w + z

BCPz = w − z

The previous clipping algorithm can be used, with these plane tests replacing
the IvPlane::Test() call. While these tests are cheaper to compute in software,
their great advantage is that since they don’t vary with the projection, they
can be built directly into hardware, making the clipping process very fast.
Because of this, OpenGL clips at two separate stages in the viewing pipeline.
After a point is transformed into the view frame, it is clipped against any
user-defined clipping planes set by the glClippingPlane() call. Then the point
is multiplied by the projection matrix, clipped in homogeneous space, and
finally the coordinates are divided by w to place the clipped point in the NDC
frame.

There is one wrinkle to homogeneous clipping, however. Figure 6.26
shows the visible region for the x coordinate in homogeneous space. However,

x-axis

w-axis

w 5 x

2w 5 x

Figure 6.26 Homogeneous clip regions for NDC interval [−1,1].
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our plane tests will clip to the upper triangle region of that hourglass
shape — any points that lie in the lower region will be inadvertently removed.
With the projections that we have defined, this will happen only if we use a
negative value for the w value of our points. And since we’ve chosen 1 as the
standard w value for points, this shouldn’t happen. However, if you do have
points that for some reason have negative w values, Blinn [8] recommends the
following procedure: transform, clip, and render your points normally; then
multiply your projection matrix by −1; and then transform, clip, and render
again.

6.5 Screen Transformation

Now that we’ve covered viewing, projection, and clipping, our final step in
transforming our object in preparation for rendering is to map its geometric
data from the NDC frame to the screen or device frame. This could represent
a mapping to the full display, a window within the display, or an offscreen
pixel buffer.

Remember that our coordinates in the NDC frame range from a lower
left corner of (−1, −1) to an upper right corner of (1, 1). Real device space
coordinates usually range from an upper left corner (0, 0) to a lower right
corner (ws, hs), where ws (screen width) and hs (screen height) are usually
not the same. In addition, in screen space the y-axis is commonly flipped so
that y values increase as we move down the screen. Some windowing sys-
tems allow you to use the standard y direction, but we’ll assume the default
(Figure 6.27).

(0, 0)

(ws, hs)

Figure 6.27 View window in standard screen space frame.
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(1, 1)

(ws, hs)

Figure 6.28 Mapping NDC space to screen space.

What we’ll need to do is map our NDC area to our screen area
(Figure 6.28). This consists of scaling it to the same size as the screen, flipping
our y direction, and then translating it so that the upper left corner becomes
the origin.

Let’s begin by considering only the y direction, because it has the special
case of the axis flip. The first step is scaling it. The NDC window is two units
high, whereas the screen space window is hs high, so we divide by 2 to scale
the NDC window to unit height, and then multiply by hs to scale to screen
height:

y′ = hs

2
yndc

Since we’re still centered around the origin, we can do the axis flip by just
negating:

y′′ = −hs

2
yndc

Finally, we need to translate downwards (which is now the positive y

direction) to map the top of the screen to the origin. Since we’re already
centered on the origin, we need to translate only half the screen height, so

ys = −hs

2
yndc + hs

2

Another way of thinking of the translation is that we want to map the
extreme point −hs/2 to 0, so we need to add hs/2.

A similar process, without the axis flip, gives us our x transformation:

xs = ws

2
xndc + ws

2
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This assumes that we want to cover the entire screen with our view
window. In some cases, for example in a split-screen console game, we want
to cover only a portion of the screen. Again, we’ll have a width and height of
our screen space area, ws and hs, but now we’ll have a different upper left cor-
ner position for our area: (sx, sy). The first part of the process is the same; we
scale the NDC window to our screen space window and flip the y-axis. Now,
however, we want to map (−ws/2, −hs/2) to (sx, sy), instead of (0, 0). The final
translation will be (ws/2 + sx, hs/2 + sy). This gives us our generalized screen
transformation in xy as

xs = ws

2
xndc + ws

2
+ sx (6.5)

ys = −hs

2
yndc + hs

2
+ sy (6.6)

Our z coordinate is a special case. As mentioned, we’ll want to use z for
depth testing, which means that we’d really prefer it to range from 0 to ds,
where ds is usually 1. This mapping from [−1, 1] to [0, ds] is

zs = ds

2
zndc + ds

2
(6.7)

We can, of course, express this as a matrix:

Mndc→screen =

⎡⎢⎢⎢⎢⎣
ws

2 0 0 ws

2 + sx

0 −hs

2 0 hs

2 + sy

0 0 ds

2
ds

2

0 0 0 1

⎤⎥⎥⎥⎥⎦

6.5.1 Pixel Aspect Ratio

Recall that in our projection matrices, we represented the shape of our view
window by setting an aspect ratio a. Most of the time it is expected that the
value of a chosen in the projection will match the aspect ratio ws/hs of the
final screen transformation. Otherwise, the resulting image will be distorted.
For example, if we use a square aspect ratio (a = 1.0) for the projection and
a standard aspect ratio of 4:3 for the screen transformation, the image will
appear compressed in the y direction. If your image does not quite look right,
it is good practice to ensure that these two values are the same.

An exception to this practice arises when your final display has a different
aspect ratio than the offscreen buffers that you’re using for rendering. For
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example, NTSC televisions have 448 scan lines, with 640 analog pixels per
scan line, so it is common practice to render to a 640× 448 area and then send
that to the NTSC converter to be displayed. Using the offscreen buffer size
would give an aspect ratio of 10:7. But the actual television screen has a 4:3
aspect ratio, so the resulting image will be distorted, producing stretching in
the y direction. The solution is to set a = 4/3 despite the aspect ratio of the
offscreen buffer. The image in the offscreen buffer will be compressed in the
y direction, but then will be proportionally stretched in the y direction when
the image is displayed on the television, thereby producing the correct result.

6.6 Picking

Source Code

Demo

Picking

Now that we understand the mathematics necessary for transforming an
object from world coordinates to screen coordinates, we can consider the
opposite case. In our game we may have enemy objects that we’ll want to
target. The interface we have chosen involves tracking them with our mouse
and then clicking on the screen. The problem is: How do we take our click
location and use that to detect which object we’ve selected (if any)? We need
a method that takes our 2D screen coordinates and turns them into a form
that we can use to detect object intersection in 3D game space. Effectively we
are running our pipeline backwards, from the screen transformation to the
projection to the viewing transformation (clipping is ignored as we’re already
within the boundary of our view window).

For the purposes of discussion, we’ll assume that we are using the basic
OpenGL perspective matrix. Similar derivations can be created using other
projections. Figure 6.29 is yet another cross section showing our problem.
Once again, we have our view frustum, with our top and bottom clipping
planes, our projection plane, and our near and far planes. Point Ps indicates
our click location on the projection plane. If we draw a ray (known as a pick
ray) from the view position through Ps, we pass through every point that lies
underneath our click location. So to determine which object we have clicked
on, we need only generate this point on the projection plane, create the specific
ray, and then test each object for intersection with the ray. The closest object
to the eye will be the object we’re seeking.

To generate our point on the projection plane, we’ll have to find a method
for going backwards from screen space into view space. To do this we’ll have
to find a means to “invert” our projection. Matrix inversion seems like the
solution, but it is not the way to go. The standard projection matrix has zeros
in the right-most column, so it’s not invertible. But even using the z-depth
projection matrix doesn’t help us, because (a) the reciprocal divide makes the
process nonlinear, and (b) in any case, our click point doesn’t have a z value
to plug into the inversion.
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Instead, we begin by transforming our screen space point (xs, ys) to an
NDC space point (xndc, yndc). Since our NDC to screen space transform is affine,
this is easy enough: We need only invert our previous equations 6.5 and 6.6.
That gives us

xndc = 2(xs − sx)

ws

− 1

yndc = −2(ys − sy)

hs

+ 1

Now the tricky part. We need to transform our point in the NDC frame to
the view frame. We’ll begin by computing our zv value. Looking at Figure 6.29
again, this is straightforward enough. We’ll assume that our point lies on the
projection plane so the z value is just the z location of the plane or −d. This
leaves our x and y coordinates to be transformed. Again, since our view region
covers a rectangle defined by the range [−a, a] (recall that a is our aspect ratio)
in the x direction and the range [−1, 1] in the y direction, we only need to scale
to get the final point. The view window in the NDC frame ranges from [−1, 1]
in y, so no scale is needed in the y direction and we scale by a in the x direction.
Our final screen space to view space equations are

xv = 2a

ws

(xs − sx) − 1

yv = − 2

hs

(ys − sy) + 1

zv = −d

y

Ps

projection plane

–z

d

Figure 6.29 Pick ray.
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Since this is a system of linear equations, we can express this as a 3 × 3
matrix:

⎡⎣ xv

yv

zv

⎤⎦ =
⎡⎢⎣

2a
ws

0 − 2a
ws

sx − 1

0 − 2
hs

2
hs

sy + 1

0 0 −d

⎤⎥⎦
⎡⎣ xs

ys

1

⎤⎦
From here we have a choice. We can try to detect intersection with an

object in the view frame, we can detect in the world frame, or we can detect
in the object’s local frame. The first involves transforming every object into
the view frame and then testing against our pick ray. The second involves
transforming our pick ray into the world frame and testing against the world
coordinates of each object. For simulation and culling purposes, often we’re
already pregenerating our world location and bounding information. So, if
we’re only concerned with testing for intersection against bounding infor-
mation, it can be more efficient to go with testing in world space. However,
usually we test in local space so we can check for intersection within the frame
of the stored model vertices. Transforming these vertices into the world frame
or the view frame every time we did picking could be prohibitively expensive.

In order to test in the model’s local space, we’ll have to transform our
view space point by the inverse of the viewing transformation. Unlike the
perspective transformation, however, this inverse is much easier to compute.
Recall that since the view transformation is an affine matrix, we can invert
it to get the view-to-world matrix Mview→world . So, multiplying Mview→world by
our click point in the view frame gives us our point in world coordinates:

Pw = Mview→world · Pv

We can transform this and our view position E from world coordinates into
model coordinates by multiplying by the inverse of the model-to-world matrix:

Pl = Mworld→model · Pw

El = Mworld→model · E

Then, the formula for our pick ray in model space is

R(t) = El + t(Pl − El)

We can now use this ray in combination with our objects to find the
particular one the user has clicked on. Chapter 12 discusses how to determine
intersection between a ray and an object and other intersection problems.
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6.7 Management of Viewing
Transformations

Source Code

Library

IvEngine

Filename

IvGLHelp

Up to this point we have presented a set of transformations and corresponding
matrices without giving some sense of how they would fit into a game engine.
While the thrust of this book is not about writing renderers, we can still pro-
vide a general sense of how some renderers and application programming
interfaces (APIs) manage these matrices, and how to set transformations for
a standard API.

The view, projection, and screen transformations change only if the
camera is moved. As this happens rarely, these matrices are usually computed
once, stored, and then concatenated with the new world transformation every
time a new object instance is rendered. How this is handled depends on the
API used. The most direct approach is to concatenate the newly set world
transform matrix with the others, creating a single transformation all the way
from model space to prehomogeneous divide screen space:

Mmodel→screen = Mndc→screen · Mprojection · Mworld→view · Mmodel→world

Multiplying by this single matrix and then performing three homogeneous
divisions per vertex generates the screen coordinates for the object. This is
extremely efficient, but ignores any clipping we might need to do. In this case,
we can concatenate up to homogeneous space, also known as clip space:

Mmodel→clip = Mprojection · Mworld→view · Mmodel→world

Then we transform our vertices by this matrix, clip against the view frustum,
perform the homogeneous divide, and either calculate the screen coordinates
using equations 6.5–6.7 or multiply by the NDC to screen matrix, as before.

With more complex renderers, we end up separating the transformations
further. For example, OpenGL handles lighting and some clipping prior to
projection, so it has separate GL_MODELVIEW and GL_PROJECTION matrix stacks,
to which the appropriate matrices have to be concatenated. The vertices are
transformed by the top matrix in the GL_MODELVIEW stack, lighting and user-
defined clipping are computed, and then the vertices are transformed by the
top matrix in the GL_PROJECTION matrix. The resulting vertices are clipped in
homogeneous space, the reciprocal divide is performed as before, and finally
they are transformed to screen space.

In our program, we can set the view and projection matrices in OpenGL by
the following code.

IvMatrix44 projection, viewTransform;

// compute projection and view transformation
...
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// set in OpenGL
glMatrixMode(GL_PROJECTION);
glLoadMatrix( projection );

glMatrixMode(GL_MODELVIEW);
glLoadMatrix( viewTransform );

And when we render an object, concatenating the world matrix can be
done by the following code.

glMatrixMode(GL_MODELVIEW);

// push copy of view matrix to top of stack
glPushMatrix();

// multiply by world matrix
glMultMatrix( worldTransform );

// render
...

// pop to view matrix
glPopMatrix();

The push/pop calls provide a means for storing the view transformation
without reloading it into the stack. The call glPushMatrix() copies the current
matrix — in this case, the view matrix — to a new entry on the top of the stack.
The subsequent glMultMatrix() will postmultiply the world matrix by the copy
of the view matrix at the top of the stack. The resulting local-to-view matrix will
be used to transform the vertices of our object. Finally, glPopMatrix() removes
the current matrix from the top of the stack, restoring the view transformation
as the top matrix. The effect is to save the view transformation, multiply by
the world transformation and use the result to transform the vertices, and
then restore the original view transformation.

Direct3D takes this one step further and manages storage of the view
transformation by having three separate matrices: one each for the pro-
jective, view, and world transformations. These can be set by using the
IDirect3DDevice*::SetTransform() method, and any concatenation is handled
internally to the API.

This leaves the NDC to screen space transformation. Usually the graphics
API will not require a matrix but will perform this operation directly. In the xy

directions the user is only expected to provide the dimensions and position of
the screen window area, also known as the viewport. In OpenGL this is set by
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using the call glViewport(). For the z direction, OpenGL provides a function
glDepthRange(), which maps [−1, 1] to [near, far], where the defaults for near

and far are 0 and 1, respectively. Similar methods are available for other APIs.
In our case, we have decided not to overly complicate things and are

providing simple convenience routines in the IvRenderer class:

IvSetWorldMatrix()
IvSetViewMatrix()
IvSetProjectionMatrix()
IvSetViewport()

that act as wrappers for the OpenGL and D3D calls described.

6.8 Chapter Summary
Manipulating objects in the world frame is only useful if we have appropri-
ate techniques for presenting that data. In this chapter we have discussed
the viewing, projection, and screen transformations necessary for rendering
objects on a screen or image. While we have focused on OpenGL as our render-
ing API, the same principles apply to Direct3D or any other rendering system.
We transform the world to the perspective of a virtual viewer, project it to a
view plane, and then scale and translate the result to fit our final display. We
also covered how to reverse those transformations to allow one to select an
object in view or world space by clicking on the screen. In the following chap-
ters we will discuss how to use the data generated by these transformations
to actually set pixels on the screen.

For those who are interested in reading further, most graphics text-
books — such as Möller and Haines [82] and Foley and van Dam [38] —
describe the graphics pipeline in great detail. In addition, one of Blinn’s
collections [8] is almost entirely dedicated to this subject. Various culling
techniques are discussed in Möller and Haines [82] as well as Eberly [25].
Finally, the OpenGL Programming Guide [85] discusses the particular
implementation of the graphics pipeline used in OpenGL.
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Geometry and
Programmable
Shading

7.1 Introduction

Having discussed in detail in the preceding chapters how to represent,
transform, view, and animate geometry, the next three chapters form a
sequence that describes the second half of the rendering pipeline. The second
half of the rendering pipeline is specifically focused on visual matters: the
representation, computation, and usage of color.

This chapter will discuss how we connect the points we have been trans-
forming and projecting to form solid surfaces, as well as the extra information
we use to represent the unique appearance of each surface. All visual repre-
sentations of geometry require the computation of colors; this chapter will
discuss the data structures used to store colors and perform basic color
computations.

Having shown how to build these renderable surface objects and described
the methods of storing and computing colors, we will then lay out the foun-
dations of the rest of the rendering section: the programmable shading and
rasterization pipeline. Note that this chapter, unlike the others in the ren-
dering section, is by comparison devoid of pure mathematics. This chapter
serves to lay out the fundamental pipeline within which the mathematical
work is done: the rendering pipeline. The stages of the framework described
in this chapter will be detailed in the later chapters (and to some degree
in the previous viewing chapter), where the fascinating mathematical issues

255
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that arise within them can be explored. By its nature, this chapter focuses
on the framework itself, the rendering pipeline, and its two most interesting
components, the programmable vertex and fragment shader units.

We will also introduce some of the simpler methods of using this pro-
grammable pipeline to render colored geometry by introducing the basics
of a common high-level shading language, OpenGL’s GLSL. Common inputs
and outputs to and from the shading pipeline will be discussed, concluding in
a detailed introduction to the most complex and powerful of programmable
shader source values — image-based texturing. However, this chapter includes
only the most basic of programmable shaders, seeking mainly to introduce
the rendering pipeline itself.

In Chapter 8, Lighting, we will simultaneously explain the mathemat-
ics of real-time light simulation for rendering while demonstrating how to
use the programmable shading pipeline to implement dynamic coloring of
surfaces. In this chapter we will mix geometric intuitions, the basics of
light-related physics, and simulated lighting equations and common approx-
imations thereof with a discussion of more advanced uses of programmable
shading.

As the concluding chapter in this sequence, Chapter 9 covers details of the
final step in the overall rendering pipeline — rasterization, or the method of
determining how to draw the colored surfaces as pixels on the display device.
This will complete the discussion of the rendering pipeline.

In each section in these chapters we will relate the basic programming
concepts, data structures, and functions that affect the creation, render-
ing, and coloring of geometry. As we move from geometry representation
through shading, lighting, and rasterization, implementation information will
become increasingly frequent, as the implementation of the final stages of
the rendering pipeline is very much system-dependent. While we will select
a particular rendering application programming interface (API) (the book’s
basic Iv engine) and shading language (OpenGL’s GLSL), the basic rendering
concepts discussed will apply to most rendering systems.

As a note, we use the phrase implementation to refer to the underlying
software or “driver” that maps our application calls to a given standard ren-
dering API such as OpenGL or Direct3D into commands for a particular piece
of graphics hardware (a graphics processing unit, or GPU, a term coined to
recognize the CPU-like rising complexity and performance of modern graph-
ics hardware). OpenGL and Direct3D implementations for a particular piece
of graphics hardware are generally supplied with the device by the hardware
vendor. A low-level hardware driver is not something that users of these APIs
will have to write or even use directly. In fact, the main purpose of OpenGL
and other such APIs is to provide a standard interface on top of these widely
varying hardware/software three-dimensional (3D) systems. To avoid dou-
bling the amount of implementation-related text in these chapters, most of
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the code examples in this and the following rendering chapters will describe
the book’s Iv rendering APIs, supplied as full source code on the book’s
accompanying CD-ROM. Interested readers may look at the implementations
of the referenced Iv functions to see how each operation can be written in
OpenGL or Direct3D.

7.2 Color Representation

7.2.1 RGB Color Model

To represent color, we will use the additive RGB (red, green, blue) color model
that is almost universal in real-time 3D systems. Approximating the physiol-
ogy of the human visual system (which is tuned to perceive color based on
three primitives that are close to these red, green, and blue colors), the RGB
system is used in all common display devices used by real-time 3D graphics
systems. Color cathode ray tubes (or CRTs, such as traditional televisions
and computer monitors), flat-panel liquid crystal displays (LCDs), plasma
displays, and video projector systems are all based upon the additive RGB
system. While some colors cannot be accurately displayed using the RGB
model, it does support a very wide range of colors, as proven by the remark-
able color range and accuracy of modern television and computer displays.
For a detailed discussion of color vision and the basis of the RGB color model,
see Malacara [70].

The RGB color model involves mixing different amounts of three pre-
defined primary colors of light. These carefully defined primary colors are
each named by the colors that most closely match them: red, green, and blue.
By mixing independently controlled levels of these three colors of light, a
wide range of brightnesses, tones, and shades may be created. In the next few
sections we will define much more specifically how we build and represent
colors using this method.

7.2.2 Colors as “Vectors”

The levels of each of the three primary colors are independent. In a sense, this
is similar to a subset of R

3, but with a “basis” consisting of the red, green, and
blue “axes,” or components. While these can be thought of as a “basis” for our
display device’s color space, they are not a basis in any true sense for color in
general. The behavior of colors does not always map directly into the concept
of a real vector space. However, many of the concepts of real vector spaces
are useful in describing color representation and operations.
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Our colors will be represented by 3-vectors, with the following basis
vectors:

(1, 0, 0) → red

(0, 1, 0) → green

(0, 0, 1) → blue

Often, as a form of shorthand, we will refer to the red component of a color c
as cr and to the green and blue components as cg and cb, respectively.

7.2.3 Color Range Limitation

The theoretical RGB color space is semi-infinite in all three axes. There is an
absolute zero value for each component, bounding the negative directions,
but the positive directions are (theoretically) unbounded. Throughout much
of the discussions of coloring, lighting, and shading, we will implicitly assume
(or actually declare in the shading language) that the colors are nonnegative
real values, potentially represented in the shading system as floating-point
numbers.

However, the reality of physical display devices imposes severe limitations
on the final output color space. When limited to the colors that can be
represented by a specific display device, the RGB color space is not infinite in
any direction. Real display devices, such as CRTs (standard “tube” monitors),
LCD panel displays, and video projectors all have limits of both brightness
and darkness in each color component; these are basic physical limitations of
the technologies that these displays use to emit light. For details on the func-
tionality and limitations of display device hardware, Hearn and Baker [54]
detail many popular display devices.

Displays have minimum and maximum brightnesses in each of their three
color axes, defining the range of colors that they can display. This range is
generally known as a display device’s gamut. The minimum of all color com-
ponents combine to the device’s darkest “black,” and the maximum of all
color components combine to the device’s brightest “white.” While it might
be possible to create extrema that are not pure black and pure white, these
are unlikely to be useful in a general display device.

Every display device is likely to have different exact values for its extrema,
so it is convenient to use a standard color space for all devices as sort of
“normalized device colors.” This color space is built such that

(0, 0, 0) → darkest black

(1, 1, 1) → brightest white
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In the rest of this chapter and the following chapter we will work in these
normalized color coordinates. This space defines an RGB “color cube,” with
black at the origin, white at (1, 1, 1), gray levels down the main diagonal
between them (a, a, a), and the other six corners representing pure, maximal
red (1, 0, 0), green (0, 1, 0), blue (0, 0, 1), cyan (0, 1, 1), magenta (1, 0, 1), and
yellow (1, 1, 0).

The following sections will describe some of the vector operations (and
vectorlike operations) we will apply to colors, as well as discussions of
how these abstract color vectors map onto their final destinations, namely
hardware display devices.

7.2.4 Operations on Colors

Adding RGB colors is done using vector addition; the colors are added compo-
nentwise. Adding two colors has the same effect as combining the light from
two colored light sources, for example, adding red (r = (1, 0, 0)) and green
(g = (0, 1, 0)) gives yellow:

r + g = (1, 0, 0) + (0, 1, 0) = (1, 1, 0)

The operation of adding colors will be used through our lighting computations
to represent the addition of light from multiple light sources and to add the
multiple forms of light that each source can apply to a surface.

Scalar multiplication of RGB colors (sc) is computed in the same way
as with vectors, multiplying the scalar times each component, and is ubiqui-
tous in lighting and other color computations. It has the result of increasing
(s > 1.0) or decreasing (s < 1.0) the luminance of the color by the amount of
the scalar factor. Scalar multiplication is most frequently used to represent
light attenuation due to various physical and geometric lighting properties.

One important vector operation that is used somewhat rarely with colors
is vector length. While it might seem that vector length would be an excel-
lent (if expensive) way to compute the luminance of a color, the nature of
human color perception does not match the Euclidean norm of the linear RGB
color space. Luminance is a “norm” that is affected by human physiology. The
human eye is most sensitive to green, less to red, and least sensitive to blue.
As a result, the equal weighting given to all components by the Euclidean
norm means that blue contributes to the Euclidean norm far more than it
contributes to luminance.

Although there are numerous methods used to compute the luminance
of RGB colors as displayed on a screen, a common method for modern CRT
screens (assuming nonnegative color components) is

luminance(c) = 0.2125cr + 0.7154cg + 0.0721cb
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Or basically, the dot product of the color with a “luminance reference color.”
The three color-space transformation coefficients used to scale the color com-
ponents are basically constant for modern, standard CRT screens but do not
necessarily apply to television screens, which use a different set of luminance
conversions. Discussion of these may be found in Poynton [94]. Note that
luminance is not equivalent to perceived brightness. The luminance as we’ve
computed it is linear with respect to the source linear RGB values. Brightness
as perceived by the human visual system is nonlinear and subject to the over-
all brightness of the viewing environment, as well as the viewer’s adaptation
to it. See Cornsweet [20] for a related discussion of the physiology of human
visual perception.

An operation that is rarely applied to geometric vectors but is used
very frequently with colors is componentwise multiplication. Component-
wise multiplication takes two colors as operands and produces another color
as its result. We will represent the operation of componentwise multipli-
cation of colors as “ · ,” or in shorthand by placing the colors next to one
another (as we would multiply scalars), and the operation is defined as
follows:

a · b = ab = (arbr, agbg, abbb)

This operation is often used to represent the filtering of one color of light
through an object of another color. In such a situation, one operand is
assumed to be the light color, while the other operand is assumed to be the
amount of light of each component that is passed by the filter. Another use
of componentwise color multiplication is to represent the reflection of light
from a surface — one color represents the incoming light and the other rep-
resents the amount of each component that the given surface reflects (the
surface’s reflectivity). We will use this frequently in Chapter 8 when com-
puting lighting. For example, a color c and a filter (or surface) f = (1, 0, 0),
results in

cf = (cr, 0, 0)

or the equivalent of a pure red filter; only the red component of the light
was passed, while all other light was blocked. This operation will be used
constantly in color lighting computations.

7.2.5 Alpha Values

Frequently, RGB colors are augmented with a fourth component, called alpha.
Such colors are often written as RGBA colors. Unlike the other three com-
ponents, the alpha component does not represent a specific color basis, but
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rather defines how the combined color interacts with other colors. The most
frequent use of the alpha component is an opacity value, which defines how
much of the surface’s color is controlled by the surface itself and how much
is controlled by the colors of objects that are behind the given surface. When
alpha is at its maximum (we will define this as 1.0), then the color of the
surface is independent of any objects behind it. The red, green, and blue com-
ponents of the surface color may be used directly, for example, in representing
a solid concrete wall. At its minimum (0.0), the RGB color of the surface is
ignored and the object is invisible, as with a pane of clear glass for instance.
At an intermediate alpha value, such as 0.5, the colors of the two objects are
blended together; in the case of alpha equaling 0.5, the resulting color will be
the componentwise average of the colors of the surface and the object behind
the surface.

For the most part, alpha will be treated like any other color component
until rasterization. We will discuss the uses of the alpha value (known as alpha
blending) in Chapter 9 on rasterization. In a few cases, rendering APIs handle
alpha a little differently from other color components (mention will be made
of these situations as needed).

Remapping Colors into the Unit Cube

Source Code

Demo

ColorRemapping

Although devices cannot display colors outside of the range defined by their
(0, 0, 0) . . . (1, 1, 1) cube, colors outside of this cube are often seen during
intermediate color computations such as lighting. In fact, the very nature
of lighting can lead to final colors with components outside of the (1, 1, 1)

limit. During lighting computations, these are generally allowed, but prior to
assigning final colors to the screen, all colors must be within the normalized
cube. This requires either the hardware, the device driver software, or the
application to somehow remap or limit the values of colors so that they fall
within the unit cube.

The simplest and easiest method is to clamp the color on a per-component
basis:

safe(c) = (clamp(cr), clamp(cg), clamp(cb))

where

clamp(x) = max(min(x, 1.0), 0.0)

However, it should be noted that such an operation can cause significant
perceptual changes to the color. For example, the color (1.0, 1.0, 10.0) is
predominantly blue, but its clamped version is pure white (1.0, 1.0, 1.0). In
general, clamping a color can lead to the color becoming less saturated, or
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less colorful. While this might seem unsatisfactory, it actually can be bene-
ficial in some forms of simulated lighting, as it tends to make overly bright
objects appear to “wash out,” an effect that can perceptually appear rather
natural under the right circumstances.

Another, more computationally expensive method is to rescale all three
color components of any color with a component greater than 1.0 such that
the maximal component is 1.0. This may be written as

safe(c) = (max(cr, 0), max(cg, 0), max(cb, 0))

max(cr, cg, cb, 1)

Note the appearance of 1 in the max function in the denominator to ensure
that colors already in the unit cube will not change — it will never increase
the color components. While this method does tend to avoid changing the
overall saturation of the color, it can produce some unexpected results. The
most common issue is that extremely bright colors that are scaled back into
range can actually end up appearing darker than colors that did not require
scaling. For example, comparing the two colors a = (1, 1, 0) and b = (10, 5, 0),
we find that after scaling, b = (1, 0.5, 0), which is significantly darker than a.

Scaling works best when it is applied equally (or at least coherently) to
all colors in a scene, not to each color individually. There are numerous
methods for this, but one such method involves finding the maximum color
component of any object in the scene, and scaling all colors equally such
that this maximum maps to 1.0. This is somewhat similar to a camera’s auto-
exposure system. By scaling the entire scene by a single scalar, color ratios
between objects in the scene are preserved. Figure 7.1 shows two different
color-range limitation methods for the same source image. In Figure 7.1(a),
we clamp the values that are too large to display. Note that this results in
a loss of image detail in the brightest sections of the image, which become
pure white. In Figure 7.1(b), we rescale all of the colors in the image based
on the maximum value method described above. The details in the brightest
areas of the screen are retained. However, even this method is not perfect. The
rescaling of the colors does sacrifice some detail in the darker shadows of the
image.

A more advanced method known generally as tone mapping remaps
regions of an image differently; a very bright section of the scene may be dark-
ened to fit the range (e.g., a bright, cloud-streaked sky), while the shadowed
sections of the image actually may be scaled to be brighter so that details are
not lost in the shadows. The scaling may be different for different sections of
the image, but the remapping is done in a regionally coherent method so that
the relative brightness of related objects are reasonable. Regionally coherent
means that we take the brightness of the region surrounding any point on the
screen and try to keep the relative bright–dark relationships. A common trick
in a daytime image of buildings and sky would be to darken the sky to fit in
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Figure 7.1 Color-range limitation methods: (a) image colors clamped, and
(b) image colors rescaled.

range and brighten the buildings to be less in shadow. While we are applying
different scalings to different parts of the image (darkening to the sky and
brightening to the buildings), the relative brightnesses within the buildings’
region of the image are kept intact, and the relative brightnesses within the
sky’s regions of the image are kept intact. Thus, the sky and the buildings
each look like what we’d expect, but the overall image fits within the limited
brightness range.

These techniques are often used in high dynamic range (HDR) render-
ing, in which wide orders of magnitude exist in the computed lighting,
but are then mapped down to the unit cube in a manner that forms a
vibrant image. Figure 7.2 shows the same image for Figure 7.1, but tone-
mapped to retain details in both the shadows and highlights. The shadowed
and highlighted areas are processed independently to avoid losing detail in
either.

HDR rendering is growing in popularity in 3D games and other applica-
tions as GPU feature sets and performance have improved. Many examples of
HDR rendering may be found at the developers’ websites of the major GPU
vendors [1, 84].

(a) (b)
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Figure 7.2 A tonemapped image.

7.2.6 Color Storage Formats

A wide range of color storage formats are used by modern rendering systems,
both floating point and fixed point (as well as one or two hybrid formats).
Common RGBA color formats include:

■ Single-precision floating-point components (128 bits for RGBA color).

■ Half-precision floating-point components (64 bits for RGBA color).

■ 16-bit unsigned integer components (64 bits for RGBA color).

■ 8-bit unsigned integer components (32 bits for RGBA color).

■ Shared exponent extended-range formats. In the most common of these
formats, red, green, and blue represent 0-dot-8 fixed-point mantissas,
while a final 8-bit shared exponent is used to scale all three components.
This is not as flexible as a floating-point value per color component
(since all components share a single exponent), but it can represent a
huge dynamic range of colors using only 32 bits for an RGB color.
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In general, the floating-point formats are used as would be expected
(in fact, on modern systems, the single-precision floating-point colors are
now IEEE 754 compliant, making them useful for noncolor computations as
well). However, the integer formats have a special mapping in most graphics
systems. An integer value of zero maps to zero, but the maximal value maps
to 1.0. Thus, the integer formats are slightly different than those seen in any
fixed-point format.

While a wide range of color formats are available to applications, a small
subset of them cover most use cases. Internal to the programmable render-
ing pipeline, floating-point values are the most popular intermediate result
formats. However, floating-point values are not the most popular format for
shading output, the values that are stored in the frame buffer or other image
buffer. Perhaps the most popular format for final color storage is unsigned
8-bit values per component, leading to 3 bytes per RGB color, a system known
as 24-bit color, or in some cases, by the misnomer “true color.” With an alpha
value, the format becomes 32 bits per pixel, which aligns well on modern
32- and 64-bit CPU architectures. Another common format is to use 5 bits
each for red and blue and 6 bits for green, a format that requires 16 bits per
pixel. This system, which sometimes goes by the name high color, is interest-
ing in that it includes different amounts of precision for green than for red
or blue. As we’ve discussed, the human eye is most sensitive to green, so the
additional bit in the 16-bit format is assigned to it. However, the number of
pure gray values in this format is still 25 = 32, since the additional bit of preci-
sion in green must be zero for all grays (or else the system risks having some
slightly green-tinted gray values).

The historical reasons for using these lower-precision formats are storage
space requirements, computational expense, and the fact that display devices
often have the ability to display only 5–8 bits of precision per component.
Even 32 bits per pixel requires one-quarter the amount of storage that is
needed for floating-point RGBA values. Using full floating-point numbers for
output colors (the colors that are drawn to the output LCD or CRT screen)
is actually overkill, due to the limitations of current display device color res-
olution. For example, current CRTs and LCD displays have dynamic ranges
(the ratio of luminance between the brightest and darkest levels that can be
displayed by the devices) of between 200:1 and 500:1. These ratios mean that
current display devices cannot deliver anywhere near the eye’s full range of
perceived brightness or darkness. There are display technologies that can rep-
resent more than 24-bit color, but these are still the exception, rather than the
rule. As these display devices become more common, device-level color rep-
resentations will require more bits per component in order to avoid wasting
the added precision available from these new displays.

Research has shown that the human visual system (depending on lighting
conditions, etc.) can perceive between 1 million and 7 million colors, which
leads to the (erroneous) theory that 24-bit color display systems, with their
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224 ≈ 16.7 million colors, are more than sufficient. While it is true that the
number of different color “names” in a 24-bit system (where a color is “named”
by its 24-bit RGB triple) is a greater number than the human visual system can
discern, this does not take into account the fact that the colors being generated
on current display devices do not map directly to the 1–7 million colors that
can be discerned by the human visual system. Current display devices cannot
display the entire range of colors that the human eye can discern. In addition,
in some color ranges, different 24-bit color “names” appear the same to the
human visual system (the colors are closer to one another than the human
eye’s just noticeable difference, or JND). In other words, 24-bit color wastes
precision in some ranges, while lacking sufficient precision in others. Current
24-bit “true color” display systems are not sufficient to cover the entire range
of human vision, either in range or in precision. Having said this, current
display devices are still quite convincing to the human eye and will continue
to improve.

7.3 Points and Vertices

So far, we have discussed points as our sole geometry representation. As we
begin to abstract to the higher level of a surface, points will become insufficient
for representing the attributes of an object or for that matter the object itself.
The first step in the move toward a way of defining an object’s surface is to
associate additional data with each point. Combined together (often into a
single data structure), each point and its additional information form what
is often called a vertex. In a sense, a vertex is a “heavy point”: a point with
additional information that defines some properties of the surface around it.

7.3.1 Per-Vertex Attributes

Within a vertex, the most basic value is the position of the vertex, generally
a 3D point that we will refer to as PV in later sections.

Other than vertex position, perhaps the most basic of the “standard” vertex
attributes are colors. Common additions to a vertex data structure, vertex
colors are used in many different ways when drawing geometry. Much of the
remainder of this chapter will discuss the various ways that per-vertex colors
can be assigned to geometry, as well as the different ways that these vertex
colors are used to draw geometry to the screen. We will generally refer to the
vertex color as CV (and will sometimes specifically refer to the vertex alpha as
AV , even though it is technically a component of the overall color).

Another data element that can add useful information to a vertex is a
vertex normal. This is a unit-length 3-vector that defines the “orientation” of
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the surface in an infinitely small neighborhood of the vertex. If we assume that
the surface passing through the vertex is locally planar (at least in an infinitely
small neighborhood of the vertex), the surface normal is the normal vector to
this plane (recall the discussion of plane normal vectors from Chapter 2). In
most cases, this vector is defined in the same space as the vertices, generally
model (a.k.a. object) space. As will be seen later, the normal vector is a
pivotal component in lighting computations. We will generally refer to the
normal as n̂V .

A vertex attribute that we will use frequently later in this chapter is a
texture coordinate. This will be discussed in detail in the sections in this
chapter on texturing and in parts of the following two chapters; basically, a
set of texture coordinates is a real-valued 2-vector (most frequently, although
they also may be scalars or 3-vectors) per vertex that defines the position
of the vertex within a smooth parameterization of the overall surface. These
are used to map two-dimensional (2D) images onto the surface in a shading
process known as texturing. A vertex may have more than one set of tex-
ture coordinates, representing the mapping of the vertex in several different
parameterizations.

Finally, owing to the general and extensible nature of programmable
shading, an object’s vertices may have other sets of per-vertex attributes.
Most common are additional values similar to the ones listed above; per-
vertex color values, per-vertex directional vectors of some sort, or per-vertex
texture coordinates. However, other programmable shaders could require a
wealth of different vertex attributes; most shading systems support scalar ver-
tex attributes as well as generic 2D, 3D, and 4D vectors. The meaning of these
vectors are dependent upon the shading program itself.

7.3.2 An Object’s Vertices

For any geometric object, its set of vertices can be represented as an array
of structures. Each array element contains the value for each of the vertex
attributes supported by the object. Note that for a given object, all of the ver-
tices in the array have the same type of structure. If one vertex has a particular
attribute, they all will contain that attribute (likely with a different value). An
example of the vertex structure for an object with position values, a color, and
one set of texture coordinates is shown below.

struct IvTCPVertex
{

IvVector2 texturecoord;
IvColor color;
IvVector3 position;

};
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A smaller, simpler vertex with just position and normal might be as
follows:

struct IvNPVertex
{

IvVector3 normal;
IvVector3 position;

};

Along with the C or C++ representation of a vertex, an application must be
able to communicate to the rendering API how the vertices are laid out. Each
rendering API uses its own system, but two different methods are common;
the simpler (but less flexible) method is for the API to expose some fixed set
of supported vertex formats explicitly and use an enumerated type label to
represent each of these formats. All of an application’s geometry must be for-
matted to fit within the fixed set of supported vertex formats in this case.
The more general system is for an API to allow the application to specify
the type (float, etc.); usage (position, color, etc.); dimension (1D, 2D, etc.);
and stride (bytes between the attribute for one vertex and the next) of each
active attribute. This system is far more flexible, but can greatly increase the
complexity of the rendering API implementation. The latter is common in
modern graphics APIs, such as Direct3D’s DX9 and OpenGL. The former
method is used in Iv for the purposes of simplicity and ease of cross-platform
support. Iv uses the following enumeration to define the vertex formats it
supports:

enum IvVertexFormat
{

kCPFormat, // color, position
kNPFormat, // normal, position
kTCPFormat, // texture coord, color, position
kCNPFormat, // color, normal, position
kTNPFormat // texture coord, normal, position

};

This enumeration is used in various places in the Iv rendering engine
to declare the format of a given vertex or array of vertices to the
system.

Some rendering APIs allow for the vertex attributes to be “non-
interleaved”; that is, the application keeps independent packed arrays of each
vertex attribute. This so-called “structure of arrays” format is generally less
popular in modern APIs, as the interleaved formats provide better cache
coherence — in an interleaved format, accessing one attribute in a vertex is
likely to load the entire vertex into cache. There is one notable exception: If
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some of an object’s vertex attributes are computed on the host CPU, it may
make sense to keep them in their own array, while leaving the constant vertex
attributes in another fully interleaved vertex array. This allows the dynamic
data to be modified without touching or retransferring the static data to device
memory. We will assume an interleaved vertex format for the remainder of
the rendering discussions.

Vertex Buffers

Programmable shaders and graphics rendering pipelines implemented
entirely in dedicated hardware have made it increasingly important for as
much rendering-related data as possible to be available to the GPU in device-
local memory, rather than system memory. Modern graphics APIs all include
the concept of a vertex buffer or vertex buffer object, an opaque handle that
represents source vertex data resident in GPU memory.

In order to use vertex buffers to render an object, an application must
make calls to the rendering API to allocate enough storage for the object’s
array of vertices in GPU memory. Then, some method is used to trans-
fer the vertex array from system memory to GPU memory. Having trans-
ferred the data, the application can then use the opaque handle to render
the geometry at peak performance. Note that once vertex array data are
in GPU memory, it is usually computationally expensive to modify them.
Thus, vertex buffers are most frequently used for data that the CPU does
not need to modify on a per-frame basis. Over time, as programmable
shaders have become more and more powerful, there have been fewer and
fewer (if any) per-vertex operations that need to be done on the CPU,
thus making it more easily possible to put all vertex data in static vertex
buffers.

A common vertex buffer creation sequence in many APIs is to create
the vertex buffer, passing in the vertex format and number of vertices, but
no data. The resulting vertex buffer is then “locked,” which returns a sys-
tem memory pointer that can be filled with vertex array data. Finally, the
buffer is “unlocked,” which releases access to the system memory pointer and
(if needed) transfers the vertex data to GPU-accessible memory. In Iv, the
sequence is as follows:

IvResourceManager& manager;
// ...

// Create a vertex buffer with 1024 vertices
// Each vertex has a color and position
IvVertexBuffer* buffer

= manager.CreateVertexBuffer(kCPFormat, 1024);
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// Lock the vertex buffer and cast to the correct
// vertex format
IvCPVertex* verts

= (IvCPVertex*)buffer->BeginLoadData();

// Loop over all 1024 vertices in verts and
// fill in the data...
// ...
// Unlock the buffer, so it can be used
buffer->EndLoadData();

The vertex buffer is now filled with data and ready to be used to render.

7.4 Surface Representation

In this section we will discuss another important concept used to represent
and render objects in real-time 3D graphics: the concept of a surface and the
most common representation of surfaces in interactive 3D systems, sets of
triangles. These concepts will allow us to build realistic-looking objects from
the sets of vertices that we have discussed thus far.

In Chapter 2 we introduced the concept of a triangle, a subset of a
plane defined by the convex combination of three noncollinear points. In this
chapter we will build upon this foundation and make frequent use of triangles,
the normal vector to a triangle, and barycentric coordinates. A quick review
of the sections of Chapter 2 covering these topics is recommended.

While most of the remainder of this chapter focuses only on the assign-
ment of colors to objects for the purposes of rendering, the object and surface
representations we will discuss are useful for far more than just rendering.
Collision detection, picking, and even artificial intelligence all make use of
these representations.

7.4.1 Vertices and Surface Ambiguity

Unstructured collections of vertices (sometimes called point clouds) generally
cannot represent a surface unambiguously. For example, draw a set of ten or
so dots representing points on a piece of paper. There are numerous ways one
could connect these 2D points into a closed curve (a 1D “surface”) or even
into several smaller curves. This is true even if the vertices include normal
vectors, as these normal vectors only define the orientation of the surface in
an infinitely small neighborhood of the vertex. Without additional structure,
either implicit or explicit, a finite set of points rarely defines an unambiguous
surface.
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A cloud of points that is infinitely dense on the desired surface can
represent that surface. Obviously, such a directly stored collection of unstruc-
tured points would be far too large to render in real time (or even store) on
a computer. We need a method of representing an infinitely dense surface of
points that requires only a finite amount of representational data.

There are numerous methods of representing surfaces, depending on the
intended use. Our requirements are that we can make direct use of the con-
veniently defined vertices that our geometry pipeline generates, and that the
representation we use is efficient to render. As it turns out, we have already
been introduced to such a representation in one of the earliest sections of the
book: planar triangles.

7.4.2 Triangles

The most common method used to represent 3D surfaces in real-time graphics
systems is simple, scalable, requires little additional information beyond the
existing vertices, and allows for direct rendering algorithms; it is the approx-
imation of surfaces with triangles, or tessellation. Tessellation refers not only
to the process that generates a set of triangles from a surface but also to the
triangles and vertices that result.

Triangles, each represented and defined by only three points (vertices)
on the surface, are connected point to point and edge to edge to create
a piecewise flat (“faceted”) approximation of the surface. By varying the
number and density of the vertices (and thus the triangles) used to rep-
resent a surface, an application may make any desired trade-off between
compactness/rendering speed and accuracy of representation. Represent-
ing a surface with more and more vertices and triangles will result in
smaller triangles and a smoother surface, but will add rendering expense and
storage overhead owing to the increased amount of data representing the
surface.

One concept that we will use frequently with triangles is that of barycen-
tric coordinates. From the discussion in Chapter 2, we know that any point in a
triangle may be represented by an element of R

2 (s, t) such that 0.0 ≤ s, t ≤ 1.0.
These coordinates uniquely define each point on a nondegenerate triangle
(i.e., a triangle with nonzero area). We will often use barycentric coordi-
nates as the domain when mapping functions defined across triangles, such
as color.

7.4.3 Connecting Vertices into Triangles

To create a surface representation from the set of vertices on the surface, we
will simply “connect the dots.” That is, we will generate additional information
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Figure 7.3 A hexagonal configuration of triangles: (a) configuration, (b) seven
shared vertices, and (c) index list for shared vertices.

for rendering that joins sets of three vertices by spanning them with a triangle.
As an example, Figure 7.3(a) depicts a fan-shaped arrangement of six triangles
(defining a hexagon) that meet in a single point. The vertex array for this
geometry is an array of seven vertices; six around the edge and one in the
center. Figure 7.3(b) shows these seven vertices, numbered with their array
indices in the vertex array. However, this array alone does not define any
information about the triangles in the object.

Indexed geometry, or indexed triangle lists, bridge this gap. It defines
an object with two arrays: the vertex array we have already discussed, and
a second array of integral values for the triangle connectivities, called the
index (or element) array. The index array is an array of integers that represent
indices (offsets) into the vertex array; there are three times as many indices in
the index array as there are triangles in the object. Each set of three adjacent
indices represents a triangle. The indices are used to look up vertices in the
vertex array; the three vertices are joined into a triangle. Figure 7.3(c) shows
the index list for the hexagon example.

Note the several benefits of indexed geometry. First, vertices can be reused
in as many triangles as desired simply by using the same index value several
times in the index array. This is shown clearly by the hexagon example. One
of the vertices (the central vertex) appears in every single triangle! If we had
to duplicate a vertex each time it was used in a triangle, the memory require-
ments would be much higher, since even small vertex structures take more
space than an index value. Index values are generally 16- or 32-bit unsigned
integers. A 16-bit index value can represent a surface made up of up to 65,536
vertices, more than enough for the objects in many applications, while a
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32-bit index array can represent a surface with more than 4 billion vertices
(essentially unlimited).

Most rendering APIs support a wide range of indexed geometry. Indexed
triangle lists, such as the ones we’ve just introduced, are simple to understand
but are not as optimal as other representations. The most popular of these
more optimal representations are triangle strips, or tristrips. In a triangle
strip, the first three vertex indices represent a triangle, just as they do in a
triangle list. However, in a triangle strip, each additional vertex (the fourth,
fifth, etc.) generates another triangle — each index generates a triangle out
of itself and the two indices that preceded it (e.g., 0-1-2, 1-2-3, 2-3-4, …).
This forms a ladderlike strip of triangles (note that each triangle is assumed
to have the reverse orientation of the previous triangle — counterclockwise,
then clockwise, then counterclockwise again, etc.). Then, too, whereas trian-
gle lists require 3T indices to generate T triangles, triangle strips require only
T +2 indices to generate T triangles. An example of the difference between the
size of index arrays for triangle lists and triangle strips is shown in Figure 7.4.
Much research has gone into generating optimal strips by maximizing the
number of triangles while minimizing the number of strips, since there is
a two-vertex “overhead” to generate the first triangle in a strip. The longer
the strip, the lower the average number of indices required per strip. Most
consumer 3D hardware that is available today renders triangle strips at peak
performance, because each new triangle reuses two previous vertices, requir-
ing only one new vertex (and in the case of indexed primitives, one new index)
per triangle. This minimizes transform work on the GPU, as well as potential
“traffic” over the bus that connects the CPU to the GPU.

Index array for triangle list:
0,1,2, 1,3,2, 2,3,4, 3,5,4, 4,5,6, 5,7,6, 6,7,8, 7,9,8

(24 indices)

Index array for triangle strip:
0,1,2,3,4,5,6,7,8,9

(10 indices)

1

0 2 4 6 8

3 5 7 9

Figure 7.4 The same object as a triangle list and a triangle strip.
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Indexed rendering is not the only way to render triangle lists, strips, etc.
The other common method is nonindexed geometry, and is equivalent to
dereferencing the index list into an array of vertex structures. In other words, a
nonindexed triangle list with T triangles would use no index list, but would use
a vertex array with 3T vertices. Any vertices that were shared in the indexed
case must be duplicated in the nonindexed case. This is generally subopti-
mal, since there is no vertex reuse. In this book we will discuss only indexed
geometry.

Index Buffers

Most GPUs can link vertices and indices into triangles without any CPU inter-
vention. Thus, it is useful to be able to place index arrays into GPU-accessible
memory. These objects are called index buffers, and they are directly analo-
gous to the vertex buffers discussed previously. The only difference is that
the format of an index buffer is far more limited; in Iv, only 32-bit indices
are supported and are assumed. Iv code to create and fill an index buffer is
shown below.

IvResourceManager& manager;
// ...

// Create an index buffer with 999 indices
// With triangle lists, this would be 333 triangles
IvIndexBuffer* buffer = manager.CreateIndexBuffer(999);

// Lock the index buffer and cast to the correct
// index format
unsigned int* indices

= (unsigned int*)buffer->BeginLoadData();

// Loop over all 999 indices and fill in the data...
// ...
// Unlock the buffer, so it can be used
buffer->EndLoadData();

7.4.4 Drawing Geometry

Source Code

Demo

BasicDrawing

The final step toward rendering geometry from an application point of view
is to pass the required information into the rendering API to initiate the draw
operation. Submitting geometry to the rendering API generally takes the form
of a draw call. APIs differ on which subset of the geometry information is
passed to the draw call and which is set as the current state beforehand, but
the basic pieces of information that define the inputs to the draw call include
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at least the array of vertices, array of indices, type of primitive (list, strip,
etc.), and rendering state defining the appearance of the object. Some APIs
may also require the application to specify the location of each component
(normal, position, etc.) within the vertex structure. The Iv rendering engine
sets up the geometry and connectivity, and renders in a single call, as follows:

IvRenderer& renderer;
IvVertexBuffer* vertexBuffer;
IvIndexBuffer* indexBuffer;
// ...

renderer.Draw(kTriangleListPrim, vertexBuffer, indexBuffer);

Note the enumerated type used to specify the primitive. In this case, we
are drawing an indexed triangle list (kTriangleListPrim), but we could have
specified a triangle strip (kTriangleStripPrim) or other primitive as listed in
IvPrimType, assuming that the index data were valid for that type of prim-
itive (each primitive type uses its index list a little differently, as discussed
previously).

Once the geometry is submitted for rendering, the work really begins for
the implementation and 3D hardware itself. The implementation passes the
object geometry through the rendering pipeline and finally (if the geometry is
visible) onto the screen. The following sections will detail the most common
structure of the rendering pipeline in modern graphics APIs.

7.5 Rendering Pipeline

The basic rendering pipeline is shown in Figure 7.5. The flow is quite simple
and will be the basis for much of the discussion in this chapter. Some of the
items in the diagram will not yet be familiar. In the remainder of this chapter
we will fill in these details. The flows are as follows:

1. Primitive Processing. The pipeline starts with the triangle indices,
which determine on a triangle-by-triangle basis which vertices in the
array are required to define each triangle.

2. Per-Vertex Operations. All required vertices (which contain surface
positions in model space along with the additional vertex attributes)
are processed as follows:

(a) The positions are transformed into homogeneous space using
the model view and projection matrices.
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Figure 7.5 Details of the rendering pipeline.

(b) Additional per-vertex items such as lit vertex colors are com-
puted based on the positions, normals, etc.

3. Triangle Assembly. The transformed vertices are grouped into triples
representing the triangles to be rendered.

4. Triangle Clipping. Each homogeneous-space triangle is clipped
and/or culled as required to fall within the view rectangle.

5. Viewport Transform. The resulting clipped triangles are transformed
into screen space.

6. Fragment Generation. Triangles are “sampled,” generating pixel-
aligned samples, called fragments.

7. Fragment Processing. The final color and other properties of the
surface are computed for each fragment.

8. Output Processing. The final fragments are combined with those from
other objects that are a part of the scene to generate the final rendered
image.
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The rendering section of this book covers all of these steps in vari-
ous levels of detail. In this chapter we have already discussed the basics of
indexed triangle primitives (primitive processing and triangle assembly). In
Chapter 6 we discussed projection of vertices (per-vertex operations), clipping
and culling (triangle clipping), and transformation into screen space (view-
port transform). In this chapter we will provide an overview of other per-vertex
operations and fragment processing. In Chapter 8, Lighting, we will provide
details on how light–surface interaction can be simulated in per-vertex oper-
ations and fragment processing. Finally, the details of how fragments are
generated and processed (fragment generation and processing), as well as how
they are output to the device (output processing), are discussed in Chapter 9,
Rasterization.

7.5.1 Fixed-Function versus Programmable
Pipelines

The above pipeline has been common to rendering systems and APIs for
over a decade. Initially, the major rendering APIs such as OpenGL 1.x (and
OpenGL ES 1.x) and Direct3D’s DX3 through DX7 implemented each stage
with basically fixed functionality, modified only by a limited number of set-
tings and switches. As features multiplied in commercial 3D systems, the
switches and settings became more and more complex and often began to
interact in confusing ways. The APIs became bloated and complicated, even
though they were still unable to represent the full flexibility of the new
hardware.

As a result, starting with APIs like OpenGL 2.0 and Direct3D’s DX8,
graphics systems have added flexibility. While the classic fixed-function
pipelines were still available to applications, the APIs included new inter-
faces that allowed several of the most important fixed-function stages to be
replaced with application-provided “shader” code. The major stages that were
replaced with programmability were the per-vertex operations and fragment
processing. Rather than use a growing number of prespecified switches and
controls, these APIs added programmable shaders, which replaced the fixed-
function stages with application-supplied simple programs that turned the
inputs of the stages into the desired application outputs quite directly. In fact,
Direct3D’s DX10 and the mobile 3D API OpenGL ES 2.0 (along with other APIs
of that generation) eschew the fixed-function pipeline entirely; only shaders
are supported.

While each API used its own programming languages for these shaders,
they all progressed in similar manners. The initial shading languages
were similar to CPU assembly code: low-level instructions requiring the
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programmer to assign inputs, outputs, and temporaries to a limited set of
available registers. These were difficult to program and often included confus-
ing limitations. However, as the 3D rendering hardware became more capable,
the register sets and instructions became more powerful and general. This led
to the true real-time shading revolution.

Hardware vendors and graphics API vendors began to design and stan-
dardize high-level shading languages. The three major high-level shading
languages used for interactive 3D graphics are NVIDIA’s Cg (C for graphics)
[35], Microsoft’s HLSL (high-level shading language), and OpenGL’s GLSL
(GL shading language) [99]. While each of these languages has significant
differences, they are all remarkably similar. They all have the basic feel of
C or C++, and thus switching between them is generally quite easy. Since
OpenGL’s GLSL is widely available, is supported by both OpenGL 2.0 and
OpenGL ES 2.0 (the latter with some limitations, known as GLSL-E), and is
quite clean, we will use it exclusively for in-text shading language examples.
However, the other shading languages are capable of the same operations in
relatively similar ways.

The remainder of this book will deal exclusively with shader-based
pipelines. For the examples we will use, shaders are more illustrative and
simpler. As we shall see in the lighting chapter (Chapter 8), high-level shading
languages make it possible to directly translate shading and lighting equa-
tions into shader code. This is the additional value of shaders; while they
make complex effects possible, they also make simple shading equations quite
efficient by avoiding all of the conditionals and flag-checking required by a
fixed-function pipeline’s settings.

7.6 Shaders

7.6.1 Using Shaders to Move from Vertex to
Triangle to Fragment

Vertex shaders (VS) and fragment shaders (FS, also known in some APIs as
pixel shaders) are, at their core function, very similar. They each take input
values that represent a single entity, and output values that define additional
properties of that entity. In the case of a vertex shader, the entity in question
is a vertex, or source surface position and additional attributes as discussed
previously in this chapter. In the case of a fragment shader, the entity is a “frag-
ment” or sample representing an infinitesimally small region of the surface
being rendered. In Chapter 9 on rasterization, we will see that there is actually
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a much more precise definition of a fragment, but for now, the basic concept
is that it is a sample somewhere on the surface of the object, generally at a
point in the interior of one of the triangles, not coincident with any single
vertex defining the surface.

The “one in, one out” nature of both types of shader is an inherent limita-
tion that is simplifying yet at times frustrating. A vertex shader has access to
the attributes of the current vertex only. It has no knowledge of surface conti-
nuity and cannot access other vertex array elements. Similarly, the fragment
shader receives and can write to only the properties of the current fragment
and cannot change the screen-space position of that fragment. It cannot access
neighboring fragments or the source vertices of the triangle that contains
the fragment. The sole deviation from this standard is that in many shading
systems, the fragment shader can generate one or zero fragments. In other
words, the fragment shader can choose to “kill” the current fragment, leav-
ing a hole in the surface. This is useful for creating intra triangle cutouts to
the surface.

Looking at the pipeline depicted in Figure 7.5 in reverse, from a single-
shaded fragment backwards gives an understanding of the overall pipeline
as a function. If viewed in reverse (bottom to top), Figure 7.5 can demon-
strate this. Starting from the end, the final, shaded fragment was computed
in the fragment shader based on input values that are interpolated to the
fragment’s position within the triangle that contains it. This containing tri-
angle is based upon three transformed and processed vertices that were
each individually output from the vertex shader. These vertices were pro-
vided, along with the triangle connectivity, as a part of the geometry object
being drawn. Thus, the entire shading pipeline is, in a sense, one long
function.

7.6.2 Shader Input and Output Values

Both vertex and fragment shaders receive their inputs in roughly the same
types, the most common being floating-point scalars (float in GLSL); vec-
tors (vec2, vec3, and vec4 in GLSL); matrices (mat2, mat3, mat4, etc. in GLSL);
and arrays of each of these types of values. Colors are an extremely common
type passed in to both forms of shaders and are generally represented in the
shaders as floating-point 4-vectors, just as discussed in the introductory mate-
rial in this chapter (although they are accessed in the shader as v.r, v.g, etc.,
instead of v.x, v.y, etc.). Integers and associated vectors and arrays are often
supported as well.

One additional type of input to a shader is a texture sampler, which rep-
resents image-based lookup within the shader. This is an extremely powerful
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shader input and will garner its own section later in this chapter and in
the chapters to come. While some modern graphics systems and APIs allow
samplers as inputs to both vertex and fragment shaders, this is not universal,
and for the purposes of this book, we will discuss them as inputs to fragment
shaders, where they are universally supported.

7.6.3 Shader Operations and Language
Constructs

The set of shader operations in modern shading languages is generally the
same in both vertex and fragment shaders. The operations and functions are
too broad to list here, but include the most common infix operations (addi-
tion, subtraction, multiplication, division, negation) for scalar, vector, and
matrix types and the sensible mixing thereof. A wide range of standard math-
ematical functions are also available, such as dot and cross products, vector
normalization, trigonometric functions, etc.

Functions, procedures, conditionals, and loops are also provided in
the high-level shading languages. However, since shaders are in essence
SIMD (single instruction multiple data) systems, looping and branching can
be expensive, especially on older hardware. However, the overall shading
languages are exceedingly powerful.

7.7 Vertex Shaders

7.7.1 Vertex Shader Inputs

Vertex and fragment shaders do have slightly different sources of input, owing
to their different locations in the rendering pipeline. Vertex shaders receive
three basic sources of input: per-vertex attributes, per-object uniforms, and
global constants. The first two can be thought of as properties of the geometry
object being rendered, while the lattermost are properties and limits of the
rendering hardware.

The per-vertex attributes are the elements of the object’s vertex structure
described above and will likely differ from vertex to vertex. Some per-vertex
attributes are standard and are accessed via standard variables in the vertex
shader. These are generally the attributes that carry over from the original
fixed-function pipeline: position, surface normal, surface color, and texture
coordinates. Others are application-specific and are custom to the shader;
the high-level shading languages support this. We will focus on the standard
attributes in this book, specifically, those in GLSL.
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Note that in moving to a completely shader-based pipeline, OpenGL
ES 2.0’s GLSL-E shading language has far fewer standard, predefined vertex
shader attributes and vertex/fragment uniforms than are available in the
otherwise similar desktop OpenGL GLSL shading language. For example,
since there is no concept of a model view matrix in OpenGL ES 2.0, there
is no corresponding standard uniform. Instead, applications must pass any
needed matrices via custom uniforms. Desktop OpenGL’s GLSL, on the other
hand, makes the model view matrix and many others available to the shading
language via standard uniforms such as gl_ModelViewProjectionMatrix. We
will make use of this feature of desktop GLSL in our examples.

In DirectX, Microsoft merges these approaches to some degree. While
HLSL does not define fixed-function-related uniforms in the shading language
itself, an additional “effects” system that D3D layers on top of the basic
shaders allows for named uniforms to be linked to “semantics.” These seman-
tics make it possible for a general engine to automatically map the model
view and projection matrices (among others) to be desired uniform decla-
rations in the shader without having to explicitly query the named uniform
in each shader. These are known collectively as “Standard Annotations and
Semantics.”

The per-object uniforms can be thought of as global variables and are
the same value (or “uniform”) across the entire object being drawn. As with
attributes, some uniforms are standard and are automatically supplied by the
system to every shader; common examples include the model view and pro-
jection matrices. Other uniforms are application-specific and are custom to
the shader. These must be explicitly set in the rendering API by the applica-
tion. Once again, we will focus on the system-provided attributes available
in GLSL.

The constants are provided by the rendering API and represent hard-
ware limits that may be of use to shaders attempting to deal with running
on different platforms. Constants are just that — constant over all rendered
objects.

7.7.2 Vertex Shader Outputs

One required vertex shader output value is the homogeneous (postprojection
transform) vertex position. It must be written by all vertex shaders. The pro-
jected positions are required in order to generate screen-space triangles from
which fragment samples can be generated.

Vertex shaders provide their other output values by writing to so-called
“varying” variables. Standard (or built-in) varying values differ by API and
shading language. Additional, custom varying values may be declared by a
shader as well, although platforms may differ in the limited number of custom
varying parameters that can be declared by a shader.
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7.7.3 Basic Vertex Shaders

The simplest vertex shader simply transforms the incoming model-space
vertex by the model view and projection matrix, and places the result in the
required output register, as follows:

// GLSL
void main()
{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

This shader uses nothing but built-in vertex attributes, uniforms, and
varying variables, and thus requires no declarations at all. It transforms
a floating-point 4-vector (vec4) by a floating-point 4 × 4 matrix (mat4) and
assigns the result to a 4-vector. However, this simple vertex shader provides no
additional information about the surface — no normals, colors, or additional
attributes. In general, we will use more complex vertex shaders.

7.7.4 Linking Vertex and Fragment Shaders

As described above, the triangle assembly stage takes sets of three processed
vertices and generates triangles in screen space. Fragments on the surface
of these triangles are generated, and the fragment shader is invoked upon
each of these fragments. The connection between vertices and fragments is
basically unbounded. Three vertices generate a triangle, but that triangle may
generate many fragments (as will be discussed in Chapter 9). Or, the triangle
may generate no fragments at all (e.g., if the triangle is outside of the view
rectangle).

In defining the output values and types in its varying parameters, the
vertex shader also provides one-half of the interface between itself and the
fragment shader. In fact, vertex and fragment shaders can be written indepen-
dently and need not map one-to-one with each other. As long as the varying
values required by a fragment shader are all supplied by a given vertex shader
(even if some of the vertex shader’s varyings are unused in the fragment
shader), those two shaders may be “linked” at runtime and used together.
This ability to reuse a vertex or fragment shader with more than one of the
other type of shader cuts down on the number of shaders that needs to be
written, avoiding a combinatorial explosion.

Real applications like large-scale 3D games often spend a lot of develop-
ment time having to manage the many different shaders and shading paths
that exist in a complex rendering engine. Some applications use very large
shaders that include all of the possible cases, branching between the various
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cases using conditionals in the shader code. This can lead to large, complex
shaders with a lot of conditionals whose results will differ only at the per-
object level, a potentially wasteful option. Other applications generate shader
source code in the application itself, as needed, compiling their shaders at
runtime. This can be problematic as well, as the shader compilation takes
significant CPU cycles and can stall the application visibly. Finally, some
applications use a hybrid approach, generating the required shaders offline
and keeping them in a lookup table, loading the required shader based on the
object being rendered.

7.8 Fragment Shaders

7.8.1 Fragment Shader Inputs

Unlike vertex shaders, which are invoked on application-supplied vertices,
fragment shaders are invoked on dynamically generated fragments. Thus,
there is no concept of per-fragment attributes being passed into the fragment
shader by the application. Varying values passed on from the vertex shader
are the only unique per-fragment values.

Shader-custom varying values written by a vertex shader are simply inter-
polated and provided to the linked fragment shader. They must be declared in
the fragment shader using the same name and type as they were declared in
the vertex shader, so they can be linked together. Some of the built-in varying
values written by a shader are provided in a similarly direct manner. How-
ever, others are provided in a somewhat different manner as is appropriate
to the primitive and value. For example, in GLSL, the linked built-in varying
values for vertex shader position output (which is specified in homogeneous
coordinates) and the fragment shader’s built-in fragment coordinate (which
is in a window-relative coordinate) are in different spaces. Also, while the
vertex shader includes predefined output varying variables for both front and
back surface colors, the fragment shader is only given one of this set of colors,
depending on whether the current fragment being shaded represents the front
or back side of the surface.

Fragment shaders support constants and uniforms. A set of fragment
shader–relevant constants may be provided by the implementation. In addi-
tion, fragment shaders can access uniform values in the same way they are
accessed in vertex shaders. Fragment shaders also support an extremely pow-
erful type of uniform value: texture image samplers (as mentioned above,
some implementations support texture samplers in vertex shaders as well,
but these are not as ubiquitous). These types of uniforms are so useful that
we will dedicate entire sections to them in several of the rendering chapters.
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7.8.2 Fragment Shader Outputs

The basic goal of the fragment shader is to compute the color of the current
fragment. The entire pipeline, in essence, comes down to this single output
value per fragment. The fragment shader cannot change the other values of
the fragment, such as the position of the fragment, which remains locked
in screen space. However, some shading systems do allow for a fragment to
cancel itself, causing that fragment to go no further in the rendering pipeline.
This is useful for “cutout” effects and performance optimizations.

Each shading language defines a built-in variable into which the final
color must be written; in GLSL, this variable is gl_FragColor. An extremely
basic shader that takes an application-set per-object color and applies it to
the entire surface is shown below.

// GLSL
uniform vec4 objectColor;

void main()
{

gl_FragColor = objectColor;
}

The fragment shader above is compatible with the simple vertex shader
above—the two could be linked and used together.

Note that in the latest shading systems, a shader may output more than
one color or value per fragment. This functionality is known as multiple render
targets (MRTs) and will not be discussed in this text, as it does not directly
affect the basic pipeline or mathematics of the system. However, the tech-
nique is extremely powerful and allows for many high-end rendering effects
to be done efficiently. For details and examples of the use of MRTs, see
Gray [48].

7.8.3 Compiling, Linking, and Using Shaders

Source Code

Demo

BasicShaders

Programmable shaders are analogous to many other computer programs.
They are written in a high-level language (GLSL, in our case), built from
multiple source files or sections (a vertex shader and a fragment shader), com-
piled into “machine language” (the GPU’s microcode), and linked (the vertex
shader together with the fragment shader). The resulting program then can
be used.

This implies several stages. The first stage, compilation, can be done
at runtime in the application, or may be done as an offline process. The
availability of runtime compilation is dependent upon the platform. OpenGL
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drivers include a GLSL compiler. Direct3D ships a runtime compiler as an
independent library. OpenGL ES does not require that a platform provide a
runtime compiler. However, we will assume the availability of a runtime com-
piler in our Iv code examples. In either case, the source vertex and fragment
shaders must be compiled into compiled shader objects. If there are syntax
errors in the source files, the compilation will fail.

A pair of compiled shaders (a vertex shader and a fragment shader) must
then be linked into an overall shader or program. Most platforms support
performing this step at runtime. Linking can fail if the vertex shader does not
declare all of the varying parameters that the fragment shader requires.

For details of how OpenGL and Direct3D implement shader compila-
tion and linking, see the source code for Iv. Depending on the rendering
API, some or all of these steps may be grouped into fewer function calls.
In order to compile and link source shaders into a program in Iv, the steps
are shown below. Iv supports loading and compiling shaders from text file
or from string. The latter case is useful for simple shaders, as they can be
simply compiled into the application itself as a static string, per the following
code:

// Shader compilation code
IvShaderProgram* LoadProgram(IvResourceManager& manager)
{

IvVertexShader* vertexShader
= manager.CreateVertexShaderFromFile("vert.txt");

IvFragmentShader* fragmentShader
= manager.CreateFragmentShaderFromFile("frag.txt");

IvShaderProgram* program
= manager.CreateShaderProgram(vertexShader, fragmentShader);

return program;
}

The resulting program object then must be set as the current shading pro-
gram before an object can be rendered using it. In Iv, the code to set the
current shading program is as follows. Other APIs use similar function calls,
as follows:

IvResourceManager& manager; IvRenderer& renderer;
IvShaderProgram* program;
// ...

// Shader apply code
renderer.SetShaderProgram( program );
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7.8.4 Setting Uniform Values

As mentioned previously, uniform shader parameters form the most
immediate application-to-shader communication. These values provide the
“global” variables required inside of a shader and can be set on a per-object
basis. Since they cannot be set during the course of a draw call, there is no
way to change uniforms at a finer grain than the per-object level. Only per-
vertex attributes (in the vertex shader) and varyings (in the fragment shader)
will differ at that fine-grained level.

The first step in being able to set a uniform value for a shader is to query
the uniform value by name from the application. Rendering APIs that support
high-level shading languages also support some method of mapping string
names for uniforms into the uniforms themselves. The exact method differs
from API to API. However, querying by string can be expensive and should not
be done every time an application needs to access a uniform in a shader. As
a result, the rendering APIs can, given a string name and a shading program
object, return a “handle” or pointer to an object that represents the uniform.
While the initial lookup still requires a string match, the returned handle
allows the uniform to be changed later without a string lookup each time. In
Iv, the query function is as follows:

IvShaderProgram* program;
// ...

IvUniform* uniform = program->GetUniform("myShaderUniformName");

The handle variable uniform now represents that uniform in that shader from
this point onward. Note that uniforms are in the scope of a given shading
program. Thus, if you need to set a uniform in multiple shading programs,
you will need to query the handles and set the values independently for each
shading program, even if the uniform has the same name in all of the programs.
Although the application will generally know the type of the uniform already
(since the application developer likely wrote the shader code), rendering APIs
make it possible to retrieve the type (float; integer; Boolean; 2-, 3-, and 4-
vectors of each; and float matrices) and array count (one or more of each
type) for a uniform. Finally, the rendering API will include functions to set
(and perhaps get) the values of each uniform. Iv code that demonstrates
querying the type and count of a uniform as well as setting the value is as
follows. The code below queries a handle for a uniform that is known to
be a two-element array of 4D vectors, perhaps representing a pair of basis
vectors.

IvUniform* uniform;
// ...
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IvUniformType uniformType = uniform->GetType();
unsigned int uniformCount = uniform->GetCount();

// We’re expecting an array of two float vector-4’s
if ((uniformType == kFloat4Uniform) &&

(uniformCount == 2))
{

// Set the vectors to the Z and X axes
uniform->SetValue(IvVector4(0, 0, 1, 0), 0);
uniform->SetValue(IvVector4(1, 0, 0, 0), 1);

}

These interfaces make it possible to pass a wide range of data items down
from the application code to a shader. We will use uniforms extensively in
Chapter 8 as we discuss lighting. Uniforms will form the basis of how we
pass information regarding the number, type, and configuration of lights and
surfaces to the shaders that will actually compute the lit colors.

7.9 Basic Coloring Methods

The following sections describe a range of simple methods to assign colors
to surface geometry. Note that the cases described below are designed to
best explain how to pass the desired colors to the fragment shader and are
overly simplified. These basic methods can be (and will be in later sections
and chapters) used to pass other noncolor values into the fragment shader
for more complex shading. However, this initial discussion will focus sim-
ply on passing different forms of color values to the fragment shader, which
will in turn simply write the color value being discussed directly as its
output.

The simplest and generally highest-performing methods of coloring geo-
metry are to use constant colors. Constant colors involve “passing through”
colors that were assigned to the geometry prior to rendering. These colors may
have been generated by having an artist assign colors to every surface during
content creation time. Alternatively, an offline process may have been used
to generate static colors for all geometry. With these static colors assigned,
there is relatively little that must be done to select the correct color for a given
fragment. Constant colors mean that for a given piece of geometry, the color at
a fixed point on the surface will never change. No environmental information
like dynamic lighting will be factored into the final color.

The following examples will show simple cases of constant color. These
will serve as building blocks for later dynamic coloring methods, such as
lighting.
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7.9.1 Per-Object Colors

Source Code

Demo

UniformColors

The simplest form of useful coloring is to assign a single color per object.
Constant coloring of an entire object is of very limited use, since the entire
object will appear to be flat, with no color variation. At best, only the filled
outline of the object will be visible against the backdrop. As a result, except in
some special cases, per-object color is rarely used as the final shading function
for an object.

Per-object color requires no special work in the vertex shader (other than
basic projection). The vertex/fragment shader pair below implements per-
object colors. The application need only specify the desired color by setting
the color into the named uniform objectColor. The objectColor uniform must
be declared in the fragment shader and the application must set its value for
the current object prior to rendering the object; it is not a built-in uniform.

// GLSL
void main() // vertex shader
{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

// GLSL
uniform vec4 objectColor;

void main() // fragment shader
{

gl_FragColor = objectColor;
}

7.9.2 Per-Vertex Colors

Source Code

Demo

VertexColors

Many of the surfaces approximated by tessellated objects are smooth, mean-
ing that the goal of coloring these surfaces is to emphasize the smoothness
of the original surface, not the artifacts of its approximation with flat tri-
angles. This fact makes flat shading a very poor choice for many tessellated
objects. A shading method that can generate the appearance of a smooth
surface is needed. Per-vertex coloring, along with a method called Gouraud
shading (after its inventor, Henri Gouraud) does this. Gouraud shading is
based on the existence of some form of per-vertex colors, assigning a color to
any point on a triangle by linearly interpolating the three vertex colors over the
surface of the triangle. As with the other shading methods we have discussed,
Gouraud shading is independent of the source of these per-vertex colors; the
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vertex colors may be assigned explicitly by the application, or generated on-
the-fly via per-vertex lighting or other vertex shader. This linear interpolation
is both simple and smooth and can be expressed as a mapping of barycentric
coordinates (s, t) as follows:

Color(O, T, (s, t)) = sCV1 + tCV2 + (1 − s − t)CV3

Examining the terms of the equation, it can be seen that Gouraud shad-
ing is simply an affine transformation from barycentric coordinates (as
homogeneous points) in the triangle to RGB color space.

An important feature of per-vertex smooth colors is that color disconti-
nuities can be avoided at triangle edges, making the piecewise-flat tessellated
surface appear smooth. Internal to each triangle, the colors are interpolated
smoothly. At triangle edges, color discontinuities can be avoided by ensuring
that the two vertices defining a shared edge in one triangle have the same color
as the matching pair of vertices in the other triangle. It can be easily shown
that at a shared edge between two triangles, the color of the third vertex in
each triangle (the vertices that are not an endpoint of the shared edge) does
not factor into the color along that shared edge. As a result, there will be no
color discontinuities across triangle boundaries, as long as the shared ver-
tices between any pair of triangles are the same in both triangles. In fact, with
fully shared, indexed geometry, this happens automatically (since colocated
vertices are shared via indexing). Figure 7.6 allows a comparison of geometry
drawn with per-face colors and with per-vertex colors.

Per-vertex colors are generated in the vertex shader, either through com-
putation, direct use of per-vertex attributes, or a combination of both. In the
fragment shader, the built-in vertex color-varying value (which has been inter-
polated to the correct value for the fragment using Gouraud interpolation) is
used directly.

(a) (b)

Figure 7.6 (a) Flat (per-face) and (b) Gouraud (per-vertex) shading.
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// GLSL
void main() // vertex shader
{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
gl_FrontColor = gl_BackColor = gl_Color;

}

// GLSL
void main() // fragment shader
{

gl_FragColor = gl_Color;
}

7.9.3 Per-Triangle Colors

Rounding out the “primitive-level” coloring methods is per-triangle coloring.
This method simply assigns a color to each triangle. This is also known as
faceted, or flat, shading, because the resulting geometry appears planar on a
per-triangle basis. Technically, this requires adding a color attribute for each
triangle. However, explicit per-triangle attributes are not supported in most
current rendering systems. As a result, in order to support per-triangle colors,
rendering APIs tend to allow for a mode in which the color value computed for
one of a triangle’s vertices is used as the varying value for the entire triangle,
with no interpolation.

There are two common ways of specifying flat shading in programmable
shading APIs. A shader-external render-state setting may be used to place the
rendering pipeline in flat-shaded mode. This is the method used by Iv, enabled
via the IvRenderer function SetShadeMode. The single argument to this function
sets the shading mode: kFlatShadeMode sets flat shading and kSmoothShadeMode
sets Gouraud shading. Having placed the system into flat-shaded mode, the
triangle assembly stage will automatically duplicate the vertex color-varying
value(s) from one of the triangle’s vertices to the other two, causing all frag-
ments for that triangle to receive the same color(s). The other method of
specifying per-triangle constant colors is built into the shading language itself,
whereby a varying value is declared in the shader with a “flat”-type modifier.
Varying values declared as “flat” will not be interpolated before being passed
down to the fragment shader.

7.9.4 Sharp Edges and Vertex Colors
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SharpEdges

Many objects that we render will contain a mixture of smooth surfaces and
sharp edges. One need only look at the outlines of a modern automobile to
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see this mixture of sloping surfaces (a rounded fender) and hard creases (the
sharp edge of a wheelwell). Such an object cannot be drawn using per-triangle
colors, as per-triangle colors will correctly represent the sharp edges, but will
not be able to represent the smooth sections. In these kinds of objects, some
sharp geometric edges in the tessellation really do represent the original sur-
face accurately, while other sharp edges are designed to be interpolated across
to approximate a smooth section of surface.

In addition, the edge between two triangles may mark the boundary
between two different colors on the surface of the object, such as an object
with stripes painted upon it. In this context, a “sharp” edge is not necessarily
a geometric property. It is nothing more than an edge that is shared by two
adjacent triangles where the triangle colors on either side of the edge are dif-
ferent. This produces a visible, sharp line between the two triangles where the
color changes.

In these situations, we must use per-vertex interpolated colors. However,
interpolating smoothly across all triangle boundaries is not the desired behav-
ior with a smooth/sharp object. The vertices along a sharp edge need to
have different colors in the two triangles abutting the edge. In general, when
Gouraud shading is used, these situations require coincident vertices to be
duplicated, so that the two coincident copies of the vertex can have different
colors. Figure 7.7 provides an example of a cube drawn with entirely shared
vertices and with duplicated vertices to allow per-vertex, per-face colors. Note
that the cube is not flat-shaded in either case — there are still color gradients
across each face. The example with duplicated vertices and sharp shading
edges looks more like a cube.

7.9.5 More about Basic Shading

For far more details on the rendering of flat- versus smooth- (or Gouraud)
shaded triangles, see Chapter 9. Both flat and Gouraud shading are used to

(a) (b)

Figure 7.7 Sharp vertex discontinuities: (a) shared vertices lead to smooth-shaded
edges, and (b) duplicated vertices allow the creation of sharp-shaded edges.
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interpolate colors generated by dynamic lighting. For a detailed discussion of
dynamic lighting, see Chapter 8.

7.9.6 Limitations of Basic Shading Methods

Real-world surfaces often have detail at many scales. The shading/coloring
methods described so far require that the fragment shader compute a final
color based solely on sources assigned at tessellation-level features, either
per-triangle or pervertex. While this works well for surfaces whose colors
change at geometric boundaries, many surfaces do not fit this restriction
very well, making flat shading and Gouraud shading ineffective at best. While
programmable shaders can be used to compute very complex coloring func-
tions that change at a much higher frequency than per-vertex or per-triangle
methods, doing so based only on these gross-scale inputs can be difficult and
inefficient.

For example, imagine a flat sheet of paper with text written on it. The flat,
rectangular sheet of paper itself can be represented by as few as two triangles.
However, in order to use Gouraud shading (or even more complex fragment
shading based on Gouraud-interpolated sources) to represent the text, the
piece of paper would have to be subdivided into triangles at the edges of
every character written on it. None of these boundaries represents geometric
features, but rather are needed only to allow the color to change from white
(the paper’s color) to black (the color of the ink). Each character could easily
require hundreds of vertices to represent the fine stroke details. This could
lead to a simple, flat piece of paper requiring tens of thousands of vertices.
Clearly, we require a shading method that is capable of representing detail at
a finer scale than the level of tessellation.

7.10 Texture Mapping

7.10.1 Introduction

Source Code

Demo

BasicTexturing

One method of adding detail to a rendered image without increasing geo-
metric complexity is called texture mapping, or more specifically image-based
texture mapping. The physical analogy for texture mapping is to imagine wrap-
ping a flat, paper photograph onto the surface of a geometric object. While
the overall shape of the object remains unchanged, the overall surface detail is
increased greatly by the image that has been wrapped around it. From some
distance away, it can be difficult to even distinguish what pieces of visual
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detail are the shape of the object and which are simply features of the image
applied to the surface.

A real-world physical analogy to this is theatrical set construction. Often,
details in the set will be painted on planar pieces of canvas, stretched over
a wooden frame (i.e.,“flats”), rather than built out of actual, 3D wood, brick,
or the like. With the right lighting and positioning, these painted flats can
appear as very convincing replicas of their real, 3D counterparts. This is
the exact idea behind texturing — using a 2D, detailed image placed upon
a simple 3D geometry to create the illusion of a complex, detailed, fully
3D object.

An example of a good use of texturing is a rendering of a stucco wall; such
a wall appears flat from any significant distance, but a closer look shows that
it consists of many small bumps and sharp cracks. While each of these bumps
could be modeled with geometry, this is likely to be expensive and unlikely
to be necessary when the object is viewed from a distance. In a 3D computer
graphics scene, such a stucco wall will be most frequently represented by a flat
plane of triangles, covered with a detailed image of the bumpy features of lit
stucco.

The fact that texture mapping can reduce the problem of generating
and rendering complex 3D objects into the problem of generating and ren-
dering simpler 3D objects covered with 2D paintings or photographs has
made texture mapping very popular in real-time 3D. This, in turn, has led
to the method being implemented in display hardware, making it even less
expensive computationally. The following sections will introduce and detail
some of the concepts behind texture mapping, some mathematical bases
underlying them, and basics of how texture mapping can be used in 3D
applications.

7.10.2 Shading via Image Lookup

The real power of texturing lies in the fact that it uses a dense plane of sam-
ples (an image) as its means of generating color. In a sense, texturing can be
thought of as a powerful, general function that maps 2-vectors (the texture
coordinates) into a vector-valued output (most frequently an RGBA color). To
the shader it is basically irrelevant how the function is computed. Rather than
directly interpolating colors that are stored in the vertices, the interpolated
per-vertex texture coordinate values serve only to describe how an image is
mapped to the triangle. While the mapping from the surface into the space of
the image is linear, the lookup of the image value is not. By adding this level
of indirection between the per-vertex values and the final colors, texturing can
create the appearance of a very complex shading function that is actually no
more than a lookup into a table of samples.
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The process of texturing involves defining three basic mappings:

1. To map all points on a surface (smoothly in most neighborhoods) into
a 2D (or in some cases, 1D or 3D) domain.

2. To map points in this (possibly unbounded) domain into a unit square
(or unit interval, cube, etc.).

3. To map points in this unit square to color values.

The first stage will be done using a modification of the method we used
for colors with Gouraud shading, an affine mapping. The second stage will
involve methods such as min, max, and modulus. The final stage is the most
unique to texturing and involves mapping points in the unit square into an
image. We will begin our discussion with a definition of texture images.

7.10.3 Texture Images

The most common form of texture images (or textures, as they are generally
known) are 2D, rectangular arrays of color values. Every texture has a width
(the number of color samples in the horizontal direction) and a height (the
number of samples in the vertical direction). Textures are similar to almost
any other digital image, including the screen, which is also a 2D array of colors.
Just as the screen has pixels (for picture elements), textures have texels (texture
elements). While some graphics systems allow 1D textures (linear arrays of
texels) and even 3D textures (cubes or rectangular parallelepipeds of texels),
by far the most common and most useful are 2D, image-based textures. Our
discussion of texturing will focus entirely on 2D textures.

We can refer to the position of a given texel via a 2D value (x, y) in texel
units. (Note that these coordinates are (column, row), the reverse of how we
generally refer to matrix elements in our row-major matrix organization.)
Figure 7.8 shows an example of a common mapping of texel coordinates into
a texture. Note that while the left to right increasing mapping of x is universal
in graphics systems, the mapping of y is not; top to bottom is used in Direct3D,
and bottom to top is used in OpenGL.

As with most other features, while there are minor differences between
the rendering APIs regarding how to specify texture images, all of the APIs
require the same basic information:

■ The per-texel color storage format of the incoming texture data.

■ The width and height of the image in texels.

■ An array of width × height color values for the image data.
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x � 26, y � 11

x � Width – 1, y � 0x � 0, y � 0

x � Width – 1, y � Height – 1x � 0, y � Height – 1

y � 11

x � 26

Figure 7.8 Texel-space coordinates in an image.

Put together, these define the image data and their basic interpretation in the
same way that an array of vertices, the vertex format information, and the
vertex count define vertex geometry to the rendering pipeline. As with vertex
arrays, the array of texel data can be quite sizable. In fact, texture image data
are one of the single-largest consumers of memory-related resources.

Rendering APIs generally include the notion of an opaque handle to a
device-resident copy of a texture. For peak performance on most systems,
texture image data need to reside in GPU device memory. Thus, in a process
analogous to vertex buffer objects, rendering APIs include the ability to trans-
fer a texture’s image data to the device memory once. The opaque handle then
can be used to reference the texture in later drawing calls, using the already-
resident copy of the texture image data in GPU memory. In Iv, we use an
object to wrap all of this state: IvTexture, which represents the texture image
itself and the texture sampler state. Like most other resources (e.g., vertex and
index buffers), IvTexture objects are created via the IvResourceManager object,
as follows:
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IvResourceManager* manager;

// ...

{
const unsigned int width = 256;
const unsigned int height = 512;
IvTexture* texture = manager->CreateTexture(kRGBA32TexFmt,

width, height);

// ...

The preceeding code creates a texture object with a 32-bit-per-texel RGBA
texture image that has a width of 256 texels and a height of 512 texels. Note
that while this function allocates the texture, it does not fill it with image
data. In order to fill the texture with texel data, we must “lock” the texture
and write the data to the allocated memory in a manner analogous to the way
we initialized vertex arrays. The code to fill an RGBA texture with bright red
texels is as follows:

IvTexture* texture;

// ...

{
const unsigned int width = texture->GetWidth();
const unsigned int height = texture->GetHeight();

IvTexColorRGBA* texels = texture->BeginLoadData();

for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {

IvTexColorRGBA& texel = texels[x + y * width];
texel.r = 255;
texel.g = 0;
texel.b = 0;
texel.a = 255;

}
}

// ...
texture->EndLoadData();
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7.10.4 Texture Samplers

Textures appear in the shading language in the form of a texture sampler
object. Texture samplers are passed to a fragment shader as a uniform value
(which is a handle that represents the sampler). The same sampler can be
used multiple times in the same shader, passing different texture coordinates
to each lookup. So, a shader can sample a texture at multiple locations when
computing a single fragment. This is an extremely powerful technique that
is used in many advanced shaders. From within a shader, a texture sampler
is a sort of “function object” that can be evaluated as needed, each time with
unique inputs.

Texture Samplers in Application Code

At the application C or C++ level, there is considerably more to a texture
sampler. A texture sampler at the API level includes at least the following
information:

■ The texture image data.

■ Settings that control how the texture coordinates are mapped into the
image.

■ Settings that control how the resulting image sample is to be post-
processed before returning it to the shader.

All of these settings are passed into the rendering API by the application
prior to using the texture sampler in a shader. As with other shader uniforms,
we must include application C or C++ code to link a value to the named
uniform; in this case, the uniform value represents a texture image handle.
We will cover each of these steps in the following sections.

The book’s rendering API uses the IvTexture object to represent texture
samplers and all of their related rendering state. The code examples in the
following section below all describe the IvTexture interfaces.

7.11 Texture Coordinates

While textures can be indexed by 2D vectors of nonnegative integers on
a per-texel basis (texel coordinates), textures are normally addressed in a
more general, texel-independent manner. The texels in a texture are most
often addressed via width- and height-independent U and V values. These
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U � 1.0, V � 1.0U � 0.0, V � 1.0

U � 1.0, V � 0.0U � 0.0, V � 0.0

Figure 7.9 Mapping U and V coordinates into an image.

2D real-valued coordinates are mapped in the same way as texel coordi-
nates, except for the fact that U and V are normalized, covering the entire
texture with the 0-to-1 interval. Figure 7.9 depicts the common mapping of
UV coordinates into a texture. These normalized UV coordinates have the
advantage that they are completely independent of the height and width of
the texture, meaning that the texture resolution can change without having
to change the mapping values. Almost all texturing systems use these normal-
ized UV coordinates at the application and shading language level, and as a
result, they are often referred to by the generic term of texture coordinates, or
texture UVs.

7.11.1 Mapping Texture Coordinates onto
Objects

The texture coordinates defined at the three vertices of a triangle define
an affine mapping from barycentric coordinates to UV space. Given the
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barycentric coordinates of a point in a triangle, the texture coordinates may
be computed as

[
u

v

]
=

[
(uV1 − uV3) (uV2 − uV3) uV3
(vV1 − vV3) (vV2 − vV3) vV3

]⎡⎣ s

t

1

⎤⎦
Although there is a wide range of methods used to map textures onto triangles
(i.e., to assign texture coordinates to the vertices), a common goal is to avoid
“distorting” the texture. In order to discuss texture distortion, we need to
define the U and V basis vectors in UV space. If we think of the U and V vectors
as 2-vectors rather than the “pointlike” texture coordinates themselves, then
we compute the basis vectors as

eu = (1, 0) − (0, 0)

ev = (0, 1) − (0, 0)

The eu vector defines the mapping of the horizontal dimension of the texture
(and its length defines the size of the mapped texture in that dimension), while
the ev vector does the same for the vertical dimension of the texture.

If we want to avoid distorting a texture when mapping it to a surface,
we must ensure that the affine mapping of a texture onto a triangle involves
rigid transforms only. In other words, we must ensure that these texture-
space basis vectors map to vectors in object space that are perpendicular
and of equal length. We define ObjectSpace() as the mapping of a vector in
texture space to the surface of the geometry object. In order to avoid dis-
torting the texture on the surface, ObjectSpace() should obey the following
guidelines:

ObjectSpace(eu) · ObjectSpace(ev) = 0

|ObjectSpace(eu)| = |ObjectSpace(ev)|

In terms of an affine transformation, the first constraint ensures that the tex-
ture is not sheared on the triangle (i.e., perpendicular lines in the texture
image will map to perpendicular lines in the plane of the triangle), while the
second constraint ensures that the texture is scaled in a uniform manner (i.e.,
squares in the texture will map to squares, not rectangles, in the plane of the
triangle). Figure 7.10 shows examples of texture-to-triangle mappings that do
not satisfy these constraints.

Note that these constraints are by no means a requirement — many cases
of texturing will stray from them, through either artistic desire or the sim-
ple mathematical inability to satisfy them in a given situation. However, the
degree that these constraints do hold true for the texture coordinates on a
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Skewed mappings

Original texture

Non-perpendicular

Non-uniform scale Non-perpendicular

Figure 7.10 Examples of “skewed” texture coordinates.

triangle give some measure of how closely the texturing across the triangle
will reflect the original planar form of the texture image.

7.11.2 Generating Texture Coordinates

Texture coordinates are often generated for an object by some form of pro-
jection of the object-space vertex positions in R

3 into the per-vertex texture
coordinates in R

2. All texture coordinate generation — in fact, all 2D textur-
ing — is a type of projection. For example, imagine the cartographic problem
of drawing a flat map of Earth. This problem is directly analogous to map-
ping a 2D texture onto a spherical object. The process cannot be done without
distortion of the texture image. Any 2D texturing of a sphere is an exercise in
matching a projection/“unwrapping” of the sphere onto a rectangular image
(or several images) and the creation of 2D images that take this mapping into
account. For example, a common, simple mapping of a texture onto a sphere
is to use U and V as longitude and latitude, respectively, in the texture image.
This leads to discontinuities at the poles, where more and more texels are
mapped over smaller and smaller surface areas as we approach the poles.

The artist must take this into account when creating the texture image.
Except for purely planar mappings (such as the wall of a building), most
texturing work done by an artist is an artistic cycle between generating texture
coordinates upon the object and painting textures that are distorted correctly
to map in the desired way to those coordinates.
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7.11.3 Texture Coordinate Discontinuities

As was the case with per-vertex colors, there are situations that require
shared, collocated vertices to be duplicated in order to allow the vertices
to have different texture coordinates. These situations are less common
than in the case of per-vertex colors, due to the indirection that textur-
ing allows. Pieces of geometry with smoothly mapped texture coordinates
can still allow color discontinuities on a per-sample level by painting the
color discontinuities into the texture. Normally, the reason for duplicating
collocated vertices in order to split the texture coordinates has to do with
topology.

For example, imagine applying a texture as the label for a model of a
tin can. For simplicity, we shall ignore the top and bottom of the can and
simply wrap the texture as one would a physical label. The issue occurs at
the texture’s seam. Figure 7.11 shows a tin can modeled as an eight-sided
cylinder containing 16 shared vertices — 8 on the top and 8 on the bottom.
The mapping in the vertical direction of the can (and the label) is simple, as
shown in the figure. The bottom 8 vertices set V = 0.0 and the top 8 vertices set
V = 1.0. So far, there is no problem. However, problems arise in the assignment
of U. Figure 7.12 shows an obvious mapping of U to both the top and bottom
vertices — U starts at 0.0 and increases linearly around the can until the eighth
vertex, where it is 0.875, or 1.0 − 0.125.

Shared vertex UVs Texture image

V � 0

V � 1

U � 0.375
U � 0.5

U � 0.0 U � 0.875

U � 0.75

U � 0.625

U � 0.125

U � 0.25

Figure 7.11 Texturing a can with completely shared vertices.
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Front side
(Appears to be correctly mapped)

Back side
(Incorrect, due to shared

vertices along the label “seam”)

Figure 7.12 Shared vertices can cause texture coordinate problems.

The problem is between the eighth vertex and the first vertex. The first
vertex was originally assigned a U value of 0.0, but at the end of our cir-
cuit around the can, we would also like to assign it a texture coordinate of
1.0, which is not possible for a single vertex. If we leave the can as is, most
of it will look perfectly correct, as we see in the front view of Figure 7.12.
However, looking at the back view in Figure 7.12, we can see that the face
between the eighth and first vertex will contain a squashed version of almost
the entire texture, in reverse! Clearly, this is not what we want (unless we can
always hide the seam). The answer is to duplicate the first vertex, assigning
the copy associated with the first face U = 0.0 and the copy associated with
the eighth face U = 1.0. This is shown in Figure 7.13 and looks correct from all
angles.

7.11.4 Mapping Outside the Unit Square

Source Code

Demo

TextureAddressing

So far, our discussion has been limited to texture coordinates within the unit
square, 0.0 ≤ u and v ≤ 1.0. However, there are interesting options available if
we allow texture coordinates to fall outside of this range. In order for this to
work, we need to define how texture coordinates map to texels in the texture
when the coordinates are less than 0.0 or greater than 1.0. These operations
are per sample, not per vertex, as we shall discuss.
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Front side
(Correct: unchanged from

previous mapping)

Back side
(Correct, due to doubled

vertices along the label  “seam”)

Figure 7.13 Duplicated vertices used to solve texturing issues.

The most common method of mapping unbounded texture coordinates
into the texture is known as texture wrapping, texture repeating, or texture tiling.
The wrapping of a component u of a texture coordinate is defined as

wrap(u) = u − �u�

The result of this mapping is that multiple “copies” of the texture “tile” the
surface. Wrapping must be computed using the per sample, not per-vertex,
method. Figure 7.14 shows a square whose vertex texture coordinates are all
outside of the unit square, with a texture applied via per-sample wrapping.
Clearly, this is a very different result than if we had simply applied the wrap-
ping function to each of the vertices, which can be seen in Figure 7.15. In
most cases, per-vertex wrapping produces incorrect results.

Wrapping is often used to create the effect of a tile floor, paneled walls,
and many other effects where obvious repetition of a texture is required.
However, in other cases wrapping is used to create a more subtle effect,
where the edges of each copy of the texture are not quite as obvious. In
order to make the edges of the wrapping less apparent, texture images must
be created in such a way that the matching edges of the texture image are
equal.
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Texture image

(–1,–1)

(–1,2) (2,2)

(2,–1)

Figure 7.14 An example of texture wrapping.

Wrapping creates a toroidal mapping of the texture, as tiling matches the
bottom edge of the texture with the top edge of the neighboring copy (and vice
versa), and the left edge of the texture with the right edge of the neighboring
copy (and vice versa). This is equivalent to rolling the texture into a tube
(matching the top and bottom edges), and then bringing together the ends
of the tube, matching the seams. Figure 7.16 shows this toroidal matching
of texture edges. In order to avoid the sharp discontinuities at the texture
repetition boundaries, the texture must be painted or captured in such a way
that it has “toroidal topology”; that is, the neighborhood of its top edge is equal
to the neighborhood of its bottom edge, and the neighborhood of its left edge
must match the neighborhood of its right edge. Also, the neighborhood of the
four corners must be all equal, as they come together in a point in the mapping.
This can be a tricky process for complex textures, and various algorithms have
been built to try to create toroidal textures automatically. However, the most
common method is still to have an experienced artist create the texture by
hand to be toroidal.

The other common method used to map unbounded texture coordinates
is called texture clamping, and is defined as

clamp(u) = max(min(u, 1.0), 0.0)

Clamping has the effect of simply stretching the border texels (left, right, top,
and bottom edge texels) out across the entire section of the triangle that falls
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(0,0)

(0,1) (1,1)

(1,0)

Per-vertex wrapping
(incorrect)

Original UVs
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Figure 7.15 Computing texture wrapping.

outside of the unit square. An example of the same square we’ve discussed,
but with texture clamping instead of wrapping, is shown in Figure 7.17. Note
that clamping the vertex texture coordinates is very different from texture
clamping. An example of the difference between these two operations is shown
in Figure 7.18. Texture clamping must be computed per sample and has no
effect on any sample that would be in the unit square. Per-vertex coordinate
clamping, on the other hand, affects the entire mapping to the triangle, as
seen in the lower-right corner of Figure 7.18.
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Figure 7.16 Toroidal matching of texture edges when wrapping.

Texture image

(–1,–1)

(–1,2) (2,2)

(2,–1)

Figure 7.17 An example of texture clamping.
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Figure 7.18 Computing texture clamping.

Clamping is useful when the texture image consists of a section of detail
on a solid-colored background. Rather than wasting large expanses of texels
and placing a small copy of the detailed section in the center of the texture,
the detail can be spread over the entire texture but leaving the edges of the
texture as the background color.

On many systems clamping and wrapping can be set independently for the
two dimensions of the texture. For example, say we wanted to create the effect
of a road: black asphalt with a thin set of lines down the center of the road.
Figure 7.19 shows how this effect can be created with a very small texture
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Texture image

(–5,0) (5,0)

Textured square
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U clamping

V wrapping

Figure 7.19 Mixing clamping and wrapping in a useful manner.

by clamping the U dimension of the texture (to allow the lines to stay in the
middle of the road with black expanses on either side) and wrapping in the V

dimension (to allow the road to repeat off into the distance).
Most rendering APIs (including the book’s Iv interfaces) support both

clamping and wrapping independently in U and V . In Iv, the functions
to control texture coordinate “addressing” are SetAddressingU and SetAd-
dressingV. The road example above would be set up as follows using these
interfaces:

IvTexture* texture;

// ...

{
texture->SetAddressingU(kClampTexAddr);
texture->SetAddressingV(kWrapTexAddr);

// ...
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7.11.5 Texture Samplers in Shader Code

Using a texture sampler in shader code is quite simple. As mentioned in
section 7.10.4 a fragment shader simply uses a declared texture sampler as an
argument to a lookup function. The following shader code declares a texture
sampler and uses it along with a set of texture coordinates to determine the
fragment color:

// GLSL varying vec2 texCoords;
void main() // vertex shader
{

// Grab the first set of texture coordinates
// and pass them on
texCoords = gl_MultiTexCoord0;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

// GLSL - fragment shader
uniform sampler2D texture;
varying vec2 texCoords;

void main()
{

// Sample the texture represented by "texture"
// at the location "texCoords"
gl_FragColor = texture2D (texture, texCoords);

}

This is a simple example: The value passed in for the texture coordinate
could be computed by other means, either in the vertex shader (and then
interpolated automatically as a varying value into the fragment shader), or it
could even have been computed in the fragment shader. However, applica-
tions should take care to remember that the vertex and fragment shaders are
invoked at different frequencies. When possible, it is generally better to put
computations that can be done in the vertex shader in the vertex shader. If
a computation can be done in either the vertex or fragment shader with no
difference in visual outcome, it may increase performance to have the shader
units compute these values only at each vertex.

7.12 The Steps of Texturing

Unlike basic, per-vertex (Gouraud) shading, texturing adds several levels of
indirection between the values defined at the vertices (the UV values) and
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the final sample colors. This is at once the very power of the method and
its most confusing aspect. This indirection means that the colors applied to
a triangle by texturing can approximate an extremely complex function, far
more complex and detailed than the planar function implied by Gouraud
shading. However, it also means that there are far more stages in the method
whereupon things can go awry. This section aims to pull together all of the pre-
vious texturing discussion into a simple, step-by-step pipeline. Understanding
this basic pipeline is key to developing and debugging texturing use in any
application.

7.12.1 Other Forms of Texture Coordinates

Real-valued, normalized texture coordinates would seem to add a continuity
that does not actually exist across the domain of an image, which is a discrete
set of color values. For example, in C or C++ one does not access an array
with a floating-point value — the index must first be rounded to an integer
value. For the purposes of the initial discussion of texturing, we will leave the
details of how real-valued texture coordinates map to texture colors somewhat
vague. This is actually a rather broad topic and will be discussed in detail in
Chapter 9. Initially, it is easiest to think of the texture coordinate as referring
to the color of the closest texel. For example, given our assumption, a texture
coordinate of (0.5, 0.5) in a texture with width and height equal to 128 texels
would map to texel (64, 64). This is referred to as nearest-neighbor texture
mapping. While this is the simplest method of mapping real-valued texture
coordinates into a texture, it is not necessarily the most commonly used in
modern applications. We shall discuss more powerful and complex techniques
in Chapter 9, but nearest-neighbor mapping is sufficient for the purposes of
the initial discussion of texturing.

While normalized texture coordinates are the coordinates that most
graphics systems use at the application and shading language level, they are
not very useful at all when actually rendering with textures at the lowest level,
where we are much more concerned with the texels themselves. We will use
them very rarely in the following low-level rendering discussions. We notate
normalized texture coordinates simply as (u, v).

The next form of coordinates is often referred to as texel coordinates. Like
texture coordinates, texel coordinates are represented as real-valued num-
bers. However, unlike texture coordinates, texel coordinates are dependent
upon the width (wtexture) and height (htexture) of the texture image being used.
We will notate texel coordinates as (utexel, vtexel). The mapping from (u, v) to
(utexel, vtexel) is

(utexel, vtexel) =
(

u · wtexture − 1

2
, v · htexture − 1

2

)
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Figure 7.20 Texel coordinates and texel centers.

The shift of 1/2 may seem odd, but Figure 7.20 shows why this is necessary.
Texel coordinates are relative to the texel centers. A texture coordinate of
zero is on the boundary between two repetitions of a texture. Since the texel
centers are at the middle of a texel, a texture coordinate that falls on an integer
value is really halfway between the center of the last texel of one repetition
of the texture and the center of the first texel in the next repetition. So a
texture coordinate of 0 is equivalent to a texel coordinate of −0.5. See [77]
(the section “Directly Mapping Texels to Pixels”) for details of one common
graphics system’s texture coordinate to texel mapping.

7.12.2 From Texture Coordinates to a Texture
Sample Color

Texturing is a function that maps per-vertex 2-vectors (the texture coordi-
nates), a texture image, and a group of settings into a per-sample color. The
top-level stages are as follows:

1. Map the barycentric s and t values into u and v values using the
affine mapping defined by the three triangle-vertex texture coordinates:
(u1, v1), (u2, v2), and (u3, v3):

[
u

v

]
=

[
(u1 − u3) (u2 − u3) u3
(v1 − v3) (v2 − v3) v3

]⎡⎣ s

t

1

⎤⎦
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2. Using the texture coordinate mapping mode (either clamping or
wrapping), map the U and V values into the unit square:

uunit, vunit = wrap(u), wrap(v)

or,

uunit, vunit = clamp(u), clamp(v)

3. Using the width and height of the texture image in texels, map the U

and V values into integral texel coordinates via simple scaling:

utexel, vtexel = �uunit × width�, �vunit × height�

4. Using the texture image, map the texel coordinates into colors using
image lookup:

CT = Image(utexel, vtexel)

These steps compose to create the mapping from a point on a given triangle
to a color value. The following inputs must be configured, regardless of the
specific graphics system:

■ The texture coordinate being sampled (from interpolated vertex
attributes, interpolated from a computation in the vertex shader, or
computed in the fragment shader).

■ The texture image to be applied.

■ The coordinate mapping mode.

7.13 Limitations of Static Shading

The shaders shown in this chapter are about as simple as shaders can possibly
be. They project geometry to the screen and directly apply previously assigned
vertex colors and textures to a surface. All of the methods described thus far
assign colors that do not change for any given sample point at runtime. In
other words, no matter what occurs in the scene, a fixed point on a given
surface will always return the same color.

Real-world scenes are dynamic, with colors that change in reaction to
changes in lighting, position, and even to the surfaces themselves. Any shad-
ing method that relies entirely on values that are fixed over both time and
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scene conditions will be unable to create truly convincing, dynamic worlds.
Methods that can represent real-world lighting and the dynamic nature of
moving objects are needed.

Programmable shading is tailor-made for these kinds of applications.
A very popular method of achieving these goals is to use a simple, fast
approximation of real-world lighting written into vertex and fragment
shaders. The next chapter will discuss in detail many aspects of how lighting
can be approximated in real-time 3D systems. The chapter will detail more
and more complex shaders, adding increasing realism to the rendered scene.
The shaders presented will use dynamic inputs, per-vertex and per-pixel math,
and textures to simulate the dynamic and complex nature of real-world light-
ing. Shaders provide an excellent medium for explaining the mathematics
of lighting, since in many cases, the mathematical formulae can be directly
reflected in shader code. Finally, we will discuss the benefits and issues of
computing lighting in the vertex or fragment shaders.

7.14 Chapter Summary

In this chapter we have discussed the basics of procedural shading and the
most common inputs to the procedural shading pipeline. These techniques
and concepts lay the foundation for the next two chapters, which will dis-
cuss popular shading techniques for assigning colors to geometry (dynamic
lighting), as well as a detailed discussion of the low-level mathematical issues
in computing these colors for display (rasterization). While we have already
discussed the basics of the extremely popular shading method known as tex-
turing, this chapter is not the last time we shall mention it. Both of the
following two chapters will discuss the ways that texturing affects other stages
in the rendering pipeline.

For further reading, popular graphics texts such as Foley et al. [38] detail
other aspects of shading, including methods used for high-end offline ren-
dering, which are exactly the kinds of methods that are now starting to be
implemented as pixel and vertex shaders in real-time hardware. Shader books
such as Engel [31] and Pharr [92] also discuss and provide examples of spe-
cific programmable shaders that implement high-end shading methods and
can serve as springboards for further experimentation.
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Chapter8
Lighting

8.1 Introduction

Much of the way we perceive the world visually is based on the way objects
in the world react to the light around them. This is especially true when the
lighting around us is changing or the lights or objects are moving. Given these
facts, it is not surprising that one of the most common uses of programmable
shading is to simulate the appearance of real-world lighting.

The coloring methods we have discussed so far have used colors that are
statically assigned at content creation time (by the artist) or at the start of the
application. These colors do not change on a frame-to-frame basis. At best,
these colors represent a “snapshot” of the scene lighting at a given moment
for a given configuration of objects. Even if we only intend to model scenes
where the lights and objects remain static, these static colors cannot repre-
sent the view-dependent nature of lighting with respect to shiny or glossy
surfaces.

Clearly, we need a dynamic method of rendering lighting in real time.
At the highest level, this requires two basic items: a mathematical model for
computing the colors generated by lighting and a high-performance method of
implementing this model. We have already introduced the latter requirement;
programmable shading pipelines were designed specifically with geometric
and color computations (such as lighting) in mind. In this chapter we will
greatly expand upon the basic shaders, data sources, and shader syntax that
were introduced in Chapter 7. However, we must first address the other
requirement — the mathematical model we will use to represent lighting.

The following sections will discuss the details of a popular set of meth-
ods for approximating lighting for real-time rendering, as well as examples
of how these methods can be implemented as shaders. While we will use
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shaders to implement them, the lighting model we will discuss is based
upon the long-standing OpenGL fixed-function lighting pipeline (introduced
in OpenGL 1.x). At the end of the chapter we will introduce several more
advanced lighting techniques that take advantage of the unique abilities of
programmable shaders.

We will refer to fixed-function lighting pipelines in many places in this
chapter. Fixed-function lighting pipelines were the methods used in ren-
dering application programming interfaces (APIs) to represent lighting cal-
culations prior to the availability of programmable shaders. They are called
fixed-function pipelines because the only options available to users of these
pipelines were to change the values of predefined colors and settings. The
pipelines implemented a basically fixed-structure lighting equation and pre-
sented a limited, fixed set of options to the application programmer. No other
modifications to the lighting pipeline (and thus the lighting equation or rep-
resentation) were available. Shaders make it possible to implement the exact
lighting methods desired by the particular application.

8.2 Basics of Light Approximation

The physical properties of light are incredibly complex. Even relatively simple
scenes never could be rendered realistically without “cheating.” In a sense, all
of computer graphics is little more than cheating — finding the cheapest-to-
compute approximation for a given situation that will still result in a realistic
image. Even non-real-time, photorealistic renderings are only approximations
of reality, trading off accuracy for ease and speed of computation.

Real-time renderings are even more superficial approximations. Light in
the real world reflects, scatters, refracts, and otherwise bounces around the
environment. Historically, real-time three-dimensional (3D) lighting often
modeled only direct lighting, the light that comes along an unobstructed
path from light source to surface. Worse yet, many legacy real-time lighting
systems (such as OpenGL and Direct3D’s fixed-function lighting pipelines)
do not support automatic shadowing. Shadowing involves computing light-
blocking effects from objects located between the object being lit and the light
source. These are ignored in the name of efficiency. However, despite these
limitations, even basic lighting can have a tremendous impact on the overall
impression of a rendered 3D scene.

Lighting in real-time 3D generally involves data from at least three
different sources: the surface configuration (vertex position, normal vector),
surface material (how the surface reacts to light), and light emitter properties
(the way the light sources emit light). We will discuss each of these sources in
terms of how they affect the lighting of an object and will then discuss how
these values are passed to the shaders we will be constructing. All of the shader
concepts from Chapter 7 (vertex and fragment shading, attributes, uniforms
and varying, etc.) will be pivotal in our creation of a lighting system.
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8.2.1 Measuring Light

In order to understand the mathematics of lighting, even the simplified,
nonphysical approximation used by most real-time 3D systems, it is help-
ful to know more about how light is actually measured. The simplest way to
appreciate how we measure light is in terms of an idealized lightbulb and
an idealized surface being lit by that bulb. To explain both the brightness
and luminance (these are actually two different concepts; we will define them
in the following section) of a lit surface, we need to measure and track the
following path from end to end:

■ The amount of light generated by the bulb.

■ The amount of light reaching the surface from the bulb.

■ The amount of light reaching the viewer from the surface.

Each of these is measured and quantified differently. First, we need a way of
measuring the amount of light being generated by the lightbulb. Lightbulbs
are generally rated according to several different criteria. The number most
people think of with respect to lightbulbs is wattage. For example, we think of
a 100-watt lightbulb as being much brighter than a 25-watt lightbulb, and this
is generally true when comparing bulbs of the same kind. Wattage in this case
is a measure of the electrical power consumed by the bulb in order to create
light. It is not a direct measure of the amount of light actually generated by
the bulb. In other words, two lightbulbs may consume the same wattage (say,
100 watts) but produce different amounts of light — one type of bulb simply
may be more efficient at converting electricity to light. So what is the measure
of light output from the bulb?

Overall light output from a light source is a measure of power: light energy
per unit time. This quantity is called luminous flux. The unit of luminous flux
is the lumen. The luminous flux from a lightbulb is measured in lumens, a
quantity that is generally listed on boxes of commercially available lightbulbs,
near the wattage rating. However, lumens are not how we measure the amount
of light that is incident upon a surface.

There are several different ways of measuring the light incident upon a
surface. The one that will be of greatest interest to us is illuminance. Illumi-
nance is a measure of the amount of luminous flux falling on a given area of
surface. Illuminance is also called luminous flux density, as it is the amount of
luminous flux per unit area. It is measured in units of lux, which are defined
as lumens per meter squared. Illuminance is an important quantity because
it measures not only the light power (in lumens), but also the area over which
this power is distributed (in square meters). Given a fixed amount of luminous
flux, increasing the surface area over which it is distributed will decrease the
illuminance proportionally. We will see this property again later, when we
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discuss the illuminance from a point light source. Illuminance in this case
is only the light incident upon a surface, not the amount reflected from the
surface.

Light reflection from a surface depends on a lot of properties of the surface
and the geometric configuration. We will cover approximations of reflection
later in this chapter. However, the final step in our list of lighting measure-
ments is to define how we measure the reflected light reaching the viewer from
the surface. The quantity used to measure this is luminance, which is defined
as illuminance per unit solid angle. Luminance thus takes into account how
the reflected light is spread directionally. The unit of luminance is the nit, and
this value is the closest of those we have discussed to representing “bright-
ness.” However, brightness is a perceived value and is not linear with respect to
luminance, due to the response curve of the human visual system. For details
of the relationship between brightness and luminance, see Cornsweet [20].

The preceding quantities are photometric; that is, they are weighted by the
human eye’s response to different wavelengths of light. The field of radiome-
try studies the measurement of analogous quantities that do not include this
physiological weighting. The radiometric equivalent of illuminance is irradi-
ance (measured in watts per meter squared), and the equivalent of luminance
is radiance. These radiometric units and quantities are relevant to anyone
working with computer graphics, as they are commonly seen in the field of
non-real-time rendering, especially in techniques known collectively as global
illumination (see Cohen and Wallace [19]).

8.2.2 Light as a Ray

Our discussion of light sources will treat light from a light source as a collection
of rays, or in some cases simply as vectors. These rays represent infinitely nar-
row “shafts” of light. This representation of light will make it much simpler to
approximate light–surface interaction. Our light rays will often have RGB (red,
green, blue) colors or scalars associated with them that represent the intensity
(and in the case of RGB values, the color) of the light incident upon a surface.
While this value is often described in rendering literature as “brightness” or
even “luminance,” these terms are descriptive rather than physically based. In
fact, these intensity values are more closely related to and roughly approximate
the illuminance incident upon the given surface from the light source.

8.3 A Simple Approximation of Lighting

For the purposes of introducing a real-time lighting equation, we will
start by discussing an approximation that is based on OpenGL’s original
fixed-function lighting model (or pipeline); Direct3D’s original fixed-function
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lighting pipeline was similar. Initially, we will speak in terms of lighting a
“sample”: a generic point in space that may represent a vertex in a tessellation
or a fragment in a triangle. We will attempt to avoid the concepts of vertices
and fragments during this initial discussion, preferring to refer to a general
point on a surface, along with a local surface normal and a surface material.
(As will be detailed later, a surface material contains all of the information
needed to determine how an object’s surface reacts to lighting.) Once we have
introduced the concepts, however, we will discuss how vertex and fragment
shaders can be used to implement this model, along with the trade-offs of
implementing it in one shading unit or another. As already mentioned, this
simple lighting model does not accurately represent the real world — there
are many simplifications required for real-time lighting performance.

While OpenGL and Direct3D (prior to DX10) support fixed-function light-
ing pipelines, and can even pass light and material information down to the
shaders from these existing fixed-function interfaces, we will avoid using any
parts of the OpenGL fixed-function interfaces. We will instead use custom
uniforms for passing down this information to the shader. This allows our
discussion to be more easily applied to Direct3D’s HLSL shaders (whose fixed-
function interfaces differ from OpenGL) and OpenGL ES’s GLSL-E (which
does not include any fixed-function pipeline).

8.4 Types of Light Sources

The next few sections will discuss the common types of light sources that
appear in real-time 3D systems. Each section will open with a general dis-
cussion of a given light source, followed by coverage in mathematical terms,
and close with the specifics of implementation in shader code (along with
a description of the accompanying C code to feed the required data to the
shader). The discussion will progress (roughly) from the simplest (and least
computationally expensive) light sources to the most complex. Initially, we
will look at one light source at a time, but will later discuss how to implement
multiple simultaneous light sources.

For each type of light source, we will be computing two important values:
the unit vector L̂ (here, we break with our notational convention of lowercase
vectors in order to make the equations more readable) and the scalar iL. The
vector L̂ is the light direction vector — it points from the current surface sample
point PV toward the source of the light.

The scalar iL is the light intensity value, which is a rough approximation
of the illuminance from the light source at the given surface location PV . With
some types of lights, there will be per-light tuning values that adjust the func-
tion that defines iL. In addition, in each of the final lighting term equations,
we will also multiply iL by RGB colors that adjust this overall light intensity
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value. These color terms are of the form LA, LD, and so on. They will be defined
per light and per lighting component and will (in a sense) approximate a scale
factor upon the overall luminous flux from the light source.

The values L̂ and iL do not take any information about the surface orien-
tation or material itself into account, only the relative positions of the light
source and the sample point with respect to each other. Discussion of the
contribution of surface orientation (i.e., the surface normal) will be taken up
later, as each type of light and component of the lighting equation will be
handled differently and independent of the particular light source type.

8.4.1 Directional Lights

Source Code

Demo

DirectionalLight

A directional light source (also known as an infinite light source) is similar to
the light of the Sun as seen from Earth. Relative to the size of the Earth, the
Sun seems almost infinitely far away, meaning that the rays of light reach-
ing Earth from the Sun are basically parallel to one another, independent of
position on Earth. Consider the source and the light it produces as a single
vector. A directional light is defined by a point at infinity, PL. The light source
direction is produced by turning the point into a unit vector (by subtracting
the position of the origin and normalizing the result):

L̂ = PL − 0

|PL − 0|
Figure 8.1 shows the basic geometry of a directional light. Note that the light
rays are the negative (reverse) of the light direction vector L̂, since L̂ points
from the surface to the light source.

Light  rays

(infinitely distant)

PL

Figure 8.1 The basic geometry of a directional light.
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The value iL for a directional light is constant for all sample positions:

iL = 1

Since both iL and light vector L̂ are constant for a given light (and indepen-
dent of the sample point PV ), directional lights are the least computationally
expensive type of light source. Neither L̂ nor iL needs to be recomputed for
each sample. As a result, we will pass both of these values to the shader (ver-
tex or fragment) as uniforms and use them directly. We define a standard
structure in GLSL code to hold the iL and L̂ values.

struct lightSampleValues {
vec3 L;
float iL;

};

And we define a function for each type of light that will return this
structure.

// GLSL Code

// normalized vector with z == 0
uniform vec4 dirLightPosition;
uniform float dirLightIntensity;

// Later, in the code, we can use these values directly...
lightSampleValues computeDirLightValues()
{

lightSampleValues values;
values.L = dirLightPosition.xyz;
values.iL = dirLightIntensity;
return values;

}

8.4.2 Point Lights

Source Code

Demo

PointLight

A point or positional light source (also known as a local light source to dif-
ferentiate it from an infinite source) is similar to a bare lightbulb, hanging in
space. It illuminates equally in all directions. A point light source is defined
by its location, the point PL. The light source direction produced is

L̂ = PL − PV

|PL − PV |
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Light rays

PL

Figure 8.2 The basic geometry of a point light.

This is the normalized vector that is the difference from the sample position
to the light source position. It is not constant per-sample, but rather forms a
vector field that points toward PL from all points in space. This normalization
operation is one factor that often makes point lights more computationally
expensive than directional lights. While this is not a prohibitively expensive
operation to compute once per light, we must compute the subtraction of two
points and normalize the result to compute this light vector for each lighting
sample (generally per vertex for each light) for every frame. Figure 8.2 shows
the basic geometry of a point light.

We specify the location of a point light in the same space as the vertices
(normally view space, for reasons that will be discussed later in this section)
using a 4-vector with a nonzero w coordinate. The position of the light can
be passed down as a uniform to the shader, but note that we cannot use that
position directly as L̂. We must compute the value of L̂ per sample using
the position of the current sample, which we will define to be the 4-vector
surfacePosition. In a vertex shader, this would be the vertex position attribute
transformed into view space, while in the fragment shader, it would be an
interpolated varying value representing the surface position in view space at
the sample.

// GLSL Code
uniform vec4 pointLightPosition; // position with w == 1

// Later, in the code, we must compute L per sample...
// as described above, surfacePosition is passed in from a
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// per-vertex attribute or a per-sample varying value
lightSampleValues computePointLightValues(in vec4 surfacePosition)
{

lightSampleValues values;
values.L = normalize(pointLightPosition - surfacePosition).xyz;
// we will add the computation of values.iL later

return values;
}

Unlike a directional light, a point light has a nonconstant function defin-
ing iL. This nonconstant intensity function approximates a basic physical
property of light known as the inverse-square law: Our idealized point light
source radiates a constant amount of luminous flux, which we call I, at all
times. In addition, this light power is evenly distributed in all directions from
the point source’s location. Thus, any cone-shaped subset (a solid angle) of
the light coming from the point source represents a constant fraction of this
luminous flux (we will call this Icone). An example of this conical subset of the
sphere is shown in Figure 8.3.

Illuminance (the photometric value most closely related to our iL) is mea-
sured as luminous flux per unit area. If we intersect the cone of light with a
plane perpendicular to the cone, the intersection forms a disc (see Figure 8.3).
This disc is the surface area illuminated by the cone of light. If we assume
that this plane is at a distance dist from the light center and the radius of
the resulting disc is r, then the area of the disc is πr2. The illuminance Edist

(in the literature, illuminance is generally represented with the letter E) is
proportional to

Edist = power

area
∝ Icone

πr2

However, at a distance of 2dist, then the radius of the disc is 2r (see Figure 8.3).
The resulting radius is π(2r)2, giving an illuminance E2dist proportional to

E2dist ≈ Icone

π(2r)2
= Icone

4πr2
= Edist

4

Doubling the distance divides (or attenuates) the illuminance by a factor of
four, because the same amount of light energy is spread over four times the
surface area. This is known as the inverse-square law (or more generally as
distance attenuation), and it states that for a point source, the illuminance
decreases with the square of the distance from the source. As an example
of a practical application, the inverse-square law is the reason why a candle
can illuminate a small room that is otherwise completely unlit but will not
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dist

2dist

4�r2

�r2

r
2r

Figure 8.3 The inverse-square law.

illuminate an entire stadium. In both cases, the candle provides the same
amount of luminous flux. However, the actual surface areas that must be
illuminated in the two cases are vastly different due to distance.

The inverse-square law results in a basic iL for a point light equal to

iL = 1

dist2

where

dist = |PL − PV |

which is the distance between the light position and the sample position.
While exact inverse-square law attenuation is physically correct, it does

not always work well artistically or perceptually. As a result, OpenGL and
most other fixed-function and shader-based lighting pipelines support a more
general distance attenuation function for point lights: a general quadratic.
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Under such a system, the function iL for a point light is

iL = 1

kc + kldist + kqdist2

The distance attenuation constants kc, kl, and kq are defined per light and
determine the shape of that light’s attenuation curve. Figure 8.4 is a visual

Constant

Linear

Quadratic

Figure 8.4 Distance attenuation.
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example of constant, linear, and quadratic attenuation curves. The spheres in
each row increase in distance linearly from left to right.

Generally, dist should be computed in “eye” or camera coordinates (post–
model view transform); this specification of the space used is important, as
there may be scaling differences between model space, world space, and cam-
era space, which would change the scale of the attenuation. Most importantly,
model-space scaling differs per object, meaning the different objects whose
model transforms have different scale would be affected differently by dis-
tance attenuation. This would not look correct. Distance attenuation must
occur in a space that uses the same scale factor for all objects in a scene. The
three distance attenuation values can be passed down as a single 3-vector uni-
form, with the x, y, and z components containing kc, kl, and kq, respectively.
Since the attenuation must be computed per sample and involves the length
of the PL −PV vector, we merge the iL shader code into the previous L̂ shader
code as follows:

// GLSL Code
uniform vec4 pointLightPosition; // position with w == 1
uniform float pointLightIntensity;
uniform vec3 pointLightAttenuation; // (k_c, k_l, k_q)

lightSampleValues computePointLightValues(in vec4 surfacePosition)
{

lightSampleValues values;
values.L = pointLightPosition.xyz - surfacePosition.xyz;
float dist = length(values.L);
values.L = values.L / dist; // normalize

// Dot computes the 3-term attenuation in one operation
// k_c * 1.0 + k_l * dist + k_q * dist * dist
float distAtten = dot(pointLightAttenuation,

vec3(1.0, dist, dist*dist));
values.iL = pointLightIntensity / distAtten;

return values;
}

The attenuation of a point light’s intensity by this quadratic can be com-
putationally expensive, as it must be recomputed per sample. In order to
increase performance on some systems, shaders sometimes leave out one or
more terms of the distance attenuation equation entirely.
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8.4.3 Spotlights

Source Code

Demo

SpotLight

A spotlight is like a point light source with the ability to limit its light to
a cone-shaped region of the world. The behavior is similar to a theatrical
spotlight with the ability to focus its light on a specific part of the scene.

In addition to the position PL that defined a point light source, a spotlight
is defined by a direction vector d, a scalar cone angle θ, and a scalar exponent s.
These additional values define the direction of the cone and the behavior of
the light source as the sample point moves away from the central axis of the
cone. The infinite cone of light generated by the spotlight has its apex at the
light center PL, an axis d (pointing toward the base of the cone), and a half
angle of θ. Figure 8.5 illustrates this configuration. The exponent s is not a
part of the geometric cone; as will be seen shortly, it is used to attenuate the
light within the cone itself.

PL
�

d

Light rays

Figure 8.5 The basic geometry of a spotlight.
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The light vector is equivalent to that of a point light source:

L̂ = PL − PV

|PL − PV |
For a spotlight, iL is based on the point light function but adds an addi-

tional term to represent the focused, conical nature of the light emitted by a
spotlight:

iL = spot

kc + kldist + kqdist2

where

spot =
{

(−L̂ · d)s, if (−L̂ · d) ≥ cos θ

0, otherwise

As can be seen, the spot term is 0 when the sample point is outside of the
cone. The spot term makes use of the fact that the light vector and the cone
vector are normalized, causing (−L̂ · d) to be equal to the cosine of the angle
between the vectors. We must negate L̂ because it points toward the light,
while the cone direction vector d points away from the light. Computing the
cone term first can allow for performance improvements by skipping the rest
of the light calculations if the sample point is outside of the cone. In fact,
some graphics systems even check the bounding volume of an object against
the light cone, avoiding any spotlight computation on a per-sample basis if
the object is entirely outside of the light cone.

Inside of the cone, the light is attenuated via a function that does not
represent any physical property but is designed to allow artistic adjustment.
The light’s iL function reaches its maximum inside the cone when the vertex
is along the ray formed by the light location PL and the direction d, and
decreases as the vertex moves toward the edge of the cone. The dot product
is used again, meaning that iL falls off proportionally to

coss ω

where ω is the angle between the cone direction vector and the vector between
the sample position and the light location (PV −PL). As a result, the light need
not attenuate smoothly to the cone edge — there may be a sharp drop to iL = 0
right at the cone edge. Adjusting the s value will change the rate at which iL
falls to 0 inside the cone as the sample position moves off axis.

The multiplication of the spot term with the distance attenuation term
means that the spotlight will attenuate over distance within the cone. In this
way, it acts exactly like a point light with an added conic focus. The fact that
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both of these expensive attenuation terms must be recomputed per sample
makes the spotlight the most computationally expensive type of standard light
in most systems. When possible, applications attempt to minimize the number
of simultaneous spotlights (or even avoid their use altogether).

Spotlights with circular attenuation patterns are not universal. Another
popular type of spotlight (see Warn [116]) models the so-called barn door
spotlights that are used in theater, film, and television. However, because
of these additional computational expenses, conical spotlights are by far the
more common form in real-time graphics systems.

As described previously, L̂ for a spotlight is computed as for a point light.
In addition, the computation of iL is similar, adding an additional term for
the spotlight angle attenuation. The spotlight-specific attenuation requires
several new uniform values per light, specifically:

■ spotLightDir: A unit-length 3-vector representing the spotlight direction.

■ spotLightAngleCos: The cosine of the half-angle of the spotlight’s cone.

■ spotLightExponent: The exponent used to adjust the cone attenuation.

These values and the previous formulae are then folded into the earlier
shader code for a point light, giving the following computations:

// GLSL Code
uniform vec4 spotLightPosition; // position with w == 1
uniform float spotLightIntensity;
uniform vec3 spotLightAttenuation; // (k_c, k_l, k_q)
uniform vec3 spotLightDir; // unit-length
uniform float spotLightAngleCos;
uniform float spotLightExponent;

lightSampleValues computeSpotLightValues(in vec4 surfacePosition)
{

lightSampleValues values;
values.L = spotLightPosition.xyz - surfacePosition.xyz;
float dist = length(values.L);
values.L = values.L / dist; // normalize

// Dot computes the 3-term attenuation in one operation
// k_c * 1.0 + k_l * dist + k_q * dist * dist
float distAtten = dot(spotLightAttenuation,

vec3(1.0, dist, dist*dist));

float spotAtten = dot(-spotLightDir, values.L);
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spotAtten = (spotAtten > spotLightAngleCos)
? pow(spotAtten, spotLightExponent)
: 0.0;

values.iL = spotLightIntensity * spotAtten / distAtten;

return values;
}

8.4.4 Other Types of Light Sources

The light sources above are only a few of the most basic that are seen in
modern lighting pipelines, although they serve the purpose of introducing
shader-based lighting quite well. There are many other forms of lights that
are used in shader-based pipelines. We will discuss several of these at a high
level and provide more detailed references in the advanced lighting sections
at the end of the chapter.

One thing all of the light sources in the previous sections have in common
is that a single vector can represent the direct lighting from each source at a
particular sample on a surface. The lights described thus far are either infinitely
distant or emit from a single point. Lights in the real world very often emit
light not from a single point, but from a larger area. For example, the diffused
fluorescent light fixtures that are ubiquitous in office buildings appear to emit
light from a large, rectangular surface. There are two basic effects produced
by these area light sources that are not represented by any of our lights above:
a solid angle of incoming light upon the surface, and soft shadows.

One aspect of area light sources is that the direct lighting from them that
is incident upon a single point on a surface comes from multiple directions.
In fact, the light from an area light source on a surface point forms a com-
plex, roughly cone-shaped volume whose apex is at the surface point being
lit. Unless the area of the light source is large relative to its distance to the
surface, the effect of this light coming from a range of directions can be very
subtle. As the ratio of the area of the light source to the distance to the object
(the projected size of the light source from the point of view of the surface
point) goes down, the effect can rapidly converge to look like the single-vector
cases we describe above.

The main interest in area light sources has to do with occlusion of the
light from them, namely the soft-edged shadows that this partial occlusion
produces. This effect can be very significant, even if the area of the light source
is quite small. Soft-edged shadows occur at shadow boundaries, where the
point in partial shadow is illuminated by part of the area light source but not
all of it. The shadow becomes progressively darker as the given surface point
can “see” less and less of the area light source. This soft shadow region (called
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the penumbra, as opposed to the fully shadowed region, called the umbra)
is highly prized in non-real-time, photorealistic renderings for the realistic
quality it lends to the results.

Soft shadows and other area light effects are not generally supported in
low-level, real-time 3D graphics software development kits (SDKs) (including
OpenGL). However, high-level rendering engines based upon programmable
shaders are implementing these effects in a number of ways in modern appli-
cations. The advanced lighting sections at the end of this chapter describe
and reference a few of these methods. However, our introduction will con-
tinue to discuss the light incident upon a surface from a given light source
with a single vector.

8.5 Surface Materials and Light
Interaction

Source Code

Demo

LightingComponents

Having discussed the various ways in which the light sources in our model gen-
erate light incident upon a surface, we must complete the model by discussing
how this incoming light (our approximation of illuminance) is converted (or
reflected) into outgoing light (our approximation of luminance) as seen by
the viewer or camera. This section will discuss a common real-time model of
light–surface reflection.

In the presence of lighting, there is more to surface appearance than a
single color. Surfaces respond differently to light, depending upon their com-
position, for example, unfinished wood, plastic, or metal. Gold-colored plastic,
gold-stained wood, and actual gold all respond differently to light, even if they
are all the same basic color. Most real-time 3D lighting models take these
differences into account with the concept of a material.

A material describes the behavior of an object with respect to light. In our
real-time rendering model, a material describes the way a surface generates or
responds to four different categories of light: emitted light, ambient light, dif-
fuse light, and specular light. Each of these forms of light is an approximation
of real-world light, and, put together, they can serve well at differentiating not
only the colors of surfaces but also the apparent compositions (shiny versus
matte, plastic versus metal, etc.). Each of the four categories of approximated
light will be individually discussed.

As with the rest of the chapter, the focus will be on a lighting model
similar to the one that is used by OpenGL and Direct3D’s fixed-function
pipelines. Most of these concepts carry over to other common low-level, real-
time 3D SDKs as well, even if the methods of declaring these values and the
exact interaction semantics might differ slightly from API to API. We will
represent the surface material properties of an object using shader uniform
values.
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For our lighting model, we will define four colors for each material and
one color for each lighting component. These will be defined in each of the
following sections.

We will define only one color and one vector for each light: the color of the
light, a 3-vector uniform lightColor, and a vector whose components repre-
sent scalar scaling values of that color per lighting component. This 3-vector
will store the scaling factor for each applicable lighting category in a different
vector component. We will call this uniform 3-vector lightAmbDiffSpec.

8.6 Categories of Light

8.6.1 Emission

Emission, or emissive light, is the light produced by the surface itself, in the
absence of any light sources. Put simply, it is the color and intensity with
which the object “glows.” Because this is purely a surface-based property,
only surface materials (not lights) contain emissive colors. The emissive color
of a material is written as ME. One approximation that is made in real-time
systems is the (sometimes confusing) fact that this “emitted” light does not
illuminate the surfaces of any other objects. In fact, another common (and
perhaps more descriptive) term used for emission is self-illumination. The fact
that emissive objects do not illuminate one another avoids the need for the
graphics systems to take other objects into account when computing the light
at a given point.

We will store the emissive color of an object’s material (ME) in the 3-vector
shader uniform value materialEmissive.

8.6.2 Ambient

Ambient light is the term used in real-time lighting as an umbrella under
which all forms of indirect lighting are grouped and approximated. Indirect
lighting is light that is incident upon a surface not via a direct ray from light to
surface, but rather via some other, more complex path. In the real world, light
can be scattered by particles in the air, and light can “bounce” multiple times
around a scene prior to reaching a given surface. Accounting for these multiple
bounces and random scattering effects is very difficult if not impossible to do
in a real-time rendering system, so most systems use a per-light, per-material
constant for all ambient light.

A light’s ambient color represents the color and intensity of the light from
a given source that is to be scattered through the scene. The ambient material
color represents how much of the overall ambient light the particular surface
reflects.
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Ambient light has no direction associated with it. However, most lighting
models do attenuate the ambient light from each source based on the light’s
intensity function at the given point, iL. As a result, point and spotlights do not
produce equal amounts of ambient light throughout the scene. This tends to
localize the ambient contribution of point and spotlights spatially and keeps
ambient light from overwhelming a scene. The overall ambient term for a
given light and material is thus

CA = iLLAMA

where LA is the light’s ambient color, and MA is the material’s ambient color.
Figure 8.6 provides a visual example of a sphere lit by purely ambient light.
Without any ambient lighting, most scenes will require the addition of many
lights to avoid dark areas, leading to decreased performance. Adding some
ambient light allows specific light sources to be used more artistically, to
highlight parts of the scene that can benefit from the added dimension of

Figure 8.6 Sphere lit by ambient light.
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dynamic lighting. However, adding too much ambient light can lead to the
scene looking “flat,” as the ambient lighting dominates the coloring.

We will store the ambient color of an object’s material in the 3-vector
shader uniform value materialAmbientColor. We will compute the ambient
component of a light by multiplying a scalar ambient light factor, lightAmb-
DiffSpec.x (we store the ambient scaling factor in the x component of the
vector), times the light color, giving (lightColor * lightAmbDiffSpec.x). The
shader code to compute the ambient component is as follows:

// GLSL Code
uniform vec3 materialAmbientColor;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;

vec3 computeAmbientComponent(in lightSampleValues light)
{

return light.iL * (lightColor * lightAmbDiffSpec.x)
* materialAmbientColor;

}

8.6.3 Diffuse

Diffuse lighting, unlike the previously discussed emissive and ambient terms,
represents direct lighting. The diffuse term is dependent on the lighting inci-
dent upon a point on a surface from each single light via the direct path. As
such, diffuse lighting is dependent on material colors, light colors, iL, and the
vectors L̂ and n̂.

The diffuse lighting term treats the surface as a pure diffuse (or matte)
surface, sometimes called a Lambertian reflector. These surfaces have the prop-
erty that their luminance is independent of view direction. In other words,
like our earlier approximation terms, emissive and ambient, the diffuse term
is not view-dependent. The luminance is dependent on only the incident
illuminance.

The illuminance incident upon a surface is proportional to the luminous
flux incident upon the surface, divided by the surface area over which it is
distributed. In our earlier discussion of illuminance, we assumed (implicitly)
that the surface in question was perpendicular to the light direction. If we
define an infinitesimally narrow ray of light with direction L̂ to have luminous
flux I and cross-sectional area δa (Figure 8.7), then the illuminance E incident
upon a surface whose normal n̂ = L̂ is

E ∝ I

δa

However, if n̂ �= L̂ (i.e., the surface is not perpendicular to the ray of
light), then the configuration is as shown in Figure 8.8. The surface area
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Figure 8.7 A shaft of light striking a perpendicular surface.

intersected by the (now oblique) ray of light is represented by δa′. From basic
trigonometry and Figure 8.8, we can see that

δa′ = δa

sin
(

π
2 − θ

)
= δa

cos θ

= δa

L̂ · n̂

And, we can compute the illuminance E′ as follows:

E′ ∝ I

δa′

∝ I

(
L̂ · n̂
δa

)

∝
(

I

δa

)
( L̂ · n̂)

∝ E( L̂ · n̂)
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Figure 8.8 The same shaft of light at a glancing angle.

Note that if we evaluate for the original special case n̂ = L̂, the result is E′ = E,
as expected. Thus, the reflected diffuse luminance is proportional to ( L̂ · n̂).
Figure 8.9 provides a visual example of a sphere lit by a single light source
that involves only diffuse lighting.

Generally, both the material and the light include diffuse color values (MD

and LD, respectively). The resulting diffuse color for a point on a surface and
a light is then equal to

CD = iLmax(0, L̂ · n̂)LDMD

Note the max() function that clamps the result to 0. If the light source is behind
the surface (i.e., L̂ · n̂ < 0), then we assume that the back side of the surface
obscures the light (self-shadowing), and no diffuse lighting occurs.

We will store the diffuse color of an object’s material in the 4-vector
shader uniform value materialDiffuseColor. The diffuse material color is a
4-vector because it includes the alpha component of the surface as a whole.
We will compute the diffuse component of a light by multiplying a scalar
ambient light factor, lightAmbDiffSpec.y (we store the diffuse scaling factor
in the y component of the vector), times the light color, giving (lightColor *
lightAmbDiffSpec.y).

The shader code to compute the diffuse component is as follows. Note
that adding the suffix .rgb to the end of a 4-vector creates a 3-vector out
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Figure 8.9 Sphere lit by diffuse light.

of the red, green, and blue components of the 4-vector. We assume that the
surface normal vector at the sample point, n̂, is passed into the function. This
value may either be a per-vertex attribute in the vertex shader, an interpolated
varying value in the fragment shader, or perhaps even computed in either
shader. The source of the normal is unimportant to this calculation.

// GLSL Code
uniform vec3 materialDiffuseColor;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;

// surfaceNormal is assumed to be unit-length
vec3 computeDiffuseComponent(in vec3 surfaceNormal,

in lightSampleValues light)
{

return light.iL * (lightColor * lightAmbDiffSpec.y)
* materialDiffuseColor.rgb
* max(0.0, dot(surfaceNormal, light.L));

}
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8.6.4 Specular

A perfectly smooth mirror reflects all of the light from a given direction
L̂ out along a single direction, the reflection direction r̂. While few sur-
faces approach completely mirrorlike behavior, most surfaces have at least
some mirrorlike component to their lighting behavior. As a surface becomes
rougher (at a microscopic scale), it no longer reflects all light from L̂ out along
a single direction r̂, but rather in a distribution of directions centered about
r̂. This tight (but smoothly attenuating) distribution around r̂ is often called a
specular highlight and is often seen in the real world. A classic example is the
bright white “highlight” reflections seen on smooth, rounded plastic objects.
The specular component of real-time lighting is an entirely empirical approx-
imation of this reflection distribution, specifically designed to generate these
highlights.

Because specular reflection represents mirrorlike behavior, the intensity
of the term is dependent on the relative directions of the light (L̂), the surface
normal ( n̂), and the viewer ( v̂). Prior to discussing the specular term itself,
we must introduce the concept of the light reflection vector r̂. Computing
the reflection of a light vector L̂ about a plane normal n̂ involves negating
the component of L̂ that is perpendicular to n̂. We do this by represent-
ing L̂ as the weighted sum of n̂ and a unit vector p̂ that is perpendicular
to n̂ (but in the plane defined by n̂ and L̂) as follows and as depicted in
Figure 8.10:

L̂ = ln n̂ + lp p̂

The reflection of L̂ about n̂ is then

r̂ = ln n̂ − lp p̂

lnn̂
r̂

n̂

^ ^lpp �lpp

L
^

Figure 8.10 The relationship between the surface normal, light direction, and the
reflection vector.
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We know that the component of L̂ in the direction of n̂ (ln) is the projection
of L̂ onto n̂, or

ln = L̂ · n̂

Now we can compute lp p̂ by substitution of our value for ln:

L̂ = ln n̂ + lp p̂

L̂ = ( L̂ · n̂) n̂ + lp p̂

lp p̂ = L̂ − ( L̂ · n̂) n̂

So, the reflection vector r̂ equals

r̂ = ln n̂ − lp p̂

= ( L̂ · n̂) n̂ − lp p̂

= ( L̂ · n̂) n̂ − ( L̂ − ( L̂ · n̂) n̂)

= ( L̂ · n̂) n̂ − L̂ + ( L̂ · n̂) n̂

= 2( L̂ · n̂) n̂ − L̂

Computing the view vector involves having access to the camera location,
so we can compute the normalized vector from the current sample location
to the camera center. In an earlier section, camera (or “eye”) space was men-
tioned as a common space in which we could compute our lighting. If we
assume that the surface sample location is in camera space, this simplifies
the process, because the center of the camera is the origin of view space.
Thus, the view vector is then the origin minus the surface sample location;
that is, the zero vector minus the sample location. Thus, in camera space, the
view vector is simply the negative of the sample position treated as a vector
and normalized.

The specular term itself is designed specifically to create an intensity dis-
tribution that reaches its maximum when the view vector v̂ is equal to r̂;
that is, when the viewer is looking directly at the reflection of the light vector.
The intensity distribution falls off toward zero rapidly as the angle between the
two vectors increases, with a “shininess” control that adjusts how rapidly the
intensity attenuates. The term is based on the following formula:

( r̂ · v̂)mshine = (cos θ)mshine

where θ is the angle between r̂ and v̂. The shininess factor mshine controls the
size of the highlight; a smaller value of mshine leads to a larger, more diffuse
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highlight, which makes the surface appear more dull and matte, whereas a
larger value of mshine leads to a smaller, more intense highlight, which makes
the surface appear shiny. This shininess factor is considered a property of the
surface material and represents how smooth the surface appears. Generally,
the complete specular term includes a specular color defined on the material
(MS), which allows the highlights to be tinted a given color. The specular
light color is often set to the diffuse color of the light, since a colored light
generally creates a colored highlight. In practice, however, the specular color
of the material is more flexible. Plastic and clear-coated surfaces (such as
those covered with clear varnish), whatever their diffuse color, tend to have
white highlights, while metallic surfaces tend to have tinted highlights. For a
more detailed discussion of this and several other (more advanced) specular
reflection methods, see Chapter 16 of Foley et al. [38].

A visual example of a sphere lit from a single light source providing only
specular light is shown in Figure 8.11. The complete specular lighting term is

CS =
{

iLmax(0, ( r̂ · v̂))mshineLSMS, if L̂ · n̂ > 0

0, otherwise

Note that, as with the diffuse term, a self-shadowing conditional is applied,
(L̂ · n̂ > 0). However, unlike the diffuse case, we must make this term explicit,
as the specular term is not directly dependent upon L̂ · n̂. Simply clamping the
specular term to be greater than 0 could allow objects whose normals point
away from the light to generate highlights, which is not correct. In other
words, it is possible for r̂ · v̂ > 0, even if L̂ · n̂ < 0.

In our pipeline, both materials and lights have specular components but
only materials have specular exponents, as the specular exponent represents
the shininess of a particular surface. We will store the specular color of an
object’s material in the 3-vector shader uniform value materialSpecularColor.
The specular exponent material property is the scalar shader uniform materi-
alSpecularExp. As previously noted for ambient and diffuse lighting, we will
compute the specular component of a light by multiplying a scalar ambient
light factor, lightAmbDiffSpec.z, times the light color, giving (lightColor *
lightAmbDiffSpec.z).

The shader code to compute the specular component is as follows:

// GLSL Code
uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;

vec3 computeSpecularComponent(in vec3 surfaceNormal,
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in vec4 surfacePosition,
in lightSampleValues light)

{
vec3 viewVector = normalize(-surfacePosition.xyz);

vec3 reflectionVector
= 2.0 * dot(light.L, surfaceNormal) * surfaceNormal

- light.L;

return (dot(surfaceNormal, light.L) <= 0.0)
? vec3(0.0,0.0,0.0)
: (light.iL * (lightColor * lightAmbDiffSpec.z)

* materialSpecularColor
* pow(max(0.0, dot(reflectionVector, viewVector)),

materialSpecularExp));
}

Figure 8.11 Sphere lit by specular light.
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Infinite Viewer Approximation

One of the primary reasons that the specular term is the most expensive
component of lighting is the fact that a normalized view and reflection vector
must be computed for each sample, requiring at least one normalization per
sample, per light. However, there is another method of approximating spec-
ular reflection that can avoid this expense in common cases. This method is
based on a slightly different approximation to the specular highlight geome-
try, along with an assumption that the viewer is “at infinity” (at least for the
purposes of specular lighting).

Rather than computing r̂ directly, the OpenGL method uses what is known
as a halfway vector. The halfway vector is the vector that is the normalized
sum of L̂ and v̂:

ĥ = L̂ + v̂

|L̂ + v̂|

The resulting vector bisects the angle between L̂ and v̂. This halfway vector
is equivalent to the surface normal n̂ that would generate r̂ such that r̂ = v̂.
In other words, given fixed light and view directions, ĥ is the surface nor-
mal that would produce the maximum specular intensity. So, the highlight is
brightest when n̂ = ĥ. Figure 8.12 is a visual representation of the configura-
tion, including the surface orientation of maximum specular reflection. The
resulting (modified) specular term is

CS =
{

iLmax(0, ( ĥ · n̂))mshineLSMS, if L̂ · n̂ > 0

0, otherwise

v̂

ĥ

^

Surface orientation resulting
in maximum specular

reflection (defined by h)

L
^

Figure 8.12 The specular halfway vector.
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By itself, this new method of computing the specular highlight would
not appear to be any better than the reflection vector system. However, if we
assume that the viewer is at infinity, then we can use a constant view vector
for all vertices, generally the camera’s view direction. This is analogous to the
difference between a point light and a directional (infinite) light. Thanks to
the fact that the halfway vector is based only on the view vector and the light
vector, the infinite viewer assumption can reap great benefits when used with
directional lights. Note that in this case, both L̂ and v̂ are constant across all
samples, meaning that the halfway vector ĥ is also constant. Used together,
these facts mean that specular lighting can be computed very quickly if direc-
tional lights are used exclusively and the infinite viewer assumption is enabled.
The halfway vector then can be computed once per object and passed down
as a shader uniform, as follows:

// GLSL Code
uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;
uniform vec3 lightHalfway;

vec3 computeSpecularComponent(in vec3 surfaceNormal,
in lightSampleValues light)

{
return (dot(surfaceNormal, light.L) <= 0.0)

? vec3(0.0,0.0,0.0)
: (light.iL * (lightColor * lightAmbDiffSpec.z)

* materialSpecularColor
* pow(max(0.0, dot(surfaceNormal, lightHalfway)),

materialSpecularExp));
}

8.7 Combined Lighting Equation

Having covered materials, lighting components, and light sources, we now
have enough information to evaluate our full lighting model for a given light
at a given point.

CV = Emissive

+ (
Ambient + Diffuse + Specular

)
= ME + (CA + CD + CS)

AV = MAlpha

(8.1)
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where the results are

1. CV , the computed, lit RGB color of the sample.

2. AV , the alpha component of the RGBA color of the sample.

The intermediate, per-light values used to compute the results are

3. CA, the ambient light term, which is equal to

CA = iLMALA

4. CD, the diffuse light term, which is equal to

CD = iLMDLD(max(0, L̂ · n̂))

5. CS , the specular light term, which is equal to

CS = iLMSLS

{
max(0, ( ĥ · n̂))mshine , if L̂ · n̂ > 0

0, otherwise

The shader code to compute this, based upon the shader functions already
defined previously, is as follows:

// GLSL Code

vec3 computeLitColor(in lightSampleValues light,
in vec4 surfacePosition,
in vec3 surfaceNormal)

{
return computeAmbientComponent(light)

+ computeDiffuseComponent(surfaceNormal, light)
+ computeSpecularComponent(surfaceNormal,

surfacePositon,
light);

}

// ...

uniform vec3 materialEmissiveColor;
uniform vec4 materialDiffuseColor;

vec4 finalColor;
finalColor.rgb = materialEmissiveColor

+ computeLitColor(light, pos, normal);
finalColor.a = materialDiffuseColor.a;
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For a visual example of all of these components combined, see the lit
sphere in Figure 8.13.

Source Code

Demo

MultipleLights

Most interesting scenes will contain more than a single light source. Thus,
the lighting model and the code must take this into account. When lighting
a given point, the contributions from each component of each active light L

are summed to form the final lighting equation, which is detailed as follows:

CV = Emissive + Ambient

+
lights∑

L

(
Per-light Ambient + Per-light Diffuse + Per-light Specular

)
= ME +

lights∑
L

(CA + CD + CS) (8.2)

AV = MAlpha

The combined lighting equation 8.2 brings together all of the properties
discussed in the previous sections. In order to implement this equation in

Figure 8.13 Sphere lit by a combination of ambient, diffuse, and specular lighting.
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shader code, we need to compute iL and L̂ per active light. The shader code
for computing these values required source data for each light. In addition, the
type of data required differed by light type. The former issue can be solved
by passing arrays of uniforms for each value required by a light type. The
elements of the arrays represent the values for each light, indexed by a loop
variable. For example, if we assume that all of our lights are directional, the
code to compute the lighting for up to eight lights might be as follows:

// GLSL Code
uniform vec3 materialEmissiveColor;
uniform vec3 materialAmbientColor;
uniform vec4 materialDiffuseColor;
uniform vec3 materialSpecularColor;
uniform float materialSpecularExp;
uniform int dirLightCount;
uniform vec4 dirLightPosition[8];
uniform float dirLightIntensity[8];
uniform vec3 lightAmbDiffSpec[8];
uniform vec3 lightColor[8];

lightSampleValues computeDirLightValues(in int i)
{

lightSampleValues values;
values.L = dirLightPosition[i];
values.iL = dirLightIntensity[i];
return values;

}

vec3 computeAmbientComponent(in lightSampleValues light,
in int i)

{
return light.iL * (lightColor[i] * lightAmbDiffSpec[i].x)

* materialAmbientColor;
}

vec3 computeDiffuseComponent(in vec3 surfaceNormal,
in lightSampleValues light,
in int i)

{
return light.iL * (lightColor[i] * lightAmbDiffSpec[i].y)

* materialDiffuseColor.rgb
* max(0.0, dot(surfaceNormal, light.L));

}

vec3 computeSpecularComponent(in vec3 surfaceNormal,
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in vec4 surfacePositon,
in lightSampleValues light,
in int i)

{
vec3 viewVector = normalize(-surfacePosition.xyz);
vec3 reflectionVector

= 2.0 * dot(light.L, surfaceNormal) * surfaceNormal
- light.L;

return (dot(surfaceNormal, light.L) <= 0.0)
? vec3(0.0,0.0,0.0)
: (light.iL * (lightColor[i] * lightAmbDiffSpec[i].z)

* materialSpecularColor
* pow(max(0.0, dot(reflectionVector, viewVector)),

materialSpecularExp));
}

vec3 computeLitColor(in lightSampleValues light,
in vec4 surfacePosition,
in vec3 surfaceNormal, in int i)

{
return computeAmbientComponent(light, i)

+ computeDiffuseComponent(surfaceNormal, light, i)
+ computeSpecularComponent(surfaceNormal,

surfacePositon,
light, i);

}

{
int i;
vec4 finalColor;
finalColor.rgb = materialEmissiveColor;
finalColor.a = materialDiffuseColor.a;
for (i = 0; i < dirLightCount; i++)
{

lightSampleValues light = computeDirLightValues(i);
finalColor.rgb + =

computeLitColor(light, i, pos, normal);
}

}

The code becomes even more complex when we must consider different
types of light sources. One approach to this is to use independent arrays for
each type of light and iterate over each array independently. The complexity of
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these approaches and the number of uniforms that must be sent to the shader
can be prohibitive for some systems. As a result, it is common for rendering
engines to either generate specific shaders for the lighting cases they know
they need, or else generate custom shader source code in the engine itself,
compiling these shaders at runtime as they are required.

Clearly, many different values and components must come together to
light even a single sample. This fact can make lighting complicated and dif-
ficult to use at first. A completely black rendered image or a flat-colored
resulting object can be the result of many possible errors. However, an under-
standing of the lighting pipeline can make it much easier to determine which
features to disable or change in order to debug lighting issues.

8.8 Lighting and Shading

Thus far, our lighting discussion has focused on computing color at a generic
point on a surface, given a location, surface normal, view vector, and surface
material. We have specifically avoided specifying whether these code snippets
in our shader code examples are to be vertex or fragment shaders. Another
aspect of lighting that is just as important as the basic lighting equation is
the question of when and how to evaluate that equation to completely light a
surface. Furthermore, if we do not choose to evaluate the full lighting equa-
tion at every sample point on the surface, how do we interpolate or reuse
the explicitly lit sample points to compute reasonable colors for these other
samples.

Ultimately, a triangle in view is drawn to the screen by coloring the screen
pixels covered by that triangle (as will be discussed in more detail in Chap-
ter 9). Any lighting system must be teamed with a shading method that can
quickly compute colors for each and every pixel covered by the triangle. These
shading methods determine when to invoke the shader to compute the light-
ing and when to simply reuse or interpolate already computed lighting results
from other samples. In most cases, this is a performance versus visual accu-
racy trade-off, since it is normally more expensive computationally to evaluate
the shader than it is to reuse or interpolate already computed lighting results.

The sheer number of pixels that must be drawn per frame requires that
low- to mid-end graphics systems forego computing more expensive lighting
equations for each pixel in favor of another method. For example, a sphere
that covers 50 percent of a mid-sized 1,280 × 1,024 pixel screen will require
the shading system to compute colors for over a half million pixels, regardless
of the tessellation. Next, we will discuss some of the more popular methods.
Some of these methods will be familiar, as they are simply the shading meth-
ods discussed in Chapter 7, using results of the lighting equation as source
colors.
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8.8.1 Flat-Shaded Lighting

Historically, the simplest shading method applied to lighting was per-triangle,
flat shading. This method involved evaluating the lighting equation once per
triangle and using the resulting color as the constant triangle color. This color
is assigned to every pixel covered by the triangle. In older, fixed-function sys-
tems, this was the highest-performance lighting/shading combination, owing
to two facts: the more expensive lighting equation needed only to be evaluated
once per triangle, and a single color could be used for all pixels in the triangle.
Figure 8.14 shows an example of a sphere lit and shaded using per-triangle
lighting and flat shading.

To evaluate the lighting equation for a triangle, we need a sample location
and surface normal. The surface normal used is generally the triangle face
normal (discussed in Chapter 2), as it accurately represents the plane of the
triangle. However, the issue of sample position is more problematic. No single
point can accurately represent the lighting across an entire triangle (except in
special cases); for example, in the presence of a point light, different points
on the triangle should be attenuated differently, according to their distance

Figure 8.14 Sphere lit and shaded by per-triangle lighting and flat shading.
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from the light. While the centroid of the triangle is a reasonable choice, the
fact that it must be computed specifically for lighting makes it less desirable.
For reasons of efficiency (and often to match with the graphics system), the
most common sample point for flat shading is one of the triangle vertices, as
the vertices already exist in the desired space. This can lead to artifacts, since
a triangle’s vertices are (by definition) at the edge of the area of the triangle.
Flat-shaded lighting does not match quite as well with modern programmable
shading pipelines, and the simplicity of the resulting lighting has meant that
it is of somewhat limited interest in modern rendering systems.

8.8.2 Per-Vertex Lighting

Flat-shaded lighting suffers from the basic flaws and limitations of flat shading
itself; the faceted appearance of the resulting geometry tends to highlight
rather than hide the piecewise triangular approximation. In the presence of
specular lighting, the tessellation is even more pronounced, causing entire
triangles to be lit with bright highlights. With moving lights or geometry, this
can cause gemstonelike “flashing” of the facets. For smooth surfaces such as
the sphere in Figure 8.14 this faceting is often unacceptable.

The next logical step is to use per-vertex lighting with Gouraud interpo-
lation of the resulting color values. The lighting equation is evaluated in the
vertex shader, and the resulting color is passed as an interpolated varying
color to the simple fragment shader. The fragment shader can be extremely
simple, doing nothing more than assigning the interpolated varying color as
the final fragment color.

Generating a single lit color that is shared by all colocated vertices leads to
smooth lighting across surface boundaries. Even if colocated vertices are not
shared (i.e., each triangle has its own copy of its three vertices), simply setting
the normals to be the same in all copies of a vertex will cause all copies to
be lit the same way. Figure 8.15 shows an example of a sphere lit and shaded
using per-vertex lighting and Gouraud shading.

Per-vertex lighting only requires evaluating the lighting equation once per
vertex. In the presence of well-optimized vertex sharing (where there are more
triangles than vertices), per-vertex lighting can actually require fewer lighting
equation evaluations than does true per-triangle flat shading. The interpola-
tion method used to compute the per-fragment varying values (Gouraud) is
more expensive computationally than the trivial one used for flat shading,
since it must interpolate between the three vertex colors on a per-pixel basis.
However, modern shading hardware is heavily tuned for this form of vary-
ing value interpolation, so the resulting performance of per-vertex lighting is
generally close to peak.

Gouraud-shaded lighting is a vertex-centric method — the surface posi-
tions and normals are used only at the vertices, with the triangles serving
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Figure 8.15 Sphere lit and shaded by per-vertex lighting and Gouraud shading.

only as areas for interpolation. This shift to vertices as localized surface
representations lends focus to the fact that we will need smooth surface
normals at each vertex. The next section will discuss several methods for
generating these vertex normals.

Generating Vertex Normals

In order to generate smooth lighting that represents a surface at each vertex,
we need to generate a single normal that represents the surface at each vertex,
not at each triangle. There are several common methods used to generate these
per-vertex surface normals at content creation time or at load time, depending
upon the source of the geometry data.

When possible, the best way to generate smooth normals during the cre-
ation of a tessellation is to use analytically computed normals based on the
surface being approximated by triangles. For example, if the set of triangles
represent a sphere centered at the origin, then for any vertex at location PV ,
the surface normal is simply

n̂ = PV − 0

|PV − 0|
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This is the vertex position, treated as a vector (thus the subtraction of
the zero point) and normalized. Analytical normals can create very realistic
impressions of the original surface, as the surface normals are pivotal to
the overall lighting impression. Examples of surfaces for which analyti-
cal normals are available include implicit surfaces and parametric surface
representations, which generally include analytically defined normal vectors
at every point in their domain.

In the more common case, the mesh of triangles exists by itself, with no
available method of computing exact surface normals for the surface being
approximated. In this case, the normals must be generated from the trian-
gles themselves. While this is unlikely to produce optimal results in all cases,
simple methods can generate normals that tend to create the impression of a
smooth surface and remove the appearance of faceting.

One of the most popular algorithms for generating normals from triangles
takes the mean of all of the face normals for the triangles that use the given
vertex. Figure 8.16 demonstrates a two-dimensional (2D) example of averag-
ing triangle normal vectors. The algorithm may be pseudo-coded as follows:

for each vertex V
{

vector V.N = (0,0,0);
for each triangle T that uses V
{

vector F = TriangleNormal(T);
V.N += F;

} V.N.Normalize();
}

Triangles (side view)

True triangle normals Averaged vertex normals

Figure 8.16 Averaging triangle normal vectors.
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Basically, the algorithm sums the normals of all of the faces that are
incident upon the current vertex and then renormalizes the resulting summed
vector. Since this algorithm is (in a sense) a mean-based algorithm, it can be
affected by tessellation. Triangles are not weighted by area or other such fac-
tors, meaning that the face normal of each triangle incident upon the vertex
has an equal “vote” in the makeup of the final vertex normal. While the method
is far from perfect, any vertex normal generated from triangles will by its
nature be an approximation. In most cases, the averaging algorithm generates
convincing normals. Note that in cases where there is no fast (i.e., constant-
time) method of retrieving the set of triangles that use a given vertex (e.g., if
only the OpenGL/Direct3D-style index lists are available), the algorithm may
be turned “inside out” as follows:

for each vertex V
{

V.N = (0,0,0);
}
for each triangle T
{

// V1, V2, V3 are the vertices used by the triangle
vector F = TriangleNormal(T);
V1.N += F;
V2.N += F;
V3.N += F;

}
for each vertex V
{

V.N.Normalize();
}

Basically, this version of the algorithm uses the vertex normals as “accumu-
lators,” looping over the triangles, adding each triangle’s face normal to the
vertex normals of the three vertices in that triangle. Finally, having accumu-
lated the input from all triangles, the algorithm goes back and normalizes each
final vertex normal. Both algorithms will result in the same vertex normals, but
each works well with different vertex/triangle data structure organizations.

Sharp Edges

As with Gouraud shading based on fixed colors, Gouraud-shaded lighting with
vertices shared between triangles generates smooth triangle boundaries by
default. In order to represent a sharp edge, vertices along a physical crease in
the geometry must be duplicated so that the vertices can represent the surface
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normals on either side of the crease. By having different surface normals in
copies of colocated vertices, the triangles on either side of an edge can be lit
according to the correct local surface orientation. For example, at each vertex
of a cube, there will be three vertices, each one with a normal of a different
face orientation, as we see in Figure 8.17.

8.8.3 Per-Fragment Lighting

Source Code

Demo

PerFragmentLighting

There are significant limitations to per-vertex lighting. Specifically, the fact
that the lighting equation is evaluated only at the vertices can lead to artifacts.
Even a cursory evaluation of the lighting equation shows that it is highly non-
linear. However, Gouraud shading interpolates linearly across polygons. Any
nonlinearities in the lighting across the interior of the triangle will be lost com-
pletely. These artifacts are not as noticeable with diffuse and ambient lighting
as they are with specular lighting, because diffuse and ambient lighting are
closer to linear functions than is specular lighting (owing at least partially to

V1

V2

V3

Figure 8.17 One corner of a faceted cube.
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the nonlinearity of the specular exponent term and to the rapid changes in
the specular halfway vector ĥ with changes in viewer location).

For example, let us examine the specular lighting term for the sur-
face shown in Figure 8.18. We draw the 2D case, in which the triangle is
represented by a line segment. In this situation, the vertex normals all point
outward from the center of the triangle, meaning that the triangle is repre-
senting a somewhat curved (domed) surface. The point light source and the
viewer are located at the same position in space, meaning that the view vec-
tor v̂, the light vector L̂, and the resulting halfway vector ĥ will all be equal for
all points in space. The light and viewer are directly above the center of the tri-
angle. Because of this, the specular components computed at the two vertices
will be quite dark (note the specular halfway vectors shown in Figure 8.18 are
almost perpendicular to the normals at the vertices). Linearly interpolating
between these two dark specular vertex colors will result in a polygon that is
relatively dark.

However, if we look at the geometry that is being approximated by these
normals (a domed surface as in Figure 8.18), we can see that in this configura-
tion the interpolated normal at the center of the triangle would point straight
up at the viewer and light. If we were to evaluate the lighting equation at a

Gouraud shading
of single triangle

Correct lighting of
smooth surface

Approximated
(smooth) surface

Viewer Point light

n • h ≈ 0^ ^ n • h ≈ 0^ ^

n̂
n̂

L � v � h
^ ^ ^

L � v � h
^ ^ ^

Figure 8.18 Gouraud shading can miss specular highlights.
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Phong shading of
single triangle

Correct lighting of
smooth surface

n • h ≈ 0^ ^ n • h ≈ 0^ ^

n̂
n̂

Interpolated
vertex normal

n • h ≈ 1^ ^

v � h � L � n^ ^^ ^

Viewer Point light

Figure 8.19 Phong shading of the same configuration.

point near the center of the triangle in this case, we would find an extremely
bright specular highlight there. The specular lighting across the surface of
this triangle is highly nonlinear, and the maximum is internal to the trian-
gle. Even more problematic is the case in which the surface is moving over
time. In rendered images where the highlight happens to line up with a vertex,
there will be a bright, linearly interpolated highlight at the vertex. However,
as the surface moves so that the highlight falls between vertices, the high-
light will disappear completely. This is a very fundamental problem with
approximating a complex function with a piecewise linear representation. The
accuracy of the result is dependent upon the number of linear segments used
to approximate the function. In our case, this is equivalent to the density of the
tessellation.

If we want to increase the accuracy of lighting on a general vertex-lit
surface, we must subdivide the surface to increase the density of vertices
(and thus lighting samples). However, this is an expensive process, and we
may not know a priori which sections of the surface will require significant
tessellation. Dependent upon the particular view at runtime, almost any tes-
sellation may be either overly dense or too coarse. In order to create a more
general, high-quality lighting method, we must find another way around this
problem.

So far, the methods we have discussed for lighting have all evaluated the
lighting equation once per basic geometric object, such as per vertex or per
triangle. Phong shading (named after its inventor, Bui Phong Tuong [93])
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works by evaluating the lighting equation once for each fragment covered by
the triangle. The difference between Gouraud and Phong shading may be seen
in Figures 8.18 and 8.19. For each sample across the surface of a triangle, the
vertex normals, positions, reflection, and view vectors are interpolated, and
the interpolated values are used to evaluate the lighting equation. However,
since triangles tend to cover more than 1–3 pixels, such a lighting method will
result in far more lighting computations per triangle than do per-triangle or
per-vertex methods.

Per-fragment lighting changes the balance of the work to be done in the
vertex and fragment shaders. Instead of computing the lighting in the vertex
shader, per-pixel lighting uses the vertex shader only to set up the source val-
ues (surface position, surface normal, view vector) and pass them down as
varying values to the fragment shader. As always, the varying values are inter-
polated using Gouraud interpolation and passed to each invocation of the
fragment shaders. These interpolated values now represent smoothly inter-
polated position and normal vectors for the surface being represented. It is
these values that are used as sources to the lighting computations, evaluated
in the fragment shader.

There are several issues that make Phong shading more computationally
expensive than per-vertex lighting. The first of these is the actual normal vector
interpolation, since basic barycentric interpolation of the three vertex normals
will almost never result in a normalized vector. As a result, the interpolated
normal vector will have to be renormalized per fragment, which is much more
frequently than per vertex.

Furthermore, the full lighting equation must be evaluated per sample
once the interpolated normal is computed and renormalized. Not only
is this operation expensive, it is not a fixed amount of computation. As
we saw above, in a general engine, the complexity of the lighting equa-
tion is dependent on the number of lights and numerous graphics engine
settings. This resulted in Phong shading being rather unpopular in game-
centric consumer 3D hardware prior to the advent of pixel and vertex
shaders.

An example of a vertex shader passing down the required camera-space
positions and normals is as follows:

// GLSL
varying vec4 lightingPosition;
varying vec3 lightingNormal;

void main()
{

// The position and normal for lighting
// must be in camera space, not homogeneous space
lightingPosition = gl_ModelViewMatrix * gl_Vertex;
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lightingNormal = gl_NormalMatrix * gl_Normal;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

An example of a fragment shader implementing lighting by a single
directional light is as follows:

// GLSL Code
uniform vec3 materialEmissiveColor;
uniform vec3 materialAmbientColor;
uniform vec4 materialDiffuseColor;
uniform vec3 materialSpecularColor;
uniform vec4 dirLightPosition;
uniform float dirLightIntensity;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;

varying vec4 lightingPosition;
varying vec3 lightingNormal;

{
vec4 finalColor;
finalColor.rgb = materialEmissiveColor;
finalColor.a = materialDiffuseColor.a;

vec3 interpolatedNormal = normalize(lightingNormal);

lightSampleValues light = computeDirLightValues();
finalColor.rgb += computeLitColor(light,

lightingPosition, interpolatedNormal);
}

}

8.9 Textures and Lighting

Source Code

Demo

TexturesAndLighting

Of the methods we have discussed for coloring geometry, the two most pow-
erful are texturing and dynamic lighting. However, they each have drawbacks
when used by themselves. Texturing is normally a static method and looks
flat and painted when used by itself in a dynamic scene. Lighting can gener-
ate very dynamic effects, but when limited to per-face-level or per-vertex-level
features, can lead to limited detail. It is only natural that graphics systems
would want to use the results of both techniques together on a single surface.
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8.9.1 Basic Modulation

The simplest methods of merging these two techniques involves simply
viewing each of the two methods as generating a color per sample and merging
them. With texturing, this is done directly via texture sampling; with lighting,
it is done by evaluating the lighting equation. These two colors must be com-
bined in a way that makes visual sense. The most common way of combining
textures and lighting results is via multiplication, or “modulation.” In modu-
late lighting/texture combination, the texture color at the given sample CT and
the final lit and/or interpolated vertex color are combined by per-component
multiplication.

The visual effect here is that the per-vertex lit colors darken the texture
(or vice versa). As a result, texture images designed to be used with modu-
late mode texture combination are normally painted as if they were fully lit.
The vertex colors, representing the lighting in the scene, darken these fully
lit textures to make them look more realistic in the given environment. As
Figure 8.20 demonstrates, the result of modulation can be very convincing,
even though the lighting is rather simple and the textures are static paintings.
In the presence of moving or otherwise animated lights, the result can be even
more immersive, as the human perceptual system is very reliant upon lighting
cues in the real world. This is, in a sense, using the texture as a factor in all
of the surface material colors.

(a)

(b)

(c)

Figure 8.20 Textures and lighting combined via modulation: (a) scene with pure
vertex lighting, (b) scene with pure texturing, and (c) same scene with lighting and
texturing combined.
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Assuming for the moment that the lit color is computed and stored in
litColor, either by computation in the fragment shader or passed down as
a varying component, a simple textured, lit fragment shader would be as
follows:

// GLSL - fragment shader
uniform sampler2D texture;
varying vec2 texCoords;

void main()
{

// lit color is in vec4 litColor
vec4 litColor;

// ...

// Sample the texture represented by "texture"
// at the location "texCoords"
gl_FragColor = litColor * texture2D (texture, texCoords);

}

Until the advent of programmable shaders, modulation was the most
popular and often the only method of combining lighting and textures.

8.9.2 Specular Lighting and Textures

If the full lighting equation 8.1 is combined with the texture via multipli-
cation, then lighting can only darken the texture, since lit vertex colors are
clamped to the range [0, 1]. While this looks correct for diffuse or matte
objects, for shiny objects with bright specular highlights, it can look very dull.
It is often useful to have the specular highlights “wash out” the texture. We
cannot simply add the full set of lighting because the texture will almost always
wash out and can never get darker. To be able to see the full range of effects
requires that the diffuse colors darken the texture while the specular com-
ponents of color add highlights. This is only possible if we split the lighting
components.

Because the specular term is added after the texture is multiplied, this
mode (sometimes called modulate with late add) causes the diffuse terms to
attenuate the texture color, while the specular terms wash out the result. The
differences between the separate and combined specular modes can be very
striking, as Figure 8.21 makes clear.

The shader code to compute this involves computing the emissive,
ambient, and diffuse lighting components into one color (which we’ll call
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(a) (b)

Figure 8.21 Combining textures and lighting: (a) specular vertex color added to
diffuse vertex color, then modulated with the texture, and (b) diffuse vertex color
modulated with the texture, then specular vertex color added.

diffuseLighting) and the specular component into another (which we’ll call
specularLighting). Having computed these independently, we merge them as
follows:

// GLSL - fragment shader
uniform sampler2D texture;
varying vec2 texCoords;

void main()
{

vec4 diffuseLighting;
vec4 specularLighting;

// ...

// Sample the texture represented by "texture"
// at the location "texCoords"
gl_FragColor = diffuseLighting * texture2D (texture, texCoords)

+ specularLighting;
}

In this case, the texture is providing a scaling factor for only the emissive,
ambient, and diffuse material color. The effect is simple to add to an exist-
ing lighting and texture shader and can make for a much more dynamic
result.
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8.9.3 Textures as Materials

The next step in using textures and lighting together involves using multiple
textures on a single surface. As shown in the previous section, a texture can
be used to modulate one or more material colors on a surface. In fact, tex-
tures also can be used to replace one or more surface material components.
Common surface material colors to be replaced with textures are:

■ Material diffuse color. Often called a diffuse map, this is extremely
similar to basic modulation as shown above. Frequently, the diffuse
map is also applied as the ambient material color.

■ Material specular color. This is frequently replaced with either an
RGB texture (a specular map) or a single-channel grayscale texture,
which is called a gloss map. The gloss map is a powerful technique:
Wherever it is close to full brightness, the object appears glossy,
because specular highlights can be seen at those points on the surface.
Wherever it is close to black, the specular highlights do not appear. As
a result, it can be used to mark shiny or worn sections of an object,
independent of the color. Frequently, gloss maps are created in such a
way that they are brightest on the edges and exposed areas, parts of a
surface likely to be worn down by the elements and naturally polished.

■ Material emissive color. Often called a glow map, this texture can
be used to localize self-illumination of an object. These maps are
frequently used to mark windows in nighttime views of vehicles or
buildings, or taillights and running lights of vehicles.

Since multiple textures can be used in a single shader, any or all of these
components can be easily replaced by individual textures. The uniform mate-
rial color vectors simply become texture sampler uniforms. Many of these
textures can reuse the same texture coordinates, as the mappings of each tex-
ture can be the same. Finally, optimizations are common. For example, it is
common to use an RGBA texture in which the RGB components are used as
the diffuse map, and the alpha component is used as a single-channel gloss
map. The ease of painting these components into a single texture can assist
the artists, and the reuse of an otherwise unused texture component can save
graphics processing unit (GPU) resources. An example of a fragment shader
using RGBA diffuse and gloss maps is shown below:

// GLSL - fragment shader
uniform sampler2D texture;
varying vec2 texCoords;
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void main()
{

vec4 diffuseLighting;
vec4 specularLighting;

// ...
vec4 diffuseAndGlossMap = texture2D (texture, texCoords);

// Sample the texture represented by "texture"
// at the location "texCoords"
gl_FragColor.rgb = diffuseLighting.rgb * diffuseAndGlossMap.rgb

+ specularLighting.rgb * diffuseAndGlossMap.a;
}

8.10 Advanced Lighting

Programmable shaders make an almost endless array of lighting effects possi-
ble. We will discuss a few of these methods and mention several others, citing
references for additional information. Like the methods mentioned in the pre-
vious sections, many of these methods involve using textures as sources to the
lighting equation.

8.10.1 Normal Mapping

Source Code

Demo

NormalMapping

So far, we have shown how one or more textures can be used to replace mate-
rial colors and/or intensities in the lighting equation. However, even more
advanced techniques are based on the fact that textures can be used to store
more general values than mere colors. The most popular of these techniques
are bump mapping and normal mapping. As the names suggest, these methods
simulate bumpy surfaces by storing the detailed “height offsets” (bump map-
ping) or normal vectors (normal mapping) for the surface in a texture. One
of the basic limitations of dynamic lighting as discussed so far is that while
we can evaluate lighting on a per-fragment basis, the source values describ-
ing the geometry of the surface are interpolated from per-vertex values — the
position and normal. As a result, a rough or bumpy surface requires a very
high density of vertices. We can simulate this effect at a finer level by adding
bumpy, pre-lit colors to the diffuse map texture, but in the presence of mov-
ing or changing lighting conditions, the static nature of this trick is obvious
and jarring. Bump mapping, the first of these techniques to be available, was
actually present in some fixed-function rendering hardware in the late 1990s.
However, bump mapping, since it represented a local height offset and gen-
erated surface normals implicitly by looking at the difference in height values
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between neighboring texels, was limited to surfaces that looked embossed.
Very sharp changes in surface orientation were difficult with bump mapping.
For a discussion of these limitations, see Theodore [110].

In order to add more detail to the lighting at this fine level, we must be
able to generate a surface normal per fragment that contains real information
(not just interpolated information) for each fragment. By storing the normal
in a texture, we can generate normals that change very rapidly per fragment
and respond correctly to changing lighting configurations. The normal vectors
across the surface are stored in the RGB components of the texture (either
as signed fixed-point values or as floating-point values). The exact space in
which the normals are stored in the texture differs from method to method.
Conceptually, the simplest space is object space, in which normals are com-
puted in the model or object space of the geometry being mapped and then
stored as (x,y,z) in the R, G, and B components of the texture, respectively.
Object-space normal maps can be sampled as a regular texture into a vec3 and
then used in the same way as one would use normals passed into a fragment
shader as a varying value. An example of the effect that normal mapping can
have on a simple object is shown in Figure 8.22

An example of an object-space normal map in use in a fragment shader is
shown below. Note that since the sampled normal comes from the texture in
object space, we must either do the transformation of the normal into camera
space in the fragment shader, or else transform the light information into
model space and light in model space. We pick the former (which is simpler to

(a) (b)

Figure 8.22 Normal mapping applied to simple objects: (a) low triangle — count
object with diffuse map and per-vertex lighting, and (b) same object with diffuse map
and per-fragment normal mapping.
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understand, but more expensive computationally) and transform the normal
into camera space.

// GLSL Code
uniform sampler2D normalMap; varying vec2 texCoords;
uniform vec3 materialEmissiveColor;
uniform vec3 materialAmbientColor;
uniform vec4 materialDiffuseColor;
uniform vec3 materialSpecularColor;
uniform vec4 dirLightPosition;
uniform float dirLightIntensity;
uniform vec3 lightAmbDiffSpec;
uniform vec3 lightColor;

varying vec4 lightingPosition;

{
vec4 finalColor;
finalColor.rgb = materialEmissiveColor;
finalColor.a = materialDiffuseColor.a;

// lookup the normal in the map, transform, and renormalize
vec3 normal = texture2D (normalMap, texCoords);
normal = normalize(gl_NormalMatrix * normal);

lightSampleValues light = computeDirLightValues();
finalColor.rgb += computeLitColor(light,

lightingPosition, normal);
}

}

There are advantages and disadvantages to both object-space normal map-
ping and the other common normal mapping method, known as tangent space
normal maps (the latter is now the more popular of the two, but is concep-
tually a bit harder to understand). These differences are discussed in various
articles on normal mapping [36, 92].

Generating Normal Maps

Normal maps are rarely painted by an artist. The complexity of these maps
and the esoteric spaces in which they reside mean that most normal maps
are generated automatically from the geometry itself via commercial or open-
source tools. Some real-time 3D engines and middleware provide tools that
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automatically convert a very high polygon–count object (millions of triangles)
into a low polygon–count geometry object and a high-resolution normal map.
Put together, the low-resolution geometry object and the high-resolution nor-
mal map can be used to efficiently render what appears to be a very convincing
facsimile of the original object.

8.11 Reflective Objects

While specular lighting can provide the basic impression of a shiny object,
large expanses of a reflective surface are more convincing if they actually
appear to reflect the other geometry in the scene. The best-known method for
this is the (generally) non-real-time method of recursive ray tracing, which is
not currently suitable for general interactive systems. However, we can once
again use a mixture of lightinglike computations and textures to create very
convincing reflections.

Environment mapping is a technique that uses a texture or set of textures
that represents an “inside looking out” representation of the entire scene in
all directions. It can be thought of as a spherical or cube-shaped set of images
that represent a panorama of the scene. These images can be statically drawn
offline, or on modern systems can even be rendered every frame to better rep-
resent the current scene. The environment map can be thought of as infinitely

(a) (b)

Figure 8.23 Environment mapping applied to simple objects.
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large or infinitely distant. Thus, any normalized direction vector maps to a
single, fixed location in the environment map.

Environment maps are applied to a surface dynamically — they are not
sampled via a priori texture coordinates; the mapping of the environment
map will change as the scene and the view changes. The most common method
used is to compute the reflection of the view vector in a manner similar to that
used for specular lighting earlier in this chapter. The reflected view vector rep-
resents the direction that the viewer sees in the reflective surface. By sampling
the environment map in this view direction, we can apply what appears to be
a convincing reflection to a surface with little more than a vector computation
(per vertex or per fragment) and a texture lookup (per fragment). Figure 8.23
shows how this effect can be applied to a simple object. Note that in the two
views of the object, the environment map moves like a reflection as the object
rotates with respect to the viewer.

8.12 Shadows

Shadows are an extremely important component of real-world lighting.
However, while we think of them as a form of lighting, the challenge in
rendering accurate shadows has little in common with the per-vertex and
per-fragment direct lighting formulae we discussed earlier in this chapter.
In a sense, shadowing is much less about lighting than it is about occlusion
or intersection. Diffuse and specular lighting formulae are concerned mainly
with determining how the light incident upon a surface is reflected toward
the viewer. Shadowing, on the other hand, is far more concerned with deter-
mining whether light from a given light source reaches the surface in the first
place. Unlike surface lighting calculations, shadowing is dependent upon all
of the objects that might interpose between the light source and the surface
being lit.

A single surface shader is rarely if ever enough to implement shadowing.
Shadowing is generally a multipass technique over the entire scene. The first
pass involves determining which surfaces receive light from a given source,
and the second pass involves applying this shadowing information to the
shading of the objects in the scene. The many algorithms used to approxi-
mate real-time shadows differ in their approaches to both passes. With the
advent of high-powered, programmable shading hardware, the push in shad-
owing methods over the past decade has focused on leveraging the rendering
hardware as much as possible for both passes, avoiding expensive CPU-based
computation. These algorithms have centered on the concept of using a first
pass that involves rendering the scene from the point of view of the light source,
as geometry visible from the point of view of the light is exactly the geometry
that will be lit by that light source. Geometry that cannot be “seen” from a
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light’s location is exactly the geometry that will be in shadow. Geometry that
falls on the boundaries of these two cases is likely to be in the penumbra, or
partially shadowed region, when rendering soft shadows.

Since the real core of shadowing methods lie in the structure of the two-
pass algorithms rather than in the mathematics of lighting, the details of
shadowing algorithms are beyond the scope of this book. A technique known
as ray tracing (see Glassner [40]) uses ray–object intersection to track the
way light bounces around a scene. Very convincing shadows (and reflections)
could be computed using ray tracing, and the technique is very popular for
non-real-time rendering. Owing to its computational complexity, this method
is not generally used in real-time lighting (although modern shading lan-
guages and shading hardware are now capable of doing real-time ray tracing
in some limited cases). Shadows are sometimes approximated using other
tricks (see [1, 83, 84], or Chapter 13 of Eberly [25]). Excellent references for
real-time shadows, both sharp and soft-edged, can be found in Fernando and
Pharr [36, 92].

8.13 Chapter Summary

In this chapter we have discussed the basics of dynamic lighting, both in terms
of geometric concepts and implementation using programmable shaders. Per-
vertex and per-pixel lighting are very powerful additions to any 3D application,
especially when mated with the use of multiple textures. Correct use of lighting
can create compelling 3D environments at limited computational expense. As
we have discussed, judicious use of lighting is important in order to maximize
visual impact while minimizing additional computation.

For further information, there are numerous paths available to the inter-
ested reader. The growing wealth of shader resources includes websites [1, 84]
and even book series [31]. Many of these new shaders are based on far more
detailed and complex lighting models, such as those presented in computer
graphics conference papers and journal articles like those of ACM SIGGRAPH
or in books such as Watt and Policarpo [117].



Chapter9
Rasterization

9.1 Introduction

The final major stage in the rendering pipeline is called rasterization.
Rasterization is the operation that takes screen-space geometry, a fragment
shader, and the inputs to that shader and actually draws the geometry to the
low-level two-dimensional (2D) display device. Once again, we will focus on
drawing sets of triangles, as these are the most common primitive in three-
dimensional (3D) graphics systems. In fact, for much of this chapter, we
will focus on drawing an individual triangle. For almost all modern display
devices, this low-level “drawing” operation involves assigning color values to
each and every dot, or pixel, on the display device.

At the conceptual level, the entire topic of rasterization is simply an imple-
mentation detail. Rasterization is required because the display devices we use
today are based on a dense rectangular grid of light-emitting elements, or
pixels (a short version of the term “picture elements”), each of whose colors
and intensities are individually adjustable in every frame. For historical
reasons relating to the way that picture tube–based televisions work, these
displays are called raster displays.

Raster displays require that the images displayed on them be discretized
into a rectangular grid of color samples for each image. In order to achieve
this, a computer graphics system must convert the projected, colored geome-
try representations into the required grid of colors. Moreover, in order to
render real-time animation, the computer graphics system must do so many
times per second. This process of generating a grid of color samples from a
projected scene is called rasterization.

369
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By its very nature, rasterization is time consuming when compared to
the other stages in the rendering pipeline. Whereas the other stages of the
pipeline generally require per-object, per-triangle, or per-vertex computation,
rasterization inherently requires computation of some sort for every pixel.
At the time of this book’s publication, displays 1,600 pixels wide by 1,200
pixels high — resulting in approximately two million pixels on the screen —
are quite popular. Add to this the fact that rasterization will in practice
often require each pixel to be computed several times, and we come to
the realization that the number of pixels that must be computed generally
outpaces the number of triangles in a given frame by a factor of 10, 20,
or more.

Historically, in purely software 3D pipelines, it is not uncommon to see as
much as 80 to 90 percent of rendering time spent in rasterization. This level
of computational demand has led to the fact that rasterization was the first
stage of the graphics pipeline to be accelerated via purpose-built consumer
hardware. In fact, most 3D computer games began to require some form of
3D hardware by the early 2000s. This chapter will not detail the methods and
code required to write a software 3D rasterizer, since most game developers
no longer have a need to write them. For the details on how to write a set
of rasterizers, see Hecker’s excellent series of articles on perspective texture
mapping in Game Developer Magazine [57].

Despite the fact that few if any game developers will need to implement
even a subset of the rasterization pipeline themselves in a modern game,
the topic of rasterization is still extremely relevant, even today. The basic
concepts of rasterization lead to discussions of some of the most intere-
sting and subtle mathematical and geometric issues in the entire rendering
pipeline. Furthermore, an understanding of these fundamental concepts can
allow a game developer to better understand why and how rendering artifacts
and performance bottlenecks occur, even when the rasterization implemen-
tation is in dedicated hardware. Many of these basic concepts and low-level
details can have visually relevant results in almost any 3D game. This chap-
ter will highlight some of the fundamental concepts of rasterization that are
most pivotal to a deeper understanding of the process of using a rendering
system, either graphics processing unit (GPU) or computer processing unit
(CPU) based.

9.2 Displays and Framebuffers

Every piece of display device hardware, whether it be a computer monitor,
television, or some other such device, requires a source of image data. For
computer graphics systems, this source of image data is called a framebuffer
(so called because it is a buffer of data that holds the image information
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for a “frame,” or a screen’s worth of image). In basic terms, a framebuffer
is a 2D digital image: a block of memory that contains numerical values
that represent colors at each point on the screen. Each color value rep-
resents the color of the screen at a given point — a pixel. Each pixel has
red, green, and blue components. Put together, this framebuffer represents
the image that is to be drawn on the screen. The display hardware reads
these colors from memory every time it needs to update the image on the
screen, generally at least 30 times per second and often 60 or more times per
second.

As we shall see, framebuffers often include more than just a single color
per pixel. While it is the final per-pixel color that is actually used to set the color
and intensity of light emitted by each point on the display, the other per-pixel
values are used internally during the rasterization process. In a sense, these
other values are analogous to per-vertex normals and per-triangle material
colors; while they are never displayed directly, they have a significant effect
on how the final color is computed.

9.3 Conceptual Rasterization Pipeline

The steps required to rasterize an entire frame are shown in Figure 9.1. The
first step is to clear out any previous image from the framebuffer. This can in

Figure 9.1 The steps to rasterizing a complete frame.
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some cases be skipped; for example, if the scene geometry is known to cover
the entire screen, then there is no need to clear the screen. The old image
will be entirely overwritten by the new image in such a case. But for most
applications, this step involves using the rendering application programming
interface (API) to set all of the pixels in the framebuffer (in a single function
call) to a fixed color.

The second step is to rasterize the geometry to the framebuffer. We will
detail this stage in the rest of the chapter, as it is the most involved step of the
three (by far).

The third step is to present the framebuffer image to the physical dis-
play. Most rendering is done to offscreen surfaces, to avoid flickering or other
artifacts during rendering (specifically, to avoid having the user see a par-
tially rendered frame). The “present” step makes the most recently rendered
framebuffer visible to the screen. This stage is commonly known as swap-
ping or buffer swapping, because historically it frequently involved (and in
many cases still involves) “ping-ponging” between two buffers — drawing to
one while the other is displayed, and then swapping the two buffers after each
frame. However, other techniques described later in the chapter will require
additional work to be done during the presentation step. Therefore, we will
refer to this step by the more general term “present.”

9.3.1 Rasterization Stages

There are several stages to even a simple rasterization pipeline. It should be
noted that while these stages tend to exist in rasterization hardware imple-
mentations, hardware almost never follows the order (or even the structure)
of the conceptual stages in the list that follows. This simple pipeline rasterizes
a single triangle as follows:

1. Determine the visible pixels covered by the triangle.

2. Compute a color for the visible triangle at each such pixel.

3. Determine a final color for each pixel and write to the framebuffer.

The first stage further decomposes into two separate steps:

1. Determining the pixels covered by a triangle.

2. Determining which triangles are the ones visible at each pixel.

The rest of this chapter will discuss each of these pipeline stages in detail.
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9.4 Determining the Fragments: Pixels
Covered by a Triangle

9.4.1 Fragments

In order to progress any further in the rasterization phase of rendering, we
must break triangles (or more generally, geometry) in screen space into pieces
that more directly match the pixels in the framebuffer. This involves determin-
ing the intersection of pixel rectangles or pixel center points with a triangle.
In the color and lighting chapters, we used the term fragment to represent
an infinitesimal piece of surface area around a given point on a polygonal
surface. Fragment shaders were described as being evaluated on these tiny
pieces of surface.

At the rasterization level, fragments have a much more explicit but related
definition. The result of the aforementioned process of breaking down screen-
space triangles to match pixels is a set of what OpenGL calls “fragments” (the
Direct3D documentation does not use this term, but the pipeline is analo-
gous). These fragments can be thought of as pixel-sized pieces of a triangle
in screen space. These can be visualized as a triangle “diced” into pieces by
“cutting” along pixel boundaries. Many of these fragments (the interior of a
triangle) will be square, the full size of the pixel square. We call these pixel-
sized fragments complete fragments. However, along the edges of a triangle,
these may be multisided polygons that fit inside of the pixel square and are
thus smaller than a pixel. We call these smaller fragments partial fragments.
In practice, these fragments may really be point samples of a triangle taken at
the pixel center (similar to the concept we had of fragments in the lighting and
shading chapters), but the basic idea is that fragments represent the pieces
of a triangle that impinge upon a given pixel. We will think of pixels as being
destinations or “bins” into which we place all of the fragments that cover the
area of the pixel. As such, it is not a one-to-one mapping. A pixel may contain
multiple fragments from different (or even the same) object, or a pixel may
not contain any fragments in the current view of the scene.

The remainder of this chapter will use this more specific definition of frag-
ments. Figure 9.2 shows a triangle overlaid with pixel rectangle boundaries.
Figure 9.3 shows the same configuration broken into fragments, both com-
plete and partial. The fragments are “exploded” slightly in the figure to better
demonstrate the shapes of the partial fragments.

9.4.2 Depth Complexity

The number of fragments in an entire scene can be much smaller or much
greater than the number of pixels on the screen. If only a subset of the
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Figure 9.2 A screen-space triangle to be rasterized.

Complete
Fragments

Partial
Fragments

Figure 9.3 Fragments generated by the triangle. Complete fragments are dark
gray; partial fragments are light gray.
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screen is covered by geometry, then there may be many pixels that contain no
fragments from the scene. On the other hand, if a lot of triangles overlap
one another in screen space, then many pixels on the screen may contain
more than one fragment. The ratio of the number of fragments in the scene
in a given frame to the number of pixels on the screen is called the depth
complexity or overdraw, because this ratio represents how many full screens
worth of geometry comprises the scene. In general, scenes with a higher
depth complexity are more expensive to rasterize. Note that this is an over-
all ratio for the whole view; a scene could have a depth complexity of two
even if geometry only covers half of the screen. If, on average, the geome-
try on the half of the screen that is covered is four triangles deep, then the
depth complexity would be two fragments per pixel amortized over the entire
screen.

9.4.3 Converting Triangles to Fragments

Triangles are convex, no matter how they are projected by a projective trans-
formation (in some cases, triangles may appear as a line or a point, but these
are still convex objects). This is a very useful property, because it means that
any triangle intersects a horizontal row of pixels (also called a scan line, for
historical reasons having to do with CRT-based television displays) in at most
one contiguous segment. Thus, for any scan line that intersects a triangle, we
can represent the intersection with a single “span,” a minimum x value and
a maximum x value. Thus, the representation of a triangle during rasteriza-
tion consists of a set of spans, one per scan line, that the triangle intersects.
Furthermore, the convexity of triangles also implies that the set of scan lines
intersected by a triangle is contiguous in y; there is a minimum and maximum
y for a given triangle, which contains all of the nonempty spans. An example of
the set of spans for a triangle is shown in Figure 9.4. The dark bands overlaid
on the triangle represent the spans of adjacent fragments that will be used to
draw the triangle.

The minimum y pixel coordinate for a triangle ymin is simply the minimum
y value of the three triangle vertices. Similarly, the maximum y pixel coordi-
nate ymax of the triangle is simply the maximum y value of the three vertices.
Thus, a simple min/max computation among the three vertices defines the
entire range of (ymax − ymin + 1) spans that must be generated for a triangle.

The left-most and right-most fragments of each span may be partial frag-
ments, since the edge of the triangle may not fall exactly on a pixel boundary.
Also, the topmost and bottommost spans may contain partial fragments for
the same reason. The remaining fragments for a triangle will be complete
fragments.

Generating the spans themselves simply involves intersecting the hori-
zontal scan line with the edges of the triangle. Owing to the convexity of the
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Min y

Max y

Figure 9.4 A triangle and its raster spans.

triangle, unless the scan line intersects a vertex, that scan line will intersect
exactly two of the edges of the triangle: one to cross from outside the triangle
into it, and one to leave again. These two intersection points will define the
minimum and maximum x values of the span.

9.4.4 Handling Partial Fragments

Complete fragments always continue on to the next stage of the rasterization
process. The fate of partial fragments, however, depends upon the particular
rendering system. In more advanced systems, all partial fragments at a pixel
are passed on as partial fragments, and the visibility and color of the final pixel
may be influenced by all of them. However, simpler rasterization systems do
not handle partial fragments, and must decide whenever a partial fragment
is generated whether to drop the fragment or else promote it to a complete
fragment. A common method for solving this is to keep partial fragments if
and only if they contain the pixel’s center point. This is sometimes called point
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Figure 9.5 Fragments from Figure 9.3 rasterized using point sampling.

sampling of geometry, as an entire fragment is generated or not generated
based on a single point sample within each pixel. Figure 9.5 shows the same
triangle as in Figure 9.3, but with the partial fragments either dropped or
promoted to complete fragments, based on whether the fragment contains
the pixel’s center point.

The behavior of such a graphics system when a triangle vertex or edge
falls exactly on a pixel center is determined by a system-dependent fill con-
vention, which ensures that if two triangles share a vertex or an edge, only
one triangle will contribute a fragment to the pixel. This is very impor-
tant, as without a well-defined fill convention, there may be “holes” (pixels
where both triangles’ partial fragments are dropped), or double-drawn pix-
els (where the partial fragments of both triangles are promoted to complete
fragments) on the shared edges between triangles. Holes along a shared trian-
gle edge allow the background color to show through what would otherwise
be a continuous, opaque surface, making the surface appear to be “cracked.”
Double-drawn pixels along a shared edge result in more subtle artifacts, nor-
mally seen only when transparency or other forms of blending are used (see
Section9.9.1,PixelBlending, later in thischapter).Fordetailson implementing



378 Chapter 9 Rasterization

point-sampled fill conventions, see Hecker’s Game Developer Magazine article
series [57].

9.5 Determining Visible Geometry
The overall goal in rendering geometry is to ensure that the final rendered
images convincingly represent the given scene. At the highest level, this means
that objects must appear to be correctly obscured by closer objects and must
not be obscured by more distant objects. This process is known as visible
surface determination (VSD), and there are numerous, very different ways of
accomplishing it. The methods all involve comparing the depth of surfaces at
one level of granularity or another and rendering them in such a way that the
object of minimum depth (i.e., the closest object) at a given pixel is the one
rendered to the screen.

Historically, numerous different methods have been used for VSD. Many
of the early algorithms were based on clever sorting tricks, involving order-
ing the geometry back to front prior to rasterization. This was an expensive
proposition normally computed per frame on the CPU. By far, the most com-
mon method in use today is a rasterization-based method: the depth buffer.
Rasterizers were the first parts of the graphics pipeline to be accelerated with
purpose-built hardware, meaning that a rasterizer-based visible surface deter-
mination system could achieve high performance. The depth buffer is also
known as a z-buffer, which is actually a specific, special case of the more
general depth buffering.

9.5.1 Depth Buffering

Source Code

Demo

DepthBuffering

Depth buffering is based on the concept that visibility should be output-
focused. In other words, since pixels are the final destination of our rendering
pipeline, visibility should be computed on a per-pixel (or rather, per-fragment)
basis. If the final color seen at each pixel is the color of the fragment with the
minimum depth (of all fragments drawn to that pixel), the scene will appear to
be drawn correctly. In other words, of all the fragments drawn to a pixel, the
fragment with minimum depth should “win” the pixel and select that pixel’s
color. For the purposes of this discussion, we assume point-sampled geometry
(i.e., there are no partial fragments).

Since common rasterization methods tend to render a triangle at a time,
a given pixel may be redrawn several times over the course of a frame by
fragments from different triangles. If we wish to avoid sorting the triangles
by depth (and we do), then the fragment that should win a given pixel may
not be the last one drawn to that pixel. We must have some method of storing
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the depth of the current nearest fragment at each pixel, along with the color
of that fragment.

Having stored this information, we can compute a simple test each time
a fragment is drawn to a pixel. If the new fragment’s depth is closer than
the currently stored depth value at that pixel, then the new fragment wins
the pixel. The color of the new fragment is computed and this new fragment
color is written to the pixel. The fragment’s depth value replaces the existing
depth value for that pixel. If the new fragment has greater depth than that of
the current fragment coloring the pixel, then the new fragment’s color and
depth are ignored, as the fragment represents a surface that is behind the
closest known surface at the current pixel. In this case, we know that the
new fragment will be obscured at that pixel, because we have already seen
a fragment at that pixel that is closer than the newest fragment. Figure 9.6
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Figure 9.6 Two triangles rendered to a depth buffer.
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represents the rendering of the fragments from two triangles to a small depth
buffer. Note how the closer triangle’s fragment always wins the pixel (the
correct result), even if it is drawn first.

Because the method is per-pixel and thus per fragment, the depth of each
triangle is computed on a per-fragment granularity, and this value is used
in the depth comparison. As a result of this finer subtriangle granularity,
the depth buffer automatically handles triangle configurations that cannot
be correctly displayed using per-triangle sorting. Geometry may be passed
to the depth buffer in any order. The situation in which this random order
can be problematic is when two fragments at a given pixel have equal depth.
In this case, order will matter, depending on the exact comparison used to
order depth (i.e., < or ≤). However, such circumstances are problematic with
almost any visible surface method.

There are several drawbacks to the depth buffer, although most of these
are no longer significant on modern PCs or game consoles. One of the histor-
ical drawbacks of the depth buffering method is implied in the name of the
method; it requires a buffer or array of depth values, one per pixel. This is a
large block of memory, often requiring as much memory as the framebuffer
itself. Also, just as the framebuffer must be cleared to the background color
before each frame, the depth buffer must be cleared to the background depth,
which is generally the maximum representable depth value. These issues can
be significant on handheld and embedded 3D systems, where GPU memory
is limited. Finally (and still relevant on PCs and consoles), the depth buffer
requires the following work for each fragment:

■ Computation of a depth value for the fragment.

■ Lookup of the existing pixel depth in the depth buffer.

■ Comparison of these two values.

■ (For new “winner” fragments only): Writing the new depth to the depth
buffer.

This additional work per fragment makes depth buffering unsuitable for con-
stant use in most software rasterizers. Fully software 3D systems tend to use
optimized geometry sorting wherever possible, reserving depth buffering for
the few objects that truly require it. One example was early third-person-
shooter game rendering engines, which put enormous work into specialized
sorting of the environments or “levels,” avoiding any depth buffer testing for
them. This left enough CPU cycles to render the animated characters, mon-
sters, and small objects (which covered far fewer pixels than the scenery) using
software depth buffering.

In addition, the depth buffer does not fix the potential performance prob-
lems of high-depth complexity scenes. We must still compute the depth of
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every fragment and compare it to the buffer. However, it can make overdraw
less of an issue in some cases, since it is not necessary to compute or write
the color of any fragment that fails the depth test. In fact, some applications
will try to render their depth-buffered scenes in roughly near-to-far order-
ing (while still avoiding per-triangle, per-frame sorting on the CPU) so that
the later geometry is likely to fail the depth buffer test and not require color
computations.

Depth buffering is extremely popular in 3D applications that run on
hardware-accelerated platforms, as it is easy to use and requires little appli-
cation code or host CPU computation and produces quality images at high
performance.

Computing Per-Fragment Depth Values

The first step in computing the visibility of a fragment using a depth buffer
is to compute the depth value of the current fragment. As we shall see, zndc

(which appeared to be a rather strange choice for z back in Chapter 6) will
work quite well. However, the reason why zndc works well and zview does not
is rather interesting.

In order to better understand the nature of how depth values change
across a triangle in screen space, we must be able to map a point on the
screen to the point in the triangle that projected to it. This is very similar to
picking, and we will use several of the concepts we first discussed in Chapter 6.
Owing to the nonlinear nature of perspective projection, we will find that our
mapping from screen-space pixels to view-space points on a given triangle is
somewhat complicated. We will follow this mapping through several smaller
stages.

A triangle in view space is simply a convex subset of a plane in view space.
As a result, we can define the plane of a triangle in view space by a normal
vector to the plane n̂ = (a, b, c) and a constant d, such that the points P =
(xp, yp, zp) in the plane are those that satisfy

axp + byp + czp + d = 0

(a, b, c) · (xp, yp, zp) + d = 0 (9.1)

n̂ · (xp, yp, zp) + d = 0

Looking back at picking, a point in 2D normalized device (ND) coordinates
(xndc, yndc) maps to the view-space ray t r such that

t r = (xndc, yndc, −dist)t, t ≥ 0

where dist is the projection distance (the distance from the view-space origin
to the projection plane). Any point in view space that projects to the pixel at



382 Chapter 9 Rasterization

(xndc, yndc) must intersect this ray. Normally, we cannot “invert” the projection
matrix, since a point on the screen maps to a ray in view space. However, by
knowing the plane of the triangle, we can intersect the triangle with the view
ray as follows. All points P in view space that fall in the plane of the triangle
are given by equation 9.1. In addition, we know that the point on the triangle
that projects to (xndc, yndc) must be equal to t r for some t. Substituting the
vector t r for the points (xp, yp, zp) in equation 9.1 and solving for t,

n̂ · (t r) + d = 0

t( n̂ · r) = −d

t = −d

n̂ · r

From this value of t, we can compute the point along the projection ray
(xview, yview, zview) = t r that is the view-space point on the triangle that projects
to (xndc, yndc). This amounts to finding

(xview, yview, zview) = t r

= t(xndc, yndc, −dist)

= −d(xndc, yndc, −dist)

n̂ · r

= −d(xndc, yndc, −dist)

n̂ · (xndc, yndc, −dist)
(9.2)

= −d(xndc, yndc, −dist)

n̂xxndc + n̂yyndc − n̂zdist

However, we are only interested in zview right now, since we are trying to
compute a per-fragment value for depth buffering. The zview component of
equation 9.2 is

zview = dist d

n̂xxndc + n̂yyndc − n̂zdist
(9.3)

As a quick check of a known result, note that in the special case of a triangle
of constant depth zview = zconst , we can substitute

n̂ = (0, 0, 1)

and

d = −zconst
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Substituted into equation 9.3 this evaluates to the expected constant zview =
zconst :

zview = dist(−zconst)

0xndc + 0yndc − 1dist

= −dist zconst

−dist

= zconst

As defined in equation 9.3, zview is an expensive value to compute per
fragment (in the general, nonconstant depth case), because it is a fraction
with a nonconstant denominator. This would require a per-fragment divi-
sion to compute zview, which is more expensive than we would like. However,
depth buffering requires only the ability to compare depth values against one
another. If we are comparing zview values, we know that they decrease with
increasing depth (as the view direction is −z), giving a depth test of

zview ≥ DepthBuffer → New fragment is visible

zview < DepthBuffer → New fragment is not visible

However, if we compute and store the reciprocal (the multiplicative inverse)
of zview, then a similar comparison still works in the same manner. If we use
the reciprocal of all of the zview values, we get

1

zview

≤ DepthBuffer → New fragment is visible

1

zview

> DepthBuffer → New fragment is not visible

If we reciprocate equation 9.3, we can see that the per-fragment computation
becomes simpler:

1

zview

= n̂xxndc + n̂yyndc − n̂zdist

dist d

=
(

n̂x

dist d

)
xndc +

(
n̂y

dist d

)
yndc −

(
n̂zd

dist d

)
where all of the parenthesized terms are constant across a triangle. In fact,
this forms an affine mapping of ND coordinates to 1/zview. Since we know that
there is an affine mapping from pixel coordinates (xs, ys) to ND coordinates
(xndc, yndc), we can compose these affine mappings into a single affine mapping



384 Chapter 9 Rasterization

from screen-space pixel coordinates to 1/zview. As a result, for a given projected
triangle,

1

zview

= fxs + gys + h

where f , g, and h are real values and are constant per triangle. We define the
preceding mapping for a given triangle as

InvZ(xs, ys) = fxs + gys + h

An interesting property of InvZ(xs, ys) (or of any affine mapping, for that
matter) can be seen from the derivation

InvZ(xs + 1, ys) − InvZ(xs, ys) = (f(xs + 1) + gys + h) − (fxs + gys + h)

= f(xs + 1) − (fxs)

= f

meaning that

InvZ(xs + 1, ys) = InvZ(xs, ys) + f

and similarly

InvZ(xs, ys + 1) = InvZ(xs, ys) + g

In other words, once we compute our InvZ depth buffer value for any “base”
fragment, we can compute the depth buffer value of the next fragment in the
span by simply adding f . Once we compute a base depth buffer value for a
given span, as we step along the scan line, filling the span, all we need to do is
add f to our current depth between each adjacent fragment (Figure 9.7). This
makes the per-fragment computation of a depth value very fast indeed. In fact,
once the base InvZ of the first span is computed, we may add or subtract f

and g to or from the previous span’s base depth to compute the base depth of
the next span. This technique is known as forward differencing, as we use the
difference (or delta) between the value at a fragment and the value at the next
fragment to step along, updating the current depth. This method will work for
any value for which there is an affine mapping from screen space. We refer to
such values as affine in screen space, or screen affine.

In fact, we can use the zndc value that we computed during projection as a
replacement for InvZ. In Chapter 6, on viewing and projection, we computed
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Figure 9.7 Forward differencing the depth value.

a zndc value that is equal to −1 at the near plane and 1 at the far plane and was
of the form

zndc = a + bzview

zview

= a
1

zview

+ b

which is an affine mapping of InvZ. As a result, we find that our existing value
zndc is screen affine and is suitable for use as a depth buffer value. This is the
special case of depth buffering we mentioned earlier, often called z-buffering,
as it uses zndc directly.

Numerical Precision and Z-Buffering

In practice, depth buffering in screen space has some numerical precision
limitations that can lead to visual artifacts. As was mentioned earlier in the
discussion of depth buffers, the order in which objects are drawn to a depth
buffering system (at least in the case of opaque objects) is only an issue if the
depth values of the two surfaces (two fragments) are equal at a given pixel. In
theory, this is unlikely to happen unless the geometric objects in question are
truly coplanar. However, because computer number representations do not
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have infinite precision (recall the discussion in Chapter 1), surfaces that are
not coplanar can map to the same depth value. This can lead to objects being
drawn in the wrong order.

If our depth values were mapped linearly into view space, then a 16-bit,
fixed-point depth buffer would be able to correctly sort any objects whose
surfaces differed in depth by about 1/60,000 of the difference between the
near and far plane distances. This would seem to be more than enough for
almost any application. For example, with a view distance of 1 km, this would
be equal to about 1.5 cm of resolution. Moving to a higher-resolution depth
buffer would make this value even smaller.

However, in the case of z-buffering, representable depth values are not
evenly distributed in view space. In fact, the depth values stored to the buffer
are basically 1/Zview, which is definitely not an even distribution of view
space Z. A graph of the depth buffer value over view space Z is shown in
Figure 9.8. This is a hyperbolic mapping of view space Z into depth buffer
values — notice how little the depth value changes with a change in Z toward
the far plane. Using a fixed-point value for this leads to very low precision
in the distance, as large intervals of Z map to the same fixed-point value of
inverse Z. In fact, a common estimate is that a z-buffer focuses 90 percent of
its precision in the closest 10 percent of view space Z. This means that the
fragments of distant objects are often sorted incorrectly with respect to one
another.

Max depth value

High depth
buffer

precision

Low depth buffer
precision

Depth buffer
value

Min depth value
Near plane Far plane

View space
Z

Figure 9.8 Depth buffer value as a function of view space Z.
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The simplest way to avoid these issues is to maximize usage of the depth
buffer by moving the near plane as far out as possible so that the accuracy
close to the near plane is not wasted. Another method that is popular in 3D
hardware is known as the w-buffer. The w-buffer interpolates a screen-affine
value for depth (often 1/w) at a high precision, then computes the inverse of
the interpolation at each pixel to produce a value that is linear in view space
(i.e., 1

/ 1
w

). It is this inverted value that is then stored in the depth buffer.
By quantizing (dropping the extra precision used during interpolation) and
storing a value that is linear in view space, the hyperbolic nature of the z-buffer
can be avoided to some degree.

Finally, floating-point depth buffers are available on some platforms.
These can be particularly useful when the depth-buffered depth values are
remapped such that the depth values map to 1.0 at the near plane and 0.0 at
the far plane. In this case, the natural precision characteristics of floating-
point numbers can be used to counteract some of the hyperbolic nature of
z-buffer values. Actually, floating-point depth buffers can have other issues,
overcorrecting and leaving the region of the scene closest to the camera with
too little precision. This is particularly noticeable in rendered scenes because
the geometry nearest the camera is the most obvious to the viewer. All of these
methods have scene- and application-dependent trade-offs.

9.5.2 Depth Buffering in Practice

Using depth buffering in most graphics systems requires additions to several
points in rendering code:

■ Creation of the depth buffer when the framebuffer is created.

■ Clearing the depth buffer each frame.

■ Enabling depth buffer testing and writing.

The first step is to ensure that the rendering window or device is created
with a depth buffer. This differs from API to API, with Iv automatically allocat-
ing a depth buffer in all cases. Having requested the creation of a depth buffer
(and in most cases, it is just that — a request for a depth buffer, dependent upon
hardware support), the buffer must be cleared at the start of each frame. The
depth buffer is generally cleared using the same function as the framebuffer
clear. Iv uses the IvRenderer function, ClearBuffers, but with a new argu-
ment, kDepthClear. While the depth buffer can be cleared independently of
the framebuffer using

renderer->ClearBuffers(kDepthClear);
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if you are clearing both buffers at the start of a frame, it can be faster on some
systems to clear them both with a single call, which is done as follows in Iv:

renderer->ClearBuffers(kColorDepthClear);

To enable or disable depth testing we simply set the desired test mode
using the IvRenderer function SetDepthTest. To disable testing, pass kDis-
ableDepthTest. To enable testing, pass one of the other test modes (e.g.,
kLessDepthTest). By default, depth testing is disabled, so the application
should enable it explicitly prior to rendering. The most common depth testing
modes are kLessDepthTest and kLessEqualDepthTest. The latter mode causes
a new fragment to be used if its depth value is less than or equal to the current
pixel depth.

The writing of depth values also can be enabled or disabled, independent
of depth testing. As we shall see later in this chapter, it can be useful to enable
depth testing while disabling depth buffer writing. A call to the IvRenderer
function SetDepthWrite can enable or disable writing the z-buffer.

9.6 Computing Fragment Shader Inputs

The next stage in the rasterization pipeline is to compute the overall color (and
possibly other shader output values) of a fragment by evaluating the currently
active fragment shader for the current fragment. This in turn requires that
the input values used by the shader be evaluated at the current fragment
location. These inputs come in numerous forms, as discussed in the previous
two chapters. Common sources include:

■ Per-object uniform values set by the application.

■ Per-vertex attributes generated or passed through from the source
vertices by the vertex shader.

■ Indirect per-fragment values, generally from textures.

Note that as we saw in the lighting chapter (Chapter 8), numerous sources
may exist for a given fragment. Each of them must be independently evaluated
per-fragment as a part of shader input source generation. Having computed
the per-fragment source values, a final fragment color must be generated by
running the fragment shader. Chapter 8 discussed various ways that per-
fragment (also referred to as “per-sample” in Chapter 8) vertex color values,
per-vertex lighting values, and texture colors can be combined in the fragment
shader. The shader generates a final fragment color that is passed to the last
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stage of the rasterization pipeline, blending (which will be discussed later in
this chapter).

The next few sections will discuss how shader source values are computed
per fragment from the sources we have listed. While there are many possible
methods that may be used, we will focus on methods that are fast to compute
in screen space and are well suited to the scan line–centric nature of most
rasterizer software and even some rasterizer hardware.

9.6.1 Uniform Values

As with all other stages in the pipeline, per-object values or colors are the easi-
est to rasterize. For each fragment, the constant uniform value may be passed
down to the shader directly. No per-fragment evaluation or computation is
required. As a result, uniform values can have minimal performance impact
to the fragment shading process.

9.6.2 Per-Vertex Attributes

Per-vertex values that are either passed through the vertex shader into the frag-
ment shader or computed in the vertex shader and then passed to the fragment
shader are referred to in OpenGL as varying values. These values are defined
only at the three vertices of each triangle, and thus must be interpolated to
determine a value at each fragment center in the triangle. As discussed in the
shading and lighting chapters, this is generally done by linearly interpolating
between the three vertex values in object space. As we shall see, in the general
case this can be an expensive operation to compute correctly for each of a
triangle’s fragments. However, we will first look at the special case of trian-
gles of constant depth. The mapping in this case is not at all computationally
expensive, making it a tempting approximation to use even when rendering
triangles of nonconstant depth (especially in a software renderer).

To analyze the constant-depth case, we will determine the nature of the
mapping of our constant-depth triangle from pixel space, through NDC space,
into view space, through barycentric coordinates, and finally to the per-vertex
source attributes. We start first with a special case of the mapping from pixel
space to view space.

The overall projection equations derived in Chapter 6 (mapping from view
space through NDC space to pixel coordinates) were all of the form

xs = axview

zview

+ b

ys = cyview

zview

+ d



390 Chapter 9 Rasterization

where both a, c �= 0. If we assume that a triangle’s vertices are all at the
same depth (i.e., view space Z is equal to a constant zconst for all points in the
triangle), then the projection of a point in the triangle is

xs = axview

zconst

+ b =
(

a

zconst

)
xview + b = a′xview + b

ys = cyview

zconst

+ d =
(

c

zconst

)
yview + d = c′yview + d

Note that a, c �= 0 implies that a′, c′ �= 0, so we can rewrite these such that

xview = xs − b

a′

yview = ys − d

c′

Thus, for triangles of constant depth zconst :

■ Projection forms an affine mapping from screen vertices to view-space
vertices on the zview = zconst plane.

■ Barycentric coordinates are an affine mapping of view-space vertices
(as we saw in Chapter 2).

■ Vertex colors define an affine mapping from a barycentric coordinate
to a color (Gouraud shading, as seen in Chapter 7).

If we compose these affine mappings, we end up with an affine mapping from
screen-space pixel coordinates to color. We can write this affine mapping from
pixel coordinates to color as

Color(xs, ys) = Cxxs + Cyys + C0

where Cx, Cy, and C0 are all colors (each of which are possibly negative or
greater than 1.0). For a derivation of the formula that maps the three screen-
space pixel positions and corresponding trio of vertex colors to the three colors
Cx, Cy, and C0, see page 126 of Eberly [25]. From our earlier derivation of the
properties of inverse Z in screen space, we note that Color(xs, ys) is screen
affine for triangles of constant z:

Color(xs + 1, ys) − Color(xs, ys) = (Cx(xs + 1) + Cyys + C0) − (Cxxs + Cyys + C0)

= Cx(xs + 1) − (Cxxs)

= Cx
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meaning that

Color(xs + 1, ys) = Color(xs, ys) + Cx

and similarly

Color(xs, ys + 1) = Color(xs, ys) + Cy

As with inverse Z, we can compute per-fragment values for per-vertex
attributes for a constant-z triangle simply by computing forward differences
of the color of a “base fragment” in the triangle.

When a triangle that does not have constant depth in camera space
is projected using a perspective projection, the resulting mapping is not
screen affine. From our discussion of depth buffer values, we can see that
given a general (not necessarily constant-depth) triangle in view space, the
mapping from NDC space to the view-space point on the triangle is of the form

xview = dxndc

axndc + byndc + c

yview = d′yndc

axndc + byndc + c

zview = d′′

axndc + byndc + c

These are projective mappings, not affine mappings as we had in the constant-
depth case. This means that the overall mapping from screen space to linearly
interpolated per-vertex attributes is also projective. Such a projective map-
ping requires two forward differences (one for the numerator and one for
the denominator) and a division per-attribute component (i.e., 3 for an RGB
color) per fragment. In order to correctly interpolate vertex attributes of a
triangle in perspective, we must use this more complex projective mapping.

Most hardware rendering systems now interpolate all per-vertex attributes
in a perspective-correct manner. However, this has not always been universal,
and in the case of older software rendering systems running on lower-powered
platforms, it was too expensive. If the per-vertex attributes being interpolated
are colors from per-vertex lighting, such as in the case of Gouraud shad-
ing, it is possible to make an accuracy-speed trade-off. Keeping in mind that
Gouraud shading is an approximation method in the first place, there is some-
what decreased justification for using the projective mapping on the basis
of “correctness.” Furthermore, Gouraud-shaded colors tend to interpolate so
smoothly that it can be difficult to tell whether the interpolation is perspective
correct or not. In fact, Heckbert and Moreton [56] mention that the New York
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Institute of Technology’s offline renderer interpolated colors incorrectly in
perspective for several years before anyone noticed! As a result, software
graphics systems have often avoided the expensive, perspective-correct projec-
tive interpolation of Gouraud colors and have simply used the affine mapping
and forward differencing. However, our next interpolant, texture coordinates,
will not be so forgiving of issues in perspective-correct interpolation.

9.6.3 Interpolating Texture Coordinates

The process of rasterizing a texture starts by interpolating the per-vertex
texture coordinates to determine the correct value at each fragment. Actu-
ally, it is generally the texel coordinates (the texture coordinates multiplied
by the texture image dimensions) that are interpolated in a rasterizer. This
process is analogous to interpolating other per-vertex attributes. However,
because texture coordinates are actually used somewhat differently than ver-
tex colors in the fragment shader, we are not able to use the screen-affine
approximation described previously. Texture coordinates require the correct
perspective interpolation. The indirect nature of texture coordinates means
that while the texture coordinates change smoothly and subtly over a triangle,
the resulting texture color lookup does not.

The issue in the case of texture coordinates has to do with the properties
of affine and projective transformations. Affine transformations map parallel
lines to parallel lines, while projective transformations guarantee only to map
straight lines to straight lines. Anyone who has ever looked down a long,
straight road knows that the two lines that form the edges of the road appear
to meet in the distance, even though they are parallel. Perspective, being a
projective mapping, does not preserve parallel lines.

The classic example of the difference between affine and projective
interpolations of texture coordinates is the checkerboard square, drawn in
perspective. Figure 9.9 shows a checkered texture as an image, along with the
image applied with wrapping to a square formed by two triangles (the two
triangles are shown in outline, or wire frame). When the top is tilted away
in perspective, note that if the texture is mapped using a projective mapping
(Figure 9.10), the vertical lines converge into the distance as expected.

If the texture coordinates are interpolated using an affine mapping
(Figure 9.11), we see two distinct visual artifacts. First, within each triangle,
all of the parallel lines remain parallel, and the vertical lines do not converge
the way we expect. Furthermore, note the obvious “kink” in the lines along
the square’s diagonal (the shared triangle edge). This might at first glance
seem to be a bug in the interpolation code, but a little analysis shows that it
is actually a basic property of an affine transformation. An affine transforma-
tion is defined by the three points of a triangle. As a result, having defined the
three points of the triangle and their texture coordinates, there are no more



9.6 Computing Fragment Shader Inputs 393

Wire-frame view Textured view

Figure 9.9 Two textured triangles parallel to the view plane.

Wire-frame view Textured view

Figure 9.10 Two textured triangles oblique to the view plane, drawn using a
projective mapping.

Wire-frame view Textured view

Figure 9.11 Two textured triangles oblique to the view plane, drawn using an
affine mapping.



394 Chapter 9 Rasterization

degrees of freedom in the transformation. Each triangle defines its transform
independent of the other triangles, and the result is a bend in what should be
a set of lines across the square.

The projective transform, however, has additional degrees of freedom,
represented by the depth values associated with each vertex. These depth
values change the way the texture coordinate is interpolated across the
triangle and allow straight lines in the mapped texture image to remain
straight on-screen, even across the triangle boundaries. The downside of this
projective mapping is that it requires the following operations per fragment
for correct evaluation:

1. An affine forward difference operation to update the numerator
for utexel.

2. An affine forward difference operation to update the numerator
for vtexel.

3. An affine forward difference operation to update the shared denomi-
nator (both utexel and vtexel can use the same denominator, as it is based
on inverse depth of the triangle at the pixel).

4. A division to recover the perspective-correct utexel.

5. A division to recover the perspective-correct vtexel.

While many PC games and some video game consoles in the 1990s used less
expensive (and less correct) approximations of true perspective texturing,
on modern hardware rasterization systems, per-fragment perspective-correct
texturing is simply assumed. Also, the fact that programmable fragment
shaders can allow basically any per-vertex attribute to be used as a texture
coordinate has further influenced hardware vendors in the move to interpolate
all vertex attributes in correct perspective.

9.6.4 Other Sources of Texture Coordinates

Direct use of per-vertex texture coordinate attributes are only one possi-
ble source of texture coordinates. Owing to the power of modern frag-
ment shaders, texture coordinates need not come directly from per-vertex
attributes. A texture lookup may be evaluated from a set of coordinates gen-
erated in the fragment shader itself as the result of a computation involving
other per-vertex attributes.

A texture coordinate generated in the fragment shader can even be the
result of an earlier texture lookup in that same fragment shader. In this
technique the texture image values in the first texture are not colors, but rather
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texture coordinates themselves. This is an extremely powerful technique
called indirect texturing. The first texture lookup forms a “table lookup,” or
“indirection,” that generates a new texture coordinate for the second texture
lookup.

Indirect texturing is an example of a more general case of texturing in
which evaluating a texture sample generates a “value” other than a color.
Clearly, not all texture lookups are used as colors. However, for ease of under-
standing in the following discussion, we will assume that the texture image’s
values represent the most common case—colors.

9.7 Evaluating the Fragment Shader

Armed with the current shader uniform values and interpolated per-vertex
attributes at the fragment center, we are ready to compute the fragment’s
color by evaluating (or “running”) the fragment shader. All of the source val-
ues are in place. Note, however, that we have not yet evaluated the texture
lookups in the shader. Some of the earliest shading languages required that the
textures be addressed only by per-vertex attributes, and in some cases, actu-
ally computed the texture lookups before even invoking the fragment shader.
However, as discussed above, modern shaders allow for texture coordinates
to be computed in the fragment shader itself, perhaps even as the result of
a texture lookup. Also, conditionals and varying loop iterations in a shader
may cause texture lookups to be skipped for some fragments. As a result, we
will consider the rasterization of textures to be a part of the fragment shader
itself.

In fact, while the mathematical computations that are done inside of the
fragment shader are interesting, the most (mathematically) complex part of an
isolated fragment shader evaluation is the computation of the texture lookups.
The texture lookups are, as we shall see, far more than merely grabbing and
returning the closest texel to the fragment center. The wide range of mappings
of textures onto geometry and then geometry into fragments requires a much
larger set of techniques to avoid glaring visual artifacts. The next section will
describe in detail these complexities.

9.8 Rasterizing Textures

The previous section described how to interpolate per-vertex texture
coordinate-attributes for use in a fragment shader, but this is only the first
step in evaluating a texture lookup in a fragment shader. Having computed
or interpolated the texture coordinate for a given fragment, the texture
coordinate must be mapped into the texture image itself to produce a color.
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9.8.1 Texture Coordinate Review

We will be using a number of different forms of coordinates through-
out our discussion of rasterizing textures. This includes the application-
level, normalized, texel-independent texture coordinates (u, v), as well as
the texture size-dependent texel coordinates (utexel, vtexel), both of which are
considered real values. We used these coordinates in our introduction to
texturing.

A final form of texture coordinate is the integer texel coordinate, or texel
address. These represent direct indexing into the texture image array. Unlike
the other two forms of coordinates, these are (as the name implies) integral
values. The mapping from texel coordinates to integer texel coordinates is
not universal and is dependent upon the texture filtering mode, which will be
discussed below.

9.8.2 Mapping a Coordinate to a Texel

When rasterizing textures, we will find that — due to the nature of perspective
projection, the shape of geometric objects, and the way texture coordinates
are generated — fragments will rarely correspond directly and exactly to texels
in a one-to-one mapping. Any rasterizer that supports texturing needs to han-
dle a wide range of texel-to-fragment mappings. In the initial discussions of
texturing in Chapter 7, we noted that texel coordinates generally include pre-
cision (via either floating-point or fixed-point numbers) that is much more
fine-grained than the per-texel values that would seem to be required. As
we shall see, in several cases we will use this so-called subtexel precision
to improve the quality of rendered images in a process known as texture
filtering.

Texture filtering (in its numerous forms) performs the mapping from real-
valued texel coordinates to final texture image values or colors through a
mixture of texel coordinate mapping and combinations of the values of the
resulting texel or texels. We will break down our discussion of texture filtering
into two major cases: one in which a single texel maps to an area that is the
size of multiple fragments (magnification), and one in which a number of
texels map into an area covered by a single fragment (minification), as they
are handled quite differently.

Magnifying a Texture

Source Code

Demo

TextureFiltering

Our initial texturing discussion stated that one common method of mapping
these subtexel precise coordinates to texture image colors was simply to select
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the texel containing the fragment center point and use its color directly.
This method, called nearest-neighbor texturing, is very simple to compute. For
any (utexel, vtexel) texel coordinate, the integer texel coordinate (uint, vint) is the
nearest integer texel center, computed via rounding:

(uint, vint) = (�utexel + 0.5�, �vtexel + 0.5�)

Having computed this integer texel coordinate, we simply use the Image()

function to look up the value of the texel. The returned color is passed to the
fragment shader for the current fragment. While this method is easy and fast
to compute, it has a significant drawback when the texture is mapped in such
a way that a single texel covers more than one pixel. In such a case, the texture
is said to be “magnified,” as a quadrilateral block of multiple fragments on
the screen is entirely covered by a single texel in the texture, as can be seen in
Figure 9.12.

Figure 9.12 Nearest-neighbor magnification.
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With nearest-neighbor texturing, all (utexel, vtexel) texel coordinates in the
square

iint − 0.5 ≤ utexel < iint + 0.5

jint − 0.5 ≤ vtexel < jint + 0.5

will map to the integer texel coordinates (iint, jint) and thus produce a constant
fragment shader value. This is a square of height and width 1 in texel space,
centered at the texel center. This results in obvious squares of constant color,
which tends to draw attention to the fact that a low-resolution image has
been mapped onto the surface. See Figure 9.12 for an example of a nearest-
neighbor filtered texture used with a fragment shader that returns the texture
as the final output color directly. In most cases, this blocky result is not the
desired visual impression.

The problem lies with the fact that nearest-neighbor texturing represents
the texture image as a piecewise constant function of (u, v). The resulting
fragment shader attribute is constant across all fragments in a triangle until
either uint or vint changes. Since the floor operation is discontinuous at integer
values, this leads to sharp edges in the function represented by the texture over
the surface of the triangle.

The common solution to the issue of discontinuous colors at texel bound-
aries is to treat the texture image values as specifying a different kind of
function. Rather than creating a piecewise constant function from the dis-
crete texture image values, we create a piecewise smooth color function.
While there are many ways to create a smooth function from a set of dis-
crete values, the most common method in rasterization hardware is linearly
interpolating between the colors at each texel center in two dimensions.
The method first computes the maximum integer texel coordinate (uint, vint)

that is less than (utexel, vtexel), the texel coordinate (i.e., the floor of the texel
coordinates):

(uint, vint) = (�utexel�, �vtexel�)

In other words, (uint, vint) defines the minimum (lower left in texture image
space) corner of a square of four adjacent texels that “bound” the texel coordi-
nate (Figure 9.13). Having found this square, we can also compute a fractional
texel coordinate 0.0 ≤ ufrac, vfrac < 1.0 that defines the position of the texel
coordinate within the 4-texel square (Figure 9.14).

(ufrac, vfrac) = (utexel − uint, vtexel − vint)
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(uint,vint) ufrac� 0.5

vfrac� 0.75

(uint,vint� 1)

(utexel,vtexel)

Pixel mapped into
texel space

(uint� 1,vint� 1)

0.5

0.75

(uint� 1,vint)

Figure 9.13 Finding the four texels that “bound” a pixel center and the fractional
position of the pixel.

Pixel mapped into
texel space

C01 C11

C10C00

Figure 9.14 The four corners of the texel-space bounding square around the pixel
center.
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We use Image() to look up the texel colors at the four corners of the square.
For ease of notation, we define the following shorthand for the color of the
texture at each of the four corners of the square (Figure 9.14):

C00 = Image(uint, vint)

C10 = Image(uint + 1, vint)

C01 = Image(uint, vint + 1)

C11 = Image(uint + 1, vint + 1)

Then, we define a smooth interpolation of the four texels surrounding
the texel coordinate. We define the smooth mapping in two stages, as shown
in Figure 9.15. First, we linearly interpolate between the colors along the
minimum-v edge of the square, based on the fractional u coordinate:

CMinV = C00(1 − ufrac) + C10ufrac

C01 C11

C10C00

CMaxV 5 C01(1 2 ufrac) 1 C11ufrac

CMinV 5 C00(1 2 ufrac) 1 C10ufrac

CFinal5 CMinV(1 2 vfrac) 1 CMaxVv frac

Figure 9.15 Bilinear filtering.
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and similarly along the maximum-v edge:

CMaxV = C01(1 − ufrac) + C11ufrac

Finally, we linearly interpolate between these two values using the fractional
v coordinate:

CFinal = CMinV (1 − vfrac) + CMaxV vfrac

See Figure 9.15 for a graphical representation of these two steps. Substituting
these into a single, direct formula, we get

CFinal = C00(1 − ufrac)(1 − vfrac) + C10ufrac(1 − vfrac)

+ C01(1 − ufrac)vfrac + C11ufracvfrac

This is known as bilinear texture filtering because the interpolation involves
linear interpolation in two dimensions to generate a smooth function from
four neighboring texture image values. It is extremely popular in hardware 3D
graphics systems. The fact that we interpolated along u first and then interpo-
lated alongvdoes not affect the result (other than by potential precision issues).
A quick substitution shows that the results are the same either way. However,
note that this is not an affine mapping. Affine mappings in 2D are uniquely
defined by three distinct points. The fourth source point of our bilinear texture
mapping may not fit the mapping defined by the other three points.

Using bilinear filtering, the colors across the entire texture domain are
continuous. An example of the visual difference between nearest-neighbor
and bilinear filtering is shown in Figure 9.16. While bilinear filtering can

(a) (b)

Figure 9.16 Extreme magnification of a texture (a) using nearest-neighbor
filtering and (b) using bilinear filtering.
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greatly improve the image quality of magnified textures by reducing the visual
“blockiness,” it will not add new detail to a texture. If a texture is magnified
considerably (i.e., one texel maps to many pixels), the image will look blurry
due to this lack of detail. The texture shown in Figure 9.16 is highly magnified,
leading to obvious blockiness in the left image (a) and blurriness in the right
image (b).

Texture Magnification in Practice

The Iv APIs use the IvTexture function SetMagFiltering to control tex-
ture magnification. Iv supports both bilinear filtering and nearest-neighbor
selection. They are each set as follows:

IvTexture* texture;

// ...

{
// Nearest-neighbor
texture->SetMagFiltering(kNearestTexMagFilter);

// Bilinear interpolation
texture->SetMagFiltering(kBilerpTexMagFilter);

// ...

Minifying a Texture

Throughout the course of our discussions of rasterization so far, we have
mainly referred to fragments by their centers — infinitesimal points located
at the center of a square fragment (continuing to assume only complete
fragments for now). However, fragments have nonzero area. This difference
between the area of a fragment and the point sample representing it becomes
very obvious in a common case of texturing.

As an example, imagine an object that is distant from the camera. Objects
in a scene are generally textured at high detail. This is done to avoid the
blurriness (such as the blurriness we saw in Figure 9.16(b)) that can occur
when an object that is close to the camera has a low-resolution texture applied
to it. As that same object and texture is moved into the distance (a common
situation in a dynamic scene), this same, detailed texture will be mapped
to smaller and smaller regions of the screen due to perspective scaling of
the object. This is known as minification of a texture, as it is the inverse of
magnification. This results in the same object and texture covering fewer and
fewer fragments.
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In an extreme (but actually quite common) case, the entire high-detail
texture could be mapped in such a way that it maps to only a few fragments.
Figure 9.17 provides such an example; in this case, note that if the object
moves even slightly (even less than a pixel), the exact texel covering the frag-
ment’s center point can change drastically. In fact, such a point sample is
almost random in the texture and can lead to the point-sampled color of
the texture used for the fragment changing wildly from frame to frame as
the object moves in tiny, subpixel amounts on the screen. This can lead to
flickering over time, a distracting artifact in an animated, rendered image.

The problem lies in the fact that most of the texels in the texture have an
almost equal “claim” to the fragment, as all of them are projected within the
rectangular area of the fragment. The overall color of the fragment’s texture
sample should represent all of the texels that fall inside of it. One way of
thinking of this is to map the square of a complete fragment on the projection
plane onto the plane of the triangle, giving a (possibly skewed) quadrilateral,
as seen in Figure 9.18. In order to evaluate the color of the texture for that

Mapping of texture
into screen
coordinates

Pixel centers

Figure 9.17 Extreme minification of a texture.
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(a) (b)

Figure 9.18 Mapping the square screen-space area of a pixel back into texel space:
(a) screen space with pixel of interest highlighted and (b) texel-space back-projection
of pixel area.

fragment fairly, we need to compute a weighted average of the colors of all of
the texels in this quadrilateral, based on the relative area of the quadrilateral
covered by each texel. The more of the fragment that is covered by a given
texel, the greater the contribution of that texel’s color to the final color of the
fragment’s texture sample.

While an exact area-weighted-average method would give a correct frag-
ment color and would avoid the issues seen with point sampling, in reality this
is not an algorithm that is best suited for real-time rasterization. Depending
on how the texture is mapped, a fragment could cover an almost unbounded
number of texels. Finding and summing these texels on a per-fragment basis
would require a potentially unbounded amount of per-fragment computa-
tion, which is well beyond the means of even hardware rasterization systems.
A faster (preferably constant-time) method of approximating this texel aver-
aging algorithm is required. For most modern graphics systems, a method
known as mipmapping satisfies these requirements.

Source Code

Demo

Mipmapping

9.8.3 Mipmapping

Mipmapping [120] is a texture-filtering method that avoids the per-fragment
expense of computing the average of a large number of texels. It does
so by precomputing and storing additional information with each texture,
requiring some additional memory over standard texturing. Mipmapping is
a constant-time operation per texture sample and requires a fixed amount
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of extra storage per texture (in fact, it increases the number of texels that
must be stored by approximately one-third). Mipmapping is a popular filtering
algorithm in both hardware and software rasterizers and is relatively simple
conceptually.

To understand the basic concept behind mipmapping, imagine a 2 × 2–
texel texture. If we look at a case where the entire texture is mapped to a
single fragment, we could replace the 2 × 2 texture with a 1 × 1 texture (a
single color). The appropriate color would be the mean of the four texels in
the 2 × 2 texture. We could use this new texture directly. If we precompute
the 1 × 1–texel texture at load-time of our application, we can simply choose
between the two textures as needed (Figure 9.19).

When the given fragment maps in such a way that it only covers one of the
four texels in the original 2 × 2–texel texture, we simply use a magnification
method and the original 2 × 2 texture to determine the color. If the fragment
covers the entire texture, we would use the 1×1 texture directly, again applying
the magnification algorithm to it (although with a 1×1 texture, this is just the
single texel color). The 1 × 1 texture adequately represents the overall color
of the 2 × 2 texture in a single texel, but it does not include the detail of the

2 × 2 version of
texture is the closest
pixel-to-texel match

Screen-space geometry
(same mipmapped texture applied to both squares)

1 × 1 version of
texture is the closest
pixel-to-texel match

Figure 9.19 Choosing between two sizes of a texture.
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original 2 × 2 texel texture. Each of these two versions of the texture has a
useful feature that the other does not.

Mipmapping takes this method and generalizes it to any texture with
power-of-two dimensions. For the purposes of this discussion, we assume
that textures are square (the algorithm does not require this, as we shall see
later in our discussion of mipmapping in practice). Mipmapping takes the ini-
tial texture image Image0 (abbreviated I0) of dimension wtexture = htexture = 2L

and generates a new version of the texture by averaging each square of four
adjacent texels into a single texel. This generates a texture image Image1
of size

1

2
wtexture = 1

2
htexture = 2L−1

as follows:

Image1(i, j) = I0(2i, 2j) + I0(2i + 1, 2j) + I0(2i, 2j + 1) + I0(2i + 1, 2j + 1)

4

where 0 ≤ i, j < 1
2wtexture. Each of the texels in Image1 represents the over-

all color of a block of the corresponding four texels in Image0 (Figure 9.20).

I1(0,0)

I1(0,0) �
I0(0,0) � I0(1,0) � I0(0,1) � I0(1,1)

4

I1(0,0) �
(1,1,1) � (0,0,0) � (0,0,0) � (1,1,1)

4
� (  , ,   )1

2
1
2

1
2

Figure 9.20 Texel block to texel mapping between mipmap levels.
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Note that if we use the same original texture coordinates for both versions
of the texture, Image1 simply appears as a blurry version of Image0 (with
half the detail of Image0). If a block of about four adjacent texels in Image0
covers a fragment, then we can simply use Image1 when texturing. But
what about more extreme cases of minification? The algorithm can be con-
tinued recursively. For each image Imagei whose dimensions are greater
than 1, we can define Imagei+1, whose dimensions are half of Imagei, and
average texels of Imagei into Imagei+1. This generates an entire set of
L + 1 versions of the original texture, where the dimensions of Imagei are
equal to

wtexture

2i

This forms a pyramid of images, each one-half the dimensions (and contain-
ing one-quarter the texels) of the previous image in the pyramid. Figure 9.21
provides an example of such a pyramid. We compute this pyramid for each tex-
ture in our scene once at load-time or as an offline preprocess and store each
entire pyramid in memory. This simple method of computing the mipmap
images is known as box filtering (as we are averaging a 2 × 2 “box” of texels
into a single texel). Box filtering is not the sole method for generating the
mipmap pyramid, nor is it the highest quality. Other, more complex meth-
ods are often used to filter each mipmap level down to the next lower level.
These methods can avoid some of the visual issues that can crop up from the
simple box filter. See Foley et al. [38] and Wohlberg [122] for details of other
image-filtering methods.

128 � 128
64 � 64

32 � 32
16 � 16

8 � 8
4 � 4

2 � 2
1 � 1

Figure 9.21 Mipmap level size progression.
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Texturing a Fragment with a Mipmap

The most simple, general algorithm for texturing a fragment with a mipmap
can be summarized as follows:

1. Determine the mapping of the fragment in screen space back into a
quadrilateral in texture space by determining the texture coordinates
at the corners of the fragment.

2. Having mapped the fragment square into a quadrilateral in texture
space, select whichever mipmap level comes closest to exactly mapping
the quadrilateral to a single texel.

3. Texture the fragment with the “best match” mipmap level selected in
the previous step, using the desired magnification algorithm.

There are numerous common ways of determining the “best match”
mipmap level, and there are numerous methods of filtering this mipmap
level into a final fragment texture value. We would like to avoid having
to explicitly map the fragment’s corners back into texture space, as this is
expensive to compute. We can take advantage of information that other ras-
terization stages already need. As a part of rasterization, it is common to
compute the difference between the texel coordinates at a given fragment
center and those of the fragment to the right and below the given frag-
ment. Such differences are used to step the texture coordinates from one
fragment to the adjacent fragment, one pixel away. These differences are
written as derivatives. The listing that follows is designed to assign intuitive
values to each of these four partial derivatives. For those unfamiliar with
∂, it is the symbol for a partial derivative, a basic concept of multivariable
calculus. The ∂ operator represents how much one component of the out-
put of a vector-valued function changes when you change one of the input
components.

∂utexel

∂xs

= Change in utexel per horizontal pixel step

∂utexel

∂ys

= Change in utexel per vertical pixel step

∂vtexel

∂xs

= Change in vtexel per horizontal pixel step

∂vtexel

∂ys

= Change in vtexel per vertical pixel step
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If a fragment maps to about one texel, then

(
∂utexel

∂xs

)2

+
(

∂vtexel

∂xs

)2

≈ 1, and
(

∂utexel

∂ys

)2

+
(

∂vtexel

∂ys

)2

≈ 1

In other words, even if the texture is rotated, if the fragment is about the same
size as the texel mapped to it, then the overall change in texture coordinates
over a single fragment has a length of about one texel. Note that all four of
these differences are independent. These partials are dependent upon utexel

and vtexel, which are in turn dependent upon texture size. In fact, for each of
these differentials, moving from Imagei to Imagei+1 causes the differential to be
halved. As we shall see, this is a useful property when computing mipmapping
values.

A common formula that is used to turn these differentials into a metric
of pixel-texel size ratio is described in Heckbert [55], which defines a formula
for the radius of a pixel as mapped back into texture space. Note that this is
actually the maximum of two radii, the radius of the pixel in utexel and the
radius in vtexel:

size = max

⎛⎝√(
∂utexel

∂xs

)2

+
(

∂vtexel

∂xs

)2

,

√(
∂utexel

∂ys

)2

+
(

∂vtexel

∂ys

)2
⎞⎠

We can see (by substituting for the ∂) that this value is halved each time we
move from Imagei to Imagei+1 (as all of the ∂ values will halve). So, in order to
find a mipmap level at which we map one texel to the complete fragment, we
must compute the L such that

size

2L
≈ 1

where size is computed using the texel coordinates for Image0. Solving for L,

L = log2 size

This value of L is the mipmap level index we should use. Note that if we plug
in partials that correspond to an exact one-to-one texture-to-screen mapping,

∂utexel

∂xs

= 1,
∂vtexel

∂xs

= 0,
∂utexel

∂ys

= 0,
∂vtexel

∂ys

= 1

we get size = 1, which leads to L = 0, which corresponds to the original texture
image as expected.



410 Chapter 9 Rasterization

This gives us a closed-form method that can convert existing partials (used
to interpolate the texture coordinates across a scan line) to a specific mipmap
level L. The final formula is

L = log2

⎛⎝max

⎛⎝√(
∂utexel

∂xs

)2

+
(

∂vtexel

∂xs

)2

,

√(
∂utexel

∂ys

)2

+
(

∂vtexel

∂ys

)2
⎞⎠⎞⎠

= log2

⎛⎝
√√√√max

((
∂utexel

∂xs

)2

+
(

∂vtexel

∂xs

)2

,

(
∂utexel

∂ys

)2

+
(

∂vtexel

∂ys

)2
) ⎞⎠

= 1

2
log2

(
max

((
∂utexel

∂xs

)2

+
(

∂vtexel

∂xs

)2

,

(
∂utexel

∂ys

)2

+
(

∂vtexel

∂ys

)2
))

Note that the value of L is real, not integer (we will discuss the methods of map-
ping this value into a discrete mipmap pyramid later). The preceding function
is only one possible option for computing the mipmap level L. Graphics sys-
tems use numerous simplifications and approximations of this value (which
is itself an approximation) or even other functions to determine the correct
mipmap level. In fact, the particular approximations of L used by some hard-
ware devices are so distinct that some experienced users of 3D hardware can
actually recognize a particular piece of display hardware by looking at ren-
dered, mipmapped images. Other pieces of 3D hardware allow the developer
(or even the end user) to bias the L values used, as some users prefer “crisp”
images (biasing L in the negative direction, selecting a larger, more detailed
mipmap level and more texels per fragment) while others prefer “smooth”
images (biasing L in the positive direction, tending toward a less detailed
mipmap level and fewer texels per fragment). For a detailed derivation of one
case of mipmap level selection, see page 106 of Eberly [25].

Another method that has been used to lower the per-fragment expense
of mipmapping is to select an L value and thus an single mipmap level per
triangle in each frame and rasterize the entire triangle using that mipmap
level. While this method does not require any per-fragment calculations of L,
it can lead to serious visual artifacts, especially at the edges of triangles, where
the mipmap level may change sharply. Software rasterizers that support
mipmapping often use this method, known as per-triangle mipmapping.

Note that by its very nature, mipmapping tends to use smaller textures on
distant objects. When used with software rasterizers, this means that mipmap-
ping can actually increase performance, because the smaller mipmap levels
are more likely to fit in the processor’s cache than the full-detail texture. Most
software rasterizers that support texturing are performance bound to some
degree by the memory bandwidth of reading textures. Keeping a texture in the
cache can decrease these bandwidth requirements significantly. Furthermore,
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if point sampling is used with a nonmipmapped texture, adjacent pixels may
require reading widely separated parts of the texture. These large per-pixel
strides through a texture can result in horrible cache behavior and can impede
the performance of nonmipmapped rasterizers severely. These cache miss
stalls make the cost of computing mipmapping information (at least on a per-
triangle basis) worthwhile, independent of the significant increase in visual
quality. In fact, many hardware platforms also see performance increases
when using mipmapping, owing to the small, on-chip texture cache memories
used to hold recently accessed texture image regions.

Texture Filtering and Mipmaps

The methods described above work on the concept that there will be a single,
“best” mipmap level for a given fragment. However, since each mipmap level
is twice the size of the next mipmap level in each dimension, the “closest”
mipmap level may not be an exact fragment-to-texel mapping. Rather than
selecting a given mipmap level as the best, linear mipmap filtering uses a
method similar to (bi)linear texture filtering. Basically, mipmap filtering uses
the real-valued L to find the pair of adjacent mipmap levels that bound the
given fragment-to-texel ratio, �L� and �L�. The remaining fractional compo-
nent (L−�L�) is used to blend between texture colors found in the two mipmap
levels.

Put together, there are now two independent filtering axes, each with two
possible filtering modes, leading to four possible mipmap filtering modes as
shown in Table 9.1. Of these methods, the most popular is linear-bilinear,
which is also known as trilinear interpolation filtering, or trilerp, as it is the

Table 9.1 Mipmap filtering modes

Mipmap Texture Result
Filter Filter

Nearest Nearest Select “best” mipmap level and then select closest
texel from it

Nearest Bilinear Select “best” mipmap level and then interpolate
four texels from it

Linear Nearest Select two “bounding” mipmap levels, select clos-
est texel in each, and then interpolate between the
two texels

Linear Bilinear Select two “bounding” mipmap levels, interpo-
late four texels from each, and then interpolate
between the two results; also called trilerp
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exact 3D analog to bilinear interpolation. It is the most expensive of these
mipmap filtering operations, requiring the lookup of eight texels per frag-
ment, as well as seven linear interpolations (three per each of the two mipmap
levels, and one additional to interpolate between the levels), but it also pro-
duces the smoothest results. Filtering between mipmap levels also increases
the amount of texture memory bandwidth used, as the two mipmap levels
must be accessed per sample. Thus, multilevel mipmap filtering often coun-
teracts the aforementioned performance benefits of mipmapping on hardware
graphics devices.

A final, newer form of mipmap filtering is known as anisotropic filter-
ing. The mipmap filtering methods discussed thus far implicitly assume that
the pixel, when mapped into texture space, produces a quadrilateral that is
fit quite closely by some circle. In other words, cases in which the quadri-
lateral in texture space is basically square. In practice, this is generally not
the case. With polygons in extreme perspective, a complete fragment often
maps to a very long, thin quadrilateral in texture space. The standard isotropic
filtering modes can tend to look too blurry (having selected the mipmap
level based on the long axis of the quad) or too sharp (having selected the
mipmap level based on the short axis of the quad). Anisotropic texture fil-
tering takes the aspect ratio of the texture-space quadrilateral into account
when sampling the mipmap and is capable of filtering nonsquare regions in
the mipmap to generate a result that accurately represents the tilted polygon’s
texturing.

Mipmapping in Practice

The individual levels of a mipmap pyramid may be specified manually in the
Iv interfaces through the use of the IvTexture functions BeginLoadData and
EndLoadData. These functions were briefly described in the introduction to
texturing (Chapter 7). However, in the case of mipmaps, we use the argument
to these functions, unsigned int level (previously defaulted to 0), which spec-
ifies the mipmap level. The mipmap level of the highest resolution image is 0.
Each subsequent level number (1, 2, 3 . . .) represents the mipmap pyramid
image with half the dimensions of the previous level. Some APIs (such as
OpenGL) require that a “full” pyramid (all the way down to a 1×1 texel) be
specified for mipmapping to work correctly. In practice, it is a good idea to
provide a full pyramid for all mipmapped textures. The number of mipmap
levels in a full pyramid is equal to

Levels = log2(max(wtexture, htexture)) + 1

Note that the number of mipmap levels is based on the larger dimension
of the texture. Once a dimension falls to one texel, it stays at one texel while
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Table 9.2 Mipmap level size progression

Level Width Height

0 32 8
1 16 4
2 8 2
3 4 1
4 2 1
5 1 1

the larger dimension continues to decrease. So, for a 32 × 8–texel texture, the
mipmap levels are shown in Table 9.2.

Note that the texels of the mipmap level images set in the array returned by
BeginLoadData must be computed by the application. Iv simply accepts these
images as the mipmap levels and uses them directly. Once all of the mipmap
levels for a texture are specified, the texture may be used for mipmapped
rendering by attaching the texture sampler as a shader uniform. An example
of specifying an entire pyramid follows.

IvTexture* texture;

// ...

{

for (unsigned int level = 0;
level < texture->GetLevels();
level++) {

unsigned int width = texture->GetWidth(level);
unsigned int height = texture->GetHeight(level);
IvTexColorRGBA* texels

= (IvTexColorRGBA*)texture->BeginLoadData(level);

for (unsigned int y = 0; y < height; y++) {
for (unsigned int x = 0; x < width; x++) {

IvTexColorRGBA& texel = texels[x + y * width];

// Set the texel color, based on
// filtering the previous level...

}
}
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texture->EndLoadData(level);
}

// ...

As a convenience, APIs such as Iv support automatic box filtering and
creation of mipmap pyramids from a single image. In Iv, an application may
provide the top-level image via the methods above and then automatically
generate the remaining levels via the IvTexture function GenerateMipmapPyra-
mid. The preceding code could be completely replaced with the following
automatic mipmap generation.

IvTexture* texture;

// ...

{

unsigned int width = texture->GetWidth();
unsigned int height = texture->GetHeight();
IvTexColorRGBA* texels

= (IvTexColorRGBA*)texture->BeginLoadData();

for (unsigned int y = 0; y < height; y++) {
for (unsigned int x = 0; x < width; x++) {

IvTexColorRGBA& texel = texels[x + y * width];

// Set the texel color
}

}

texture->EndLoadData(0);

texture->GenerateMipmapPyramid();
}

// ...

In order to set the minification filter, the IvTexture function SetMinFil-
tering is used. Iv supports both nonmipmapped modes (bilinear filtering and
nearest-neighbor selection), as well as all four mipmapped modes. The most
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common mipmapped mode (as described previously) is trilinear filtering,
which is set using

IvTexture* texture;

// ...

texture->SetMinFiltering(kBilerpMipmapLerpTexMinFilter);

// ...

9.9 From Fragments to Pixels

Thus far, this chapter has discussed generating fragments, computing the
per-fragment source values for a fragment’s shader, and some details of the
more complex aspects of evaluating a fragment’s shader (texture lookups).
However, the first few sections of the chapter outlined the real goal of all of
this per-fragment work: to generate the final color of a pixel in a rendered
view of a scene. Recall that pixels are the destination values that make up
the rectangular gridded screen (or framebuffer). The pixels are “bins” into
which we place pieces of surface that impinge upon the area of that pixel.
Fragments represent these pixel-sized pieces of surface. In the end, we must
take all of the fragments that fall into a given pixel’s bin and convert them
into a single color and depth for that pixel. We have made two important
simplifying assumptions in the chapter so far:

■ All fragments are complete; that is, a fragment covers the entire pixel.

■ All fragments are opaque; that is, near fragments obscure more distant
ones.

Put together, these two assumptions lead to an important overall simplifica-
tion: the nearest fragment at a given pixel completely determines the color of
that pixel. In such a system, all we need do is find the nearest fragment at a
pixel, shade that fragment, and write the result to the framebuffer. This was
a useful simplifying assumption when discussing visible surface determina-
tion and texturing. However, it limits the ability to represent some common
types of surface materials. It can also cause jagged visual artifacts at the
edges of objects on the screen. As a result, two additional features in modern
graphics systems have removed these simplifying assumptions: pixel blend-
ing allows fragments to be partially transparent, and antialiasing handles
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pixels containing multiple partial fragments. We will close the chapter with a
discussion of each.

9.9.1 Pixel Blending

Source Code

Demo

AlphaBlending

Pixel blending is more commonly referred to by the name of its most ubiq-
uitous special case: alpha blending. Although it is really just a special case
of general pixel blending, alpha blending is by far the most common form
of pixel blending. It is called alpha blending because it involves interpolating
between the existing color at a pixel and the color of a new fragment based on
the alpha value (or opacity) of the fragment. However, as we shall see, pixel
blending does not always use the alpha channel.

Pixel blending is a per-fragment, nongeometric function that takes as its
inputs the shaded color of the current fragment (which we will call Csrc), the
fragment’s alpha value (which is properly a component of the fragment color,
but which we will refer to as Asrc for convenience), the current color of the
pixel in the framebuffer (Cdst), and sometimes an existing alpha value in the
framebuffer at that pixel (Adst). These inputs, along with a pair of blending
functions Fsrc and Fdst , define the resulting color (and potentially alpha value)
that will be written to the pixel in the framebuffer, CP . Note that CP once
written will become Cdest in later blending operations involving the same
pixel. The general form of blending is

CP = FsrcCsrc + FdstCdst

The simplest form of pixel blending is to disable blending entirely (“source
replace” mode), in which the fragment replaces the existing pixel. This is
equivalent to

Fsrc = 1

Fdst = 0

CP = FsrcCsrc + FdstCdst = (1)Csrc + (0)Cdst = Csrc

Alpha blending involves using the source alpha value Asrc as the opacity
of the new fragment to linearly interpolate between Csrc and Cdst :

Fsrc = Asrc

Fdst = (1 − Asrc)

CP = FsrcCsrc + FdstCdst = AsrcCsrc + (1 − Asrc)Cdst

Alpha blending requires Cdst as an operand. Because Cdst is the pixel color
(generally stored in the framebuffer), alpha blending can (depending on the
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hardware) require that the pixel color be read from the framebuffer for
each fragment blended. This increased memory bandwidth means that alpha
blending can impact performance on some systems (in a manner analogous
to depth buffering). In addition, alpha blending has several other properties
that make its use somewhat challenging in practice.

Alpha blending is designed to compute a new pixel color based on the
idea that the new fragment color represents a possibly translucent sur-
face whose opacity is given by Asrc. Alpha blending only uses the fragment
alpha value, not the alpha value of the destination pixel. The existing pixel
color is assumed to represent the entirety of the existing scene at that pixel
that is more distant than the current fragment, in front of which the tran-
slucent fragment is placed. For the following discussion, we will write alpha
blending as

Blend(Csrc, Asrc, Cdst) = AsrcCsrc + (1 − Asrc)Cdst

The result of multiple alpha blending operations is order-dependent. Each
alpha blending operation assumes that Cdst represents the final color of all
objects more distant than the new fragment. If we view the blending of two
possibly translucent fragments (C1, A1) and (C2, A2) onto a background color
C0 as a sequence of two blends, we can quickly see that, in general, changing
the order of blending changes the result. For example, if we compare the two
possible blending orders, set A1 = 1.0, and expand the functions, we get

Blend(C2, A2, Blend(C1, A1, C0))
?= Blend(C1, A1, Blend(C2, A2, C0))

Blend(C2, A2, Blend(C1, 1.0, C0))
?= Blend(C1, 1.0, Blend(C2, A2, C0))

Blend(C2, A2, C1)
?= C1

These two sides are almost never equal; the two blending orders will generally
produce different results. In most cases, alpha blending of two surfaces with
a background color is order-dependent.

Pixel Blending and Depth Buffering

In practice, this order dependence of alpha blending complicates depth buffer-
ing. The depth buffer is based on the assumption that a fragment at a given
depth will completely obscure any fragment that is at a greater depth, which
is only true for opaque objects. In the presence of alpha blending, we must
compute the pixel color in a very specific ordering. We could depth sort all of
the triangles, but as discussed above, this is expensive and has serious correct-
ness issues with many datasets. Instead, one option is to use the assumption
that for most scenes, the number of translucent triangles is much smaller
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than the number of opaque triangles. Given a set of triangles, one method of
attempting to correctly compute the blended pixel color is as follows:

1. Collect the opaque triangles in the scene into a list, O.

2. Collect the translucent triangles in the scene into another list, T.

3. Render the triangles in O normally, using depth buffering.

4. Sort the triangles in T by depth into a far-to-near ordering.

5. Render the sorted list T with blending, using depth buffering.

This might seem to solve the problem. However, per-triangle depth sorting
is still an expensive operation that has to be done on the host CPU in most
cases. Also, per-triangle sorting cannot resolve all differences, as there are
common configurations of triangles that cannot be correctly sorted back to
front. Other methods have been suggested to avoid both of these issues. One
such method is to depth sort at a per-object level to avoid gross-scale out-of-
order blending, and then use more complex methods such as depth peeling
[34], which uses advanced programmable shading and multiple renderings of
objects to “peel away” closer surfaces (using the depth buffer) and generate
depth-sorted colors. While quite complicated, the method works entirely on
the GPU, and focuses on getting the closest layers correct, under the theory
that deeper and deeper layers of transparency gain diminishing returns (as
they contribute less and less to the final color).

Depth sorting or depth peeling of pixel-blended triangles can be avoided in
some application-specific cases. Two other common pixel blending modes are
commutative, and are thus order-independent. The two blending modes are
known as add and modulate. Additive blending creates the effect of “glowing”
objects and is defined as follows:

Fsrc = 1

Fdst = 1

CP = FsrcCsrc + FdstCdst = (1)Csrc + (1)Cdst = Csrc + Cdst

Modulate blending implements color filtering. It is defined as

Fsrc = 0

Fdst = Csrc

CP = FsrcCsrc + FdstCdst = (0)Csrc + CsrcCdst = CsrcCdst

Note that neither of these effects involves the alpha component of the
source or destination color. Both additive and modulate blending modes still



9.9 From Fragments to Pixels 419

require the opaque objects to be drawn first, followed by the blended objects,
but neither requires the blended objects to be sorted into a depthwise ordering.
As a result, these blending modes are very popular for particle system effects,
in which many thousands of tiny, blended triangles are used to simulate
smoke, steam, dust, or water.

Note that if depth buffering is used with unsorted, blended objects, the
blended objects must be drawn with depth buffer writing disabled, or else any
out-of-order (front-to-back) rendering of two blended objects will result in the
more distant object not being drawn. In a sense, blended objects do not exist
in the depth buffer, because they do not obscure other objects.

Blending in Practice

Blending is enabled and controlled quite simply in most graphics systems,
although there are many options beyond the modes supported by Iv. Enabling
and disabling blending and setting the blending mode are done via the IvRen-
derer function SetBlendFunc, which sets both Fsrc and Fdst in a single function
call. To use classic alpha blending, the function call is

renderer->SetBlendFunc(kOpacityBlendFunc);

Additive mode is set using the call

renderer->SetBlendFunc(kAddBlendFunc);

Modulate blending may be used via the call

renderer->SetBlendFunc(kMultiplyBlendFunc);

Blending may be disabled via the call

renderer->SetBlendFunc(kNoBlendFunc);

This interface is very flexible and direct. There are far more blending func-
tions available in OpenGL (and D3D); these are detailed in the OpenGL
Programming Guide [85].

Recall that it is often useful to disable z-buffer writing while rendering
blended objects. This is accomplished via depth buffer “masking,” described
previously in the depth buffering section.
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9.9.2 Antialiasing

The other simplifying rasterization assumption we made earlier, the idea that
partial fragments are either ignored or “promoted” to complete fragments,
induces its own set of issues. The idea of converting all fragments into all-or-
nothing cases was to allow us to assume that a single fragment would “win” a
pixel and determine its color. We used this assumption to reduce per-fragment
computations to a single-point sample.

This is reasonable if we treat pixels as pure point samples, with no area.
However, in our initial discussion of fragments and our detailed discussion
of mipmapped textures, we saw that this is not the case; each pixel repre-
sents a rectangular region on the screen with a nonzero area. Because of this,
more than one (partial) fragment may be visible inside of a pixel’s rectangular
region. Figure 9.22 provides an example of such a multifragment pixel.

Using the point-sampled methods discussed, we would select the color of
a single fragment to represent the entire area of the pixel. However, as can be
seen in Figure 9.23, this pixel center point sample may not represent the color
of the pixel as a whole. In the figure, we see that most of the area of the pixel

Fragments covering
highlighted pixel

Figure 9.22 Multiple fragments falling inside the area of a single pixel.
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Point samples of partial
fragments

Final on-screen color of pixels

Entire pixels may be assigned
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Point samples can fall in
unrepresentative parts of pixels

Figure 9.23 A point sample may not accurately represent the overall color of a
pixel.

is dark gray, with only a very small square in the center being bright white.
As a result, selecting a pixel color of bright white does not accurately represent
the color of the pixel rectangle as a whole. Our perception of the color of the
rectangle has to do with the relative areas of each color in the rectangle,
something that the single point–sampling method cannot represent.

Figure 9.24 makes this even more apparent. In this situation, we see two
examples of a pixel of interest (the center pixel in each 9-pixel 3 × 3 grid). In
both center pixel configurations (top and bottom of the left side of the figure),
the vast majority of the surface area is dark gray. In each of the two cases, the
center pixel contains a small, white fragment. The white fragments are the
same size in both cases, but they are in slightly different positions relative to
the center pixel in each of the two cases. In the first (top) example, the white
fragment happens to contain the pixel center, while in the bottom case, the
white fragment does not contain the pixel center. The right column shows the
color that will be assigned to the center pixel in each case. Very different colors
are assigned to these two pixels, even though their geometric configurations
are almost identical. This demonstrates the fact that single-point sampling the
color of a pixel can lead to somewhat arbitrary results. In fact, if we imagine
that the white fragment were to move across the screen over time, an entire
line of pixels would flash between white and gray as the white fragment moved
through each pixel’s center.

It is possible to determine a more accurate color for the two pixels in
the figure. If the graphics system uses the relative areas of each fragment
within the pixel’s rectangle to weight the color of the pixel, the results will
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White fragment
covers a pixel

center

White partial fragment
drawn to screen

Final on-screen color
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Fragment no
longer covers a
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Figure 9.24 Subpixel motion causing a large change in point-sampled pixel color.

be much better. In Figure 9.25, we can see that the white fragment covers
approximately 10 percent of the area of the pixel, leaving the other 90 percent
as dark gray. Weighting the color by the relative areas, we get a pixel color of

Carea = 0.1 × (1.0, 1.0, 1.0) + 0.9 × (0.25, 0.25, 0.25) = (0.325, 0.325, 0.325)

Note that this computation is independent of where the white fragment
falls within the pixel; only the size and color of the fragment matter. Such
an area-based method avoids the point-sampling errors we have seen. This
system can be extended to any number of different colored fragments within
a given pixel. Given a pixel with area apixel and a set of n disjoint fragments,
each with an area within the pixel ai and a color Ci, the final color of the pixel
is then ∑n

i=1 ai × Ci

apixel

=
n∑

i=1

ai

apixel

× Ci =
n∑

i=1

Fi × Ci

where Fi is the fraction of the pixel covered by the given fragment, or the
fragment’s “coverage.” This method is known as area sampling. In fact, this
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Figure 9.25 Area sampling of a pixel.

is really a special case of a more general definite integral. If we imagine that
we have a screen-space function that represents the color of every position
on the screen (independent of pixels or pixel centers) C(x, y), then the color
of a pixel defined as the region l ≤ x ≤ r, t ≤ y ≤ b (the left, right, top, and
bottom screen coordinates of the pixel), using this area sampling method, is
equivalent to

∫ b

t

∫ r

l
C(x, y)dxdy∫ b

t

∫ r

l
dxdy

=
∫ b

t

∫ r

l
C(x, y)dxdy

(b − t)(r − l)
=

∫ b

t

∫ r

l
C(x, y)dxdy

apixel

(9.4)

which is the integral of color over the pixel’s area, divided by the total area
of the pixel. The summation version of equation 9.4 is a simplification of this
more general integral, using the assumption that the pixel consists entirely of
areas of piecewise constant color, namely, the fragments covering the pixel.

As a verification of this method, we shall assume that the pixel is entirely
covered by a single, complete fragment with color C(x, y) = CT , giving

∫ b

t

∫ r

l
C(x, y)dxdy

apixel

=
∫ b

t

∫ r

l
CT dxdy

apixel

= CT

∫ b

t

∫ r

l
dxdy

apixel

= CT

apixel

apixel

= CT (9.5)

which is the color we would expect in this situation.
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While area sampling does avoid completely missing or overemphasizing
any single sample, it is not the only method used, nor is it the best at repre-
senting the realities of display devices (where the intensity of a physical pixel
may not actually be constant within the pixel rectangle). The area sampling
shown in equation 9.4 implicitly weights all regions of the pixel equally, giving
the center of the pixel weighting equal to that of the edges. As a result, it is
often called unweighted area sampling. Weighted area sampling, on the other
hand, adds a weighting function that can bias the importance of the colors in
any region of the pixel as desired. If we simplify the original pixel boundaries
and the functions associated with equation 9.4 such that boundaries of the
pixel are 0 ≤ x, y ≤ 1, then equation 9.4 becomes∫ b

t

∫ r

l
C(x, y)dxdy∫ b

t

∫ r

l
dxdy

=
∫ 1

0

∫ 1
0 C(x, y)dxdy

1
(9.6)

Having simplified equation 9.4 into equation 9.6, we define a weighting
function W(x, y) that allows regions of the pixel to be weighted as desired:∫ 1

0

∫ 1
0 W(x, y)C(x, y)dxdy∫ 1
0

∫ 1
0 W(x, y)dxdy

(9.7)

In this case, the denominator is designed to normalize according to the
weighted area. A similar substitution to equation 9.5 shows that constant
colors across a pixel map to the given color. Note also that (unlike unweighted
area sampling) the position of a primitive within the pixel now matters. From
equation 9.7, we can see that unweighted area sampling is simply a special
case of weighted area sampling. With unweighted area sampling, W(x, y) = 1,
giving ∫ 1

0

∫ 1
0 W(x, y)C(x, y)dxdy∫ 1
0

∫ 1
0 W(x, y)dxdy

=
∫ 1

0

∫ 1
0 (1)C(x, y)dxdy∫ 1
0

∫ 1
0 (1)dxdy

=
∫ 1

0

∫ 1
0 C(x, y)dxdy∫ 1
0

∫ 1
0 dxdy

=
∫ 1

0

∫ 1
0 C(x, y)dxdy

1

A full discussion of weighted area sampling, the theory behind it, and
numerous common weighting functions is given in Foley et al. [38]. For those
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desiring more depth, Glassner [41] and Wohlberg [122] detail a wide range of
sampling theory.

Supersampled Antialiasing

The methods so far discussed show theoretical ways for computing area-based
pixel colors. These methods require that pixel-coverage values be computed
per fragment. Computing analytical (exact) pixel-coverage values for triangles
can be complicated and expensive. In practice, the pure area-based methods
do not lead directly to simple, fast hardware antialiasing implementations.

The conceptually simplest, most popular antialiasing method is known as
oversampling, supersampling, or supersampled antialiasing (SSAA). In SSAA,
area-based sampling is approximated by point sampling the scene at more
than one point per pixel. In SSAA, fragments are generated not at the per-
pixel level, but at the per-sample level. In a sense, SSAA is conceptually little
more than rendering the entire scene to a larger (higher-resolution) frame-
buffer, and then filtering blocks of pixels in the higher-resolution framebuffer
down to the resolution of the final framebuffer. For example, the supersam-
pled framebuffer may be N times larger in width and height than the final
destination framebuffer on-screen. In this case, every N × N block of pixels
in the supersampled framebuffer will be filtered down to a single pixel in the
on-screen framebuffer.

The supersamples are combined into a single pixel color via a weighted
(or in some cases unweighted) average. The positions and weights used with
weighted area versions of these sampling patterns differ by manufacturer;
common examples of sample positions are shown in Figure 9.26. Note that
the number of supersamples per pixel varies from as few as 2 to as many
as 16. M-sample SSAA represents a pixel as an M-element piecewise-constant
function. Partial fragments will only cover some of the point samples in a
pixel, and will thus have reduced weighting in the resulting pixel.

Some of the N ×N sample grids also have rotated versions. The reason
for this is that horizontal and vertical lines happen with high frequency and
are also correlated with the pixel layout itself. By rotating the samples at the
correct angle, all N2 samples are located at distinct horizontal and vertical
positions. Thus, a horizontal or vertical edge moving slowly from left to right
or top to bottom through a pixel will intersect each sample individually and
will thus have a coverage value that changes in 1/N2 increments. With screen-
aligned N×N sample patterns, the same moving horizontal and vertical edges
would intersect entire rows or columns of samples at once, leading to coverage
values that changed in 1/N increments. The rotated patterns can take better
advantage of the number of available samples.

M-sample SSAA generates M times (as mentioned above, generally 2–16
times) as many fragments per pixel. Each such (smaller) fragment has its
own color computed by evaluating per-vertex attributes, texture values, and
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2 samples 4 samples 9 samples

4 samples, rotated

Figure 9.26 Common sample-point distributions for multisample-based
antialiasing.

the fragment shader itself as many as M times more frequently per frame than
normal rendering. This per-sample full rendering pipeline is very powerful,
since each sample truly represents the color of the geometry at that sam-
ple. It is also extremely expensive, requiring the entire rasterization pipeline
to be invoked per sample and thus increasing rasterization overhead by
2–16 times. For even powerful 3D hardware systems, this can simply be too
expensive.

Multisampled Antialiasing

The most expensive aspect of supersampled antialiasing is the creation of
individual fragments per sample and the resulting texturing and fragment
shading per sample. Another form of antialiasing recognizes the fact that the
most likely causes of aliasing in 3D rendering are partial fragments at the
edges of objects, where pixels will contain multiple partial fragments from
different objects, often with very different colors. Multisampled antialiasing
(MSAA) attempts to fix this issue without raising the cost of rendering as
much as does SSAA. MSAA works like normal rendering in that it generates
fragments (including partial fragments) at the final pixel size. It only evaluates
the fragment shader once per fragment, so the number of fragment shader
invocations is reduced significantly when compared to SSAA.

The information that MSAA does add is per-sample fragment coverage.
When a fragment is rendered, its color is evaluated once, but then that same
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color is stored for each visible sample that the fragment covers. The existing
color at a sample (from an earlier fragment) may be replaced with the new
fragment’s color. But this is done at a per-sample level. At the end of the
frame, a “resolve” is still needed to compute the final color of the pixel from
the multiple samples. However, only a coverage value (a simple geometric
operation) and possibly a depth value is computed per sample, per frag-
ment. The expensive steps of computing a fragment color are still done once
per fragment. This greatly reduces the expense of MSAA when compared
to SSAA.

There are two subtleties to MSAA worth mentioning. First, since MSAA
is coverage-based, no antialiasing is computed on complete fragments. The
complete fragment is rendered as if no antialiasing was used. SSAA, on the
other hand, antialiases every pixel by invoking the fragment’s shader several
times per pixel. A key observation is that perhaps the most likely item to
cause aliasing in single-sampled complete fragments is texturing (since it is
the highest-frequency value across a fragment). Texturing already has a form
of antialiasing applied: mipmapping. Thus, this is not a problem for MSAA in
most cases.

The other issue is the question of selecting the position in the pixel at
which to evaluate a shader on a partial fragment. Normally, we evaluate the
fragment shader at the pixel center. However, a partial fragment may not even
cover the pixel center. If we sample the fragment shader at the pixel center,
we actually will be extrapolating the vertex attributes beyond the intended
values. This is particularly noticeable with textures, as we will read the tex-
ture at a location that may not have been mapped in the triangle. This can
lead to glaring visual artifacts. The solution in most 3D MSAA hardware is
to select the centroid of the samples covered by a fragment. Since fragments
are convex, the centroid will always fall inside of the fragment. This does add
some complexity to the system, but the number of possible configurations of
a fragment that does not include the pixel center is limited. The convexity
and the fact that the central sample is not touched means that there are a
very limited set of covered-sample configurations possible. The set of possible
positions can be precalculated before the hardware is even built.

9.9.3 Antialiasing in Practice

For most rendering APIs, the most important step in using MSAA is to
create a framebuffer for rendering that is compatible with the technique.
Whereas depth buffering required an additional buffer alongside the frame-
buffer to store the depth values, MSAA requires a special framebuffer format
that includes the additional color, depth, and coverage values per sample
within each pixel. Different rendering APIs and even different rendering hard-
ware on the same APIs often have different methods for explicitly requesting
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MSAA-compatible framebuffers. Some rendering APIs allow the application
to specify the number and event layout of samples in the pixel format, while
others simply use a single flag for enabling a single (unspecified) level of
MSAA. Iv does not support MSAA, so we will describe the methods used in
OpenGL and D3D to enable it.

In OpenGL, the creation of the framebuffer is platform-specific. As a
result, the specification of MSAA is also platform-specific, often involving
vendor-specific extensions. However, the GLUT utility library includes a
single flag, GLUT_MULTISAMPLE, to be passed to the glutInitDisplayMode
function. This flag will request that the framebuffer be created with an
MSAA-compatible format.

OpenGL also includes a glEnable/glDisable flag for MSAA,
GL_MULTISAMPLE. However, note that many implementations will ignore this
flag — if an MSAA-compatible framebuffer is used for rendering, the imple-
mentation may simply use MSAA all the time, without regard to this flag.

Finally, some rendering APIs (such as Direct3D) can require special flags
or restrictions when presenting an MSAA framebuffer to the screen. In the
case of D3D, MSAA framebuffers must be presented to the screen using a
special mode that marks the framebuffer’s contents as invalid after presenta-
tion. This takes into account the fact that the framebuffer must be “resolved"
from its multisample-per-pixel format into a single color per pixel during
presentation, destroying the multisample information in the process.

9.10 Chapter Summary

This chapter concludes the discussion of the rendering pipeline. Rasteri-
zation provides us with some of the lowest-level yet most mathematically
interesting concepts in the entire pipeline. We have discussed the connec-
tions between mathematical concepts, such as projective transforms, and
rendering methods, such as perspective-correct texturing. In addition, we
addressed issues of mathematical precision in our discussion of the depth
buffer. Finally, the concept of point sampling versus area sampling appeared
twice, relating to both mipmapping and antialiasing. Whether it is imple-
mented in hardware, software, or a mixture of the two, the entire graphics
pipeline is ultimately designed only to feed a rasterizer, making the ras-
terizer one of the most important yet least understood pieces of rendering
technology.

Thanks to the availability of high-quality, low-cost 3D hardware on a
wide range of platforms, the percentage of readers who will ever have to
implement their own rasterizer is now vanishingly small. However, an under-
standing of how rasterizers function is important even to those who will never
need to write one. For example, even a basic practical understanding of the
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depth buffering system can help a programmer build a scene that avoids
visual artifacts during visible surface determination. Understanding the inner
workings of rasterizers can help a 3D programmer quickly debug problems
in the geometry pipeline. Finally, this knowledge can guide the program-
mer to better optimize their geometry pipeline, “feeding” their rasterizer with
high-performance datasets.
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Chapter10
Interpolation

10.1 Introduction

Up to this point, we have considered only motions (more specifically,
transformations) that have been created programmatically. In order to create
a particular motion (e.g., a submarine moving through the world), we have to
write a specific program to generate the appropriate sequence of transforma-
tions for our model. However, this takes time and it can be quite tedious to
move objects in this fashion. It would be much more convenient to predefine
our transformation set in a tool and then somehow regenerate it within our
game. An artist could create the sequence using a modeling package, and then
a programmer would just write the code to play it back, much as a projector
plays back a strip of film. This process of pregenerating a set of data and then
playing it back is known as animation.

The best way to understand animation is to look at the art form in which it
has primarily been used: motion pictures. In this case, the illusion of motion
is created by drawing or otherwise recording a series of images on film and
then projecting them at 24 or 30 frames per second (for film and video, respec-
tively). The illusion is maintained by a property of the eye–brain combination
known as persistence of motion: the eye–brain system sees two frames and
invisibly (to our perception) fills in the gaps between them, thus giving us the
notion of smooth motion.

We could do something similar in our game. Suppose we had a character
that we want to move around the world. The artist could generate various
animation sets at 60 frames per second (f.p.s.), and then when we want the
character to run, we play the appropriate running animation. When we want
the character to walk, we switch to the walking animation. The same process
can be used for all the possible motions in the game.

431
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However, there are a number of problems with this. First, by setting
the animation set to a rate of 60 f.p.s. and then playing it back directly, we
have effectively locked the frame rate for the game at 60 f.p.s. as well. Many
monitors can run at 85 f.p.s., and when running in windowed mode, the graph-
ics can be updated much faster than that. It would be much better if we could
find some way to generate 85 f.p.s. or more from a 60 f.p.s. dataset. In other
words, we need to take our initial dataset and generate a new one at a different
rate. This is known as resampling.

This brings us to our second problem. Storing 60 f.p.s. per animation
adds up to a lot of data. As an example, if we have 10 data points per model
that we’re storing, with 16 floats per point (i.e., a 4 × 4 matrix), that adds up
to about 38 KB per second of animation. A minute of animation adds up to
over 2 MB of data, which can be a serious hit, particularly if we’re running
on a low-memory platform such as a console. It would be better if we could
generate our data at a lower rate, say 10 or 15 f.p.s., and then resample up to
the speed we need. This is essentially the same problem as our first one — it’s
just that our initial dataset has fewer samples.

Alternately, we could take another cue from movie animation. The pri-
mary animators on a film draw only the important, infrequent “key” frames
that capture the essential flow of an animation. The work of generating the
remaining “in-between” frames is left to secondary animators, who generate
these intermediate frames from the supplied key frames. These artists are
known as ’tweeners. In our case, we could store key frames that store the
essential positions of our motion. These key frames would not have to be
separated by a constant time interval, rather at smaller intervals when the
positions are changing quickly, and at larger intervals when the positions
change very slowly. The resampling function would act as our ’tweener for
this key frame data.

Fortunately, we have already been introduced to one technique for doing
all of this, albeit in another form. This method is known as interpolation,
and we first saw it when generating a line from two points. Interpolation
takes a set of discrete sample points at given time intervals and generates a
continuous function that passes through the points. Using this, we can pick
any time along the domain of the function and generate a new point so that
we might fill in the gaps. We’re using the interpolation function to sample at
a different rate.

An alternative is approximation, which uses the points to guide the resul-
ting function. In this case, the function does not pass through the points. This
may seem odd, but it can help us better control the shape of the function.
However, the same principle applies: We generate a function based on the
initial sample data and resample later at a different frame rate.

We’ll be breaking our discussion of interpolation and approximation
into three parts. First, we’ll look at some techniques for interpolating and
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approximating position. Next, we’ll look at how we can extend those
techniques for orientation. Finally, we’ll look at some applications, in par-
ticular, the motion of a constrained camera.

10.2 Interpolation of Position

10.2.1 General Definitions

The general class of functions we’ll be using for both interpolating and approxi-
mating are called parametric curves. We can think of a curve as a squiggle in
space, where the parameter controls where we are in the squiggle. The simplest
example of a parametric curve is our old line equation,

L(t) = P0 + (P1 − P0)t

Here t controls where we are on the line, relative to P0 and P1.
When curves are used for animation, our parameter is usually represented

by u or t. We can think of this as representing time, although the units used
don’t necessarily have any relationship to seconds. In our discussion we will
use u as the parameter to a uniform curve Q such that Q(0) is the start of the
curve and Q(1) is the end. When we want to use a general parameterization,
we will use t. In this case, we usually set a time value ti for each point Pi; we
expect to end up at position Pi in space at time ti. The sequence t0, t1, . . . , tn
is sorted (as are the corresponding points) so that it is monotonically
increasing.

We can formally define a parametric curve as a function Q(u) that maps
an interval of real values (represented by the parameter u, as above) to a
continuous set of points. When mapping to R

3, we commonly use a parametric
curve broken into three separate functions, one for each coordinate: Q(u) =
(x(u), y(u), z(u)). This is also known as a space curve.

The term continuous in our definition is a difficult one to grasp mathe-
matically. Informally, we can think of a continuous function as one that we
can draw without ever lifting the pen from the page. Formally, we say that a
function f is continuous at a value x0 if

lim
x→x0

f(x) = f(x0)

In addition, we say that a function f(x) is continuous over an interval (a, b)

if it is continuous for every value x in the interval. We can also say that the
function has positional, or C0, continuity over the interval (a, b).
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This can be taken further: A function f(x) has tangential, or C1, continuity
across an interval (a, b) if the first derivative f ′(x) of the function is continuous
across the interval. In our case, the derivative Q′(u) for parameter u is a tangent
vector to the curve at location Q(u). Correspondingly, the derivative of a space
curve is Q′(u) = (x′(u), y′(u), z′(u)).

Occasionally, we may be concerned with C2 continuity, also known as cur-
vature continuity. A function f(x) has C2 continuity across an interval (a, b)

if the second derivative f ′′(x) of the function is continuous across the inter-
val. Higher orders of continuity are possible, but they are not relevant to the
discussion that follows.

A few more definitions will be useful to us. The average speed r we travel
along a curve is related to the distance d traveled along the curve and the time
it takes to travel that distance, namely,

r = d/u

The instantaneous speed at a particular parameter u is the length of the
derivative vector Q′(u).

For a given point P on a smooth curve Q(u), we define a circle with first
and second derivative vectors equal to those at P as the osculating1 circle. If
the radius of the osculating circle is ρ, the curvature κ at P is 1/ρ. The curvature
at any point is always nonnegative. The higher the curvature, the more the
curve bends at that point; the curvature of a straight line is 0.

In general, it is not practical to construct a single, closed-form polynomial
that uses all of the sample points — most of the curves we will discuss use at
most four points as their geometric foundation. Instead, we will create a piece-
wise curve. This consists of curve segments that each apply over a sequential
subset of the points and are joined together to create a function across the
entire domain. How we create this joint determines the type of continuity we
will have in our function as whole. We can achieve C0 continuity by ensuring
that the endpoint of one curve segment is equal to the start point of the next
segment. In general, this is desirable.

We can achieve C1 continuity over the entire piecewise curve by guaran-
teeing that tangent vectors are equal at the end of one segment and the start
of the next segment. A related form of continuity in this case is G1 continuity,
where the tangents at a pair of segment endpoints are not necessarily equal
but point in the same direction. In many cases G1 continuity is good enough
for our purposes. And as one might expect, we can achieve C2 continuity by
guaranteeing that the second derivative vectors are equal at the end of one
segment and the start of the next segment.

1. So called because it “kisses” up to the point.
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10.2.2 Linear Interpolation

Definition

The most basic parametric curve is our example above: a line passing through
two points. By using the parameterized line equation based on the two points,
we can generate any point along the line. This is known as linear interpolation
and is the most commonly used form of interpolation in game programming,
mainly because it is the fastest. From our familiar line equation,

Q(u) = P0 + u(P1 − P0)

we can rearrange to get

Q(u) = (1 − u)P0 + uP1

The value u is the factor we use to control our interpolation, or parameter.
Recall that if u is 0, Q(u) returns our starting point P0, and if u is 1, then Q(u)

returns P1, our endpoint. Values of u between 0 and 1 will return a point
along the line segment P0P1. When interpolating, we usually care only about
values of u within the interval [0, 1] and, in fact, state that the interpolation is
undefined outside of this interval.

It is common when creating parametric curves to represent them as matrix
equations. As we’ll see later, it makes it simple to set certain conditions for a
curve and then solve for the equation we want. The standard matrix form is

Q(u) = U · M · G

where U is a row matrix containing the polynomial interpolants we’re using:
1, u,u2,u3,and so on; M is a matrix containing the coefficients necessary for
the parametric curve; and G is a matrix containing the coordinates of the
geometry that defines the curve. In the case of linear interpolation,

U = [
u 1

]
M =

[−1 1
1 0

]
G =

[
x0 y0 z0
x1 y1 z1

]
Note that the columns of M are the (u, 1) coefficients for P0 and P1,
respectively.
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With this formulation, the result UMG will be a 1 × 3 matrix:

UMG = [
x(u) y(u) z(u)

]
= [

(1 − u)x0 + ux1 (1 − u)y0 + uy1 (1 − u)z0 + uz1
]

This is counter to our standard convention of using column vectors. However,
rather than write out G as individual coordinates, we can write G as a column
matrix of n points, where for linear interpolation this is

G =
[
P0
P1

]
Then, using block matrix multiplication, the result UMG becomes

UMG = (1 − u)P0 + uP1

This form allows us to use a convenient shorthand to represent a general
parameterized curve without having to expand into three essentially similar
functions.

Recall that in most cases we are given time values t0 and t1 that are asso-
ciated with points P0 and P1, respectively. In other words, we want to start
at point P0 at time t0 and end up at point P1 at time t1. These times are not
necessarily 0 and 1, so we’ll need to remap our time value t in the interval
[t0, t1] to a parameter u in the interval [0, 1], which we’ll use in our original
interpolation equation. If we want the percentage u that a time value t lies
between t0 and t1, we can use the formula

u = t − t0

t1 − t0
(10.1)

Using this parameter u with the linear interpolation will give us the effect we
desire. We can use this approach to change any curve valid over the inter-
val [0, 1] and using u as a parameter to be valid over [t0, t1] and using t as a
parameter.

Piecewise Linear Interpolation

Source Code

Demo

Linear

Pure linear interpolation works fine if we have only two values, but in most
cases, we will have many more than two. How do we interpolate among multi-
ple points? The simplest method is to use piecewise curves; that is, we linearly
interpolate from the first point to the second, then from the second point to
the third, and so on, until we get to the end. For each pair of points Pi and
Pi+1, we use equation 10.1 to adjust the time range [ti, ti+1] to [0, 1] so we can
interpolate properly.
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For a given time value t, we need to find the stored time values ti and ti+1
such that ti ≤ t ≤ ti+1. From there we look up their corresponding Pi and Pi+1
values and interpolate. If we start with n + 1 points, we will end up with a
series of n segments labeled Q0, Q1, . . . , Qn−1. Each Qi is defined by points Pi

and Pi+1 where

Qi(u) = (1 − u)Pi + uPi+1

and Qi(1) = Qi+1(0). This last condition guarantees C0 continuity. This is
expressed as code as follows:

IvVector3 EvaluatePiecewiseLinear( float t, unsigned int count,
const IvVector3* positions,
const float* times)

{
// handle boundary conditions
if ( t <= times[0] )

return positions[0];
else if ( t >= times[count-1] )

return positions[count-1];

// find segment and parameter
unsigned int i;
for ( i = 0; i < count-1; ++i )
{

if ( t < times[i+1] )
break;

}
float t0 = times[i];
float t1 = times[i+1];
float u = (t - t0)/(t1 - t0);

//evaluate
return (1-u)*positions[i] + u*positions[i+1];

}

In the pseudocode we found the subcurve by using a straight linear search.
For large sets of points, using a binary search will be more efficient since we’ll
be storing the values in sorted order. We can also use temporal coherence:
since our time values won’t be varying wildly and most likely will be increasing
in value, we can first check whether we lie in the interval [ti, ti+1] from the last
frame and then check subsequent intervals.

This works reasonably well and is quite fast, but as Figure 10.1 demon-
strates, will lead to sharp changes in direction. If we treat the piecewise
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P0

P1

P2

P3

Q0 Q1 Q2

Figure 10.1 Piecewise linear interpolation.

interpolation of n + 1 points as a single function f(t) over [t0, tn], we find that
the derivative f ′(t) is discontinuous at the sample points, so f(t) is not C1

continuous. In animation this expresses itself as sudden changes in the speed
and direction of motion, which may not be desirable. Despite this, because
of its speed, piecewise linear interpolation is a reasonable choice if the slopes
of the piecewise line segments are relatively close. If not, or if smoother
motion is desired, other methods using higher-order polynomials are
necessary.

10.2.3 Hermite Curves

Definition

Source Code

Demo

Hermite

The standard method of improving on piecewise linear equations is to use
piecewise cubic curves. If we control the curve properly at each point, then
we can smoothly transition from one point to the next, avoiding the obvious
discontinuities. In particular, what we want to do is to set up our piecewise
curves so that the tangent at the end of one curve matches the tangent at the
start of the next curve. This will remove the first order discontinuity at each
point — the derivative will be continuous over the entire time interval that we
are concerned with.

Why a cubic curve and not a quadratic curve? Take a look at Figure 10.2.
We have set two positions P0 and P1, and two tangents P′

0 and P′
1. Clearly,

a line won’t pass through the two points and also have a derivative at each
point that matches its corresponding tangent vectors. The same is true for a
parabola. The next order curve is cubic, which will satisfy these conditions.
Intuitively, this makes sense. A line is constrained by two points, or one point
and a vector; a parabola can be defined by three points, or by two points and
a tangent; and a cubic curve can be defined by four points, or two points and
two tangents.
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P1P0 Q0

P′0
P′1

Figure 10.2 Hermite curve.

Using our given constraints, or boundary conditions, let’s derive our cubic
equation. A generalized cubic function and corresponding derivative are

Q(u) = au3 + bu2 + cu + D (10.2)

Q′(u) = 3au2 + 2bu + c (10.3)

We’ll solve for our four unknowns a, b, c, and D by using our four
boundary conditions. We’ll assume that when u = 0, Q(0) = P0 and Q′(0) = P′

0.
Similarly, at u = 1, Q(1) = P1 and Q′(1) = P′

1. Substituting these values into
equations 10.2 and 10.3, we get

Q(0) = D = P0 (10.4)

Q(1) = a + b + c + D = P1 (10.5)

Q′(0) = c = P′
0 (10.6)

Q′(1) = 3a + 2b + c = P′
1 (10.7)

We can see that equations 10.4 and 10.6 already determine that c and D

are P′
0 and P0, respectively. Substituting these into equations 10.5 and 10.7

and solving for a and b gives

a = 2(P0 − P1) + P′
0 + P′

1

b = 3(P1 − P0) − 2P′
0 − P′

1
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Substituting our now known values for a, b, c, and D into equation 10.2
gives

Q(u) = [
2(P0 − P1) + P′

0 + P′
1

]
u3 + [

3(P1 − P0) − 2P′
0 − P′

1

]
u2 + P′

0u + P0

This can be rearranged in terms of the boundary conditions to produce our
final equation:

Q(u) = (2u3 − 3u2 + 1)P0 + (−2u3 + 3u2)P1 + (u3 − 2u2 + u)P′
0 + (u3 − u2)P′

1

This is known as a Hermite curve. We can also represent this as the product of
a matrix multiplication, just as we did with linear interpolation. In this case,
the matrices are

U = [
u3 u2 u 1

]
M =

⎡⎢⎢⎣
2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤⎥⎥⎦

G =

⎡⎢⎢⎢⎣
P0

P1

P′
0

P′
1

⎤⎥⎥⎥⎦
We can use either formulation to build piecewise curves just as we did for

linear interpolation. As before, we can think of each segment as a separate
function, valid over the interval [0, 1]. Then to create a C1 continuous curve,
two adjoining segments Qi and Qi+1 would have to have matching positions
such that

Qi(1) = Qi+1(0)

and matching tangent vectors such that

Q′
i(1) = Q′

i+1(0)

What we end up with is a set of sample positions {P0, . . . , Pn}, tangent vec-
tors {P′

0, . . . , P′
n}, and times {t0, . . . , tn}. At a given point adjoining two curve

segments Qi and Qi+1,

Qi(1) = Qi+1(0) = Pi+1

Q′
i(1) = Q′

i+1(0) = P′
i+1
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P1

P0 Q0

P′
Q′ (1)
Q′ (0)

Q1
P2

P′0

P′2

1

0

1

Figure 10.3 Piecewise Hermite curve. Tangents at P1 match direction and
magnitude.

Figure 10.3 shows this situation in the piecewise Hermite curve.
The above assumes that our our time values occur at uniform intervals;

that is, there is a constant �t between t0 and t1, and t1 and t2, etc. However, as
mentioned under linear interpolation, the difference between time values ti to
ti+1 may vary from segment to segment. The solution is to do the same thing
we did for linear interpolation: If we know that a given value t lies between ti
and ti+1, we can use equation 10.1 to normalize our time value to the range
0 ≤ u ≤ 1 and use that as our parameter to curve segment Qi.

This is equivalent to using nonuniform Hermite splines, where the final
parameter value is not necessarily equal to 1. These can be derived similarly
to the uniform Hermite splines. Assuming a valid range of [0, tf ], their general
formula is

Q(t) =
(

2t3

t3
f

− 3t2

t2
f

+ 1

)
P0 +

(
−2t3

t3
f

+ 3t2

t2
f

)
P1

+
(

t3

t3
f

− 2t2

t2
f

+ t

tf

)
P′

0 +
(

t3

t3
f

− t2

t2
f

)
P′

1

In our case, for each (ti, ti+1) pair, tf = ti+1 − ti.

Manipulating Tangents

The tangent vectors are used for more than just maintaining first derivative
continuity across each sample point. Changing their magnitude also controls
the speed at which we move through the point and consequently through the
curve. They also affect the shape of the curve. Take a look at Figure 10.4. The
longer the vector, the faster we will move and the sharper the curvature. We
can create a completely different curve through our sample points, simply by
adjusting the tangent vectors.
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P1P0(a) P1P0(b)

P′0

P′0

P′1 P′1

Figure 10.4 Hermite curve with (a) small tangent and low curvature and (b) large
tangent and higher curvature.

P1

P0 P2

Q0

Q′ (0)

Q′ (1)0

1

Q1

Figure 10.5 Piecewise Hermite curve. Tangents at P1 have same direction but
differing magnitudes.

There is, of course, no reason that the tangents Q′
i(1) and Q′

i+1(0) have
to match. One possibility is to match the tangent directions but not the tan-
gent magnitudes — this gives us G1 continuity. The resulting function has a
discontinuity in its derivative but usually still appears smooth. It also has the
advantage that it allows us to control how our curve looks across each segment
a little better. For example, it might be that we want to have the appearance of
a continuous curve but also be able to have more freedom in how each indi-
vidual segment is shaped. By maintaining the same direction but allowing for
different magnitudes, this function provides for the kind of flexibility we need
in this instance (Figure 10.5).

Another possibility is that the tangent directions don’t match at all. In this
case, we’ll end up with a kink, or cusp, in the whole curve (Figure 10.6). While
not physically realistic, it does allow for sudden changes in direction. The
combination of all the possibilities at each sample point — equal tangents,
equal tangent directions with nonequal magnitudes, and nonequal tangent
directions — gives us a great deal of flexibility in creating our interpolating
function across all the sample points. To allow for this level of control, we need
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P1

P0 P2

Q0

Q1

Q′ (0)
Q′ (1)0

1

Figure 10.6 Piecewise Hermite curve. Tangents at P1 have differing directions
and magnitudes.

P1

P0

P2

Figure 10.7 Possible interface for Hermite curves, showing in–out tangent vectors.

to set two tangents at each internal sample point Pi, which we’ll express as
P′

i,1 (the “incoming” tangent) and P′
i,0 (the “outgoing”tangent). Alternatively,

we can think of a curve segment as being defined by two points Pi and Pi+1,
and two tangents P′

i,0 and P′
i+1,1.

One question remains: How do we generate these tangents? One simple
answer is that most existing tools that artists will use, such as Alias’s Maya and
Discreet’s 3D Studio Max, provide ways to set up Hermite curves and their
corresponding tangents. When exporting the sample points for subsequent
animation, we export the tangents as well. Some tweaking may need to be
done to guarantee that the curves generated in internal code match that in the
artist program; information on a particular representation is usually available
from the manufacturer.

Another common way of generating Hermite data is using in-house tools
built for a specific purpose, for example, a tool for managing paths for cameras
and other animated objects. In this case, an interface will have to be created
to manage construction of the path. One possibility is to click to set the next
sample position, and then drag the mouse away from the sample position to
set tangent magnitude and direction. A line segment with an arrowhead can
be drawn showing the outgoing tangent, and a corresponding line segment
with a tail drawn showing the incoming tangent (Figure 10.7).

We will need to modify the tangents so that they can either have differ-
ent magnitudes or different directions. Many drawing programs control this
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by allowing three different tangent types. For example, Jasc’s Paint Shop Pro
refers to them as symmetric, asymmetric, and cusp. With the symmetric node,
clicking and dragging on one of the segment ends rotates both segments and
changes their lengths equally, to maintain equal tangents. With an asymmet-
ric node, clicking and dragging will rotate both segments to maintain equal
direction but change only the length of the particular tangent clicked on. And
with a cusp, clicking and dragging a segment end changes only the length
and direction of that tangent. This allows for the full range of possibilities in
continuity previously described.

Automatic Generation of Hermite Curves

Suppose we don’t need the full control of generating tangents for each sample
position. Instead, we just want to automatically generate a smooth curve that
passes through all the sample points. To do this, we’ll need to have a method
of creating reasonable tangents for each sample. One solution is to generate a
quadratic function using a given sample point and its two neighbors, and then
take the derivative of the function to get a tangent value at the sample point.
A similar possibility is to take, for a given point Pi, the weighted average of
(Pi+1 − Pi) and (Pi − Pi−1). However, for both of these it still will be necessary
to set a tangent for the two endpoints, since they have only one neighboring
point.

Source Code

Demo

AutoHermite

Another method creates tangents that maintain C2 continuity at the inte-
rior sample points. To do this, we’ll need to solve a system of linear equations,
using our sample points as the known quantities and the tangents as our
unknowns. For simplicity’s sake, we’ll assume we’re using uniform curves,
and begin by computing the first derivative of the Hermite uniform curve Q:

Q′
i(u) = (6u2 − 6u)Pi + (−6u2 + 6u)Pi+1 + (3u2 − 4u + 1)P′

i + (3u2 − 2u)P′
i+1

and from that the second derivative Q′′:

Q′′
i (u) = (12u − 6)Pi + (−12u + 6)Pi+1 + (6u − 4)P′

i + (6u − 2)P′
i+1

At a given interior point Pi+1, we want the incoming second derivative P′′
i+1,1

to equal the outgoing second derivative P′′
i+1,0. We’ll assume that each curve

segment has a valid parameterization from 0 to 1, so we want

Q′′
i (1) = Q′′

i+1(0)

6Pi − 6Pi+1 + 2P′
i + 4P′

i+1 = −6Pi+1 + 6Pi+2 − 4P′
i+1 − 2P′

i+2
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This can be rewritten to place our knowns on one side of the equation and
unknowns on the other:

2P′
i + 8P′

i+1 + 2P′
i+2 = 6[(Pi+2 − Pi+1) + (Pi+1 − Pi)]

This simplifies to

P′
i + 4P′

i+1 + P′
i+2 = 3(Pi+2 − Pi)

Applying this to all of our sample points {P0, . . . , Pn} creates n − 1 linear
equations. This can be written as a matrix product as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

1 4 1 · · · 0 0

0 1 4 1 · · · 0 0
...

0 0 · · · 1 4 1 0

0 0 · · · 0 1 4 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

P′
0

P′
1
...

P′
n−1

P′
n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

3(P2 − P0)

3(P3 − P1)

...

3(Pn−1 − Pn−3)

3(Pn − Pn−2)

⎤⎥⎥⎥⎥⎥⎥⎦
This means we have n−1 equations with n+1 unknowns. To solve this, we will
need two more equations. We have already constrained our interior tangents
by ensuring C2 continuity; what remains is to set our two tangents at each
extreme point. One possibility is to set them to given values v0 and v1, or

Q′
0(0) = P′

0 = v0 (10.8)

Q′
n−1(1) = P′

n = v1 (10.9)

This is known as a clamped end condition, and the resulting curve is a clamped
cubic spline. Our final system of equations is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0

1 4 1 0 · · · 0 0

0 1 4 1 · · · 0 0
...

0 0 · · · 1 4 1 0

0 0 · · · 0 1 4 1

0 0 · · · 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

P′
0

P′
1
...

P′
n−1

P′
n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0

3(P2 − P0)

3(P3 − P1)

...

3(Pn−1 − Pn−3)

3(Pn − Pn−2)

v1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solving this system of equations gives us the appropriate tangent vectors.
This is not as bad as it might seem. Because this matrix (known as a tridia-
gonal matrix) is sparse and extremely structured, the system is very easy and
efficient to solve using a modified version of Gaussian elimination known as
the Thomas algorithm.

If we express our tridiagonal matrix generally as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 c0 0 0 · · · 0 0

a1 b1 c1 0 · · · 0 0

0 a2 b2 c2 · · · 0 0
...

0 0 · · · an−2 bn−2 cn−2 0

0 0 · · · 0 an−1 bn−1 cn−1

0 0 · · · 0 0 an bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d3

...

dn−2

dn−1

dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then we can forward substitute to create array A′ as follows:

a′
i = 0

b′
i = 1

c′
i =

{ c0
b0

; i = 0
ci

bi−c′
i−1ai

; 1 ≤ i ≤ n − 1

d′
i =

⎧⎨⎩
d0
b0

; i = 0
di−d′

i−1ai

bi−c′
i−1ai

; 1 ≤ i ≤ n

Here A′ et al. represent a modification of their respective counterparts, not a
derivative.

We can then solve for x by using back substitution:

xn = d′
n

xi = d′
i − c′

ixi+1 ; 0 ≤ i ≤ n − 1

This is significantly faster than blindly applying Gaussian elimination. In
addition to the speed-up, we can also use less space than Gaussian elimination
by storing our matrix as three n + 1–length arrays: a, b, and c. So the fact that
our matrix is tridiagonal leads to a great deal of savings.
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Natural End Conditions

Source Code

Demo

AutoHermite

In the preceding examples, we generated splines assuming that the beginning
and end tangents were clamped to values set by the programmer or the user.
This may not be convenient; we may want to avoid specifying tangents at all.
An alternative approach is to set conditions on the end tangents, just as we
did with the internal tangents, to reduce the amount of input needed.

One such possibility is to assume that the second derivative is 0 at the two
extremes; that is, Q′′

0(0) = Q′′
n−1(1) = 0. This is known as a relaxed or natural

end condition, and the spline created is known as a natural spline. As the
name indicates, this produces a very smooth and natural-looking curve at
the endpoints, and in most cases, this is the end condition we would want
to use.

With a natural spline, we don’t need to specify tangent information at all —
we can compute the two unconstrained tangents from the clamped spline
using the second derivative condition.

At point P0, we know that

0 = Q′′
0(0)

= −6P0 + 6P1 − 4P′
0 − 2P′

1

As before, we can rewrite this so that the unknowns are on the left side and
the knowns on the right:

4P′
0 + 2P′

1 = 6P1 − 6P0

or

2P′
0 + P′

1 = 3(P1 − P0) (10.10)

Similarly, at point Pn, we know that

0 = Q′′
n−1(1)

= 6Pn−1 − 6Pn + 2P′
n−1 + 4P′

n

This can be rewritten as

P′
n−1 + 2P′

n = 3(Pn − Pn−1) (10.11)
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We can substitute equations 9.12 and 9.13 for our first and last equations in
the clamped case, to get the following matrix product:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0

1 4 1 0 · · · 0 0

0 1 4 1 · · · 0 0
...

0 0 · · · 1 4 1 0

0 0 · · · 0 1 4 1

0 0 · · · 0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

P′
0

P′
1
...

P′
n−1

P′
n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(P1 − P0)

3(P2 − P0)

3(P3 − P1)

...

3(Pn−1 − Pn−3)

3(Pn − Pn−2)

3(Pn − Pn−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Once again, by solving this system of linear equations, we can find the values
for our tangents.

10.2.4 Catmull-Rom Splines

Source Code

Demo

Catmull

An alternative for automatic generation of a parametric curve is the Catmull-
Rom spline. This takes a similar approach to some of the initial methods
we described for Hermite curves (tangent of parabola, weighted average),
where tangents are generated based on the positions of the sample points.
The standard Catmull-Rom splines create the tangent for a given sample point
by taking the neighboring sample points, subtracting to create a vector, and
halving the length. So, for sample Pi, the tangent P′

i is

P′
i = 1

2
(Pi+1 − Pi−1)

If we substitute this into our matrix definition of a Hermite curve between Pi

and Pi+1, this gives us

Qi(u) = [
u3 u2 u 1

]
⎡⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Pi

Pi+1
1
2 (Pi+1 − Pi−1)

1
2 (Pi+2 − Pi)

⎤⎥⎥⎥⎦
We can rewrite this in terms of Pi−1, Pi, Pi+1, and Pi+2 to get

Qi(u) = [
u3 u2 u 1

] 1

2

⎡⎢⎢⎢⎣
−1 3 −3 1

2 −5 4 −1

−1 0 1 0

0 2 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Pi−1

Pi

Pi+1

Pi+2

⎤⎥⎥⎥⎦
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Figure 10.8 Automatic generation of tangent vector at P0, based on positions of
P1 and P2.

This provides a definition for curve segments Q1 to Qn−2, so it can be
used to generate a C1 curve from P1 to Pn−1. However, since there is no P−1 or
Pn+1, we once again have the problem that curves Q0 and Qn−1 are not valid
due to undefined tangents at the endpoints. And as before, these either can be
provided by the artist or programmer, or automatically generated. Parent [88]
presents one technique. For P0, we can take the next two points, P1 and P2, and
use them to generate a new phantom point, P1 + (P1 − P2). If we subtract P0
from the phantom point and halve the length, this gives a reasonable tangent
for the start of the curve (Figure 10.8). The tangent at Pn can be generated
similarly.

Since our knowns for the outer curve segments are two points and
a tangent, another possibility is to use a quadratic equation to generate
these segments. We can derive this in a similar manner as the Hermite
spline equation. The general quadratic equation will have the form

Q(u) = au2 + bu + C (10.12)

For the case of Q0, we know that

Q0(0) = C = P0

Q0(1) = a + b + C = P1

Q′
0(1) = 2a + b = P′

1

= 1

2
(P2 − P0)

Solving for a, b, and C and substituting into equation 10.12, we get

Q0(u) =
(

1

2
P0 − P1 + 1

2
P2

)
u2 +

(
−3

2
P0 + 2P1 − 1

2
P2

)
u + P0
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Rewriting in terms of P0, P1, and P2 gives

Q0(u) =
(

1

2
u2 − 3

2
u + 1

)
P0 +

(
−u2 + 2u

)
P1 +

(
1

2
u2 − 1

2
u

)
P2

As before, we can write this in matrix form:

Q0(u) = [
u2 u 1

] 1

2

⎡⎣ 1 −2 1
−3 4 −1

2 0 0

⎤⎦⎡⎣P0
P1
P2

⎤⎦
A similar process can be used to derive Qn−1:

Qn−1(u) = [
u2 u 1

] 1

2

⎡⎣ 1 −2 1
−1 0 1

0 2 0

⎤⎦⎡⎣Pn−2
Pn−1
Pn

⎤⎦

10.2.5 Kochanek-Bartels Splines
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An extension of Catmull-Rom splines are Kochanek-Bartels splines [66]. Like
Catmull-Rom splines, the tangents are generated based on the positions of
the sample points. However, rather than generating a single tangent at each
point, Kochanek-Bartels splines separate the incoming and outgoing tangents.
In addition, rather than using a fixed function based on the preceding and
following points, the tangents are computed from a weighted sum of two
vectors: the difference between the following and current point Pi+1 −Pi, and
the difference between the current point and the preceding point Pi − Pi−1.

The weights in this case are based on three parameters: tension (repre-
sented as τ), continuity (represented as γ), and bias (represented as β). Because
of this, they are also often called TCB splines.

The formulae for the tangents at a sample Pi on a Kochanek-Bartels spline
are as follows:

P′
i,0 = (1 − τ)(1 − γ)(1 − β)

2
(Pi+1 − Pi) + (1 − τ)(1 + γ)(1 + β)

2
(Pi − Pi−1)

P′
i,1 = (1 − τ)(1 + γ)(1 − β)

2
(Pi+1 − Pi) + (1 − τ)(1 − γ)(1 + β)

2
(Pi − Pi−1)

Note that each of these parameters has a valid range of [−1, 1]. Also note
that if all are set to 0, then we end up with the formula for a Catmull-Rom
spline.

Each parameter has a different effect on the shape of the curve. For exam-
ple, as the tension at a given control point varies from −1 to 1, the curve passing
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through the point will change from a very rounded curve to a very tight curve.
One can think of it as increasing the influence of the control point on the curve
(Figure 10.9(a)).

Continuity does what one might expect — it varies the continuity at the
control point. A continuity setting of 0 means that the curve will have C1

continuity at that point. As the setting approaches −1 or 1, the curve will end
up with a corner at that point; the sign of the continuity controls the direction
of the corner (Figure 10.9(b)).

Bias varies the effect of Pi+1 and Pi−1 on the tangents. A bias near −1
means that Pi+1 − Pi will have the most effect on the tangents; this is called
undershooting. If the bias is near 1, then Pi − Pi−1 will have the most effect;
this is called overshooting (Figure 10.9(c)).

(a)

(b)

(c)

Figure 10.9 Kochanek-Bartels curves. (a) Effect of low versus high tension at
central point, (b) effect of low versus high continuity at central point, (c) effect of low
versus high bias at central point.
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Note that these splines have the same problem as Catmull-Rom splines
with undefined tangents at the endpoints as there is only one neighboring
point. As before, this can be handled by the user setting these tangents by
hand or building quadratic curves for the first and last segments. The process
for generating these is similar to what we did for Catmull-Rom splines.

Kochanek-Bartels splines are useful because they provide more control
over the resulting curve than straight Catmull-Rom splines, and are often
used in three-dimensional (3D) packages as an interface to Hermite splines.
Because of this, it is useful to be aware of them for use in internal tools and
for handling when exporting from commercial software.

10.2.6 Bézier Curves

Definition

Source Code

Demo

Bézier

The previous techniques for generating curves from a set of points meet the
functional requirements of controlling curvature and maintaining continuity.
However, other than Hermite curves where the tangents are user-specified,
they are not so good at providing a means of controlling the shape that is
produced. It is not always clear how adjusting the position of a point will
change the curve produced, and if we’re using a particular type of curve
and want to pass through a set of fixed points, there is usually only one
possibility.

Bézier curves were created to meet this need. They were devised by Pierre
Bézier for modeling car bodies for Renault and further refined by Forrest,
Gordon, and Riesenfeld. A cubic Bézier curve uses four control points: two
endpoints P0 and P3 that the curve interpolates, and two points P1 and P2
that the curve approximates. Their positions act, as their name suggests, to
control the curve. The convex hull, or control polygon, formed by the control
points bounds the curve (Figure 10.10). Another way to think of it is that the

P1

P0

P2

P3

(a) P1

P2

P3P0

(b)

Figure 10.10 Examples of cubic Bézier curve showing convex hull.
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curve mimics the shape of the control polygon. Note that the four points in
this case do not have to be coplanar, which means that the curve generated
will not necessarily lie on a plane either.

The tangent vector at point P0 points in the same direction as the vector
P1 − P0. Similarly, the tangent at P3 has the same direction as P3 − P2. As we
will see, there is a definite relationship between these vectors and the tangent
vectors used in Hermite curves. For now, we can think of the polygon edge
between the interpolated endpoint and neighboring control point as giving us
an intuitive sense of what the tangent is like at that point.

So far we’ve only shown cubic Bézier curves, but there is no reason
why we couldn’t use only three control points to produce a quadratic Bézier
curve (Figure 10.11) or more control points to produce higher-order curves.
A general Bézier curve is defined by the function

Q(u) =
n∑

i=0

PiJn,i(u)

where the set of Pi are the control points, and

Jn,i(u) =
(

n

i

)
ui (1 − u)n−i

where (
n

i

)
= n!

i!(n − i)!

The polynomials generated by Jn,i are also known as the Bernstein poly-
nomials, or Bernstein basis.

In most cases, however, we will use only cubic Bézier curves. Higher-order
curves are more expensive and can lead to odd oscillations in the shape of the
curve. Quadratic curves are useful when processing power is limited (e.g., the

P0

P1

P2

Figure 10.11 Example of quadratic Bézier curve showing convex hull.
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game Quake 3 used them) but don’t have quite the flexibility of cubic curves.
For example, they don’t allow for the familiar S shape in Figure 10.10(b).
To generate something similar with quadratic curves requires two piecewise
curves, and hence more data.

The standard representation of an order n Bézier curve is to use an ordered
list of points P0, . . . , Pn as the control points. Using this representation, we can
expand the general definition to get the formula for the cubic Bézier curve:

Q(u) = (1 − u)3P0 + 3u(1 − u)2P1 + 3u2(1 − u)P2 + u3P3 (10.13)

The matrix form is

Q(u) = [
u3 u2 u 1

]
⎡⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

P0

P1

P2

P3

⎤⎥⎥⎥⎦
We can think of the curve as a set of affine combinations of the four points,

where the weights are defined by the four basis functions J3,i. We can see these
basis functions graphed in Figure 10.12. At a given parameter value u, we grab
the four basis values and use them to compute the affine combination.

As hinted at, there is a relationship between cubic Bézier curves and
Hermite curves. If we set our Hermite tangents to 3(P1 − P0) and 3(P3 − P2),
substitute those values into our cubic Hermite equation, and simplify, we end
up with the cubic Bézier equation.

1

1

0
0

t

J3,0

J3,1 J3,2

J3,3

Figure 10.12 Cubic Bézier curve basis functions.
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Piecewise Bézier Curves

As with linear interpolation and Hermite curves, we can interpolate a curve
through more than two points by creating curve segments between each neigh-
boring pair of interpolation points. Many of the same principles apply with
Bézier curves as did with Hermite curves. In order to maintain matching direc-
tion for our tangents, giving us G1 continuity, each interpolating point and
its neighboring control points need to be collinear. To obtain equal tangents,
and therefore C1 continuity, the control points need to be collinear with and
equidistant to the shared interpolating point. Drawing a line segment through
the three points gives a three-lobed barbell shape, seen in Figure 10.13.

The barbell makes another very good interface for managing our curves.
If we set up our interpolating point as a pivot, then we can grab one neighbor-
ing control point and rotate it around to change the direction of the tangent.
The other neighboring control point will rotate correspondingly to main-
tain collinearity and equal distance, and thereby C1 continuity. If we drag
the control point away from our interpolating point, that will increase the
length of our tangent. We can leave the other control point at the original
distance, if we like, to create different arrival/departure speeds while still
maintaining G1 continuity. Or, we can match its distance from the sam-
ple as well, to maintain C1 continuity. And of course, we can move each
neighboring control point independently to create a cusp at that interpolating
point.

This seems very similar to our Hermite interface, so the question may
be, why use Bézier curves? The main advantage of the Bézier interface over
the Hermite interface is that, as mentioned, the control points act to bound
the curve, and so give a much better idea of how the shape of the curve will
change as we move the control points around. Because of this, many drawing
packages use Bézier curves instead of Hermite curves.

While in most cases we will want to make use of user-created data
with Bézier curves, it is sometimes convenient to automatically generate
them. One possibility is to use the modification of the matrix technique we
used with Hermite curves. Alternatively, Parent [88] provides a method for

Figure 10.13 Example interface for Bézier curves.



456 Chapter 10 Interpolation

automatically generating Bézier control points from a set of sample positions,
as shown in Figure 10.14. Given four points Pi−1, Pi, Pi+1, and Pi+2, we want to
compute the two control points between Pi and Pi+1. We compute the tangent
vector at Pi by computing the difference between Pi+1 and Pi−1. From that we
can compute the first control point as Pi + 1/3(Pi+1 − Pi−1). The same can be
done to create the second control point as Pi+1 − 1/3(Pi+2 − Pi). This is very
similar to how we created the Catmull-Rom spline, but with tangents twice
as large in magnitude.

10.2.7 Other Curve Types
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B-Spline

The first set of curves we looked at were interpolating curves, which pass
through all the given points. With Bézier curves, the resulting curve interpo-
lates two of the control points, while approximating the others. B-splines are a
generalization of this — depending on the form of the B-spline, all or none of
the points can be interpolated. Because of this, in a B-spline all of the control
points can be used as approximating points (Figure 10.15). In fact, B-splines
are so flexible they can be used to represent all of the curves we have described
so far. However, with flexibility comes a great deal of complexity. Because of

Pi Pi+1

Pi+2Pi–1

1/3(Pi+1 – Pi–1) 1/3(Pi – Pi+2)

Figure 10.14 Automatic construction of approximating control points with
Bézier curve.

P0

P1
P2

P3
P4

P5

Figure 10.15 B-spline approximating curve.
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this, B-splines are not yet in common usage in games, either for animation or
surface construction.

B-splines are computed similarly to Bézier curves. We set up a basis func-
tion for each control point in our curve, and then for each parameter value u,
we multiply the appropriate basis function by its point and add the results. In
general, this can be represented by

Q(u) =
n∑

i=0

PiBi(u)

where each Pi is a point and Bi is a basis function for that point. The basis
functions in this case are far more general than those described for Bézier
curves, which gives B-splines their flexibility and their power.

Like our previous piecewise curves, B-splines are broken into smaller
segments. The difference is that the number of segments is not necessarily
dependent on the number of points, and the intermediary point between
each segment is not necessarily one of our control points. These intermediary
points are called knots. If the knots are spaced equally in time, the curve is
known as a uniform B-spline, otherwise it is a nonuniform B-spline.

B-splines are not often used for animation; they are more commonly used
when building surface representations. A full description of the power and
complexity of B-splines is out of the purview of this text, so for those who are
interested, more information on B-splines and other curves can be found in
Bartels et al. [6], Foley et al. [38], and Rogers [97].

Another issue is that the curves we have discussed so far have the property
that any affine transformation on the set of points (or tangents, in the case
of Hermite curves) generating the curve will transform the curve accordingly.
So for example, if we want to transform a Bézier curve from the local frame
to the view frame, all we need to do is transform the control points and then
generate the curve in the view frame.

However, this will not work for a perspective transformation, due to the
need for a reciprocal division at each point on the curve. The answer is to apply
a process similar to the one we used when transforming points, by adding an
additional parameterized function w(u) that we divide by when generating the
points along the curve. This is known as a rational curve.

There are a number of uses for rational curves. The first has already been
stated: We can use it as a more efficient method for projecting curves. But it
also allows us to set weights wi for the control points so that we can direct the
curve to pass closer to one point or another. Another use of rational curves is
to create conic section curves, such as circles and ellipses. Nonrational curves,
since they are polynomials, can only approximate conic sections.

The most commonly used of the rational curves are nonuniform rational
B-splines, or NURBS. Since they can produce conic as well as general curves
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and surfaces, they are extremely useful in computer-aided design (CAD)
systems and modeling for computer animation. Like B-splines, rational curves
and particularly NURBS are not yet used much in games because of their
relative performance cost and because of concern by artists about lack of
control.

10.3 Interpolation of Orientation

So far in our exploration of animation we’ve considered only interpolation
of position. For a coordinate frame, this means only translating the frame in
space, without considering rotation. This is fine for moving an object along
a path, assuming we wanted it to remain oriented in the same manner as
its base frame, however, generally we don’t. One possibility is to align the
forward vector of the object to the tangent vector of the curve, and use either
the second derivative vector or an up vector to build a frame. This will work in
general for airplanes and missiles, which tend to orient along their direction of
travel. But suppose we want to interpolate a camera so that it travels sideways
along a section of curve, or we’re trying to model a helicopter, which can face
in one direction while moving in another.

Another reason we want to interpolate orientation is for the purpose of
animating a character. Usually characters are broken into a scene-graph–like
data structure, called the skeleton, where each level, or bone, is stored at a
constant translation from its parent, and only relative rotation is changed to
move a particular node (Figure 10.16). So to move a forearm, for example,
we rotate it relative to an upper arm (Figure 10.17). Accordingly, we can gen-
erate a set of key frames for an animated character by storing a set of poses
generated by setting rotations at each bone. To animate the character, we
interpolate from one key frame rotation to another.

As we shall see, when interpolating orientation we can’t quite use the
same techniques as we did with position. Rotational space doesn’t behave in
the same way as positional space; we’ll be more concerned with interpolating
along the surface of a sphere instead of along a line. As part of this, we’ll revisit
the representations we covered in Chapter 5 discussing the pros and cons of
each representation for handling the task of interpolation.

10.3.1 General Discussion

Our interpolation problem for position was to find a space curve — a func-
tion given a time parameter that returns a position — that passes through our
sample points and maintains our desired curvature at each sample point. The
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Figure 10.16 Example of skeleton showing relationship between bones.

same is true of interpolating orientation, except that our curve doesn’t pass
through a series of positions, but a series of orientations.

We can think of this as wanting to interpolate from one coordinate frame
to another. If we were simply interpolating two vectors v1 and v2, we could
find the rotation between them via the axis–angle representation (θ, r̂), and
then interpolate by rotating v1 as

v(t) = R(tθ, r̂)v1

In other words, we linearly interpolate the angle from 0 to θ and contin-
ually apply the newly generated rotation to v1 to get our interpolated ori-
entations. But for a coordinate frame, we need to interpolate three vectors
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B2

B0

B1

Figure 10.17 Relative bone poses for bending arm.

simultaneously. We could use the same process for all three basis vectors, but
it’s not guaranteed that they will remain orthogonal. What we would need to
do is find the overall rotation in axis–angle form from one coordinate frame
to another, and then apply the process described. This is not a simple thing
to do, and as it turns out, there are better ways.

However, for fixed angles and axis–angle formats, we can use this to inter-
polate simple cases of rotation around a single axis. For instance, if we’re
interpolating from (90, 0, 0) to (180, 0, 0), we can linearly interpolate the first
angle from 90 degrees to 180 degrees. Or, with an axis–angle format, if the
rotation is from the reference orientation to another orientation, again we only
need to interpolate the angle. Using this method also allows for interpolations
over angles greater than 360 degrees. Suppose we want to rotate twice around
the z-axis and represent this as only two values. We could interpolate between
the two x-y-z fixed angles (0, 0, 0) and (0, 0, 4π). As we interpolate from 0 to 1,
our object will rotate twice. More sample orientations are needed to do this
with matrices and quaternions.

Source Code

Demo

Euler

But extending this to more complex cases does not work. Suppose we take
as our starting orientation (0, 90, 0) and our ending orientation (90, 45, 90).
If we linearly interpolate the angles to find a value halfway between them,
we get (45, 67.5, 45). But this is wrong. One possible value that is correct is
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(90, 22.5, 90). The consequence of interpolating linearly from one sequence
of Euler angles to another is that the object tends to sidle along, rotating
around mostly one axis and then switching to rotations around mostly another
axis, instead of rotating around a single axis, directly from one orientation to
another.

We can mitigate this problem by defining Hermite or higher-order splines
to better control the interpolation, and some 3D modeling packages provide
output to do just that. However, you may not want to dedicate the space for
the intermediary key frames or the processing power to perform the spline
interpolation, and it’s still an approximation. For more complex cases, the
only two formats that are practical are matrices and quaternions, and as we’ll
see, this is where quaternions truly shine.

There are generally two approaches used when interpolating matrices and
quaternions in games: linear interpolation and spherical linear interpolation.
Both methods are usually applied piecewise between each orientation sample
pair, and even though this will generate discontinuities at the sample points,
the artifacts are rarely noticeable. While we will mention some ways of com-
puting cubic curves, they generally are just too expensive for the small gain
in visual quality.

10.3.2 Linear Interpolation
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By using the scalar multiplication and addition operations, we can linearly
interpolate rotation matrices and quaternions just as we did vectors. Let’s look
at a matrix example first. Consider two orientations: one represented as the
identity matrix and the other by a rotation of 90 degrees around the z-axis.
Using linear interpolation to find the orientation halfway between the start
and end orientations, we get

1

2

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ + 1

2

⎡⎢⎣ 0 1 0

−1 0 0

0 0 1

⎤⎥⎦ =
⎡⎢⎣

1
2

1
2 0

− 1
2

1
2 0

0 0 1

⎤⎥⎦

The result is not a well-formed rotation matrix. The basis vectors are indeed
perpendicular, but they are not unit length. In order to restore this, we need
to perform Gram-Schmidt orthogonalization, which is a rather expensive
operation to perform every time we want to perform an interpolation.

With quaternions we run into some problems similar to those encountered
with matrices. Suppose we perform the same interpolation, from the identity
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quaternion to a rotation of 90 degrees around z. This second quaternion is
(
√

2/2, 0, 0,
√

2/2). The resulting interpolated quaternion when t = 1/2 is

r = 1

2
(1, 0, 0, 0) + 1

2

(√
2

2
, 0, 0,

√
2

2

)

=
(

2 + √
2

4
, 0, 0,

√
2

4

)

The length of r is 0.9239 — clearly, not 1. Just as with matrices, we had
to reorthogonalize after performing linear interpolation; with quaternions
we will have to renormalize. Fortunately, this is a cheaper operation than
orthogonalization, so quaternions have the advantage here.

In both cases, this happens because linear interpolation has the effect of
cutting across the arc of rotation. If we compare a vector in one orientation
with its equivalent in the other, we can get some sense of this. In the ideal case,
as we rotate from one vector to another, the tips of the interpolated vectors
trace an arc across the surface of a sphere (Figure 10.18). But as we can see
in Figure 10.19, the linear interpolation is following a line segment between
the two tips of the vectors, which causes the interpolated vectors to shrink to
a length of 1/2 at the halfway point, and then back up to 1.

Another problem with linear interpolation is that it doesn’t move at a
constant rate of rotation. Let’s divide our interpolation at the t values 0, 1/4,
1/2, 3/4, and 1. In the ideal case, we’ll travel one-quarter of the arc length to
get from orientation to orientation.

However, when we use linear interpolation, the t value doesn’t interpolate
along the arc, but along the chord that passes between the start and end ori-
entations. When we divide the chord into four equal parts, the corresponding
arcs on the surface of the sphere are no longer equal in length (Figure 10.20).

Figure 10.18 Ideal orientation interpolation, showing intermediate vectors
tracing path along arc.
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Figure 10.19 Linear orientation interpolation, showing intermediate vectors
tracing path along line.

Figure 10.20 Effect of linear orientation interpolation on arc length when
interpolating over 1/4 intervals.

Those closest to the center of interpolation are longer. The effect is that instead
of moving at a constant rate of rotation throughout the interpolation, we will
move at a slower rate at the endpoints and faster in the middle. This is par-
ticularly noticeable for large angles, as the figure shows. What we really want
is a constant change in rotation angle as we apply a constant change in t.

One way to solve both of these issues is to insert one or two additional
sample orientations and use quadratic or cubic interpolation. However, these
are still only approximations to the spherical curve, and they involve storing
additional orientation key frames.

Even if you are willing to deal with nonconstant rotation speed, and eat
the cost of orthogonalization, linear interpolation does create other problems.
Suppose we use linear interpolation to find the orientation midway between
these two matrices:

1

2

⎡⎣ 0 0 1
0 1 0

−1 0 0

⎤⎦ + 1

2

⎡⎣0 0 −1
0 1 0
1 0 0

⎤⎦ =
⎡⎣0 0 0

0 1 0
0 0 0

⎤⎦ (10.14)
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This is clearly not a rotation matrix, and no amount of orthogonalization will
help us. The problem is that our two rotations (a rotation of π/2 around y and
a rotation of −π/2 around y, respectively) produce opposing orientations —
they’re 180 degrees apart. As we interpolate between the pairs of transformed
i and k basis vectors, we end up passing through the origin.

Quaternions are no less susceptible to this. Suppose we have a rotation
of π radians counterclockwise around the y-axis, and a rotation of π radians
clockwise around y. Interpolating the equivalent quaternions gives us

r = 1

2
(0, 0, 1, 0) + 1

2
(0, 0, −1, 0)

= (0, 0, 0, 0)

Again, no amount of normalization will turn this into a unit quaternion.
The problem here is that we are trying to interpolate between two quater-
nions that are negatives of each other. They represent two rotations in the
opposite direction that rotate to the same orientation. Rotating a vector
180 degrees counterclockwise around y will end up in the same place as rotat-
ing the same vector 180 degrees clockwise (or −180 degrees counterclockwise)
around y. Even if we considered this an interpolation that runs entirely
around the sphere, it is not clear which path to take — there are infinitely
many.

This problem with negated quaternions shows up in other ways. Let’s
look at our first example again, interpolating from the identity quater-
nion to a rotation of π/2 around z. Recall that our result with t = 1/2 was
(2 + √

2/4, 0, 0,
√

2/4). This time we’ll negate the second quaternion, giving us
a rotation of −3π/2 around z. We get the result

r = 1

2
(1, 0, 0, 0) + 1

2
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−

√
2

2
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√
2

2

)

=
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2

4
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√
2

4

)

This new result is not the negation of the original result, nor is it the
inverse. What is happening is that instead of interpolating along the short-
est arc along the sphere, we’re interpolating all the way around the other
way, via the longest arc. This will happen when the dot product between
the two quaternions is negative, so the angle between them is greater than
90 degrees.

This may be the desired result, but usually it’s not. What we can do to coun-
teract it is to negate the first quaternion and reinterpolate. In our example,
we end up with
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r = 1

2
(−1, 0, 0, 0) + 1

2
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−

√
2

2
, 0, 0, −
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2
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=
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−2 + √
2

4
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2

4

)

This gives us the negation of our original result, but this isn’t a problem as it
will rotate to the same orientation.

This also takes care of the case of interpolating from a quaternion to its
negative, so for example, interpolating from (0, 0, 1, 0) to (0, 0, −1, 0) is

r = −1

2
(0, 0, 1, 0) + 1

2
(0, 0, −1, 0)

= (0, 0, −1, 0)

Negating the first one ends up interpolating to and from the same quaternion,
which is a waste of processing power, but won’t give us invalid results. Note
that we will have to do this even if we are using spherical linear interpolation,
which we will address next. All in all, it is better to avoid such cases by culling
them out of our data beforehand.

10.3.3 Spherical Linear Interpolation
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Demo

LerpSlerp

To better solve the nonconstant rotation speed and normalization issues, we
need an interpolation method known as spherical linear interpolation (usually
abbreviated as slerp2). Slerp is similar to linear interpolation except that
instead of interpolating along a line, we’re interpolating along an arc on the
surface of a sphere. Figure 10.21 shows the desired result. When using spher-
ical interpolation at quarter intervals of t, we travel one-quarter of the arc
length to get from orientation to orientation. We can also think of slerp as
interpolating along the angle, or in this case, dividing the angle between the
orientations into quarter intervals.

One interesting aspect of orientations is that operations appropriate
for positions move up one step in complexity when applied to orienta-
tions. For example, to concatenate positions we add, whereas to concatenate
orientations we multiply. Subtraction becomes division, and scalar multipli-
cation becomes exponentiation. Using this knowledge, we can take our linear
interpolation function for two rotations P and Q,

lerp (P, Q, t) = P + (P − Q)t

2. As Shoemake [103] says, because it’s fun.
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p

q

Figure 10.21 Effect of spherical linear interpolation when interpolating at quarter
intervals. Interpolates equally along arc and angle.
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q
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r

Figure 10.22 Construction for quaternion slerp. Angle θ is divided by interpolant
t into subangles tθ and (1 − t)θ.

and convert it to the slerp function,

slerp (P, Q, t) = P(P−1Q)t

For matrices, the question is how to take a matrix R to a power t. We can use a
method provided by Eberly [26] as follows. Since we know that R is a rotation
matrix, we can pull out the axis v and angle θ of rotation for the matrix as we’ve
described, multiply θ by t to get a percentage of the rotation, and convert back
to a matrix to get Rt . This is an extraordinarily expensive operation. However,
if we want to use matrices, it does give us the result we want of interpolating
smoothly along arc length from one orientation to another.

For quaternions, we can derive slerp in another way. Figure 10.22 shows
the situation. We have two quaternions p and q, and an interpolated
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quaternion r. The angle between p and q is θ, calculated as θ = arccos(p · q).
Since slerp interpolates the angle, the angle between p and r will be a fraction
of θ as determined by t, or tθ. Similarly, the angle between r and q will be
(1 − t)θ.

The general interpolation of p and q can be represented as

r = a(t)p + b(t)q (10.15)

The goal is to find two interpolating functions a(t) and b(t) so that they meet
the criteria for slerp.

We determine these as follows. If we take the dot product of p with
equation 10.15 we get

p · r = a(t)p · p + b(t)p · q

cos(tθ) = a(t) + b(t) cos θ

Similarly, if we take the dot product of q with equation 10.15 we get

cos((1 − t)θ) = a(t) cos θ + b(t)

We have two equations and two unknowns. Solving for a(t) and b(t) gives us

a(t) = cos(tθ) − cos((1 − t)θ) cos θ

(1 + cos2 θ)

b(t) = cos((1 − t)θ) − cos(tθ) cos θ

(1 + cos2 θ)

Using trigonometric identities, these simplify to

a(t) = sin((1 − t)θ)

sin θ

b(t) = sin(tθ)

sin θ

Our final slerp equation is

slerp(p, q, t) = sin((1 − t)θ)p + sin(tθ)q
sin θ

(10.16)

As we can see, this still is an expensive operation, consisting of three sines
and a floating-point divide, not to mention the precalculation of the arcco-
sine. But at 16 multiplications, 8 additions, 1 divide, and 4 transcendentals,
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it is much cheaper than the matrix method. It is clearly preferable to use
quaternions versus matrices (or any other form) if you want to interpolate
orientation.

One thing to notice is that as θ approaches 0 (i.e., as p and q become close
to equal) sin θ and thus the denominator of the slerp function approach 0.
Testing for equality is not enough to catch this case, because of finite
floating-point precision. Instead, we should test cos θ before proceeding. If
it’s close to 1 (> (1 − ε), say), then we use linear interpolation or lerp instead,
since it’s reasonably accurate for small angles and avoids the undesirable
case of dividing by a very small number. It also has the nice benefit of
helping our performance; lerp is much cheaper. In fact, it’s generally best
only to use slerp in the cases where it is obvious that rotation speed is
changing.

Just as we do with linear interpolation, if we want to make sure that our
path is taking the shortest route on the sphere and to avoid problems with
opposing quaternions, we also need to test cos θ to ensure that it is greater
than 0 and negate the start quaternion if necessary. While slerp does maintain
unit length for quaternions, it’s still useful to normalize afterwards to handle
any variation due to floating-point error.

Cubic Methods

Just as with lerp, if we do piecewise slerp we will have discontinuities at
the sample orientations, which may lead to visible changes in orientation
rather than the smooth curve we want. And just as we had available when
interpolating points, there are cubic methods for interpolating quaternions.
One such method is squad, which uses the formula

squad(p, a, b, q, t) = slerp(slerp(p, q, t), slerp(a, b, t), 2(1 − t)t) (10.17)

This is a modification of a technique of using linear interpolation to do Bézier
curves, described by Boehm [13]. It performs a Bézier interpolation from p
to q, using a and b as additional control points (or control orientations, to be
more precise).

We can use similar techniques for other curve types, such as B-splines
and Catmull-Rom curves. However, these methods usually are not used in
games. They are more expensive than slerp (which is expensive enough), and
most of the time the data being interpolated have been generated by an ani-
mation package or exist as samples from motion capture. Both of these tend
to smooth the data out and insert additional samples at places where orien-
tation is changing sharply, so smoothing the curve isn’t that necessary. For
those who are interested, Shoemake [103, 104] covers some of these spline
methods in more detail.
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10.3.4 Performance Improvements
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As we’ve seen, using slerp for interpolation, even when using quaternions, can
take quite a bit of time — something we don’t usually have. A typical character
can have 30+ bones, all of which are being interpolated once a frame. If we
have a team of characters in a room, there can be up to 20 characters being
rendered at one time. The less time we spend interpolating, the better.

The simplest speed-up is to use lerp all the time. It’s very fast: Ignoring the
set-up time (checking angles and adjusting quaternions) and normalization,
only 12 basic floating-point operations are necessary on a serial processor,
and on a vector processor this drops to 3. We do have the problems with
inconsistent rotational speeds, but for animation data where our angles are
usually less than 90 degrees, the error is not visually apparent. So in most
cases, lerp is a fine solution.

However, if we need to interpolate angles larger than 90 degrees or we are
truly concerned with accurate orientations, then we need to try something
else. One solution is to improve the speed of slerp. If we assume that we’re
dealing with a set of stored quaternions for key-framed animation, there are
some things we can do here. First of all, we can precompute θ and 1/sin θ for
each quaternion pair and store them with the rest of our animation data. In
fact, if we’re willing to give up the space, we could prescale p and q by 1/sin θ

and store those values instead. This would mean storing up to two copies for
each quaternion: one as the starting orientation of an interpolation and one
as the ending orientation. Finally, if t is changing at a constant rate, we can
use forward differencing to reduce our operations further. Shoemake [104]
states that this can be done in 8 multiplies, 6 adds, and 2 table lookups for the
two remaining sines.

If memory is plentiful and our frame rate is constant, then this approach
can work well. However, neither of these is typically the case. Animation
data usually takes up enough of our memory budget without nearly doubling
its size, and frame rates can be variable, depending on what is being ren-
dered or simulated. One possibility that doesn’t have these restrictions is to
approximate the most expensive operations — 1/sin θ, sin(tθ), and sin((1−t)θ) —
by splines. This can provide reasonable accuracy for less cost than the
standard evaluation.

An alternate method is proposed by Blow [10]. His idea is that instead of
trying to change our interpolation method to fix our variable rotation speeds,
we adjust our t values to counteract the variations. So, in the section where an
object would normally rotate faster with a constantly increasing t, we slow t

down. Similarly, in the section where an object would rotate slower, we speed
t up. Blow uses a cubic spline to perform this adjustment:

t′ = 2kt3 − 3kt2 + (1 + k)t
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where

k = 0.5069269(1 − 0.7878088 cos θ)2

and cos θ is the dot product between the two quaternions. This technique tends
to diverge from the slerp result when t > 0.5, so Blow recommends detecting
this case and swapping the two quaternions (i.e., interpolate from q to p
instead of from p to q). In this way our interpolant always lies between 0
and 0.5.

The nice thing about this method is that it requires very few floating-
point operations, doesn’t involve any transcendental functions or floating-
point divides, and fits in nicely with our existing lerp functions. It gives us
slerp interpolation quality with close to lerp speed, which can considerably
speed up our animation system.

Further possibilities are provided by Busser [15], who approximates a(t)

and b(t) in equation 10.15 by polynomial equations, and Thomason [111], who
explores a variety of techniques. Whether these would be necessary would
depend on your data, although in practice we’ve found Blow’s approach to be
sufficient.

10.4 Sampling Curves
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Given a parametric curve, it is only natural that we might want to determine
a point on it, or sample it. We’ve already stated one reason when motivating
interpolation in the introduction: We may have created a curve from a low-
resolution set of points, and now want to resample at a higher resolution to
match frame rate or simply to provide a better quality animation. Another
purpose is to sample the curve at various points, or tesselate it, so that it
might be rendered. After all, artists will want to see, and thus more accurately
control, the animation paths that they are creating. Finally, we may also want
to sample curves for length calculations, as we’ll see later.

Sampling piecewise linear splines is straightforward. For rendering we
can just draw lines between the sample points. For animation, the function
EvaluatePiecewiseLinear will do just fine in computing the ’tween points.
A similar approach works well when slerping piecewise quaternion curves.

Things get more interesting when we use a cubic curve. For simplicity’s
sake, we’ll only consider one curve segment Q and a parameter u within
that segment — determining those are similar to our linear approach. The
most direct method is to take the general function for our curve segment
Q(u) = au3 + bu2 + cu + D and evaluate it at our u values. Assuming that we’re
generating points in R

3, this will take 11 multiplies and 9 adds per point (we
save 3 multiplies by computing u3 as u · u2).
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An alternative that is slightly faster is to use Horner’s rule, which expresses
the same cubic curve as

Q(u) = ((au + b)u + c)u + D

This will take only 9 multiplies and 9 adds per point. In addition, it can
actually improve our floating-point accuracy under certain circumstances.

10.4.1 Forward Differencing

Previously we assumed that there is no pattern to how we evaluate our curve.
Suppose we know that we want to sample our curve at even intervals of u,
say at a time step of every h. This gives us a list of n + 1 parameter values:
0, h, 2h, . . . , nh. In such a situation, we can use a technique called forward
differencing.

For the time being, let’s consider computing only the x values for our
points. For a given value xi, located at parameter u, we can compute the next
value xi+1 at parameter u + h. Subtracting xi from xi+1, we get

xi+1 − xi = x(u + h) − x(u)

We’ll label this difference between xi+1 and xi as �x1(u). For a cubic curve this
equals

�x1(u) = a(u + h)3 + b(u + h)2 + c(u + h) + d − (au3 + bu2 + cu + d)

= a(u3 + 3hu2 + 3h2u + h3) + b(u2 + 2hu + h2) + c(u + h) + d

− au3 − bu2 − cu − d

= au3 + 3ahu2 + 3ah2u + ah3 + bu2 + 2bhu + bh2 + cu + ch + d

− au3 − bu2 − cu − d

= 3ahu2 + 3ah2u + ah3 + 2bhu + bh2 + ch

= (3ah)u2 + (3ah2 + 2bh)u + (ah3 + bh2 + ch)

Pseudocode to compute the set of values might look like the following:

u = 0;
x = d;
output(x);
dx1 = ahˆ3 + bhˆ2 + ch;
for ( i = 1; i <= n; i++ )
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{
u += h;
x += dx1;
output(x);
dx1 = (3ah)uˆ2 + (3ahˆ2 + 2bh)u + (ahˆ3 + bhˆ2 + ch);

}

While we have removed the cubic equation, we have introduced evaluation of
a quadratic equation �x1(u). Fortunately, we can perform the same process
to simplify this equation. Computing the difference between �x1(u + h) and
�x1(u) as �x2(u), we get

�x2(u) = �x1(u + h) − �x1(u)

= (3ah)(u + h)2 + (3ah2 + 2bh)(u + h) + (ah3 + bh2 + ch)

− [(3ah)u2 + (3ah2 + 2bh)u + (ah3 + bh2 + ch)]
= 3ahu2 + 6ah2u + 3ah3 + (3ah2 + 2bh)u + 3ah3 + 2bh2

+ (ah3 + bh2 + ch) − [(3ah)u2 + (3ah2 + 2bh)u + (ah3 + bh2 + ch)]
= 6ah2u + (6ah3 + 2bh2)

This changes our pseudocode to the following:

u = 0;
x = d;
output(x);
dx1 = ahˆ3 + bhˆ2 + ch;
dx2 = 6ahˆ3 + 2bhˆ2;
for ( i = 1; i <= n; i++)
{

u += h;
x += dx1;
output(x);
dx1 += dx2;
dx2 = 6ahˆ2u + (6ahˆ3 + 2bhˆ2);

}

We can carry this one final step further to remove the linear equation
for �x2. Computing the difference between �x2(u + h) and �x2(u) as �x3(u),
we get
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�x3(u) = �x2(u + h) − �x2(u)

= 6ah2(u + h) + (6ah3 + 2bh2)

− 6ah2u + (6ah3 + 2bh2)

= 6ah2u + 6ah3 + (6ah3 + 2bh2)

− 6ah2u + (6ah3 + 2bh2)

= 6ah3

Our final code for forward differencing becomes the following:

x = d;
output(x);
dx1 = ahˆ3 + bhˆ2 + ch;
dx2 = 6ahˆ3 + 2bhˆ2;
dx3 = 6ahˆ3;
for ( i = 1; i <=n; i++ )
{

x += dx1;
output(x);
dx1 += dx2;
dx2 += dx3;

}

We have simplified our evaluation of x from 3 multiplies and 3 adds, down
to 3 adds. We’ll have to perform similar calculations for y and z, with differing
deltas and a, b, c, and d values for each coordinate, giving a total of 9 adds for
each point.

Note that forward differencing is only possible if the time steps between
each point are equal. Because of this, in general we can’t use it for animating
along a curve, as time between frames may vary from frame to frame. In this
case, the appropriate Horner’s rule for our degree of polynomial is the most
efficient solution.

10.4.2 Midpoint Subdivision
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An alternative method for generating points along a curve is to recursively
subdivide the curve until we have a set of subcurves, each of which can be
approximated by a line segment. This subdivision is usually set to stop at
a certain resolution that depends on our needs. This may end up with a
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more accurate and more efficient representation of the curve than forward
differencing, since more curve segments will be generated in areas with high
curvature (areas that we might cut across with forward differencing) and
fewer in areas with lower curvature.

We can perform this subdivision by taking a curve Q(u) and breaking it
into two new curves L(s) and R(t), usually at the midpoint Q(1/2). In this case,
L(s) is the subcurve of Q(u) where 0 ≤ u ≤ 1/2, and R(t) is the subcurve where
1/2 ≤ u ≤ 1. The parameters s and t are related to u by

s = 2u

t = 2u − 1

Each subcurve is then tested for relative “straightness” — if it can be
approximated well by a line segment, we stop subdividing, otherwise we keep
going. The general algorithm looks like the following:

void
RenderCurve( Q )
{

if ( Straight( Q ) )
DrawLine( Q(0), Q(1) );

else
{

MidpointSubdivide( Q, &L, &R );
RenderCurve( L );
RenderCurve( R );

}
}

There are a few ways of testing how straight a curve is. The most accurate
is to measure the length of the curve and compare it to the length of the line
segment between the curve’s two extreme points. If the two lengths are within
a certain tolerance ε, then we can say the curve is relatively straight. This
assumes that we have an efficient method for computing the arc length of a
curve. We discuss some ways of calculating this in the next section.

Another method is to use the two endpoints and the midpoint
(Figure 10.23(a)). If the distance between the midpoint and the line segment
formed by the two endpoints is close to 0, then we can usually say that the
curve is relatively close to a line segment. The one exception is when the curve
crosses the line segment between the two endpoints (Figure 10.23(b)), which
will result in a false positive when clearly the curve is not straight. To avoid
the worst examples of this case, Parent [88] recommends performing forward
differencing down to a certain level and only then adaptively subdividing.
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(a) (b)

Figure 10.23 Midpoint test for curve straightness. (a) Total distance from
endpoints to midpoint (black dot) is compared to distance between endpoints,
(b) example of midpoint test failure.

P0 P3

P1

P2

Figure 10.24 Test of straightness for Bézier curve. Measure distance of P1 and
P2 to line segment P0P3.

The convex hull properties of the Bézier curve lead to a particularly effi-
cient method for testing straightness, with no need to calculate a midpoint.
If the interior control points are incident with the line segment formed by
the two exterior control points, the area of the convex hull is 0, and the curve
generated is itself a line segment. So for a cubic Bézier curve, we can test
distance squared between the line segment formed by P0 and P3 and the
two control points P1 and P2 (Figure 10.24). If both squared distances are
less than some tolerance value, then we can say that the curve is relatively
straight.

How we subdivide the curve if it fails the test depends on the type of
curve. The simplest curves to subdivide are Bézier curves. To achieve this, we
will generate new control points for each subcurve from our existing control
points. So for a cubic curve, we will compute new control points L1, L2, L3, and
L4 for curve L, and new control points R1, R2, R3, and R4 for curve R. These can
be built by using a technique devised by de Casteljau. This method — known
as de Casteljau’s method — geometrically evaluates a Bézier curve at a given
parameter u, and as a side effect creates the new control points needed to
subdivide the curve at that point.
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P1 P2
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Figure 10.25 de Casteljau’s method for subdividing Bézier curves.

Figure 10.25 shows the construction for a cubic Bézier curve. L0 and R3
are already known: They are the original control points P0 and P3, respectively.
Point L1 lies on segment P0P1 at position (1 − u)P0 + uP1. Similarly, point H

lies on segment P1P2 at (1 − u)P1 + uP2, and point R2 at (1 − u)P2 + uP3. We
then linearly interpolate along the newly formed line segments L1H and HR2
to form L2 = (1−u)L1 +uH and R1 = (1−u)H +uR2. Finally, we split segment
L2R1 to find Q(u) = L3 = R1 = (1 − u)L2 + uR1.

Using the midpoint to subdivide is particularly efficient in this case. It
takes only 6 adds and 6 multiplies (to perform the division by 2).

L0 = P0;
R3 = P3;
L1 = (P0 + P1) * 0.5f;
H = (P1 + P2) * 0.5f;

R2 = (P2 + P3) * 0.5f;
L2 = (L1 + H) * 0.5f;
R1 = (H + R2) * 0.5f;
L3 = R0 = (L2 + R1) * 0.5f;

Subdividing other types of curves, in particular B-splines, can be handled
by using an extension of this method devised by Boehm [12]. More infor-
mation on Boehm subdivision and knot insertion can be found in Bartels
et al. [6].

10.4.3 Computing Arc Length

We can informally define the arc length s between points Q(u1) and Q(u2)

on a continuous curve Q as the distance along the curve between those two
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points. At first glance, computing the length of a curve may not appear to
be very related to sampling and tessellation. However, as mentioned above,
some methods for subdividing a curve require knowing the arc lengths of
subsections of that curve. Also, as we’ll see, some arc length methods require
sampling the curve to obtain their results.

The most accurate method of computing the length of a smooth curve (see
Appendix B on the CD-ROM) Q(u) from Q(a) to Q(b) is to directly compute
the line integral:

s =
∫ b

a

∥∥Q′(u)
∥∥ du

Unfortunately, for most cubic polynomial curves, it is not possible to find an
analytic solution to this integration. For quadratic curves, there is a closed-
form solution, but evaluating the resulting functions is more expensive than
using a numerical method that gives similar accuracy. In any case, if we wish
to vary our curve types, we would have to redo the calculation and so it is not
always practical.

The usual approach is to use a numerical method to solve the integral.
There are many methods, which Burden and Faires [14] cover in some detail.
In this case, the most efficient for its accuracy is Gaussian quadrature, since
it attempts to minimize the number of function evaluations, which can be
expensive. It approximates a definite integral from −1 to 1 by a weighted sum
of unevenly spaced function evaluations, or

∫ 1

−1
f(x)dx ≈

n∑
i=1

cif(xi)

The actual ci and xi values depend on n and are carefully selected to give
the best approximation to the integral. Appendix B (found on the CD-ROM)
tabulates values up to n = 5, and Burden and Faires [14] describe in detail
how these are derived for arbitrary values of n.

The restriction that we have to integrate over [−1, 1] is not a serious
obstacle. For a general definite integral over [a, b], we can remap to
[−1, 1] by

∫ b

a

f(x)dx =
∫ 1

−1
f

(
(b − a)t + b + a

2

)
b − a

2
dt

Guenter and Parent [50] describe a method that uses Gaussian quadrature
in combination with adaptive subdivision to get very efficient results when
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computing arc length. Similar to using adaptive subdivision for rendering, we
cut the current curve segment in half. We use Gaussian quadrature to measure
the length of each half, and compare their sum to the length of the entire
curve, again computed using Gaussian quadrature. If the results are close
enough, we stop and return the sum of lengths of the two halves. Otherwise,
we recursively compute their lengths via subdivision.

There are other arc length methods that don’t involve computing the inte-
gral in this manner. One is to subdivide the curve and use the sums of the
lengths of the line segments created to approximate arc lengths at each of the
subdivision points. We can create a sorted table of pairs (ui, si), where ui is
the parameter for each subdivision, and si is the corresponding length at the
point Q(ui). Since both u and len are monotonically increasing, we can sort
by either parameter. An example of such a table can be seen in Table 10.1.

To find the length from the start of the curve for a given u, we search
through the table to find the two neighboring entries with parameters uk and
uk+1 such that uk ≤ u ≤ uk+1. Since the entries are sorted, this can be handled
efficiently by a binary search. The length then can be approximated by linearly
interpolating between the two entries:

s ≈ uk+1 − u

uk+1 − uk

sk + u − uk

uk+1 − uk

sk+1

A higher-order curve can be used to get a better approximation.
To find the length between two parameters a and b where a ≤ b, we com-

pute the length for each and subtract one from the other, or

length(Q, a, b) = length(Q, b) − length(Q, a)

Table 10.1 Mapping parameter value to
arc length

u s

0.0 0.0
0.1 0.2
0.15 0.3
0.29 0.7
0.35 0.9
0.56 1.1
0.72 1.6
0.89 1.8
1.00 1.9
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If we are using cubic Bézier curves, we can use a method described by
Gravesen [47]. First of all, given a parameter u we can subdivide the curve
(using de Casteljau’s method) to be the subcurve from [0, u]. The new control
points for this new subcurve can be used to calculate bounds on the length.
The length of the curve is bounded by the length of the chord P0P3 as the
minimum, and the sum of the lengths of the line segments P0P1, P1P2, and
P2P3 as the maximum. We can approximate the arc length by the average of
the two, or

Lmin = ‖P3 − P0‖
Lmax = ‖P1 − P0‖ + ‖P2 − P1‖ + ‖P3 − P2‖

L ≈ 1

2
(Lmin + Lmax)

The error can be estimated by the square of the difference between the
minimum and maximum:

ξ = (Lmax − Lmin)
2

If the error is judged to be too large, then the curve can be subdivided and
the length becomes the sum of the lengths of the two halves. Gravesen [47]
states that for m subdivisions the error drops to 0 as 2−4m.

A final alternative is presented by Vincent and Forsey [115]. Their method
notes that for three neighboring curve points P0, P1, and P2, the length of arc
through them can be approximated by D2 + (D2 − D1)/3, where

D1 = ‖P0P2‖
D2 = ‖P0P1‖ + ‖P1P2‖

This assumes that P1 is relatively equidistant from P0 and P2, and the arc has
low curvature. To improve accuracy, estimates for a given segment (say P1P2)
can be computed using the neighboring point on either side (i.e., in our case,
one estimate is computed using P0 and another using P3). These are averaged
to give the final result.

The general algorithm begins by sampling an odd number of points across
the curve. For each interior segment, it determines if more samples need to
be taken due to high curvature. If so, it computes those recursively until a
low enough curvature is reached. Otherwise, it computes the segment length
and returns. For general curves, this technique is slightly more expensive than
Gaussian quadrature, but it does handle certain pathological cases (such as
cusps) better.
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10.5 Controlling Speed along a Curve

10.5.1 Moving at Constant Speed

Source Code

Demo

SpeedControl

One common requirement for animation is that the object animated move
at a constant speed along a curve. However, in most interesting cases, using
a given curve directly will not achieve this. The problem is that in order to
achieve variety in curvature, the first derivative must vary as well, and hence
the distance we travel in a constant time will vary depending on where we
start on the curve. For example, Figure 10.26 shows a curve subdivided at
equal intervals of the parameter u. The lengths of the subcurves generated
vary greatly from one to another.

Ideally, given a constant rate of travel r and time of travel t, we’ll want
to cover a distance of s = rt. So given a starting parameter u1 on the curve,
we want to find the parameter u2 such that the arc length between Q(u1) and
Q(u2) equals s.

We’ve already discussed a number of methods for computing the arc
length of a curve. Regardless of the method we use, we’ll assume we have
some function G(u) that returns the length s from Q(0) to Q(u). So, for the
case where u1 = 0, we can use the inverse function G−1(s) to determine the
parameter u2, given an input length s. This is known as a reparameterization
by arc length. Unfortunately, in general the arc length function for a parame-
terized curve is impossible to invert in terms of a finite number of elementary
functions, so numerical methods are used instead.

One way is to note that finding u2 is equivalent to the problem of finding
the solution u of the equation

s − length(u1, u) = 0 (10.18)

A method that allows us to solve this is Newton-Raphson root finding.
Burden and Faires [14] present a derivation for this using the Taylor series
expansion.

Figure 10.26 Parameter-based subdivision of curve, showing non-equal segment
lengths.
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Suppose we have a function f(x) where we want to find p such that f(p) = 0.
We begin with a guess for p, which we’ll call x̄, such that f ′(x̄) �= 0 and |p − x̄|
is relatively small. In other words, x̄ may not quite be p but it’s a pretty good
guess. If we use x̄ as a basis for the Taylor series polynomial, we get

f(x) = f(x̄) + (x − x̄)f ′(x̄) + 1

2
(x − x̄)2f ′′(ξ(x))

We assume that ξ(x) is bounded by x and x̄, so we can ignore the remainder
of the terms. If we substitute p for x, then f(p) = 0 and

0 = f(x̄) + (p − x̄)f ′(x̄) + 1

2
(p − x̄)2f ′′(ξ(x))

Since |p − x̄| is relatively small, we assume that (p − x̄)2 is small enough that
we can ignore it, and so

0 ≈ f(x̄) + (p − x̄)f ′(x)

Solving for p gives us

p ≈ x̄ − f(x̄)

f ′(x̄)
(10.19)

This gives us our method. We make an initial guess x̄ at the solution and use
the result of equation 10.19 to get a more accurate result p. If p still isn’t
close enough, then we feed it back into the equation as x̄ to get a still more
accurate result, and so on until we reach a solution of sufficient accuracy or
after a given number of iterations is performed.

For our initial guess in solving equation 10.18, Eberly [25] recommends
taking the ratio of our traveled length to the total arc length of the curve and
mapping it to our parameter space. Assuming our curve is normalized so that
u is in [0, 1], then pseudocode for our root-finding method will look like the
following:

float FindParameterByDistance( float u1, float s )
{

// ensure that we remain within valid parameter space
if (s > ArcLength(u1,1.0f))

return 1.0f;

// get total length of curve
float len = ArcLength(0.0f,1.0f);
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// make first guess
float p = u1 + s/len;

for (int i = 0; i < MAX_ITER; ++i)
{

// compute function value and test against zero
float func = ArcLength(u1,p) - s;
if ( fabsf(func) < EPSILON )
{

return p;
}

// perform Newton-Raphson iteration step
p -= func/Length(Derivative(p));

}

// done iterating, return last guess
return p;

}

The first test ensures that the distance we wish to travel is not greater than
the remaining length of the curve. In this case, we assume that this is the
last segment of a piecewise curve and just jump to the end. A more robust
implementation should subtract the remaining length from the distance and
restart at the beginning of the next segment.

Computing the derivative of the curve is simple, as this is easily derived
from the definition of the curve, as we did for clamped and natural splines.
However, there is a serious problem if Length(Derivative(p)) is zero or near
zero. This will lead to a division by zero and we will end up subtracting NaN
from p, which will give us a garbage result.

The solution is to use an alternative root-finding technique known as
bisection. It makes use of the mean value theorem, which states that if you
have a function f(x) that’s continuous on [a, b] and f(a)f(b) < 0 (i.e., f(a)

and f(b) have opposite signs), then there is some value p between a and b

where f(p) = 0. This is definitely true in our case. The length of the curve
is monotonically increasing, so there will be only one zero. If it’s not at the
beginning, then f(a) = length(a) − s = −s, which is less than zero. If it’s not at
the end, then f(b) = length(b) − s, which is greater than zero. Our endpoints
have differing signs, so we can use the bisection method.

This is solved by doing a binary search: We cut the problem interval in
two and search further in the more fruitful half. The problem with bisection
is that it converges considerably slower than Newton-Raphson, so sometimes
we want to use Netwon-Raphson and sometimes bisection. Therefore, our
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hybrid approach will look like (for brevity’s sake we have only included the
parts that are different) the following:

float FindParameterByDistance( float u1, float s )
{

// set endpoints for bisection
float a = u1;
float b = 1.0f;

// ensure that we remain within valid parameter space

// get total length of curve

// make first guess

for (int i = 0; i < MAX_ITER; ++i)
{

// compute function value and test against zero

// update endpoints for bisection
if (func < 0.0f)

a = p;
else

b = p;

// compute speed
speed = Length(Derivative(p));
if (bisection)

// do bisection step
p = 0.5f*(a+b);

else
// perform Newton-Raphson iteration step
p -= func/speed;

}

// done iterating, return last guess
return p;

}

The only remaining question is how we determine to use bisection over
Newton-Raphson. One obvious possibility is to check whether the speed
is zero, as that got us into trouble in the first place. However, that’s not
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enough. If the speed is nonzero but sufficiently small, func/speed could
be sufficiently large to cause us to step outside the bisection interval or
even the valid parameter space of the curve. So that gives us our test: If
p - func/speed is less than a or greater than b, use bisection. We can write
this as follows.

if (p - func/speed < a || p - func/speed > b)
// do bisection step

else
// perform Newton-Raphson iteration step

Multiplying by speed and rearranging terms gives us the following:

if ((p-a)*speed < func || (p-b)*speed > func)
// do bisection step

else
// perform Newton-Raphson iteration step

Press et al. [96] further recommend the following so as to be floating-point
safe:

if (((p-a)*speed - func)*((p-b)*speed - func) > 0.0f)
// do bisection step

else
// perform Newton-Raphson iteration step

That should solve our problem.
A few other implementation notes are in order at this point. As we’ve

seen, computing ArcLength() can be a nontrivial operation. Because of this,
if we’re going to be calling FindParameterByDistance() many times for a fixed
curve, it is more efficient to precompute ArcLength(0.0f, 1.0f) and use this
stored value instead of recomputing it each time. Also, the constants MAX_ITER
and EPSILON will need to be tuned depending on the type of curve and the
number of iterations we can feasibly calculate due to performance constraints.
Reasonable starting values for this tuning process are 32 for MAX_ITER and
1.0e-06f for EPSILON.

As a final note, there is an alternative approach if we’ve used the table-
driven method for computing arc length. Recall that we used Table 10.1 to
compute s given a parameter u. In this case, we invert the process and search
for the two neighboring entries with lengths sj and sj+1 such that sj ≤ s ≤ sj+1.
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Again, we can use linear interpolation to approximate the parameter u, which
gives us length s as

u ≈ sj+1 − s

sj+1 − sj
uj + s − sj

sj+1 − sj
uj+1

To find the parameter b given a starting parameter a and a length s, we compute
the length at a and add that to s. We then use the preceding process with the
total length to find parameter b.

The obvious disadvantage of this scheme is that it takes additional
memory for each curve. However, it is simple to implement, somewhat fast,
and does avoid the Newton-Raphson iteration needed with other methods.

10.5.2 Moving at Variable Speed

In our original equation for computing the desired distance to travel, s = rt,
we assumed that we were traveling at a constant rate of speed. However, it
is often convenient to have an adjustable rate of speed over the length of the
curve. We can represent this by a general distance–time function s(t), which
maps a time value t to the total distance traveled from t0. As an example,
Figure 10.27 shows s(t) = rt as a distance–time graph.

Other than traveling at a constant rate, the most common distance–time
function is known as ease-in/ease-out. Here, we start at a zero rate of speed,
accelerate up to a constant nonzero rate of speed in the middle, and then
decelerate down again to a stop. This feels natural, as it approximates the
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Figure 10.27 Example of distance–time graph: moving at constant speed.
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need to accelerate a physical camera, move it, and slow it down to a stop.
Figure 10.28 shows the distance–time graph for one such function.

Parent [88] describes two methods for constructing ease-in/ease-out
distance–time functions. One is to use sinusoidal pieces for the accelera-
tion/deceleration areas of the function and a constant velocity in the middle.
The pieces are carefully chosen to ensure C1 continuity over the entire func-
tion. The second method involves setting a maximum velocity that we wish
to attain in the center part of the function and assumes that we move with
constant acceleration in the opening and closing ease-in/ease-out areas. This
gives a velocity–time curve as in Figure 10.29. By integrating this, we get a
distance–time curve. By assuming that we start at the beginning of the curve,
this gives us a piecewise curve with parabolic acceleration and deceleration.

However, there is no reason to stop with an ease-in/ease-out distance–
time function. We can define any curve we want, as long as the curve remains
within the positive d and t axes for the valid time and distance intervals. One
possibility is to let the user trace out a curve, but that can lead to invalid inputs
and difficulty of control. Instead, animation packages such as those in 3D
Studio Max and Maya allow artists to create these curves by setting keys with
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Figure 10.28 Example of distance–time graph: Ease-in/ease-out function.
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Figure 10.29 Example of velocity–time function: Ease-in/ease-out with constant
acceleration/deceleration.



10.5 Controlling Speed along a Curve 487

particular arrival and departure characteristics. Standard parlance includes
such terms as fast-in, fast-out, slow-in, and slow-out. In and out in this case
refer to the incoming and outgoing speed at the key point, respectively; fast
means that the speed is greater than 1, and slow that it is less than 1. An
example curve with both fast-in/fast-out and slow-in/slow-out can be seen
in Figure 10.30. There also can be linear keys, which represent the linear
rate seen in Figure 10.27, and step-keys, where distance remains constant
for a certain period of time and then abruptly changes, as in Figure 10.31.
Alternatively, the user may specify no speed characteristics and just expect
the program to pick an appropriately smooth curve.

distance

time

Figure 10.30 Example of distance–time graph: Fast-out/fast-in followed by slow-
out/slow-in.

distance

time

Figure 10.31 Example of distance–time graph: Step-key transition.
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With all of these, the final distance–time curve can be easily generated
with the techniques described in Section 10.2.3. More detail can be found in
Van Verth [114].

10.6 Camera Control

Source Code

Demo

CameraControl

One common use for a parametric curve is as a path for controlling the motion
of a virtual camera. In games this comes into play most often when setting up
in-game cinematics, where we want to play a series of scripted events in engine
while giving a game a cinematic feel via the clever use of camera control. For
example, we might want to have a camera track around a pair of characters as
they dance about a room. Or, we might want to simulate a crane shot zooming
from a far point of view right down into a close-up. While either of these could
be done programmatically, it would be better to provide external control to
the artist, who most likely will be setting up the shot. The artist sets the path
for the camera — all the programmer needs to do is provide code to move the
camera along the given path.

Determining the position of the camera isn’t a problem. Given the start
time ts for the camera and the current time tc, we compute the parameter
t = tc − ts and then use our time controls together with our curve description
to determine the current position at Q(t).

Computing orientation is another matter. The most basic option is to set a
fixed orientation for the entire path. This might be appropriate if we are trying
to create the effect of a panning shot but is rather limiting and somewhat
static. Another way would be to set orientations at each sample time as well
as positions, and interpolate both. However, this can be quite time consuming
and may require more keys to get the effect we want.

A further possibility is to use the Frenet frame for the curve. This is an
orthonormal frame with an origin of the current position on the curve, and a
basis {T̂, N̂, B̂} where T̂ points in the direction of the first derivative, N̂ points
roughly in the direction of the second derivative, and B̂ is the cross product
of the first two. The vector T̂ acts as our view direction vector, N̂ acts as our
view side vector, and B̂ acts as our view up vector.

For any curve specified by the matrix form Q(u) = UMG, we can easily
compute the first derivative by using the form Q′(u) = U′MG, where for a
cubic curve

U′ = [
3u2 2u 1 0

]
Similarly, we can compute the second derivative as Q′′(u) = U′′MG where

U′′ = [
6u 2 0 0

]
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As mentioned, we set T = Q′(u). We compute B as the cross product of the
first and second derivatives:

B = Q′(u) × Q′′(u)

Then, finally, N is the cross product of the other two:

N = B × T

Normalizing T, N, and B gives us our orthonormal basis.
Parent [88] describes a few flaws with using the Frenet frame directly.

First of all, the second derivative may be 0, which means that B̂ and hence N̂
will be 0. One solution is to interpolate between two frames on either side of
our current location. Since the second derivative is zero, or near zero, the first
derivative won’t be changing much, so we’re really interpolating between two
frames in R

2. This consists of finding the angle between them and interpolating
along that angle (Figure 10.32). The one flaw with this is that when finding
these frames we’re still using Q′′, which may be near zero and hence lead to
floating-point issues. In particular, if we are moving with linear motion, there
will be no valid neighboring values for estimating Q′′.

Then, too, it assumes that the second derivative exists for all values of t,
namely, that Q(t) is C2 continuous. Many of the curves we’ve discussed, in
particular the piecewise curves, do not meet this criterion. In such cases, the
camera will rather jarringly change orientation. For example, suppose we
have two curve segments as seen in Figure 10.33, where the second derivative
instantly changes to the opposite direction at the join between the segments.
In the Frenet frame for the first segment, the w vector points out of the page. In
the second segment, it points into the page. As the camera crosses the join, it
will instantaneously flip upside down. This is probably not what the animator
had in mind.

Finally, we may not want to use the second derivative at all. For example,
if we have a path that heads up and then down, like a hill on a roller coaster,

w0
w1

v0

v1
u

u

Figure 10.32 Interpolating between two path frames.
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Figure 10.33 Frame interpolation issues. Discontinuity of second derivative at
point.

the direction of the second derivative points generally down along that sec-
tion of path. This means that our view up vector will end up parallel to the
ground for that section of curve — again, probably not the intention of the
animator.

A further refinement of this technique is to use something called the
parallel transport frame [53]. This is an extension of the interpolation tech-
nique shown in Figure 10.32. We begin at a position with a valid frame.
At the next time step, we compute the derivative, which gives us our view
direction vector as before. To compute the other two vectors, we rotate the
previous frame by the angle between the current derivative and the pre-
vious derivative. If the vectors are parallel, we won’t rotate at all, which
solves the problem where the second derivative may be zero. This will gen-
erate a smooth transition in orientation across the entire path, but doesn’t
provide much control over expected behavior, other than setting the initial
orientation.

An alternative solution is to adopt a technique from Chapter 6. Again we
use the first derivative as our view direction vector, but instead generate the
view up vector from this and the world up vector. The view side vector is the
cross product of these two. This solves the problem, but does mean that if we
have a fixed up vector we can’t roll our camera through a banking turn — its
up vector will remain relatively aligned with the given up vector.

A refinement of this is to allow user-specified up vectors at each sample
position, which default to the world up vector. The program would interpo-
late between these up vectors just as it interpolates between the positions.
Alternatively, the user could set a path U(t) that is used to calculate the up
vector: vup = U(t) − Q(t). The danger here is that the user may specify two up
vectors of opposing directions that end up interpolating to 0, or an up vector
that aligns with the view direction vector, which would lead to a cross product
of 0. If the user is allowed this kind of flexibility, recovery cases and some sort
of error message will be needed.
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We can take this one step further by separating our view direction from
the Frenet frame and using our familar look-at point method, again from
Chapter 6. The choice of what we use as our look-at point can depend on
the camera effect desired. For example, we might pick a fixed point on the
ground and then perform a fly-by. We could use the position of an object or
the centroid of positions for a set of objects. We could set an additional path,
and use the position along that path at our current time, to give the effect of
a moving point of view without tying it to a particular object.

Another possibility is to look ahead along our current path a few steps
in time, as if we were following an object a few seconds ahead of us. So, if
we’re at position Q(t), we use as our look-at point the position Q(t + δt). In
this situation, we have to be sure to reparameterize the curve based on arc
length, because otherwise the distance ‖Q(t) − Q(t + δt)‖ may change depend-
ing on where we are on the curve, which may lead to odd changes in the view
direction.

An issue with this technique is that it may make the camera seem clair-
voyant, which can ruin the drama in some situations. Also, if our curve is
particularly twisty, looking ahead may lead to sudden changes in direction.
We can smooth this by averaging a set of points ahead of our position on the
curve. How separated the points are makes a difference: too separated and
our view direction may not change much; too close together and the smooth-
ing effect will be nullified. It’s usually best to make the amount of separation
another setting available to the animator so that he or she can control the
effect desired.

10.7 Chapter Summary

In this chapter we have touched on some of the issues involved with using
parametric curves to aid in animation. We have discussed the most commonly
used of the many possible curve types and how to subdivide these curves.
Possible interfaces have been presented that allow animators and designers
to create curves that can be used in the games they create. We have also
covered some of the most common animation tasks beyond simple interpola-
tion: controlling travel speed along curves and maintaining a logical camera
orientation.

For rotations, fixed and Euler and axis–angle formats interpolate well only
under simple circumstances. Matrices can be interpolated, but at significantly
greater cost than quaternions. If you need to interpolate orientation, the clear
choice is to use quaternions.

For further reading, Rogers and Adams [98] and Bartels et al. [6] present
much of this material in greater detail, in particular focusing on B-splines.
Parent [88] covers the use of splines in animation, as well as additional ani-
mation techniques. Burden and Faires [14] have a chapter on interpolation
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and explain some of the numerical methods used with curves, in particular
integration techniques and the Newton-Raphson method.

We have not discussed parametric surfaces, but many of the same princi-
ples apply: Surfaces are approximated or interpolated by a grid of points and
are usually rendered using a subdivision method. Rogers [97] is an excellent
resource for understanding how NURBS surfaces, the most commonly used
parametric surfaces, are created and used.



Chapter11
Random Numbers

11.1 Introduction

Now that we’ve spent some time in the deterministic worlds of pure
mathematics, graphics, and interpolation, it’s time to look at some techniques
that can make our world look less structured and more organic. We’ll begin
in this chapter by considering randomness and generating random numbers
in the computer.

So why do we need random numbers in games? We can break down our
needs into a few categories: the basic randomness needed for games of chance,
as in simulating cards and dice; randomness for generating behavior for intel-
ligent agents such as enemies and nonplayer allies; turbulence and distortion
for procedural textures; and randomly spreading particles, such as explosions
and gunshots, in particle systems.

In this chapter we’ll begin by covering some basic concepts in probability
and statistics that will help us build our random processes. We’ll then move
to techniques for measuring random data and then basic algorithms for gen-
erating random numbers. Finally, we’ll close by looking at some applications
of our random number generators (RNGs).

11.2 Probability

Probability Theory is the mathematics of measuring the likelihood of
unpredicable behavior. It was originally applied to games of chance such
as dice and cards. In fact, Blaise Pascal and Pierre de Fermat worked out
the basics of probability to solve a problem posed by a famous gambler, the

493
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Chevalier de Mere. His question was: Which is more likely, rolling at least one
6 in 4 throws of a single die, or at least one double 6 in 24 throws of a pair of
dice? (We’ll answer this question at the end of the next section.)

These days probability can be used to predict the likelihood of other
events such as the weather (i.e., the chance of rain is 60 percent) and even
human behavior. In the following section we will summarize some elements
of probability, enough for simple applications.

11.2.1 Basic Probability

The basis of probability is the random experiment, which is an experiment
with a nondetermined outcome that can be observed and reobserved under
the same conditions. Each time we run this experiment we call it a random
trial, or just a trial. We call any of the particular outcomes of this experiment
an elementary outcome, and the set of all elementary outcomes the sample
space. Often we are interested in a particular set of outcomes, which we call
the favorable outcomes or an event.

We define the probability of a particular event as a real number from 0 to
1, where 0 represents that the event will never happen, and 1 represents that
the event will always happen. This value is also represented as a percentage, so
from 0 percent to 100 percent. For a particular outcome ωi, we can represent
the probability as P(ωi).

The classical computation of probability assumes that all outcomes are
equally likely. In this case, the probability of an event is the number of
favorable outcomes for that event divided by the total number of elementary
outcomes. As an example, suppose we roll a fair (i.e., not loaded) six-sided
die. This is our random experiment. The sample space 
 for our experi-
ment is all the possible values on each side, so 
 = {1, 2, 3, 4, 5, 6}. The event
we’re interested in is, how likely is it for a 3 or 4 to come up? Or, what is
P(3 or 4)? The number of favorable outcomes is 2 (either a 3 or a 4) and
the number of all elementary outcomes is 6, so the probability is 2 over 6,
or 1/3.

Another classic example is drawing a colored ball out of a jar. If we have
3 red balls, 2 blue balls, and 5 yellow balls, the probability of drawing a red ball
out is 3/(3+2+5) or 3/10, the probability of drawing a blue ball is 2/10 = 1/5,
and the probability of drawing a yellow ball is 5/10 = 1/2.

However, it’s not always the case that each outcome is equally likely (life
is not necessarily fair). Because of this, there are two additional approaches
to computing probabilities. The first is the frequentist approach, which has as
its central tenet that if we perform a large number of trials, that the number
of observed favorable outcomes over the number of trials will approach the
probability of the event. This also is known as the law of large numbers. The
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second is the Bayesian approach, which is more philosophical and is based
on the fact that many events are not in practice repeatable. The probability of
such events is based on a personal assessment of likelihood. Both have their
applications, but for the purposes of this chapter, we will be focusing on the
frequentist definition.

As an example of the law of large numbers, look at Figure 11.1.
Figure 11.1(a) shows the result of a computer simulation of rolling a fair
die 1,000 times. Each column represents the number of times each side came
up. As we can see, while the columns are not equal, they are pretty close. For
example, if we divide the number of 3s generated by the total number of rolls,
we get 0.164 — pretty close to the actual answer of 1/6.

Figure 11.1(b), on the other hand, shows the result of rolling a loaded
die, where 6s come up more often. As we’d expect, the 6 column is much
higher than the rest, and dividing the number of 6s generated by the total
gives us 0.286 — not at all close to the expected probability. Clearly something
nefarious is going on. While we never can be exact about whether observed
results match expected behavior (this is probability, after all), we’ll talk later
about a way to measure whether our observed outcomes match the expected
outcomes.

We often consider the probability of more than one trial at a time. If
performing the experiment has no effect on the probability of future trials, we
call these independent events or independent trials. For example, each instance
of rolling a die is an independent trial. Drawing a ball out of the jar and
not putting it back is not; future trials are affected by what happens. For
example, if we draw a red ball out of the jar and don’t replace it, the probability
of drawing another red ball is 2/9, as there are now only 2 red balls and
9 balls total in the jar. These are known as dependent events or dependent
trials.

A few algebraic rules for probability may prove useful for game develop-
ment. First of all, the probability of an event not happening is 1 minus the
probability of the event, or P(not E) = 1 − P(E). For example, the probability
of not rolling a 6 on a fair die is 1 − 1/6 = 5/6.

Secondly, the probability of two independent events E and F occuring is
P(E) · P(F). So for example, the probability of rolling a die twice and rolling a
1 or 2 on the first roll and a 3, 4, or 6 on the second roll is 2/6·3/6 = 6/36 = 1/6.

Finally, the probability of one event E or another event F is P(E)+P(F)−
P(E and F). An example of this is considering the probability of rolling an odd
number or a 1 on a die. The probability of rolling an odd number and a 1 is just
the probability of rolling a 1 or 1/6 (we can’t use the multiplicative rule here
because the events are not independent). So, the result is 3/6 + 1/6 − 1/6 =
1/2 — just the probability of rolling an odd number.

With these rules we can answer Chevalier de Mere’s question. The first
part of the question is, what is the probability of rolling at least one 6 in 4
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Figure 11.1 (a) Simulation results for rolling a fair die 1000 times, and
(b) simulation results for rolling a loaded die 1000 times.
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throws of a single die? We’ll represent this as P(E). It’s a little easier to turn
this around and ask, what is the probability of not rolling a 6 in 4 throws of
one die? We can call the event of not throwing a 6 on the ith roll Ai, and the
probability of this event is P(Ai). Then the probability of all 4 is P(A1 and A2
and A3 and A4). As each roll is an independent event, we can just multiply the
4 probabilities together to get a probability of (5/6)4. But this probability is
P(not E), so we must use the “not” rule and subtract the result from 1 to get
P(E) = 1 − (5/6)4 or 0.518.

The other half of the question is, what is the probability of rolling at least
one double 6 in 24 throws of a pair of die? This can be answered similarly.
We represent this as P(F). Again, we turn the question around and compute
the probability of the negative: rolling no double 6s. For a given roll i, the
probability of not rolling a double 6 is P(Bi) = 35/36. We multiply the results
together to get P(not F) = (35/36)24 and so P(F) = 1 − (35/36)24 or 0.491. So,
the first event is more likely.

This is just a basic example of computing probabilities. Those interested
in computing the probability of more complex examples are advised to look to
the references noted at the end of the chapter — it can get more complicated
than one expects, particularly when dealing with dependent trials.

11.2.2 Random Variables

As we saw with vectors, mathematicians like abstractions so they can wrap
an algebra around a concept and perform symbolic operations on it. The
abstraction in this case is the random variable. Suppose we have a random
experiment that generates values (if not, we can assign a value to each outcome
of our experiment). We call the values generated by this process a random
variable, usually represented by X. Note that X represents all possible values; a
particular result of a random experiment is represented by Xi, and a particular
value is represented by x.

If the set of all random values for our given problem has a fixed size,1 as in
the examples above, then we say it is a discrete random variable. In this case,
we’re interested in the probability of a particular outcome x. We can represent
this as a function m(x), where the function’s domain is the sample space 
. As
an example, suppose we create such a function for our jar experiment. We’ll
say that red = 1, blue = 2, and yellow = 3. The sample space of our random
variable is now 
 = 1, 2, or 3. The value of m(x) for each possible x is the
probability that x is the result of the draw out of the jar. The resulting graph
can be seen in Figure 11.2. Notice that m(x) only has a value at 1, 2, or 3, and is
0 everywhere else. This is known as a probability mass function, or sometimes a

1. Or, is countably infinite, though in games this is rarely considered, if ever.
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Figure 11.2 Probability mass function for drawing one ball out of a jar with 3 red
balls, 2 blue balls and 5 yellow balls.

probability distribution function. This function has three important properties:
its domain is the sample space of a random variable; for all values x, m(x) ≥ 0
(i.e., there are no negative probabilities); and the sum of the probabilities of
all outcomes is 1, or

n−1∑
i=0

m(xi) = 1

where n is the number of elements in 
.
Now, suppose that our sample space has an uncountably infinite number

of outcomes. One example of this is spinning a disc with a pointer: Its angle
relative to a fixed mark has an infinite number of possible values. This is known
as a continuous random variable. Another example of a continuous random
variable is randomly choosing a value from all real values in the range [0, 1].
Assuming all numbers have an equal probability, this is known as a uniform
variate, or sometimes as the canonical random variable ξ [91].

One interesting thing about a continuous random variable is that the
probability of a given outcome x is 0, since the number of possible out-
comes we’re dividing by is infinite. However, we can still measure probabilities
by considering ranges of values and use a special kind of function to
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Figure 11.3 Example of a probability density function.

encapsulate this. Figure 11.3 shows one such function over the canonical
random variable. This function f(x) is known as a probability density func-
tion (PDF). It has characteristics similar to the probability mass function for
the discrete case: All values f(x) ≥ 0 and the area under the curve is equal
to 1. As with the discrete case, the second characteristic indicates that the
sum of the probabilities for all outcomes is 1 and can be represented by the
integral: ∫ ∞

−∞
f(x)dx = 1

We can also find the probability of a series of random events, say from a to b.
In the discrete case, all we need to do is take the sum across that interval:

P(a ≤ ω ≤ b) =
b∑

x=a

m(x)

In the continuous case, again we take the integral:

P(a ≤ x ≤ b) =
∫ b

a

f(x)dx
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Sometimes we want to know the probability of a random value being less than
or equal to some value y. Using the mass function, we can compute this in the
discrete case as

F(y) =
y∑

x=x0

m(x)

or in the continuous case using the density function as

F(y) =
∫ y

−∞
f(x)dx

This function F(x) is known as the cumulative distribution function (CDF). We
can think of this as a cumulative sum across the domain. Note that because
the CDF is the integral of the PDF in the continuous realm, the PDF is actually
the derivative of the CDF.

Figure 11.4 shows the cumulative distribution function for the continuous
PDF in Figure 11.3. Note that it starts at a value of 0 for the minimum in the
domain and increases to a maximum value of 1: All cumulative distribution
functions have this property. We’ll be making use of cumulative distribution
functions when we discuss the chi-square method below.
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Figure 11.4 Corresponding cumulative distribution function for the probability
density function in Figure 11.3.
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11.2.3 Mean and Standard Deviation

Suppose we conduct N random trials with the random variable X, giving us
results (or samples) X0, X1, . . . , XN−1. If we take what is commonly known as
the average of the values, we get the sample mean

X̄ = 1

N

N−1∑
i=0

Xi

We can think of this as representing the center of the values produced. We
can get some sense of spread of the values from the center by computing the
sample variance s2 as

s2 = 1

N − 1

N−1∑
i=0

(Xi − X̄)2

The larger the sample variance, the more the values spread out from the mean.
The smaller the variance, the closer they cluster to the mean. The square root s

of this is known as the standard deviation of the sample.
Note that these values are computed for the samples we record. We can

compute similar values for the mass or density function for X as well, dropping
the reference to “sample” in the definitions.

The expected value or mean of a discrete random variable X with sample
space 
 of size n and mass function m(x) is

E(X) =
n−1∑
i=0

xim(xi)

And for a continuous random variable, it is

E(X) =
∫ ∞

−∞
xf(x)dx

Both are often represented as μ for short. Similar to the sample mean, these
represent the center of the probability mass or density function, respectively.

The corresponding spread from the mean is the variance, which is
computed in the discrete case as

σ2 =
n−1∑
i=0

(xi − μ)2m(x)
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and in the continuous case as

σ2 =
∫ ∞

−∞
(x − μ)2f(x)dx

As before, the square root of the variance, or σ, is called the standard deviation.
We’ll be making use of these quantities below, when we discuss the normal

distribution and the Central Limit Theorem.

11.2.4 Special Probability Distributions

There are a few specific probability mass functions and probability density
functions that are good to be aware of. The first is the uniform distribu-
tion. A uniform probability mass function for n discrete random variables
has m(xi)=1/n for all xi. Similarly, a uniform probability density function
over the interval [a, b] has f(x)=1/(b − a) for all a ≤ x ≤ b and f(x)=0 every-
where else. Examples of uniform probability distributions are rolling a fair
die or drawing a card. On the other hand, the distribution of a loaded die is
nonuniform. Similarly, our PDF in Figure 11.3 has a nonuniform distribution.
Our immediate goal in building a random number generator is simulating a
uniformly distributed random variable, but as the large majority of situations
we deal with will have nonuniform distributions, simulating those also will
be important.

There are two other distributions that are of general interest. The first is
a discrete distribution known as the binomial distribution. Suppose we have
a random experiment where there are only two possible outcomes: success
or failure. How we measure success depends on the experiment: It could be
rolling a 2 or 3 on a single die roll, or flipping a coin so it lands heads, or
picking out a red ball. Each time we perform the experiment it must not affect
any other time (i.e., it is independent), and the probabilities must remain the
same each time. Now we repeat this experiment n times, and ask the question,
how many successes will we have? This is another random variable, called the
binomial random variable.

In general, we’re more interested in the probability that we will have k

successes, which is

Pr(X = k) =
(

n

k

)
pk(1 − p)n−k

where (
n

k

)
= n!

k!(n − k)!
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This is known as the binomial coefficient. If we graph the result for n = 8,
p = 2/3, and all values of k from 1 to n, we get a lopsided pyramid shape
(Figure 11.5). Note that the mean lies near the peak of the pyramid. It will only
lie at the peak if the result is symmetric, which only happens if the probability
p = 1/2.

This discrete distribution can lead to a continuous density function.
Suppose that n gets larger and larger. As n approaches ∞, the discrete dis-
tribution will start to approximate a continuous density function; oddly, this
function also becomes symmetric. Now we take this continuous function and
translate it so that the mean lies on 0, and scale it so that the standard deviation
is 1, while maintaining an area of 1 under the curve. What we end up with is
seen in Figure 11.6: the standard normal distribution. This can be represented
by the function

f(x) = 1√
2π

e−x2/2

We can also have a general normal distribution where we can specify mean
and standard deviation, also known as a Gaussian distribution or a bell curve:

f(x) = 1

σ
√

2π
e−(x−μ)2/2σ2

Note that the Gaussian distribution is also the same one used (albeit in 2D)
when applying a blur filter to an image or to generate a mipmap.
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Figure 11.5 Binomial distribution for n = 8 and p = 2/3.
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Figure 11.6 The standard normal distribution.

Figure 11.7 shows a general normal distribution with a mean of 3.75 and
a standard deviation of 2.4. For any value of p, the binomial distribution
of n trials can be approximated by a normal distribution with μ = np and
σ = np(1−p). Also, for a further intuitive sense of standard deviation it’s help-
ful to note that in the normal distribution 68 percent of results are within 1
standard deviation around the mean, and 95 percent are within 1.96 standard
deviations.

The interesting thing about the normal distribution is that it can be
applied to all sorts of natural phenomena. Test values for a large group of
students will fall in a normal distribution. Or measurements taken by a large
group, say length or temperature, will also fall in a normal distribution.

With the introduction of the normal distribution we can also draw a bet-
ter relationship between the mean and the sample mean. Suppose we take N

random samples using a probability distribution with mean μ and standard
deviation σ. Due to a theorem known as the Central Limit Theorem, it can
be shown that the sample mean X̄ of our samples should be normally dis-
tributed around the mean μ, and that the standard deviation of X̄ is σ/

√
N.

So, the average of random samples from a normal distribution is also nor-
mally distributed, and the larger N is, the smaller σ/

√
N will be. So, what this

is saying is that for very large N, the mean μ and the sample mean X̄ should be
nearly equal. We’ll be making use of this when we discuss hypothesis testing
in the next section.
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Figure 11.7 General normal distribution with mean of 3.75 and standard
deviation of 2.4.

11.3 Determining Randomness

Up to this point we have been talking about random variables and probabilities
while dancing around the primary topic of this chapter — randomness. What
does it mean for a variable to be random? How can we determine that our
method for generating a random variable is, in fact, random? Unfortunately,
as we’ll see, there is no definitive test for randomness, but we can get a general
sense of what randomness is.

We use the term random loosely to convey a sense of nondeterminism and
unpredictability. Note that human beings are notoriously bad at generating
random numbers. Ask a large group of people for a number between 1 and
10, and the majority of the people will pick 7. The reason is that they are
consciously trying to be random — trying to avoid creating a pattern, as it
were — and by doing so they create a new pattern. The same can happen
if you ask someone to generate a random sequence of numbers. They will
tend to mix things up, placing large numbers after small ones, and avoiding
“patterns,” such as having the same number twice in a row. The problem is
that a true random process will generate such results — streaks happen. So
again, by trying to avoid patterns, a new and more subtle pattern is generated.

This gives us a clue as to how we might define a sequence of random
numbers: a sequence with no discernable pattern. Statistically, when we say a
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process is random, we mean that it lacks bias and correlation. A biased process
will tend toward a single value or set of values, such as rolling a loaded die.
Informally, correlation implies that values within the sequence are related
to each other by a pattern, usually some form of linear equation. As we will
see, when generating random numbers on a computer we can’t completely
remove correlation, but we can minimize it enough so that it doesn’t affect
any random process we’re trying to simulate.

11.3.1 Chi-Square Test

In order to test for bias and somewhat for correlation, we will perform a series
of random experiments with known probabilities and compare the results
of the experiments with their expected distribution. For this comparison,
we’ll use a common statistical technique known as hypothesis testing. The
way we’ll use it is to take a set of observed values generated by some sort of
random process (we hope), compare against an expected distribution of val-
ues, and determine the probability that the result is suitably random. Most
of the tests we’ll see below pick a particularly nasty test case and then use
hypothesis testing to measure how well a random number generator does with
that case.

The first step of hypothesis testing is to declare a null hypothesis, which in
this case, is that the random number generator is a good one and our samples
approximate the probability distribution for our particular experiment. Our
alternate hypothesis is that the results are not due to chance — that something
else is biasing the experiment.

The second step is to declare a test statistic against which we’ll measure
our results. In our case, the test statistic will be the particular probability
distribution for our experiment.

The third step is to compute a p-value comparing our test statistic to our
samples. This is another random variable that measures the probability that
our observed results match the expected results. The lower this probability,
the more likely that the null hypothesis is not true for our results. Finally, we
compare this p-value to a fixed significance level α. If the p-value is less than
or equal to α, then we agree that the null hypothesis is highly unlikely and we
accept the alternate hypothesis.

One possibility for our p-value is to compare the sample mean for our
results with the mean for our probability distribution. From the Central Limit
Theorem, we know that the sample mean is normally distributed, and the
probability of the sample mean lying outside of 1.96 standard deviations
from the mean is around 5 percent. So, one choice is to let the p-value be
the probability of our deviation from the sample mean, and our significance
level 5 percent (i.e., if we lie outside two standard deviations we fail the null
hypothesis).
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However, in our case we’re going to use a different technique known
as Pearson’s chi-square test, or more generally the chi-square (or χ2) test.
Chi-square in this case indicates a certain probability distribution, so
there can be other chi-square tests, which we won’t be concerned with in
this text.

To see how the chi-square test works, let’s work through an example.
Suppose we want to simulate the roll of two dice, summed together. The
probabilities of each value are as follows.

Die Value 2 3 4 5 6 7 8 9 10 11 12

Probability 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

So, if we were to perform, say, 360 rolls of the dice, we’d expect that the dice
would come up the following number of times.

Die Value 2 3 4 5 6 7 8 9 10 11 12

Frequency 10 20 30 40 50 60 50 40 30 20 10

These are the theoretical frequencies for our sample trial. Our null hypothesis is
that our random number generator will simulate this distribution. The alter-
nate hypothesis is that there is some bias in our random number generator.
Our test statistic is, as we’d expect, this particular distribution. In addition,
note that we need a large number of samples in order for our chi-square test
to be valid.

Now take a look at some counts generated from two different random
number generators.

Die Value 2 3 4 5 6 7 8 9 10 11 12

Experiment 1 9 21 29 43 52 59 47 38 31 19 12

Experiment 2 17 24 28 29 35 76 46 35 32 23 15

First of all, note that neither matches the theoretical frequencies exactly. This
is actually what we want. If one set matched exactly, it would not be very
random, and its behavior would be very predicable. On the other hand, we
don’t want our random number generator to favor one number too much over
the others. That may indicate that our dice are loaded, which is also not very
random.

The first step in determining our p-value is computing the chi-square
value. What we want to end up with is a value that straddles the two
extremes — neither too high nor too low. Computing it is very simple: For
each entry, we just subtract the theoretical value from ei, the observed value
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oi, square the result, and divide by the theoretical value. Sum all these up and
you have the chi-square value. In equation form, this is

V =
n∑

i=0

(ei − oi)
2

ei

Using this, we can now compute the chi-square values for our two trials. For
the first we get 1.269, and for the second we get 21.65.

Now that we have a chi-square value, we can now compute a p-value.
To do that, we compare our result against the chi-square distribution. Or
more accurately, we compare against the cumulative distribution function of
a particular chi-square distribution.

To understand the chi-square distribution, suppose we have a random
process that generates values with a standard normal distribution (i.e., a
mean of 0 and a standard deviation of 1). Now let’s take k random values
and compute the following function:

χ2 =
k∑

i=1

xi
2

The chi-square distribution indicates how the results from this function
will be distributed. Figure 11.8 shows the probability density function and
cumulative density function for various values of k.

In order to know which chi-square distribution to use, we need to know
the degrees of freedom k in our experiment. This is equal to the number of
possible outcomes, minus 1. In our example above, the k value is 11 − 1 = 10.
If we now substitute our computed chi-square value into the appropriate chi-
square cumulative density function, that gives us the probability that we will
get this chi-square value or less. This is the p-value we’re looking for. If the
resulting p-value is very low, say from 0 to 0.1, then our numbers aren’t very
random, because they’re too close to the theoretical results. If the p-value lies
in the higher probability range, say from 0.9 to 1.0, then we know that our
numbers aren’t random because one or more values are being emphasized
over the others. What we want is a p-value that lies in the sweet spot of the
middle. This is a slightly different approach to hypothesis testing, because
we’re trying to check two conditions here instead of one.

So, how do we calculate the p-value? This can be calculated directly, but
the process is fairly complex. Fortunately, tables of pregenerated values are
available (e.g., Table 11.1), and looking up the closest value in a table is good
enough for our purposes.

For the particular row that corresponds to our number of degrees of free-
dom, we find the entry closest to our value V . The column for that entry gives
us the p-value. Looking at the k = 10 column, we see that the chi-square
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Figure 11.8 (a) The chi-square probability density function for values of k from
1 to 4, and (b) the chi-square cumulative density function for values of k from 1 to 4.



510 Chapter 11 Random Numbers

Table 11.1 Chi-square CDF values for various degrees of freedom k

p = 0.01 p = 0.05 p = 0.1 p = 0.9 p = 0.95 p = 0.99

k = 1 0.00016 0.00393 0.01579 2.70554 3.84146 6.63489
k = 2 0.02010 0.10259 0.21072 4.60518 5.99148 9.21035
k = 3 0.1148 0.35184 0.58438 6.25139 7.81472 11.3449
k = 4 0.29710 0.71072 1.06362 7.77943 9.48772 13.2767
k = 5 0.55430 1.14548 1.61031 9.23635 11.0704 15.0863
k = 6 0.8720 1.63538 2.20413 10.6446 12.5916 16.811
k = 7 1.23903 2.16734 2.83311 12.0170 14.0671 18.4753
k = 8 1.6465 2.73263 3.48954 13.3616 15.5073 20.0901
k = 9 2.08789 3.3251 4.16816 14.6837 16.9190 21.6660
k = 10 2.55820 3.94030 4.86518 15.9871 18.3070 23.2092
k = 11 3.0534 4.57480 5.57779 17.275 19.6751 24.7250
k = 12 3.57055 5.22602 6.30380 18.5493 21.0260 26.2170
k = 13 4.10690 5.8919 7.04150 19.8119 22.3620 27.6881
k = 14 4.66041 6.5706 7.78954 21.064 23.6848 29.1411
k = 15 5.22936 7.26093 8.54675 22.3071 24.9958 30.5780

value of 1.269 for experiment 1 produces a p-value of at most 0.01, and the
chi-square value of 21.65 for experiment 2 produces a value between 0.95 and
0.99. So experiment 1 is too close to the expected probability distribution, and
experiment 2 is far away. This fits the way they were generated. The first set
of random numbers we simply chose to be very close to the expected value.
The second set were weighted so that 1 would be more likely to come up on
one die and 6 more likely on the other.

An alternative to looking up the result in a table is to use a statistical
package to compute this value for us. Microsoft Excel has a surprising amount
of statistical calculations available, and the chi-square test is one of those.
A quick online search for “chi-square calculator” also finds a number of Web
applications that perform this operation. Note that Excel and most tables
reverse the sense of the p-value; that is, rather than compute the probability
that the chi-square value is less than or equal to our computed value, they
compute the probability it will exceed that value. This allows them to use
the standard approach to using p-values, where a low p-value means that
our experiment is biased. Therefore, when using these packages keep this
in mind.

This procedure gives us the basic core of what we need to test our ran-
dom number generators: We create a test with random elements and then
determine the theoretical frequencies for our test. We then perform a set of
random trials using our random number generator and compare our results
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to the theoretical ones using the chi-square test. If the p-value generated is
acceptable, we move on, otherwise, the random number generator has failed.
Note that if a generator passes the test, it only means that the random num-
ber generator produces good results for that statistic. If the statistic is one we
might use in our game, that might be good enough. If it fails, it may require
more testing, since we might have gotten bad results for that one run. With
this in place, we can now talk about a few of the most basic tests.

The most basic test we can perform is the equidistribution test, which
determines whether our presumably uniform random number generator
produces a uniform sequence. Our test statistic is that the counts will be the
same for all groups. Ideally, we set one bucket for each possible value, but
given that we can have thousands of values, that’s not often practical. Usu-
ally, values are grouped into sequential groups; that is, we might shift a 32-bit
random number right by 24 and count values in 256 possible groups.

The serial test follows onto the equidistribution test by considering
sequences of random numbers. In this case, we generate pairs of numbers
(e.g., (x0, x1), (x2, x3), . . . ,) and count how many times each pair appears. Our
test statistic is that we expect the count for each particular pair to be uniformly
distributed. The same is true for triples, quadruples, and so on up, although
managing any size larger than quadruples gets unwieldly and so something
like the poker hand test, below, is recommended.

The poker hand test consists of building hands of cards, ignoring suits,
and counting the number of poker hands, which Knuth represents as follows:

All different abcde
Pair aabcd

Two pair aabbc
Three of a kind aaabc

Full house aaabb
Four of a kind aaaab
Five of a kind aaaaa

Each of these outcomes have different probabilities. We generate numbers
between, say, 2 and 13, and track the number of poker hands of each type.
Then, as before, we compare the results with the expected probabilities by
performing the chi-square test.

There is a simplification of this, where we only count the number of
different values in the poker hand. This becomes, then:

5 values All different
4 values One pair
3 values Two pair, three of a kind
2 values Full house, four of a kind
1 value Five of a kind
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This is both easier to count, and the probabilities easier to compute. In
general, if we’re generating numbers from 0 to d −1, with a poker hand of size
k, Knuth gives the probability of r different values as

pr = d(d − 1) . . . (d − r + 1)

dk

{
k

r

}
where {

k

r

}
= 1

r!
r∑

j=0

(−1)r−j

(
r

j

)
jk

This last term is known as a Stirling number of the second kind, and counts
the number of ways to partition k elements into r subsets.

These three are just a few of the possibilities. There are other tests, many
with colorful names such as the birthday spacing test or the monkey test.
For those who want to create their own random number generators and
need to run them through a series of tests, a couple of open-source libraries
are available. The first is DIEHARD, created by George Marsaglia, and so
named because a non-English speaker misunderstood the notion of a “bat-
tery” of tests. However, the name is appropriate, as the tests are very thorough.
DIEHARD is no longer maintained, but is available online. For a regularly
updated library, there is DieHarder, which was created by Robert G. Brown
of Duke University. In addition to regular maintenance, this one adds some
additional tests suggested by the National Institute for Standards and Tech-
nology, and is released under the Gnu Public License. It is also available online
and installable on Linux as a package.

In general, however, we will not be creating our own random number
generator. In those cases, a chi-square test is more useful for verifying that
your use of a random number generator matches your expected behavior.
For example, suppose you were trying to generate a particular probability
distribution that a designer has created. If your results in-game don’t match
this distribution, you know you’ve done something wrong. The chi-square test
allows you to verify this.

11.3.2 Spectral Test

There is one test of random number generators that falls outside of the stan-
dard chi-square–based tests, and that is the spectral test. The spectral test is
derived from the fact that researchers noticed that if they constructed points
in space using certain RNGs, those points would align along a fixed num-
ber of planes (a statistician would say that the data are linearly correlated).
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This means that no point could be generated in the space between these
planes — not very random. For many bad RNGs, this can be seen by doing
a two-dimensional (2D) plot, for others, a three-dimensional (3D) plot is
necessary. Some extreme examples can be seen in Figure 11.9.

In fact, Marsaglia [71] showed that for certain classes of RNGs (the linear
congruential generators, which we’ll cover below) this alignment is impossible
to avoid. For a given dimension k, the results will lie “mainly in the planes,”
to quote the title of the article.

The spectral test was created to test for these cases. It takes d-tuples
(xi, xi+1, . . . , xi+d−1) of a random sequence and looks for the spacings between
them that lie along a d-dimensional hyperplane. For our purposes, we are
not going to implement the spectral test. It mostly applies to a single class of
RNGs, and as we’ll see, a great deal of research has been done on determining
good RNGs, so it’s unlikely that we’ll need a spectral test. Also, if the spacing
between the planes is small enough, it’s unlikely that it will significantly affect
the sort of random data that are generated for games. However, this property
of some RNGs is something to be aware of.

11.4 Random Number Generators

Now that we’ve covered some basic probability and some means of testing ran-
domness, we can talk about how we generate random numbers. True random
generators for computers are only possible by creating circuitry that depends
on some physical phenomenon. One example is a generator that took video
of lava lamps and used that to generate random numbers over time. Alterna-
tively, we could track the particles generated by a radioactive isotope. Usually,
however, a circuit is built that takes advantage of the fact that power to the
computer has a certain amount of unpredictable noise in it. This noise is
amplified and used to generate random values.

In our case, we can’t assume access to such hardware. Instead, we’ll have
to make use of what is called a pseudo-random number generator. We will
start with a set of one or more numbers and use a deterministic algorithm
to generate a sequence of numbers that appear random. That is, our process
is completely predetermined, but the numbers generated fulfill certain char-
acteristics that make them suitable for simulating actual random processes.
Because of this, pseudo-random number generators are just referred to as
random number generators.

There is another class of RNGs known as quasi-random number genera-
tors. These generate numbers in a way that avoids streaks and clumping, and
are primarily used for a numerical integration technique known as Monte
Carlo integration. However, we won’t be considering those as they tend to be
more expensive and we don’t require that kind of precision.
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Figure 11.9 Examples of randomly generating points that “stay mainly within the
planes.”
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Why study random number algorithms when most languages these days
come with a built-in RNG? The reason is that these built-in RNGs are
usually not very random. Understanding why they are flawed is important
if we intend on using them and working around their flaws, and under-
standing what makes a good generator is important if we want to create
our own.

Our goal in building an RNG is to generate a series or stream of numbers
with properties close to those of actual random events. Because this series of
numbers is usually very large, all of the RNGs that we’re going to discuss can
be described by a special type of function known as a recurrence relation. Those
with experience in recursion should be familiar with the concept: The value at
a given step n is dependent on values from previous steps (in many cases, only
the immediately previous step). For example, here is the recurrence relation
for the Fibonacci series:

xn = xn−1 + xn−2

To start things off, one or more seed values are set, and these control how
the sequence of numbers will proceed. Again, using our Fibonacci example,
using seed values x0 = 0 and x1 = 1, we get the series

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The process alone doesn’t produce our sequence — the seed also plays a part.
For example, if we use seed values x0 = 2 and x1 = 1, we get the Lucas
numbers:

2, 1, 3, 4, 7, 11, 18, 29, . . .

So, choosing the proper seed value is very important. If we use the same
seed all the time, we’ll always get the same sequence every time. This can be
useful for debugging, so that we get the same results during each debugging
pass, but in the final game we’ll probably want to randomize this seed value
somehow. One common method is to use the operating system clock value.
Another uses the frequency of the user’s keystrokes, mouse movement, or
joystick movement at start-up time to compute a random value for the rest of
the game.

The Fibonacci series is infinite, since the values get progressively larger
and larger. However, we will need to limit our results to fit within calcu-
lable values on the computer, so we will take a modulus of anything we
compute to ensure that it stays within bounds. Doing this with Fibonacci
gives us

xn = (xn−1 + xn−2) mod m
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The value m is often one more than the largest representable number, although
as we’ll see below, other values work better with certain algorithms.

Another final concept we need to discuss before diving in is the period of a
random number sequence. Because of the modulus, eventually all generators
will repeat their values; you will end up generating your original seed values
and the sequence will start again. For example, take this (very poor) RNG
(please):

xn = (xn−1 + 2) mod 4

Given a seed value of 0, this will generate the sequence

0, 2, 0, 2, 0, 2, 0, 2, . . .

This is a poor RNG for two reasons. First, as we can see, the values are
very regular. But also, it has a very small period of 2. We want this period
to be as large as possible; at the very least it should encompass all values
(0, . . . , m−1), and ideally be much larger than that so that we can get streaks of
numbers.

This should give some general sense of the structure of the algorithms
we’ll be discussing. Note that this is by no means an exhaustive list. We
are merely trying to present some standard algorithms to demonstrate the
wide variety of possibilities. A few of the generators we’ll discuss are not
very good. This is partially to show what can go wrong in case you are
tempted to create your own, and partially to build up the background to
understand the best current generator: the Mersenne Twister. Also note
that when discussing generators in this section, we’ll only be constructing
those that generate unsigned integers. We’ll cover how to create signed inte-
gers, smaller than full integer ranges, and floating-point numbers in a later
section.

11.4.1 Linear Congruential Methods

Definition

Source Code

Library

IvRandom

Filename

IvLCG64

IvCGPrime

The linear congruential generator (LCG) is a very popular random number
generator. It was first introduced by D. H. Lehmer in 1949 and is introduced
in most algorithm classes and implemented in most standard libraries. The
LCG is represented by the following equation:

xn = (axn−1 + c) mod m



11.4 Random Number Generators 517

where

0 ≤ m

0 ≤ a < m

0 ≤ c < m

In this case, m is called the modulus, a is called the multiplier, and c is called
the increment. If c is 0, this is called a multiplicative congruential method,
otherwise it is a mixed congruential method.

Note that no matter what the values are, the maximum period is m. This
makes sense; because we’re only tracking one variable, if we ever repeat a
value the sequence will begin again from that point. So, the maximum we can
possibly do is to run through all of the values between 0 and m − 1 and then
start again from the seed. Of course, this is only possible if c �= 0. If c = 0,
then if our sequence generates 0, we’ll end up with something like

. . . , 4, 24, 6, 0, 0, 0, 0, . . .

This is because once x is 0, ax mod m will always be 0. So if c = 0, we can
only use values between 1 and m − 1. In this case, if we need 0, we can always
subtract 1 from the result.

Choosing the Modulus

The first question when constructing a LCG is what the value of m should
be. The most obvious choice, as we stated above, is to use one more than
the largest representable integer value, or, if our word size is w bits, 2w. As
most adders will wrap values when overflow occurs, they are automatically
performing a modulus 2w, which makes our computation very efficient.

However, there are two problems when using a power of 2 for m. First,
it can be shown that if c = 0, then the maximum period is only m/4, and this
in turn can only happen if a mod 8 is 5 and the initial seed is odd. Since
we’re multiplying an odd number by an odd number, the result will be an odd
number, and in fact, we’ll get half of the odd numbers between 1 and 2w − 1.
To avoid this, most generators that use m = 2w use an odd value for c, which
allows the resulting value to alternate between even and odd, and provides
the full period of m.

However, when our numbers alternate between even and odd, the least
significant bit will alternate between 0 and 1 — not very random. This signifies
another problem, as pointed out by Knuth [65]. Suppose that d is a divisor
of m (i.e., m mod d = 0) and

yn−1 = xn−1 mod d
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If d = 2e, we can think of this as representing the eth least significant bits of
xn−1. It can be shown that

yn = (ayn−1 + c) mod d

In other words, while our random sequence may have a maximum period
of m, its least significant bits have a maximum period of d — they are much
less random than the most significant bits.

This really only comes into play if we’re using our RNG for small value sim-
ulations such as rolling dice. One solution is to shift the result from the RNG
to the right so that the more random bits in the middle word become the new
least significant bits and then take our modulus, which is what we have done
in ours.

However, because of these problems, most researchers recommend using
a large prime number for m instead. There is some debate on what that suitable
prime number is. One popular choice for 32-bit numbers is 231 − 1, because
it is close to our maximum value of 232 − 1 (which is not prime, by the way).
Marsaglia [72] also suggests 232 −5 and 232 −2. However, in general, we simply
want a large enough prime for our purposes — the larger the prime, the larger
the period.

The big advantage of the prime value is that it guarantees to give us a full
period without having to use an increment. However, using a prime value has
some consequences. First of all, we need to be sure to store the maximum
possible value somewhere, so that we can compute the floating-point equiv-
alents (see below). We also lose the convenience and efficiency of letting the
hardware magically handle our modulus for us. In fact, rather than taking
advantage of overflow, we have to be careful that it doesn’t take advantage of
us. For example, suppose we have a 4-bit architecture, and are computing the
following LCG:

xn = (3xn−1) mod 13

If xn−1 is 12, then 3xn−1 = 36. But this value doesn’t fit into the word, so it is
truncated to 36 mod 16 = 4. This mod 13 gives a final value of 4. But the actual
result should be 36 mod 13 = 10.

To solve this problem, Park and Miller [89] recommend the following
replacement formula, based on Schrage [101], for ax mod m:

ax mod m = a(x mod q) − r(x ÷ q) + mδ(x)

where ÷ is integer division, q = m÷a, r = m mod a, and δ(x) = (z÷q)−(az÷m).
The value of δ(x) will either be 0 or 1, and only 1 if a(x mod q) − r(z ÷ q) is less
than 0. We can represent this in code as follows:
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x = a*(x%q) - r(x/q);
if (x <= 0)

x += m;

Note that this only works if r < q, otherwise overflow will still occur.
Of course, a simpler solution is to do our calculations in a larger word size

and truncate down to our desired, smaller word size (i.e., compute in 64-bit
integers for a 32-bit result), but that assumes this option is available to us.

Choosing the Multiplier

So these are our two logical possibilities for a modulus: either a power of 2 or
a large prime number. We’ve already noted that c > 0 is only necessary when
using a modulus that is a power of 2, and in that case any odd number will
do (1 is a popular choice). So, the remaining question is: What do we choose
for a, our multiplier?

We want to make our choice to maximize two things: the period of the
random sequence and the randomness of the resulting numbers within that
sequence. The most common measure of this randomness is to use the spectral
test, as LCGs are particularly susceptable to obviously regular patterns unless
the values are chosen appropriately.

Let’s consider the maximum period first. We’ve already noted that if
m = 2w, we want a mod 8 = 5 and c to be odd to get the full period. In
general, however, we want the following. Suppose we begin with seed x0, mul-
tiplier a, modulus m, and c = 0. Then we can find the value at the ith step by
calculating

xi = aix0 mod m

Without loss of generality, let’s assume that x0 = a. If we have a full period,
eventually we’ll generate a as our current random number, and that starting
point is as good as any other. So, this formula becomes

xi = ai+1 mod m

In order for us to get a full cycle, a mod m, a2 mod m, a3 mod m, . . . , am−1 mod m

must all be distinct values. How do we find this a? Fortunately, there is a
mathematical entity known as a primitive element, which has just this property
when a and m are relatively prime (that is, their only common factor is 1). So,
for our particular m, we just need to generate all the primitive elements, and
that will give us good values for a.

This gives us a starting point for both cases. However, the number of
possible values is still quite large and narrowing this down requires the use
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of the spectral test. Fortunately for us, many people have already done stud-
ies of the primitive elements for specific values of m. A fairly recent work by
L’Ecuyer [67] in particular has laid out tables of possible values for all of the
cases we’re interested in, including the power of two cases with no addition.
Using a value from these tables will guarantee excellent results. For our gen-
erators, we have chosen default values of a = 2862933555777941757 for the 264

generator and m of 232 −5 and a of 93167 for the prime generator. While those
values will produce good results, we of course let users set their own values if
they want.

Summary

In summary, the LCG is the most commonly taught and commonly used RNG
today. It is usually the basis for RNGs in most math libraries. Although it’s
not the best generator, when the values for a and m are chosen carefully, it can
produce results good enough for most games. However, when using it, one
needs to be wary of the limited period, the randomness of the least significant
bits, and the problems with the spectral test. Because of this, we’ll be looking
at some other possibilities for RNGs.

11.4.2 Lagged Fibonacci Methods

The linear congruential methods are reasonable RNGs, but they do have their
flaws. The most major flaw is that when performing the spectral test for
k-dimensional points, the best we can do is to limit the number of dis-
tinct hyperplanes that points will fall on to m1/k. In other words, there
will always be points in space that we cannot randomly generate. The
other problem is that the maximum period we can expect is m. Can we do
better?

One thing we note about LCGs is that they only make use of the last
value — perhaps we can do better by looking at more than one previous value.
We’ve already mentioned the Fibonacci method, where we take values from
the previous two steps. Recall that this has the recurrence relation

xn = (xn−1 + xn−2) mod m

and requires two seed values. For the traditional Fibonacci sequence, this
would be x0 = 1 and x1 = 1.

Unfortunately, while the standard Fibonacci method has a large period,
it has been shown to not produce very random numbers. There is actually a
hidden pattern, where the ratio between one value and the previous value is
approximately the golden ratio: (

√
5 + 1)/2.
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A better approach is to use a lagged Fibonacci generator, where we look
further back into the sequence for values, and they are not necessarily one
after the other. This can be generalized as

xn = (xn−j � xn−k) mod m

where � is any binary operation (addition, subtraction, multiplication, and
exclusive-Or are common choices) and 0 < j < k. Assuming that m = 2w and
addition, subtraction, or exclusive-Or is used, the maximum possible period
for lagged Fibonacci generators is 2w−1(2k − 1). For multiplication, this drops
to 2w−3(2k − 1). However, multiplication has been shown to mix bits better. In
any case, assuming k is large enough, this period can be much larger than a
standard LCG.

There are two decisions that we have to make when dealing with lagged
Fibonacci generators: What are the values of j and k, and how do we initialize
the starting k values? As far as the first question, which will determine the
actual maximum period, tables of good values can be found in Knuth [65].
The choice of our initial values can be even more critical, as choosing poorly
will seriously affect the randomness of the resulting sequence (e.g., consider
what would happen if all the initial values were the same). One good possibility
presented by Mitchell and Moore is to use addition with j = 24 and k = 55.
The values x0 . . . xn are initialized with arbitrary integers, but guaranteed to
be noneven. This gives us a period of 2w−1(255 −1), which is quite respectable.
In general, however, the problem of choosing good starting values haunt the
Fibonacci generator, so again we will look for other solutions.

11.4.3 Carry Methods

Source Code

Library

IvRandom

Filename

IvCarryMultiply

One of the flaws of the LCG is that it works best with a value m that is prime.
This is bad for two reasons: It’s not cheap to compute and computer word
sizes are powers of two (which are definitely not prime). For those values that
are a power of two, the least significant bits have a lower period than the entire
sequence.

One solution was presented by George Marsaglia and Arif Zaman [74],
who noted that with the LCG, the most significant bits get mixed better than
the least significant bits. To mix the least significant bits, they proposed a
carry or borrow operation, which takes part of the result from the previous
stage and carries it forward to be applied to the least significant bits in the
next stage. The standard formula for an add-with-carry generator is

xn = (xn−k + xn−r + cn−1) mod m

cn = (xn−k + xn−r + cn−1) ÷ m
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Again, ÷ represents an integer divide. As we can see, the bits that would
normally be cast out from the modulus operation are added to the next
stage, thereby mixing the lower bits. Something similar can be done with
the subtract-with-borrow generator:

xn = (xn−k − xn−r − cn−1) mod m

cn = (xn−k − xn−r − cn−1) ÷ m

While these generators have large periods, solve the least significant bit issue,
and otherwise show some promise, it was shown that they also fall prey to
the same problem of falling mainly in the planes that linear congruent gene-
rators do.

In 1992, George Marsaglia posted a modification of this technique [73],
which he called the Mother of All Random Number Generators, also known
as the multiply-with-carry technique. This algorithm also works much bet-
ter with values of m that are powers of 2. As before, the idea is to add the
high-entropy bits (i.e., those that are changing a lot) to the low-entropy bits
(i.e., those that don’t normally change all that much). If we represent a 32-bit
integer xi as two 16-bit integers aibi (i.e., a is the high bits and b is the low
bits), then a basic example of his algorithm is

xn = 30903 · bn−1 + an−1

Instead of returning xn as the result, we return the low bits bn as a 16-bit
integer.

This can easily be represented in C as follows.

k=30903*(k&65535)+(k>>16);
return(k&65535);

In this case we’re doing a carry mod 216.
This has a period of 259 16-bit numbers. We can generate 32-bit numbers

with the same period by concatenating two results together.

k=30903*(k&65535)+(k>>16);
j=18000*(j&65535)+(j>>16);
return ((k << 16) + j);

The multipliers for j and k are chosen to give good results for a modulus
of 216.
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This can be extended further, giving a period of 2118.

k=30903*(k&65535)+(k>>16);
j=18000*(j&65535)+(j>>16);
i=29013*(i&65535)+(i>>16);
l=30345*(l&65535)+(l>>16);
m=30903*(m&65535)+(m>>16);
n=31083*(n&65535)+(n>>16);
return((k+i+m)<<16)+j+l+n);

This is a considerable improvement over the previous two methods: It gives
us very large periods, it does a good job of randomizing the bits, it works well
with computer word sizes and so is good for both floating-point numbers and
integers, and it’s very fast. It also only requires six starting values, as opposed
to the large table needed for the lagged Fibonacci methods.

An alternative 32-bit implementation by Agner Fog [37] only uses four
starting values and has a period of 3 × 1047.

UInt64 S = 2111111111*X[n-4] + 1492*X[n-3]
+ 1776*X[n-2] + 5115*X[n-1] + C;

X[n] = (UInt32)(S);
C = S>>32;

The initial values of X[] and C are randomized. Note that this assumes that
we have access to a 64-bit integer, or at the very least the carry bits from the
accumulator after calculating S. C in this case is the upper carry bits of the
64-bit integer, and we truncate the result to get our random 32-bit integer X[n].
This is very efficient and produces very good results with very little space, but
as we will see, if we’re willing to give up a little more memory we can do better
still.

11.4.4 Mersenne Twister

Source Code

Library

IvRandom

Filename

IvMersenne

Up to this point in our discussion, the improvements in RNGs have been
incremental: the period improves by a couple of orders of magnitude, the
randomness by a bit more. For most interactive purposes any of these RNGs
could do. However, as Bill Cosby once said, “I told you that story so I could tell
you this one.” In 1997, a huge leap was made in random number generators:
the Mersenne Twister.

The Mersenne Twister is our holy grail — an RNG with full coverage of
integers that produces random numbers good enough for anything other than
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cryptological uses and that is efficient. Its only negative is that it requires a
buffer of 624 integers, but for a game, this is a drop in the bucket compared
to the quality that we receive.

The Mersenne Twister was developed by Matsumoto and Nishimura in
1997, building on Matsumoto and Kurita’s work with generalized feedback
shift register (GFSR) algorithms [75]. These are a subclass of lagged Fibonacci
algorithms that use exclusive-or (represented as ⊕) as their binary operation.
They begin with a table of n values. To generate new values, the following
recurrence is used:

xl+n = xl+m ⊕ xl

where l = 0, 1, 2, . . . . This is usually implemented by overwriting the original
table as follows.

void initializeRandom()
{

l = 0;
for (int i = 0; i < n; ++i)
{

x[i] = rand(); // or some suitable value
}

}
int myRand()
{

int retValue = x[l];
x[l] = x[(l+m) mod n] ^ x[l];
l = (l+1) mod n;

return retValue;
}

This method is very fast, but it has a few problems. First of all, how we
create the table has a direct effect on how the algorithm performs. For exam-
ple, suppose we initialized it with the integers from 1 to n, or even worse,
all with a single value. A few moments thought will show that this will not
produce very random values. Secondly, it can be shown that the period of this
sequence is far smaller than the theoretical upper bound 2nw − 1. To achieve
this upper bound we’d have to use a much larger table.

Matsumoto and Kurita’s insight was to realize that randomness and the
period can be improved if you transform or “twist” some of the bits before
performing the exclusive-or. This can be represented as.

xl+n = xl+m ⊕ xlA
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where A is called the twist matrix. This is equal to

A =

⎡⎢⎢⎢⎣
1

1
. . .

a0 a1 · · · an−1

⎤⎥⎥⎥⎦
This in turn boils down to a sequence of simple bit operations:

A(x) = (x >> 1) ^ ((x & 0x01) ? a : 0);

where a is a special constant value.
The performance of the twisted GFSR (TGFSR) algorithm is quite good,

at the same level as the simple multiply-with-carry algorithm described
above.

The one problem with this algorithm is that it still suffers from one prob-
lem that we saw with the linear congruential algorithm: While whole words
may have pseudo-random properties, bit sequences within those words do
not. Again, as an example, the lower r bits of the random sequence might
have a period much less than 2nw − 1. To solve this, Matsumoto and Kurita
added tempering to the basic algorithm. Instead of outputting the raw data
from the table, they apply some shift and binary “and” operations to ensure
that the subword sequences are also well randomized. Their suggestion is as
follows.

y = (x[l] ^ ((x[l]<<s)& b);
y = (y ^ ((y<<t)& c);

In this case, y becomes our new return value, s and t are shift value constants,
and b and c are new word-sized constants.

Matsumoto, with his new partner Nishimura, didn’t stop there. Recall that
the multiply-with-carry algorithm gets its power from mixing the bits between
subsequent values. The improvement to TGFSR is to do something similar,
using the following formula:

xk+n = xk+m ⊕ (xu
k |xl

k+1)A

where k = (0, 1, . . .). As we can see this is very similar to the TGFSR algorithm,
with the addition of some odd notation. The operator | represents standard
“or.” There is also a value r that controls how the bits are mixed. Assuming
that w is the word size for x, then xu

k is the upper w−r bits of xk, and xl
k+1 is the
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lower r bits of xk+1. So, this operation takes the upper bits of one entry and
the lower bits of the following entry and concatenates them to form a new
entry, just like the multiply-carry operation.

To give final better results, they also do tempering like the other TFGSR
improvement, with a slightly different algorithm.

y = x ^ (x >> u);
y = (y ^ ((y<<s)& b);
y = (y ^ ((y<<t)& c);
y = y ^ (y >> l);

Note that u and l in this case are different from the u and l in the recurrence
relation.

This final change gives us the Mersenne Twister [76]. The standard
algorithm MT19937 uses the suggested values of w = 32, n = 624, m = 397,
r = 31, u = 11, s = 7, t = 15, l = 18, a = 0x9908B0DF , b = 0x9D2C5680, and
c = 0xEFC60000. This gives us a period of 219937 −1 (this is one of the so-called
Mersenne primes, hence the name) and a 623-dimensional spectral distribu-
tion, which is far better than any of the methods we have already discussed.

There have been some additional modifications to the Mersenne Twister
algorithm that make it more efficient on SIMD processors (and also faster
on serial processors as a side effect). However, the basic algorithm remains
the same. It’s very efficient, avoids any practical issues with the spectral test,
and has good bit distribution. It also passes the standard set of chi-square–
based tests. Its only downside is the large table of seed values required. If
memory is an issue, then one of the other methods would have to be used.
Otherwise, the Mersenne Twister more than meets our requirements for
an RNG.

11.4.5 Conclusions

This concludes our discussion of basic random number generators. The ques-
tion remains, which one to use? Obviously, in the best possible cases, we
would use MT19937. However, as mentioned, this assumes that we have the
space to store the 624-integer table, and, for example, a handheld application
might not have that luxury. In that case, the multiply-carry method proba-
bly would be more than good enough. And if space and speed are truly at a
premium, a linear congruential method may do the trick, but be careful to
choose one with a good modulus and multiplier.

So to summarize, whenever possible, use the Mersenne Twister; be sure
to pick good random seeds; and if you can ever help it, don’t use the default
generator — create your own or use a well-vetted library.
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11.5 Special Applications

Up to this point, we’ve been discussing only how to randomly generate uni-
formly distributed unsigned integers. However, randomness in a computer
game extends beyond this. In this section we’ll discuss a few of the more com-
mon applications and how we can use our uniform generator to construct
them.

11.5.1 Integers and Ranges of Integers

In addition to unsigned integers, it is useful to be able to generate other types
of values, and in various ranges. In this section we’ll discuss some of the
possibilities and how to generate them. For the sake of this discussion, we
will assume that we are generating values from 0 to m − 1: If 0 is not possible
with our generator, we can simply subtract 1 from the result and substitute
m − 2 for m − 1.

If our generator has m = 2w, then generating signed integers is simply a
case of recasting the unsigned result as signed. The alternative is to do a scale
and translate transformation, so y = 2x − m. This assumes that m < 2w−1,
otherwise we’ll end up overflowing.

Another common case is generating a range of integers, say from a to b.
If x is the result of our RNG, we could do

y = x mod (b − a + 1) + a

The problem is, if b − a + 1 is small and the RNG has poor mixing of the least
significant bits, the result will not be very random. One solution is to shift x

to the right before performing the modulus. Another, of course, is to use a
different generator. But if b−a+1 is large, then again we need to worry about
overflow.

Because of these issues, the standard solution is to calculate the result in
floating point using a floating-point uniform variate u, where u lies in [0, 1],
and cast the result to the integer as follows:

y = (int) u*(b-a)+a

If u lies in the interval [0, 1) — that is, the value 1 is not included — then we
use

y = (int) u*(b-a+1)+a
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This does cost more than the integer-only version, but it handles the bit-mixing
and overflow problems nicely.

11.5.2 Floating-Point Numbers

Usually when generating floating-point numbers, we want the range [0, 1].
Commonly, this is computed as

float f = float(random())*RECIP_MAX_RAND;

where RECIP_MAX_RAND is the floating-point representation of 1 over the
maximum possible random number.

An alternative is to set the exponent of the floating-point number to
bias + 1 (see Chapter 1 for the definition of floating-point bias) and take ran-
dom bits from the integer to fill the mantissa. This gives a value in the interval
[1, 2). Subtracting 1 gives us an interval of [0, 1). For a single-precision floating
point this can be computed as

unsigned int floatInt = 0x3f80000 | random() >> 9;
float f = *(float*)(&floatInt) - 1.0f;

If the pointer cast does not compile efficiently, we can use a union to do the
bit conversion.

Now that we have values from 0 to 1, computing a general random interval
[a, b) is simple:

y = (b-a)u + a;

As mentioned above, we can also use this to generate intervals for integers via
casting.

11.5.3 Nonuniform Distributions

Source Code

Demo

Sphere Disc

Up until now, we’ve only been considering uniform random numbers.
However, as we’ve seen, a large class of random events have nonuniform
distributions. How then do we calculate these?

If we have a discrete random variable and its distribution, then we can
create a discrete CDF and store the results in a table. If we then roll a uniform
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floating-point number in the interval [0, 1), we can then find the minimum
entry that is greater than that value, and generate that. Let’s take our ball
drawing problem as an example. Figure 11.10 shows the CDF for the proba-
bility distribution in Figure 11.2. Notice that due to the discrete nature of the
distribution the CDF is a step function. If, for example, we randomly generate
the value 0.43, we find that value in the y-axis, and then trace along horizon-
tally until we hit a step. Sliding down to the x-axis, we see that step begins at 2,
which represents the color blue, so that is the result of our random variable.

If we have a continuous random variable, this is not as simple. However,
we can observe that what we’re doing with the discrete case is just inverting
the CDF. Assuming that there is an inverse, we can do the same with the con-
tinuous CDF, plug in our uniform value, and take the result as our nonuniform
random variable.

If there is no inverse or we don’t know the exact function for either the
PDF or the CDF, then there is one other technique we can try: the rejection
method or rejection sampling. The idea is that we generate values using a PDF
that is close to our unknown one, and then throw out those that don’t match.
We’ll see some examples of this in the next two sections. However, this may
not be the most efficient method, and in games it can be better to find an
approximation of our distribution and use that.
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Figure 11.10 Discrete cumulative distribution function for the probability mass
function in Figure 11.2.
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11.5.4 Spherical Sampling

One common example of randomness in a game is generating the initial
random direction for a particle. The most commonly used particle system
of this type is spherical, where all the particles expand from a common point.
We can compute the direction vector for this easily by generating a random
point on a unit sphere.

One possible (but wrong) solution for this is to generate random
components (v0, v1, v2), where each vi is a floating-point value in the range
[−1, 1], and then normalize the result. This will produce random points on
the sphere but the result will not be evenly distributed across the surface of
the sphere. If we look at Figure 11.11, we can see the result. Because the ini-
tial random numbers generated are within a cube, the result on the sphere is
biased toward the locations closest to the corners.

Another possibility is to use rejection sampling. We again generate our
three values, but then test to see if v2

0 + v2
1 + v2

2 is less than one. It works fine,
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Figure 11.11 Spherical sampling, looking down along z. Result of normalizing
random cube values; the points tend to collect near the “corners.”
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but can require a large number of RNG evaluations, so we’ll consider one
other option.

Rather than using Cartesian coordinates, let’s look at spherical
coordinates, which may be a little more natural to use on (say) a sphere.
Recall that φ is the angle from the z-axis down, from 0 to π radians, and θ is
the angle from the x-axis, from 0 to 2π radians. Since we’re talking about a
unit sphere, our radius ρ in this case is 1. So, we could generate two values
ξ0 and ξ1 in the interval [0, 1], and compute φ = ξ0π and θ = 2ξ1π. From there
we can compute x, y, and z as

x = sin φ cos θ

y = sin φ sin θ

z = cos φ
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Figure 11.12 Spherical sampling, looking down along z. Result of randomizing
spherical coordinates; the points tend to collect near the poles.
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However, again we don’t quite get the distribution that we expect. In
Figure 11.12, we see that the points are now clustered around the poles of
the sphere. The solution is to note that we want a latitude/longitude distribu-
tion, where z is our latitude and is uniformly distributed, and θ is longitude
and also uniformly distributed. The radius at our latitude line will depend
on z — we want to guarantee that x2 + y2 + z2 = 1. The following calculation
handles this:

z = 1 − 2ξ

r =
√

1 − z2

θ = 2πξ1

x = r cos θ

y = r sin θ

The final result can be seen in Figure 11.13.
A similar calculation can be done if we want to generate points on a

hemisphere. Instead of calculating z = 1 − 2ξ, we want z to vary from 0 to
1, which is just ξ0.

Whether this spherical coordinate method or rejection sampling is faster
depends on the cost of the square root and trigonometric functions. On one
system, for example, four to five uniform variates can be generated in the
time of a single trigonometric call. Profiling will be required in your particular
application to determine which is best.

11.5.5 Disc Sampling

Another particle or ray casting shape that we might use is a cone. We can
simulate a cone by using the cone tip as the source of our ray or particle and
randomly selecting a point on the disc at the other end of the cone. This can
be generalized by selecting a point on a unit disc. Afterwards we can scale the
result by the radius of the cone, and then rotate it to be normal with the cone
direction.

To select a point on a unit disc we could use rejection sampling again.
The rejection sampling approach is similar to the 3D case: We generate
two random numbers with range from 0 to 1. This time if the vector gen-
erated has length greater than 1 we try again, otherwise, we proceed as
before.

Alternatively, we can generate a value using polar coordinates. The naive
approach is to generate two values ξ0 and ξ1 as in the spherical case. This
time we want the radius to vary from 0 to 1, and θ to vary from 0 to 2π,
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and so

r = ξ0

θ = 2πξ1

x = r cos θ

y = r sin θ

However, we find that we get clustering in the center, as we did in the spherical
case (Figure 11.14). This may be close to what we want if we’re calculating
bullet trajectories, where we want them to cluster around the aim direction.
However, let’s assume this is undesirable. The insight here is to set r = √

ξ0.
This pushes the values back to the edges of the disc and gives us uniform
sampling across the area of the disc (Figure 11.15).

Again, profiling will be needed to determine if this method or rejection
sampling will be more efficient.
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Figure 11.13 Spherical sampling, looking down along z. Result of randomizing
latitude and longitude; the result is correct.



534 Chapter 11 Random Numbers

�1
�1

�0.8

�0.6

�0.4

�0.2

0

 0.2

 0.4

 0.6

 0.8

1

�0.8 �0.6 �0.4 �0.2 0  0.2  0.4  0.6  0.8 1

Figure 11.14 Disc sampling. Result of randomizing polar coordinates; the points
tend to collect at the center.

11.5.6 Noise and Turbulence

Source Code

Demo

Perlin

We will conclude our discussion of random numbers by briefly looking
at some common noise functions and how they can be used to generate
procedural textures. The first question is: Why do we want to add random-
ness to our procedural textures? The main reason is that the world itself is
random. Random bumps against the wall create scuffmarks and divits. The
way trees grow depend on rain, wind, and sun. Clouds in turn are depen-
dent on humidity and wind. So, by adding random elements to textures
that simulate natural features, we make them look less synthetic and more
organic.
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Figure 11.15 Disc sampling. Result of randomizing polar coordinates with radius
correction; the result is correct.

The common way to apply noise to textures is to build a noise lattice. In
this case, we place random values at regular intervals in the texture space, and
then interpolate between them to obtain the intermediary values. By using an
appropriate interpolation function (usually cubic), we can guarantee that our
noise function is continuous and smooth, which produces much better visual
results. This lattice can be 1D, 2D, 3D, or even 4D. Higher lattices are not
usually used because generation cost gets quite high.

The random function has a couple of competing requirements: It must
not produce any obvious pattern, but it also must not vary every time we
generate it, because we need the noise to be repeatable. The latter requirement
is because otherwise the resulting textures will appear to flicker and move
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across the surfaces they’re applied to. While this may be desireable in some
cases, we’d like to control the situation. To manage this, most noise systems
pregenerate a table of random values and then hash into the table, where the
hash is usually based on the lattice coordinates. We also want these random
values to be bounded — the most common interval is [−1, 1].

Themostbasic latticenoise isknownasvaluenoise. Inthiscase,wegenerate
random values at each lattice point and then interpolate between them. An
alternative is Ken Perlin’s original noise function [90] also known as gradient
noise. In this case, the position at each lattice point is set to zero, but the tangent
vector is randomized. This can be done generating a random point on a unit
sphere, as we did above. Value noise tends to be lower frequency (more smooth)
and gradient noise tends to be high frequency (more jaggy). Because of this, it’s
also common to combine them to create value-gradient noise.

To create interesting effects, we combine noise functions together. Often,
we use the same noise function, but vary the spacing of the lattice. By doubling
the frequency of lattice points we get what is called a new noise octave. This
gives us a higher level of detail, which we can either use alone or combine with
other octaves to get a more naturalistic effect: the lower octaves provide the
broad strokes, while the higher octaves add the fiddly bits. For example, com-
bining four octaves of gradient noise together gives us a turbulence function,
which is very useful for producing cloud and marble effects. Usually the higher
octaves are divided by their relative frequency before adding to help blend
their effect into the lower-frequency base.

Let’s look at a couple of examples using fragment shaders. Both of these
are simplified from the OpenGL Shading Language text [99]. The first example
generates a cloud texture on our object.

varying vec3 localPos;
void main()
{

vec3 sky = vec3(0.0, 0.3, 0.8);
vec3 cloud = vec3(0.8, 0.8, 0.8);
float turb = (noise1(localPos) + noise1(2.0*localPos)*0.5

+ noise1(4.0*localPos)*0.25 + noise1(8.0*localPos)*0.125);
vec3 color = mix(sky, cloud, turb);
gl_FragColor = vec4(color, 1.0);

}

Here we see the turbulence calculation. We use our nontransformed
position (sent via a varying variable from the vertex shader) as the hash into
our noise function and scale it to get different frequencies. We’re using 2.0
as our frequency increment here to show the ideal behavior, but it’s usu-
ally recommended to use a nonintegral value to decrease some of the gridlike
behavior often seen with lattice noise. Once the turbulence value is calculated,
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Figure 11.16 Sky texture generated using Perlin noise in a turbulence function.

we use it as a blending factor between our sky and cloud colors. Figure 11.16
shows the result.

We can do something similar to generate a marble texture. The base
interpolant for the marble is the sine of the local y coordinate. We then per-
turb the base position by our turbulence to remove the regularity of the sine
function as follows.

varying vec3 localPos;
void main()
{

vec3 light = vec3(0.7, 0.7, 0.7);
vec3 dark = vec3(0.0, 0.0, 0.0);
float turb = (noise1(localPos) + noise1(2.0*localPos)*0.5

+ noise1(4.0*localPos)*0.25 + noise1(8.0*localPos)*0.125);
float interp = sin(6.0*MCposition.y + 8.0*turb)*0.65;
vec3 color = mix(light, dark, interp);
gl_FragColor = vec4(color, 1.0);

}

Figure 11.17 shows the result.
For both of these cases, we have used the built-in noise function in

GLSL. Similar noise functions are available in HLSL, Cg, and other shad-
ing languages. Whether you use this function or not depends on the speed of
your graphics processing unit. In these fragment shaders we are doing four
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Figure 11.17 Marble texture generated using Perlin noise in a turbulence
function.

function calls, which can get rather expensive. Because of this, graphics engi-
neers often will generate a texture with different noise octave values in each
color component and then do a lookup into that texture.

These examples give just a taste of what is available by making use of
noise functions. Noise is used for generating wood textures, turbulence in
fire texture, terrain, and many other cases. More detail on noise and other
procedural generation can be found in Ebert et al. [29].

11.6 Chapter Summary

In this chapter we discussed some basic probability and statistics that will
help us build our random processes. We used some of these statistic mea-
sures to create basic techniques for measuring random data. We also surveyed
the most common random number generators, in particular, the linear
congruential generator and the Mersenne Twister. Finally, we wrapped things
up by looking at some examples of using these random number generators,
from simulating arbitrary distributions to building turbulence functions for
computer graphics.

Further reading in random numbers is wide and varied. Gonick and
Smith [45] is a very approachable guide to probability and statistics; Grin-
stead and Snell [49] is recommended as a more thorough and formal, yet
still readable, text. While slightly out of date now, the standard survey
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of random number techniques can be found in Knuth [65]. A great deal
of detail is given in this text to demonstrating the correctness of random
algorithms and discussing techniques for measuring randomness. For those
interested in unusual random distributions, particularly for graphics, Pharr
and Humphries [91] is an excellent text. Finally, Ebert et al. [29] is the standard
book for studying procedural algorithms.



This page intentionally left blank



Chapter12
Intersection
Testing

12.1 Introduction

In the previous chapters we have been primarily focused on manipulating and
displaying our game objects in isolation. Whether we are rendering an object
or animating it, we haven’t been concerned with how it might be interacting
with other objects in our scene. This is neither realistic nor interesting. For
example, you are manipulating an object right now: this book. You can hold
it in your hand, turn its pages, or drop it on the floor. In the latter case it stops
reacting to you and starts reacting to the floor. If good game play derives
from interesting interactions, then we need some way to detect when two
game objects should be affecting one another and respond accordingly.

In this chapter we’ll be concerned with a very straightforward question:
How do we tell when two geometric entities are intersecting? This knowledge
proves useful in many cases throughout a game engine. The most obvious is
collision detection and response. Rather than have game objects pass through
each other, we want them to push against each other and respond realistically.
In the real world, this is a simple problem. Solid objects are solid; due to their
physical properties, they just don’t interpenetrate. But in the virtual world
we have to create these constraints ourselves. Despite the fact that we have
completely defined the geometry of our game objects, we still need to provide
methods to detect when they interpenetrate. Only when we have a way to
handle this can we write the code to perform the proper response.

Another time when we want to detect when two geometric entities inter-
penetrate is when we want to cast a ray and see what objects it intersects.
One example of this we have seen already: detecting the object we’ve clicked
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on by generating a pick ray from a screen-space mouse click, and determining
the first object we hit with that ray. Another way this is used is in artificial
intelligence (AI). In order to simulate whether one AI agent can see another,
we cast a ray from the first to the second and see if it intersects any objects.
If not, then we can say that the first agent’s target is in sight.

We have also mentioned a third use of object intersection before: deter-
mining which objects are visible in a view frustum so that we can do quick
visibility culling. If they interpenetrate or are inside the frustum, then we go
ahead to the rendering step, otherwise they get skipped. This can considerably
speed up our rendering.

Due to the variety of shapes and primitives used in a standard game
engine, finding intersections between all of the cases can get quite complex;
a single chapter is not enough to cover everything. Instead, we’ll cover five
basic objects, some methods for improving performance and accuracy, and
directions for improvement. We will also briefly discuss how to use these
methods in a simple collision detection system, and how we can apply similar
techniques to our ray casting and frustum culling problems. Details on more
complex systems can be found in the recommended reading at the end of the
chapter.

12.2 Closest Point and Distance Tests

As we’ll find, object intersection tests often can be described more easily in
terms of a distance computation between two primitives, such as a point and
a line. In particular, we’ll often want to know if the distance between two
primitives is less than some value, such as a radius. So, before we begin
our discussion of determining intersections between bounding objects, we
will cover a selection of useful methods for testing distances between certain
geometric primitives.

Related to that topic is determining the closest points of approach between
those same primitives; if we can find the closest points, the distance between
the two primitives is the distance between those points. Because of this, we’ll
first consider closest point problems followed by how to calculate the distance
between the same two primitives.

12.2.1 Closest Point on Line to Point

Source Code

Library

IvMath

Filename

IvLine3

Our first problem is illustrated in Figure 12.1: Given a point Q, and a line
L defined by a point P and a vector v, how do we find the point Q′ on
the line that is closest to Q? We approach this by examining the geometric
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Q�

Q

P
w

v

projvw

Figure 12.1 Closest point on a line.

relationships between the point and line. In particular, we notice that the
dotted line segment between Q and Q′ is orthogonal to the line. This line seg-
ment corresponds to a line of projection: To find Q′, we need to project Q onto
the line.

To do this, we begin by computing the difference vector w between Q and
P , or w = Q − P . Then we project this onto v, to get the component of w that
points along v. Recall that this is

projv w = w · v
‖v‖2

v

We add this to the line point P to get our projected point Q′, or

Q′ = P + w · v
‖v‖2

v

The equivalent code is as follows:

IvVector3 IvLine3::ClosestPoint(const IvVector3& point)
{

IvVector3 w = point - mOrigin;
float vsq = mDirection.Dot(mDirection);
float proj = w.Dot(mDirection);

return mOrigin + (proj/vsq)*mDirection;
}
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Figure 12.2 Computing distance from point to line, using a right triangle.

12.2.2 Line–Point Distance
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IvMath

Filename

IvLine3

As before, we’re given a point Q and a line L defined by a point P and a
vector v. In this case, we want to find the distance between the point and the
line. One way is to compute the closest point on the line and compute the
distance between that and Q. A more direct approach is to use the Pythag-
orean theorem (Figure 12.2).

We note that w = Q−P can be represented as the sum of two vectors, one
parallel to v(w‖) and one perpendicular (w⊥). These form a right triangle, so
from Pythagoras, ‖w‖2 = ‖w‖‖2 + ‖w⊥‖2. We want to know the length of w⊥,
so we can rewrite this as

‖w⊥‖2 = ‖w‖2 − ‖w‖‖2

= w · w −
∥∥∥ w · v

v · v
v
∥∥∥2

= w · w −
( w · v

v · v

)2
v · v

= w · w − (w · v)2

v · v

Taking the square root of both sides will give us the distance between the
point and the line.

The equivalent code is as follows:

float IvLine3::DistanceSquared(const IvVector3& point)
{

IvVector3 w = point - mOrigin;
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float vsq = mDirection.Dot(mDirection);
float wsq = w.Dot(w);
float proj = w.Dot(mDirection);

return wsq - proj*proj/vsq;
}

Note that in this case we’re computing the squared distance. In most cases
we’ll be using this to avoid computing a square root. Another optimization is
possible if we can guarantee that v is normalized; in that case, we can avoid
calculating and dividing by v · v, since its value is 1.

12.2.3 Closest Point on Line Segment to Point
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IvMath

Filename

IvLineSegment3

Recall that a line segment can be defined as the convex combination of two
points P0 and P1, or

S(t) = (1 − t)P0 + tP1

where 0 ≤ t ≤ 1. We can rewrite this as

S(t) = P0 + t(P1 − P0)

or

S(t) = P + t v

where as before 0 ≤ t ≤ 1. In this case, v should not be normalized, as its
length is the length of our line segment, and the endpoints are P and P + v.

In the problem of finding the closest point on a line, we computed the pro-
jection of the point onto the line. Doing the same for a line segment gives us
three cases (Figure 12.3). In the first case, the result of projecting Q0 lies out-
side the segment but closest to P0. In the second case, the result of projecting
Q1 lies outside the segment but closest to P1. In the third case, the projected
Q2 lies on the segment, and we can use the same projection calculations that
we used with a line.

To determine which case we’re in, we begin by noting that

t = w · v
v · v

is acting as our parameter t for the projected point, where again w = Q − P .
If t < 0, then the projected point lies beyond P0, and the closest point is P0.
Similarly, if t > 1, then the closest point is P1.
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Q0

Q2

Q1

P0

P1

Figure 12.3 Three cases when projecting a point onto line segment.

Testing t directly requires a floating-point division. By modifying our test
we can defer the division to be performed only when we truly need it; that is,
when the point lies on the segment. Since v · v > 0, then w · v < 0 in order for
t < 0. And in order for t > 1, then w · v > v · v.

The equivalent code is as follows:

IvVector3 IvLineSegment3::ClosestPoint(const IvVector3& point)
{

IvVector3 w = point - mOrigin;

float proj = w.Dot(mDirection);
if ( proj <= 0 )

return mOrigin;
else
{

float vsq = mDirection.Dot(mDirection);
if ( proj >= vsq )

return mOrigin + mDirection;
else

return mOrigin + (proj/vsq)*mDirection;
}

}

12.2.4 Line Segment–Point Distance
Source Code

Library

IvMath

Filename

IvLineSegment3

As with lines, we can compute the distance to the line segment by comput-
ing the distance to the closest point on the line segment. If we recall, there
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are three cases: the closest point is P0, P1, or a point somewhere else on the
segment, which we’ll calculate.

If the closest point is P0, then we can compute the distance as ‖Q − P0‖.
Since w = Q − P0, then the squared distance is equal to w · w.

If the closest point is P1, then the squared distance is (Q − P1) · (Q − P1).
However, we’re representing our endpoint as P1 = P0 + v, so this becomes
(Q − P0 − v) · (Q − P0 − v). We can rewrite this as

distsq(Q, P1) = ((Q − P0) − v) · ((Q − P0) − v)

= (w − v) · (w − v)

= w · w − 2w · v + v · v

We’ve already calculated most of these dot products when determining
whether we’re closest to P1, so all we need to compute is w · w and add. If
the closest point lies elsewhere on the segment, then we use the line distance
calculation just given.

The final code is as follows:

float IvLineSegment3::DistanceSquared(const IvVector3& point)
{

IvVector3 w = point - mOrigin;

float proj = w.Dot(mDirection);
if ( proj <= 0 )
{

return w.Dot(w);
}
else
{

float vsq = mDirection.Dot(mDirection);
if ( proj >= vsq )
{

return w.Dot(w) - 2.0f*proj + vsq;
}
else
{

return w.Dot(w) - proj*proj/vsq;
}

}
}
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12.2.5 Closest Points Between Two Lines
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IvLine3

Sunday [107] provides the following construction for finding the closest
points between two lines. Note that in this case there are two closest points,
one on each line, since there are two degrees of freedom. The situation is
shown in Figure 12.4. Line L1 is described by the point P0 and the vector u.
Correspondingly, line L2 is described by the point Q0 and the vector v, or

L1(s) = P0 + su

L2(t) = Q0 + t v

Vectors u and v are not necessarily normalized.
We’ll define the two closest points that we’re looking for as lying at para-

meters sc and tc on the lines, and call them L1(sc) and L2(tc), respectively. We’ll
refer to the vector from L2(tc) to L1(sc) as wc.

Expanding wc, we have

wc = L1(sc) − L2(tc)

= P0 + sc u − Q0 − tc v

= (P0 − Q0) + sc u − tc v

We’ll use w0 to represent the difference vector P0 − Q0, so

wc = w0 + sc u − tc v (12.1)

P0

Q0

w0

wc

P(sc)

Q(tc)

u

v

Figure 12.4 Finding the closest points between two lines.
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In order for wc to represent the vector of closest distance, it needs to be
perpendicular to both L1 and L2. This means that

wc · u = 0

wc · v = 0

Substituting in equation 12.1 and expanding, we get

0 = w0 · u + sc u · u − tc u · v (12.2)

0 = w0 · v + sc u · v − tc v · v (12.3)

We have two equations and two unknowns sc and tc, so we can solve for this
system of equations. Doing so, we get the result that

sc = be − cd

ac − b2
(12.4)

tc = ae − bd

ac − b2
(12.5)

where

a = u · u

b = u · v

c = v · v

d = u · w0

e = v · w0

There is one case where we need to be careful. If the two lines are parallel,
then u and v are parallel, so |u · v| = ‖u‖‖v‖. Then the denominator ac − b2

equals

ac − b2 = (u · u)(v · v) − (u · v)2

= ‖u‖2‖v‖2 − (‖u‖‖v‖)2

= 0

This leads to a division by 0. The problem is that there are an infinite num-
ber of pairs of closest points spaced along each line. In this case, we’ll
just find the closest point Q′ on L2 to the origin P0 of line L1 and return
P0 and Q′.
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void ClosestPoints( IvVector3& point1,
IvVector3& point2,
const IvLine3& line1,
const IvLine3& line2 )

{
IvVector3 w0 = line1.mOrigin - line2.mOrigin;
float a = line1.mDirection.Dot( line1.mDirection );
float b = line1.mDirection.Dot( line2.mDirection );
float c = line2.mDirection.Dot( line2.mDirection );
float d = line1.mDirection.Dot( w0 );
float e = line2.mDirection.Dot( w0 );

float denom = a*c - b*b;
if ( ::IsZero(denom) )
{

point1 = line1.mOrigin;
point2 = line2.mOrigin + (e/c)*line2.mDirection;

}
else
{

point1 = line1.mOrigin + ((b*e - c*d)/denom)*line1.mDirection;
point2 = line2.mOrigin + ((a*e - b*d)/denom)*line2.mDirection;

}
}

12.2.6 Line–Line Distance

Source Code

Library

IvMath

Filename

IvLine3

From the calculation of closest points between two lines, we know that wc is
the vector of closest distance. Therefore, its length equals the distance between
the two lines. Rather than compute the closest points directly, we can substi-
tute the values of sc and tc into equation 12.1 and compute the length of wc.
As before, to avoid the square root, we can use ‖wc‖2 = wc · wc instead.

The code is as follows:

float DistanceSquared( const IvLine3& line1, const IvLine3& line2 )
{

// compute parameters
IvVector3 w0 = line1.mOrigin - line2.mOrigin;
float a = line1.mDirection.Dot( line1.mDirection );
float b = line1.mDirection.Dot( line2.mDirection );
float c = line2.mDirection.Dot( line2.mDirection );
float d = line1.mDirection.Dot( w0 );
float e = line2.mDirection.Dot( w0 );
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float denom = a*c - b*b;
// if lines parallel
if ( ::IsZero(denom) )
{

IvVector3 wc = w0 - (e/c)*line2.mDirection;
return wc.Dot(wc);

}
// otherwise
else
{

IvVector3 wc = w0 + ((b*e - c*d)/denom)*line1.mDirection
- ((a*e - b*d)/denom)*line2.mDirection;

return wc.Dot(wc);
}

}

12.2.7 Closest Points Between Two Line
Segments

Source Code

Library

IvMath

Filename

IvLineSegment3

Finding the closest points between two line segments follows from finding
the closest points between two lines. We compute sc and tc, as we’ve done, but
then need to clamp the results to the ranges of s and t defined by the endpoints
of the two line segments. As before, we’ll define our line segments as starting
at the source point of the line and ending at that source point plus the line
vector. So for line L1, the two points are P0 and P0 + u, and for line L2, the two
points are Q0 and Q0 + v. This gives us parameters 0 and 1 for the locations of
the two endpoints. If our results sc and tc lie between the values 0 and 1, then
our closest points lie on the two segments, and we’re done.

Otherwise, we need to clamp our parameters to each of the endpoint
parameters and try again. To see how to do that, let’s take a look at the s = 0
endpoint. Remember that what we want to do is find the smallest possible
distance between the two points while not sliding off the end of the segment;
namely, we want to minimize the length of wc while maintaining s = 0. Since
length is always increasing, we’ll use ‖wc‖2, which will be much easier to
minimize. Remember that

wc = w0 + sc u − tc v

Since we’re clamping sc to 0, this becomes

wc = w0 − tc v
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Therefore, for this endpoint we try to find the minimum value for

wc · wc = (w0 − tc v) · (w0 − tc v) (12.6)

To do this, we return to calculus. To find a minimum value (in this case, there
is only one) for a function, we find a place where the derivative is 0. Taking
the derivative of equation 12.6 in terms of tc, we get the result

0 = −2v · (w0 − tc v)

Solving for tc, we get

tc = v · w0

v · v
(12.7)

So, for the fixed point on line L1 at s = 0, this gives us the parameter of
the closest point on line L2. As we can see, this is equivalent to computing the
closest point between a line and a point, where the line is L2 and the point
is P0.

For the s = 1 endpoint, we follow a similar process. Our minimization
function is

wc · wc = (w0 + u − tc v) · (w0 + u − tc v) (12.8)

The corresponding zero derivative function is

0 = −2v · (w0 + u − tc v)

Solving for tc gives us

tc = v · w0 + u · v
v · v

Again, this is equivalent to computing the closest point between a line and a
point, where the line is L2 and the point is P0 + v. The solutions for sc when
clamping to t = 0 or t = 1 are similar.

One nice thing about these functions is that they use the a through e values
that we’ve already calculated for the basic line–line distance calculation. So,
equation 12.7 becomes

tc = e

c

So, which endpoints do we check? Well, if the parameter sc is less than 0,
then the closest segment point to line L2 will be the s = 0 endpoint. And if sc
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is greater than 1, then the closest segment point will be at s = 1. Choosing one
or the other, we resolve for tc and check that it lies between 0 and 1. If not,
we perform the same process to clamp tc to either the t = 0 or t = 1 endpoint
and recalculate sc accordingly (with some minor adjustments to ensure that
we keep sc within 0 and 1).

Once again, there is a trick we can do to avoid multiple floating-point divi-
sions. Instead of computing, say, sc directly and testing against 0 and 1, we
can compute the numerator sN and denominator sD. The initial sD is always
greater than zero, so we know that if sN is less than zero, sc is less than
zero and we clamp to s = 0 accordingly. Similarly, if sN is greater than sD,
we know that sc > 1, and we clamp to s = 1. The same can be done for the t

values. Using this, we can recalculate the numerator and denominator when
necessary, and do the floating-point divides only after all the clamping has
been done.

For example, the following code snippet calculates the s values:

// clamp s_c to 0
if (sN < 0.0f)
{

sN = 0.0f;
tN = e;
tD = c;

}
// clamp s_c to 1
else if (sN > sD)
{

sN = sD;
tN = e + b;
tD = c;

}

The full code is too long to contain here, but can be found on the demo
CD-ROM.

12.2.8 Line Segment–Line Segment Distance
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IvMath
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IvLineSegment3

Finding the segment-to-segment squared distance is similar to line-to-line
distance: We follow the procedure for closest points between line segments,
calculate wc directly from the final sc and tc, and then compute its length. The
full code can be found on the CD-ROM in the IvLineSegment3 friend function
DistanceSquared().



554 Chapter 12 Intersection Testing

12.2.9 General Linear Components
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IvLine3
IvRay3
IvLineSegment3

Testing ray versus ray or line versus line segments is actually a simplification
of the segment–segment closest point and distance determination. Instead
of clamping against both components, we need only clamp against those
endpoints that are necessary. So for example, if we treat P0 + su as the para-
meterization of a line segment, and Q0 + t v as a line, then we need only to
ensure that sc is between 0 and 1, clamp to the appropriate endpoint, and
adjust tc accordingly. Similarly, if we’re working with rays, we need only to
clamp sc or tc to 0.

Implementations of these algorithms can be found in the appropriate
classes.

12.3 Object Intersection

Now that we’ve covered some methods for measuring distance between prim-
itives, we can talk about object intersection. The most direct, and naive,
approach to determine whether two objects are intersecting is to work directly
from raw object data. We could start with a triangle in object A and a triangle
in object B and see if they are intersecting. Then we move to the next triangle
in object A and test again. While ultimately this may work (the exception is
if one object is inside the other), it will take a while to do and most of the
time performing all those tests isn’t even necessary. Take the two objects in
Figure 12.5. They are clearly not intersecting — we can tell that in an instant.
But our minds are not considering each object as a collection of lines and
doing individual tests. Rather, we are comparing them as a whole, as two
rough blobs, and determining that the blobs aren’t intersecting. By using
a similar process in our intersection routines, we can save ourselves a lot
of time.

For instance, suppose we surround each object with a sphere
(Figure 12.6). We can begin by testing for intersection between the spheres.
If the two spheres aren’t intersecting, we know the objects aren’t either. If the
spheres are intersecting, we can try comparing another simplified version of
our object — say, two boxes. The boxes fit the shape of our objects better but
are still a simpler test than our full triangle–triangle comparison. If the boxes
intersect, only then do we perform our complex collision detection routine.

This technique of using simplified objects to test intersections before per-
forming more expensive operations is commonly used in game engines, and
is necessary to get collision detection and other intersection-based systems
running in real time. The simplified objects are known as bounding objects
and are named specifically after the basic primitives we used to approximate
the object: bounding spheres and bounding boxes. In games, we can often
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Figure 12.5 Nonintersecting objects.

Figure 12.6 Nonintersecting objects with bounding sphere.

get away with ignoring the underlying geometry completely and only using
bounding objects to determine intersections. For example, when handling
collisions in this way, either the action happens so fast that we don’t notice
any overlapping objects or objects reacting to collision when they appear



556 Chapter 12 Intersection Testing

separated, or the error is so slight that it doesn’t matter. In any case, choosing
the side of making the simulation run faster for a better play experience is
usually a good decision.

One thing to note with the following algorithms is that their performance
is often dependent on the platform that they are run on. For example, many
consoles don’t have predictive branching, so conditionals are quite slow. So,
on such a platform, an algorithm that calculates unnecessary data may actu-
ally turn out to be faster than one that attempts to avoid this using if-then-else
clauses. Even on relatively similar architectures there can be surprising dif-
ferences in relative performance. This is shown strikingly by Löfstedt and
Akenine-Möller [69].

To keep things concise, we have chosen a few algorithms that are com-
monly used and are relatively fast on a broad variety of architectures. Other
books are more detailed, covering many different polytopes (the 3D equivalent
of polygons) and interactions between all sorts of bounding objects. In our
case, we’ll focus on a few simple shapes, beginning with the simplest objects
and moving on to the most complex, or most expensive, to compute. How-
ever, the reader should be aware of the issues above and may need to explore
alternatives for his or her particular application.

Within each section we’ll only consider three cases of intersection. We’ll
first look at intersections between objects of the same bounding type, which is
useful in collision detection. Second, we’ll cover intersections between a ray
and the particular bounding object, which we’ll need for picking and visibility
testing for AI. Finally, we’ll discuss how to determine intersection between a
plane and the bounding object, which can be used for both culling against
frustum planes and collisions with essential planar objects like walls. In all
cases, we aren’t concerned with the exact point of intersection, just whether
the items intersect.

12.3.1 Spheres
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The simplest possible bounding object is a sphere. It also has the most com-
pact representation: a center point C and a radius r (Figure 12.7). When
bounding a rigid object, a sphere is also independent of the object’s orien-
tation. This allows us to update a sphere quickly — when an object moves, we
need only to update the sphere’s position. If the object is scaled, we can scale
the radius accordingly. The combination of low memory usage, fast update
time, and fast intersection tests makes bounding spheres a first choice in any
real-time system.
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C

r

Figure 12.7 Bounding sphere.

The surface of the sphere is defined as all points P such that the length of
the vector from C to P is equal to the radius:√

(Px − Cx)2 + (Py − Cy)2 + (Pz − Cz)2 = r

or √
(P − C) · (P − C) = r

Ideally, we’ll want to choose the smallest possible sphere that encom-
passes the entire object. Too small a sphere, and we may skip two objects that
are actually intersecting. Too large, and we’ll be unnecessarily performing
our more expensive tests for objects that are clearly separate. Unfortunately,
the most obvious methods for choosing a bounding sphere will not always
generate as tight a fit as we might like.

One such method is to take the local origin of the object as our center C,
and compute r by taking the maximum distance from that to all the vertices in
the object. There are many problems with this. The most common is that the
local origin could be considerably offset from the most desirable center point
for the object (Figure 12.8(a)). This could happen if you have a character
whose origin is at its feet, so it can be placed on the ground properly. An
alternate but equivalent situation is where the origin is at a reasonable center
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(a)

(c)

(b)

(d)

(e)

Figure 12.8 (a) Bounding sphere, offset origin; (b) bounding sphere, outlying
point; (c) bounding sphere, using centroid, object vertices; (d) bounding sphere, using
box center, box vertices; and (e) bounding sphere, using box center, object vertices.
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point for the majority of the object’s vertices, but there are one or two outlying
vertices that cause problems (Figure 12.8b).

Eberly [25] provides a number of methods for finding a better fit. One
is to average all the vertex locations to get the centroid and use that as our
center. This works well for the case of a noncentered origin, but still is a
problem for an object with outlying points (Figure 12.8c). The reason is that
the majority of the points lie within a small area and thus weight the centroid
in that direction, pulling it away from the extrema.

We could also take an axis-aligned bounding box in the object’s local
space and use its endpoints to compute our sphere position and radius
(Figure 12.8(d)). This tends to center the sphere better but leads to a looser
fit. A compromise method uses the center of the bounding box as our sphere
position, and computes the radius as the maximum distance from the center
to our points. This gives a slightly better result (Figure 12.8(e)). The code for
this last method is as follows.

void
IvBoundingSphere::Set( const IvPoint3* points, unsigned int numPoints )
{

// compute minimal and maximal bounds
IvVector3 min(points[0]), max(points[0]);
for ( unsigned int i = 1; i < numPoints; ++i )
{

if (points[i].x < min.x)
min.x = points[i].x;

else if (points[i].x > max.x )
max.x = points[i].x;

if (points[i].y < min.y)
min.y = points[i].y;

else if (points[i].y > max.y )
max.y = points[i].y;

if (points[i].z < min.z)
min.z = points[i].z;

else if (points[i].z > max.z )
max.z = points[i].z;

}

// compute center and radius
mCenter = 0.5f*(min + max);
float maxDistance = ::DistanceSquared( mCenter, points[0] );
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for ( unsigned int i = 1; i < numPoints; ++i )
{

float dist = ::DistanceSquared( mCenter, points[i] );
if (dist > maxDistance)

maxDistance = dist;
}
mRadius = ::IvSqrt( maxDistance );

}

It should be noted that none of these methods is guaranteed to find the
smallest bounding sphere. The standard algorithm for this is by Welzl [118],
who showed that linear programming can be used to find the optimally small-
est sphere surrounding a set of points. Two implementations are readily
available online: one by Bernd Gaertner is provided under the GNU General
Public License; another by Dave Eberly is at www.magic-software.com.

While we don’t want to be cavalier about using ridiculously large bounding
spheres, in some cases having the tightest possible fit isn’t that much of an
issue. Our objects will not be generally spherical, and so we’ll be using some-
thing more complex for our final intersection test. As long as our spheres are
reasonably close to a good fit, they will act to cull a great number of obvious
cases, which is all we can ask for.

Sphere–Sphere Intersection

Determining whether two spheres are intersecting is as simple as their
representation. We need only to determine whether the distance between
their centers is less than the sum of their two radii (Figure 12.9), or

√
(C1 − C2) · (C1 − C2) <= r1 + r2 (12.9)

The square root operation is expensive, and in any case, it is unnecessary.
Since we’re not looking for the absolute difference, just a relation, we can use

(C1 − C2) · (C1 − C2) <= (r1 + r2)
2 (12.10)

As promised, this gives us an extremely cheap test for culling large numbers of
intersections. This is why bounding spheres are used everywhere in computer
graphics and simulation; we perform an initial fast check with a bounding
sphere first before even considering the more complex cases.
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Figure 12.9 Sphere–sphere intersection.

The code is as follows:

bool
IvBoundingSphere::Intersect( const IvBoundingSphere& other )
{

IvVector3 centerDiff = mCenter - other.mCenter;
float radiusSum = mRadius + other.mRadius;
return ( centerDiff.Dot(centerDiff) <= radiusSum*radiusSum );

}

Sphere–Ray Intersection

Intersection between a sphere and a ray is nearly as simple. Instead of testing
two centers and comparing the distance with the sum of two radii, we test the
distance between a single sphere center and a ray. If the distance is less than or
equal to the sphere’s radius, then the ray intersects the sphere (Figure 12.10).

We can use the line–point distance measurement described as the basis
for this test. The code is as follows (it assumes an initial nonzero, nonnormal-
ized v):

bool
IvBoundingSphere::Intersect( const IvRay3& ray )
{

// compute intermediate values
IvVector3 w = mCenter - ray.mOrigin;
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float wsq = w.Dot(w);
float proj = w.Dot(ray.mDirection);
float rsq = mRadius*mRadius;

// if sphere behind ray, no intersection
if ( proj < 0.0f && wsq > rsq )

return false;

float vsq = ray.mDirection.Dot(ray.mDirection);

// test length of difference vs. radius
return ( vsq*wsq - proj*proj <= vsq*mRadius*mRadius );

}

An additional check has been added since we’re using a ray. If the sphere
lies behind the origin of the ray, then there is no intersection. This is true
if the angle between the difference vector w and the line direction is greater
than 90 degrees (proj < 0.0f) and the line origin lies outside of the sphere
(wsq > rsq).

We also remove the need for a floating-point divide by multiplying through
by vsq. This adds two multiplications, but this still should be faster on most
floating-point processors. As before, if we can guarantee that the ray direction
vector is normalized, then we can remove the need for vsq altogether.

r

C
d

Figure 12.10 Line–sphere intersection.
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Sphere–Plane Intersection

Testing whether a sphere lies entirely on one side of a plane can be done quite
efficiently. Recall that we can determine the distance between a point and
such a plane by taking the absolute value of the result of the plane equation.
If the result is positive and the distance is greater than the radius, then the
sphere lies on the inside of the plane. If the result is negative, and the distance
is greater than the sphere’s radius, then the sphere lies outside of the plane.
Otherwise, the sphere intersects the plane.

The code for this test is as follows:

float
IvBoundingSphere::Classify( const IvPlane& plane )
{

float distance = plane.test(mCenter):
if ( distance > radius)
{

return distance-radius;
}
else if ( distance < -radius )
{

return distance+radius;
}
else
{

return 0.0f;
}

}

Here we’re returning a signed distance, like the standard plane test. If the
sphere intersects, we return zero. Otherwise, we return the signed distance
minus the signed distance of the radius.

12.3.2 Axis-Aligned Bounding Boxes

Source Code

Library

IvCollision

Filename

IvAABB

Definition

Spheres work well as either cheap culling objects or as bounding objects for
a small class of models (i.e., if you’re tossing grenades or writing a billiards
game). For more angular objects, we need a better-fitting bounding surface.
One possibility is the bounding box. Just like the bounding sphere, the ideal
bounding box is the smallest possible box that encloses an object.
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The first type we’ll consider is the AABB, or axis-aligned bounding box,
so called because the box edges are aligned to the world axes. This makes rep-
resentation of the box simple: We use two points, one each for the minimum
and maximum xyz positions (Figure 12.11). When the object is translated, to
update the box we translate the minimum and maximum points. Similarly, if
the object is scaled, we scale the two points relative to the box center. How-
ever, because the box is aligned to the world axes, any rotation of the object
means that we have to recalculate the minimum and maximum points from
the object vertices’ new positions in world space.

The other disadvantage AABBs have is that in many cases, like spheres,
they still aren’t a very close fit to the object they are trying to approximate
(Figure 12.12). And for rounded objects like submarines or organic objects like
humans, the fact that they have corners is a disadvantage as well. However,

(xmin, ymin, zmin)

(xmax, ymax, zmax)

Figure 12.11 Axis-aligned bounding box.

Figure 12.12 Fitting axis-aligned bounding box.
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they are relatively cheap to compute and cheap to test as well, so they continue
to prove useful.

One advantage that world axis-aligned boxes have over a box oriented
to the object’s local space is that we need only recompute them once per
frame, and then we can compare them directly without further transforma-
tion, since they are all in the same coordinate frame. So, while AABBs have
a high per-frame overhead (since we have to recalculate them each time an
object reorients), they are extremely cheap to test against one another. As we’ll
see, there is a lot more overhead for determining intersection between ori-
ented boxes. Oriented boxes are generally cheap per frame (they move with the
transforms of the object), but are more expensive to test against one another.

To compute an AABB, we first transform the object into world space. Then
we set the minimum and maximum points to be equal to the first point (in
world space, remember) in the object. Starting with the second point, we com-
pare the xyz values of each point with those in the minimum and maximum.
If any coordinate is less than that in the minimum, set the minimum coordi-
nate to that value, and the same for the maximum, except use greater than.
When done, this will give you the axis-aligned extrema for your box.

void
IvAABB::Set( const IvPoint3* points, unsigned int numPoints )
{

ASSERT( points );

// compute minimal and maximal bounds
mMinima.Set(points[0]);
mMaxima.Set(points[0]);
for ( unsigned int i = 1; i < numPoints; ++i )
{

if (points[i].x < mMinima.x)
mMinima.x = points[i].x;

else if (points[i].x > mMaxima.x )
mMaxima.x = points[i].x;

if (points[i].y < mMinima.y)
mMinima.y = points[i].y;

else if (points[i].y > mMaxima.y )
mMaxima.y = points[i].y;

if (points[i].z < mMinima.z)
mMinima.z = points[i].z;

else if (points[i].z > mMaxima.z )
mMaxima.z = points[i].z;

}
}
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AABB–AABB Intersection

In order to understand how we find intersections between two axis-aligned
boxes, we introduce the notion of a separating plane. The general idea is
this: We check the boxes in each of the coordinate directions in world
space. If we can find a plane that separates the two boxes in any of the
coordinate directions, then the two boxes are not intersecting. If we fail
all three separating plane tests, then they are intersecting and we handle it
appropriately.

Let’s look at the process of finding a separating plane between two
boxes in the x direction. Since the boxes are axis aligned, this becomes a
one-dimensional (1D) problem on a number line. The minimum and max-
imum values of the two boxes become the extrema of two intervals on the
line. If the two intervals are separate, then there is a separating plane and
the two boxes are separate along the x direction. This is the case only if
the maximum value of one interval is less than the minimum value of the
other interval (Figure 12.13). Expressing this for all three axes:

bool
IvAABB::Intersect( const IvAABB& other )
{

// if separated in x direction
if (mMinima.x > other.mMaxima.x || other.mMinima.x > mMaxima.x )

return false;

// if separated in y direction
if (mMinima.y > other.mMaxima.y || other.mMinima.y > mMaxima.y )

return false;

// if separated in z direction
if (mMinima.z > other.mMaxima.z || other.mMinima.z > mMaxima.z )

return false;

// no separation, must be intersecting
return true;

}

Examining this code makes another advantage of AABBs clear. If we’re
using three-dimensional (3D) objects in an essentially two-dimensional (2D)
game, we can ignore the z-axis and so save a step in our computations.
This is not always possible with boxes aligned to the local axes of an
object.
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min1 max1 min2 max2

Figure 12.13 Axis-aligned box–box separation test.

AABB–Ray Intersection

Determining intersection between a ray and an axis-aligned box is similar to
determining intersection between two boxes. We check one axis direction at
a time as before, except that in this case, there is a little more interaction
between steps.

Figure 12.14 shows a 2D cross section of the situation. The ray R shown
intersects the minimum and maximum x planes of the box at R(sx) and R(tx),
respectively, and the minimum and maximum y planes at R(sy) and R(ty).
Instead of testing for extrema overlaps in the box axes directions, we’ll test
whether there is overlap between the line segment from R(sx) to R(tx), and
the line segment from R(sy) to R(ty). This is the same as testing whether the
intervals of the line parameters [sx, tx] and [sy, ty] overlap.

If the ray misses the box, as in the figure, then the [sx, tx] interval doesn’t
overlap the [sy, ty] interval, just like the preceding box–box intersection. So,
if there’s no overlap (if tx < sy, or vice versa), then there’s no intersection,
and we stop. If they do overlap, then we test that overlap interval against the
z intersections. If there’s overlap there as well, then we know that the ray
intersects the box.

For each axis, we begin by computing the parameters where the ray (rep-
resented by the point P and vector v) crosses the minimum and maximum
planes. So for example, in the x direction we’ll calculate intersections with
the x = xmin and x = xmax planes. To do this, we need to solve the following
equations:

Px + sxvx = xmin

Px + txvx = xmax
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xmin xmax

ymin

ymax

R(sy)

R(ty)

R(sx)

R(tx)

Figure 12.14 Axis-aligned box–ray separation test.

Solving for sx and tx, we get

sx = xmin − Px

vx

tx = xmax − Px

vx

To simplify adjustment of our overlap interval, we want to ensure that sx < tx.
This can be handled by checking whether 1/vx < 0; if so, we’ll swap the xmin

and xmax terms.
We’ll track our parameter overlap interval by using two values smax and

tmin, initialized to the maximum interval. For a ray this is [0, ∞]; for a line this
would be [−∞, ∞]; for a segment it would be [0, s], where s is the length of
the segment. These represent the maximum s and minimum t values seen so
far. As we calculate intersection parameters for each axis, we’ll sort them so
that s < t, and then update smax and tmin if s > smax or t < tmin. We know that
the ray misses the box if we ever find that smax > tmin. For example, looking
at Figure 12.14, after doing the x-axis calculations we see that smax = sx and
tmin = tx. After the y-axis parameters are computed, tmin is updated to ty, and
smax remains sx. But sx > ty, so there is no intersection.
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The code, abbreviated for space, is as follows.

bool
IvAABB::Intersect( const IvRay3& ray )
{

float maxS = 0.0f; // for line, use -FLT_MAX
float minT = FLT_MAX; // for line segment, use length

// do x coordinate test (yz planes)

// compute sorted intersection parameters
float s, t;
float recipX = 1.0f/ray.mDirection.x;
if ( recipX >= 0.0f )
{

s = (mMin.x - ray.mOrigin.x)*recipX;
t = (mMax.x - ray.mOrigin.x)*recipX;

}
else
{

s = (mMax.x - ray.mOrigin.x)*recipX;
t = (mMin.x - ray.mOrigin.x)*recipX;

}

// adjust min and max values
if ( s > maxS )

maxS = s;
if ( t < minT )

minT = t;
// check for intersection failure
if ( maxS > minT )

return false;

// do y and z coordinate tests (xz & xy planes)
...

// done, have intersection
return true;

}

There’s one special case that is implicitly handled: Clearly, if vx is zero,
then there are no solutions for sx and tx; the ray is parallel to the minimum
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n̂

Figure 12.15 Axis-aligned box–plane separation test.

and maximum planes. Normally in this case, we’d need to test whether Px lies
between xmin and xmax. If not, the ray misses the box and there is no intersec-
tion. However, when using the IEEE floating-point standard, division by zero
will return −∞ for a negative numerator, and ∞ for a positive numerator.
Hence, if the ray would miss the box, the resulting interval will be either
[−∞, −∞] or [∞, ∞], which will lead to intersection failure. More detail can
be found in Williams et al. [119].

AABB–Plane Intersection

The most naive test to determine whether a box intersects a plane is to see
whether a single box edge crosses the plane. That is, if two neighboring vertices
lie on either side of the plane, there is an intersection. There are 12 edges, so
this requires 24 plane tests. There are two improvements we can make to this.
The first is to note that we need to test only opposing corners of the box; that
is, two vertices that lie at either end of a diagonal that passes through the box
center. This cuts the number of “edges” to be checked down to 4. The second
improvement is provided by Möller and Haines [82], who note that we really
need to test only one: the diagonal most closely aligned with the plane normal.
Figure 12.15 shows a cross section of the situation.

Code to manage this is as follows. As before, we return zero if there is an
intersection, the signed distance otherwise.

float
IvAABB::Classify( const IvPlane& plane )
{

IvVector3 diagMin, diagMax;
// set min/max values for x direction
if ( plane.mNormal.x >= 0)
{
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diagMin.x = mMin.x;
diagMax.x = mMax.x;

}
else
{

diagMin.x = mMax.x;
diagMax.x = mMin.x;

}

// ditto for y and z directions
...
// minimum on positive side of plane, box on positive side
float test = plane.mNormal.Dot( diagMin ) + plane.mD;
if ( test > 0.0f )

return test;

test = plane.mNormal.Dot ( diagMax ) + plane.mD;
// min on nonpositive side, max on nonnegative side, intersection
if ( test >= 0.0f )

return 0.0f;
// max on negative side, box on negative side
else

return test;
}

12.3.3 Swept Spheres

Definition

Source Code

Library

IvCollision

Filename

IvCapsule

The bounding sphere and the axis-aligned bounding box have one problem:
There is no real sense of orientation. The sphere is symmetric across all axes
and the AABB is always aligned to the world axes. For objects that have definite
long and short axes (e.g., a human), this doesn’t provide for an ideal approxi-
mation. The next two bounding objects we’ll consider are not tied to the world
axes at all, which makes them much more suitable for general models.

The simplest of such bounding regions are the swept spheres. If we
consider the sphere as a region enclosed by a radius around a point, or a
zero-dimensional center, the swept spheres use higher-dimensional centers.
One example is the capsule, which is a line segment surrounded by a radius
(Figure 12.16(a)). Another possibility is the lozenge, which has a quadrilat-
eral center (Figure 12.16(b)). For our purposes, we’ll concentrate on capsules
(Eberly [25] provides more information on lozenges and other swept spheres.)

Computing the capsule in local space for a set of points is fairly straight-
forward, but not as simple as spheres or bounding boxes. Our first step is to
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(a)

(b)

Figure 12.16 (a) Capsule and (b) lozenge.

compute a bounding box for the points. If the object is generally axis aligned
(not unreasonable considering that the artists usually build objects in this
way), we can use an axis-aligned bounding box. Otherwise we may need an
oriented bounding box (see below on how to compute this). We then find the
longest side. The line that we will use for our baseline segment runs through
the middle of the box. We’ll use the center of one end of the box as our line
point A, and the box axis w as our line vector. We could use the local ori-
gin and a coordinate axis for our line, but while we’re willing to assume axis
alignment, we’re not so optimistic as to assume that the object is centered on
a coordinate axis.

Now we need to compute the radius r of the capsule. For each point in
the object, we compute the distance from the point to the line. The maximum
distance becomes our radius. The line combined with the radius gives us a
tube with radius r and ends extending to infinity. All the points in the object
just fit inside the tube.
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Figure 12.17 Capsule endcap fitting.

The final part to building the capsule is capping the tube with two
hemispheres that just contain any points near the end of the object. Eberly [25]
describes a method for doing this. The center of each hemisphere is one of
the two endpoints of the line segment, so finding the hemisphere allows us to
define the line segment. Let’s consider the endpoint with the smaller t value —
call it L(ξ0) — shown in Figure 12.17. We want to find the left-most hemisphere
(i.e., the one with the smallest ξ0) so that all points in the model either lie on
the hemisphere (such as point P0) or to the right of it (point P1). Another way
to think of this is that for each point we’ll compute a hemisphere centered
on the line that exactly contains that point and choose the hemisphere with
the smallest ξ0 value. If we do the same at the other end, with hemispheres
oriented the other way and choosing the one with largest parameter value ξ1,
then all points will be tightly enclosed by the capsule.

To set this up, we first need to transform our points from the local space
of the object to the local space of the line. We’ll build a coordinate frame
consisting of the line point A, normalized line vector ŵ, and two vectors per-
pendicular to ŵ: û and v̂. Subtracting the line point from the object point and
multiplying by a 3 × 3 matrix formed from û, v̂, and ŵ, transforms the object-
space point P to a line space point P ′ with line-space coordinates (u, v, w).
Since ŵ is normalized, a point L(ξ0) on the line equals (0, 0, ξ0) in line space.

If P ′ lies on a hemisphere with radius r and center X0 on the line, the length
of a vector d from X0 to P ′

i should be equal to the radius r (Figure 12.18). Given
this and the other parameters, we should be able to solve for X0, and hence ξ0.

The vector d = P ′ −X0. In line space, d = (u, v, w)− (0, 0, ξ) = (u, v, w− ξ).
Ensuring that ‖d‖ = r means that

u2 + v2 + (w − ξ0)
2 = r2

Solving for ξ0, we get

ξ0 = w −
(
±
√

r2 − (u2 + v2)
)
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Figure 12.18 Determining hemisphere center X0 for given point P ′.

Since this is a hemisphere, we want X0 to be to the right of P , so w ≥ ξ0, and
this becomes

ξ0 = w +
√

r2 − (u2 + v2)

Computing this for every point P in our model and finding the minimum ξ0
gives us our first endpoint. Similarly, the second endpoint is found by finding
the maximum value of

ξ1 = w −
√

r2 − (u2 + v2)

Capsule–Capsule Intersection

Handling capsule–capsule intersection is very similar to sphere–sphere inter-
section. Instead of calculating the distance between two points, and deter-
mining whether that is less than the sum of the two radii, we calculate the
distance between two line segments and check against the radii. As before,
if the distance is less than the sum of the two radii, we have intersecting
capsules.

bool
IvCapsule::Intersect( const IvCapsule& other )
{

float radiusSum = mRadius + other.mRadius;
return ( mSegment.DistanceSquared( other.mSegment )

<= radiusSum*radiusSum );
}
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Capsule–Ray Intersection

Capsule–ray intersection follows from capsule–capsule collision. Instead of
finding the distance between two line segments, we need to find the distance
between a ray and a line segment and compare them to the radius of the
capsule, as follows.

bool
IvCapsule::Intersect( const IvRay3& ray )
{

// test distance between line and segment vs. radius
return ( ray.DistanceSquared( mSegment ) <= mRadius*mRadius );

}

Capsule–Plane Intersection

There are two tests necessary to determine whether a capsule intersects a
plane. First of all, if the two endpoints of the line segment defining the capsule
lie on either side of the plane, then clearly the capsule intersects the plane.
However, even if the line segment lies on one side of the plane, the distance
between one of the endpoints and the plane may be less than the radius. In
this case, the capsule and plane would also intersect. Both cases are easy to
test; we already have the pieces in place.

The code is as follows:

float
IvCapsule::Classify( const IvPlane& plane )
{

float s0 = plane.Test( mSegment.GetEndpoint0() );
float s1 = plane.Test( mSegment.GetEndpoint1() );

// points on opposite sides or intersecting plane
if (s0*s1 <= 0.0f)

return 0.0f;

// intersect if either endpoint is within radius distance of plane
if( ::IvAbs(s0) <= mRadius || ::IvAbs(s1) <= mRadius )

return 0.0f;

// return signed distance
return ( ::IvAbs(s0) < ::IvAbs(s1) ? s0 : s1 );

}
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12.3.4 Object-Oriented Boxes

Definition

Source Code

Library

IvSimulation

Filename

IvOBB

World axis-aligned boxes are easy to create and fast to use for detecting
intersections, but are not a very tight fit around objects that are not them-
selves generally aligned to the world axes (Figure 12.12). A more accurate
approach is to create an initial bounding box that is a tight fit around
the object in local space, and then rotate and translate the box as well as
the object (Figure 12.19). These are known as object-oriented bounding boxes,
or OBBs. This has another advantage in that we don’t have to recalculate the
box every time the object moves, just transform the initial one. Also, for rigid
objects with a large number of vertices, recomputing the AABB every frame
may be too expensive. The disadvantage is that testing intersections between
two object-oriented boxes is more complicated. In the axis-aligned case, we
could simplify our cases down to three tests because of the alignment. In the
OBB case, the two can be at any relative orientation to each other, which
complicates the issue considerably.

The representation for an OBB A consists of the center point Ca, an ori-
entation matrix Ra, and an extent vector a (Figure 12.20). The extent vector
represents the difference from the center point to the point of maximum x, y,
and z on the box. Note that the center of the box is not necessarily the same
as the local origin of the object, nor does the orientation of the box have to
match the orientation of the object. If either is the case, some adjusting of the
object’s local-to-world transformation will have to be done to generate the box
axes and center location in world space. If the box to object-space orientation
transformation is Rbox→object and the object’s orientation is Robject→world , then
the box’s local-to-world rotation is

Rbox→world = Robject→world · Rbox→object

Figure 12.19 Object-oriented bounding boxes.
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Figure 12.20 Properties of OBBs.

To simplify our life, however, we can use boxes aligned to the object’s local
coordinates, with a vector d in object space indicating the box center relative
to the object center (as mentioned in Chapter 4, it’s not usually practical to
build objects with their bounding box center as their origin). In either case,
any time we need the box center c in world space we can use

c = Robject→world d + t

If we’re simply simulating an object using an OBB, aligning it to the local
axes may produce the results we want. However, when using an OBB for
culling we often want a tighter fit than that. Ideally, we want to find the set of
box axes that produce the minimum volume box, and there are a number of
techniques that do just that. The most commonly used method approximates
this by taking a statistical measure of the object known as the covariance
matrix [113].

The covariance matrix is a 3 × 3 array represented as

C =
⎡⎣ Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz

⎤⎦
where Cxy, for example, is

Cxy = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ)
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The value x̄ is the mean of x values of the n points, and ȳ is the corresponding
mean of the y values.

By computing the eigenvectors of this matrix, we can determine the direc-
tion of greatest variance or where the points are most spread out, which will
become our long axis. The other eigenvectors become the directions of the
remaining axes for our OBB. The mean of the points becomes the center of
the box, and from there we can project the points onto the axes to determine
the maximum extent along each axis. Code for this computation can be found
on the accompanying CD-ROM.

OBB–OBB Intersection

There have been many methods for testing intersections between two arbit-
rarily oriented boxes, including linear programming techniques and closest-
feature tracking. The most efficient technique known to date, however, uses
the concept of separating axes and is due to Gottschalk et al. [46]. The
following discussion is heavily drawn from this paper, with some additional
concepts due to Eberly [25] and van den Bergen [112].

Recall that to test whether two axis-aligned boxes were intersecting, we
did three tests, one for each axis x, y, and z. For each test, we checked the
extents of each box along each of the axis directions. This is equivalent to
projecting the box along the basis vectors i, j, and k. If the intervals of a given
projection don’t overlap, then there is a separating plane normal to the test
vector and therefore no intersection. The corresponding axis is known as a
separating axis.

This works well for axis-aligned boxes, but we need a slightly different test
for oriented boxes. To simplify our equations and improve performance, we’ll
use transformations relative to box A. We end up with a single translation
vector c from A to B, where c = RT

a · (Cb − Ca), and a relative rotation matrix
R = RT

b Ra. A’s extent vector remains the same, since it’s relative to its local
space. B’s extent vector becomes RT b.

Now suppose we have a potential separating axis direction v. We want to
perform the same test we did with the AABBs: project each box onto the vector
and check to see whether the projections are separate or not. Another way of
representing this is to project the box centers onto the vector as endpoints,
and then project the extent vectors closest to the center onto the vector as well
(Figure 12.21). If the distance between the projected box centers is less than
the sum of the lengths of the projected extents, then there is no intersection.
Expressed mathematically, there is no intersection if

|c · v| > |a · v + (RT b) · v|

This works if the extent vectors are aligned appropriately to give us the maxi-
mum projected length, but we can’t make that assumption. Instead, we’ll
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Figure 12.21 Example of OBB separation test.

use a pseudo–dot product that forces maximum length, so the equivalent
to a · v is

|axvx| + |ayvy| + |azvz|
This is legal because the extents can be taken from any of the eight octants,
so we can get any sign we want for any term.

An equivalent equation can be found for (RT b) · v. The final separating
axis equation is

|c · v| >
∑

i

|aivi| +
∑

i

|(RT b)ivi| (12.11)

While this gives us our test, there is an infinite number of choices for v, which
is not practical. Gottschalk et al. [46] demonstrates that any separating plane
either will be parallel to one of the box faces or parallel to an edge from each
box. This means that a maximum of 15 separating axis tests are necessary: 3
against the axes of box A, 3 against the axes of box B, and 9 cross products
using one axis from A and one from B.

The nice thing about this result is that it allows us to simplify our equations
considerably. For example, let’s use the cross product of the local x-axis from
A and the local y-axis from B. In A’s local space, the x-axis of A is i = (1, 0, 0). If
we represent the matrix R as the three row vectors (rT

0 , rT
1 , rT

2 ), then the y-axis
of B in A’s space is (r10, r11, r12). Performing the cross product i × r1, we get

v = (0, −r12, r11) (12.12)
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For the B terms, it’s convenient to transform v to be relative to B’s basis
via RT :

RT ( i × r1) =
⎡⎣ r0 · ( i × r1)

r1 · ( i × r1)

r2 · ( i × r1)

⎤⎦ =
⎡⎣ i · (r1 × r0)

i · (r1 × r1)

i · (r1 × r2)

⎤⎦ =
⎡⎣ i · (−r2)

i · 0
i · r0

⎤⎦
So, v in B space is

RT v = (−r20, 0, r00) (12.13)

Substituting equations 12.12 and 12.13 into equation 12.11 and multiplying
out the terms, the final axis test is

|c2r11 − c1r12| > a1|r12| + a2|r11| + b0|r20| + b2|r00|

The test for other axes can be derived similarly. All use the absolute value
of elements from the matrix R so it is far more efficient to precompute them
and then perform the axis tests. If this is done, the algorithm takes about
200 operations. It can be found in IvOBB::Intersect().

One caveat: Any implementation of this algorithm needs to take steps
to avoid numerical problems with floating-point precision. In particular, if
two edges, one from each box, are nearly parallel, the resulting cross product
will be near zero. This will lead to invalid results for the separation test. The
solution is to detect the condition, and only test against the six main axes of
the boxes. Even in this case, care must be taken as numeric error can lead to
false negatives.

OBB–Ray Intersection

Detecting intersection between a linear component and an oriented box is
much simpler than detecting intersection between two boxes. One method is
to transform the ray into the box’s local space and perform a standard AABB
intersection test. To transform the linear component, the origin point is trans-
formed by the inverse of the box’s world transform matrix, and the direction
vector by the inverse rotation of the box’s transformation matrix. The newly
transformed line, ray, or line segment can be passed into the appropriate
AABB routine.

An alternative is to use a modified version of the AABB algorithm, as
described by Möller and Haines [82]. In this case, instead of using planes
normal to the three world axes, we’ll use planes normal to the three box axes.
Recall that these axes are specified as the three column vectors in our rotation
matrix.
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Each axis has two parallel planes associated with it. If we treat the box’s
center as the origin of our frame, the extent vector a contains the magnitude
of our d values for these planes. For example, two of the parallel box planes
are r00x + r10y + r20z + ax = 0 and r00x + r10y + r20z − ax = 0.

If we translate our ray so that its origin is relative to the box origin, we
can determine s and t parameters for the intersections with these planes, just
as we did with the axis-aligned box. In this case, the formulas for s and t for
each axis (including the translation) are

s = ri · (C − P) − ai

ri · v
t = ri · (C − P) + ai

ri · v

We also need to modify our test to determine whether the ray is parallel
to the current pair of planes we’re testing. This is easily done by taking the
dot product of the direction vector v and the plane normal and seeing if it is
close to zero. If so, the ray is parallel to the plane, and we need to project the
vector C−P onto the current axis, and see if the result lies outside the extents.

The modified code is as follows:

bool
IvOBB::Intersect( const IvRay3& ray )
{

float maxS = -FLT_MAX;
float minT = FLT_MAX;

// compute difference vector
IvVector3 diff = mCenter - ray.mOrigin;

// for each axis do
for (int i = 0; i < 3; ++i)
{

// get axis i
IvVector3 axis = mRotation.GetColumn( i );
// project relative vector onto axis
float e = axis.Dot( diff );
float f = ray.mDirection.Dot( axis );

// ray is parallel to plane
if ( ::IsZero( f ) )
{

// ray passes by box
if ( -e - mA[i] > 0 || -e + mA[i] > 0 )

return false;
continue;
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}

float s = (e - mA[i])/f;
float t = (e + mA[i])/f;

// fix order
...
// adjust min and max values
...
// check for intersection failure
...

}

// done, have intersection
return true;

}

Performance can be improved here by storing the rotation matrix as an array
of three vectors instead of an IvMatrix33.

OBB–Plane Intersection

As we did with with OBB–ray intersection, we can classify the intersection
between an OBB and a plane by transforming the plane to the OBB’s frame
and using the AABB–plane classification algorithm. Since the transforma-
tion is just a pure rotation and a translation, we can find the transformed
normal by

n̂′ = RT n̂

We apply the transpose since we’re going from world space into box space.
The minimal and maximal points for the AABB in this case are the extent
vector and its negative, a and −a, respectively.

An alternative, presented by Möller and Haines [82], is to use the principle
of separating planes again. This time, our test vector will be the plane normal,
and we’ll project the box diagonal on to it. To ensure we get maximum extent,
we’ll add the absolute values of the elements together, similar to what we did
before:

r = |(a0 r0) · n| + |(a1 r1) · n| + |(a2 r2) · n|

Here, each ri represents a column of the rotation matrix. The box intersects
the plane if the distance between the box center and the plane is less than r.
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The resulting code is as follows:

float IvOBB::Classify( const IvPlane& plane )
{

IvVector3 xNormal = ::Transpose(mRotation)*plane.mNormal;
float r = mExtents.x*::IvAbs(xNormal.x) + mExtents.y*::IvAbs(xNormal.y)

+ mEextents.z*::IvAbs(xNormal.z);

float d = plane. Test(mCenter);
if (::IvAbs(d) < r)

return 0.0f;
else if (d < 0.0f)

return d + r;
else

return d - r;
}

12.3.5 Triangles

Source Code

Library

IvMath

Filename

IvTriangle

All of the bounding objects we’ve discussed up until now have been approxi-
mations to our base object (assuming our object is more complex than, say,
a box or a sphere). To test actual intersections between objects, we need to
get right down to the basic building block of our geometry: the triangle. As
before, we will be representing our triangle as the convex combination of three
points.

Triangle–Triangle Intersection

A naive approach to determining triangle–triangle intersection uses the
triangle–ray intersection test that follows. If one of the line segments compo-
sing an edge of one triangle intersects the other triangle, then the two triangles
are intersecting. While this works, there are faster methods. Two commonly
used approaches are by Möller [80] and Held [58]. However, if we are only
concerned with determining whether intersection exists, and not the segment
(or point) of intersection, then there is a faster way, concurrently discovered
by two groups of researchers: Shen et al. [102] and Guigue and Devillers [51].

Figure 12.22 shows the situation. Taking the first triangle P , composed
of points P0, P1, and P2, we compute its plane equation. Recall that the plane
equation for a normal n = (a, b, c) and a point on the plane P0 = (x0, y0, z0) is

0 = ax + by + cz − (ax0 + by0 + cz0)
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Figure 12.22 Triangle intersection.

or

0 = ax + by + cz + d

In this case, the plane normal is computed from (P1 − P0) × (P2 − P0) and
normalized, and the plane point is P0.

Now we take our second triangle Q, composed of points Q0, Q1, and Q2.
We plug each point into P ’s plane equation and test whether all three lie on
the same side of the plane. This is true if all three results have the same sign.
If they do, there is no intersection and we quit. Otherwise, we store the results
d0, d1, and d2 generated from the plane equation for each point and continue.

We now need to test whether the rearranged triangles overlap by check-
ing the intervals where their edges cross the common line between the two
planes. If the interval for P is [i, j] and Q is [k, l], then there is intersection
if the intervals overlap, producing the line segment [R0, R1]. Other algo-
rithms compute these intervals directly. However, there is a way to test this
implicitly.

First, we rearrange P ’s vertices such that the lone vertex (the one that lies
in its own half-space of Q) is first, or P0. We also permute Q’s vertices so that
P0 will “see” them in counterclockwise order. We then do the same for triangle
Q, rearranging its vertices such that its lone vertex is first, and permuting P ’s
vertices into counterclockwise order relative to the new Q0.

Now, we make use of a signed distance test to check for interval overlap.
If the signed distance between Q0Q1 and P0P2 is negative, then there is no
overlap. Similarly, if the signed distance between P0P1 and Q0Q2 is negative,
there is no overlap. Otherwise, the two triangles intersect.

We compute the signed distance between two edges by comparing the dis-
tance between two parallel planes, each containing one of the line segments.
The normal n for these planes can be computed by taking the cross product
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between the segment vectors, say n = (Q0 − Q1) × (P0 − P2). Then, we can
compute the signed distance between each plane and the origin by taking the
dot product of the plane normal with a point on each plane (i.e., d0 = n · Q0
and d1 = n · P0). Then, the signed distance between the planes is just d0 − d1,
or n · (Q0 − P0).

Note that this will not work if the two lines are parallel. Most of the cases
where this might occur are culled out during the initial steps. The one case
remaining is if the two triangles are coplanar. This is handled by projecting
them to 2D and doing a simple test.

Triangle–Ray Intersection

There are two possible approaches to determining triangle–ray intersection.
The first is to use the plane equation for the triangle (computed from the
three vertices) and determine the intersection point of the ray with the plane
(if any). We can then use a point-in-triangle test to determine whether the
intersection lies within the triangle.

While a relatively simple approach, it has some disadvantages. First of
all, we need to either store the plane equation or, if we’re short on space,
compute it every time we wish to do the intersection test. Second, it’s a two-
pass algorithm: compute the plane intersection, and then test whether it’s
in the triangle. Fortunately, we have an alternative. The following approach,
presented by Möller and Trumbore [81], uses affine combinations to compute
the ray–triangle intersection.

We define our triangle as having vertices V0, V1, and V2. We can define two
edge vectors e0 and e1 (Figure 12.23), where

e0 = V1 − V0

e1 = V2 − V0

Recall that the point V0 with the vectors e0 and e1 can be used to create
an affine combination that spans the plane of the triangle, with barycentric
coordinates (u, v). So, the formula for a point T(u, v) on the plane is

T(u, v) = V0 + ue0 + ve1

= V0 + u(V1 − V0) + v(V2 − V0)

Rearranging terms, we get

T(u, v) = (1 − u − v)V0 + uV1 + vV2
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Figure 12.23 Affine space of triangle.

We want the contribution of each point to be nonnegative, so for a point inside
the triangle,

u ≥ 0

v ≥ 0

u + v ≤ 1

If u or v < 0, then the point is on the outside of one of the two axis edges.
If u + v > 1, the point is outside the third edge. So, if we can compute
the barycentric coordinates for the intersection point T(u, v), we can easily
determine whether the point is outside the triangle.

To compute the u, v coordinates of the intersection point, the result of the
line equation L = P + t d will equal a solution to the affine combination T(u, v)

(Figure 12.24). So,

P + t d = (1 − u − v)V0 + uV1 + vV2

We can express this as a matrix product:

[ −d V1 − V0 V2 − V0
]⎡⎣ t

u

v

⎤⎦ = P − V0

Using Cramer’s rule, or row reduction, we can solve this matrix equation
for (t, u, v). The final result is

t = q · e2

p · e1
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Figure 12.24 Barycentric coordinates of line intersection.

u = p · s
p · e1

v = q · d
p · e1

where

e1 = V1 − V0

e2 = V2 − V0

s = P − V0

p = d × e2

q = s × e1

The final algorithm includes checks for division by zero and intersections
that lie outside the triangle.

bool
TriangleIntersect( const IvVector3& v0, const IvVector3& v1,

const IvVector3& v2, const IvRay& ray )
{

// test ray direction against triangle
IvVector3 e1 = v1 - v0;
IvVector3 e2 = v2 - v0;
IvVector3 p = ray.mDirection.Cross(e2);
float a = e1.Dot(p)
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// if result zero, no intersection or infinite intersections
// (ray parallel to triangle plane)
if ( ::IsZero(a) )

return false;

// compute denominator
float f = 1.0f/a;

// compute barycentric coordinates
IvVector3 s = ray.mOrigin - v0;
u = f*s.Dot(p)
if (u < 0.0f || u > 1.0f) return false;

IvVector3 q = s.Cross(e1);
v = f*ray.mDirection.Dot(q);
if (v < 0.0f || u+v > 1.0f) return false;

// compute line parameter
t = f*e2.Dot(q);

return (t >= 0);
}

Parameters u, v, and t can be returned if the barycentric coordinates on the
triangle or the parameter for the exact point of intersection are needed.

Triangle–Plane Intersection

We covered triangle–plane intersection when we discussed triangle–triangle
intersection. We take our triangle, composed of points P0, P1, and P2, and
plug each point into the plane equation. If all three lie on the same side of
the plane, then there is no intersection. Otherwise, there is, and if we desire
we can find the particular line segment of intersection, as described earlier.
If there is no intersection, the signed distance is the plane equation result of
minimum magnitude.

12.4 A Simple Collision System

Now that we have some methods for testing intersection between various
primitive types, we can make use of them in a practical system. The example
we’ll consider is collision detection. Rather than building a fully general col-
lision system, we’ll do only as much as we need to for a basic game — in our
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case, we’ll use a submarine game as our example. This is to keep things as
simple as possible and to illustrate various points to consider when building
your own system. It’s also good to keep in mind that a particular subsystem
of a game, whether it is collision or rendering, needs only to be as accurate as
the game calls for. Building a truly flexible collision system that handles all
possible situations may be overkill and eat up processing time that could be
used to do work elsewhere.

12.4.1 Choosing a Base Primitive

The first step in building the system is to choose the base bounding shape for
our objects. We’ll see in the following sections how we can use a hierarchy
of bounding primitives to get a better fit to the object’s surface, but for now
we’ll consider only one per object. Which primitive we choose depends highly
on the expected topology we’re trying to approximate with it. For example,
if we’re writing a pool game, using bounding spheres for our balls makes
perfect sense. However, for a human character bounding spheres are not a
good choice because one axis of the object is far longer than the other two —
not a good fit. In particular, getting characters through an interior space might
be a tricky proposition unless all your doorways and hallways are at least
six feet wide.

Considering that our object is made of triangles, using them should give us
the most accurate results. However, while they are cheap as a one-on-one test,
it would be costly to test every possible triangle–triangle combination between
two objects. This becomes more feasible when we have some sort of culling
hierarchy to whittle down the possible triangle pairs to a few contenders —
we’ll discuss that in more detail shortly. However, if we can get a good fit
with a simpler bounding volume, we can get a reasonably accurate measure of
collision by doing a volume–volume test without having to do the full triangle–
triangle test.

Since AABBs change size depending on the object’s orientation, they are
not usually a good choice for a base bounding primitive. They are more often
used as a culling test, such as in the sweep-and-prune system described in
Section 12.4.4.

Among the primitives we’ve discussed, this leaves us with capsules and
OBBs. Which we choose depends on our performance requirements and how
angular our objects are. If we have mostly boxy objects — like tanks — capsules
or even lozenges won’t provide very compelling collisions. An OBB is a better
shape to choose for this situation. For our case, however, submarines and
torpedoes are both generally sausage shaped. If we had to go with a single
bounding object that approximates a submarine, capsules are an excellent
choice.
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12.4.2 Bounding Hierarchies

Source Code

Demo

Hierarchy

Unless our objects are almost exactly the shape of the bounding primitive
(such as our pool ball example), then there are still going to be places where
our test indicates intersection where there is visibly no collision. For example,
the conning tower of our submarine makes the bounding capsule encompass
a large area of empty space at the top of the hull. Suppose a torpedo is heading
toward our submarine and through that area. Instead of harmlessly passing
over the hull as we would expect from the visual evidence, it will explode
because we have detected a collision with the inaccurately large bounding
region.

The solution is to use a set of bounding primitives to get a better
approximation to the surface of the object. In our submarine example, we
could use one capsule for the main hull and one for the conning tower. If we
are willing to allow a slightly forgiving system, we could ignore the conning
tower for the purposes of collision and get a very nice fit with the hull capsule.
Or we could go the more detailed route and add one for the conning tower,
as well as a third for the periscope (Figure 12.25). To check for intersection,
we test each bounding primitive for the first object against all the primitives
in the second, much as we would have done for the triangles.

To speed this up we can keep our original bounding capsule and use it as
a rough test before checking further. Better still, we can generate bounding
spheres for each object and test against those instead. It’s a very cheap test and
can do a great job of culling large numbers of cases. We could also generate
bounding spheres for each of our smaller capsules and use these spheres in
preliminary culling steps before checking individual capsule pairs.

This gives us a bounding hierarchy for our object (Figure 12.26). We com-
pare the top-level bounding spheres first. Only if they are intersecting do we
then move on to the lower level of sphere check and capsule check. This can
cull out a large number of cases and make it much more likely that we’ll be
testing only the two lower-level capsules that are actually intersecting.

We can take this technique of using bounding hierarchies further. For
example, if we want to do triangle–triangle intersection testing, we can build

Figure 12.25 Using multiple bounding objects.
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Figure 12.26 Using bounding hierarchy.

a hierarchy to perform coarser but cheaper intersection tests. If two objects
are intersecting, we can traverse the two hierarchies until we get to the two
intersecting triangles (there may be more than two if the objects are concave).
Obviously, we’ll want to create much larger hierarchies in this case. Gener-
ating them so that they are as efficient as possible — they both cull well and
have a reasonably small tree size — is not a simple task. Gottschalk et al. [46]
provide some information for building OBB trees, while Ericson [32] covers
the general cases.

Spheres, capsules, AABBs, and OBBs have all been used as primitives for
culling bounding hierarchies. Most tests have been done for hierarchies with
triangles as leaf nodes. Gottschalk et al. [46] demonstrate that OBBs work bet-
ter than both AABBs and spheres if our objects have static geometry. However,
if we’re constantly deforming our vertices — for example, with skinned char-
acter models — recomputing the OBBs in the hierarchy is an expensive step.
Using spheres or AABBs can be a better choice in this circumstance.

12.4.3 Dynamic Objects

So far we have been using intersection tests assuming that our objects don’t
move between frames. This is clearly not so. In games, objects are constantly
moving, and we need to be careful when we use static tests to catch collisions
between moving objects.
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For example, in one frame we have two objects moving toward each
other, clearly heading for a collision somewhere in the center of the screen
(Figure 12.27(a)). Ideally, in the next frame we want to catch a snapshot of
them just as they collide or are slightly intersecting. However, if we take too
large a simulation step, they may have passed partially through each other
(Figure 12.27(b)). Using a frame-by-frame static test, we will miss the initial
collision. Worse yet, if we take a larger step, the two objects will have passed
right through each other, and we’ll miss the collision entirely.

One way to catch this is to sweep our bounding primitives along a path
and then test intersection between the swept primitives that we’ve generated.
A simple example of this is testing intersection between two moving spheres.
If we sweep a sphere along a line segment, we get — no surprise — a capsule.
Based on the two objects’ velocities, we can generate capsules for each object
and test for intersection. If one is found, then we know the two objects may
collide somewhere between frames and we can investigate further.

We generally have to worry about this problem only when the relative
velocities of objects are large enough or the frame times are long enough that
one object can move, relative to another, farther than half its thickness in
the direction of travel. For example, a tank with a speed of 30 km/hr moves
about 0.12 m/frame, assuming 60 frames/s. If the tank is 10 meters long, its
movement is miniscule compared to its total length and we can probably get
away with static testing. Suppose, however, that we fire a 1 meter–long missile

(a)

(b)

Figure 12.27 (a) Potential collision, and (b) partially missed collision.
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at that tank, traveling at 120 km/hr. We also have a bug in our rendering code
that causes us to drop to 10 frames/s, giving us a travel distance of 3 1/3
meters. The missile’s path crosses through the tank at an angle and is already
through it by the next frame. This may seem like an extreme example, but in
collision systems it’s often best to plan for the extreme case.

Walls, since they are infinitely thin, also insist on a dynamic test of some
kind. In a first-person shooter you don’t want your players using a cheat to
teleport through a wall by moving too fast. One way to handle this is to do
a simple test of the player’s path versus the nearest wall plane. Another is to
create a plane for each wall with the normals pointing into the room; if a
plane test shows that the object is on the negative side of the plane, then it’s
no longer in the room.

Submarines are large and move relatively slowly for their size, so for
this collision system we don’t need to worry about this issue. However, it
is good to be aware of it. For more information on managing dynamic tests,
see Eberly [25].

12.4.4 Performance Improvements
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Now that we’ve handled questions of which bounding shapes to use on our
objects and how to achieve a tighter fit even with simple primitives, we’ll con-
sider ways of improving our performance. The main way we’ll approach this
is to cut down on intersection tests. We’ve already handled this to some extent
at the object level by using a bounding hierarchy to cut down on intersection
tests between primitives. Now we want to look at the world level, by cutting
down on tests between objects. For example, if two objects are relatively small
and at opposite ends of the map from each other, it’s a pretty good bet that
they’re not colliding.

The most basic way to check collisions among all objects is the following
loop:

for each object i
for each object j, where j <> i

test for collision between i and j

There are a number of problems with this. First of all, we’re doing n(n − 1)

tests, which is an O(n2) algorithm. Half of those tests are duplicates: If we
test for collision between objects 1 and 5, we’ll also test for collision between
5 and 1. Also, there may be a number of objects that we wish to collide with
that simply aren’t moving. We don’t want to test collision between two such
static objects. A better loop that handles these cases is as follows:
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for each object i
for each object j, where j > i

if (i is moving or j is moving)
test for collision between i and j

There are other possibilities. We can have two lists: one of moving objects
called Colliders and one of moving or static objects called Collidables. In the
first loop we iterate through the Colliders and in the second the Collidables.
Each Collider should be tagged after its turn through the loop, to ensure
collision pairs aren’t checked twice. Still, even with this change, we’re still
doing O(nm) tests, where n is the number of Colliders and m is the number
of Collidables. We need to find a way to further cut down the number of
checks.

Most approaches involve some sort of spatial subdivision to do this. The
simplest is to slice the world, along the x-axis say, by a series of evenly spaced
planes (Figure 12.28). This creates a set of slabs, bounded by the planes along
the x direction, and by whatever bounds we’ve set for our world in the y and

Figure 12.28 Cutting collision space into slabs.
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z directions. For each slab, we store the set of objects that intersect it. To
test for collisions for a particular object, we determine which slabs it inter-
sects and then test against only the objects in those slabs. This approach
can be extended to other spatial subdivisions, such as a grid or voxel-based
system.

One of the disadvantages of the regular spatial subdivisions is that they
don’t handle clumping very well. Let’s consider slabs again. If our world is
fairly sparse, there may be large numbers of slabs with no objects in them,
and a very few with most of the objects in them. We still may end up doing a
large number of checks within each slab, which is the problem we were trying
to avoid.

There is another possibility used by a number of collision-detection sys-
tems, known as the sweep-and-prune method. It is similar to the separating
axis test that we used for OBBs (it’s also related to some scan line rasteriza-
tion algorithms). Instead of using a regular grid for our world, we’ll use the
extents of our objects as our grid. For each object, we project its extents onto
the x-axis. To keep things efficient, we can use our root-level bounding sphere
to compute our extents, which for a sphere with center C and radius r, gives
us an interval of [cx − r, cx + r].

Given the extent endpoint pairs for each object, we’ll mark them with a
pointer to the object and indicate for each value whether it is the low (start)
or high (finish) endpoint. Finally, we sort all endpoints from low to high.

Once the sorted list of endpoints is created, the collision-detection process
runs as follows.

for each endpoint do
if a start point
if object is moving

check collisions against all objects in list
else

check collisions against moving objects in list
add corresponding object to list

else if a finish point
remove corresponding object from list

Figure 12.29 shows how this works. We sweep from left to right along the
x-axis and use the sorted endpoints to test intersections of intervals before the
more complex intersection tests.

Normally this would be an 
(n log n) algorithm due to the sorting oper-
ation. However, if the time step is small enough, the relative position of the
objects won’t have changed that much from frame to frame — this is referred
to as temporal coherence. Any changes that do happen will be rare but local-
ized. Therefore, if we use a sorting algorithm that works best on mostly sorted
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x-axis

Figure 12.29 Dividing collision space by sweep and prune.

lists, such as bubble or insertion sort, we can get linear time for our sort and
hence an O(n) algorithm.

This algorithm still has problems, of course. If our objects are highly
localized (or clumped) in the x direction, but separated in the y direction,
then we still may be doing a high number of unnecessary intersection tests.
But it is still much better than the naive O(n2) algorithm we were using
before.

12.4.5 Related Systems

The other two systems we mentioned earlier were ray casting, for picking and
AI tests, and frustum culling. Both systems can benefit from the techniques
described in our collision system, in particular the use of bounding hierarchies
and spatial partitioning.

Consider the case of ray casting. Instead of testing the ray directly against
the object, we can take the ray and pass it through the hierarchy until (if we
desire) we get the exact triangle of intersection. Further culling of testing can
be done by using a spatial partitioning system such as voxels or kd trees to
consider only those objects that lie in the areas of the spatial partitioning that
intersect the ray.
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vdir

Figure 12.30 False positive for frustum intersection.

When handling frustum culling, the most basic approach involves testing
an object against the six frustum planes. If, after this test, we determine that
the object lies outside one of the planes, then we consider it outside the frus-
tum and do not render it. As with ray casting, we can improve performance
by using a bounding hierarchy at progressive levels to remove obvious cases.
We can also use a spatial partition again, and consider only objects that lie in
the areas of the partition within the view frustum.

However, there is one aspect of frustum culling of which we need to be
careful. This also applies to any intersection test that requires determin-
ing whether we are inside a convex object. Consider the situation shown
in Figure 12.30. The bounding sphere is near the corner of the view frus-
tum and clearly intersecting two planes. By using the scheme described, this
sphere would be considered as intersecting the frustum, but it is clearly not.
An alternative is shown in Figure 12.31(a). Instead of using the frustum, we
trace around the frustum with the bounding sphere to get a rounded, larger
frustum.1 This represents the maximum extent that a bounding sphere can
have and still be inside the frustum. Instead of testing the sphere, we can test

1. This process is also known as convolution.
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(a)

(b)

Figure 12.31 (a) Expanding view frustum for simpler inclusion test, and
(b) expanding view frustum for simpler inclusion test.
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its center against this shape. In practice, we can just push out the frustum
planes by the sphere radius (Figure 12.31(b)), which is close enough. Similar
techniques can be used for other bounding objects; see Akenine-Möller and
Haines [82] and Watt and Policarpo [117] for more details.

12.4.6 Section Summary

The proceeding material should give some sense of the decisions that have
to be made when handling collision detection or other systems that involve
object intersection: Pick base primitives, choose when you’ll use them, con-
sider whether to manage dynamic intersections, and cull unnecessary tests.
However, this shouldn’t be taken as the only approach. There are many
other possible algorithms that handle much more complex cases than these.
For example, there are systems, such as the University of North Carolina’s
I-COLLIDE, that track closest pairs of objects. This allows for consider-
able culling of intersection tests. There are also more sophisticated methods
for managing spatial partitions, such as portals, octrees, BSP trees, and kd
trees. Whether the algorithmic complexity is necessary will depend on the
application.

12.5 Chapter Summary

Testing intersection between geometric primitives is a standard part of any
interactive application. This chapter has presented a few examples to provide
a taste of how such algorithms are created. Most derive from a careful use of
the basic properties of vectors and points as presented in Chapter 2. Using our
intersection methods wisely allows us to build an efficient system for detecting
collision between objects, casting rays for AI visibility checks and picking, and
frustum culling.

For those who are interested in reading further, a more thorough pre-
sentation of geometric distance and intersection methods can be found in
Schneider and Eberly [100]. These techniques fall under a general class of
algorithms known as computational geometry; good references are Preparata
and Shamos [95] and O’Rourke [86]. Two different approaches to build-
ing collision-detection systems can be found in van den Bergen [112] and
Ericson [32]. Finally, use of intersection techniques in rendering, plus infor-
mation on more complex spatial-partitioning techniques, can be found in both
Möller and Haines [82] and Watt and Policarpo [117].
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Chapter13
Rigid Body
Dynamics

13.1 Introduction

In many games, we move our objects around using a very simple movement
model. In such a game, if we hold down the up arrow key, for example, we
apply a constant forward translation, once a frame, to the object until the key
is released, at which point the object immediately stops moving. Similarly,
we can apply a constant rotation to the object if the left arrow key is held,
and again, it stops upon release. This is fine for something with fast action
like a platform game or a first-person shooter, where we want quick response
to our input. As soon as we hit a key, our character starts moving and stops
immediately upon release. This can be thought of as an application of the
theories of Aristotle, where pushing or pulling an object immediately affects
its speed.

But suppose we want to do a more realistically styled game, for example,
a submarine game. Submarines don’t start and stop on a dime. When the
propeller starts turning, it takes some time for the submarine to start forward.
And they don’t really have instantaneous brakes — when the engine is shut off
they will drift for quite a while before stopping. Turning is much the same —
they will respond slowly to application of the rudder and then straighten out
over time.

Even in a fast-action game, we may want to model how objects in the
world react to our main character. When we push an object, we don’t expect
it to stop instantly when we stop pushing, nor do we expect it to keep moving
forever. If we knock a chair over, we don’t expect it to fall straight back and
then stick to the floor; we expect it to turn depending on where we hit it, and
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then bounce and possibly roll once. We want the game world to react to our
character as the real world reacts to us, in a physically correct manner.

For both of these cases, we will want a better model of movement,
known as a physically based simulation. One chapter is hardly enough space
to encompass this broad topic, which covers the preceding effects as well
as objects deforming due to contact, fluid simulation, and soft-body sim-
ulations such as cloth and rope. Instead, we’ll concentrate on a simplified
problem that is useful in many circumstances: objects that don’t deform
(known as rigid bodies) and move based on Newton’s laws of motion (known as
dynamics). We’ll discuss techniques for translating rigid bodies through space
in a physically based manner (linear dynamics) and then how to encompass
rotational effects (rotational dynamics). Finally, we’ll discuss some methods
for resolving contacts and dealing with simple constrained movement within
our simulation, again covering linear and rotational effects in turn.

The convention in physics is to represent some vector quantities by capital
letters. To maintain compatibility with physics texts we will use the same
notation and assume that the reader can distinguish between such quantities
and the occasional matrix by context.

13.2 Linear Dynamics

13.2.1 Moving with Constant Acceleration

Let’s consider our object’s movement through our game world as a function
X(t), which represents the position of the object for every time t. If we plot
just the x values against t for the simple motion model described above, we
would end up with a graph similar to that in Figure 13.1. Notice that we travel
in a straight line for a while and then turn sharply in another direction, or
we hold position. This is like our piecewise linear interpolation, except that
in this case, the future x values are unknown; they are determined by the
input of the player. For a given frame i, this can be represented by a line
equation

Xi(hi) = Xi + hi vi

where Xi represents the position at the start of frame i, vi is a vector generated
from the player input that points along each line segment, and hi is our frame
time. We’ll simplify things further by considering just the function on the first
line segment, from time t ≥ 0:

X(t) = X0 + t v0

where X0 = X(0).
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x

t

Figure 13.1 Graph of current motion model, showing x coordinate of particle as a
function of time.

If we take the derivative of this function with respect to t, we end up with

d X
dt

= X′(t) = v0 (13.1)

This derivative of the position function is known as velocity, which is usually
measured in meters per second, or m/s. For our simple motion model, we have
a constant velocity across each segment. If we continue taking derivatives, we
find that the second derivative of our position function is zero, which is what
we’d expect when our velocity is constant. As mentioned, this motion model
is known as kinematics.

Now let’s assume that our second derivative, instead of being zero,
is a constant nonzero function. To achieve this, we’ll change our velocity
function to

v(t) = v0 + ta (13.2)

Now v(t) is also an affine function, this time with a constant derivative vector a,
called acceleration, or

d v
dt

= v′(t) = a (13.3)

The units for acceleration are usually measured in meters per second squared,
or m/s2.

Our original function X(t) used a constant v0, so now we’ll need to rewrite
it in terms of v(t). Since v is changing at a constant rate across our time
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interval, we can instead use the average velocity across the interval, which is
just one-half the starting velocity plus the ending velocity, or

v̄ = 1

2
(v0 + v(t))

Substituting this into our original X(t) gives us

X(t) = X0 + t

[
1

2
(v0 + v(t))

]
Substituting in for v(t) gives the final result of

X(t) = X0 + t v0 + 1

2
t2 a (13.4)

Our equation for position becomes a quadratic equation, and our velocity is
represented as a linear equation:

Pi(t) = Pi + tvi + 1

2
t2 ai

vi(t) = vi + tai

So, given a starting position and velocity and an acceleration that is con-
stant over the entire interval [0, t], we can compute any position within the
interval. As an example, let’s suppose we have a projectile, with an initial
velocity v0 and initial position P0. We represent acceleration due to gravity by
the constant g, which is 9.8 m/s2. This acceleration is applied only downward,
or in the −z direction, so a is the vector (0, 0, −g). If we plot the z component
as a function of t, then we get a parabolic arc, as seen in Figure 13.2. This
function will work for any projectile (assuming we ignore air friction), from

x0

v0

Figure 13.2 Parabolic path of object with initial velocity and affected only by
gravity.
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a thrown rock (low initial velocity) to a cannonball (medium initial velocity)
to a bullet (high initial velocity).1

Within our game, we can use these equations on a frame-by-frame basis
to compute the position and velocity at each frame, where the time between
frames is hi. So, for a given frame i + 1,

Xi+1 = Xi + hi vi + 1

2
h2

i ai

vi+1 = vi + hi ai

This process of motion with nonzero acceleration is known as dynamics.

13.2.2 Forces

One question that has been left open is how to compute our acceleration
value. We do so based on a vector quantity known as a force. Forces cause
change in an object’s motion, pushing or pulling it around, either to speed it
up or slow it down. So for example, to throw a ball your hand and arm exert
a certain force on it, to begin its motion through the air. That force, when
applied, produces an acceleration directly proportional to the object’s mass,
measured in kilograms. The proportional relationship is shown in Newton’s
second law of motion:

F = ma

The units for force end up being kg-m/s2, or newtons, in homage to its creator.
In the previous section we represented gravity as an acceleration, but in

truth it is a force whose value is always proportional to the mass of the object.
For an object with mass m on Earth, its magnitude is mg and its direction
points to the center of the Earth. In games and other small-scale simulations,
we usually assume the world is locally flat and so the gravity vector points
in the −z direction. Other possible forces include the friction caused by air
or water molecules pushing against an object to slow it down, or the thrust
generated by a rocket engine or propeller, or simply the normal force of the
ground pushing up to counteract gravity (there has to be such a force, other-
wise we’d sink into the earth). In general, if something is pushing or pulling
on an object, there is a force there.

Usually we have more than one force applied to an object at a time.
Taking our ball example, we have the initial force when the ball is thrown,
force due to gravity, and forces due to air resistance and wind. After the ball

1. In most cases, this last is approximated by a line equation for efficiency reasons.
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leaves your hand, that pushing force will be removed, leaving only gravity and
air effects. Forces are vectors, so in both cases we can add all forces on an
object together to create a single force that encapsulates their total effect on
the object. We then scale the total force by 1/m to get the acceleration for
equation 13.4.

For simplicity’s sake, we will assume for now that our forces are applied
in such a way that we have no rotational effects. In Section 13.4 we’ll discuss
how to handle such cases.

13.2.3 Linear Momentum

As we’ve seen, the relationship between acceleration and velocity is

a = d v
dt

There is a corresponding related entity P for a force F, which is

F = ma = m
d v
dt

= d P
dt

The quantity P = mv is known as the linear momentum of the object, and
it represents the tendency for an object to remain in its current linear motion.
The heavier the object or faster it is moving, the greater the force needed to
change its velocity. So, while a pebble at rest is easier to kick aside than a
boulder, this is not necessarily true if the pebble is shot out of a gun.

An important property of Newtonian physics is the conservation of
momentum. Suppose we take a collection of objects and treat them as a single
system of objects. Now consider only the forces within the system; that is, only
those forces acting between objects. Newton’s third law of motion states that
for every action, there is an equal and opposite reaction. So for example, if
you push on the ground due to gravity, the ground pushes back just as much,
and the forces cancel. Due to this, within the system, pairwise forces between
objects will cancel and the total force is zero. If the external force is 0 as
well, then

F = d P
dt

= 0

so P is constant. No matter how objects may move within the system, the total
momentum must be conserved. This property will be useful to us when we
consider collisions.
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13.2.4 Moving with Variable Acceleration

There is a problem with the approach that we’ve been taking so far: We are
assuming that total force, and hence acceleration, is constant across the entire
interval. For more complex simulations this is not the case. For example, it is
common to compute a drag force proportional to but opposite in direction to
velocity:

Fdrag = −mρv (13.5)

This can provide a simple approximation to air friction; the faster we go, the
greater the friction force. The quantity ρ in this case controls the magnitude
of drag. An alternative example is if we wish to model a spring in our system.
The force applied depends on the current length of the spring, so the force is
dependent on position:

Fspring = −kX

The spring constant k fulfills a similar role to ρ: It controls the proportion of
force dependent on the position. In both of these cases, since acceleration is
directly dependent on the force, it will vary over the time interval as velocity
or position vary. It is no longer constant. So for these cases, equations 13.2
and 13.4 are incorrect.

In order to handle this, we’ll have to use an alternative approach. We begin
by deriving a function for velocity in terms of any acceleration. Rewriting
equation 13.3 gives us

d v = a dt

To find v we take the indefinite integral or antiderivative of both sides:∫
d v =

∫
a dt

For example, if we assume as before that a is constant, we can move it
outside the integral sign: ∫

d v = a
∫

dt

And integrating gives us

v = t a + c
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We can solve for c by using our velocity v0 at time t = 0:

c = v0 − 0 · a

= v0

So, our final equation is as before:

v(t) = v0 + t a

We can perform a similar integration for position. Rewriting equation 13.1
gives

dX = v(t)dt

We can substitute equation 13.2 into this to get

dX = v0 + t a dt

Integrating this, as we did with velocity, produces equation 13.4 again.
For general equations we perform the same process, reintegrating dv to

solve for v(t) in terms of a(t). So, using our drag example, we can divide
equation 13.5 by the mass m to give acceleration:

a = d v
dt

= −ρv(t)

Rearranging this and integrating gives∫
d v =

∫
−ρv(t)dt

We can consult a standard table of integrals to find that the answer in this
case is

v(t) = v0e
−ρt

where, as before, v0 = v(0).
While this particular equation was relatively straightforward, in general

calculating an exact solution is not as simple as the case of constant accele-
ration. First of all, differential equations in which the quantity we’re solving
for is part of the equation are not always easily — if at all — solvable by ana-
lytic means. In many cases, we will not necessarily be able to find an exact
equation for v(t), and thus not for X(t). And even if we can find a solution,
every time we change our simulation equations, we’ll have to integrate them
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again, and modify our simulation code accordingly. Since we’ll most likely
have many different possible situations with many different applications of
force, this could grow to be quite a nuisance. Because of both these reasons,
we’ll have to use a numerical method that can approximate the result of the
integration.

13.3 Numerical Integration

13.3.1 Definition

The solutions for v and X that we’re trying to integrate fall under a class of
differential equation problems called initial value problems. In an initial value
problem, we know the following about a function y(t):

1. An initial value of the function y0 = y(t0).

2. A derivative function f(t, y) = y′(t).

3. A time interval h.

The problem we’re trying to solve is, given these parameters, what is the
value at y(t0 + h)? For our purposes, this actually becomes a series of ini-
tial value problems: At each frame our previous solution becomes our new
initial value yi, and our interval hi will be based on the current frame time.
Once computed, our new solution will become the next initial value yi+1.
More specifically, the initial value yi is our current position Xi and current
velocity vi, stored in a single 6-vector as

yi =
[

Xi

vi

]

So, how do we evaluate the derivative function f(t, y)? This will be another
vector quantity:

f(t, y) =
[

X′
i

v′
i

]

The value of our derivative for Xi is our current velocity vi. Our derivative for
vi is the acceleration, which is based on the current total force. To compute
this total force, it is convenient to create a function called CurrentForce(),
which takes X and v as arguments and combines any forces derived from
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position and velocity with any constant forces, such as those created from
player input. We’ll represent this as Ftot(t, X, v) in our equations. So, given
our current state, the result of our function f(t, y) will be

y ′ = f(t, y) =
[

vi

Ftot(ti, Xi, vi)/m

]

The function f(t, y) is important in understanding how we can solve
this problem. For every point y it returns a derivative y′. This represents a
vector field, where every point has a corresponding associated vector. To get
a sense of what this looks like, let’s take as an example a planet rotating in
a perfectly circular orbit. Figure 13.3 shows a two-dimensional (2D) plot of
the vector field of position and velocity, accentuating certain lines of flow.
If we start at a particular point and follow the vector flow, this will trace
out one possible solution to the differential equation, starting at that initial
value.

This gives us a sense of what our general approach will be. We’ll start
at yi and then, using our derivative function, take steps in time to generate
new samples that approximate the function, until we generate an approxi-
mation for yi+1. In a way, we are doing the opposite of what we were
doing when we were interpolating. Instead of generating an approximation
to an unknown function based on known sample points, we’re generating
approximate sample points based on the derivative of an unknown function.
Different integration techniques are different forms of this approach, some
more accurate than others.

x2
x1

x0

Figure 13.3 Orbit example, showing some level curves and idealized integra-
tion path.
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13.3.2 Euler’s Method

Source Code

Demo

Force

Assuming our current time is t and we want to move ahead h in time, we could
use Taylor’s series to compute y(t + h):

y(t + h) = y(t) + hy′(t) + h2

2
y′′(t) + · · · + hn

n! y(n)(t) + · · ·

We can rewrite this to compute the value for time step i + 1, where the
time from ti to ti+1 is hi:

yi+1 = yi + hi y′
i + h2

i

2
y′′
i + · · · + hn

i

n! y(n)
i + · · ·

This assumes, of course, that we know all the values for the entire infinite
series at time step i, which we don’t — we have only yi and y′

i. However, if hi is
small enough and all values of y′′

i are bounded, we can use an approximation
instead:

yi+1 ≈ yi + hi y′
i

≈ yi + hi f(ti, yi)

Another way to think of this is that we have a function f(ti, yi) that, given a
time ti and initial value yi, can compute tangents to the unknown function’s
curve. We can start at our known initial value, and step hi distance along
the tangent vector to get to the next approximation point in the vector field
(Figure 13.4).

x0

x1

x90

Figure 13.4 Orbit example, showing Euler step.
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Separating out position and velocity gives us

Xi+1 ≈ Xi + hiX
′
i

≈ Xi + hi vi

vi+1 ≈ vi + hi v′
i

≈ vi + hi Ftot(ti, Xi, vi)/m

This is known as Euler’s method.
To use this in our game, we start with our initial position and velocity. At

each new frame, we grab the difference in time between the previous frame
and current frame and use that as hi. To compute f(ti, yi) for the velocity,
we use our CurrentForce() method to add up all of the forces on our object
and divide the result by the mass to get our acceleration. Plugging in our
current values, we use the preceding formulas to generate our new position
and velocity. In code, this looks like the following.

void
SimObject::Integrate( float h )
{

IvVector3 accel;

// compute acceleration
accel = CurrentForce( mTime, mPosition, mVelocity ) / mMass;
// clear small values
accel.Clean();

// compute new position, velocity
mPosition += h*mVelocity;
mVelocity += h*accel;
// clear small values
mVelocity.Clean();

}

It’s important to compute the new velocity after the new position in this case,
so that we don’t overwrite the velocity prematurely.

Note that we clear near-zero values in the new velocity. This prevents little
shifts in position due to tiny changes in velocity, such as those generated after
an object has slowed down due to drag. While technically accurate, they can
be visually distracting, so after a certain point we clamp our velocity to zero.
The same is done with acceleration.
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For many cases, this works quite well. If our time steps are small enough,
then the resulting approximation points will lie close to the actual function
and we will get good results. However, the ultimate success of this method is
based on the assumption that the slope at the current point is a good estimate
of the slope over the entire time interval h. If not, then the approximation
can drift off the function, and the farther it drifts, the worse the tangent
approximation can get. We can see this with our orbit example in Figure 13.5.
The first step in our approximation takes us to an orbit with a larger radius,
and the next step to a larger radius still. Once the error grows, in many cases
further steps don’t get us back, and we continue to drift off of the actual
solution.

For Euler’s method, we say that the error is directly dependent on the
time step, or O(h). So, one potential solution to this problem is to decrease
the time step, for example, take a step of h/2, followed by another step of h/2.
While this may solve some cases, we may need to take a smaller time step,
say h/4. And this may still lead to significant error. In the meantime, we are
grinding our simulation to a halt while we recalculate quantities 4 or 8, or
however many times for a single frame.

So, what’s happening here? First, some situations that can lead to prob-
lems with Euler’s method are characterized by large forces. If we examine the
remaining terms of the Taylor expansion,

h2
i

2
y′′
i + · · · + hn

i

n! y(n)
i + · · ·

we can see why this could cause a problem. When we set up our approxi-
mation, we assumed that hi was small and y′′

i bounded. If we’re considering

x1

x0

x2

Figure 13.5 Orbit example, showing continuation of Euler’s method.
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position, a large force leads to a large acceleration, which leads to a larger
difference between our approximation and the actual value. Larger values of
hi will magnify this error. Also, if the force changes quickly, this means that
the magnitude of the velocity’s second derivative is high, and so we can run
into similar problems with velocity. This is known as truncation error, and as
we can see, with Euler’s method the truncation error is O(h2).

However, our particular example falls into a class of differential equations
known as stiff systems. Situations that can lead to stiffness problems are often
characterized by large spring and damping forces, such as in a stiff spring
(hence the name). Examples of such systems have terms with rapidly decaying
values, such as e−ρt — exactly the case when we are trying to maintain a fixed
distance from a point. These terms tend to zero as t approaches infinity but, as
we’ve seen, won’t always converge with a numerical method. The larger ρ is,
the smaller h must be. This can also affect systems where we wouldn’t expect
the term to contribute that much. For example, suppose the solution to our
system is y(t) = 1 + e−200t . As t increases from zero, y(t) quickly approaches 1.
However, approximating this with a numerical method without taking care to
control the error can lead the e−200t term to dominate the calculations, which
leads to invalid results.

Due to these issues, Euler’s method is not a very robust integrator. It
is, however, quite cheap and easy to implement, which is why a lot of sim-
ple physics engines use it. Fortunately, there are other methods that we
can try.

13.3.3 Runge-Kutta Methods

Source Code

Demo

Force

So far we’ve been using the derivative at the beginning of the interval as our
estimate of the average tangent. A better possibility may be to take the deriva-
tive in the middle of the interval. To do this, we first use Euler’s method to take
a step halfway into the interval; that is, we integrate using a step size of h/2.
Given our estimated position and velocity at the halfway point, we calculate
f(t, y) at this location. We then go back to our original starting location, and
use the derivatives we calculated at the midpoint to move across the entire
interval. This method is known as the midpoint method.

Figure 13.6 show how this works with our original function. In
Figure 13.6(a), the arrow shows our initial half-step, and the line our esti-
mated tangent. Figure 13.6(b) uses the tangent we’ve calculated with our full
time step, and our final location. As we can see, with this method we are
following much closer to the actual solution and so our error is much less
than before. The order of the error for the midpoint method is dependent on
the square of the time step, or O(h2), which for values of h less than 1 is better
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x0

x1/2

x0

x1

x91/2

x91/2

(a)

(b)

Figure 13.6 (a) Orbit example, showing first step of midpoint method: getting
the midpoint derivative. (b) Orbit example, stepping with midpoint derivative to next
estimate.

than Euler’s method. Instead of approximating the function with a line, we
are approximating it with a quadratic.

While the midpoint method does have better error tolerance than Euler’s
method, as we can see from our example, it still drifts off of the desired solu-
tion. To handle this, we’ll have to consider some methods with better error
tolerances still.

Both the midpoint method and Euler’s method fall under a larger class
of algorithms known as Runge-Kutta methods. Whereas both of our previous
techniques used a single estimate to compute a tangent for the entire interval,
others within the Runge-Kutta family compute multiple tangents at fixed time
steps across the interval and take their weighted average.

One possibility is to take the derivative at the end of the interval, and aver-
age with the derivative at the beginning. Like the midpoint method, we can’t
actually compute the derivative at the end of the interval, so we’ll approxi-
mate it by performing normal Euler integration and computing the derivative
at that point. This is known as the modified Euler’s method. Interestingly, the
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error for this approach is still O(h2), due to the fact that we’re taking an inaccu-
rate measure of the final derivative. Another approach is Heun’s method, which
takes 1/4 of the starting derivative, and 3/4 of an approximated derivative 2/3
along the step size. Again, its error is O(h2), or no better than the midpoint
method.

The standard O(h4) method is known as Runge-Kutta order four, or sim-
ply RK4. RK4 can be thought of as a combination of the midpoint method
and modified Euler, where we weight the midpoint tangent estimates higher
than the endpoint estimates. Representing this with our function notation,
we get

u1 = hi f(ti, yi)

u2 = hi f(ti + hi

2
, yi + 1

2
u1)

u3 = hi f(ti + hi

2
, yi + 1

2
u2)

u4 = hi f(ti + hi, yi + u3)

yi+1 = yi + 1

6
[u1 + 2u2 + 2u3 + u4]

Clearly, improved accuracy doesn’t come without cost. To perform
standard Euler requires calculating a result for f(t, y) only once. Midpoint,
modified Euler, and Heun’s need two calculations, and RK4 takes four. While
achieving the level of error tolerance of RK4 would require many more evalu-
ations of Euler’s method, using RK4 still adds both complexity and increased
simulation time that may not be necessary. It does depend on your appli-
cation, but for simple rigid-body simulations with fast frame rates and low
accelerations, Euler’s method or one of the other two Runge-Kutta methods
will probably be suitable.

13.3.4 Verlet Integration

Source Code

Demo

Force

There is another class of integration methods, known as Verlet methods, that
is commonly used in molecular dynamics. Verlet methods have come to the
attention of the games community because they can be useful in simulating
collections of small, unoriented masses known as particles — in particular,
when constrained distances between particles are required [61]. Such systems
of constrained particles can simulate soft objects such as cloth, rope, and dead
bodies (this last one is also known as rag doll physics).
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The most basic Verlet method can be derived by adding the Taylor
expansion for the current time step with the expansion for the previous time
step:

y(t + h) + y(t − h) = y(t) + hy′(t) + h2

2
y′′(t) + · · ·

+ y(t) − hy′(t) + h2

2
y′′(t) − · · ·

Solving for y(t + h) gives us

y(t + h) = 2y(t) − y(t − h) + h2 y′′(t) + O(h4)

Rewriting in our stepwise format, we get

yi+1 = 2yi − yi−1 + h2
i y′′

i

This gives us an O(h2) solution for integrating position from acceleration,
without involving velocity at all. This can be a problem if we want to use
velocity in our calculations, but we can estimate it as

vi = (Xi+1 − Xi)

2hi

One question may be, how do we find the first yi−1? The standard method is
to start the process off with one pass of standard Euler or other Runge-Kutta
method and store the initial position and integrated position. From there we’ll
have two positions to apply to our Verlet integration.

Standard Verlet has a few advantages: It is time invariant, which means
that we can run it forwards and then backwards and end up in the same place.
Also, the lack of velocity means that we have one less quantity to calculate.
Because of this, it is often used for particle systems, which generally are not
dependent on velocity. However, if we want to apply friction based on veloc-
ity or when we want to handle spinning rigid objects, the lack of velocity
and angular velocity makes it more difficult. There are ways around this, as
described in Jakobson [61], but in most cases it will be easier to use a method
that allows us to track both velocity terms. One other disadvantage is that our
velocity estimation is (a) not very accurate and (b) one time step behind our
position.

If you wish to use Verlet methods and require velocity, you have two
choices. Leapfrog Verlet tracks velocity, but at half a time step off from the



618 Chapter 13 Rigid Body Dynamics

position calculation:

v(t + h/2) = v(t − h/2) + ha(t)

X(t + h) = X(t) + hv(t + h/2)

Like with standard Verlet, we can start this off with a Runge-Kutta method
by computing velocity at a half-step and proceed from there. If velocity on
a whole step is required, it can be computed from the velocities, but as with
standard Verlet, one time step behind position:

vi = (vi+1/2 − vi−1/2)

2

As with standard Verlet, leapfrog Verlet is an O(h2) method.
The third, and most accurate, Verlet method is velocity Verlet:

X(t + h) = X(t) + hv(t) + h2

2
a(t)

v(t + h) = v(t) + h/2[a(t) + a(t + h)]

Unlike with the previous Verlet methods, we now have to compute the accele-
ration twice: once at the start of the interval and once at the end. This can be
done in a stepwise manner by

vi+1/2 = vi + hi/2ai

Xi+1 = Xi + hi vi+1/2

vi+1 = vi+1/2 + hi/2ai+1

In between the position calculation and the velocity calculation, we recompute
our forces and then the acceleration ai+1. Note that in this case the forces can
be dependent only on position, since we have added only half of the accelera-
tion contribution to velocity. In the case of molecular dynamics or particles,
this isn’t a problem since most of the forces between them will be positional,
but again, for rigid-body problems this is not the case.

While Verlet integration has good stability characteristics, its main prob-
lem for our purposes is the estimated velocity, as mentioned above. While it
works well for particle systems, it isn’t as good for rigid bodies. As such, we’ll
look elsewhere for our solution.
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13.3.5 Implicit Methods

All the methods we’ve described so far integrate based on the current
position and velocity. They are called explicit methods and make use of known
quantities at each time step, for example Euler’s method:

yi+1 = yi + hy′
i

But as we’ve seen, even higher-order explicit methods don’t handle extreme
cases of stiff equations very well.

Implicit methods make use of quantities from the next time step:

yi+1 = yi + hi y′
i+1

This particular implicit method is known as backward Euler. The idea is that
we are going to grab the derivative at our destination rather than at our current
position. That is, we are going to find a yi+1 with the derivative that, if we were
to run the simulation backwards, would end up at yi.

Implicit methods don’t add energy to the system, but instead lose it. This
doesn’t guarantee us more accuracy, but it does avoid simulations that spin
out of control — instead, they’ll dampen down to an equilibrium state. Since,
in most cases, we’re going to add a damping factor anyway, this is a small
price to pay for a more stable simulation. An example of using this is our old
orbit example (Figure 13.7). Here we see the effect of losing energy — instead
of spiraling outward, we spiral inward toward the center of the orbit. Better
than Euler’s method, but still not ideal.

This sounds good in theory, but in practice, how do we calculate y′
i+1?

One way is to solve for it directly. For example, let’s consider air friction. In

x0

x1
x2

Figure 13.7 Implicit Euler. The arrows point backwards to indicate that we are
getting the derivative from the next time step.
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this example, our force is directly dependent on velocity, but in the opposing
direction. Considering only velocity:

vi+1 = vi − hρvi+1

Solving for vi+1 gives us

vi+1 = vi

1 + hρ

We can’t always use this approach. Either we will have a function too
complex to solve in this manner, or we’ll be experimenting with a number
of functions and won’t want to take the time to solve each one individually.
Another way is to use a predictor–corrector method. We move ahead one step
using an explicit method to get an approximation. Then we use that approx-
imation to calculate our y′

i+1. This will be more accurate than the explicit
method alone, but it does involve twice the number of calculations, and
we’re depending on the accuracy of the first approximation to make our final
calculation.

Another more accurate approach is to rewrite the equation so that it can
be solved as a linear system. If we represent yi+1 as yi + �yi, and ignore the
factor t, we can rewrite backwards Euler as

yi + �yi = yi + hi f(yi + �yi)

or

�yi = hi f(yi + �yi)

We can approximate f(yi+�yi) as f(yi)+ f ′(yi)�yi. Note that f ′(yi) is a matrix
since f(yi) is a vector. Substituting this approximation, we get

�yi ≈ hi( f(yi) + f ′(yi)�yi)

Solving for �yi gives

�yi ≈
(

1

hi

I − f ′(yi)

)−1

f(yi)

In most cases, this linear system will be sparse, so it can be solved in
near-linear time. More information can be found in Witkin and Baraff [121].
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While implicit methods do have some characteristics that we like —
they’re good for forces that depend on stiff equations — they do tend to lose
energy and may dampen more than we might want. Again, this is better
than explicit Euler, but it’s not ideal. They’re also more complex and more
expensive than explicit Euler. Fortunately there is a solution that provides the
simplicity of explicit Euler with the stability of implicit Euler.

13.3.6 Semi-Implicit Methods

Up to this point, we have been treating position and velocity as independent
variables while integrating; that is, we act as if they are one six-element vector
that gets integrated at once. However, the fact is that position is dependent
on how velocity changes. We can make use of this relationship and create a
very stable integrator for dynamics. The trick is to run an explicit Euler step
for velocity, and then an implicit Euler step for position:

vi+1 ≈ vi + hi v′
i

≈ vi + hi Ftot(ti, Xi, vi)/m

Xi+1 ≈ Xi + hiX
′
i

≈ Xi + hi vi+1

Note that the position update is using the new velocity, not the old one. This is
called semi-implicit or symplectic Euler. Note that position is integrated using
implicit Euler, which makes this particularly good for position-dependent
forces. Thus, this method gives us the advantages of both explicit and implicit
methods, plus it also has an additional advantage: It conserves energy over
time, which keeps things very stable.

Let’s look at our orbit example again, this time using semi-implicit Euler
(Figure 13.8). We note that it follows the path exactly, rather than converging
or diverging. Admittedly, this example is a bit contrived, but it shows the
power of using a semi-implicit method.

Because it is a first-order Euler method it’s still not as accurate in some
cases as RK4, but it is cheap and stable. And in games, it’s far more important
to have a stable solution than a 100 percent correct one. This integration
technique is also very easy to adapt to rotational dynamics. This makes it
suitable for most of our needs beyond the most egregious cases, and thus will
be the method we use for our examples.
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Figure 13.8 Semi-implicit Euler. The gray arrows indicate the original velocity
and its modification by acceleration.

13.4 Rotational Dynamics

13.4.1 Definition

The equations and methods that we’ve discussed so far allow us to create
physical simulations that modify an object’s position. However, one aspect
of dynamics we’ve passed over is simulating changes in an object’s orienta-
tion due to the application of forces, or rotational dynamics. When discussing
rotational dynamics, we use quantities that are very similar to those used in
linear dynamics. Comparing the two:

Linear Rotational

position X orientation � or q
velocity v angular velocity ω

force F torque τ

linear momentum P angular momentum L
mass m inertia tensor J

We’ll discuss each of these quantities in turn.

13.4.2 Orientation and Angular Velocity

Orientation we have seen before; we’ll represent it by a matrix � or a quater-
nion q. The angular velocity ω represents the change in orientation. It is a
vector quantity, where the vector direction is the axis we rotate around to
effect the change in orientation, and the length of the vector represents the
rate of rotation around that axis, in radians per second.

The orientation and angular velocity are applied to an object around a
point known as the center of mass. The center of mass can be defined as the
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Figure 13.9 Comparing centers of mass. The seesaw balances close to the center,
while the hammer has center of mass closer to the end.

point associated with an object where, if you apply a force at that point, it
will move without rotating. One can think of it as the point where the object
would perfectly balance. Figure 13.9 shows the center of mass for some com-
mon objects. The center of mass for a seesaw is directly in the center, as
we’d expect. The center of mass for a hammer, however, is closer to one
end than the other, since the head of the hammer is more massive than the
handle.

For our objects, we’ll assume that we have some sense of where the center
of mass is — either it’s set by the artist or by some other means. One possibility
discussed shortly is to compute the center of mass directly from our model
data. Other choices are to use the local model origin or the bounding box cen-
ter (or centroid) as an approximation. Once the center of mass is determined,
it is usually convenient to translate our object so that we can treat the local
model origin as the center of mass, and therefore use the same orientation
and position representation for both simulation and rendering.

It is possible to convert from angular velocity to linear velocity. Given an
angular velocity ω, and a point at displacement r from the center of mass, we
can compute the linear velocity at the point by using the equation

v = ω × r (13.6)

This makes sense if we look at a rotating sphere. If we look at various points
on the sphere (Figure 13.10(a)), their linear velocity is orthogonal to both the
axis of rotation and their displacement vector, and this corresponds to the
direction of the cross product. The length of v will be

‖v‖ = ‖ω‖‖r‖ sin θ

where θ is the angle between ω and r. This also makes sense. As the rate of
rotation ‖ω‖ increases, we’d expect the linear velocity of each point on the
object to increase. As we move out from the equator, a rotating point has to
move a longer linear distance in order to maintain the same angular velocity
relative to the center (Figure 13.10(b)), so as ‖r‖ increases, ‖v‖ will increase.
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Figure 13.10 (a) Linear velocity of points on the surface of a rotating sphere.
Velocity is orthogonal to both angular velocity vector and displacement vector from
the center of rotation. (b) Comparison of speed of points on surface of rotating disk.
Points further from the center of rotation have larger linear velocity. (c) Comparison
of speed of points on surface of rotating sphere. Points closer to the equator of the
sphere have larger linear velocity.
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Finally, the linear velocity of a point as we move from the equator to the poles
will decrease to zero (Figure 13.10(c)) and the quantity sin θ provides this.

13.4.3 Torque

Up until now we’ve been simplifying our equations by applying forces only
at the center of mass, and therefore generating only linear motion. On the
other hand, if we apply an off-center force to an object, we expect it to spin.
The rotational force created, known as torque, is directly dependent on the
location where the force is applied. The farther away from the center of mass
we apply a given force, the larger the torque. To compute torque, we take the
cross product of the vector from the center of mass to the force application
point, with the corresponding force (Figure 13.11) or

τ = r × F (13.7)

The direction of τ combined with the right-hand rule tells us the direction
of rotation the torque will attempt to induce. If you align your right thumb
along the direction of torque, your curled fingers will indicate the direction
of rotation — if the vector is pointing toward you, this is counterclockwise
around the axis of torque. The magnitude of τ provides the magnitude of the
corresponding torque.

To compute the total torque, we need to compute the corresponding
torque for each application of force, and then add them up. Adding the offsets
and taking the cross product of the resulting vector with the total force will
not compute the correct result, as shown by Figure 13.12. The sum of the
offsets is 0, producing a torque of 0, which is clearly not the case — the true
total torque as shown will start the circle rotating counterclockwise.

r

F
t

Figure 13.11 Computing torque. Torque is the cross product of displacement
vector and force vector.
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r1

r2

F1

F2

Figure 13.12 Adding two torques. If forces and displacements are added
separately and then the cross product is taken, total torque will be 0. Each torque
must be computed and then added together.

13.4.4 Angular Momentum and Inertia Tensor

Recall that a force F is the derivative of the linear momentum P. There is a
related quantity L for torque, such that

τ = dL

dt

Like linear momentum, the angular momentum L describes how much an
object tends to stay in motion, but in rotational motion rather than linear
motion. The higher the angular momentum, the larger the torque needed to
change the object’s angular velocity. Recall that linear momentum is equal to
the mass of the object times its velocity. Angular momentum is similar, except
that we use angular velocity, and the rotational equivalent of mass, the inertia
tensor matrix:

L = J ω (13.8)

Why use a matrix J instead of a scalar, as we did with mass? The problem
is that while shape has no effect (other than, say, for friction) on the general
equations for linear dynamics, it does have an effect on how objects rotate.
Take the classic example of a figure skater in a spin. As she starts the spin, her
arms are out from her sides, and she has a low angular velocity. As she brings
her arms in, her angular velocity increases until she opens her arms again to
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gracefully pull out of the spin. Torque is near zero in this case (ignoring some
minimal friction from the ice and air), so we can consider angular momentum
to be constant. Since angular velocity is clearly changing and mass is constant,
the shape of the skater is the only factor that has a direct effect to cause this
change.

So, to represent this effect of shape on rotation, we use a 3 × 3 symmetric
matrix, where

J =
⎡⎢⎣ Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤⎥⎦
We need these many factors because, as we’ve said, rotation depends heavily
on shape and each factor describes how the rotation changes around a par-
ticular axis. The diagonal elements are called the moments of inertia. If we’re
in the correct coordinate frame, then the nondiagonal elements, or products
of inertia, are zero. For such a frame, the axes are called the principle axes.
For example, if the object is symmetric, the principle axes lie along the axes
of symmetry and through the center of mass. We’ll see next how to handle the
case if our object is not in the principle axes frame.

The following are some examples of simple inertia tensors for objects with
constant density and mass m:

■ Sphere (radius of r): ⎡⎢⎣
2
5mr2 0 0

0 2
5mr2 0

0 0 2
5mr2

⎤⎥⎦
■ Solid cylinder (main axis aligned along x, radius r, length d):⎡⎢⎣

1
2mr2 0 0

0 1
4mr2 + 1

12md2 0

0 0 1
4mr2 + 1

12md2

⎤⎥⎦
■ Box (xdim × ydim × zdim):⎡⎢⎣

1
12m(y2

dim + z2
dim) 0 0

0 1
12m(x2

dim + z2
dim) 0

0 0 1
12m(x2

dim + y2
dim)

⎤⎥⎦
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For many purposes, these can be reasonable approximations. If necessary,
it is possible to compute an inertia tensor and center of mass for a general-
ized model, assuming a constant density. A number of methods have been
presented to do this, in increasing refinement [11, 27, 63, 79]. The general
concept is that in order to compute these quantities we need to do a solid
integral across our shape, which is a triple integral across three dimensions.
If we assume constant density, then for a polytope this is equivalent to adding
up tetrahedra, where each tetrahedra consists of one of the polygonal faces
and a shared central point. Code to perform this operation is available at
www.geometrictools.com, for those who desire it.

13.4.5 Integrating Rotational Quantities

Source Code

Demo

Torque

As with linear dynamics, we use our angular velocity to update to our new
orientation. Ideally, we could use Euler’s method directly and compute our
new orientation as

�i+1 = �i + hωi

However, this won’t work, mainly because we are trying to combine vector
and matrix quantities. What we need to do is compute a matrix that represents
the derivative and use that with Euler’s method.

Recall that the column vectors of a rotation matrix are three orthonormal
vectors. We need to know how each vector will change with time; that is, we
need the linear velocity at each vector tip. What we want to do is convert the
angular velocity into a linear velocity for each of our basis vectors. We can
apply equation 13.6 to each of our basis vectors to compute this, and then use
the matrix generated to integrate orientation. One way would be to take the
cross product of ω with each column vector, but instead we can take our three
angular velocity values, and create a skew symmetric matrix ω̃, where

ω̃ =
⎡⎢⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎦ (13.9)

If we multiply this by our current orientation matrix, this will take the cross
product of ω with each column vector, and we end up with the deriva-
tive of orientation in matrix form. Using this with Euler’s method, we end
up with

�n+1 = �n + h(ω̃n�n) (13.10)
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If we’re using a quaternion representation for orientation, we use a
similar approach. We take our angular velocity vector and convert it to a
quaternion w, where

w = (0, ω)

We can multiply this by one-half of our original quaternion to get the
derivative in quaternion form, giving us, again with Euler’s method,

qn+1 = qn + h

(
1

2
wn qn

)
(13.11)

A derivation of this equation is provided by Witken and Baraff [121] and
Eberly [27], for those who are interested.

Using either of these methods allows us to integrate orientation. As far as
updating angular velocity, computing acceleration for rotational dynamics is
rather complicated, so we won’t be using angular acceleration at all. Instead,
since torque is the derivative of angular momentum, we’ll integrate the torque
to update angular momentum, and then compute the angular velocity from
that. As when we integrated force, we’ll need a function to compute total
torque across the entire interval, called CurrentTorque(). For both methods,
we’ll have to modify our input variables to take into account orientation and
angular velocity as well as position and velocity.

To find the angular velocity, we rewrite equation 13.8 to solve for ω:

ω = J−1 L (13.12)

When computing the angular velocity in this way, there is one detail that
needs to be managed carefully. The inertia tensor is in the model space of
the object. However, angular momentum is integrated from torque, which is
computed in world space, and we want our resulting angular velocity to also
be in world space. To keep things consistent, we need a way to convert our
model space J−1 to world space. If we’re using a rotation matrix to represent
orientation, we can use it to transform L from world to model space, apply
the inverse inertia tensor, and then transform back into world space. So, for
a given time step,

ωi+1 = �i+1 J−1�T
i+1 Li+1 (13.13)

If we’re using quaternions, the most efficient way to handle this is to convert
our quaternion to a matrix, and then compute equation 13.13.

Using semi-implicit Euler and quaternions, the full code for handling
rotational quantities looks like the following.
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// compute new angular momentum, orientation
mAngMomentum += h*CurrentTorque( mTranslate, mVelocity,

mRotate, mAngVelocity);
mAngMomentum.Clean();

// update angular velocity
IvMatrix33 rotateMat(mRotate);
IvMatrix33 worldMomentsInverse =

rotateMat*mMomentsInverse*::Transpose(rotateMat);
mAngVelocity = worldMomentsInverse*mAngMomentum;
mAngVelocity.Clean();
IvQuat w = IvQuat( 0.0f, mAngVelocity.x,

mAngVelocity.y, mAngVelocity.z );
mRotate += h*0.5f*w*mRotate;
mRotate.Normalize();
mRotate.Clean();

13.5 Collision Response

Up to this point, we haven’t considered collisions. Our objects are moving
gracefully through the world, speeding up or slowing down as we adjust our
forces. All of which is accurately modeled, except that the objects go right
through each other. Not a very realistic or fun game. Instead, we’ll need a
way to simulate the two objects bouncing away from each other due to the
collision. We can do so by using the methods we’ve discussed in Chapter 12
in combination with some new techniques.

13.5.1 Contact Generation

For the purposes of this discussion, we’ll assume a simple collision model,
where the objects are convex and there is a single collision point. To perform
our collision response properly, we have to know two things about the colli-
sion. The first is the point of contact between the two objects A and B — in
other words, the point on the objects where they just touch (Figure 13.13).
Since the two objects are just touching, there is a tangent plane that passes
between the two, which also intersects both at that point. This is represented
in the figure as a line. The second thing we need to know is the normal n̂ to
that plane. We’ll choose our normal to point from A, the first object; to B, the
second.

Our main problem in figuring out collision location is that we’re trying to
detect collisions within an interval of time. In one time step, two objects may



13.5 Collision Response 631

A B

Figure 13.13 Point of collision. At the moment of impact between two convex
objects, there is a single point of collision. Also shown is the collision plane and its
normal.

Figure 13.14 Interpenetrating objects. There is no single point of collision.

be completely separate; in the next, they are colliding. In fact, in most cases
when collision is detected, we have missed the initial point of collision and
the objects are already interpenetrating (Figure 13.14). Because of this, there
is no single point of collision.

One possibility for finding the exact point when initial collision occurs
is to do a binary search within the time interval. We begin by running our
simulation and then testing for collisions. If we find one, and the two objects
involved are interpenetrating, we step the entire simulation back half a time
step and check again. If there is still penetration, we go back a quarter of the
original time step, otherwise, we go forward a quarter of the original time
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step. We keep doing this, ratcheting time forward or back by smaller and
smaller intervals until we get an exact point of collision (unlikely) or we reach
a certain level of iteration. At the end of the search, we’ll either have found
the exact collision point or will be reasonably close.

This technique has a few flaws. First of all, it’s slow. Chances are that
every time you get a collision, you’ll need to run the simulation at least two
or three additional times to get a point where the objects are just touching.
In addition, in order for detection to be perfectly accurate, you need to rerun
the simulation for all the objects, because their position at the time of the
collision will be slightly different than their position at the end of the time
interval. This may affect which objects are colliding. So, you need to run the
simulation back, determine the collision point, apply the collision response,
and then run the simulation forward until you hit another collision, do another
binary search, and so on. In the worst case, with many colliding objects, your
simulation will get bogged down, and you’ll end up with long frame times.
The accuracy of this method may be suitable for offline simulation, but it’s
not good for interactivity.

Another possibility is to ignore it, approximate the contact point and
normal, and let the collision response push the two objects apart. This can
work, but if the response is too slow, the two objects may remain interpen-
etrated for a while. This can look quite odd and may ruin the illusion of
reality.

The third alternative begins by looking at the overlap between the two
objects. The longest distance along that overlap is known as the penetration
distance. We can push the two objects apart by the penetration distance until
they just touch, and then use the point and normal from that intersection for
collision calculations.

For example, take two spheres (Figure 13.15), with centers Ca and Cb and
radii ra and rb. If we subtract one center Ca from the other center Cb, we get

ra
rb

Ca Cb

Figure 13.15 Determining penetration distance and collision normal.
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the direction for our collision normal. The penetration distance p is then the
sum of the two radii minus the length of this vector, or

p = (ra + rb) − ‖Cb − Ca‖ (13.14)

We can move each sphere in opposite directions along this normal by the
distance p/2, which will move them to a position where they just touch. This
assumes that both objects can move — if one is not expected to move, like a
boulder or a church, we translate the other object by the entire normal length.
So, for two moving objects A and B, the formula is

mTranslate -= 0.5f*penetration*centerDiff;
other->mTranslate += 0.5f*penetration*centerDiff;

Once we’ve pushed them apart, the collision point is where our center
difference vector crosses the boundary of the two spheres. We can com-
pute this point by halving the difference vector and adding it to the old
Ca. We finish up by normalizing the difference vector to get our collision
normal.

Handling penetration distance for capsules is just as simple. Instead of
using the center points to compute the collision normal, we use the closest
points on the line segments that define each capsule. The penetration distance
becomes the sum of the radii minus the distance between these points. For
bounding boxes, Eberly [25] provides a method that computes the penetration
distance between two oriented boxes.

This technique does have some flaws. First, pushing the two objects apart
by the entire penetration distance may look too abrupt. Instead, we can push
them apart by a fraction of the penetration distance and assume that the
collision response will separate them the rest of the way. The slight interpene-
tration will only be noticeable for one or two frames. Second, if objects are
moving fast enough and the collision is detected too late, the two objects may
pass through each other. If this case is not handled in the collision detection,
we will get some very odd results when the objects are pushed apart. Finally,
because we’re pushing objects away from each other instantaneously, we may
end up with situations where two objects collide, and one of them is moved
into a third, causing a new interpenetration. Because we may have already
tested for collision between the second pair of objects, we’ll miss this collision.
If we’re expecting a large number of collisions between close objects, this
simple system may not be practical.

As a final note on contact generation, usually the collision-detection sys-
tem will generate a pair of contact features, one for each object, per collision.
There may be multiple contacts per object (think of a book resting on its
edge, or even its face), and there may be dependencies between many objects
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that control how contacts are resolved (think of a stack of boxes). We’ll
briefly discuss how to manage such problems later, but for our main thread
of discussion we’ll concentrate on single points of contact.

13.5.2 Linear Collision Response

Source Code

Demo

LinCollision

Whatever method we use, we now have two of the properties of the collision we
need to compute the linear part of our collision response: a collision normal
n̂ and a collision point P . The other two elements are the incoming velocities
of the two objects, va and vb. Using this information, we are finally ready to
compute our collision response.

The technique we’ll use is known as an impulse-based system. The idea is
that near the time of collision, the forces and position remain nearly constant,
but there is a discontinuity in the velocity. At one point in time, the veloci-
ties of the objects are heading toward one another; in the next infinitesimal
moment later, they are heading away. How much and in what relation the
velocities change depends on the magnitude and direction of the incoming
velocities, the direction of the collision normal, and the masses of the two
objects.

Let’s look again at the simple case of our two spheres A and B
(Figure 13.16(a)). For now, let’s assume their masses are equal. We again see
our two incoming velocities va and vb and our collision normal n̂. The idea
is that we want to modify our velocity by an impulse that is normal to the
point of collision. The impulse will act to push the two objects apart — if the
masses are equal, it will be equal in magnitude, but opposite in direction for
each object. So, we need to generate a scale factor j for our collision normal,
and then add the scaled collision normal j n̂ and −j n̂ to va and vb to get our
outgoing velocities. So, in order to compute the impulse vector, we need to
compute this factor j.

To begin our computation,we need the relative velocity vab, which is just
va − vb (Figure 13.16(a)). From that, we’ll compute the amount of relative
velocity that is applied along the collision normal (Figure 13.16(b)). Recall that
the dot product of any vector with a normalized vector gives the projection
along the normal vector, which is just what we want. So,

vn = (vab · n̂) n̂

At this point, we do one more test to see if we actually need to calculate an
impulse vector. If the relative velocity along the collision normal is negative,
then the two objects are heading away from each other and we don’t need
to compute an impulse. We can break out of the collision-response code and
proceed to the next collision. Otherwise, we continue with computing j.
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vab
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vb
n
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(a)
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Figure 13.16 (a) Computing collision response. Calculating relative velocity.
(b) Collision response. Computing relative velocity along normal. (c) Collision
response. Adding impulses to create outgoing velocities.
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In order to compute a proper impulse, two conditions need to be met.
First of all, we need to set the ratio of the outgoing velocity along the colli-
sion normal to the incoming velocity. We do this by setting a coefficient of
restitution ε:

v′
n = −εvn

or

(v′
a − v′

b) · n̂ = −ε(va − vb) · n̂ (13.15)

Each object will have its own value of ε. This simulates two different
physical properties. First of all, when one object collides with another some
energy is lost, usually in the form of heat. Second, if the object is somewhat
soft and/or sticky, or inelastic, the bonding forces between it and its target
will decrease the outgoing velocities. Elastic in this case doesn’t refer to the
stretchiness of the object, but how resilient it is. A superball is not very mal-
leable, but has very elastic collisions. So, the quantity ε represents how much
energy is lost and how elastic the collision between the two objects is. If both
objects have an ε of 1, then they will bounce away from each other with the
same relative velocity they had coming in. If both objects have an ε of 0, they
will stick together like two clay balls and move as one. Values in between will
give a linear range of elastic responsiveness. Values greater than 1 or less than
0 are not permitted. An ε greater than 1 would add energy into the system,
so a ball bouncing on a flat surface would bounce progressively higher and
higher. An ε less than 0 means that the objects would be highly attracted to
each other upon collision and would lead to undesirable interpenetrations.

Even if energy is not quite conserved (technically it is, but we’re not track-
ing the heat loss), then momentum is. Because of this, the total momentum
of the system of objects before and after the collision needs to be equal. So,

ma va + j n̂ = ma v′
a

or

v′
a = va + j

ma

n̂ (13.16)

Similarly,

mb vb − j n̂ = mb v′
b

or

v′
b = vb − j

mb

n̂ (13.17)
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With this, we finally have all the pieces that we need. If we substitute
equations 13.16 and 13.17 into equation 13.15 and solve for j, we get the final
impulse factor equation:

ja = −(1 + εa)vab · n̂(
1

ma
+ 1

mb

) (13.18)

The equation for jb is similar, except that we substitute εb for εa.
Now that we have our impulse values, we substitute them back into

equations 13.16 and 13.17, respectively, to get our outgoing velocities
(Figure 13.16(c)). Note the effect of mass on the outgoing velocities. As we
expect, as the mass of an object grows larger, it grows more resistant to
changing its velocity due to an incoming object. This is counteracted by
j, which grows as relative velocity increases, or as the combined masses
increase.

Our final algorithm for collision response between two spheres is as
follows.

float radiusSum = mRadius + other->mRadius;
collisionNormal = other->mTranslate - mTranslate;
float distancesq = collisionNormal.LengthSquared();
// if distance squared < sum of radii squared, collision!
if ( distancesq <= radiusSum*radiusSum )
{

// handle collision
// penetration is distance - radii
float distance = ::IvSqrt(distancesq);
penetration = radiusSum - distance;
collisionNormal.Normalize();

// collision point is average of penetration
collisionPoint = 0.5f*(mTranslate + mRadius*collisionNormal)

+ 0.5f*(other->mTranslate - other->mRadius*collisionNormal);

// push out by penetration
mTranslate -= 0.5f*penetration*collisionNormal;
other->mTranslate += 0.5f*penetration*collisionNormal;

// compute relative velocity
IvVector3 relativeVelocity = mVelocity - other->mVelocity;

float vDotN = relativeVelocity*collisionNormal;
if (vDotN < 0)

return;
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// compute impulse factor
float modifiedVel = vDotN/(1.0f/mMass + 1.0f/other->mMass);
float j1 = -(1.0f+mElasticity)*modifiedVel;

float j2 = -(1.0f+other->mElasticity)*modifiedVel;

// update velocities
mVelocity += j1/mMass*collisionNormal;
other->mVelocity -= j2/other->mMass*collisionNormal;

}

In this simple example, we have interleaved the sphere collision detection
with the computation of the collision point and normal. This is for efficiency’s
sake, since both use the sum of the two radii and the difference vector between
the two centers for their computations. As mentioned above, a more complex
collision system will generate contact pairs to be fed to the collision-response
system.

13.5.3 Rotational Collision Response

Source Code

Demo

RotCollision

This is all well and good, but most objects are not spheres, which means that
they have a visible orientation. When one collides with another at an offset to
the center of mass, we would expect some change in angular velocity as well
as linear velocity. In addition, any incoming angular velocity should affect
the collision as well. A cue ball with spin (or English) applied causes a much
different effect on a target pool ball than a cue ball with no spin.

As with linear and rotational dynamics, the way we handle rotational
collision response is very similar to how we handle linear collision response.
We need to modify only a few equations and recalculate our impulse factor j.

One modification we have to make is the effect of angular velocity on the
incoming velocity. Up to this point, we’ve assumed that when the two objects
strike each other, their surfaces are not moving, so the velocity at the collision
point is simply the linear velocity. However, if one or both of the objects are
rotating, then there is an additional velocity factor applied at the point of
collision, as one surface passes by the other. Recall that equation 13.6 allows
us to take an angular velocity ω and a displacement from the center of mass
r and compute the linear velocity contributed by the angular velocity at the
point of displacement. Adding this to the original incoming velocities, we get

v̄a = va + ωa × ra

v̄b = vb + ωb × rb
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Now the relative velocity vab at the collision point becomes

vab = v̄a − v̄b

and equation 13.15 becomes

( v̄′
a − v̄′

b) = −ε( v̄a − v̄b) (13.19)

The other change needed is that in addition to handling linear momentum,
we also need to conserve angular momentum. This is a bit more complex
compared to the equations for linear motion, but the general concept is the
same. The outgoing angular momentum should equal the sum of the incoming
angular momentum and any momentum imparted by the collision. For object
A, this is represented by

Iaωa + ra × j n̂ = Iaω
′
a (13.20)

or

ω′
a = ωa + I−1

a (ra × j n̂) (13.21)

For object B, this is

Ibωb − rb × j n̂ = Ibω
′
b (13.22)

or

ω′
b = ωb − I−1

a (rb × j n̂) (13.23)

Just as with linear collision response, we can substitute equations 13.21
and 13.23 into 13.19, and together with equations 13.16 and 13.17, solve for
j to get

j = −(1 + ε)vab · n̂(
1

ma
+ 1

mb

)
+

[
(I−1

a (ra × n̂)) × ra + (I−1
b (rb × n̂)) × rb

]
· n̂

(13.24)

Using this modified j value we calculate new angular momenta using
equations 13.20 and 13.22 and from that calculate angular velocity as we did
with angular dynamics, using equation 13.8. We use this same j for our linear
collision response as well. And of course, as before we’ll use different εs for
the two objects.
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We change our linear collision–handling code in three places to achieve
this. First of all, the relative velocity collision incorporates incoming angular
velocity, as follows.

// compute relative velocity
IvVector3 r1 = collisionPoint - mTranslate;
IvVector3 r2 = collisionPoint - other->mTranslate;
IvVector3 vel1 = mVelocity + Cross( mAngularVelocity, r1 );
IvVector3 vel2 = other->mVelocity + Cross( other->mAngularVelocity,

r2 );
IvVector3 relativeVelocity = vel1 - vel2;

Then, we add angular factors to our calculation for j, as follows.

// compute impulse factor
float denominator = (1.0f/mMass

+ 1.0f/other->mMass)*(collisionNormal.Dot(collisionNormal));

// compute angular factors
IvVector3 cross1 = Cross(r1, collisionNormal);
IvVector3 cross2 = Cross(r2, collisionNormal);
cross1 = mWorldMomentsInverse*cross1;
cross2 = other->mWorldMomentsInverse*cross2;
IvVector3 sum = Cross(cross1, r1) + Cross(cross2, r2);
denominator += (sum.Dot(collisionNormal));
float modifiedVel = vDotN/denominator;

Finally, in addition to linear velocity, we recalculate angular velocity, as
follows.

// update angular velocities
mAngularMomentum += Cross(r1, j1*collisionNormal);
mAngularVelocity = mWorldMomentsInverse*mAngularMomentum;
other->mAngularMomentum += Cross(r2, j2*collisionNormal);
other->mAngularVelocity = mWorldMomentsInverse*other->mAngularMomentum;

13.5.4 Extending the System

Everything up to this point will provide a reasonable rigid-body simulation,
with moving and colliding bodies. However, there may be some additional
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features we may want to add. The following present some possible solutions
for expanding and extending our simple system.

Resting Contact

The methods we described above handle the case when two objects are
heading toward each other along the collision normal. Obviously, if they’re
heading apart, we don’t need to consider these methods — they are separating.
However, if their relative velocity along the normal is 0, then we have what is
called a resting contact. A simple example of a resting contact is a box sitting
on the floor; it has no downward velocity and yet it is in contact with the floor.

While in general we wouldn’t expect that we would have to handle a resting
contact, consider the case when the box is being affected by gravity. After one
time step it will have a downward velocity into the floor, and then we’ll have to
handle it as a colliding contact. However, doing so will lead to the box leaping
up into the air as we subtract out the initial velocity and then add the response
due to the impulse. The box will fall again due to gravity, and then bounce up,
and we’ll get a very jittery result. Obviously we’d like to deal with the resting
contact before this occurs.

One solution is to compute a force that counteracts the force of gravity.
This is known as a constraint force, as we’re constraining the box from pass-
ing through the floor. This is certainly a reasonable solution in the absence
of other forces, but suppose we now have two boxes stacked on top of one
another. We’ll need some way to transfer that constraint force up to the next
box to make sure they both don’t move, in addition to preventing interpene-
tration between the boxes. When using constraint forces, things can get very
complicated very fast.

A less accurate but more tractable alternative is to use a modification of
our impulse method. This is known as a micro-impulse engine, as our impulses
due to resting contact will be very small. The key to a micro-impulse engine
is to add the right amount of correction to ensure that objects don’t pass
through each other and don’t bounce. Millington [78] detects the case that
we described above by comparing the velocity generated from the current
frame to the object’s current velocity. If it’s less, then we continue with normal
collision resolution, otherwise we know it’s the resting case. Catto [17] does
something similar, but uses an iterative process to lower the impulse value (see
below). In either case, it requires only minor tweaks to our basic algorithm to
get some very nice results.

Constraints

As mentioned, resting contact can be thought of as a constraint on our system,
as it is preventing us from pushing an object through a surface. There are other
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Figure 13.17 Mesh of particles constrained by distance.

constraints we can set up similarly. For example, suppose we have a collection
of particles, and we want to keep each of them a fixed distance away from their
neighbors, say in a grid (Figure 13.17). This is particularly useful when trying
to simulate cloth. We can also have joint contraints, which keep two points
coincident while allowing the remainder of the objects to swing free. And the
list goes on. Any case that describes a fixed relationship between two objects
can be modeled as a constraint.

Constraints are particularly useful in modeling a class of objects known as
soft bodies. We’ve already mentioned cloth, above. Similar principles can be
applied to simulate rope. When we build a simple hierarchical system, we get
a skeleton that can be used to simulate a dead or unconscious figure, known
as rag-doll physics. Therefore, contraints are extremely powerful in creating
a new sort of interaction in our world.

We could implement these constraints as springs, but as we’ve seen, stiff
springs cause us a lot of problems when integrating. An alternative is to com-
pute the exact force to keep the two objects constrained, as was suggested with
resting contact. However, as before, with multiple objects this can get quite
complex and requires yet another system to be added to our simulation engine.

Fortunately, impulses can work in this case, too. As mentioned, collision
and resting contact are just two kinds of constraint. To model others, we just
need to compute the necessary impulse to keep the two objects from breaking
the constraint condition and no more. This has the noted advantage that it
works well with our existing impulse system for collisions and resting con-
tacts. It’s also usually simpler to compute an impulse that keeps two objects
constrained than a force, as we’re removing one level of indirection from
position and orientation.

For those interested, details for building various types of constraint sys-
tems can be found in Catto [121], Jakobson [61], Millington [78], and Witkin
and Baraff [16].
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Multiple Points

The final issue we’ll discuss is how to manage multiple constraints and
contacts, both on one object and across multiple objects. In reality, our
constraint forces and contact impulses are occurring simultaneously so the
most accurate way to handle this is to build a large system of equations and
solve for them all at once. This is usually a quite complex process, both in con-
structing the equations and solving them. While it often ends up as a linear
system, using Gaussian elimination is too expensive due to the large numbers
of equations involved. Instead, an iterative process such as the Gauss-Seidel
or Jacobi method is used. In principle, this is similar to Newton’s method
in that it involves computing an initial approximation and then refining that
approximation to converge on the final answer.

An alternative, suggested in different ways by Catto [17] and Millington
[78], is to continue to update impulses sequentially. However, instead of
updating once per contact pair, we take a page from the iterative methods and
update each pair as necessary, until a certain level of convergence is reached.
Millington’s method is to iterate through the contact pairs, finding the ones
with the deepest penetration and resolving them first. One set of pairs may
be revisited because it is affected by one or more other sets of pairs. In this
way the impulses are iteratively adjusted until hopefully they converge on a
reasonable solution.

Catto’s method, on the other hand, involves updating the impulse val-
ues at each contact pair for several iterations, then applying the impulses
when done. This has the advantage that it can cut down on jitter. Normally,
impulses are required to be positive, so what happens is that any correction
in the negative direction will be clamped to zero. This means that we can get
overcorrection where objects bounce into the air briefly and then settle back
down much as we saw with resting contact. Instead, Catto recommends accu-
mulating the impulse value, including the incorporation of negative values.
He has also found that doing this while clamping the accumulated impulse
is equivalent to an iterative matrix method known as projected Gauss-Seidel,
which is a common variant used for solving constraint systems. This provides
an excellent mathematical justification for this approach.

As before, details on solving these issues can be found in Catto [17],
Jakobson [61], Millington [78], and Witkin and Baraff [121]. Golub and
Van Loan [44] have information on Gauss-Seidel and Jacobi methods.

13.6 Efficiency

Now that we have a simple simulation system, some notes on using it effi-
ciently may be appropriate. The first rule is that this is a game. Don’t waste
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time with any more processing power than you need to get the effect you
want. While a fully realistic simulation may be desirable, it can’t take too
much processing power away from the other subsystems, for instance, graph-
ics or artificial intelligence. How resources are allocated among subsystems
in a game depends on the game’s focus. If a simpler solution will come close
enough to the appearance of realism, then it is sometimes better to use that
instead.

One way to reduce the amount of resources used is to simplify the problem.
So far we’ve been assuming that we’re building a truly 3D game, where the
objects need to move in three degrees of freedom. If, however, you were
building a tank game, it’s highly unlikely that the tank would leave the ground.
In most cases, land warfare games take place on a 2D map, with some height
variation, so with the exception of projectiles the entire situation is really
a 2D problem. You don’t have to consider gravity, as angular dynamics is
constrained to just rotation around z, and thus you really need only one factor
for your moments of inertia. This considerably simplifies the angular dynamics
equations. The same is true for a first-person shooter; in general, characters will
interact as cylinders sliding on a flat floor, with vertical walls as boundaries.
In this case, we can simplify the collision problem to circles on a 2D plane.

Another way to improve efficiency is to run simulation code only on some
of the objects in the world. For example, we could restrict full simulation to
those objects that are visible or near the player. We could use a simplified
simulation model for the other objects or not move them at all. We could also
not simulate objects that aren’t currently moving, and begin simulation only
when forces are applied or another object collides with them. When using
this technique, we need to be careful about discontinuities in the simulation.
We don’t want a falling object that passes out of view to stop in midair, only
to start falling again when it’s visible again. Nor do we want objects to jerk,
move strangely, or jump position as one simulation model ceases and another
takes over. While managing these discontinuities can be tricky, using such
restrictions can also gain quite a performance boost.

Simplifying the forces computed during simulation is another place to
find speed improvements. We’ve alluded to this before. In a truly complete
simulation we would compute a gravitational force, a normal force to keep
the object from sinking through the ground, and a static frictional force to
keep the object from sliding down any inclines. In most cases, we can assume
that the sum of all these forces is zero and ignore them completely. We really
haven’t covered friction in any detail, but it’s a similar case. We could com-
pute a complex equation for an object that handles all contact points, current
surface area, and whether we are moving or at rest, or we could just use a
drag coefficient multiplied by velocity. If your game calls for the full friction
model, then by all means do it, but in many cases, it can be overkill.
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13.7 Chapter Summary

The use of physical simulation is becoming an important part of provid-
ing realistic motion in games and other interactive applications. In this
chapter we have described a simple physical simulation system, using basic
Newtonian physics. We covered some techniques of numeric integration,
starting with Euler’s method, and discussed their pros and cons. Using these
integration techniques, we have created a simple system for linear and rota-
tional rigid-body dynamics. Finally, we have shown how we can use the results
of our collision system to generate impulses for collision response.

The system we’ve presented is a very simple one — we’ve barely scratched
the surface of what is possible in terms of physical simulation. For those
who are interested in proceeding further, Eberly [27] presents a more com-
plete look at the mathematics in game physics, including the use of physics
in graphics shaders. Millington [78] presents the gradual development of
a simple physics engine that is suitable for game engines. Burden and
Faires [14] and Golub and Ortega [43] have more descriptions of numerical
integration techniques and managing error bounds. Finally, Witken and
Baraff [121], Jakobson [61], and Catto [16] describe different methods for
building constraint systems.
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Index1

A
AABBs, see Axis-aligned bounding

boxes (AABBs)
Absolute error

IEEE 754 floating-point
standard, 12

real number representation, 3
Acceleration, in linear dynamics

constant acceleration, 602–605
variable acceleration, 607–609

Acceleration vector, definition, 37
Addition

catastrophic cancelation, 22
fixed-point numbers, C-9
floating-point addition, 22
IEEE 754 floating-point

standard, 13–14
matrix addition, 90, 101
modulate with late addition, 360
quaternions, 187
vectors, 37–40, 43

Add mode, pixel blending, 418
Adjoint matrix, and determinants,

128–129
Affine combination, and points, 68–69
Affinely independent points,

definition, 69
Affine in screen space, definition, 384
Affine spaces

components, 66–68
definition, 66

Affine transformations
around arbitrary point, 156–158
definition, 133
exercises, X-6
formal definition, 136–137
formal representation, 138–139
game object manipulation

model and world coordinate
frames, 160–161

overview, 159–160
placement, 161–164

matrix decomposition, 164–166
matrix decomposition

avoidance, 166–169
matrix definition, 134–136
plane normals, 158–159

reflection, 151–154
rotation, 141–150
scaling, 150–151
shear, 154–156
standard types, 139
translation, 139–141

AI agent, see Artificial intelligence
(AI) agent

Algebraic rules
dot product, 48
scalar multiplication, 38–39
vectors, 37–38

Algorithms, see also Sample code
generalized feedback shift

register, 525
general plane clipping, 241,

243–244
linear collision response, 637–638
midpoint subdivision, 474
random number generators, 516
shadows, 367–368
simple collision system

performance, 593–596
Thomas algorithm, 446
vertex normal generation, 352–353

Alpha blending
definition, 261
pixels, 416–417

Alpha values, color representation
definition, 260–261
remapping into unit cube, 261–263

ALUs, see Arithmetic logic
units (ALUs)

Ambient light, characteristics,
332–334

AMD processors
basic vector class

implementation, 43
3D-specific FPus, 30

Angle of rotation, affine
transformations, 141

Angles, general, trigonometric
functions, A-1–A-4

Angular momentum
rotational collision response,

639–640
rotational dynamics, 626–628

Angular velocity, rotational
dynamics, 622–625

Animation, definition, 431
Anisotropic filtering, and

mipmaps, 412
Antialiasing

application, 427–428
method, 420–425
supersampled antialiasing,

425–426
Application programming

interface (API)
antialiasing application, 427–428
basic concept, 256–257
depth buffering, 387
and matrix decomposition, 168
rasterization pipeline, 372
texture samplers, 297

Approximations, real numbers, 2–3
Arbitrary point, affine transformation

around, 156–158
Arc length

computation, 477–479
definition, 476

Arcsine, definition, A-11
Area sampling, definition, 422–423
Area under the curve, definition, B-11
Arithmetic logic units (ALUs),

fixed-point number
calculations, C-9

Arithmetic operations
on functions, B-6
IEEE 754 floating-point standard

addition and subtraction, 13–14
multiplication, 15
rounding modes, 15–16

Artificial intelligence (AI) agent, dot
product applications, 49–51

Augmented matrix
and Gaussian elimination, 114
linear equations, 114–115

Axis-aligned bounding boxes (AABBs)
AABB–AABB intersection, 566
AABB–plane intersection, 570–571
AABB–ray intersection, 567–570

1. Page numbers with the letters A, B, C, and D before it refer to the Appendix pages. Page numbers with the letter X refer
to the Exercise pages. Both the Appendices and Exercises appear on the CD.
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Axis-aligned bounding
boxes (continued)

basic definitions, 563–565
exercises, X-18–X-19
OBB–ray intersection, 580
simple collision system, 591

Axis–angle representation
concatenation, 184
definition, 181–182, 181–184
format conversion, 182–184
vector rotation, 184

Axis of rotation, affine
transformations, 141

B
Back substitution, and Gaussian

elimination, 116–117
Backward Euler methods, rigid

body dynamics, 619
Barycentric coordinates

definition, 69
triangle, 85

Basis vectors
definition, 40
definition and representation,

62–63
and linear transformations,

104–106
Bayesian approach, basic

probability, 496
Bell curve, definition, 504
Bernstein basis, Bézier curves, 453
Bézier curves

arc length computation, 479
and B-splines, 456–458
curve sampling, 475–476
definition, 452–454
exercises, X-16
piecewise, 455–456
spherical linear interpolation,

468
Biased numbers, definition, 10
Bilinear texture filtering, basic

concept, 401–402
Binary scientific notation, rules, 6–8
Binomial coefficient, definition, 504
Binomial distribution,

definition, 503
Binomial random variable,

definition, 503
Bits, IEEE 754 floating-point

standard, 10
Block matrices, overview, 92–93
Bluriness, and minification, 402
Boundary conditions, Hermite

curves, 439
Bounding hierarchies

and scene graphs, D-6–D-8
simple collision system, 590–591

Box, inertial tensor example, 627
Box filtering, definition, 407

Brightness
definition, 317
RGB color model, 257

Brown, Robert G., 513
B-splines

curve sampling, 476
examples and characteristics,

456–458
spherical linear interpolation,

468
Buffer swapping, rasterization

pipeline, 372
Bump mapping, lighting, 363

C
Cabinet projection, definition, 215
Calculus terminology

basic derivatives, B-6–B-7
continuity, B-3
derivatives, B-4–B-5
Gaussian quadrature, B-15–B-17
integral definition, B-11–B-12
integral evaluation, B-13–B-14
limits, B-1–B-3
space curves, B-17–B-19
Taylor’s series, B-9–B-10
transcendental function

derivatives, B-7–B-9
trapezoidal rule, B-14–B-15

Camera
definition, 205
virtual, 205–206

Camera control
basics, 488
Frenet frame, 488–489, 491
orientation, 488
parallel transport frame, 490

Camera obscura, definition, 213
Canonical random variable,

definition, 499
Capsule-capsule intersection,

testing, 574
Capsule-plane intersection,

testing, 575
Capsule-ray intersection, testing, 575
Capsules

definition, 571
simple collision system, 590–591

Carry methods, linear congruential
generators, 522–524

Cartesian coordinate system
affine frame, 68
general angles, A-1–A-4
polar coordinate conversions,

72–73
rotation, 143–144
spherical coordinate conversions,

73–75
2D and 3D systems, 64–66

Cartesian frame, affine space, 67

Catastrophic cancelation, IEEE 754
floating-point standard, 22–24

Cathode ray tubes (CRT)
color range limitation, 258–259
color storage formats, 265
operations on color, 259–260

Catmull–Rom splines
creation, 448–450
exercises, X-15–X-16
spherical linear interpolation, 468

Cavalier projection, definition, 215
Cayley, Arthur, 186
CDF, see Cumulative density

function (CDF)
Center of mass, definition, 622–623
Center of projection, definition, 213
Center of rotation, affine

transformations, 141
Central Limit Theorem

chi-square test, 507
probability distributions, 505

Central processing unit (CPU)
fixed-point number

calculations, C-9
vertex buffers, 269

Centroid, point set, 69
Characteristic equation, and matrix

eigenvalues, 129
Chi-square test

distribution, 509
equidistribution, 512
hypotheses, 507
theoretical frequencies, 508–509

Chopping, floating-point
multiplication, 16

Clamped cubic spline, Hermite
curves, 445–446

Clamping
color saturation, 261–262
texture, 304–306

Class implementation
basic vector, 42–44
vector length, 46

Clipping
general plane, 239–244
homogeneous, 244–245
purpose, 235
triangles in rendering pipeline, 276

Closest points
on line to point, intersection

testing, 542–543
between two line segments,

551–553
Code, see Sample code
Coefficient of restitution, linear

collision response, 636
Cofactor of entry, determinant

computation, 123
Collinear points, definition, 79
Collision response

computation, 635
constraints, 641–642
contact generation, 630–634
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linear collision response, 634–638
resting contact, 641
rotational collision response,

638–640
Collision space, into slabs, 594
Collision system

base primitive choice, 589
basic rules, 588–589
bounding hierarchies, 590–591
dynamic objects, 591–593
performance improvements,

593–596
related systems, 596–599

Coloring
basic methods, 287
per-object colors, 288
per-triangle colors, 290
per-vertex colors, 288–290
sharp edges and vertex

colors, 290–291
textures as materials, 362

Color range, limitations, 258–259
Color representation

color range limitation, 258–259
colors as vectors, 257–258
operations on color, 259–260
remapping into unit cube, 261–263
RGB color model, 257
storage formats, 264–266

Colors, per-vertex attributes, 266
Color storage formats, examples,

264–266
Column major order, matrix

implementation, 99–100
Column space, matrices and linear

transformations, 107
Combined lighting equation

complexity, 347–348
equation definitions, 343–344
lit sphere example, 345
multi-light code, 346–347
shader code, 344

Compiling, fragment shaders,
284–285

Complementary angle,
definition, A-7–A-8

Complete fragments, definition, 373
Components, vectors, 41
Composite functions, definition,

B-6–B-7
Composition, linear transformations,

108
Compound angle, definition, A-9
Computer code, see Sample code
Computer number representation

fixed point
addition and subtraction, C-9
basic concept, C-5
basic representation, C-5–C-6
division, C-11–C-12
limits, C-16
multiplication, C-10–C-11

overflow and underflow,
C-13–C-16

range and precision, C-7–C-9
real-world fixed point,

C-12–C-13
floating point numbers, 4–6
IEEE 754 floating-point

standard, 9–25
integral representation

finiteness, C-1–C-2
overflow, C-3–C-4
overview, 1–2
range overview, C-2–C-3
range and type conversion, C-4–C-5
real numbers, 2–4
real-world floating-point, 25–32

Concatenation
affine transformations, 167
axis–angle representation, 184
fixed and Euler angles, 178
linear transformations, 108
quaternions, 193–195
world matrix code, 253

Concave polygon, definition, 83
Conformable for addition,

definition, 90
Conjugate, quaternions, 196
Constraint force, collision

response, 641
Constraints, collision response,

641–642
Contact generation, collision

response, 630–634
Continuity, calculus overview, B-3
Continuous, definition, 433, B-3
Continuous random variable,

definition, 499
Control points, Bézier curves, 452
Convex combination, point set, 69
Convex hull, point set, 69
Convex polygon, definition, 83
Convex set, points, 69
Coordinate frame, affine space, 67
Coplanar points, definition, 82
Cosecant

general angles, A-3
right triangle, A-1

Cosine
as even function, A-8
right triangle, A-1

Cotangent
general angles, A-3
right triangle, A-1

Covariance matrix, object-oriented
bounding boxes, 577

CPU, see Central processing unit
(CPU)

Cramer’s method
for inverse computation, 129
triangle–ray intersection, 586–587

Cross product
definition, 53

implementation, 54
for parallel vectors, 55

CRT, see Cathode ray tubes (CRT)
Cubic methods, spherical linear

interpolation, 468
Culling

frustrum, and collision systems,
597–599

method, 238–239
purpose, 235

Cumulative density function (CDF)
definition, 501
nonuniform random number

distributions, 529–530
Curvature

definition, 434
space curves, B-18–B-19

Curves, speed control
constant speed, 480–485
variable speed, 485–488

Curve sampling
basic concept, 470–471
forward differencing, 471–473
midpoint subdivision, 473–476

Cylinder, inertial tensor example, 627

D
De Casteljau’s method, curve

sampling, 475
De Fermat, Pierre, 494
Definite integral, definition, B-11
Deformations

affine transformations, 137
scaling, 150–151

Degenerate triangle, definition, 83
Degree of freedom, fixed and Euler

angles, 179–181
De Mere, Chevalier, 495, 496, 498
Denormalized numbers, see

Denormals
Denormals

floating-point standards, 21
floating-point zero values, 16
real-world performance, 27–28

Dependent events, basic
probability, 496

Dependent trials, basic
probability, 496

Depth buffering
application, 387–388
basic concept, 378–381
numerical precision, 385–387
per-fragment depth value

computation, 381–385
and pixel blending, 417–419

Depth complexity, fragments, 373–375
Depth cuing, exercises, X-11–X-12
Derivatives

associated definitions, B-4–B-5
basic derivatives, B-6–B-7
transcendental functions, B-7–B-9
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Descartes, Rene, Cartesian
coordinates, 64

Determinants
adjoint matrix and inverse,

128–129
computation, 123–126
definition, 121–123
and elementary row operations,

126–128
df/dx, definition, B-4
Diagonalization, matrices, 130
Diagonal matrix, definition, 89
DIEHARD, chi-square test, 513
DieHarder, chi-square test, 513
Diffuse color, textures as

materials, 362
Diffuse lighting, characteristics,

334–337
Diffuse map, definition, 362
Dimension, basis vectors, 63
Direct3D

antialiasing application, 428
basic concept, 256–257
fragment shader application, 285
HLSL exercises, X-14
light approximation, basics, 316
light interaction, 331
matrix exercises, X-8
object vertices, 268
oblique parallel projection,

233–234
oblique perspective matrix, 230
orthographic parallel projection,

232
perspective projection, 227
pixel blending, 419
rendering pipelines, 277
simple lighting approximation,

318–319
texture images, 294
viewing transformation

management, 253
Directional lights, characteristics,

320–321
DirectX

vector representation, 92
vertex shader inputs, 281

Discontinuous, definition, B-3
Discrete random variables,

definition, 498
Disc sampling, random numbers,

533–535
Displays

as hardware, 370–371
raster displays, 369

Distance attenuation, see
Inverse-square law

Distance testing
line-line distance, 550–551
line-point distance, 544–545
line segment-line segment

distance, 553

line segment-point distance,
546–547

Distance-time function, variable
curve speed, 485–488

Distribution
binomial distribution, 503
chi-square test, 509
Gaussian distribution, 504
nonuniform, random numbers,

529–530
probability distribution

function, 499
standard normal distribution, 504

Division, fixed-point numbers,
C-11–C-12

Domain, linear transformation
definition, 101

Dot product
algebraic rules, 48
definition, 47
equations, 47–48
library implementation, 51
perpendicular and orthogonal

vectors, 48–49
quaternions, 189
testing vector angles, 49–51

Double angle, definition, A-9
Double precision, IEEE 754

floating-point standard, 9, 24–25
Dynamic objects, simple collision

system, 591–593
Dynamics

definition, 602
linear dynamics, 602–609
rigid body, see Rigid body

dynamics
rotational dynamics, 622–630

E
Ease-in/ease-out, variable curve

speed, 485–488
Efficiency, rigid body dynamics,

643–644
Eigenspace, matrices, 130
Eigenvalues, as matrix property,

129–130
Eigenvectors, as matrix property,

129–130
8-bit value, binary scientific

notation, 7–8
Elementary matrices

and determinants, 126–128
linear system solutions, 113

Elementary outcome, basic
probability, 495

Elementary row operations, linear
system solutions, 113

Emissive color, textures as
materials, 362

Emissive light, characteristics, 332
Emulation, see Software emulation

Environment mapping, applications,
366–367

Equal, matrices, 89
Equidistribution test, chi-square, 512
Error, real number representation,

3–4
Euclid

line definition, 75
plane definition, 80
points, 64

Euclidean distance, affine space, 68
Euclidean inner product, see Dot

product
Euler angles

concatenation, 178
definition, 174–176
format conversion, 177–178
gimbal lock issues, 179–181
vector rotation, 178–179

Euler methods
backward, 619
exercises, X-19
modified method, 615
rigid body dynamics, 611–614
rotational quantity integration,

628–630
semi-implicit, 621–622

Even functions, trigonometry
overview, A-8

Event, basic probability, 495
Exercises

affine transformations, X-6
floating-point numbers, X-1–X-2
geometry, X-9–X-11
interpolation, X-15–X-16
intersection testing, X-18–X-19
lighting, X-11–X-13
linear transformations, X-5
matrix operations, X-4–X-6
orientation representation,

X-7–X-8
programmable shading, X-9–X-11
projection, X-8–X-9
random numbers, X-16–X-17
rasterization, X-13–X-14
rigid body dynamics, X-19–X-20
vectors, X-3–X-4
viewing, X-8–X-9

Expected value, definition, 502
Explicit methods, rigid body

dynamics, 619
Exponent

binary scientific notation, 6–8
catastrophic cancelation, 23–24
double precision, 24
floating-point infinity values, 18
floating-point nonnumeric

values, 19
floating-point zero values, 16–17
IEEE 754 floating-point standard,

9–11
restricted scientific notation, 5–6
scientific notation, 4
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Exponentials, calculus overview,
B-8–B-9

Eye, and object projection, 236
Eyepoint, definition, 205

F
Faceted shading, definition, 290
Favorable outcome, basic

probability, 495
Fibonacci series

generalized feedback shift register
algorithms, 525

lagged methods, 521–522
random number generators,

516–517
Field of view, view

frustrum, 217–218
Fill convention, partial fragment

handling, 377
Filtering, color operations, 260
Finiteness, integral representation,

C-1–C-2
First derivative, definition, B-4
Fishtank VR, oblique perspective, 231
Fixed angles

concatenation, 178
definition, 174–176
format conversion, 177–178
gimbal lock issues, 179–181
vector rotation, 178–179

Fixed-function rendering pipeline vs.
programmable, 277–278

Fixed-point numbers
addition and subtraction, C-9
basic concept, C-5
basic representation, C-5–C-6
binary scientific notation, 7–8
division, C-11–C-12
limits, C-16
multiplication, C-10–C-11
overflow and underflow, C-13–C-16
range and precision, C-7–C-9
from real numbers, C-8–C-9
real-world fixed point, C-12–C-13

Flat shading, definition, 290
Floating-point addition

basic concepts, 13–14
catastrophic cancelation, 22

Floating-point numbers
exercises, X-1–X-2
generation, 529
IEEE 754 standard

addition and subtraction, 13–14
basic representation, 9–11
catastrophic cancelation, 22–24
denormals and gradual

underflow, 21
double precision, 24–25
infinity, 17–18
nonnumeric values, 18–19
overview, 9

range and precision, 11–13
very small values, 19–21

real-world, see Real-world
floating-point

scientific notation, 4–5
Floating-point subtraction

basic concepts, 13–14
catastrophic cancelation, 22
example, 20–21

Floating-point units (FPUs)
denormals and gradual

underflow, 21
internal FPU precision, 25–26
software emulation, 28–29
3D-specific, 30–31

Flush-to-zero
definition, 20
implementation, 21

Fogging, exercises, X-11–X-12
Forces, linear dynamics, 605–606
Format conversion

axis–angle representation, 182–184
fixed and Euler angles, 177–178
quaternions, 189–193

Forward differencing
curve sampling, 471–473
definition, 384

FPUs, see Floating-point units (FPUs)
Fractional texel coordinate,

computation, 398, 400
Fragments

definition, 373
to pixels

antialiasing application,
427–428
antialiasing method, 420–425
basic approach, 415–416
multisampled antialiasing,

426–427
pixel blending application, 419
pixel blending and depth

buffering, 417–419
pixel blending methods, 416–417
supersampled antialiasing,

425–426
rendering pipeline, 276
texturing with mipmap, 408–411
from triangles, 375–376

Fragment shaders (FS)
compiling, linking, applications,

284–285
evaluation, 395
function, 278–279
input computation, 388–389
inputs, 283
link to vertex shaders, 282–283
outputs, 284
per-vertex attributes, 389–392
random number noise, 537
texture coordinate interpolation,

392–394
texture coordinate sources,

394–395

uniform values, 389
uniform value setting, 286–287

Framebuffers, as hardware, 370–371
Frenet frame, camera control,

488–489, 491
Frustrum culling, and collision

systems, 597–599
FS, see Fragment shaders (FS)
Function

arithmetic operations on, B-6
trigonometric function

derivatives, B-7–B-8
Fundamental theorem of calculus,

basic statement, B-12

G
Game Developer Magazine, 370, 378
Game objects, manipulation via affine

transformations
model and world coordinate

frames, 160–161
overview, 159–160
placement, 161–164

Gaussian distribution, definition, 504
Gaussian elimination

and determinants, 126–127
Hermite curves, 446
linear equation systems, 113–117
matrix inverse, 119

Gaussian quadrature
arc length computation, 477–478
definition, B-15–B-17

Gauss-Jordan elimination
definition, 116
matrix inverse, 119–120

General angles, trigonometric
functions, A-1–A-4

Generalized feedback shift register
(GFSR) algorithm, Mersenne
Twister, 525

Generalized line equation,
characteristics, 77–79

Generalized plane equation,
representation, 80–82

General plane clipping, methods,
239–244

General polynomials, definition, B-7
Geometric objects, vertices, 267–270
Geometric vectors, definition, 36–39
Geometry

drawing, 274–275
exercises, X-9–X-11
per-fragment lighting, 355–356
points as, 64–66
spotlights, 327
visible geometry, 378, 381–388

GFSR algorithm, see Generalized
feedback shift register (GFSR)
algorithm

Gimbal lock, fixed and Euler
angles, 179–181
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Global illumination, definition, 318
Gloss map, definition, 362
Glow map, definition, 362
GL shading language (GLSL)

definition, 278
fragment shader application,

284–285
fragment shader inputs, 283
fragment shader outputs, 284
input and output values, 279
inputs, 280–281
OpenGL exercises, X-14
random number noise, 538–539
simple lighting approximation, 319

Gouraud shading
definition, 288–289
limitations, 292
per-fragment lighting, 354–355
per-vertex attributes, 391–392
sharp edges, 353–354
and texturing, 309–310
as vertex-centric method, 350–351

GPUs, see Graphics processing units
(GPUs)

Gradient noise, random numbers, 537
Gradual underflow, floating-point

standards, 21
Gram–Schmidt orthogonalization

equations, 51–52
interpolation of orientation, 461

Graphics pipeline, definition, 203–204
Graphics processing units (GPUs)

index buffers, 274
real-world floating-point, 31–32
texture images, 295
textures as materials, 362
vertex buffers, 269
vertices into triangles, 273

Guard band, definition, 238

H
Half-angle, definition, A-10–A-11
Half-precision floating-point formats,

characteristics, 31–32
Hamilton, Sir William, 185
HDR rendering, see High dynamic

range (HDR) rendering
Heading, as Euler angle, 175–176
Heavy point, vertex definition, 266
Hermite curves

automatic generation, 444–446
and Bézier curves, 452–454
Catmull-Rom splines, 448–449
definition, 438–441
exercises, X-15–X-16
natural end conditions, 447–448
and piecewise Bézier curves, 455
tangent manipulation, 441–444

Heun’s method, rigid body
dynamics, 616

High color, color storage
formats, 265

High dynamic range (HDR)
rendering, color remapping, 263

High-level shading language (HLSL)
definition, 278
Direct3D exercises, X-14
random number noise, 538–539
simple lighting approximation, 319

Hole at Zero
definition, 20
IEEE 754 floating-point

standard, 19–21
Homogeneous clipping

methods, 244–245
screen transformation, 246

Hypothesis testing, chi-square
test, 507

I
Identity, quaternions, 195–197
Identity matrix, overview, 96–97
IEEE, Institute of Electrical and

Electronic Engineers (IEEE)
Illuminance

definition, 317
diffuse lighting, 334–336

Image-based texture mapping,
overview, 292–293

Image lookup, for shading, 293–294
Implementation

basic vector, 42–44
column major order, 99–100
cross product, 54
definition, 256
dot product, 51
flush-to-zero, 21
matrix, 98–101
point via OpenGL, 70–71
points, 70–72
row major order, 98–99
scalar multiplication, 43–44
scene graphs, D-1–D-5
SSE, 43
vector addition, 43
vector length, 46
vectors, 42–44

Implicit methods, rigid body
dynamics, 619–621

Impulse-based system, linear collision
response, 634

Increment, definition, 518
Indefinite integral, definition, B-11
Independent events, basic

probability, 496
Independent trials, basic

probability, 496
Index array, definition, 272
Index buffers, definition, 274
Indirect texturing, definition, 395
Inelasticity, computation, 636

Inertia tensor, rotational dynamics,
626–628

Infinite viewer approximation,
specular highlight, 342–343

Infinity, IEEE 754 floating-point
standard, 17–18

Initial value problems,
definition, 609

Instance, game objects, 160
Institute of Electrical and Electronic

Engineers (IEEE) standard
IEEE 754 floating-point standard

addition and subtraction, 13–14
basic representation, 9–11
catastrophic cancelation, 22–24
denormals and gradual

underflow, 21
double precision, 24–25
infinity, 17–18
multiplication, 15
nonnumeric values, 18–19
overview, 9
range and precision, 11–13
rounding modes, 15–16
very small values, 19–21
zero values, 16–17

Intel’s SSE, 29–30
Integers, random numbers, 528–529
Integer texel coordinate,

definition, 396
Integral representation,

finiteness, C-1–C-2
Integrals, evaluation, B-13–B-14
Intel, SSE, 29–30
Interpolation

arc length computation, 476–479
camera control, 488–491
curve sampling

basic concept, 469–470
forward differencing, 471–473
midpoint subdivision, 473–476

exercises, X-15–X-16
linear

definition, 435–436
piecewise, 436–438

overview, 431–433
speed along curve

constant speed, 480–485
variable speed, 485–488

Interpolation of orientation
basic concept, 458–461
linear interpolation, 461–465
performance improvements,

469–470
spherical linear interpolation,

465–468
Interpolation of position

Bézier curves, definition, 452–454
B-splines, 456–458
Catmull-Rom splines, 448–450
definitions, 433–434
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Hermite curves
automatic generation, 444–446
definition, 438–441
natural end conditions, 447–448
tangent manipulation, 441–444

Kochanek–Bartels splines, 450–452
piecewise Bézier curves, 455–456

Intersection testing
AABB definitions, 563–565
AABB-AABB intersection, 566
AABB-plane intersection, 570–571
AABB-ray intersection, 567–570
capsule-capsule intersection, 574
capsule-plane intersection, 575
capsule-ray intersection, 575
closest point on line to point,

542–543
closest point on line segment

to point, 544–545
closest points between two

lines, 548–550
closest points between two line

segments, 551–553
exercises, X-18–X-19
general linear components, 554
line-line distance, 550–551
line-point distance, 544–545
line segment-line segment

distance, 553
line segment-point distance,

546–547
OBB definitions, 576–578
OBB-OBB intersection, 578–580
OBB-plane intersection, 582–583
OBB-ray intersection, 580–582
object intersection overview,

554–556
overview, 541–542
simple collision system

base primitive choice, 589
basic rules, 588–589
bounding hierarchies, 590–591
dynamic objects, 591–593
performance improvements,

593–596
related systems, 596–599

sphere definitions, 556–560
sphere-plane intersection, 563
sphere-sphere intersection,

560–561
swept spheres definitions, 571–574
triangle-plane intersection, 588
triangle-ray intersection, 585–588
triangle-triangle intersection,

583–585
Inverses

calculus overview, B-8
definition, A-11
and determinants, 128–129
quaternions, 195–197

Inverse shear transformation,
equation, 156

Inverse-square law, point lights,
323–325

Irradiance, definition, 318
Isotropic filtering, and mipmaps, 412

J
Jacobi method, matrix computations,

130
JND, see Just noticeable difference

(JND)
Just noticeable difference (JND),

color storage formats, 266

K
Kernel, see Null space
Kinematics, definition, 603
Knots, and B-splines, 457
Kochanek-Bartels splines, creation,

450–452

L
Lagged Fibonacci methods, linear

congruential generators,
521–522

Lambertian reflector, definition, 334
Law of cosines, 47, A-6
Law of large numbers, definition, 495
Law of sines, triangles, A-5–A-6
Law of tangents, triangles, A-6–A-7
LCDs, see Liquid crystal

displays (LCDs)
LCG, see Linear congruential

generator (LCG)
Leapfrog Verlet method, rigid body

dynamics, 617–618
Legendre polynomials,

definition, B-16
Leibnitz notation, definition, B-4
Length, vectors, 44–47
Library implementation,

dot product, 51
Light

measurement, 317–318
as ray, 318

Light approximation
basics, 316
simple, 318–319

Light categories
ambient, 332–334
diffuse, 334–337
emission, 332
specular, 338–343

Light direction vector, definition, 319
Lighting

combined lighting equation,
343–348

exercises, X-11–X-13
flat-shaded lighting, 349–350
normal mapping, 363–366
overview, 315–316
per-fragment lighting, 354–358
per-vertex lighting, 350–354
reflective objects, 366–367
and shading, 348
shadows, 367–368
and textures

basic modulation, 359–360
relationship, 358
specular lighting, 360–361
textures as materials, 362–363

Light intensity value, definition, 319
Light interaction, and surface

materials, 331–332
Light sources

directional lights, 320–321
point lights, 321–326
shadows, 367
spotlights, 327–330
types, 319–320, 330–331

Limits
calculus overview, B-1–B-3
fixed-point numbers, C-16

Linear-bilinear filtering, and
mipmaps, 411–412

Linear collision response,
methods, 634–638

Linear combinations,
definition, 39–40

Linear components, intersection
testing, 554

Linear congruential generator (LCG)
definition, 517–518
modulus choice, 518–520
multiplier choice, 520–521

Linear dependence, definition, 39
Linear dynamics

constant acceleration, 602–605
forces, 605–606
momentum, 606
variable acceleration, 607–609

Linear equation systems
associated definitions, 110–112
Gaussian elimination, 113–117

Linear independence, definition, 39
Linear interpolation

definition, 435–436
as orientation, 461–465
piecewise, 436–438
spherical, 465–468

Linear momentum, rigid body
dynamics, 606

Linear space, definition, 59
Linear transformations

affine transformations,
136–137, 138

associated definitions, 101–103
and basis vectors, 104–106
combining, 108–110
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Linear transformations (continued)
definition, 87
exercises, X-5
and matrices, 106–108
null space and range, 103–104

Line-line distance, testing, 550–551
Line-point distance, intersection

testing, 544–545
Line of projection, definition, 213
Lines

closest point to point, intersection
testing, 542–543

closest points between, 548–550
definition, 75
generalized equation, 77–79
parameterized, 76–77

Line segment-line segment distance,
intersection testing, 553

Line segment-point distance,
intersection testing, 546–547

Line segments
closest point to point, 544–545
closest points between, 551–553
definition, 76

Line-sphere intersection,
example, 562

Linking, fragment shaders, 284–285
Liquid crystal displays (LCDs)

color range limitation, 258
and color storage formats, 265

Local space, see Model frames
LOD selection methods,

exercises, X-14
Logarithms, calculus overview,

B-8–B-9
Lower triangular matrix,

definition, 89
Lumen, definition, 317
Luminance

as color operation, 259–260
definition, 317, 318

Luminous flux, definition, 317
Luminous flux density, definition, 317
Lux, definition, 317

M
Magnitude, quaternions, 188–189
Main diagonal, definition, 89
Manhattan distance, as norm

example, 44–47
Mantissa

binary scientific notation, 6–8
catastrophic cancelation, 23–24
double precision, 24
floating-point infinity values, 18
floating-point multiplication, 15
floating-point nonnumeric

values, 19
floating-point zero values, 16–17
IEEE 754 floating-point

standard, 9–11

normalized, 19–21
restricted scientific notation, 5–6
scientific notation, 4

Mapping
bump mapping, 363
diffuse map, 362
environment mapping, 366–367
gloss map, 362
glow map, 362
image-based texture mapping,

292–293
mipmapping, 404–415
nearest-neighbor texture

mapping, 310, 397
normal mapping, 363–366
texture mapping, 292–297, 308, 310
tone mapping, 262–263

Master, game objects, 160
Materials, textures as, 362–363
Matrix

adjoint matrix, 128–129
affine transformation definition,

134–136
augmented matrix, 114–115
block matrices, 92–93
covariance matrix, 577
definition, 87
diagonal matrix, 89
eigenvalues and eigenvectors,

129–130
exercises, X-4–X-6, X-8
Gaussian, 113–117
Hermite curves, 446
identity matrix, 96–97
implementation, 98–101
linear equation definitions,

110–112
linear equation solving, 112–113
linear interpolation, 435–436
and linear transformations,

106–108
lower triangular matrix, 89
orthogonal matrix, 120, 145–146
overview, 88–89
into quaternion, 191–192
simple operations, 90–91
skew symmetric matrix, 91
square matrix, 88
symmetric matrix, 91
triangular matrix, 89
tridiagonal matrix, 446
twist matrix, 525–526
upper triangular matrix, 89
vector operations, 97–98
vector representation, 92
zero matrix, 88

Matrix addition
as operation, 90
test code, 101

Matrix decomposition
affine transformations, 164–166
avoidance, 166–169

Matrix inverse
definition, 117–120
simple inverses, 120–121

Matrix-matrix multiplication,
test code, 100

Matrix product, overview, 94–96
Matrix-vector multiplication

with term expansion, 106
test code, 100

Matrix-vector notation
example, 95
multiplication, 100

Mean, calculation, 502–503
Memory, and double precision, 25
Mersenne Twister

concept and developments,
524–525

twisted generalized feedback shift
register algorithm, 526–527

twist matrix, 525–526
Micro-impulse engine, collision

response, 641
Midpoint method

definition, 614
exercises, X-19

Midpoint subdivision, curve
sampling, 473–476

Minification, textures, 402–404
Minor of entry, determinant

computation, 123
Mipmapping

application, 412–415
basic concept, 404–407
definition, 404
fragment texturing, 408–411
and texture filtering, 411–412

Mixed congruential method,
definition, 518

Model, definition, 35
Model frames, game objects, 160–161
Model-to-world transformation,

definition, 161
Modified Euler’s method, rigid body

dynamics, 615
Modulate mode, pixel blending, 418
Modulate with late addition,

definition, 360
Modulus

choice in LCG, 518–520
definition, 518

Moments of inertia, rotational
dynamics, 627

Momentum, rigid body dynamics, 606
Monte Carlo integration, RNGs, 514
Mother of All Random Number

Generators, 523
Movement

with constant acceleration,
602–605

with variable acceleration, 607–609
MRTs, see Multiple render targets

(MRTs)
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MSAA, see Multisampled antialiasing
(MSAA)

Multiple render targets (MRTs),
fragment shader outputs, 284

Multiplication
fixed-point numbers, C-10–C-11,

C-13–C-14
IEEE 754 floating-point

standard, 15
matrix–matrix multiplication, 100
matrix–vector multiplication, 106
matrix–vector notation, 100
quaternions, 194–195
scalar, see Scalar multiplication

Multiplicative congruential method,
definition, 518

Multipliers
choice in LCG, 520–521
definition, 518

Multisampled antialiasing (MSAA)
antialiasing application, 427–428
method, 426–427

N
Natural end conditions, Hermite

curves, 447–448
Natural spline, Hermite curves, 447
NDC, see Normalized device

coordinates (NDC)
Nearest-neighbor texture mapping

definition, 310
magnification, 397

Negation, quaternions, 188
Newton-Raphson root finding,

constant speed, 480–485
Noise, random numbers, 535–539
Nonnumeric values, IEEE 754

floating-point standard, 18–19
Nonuniform B-splines (NURBS),

definition, 457–458
Nonuniform distributions, random

numbers, 529–530
Normal force, linear dynamics, 605
Normalization, quaternions, 188–189
Normalized device coordinates (NDC)

characteristics, 216
fragment shaders, 389, 391
matrix exercises, X-8
oblique perspective, 228
perspective projection, 223–224
picking, 250
screen transformation, overview,

245–248
viewing transformation

management, 252–253
Normalized vector

definition, 36
and vector length, 45–46

Normal mapping
lighting, 363–365
map generation, 365–366

Normal-point form, generalized
plane equation, 80–82

Normal vector, vertex, 267
Norms, and vector length, 44
NTSC, pixel aspect ratio, 249
Null hypothesis, chi-square test, 507
Nullity, and linear transformations,

103
Null space, and linear

transformations, 103–104
Numerical integration, rigid body

dynamics
basic definitions, 609–610
Euler’s method, 611–614
implicit methods, 619–621
Runge-Kutta methods, 614–616
semi-implicit methods, 621–622
Verlet methods, 616–618

NURBS, see Nonuniform B-splines
(NURBS)

O
OBBs, see Object-oriented bounding

boxes (OBBs)
Object hierarchies, examples, 169–171
Object intersection

AABB-AABB intersection, 566
AABB-plane intersection, 570–571
AABB-ray intersection, 567–570
axis-aligned bounding boxes, basic

definitions, 563–565
capsule-capsule intersection, 574
capsule-plane intersection, 575
capsule-ray intersection, 575
OBB definitions, 576–578
OBB-OBB intersection, 578–580
OBB-plane intersection, 582–583
OBB-ray intersection, 580–582
overview, 554–556
sphere definitions, 556–560
sphere-plane intersection, 563
sphere-ray intersection, 561–562
sphere-sphere intersection,

560–561
swept spheres definitions, 571–574
triangle-plane intersection, 588
triangle-ray intersection, 585–588
triangle-triangle intersection,

583–585
Object-oriented bounding boxes

(OBBs)
basic definitions, 576–578
exercises, X-18–X-19
OBB-OBB intersection, 578–580
OBB-plane intersection, 582–583
OBB-ray intersection, 580–582
simple collision system, 589, 591

Objects
pixel blending, 419
texture coordinate mapping,

298–300

Object space, see Model frames
Oblique parallel projection,

construction, 232–234
Oblique perspective, construction,

228–231
Oblique projection, definition, 215
Odd functions, trigonometry

overview, A-8
Once per light, computation, 322
OpenGL

antialiasing application, 428
basic concept, 256–257
camera control, 210
fragment shader application,

284–285
and GPUs, 31
GLSL exercises, X-14
light approximation, basics, 316
light interaction, 331
matrix exercises, X-8
oblique parallel projection, 233
oblique perspective, 228
orthographic parallel

projection, 231
perspective projection, 227
picking, 249
pixel blending, 419
point implementation, 70–71
random number noise, 537
rendering pipelines, 277–278
simple lighting approximation,

318–319
varying values, 389
vector representation, 92
vertex shader inputs, 281
viewing transformation

management, 252–254
view-to-world transformation,

206–208
and virtual camera definition, 206
world-to-view transformation, 211

Operator, linear transformation
definition, 102

Orbit
Euler method, 611, 613
numerical integration example, 610

Orientation
camera control, 488
vs. rotation, 149–150
rotational dynamics, 622–625

Orientation representation
axis–angle representation, 181–185
exercises, X-7–X-8
fixed and Euler angles, 174–181
overview, 173–174
quaternions, 185–201
rotation matrices, 174

Origin
affine space, 67
definition, 64

Orthogonal matrix
example, 120
and rotations, 145–146
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Orthogonal vectors, and dot
product, 48–49

Orthographic parallel projection,
construction, 231–232

Orthographic projection,
definition, 215

Orthonormal, definition, 51–52
Output processing, rendering

pipeline, 276
Overdraw, fragments, 375
Overflow

fixed-point numbers, C-13–C-16
number representation, C-3–C-4

Overshooting, Kochanek-Bartels
splines, 451

P
Parallel, vectors, 39
Parallelogram, determinant, 122–123
Parallelopiped, determinant, 122–123
Parallel projection

characteristics, 214–215
orthographic, 231–232
view frustrum, 219

Parallel transport frame, camera
control, 490

Parameter, and lines, 76
Parameterized lines,

characteristics, 76–77
Parameterized planes,

characteristics, 80
Parametric curves, definition, 433
Partial fragments

definition, 373
handling, 376–378

Partial pivot, and Gaussian
elimination, 114

Pascal, Blaise, 494
PDF, see Probability density

function (PDF)
Pearson’s chi-square test,

definition, 508
Penetration, collision response,

632–633
Penumbra

definition, 331
shadows, 368

Performance
and double precision, 25
real-world floating-point

denormals, 27–28
overview, 26–27

simple collision system, 593–596
Per-fragment depth values,

computation, 381–385
Per-fragment lighting

geometry, 355–356
overview, 354–355
Phong shading, 356–357
shader code example, 357–358

Period, random number
generators, 517

Per-object colors, coloring, 288
Perpendicular dot product,

definition, 55
Perpendicular vectors

and cross product, 55
and dot product, 48–49

Perspective projection
construction, 221–228
definition, 213

Per-triangle colors, coloring, 290
Per-triangle mipmapping,

definition, 410
Per-vertex colors, coloring, 288–290
Per-vertex lighting

basics, 350–351
sharp edges, 353–354
vertex normal generation, 351–353

Per-vertex operations
attributes, 266–267
rendering pipeline, 275–276

Per-vertex values, fragment
shaders, 389–392

Phong shading, definition, 356–357
Picking

definition, 204
methods, 249–251

Pick ray, example, 250
Piecewise Bézier curves, example,

455–456
Piecewise curve, definition, 434
Piecewise Hermite curves, examples,

441–443
Piecewise interpolation,

characteristics, 436–438
Piecewise smooth, space curves, B-18
Pitch, as Euler angle, 175–176
Pivot, and Gaussian elimination, 114
Pixel aspect ratio, screen

transformation, 248–249
Pixel blending

application, 419
and depth buffering, 417–419
methods, 416–417

Pixels
definition, 369, 371
from fragments

antialiasing application,
427–428

antialiasing method, 420–425
basic approach, 415–416
multisampled antialiasing,

426–427
pixel blending application, 419
pixel blending and depth
buffering, 417–419
pixel blending methods, 416–417
supersampled antialiasing,

425–426
Pixel shaders, function, 278–279
Planes

AABB-plane intersection, 570–571

general clipping, 239–244
generalized equation, 80–82
OBB-plane intersection, 582–583
parameterized, 80
plane normal transformation,

158–159
sphere-plane intersection, 563
triangle-plane intersection, 588
triangle vertices, 84

Platform issues, and double
precision, 25

Point clouds, and surface
ambiguity, 270–271

Point of collision, response, 631
Point at infinity, directional

lights, 320
Point lights, as light sources,

321–326
Points

affine combination, 68–69
affinely independent points, 69
affine spaces, 66–68
arbitrary point, 156–158
basic concept, 35
closest between two lines, 548–550
closest between two line

segments, 551–553
closest point on line, intersection

testing, 542–543
closest point on line segment,

intersection testing, 544–545
collinear, 79
control points, 452
coplanar, 82
as geometry, 64–66
implementation, 70–72
multiple, collision response, 643
polar coordinates, 72–73
radix points, 13
simplex points, 69
spherical coordinates, 73–75
vertex as heavy point, 266

Point sampling, definition, 376–377
Poker hand test, chi-square, 512
Polar coordinates

Cartesian coordinate conversion,
72–73

rotation, 143–144
Polar decomposition, affine

transformations, 165–166
Polygons, characteristics, 83–85
Polynomials

definition, B-7
Legendre polynomials, B-16

Position, linear dynamics, 604
Power of a variable, definition, B-6
Precision

fixed-point numbers, C-7–C-9,
C-14–C-16

floating-point numbers, 12
IEEE 754 floating-point standard,

11–13
internal FPU precision, 25–26
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real number representation, 3–4
z-buffering, 385–387

Predictor-corrector method, rigid
body dynamics, 620

Primary colors, RGB model, 257
Primitive element

LCG multiplier, 520
simple collision system, 589

Primitive processing, rendering
pipeline, 275

Principle axes, rotational dynamics,
627

Probability
basic probability, 495–498
definition, 495
history, 494–495
mean, 502–503
random variables, 498–501
special distributions, 503–506
standard deviation, 502–503

Probability density function (PDF)
definition, 500–501
nonuniform random number

distributions, 530
Probability distribution function,

definition, 499
Probability mass function,

definition, 498–499
Products of inertia, rotational

dynamics, 627
Programmable rendering pipeline

exercises, X-9–X-11
vs. fixed-function, 277–278

Projected Gauss-Seidel method,
collision response, 643

Projection
definition, 212
dot product example, 50–51
exercises, X-8–X-9
overview, 203–204

Projection plane, definition, 213
Projective transformation

definition, 212–216
homogeneous coordinates,

220–221
normalized device coordinates, 216
oblique parallel projection,

232–234
oblique perspective, 228–231
orthographic parallel projection,

231–232
perspective projection, 221–228
view frustrum, 216–220

Pure rotation, affine transformations,
142

p-value, chi-square distribution, 509,
511–512

Pythagorean identities
definition, A-7
double angle, A-9

Pythagorean theorem, 45
basic equation, A-5–A-6

Q
Quadrilaterals (Quads), definition, 83
Quaternions

addition, 187
concatenation, 193–195
definition, 185–186
dot product, 189
exercises, X-7–X-8
format conversion, 189–193
identity, 195–197
interpolation of orientation, 464
inverse, 195–197
magnitude, 188–189
multiplication, 194–195
negation, 188
normalization, 188–189
rotational quantity integration,

629–630
as rotations, 186–187
scalar multiplication, 187
shortest path of rotation, 199–200
spherical linear interpolation,

466–467
and transformations, 200–201
vector rotation, 197–199

R
Radiance, definition, 318
Radius, pixel, 409
Radix points, floating-point

arithmetic, 13
Random experiment, basic

probability, 495
Randomness

chi-square test, 507–513
definition, 506–507
spectral test, 513–514

Random number generators (RNGs)
algorithms, 516
definition, 514
Fibonacci series, 516–517
generated points examples, 515
integers and ranges, 528
lagged Fibonacci methods, 521–522
linear congruential methods

definition, 517–518
modulus choice, 518–520
multiplier choice, 520–521

Mersenne Twister, 524–527
period, 517
spectral test, 513–514

Random numbers
basic probability, 495–498
disc sampling, 533–535
exercises, X-16–X-17
floating-point numbers, 529
integers and integer ranges,

528–529
mean, 502–503
noise, 535–539

nonuniform distributions, 529–530
overview, 494
special probability distributions,

503–506
spherical sampling, 531–533
standard deviation, 502–503
turbulence, 537–539

Random trial, basic probability, 495
Random variables, probability,

498–501
Range

fixed-point numbers, C-7–C-9
IEEE 754 floating-point

standard, 11–13
linear transformation

definition, 101
and linear transformations,

103–104
number representation

overflow, C-3–C-4
overview, C-2–C-3
and type conversion, C-4–C-5

Rank
and linear transformations, 103
matrices and linear

transformations, 107
Raster displays, definition, 369
Rasterization

conceptual pipeline, 371–372
coordinate mapping to texel

basic concept, 396
texture magnification, 396–402
texture minification, 402–404

definition, 235, 369
depth complexity, 373–375
display hardware, 370–371
exercises, X-13–X-14
fragments, 373
fragment shader evaluation, 395
fragment shader inputs

computation, 388–389
per-vertex attributes, 389–392
texture coordinate interpolation,

392–394
texture coordinate sources,

394–395
uniform values, 389

fragments to pixels
antialiasing application,

427–428
antialiasing method, 420–425
basic approach, 415–416
multisampled antialiasing,

426–427
pixel blending application, 419
pixel blending and depth

buffering, 417–419
pixel blending methods, 416–417
supersampled antialiasing,

425–426
framebuffers, 370–371
mipmapping
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Rasterization (continued)
application, 412–415
basic concept, 404–407
fragment texturing, 408–411
and texture filtering, 411–412

partial fragment handling, 376–378
stages, 372
textures, texture coordinates, 396
triangles into fragments, 375–376
visible geometry

depth buffering application,
387–388

depth buffering overview,
378–381

determination, 378
per-fragment depth value

computation, 381–385
z-buffering precision, 385–387

Rational curve, definition, 457
Ray casting, and collision

systems, 596
Rays

AABB-ray intersection, 567–570
capsule-ray intersection, 575
light as, 318
as line, 76–77
OBB-ray intersection, 580–582
sphere-ray intersection, 561–562
triangle-ray intersection, 585–588

Ray tracing
reflective objects, 366–367
shadows, 368

Real numbers
approximations, 2–3
into fixed-point numbers, C-8–C-9
precision and error, 3–4
representation issues, 2

Real projective space, definition,
220–221

Real symmetric matrices,
definition, 130

Real vector spaces
equations, 61–62
examples, 60–61
overview, 59–60
properties, 61
subspace, 62

Real-world fixed point numbers,
operations, C-12–C-13

Real-world floating-point
denormal performance, 27–28
GPUs, 31–32
half-precision floating-point

formats, 31–32
Intel’s SSE, 29–30
internal FPU precision, 25–26
performance overview, 26–27
software emulation, 28–29
3D-specific FPUs, 30–31

Reciprocal divide, definition, 225
Recurrence relation, random number

generators, 516

Reduced row echelon, linear system
solutions, 112–113

Reflection
as affine transformation, 151–154
determinant computation, 125

Reflective objects, characteristics,
366–367

Rejection sampling, nonuniform
random number distributions,
530

Relation definition, 101
Relative error

catastrophic cancelation, 23
IEEE 754 floating-point

standard, 12–13
real number representation, 3

Relaxed end condition, Hermite
curves, 447–448

Rendering application programming
interface

drawing geometry, 274–275
fragment shader application, 285
fragment shader values, 286
object vertices, 268
per-triangle colors, 290
pipeline comparisons, 277–278
texture images, 294–295
texture mapping, 308
vertex shader inputs, 281
vertices into triangles, 273

Rendering pipeline
basic flow, 275–277
fixed-function vs. programmable,

277–278
Representation

affine transformations, 138–139
axis-angle representation, 181–184
basis vectors, 63
color representation, 257–266,

260–261
computer number, see Computer

number representation
orientation representation,

174–201, X-7–X-8
surface representation, 270–275
2D and 3D representation, 203–204
vector, 92

Resampling, definition, 432
Resting contact, collision

response, 641
Restricted scientific notation,

rules, 5–6
RGBA colors

combined lighting equation, 344
definition, 260–261
exercises, X-11
remapping into unit cube, 261–263
storage formats, 264–266
texture images, 296
textures as materials, 362–363

RGB color model
characteristics, 257
combined lighting equation, 344

exercises, X-10, X-13
normal mapping, 364
operations on color, 259–260
range limitation, 258–259
textures as materials, 362

Right triangles, ratios, A-1–A-2
Rigid bodies, definition, 602
Rigid body dynamics

basic considerations, 601–602
collision response

constraints, 641–642
contact generation, 630–634
linear collision response,
634–638
multiple points, 643
resting contact, 641
rotational collision response,

638–640
efficiency, 643–644
exercises, X-19–X-20
linear dynamics

constant acceleration, 602–605
forces, 605–606
variable acceleration, 607–609

linear momentum, 606
numerical integration

basic definitions, 609–610
Euler’s method, 611–614
implicit methods, 619–621
semi-implicit methods, 621–622

rotational dynamics
angular momentum and inertia

tensor, 626–628
definitions, 622
integration techniques, 628–630
orientation and angular velocity,

622–625
torque, 625–626

Runge-Kutta methods, 614–616
Verlet integration, 616–618

Rigid transformations, definition, 137
RK4, see Runge-Kutta order four

(RK4)
RNGs, see Random number

generators (RNGs)
Rodrigues formula

axis-angle representation, 184
definition, 148

Roll, as Euler angle, 175–176
Root finding, constant speed, 480–485
Root of the scene graph,

definition, D-1
Rotation

affine transformation around
point, 156–158

associated equations, 142–143
axis-angle representation, 184
basic movements, 141–142
definition, 141
determinant computation, 125
effects, 148–149
fixed and Euler angles, 178–179
game objects, 163
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general rotation, 147
vs. orientation, 149–150
polar and cartesian coordinates,

143–144
quaternions, 186–187, 197–200
transformation creation, 145–146
vector, sample code, 198

Rotational collision response,
methods, 638–640

Rotational dynamics
angular momentum and inertia

tensor, 626–628
integration techniques, 628–630
orientation and angular velocity,

622–625
torque, 625–626

Rotation matrices
characteristics, 174
exercises, X-7

Rounding modes, IEEE 754
floating-point standard, 15–16

Round operation, real into fixed-point
numbers, C-8

Row echelon form, linear system
solutions, 112

Row major order, matrix
implementation, 98–99

Runge-Kutta methods, rigid body
dynamics, 614–616

Runge-Kutta order four (RK4), rigid
body dynamics, 616

S
Sample code

AABB-AABB intersection, 566
AABB intersection, 565
AABB-plane intersection, 570–571
AABB-ray intersection, 569
ambient lighting, 334
automatic mipmap generation, 414
bounding hierarchies, D-6–D-8
bounding sphere, 559–560
capsule-capsule intersection, 574
capsule-plane intersection, 575
capsule-ray intersection, 575
closest point on line segment

to point, 546
closest points between two

lines, 550
closest points between two

line segments, 553
closest point test, 543
combined lighting, 344
combined lighting computation,

346–347
constant speed movement,

481–482, 483
denormal performance, 27–28
diffuse lighting, 337
directional lights, 321
force computation, 612

forward differencing, 471–473
fragment shader, 284, 358, 360–363
index buffers, 274–275
indexing operator, 99–100
integer FPU precision, 25–26
line class definition, 77
line-line distance, 550–551
line-point distance, 544–545
line segment-point distance, 547
matrix addition, 101
matrix-matrix multiplication, 100
matrix-vector multiplication, 100
Mersenne Twister, 525
mipmapping, 413–414
noise and turbulence, 537–538
normal light mapping, 365
OBB-plane intersection, 583
OBB-ray intersection, 581–582
piecewise linear interpolation, 437
plane clipping, 241–243
point implementation, 71–72
point light computation, 326
point lights, 322–323
quaternion format conversion, 190
quaternion multiplication, 194–195
quaternions, 187
rotational collision response, 640
for rotational quantities, 630
scalar multiplication, 43–44
scene graphs, D-1–D-5
shader compiler, 285
shader renderer, 285
shader uniform values, 286–287
simple vertex, 268
specular lighting, 340–341, 343
sphere collision response, 637–638
sphere-plane intersection, 563
sphere-ray intersection, 561–562
sphere-sphere intersection, 561
spotlights, 329–330
texture clamping, 308
texture images, 296
triangle-ray intersection, 587–588
vector addition, 43
vector class, 42
vector length, 46
vector rotation, 198
vertex buffer, 269–270
vertex formats, 268
vertex shader, 282, 309, 357–358
vertex shader colors, 288
vertex structure, 267–268
view and projection matrices,

252–253
world matrix concatenation, 253
world-to-view transformation,

211–212
Sample mean, definition, 502
Samples, definition, 502
Sample space, basic probability, 495
Sample variances, definition, 502

Sampling
curve sampling, 470–476
random numbers

disc sampling, 533–535
nonuniform distributions, 530
spherical sampling, 531–533

Saturation, color clamping, 261–262
Scalar, definition, 38
Scalar multiplication

algebraic rules, 38–39
basic class implementation, 43–44
linear combinations, 39–40
as operation, 90
quaternions, 187
RGB colors, 259

Scalar triple product, definition and
application, 56–59

Scaling
color remapping, 262
game objects, 163
matrix decomposition avoidance,

166–167
Scan line, definition, 375
Scene graphs

base implementation, D-1–D-5
and bounding hierarchies, D-6–D-8
definition, D-1
object hierarchies, 171

Scientific notation
basic representation, 4–5
binary, 6–8
restricted rules, 5–6

Scissoring, definition, 238
Screen affine, definition, 384
Screen space

NDC space mapping, 247
view window, 246

Screen transformation
overview, 245–248
pixel aspect ratio, 248–249

Secant
as even function, A-8
general angles, A-3
right triangle, A-1

Second derivative
definition, B-5
space curves, B-17–B-18

Seed values, random number
generators, 516

Self-illumination, characteristics, 332
Semi-implicit Euler methods

definition, 621–622
rotational quantity integration,

629–630
Separating axis, OBB-OBB

intersection, 578
Separating plane, AABB-AABB

intersection, 566
Serial test, chi-square, 512
Shader languages

constructs, 280
HLSL and GLSL, 278
texture samplers in code, 309
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Shaders
fragment, see Fragment

shaders (FS)
input and output values, 279–280
operations and languages, 280
pixel shaders, 278–279
vertex shaders, 278–282
vertex-triangle-fragment, 278–279

Shades, RGB color model, 257
Shading

basic shading, 291–292
flat-shaded lighting, 349–350
Gouraud-shaded lighting, 350–351
via image lookup, 293–294
and lighting, 348
limitations, 292
per-fragment lighting, 354–358
static, limitations, 312–313

Shadows, in lighting, 367–368
Sharp edges

per-vertex lighting, 353–354
and vertex colors, 290–291

Shear, as affine transformation,
154–156

Shoemake, Ken, 185
Sign

double precision, 24
floating-point infinity values, 18
floating-point nonnumeric

values, 19
floating-point zero values, 17
IEEE 754 floating-point

standard, 9–11
SignE, binary scientific notation, 6
Signed angle, between vectors, 56
SignM, binary scientific notation, 6
Simplex points, definition, 69
Sine, right triangle, A-1
Single precision, IEEE 754

floating-point standard, 9
Singular value decomposition (SVD),

affine transformations, 165
Size, matrices, 88
Skeleton

bones relationship, 459
interpolation of orientation, 458

Skew symmetric matrix, definition, 91
Slerp, see Spherical linear

interpolation (Slerp)
Soft bodies, collision response, 642
Software emulation, floating-point,

28–29
Solid cylinder, inertial tensor

example, 627
Solution set, linear equation systems,

111
Space curves, definition, 433,

B-17–B-19
Special values, IEEE 754

floating-point standard, 16–19
Spectral test, randomness, 513–514
Specular color, textures as

materials, 362

Specular halfway vector,
definition, 342

Specular highlight
definition, 338
infinite viewer approximation,

342–343
light relationships, 338–339
shader code, 340–341
shininess, 339–340

Specular lighting, and textures,
360–361

Speed control, along curve
constant speed, 480–485
variable speed, 485–488

Sphere–plane intersection,
testing, 563

Sphere–ray intersection,
testing, 561–562

Spheres
ambient lighting, 333
as bounding object, 556–557
collision response algorithm,

637–638
combined lighting, 345
fitting, 559–560
flat-shaded lighting, 349
Gourand shading, 351
inertial tensor example, 627
intersection, 560–561
merging example, D-8
model origin, 557–559
simple collision system, 590–591
specular lighting, 341
surfaces, 557

Spherical coordinates, Cartesian
coordinate conversions, 73–75

Spherical linear interpolation (Slerp)
cubic methods, 468
as orientation, 465–468

Spherical sampling, random
numbers, 531–533

Spotlights, as light sources, 327–330
Squad, spherical linear interpolation,

468
Square matrix, definition, 88
Square root functions, and vector

length, 46–47
SSAA, see Supersampled antialiasing

(SSAA)
SSE, see Streaming SIMD Extensions

(SSE)
Standard basis, representation, 63
Standard deviation, calculation,

502–503
Standard deviation of the sample,

definition, 502
Standard Euclidean basis,

equations, 40–41
Standard normal distribution,

definition, 504
Static shading, limitations, 312–313
Stiff systems, definition, 614

Stirling number of the second kind,
definition, 513

Straight line, definition, 75
Streaming SIMD Extensions (SSE)

basic vector class implementation,
43

IEEE specification
compliance, 29–30

Mersenne Twister, 527
Stream of numbers, random number

generators, 516
StrongARM processors, 28
Subspace, real vector spaces, 62
Subtraction

catastrophic cancelation, 22
fixed-point numbers, C-9
floating-point example, 20–21
IEEE 754 floating-point standard,

13–14
Supersampled antialiasing (SSAA)

method, 425–426
vs. multisampled antialiasing,

426–427
Surface ambiguity, and vertices,

270–271
Surface materials, and light

interaction, 331–332
Surface representation

drawing geometry, 274–275
index buffers, 274
triangles, 271
vertices into triangles, 271–274
vertices and surface ambiguity,

270–271
Surfaces, spheres, 557
SVD, see Singular value

decomposition (SVD)
Swapping, rasterization pipeline, 372
Sweep-and-prune method, simple

collision system, 595–596
Swept spheres

basic definitions, 571–574
capsule-capsule intersection, 574

Symmetric matrix, definition, 91
Symplectic Euler methods

definition, 621–622
exercises, X-19

T
Tangent

general angles, A-3
right triangle, A-1

Tangent space, normal mapping, 365
Tangent vectors

Hermite curves, 440–441
manipulation, 441–444

Taylor’s series, calculus overview,
B-9–B-10

Tempering, Mersenne Twist, 526
Temporal coherence, simple collision

system, 595
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Tensor product, with matrices, 97–98
Tessellation

definition, 271
per-vertex lighting, 353

Test code, see Sample code
Testing

distance, line–point
distance, 544–545

intersections, see Intersection
testing

Texel address
coordinate mapping

basic concept, 396
magnification application, 402
texture magnification, 396–402
texture minification, 402–404

definition, 396
Texel centers

coordinate mapping, 396
and texel coordinates, 311

Texel coordinates
definition, 310
and texel centers, 311

Texels, definition, 294
Texture clamping

computation, 307
example, 306
method, 304–305

Texture coordinates
basic concept, 396
discontinuities, 301–302
forms, 310–311
generation, 300
interpolation, 392–394
magnification application, 402
mapping onto objects, 298–300
mapping outside unit square,

302–308
mapping to texels

magnification, 396–402
minification, 402–404

overview, 297–298
and sample color, 311–312
sources, 394–395
vertex, 267

Texture filtering
bilinear, 401–402
definition, 396
and mipmaps, 404–407, 411–412

Texture images, texture mapping,
294–296

Texture mapping
nearest-neighbor, 310
overview, 292–293
shading via image lookup, 293–294
texture images, 294–296
texture samplers, 297
with wrapping, 308

Texture repeating, definition, 303
Textures

fragment with mipmap, 408–411
and lighting

basic modulation, 359–360

relationship, 358
specular lighting, 360–361
textures as materials, 362–363

magnification, 396–402
minification, 402–404
reflective objects, 366–367
texturing steps, 309–310

Texture samplers
in application code, 297
color and coordinates, 311–312
in shader code, 309

Texture tiling, definition, 303
Texture UVs, see Texture coordinates
Texture wrapping

with clamping, 308
computation, 305
definition, 303
edge matching, 306
example, 304

TGFSR algorithm, see Twisted
generalized feedback shift
register (TGFSR) algorithm

Theoretical frequencies, chi-square
test, 508–509

Thomas algorithm, Hermite
curves, 446

Three-dimensional lighting,
basics, 316

Three-dimensional representation,
overview, 203–204

Tone mapping, method, 262–263
Tones, RGB color model, 257
Torque, rotational dynamics, 625–626
Trace, definition, 89, 182
Transcendental functions, derivatives,

B-7–B-9
Transform

definition, 101
and matrix multiplication, 94–96

Transformation
definition, 102
projective, see Projective

transformation
and quaternions, 200–201
rendering pipeline, 276
screen transformation, 245–249
viewing, management, 252–254
view-to-world transformation,

206–208
Translation

as affine transformation, 139–141
object placement, 162

Transpose, matrices, 91
Trapezoidal rule, definition,

B-14–B-15
Triangle-plane intersection,

testing, 588
Triangle-ray intersection,

testing, 585–588
Triangles

characteristics, 83–86
complete fragments, 374
depth buffering, 379

flat-shaded lighting, 349–350
into fragments, 375–376
lighting and shading, 348
perspective projection, 222
properties, A-4–A-7
rendering pipeline, 276
right, ratios, A-1–A-2
and shaders, 278–279
surface representation, 271
from vertex connections, 271–274
vertex normal generation, 352

Triangle strips, definition, 273
Triangle-triangle intersection,

testing, 583–585
Triangular matrix, definition, 89
Tridiagonal matrix, Hermite

curves, 446
Trigonometric functions,

derivatives, B-7–B-8
Trigonometry terminology

complementary angle, A-7–A-8
compound angle, A-9
double angle, A-9
even-odd functions, A-8
general angles, A-1–A-4
half-angle, A-10–A-11
inverses, A-11, B-8
Pythagorean identities, A-7
right triangle ratios, A-1–A-2
triangle properties, A-4–A-7

Trilerp, and mipmaps, 411–412
Trilinear interpolation filtering,

and mipmaps, 411–412
Triple products

scalar type, 56–59
vector type, 56

Tristrips, definition, 273
Tuning values, light sources, 319
Turbulence, random numbers,

537–539
24-bit color, as storage format, 265
Twisted generalized feedback shift

register (TGFSR) algorithm,
Mersenne Twist, 526–527

Twist matrix, Mersenne Twister,
525–526

Two-dimensional representation,
overview, 203–204

Type conversion, and range, C-4–C-5

U
Umbra, definition, 331
Underflow, fixed-point numbers,

C-13–C-16
Undershooting, Kochanek-Bartels

splines, 451
Uniform B-splines, definition, 457
Uniform variate, definition, 499
Unit cube, color remapping, 261–263
Unit square, texture coordinate

mapping, 302–308
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Unit vector, definition, 36
Unweighted area sampling,

definition, 424
Upper triangular matrix, definition, 89

V
Value, IEEE 754 floating-point

standard, 10
Value-gradient noise, random

numbers, 537
Value noise, random numbers, 537
Varying values, fragment shaders, 389
Vector addition

basic class implementation, 43
linear combinations, 39–40
rules, 37–38

Vector length
class implementations, 46
examples, 44–45
square root functions, 46–47

Vector operations, with matrices,
97–98

Vector product, see Cross product
Vector representation, matrix, 92
Vectors

algebraic rules, 37–38
basic class implementation, 42–44
basic concept, 35
basis vectors, 62–63
colors as, 257–258
cross product, 53–56
dot product, 47–51
exercises, X-3–X-4
geometric vectors, 36–39
Gram-Schmidt orthogonalization,

51
linear combinations, 39–40
representation, 40–42
rotation code, 198
tangent, Hermite curves, 440–441
usage, 36–37

Vector space, see Linear space
Vector triple product, definition, 56
Velocity, linear dynamics, 604
Velocity Verlet method, rigid body

dynamics, 618
Verlet integration

exercises, X-19
rigid body dynamics, 616–618

Vertex
definition, 266
geometric object, 267–270
per-vertex attributes, 266–267
polygons, 83
and surface ambiguity, 270–271
into triangle, 271–274
triangle definition, 585

Vertex buffer, characteristics and
creation, 269–270

Vertex colors, and sharp edges,
290–291

Vertex normals, generation, 351–353
Vertex shaders (VS)

basic types, 282
function, 278–279
inputs, 280–281
link to fragment shaders, 282–283
outputs, 281

Video projectors, color range
limitation, 258

View direction vector, definition, 205
View frame

camera control, 208–211
definition, 205
view-to-world transformation,

206–208
virtual camera definitions, 205–206
world-to-view transformation,

211–212
View frustrum

characteristics, 216–220
culling, 238–239
general plane clipping, 243

Viewing
exercises, X-8–X-9
overview, 203–204
transformation management,

252–254
View plane, definition, 213
View position, definition, 205
View side vector, definition, 205
View space origin, definition, 205
View transformation

camera control, 208–211
view-to-world, 206–208
virtual camera definitions, 205–206
world-to-view, 211–212

View up vector, definition, 205
View volume, characteristics, 216–220

View window, definition, 213
View-to-world transformation,

construction, 206–208
Virtual camera

associated definitions, 205–206
control, 208–211

Visible geometry
depth buffering application,

387–388
determination, 378
per-fragment depth value

computation, 381–385
z-buffering precision, 385–387

Visible surface determination (VSD),
definition, 378

VMX, vector instructions, 43
VS, see Vertex shaders (VS)

W
Weighted area sampling,

definition, 424
Wire frame, texture coordinates, 392
World axes, axis-aligned bounding

boxes, 564
World frames, game objects, 160–161
World space, see World frames
World-to-view transformation,

construction, 211–212

X
XScale processors, 28

Y
Yaw, as Euler angle, 175–176

Z
z-buffer

definition, 378, 385
numerical precision, 385–387

Zero matrix, definition, 88
Zero value, IEEE 754 floating-point

standard, 16–17
Zero vector, definition, 36
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About the CD-ROM

Introduction

Many of the concepts in this book are visual, dynamic, or both. While static illustrations are used
throughout the book to illuminate some of these concepts, the truly dynamic concepts can be best
understood only via experiencing them in an interactive illustration. Computer-based examples
serve this purpose quite well.

This book includes a CD-ROM that contains numerous interactive demonstration programs
for concepts discussed in the book. The demos are supported on Windows (2000 and XP), MacOS
(OS X), and Linux. The main contents of the CD-ROM are:

■ Precompiled versions of the demos for Windows, ready to run. These are likely to be useful
to the widest range of readers of the book, as they are ready to use as supplied, and can be
experienced quickly, with the book in hand.

■ Source for all of the demos, ready to edit and recompile on all platforms. For many students,
this is an excellent way to start tinkering with actual graphics, animation, and simulation
code. The demos can form excellent launching pads for further experimentation.

■ Source for the graphics and math libraries used to create the demos. These libraries can
form the basis of even more complex graphics applications, especially the low-level math-
ematics libraries. In addition, the source to these libraries is used as a set of design and
implementation examples throughout the book.

Updates

To distribute updates and corrections to this code as well as new demos, a Web page has
been established for this book at www.essentialmath.com. Please visit this site before using the
included CD-ROM to read any important news or updates regarding the CD-ROM that were
added following the production of the book’s CD-ROM.

Installing the CD-ROM

In order to use the CD-ROM, simply insert the disc into a CD-ROM drive that is mounted on
the computer and use the file explorer or command prompt to open the top-level directory of
the disc.

Getting Started

There are two files that anyone planning to use the CD-ROM should read prior to copying
and using the demos or any of the code. The first of these files is the license information,



LICENSE.PDF. This file details the software license agreement (SLA) that all users are bound by
when using the demo code. The “grant” clause of the (SLA) are as follows:

1. Grant. We grant you a nonexclusive, nontransferable, and perpetual license to use The Software
subject to the terms and conditions of the Agreement:

(a) You must own a copy of The Book (“Own The Book”) to use The Software. Ownership of one
book by two or more people does not satisfy the intent of this constraint.

(b) The Software may be used by you for noncommercial products. A noncommercial product is one
that you create for yourself as well as for others to use at no charge. If you redistribute any
portion of the source code of The Software to another person, that person must Own The Book.
Redistribution of any portion of the source code of The Software to a group of people requires
each person in that group to Own The Book. Redistribution of The Software in binary format,
either as part of an executable program or as part of a dynamic link library, is allowed with no
obligation to Own The Book by the receiving person(s), subject to the constraint in item (d).

(c) The Software may be used by you for commercial products. The source code of The Software may
not be redistributed with a commercial product. Redistribution of The Software in binary format,
either as part of an executable program or as part of a dynamic link library, is allowed with no
obligation to Own The Book by the receiving person(s), subject to the constraint in item (d). Each
member of a development team for a commercial product must Own The Book.

(d) Redistribution of The Software in binary format, either as part of an executable program or as
part of a dynamic link library, is allowed. The intent of this Agreement is that any product,
whether noncommercial or commercial, is not built solely to wrap The Software for the purposes
of redistributing it or selling it as if it were your own product. The intent of this clause is that you
use The Software, in part or in whole, to assist you in building your own original products. An
example of acceptable use is to incorporate the rendering portion of The Software in a game to be
sold to an end user. An example that violates this clause is to compile a library from only The
Software, bundle it with the headers files as a Software Development Kit (SDK), then sell that
SDK to others. If there is any doubt about whether you can use The Software for a commercial
product, contact us and explain what portions you intend to use. We will consider creating a
separate legal document that grants you permission to use those portions of The Software in your
commercial product.

2. Limitation of Liability. The Publisher warrants the media on which the software is furnished to be free
from defects in materials and workmanship under normal use for 30 days from the date that you
obtain the Product. The warranty set forth above is the exclusive warranty pertaining to the Product,
and the Publisher disclaims all other warranties, expressed or implied, including, but not limited to,
implied warranties of merchantability and fitness for a particular purpose, even if the Publisher has
been advised of the possibility of such purpose. Some jurisdictions do not allow limitations on an
implied warranty’s duration, therefore, the above limitations may not apply to you.

3. Limited Warranty. Your exclusive remedy for breach of this warranty will be the repair or replacement
of the Product at no charge to you or the refund of the applicable purchase price paid upon the return
of the Product, as determined by the Publisher in its discretion. In no event will the Publisher, and its
directors, officers, employees, and agents, or anyone else who has been involved in the creation,
production, or delivery of this software, be liable for indirect, special, consequential, or exemplary
damages, including, without limitation, for lost profits, business interruption, lost or damaged data, or
loss of goodwill, even if the Publisher or an authorized dealer, distributor, or supplier has been
advised of the possibility of such damages. Some jurisdictions do not allow the exclusion or limitation
of indirect, special, consequential, or exemplary damages or the limitation of liability to specified
amounts, therefore, the above limitations or exclusions may not apply to you.

The full details may be found in the license file on the CD-ROM.
The second set of files that any user should read are the “read me” files. The general “read

me” file, README_FIRST.TXT relates information that is pertinent to all users of the code. In



addition, there are README files for each of the supported platforms. Put together, these files
contain a wide range of information, including:

■ Descriptions of supported platforms, hardware, and development tools.

■ Instructions on how to prepare your computer to run the demos on each of the supported
platforms.

■ Instructions on how to build the engine libraries and demos themselves (on each of the
supported platforms).

■ Known issues with any of the demos or libraries.

The book makes many references in its text to these demos, where appropriate, using the icons
described in the introduction to the book. However, there are additional, unreferenced demos
that were written after the book text was finalized. These newer demos are available on the
CD-ROM, but are not referenced in the text. Please refer to the README_FIRST.TXT file in the
root directory of the CD-ROM, as well as the demo directories for each chapter for additional
demos not referenced in the book text.
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